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Abstract 

Dynamic logics are a family of logics used to reason about computer programs. The language 

used is multi-modal, with modalities indexed by a set of programs and satisfying laws 

corresponding to  the structure of the programs. We consider Propositional Dynamic Logic 

(PDL) which allows for two sorts of non-determinism in its programs, Strict Propositional 

Dynamic Logic (SPDL) which has no non-determinism, and two extensions of SPDL which 

each allow one form of non-determinism. We present soundness and completeness results for 

each of the logics, and compare their expressive powers. Wilm showed that the extension of 

SPDL by U (SPDL+U) has less expressive power than PDL by showing there are conditions 

satisfied by every formula and program of SPDL+U which are not satisfied by some formulas 

of PDL. We give an exposition of this result using simpler conditions than those used 

by Wilm. We also give results showing that the extension of SPDL by * (SPDL+*) has 

expressive power equivalent to  that of PDL, and SPDL has less expressive power than each 

of the other logics. 
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Chapter 1 

Introduction 

Dynamic logics are a family of logics used to reason about computer programs. The concept 

was first introduced by Pratt [9] in 1976, who described first order dynamic logic. Here we 

are concerned with Propositional Dynamic Logic (PDL), which was introduced by Fisher 

and Ladner [I] in 1977, and a variant of PDL called Strict Propositional Dynamic Logic 

(SPDL). Both PDL and SPDL consist of a set of formulas and a set of programs. These 

are specified by giving a set of atomic formulas (the propositional variables), a set of atomic 

programs, and rules for constructing well formed formulas and programs. We have two 

notions of halting for programs. A program is said to terminate if it ends normally and is 

said to abort if it ends abnormally, for example if it is interrupted. We do not assume that 

every execution of a program will end. 

To form complex programs in PDL the operations used are concatenation, denoted by 

";", disjunction, meaning "do a or do P", this is denoted by "U" and is non-deterministic, 

an operator "*", meaning repeat a program some finite number of times, which is also non- 

deterministic, and a test operator denoted "?", where F ?  means continue if formula F is 

true and abort otherwise. Formulas are constructed using negation and disjunction, and 

corresponding to  each program a there is a modal operator [a], where [a]F is read "the 

formula F holds after every terminating execution of the program a". We define the dual 

operator (a) by (a) = d e j  l[a]-. The formula (a)F is read "there is some execution of a 

after which formula F is true". We are able to express assertions about programs within 

the language. We write (a)true for "a terminates", and use formulas such as F + [a]G to 
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talk about program correctness, and [ a ] F  - [P]F to  talk about program equivalence. 

In reality, no computer language in use today has any non-deterministic operators. Hence 

we are interested in the logic SPDL, which has no non-determinism. In SPDL, complex 

programs are constructed using the operations concatenation, "while do" and "if t hen  

else", and we have as constants "skip" meaning "do nothing", and "abort" meaning 

"abort". The programs of SPDL have a similar structure to those one can write in a 

programming language such as C. Formulas of SPDL are constucted as for PDL. We also 

consider two extensions of SPDL. The first is the extension of SPDL by the operator U 

(SPDL+u), and the second is the extension of SPDL by * (SPDL+*). 

We define a class of standard models for each logic, and show that the logics are both 

sound and complete with respect to  the appropriate class of models. These results are from 

Goldblatt [2], [3] and [4 ] .  

Equivalence of formulas and programs of the different logics can be defined, and this 

enables us to compare the expressive powers of the four logics. 

It was shown by Halpern and Reif in [5] that PDL has greater expressive power than 

SPDL. This motivates us to  consider the extensions of SPDL by each of the non-detefministic 

operators "U" and "*". We show that both of these extensions have greater expresive power 

than SPDL. We are now interested in whether the expressive power of either of the extensions 

is as great as the expressive power of PDL. We show that the logic SPDL+* has expressive 

power equivalent to  PDL, and the logic SPDL+U has less expressive power than PDL. 

We give an exposition of a proof by Wilm [lo] that the extension of SPDL by U has less 

expressive power than PDL. The main part of the result is to  show there are conditions 

satisfied by every formula and program of SPDL+U which are not satisfied by some formula 

of PDL. Wilm uses a uniform finiteness condition on an infinite class of models, we use 

a simpler finiteness condition for the same class of models. We also give details of the 

induction proof which were omitted by Wilm. 

Hence adding the U form of non-determinism to SPDL gives less expressive power than 

adding the * form of non-determinism. 



Chapter 2 

Definitions 

2.1 Preliminaries 

Definition 2.1.1 For any set S the identity function on S ,  denoted ids, is defined as 

follows: 

ids = { ( s ,  s )  : s E S) .  

Definition 2.1.2 Let R, and Rp be binary relations over the set S.  We define the binary 

relation R, o Rp by 

R, o Rp = { ( s , t )  : (3u E S)(sR,u and uRpt)). 

Definition 2.1.3 Let R be a binary relation over a set S. For every n > 0 define a binary 

relation Rn over S by 

The ancestral relation R* of R is the binary relation over S defined by 

R* = { ( s ,  t )  : (3n)(3so, sl, . . .sn)(s = so, t = s,, and ( s ; - ~ ,  s;) E R for 1 < i < n ) )  

Clearly sR*t if and only if sRnt for some n > 0. 
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2.2 Syntax of PDL and SPDL 

The alphabet for the language of PDL consists of the following symbols: 

(i) a set of propositional variables = { p ,  q, r . . . ) 

(ii) a set of atomic programs II = {n, a, T .  . . ) 

(iii) the synlbols 7, V, t rue ,  false, ; , U, *, ?, [ , I ,  (, and ). 

Let WpDL denote the set of words over this alphabet. For A, B,U,V E P(WPDL) we 

define ( A ,  B) (U,V) if A U and B c V. Let (FPDL, PPDL) denote the c-least pair 

( 3 ,  P )  in P(WPDL) x P(WPDL) such that the following are satisfied: 

El :  9 3 

F2: t r u e  E 3 

F3: false E 3 

F4: If F E 3 then -F E 3 

F5: I f F , G ~ F t h e n ( F v G ) € 3  

F6: If F E 3 and a E P then [a]F E 3. 

PI: n r P 

P2: If a , P  E P ,  then ( a ;  P) E P 

P3: If a ,P  E P, then ( a  U P) E P 

P4: If a E P, then a* E P 

P5: If F E 3 ,  then F? E P .  

FPDL is called the set of formulas of PDL and PPDL the set of programs of PDL. 

The alphabet for the language of SPDL consists of the following symbols: 
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(i) a set of propositional variables cP = {p, q, T . .  .) 

(ii) a set of atomic programs ll = {x, a, r . . . ) 

(iii) the symbols 1, V, t rue ,  false, ; , skip, abo r t ,  while, do, if, t hen ,  else, [ , I ,  (, and ). 

Let WsPDL denote the set of words over this alphabet. Let (FSPDL, PSPDL) denote the 

G-least pair ( 3 ,  P )  in LP(WSPDL) x LP(WSPDL) which satisfies F1 - F6 and also the following: 

P2': If a,@ E P then ( a ;  P) E p 

P3': skip E P 

P4': abo r t  E P 

P5': If a E P and F E F ,  then (while F do a )  E P 

P6': If a ,  P E P and F E 3, then (if F t h e n  a else P) E P. 

FSPDL is called the set of formulas of SPDL and PsPDL the set of programs of SPDL. 

Below Greek letters a ,  P,  7 .  . . denote programs, and upper case letters E, F, G . . . denote 

formulas. 

The connectives are read as follows: ";" is concatenation so a ;  P means "do a then do 

p", "u" is disjunction so a ~ p  means "do a or pn ( U  is nondeterministic), a* means "repeat 

a some finite number of times" (* is nondeterministic), F? means "test F and continue if 

it is true otherwise abort", [a]F means "F holds after every terminating execution of a". 

The program skip is "do nothing", and abor t  means "abort". 

We define A,  -+, and tr as usual. The modal operator ( ), which is the dual of [ 1, is 

defined by (a)F =q l[a]lF and is read "there is a terminating execution of a after which 

F holds". 

Axiom schemas for PDL: 

PC: All tautologies 
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K: [a](F -+ G) -+ ([a]F -+ [a]G) 

COMP: [a ;P]F ++ [a][P]F 

ALT: [a u P]F ++ [a]F A [P]F 

MIX: [a8]F -+ F A [a][a8] F 

IND: [a8](F -r [a]F) -t (F -+ [a8]F) 

TEST: [F?]G ++ ( F  -+ G). 

Rules of Inference for PDL: 

MODUS PONENS: From F and ( F  -+ G) infer G 

NECESSITATION: From F infer [a]F. 

Let Th(PDL) denote the least set T FPDL such that T contains all instances of the 

axiom schemas and is closed under the rules of inference. The members of Th(PDL) are 

called theorems of PDL. 

Axiom schemas for SPDL: 

PC: All tautologies 

K: [a](F -+ G) -+ ([a]F -+ [a]G) 

DUM: [skip]F ++ F 

ABORT: [abortlfalse 

COMP: [a;P]F ++ [a][P]F 

COND: [if E then a elseP]F ++ ( (E  -+ [a]F)A(-E -+ [PIF) 

 WHILE^: 1 E  -+ ([while E do a]F -+ F )  

 WHILE^: [while E do a]F -r ( E  -t [a][while E do a]F). 
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Rules of Inference for SPDL : 

MODUS PONENS: From F and ( F  -+ G) infer G 

NECESSITATION: From F infer [cr]F 

HOARE'S ITERATION RULE: From (E A F )  + [cr]F infer 

F - [while E do a ] ( l E  A F).  

As above, let Th(SPDL) denote the least set T C .FSPDL such that T contains all in- 

stances of the axiom schemas and is closed under the rules of inference. The members of 

Th(SPDL) are called theorems of SPDL. 

2.3 Semantics for PDL and SPDL 

In the following we use P to denote the set of programs c )f PDL or SPDL, whichever is 

appropriate. A model for either PDL or SPDL is a structure M = (S, {R, : a E P), V), 

where S is a nonempty set, R, is a binary relation on S for each cr E P ,  and V is a 

function from @ to P(S).  The members of S are called states. Intuitively the pairs in R, 

are the possible tmnsitions of the program a, and V(p) is the set of states for which p is true. 

Satisfiability is defined as a 3-ary relation between model, a state, and a formula as 

follows: 

S1: M,s + p if s E V ( p ) ,  for p E @ 

S3: M , s  p false 

S6: M, s k [ a ] F  if for all s' E S ,  sR,sl implies M,  s' k F .  
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From the definitions of the symbols A ,  +, ++ and of the modal operator ( ) we obtain 

the following equivalences: 

(i) M , s k  F A G i f a n d o n l y i f M , s k F a n d M , s + G  

(ii) ~ , s k F + G i f a n d o n l y i f M , s p  F o r M , s k G  

(iii) M , s  F ++ G i f  and only if both M , s  k F and M , s  + G,orbo th  M , s  F a n d  

M,3 p G 

(iv) M ,  s t= (o)F if and only if there is an s' E S such that sR,sl and M ,  s' k F. 

An equivalent definiton of satisfaction is obtained by letting V : 3 -+ P(S) be the unique 

map satisfying the following conditions: 

Sl': v V 

S2': v(true) = S. 

S3': V(fa1se) = 0. 

541: V ( l ~ )  = s \ V(F). 

S5': V(F v G) = V(F) u V(G). 

S6': V([a]F) = {S E S : (Vs' E S)(sR,sl + s' E V(F)). 

Then satisfiability is defined by specifying that M, s + F if s E V(F). 

Again from the definitions of the symbols A,  +, t+, and the modal operator ( ) we obtain 

the following equivalences: 

- 
V ( F  A G) = V(F) n v ( ~ )  

- 
V ( F  - G) = (V(F) n V(G)) u ((S \ V(F)) n (S \ V(G))) 
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- 
V((a )F )  = {s E S : (3s' E S)(sR,sf and s' E V(F)). 

A formula F is valid in the model M if M ,  s F for every s E S. 

A standard model for PDL is a model in which the following conditions hold: 

MI: R,;p = R, 0 Rp 

M2: Raup = R, U Rp 

M3: R,* = (R,)* 

M4: RE? = {(s, s) : M, s k E). 

MI-M4 are called the standard model conditions for PDL. 

A standard model for SPDL is a model in which M1 holds, and the following conditions 

also hold: 

M5': Rir then a else p = {(s, s') : S&S' and M ,  s E )  U {(s, s') : S R ~ S '  and 

M,s k Y E } .  

M1 and M2'-M5' are the standard model conditions for SPDL. 

A formula F of PDL is valid, denoted + F, if F is valid in every standard model of 

PDL. Similarly a formula G of SPDL is valid, denoted + G, if G is valid in every standard 

model for SPDL. 
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2.4 Extensions of SPDL 

Let SPDL+U denote the extension of SPDL by U, which is defined by adding the following 

to SDPL: 

U to  the language of SPDL 

P3 to the program formation rules 

ALT to the axiom schema 

M2 to  the standard model conditions. 

Let SPDL+* denote the extension of SPDL by *, which is defined by adding the following 

to  SDPL: 

* to the language of SPDL 

P4 to the program formation rules 

I N D  and MIX to the axiom schema 

M3 to  the standard model conditions. 
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Soundness and Completeness 

3.1 Preliminaries 

Let L be a logic such as PDL or SPDL, and M be a class of models for L. Let Th(L) denote 

the class of theorems of L. Then L is sound with respect to  M if every theorem of L is 

valid in every model in M. L is complete with respect to  M if every formula which is valid 

in every model in M is a theorem of L. 

Definition 3.1.1 Let A be a set of formulas of a logic L. A is consistent if i ( F l  A . . . A Fn)  

is a non-theorem of L for every finite subset IFl,. . . , Fn) C A. 

Definition 3.1.2 We define programs an for each n E N as follows: 

a0 = skip 

an+l = a n ; a .  

Note that in standard models M, s [a*]F if and only if for every n 2 0, M ,  s [an 

and that Ran = (Ra)n. 

Definition 3.1.3 The set of subformulas of a formula E of PDL is defined inductively as 

follows for every p E a, F,  G E 3 and a E P: 
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Note that formulas occurring in a are not subformulas of [ a ] F .  

We show that PDL is sound and complete with respect to the class of standard models 

for PDL. The proof for soundness is given below; the completeness proof appears in the 

next section. 

3.2 Soundness of PDL 

Theorem 3.2.1 PDL is sound with respect to the class of standad PDL models. 

Proof: We need to  show that each axiom of PDL is valid, and that the inference rules 

preserve validity. Below we only consider the last five axioms. The remaining axioms and 

transformation rules are contained in every normal modal logic, and the required proofs are 

straightforward. See for example [4] p25 or [7] pp 68-69. We treat each axiom schema in 

turn. Below M denotes a standard model for PDL. 
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M , s + [ a u P ] F  Vt(sR,Ust*M,t/=F) 

& Vt (sR,t =+ M , t + F )  and Vt(sRgt * M , t + F )  

M , s k [ a ] F a n d M , s i = [ P ] F  - M , s l = [ a l F ~ [ P l F .  

Hence M, s t= [a U P]F * ([a]F A [@IF). 

MIX: Suppose M ,  s + [a*] F ,  and let t be such that sR,t. Then 

Thus for all t, if sR,t then M , t  k [a*]F, so M , s  + [a][a*]F. Also by definition sR,es, 

hence M, s + F. Thus M ,  s + [a*]F -+ F A [a][a*]F. 

IND: Suppose M,s + [a*](F + [a]F), and M , s  + F. We need to show that 

M ,  s + [a*]F. We show by induction that M,  s + [an]F for every n 2 0. Case n = 0 is 

given, as M,s k F. For the induction step assume M , s  [ a k ] ~ .  We want to show that 

M ,  s + [ak+'] F. Suppose sR,k+~ t. Then there exists u such that sR,k uR,t. Since sR,k u, 

s Rae u and so M , u + ( F  + [a] F). By the induction hypothesis s R,k u yields M , u k F. 

Hence M , u k [a] F. Now uR,t yields M , t F. Hence sR,k+~ t implies M , t k F ,  so 

M , s + [ak+'] F as required. 

Hence M , s  + [F?]G tt (F -, G). 
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3.3 Completeness of PDL 

In this section we will show that PDL is complete with respect to the class of standard PDL 

models. To do this we show that every non-theorem of PDL is not valid in some standard 

PDL model. We first construct the canonical model. The canonical model for PDL is the 

model M C  = (SC ,  {RE : a E PpDL),  vC) where 

0 SC is the set of all maximal PDL-consistent sets of formulas 

0 for each a E PpDL, RE is the binary relation defined by 

s ~ z t  c-. { G E F :  [ a ] G ~ s )  C t 

0 vC : @ - lQ(sC) is the function given by v C ( ~ )  = { s  E : p E s) .  

Lemma 3.3.1 Let F be a formula of PDL. Then foreverys E sC, M C , s  F c-4 F E s. 

Proof: By induction on formulas. The details can be found in [8] pp 23-25 or in [4] p25. 

It follows that every theorem of PDL is valid in M C ,  and no non-theorem of PDL is 

valid in M ~ .  However M~ is not necessarily a standard model of PDL. We now construct 

for each non-theorem A of PDL a standard model in which A is not valid. 

Definition 3.3.2 A set I' of PDL formulas is called FL-closed if it is closed under subfor- 

mulas and the following conditions hold for all F, G E FPDL and a ,  P E PPDL: 

(i) [F?]G E I' =+ F E r 

(iii) [a U P]F E r =+ [a]F E I' and [P]F E I' 

(iv) [a*]F E I' =+ [a][a*]F E I?. 

Let I' be an EL-closed set of PDL formulas, and M = ( S ,  { R ,  : a E P ) ,  V )  be a model. 

Define an equivalence relation on S by 

s N t e (VF E ~ ) ( M , s  F c-4 M , t  F) .  
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We introduce the following notations: 

r [s] for {t E S : s N t) 

ar f o r a n r  

r IIr for the set of atomic programs occurring in formulas in r 

r pr for the closure of IIr u {F? : F ?  occurs in a member of r) under the operations 

U, *, and ; 

r Sr for {[s] : s E S). 

Let vr : ar + P ( s r )  be defined by the equivalence 

Definition 3.3.3 For a E PpDL, a binary relation Rr on sr is a (I', a)-filtration of the 

binary relation R, on S if the following conditions hold for all s ,  t E S: 

G 1: if sR,t then [s] Rr[t] 

G2: for all F E 3, if [s]Rr[t] and [a]F E r and M , s  b [a]F then M , t  k F. 

An example of a ( r ,  a)-filtration of R, is the smallest filtration, 

Rr = {([s], [t]) : (3s' E [s])(3t1 E [t])(s'R,tl)). 

The model M~ = (sr, {R: : a E pr), vr) is a r-filtmtion of M = (S, {R, : a E P), V) 

if R: is a ( r ,  a)-filtration of R, for every a E pr. 

Lemma 3.3.4 Let M~ = (Sr, {R: : a E pr), vr) be a I'-filtmtion of the model 

M = (S, {R, : a E P ) ,  V). Then for all F E r, M, s F if and only if Mr, [s] b F. 

Proof: By induction on formulas. The details can be found in [8] p139 or [4] pp33, 115. 
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Lemma 3.3.5 Suppose that M~ = (sr, {R: : cr E pr), vr) is a I'-filtration of the model 

M = (S, {R, : a E PPDL}, V) such that r is finite, and let T be a subset of sr. Then there 

is a formula AT such that for all s E S, M ,  s + AT if and only if [s] E T .  

Proof: For each t E sr let At be the conjunction of formulas in the set 

{ F  : F E I' and M ,  t + F} U {TF : F E I' and M ,  t F}. This is a finite conjunction as l7 

is finite. Then 

M , s  + At c-. ( M , s  + F * M , t  + F )  for all F E r 
e+ S N t  

e [s] = [t]. 

As ISr[ 5 21rl, then Sr must also be finite, and hence T is finite. If T = 0 then set 

AT = false. Otherwise T = {[tl], . . . , [t,]). Let AT = At, v . . . V At,. Then 

M , s + A T  M , s + A t , o r  ... o r M , s + A t ,  

c-. [s] = [tl] o r . .  .or [s] = [t,] 

c-. [ s ]ET .  

Let A be a non-theorem of PDL. Let I'A be the smallest FL-closed set containing A. 

For the rest of this section let M~ denote the model (Sr, {R! : a E pr), v r ) ,  where 

r = rA and 

r R: is a ( F A ,  a)-filtration of R$ for each a E nrA 

R: is arbitrary for each n E II \ IIrA 

r R;? = {([s], [s]) : M ~ ,  s + F} for each F ?  E pr 

r R: is defined by the standard model conditions for PDL otherwise. 

We now show that rA is finite, so we can apply Lemma 3.3.5. 
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Lemma 3.3.6 rA is finite. 

Proof: We define a formula to be modal if it has the form [a]G. The modal length of [a]G 

is the number of symbol occurences in a. We show that in the construction of rA, starting 

with {A) and closing under conditions (i)-(iv) and subformulas, every formula can only 

cause a finite number of new formulas, of lesser modal length, to be added. 

First observe the following for (ii)-(iv): 

(ii) Every subformula of [a][P] F ,  except for [a][P]F and [PIF, is also a subformula of 

[a ;  PIF, 

(iii) Every subformula of [a]F or [PIF, except for [a]F and [PI F, is a subformula of 

[a U PIF, 

(iv) Every subformula of [a][a8]F, except for [a][a8]E, is a subformula of [a8]F. 

Hence if one of (ii)-(iv) is applied to a formula [a]G and we close under subformulas then 

only a finite number of formulas, each of which is modal with strictly smaller modal length 

than [a]G, are added. If we apply (i) to  a formula [F?]G and close under subformulas then 

as Sf(F) is finite and each subformula of F is shorter than F?,  then (i) also adds a finite 

number of formulas, where each new modal formula has strictly smaller modal length than 

[F?]G. 

Note that the FL-closure of {A) is the closure of Sf(A) under (i)-(iv) and subformulas. 

Let A. =Sf(A), and A,+l be the set of new formulas obtained by applying (i)-(iv) to  

formulas in A, and closing under subformulas. Then the greatest modal length for a formula 

in A,+l is strictly less than the greatest modal length for a formula in A,. As every modal 

formula has modal length at  least 1, it follows that there exists an m such that A, contains 

no modal formulas. For n > m we have A, = 0. We know that Sf(A) is finite, and for each 

modal formula the conditions (i)-(iv) and closing under subformulas adds a finite number 

of new formulas, so A, is finite for every n. Hence rA = U,<,A, - is finite. 

Lemma 3.3.7 M~ is a FA-filtration of M ~ .  
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Proof: We need to  show that R: is a (PA, a)-filtration of RE for a E Pr. We use induction 

on the construction of programs. 

Case 1: a E IIr. Then R! is a rA-filtration of RE by definition of R!. 

Case 2: a = F? for some F? E pr. 

GI:  We first show that sR$?t implies both s = t and M C ,  s + F. Suppose sR&t. Then 

we have 

from the definition of R&. To show that s = t we note that 

Hence s C t ,  but both s and t are maximal so we must have s = t .  For the rest observe 

that 

( F - + F ) E s  [ F ? ] F E s  
(2) F E ~  

C4 F E S  

2% M ~ , s + F .  

Hence 

so G1 holds. 
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G2: Suppose [s]R&[t], and also that [F?]G E F A  and M C ,  s [F?]G. Then by definition 

of R:? we have [t] = [s] and MC, s + F. The axiom schema TEST yields 

M C ,  s /= ( F  -i G), and hence M C ,  s k G. But G E F A  (as is closed under 

subformulas) and s N t (as [s] = [t]) so M C ,  t + G. 

Case 3: a = p; y 

GI:  Fix s and let A, be a formula such that for all t, A, E t if and only if [s]RF;,[t] (such 

an A, exists by Lemma 3.3.5). By the induction hypothesis G1 holds for R; and R:. We 

now show that M C , s  + [P][y]A,: 

Hence M C ,  s + [P][y]A,. Using this result we now show that G1 holds: 

Hence G 1 holds. 

G2: Suppose [s]R!,[t], and also that [P;y]G E F A  and M',S + [P; y]G. We need to  

show that M C ,  t I= G. We first observe the following implications: 
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By the induction hypothesis G2 holds for R$ and R:. Using the above implications we 

now show that G2 holds for R$;,: 

Hence G2 holds. 

Case 4: o = /3 U y 

GI:  Fix s and let A, be a formula such that for all t, A, E t if and only if [s] RFu,[t]. By the 

induction hypothesis G 1 holds for R; and R:. We now show that  MC, s C [PI A, A [y] A,. 

First we need the following implication: 

Hence M C ,  s + [PIA,. Similarly MC , s C [y]A,, so M', s b ([PIAS A [?]As). We now use 

this t o  show that  G1 holds: 

Hence G1 holds. 
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G2: Suppose [s] R;,,,[t], and also that [p U y]G E TA and M C ,  s + [p u y]G. We need to 

show that M C ,  t + G. We require the following implications: 

By the induction hypothesis G2 holds for R$ and R:. Using this, and the above implica- 

tions, we have 

[s]~;,,[t] and [P LJ y]G E TA and M C , s  I= [P u r lG 
(3.5)(3.6)(3.7) +- ([s] R;[t] or [s] R:[t]) and [PIG E rr and [y]G E FA 

and M C , s  + [PIG and M C , s  + [y]G 

([s]R;[t] and [PIG E TA and M C ,  s C [PIG) 

or ([s] R![t] and [y]G E TA and MC, s k [y]G) 

3 ~ ~ , t k ~ .  

Hence G2 holds. 

Case 5: cr = P* 

GI: Fix s and let A, be a formula such that for all t, A, E t if and only if [s] R;. [t]. We 

now show that M C ,  s + (A, + [@*]A,). We need the following chain of implications: 
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M C , t + A ,  341 A , € t  - [s l~;*[t l  

3 [sl(~;)*Itl 

=, W ~ l ( ~ ; ) " [ t l )  

& 3n([s](R;)"[t]) and ( t R p  9 [t]R;[u]) 

+ tRDu + (3n([s](R;)"[t]) and [t]R;[u]) 

tRBu * 3n([s] (~; )"+ '[u] )  

=, t R P +  ( [ s l (~ ; )* [u l )  

=, tRpu+ [s]R;.[u] 

+ tRpu* As E U  

3 3 1  + t R p u * ~ C , u + A s  

=% M C , t  + [PIAS. 

Hence M C ,  t + A, -+ [PI A,, and this is true for all t .  In particular if sRpt  then 

M C ,  t + A, + [@]A,, so M C ,  s + [P*](A, -+ [PIAS). The axiom schema I N D  yields 

M C ,  s C ( A ,  + [,f?*]A,). As [s](R;)O[s] we know from the definition of R;. = (R;)' that 

[s] R;.[s]. From this we get the following chain of implications: 

[s]R;.[s] A, E s 
3.3 1 
-i M ~ , S + A ,  

=, M C , s  I= [P*]As 

23 S R ~ . ~  + ~ ~ , t  +A .  
3 3 1  + s R p * t + A 8 E t  

& sRp t  + [s]R;.[t]. 

Hence G 1 holds. 

G2: Suppose that [s]R&[t], and also that  [[b*]G E r and M , s  C [P*]G. We want to  show 

that M ,  t + G. We first use induction to  show that  for every n 2 0 

([s]R;,[t] and [P*]G E r and M , s  + [P*]G) + M , t  + [P*]G. (3.8) 
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Case n = 0: Suppose [s]R;,,[t], [P*]G E I' and M ,  s C [P*]G. Then [s] = [ t] ,  so as 

[P*]G E r, M ,  s + [P*]G implies M ,  t + [P*]G. 

Induction step: Assume (3.8) holds for n = k. Then the following chain of implications 

completes the induction step: 

[s]RSk+, [t] and [P*]G E I' and M ,  s + [P*]G 

=, 3u([s]RSk[u]~;[ t ] )  and [P*]G E I' and M ,  s [P*]G 

3 u ( [ s ] ~ ; ~ [ u ]  and [P*]G E I' and M ,  s b [P*]G and [u]Rs[t])  

3u(M,  u + [P*]G and [P*]G E I' and [u]R;[t]) 

2 3u([u] R;[t] and [P][P8]G E I' and M ,  u + [P][P*]G) 

M ,  t C [P*]G. 

Hence (3.8) holds for every n E N. We can now show that G2 holds by the following: 

[s]R;.[t] and [P*]G E I' and M ,  s C [P*]G 

3n([s]~s.[t]and [P*]G E I' and M ,  s C [P*lG) - M , t  I= [P*lG 

3 M , t + G .  

Hence G2 holds. 

0 

Lemma 3.3.8 M~ = (sr, {R: : a E p r ) ,  vr) is a standard model for PDL. 

Proof: We need t o  show that MI-M4 are satisfied. MI-M3 must hold by definition of R:. 

For M4: for F? E pr ,  RF? = { ( [ s ] ,  [ s ] )  : M', s + F) ,  and by Lemma 3.3.4 M', s F if 

and only if M ~ ,  [s] + F for F? E pr.  Hence RF? = { ( [ s ] ,  [ s ] )  : M ~ ,  [s] + F )  and M4 holds 

for every F? E pr.  For F? @ pr M4 holds by definition of R:. 

Theorem 3.3.9 PDL is complete with respect to the class of standard models for PDL. 



CHAPTER 3. SOUNDNESS AND COMPLETENESS 24 

Proof: For any non-theorem A of PDL let rA denote the smallest FL-closed set containing 

-4. We showed in Lemma 3.3.7 that the model M~ is a rA-filtration of the canonical model 

for PDL. As A is a non-theorem, 1 A  is consistent so there is a maximal consistent set of 

formulas containing TA. Suppose - A  E s E 5''. Then by Lemma 3.3.1 M',S + 7A so 

M ~ , S  p A. As A E FA,  then by Lemma 3.3.4 M ~ , [ s ]  A. By Lemma 3.3.8 Mr is a 

standard model for PDL, hence A is not valid in every standard model for PDL. Thus the 

only formulas of PDL which are valid are the theorems of PDL, so PDL is complete with 

respect to  the class of standard models for PDL. 

3.4 Soundness of SPDL 

T h e o r e m  3.4.1 SPDL is sound with respect to the class of standard models for SPDL. 

Proof: We need to  show that  each axiom of SPDL is valid in every standard model, and that 

the transformation rules preserve validity. We only consider the axioms and transformation 

rules that are not part of PDL. Each of these is treated in turn. Below M denotes a standard 

model for SPDL. 

Hence M, s + [skip]F * F. 

ABORT: By condition M2' we have Rabort = 0. Let s be a state in a standard 

SPDL-model. For every state t,  sRabOrtt implies M,  t F ,  hence M ,  s + [abor t ]F .  
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COND: 

M , s k [if E then a else P]  F 

vt(sRif E then a else pt * M t k F)  

V t ( ( ( M ,  s + E and sR,t) or ( M ,  s + -E and sRpt)) * M ,  t k F)  

V t ( ( (M, s  k E and sR,t) * M , t  k F)  

and ( ( M  , s k - E and sRpt) =+ M , t i= F ) )  

V t ( (M,  s k E and s Rat) =+ M ,  t k F)  

and Vt ( (M,  s k -E and sRpt) + M , t  + F )  

Vt (M,s  + E + (sR,t =+ M , t  + F) )  and Vt(M,s  k -E + (sRpt * M , t  k F ) )  

( M , s  k E + Vt(sR,t * M , t  + F) )  and ( M , s  + -E * Vt(sRpt * M , t  k F ) )  

( M , s  + E * M , s  + [a]F)  and ( M , s  k -E + M , s  k [PIF) 

( M ,  s k E - [a] F )  and ( M  , s k - E  -+ [@IF) 

M ,  s k ( E  - [alF) A ( -E  -, [PIF) 

Hence M , s  k Y E  - [while E do a]F -r F. 

 WHILE^: Suppose M , s  k [while E do a]F and M , s  k E. We need to show 

that M ,  s k [a][while E do a]F. Let t be such that sR,t. Then for every u such that 

tRwhile E do we have sRwhile E do au SO M ,  21 + F, and hence M ,  t k [while E do a ] ~ .  

Hence M ,  t k [while E do a]F for every t such that sR,t, and so as required we get 

M , s  + [a][while E do a]F. 
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HOARE'S ITERATION RULE: Suppose M b (E A F )  -+ [ a ] F .  Let s be any 

state such that M,s  k F .  We show that M,s k [while E do a ] F .  Let t be such 

that SRwhile E do ,t. Then there exist n E N and so, sl, . . . s, such that s = SO, t = s,, 

M, t b -.E, and for all j < n we have sj R,sj+1 and M, sj + E. By induction we show 

that M, sj k F for all j ,  0 5 j 5 n. We are given M, so b F so the base case holds. Now 

suppose M, sk F for some k < n. We also know M, sk b E, hence M,sk b (E A F) so 

M , sj b [a] F .  As sk Rask+1 it follows that M, sj+l k F as required. Hence ~ R w h i l ,  E do ,t 

implies M,t k F, so M,s k [while E do a ] F .  Thus M,s b F -+ [while E do a ] F  for 

every s E S, so M F -+ [while E do a ] F  and Hoare's Iteration Rule holds for M. 

3.5 Completeness of SPDL 

In this section we will show that SPDL is complete with respect to  the class of standard 

SPDL models. As for PDL we show that every non-theorem of SPDL is not valid in some 

standard SPDL model. We first construct the canonical model. The canonical model for 

SPDL is the model M' = (sC, {R: : a E PSPDL), vC) where 

0 sC is the set of all maximal SPDL-consistent sets 

0 For each a E PsPDL, RE is the binary relation defined by 

s ~ E t  {G E F : [ a ] G  E s) C t 

vC : O -+ P(sC) is the function given by v'(~) = {s E SC : p E s). 

Lemma 3.5.1 Let F be a formula of SPDL. Then for every s E sC, M', s b F 

F E 3. 

Proof: By induction on formulas. 

It follows that every theorem of SPDL is valid in M', and no non-theorem of SPDL is 

valid in M ~ .  However is not necessarily a standard model of SPDL. We now construct 

for each non-theorem A of SPDL a standard model in which A is not valid. 
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Definition 3.5.2 A set I' of SPDL-formulas is called FLs-closed if it is closed under sub- 

formulas and the following conditions hold for all F, G E .FSPDL and a ,  P E PSPDL: 

(iii) [if E t h e n  a else P]F E I' [a]F E r and [P]F E I'. 

Let I' be a FLs-closed set of SPDL formulas. As for PDL we define the notions of a 

(I?, a)-filtration of a binary relation, and a I'-filtration of a model. 

L e m m a  3.5.3 Suppose that M~ = ( s r ,  {R:  : a E pr), v r )  is a I"-filtmtion of the model 

M = (S, { R ,  : a E P), V) such that r is finite, and let T be a subset of Sr. Then there is 

a formula AT such that AT E s if and only if [s] E T. 

Proof: As for PDL. 

Let A be a non-theorem of SPDL. Let FA be the smallest FLs-closed set containing A. 

As before we can show that I'A is finite. Again note that 5 21r~l, hence it follows that 

sr is finite, and we can apply Lemma 3.5.3. 

L e m m a  3.5.4 FA is finite. 

Proof: The proof is essentially as for PDL. We need the following observations for conditions 

(ii) and (iii): 

(ii) Every subformula of [a][while E d o  a]F, except [a][while E do a]F itself, is a 

subformula of [while E do a] F. 
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(iii) Every subformula of [a]F or [P]F, except for [a]F and [PIF, is a subformula of 

[if E then a else @IF. 

For the rest of this section let Mr denote the model (sr ,  {R: : a E pr) ,  vr), where 

r = rA and 

R: is a FA-filtration of RE for n E IIrA 

0 R: is arbitrary for n E II \ IIrA 

Rf,, = idsr 

R L r t  = 0 

0 R! is defined by the standard model conditions for SPDL otherwise. 

We will prove simultaneously by induction that for every formula F E r ~ ,  M', s F 

if and only if Mr,  [s] F, and that R: is a ( r ,  a)-filtration of R: for every a E pr. To do 

this we need to define the following sets: 

Po is the set of programs in pr that contain no while or if statements. 

Fn is the set of formulas of FA that contain programs only from Pn. 

Pn+l is the set of programs in pr such that any statement of the form "while E do P" 
or "if E then /3 else y" has E E Fn and P, y E P,. 

We observe that pr = UnEN Pnl and FA = UnEN 3 n -  

Theorem 3.5.5 For every formula F E FA, MC, s + F if and only if M', [s] i= F, and 

for every p q m m  a E pr, R: is a (I?, a)-filtration of R E .  

Proof: It suffices to  prove that for every n E N the following hold: 

(i) for every a E P,, R: is a (F, a)-filtration of R: 

(ii) for every F E 3,, MC,s F if and only if Mr, [s] + F. 

We use strong induction on n. 

Base step: n = 0. For (i) we use induction on the construction of programs in Po. 
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Case 1: a E IIr. Then R! is a FA-filtration of RE by definition of R!. 

Case 2: a = skip. 

GI: We need the following implication: 

Hence s = t  as both s and t  are maximal. By definition, [ s ] R ; ~ ~ , [ s ]  hence [ s ]RLip[ t ]  as 

required, and G 1 holds. 

G2: This is proved as follows: 

[ S ] R ; ~ ~ , , [ ~ ]  and M , s  C [skip]F and [skip]F E FA 

s N t  and M ,  s + [skip]F and [skip]F E FA 

M , t + [ s k i p ] F  

5% M , t + F .  

Case 3: a = abort .  

GI: Suppose sRZbortt. Then { F  E &PDL : [abort]F E s )  C t .  This implies false E t ,  

hence there is no t  such that sR,CbOr,t, and trivially S R : ~ , , , ~  implies [ S ] R : ~ ~ , , [ ~ ] .  

G2: There does not exist t  such that [ s ] ~ ~ ~ , , , [ t ] ,  hence trivially 

( [ s ] ~ ~ ~ , ~ , [ t ]  and [abort]F E FA and M C , s  + [abort]F) implies M C , t  + F. 

Case 4: a = /3; 7. This is proved as in Lemma 3.3.7. 

For (ii) we use induction on the construction of formulas in Fo, which are formulas that 

contain no programs containing while or i f  statements. 

Case 1: F = p E ar. Then 
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Case 2: F = true. From S2 we have both MC,s + true and Mr,[s] + true hence 

MC,s + true if and only if Mr, [s] true. 

Case 3: F = false. From S3 we have both MC,s F false and Mr,  [s] F false hence 

MC, s b false if and only if Mr, [s] + false. 

Case 4: F = 1G. Then 

M C , S + F  & M ~ , S F G  

& Mr,[s] F G 

& Mr,[s]+F. 

Case 5: F = G v  H. Then 

Case 6: F = [a]G, where a E Po and by induction G E 70. From (i) R! is a (rA,a)- 
filtration of R,. We prove each direction of the equivalence separately. 

For the first suppose that MC, s + [a]G. We know [a]G E FA, so it follows from G2 that 

[s]R;[t] implies MC,t + G, which by the induction hypothesis for G implies Mr,  [t] b G. 

Hence Mr  , [s] + [a]G as required. 

For the other direction suppose Mr,  [s] + [a]G. We need the following chain of implica- 

tions: 

Hence MC, s b [a]G. 

Induction step: Assume (i) and (ii) hold for Pi and 3; respectively for every i 5 n. We 

first show that (i) holds for P,+l. There are two cases we need to consider (the remaining 

cases are proved as for the base case): 
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Case 1: a = while E do /?, where E E 3;, and P E U,<, Pi. - 

GI: Let A, be a formula such that A, E t if and only if there is an m E N such that 

[s](E ( ~ ; ) ~ [ t ] ,  where ( E  I R;) = { ( [ s ] ,  [ t ] )  : [s]R;[~]  and M r ,  [s] + E )  (such an A, exists 

by Lemma 3.5.3). We now show that M C  + ( E  A A,) + [/?]A,. Let u be any state such 

that M C ,  u k E A A,, and suppose uRpt. 

M C ,  u ( E  A A,) and uRBt 

M C , u ~ A , a n d M C , u + E a n d [ u ] ~ ~ [ t ]  
3.5.1 IH 
d A, E u and M r ,  [u] + E and [u]R;[t] 

o 3m([s](EI R O ) " [ u ] ) a n d M r , [ u ] C E a n d [ u ] ~ ~ [ t ]  

o (3m)( [d (E  I Rdrn[ul)  and I $)[tI 

* W [ s l ( E  I Rdrn+l[t1) 

~4 A , E ~  

23 M ~ , ~ + A , .  

Hence 

Hence M ,  u + ( E  A A,) -+ [/?]A, for every state u, SO M + ( E  A A,) -+ [/?]A,. By Hoare's 

iteration rule we get M + A, -+ [while E do /?](A, A Y E ) .  As [s](E 1 Rp)O[s] we have 

A, E s, so by Lemma 3.5.1 M C ,  s A, and so M C ,  s k [while E do /?](A, A 1 E ) .  Hence 

Hence G 1 holds. 
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G2: Suppose [s]Rwhile E do p[t], [while E do PIG E rA and M C ,  s [while E do PIG. 

Then, as [s]Rwhile E ,joP[t], there exist m E N and so,s l , .  . .s, E S such that [so] = [s], 

[s,] = [t], M r ,  [sm] + 1E and for every j 5 m, [ ~ ~ ] R ~ [ s j + ~ ]  and Mr7 [sj] + E. We now 

use induction to show that M C ,  s, [while E do PIG for every i _< m. 

Base step: i = 0. This is true by hypothesis. 

Induction step: Assume M C , s k  /= [while E do PIG, for some k < m. As M r ,  [ s k ]  + E ,  

and E E Fn we have M C ,  s k  /= E. From the axiom schema  WHILE^:] we have 

M C , s k  + [P][while E do PIG. As rA is FLs-closed, [P][while E do PIG E r ~ .  We also 

know [S~]R ; [S~+~] .  AS P E Pn we know R: is a (I',p)-filtration of R$ and G2 holds. This 

yields M C ,  s k + l  + [while E do ,BIG. 

Hence MC , s, b [while E do PIG. From above Mr , [s,] 1E. As 1 E E Fn, we have 

M C ,  s, + 7 E. The axiom schema  WHILE^ yields MC7 s + G, which is what was required 

to show G2 holds. 

Case 2: a = if E t h e n  /3 else y 

GI: Let As be a formula such that A, E t iff [SIR: then else [t]. We now show that 

M C , s  ( E  - [PIAS) A (-E - [ylAs). 

M ~ , S / =  E M ~ , s +  E 

8 sR$t * ([s]RS[t] and M r , s  /= E )  

IH * s~: t  * [SIR: E then p else ykt1 

s R $ t * A S E t  

3 5 1  a S R $ ~  * M C , t  + As 

Hence MC + E -+ [@]As. Similarly we can show that MC + 1E + [y]As. Thus 

MC + ( E  -, [PIA,) A ( 1 E  - [y]As). The axiom schema COND yields 

M C ,  s + [if E t h e n  p else y]A,. We can now use this to show G1 holds: 



CHAPTER 3. SOUNDNESS AND COMPLETENESS 33 

Hence G1 holds. 

G2: Suppose that [SIR: then else ?[t], and also that [if E then ,f3 else y]G E r~ and 

M ,  s + [if E then p else y]G. We want to show that M,  t + G. We need the following 

implications: 

[SIR: E then @ else ?[tl ( M ~ ,  [s] C and 

or ( M r ,  [s] + 7E and [s]R;[t]) (3.9) 

[if E then p else y]G E rA * [PIG E rA and [y]G E TA (3.10) 
COND M,s  [if E thenp else y]G '-4 M C , s  + ( E  -) [P ]G)A( lE  -) [y]G) 

'-4 M ~ , S + E - [ P ] G  

and M C , s  t= 1E + [y]G. (3.11) 

We now use these implications to show that G2 holds: 

[s] R: then else [t] and [if E then P else y]G E FA 

and M ,  s + [if E then /3 else y]G 
(3.9)(3.10)(3.11) * ( (Mr , [s ]  + E and [s]R;[t]) or (Mr,[s1 C 1 E  and [s]~;[tl)) 

and [,BIG€ rA and [ ~ ] G E  r A  and M C , s  + E -r [PIG 

and M C , s  1 1E -+ [y]G 
IH 
'-4 ( (MC,  s E and [s] ~ ; [ t ] )  or ( M C ,  s + 1 E  and [s] R;[t])) and [PIG E ra 

and [y]G E rA and M C , s  + E + [PIG and MC,s 1 E  -+ [y]G 

* ( M C , s  + E and [s]R;[t] and [PIG E ra and MC,s /= E - [PIG) 

or (M',s + -E and [s]R;[t] and [y]G E FA and M C , s  TE -+ [y]G) 

J ( [ s ]~S[ t ]  and [PIG E ra and M C , s  [PIG) 

or ([s]R;[t] and [7]G E FA and M C , s  + [TIC) 

8 M C , t  + G. 

Hence G2 holds. 

Hence (i) holds for Pn+l. The proof that (ii) holds for 3n+1 is the same as for the base case. 
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Lemma 3.5.6 Mr = ( s r ,  { R t  : a E p r ) ,  vr) is a standard model for SPDL. 

Proof: We need to show that M1 and M2'-M5' are satisfied. These all hold by definition of 

R:. 

Theorem 3.5.7 SPDL is complete with respect to the class of standard models for SPDL. 

Proof: For any non-theorem A of SPDL we let rA denote the smallest FLs-closed set 

containing A. We showed in Lemma 3.5.5 that the model Mr is a F A  filtration of the 

canonical model for SPDL. As A is a non-theorem, TA is consistent so there is a maximal 

consistent set of formulas containing -A. Suppose TA E s E sC. Then by Lemma 3.5.1 

M ~ , S  + T A ,  so M',S 1 A. AS A E FA, then by~emma3 .5 .5  M ~ , [ s ]  A. BY Lemma 

3.5.6 M is a standard model for SPDL, hence A is not a valid. Thus the only formulas of 

SPDL which are valid are the theorems of SPDL, so SPDL is complete with respect to  the 

class of standard models for SPDL. 

3.6 Soundness and completeness of SPDL+U and SPDL+* 

It follows from the proofs of Theorems 3.2.1 and 3.4.1 that SPDL+U and SPDL++ are sound 

with respect to the appropriate classes of standard models. Completeness follows from the 

proofs of Theorems 3.3.9 and 3.5.7. 



Chapter 4 

Expressive Power 

4.1 Definitions 

For this section we use C to denote one of the logics PDL, SPDL, SPDL+U, and SPDL+*, 

and when we refer to a "logic" we mean one of these logics. 

Given a nonempty set S, a collection {R,  : a E II) of binary relations, and a function 

V : + P(S) we can use the standard model conditions for C to define a unique set 

of relations {R,  : cr E PC \ II) such that M = (S, {R, : a E PC),  V) is a standard 

model for C. Thus we could have defined a model (for any of the logics) to be a structure 

M = (S, {R,  : a E II), V ) ,  and defined relations {R,  : a E PC \ 11) using the standard 

model conditions for C. In this section it will be convenient to suppose that to have been 

done. Hence M = (S, {R,  : a E 11), V) is a standard model for each of the four logics we 

are considering. We write M, s kc F to denote that a formula F of the logic C is true at  

state s in M. 

Definition 4.1.1 Let Fl be a formula of a logic C1 and F2 be a formula of a logic .C2. We 

say Fl and F2 are equivalent, written Fl r F2, if for every model M = (S, {R,  : a E II), V) 

and every s E S we have M,s  k c ,  Fl if and only if M , s  kc, F 2 .  

Definition 4.1.2 Let a1 be a program of a logic LI and a2 be a program of a logic C2. We 

say al and a 2  are equivalent, written a1 r a2, if for every model M = (S, {R ,  : a E II), V) 

we have R,, = R,,. 
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Def ini t ion 4.1.3 Let L1, C2 be logics. We say that a formula F (or program a) of C1 can 

be expressed in C2 if there is a formula F' (or program a') of C2 which is equivalent to  F 

(or a). 

Defini t ion 4.1.4 We say Cl and C2 have equivalent expressive power if every formula of 

C1 can be expressed in C2, and every formula of C2 can be expressed in C1. We say that 

C1 has greater expressive power than C2 if every formula of C2 can be expressed in C1 but 

there is a formula of C1 which cannot be expressed in Cz. In this case C2 has less expressive 

power than C1. 

4.2 Expressive Power of PDL and SPDL 

We now compare the expressive powers of PDL and SPDL. We will show that PDL has 

greater expressive power than SPDL. We first show that every formula of SPDL can be 

expressed in PDL, then give a formula of PDL which cannot be expressed in SPDL. We 

will in fact prove that every formula and also every program of SPDL can be expressed 

in PDL. Every program of SPDL is deterministic, hence any non-deterministic program of 

PDL, such as a U r or o*, cannot be expressed in SPDL. 

L e m m a  4.2.1 Every formula and program of SPDL can be expressed in PDL. 

Proof: By induction on the construction of formulas and programs. We only show the cases 

for programs, as the cases for formulas are trivial. Let a be a program of SPDL. We consider 

the possibilities for a: 

Case 1: a E II. Then a is a program of PDL. 

Case 2: a = s k i p .  Let a' = t r u e ?  E PpDL. Then 

Rat = {(s, s )  : M ,  s ~ P D L  t r u e }  

= { ( s , s ) : s E S }  

= ids  

= &kip 

= R, 
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Case 3: a = abort. Let a' = false? E PPDL. Then 

R,! = {(s, s) : M ,  s kPDL false} 

= 0 

Case 4: a = p; y. By induction there exist programs P' and y' of PDL which 

are equivalent t o  P and y respectively. Then a' = P'; y' is a program of PDL which is 

equivalent to  a .  

Case 5: a = while E do P. By induction there exist a formula E' and a program 

p' of PDL which are equivalent t o  E and P respectively. Let a' = (El?; 0')'; -.I El?. We have 
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Case 6: a = if E then /3 else 7 .  By induction there exist a formula E' and 

programs P I  and 7' of PDL which are equivalent to E, P and 7 respectively. Let 

a' = (El?; p') u (1E1?; 7').  Then 

R,I = R ( E ~ ? ; P ~ ) U ( - E ~ ? ; ~ ~ )  

=  RE'?;^ U R-,E'?;yl 

= { ( s ,  s t )  : M , s  k P D ~  E' and ( s ,  s t )  E R p )  

~ { ( s ,  s t )  : M ,  s  ~ P D L  YE' and ( s ,  s t )  E 41) 
= { ( s ,  s t )  : M ,  s ~ S P D L  E and ( s ,  s t )  E Rp)  

U{(s , s l )  : M , s  ~ S P D L  1 E  and ( s , s l )  E 4) 
= Rif E then p else 7 

= R, 

Lemma 4.2.2 There is a formula of PDL that cannot be expressed in SPDL. 

Proof: This is proved by Halpern and Reif in [5] .  The idea of the proof is as follows: 

associated with every model is an edge-labelled directed graph, where the vertex set is the 

set of states, the edge set is the set of transitions of atomic programs, and edges are labelled 

with the names of the corresponding atomic programs. A tree model is a model for which the 

associated graph is a tree such that the edge sets corresponding to distinct atomic programs 

are disjoint. It is shown in [5] that every satisfiable formula is true at the root node of a tree 

model, and further, that every satisfiable formula of SPDL is true at the root node of a tree 

model with a polynomial number of nodes at  each level. We now consider the PDL-formula 

F = [ ( a  U r )* ] ( (a ) t rue  A ( r ) t rue ) .  This formula is satisfiable, and an example of a model 

for F is an infinite binary tree that can be drawn so that a is the set of transitions from 

each node to its left hand child, and T is the set of transitions from each node to its right 

hand child. However it can be shown using induction that every tree model for F has at 

least 2n nodes at level n. Hence F cannot be expressed in SPDL. 0 
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Theorem 4.2.3 PDL has greater expressive power than SPDL. 

Proof: This follows from Lemmas 4.2.1 and 4.2.2. 

4.3 Extensions of SPDL 

We now consider the extensions of SPDL by "U" and "*", the logics SPDL+U and SPDL+*. 

We are interested in whether or not the expressive powers of SPDL+U and SPDL+* are 

equivalent to the expressive power of PDL, or the expressive power of SPDL. We will show 

that SPDL+* and PDL have equivalent expressive power, and that PDL has greater ex- 

pressive power than SPDL+U, which has greater expressive power than SPDL. 

We first show that each of SPDL+U and SPDL+* has greater expressive power than 

SPDL. As every formula of SPDL is also a formula of SPDL+U and SPDL+*, it follows that 

every formula of SPDL can be expressed in both SPDL+U and SPDL+*. We now show 

that there are formulas of SPDL+U and SPDL+* which cannot be expressed in SPDL. 

Lemma 4.3.1 There are formulas G of SPDL+U and H of SPDL+* which cannot be 

expressed in  SPDL. 

Proof: We use the result of Lemma 4.2.2 that the formula [(a U r)*]((a)true A (r)true) of 

PDL cannot be expressed in SPDL. We now consider the formulas 

G = [while ((a)true A (r)true) do (a U r)]false and H = [(a*; r*)*]((a)true A (r)true). 

We show that G and H are each equivalent to  F = [(a U r)*]((a)true A (r)true), and 

hence cannot be expressed in SPDL. F is satisfied if ((a)true A (r)true) is true after the 

program (a U T) has been repeated any finite number of times. G is satisfied if we can never 

reach a state in which ((a)true A (r)true) is false by repeating the program (a U 7).  Hence 

F and G are equivalent. To show that F and H are equivalent notice that the programs 

(a U r)* and (a*; re)* are equivalent. 

Thus both SPDL+U and SPDL+* have greater expressive power than SPDL. We are 

now interested in whether either of SPDL+U and SPDL+* have expressive power equivalent 
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to PDL. It follows from Lemma 4.2.1 that every formula and program of SPDL+u and 

SPDL+* can be expressed in PDL. To show that every formula of PDL can be expressed in 

SPDL+* we need. the following: 

Definition 4.3.2 A program a of PDL is in U-normal form if a = P1 U . .  .UP,, where each 

pj is constructed from atomic programs and tests using only the operators ";" and %". 

Lemma 4.3.3 Every program a of PDL is equivalent to a pmgmm au in U-normal form. 

Proof: By induction on the construction of programs. Let a be a program of PDL. We 

consider the possible cases for a: 

Case 1: a E n. 

Case 2: a = F? for some F E FPDL. 

Case 3: a = a'; a2. By induction there exist a l  = p i  u . . . u pii as above, for 

i = 1,2.  Then 

Case 4: a = a' u a2. 

Case 5: a = 6'. By induction there exists bu = P1 U . . . U Pn as above. We use 

the result that (a U P)* (a*; Pa)*. 

Q = 6* 

G 6; 

= (PI U . . . U Pn)* 

(P;; (P2 U - - - U A)*)*  
= (P;; (P;; (P3 u - - .  u Pn)*)*)* 

= (p;; (P;; (. . .p;)* . . . )*)*. 
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Hence au = (P;; (&; (. . .P:)* . . .)*)*. 

We can now show that every formula of PDL can be expressed in SPDL+*: 

L e m m a  4.3.4 Every formula of PDL can be expcpressed in SPDL++. 

Proof: We use induction on the construction of formulas and programs. The only difficult 

case is for formulas of the form F = [a]G. By induction we can assume that there is a 

formula GI of SPDL + * which is equivalent to G. By Lemma 4.3.3 we know that every 

program of PDL can be expressed in U-normal form. Hence we can assume a = PI u . . . u P, 
where each Pj, 1 5 j I n, is constructed from atomic programs and tests using only the 

operators ; and *. By induction we can assume that for every test E ?  occurring in Pj there 

is a formula El of SPDL + t which is equivalent to E. Let Pi be obtained from Pj by 

replacing each test E? by (if El t h e n  skip else abor t ) .  Then each Pi is a program of 

SPDL + *, and cr r Pi U . .  . U p;. Hence 

Thus F' = [&]GI A . . . A [@;]GI is a formula of SPDL+* which is equivalent to  F. 

We now have the following: 

Theo rem 4.3.5 SPDLt*  and PDL have equivalent expressive power. 

We have shown that every formula and program of SPDL+* can be expressed in PDL, 

and every formula of PDL can be expressed in SPDL+*. However not every program of 

PDL can be expressed in SPDL+*. Consider the PDL-program a U r ,  and the model 

~U = (S, {R, : a E lI) ,V),  where S = {s, t ,u) ,  R, = {(s,t)), R, = { ( s , ~ ) ) ,  R, = 0 

otherwise, and V(p) = S for every p E iP (see Figure 4.1). 
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Figure 4.1: The model MU 

From state s the program a U T has transitions to  both t and u, but as there are no 

transitions from either t or u except to themselves any program of SPDL+* has a transi- 

tion from s to  at most one of t and u. Thus aur is not equivalent to  any program of SPDL+*. 

We know that every formula and program of SPDL+U can be expressed in PDL. We 

now show that there is a formula of PDL that cannot be expressed in SPDL+U, and hence 

that PDL has greater expressive power than SPDL+U. To do this we construct a class of 

infinite models {Md : d E N )  such that for each formula F of SPDL+U either V(F) or 
- 
V(7F)  is finite in some model in the class, and show that there is a formula G of PDL with 

both V(G) and V(-G) infinite in every model in the class. 

Figure 4.2: The segment model S d  

For each d E N we define a segment model Sd, where the transitions for the atomic 

programs a, r E II are as shown in Figure 4.2, and for every other atomic program .rr E II 

we have R, = 0. Also V ( p )  = {so,. . . , s d + l )  for every p E a. 
Md is constructed by concatenating infinitely many copies of Sd, identifying endpoints 

of adjacent copies, and adjoining an additional state 9, as shown in Figure 4.3. Let 9 E V(p) 

for every p E a. 
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Figure 4.3: The model M d  

1 1  Hence M d  = (S, { R ,  : n E n ) ,  V )  where S = {B, s:, sy, . . . ,  s:+, = so, s,, . .  .), R ,  and 

R ,  are as shown, R ,  = 0 for n # a, r and V(p) = S for every p E 9. 

Lemma 4.3.6 There is a formula G of PDL for which both V(G) and ~ ( T G )  are infinite 

in M d  for every d E N .  

Proof: Consider the PDL-formula ((a*; T; a*; r)*)[a U rlfalse. We show this formula is 

true in states sh when t is odd and false in states sk when t is even. We observe that 

M d ,  s + [a u ~Ifalse if and only if s = 3,  hence Md, sb i= ((a*; r; a*; r)*)[a u rlfalse if and 

only if s~R(,I;,;,.;T)*S. From any state sf, with h 5 d, the program a*; r is a transition to  

either sf;' or s i t ,  = 3;". From si-' the program a*; r is a transition to either si-2 or 

sb, and from s;+l the program a*; r is a transition to  either s i  or s;'~. Hence from state 

sk with h 5 d the program a*; T; a*; r is a transition to  one of s ; -~ ,  sk, s i ,  or s;'~. Notice 

that sR(,. ,,,, I,,). S if and only if s = s i  for some h < d. Hence shR(,. ;,;, S if and only if 

t 1 mod 2 i.e. if and only if t is odd. Hence the formula is true in infinitely many states 

and false in infinitely many states. 

Hence we have a formula of PDL which is true a t  inifitely many states and false at  

infinitely many states. To show that no formula of SPDL+U has this property we need the 

following: 

Definition 4.3.7 An SPDL+u program a is in normal form if a = P1 U ... U P, where 

P3 = y j l ; .  .. ; yjm, for each j ,  1 5 j 5 n,  and for each yjk, 1 5 k < mj, one of the following 

holds: 

i) Yjk E n 
ii) yjk is a test, i.e. of the form if E then skip else abort, abbreviated E? 
... 
111) yjk = while E j k  do bjk .  
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L e m m a  4.3.8 Every progmm a of SPDL+U is equivalent to a progmm a~ which is in 

normal form. 

Proof: Use induction on programs. 

Case 1: a E II. 

Case 2: a = skip.  Then = t rue?  

Case 3: a = a b o r t .  Then a~ = false? 

Case 4: a = a'; a2.  Suppose ai has normal form ak = PI U . . . u P i , .  Then 

Case 5: a = while E d o  6 .  

Case 6: a = i f  E t h e n  6' else b2. Suppose 6i has normal form 6; = Pi U . . .Up:,. Then 

Hence a~ = ( E ? ;  p i )  U ( E ? ;  p i )  U . . . U ( E ? ;  PA,) U ( T E ? ;  p i )  U . . . U ( T E ? ;  ~ 2 , ) .  
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Case 7: a = a' U a2.  

In each M d  let RE,a(s) denote the set { t  E Sd : sRwhile E do at) .  Intuitively this is the 

set of states reached from state s in M d  by the program "while E do a". For each /3 E P 

let R p ( s )  = { t  : sRpt) .  

We say a formula F is finite (cofinite) in M d  if V(F) is finite (cofinite) in M d .  

In the next lemma we prove that for any formula F of SPDL + U we can find d such 

that F is either finite or cofinite in M d .  We in fact show that F is either finite or cofinite 

in M d  for all sufficiently large d. To prove this we also show that for every program of the 

form "while E do a" the sets R E , a ( ~ )  satisfy certain conditions for all sufficiently large d. 

The conditions Wilm uses in [lo] are very similar. As well as showing that every formula 

F is either finite or cofinite in M d  whenever d is sufficiently large, Wilm shows there exists 

t E N such that F is either true in every state above sh in M d  or false in every state 

above sh in M d  whenever d is sufficiently large. For the assertion about while-programs 

we will show that for all but finitely many states the sets R E , ~ ( S )  satisfy certain conditions 

whenever d is sufficiently large. Wilm shows that there exists t E N such that the conditions 

are satisfied for every state above sh in M d  whenever d is sufficiently large. We now state 

and prove the lemma. 

Lemma 4.3.9 (i) For every formula F of SPDL+U there exists dF E N such that F is 

either finite or cofinite in M d  for all d 2 dF.  

(ii) For every program of the form "while E do a" of SPDL+U there exists dE,, E N 

such that for all d 2 dE,a one of the following holds for M d :  

(P)( i ) :  { s  : R E , ~ ( S )  # { s ) )  is finite. 

(P)( i i ) :  there is a finite set SE,, of states of M d  such that for all but finitely many 

S E S ,  R E , ~ ( s )  = S E , ~ .  

Proof: We use induction on the construction of formulas and programs to  prove (i) and (ii) 

simultaneously. We first consider the statement about formulas. There are four possible 

cases: 
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Case 1: F = p for some p E @. By the definition of V in M d  we have V ( F )  = S, 

hence F is cofinite in M d  for d > d F  = 0. 

Case 2: F = 7G. By induction there exist dG E N such that G is either finite 

or cofinite in M d  for all d 2 dG. Set d F  = dG,  and let d 2 d F .  F is finite in M d  if G is 

cofinite, and cofinite if G is finite. 

Case 3: F = G V H. Set d F  = m a x { d G ,  d H )  and let d 2 d F .  If both G and H 

are finite in M d  then so is F ,  otherwise at  least one of G and H is cofinite in M d ,  and 

hence so is F .  

Case 4: F = [a]G. We show that for every formula E of SPDL+U if there exists 

d E  such that E is either finite or cofinite in M d  for every d > d E ,  then for every subprogram 

a' of a there also exists d[atlE such that [al]E is either finite or cofinite in M d  for every 

d > d [ a ~ l E .  The proof is by induction on the construction of programs. 

Case 4.1: a' E II, so a' is an atomic program. If a' # a,  T then Rat = 0 and 

)= [a1]E for every formula E ,  and [a f ]E  is cofinite in M d  for d > 0. For a' = 0, T note that 

for any state s both a and T are transitions to a state a t  most d + 1 states away. Hence if 

E is finite (cofinite) in M d  then so are [a]E and [TIE. Hence [al]E is finite or cofinite in 

M d  for d > dlaqE = dE.  

Case 4.2: a' = skip. Suppose E is finite or cofinite in M d  for every d 2 d E .  

We know 'F [skip]E - E for any formula E from the axiom schema DUM. Set d[,tlE = dE 

and let d 2 dfatlE. Then [a'] E is finite (cofinite) in M d  if E is. 

Case 4.3 a' = abort.  Since RabOrt = 8 we have + [abort]E for any formula E ,  

hence [al]E is cofinite in M d  for d 2 d p I E  = 0. 

Case 4.4 a' = P;  y. We know [P;  y]E tr [P][y]E for any formula E by the 

axiom schema COMP. Suppose E is finite or cofinite in M d  for every d 2 d E .  From the 

induction hypothesis we know for any formula E' if there exists dE,  such that E' is either 

finite or cofinite in Md for d 2 dEt then there exist d[P]E~,d[71E,  E N such that [PIE' is 

either finite or cofinite in M d  for d > d [ P I E ~ ,  and [TIE' is either finite or cofinite in M d  

for d > dirIEt. For E' = E we get d [ ? ] ~  E N such that [y]E  is either finite or cofinite 
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in Md for d L d[rlE. Then for E' = [y]E we get d~pl[rlE E N such that [P][y]E is either 

finite or cofinite in Md for d L d[pl[rlE. Hence [P; y]E is either finite or cofinite in Md for 

2 d[p ; r l~  = d[~l [ r l~ .  

Case 4.5 a' = while H do P. By induction there exist dH,p E N such that for 

all d 2 dH,p either (P)(i) or (P)(ii) holds for Md. Suppose E is finite or cofinite in Md for 

d > dE. Set =max{dH,p, d ~ ) .  Then for d > d[,tlE one of the following occurs: 

Case 4.5.1: (P)(i) holds. Then {s : RH,p(s) # Rskip(s)) is finite, and there is 

t ~ , p  E N such that R ~ , p ( s f , )  = Rskip(sf,) = {sf,) for every t t ~ , p  and h 5 d + 1. Note 

that {sf : t < tH,p) is finite. If E is finite (cofinite) in Md then 

{sf, : t > t ~ , p ,  h 5 d + 1, M d ,  s; E) is finite (cofinite). It follows that 

{sf, : t > t ~ , p ,  h 5 d + l , M d ,  s; [while H d o  PIE) is finite (cofinite) and so [af]E is 

finite (cofinite) in Md. 

Case 4.5.2: (P)(ii) holds. Then there is a finite set SH,p of states of Md such 

that for all but finitely many s E S, RH,p(s) = SH,p. Hence there is t ~ , p  such that 

R H , ~ ( S ~ )  = SH,p for every t > t ~ , p  and h 5 d + 1. Again note that {s,h : t < t ~ , ~ )  is 

finite. If M ,  s + E for every s E S(H,  P) then M ,  sk + [while E d o  PIE for every state 

sk such that t 2 t ~ , p  and h 5 d + 1, and [a1]E is cofinite in Md. Otherwise there is a 

state s E S (H ,P )  such that M,s  E ,  and in this case M , s k  +  while E d o  PIE for 

every state sk such that t > t ~ , p  and h 5 d + 1, and [a1]E is finite in Md. 

Case 4.6: a' = if H t h e n  P else y. From the axiom schema COND we know 

[if H t h e n  p else y] E t, ( (H -. [PIE) A ( i H  + [7] E ) )  for any formula E. Suppose E 

is finite in Md for sufficiently large d. By the induction hypothesis for Case 4, [PIE and 

[y]E are also each either finite or cofinite in Md for sufficiently large d. Also by the main 

induction hypothesis H (and hence 1 H )  is also either finite or cofinite in Md for sufficiently 

large d. Set d[,tIE = ~ n ~ { d ~ ] ~ , d [ ~ ] ~ , d ~ ) .  Then for d 2 d[,tIE, [if H t h e n  p else y ]E  is 

either finite or cofinite in Md. 

Case 4.7: a' = P U y. We know [P U y]E  - ([PIE A [y]E) for every formula E 

by the axiom schema ALT. Suppose E is finite or cofinite in Md for sufficiently large d. 

By the induction hypothesis [PIE and [y] E are also each either finite or cofinite in Md for 
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sufficiently large d, hence so is ([PIE A [y]E) = [al]E. 

We now prove the statement about while-programs. Given a program of the form 

while E do a, we consider the normal form of the program a ,  a N  = U . . . U Pn where 

Pj = yjl; . . . ; yjml for each j (1 5 j 5 n), and each yj; is either an atomic program, a test, 

or a program of the form "while F do 6". 

For each j (1  < j 5 n) we define the following: 

Tj = {F: either F ?  = yj; or T F ?  =y j ;  for some i , l  5 i 5 mj) 

dTl = max{dF : F E Tj). 

We can now define 

T = UjlnTj 

dT = max{dTl : 1 < j < n). 

If none of the yj;'s are tests then set dT = 0. 

If yj; is the program while F do 6 then by induction there exists dFt6 E N such that 

for all d 2 dF,6 either (P)(i) or (P)(ii) holds in M d .  If some yj; is a while-program then we 

can define the following 

Wj = {(while F do 6) : yj; = (while F do 6) for some i ,  1 5 i 5 mj) 

dw, = max{dF,6 : (while F do 6) E Wj). 

We can now define 

Otherwise if no yj; is a while-program then set dw = 0. 

Each Pj is a sequence of atomic programs, tests and while-programs. As R, = 0 for 

every n $ {a, r ) ,  each Pj with non-aborting executions is a sequence of occurrences of a ,  r ,  

tests and while-programs. Let f j  be the greatest number of times a occurs consecutively 
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in pj, interspersed with tests and while-programs but not with any occurrences of r. Let 

fa = maxi f j  : 1 < j < n). By the induction hypothesis for E there exists dE E N such 

that E is either finite or cofinite in Md for every d 2 dE. Set 

Let d 2 dE,cr be fixed. Then each formula F E T is either finite or cofinite in M d ,  

E is also either finite or cofinite in Md,  and either P(i) or P(ii) holds for Md for every 

while-program in W. Let i be such that E ,  and every F E.T, are either true in every state 

s i  with t > t, or false in every state si with t > t, and for every while-program in W either 

RF,6(s;) = (8;) for every state s: with t 2 t, or RF,6(si) = SF,6 for every state s i  with 

t > i. Set t ~ , ~  = i+ 1. Then for every d > dE,,, each test occuring in one of the Pj's is 

either equivalent to skip in every state s i  with t 2 t ~ , ,  - 1, and h 5 d + 1, or equivalent 

to abort in every state si with t > t ~ , ~  - 1, and h 5 d + 1. Every while-program is either 

equivalent to skip in every state s i  with t > t ~ , ,  - 1, and h < d + 1, or a transition to 

a state below SF-" in every state s i  with t > t ~ , ,  - 1, and h < d + 1. Hence for each 
t Pj which has non-aborting executions in. state SF," or some state above soEsa there is a 

sequence of occurences of a ,  r ,  skip and while-programs for which (P)(ii) holds, such that 
t 

any execution of pj in or above state s/," is equivalent to an execution of the concatenation 
t of this sequence until a state below s/*" is reached. 

We need to show that (P)(i) or (P)(ii) holds for while E do a in Md. We consider two 

cases: 

Case 1: E is finite in Md. Then M d , s i  + 1 E  for every t > tE,, and h 5 d +  1, 

so from the definition of Rwhile E do , we have RE,,(si) = {si) for every t > tE,, and 

h 5 d + 1, and (P)(i) holds for Md. 

Case 2: E is cofinite in Md. For every t > t ~ , ,  - 1 and h 5 d + 1 we have 

M,  s i  + E ,  and each pj is equivalent at  s i  to a sequence of occurences of a ,  .r and programs 

of the form "while F do 6" as described above. Suppose for some fixed t' 2 t ~ , ,  and 

h' 5 d + 1 that s:, ~~~i~~ E do where s' is a state in Md. We show that S; Rwhile E do ,sf 

for every t > t ~ , ~  and h < d + 1. 
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Figure 4.4: The buffer zone 

We consider the section of Md between states s2;-'  and sFsa- '  , shown in Figure 4.4. 

We call this the bufler zone. As ~ c ~ w h i l e  E do ,sf there is a sequence pi1,. . . ,Pjk such 

that S ~ R ~ ~ , ; . ; ~ ~ , ~ ' ,  and we know M , s l  C -E ,  so s' must be below state SF,"-'. For each 

program "while F do 6" which occurs in one of the pj's either condition (P)(i) or (P)(ii) 

holds for Md for every state s i  with t 2 t ~ , a  - 1 and h < d + 1. We consider 2 cases: 

Case 2.1: no program of the form "while F do 6" for which (P)(ii) holds occurs 
t in any of pi1,. . . , pik, or the system is at a state below s/sa-' when the first such program 

occurs. 

By the choice of dE,, and t ~ , , ,  for each state in the buffer zone the execution of each pj is 
equivalent (until a state below sFsa- '  is reached) to a sequence of occurrences of a and r 

t ~ , a - l  as described above, and Md,  sh E for every h 5 d + 1. Also s;, is above the buffer 

zone and sf is below it, so the program pj l ; .  . . ; pjk has transitions through this section. 

Further, it follows from the structure of Md that every state between s t l  and sf (which 

includes every state in the buffer zone) must be visited. 

We make the following observations: 

Observation 1: For every t 2 t ~ , ,  - 1 no program pj is a transition from a state 

above s i  to a state below 8;. 

Justification: To reach a state below sf, from a state above si we must have a 

program with a sequence of d consecutive occurrences of a. As we chose dE,, 2 2 f, + 1 

none of the programs 1 5 j 5 n, satisfy this condition. 

Observation 2: there is a program Pk which is equivalent to a sequence of oc- 

currences of a when executed in any state si with t > t ~ , ,  - 1 and h 5 d + 1 (provided 
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no state below SF+-' is reached). 

Justification: Suppose not. Every occurence of T at a state SF"-'  for 0 < h < d 

forces a transition back to s Z ; - ' ,  and as we chose dE, ,  > 2 f, + 1 if every P j  contains an 
t t E , a  - 1  occurence of T then we can never reach state sf,'-' (or below) from a state above sd 

This is a contradiction, as the program P j 1 ; .  . . ; P j k  reaches a state below - 1 from 

a state above s?,"-l. 

Observation 3: There is a program PI with an odd number of occurrences of r. 

Justification: Consider a program Pi in the sequence p j l ; .  . . ; P j k ,  such that the 
t ~ , o  - 1  t~ 0 - 1  system is in or above state s ~ + ~  before executing PI and in a state below s ~ ; ~  after 

executing Pi .  The first occurence of r in this program must occur at  state s 2 ; - ' ,  as if 

it occured above s 2 y - l  then there would be a transition to s 2 ;  and, by Observation 1 ,  
tE,a-l couldn't reach a state below = sd+l . SO the first occurence of T is a transition 

tE,a-l tE,a-l from sd+l to sd . Now suppose there is a second occurence of T .  This must cause 
t E  0 - 1  a transition back to sd+l (by the choice of dE,a 2 2 f, + 1) and the system will stay in 

this state until a third occurrence of r ,  which must happen as PI ends in a state below 
t E , a  - 1  

Sd+l  . Clearly PI must contain an odd number of occurences of T .  Set PI = P i .  

Observation 4: There must be a state s?;;"-l, 0 < h" < d such that 
t E a - 1  

Sh t ;  Rwhile E do as'. 

Justification: The final state reached by the program PI is below s 2 ; - ' ,  and 

must be above SF@-' by Observation 1 .  Let s$'-' denote this state. Clearly 
S t ~ , a  - 1  

~ I I  Rwhile E  do as1- 

Observation 5: For every t 2 t ~ , ,  and h < d +  1 there is a program a t , h  which is 
tE,a-l a concatenation of a finite sequence of programs P j  (1 < j < n) such that sthRat,h~hrl . 

Justification: Set n = t  - t ~ , ~  + 1 .  Define a t , h  = ( ( ~ k ) ~ ;  

Intuitively the program a t , h  is the following: repeat Pk enough (at most d) times to reach 

state sb, then use pl to reach a state sk-'. Repeat this procedure to reach sk-', then sk-3 

and so on until state SF," is reached. Repeating Pk another d times we reach SF," ,  then 
t ~ , "  - 1  p1 will reach shl, . 

Hence for every t  2 t E p  and h 5 d + 1 there is program a t , h  such that 
tE,a-l 

@at,hsh Rwhile E do as1 and as a t , h  is a the concatenation of a finite sequence of 
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programs pj (1 5 j I n) it follows that sftRWhile E do ,st, as required. 

Thus there is a set of states S ( E , a )  such that for every t 2 t ~ , ,  and h _< d f 1, 

RE,,(sL) = S ( E ,  a )  in M d .  As each state s in S ( E ,  a )  is below s?*"-', and there are only 

finitely many states below s?,'-' , then S ( E , a )  must be finite and (P)(ii) holds for Md. 

Case 2.2: there is a while-program in pjl ; . . . ; pjk for which (P)(ii) holds and 

which is first reached at a state above . Let "while F do 6" be the first such program 

to  occur, and suppose it occurs in Pi, when the system is in state sc:, for some t" > t ~ , ,  - 1 

and h" < d + 1. Let k be such that y;k is the first occurrence of "while F do 6" in Pi. Set 

7' = 7;i; . . . ; y;,k-l and y" = yj,k+l;. . . ; yjm,, so = y'; yjk; 7". By induction there is a 

finite set of states S(F ,  6) such that Sk(F, 6) = S(F,  6) for every t > t ~ , ,  - 1 and h 5 d + 1. 

In particular S~/:(F, 6) = S(F,  6). As ~ i r ~ ~ ~ ~ ~ ~  E do ,sl we must have sRwhile E do ,sl for 

some s E S(F,  6), and there is a state s" such that sR-y~~l lRwhile  E do ,st. 

We now consider a general state sth in M d ,  where t 2 t ~ , ,  and h _< d + 1. At this state 

y' is equivalent to a sequence of occurrences of a and r ,  and can only reach states above 

s?,"-' (as s: is above SF*"-' and, by Observation 1 proved for the base case, none of the 
t 1 

Pj's can be a transition from a state above s t s a -  to a state below s ~ ~ " " ) .  So there is 

tE*"-l, which means s$:(F, 6) = S(F,  6). a state s$, such that sf,Rrts:b and sci is above so 

In particular ~ c : t ~ ~ ~ ~ ~ e  F do 6s.  where s is as above, so s & ~ s " R ~ ~ ~ ~ ~  E do ,st. Hence 

~ i ~ y t ~ c ; t   while F do 6~&"~1tRwhile E do ,s', SO S; Rpi~ItRwhile E do ,st, which yields 

siRwhile E do ,sl which is what was required. Hence there is a set of states S ( E ,  a) such 

that S ~ ( E ,  a )  = S ( E ,  a) for every t 1 t ~ , ,  and h I d + 1. Again we observe that there are 

only finitely many states below sFv"-' so S ( E ,  a )  must be finite, and (P)(ii) holds. 

Lemma 4.3.10 There is a formula of PDL which cannot be expressed in SPDL+U. 

Proof: It follows from Lemma 4.3.9 that for every formula F of SPDLf u there is a d such 

that either V(F) or V ( 7 ~ )  is finite in Md. We showed in Lemma 4.3.6 that there is a 
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formula G of PDL such that both V(G) and V(TG) are infinite in M d  for every d E N,  

hence G is a formula of PDL which cannot be expressed in SPDL+U. 

We have now proved the following theorem: 

Theorem 4.3.11 PDL has greater expressive power than SPDL+U 

Hence adding the non-deterministic operator U to SPDL does not give expressive power 

equivalent to that of PDL. In order to  get expressive power equivalent to PDL we must add 

the highly non-deterministic * operator. 
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