
COMPLETENESS AND EXPRESSIVE POWER IN
PROPOSITIONAL DYNAMIC LOGIC

Fiona Humphris

B.Sc.(Hons) Victoria University of Wellington, 1991

A THESIS S U B M I T T E D IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS FOR T H E DEGREE O F

MASTER OF SCIENCE

in the Department of Mathematics and Statistics

of

Simon Fraser University

@ Fiona Humphris 1995

SIMON FRASER UNIVERSITY

July 1995

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Fiona Humphris

Completeness and Expressive Power in Propositional

Dynamic Logic

Examining Committee: Dr. G. A. C. Graham

Chair

Dr. S. K. Thomason, Senior Supervisor

Date Approved:

Dr. A. H. Lachlan

Dr. N. R. Reilly

-

Dr. A. Gupta, External Examiner

Simon Eraser University

J u l y 18, 1995

PARTW COPYRIGHT LICENSE

I hereby grant to Simon Fraser Universi the right to lend my

t' 'T thesis, pro'ect or extended essay (the title o which is shown below)
to users o the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a
request from the library of any other university, or other
educational institution, on its own behalf or for one of its users. I
further agree that permission for multiple copying of this work for
scholarly purposes may be granted by me or the Dean of Graduate
Studies. I t is understood that copying or publication of this work
for financial gain shall not be allowed without my written
permission.

Title of Thesis/Project/Extended Essay

Author:
(signakre)

24 Mau /?'9S
(date)

Abstract

Dynamic logics are a family of logics used to reason about computer programs. The language

used is multi-modal, with modalities indexed by a set of programs and satisfying laws

corresponding to the structure of the programs. We consider Propositional Dynamic Logic

(PDL) which allows for two sorts of non-determinism in its programs, Strict Propositional

Dynamic Logic (SPDL) which has no non-determinism, and two extensions of SPDL which

each allow one form of non-determinism. We present soundness and completeness results for

each of the logics, and compare their expressive powers. Wilm showed that the extension of

SPDL by U (SPDL+U) has less expressive power than PDL by showing there are conditions

satisfied by every formula and program of SPDL+U which are not satisfied by some formulas

of PDL. We give an exposition of this result using simpler conditions than those used

by Wilm. We also give results showing that the extension of SPDL by * (SPDL+*) has

expressive power equivalent to that of PDL, and SPDL has less expressive power than each

of the other logics.

iii

Acknowledgements

I would like to thank all the people who helped make writing this thesis possible, especially

Steve Thomason and Alistair Lachlan.

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Definitions 3

2.1 Preliminaries . 3

2.2 Syntax of PDL and SPDL . 4

2.3 Semantics for PDL and SPDL . 7

2.4 Extensions of SPDL . 9

3 Soundness and Completeness 11

3.1 Preliminaries . 11

3.2 Soundness of PDL . 12

3.3 Completeness of PDL . 14

3.4 Soundness of SPDL . 24

3.5 Completeness of SPDL . 26

3.6 Soundness and Completeness of SPDL+U and SPDL+* 34

4 Expressive Power 3 5

4.1 Definitions . 35

4.2 Expressive Power of PDL and SPDL . 36

4.3 Extensions of SPDL . 39

Bibliography 55

Chapter 1

Introduction

Dynamic logics are a family of logics used to reason about computer programs. The concept

was first introduced by Pratt [9] in 1976, who described first order dynamic logic. Here we

are concerned with Propositional Dynamic Logic (PDL), which was introduced by Fisher

and Ladner [I] in 1977, and a variant of PDL called Strict Propositional Dynamic Logic

(SPDL). Both PDL and SPDL consist of a set of formulas and a set of programs. These

are specified by giving a set of atomic formulas (the propositional variables), a set of atomic

programs, and rules for constructing well formed formulas and programs. We have two

notions of halting for programs. A program is said to terminate if it ends normally and is

said to abort if it ends abnormally, for example if it is interrupted. We do not assume that

every execution of a program will end.

To form complex programs in PDL the operations used are concatenation, denoted by

";", disjunction, meaning "do a or do P", this is denoted by "U" and is non-deterministic,

an operator "*", meaning repeat a program some finite number of times, which is also non-

deterministic, and a test operator denoted "?", where F ? means continue if formula F is

true and abort otherwise. Formulas are constructed using negation and disjunction, and

corresponding to each program a there is a modal operator [a], where [a]F is read "the

formula F holds after every terminating execution of the program a". We define the dual

operator (a) by (a) = d e j l[a]-. The formula (a)F is read "there is some execution of a

after which formula F is true". We are able to express assertions about programs within

the language. We write (a)true for "a terminates", and use formulas such as F + [a]G to

CHAPTER 1 . INTRODUCTION 2

talk about program correctness, and [a] F - [P]F to talk about program equivalence.

In reality, no computer language in use today has any non-deterministic operators. Hence

we are interested in the logic SPDL, which has no non-determinism. In SPDL, complex

programs are constructed using the operations concatenation, "while do" and "if t hen

else", and we have as constants "skip" meaning "do nothing", and "abort" meaning

"abort". The programs of SPDL have a similar structure to those one can write in a

programming language such as C. Formulas of SPDL are constucted as for PDL. We also

consider two extensions of SPDL. The first is the extension of SPDL by the operator U

(SPDL+u), and the second is the extension of SPDL by * (SPDL+*).

We define a class of standard models for each logic, and show that the logics are both

sound and complete with respect to the appropriate class of models. These results are from

Goldblatt [2], [3] and [4] .

Equivalence of formulas and programs of the different logics can be defined, and this

enables us to compare the expressive powers of the four logics.

It was shown by Halpern and Reif in [5] that PDL has greater expressive power than

SPDL. This motivates us to consider the extensions of SPDL by each of the non-detefministic

operators "U" and "*". We show that both of these extensions have greater expresive power

than SPDL. We are now interested in whether the expressive power of either of the extensions

is as great as the expressive power of PDL. We show that the logic SPDL+* has expressive

power equivalent to PDL, and the logic SPDL+U has less expressive power than PDL.

We give an exposition of a proof by Wilm [lo] that the extension of SPDL by U has less

expressive power than PDL. The main part of the result is to show there are conditions

satisfied by every formula and program of SPDL+U which are not satisfied by some formula

of PDL. Wilm uses a uniform finiteness condition on an infinite class of models, we use

a simpler finiteness condition for the same class of models. We also give details of the

induction proof which were omitted by Wilm.

Hence adding the U form of non-determinism to SPDL gives less expressive power than

adding the * form of non-determinism.

Chapter 2

Definitions

2.1 Preliminaries

Definition 2.1.1 For any set S the identity function on S , denoted ids, is defined as

follows:

ids = { (s , s) : s E S) .

Definition 2.1.2 Let R, and Rp be binary relations over the set S. We define the binary

relation R, o Rp by

R, o Rp = { (s , t) : (3u E S)(sR,u and uRpt)).

Definition 2.1.3 Let R be a binary relation over a set S. For every n > 0 define a binary

relation Rn over S by

The ancestral relation R* of R is the binary relation over S defined by

R* = { (s , t) : (3n)(3so, sl, . . .sn)(s = so, t = s,, and (s ; - ~ , s;) E R for 1 < i < n))

Clearly sR*t if and only if sRnt for some n > 0.

CHAPTER 2. DEFINITIONS

2.2 Syntax of PDL and SPDL

The alphabet for the language of PDL consists of the following symbols:

(i) a set of propositional variables = { p , q, r . . .)

(ii) a set of atomic programs II = {n, a, T . . .)

(iii) the synlbols 7, V, t rue , false, ; , U, *, ?, [, I , (, and).

Let WpDL denote the set of words over this alphabet. For A, B,U,V E P(WPDL) we

define (A , B) (U,V) if A U and B c V. Let (FPDL, PPDL) denote the c-least pair

(3 , P) in P(WPDL) x P(WPDL) such that the following are satisfied:

El : 9 3

F2: t r u e E 3

F3: false E 3

F4: If F E 3 then -F E 3

F5: I f F , G ~ F t h e n (F v G) € 3

F6: If F E 3 and a E P then [a]F E 3.

PI: n r P

P2: If a , P E P , then (a ; P) E P

P3: If a ,P E P, then (a U P) E P

P4: If a E P, then a* E P

P5: If F E 3 , then F? E P .

FPDL is called the set of formulas of PDL and PPDL the set of programs of PDL.

The alphabet for the language of SPDL consists of the following symbols:

CHAPTER 2. DEFINITIONS

(i) a set of propositional variables cP = {p, q, T . . .)

(ii) a set of atomic programs ll = {x, a, r . . .)

(iii) the symbols 1, V, t rue , false, ; , skip, abo r t , while, do, if, t hen , else, [, I , (, and).

Let WsPDL denote the set of words over this alphabet. Let (FSPDL, PSPDL) denote the

G-least pair (3 , P) in LP(WSPDL) x LP(WSPDL) which satisfies F1 - F6 and also the following:

P2': If a,@ E P then (a ; P) E p

P3': skip E P

P4': abo r t E P

P5': If a E P and F E F , then (while F do a) E P

P6': If a , P E P and F E 3, then (if F t h e n a else P) E P.

FSPDL is called the set of formulas of SPDL and PsPDL the set of programs of SPDL.

Below Greek letters a , P, 7 . . . denote programs, and upper case letters E, F, G . . . denote

formulas.

The connectives are read as follows: ";" is concatenation so a ; P means "do a then do

p", "u" is disjunction so a ~ p means "do a or pn (U is nondeterministic), a* means "repeat

a some finite number of times" (* is nondeterministic), F? means "test F and continue if

it is true otherwise abort", [a]F means "F holds after every terminating execution of a".

The program skip is "do nothing", and abor t means "abort".

We define A, -+, and tr as usual. The modal operator (), which is the dual of [1, is

defined by (a)F =q l[a]lF and is read "there is a terminating execution of a after which

F holds".

Axiom schemas for PDL:

PC: All tautologies

CHAPTER 2. DEFINITIONS

K: [a](F -+ G) -+ ([a]F -+ [a]G)

COMP: [a ;P]F ++ [a][P]F

ALT: [a u P]F ++ [a]F A [P]F

MIX: [a8]F -+ F A [a][a8] F

IND: [a8](F -r [a]F) -t (F -+ [a8]F)

TEST: [F?]G ++ (F -+ G).

Rules of Inference for PDL:

MODUS PONENS: From F and (F -+ G) infer G

NECESSITATION: From F infer [a]F.

Let Th(PDL) denote the least set T FPDL such that T contains all instances of the

axiom schemas and is closed under the rules of inference. The members of Th(PDL) are

called theorems of PDL.

Axiom schemas for SPDL:

PC: All tautologies

K: [a](F -+ G) -+ ([a]F -+ [a]G)

DUM: [skip]F ++ F

ABORT: [abortlfalse

COMP: [a;P]F ++ [a][P]F

COND: [if E then a elseP]F ++ ((E -+ [a]F)A(-E -+ [PIF)

 WHILE^: 1 E -+ ([while E do a]F -+ F)

 WHILE^: [while E do a]F -r (E -t [a][while E do a]F).

CHAPTER 2. DEFINITIONS

Rules of Inference for SPDL :

MODUS PONENS: From F and (F -+ G) infer G

NECESSITATION: From F infer [cr]F

HOARE'S ITERATION RULE: From (E A F) + [cr]F infer

F - [while E do a] (l E A F).

As above, let Th(SPDL) denote the least set T C .FSPDL such that T contains all in-

stances of the axiom schemas and is closed under the rules of inference. The members of

Th(SPDL) are called theorems of SPDL.

2.3 Semantics for PDL and SPDL

In the following we use P to denote the set of programs c)f PDL or SPDL, whichever is

appropriate. A model for either PDL or SPDL is a structure M = (S, {R, : a E P), V),

where S is a nonempty set, R, is a binary relation on S for each cr E P , and V is a

function from @ to P(S). The members of S are called states. Intuitively the pairs in R,

are the possible tmnsitions of the program a, and V(p) is the set of states for which p is true.

Satisfiability is defined as a 3-ary relation between model, a state, and a formula as

follows:

S1: M,s + p if s E V (p) , for p E @

S3: M , s p false

S6: M, s k [a] F if for all s' E S , sR,sl implies M, s' k F .

CHAPTER 2. DEFINITIONS 8

From the definitions of the symbols A , +, ++ and of the modal operator () we obtain

the following equivalences:

(i) M , s k F A G i f a n d o n l y i f M , s k F a n d M , s + G

(ii) ~ , s k F + G i f a n d o n l y i f M , s p F o r M , s k G

(iii) M , s F ++ G i f and only if both M , s k F and M , s + G,orbo th M , s F a n d

M,3 p G

(iv) M , s t= (o)F if and only if there is an s' E S such that sR,sl and M , s' k F.

An equivalent definiton of satisfaction is obtained by letting V : 3 -+ P(S) be the unique

map satisfying the following conditions:

Sl': v V

S2': v(true) = S.

S3': V(fa1se) = 0.

541: V (l ~) = s \ V(F).

S5': V(F v G) = V(F) u V(G).

S6': V([a]F) = {S E S : (Vs' E S)(sR,sl + s' E V(F)).

Then satisfiability is defined by specifying that M, s + F if s E V(F).

Again from the definitions of the symbols A, +, t+, and the modal operator () we obtain

the following equivalences:

-
V (F A G) = V(F) n v (~)

-
V (F - G) = (V(F) n V(G)) u ((S \ V(F)) n (S \ V(G)))

CHAPTER 2. DEFINITIONS

-
V((a)F) = {s E S : (3s' E S)(sR,sf and s' E V(F)).

A formula F is valid in the model M if M , s F for every s E S.

A standard model for PDL is a model in which the following conditions hold:

MI: R,;p = R, 0 Rp

M2: Raup = R, U Rp

M3: R,* = (R,)*

M4: RE? = {(s, s) : M, s k E).

MI-M4 are called the standard model conditions for PDL.

A standard model for SPDL is a model in which M1 holds, and the following conditions

also hold:

M5': Rir then a else p = {(s, s') : S&S' and M , s E) U {(s, s') : S R ~ S ' and

M,s k Y E } .

M1 and M2'-M5' are the standard model conditions for SPDL.

A formula F of PDL is valid, denoted + F, if F is valid in every standard model of

PDL. Similarly a formula G of SPDL is valid, denoted + G, if G is valid in every standard

model for SPDL.

C H A P T E R 2. DEFINITIONS

2.4 Extensions of SPDL

Let SPDL+U denote the extension of SPDL by U, which is defined by adding the following

to SDPL:

U to the language of SPDL

P3 to the program formation rules

ALT to the axiom schema

M2 to the standard model conditions.

Let SPDL+* denote the extension of SPDL by *, which is defined by adding the following

to SDPL:

* to the language of SPDL

P4 to the program formation rules

I N D and MIX to the axiom schema

M3 to the standard model conditions.

Chapter 3

Soundness and Completeness

3.1 Preliminaries

Let L be a logic such as PDL or SPDL, and M be a class of models for L. Let Th(L) denote

the class of theorems of L. Then L is sound with respect to M if every theorem of L is

valid in every model in M. L is complete with respect to M if every formula which is valid

in every model in M is a theorem of L.

Definition 3.1.1 Let A be a set of formulas of a logic L. A is consistent if i (F l A . . . A Fn)

is a non-theorem of L for every finite subset IFl,. . . , Fn) C A.

Definition 3.1.2 We define programs an for each n E N as follows:

a0 = skip

an+l = a n ; a .

Note that in standard models M, s [a*]F if and only if for every n 2 0, M , s [an

and that Ran = (Ra)n.

Definition 3.1.3 The set of subformulas of a formula E of PDL is defined inductively as

follows for every p E a, F, G E 3 and a E P:

C H A P T E R 3. SOUNDNESS AND COMPLETENESS

Note that formulas occurring in a are not subformulas of [a] F .

We show that PDL is sound and complete with respect to the class of standard models

for PDL. The proof for soundness is given below; the completeness proof appears in the

next section.

3.2 Soundness of PDL

Theorem 3.2.1 PDL is sound with respect to the class of standad PDL models.

Proof: We need to show that each axiom of PDL is valid, and that the inference rules

preserve validity. Below we only consider the last five axioms. The remaining axioms and

transformation rules are contained in every normal modal logic, and the required proofs are

straightforward. See for example [4] p25 or [7] pp 68-69. We treat each axiom schema in

turn. Below M denotes a standard model for PDL.

CHAPTER 3. SOUNDNESS AND COMPLETENESS

M , s + [a u P] F Vt(sR,Ust*M,t/=F)

& Vt (sR,t =+ M , t + F) and Vt(sRgt * M , t + F)

M , s k [a] F a n d M , s i = [P] F - M , s l = [a l F ~ [P l F .

Hence M, s t= [a U P]F * ([a]F A [@IF).

MIX: Suppose M , s + [a*] F , and let t be such that sR,t. Then

Thus for all t, if sR,t then M , t k [a*]F, so M , s + [a][a*]F. Also by definition sR,es,

hence M, s + F. Thus M , s + [a*]F -+ F A [a][a*]F.

IND: Suppose M,s + [a*](F + [a]F), and M , s + F. We need to show that

M , s + [a*]F. We show by induction that M, s + [an]F for every n 2 0. Case n = 0 is

given, as M,s k F. For the induction step assume M , s [a k] ~ . We want to show that

M , s + [ak+'] F. Suppose sR,k+~ t. Then there exists u such that sR,k uR,t. Since sR,k u,

s Rae u and so M , u + (F + [a] F). By the induction hypothesis s R,k u yields M , u k F.

Hence M , u k [a] F. Now uR,t yields M , t F. Hence sR,k+~ t implies M , t k F , so

M , s + [ak+'] F as required.

Hence M , s + [F?]G tt (F -, G).

CHAPTER 3. SOUNDNESS AND COMPLETENESS 14

3.3 Completeness of PDL

In this section we will show that PDL is complete with respect to the class of standard PDL

models. To do this we show that every non-theorem of PDL is not valid in some standard

PDL model. We first construct the canonical model. The canonical model for PDL is the

model M C = (SC , {RE : a E PpDL), vC) where

0 SC is the set of all maximal PDL-consistent sets of formulas

0 for each a E PpDL, RE is the binary relation defined by

s ~ z t c-. { G E F : [a] G ~ s) C t

0 vC : @ - lQ(sC) is the function given by v C (~) = { s E : p E s) .

Lemma 3.3.1 Let F be a formula of PDL. Then foreverys E sC, M C , s F c-4 F E s.

Proof: By induction on formulas. The details can be found in [8] pp 23-25 or in [4] p25.

It follows that every theorem of PDL is valid in M C , and no non-theorem of PDL is

valid in M ~ . However M~ is not necessarily a standard model of PDL. We now construct

for each non-theorem A of PDL a standard model in which A is not valid.

Definition 3.3.2 A set I' of PDL formulas is called FL-closed if it is closed under subfor-

mulas and the following conditions hold for all F, G E FPDL and a , P E PPDL:

(i) [F?]G E I' =+ F E r

(iii) [a U P]F E r =+ [a]F E I' and [P]F E I'

(iv) [a*]F E I' =+ [a][a*]F E I?.

Let I' be an EL-closed set of PDL formulas, and M = (S , { R , : a E P) , V) be a model.

Define an equivalence relation on S by

s N t e (VF E ~) (M , s F c-4 M , t F) .

C H A P T E R 3. SOUNDNESS AND COMPLETENESS

We introduce the following notations:

r [s] for {t E S : s N t)

ar f o r a n r

r IIr for the set of atomic programs occurring in formulas in r

r pr for the closure of IIr u {F? : F ? occurs in a member of r) under the operations

U, *, and ;

r Sr for {[s] : s E S).

Let vr : ar + P (s r) be defined by the equivalence

Definition 3.3.3 For a E PpDL, a binary relation Rr on sr is a (I', a)-filtration of the

binary relation R, on S if the following conditions hold for all s , t E S:

G 1: if sR,t then [s] Rr[t]

G2: for all F E 3, if [s]Rr[t] and [a]F E r and M , s b [a]F then M , t k F.

An example of a (r , a)-filtration of R, is the smallest filtration,

Rr = {([s], [t]) : (3s' E [s])(3t1 E [t])(s'R,tl)).

The model M~ = (sr, {R: : a E pr), vr) is a r-filtmtion of M = (S, {R, : a E P), V)

if R: is a (r , a)-filtration of R, for every a E pr.

Lemma 3.3.4 Let M~ = (Sr, {R: : a E pr), vr) be a I'-filtmtion of the model

M = (S, {R, : a E P) , V). Then for all F E r, M, s F if and only if Mr, [s] b F.

Proof: By induction on formulas. The details can be found in [8] p139 or [4] pp33, 115.

C H A P T E R 3. SOUNDNESS A N D C O M P L E T E N E S S 16

Lemma 3.3.5 Suppose that M~ = (sr, {R: : cr E pr), vr) is a I'-filtration of the model

M = (S, {R, : a E PPDL}, V) such that r is finite, and let T be a subset of sr. Then there

is a formula AT such that for all s E S, M , s + AT if and only if [s] E T .

Proof: For each t E sr let At be the conjunction of formulas in the set

{ F : F E I' and M , t + F} U {TF : F E I' and M , t F}. This is a finite conjunction as l7

is finite. Then

M , s + At c-. (M , s + F * M , t + F) for all F E r
e+ S N t

e [s] = [t].

As ISr[5 21rl, then Sr must also be finite, and hence T is finite. If T = 0 then set

AT = false. Otherwise T = {[tl], . . . , [t,]). Let AT = At, v . . . V At,. Then

M , s + A T M , s + A t , o r ... o r M , s + A t ,

c-. [s] = [tl] o r . . .or [s] = [t,]

c-. [s]ET .

Let A be a non-theorem of PDL. Let I'A be the smallest FL-closed set containing A.

For the rest of this section let M~ denote the model (Sr, {R! : a E pr), v r) , where

r = rA and

r R: is a (F A , a)-filtration of R$ for each a E nrA

R: is arbitrary for each n E II \ IIrA

r R;? = {([s], [s]) : M ~ , s + F} for each F ? E pr

r R: is defined by the standard model conditions for PDL otherwise.

We now show that rA is finite, so we can apply Lemma 3.3.5.

C H A P T E R 3. SOUNDNESS AND COMPLETENESS

Lemma 3.3.6 rA is finite.

Proof: We define a formula to be modal if it has the form [a]G. The modal length of [a]G

is the number of symbol occurences in a. We show that in the construction of rA, starting

with {A) and closing under conditions (i)-(iv) and subformulas, every formula can only

cause a finite number of new formulas, of lesser modal length, to be added.

First observe the following for (ii)-(iv):

(ii) Every subformula of [a][P] F , except for [a][P]F and [PIF, is also a subformula of

[a ; PIF,

(iii) Every subformula of [a]F or [PIF, except for [a]F and [PI F, is a subformula of

[a U PIF,

(iv) Every subformula of [a][a8]F, except for [a][a8]E, is a subformula of [a8]F.

Hence if one of (ii)-(iv) is applied to a formula [a]G and we close under subformulas then

only a finite number of formulas, each of which is modal with strictly smaller modal length

than [a]G, are added. If we apply (i) to a formula [F?]G and close under subformulas then

as Sf(F) is finite and each subformula of F is shorter than F?, then (i) also adds a finite

number of formulas, where each new modal formula has strictly smaller modal length than

[F?]G.

Note that the FL-closure of {A) is the closure of Sf(A) under (i)-(iv) and subformulas.

Let A. =Sf(A), and A,+l be the set of new formulas obtained by applying (i)-(iv) to

formulas in A, and closing under subformulas. Then the greatest modal length for a formula

in A,+l is strictly less than the greatest modal length for a formula in A,. As every modal

formula has modal length at least 1, it follows that there exists an m such that A, contains

no modal formulas. For n > m we have A, = 0. We know that Sf(A) is finite, and for each

modal formula the conditions (i)-(iv) and closing under subformulas adds a finite number

of new formulas, so A, is finite for every n. Hence rA = U,<,A, - is finite.

Lemma 3.3.7 M~ is a FA-filtration of M ~ .

C H A P T E R 3. SOUNDNESS AND COMPLETENESS 18

Proof: We need to show that R: is a (PA, a)-filtration of RE for a E Pr. We use induction

on the construction of programs.

Case 1: a E IIr. Then R! is a rA-filtration of RE by definition of R!.

Case 2: a = F? for some F? E pr.

GI: We first show that sR$?t implies both s = t and M C , s + F. Suppose sR&t. Then

we have

from the definition of R&. To show that s = t we note that

Hence s C t , but both s and t are maximal so we must have s = t . For the rest observe

that

(F - + F) E s [F ?] F E s
(2) F E ~

C4 F E S

2% M ~ , s + F .

Hence

so G1 holds.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 19

G2: Suppose [s]R&[t], and also that [F?]G E F A and M C , s [F?]G. Then by definition

of R:? we have [t] = [s] and MC, s + F. The axiom schema TEST yields

M C , s /= (F -i G), and hence M C , s k G. But G E F A (as is closed under

subformulas) and s N t (as [s] = [t]) so M C , t + G.

Case 3: a = p; y

GI: Fix s and let A, be a formula such that for all t, A, E t if and only if [s]RF;,[t] (such

an A, exists by Lemma 3.3.5). By the induction hypothesis G1 holds for R; and R:. We

now show that M C , s + [P][y]A,:

Hence M C , s + [P][y]A,. Using this result we now show that G1 holds:

Hence G 1 holds.

G2: Suppose [s]R!,[t], and also that [P;y]G E F A and M',S + [P; y]G. We need to

show that M C , t I= G. We first observe the following implications:

CHAPTER 3. SOUNDNESS AND COMPLETENESS 20

By the induction hypothesis G2 holds for R$ and R:. Using the above implications we

now show that G2 holds for R$;,:

Hence G2 holds.

Case 4: o = /3 U y

GI: Fix s and let A, be a formula such that for all t, A, E t if and only if [s] RFu,[t]. By the

induction hypothesis G 1 holds for R; and R:. We now show that MC, s C [PI A, A [y] A,.

First we need the following implication:

Hence M C , s + [PIA,. Similarly MC , s C [y]A,, so M', s b ([PIAS A [?]As). We now use

this t o show that G1 holds:

Hence G1 holds.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 2 1

G2: Suppose [s] R;,,,[t], and also that [p U y]G E TA and M C , s + [p u y]G. We need to

show that M C , t + G. We require the following implications:

By the induction hypothesis G2 holds for R$ and R:. Using this, and the above implica-

tions, we have

[s]~;,,[t] and [P LJ y]G E TA and M C , s I= [P u r lG
(3.5)(3.6)(3.7) +- ([s] R;[t] or [s] R:[t]) and [PIG E rr and [y]G E FA

and M C , s + [PIG and M C , s + [y]G

([s]R;[t] and [PIG E TA and M C , s C [PIG)

or ([s] R![t] and [y]G E TA and MC, s k [y]G)

3 ~ ~ , t k ~ .

Hence G2 holds.

Case 5: cr = P*

GI: Fix s and let A, be a formula such that for all t, A, E t if and only if [s] R;. [t]. We

now show that M C , s + (A, + [@*]A,). We need the following chain of implications:

C H A P T E R 3. SOUNDNESS AND COMPLETENESS

M C , t + A , 341 A , € t - [s l~;*[t l

3 [sl(~;)*Itl

=, W ~ l (~ ;) " [t l)

& 3n([s](R;)"[t]) and (t R p 9 [t]R;[u])

+ tRDu + (3n([s](R;)"[t]) and [t]R;[u])

tRBu * 3n([s] (~;)"+ '[u])

=, t R P + ([s l (~ ;)* [u l)

=, tRpu+ [s]R;.[u]

+ tRpu* As E U

3 3 1 + t R p u * ~ C , u + A s

=% M C , t + [PIAS.

Hence M C , t + A, -+ [PI A,, and this is true for all t . In particular if sRpt then

M C , t + A, + [@]A,, so M C , s + [P*](A, -+ [PIAS). The axiom schema I N D yields

M C , s C (A , + [,f?*]A,). As [s](R;)O[s] we know from the definition of R;. = (R;)' that

[s] R;.[s]. From this we get the following chain of implications:

[s]R;.[s] A, E s
3.3 1
-i M ~ , S + A ,

=, M C , s I= [P*]As

23 S R ~ . ~ + ~ ~ , t +A .
3 3 1 + s R p * t + A 8 E t

& sRp t + [s]R;.[t].

Hence G 1 holds.

G2: Suppose that [s]R&[t], and also that [[b*]G E r and M , s C [P*]G. We want to show

that M , t + G. We first use induction to show that for every n 2 0

([s]R;,[t] and [P*]G E r and M , s + [P*]G) + M , t + [P*]G. (3.8)

CHAPTER 3. SOUNDNESS AND COMPLETENESS 23

Case n = 0: Suppose [s]R;,,[t], [P*]G E I' and M , s C [P*]G. Then [s] = [t] , so as

[P*]G E r, M , s + [P*]G implies M , t + [P*]G.

Induction step: Assume (3.8) holds for n = k. Then the following chain of implications

completes the induction step:

[s]RSk+, [t] and [P*]G E I' and M , s + [P*]G

=, 3u([s]RSk[u]~;[t]) and [P*]G E I' and M , s [P*]G

3 u ([s] ~ ; ~ [u] and [P*]G E I' and M , s b [P*]G and [u]Rs[t])

3u(M, u + [P*]G and [P*]G E I' and [u]R;[t])

2 3u([u] R;[t] and [P][P8]G E I' and M , u + [P][P*]G)

M , t C [P*]G.

Hence (3.8) holds for every n E N. We can now show that G2 holds by the following:

[s]R;.[t] and [P*]G E I' and M , s C [P*]G

3n([s]~s.[t]and [P*]G E I' and M , s C [P*lG) - M , t I= [P*lG

3 M , t + G .

Hence G2 holds.

0

Lemma 3.3.8 M~ = (sr, {R: : a E p r) , vr) is a standard model for PDL.

Proof: We need t o show that MI-M4 are satisfied. MI-M3 must hold by definition of R:.

For M4: for F? E pr , RF? = { ([s] , [s]) : M', s + F) , and by Lemma 3.3.4 M', s F if

and only if M ~ , [s] + F for F? E pr. Hence RF? = { ([s] , [s]) : M ~ , [s] + F) and M4 holds

for every F? E pr. For F? @ pr M4 holds by definition of R:.

Theorem 3.3.9 PDL is complete with respect to the class of standard models for PDL.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 24

Proof: For any non-theorem A of PDL let rA denote the smallest FL-closed set containing

-4. We showed in Lemma 3.3.7 that the model M~ is a rA-filtration of the canonical model

for PDL. As A is a non-theorem, 1 A is consistent so there is a maximal consistent set of

formulas containing TA. Suppose - A E s E 5''. Then by Lemma 3.3.1 M',S + 7A so

M ~ , S p A. As A E FA, then by Lemma 3.3.4 M ~ , [s] A. By Lemma 3.3.8 Mr is a

standard model for PDL, hence A is not valid in every standard model for PDL. Thus the

only formulas of PDL which are valid are the theorems of PDL, so PDL is complete with

respect to the class of standard models for PDL.

3.4 Soundness of SPDL

T h e o r e m 3.4.1 SPDL is sound with respect to the class of standard models for SPDL.

Proof: We need to show that each axiom of SPDL is valid in every standard model, and that

the transformation rules preserve validity. We only consider the axioms and transformation

rules that are not part of PDL. Each of these is treated in turn. Below M denotes a standard

model for SPDL.

Hence M, s + [skip]F * F.

ABORT: By condition M2' we have Rabort = 0. Let s be a state in a standard

SPDL-model. For every state t, sRabOrtt implies M, t F , hence M , s + [abor t]F .

C H A P T E R 3. SOUNDNESS AND COMPLETENESS

COND:

M , s k [if E then a else P] F

vt(sRif E then a else pt * M t k F)

V t (((M , s + E and sR,t) or (M , s + -E and sRpt)) * M , t k F)

V t (((M, s k E and sR,t) * M , t k F)

and ((M , s k - E and sRpt) =+ M , t i= F))

V t ((M, s k E and s Rat) =+ M , t k F)

and Vt ((M, s k -E and sRpt) + M , t + F)

Vt (M,s + E + (sR,t =+ M , t + F)) and Vt(M,s k -E + (sRpt * M , t k F))

(M , s k E + Vt(sR,t * M , t + F)) and (M , s + -E * Vt(sRpt * M , t k F))

(M , s + E * M , s + [a]F) and (M , s k -E + M , s k [PIF)

(M , s k E - [a] F) and (M , s k - E -+ [@IF)

M , s k (E - [alF) A (-E -, [PIF)

Hence M , s k Y E - [while E do a]F -r F.

 WHILE^: Suppose M , s k [while E do a]F and M , s k E. We need to show

that M , s k [a][while E do a]F. Let t be such that sR,t. Then for every u such that

tRwhile E do we have sRwhile E do au SO M , 21 + F, and hence M , t k [while E do a] ~ .

Hence M , t k [while E do a]F for every t such that sR,t, and so as required we get

M , s + [a][while E do a]F.

C H A P T E R 3. SOUNDNESS AND COMPLETENESS 26

HOARE'S ITERATION RULE: Suppose M b (E A F) -+ [a] F . Let s be any

state such that M,s k F . We show that M,s k [while E do a] F . Let t be such

that SRwhile E do ,t. Then there exist n E N and so, sl, . . . s, such that s = SO, t = s,,

M, t b -.E, and for all j < n we have sj R,sj+1 and M, sj + E. By induction we show

that M, sj k F for all j , 0 5 j 5 n. We are given M, so b F so the base case holds. Now

suppose M, sk F for some k < n. We also know M, sk b E, hence M,sk b (E A F) so

M , sj b [a] F . As sk Rask+1 it follows that M, sj+l k F as required. Hence ~ R w h i l , E do ,t

implies M,t k F, so M,s k [while E do a] F . Thus M,s b F -+ [while E do a] F for

every s E S, so M F -+ [while E do a] F and Hoare's Iteration Rule holds for M.

3.5 Completeness of SPDL

In this section we will show that SPDL is complete with respect to the class of standard

SPDL models. As for PDL we show that every non-theorem of SPDL is not valid in some

standard SPDL model. We first construct the canonical model. The canonical model for

SPDL is the model M' = (sC, {R: : a E PSPDL), vC) where

0 sC is the set of all maximal SPDL-consistent sets

0 For each a E PsPDL, RE is the binary relation defined by

s ~ E t {G E F : [a] G E s) C t

vC : O -+ P(sC) is the function given by v'(~) = {s E SC : p E s).

Lemma 3.5.1 Let F be a formula of SPDL. Then for every s E sC, M', s b F

F E 3.

Proof: By induction on formulas.

It follows that every theorem of SPDL is valid in M', and no non-theorem of SPDL is

valid in M ~ . However is not necessarily a standard model of SPDL. We now construct

for each non-theorem A of SPDL a standard model in which A is not valid.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 27

Definition 3.5.2 A set I' of SPDL-formulas is called FLs-closed if it is closed under sub-

formulas and the following conditions hold for all F, G E .FSPDL and a , P E PSPDL:

(iii) [if E t h e n a else P]F E I' [a]F E r and [P]F E I'.

Let I' be a FLs-closed set of SPDL formulas. As for PDL we define the notions of a

(I?, a)-filtration of a binary relation, and a I'-filtration of a model.

L e m m a 3.5.3 Suppose that M~ = (s r , {R: : a E pr), v r) is a I"-filtmtion of the model

M = (S, { R , : a E P), V) such that r is finite, and let T be a subset of Sr. Then there is

a formula AT such that AT E s if and only if [s] E T.

Proof: As for PDL.

Let A be a non-theorem of SPDL. Let FA be the smallest FLs-closed set containing A.

As before we can show that I'A is finite. Again note that 5 21r~l, hence it follows that

sr is finite, and we can apply Lemma 3.5.3.

L e m m a 3.5.4 FA is finite.

Proof: The proof is essentially as for PDL. We need the following observations for conditions

(ii) and (iii):

(ii) Every subformula of [a][while E d o a]F, except [a][while E do a]F itself, is a

subformula of [while E do a] F.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 28

(iii) Every subformula of [a]F or [P]F, except for [a]F and [PIF, is a subformula of

[if E then a else @IF.

For the rest of this section let Mr denote the model (sr , {R: : a E pr) , vr), where

r = rA and

R: is a FA-filtration of RE for n E IIrA

0 R: is arbitrary for n E II \ IIrA

Rf,, = idsr

R L r t = 0

0 R! is defined by the standard model conditions for SPDL otherwise.

We will prove simultaneously by induction that for every formula F E r ~ , M', s F

if and only if Mr, [s] F, and that R: is a (r , a)-filtration of R: for every a E pr. To do

this we need to define the following sets:

Po is the set of programs in pr that contain no while or if statements.

Fn is the set of formulas of FA that contain programs only from Pn.

Pn+l is the set of programs in pr such that any statement of the form "while E do P"
or "if E then /3 else y" has E E Fn and P, y E P,.

We observe that pr = UnEN Pnl and FA = UnEN 3 n -

Theorem 3.5.5 For every formula F E FA, MC, s + F if and only if M', [s] i= F, and

for every p q m m a E pr, R: is a (I?, a)-filtration of R E .

Proof: It suffices to prove that for every n E N the following hold:

(i) for every a E P,, R: is a (F, a)-filtration of R:

(ii) for every F E 3,, MC,s F if and only if Mr, [s] + F.

We use strong induction on n.

Base step: n = 0. For (i) we use induction on the construction of programs in Po.

CHAPTER 3. SOUNDNESS AND COMPLETENESS

Case 1: a E IIr. Then R! is a FA-filtration of RE by definition of R!.

Case 2: a = skip.

GI: We need the following implication:

Hence s = t as both s and t are maximal. By definition, [s] R ; ~ ~ , [s] hence [s]RLip[t] as

required, and G 1 holds.

G2: This is proved as follows:

[S] R ; ~ ~ , , [~] and M , s C [skip]F and [skip]F E FA

s N t and M , s + [skip]F and [skip]F E FA

M , t + [s k i p] F

5% M , t + F .

Case 3: a = abort .

GI: Suppose sRZbortt. Then { F E &PDL : [abort]F E s) C t . This implies false E t ,

hence there is no t such that sR,CbOr,t, and trivially S R : ~ , , , ~ implies [S] R : ~ ~ , , [~] .

G2: There does not exist t such that [s] ~ ~ ~ , , , [t] , hence trivially

([s] ~ ~ ~ , ~ , [t] and [abort]F E FA and M C , s + [abort]F) implies M C , t + F.

Case 4: a = /3; 7. This is proved as in Lemma 3.3.7.

For (ii) we use induction on the construction of formulas in Fo, which are formulas that

contain no programs containing while or i f statements.

Case 1: F = p E ar. Then

C H A P T E R 3. SOUNDNESS AND COMPLETENESS 30

Case 2: F = true. From S2 we have both MC,s + true and Mr,[s] + true hence

MC,s + true if and only if Mr, [s] true.

Case 3: F = false. From S3 we have both MC,s F false and Mr, [s] F false hence

MC, s b false if and only if Mr, [s] + false.

Case 4: F = 1G. Then

M C , S + F & M ~ , S F G

& Mr,[s] F G

& Mr,[s]+F.

Case 5: F = G v H. Then

Case 6: F = [a]G, where a E Po and by induction G E 70. From (i) R! is a (rA,a)-
filtration of R,. We prove each direction of the equivalence separately.

For the first suppose that MC, s + [a]G. We know [a]G E FA, so it follows from G2 that

[s]R;[t] implies MC,t + G, which by the induction hypothesis for G implies Mr, [t] b G.

Hence Mr , [s] + [a]G as required.

For the other direction suppose Mr, [s] + [a]G. We need the following chain of implica-

tions:

Hence MC, s b [a]G.

Induction step: Assume (i) and (ii) hold for Pi and 3; respectively for every i 5 n. We

first show that (i) holds for P,+l. There are two cases we need to consider (the remaining

cases are proved as for the base case):

CHAPTER 3. SOUNDNESS AND COMPLETENESS 31

Case 1: a = while E do /?, where E E 3;, and P E U,<, Pi. -

GI: Let A, be a formula such that A, E t if and only if there is an m E N such that

[s](E (~ ;) ~ [t] , where (E I R;) = { ([s] , [t]) : [s]R;[~] and M r , [s] + E) (such an A, exists

by Lemma 3.5.3). We now show that M C + (E A A,) + [/?]A,. Let u be any state such

that M C , u k E A A,, and suppose uRpt.

M C , u (E A A,) and uRBt

M C , u ~ A , a n d M C , u + E a n d [u] ~ ~ [t]
3.5.1 IH
d A, E u and M r , [u] + E and [u]R;[t]

o 3m([s](EI R O) " [u]) a n d M r , [u] C E a n d [u] ~ ~ [t]

o (3m)([d (E I Rdrn[ul) and I $)[tI

* W [s l (E I Rdrn+l[t1)

~4 A , E ~

23 M ~ , ~ + A , .

Hence

Hence M , u + (E A A,) -+ [/?]A, for every state u, SO M + (E A A,) -+ [/?]A,. By Hoare's

iteration rule we get M + A, -+ [while E do /?](A, A Y E) . As [s](E 1 Rp)O[s] we have

A, E s, so by Lemma 3.5.1 M C , s A, and so M C , s k [while E do /?](A, A 1 E) . Hence

Hence G 1 holds.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 32

G2: Suppose [s]Rwhile E do p[t], [while E do PIG E rA and M C , s [while E do PIG.

Then, as [s]Rwhile E ,joP[t], there exist m E N and so,s l , . . .s, E S such that [so] = [s],

[s,] = [t], M r , [sm] + 1E and for every j 5 m, [~ ~] R ~ [s j + ~] and Mr7 [sj] + E. We now

use induction to show that M C , s, [while E do PIG for every i _< m.

Base step: i = 0. This is true by hypothesis.

Induction step: Assume M C , s k /= [while E do PIG, for some k < m. As M r , [s k] + E ,

and E E Fn we have M C , s k /= E. From the axiom schema WHILE^:] we have

M C , s k + [P][while E do PIG. As rA is FLs-closed, [P][while E do PIG E r ~ . We also

know [S~]R ; [S~+~] . AS P E Pn we know R: is a (I',p)-filtration of R$ and G2 holds. This

yields M C , s k + l + [while E do ,BIG.

Hence MC , s, b [while E do PIG. From above Mr , [s,] 1E. As 1 E E Fn, we have

M C , s, + 7 E. The axiom schema WHILE^ yields MC7 s + G, which is what was required

to show G2 holds.

Case 2: a = if E t h e n /3 else y

GI: Let As be a formula such that A, E t iff [SIR: then else [t]. We now show that

M C , s (E - [PIAS) A (-E - [ylAs).

M ~ , S / = E M ~ , s + E

8 sR$t * ([s]RS[t] and M r , s /= E)

IH * s~: t * [SIR: E then p else ykt1

s R $ t * A S E t

3 5 1 a S R $ ~ * M C , t + As

Hence MC + E -+ [@]As. Similarly we can show that MC + 1E + [y]As. Thus

MC + (E -, [PIA,) A (1 E - [y]As). The axiom schema COND yields

M C , s + [if E t h e n p else y]A,. We can now use this to show G1 holds:

CHAPTER 3. SOUNDNESS AND COMPLETENESS 33

Hence G1 holds.

G2: Suppose that [SIR: then else ?[t], and also that [if E then ,f3 else y]G E r~ and

M , s + [if E then p else y]G. We want to show that M, t + G. We need the following

implications:

[SIR: E then @ else ?[tl (M ~ , [s] C and

or (M r , [s] + 7E and [s]R;[t]) (3.9)

[if E then p else y]G E rA * [PIG E rA and [y]G E TA (3.10)
COND M,s [if E thenp else y]G '-4 M C , s + (E -) [P]G)A(lE -) [y]G)

'-4 M ~ , S + E - [P] G

and M C , s t= 1E + [y]G. (3.11)

We now use these implications to show that G2 holds:

[s] R: then else [t] and [if E then P else y]G E FA

and M , s + [if E then /3 else y]G
(3.9)(3.10)(3.11) * ((Mr , [s] + E and [s]R;[t]) or (Mr,[s1 C 1 E and [s]~;[tl))

and [,BIG€ rA and [~] G E r A and M C , s + E -r [PIG

and M C , s 1 1E -+ [y]G
IH
'-4 ((MC, s E and [s] ~ ; [t]) or (M C , s + 1 E and [s] R;[t])) and [PIG E ra

and [y]G E rA and M C , s + E + [PIG and MC,s 1 E -+ [y]G

* (M C , s + E and [s]R;[t] and [PIG E ra and MC,s /= E - [PIG)

or (M',s + -E and [s]R;[t] and [y]G E FA and M C , s TE -+ [y]G)

J ([s]~S[t] and [PIG E ra and M C , s [PIG)

or ([s]R;[t] and [7]G E FA and M C , s + [TIC)

8 M C , t + G.

Hence G2 holds.

Hence (i) holds for Pn+l. The proof that (ii) holds for 3n+1 is the same as for the base case.

CHAPTER 3. SOUNDNESS AND COMPLETENESS

Lemma 3.5.6 Mr = (s r , { R t : a E p r) , vr) is a standard model for SPDL.

Proof: We need to show that M1 and M2'-M5' are satisfied. These all hold by definition of

R:.

Theorem 3.5.7 SPDL is complete with respect to the class of standard models for SPDL.

Proof: For any non-theorem A of SPDL we let rA denote the smallest FLs-closed set

containing A. We showed in Lemma 3.5.5 that the model Mr is a F A filtration of the

canonical model for SPDL. As A is a non-theorem, TA is consistent so there is a maximal

consistent set of formulas containing -A. Suppose TA E s E sC. Then by Lemma 3.5.1

M ~ , S + T A , so M',S 1 A. AS A E FA, then by~emma3 .5 .5 M ~ , [s] A. BY Lemma

3.5.6 M is a standard model for SPDL, hence A is not a valid. Thus the only formulas of

SPDL which are valid are the theorems of SPDL, so SPDL is complete with respect to the

class of standard models for SPDL.

3.6 Soundness and completeness of SPDL+U and SPDL+*

It follows from the proofs of Theorems 3.2.1 and 3.4.1 that SPDL+U and SPDL++ are sound

with respect to the appropriate classes of standard models. Completeness follows from the

proofs of Theorems 3.3.9 and 3.5.7.

Chapter 4

Expressive Power

4.1 Definitions

For this section we use C to denote one of the logics PDL, SPDL, SPDL+U, and SPDL+*,

and when we refer to a "logic" we mean one of these logics.

Given a nonempty set S, a collection {R, : a E II) of binary relations, and a function

V : + P(S) we can use the standard model conditions for C to define a unique set

of relations {R, : cr E PC \ II) such that M = (S, {R, : a E PC), V) is a standard

model for C. Thus we could have defined a model (for any of the logics) to be a structure

M = (S, {R, : a E II), V) , and defined relations {R, : a E PC \ 11) using the standard

model conditions for C. In this section it will be convenient to suppose that to have been

done. Hence M = (S, {R, : a E 11), V) is a standard model for each of the four logics we

are considering. We write M, s kc F to denote that a formula F of the logic C is true at

state s in M.

Definition 4.1.1 Let Fl be a formula of a logic C1 and F2 be a formula of a logic .C2. We

say Fl and F2 are equivalent, written Fl r F2, if for every model M = (S, {R, : a E II), V)

and every s E S we have M,s k c , Fl if and only if M , s kc, F 2 .

Definition 4.1.2 Let a1 be a program of a logic LI and a2 be a program of a logic C2. We

say al and a 2 are equivalent, written a1 r a2, if for every model M = (S, {R , : a E II), V)

we have R,, = R,,.

CHAPTER 4. EXPRESSIVE POWER 36

Def ini t ion 4.1.3 Let L1, C2 be logics. We say that a formula F (or program a) of C1 can

be expressed in C2 if there is a formula F' (or program a') of C2 which is equivalent to F

(or a).

Defini t ion 4.1.4 We say Cl and C2 have equivalent expressive power if every formula of

C1 can be expressed in C2, and every formula of C2 can be expressed in C1. We say that

C1 has greater expressive power than C2 if every formula of C2 can be expressed in C1 but

there is a formula of C1 which cannot be expressed in Cz. In this case C2 has less expressive

power than C1.

4.2 Expressive Power of PDL and SPDL

We now compare the expressive powers of PDL and SPDL. We will show that PDL has

greater expressive power than SPDL. We first show that every formula of SPDL can be

expressed in PDL, then give a formula of PDL which cannot be expressed in SPDL. We

will in fact prove that every formula and also every program of SPDL can be expressed

in PDL. Every program of SPDL is deterministic, hence any non-deterministic program of

PDL, such as a U r or o*, cannot be expressed in SPDL.

L e m m a 4.2.1 Every formula and program of SPDL can be expressed in PDL.

Proof: By induction on the construction of formulas and programs. We only show the cases

for programs, as the cases for formulas are trivial. Let a be a program of SPDL. We consider

the possibilities for a:

Case 1: a E II. Then a is a program of PDL.

Case 2: a = s k i p . Let a' = t r u e ? E PpDL. Then

Rat = {(s, s) : M , s ~ P D L t r u e }

= { (s , s) : s E S }

= ids

= &kip

= R,

CHAPTER 4. EXPRESSIVE POWER

Case 3: a = abort. Let a' = false? E PPDL. Then

R,! = {(s, s) : M , s kPDL false}

= 0

Case 4: a = p; y. By induction there exist programs P' and y' of PDL which

are equivalent t o P and y respectively. Then a' = P'; y' is a program of PDL which is

equivalent to a .

Case 5: a = while E do P. By induction there exist a formula E' and a program

p' of PDL which are equivalent t o E and P respectively. Let a' = (El?; 0')'; -.I El?. We have

CHAPTER 4 . EXPRESSIVE POWER 38

Case 6: a = if E then /3 else 7 . By induction there exist a formula E' and

programs P I and 7' of PDL which are equivalent to E, P and 7 respectively. Let

a' = (El?; p') u (1E1?; 7'). Then

R,I = R (E ~ ? ; P ~) U (- E ~ ? ; ~ ~)

= RE'?;^ U R-,E'?;yl

= { (s , s t) : M , s k P D ~ E' and (s , s t) E R p)

~ { (s , s t) : M , s ~ P D L YE' and (s , s t) E 41)
= { (s , s t) : M , s ~ S P D L E and (s , s t) E Rp)

U{(s , s l) : M , s ~ S P D L 1 E and (s , s l) E 4)
= Rif E then p else 7

= R,

Lemma 4.2.2 There is a formula of PDL that cannot be expressed in SPDL.

Proof: This is proved by Halpern and Reif in [5] . The idea of the proof is as follows:

associated with every model is an edge-labelled directed graph, where the vertex set is the

set of states, the edge set is the set of transitions of atomic programs, and edges are labelled

with the names of the corresponding atomic programs. A tree model is a model for which the

associated graph is a tree such that the edge sets corresponding to distinct atomic programs

are disjoint. It is shown in [5] that every satisfiable formula is true at the root node of a tree

model, and further, that every satisfiable formula of SPDL is true at the root node of a tree

model with a polynomial number of nodes at each level. We now consider the PDL-formula

F = [(a U r)*] ((a) t rue A (r) t rue) . This formula is satisfiable, and an example of a model

for F is an infinite binary tree that can be drawn so that a is the set of transitions from

each node to its left hand child, and T is the set of transitions from each node to its right

hand child. However it can be shown using induction that every tree model for F has at

least 2n nodes at level n. Hence F cannot be expressed in SPDL. 0

C H A P T E R 4. EXPRESSIVE P O W E R

Theorem 4.2.3 PDL has greater expressive power than SPDL.

Proof: This follows from Lemmas 4.2.1 and 4.2.2.

4.3 Extensions of SPDL

We now consider the extensions of SPDL by "U" and "*", the logics SPDL+U and SPDL+*.

We are interested in whether or not the expressive powers of SPDL+U and SPDL+* are

equivalent to the expressive power of PDL, or the expressive power of SPDL. We will show

that SPDL+* and PDL have equivalent expressive power, and that PDL has greater ex-

pressive power than SPDL+U, which has greater expressive power than SPDL.

We first show that each of SPDL+U and SPDL+* has greater expressive power than

SPDL. As every formula of SPDL is also a formula of SPDL+U and SPDL+*, it follows that

every formula of SPDL can be expressed in both SPDL+U and SPDL+*. We now show

that there are formulas of SPDL+U and SPDL+* which cannot be expressed in SPDL.

Lemma 4.3.1 There are formulas G of SPDL+U and H of SPDL+* which cannot be

expressed in SPDL.

Proof: We use the result of Lemma 4.2.2 that the formula [(a U r)*]((a)true A (r)true) of

PDL cannot be expressed in SPDL. We now consider the formulas

G = [while ((a)true A (r)true) do (a U r)]false and H = [(a*; r*)*]((a)true A (r)true).

We show that G and H are each equivalent to F = [(a U r)*]((a)true A (r)true), and

hence cannot be expressed in SPDL. F is satisfied if ((a)true A (r)true) is true after the

program (a U T) has been repeated any finite number of times. G is satisfied if we can never

reach a state in which ((a)true A (r)true) is false by repeating the program (a U 7). Hence

F and G are equivalent. To show that F and H are equivalent notice that the programs

(a U r)* and (a*; re)* are equivalent.

Thus both SPDL+U and SPDL+* have greater expressive power than SPDL. We are

now interested in whether either of SPDL+U and SPDL+* have expressive power equivalent

CHAPTER 4 . EXPRESSIVE POWER 40

to PDL. It follows from Lemma 4.2.1 that every formula and program of SPDL+u and

SPDL+* can be expressed in PDL. To show that every formula of PDL can be expressed in

SPDL+* we need. the following:

Definition 4.3.2 A program a of PDL is in U-normal form if a = P1 U . . .UP,, where each

pj is constructed from atomic programs and tests using only the operators ";" and %".

Lemma 4.3.3 Every program a of PDL is equivalent to a pmgmm au in U-normal form.

Proof: By induction on the construction of programs. Let a be a program of PDL. We

consider the possible cases for a:

Case 1: a E n.

Case 2: a = F? for some F E FPDL.

Case 3: a = a'; a2. By induction there exist a l = p i u . . . u pii as above, for

i = 1,2. Then

Case 4: a = a' u a2.

Case 5: a = 6'. By induction there exists bu = P1 U . . . U Pn as above. We use

the result that (a U P)* (a*; Pa)*.

Q = 6*

G 6;

= (PI U . . . U Pn)*

(P;; (P2 U - - - U A)*)*
= (P;; (P;; (P3 u - - . u Pn)*)*)*

= (p;; (P;; (. . .p;)* . . .)*)*.

CHAPTER 4 . EXPRESSIVE POWER

Hence au = (P;; (&; (. . .P:)* . . .)*)*.

We can now show that every formula of PDL can be expressed in SPDL+*:

L e m m a 4.3.4 Every formula of PDL can be expcpressed in SPDL++.

Proof: We use induction on the construction of formulas and programs. The only difficult

case is for formulas of the form F = [a]G. By induction we can assume that there is a

formula GI of SPDL + * which is equivalent to G. By Lemma 4.3.3 we know that every

program of PDL can be expressed in U-normal form. Hence we can assume a = PI u . . . u P,
where each Pj, 1 5 j I n, is constructed from atomic programs and tests using only the

operators ; and *. By induction we can assume that for every test E ? occurring in Pj there

is a formula El of SPDL + t which is equivalent to E. Let Pi be obtained from Pj by

replacing each test E? by (if El t h e n skip else abor t) . Then each Pi is a program of

SPDL + *, and cr r Pi U . . . U p;. Hence

Thus F' = [&]GI A . . . A [@;]GI is a formula of SPDL+* which is equivalent to F.

We now have the following:

Theo rem 4.3.5 SPDLt* and PDL have equivalent expressive power.

We have shown that every formula and program of SPDL+* can be expressed in PDL,

and every formula of PDL can be expressed in SPDL+*. However not every program of

PDL can be expressed in SPDL+*. Consider the PDL-program a U r , and the model

~U = (S, {R, : a E lI) ,V), where S = {s, t ,u) , R, = {(s,t)), R, = { (s , ~)) , R, = 0

otherwise, and V(p) = S for every p E iP (see Figure 4.1).

CHAPTER 4 . EXPRESSIVE POWER

Figure 4.1: The model MU

From state s the program a U T has transitions to both t and u, but as there are no

transitions from either t or u except to themselves any program of SPDL+* has a transi-

tion from s to at most one of t and u. Thus aur is not equivalent to any program of SPDL+*.

We know that every formula and program of SPDL+U can be expressed in PDL. We

now show that there is a formula of PDL that cannot be expressed in SPDL+U, and hence

that PDL has greater expressive power than SPDL+U. To do this we construct a class of

infinite models {Md : d E N) such that for each formula F of SPDL+U either V(F) or
-
V(7F) is finite in some model in the class, and show that there is a formula G of PDL with

both V(G) and V(-G) infinite in every model in the class.

Figure 4.2: The segment model S d

For each d E N we define a segment model Sd, where the transitions for the atomic

programs a, r E II are as shown in Figure 4.2, and for every other atomic program .rr E II

we have R, = 0. Also V (p) = {so,. . . , s d + l) for every p E a.
Md is constructed by concatenating infinitely many copies of Sd, identifying endpoints

of adjacent copies, and adjoining an additional state 9, as shown in Figure 4.3. Let 9 E V(p)

for every p E a.

CHAPTER 4. EXPRESSIVE POWER

Figure 4.3: The model M d

1 1 Hence M d = (S, { R , : n E n) , V) where S = {B, s:, sy, . . . , s:+, = so, s,, . . .), R , and

R , are as shown, R , = 0 for n # a, r and V(p) = S for every p E 9.

Lemma 4.3.6 There is a formula G of PDL for which both V(G) and ~ (T G) are infinite

in M d for every d E N .

Proof: Consider the PDL-formula ((a*; T; a*; r)*)[a U rlfalse. We show this formula is

true in states sh when t is odd and false in states sk when t is even. We observe that

M d , s + [a u ~Ifalse if and only if s = 3, hence Md, sb i= ((a*; r; a*; r)*)[a u rlfalse if and

only if s~R(,I;,;,.;T)*S. From any state sf, with h 5 d, the program a*; r is a transition to

either sf;' or s i t , = 3;". From si-' the program a*; r is a transition to either si-2 or

sb, and from s;+l the program a*; r is a transition to either s i or s;'~. Hence from state

sk with h 5 d the program a*; T; a*; r is a transition to one of s ; -~ , sk, s i , or s;'~. Notice

that sR(,. ,,,, I,,). S if and only if s = s i for some h < d. Hence shR(,. ;,;, S if and only if

t 1 mod 2 i.e. if and only if t is odd. Hence the formula is true in infinitely many states

and false in infinitely many states.

Hence we have a formula of PDL which is true a t inifitely many states and false at

infinitely many states. To show that no formula of SPDL+U has this property we need the

following:

Definition 4.3.7 An SPDL+u program a is in normal form if a = P1 U ... U P, where

P3 = y j l ; . .. ; yjm, for each j , 1 5 j 5 n, and for each yjk, 1 5 k < mj, one of the following

holds:

i) Yjk E n
ii) yjk is a test, i.e. of the form if E then skip else abort, abbreviated E?
...
111) yjk = while E j k do bjk .

CHAPTER 4. EXPRESSIVE POWER 44

L e m m a 4.3.8 Every progmm a of SPDL+U is equivalent to a progmm a~ which is in

normal form.

Proof: Use induction on programs.

Case 1: a E II.

Case 2: a = skip. Then = t rue?

Case 3: a = a b o r t . Then a~ = false?

Case 4: a = a'; a2. Suppose ai has normal form ak = PI U . . . u P i , . Then

Case 5: a = while E d o 6 .

Case 6: a = i f E t h e n 6' else b2. Suppose 6i has normal form 6; = Pi U . . .Up:,. Then

Hence a~ = (E ? ; p i) U (E ? ; p i) U . . . U (E ? ; PA,) U (T E ? ; p i) U . . . U (T E ? ; ~ 2 ,) .

CHAPTER 4. EXPRESSIVE POWER

Case 7: a = a' U a2.

In each M d let RE,a(s) denote the set { t E Sd : sRwhile E do at) . Intuitively this is the

set of states reached from state s in M d by the program "while E do a". For each /3 E P

let R p (s) = { t : sRpt) .

We say a formula F is finite (cofinite) in M d if V(F) is finite (cofinite) in M d .

In the next lemma we prove that for any formula F of SPDL + U we can find d such

that F is either finite or cofinite in M d . We in fact show that F is either finite or cofinite

in M d for all sufficiently large d. To prove this we also show that for every program of the

form "while E do a" the sets R E , a (~) satisfy certain conditions for all sufficiently large d.

The conditions Wilm uses in [lo] are very similar. As well as showing that every formula

F is either finite or cofinite in M d whenever d is sufficiently large, Wilm shows there exists

t E N such that F is either true in every state above sh in M d or false in every state

above sh in M d whenever d is sufficiently large. For the assertion about while-programs

we will show that for all but finitely many states the sets R E , ~ (S) satisfy certain conditions

whenever d is sufficiently large. Wilm shows that there exists t E N such that the conditions

are satisfied for every state above sh in M d whenever d is sufficiently large. We now state

and prove the lemma.

Lemma 4.3.9 (i) For every formula F of SPDL+U there exists dF E N such that F is

either finite or cofinite in M d for all d 2 dF.

(ii) For every program of the form "while E do a" of SPDL+U there exists dE,, E N

such that for all d 2 dE,a one of the following holds for M d :

(P)(i) : { s : R E , ~ (S) # { s)) is finite.

(P)(i i) : there is a finite set SE,, of states of M d such that for all but finitely many

S E S , R E , ~ (s) = S E , ~ .

Proof: We use induction on the construction of formulas and programs to prove (i) and (ii)

simultaneously. We first consider the statement about formulas. There are four possible

cases:

CHAPTER 4. EXPRESSIVE POWER 46

Case 1: F = p for some p E @. By the definition of V in M d we have V (F) = S,

hence F is cofinite in M d for d > d F = 0.

Case 2: F = 7G. By induction there exist dG E N such that G is either finite

or cofinite in M d for all d 2 dG. Set d F = dG, and let d 2 d F . F is finite in M d if G is

cofinite, and cofinite if G is finite.

Case 3: F = G V H. Set d F = m a x { d G , d H) and let d 2 d F . If both G and H

are finite in M d then so is F , otherwise at least one of G and H is cofinite in M d , and

hence so is F .

Case 4: F = [a]G. We show that for every formula E of SPDL+U if there exists

d E such that E is either finite or cofinite in M d for every d > d E , then for every subprogram

a' of a there also exists d[atlE such that [al]E is either finite or cofinite in M d for every

d > d [a ~ l E . The proof is by induction on the construction of programs.

Case 4.1: a' E II, so a' is an atomic program. If a' # a, T then Rat = 0 and

)= [a1]E for every formula E , and [a f]E is cofinite in M d for d > 0. For a' = 0, T note that

for any state s both a and T are transitions to a state a t most d + 1 states away. Hence if

E is finite (cofinite) in M d then so are [a]E and [TIE. Hence [al]E is finite or cofinite in

M d for d > dlaqE = dE.

Case 4.2: a' = skip. Suppose E is finite or cofinite in M d for every d 2 d E .

We know 'F [skip]E - E for any formula E from the axiom schema DUM. Set d[,tlE = dE

and let d 2 dfatlE. Then [a'] E is finite (cofinite) in M d if E is.

Case 4.3 a' = abort. Since RabOrt = 8 we have + [abort]E for any formula E ,

hence [al]E is cofinite in M d for d 2 d p I E = 0.

Case 4.4 a' = P; y. We know [P; y]E tr [P][y]E for any formula E by the

axiom schema COMP. Suppose E is finite or cofinite in M d for every d 2 d E . From the

induction hypothesis we know for any formula E' if there exists dE, such that E' is either

finite or cofinite in Md for d 2 dEt then there exist d[P]E~,d[71E, E N such that [PIE' is

either finite or cofinite in M d for d > d [P I E ~ , and [TIE' is either finite or cofinite in M d

for d > dirIEt. For E' = E we get d [?] ~ E N such that [y]E is either finite or cofinite

CHAPTER 4 . EXPRESSIVE POWER 4 7

in Md for d L d[rlE. Then for E' = [y]E we get d~pl[rlE E N such that [P][y]E is either

finite or cofinite in Md for d L d[pl[rlE. Hence [P; y]E is either finite or cofinite in Md for

2 d[p ; r l~ = d[~l [r l~ .

Case 4.5 a' = while H do P. By induction there exist dH,p E N such that for

all d 2 dH,p either (P)(i) or (P)(ii) holds for Md. Suppose E is finite or cofinite in Md for

d > dE. Set =max{dH,p, d ~) . Then for d > d[,tlE one of the following occurs:

Case 4.5.1: (P)(i) holds. Then {s : RH,p(s) # Rskip(s)) is finite, and there is

t ~ , p E N such that R ~ , p (s f ,) = Rskip(sf,) = {sf,) for every t t ~ , p and h 5 d + 1. Note

that {sf : t < tH,p) is finite. If E is finite (cofinite) in Md then

{sf, : t > t ~ , p , h 5 d + 1, M d , s; E) is finite (cofinite). It follows that

{sf, : t > t ~ , p , h 5 d + l , M d , s; [while H d o PIE) is finite (cofinite) and so [af]E is

finite (cofinite) in Md.

Case 4.5.2: (P)(ii) holds. Then there is a finite set SH,p of states of Md such

that for all but finitely many s E S, RH,p(s) = SH,p. Hence there is t ~ , p such that

R H , ~ (S ~) = SH,p for every t > t ~ , p and h 5 d + 1. Again note that {s,h : t < t ~ , ~) is

finite. If M , s + E for every s E S(H, P) then M , sk + [while E d o PIE for every state

sk such that t 2 t ~ , p and h 5 d + 1, and [a1]E is cofinite in Md. Otherwise there is a

state s E S (H ,P) such that M,s E , and in this case M , s k + while E d o PIE for

every state sk such that t > t ~ , p and h 5 d + 1, and [a1]E is finite in Md.

Case 4.6: a' = if H t h e n P else y. From the axiom schema COND we know

[if H t h e n p else y] E t, ((H -. [PIE) A (i H + [7] E)) for any formula E. Suppose E

is finite in Md for sufficiently large d. By the induction hypothesis for Case 4, [PIE and

[y]E are also each either finite or cofinite in Md for sufficiently large d. Also by the main

induction hypothesis H (and hence 1 H) is also either finite or cofinite in Md for sufficiently

large d. Set d[,tIE = ~ n ~ { d ~] ~ , d [~] ~ , d ~) . Then for d 2 d[,tIE, [if H t h e n p else y]E is

either finite or cofinite in Md.

Case 4.7: a' = P U y. We know [P U y]E - ([PIE A [y]E) for every formula E

by the axiom schema ALT. Suppose E is finite or cofinite in Md for sufficiently large d.

By the induction hypothesis [PIE and [y] E are also each either finite or cofinite in Md for

CHAPTER 4 . EXPRESSIVE POWER

sufficiently large d, hence so is ([PIE A [y]E) = [al]E.

We now prove the statement about while-programs. Given a program of the form

while E do a, we consider the normal form of the program a , a N = U . . . U Pn where

Pj = yjl; . . . ; yjml for each j (1 5 j 5 n), and each yj; is either an atomic program, a test,

or a program of the form "while F do 6".

For each j (1 < j 5 n) we define the following:

Tj = {F: either F ? = yj; or T F ? =y j ; for some i , l 5 i 5 mj)

dTl = max{dF : F E Tj).

We can now define

T = UjlnTj

dT = max{dTl : 1 < j < n).

If none of the yj;'s are tests then set dT = 0.

If yj; is the program while F do 6 then by induction there exists dFt6 E N such that

for all d 2 dF,6 either (P)(i) or (P)(ii) holds in M d . If some yj; is a while-program then we

can define the following

Wj = {(while F do 6) : yj; = (while F do 6) for some i , 1 5 i 5 mj)

dw, = max{dF,6 : (while F do 6) E Wj).

We can now define

Otherwise if no yj; is a while-program then set dw = 0.

Each Pj is a sequence of atomic programs, tests and while-programs. As R, = 0 for

every n $ {a, r) , each Pj with non-aborting executions is a sequence of occurrences of a , r ,

tests and while-programs. Let f j be the greatest number of times a occurs consecutively

CHAPTER 4. EXPRESSIVE POWER 49

in pj, interspersed with tests and while-programs but not with any occurrences of r. Let

fa = maxi f j : 1 < j < n). By the induction hypothesis for E there exists dE E N such

that E is either finite or cofinite in Md for every d 2 dE. Set

Let d 2 dE,cr be fixed. Then each formula F E T is either finite or cofinite in M d ,

E is also either finite or cofinite in Md, and either P(i) or P(ii) holds for Md for every

while-program in W. Let i be such that E , and every F E.T, are either true in every state

s i with t > t, or false in every state si with t > t, and for every while-program in W either

RF,6(s;) = (8;) for every state s: with t 2 t, or RF,6(si) = SF,6 for every state s i with

t > i. Set t ~ , ~ = i+ 1. Then for every d > dE,,, each test occuring in one of the Pj's is

either equivalent to skip in every state s i with t 2 t ~ , , - 1, and h 5 d + 1, or equivalent

to abort in every state si with t > t ~ , ~ - 1, and h 5 d + 1. Every while-program is either

equivalent to skip in every state s i with t > t ~ , , - 1, and h < d + 1, or a transition to

a state below SF-" in every state s i with t > t ~ , , - 1, and h < d + 1. Hence for each
t Pj which has non-aborting executions in. state SF," or some state above soEsa there is a

sequence of occurences of a , r , skip and while-programs for which (P)(ii) holds, such that
t

any execution of pj in or above state s/," is equivalent to an execution of the concatenation
t of this sequence until a state below s/*" is reached.

We need to show that (P)(i) or (P)(ii) holds for while E do a in Md. We consider two

cases:

Case 1: E is finite in Md. Then M d , s i + 1 E for every t > tE,, and h 5 d + 1,

so from the definition of Rwhile E do , we have RE,,(si) = {si) for every t > tE,, and

h 5 d + 1, and (P)(i) holds for Md.

Case 2: E is cofinite in Md. For every t > t ~ , , - 1 and h 5 d + 1 we have

M, s i + E , and each pj is equivalent at s i to a sequence of occurences of a , .r and programs

of the form "while F do 6" as described above. Suppose for some fixed t' 2 t ~ , , and

h' 5 d + 1 that s:, ~~~i~~ E do where s' is a state in Md. We show that S; Rwhile E do ,sf

for every t > t ~ , ~ and h < d + 1.

CHAPTER 4 . EXPRESSIVE POWER

Figure 4.4: The buffer zone

We consider the section of Md between states s2;-' and sFsa- ' , shown in Figure 4.4.

We call this the bufler zone. As ~ c ~ w h i l e E do ,sf there is a sequence pi1,. . . ,Pjk such

that S ~ R ~ ~ , ; . ; ~ ~ , ~ ' , and we know M , s l C -E , so s' must be below state SF,"-'. For each

program "while F do 6" which occurs in one of the pj's either condition (P)(i) or (P)(ii)

holds for Md for every state s i with t 2 t ~ , a - 1 and h < d + 1. We consider 2 cases:

Case 2.1: no program of the form "while F do 6" for which (P)(ii) holds occurs
t in any of pi1,. . . , pik, or the system is at a state below s/sa-' when the first such program

occurs.

By the choice of dE,, and t ~ , , , for each state in the buffer zone the execution of each pj is
equivalent (until a state below sFsa- ' is reached) to a sequence of occurrences of a and r

t ~ , a - l as described above, and Md, sh E for every h 5 d + 1. Also s;, is above the buffer

zone and sf is below it, so the program pj l ; . . . ; pjk has transitions through this section.

Further, it follows from the structure of Md that every state between s t l and sf (which

includes every state in the buffer zone) must be visited.

We make the following observations:

Observation 1: For every t 2 t ~ , , - 1 no program pj is a transition from a state

above s i to a state below 8;.

Justification: To reach a state below sf, from a state above si we must have a

program with a sequence of d consecutive occurrences of a. As we chose dE,, 2 2 f, + 1

none of the programs 1 5 j 5 n, satisfy this condition.

Observation 2: there is a program Pk which is equivalent to a sequence of oc-

currences of a when executed in any state si with t > t ~ , , - 1 and h 5 d + 1 (provided

CHAPTER 4 . EXPRESSIVE POWER

no state below SF+-' is reached).

Justification: Suppose not. Every occurence of T at a state SF"-' for 0 < h < d

forces a transition back to s Z ; - ' , and as we chose dE, , > 2 f, + 1 if every P j contains an
t t E , a - 1 occurence of T then we can never reach state sf,'-' (or below) from a state above sd

This is a contradiction, as the program P j 1 ; . . . ; P j k reaches a state below - 1 from

a state above s?,"-l.

Observation 3: There is a program PI with an odd number of occurrences of r.

Justification: Consider a program Pi in the sequence p j l ; . . . ; P j k , such that the
t ~ , o - 1 t~ 0 - 1 system is in or above state s ~ + ~ before executing PI and in a state below s ~ ; ~ after

executing Pi . The first occurence of r in this program must occur at state s 2 ; - ' , as if

it occured above s 2 y - l then there would be a transition to s 2 ; and, by Observation 1 ,
tE,a-l couldn't reach a state below = sd+l . SO the first occurence of T is a transition

tE,a-l tE,a-l from sd+l to sd . Now suppose there is a second occurence of T . This must cause
t E 0 - 1 a transition back to sd+l (by the choice of dE,a 2 2 f, + 1) and the system will stay in

this state until a third occurrence of r , which must happen as PI ends in a state below
t E , a - 1

Sd+l . Clearly PI must contain an odd number of occurences of T . Set PI = P i .

Observation 4: There must be a state s?;;"-l, 0 < h" < d such that
t E a - 1

Sh t ; Rwhile E do as'.

Justification: The final state reached by the program PI is below s 2 ; - ' , and

must be above SF@-' by Observation 1 . Let s$'-' denote this state. Clearly
S t ~ , a - 1

~ I I Rwhile E do as1-

Observation 5: For every t 2 t ~ , , and h < d + 1 there is a program a t , h which is
tE,a-l a concatenation of a finite sequence of programs P j (1 < j < n) such that sthRat,h~hrl .

Justification: Set n = t - t ~ , ~ + 1 . Define a t , h = ((~ k) ~ ;

Intuitively the program a t , h is the following: repeat Pk enough (at most d) times to reach

state sb, then use pl to reach a state sk-'. Repeat this procedure to reach sk-', then sk-3

and so on until state SF," is reached. Repeating Pk another d times we reach SF," , then
t ~ , " - 1 p1 will reach shl, .

Hence for every t 2 t E p and h 5 d + 1 there is program a t , h such that
tE,a-l

@at,hsh Rwhile E do as1 and as a t , h is a the concatenation of a finite sequence of

CHAPTER 4 . EXPRESSIVE POWER 52

programs pj (1 5 j I n) it follows that sftRWhile E do ,st, as required.

Thus there is a set of states S (E , a) such that for every t 2 t ~ , , and h _< d f 1,

RE,,(sL) = S (E , a) in M d . As each state s in S (E , a) is below s?*"-', and there are only

finitely many states below s?,'-' , then S (E , a) must be finite and (P)(ii) holds for Md.

Case 2.2: there is a while-program in pjl ; . . . ; pjk for which (P)(ii) holds and

which is first reached at a state above . Let "while F do 6" be the first such program

to occur, and suppose it occurs in Pi, when the system is in state sc:, for some t" > t ~ , , - 1

and h" < d + 1. Let k be such that y;k is the first occurrence of "while F do 6" in Pi. Set

7' = 7;i; . . . ; y;,k-l and y" = yj,k+l;. . . ; yjm,, so = y'; yjk; 7". By induction there is a

finite set of states S(F , 6) such that Sk(F, 6) = S(F, 6) for every t > t ~ , , - 1 and h 5 d + 1.

In particular S~/:(F, 6) = S(F, 6). As ~ i r ~ ~ ~ ~ ~ ~ E do ,sl we must have sRwhile E do ,sl for

some s E S(F, 6), and there is a state s" such that sR-y~~l lRwhile E do ,st.

We now consider a general state sth in M d , where t 2 t ~ , , and h _< d + 1. At this state

y' is equivalent to a sequence of occurrences of a and r , and can only reach states above

s?,"-' (as s: is above SF*"-' and, by Observation 1 proved for the base case, none of the
t 1

Pj's can be a transition from a state above s t s a - to a state below s ~ ~ " ") . So there is

tE*"-l, which means s$:(F, 6) = S(F, 6). a state s$, such that sf,Rrts:b and sci is above so

In particular ~ c : t ~ ~ ~ ~ ~ e F do 6s. where s is as above, so s & ~ s " R ~ ~ ~ ~ ~ E do ,st. Hence

~ i ~ y t ~ c ; t while F do 6~&"~1tRwhile E do ,s', SO S; Rpi~ItRwhile E do ,st, which yields

siRwhile E do ,sl which is what was required. Hence there is a set of states S (E , a) such

that S ~ (E , a) = S (E , a) for every t 1 t ~ , , and h I d + 1. Again we observe that there are

only finitely many states below sFv"-' so S (E , a) must be finite, and (P)(ii) holds.

Lemma 4.3.10 There is a formula of PDL which cannot be expressed in SPDL+U.

Proof: It follows from Lemma 4.3.9 that for every formula F of SPDLf u there is a d such

that either V(F) or V (7 ~) is finite in Md. We showed in Lemma 4.3.6 that there is a

CHAPTER 4 . EXPRESSIVE POWER 53

formula G of PDL such that both V(G) and V(TG) are infinite in M d for every d E N,

hence G is a formula of PDL which cannot be expressed in SPDL+U.

We have now proved the following theorem:

Theorem 4.3.11 PDL has greater expressive power than SPDL+U

Hence adding the non-deterministic operator U to SPDL does not give expressive power

equivalent to that of PDL. In order to get expressive power equivalent to PDL we must add

the highly non-deterministic * operator.

Bibliography

[I] FISCHER, M.J. A N D LADNER, R.E. Propositional modal logic of programs, Proceed-

ings of t h e 9 t h Annual A C M Symposium o n Theory of Compu t ing (1977),

pp. 286-294.

[2] GOLDBLATT, ROBERT, Axiomatising t h e Logic of C o m p u t e r Programming,

Springer-Verlag, Berlin Heidelberg, 1982.

[3] GOLDBLATT, ROBERT, The semantics of Hoare's iteration rule, S tud ia Logica 41

(1982), pp. 141-158.

141 GOLDBLATT, ROBERT, Logics of T i m e a n d Computa t ion , Centre for the Study of

Language and Information, Stanford, 1992.

[5] HALPERN, J.Y. A N D REIF, J.H., The propositional dynamic logic of deterministic,

well-structured programs, Proceedings of t h e 22nd Annual I E E E Sympos ium -
o n Foundations of C o m p u t e r Science (1981), pp. 322-334.

[6] HAREL, D. Dynamic logic, Handbook of Philosophical Logic Vol. 2, Gabbay, D.

and Guenthner, I?. eds, Reidel, Dordrecht, 1984, pp. 497-604.

[7] HUGHES, G.E. A N D CRESSWELL, M.J., A n Introduct ion to Modal Logic, Rout-

ledge, London, 1968.

[8] HUGHES, G.E. A N D CRESSWELL, M.J., A Companion to Moda l Logic, Methuen,

London, 1984.

BIBLIOGRAPHY 55

[9] PRATT, V . R. , Semantical considemtions on Floyd-Hoare logic, Proceedings of

17th Annual IEEE Symposium in Foundations of Computer Science (1976),

pp. 109-121..

[l o] W I L M , A N D R E A S , Determinism and non-determinism in PDL, Theoretical Com-

puter Science 87 (1991), pp. 189-202.

