COMPLETENESS AND EXPRESSIVE POWER IN
PROPOSITIONAL DYNAMIC LOGIC

by

Fiona Humphris

B.Sc.(Hons) Victoria University of Wellington, 1991

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the Department of Mathematics and Statistics
of

Simon Fraser University

(© Fiona Humphris 1995
SIMON FRASER UNIVERSITY
July 1995

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Fiona Humphris
Degree: M.Sc.
Title of thesis: Completeness and Expressive Power in Propositional

Dynamic Logic

Examining Committee: Dr. G. A. C. Graham
Chair

Dr. S. K. Thomason, Senior Supervisor

Dr. A. H. Lachlan

Dr. N. R. Reilly

—_— = ot

Dr. A. Gupta, External Examiner

Simon Fraser University

Date Approved: July 18, 1995

ii

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser Universitty the right to lend my
thesis, project or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a
request from the library of any other university, or other
educational institution, on its own behalf or for one of its users. I
further agree that permission for multiple copying of this work for
scholarly purposes may be granted by me or the Dean of Graduate
Studies. It is understood that copying or publication of this work
for financial gain shall not be allowed without my written
permission.

Title of Thesis/Project/Extended Essay

Completeness and Expressive Power

PFoncsitional Dumamc ool
v v

Author: .
(signature)

Froma Hu nwphriS
(name)

2 May 1995

(date) v

Abstract

Dynamic logics are a family of logics used to reason about computer programs. The language
used is multi-modal, with modalities indexed by a set of programs and satisfying laws
corresponding to the structure of the programs. We consider Propositional Dynamic Logic
(PDL) which allows for two sorts of non-determinism in its programs, Strict Propositional
Dynamic Logic (SPDL) which has no non-determinism, and two extensions of SPDL which
each allow one form of non-determinism. We present soundness and completeness results for
each of the logics, and compare their expressive powers. Wilm showed that the extension of
SPDL by U (SPDL+U) has less expressive power than PDL by showing there are conditions
satisfied by every formula and program of SPDL+U which are not satisfied by some formulas
of PDL. We give an exposition of this result using simpler conditions than those used
by Wilm. We also give results showing that the extension of SPDL by * (SPDL+x) has
expressive power equivalent to that of PDL, and SPDL has less expressive power than each

of the other logics.

iii

Acknowledgements

I would like to thank all the people who helped make writing this thesis possible, especially

Steve Thomason and Alistair Lachlan.

iv

Contents

Abstract

Acknowledgements

1 Introduction

2 Definitions
2.1 Preliminaries e e e e e e e e e
2.2 Syntaxof PDLand SPDL
2.3 Semantics for PDLand SPDL
2.4 Extensionsof SPDL

3 Soundness and Completeness
3.1 Preliminaries e e e e e
3.2 Soundmess of PDL e
3.3 Completeness of PDL it
3.4 Soundness of SPDL e
3.5 Completenessof SPDL
3.6 Soundness and Completeness of SPDL+U and SPDL+*

4 Expressive Power
4.1 Definitions e e e e e e e e e e e
4.2 Expressive Powerof PDLand SPDL
4.3 Extensions of SPDL e

Bibliography

iii

iv

11
11
12
14
24
26
34

35
35
36
39

55

Chapter 1

Introduction

Dynamic logics are a family of logics used to reason about computer programs. The concept
was first introduced by Pratt [9] in 1976, who described first order dynamic logic. Here we
are concerned with Propositional Dynamic Logic (PDL), which was introduced by Fisher
and Ladner [1] in 1977, and a variant of PDL called Strict Propositional Dynamic Logic
(SPDL). Both PDL and SPDL consist of a set of formulas and a set of programs. These
are specified by giving a set of atomic formulas (the propositional variables), a set of atomic
programs, and rules for constructing well formed formulas and programs. We have two
notions of halting for programs. A program is said to terminate if it ends normally and is:
said to abort if it ends abnormally, for example if it is interrupted. We do not assume that
every execution of a program will end.

To form complex programs in PDL the operations used are concatenation, denoted by
“;”, disjunction, meaning “do & or do 3”, this is denoted by “U” and is non-deterministic,

an operator “«”

, meaning repeat a program some finite number of times, which is also non-
deterministic, and a test operator denoted “?”, where F'? means continue if formula F is
true and abort otherwise. Formulas are constructed using negation and disjunction, and
corresponding to each program a there is a modal operator [a], where [a]F is read “the
formula F holds after every terminating execution of the program «”. We define the dual
operator (a) by (a) =4e —[a]~. The formula (a)F is read “there is some execution of a
after which formula F is true”. We are able to express assertions about programs within

the language. We write (a)true for “a terminates”, and use formulas such as F' — [a]G to

CHAPTER 1. INTRODUCTION : 2

talk about program correctness, and [a]F < [3]F to talk about program equivalence.

In reality, no computer language in use today has any non-deterministic operators. Hence
we are interested in the logic SPDL, which has no non-determinism. In SPDL, complex
programs are constructed using the operations concatenation, “while do” and “if then
else”, and we have as constants “skip” meaning “do nothing”, and “abort” meaning
“abort”. The programs of SPDL have a similar structure to those one can write in a
programming language such as C. Formulas of SPDL are constucted as for PDL. We also
consider two extensions of SPDL. The first is the extension of SPDL by the operator U
(SPDL+U), and the second is the extension of SPDL by * (SPDL+#).

We define a class of standard models for each logic, and show that the logics are both
sound and complete with respect to the appropriate class of models. These results are from
Goldblatt [2], [3] and [4].

Equivalence of formulas and programs of the different logics can be defined, and this
enables us to compare the expressive powers of the four logics.

It was shown by Halpern and Reif in [5] that PDL has greater expressive power than
SPDL. This motivates us to consider the extensions of SPDL by each of the non-detefministic

operators “U” and “*”

. We show that both of these extensions have greater expresive power
than SPDL. We are now interested in whether the expressive power of either of the extensions
is as great as the expressive power of PDL. We show that the logic SPDL+# has expressive
power equivalent to PDL, and the logic SPDL+U has less expressive power than PDL.
We give an exposition of a proof by Wilm [10] that the extension of SPDL by U has less
expressive power than PDL. The main part of the result is to show there are conditions
satisfied by every formula and program of SPDL+U which are not satisfied by some formula
of PDL. Wilm uses a uniform finiteness condition on an infinite class of models, we use
a simpler finiteness condition for the same class of models. We also give details of the
induction proof which were omitted by Wilm.

Hence adding the U form of non-determinism to SPDL gives less expressive power than

adding the * form of non-determinism.

Chapter 2

Definitions

2.1 Preliminaries

Definition 2.1.1 For any set S the identity function on S, denoted ids, is defined as

follows:

ids = {(s,8):s € S}.

Definition 2.1.2 Let R, and Rg be binary relations over the set §. We define the binary
relation R, o Rg by

Roo Rg={(s,t): (Ju € S)(sR,u and uRpt)}.

Definition 2.1.3 Let R be a binary relation over a set S. For every n > 0 define a binary

relation R™ over S by

R° = idg
Rt = R"O0R.

The ancestral relation R* of R is the binary relation over S defined by
R* = {(s,t) : (In)(3s0, 81, - ..8n)(8 = S0,t = S, and (s;-1,5:;) € R for 1 < i< n)}

Clearly sR*t if and only if sR™t for some n > 0.

CHAPTER 2. DEFINITIONS 4

2.2 Syntax of PDL and SPDL

The alphabet for the language of PDL consists of the following symbols:

(i) a set of propositional variables & = {p,q,r...}
(ii) a set of atomic programs II = {r,0,7...}
(iii) the symbols -, V, true, false,;,U, *,7,[,],(, and).

Let WppL denote the set of words over this alphabet. For A,B,U,V € §(WppL) we
define (A,B) C (U,V)if AC U and B C V. Let (FppL, PppL) denote the C-least pair
(F,P)in ®(WppL) x §(WppL) such that the following are satisfied:

Fl: #C F

F2: truee 7

F3: falsee F

F4: If F € F then ~F € F

F5: If F,G€ F then (FVG) € F

F6: If F € F and o € P then [a]F € F.

PI: ICP

P2: If a,8 € P, then (a;3) € P
P3: If a,f € P, then (aUB) € P
P4: fa € P, then a®* € P

P5: If F € F, then F? € P.

Frpr is called the set of formulas of PDL and Pppr, the set of programs of PDL.

The alphabet for the language of SPDL consists of the following symbols:

CHAPTER 2. DEFINITIONS 5

(i) a set of propositional variables & = {p,q,r...}
(ii) a set of atomic programs Il = {r,0,7...}
(iii) the symbols -, V, true, false, ; ,skip, abort, while, do, if, then, else, [,], (, and).

Let WsppL denote the set of words over this alphabet. Let (FsppL, PsppL) denote the
C-least pair (F,P)in ®(WsppL) x #(WsppL) which satisfies F1 - F6 and also the following:

PI"1ICP

P2: If @, € P then (a;3) € P

P3: skipe P

P4’: abort € P

P5" If @ € P and F € F, then (while F do a) € P

P6’: If o, € P and F € F, then (if F then « else 8) € P.

Fsppt is called the set of formulas of SPDL and Psppy, the set of programs of SPDL.

Below Greek letters a, 3,7 ... denote programs, and upper case letters E, F,G ... denote
formulas.

The connectives are read as follows: “;” is concatenation so a; 3 means “do « then do
87, “U” is disjunction so U3 means “do a or 8” (U is nondeterministic), a* means “repeat
a some finite number of times” (* is nondeterministic), F'? means “test F' and continue if
it is true otherwise abort”, [@]F means “F holds after every terminating execution of a”.
The program skip is “do nothing”, and abort means “abort”.

We define A, —, and < as usual. The modal operator {), which is the dual of [], is

defined by (a)F =4 —[a]-F and is read “there is a terminating execution of a after which

F holds”.

Axiom schemas for PDL:

PC: All tautologies

CHAPTER 2. DEFINITIONS 6

K: [e)(F = G) = ([a]F — [2]G)
Cowmp: [a; B]F « [a][B]F

ALT: [aUB|F « [a]F A [B)F

Mix: [a*]F — F A [a][a*]F

IND: [a”)(F — [o]F) — (F — [a"]F)

TEST: [F?7]G ~ (F - G).

Rules of Inference for PDL:
Mobus PoNENs: From F and (F — G) infer G
NECESSITATION: From F infer [a]F.

Let Th(PDL) denote the least set T C Fppy, such that T contains all instances of the

axiom schemas and is closed under the rules of inference. The members of Th(PDL) are

called theorems of PDL.

Axiom schemas for SPDL:
PC: All tautologies
K: [a(F = G) — ([e]F — [a]G)
DuMm: [skip]F « F
ABORT: [abort|false
Cowmp: [a; BIF « [a](B]F
CoNbD: [if E then a else |F — ((E — [a]F) A (-E — [8]F)
WHILE]l: -F — ([while E do o]F — F)

wHILE2: [while E do a]F — (E — [a][while E do o]F).

CHAPTER 2. DEFINITIONS : 7

Rules of Inference for SPDL :
Mobus PoNENs: From F and (F — G) infer G
NECESSITATION: From F infer [a]F

HoARE’s ITERATION RULE: From (E A F) — [a]F infer
F — [while E do a](~E A F).

As above, let Th(SPDL) denote the least set T C Fsppr, such that T contains all in-
stances of the axiom schemas and is closed under the rules of inference. The members of

Th(SPDL) are called theorems of SPDL.

2.3 Semantics for PDL and SPDL

In the following we use P to denote the set of programs of PDL or SPDL, whichever is
appropriate. A model for either PDL or SPDL is a structure M = (5,{R, : @« € P}, V),
where S is a nonempty set, R, is a binary relation on S for each @« € P, and V is a
function from ® to &(S). The members of S are called states. Intuitively the pairs in R,

are the possible transitions of the program a, and V(p) is the set of states for which p is true.

Satisfiability is defined as a 3-ary relation between model, a state, and a formula as

follows:
SI: M,sEpifse V(p),forpe ®
S2: M,s | true
S3: M, s [false
S4: M,sE-~Fif M,slEt F
S5: M,sE FVGif M,sEForM,sEG

S6: M,s k= [a]F if for all s’ € S, sR,s’ implies M,s' = F.

CHAPTER 2. DEFINITIONS 8

From the definitions of the symbols A, —, ~ and of the modal operator () we obtain

the following equivalences:
(i) M,sE= FAG if and only if M,s}= F and M,s =G
(ii) M,sl F — G if and only if M,s £ For M,s= G

(iii) M, s = F « G if and only if both M,s | F and M, s |= G, or both M, s [¢ F and
M ;slEG

(iv) M, s [= (@) F if and only if there is an s’ € § such that sR,s' and M, s’ |= F.

An equivalent definiton of satisfaction is obtained by letting V : F — §(S) be the unique

map satisfying the following conditions:
S1:VCV
S2': V(true) = S.
S3': V(false) = 0.
S4': V(=F) = S\ V(F).
Ss': V(FVG)=V(F)uV(G).

S6: V([a]F)={s€ §:(Vs' € S)(sRus' = &' € V(F)).

Then satisfiability is defined by specifying that M,s = Fif s € V(F).

Again from the definitions of the symbols A, —, <+, and the modal operator () we obtain
the following equivalences:
V(FAG)=V(F)NnV(G)

V(F - G)=(S\V(F)UV(G)

V(F = G) = (V(F)NV(G)U((S\V(F)N(S\V(G)

CHAPTER 2. DEFINITIONS 9

V((e)F)={s€ §:(3s' € S)(sR,s' and s’ € V(F)).

A formula F is valid in the model M if M,s |= F for every s € S.

A standard model for PDL is a model in which the following conditions hold:
M1: R,.3 = Ryo Rp
M2: Ryug = Ra U Rp
M3: Ro+ = (Ra)"
M4: Rg» = {(s,8): M,s = E}.
M1-M4 are called the standard model conditions for PDL.
A standard model for SPDL is a model in which M1 holds, and the following conditions
also hold:
M2": Reyip = ids
M3': Rabort = 0

M4’: Rwhile E do o = {(3, ') : (3n)(3so0,. - 3p)(s = 80, 8 = 8py, M, 8, = -FE
and (Vj < n)((8j,8j+1) € Ry and M, s; = E))}

M5’ Rif E then o else g = {(8,8') : SRo8’ and M, s |= E} U {(s,5') : sRps’ and
M,skE -E}.

M1 and M2'-M5’ are the standard model conditions for SPDL.
A formula F of PDL is valid, denoted |= F, if F is valid in every standard model of

PDL. Similarly a formula G of SPDL is valid, denoted | G, if G is valid in every standard
model for SPDL.

CHAPTER 2. DEFINITIONS 10

2.4 Extensions of SPDL

Let SPDL+4U denote the extension of SPDL by U, which is defined by adding the following
to SDPL: '

e U to the language of SPDL
e P3 to the program formation rules
e ALT to the axiom schemas

e M2 to the standard model conditions.

Let SPDL+# denote the extension of SPDL by *, which is defined by adding the following
to SDPL:

e * to the language of SPDL
e P4 to the program formation rules
e IND and MIX to the axiom schemas

e M3 to the standard model conditions.

Chapter 3

Soundness and Completeness

3.1 Preliminaries

Let £ be a logic such as PDL or SPDL, and M be a class of models for £. Let Th(L) denote
the class of theorems of £. Then £ is sound with respect to M if every theorem of £ is
valid in every model in M. £ is complete with respect to M if every formula which is valid

in every model in M is a theorem of L.

Definition 3.1.1 Let A be a set of formulas of a logic £. A is consistent if ~"(Fi A...AF,)

is a non-theorem of £ for every finite subset {Fi,...,F,} C A.

Definition 3.1.2 We define programs a™ for each n € N as follows:

0

a skip

il

a"t! = oMa.

Note that in standard models M, s = [@*]F if and only if for every n > 0, M, s E [a"]F,
and that R,n = (R4)".

Definition 3.1.3 The set of subformulas of a formula F of PDL is defined inductively as
follows for every pe &, F,G € F and a € P:

11

CHAPTER 3. SOUNDNESS AND COMPLETENESS : 12

Sf(p) = {p}

Sf(~F) = {~F} U Sf(F)

Sf(FV G) = {FV G} U S{(F) US{(G)
Sf([a)F) = {[a]F} U SI(F).

Note that formulas occurring in « are not subformulas of [a]F.

We show that PDL is sound and complete with respect to the class of standard models
for PDL. The proof for soundness is given below; the completeness proof appears in the

next section.

3.2 Soundness of PDL

Theorem 3.2.1 PDL is sound with respect to the class of standard PDL models.

Proof: We need to show that each axiom of PDL is valid, and that the inference rules
preserve validity. Below we only consider the last five axioms. The remaining axioms and
transformation rules are contained in every normal modal logic, and the required proofs are
straightforward. See for example [4] p25 or [7] pp 68-69. We treat each axiom schema in
turn. Below M denotes a standard model for PDL.

CoMP:

M, s [o;0)F (Vt)(sRaipt => M, t | F)

(Vt)(sRq o Rgt = M,t|= F)
(Vt)(Vu)(sRquRgt = M, t = F)
(Vu)(sRou = ((Vt)(uRgt = M,t = F)))
(Vu)(sRou = M, u = [B]F)

M, s |= [a][B]F.

RIS 3

Hence M, s = [e; B]F < ([a][B]F).

CHAPTER 3. SOUNDNESS AND COMPLETENESS 13

ALT:

M,sk[aUBIF < Vi (sRaupt = M, tE F)

Vt (sRot = M,t = F) and Vt(sRgt = M,t = F)
M, s E [a]F and M, s = []F

M, s | [a]F A [B]F.

I Ie = 0

Hence M, s = [a U S]F & ([a]F A [B)F).
Mix: Suppose M, s = [a*]F, and let t be such that sR4t. Then
tR.+u M t(Ry)"u = s(Ry)'u = sRyru = M,uf= F.

Thus for all ¢, if sR,t then M,t | [@*]F, so M, s |= [a][a*]F. Also by definition sRqes,
hence M, s |= F. Thus M,s | [a*]F — F A[a][a*]F.

IND: Suppose M,s E [@*(F — [@]F), and M,s | F. We need to show that
M, s [[@*]F. We show by induction that M, s = [@"]F for every n > 0. Case n = 0 is
given, as M, s = F. For the induction step assume M, s |= [a¥]F. We want to show that
M, s = [a*t!])F. Suppose sR k+1t. Then there exists u such that sR xuRat. Since sR xu,
SRyeu and so M, u | (F — [a]F). By the induction hypothesis sR,xu yields M,u = F.
Hence M,u [[a]F. Now uR,t yields M,t |= F. Hence sR,x+1t implies M,t |= F, so
M, s = [@Ft1)F as required.

TEST:
M,sE[FIG & VisRmt=> M,tEG)
ML yis=tand M,sEF)=> M,tEG
= M,sEF=>M,3G
= M,sE(F-G).

Hence M, s [F?)G < (F - G).

a

CHAPTER 3. SOUNDNESS AND COMPLETENESS 14

3.3 Completeness of PDL

In this section we will show that PDL is complete with respect to the class of standard PDL
models. To do this we show that every non-theorem of PDL is not valid in some standard
PDL model. We first construct the canonical model. The canonical model for PDL is the
model MC = (§€, {RS :a € PrpL}, VC) where

e SC is the set of all maximal PDL-consistent sets of formulas

o for each a € PppL, RS is the binary relation defined by
sRSt <= {GeF:[a]Ges}Ct

o VO :® — 9(S°) is the function given by VC(p) = {s € §€ : p € s}.
Lemma 3.3.1 Let F be a formula of PDL. Then for everys € S°, M® sl F <= F €.

Proof: By induction on formulas. The details can be found in [8] pp 23-25 or in [4] p25. O

It follows that every theorem of PDL is valid in M, and no non-theorem of PDL is
valid in M€. However MC is not necessarily a standard model of PDL. We now construct

for each non-theorem A of PDL a standard model in which A is not valid.

Definition 3.3.2 A set I of PDL formulas is called FL-closed if it is closed under subfor-
mulas and the following conditions hold for all F,G € Fppy, and a, 8 € PppL:

(i) [F?]lGeT=> FeT
(i) [a;B]F €T = [o][B]F €T
(iii) [@UPB)JF €T =>[a]F €T and [B]F €T

(iv) [@*]F € T = [a][a*]F € T.

Let T be an FL-closed set of. PDL formulas, and M = (S,{R, : @ € P}, V) be a model.

Define an equivalence relation on S by

s~t <= (VFET)M,sEF < M,tEF).

CHAPTER 3. SOUNDNESS AND COMPLETENESS 15

We introduce the following notations:

o [s|for {te S:s~t}

o ®f for dn I‘v

o II' for the set of atomic programs occurring in formulas in T

o PT for the closure of II' U {F? : F? occurs in a member of T'} under the operations

U, *, and ;
o ST for {[s]:s € S}.
Let VI : ®F — ©(ST) be defined by the equivalence
[s] € VI(p) <= s e V(p).

Definition 3.3.3 For a € PppL, a binary relation R' on ST is a (T, a)-filtration of the
binary relation R, on S if the following conditions hold for all s,t € S:

G1: if sR,t then [s]RF[t]
G2: for all F € F,if [s]R'[t] and [e]F € T and M, s = [a]F then M,t = F.

An example of a (T, a)-filtration of R, is the smallest filtration,

RT = {([s], (1) : (3s" € [sD(3H’ € [t])(s'Rat")}-

The model MT' = (ST, {RL : a € PT},VT) is a I-filtration of M = (S,{Rs : @ € P}, V)
if RL is a (T, a)-filtration of R, for every a € PT,

Lemma 3.3.4 Let MT = (ST, {RL : a € PT},VT) be a T-filtration of the model
M = (8,{Ry:a € P},V). Then for all F €T, M,s = F if and only if M",[s] E F.

Proof: By induction on formulas. The details can be found in [8] p139 or [4] pp33, 115. O

CHAPTER 3. SOUNDNESS AND COMPLETENESS 16

Lemma 3.3.5 Suppose that M' = (ST {RL : o € P'},VT) is a T-filtration of the model
M =(S,{Ry:a € Pppr},V) such that T is finite, and let T be a subset of ST. Then there
is a formula At such that for alls € S, M,s= At if and only if [s] € T.

Proof: For each t € ST let A, be the conjunction of formulas in the set
{F:FeT and M,tl= F}U{~F:F €T and M,t £ F}. This is a finite conjunction as I'
is finite. Then
MsEA << MsEFeMtEF)foral FeT

= s~

= [s]=[t].
As |ST| < 2IF1 then ST must also be finite, and hence T is finite. If T = @ then set
Ar = false. Otherwise T = {[t1],...,[tn]}. Let Ar = A, V...V A,. Then

M sk Ar JEEN M,skE Ay or...or M,s = A,

< [s]=[t1] or...or [s] = [tn]

< [s]€eT.

Let A be a non-theorem of PDL. Let I'4 be the smallest FL-closed set containing A.
For the rest of this section let MT denote the model (ST,{RL : @ € PI'},VT), where
I'=T,4 and

o RL is a (T4, 7)-filtration of RS for each r € IIF'
o R! is arbitrary for each 7 € II'\ 1
o R, = {([s],[s]): MC,s |z F} for each F? € PF

e RL is defined by the standard model conditions for PDL otherwise.

We now show that I'4 is finite, so we can apply Lemma 3.3.5.

CHAPTER 3. SOUNDNESS AND COMPLETENESS A 17

Lemma 3.3.8 T4 is finite.

Proof: We define a formula to be modal if it has the form [a]G. The modal length of [@]G
is the number of symbol occurences in . We show that in the construction of I'4, starting
with {A} and closing under conditions (i)-(iv) and subformulas, every formula can only
cause a finite number of new formulas, of lesser modal length, to be added.

First observe the following for (ii)—(iv):

(ii)) Every subformula of [a][8]F, except for [¢][8]F and [G]F, is also a subformula of
[o; B F,

(iii) Every subformula of [a]F or [B]F, except for [a]F and [B]F, is a subformula of
(e U B)F,

(iv) Every subformula of [a][a*]F, except for [a][a*]F, is a subformula of [a*]F.

Hence if one of (ii)-(iv) is applied to a formula [@]G and we close under subformulas then
only a finite number of formulas, each of which is modal with strictly smaller modal length
than [a]G, are added. If we apply (i) to a formula [F?]G and close under subformulas then
as Sf(F) is finite and each subformula of F is shorter than F'?, then (i) also adds a finite
number of formulas, where each new modal formula has strictly smaller modal length than
[FG.

Note that the FL-closure of {A} is the closure of Sf(A) under (i)-(iv) and subformulas.
Let Ag =Sf(A), and A,y be the set of new formulas obtained by applying (i)-(iv) to
formulas in A, and closing under subformulas. Then the greatest modal length for a formula
in Ap4 is strictly less than the greatest modal length for a formula in A,. As every modal
formula has modal length at least 1, it follows that there exists an m such that A,, contains
no modal formulas. For n > m we have A, = 0. We know that Sf(A) is finite, and for each
modal formula the conditions (i)-(iv) and closing under subformulas adds a finite number

of new formulas, so A, is finite for every n. Hence I'y = Un<m Ay is finite. O

Lemma 3.3.7 MT is a [4-filtration of MC.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 18

Proof: We need to show that Rl is a (T 4, a)-filtration of RS for « € P''. We use induction

on the construction of programs.
Case 1: a € II'. Then R is a I'4-filtration of RS by definition of RL.
Case 2: a = F? for some F? € PL.

G1: We first show that sRS,t implies both s = ¢t and M, s |= F. Suppose sRS,t. Then

we have
{Ge F:[FN)Ges}Ct (3.1)
from the definition of R}c,l?. To show that s = ¢ we note that

Ges —= F-Ges

EL MG es
Y Get

Hence s C t, but both s and ¢ are maximal so we must have s = {. For the rest observe

that
(F>F)es & [FN|Fes
CY pey
<— Fes
B MO SEF
Hence

sR¢;t = (s=tand M s F)

= [s]RE[s].

so G1 holds.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 19

G2: Suppose [s]RL,[t], and also that [F?]G € T4 and M, s |= [F?]G. Then by definition
of RY, we have [t] = [s] and M€, s |= F. The axiom schema TEST yields

M, s = (F — G), and hence M, s |= G. But G € T4 (as I'4 is closed under
subformulas) and s ~ t (as [s] = [t]) so Mt = G.

Case 3: o = ;7

G1: Fix s and let A, be a formula such that for all ¢, A, € tif and only if [s]ng[t] (such
an A, exists by Lemma 3.3.5). By the induction hypothesis G1 holds for Rg and Rf. We
now show that MY, s = [G][7]As:

sRSuRSt = [s]R5[u]RL[t]
= [s]REW[t]
— A ;€t
ES MO tE A,

Hence M€, s = [B][Y]As. Using this result we now show that G1 holds:

Q
©
g
o

M sE 874, & MC sk [8;7]A,
& SRS t=> MO tE A,
& RS 1= 4, €t
< sRS.t= [s|Rp,[1].

Hence G1 holds.

G2: Suppose [s]ng[t], and also that [8;7]G € T'4y and M, s = [8;7]G. We need to
show that M t |= G. We first observe the following implications:

[s]RS (] 22 3[u)([s]RE[u]RS[L) (3.2)
[3;7]/GeTa = [BI"]GE€T4and[7]GETy (3.3)
MC s [67]G F MO, sk [BI]G. (3.4)

CHAPTER 3. SOUNDNESS AND COMPLETENESS 20

By the induction hypothesis G2 holds for Rg and RS . Using the above implications we
now show that G2 holds for Rgn:

(5] R5.,[t] and [8;7]G € Ta and M, s |= [8;1]G
COCYEY 3y)((s)BS[u]RE[E] and [B]Y]G € T4 and [y]G € T4 and MC,s F [8][7]G)
= 3(u)([u]RL[t] and [¥]G € T 4and
([s]R5[u]and [B][7]G € T4 and M€, s = [B][1]G))

2 3[u)((u]RE[) and [7]G € T4 and MC,u | [7]G)

RN MC tEG
Hence G2 holds.

Cased: a=fUxy

G1: Fix s and let A, be a formula such that for all ¢, A, € ¢ if and only if [s]REUW[t]. By the
induction hypothesis G1 holds for RS and Rg. We now show that MC, s |= [8]A4, A [1]4,.

First we need the following implication:

sRSt = [s]Rp[t]
= [s]Rpu,lt]
= A, €t
21 MO tE A,

Hence M, s |= [3]A,. Similarly ME s = [7)As, s0 ME s = ([B]As A [7]As). We now use
this to show that G1 holds:

MO, sk (Bl AA) & MO sE[Burla,
S
& RS, t=> MO tE A,
&3 SRSt A et
= ngU,Yt = [s]RgU,Y[t].

Hence G1 holds.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 21

G2: Suppose [s]RgU,y[t], and also that [3U]G € T4 and M, s = [8U7]G. We need to
show that MC ¢t = G. We require the following implications:

[s]RS, 1] ¥ [s]RS(e] or [s]RE[¢] (3.5)
[BUAGET4, = [BIGET 4and [y]GET4 (3.6)

MC sE[BU4G B MO, sk (B1GANMG)
= MC sk [B]G and M, s k= [1]G. (3.7)

By the induction hypothesis G2 holds for Rg and Rf. Using this, and the above implica-

tions, we have

[s]R5,,[t] and [BU]G € T4 and M, s = [BU~]G
([s)Rj(t] or [s]RE[t]) and [B]G € T4 and [7]G € T4
and M® s k= [8]G and M, s = [7]G
=> ([s]R5[t] and [B]G € T4 and M€, s [[B]G)

or ([s]RL[t] and [7]G € T4 and MY, s = [1]G)
= MC tE G.

(3:5)38)(37)

Hence G2 holds.
Case 5: a = §*

G1: Fix s and let A, be a formula such that for all ¢, A, € ¢ if and only if [s]RL.[t]. We
now show that M, s = (A, — [3*]A,). We need the following chain of implications:

CHAPTER 3. SOUNDNESS AND COMPLETENESS : 22

w
[N
—

MC tE A,

l;

A, et

(5] R [¢]

[s)(RE)" 1]

In([s](RE)"[1])

3n([s](R5)"[t]) and (tRgu = [f] RE[u])
tRyu = (3n([s](RH)"[¢]) and [t]|RE[u])
tRgu = In([s)(RE)™*![u])

tRou = ([s](Rp)[u])

tRgu = [S]RE-[U]

e lsl

tRgu=> A, €u

w
[%)
—

tRpu = M u= A,
Mt = [B]A,.

ls |

Hence M t = A, — [B)As, and this is true for all t. In particular if sRgt then
Mt Ay — [B]A,, so MO, s = [87](As — [B]As). The axiom schema IND yields
MO s = (A, — [B*]A,). As [s](R})%[s] we know from the definition of Rp. = (R))" that
[s]RL.[s]. From this we get the following chain of implications:

[s]RE.[s] = A,€s

330 AC sk A,

MEC, s [[87]A,
sRgt => MYt = A,

(N

@
&
o

SRﬁtt = As €t

sRpet = [s]RE.[t].

l

Hence G1 holds.
G2: Suppose that [s]RL.[t], and also that [3*]G € T and M, s |= [3*]G. We want to show
that M, t = G. We first use induction to show that for every n > 0

([s]Rgn[t] and [8*]G € T and M, s [[67]G) = M,t = [B°]G. (3.8)

CHAPTER 3. SOUNDNESS AND COMPLETENESS 23

Case n = 0: Suppose [s]Rgo[t], [6*]G € T and M,s E [8*]G. Then [s] = [t], so as
[8*]G € T, M, s = [8*]G implies M, t = [8*]G.
Induction step: Assume (3.8) holds for n = k. Then the following chain of implications

completes the induction step:

[s]RGks[t] and [87]G € T and M, s |= [6]G
Ju([s]RG[u]RE[t]) and [87]G € T and M, s = [8%]G
Ju([s]R«[u] and [7]G € T and M, s = [8°]G and [u]Rp[t])
Ju(M, u k= [8%]G and [8%]G € T and [u]RE[t])

Ju([u]RG[t] and [8][8*]G € T and M, u [[8][67]G)

M, tE [5G

N G

=

Hence (3.8) holds for every n € N. We can now show that G2 holds by the following:

[s]RL.[t] and [8*]G € T and M, s k= [8*]G
= 3n([s]RLa[t]and [8%]G € T and M, s |= [6*]G)
= M,tE[8"]G
MX M,tEG.

Hence G2 holds.

a

Lemma 3.3.8 MT = (ST {RL:a € PI}, V) is a standard model for PDL.

Proof: We need to show that M1-M4 are satisfied. M1-M3 must hold by definition of RE.
For M4: for F? € PF, Rps = {([s],[s]) : M®,s | F}, and by Lemma 3.3.4 M% s |z F if
and only if MT,[s] | F for F? € P'. Hence Rp» = {([s],[s]) : MT,[s] E F} and M4 holds
for every F? € PT. For F? ¢ P' M4 holds by definition of RY. I

Theorem 3.3.9 PDL is complete with respect to the class of standard models for PDL.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 24

Proof: For any non-theorem A of PDL let I'4 denote the smallest FL-closed set containing
A. We showed in Lemma 3.3.7 that the model M is a I'4-filtration of the canonical model
for PDL. As A is a non-theorem, —A is consistent so there is a maximal consistent set of
formulas containing ~A. Suppose -A € s € S¢. Then by Lemma 3.3.1 M%,s = -4 so
MC st A. As A € Ty, then by Lemma 3.3.4 M",[s] ¢ A. By Lemma 3.3.8 Ml is a
standard model for PDL, hence A4 is not valid in every standard model for PDL. Thus the
only formulas of PDL which are valid are the theorems of PDL, so PDL is complete with
respect to the class of standard models for PDL. O

3.4 Soundness of SPDL

Theorem 3.4.1 SPDL is sound with respect to the class of standard models for SPDL.

Proof: We need to show that each axiom of SPDL is valid in every standard model, and that
the transformation rules preserve validity. We only consider the axioms and transformation
rules that are not part of PDL. Each of these is treated in turn. Below M denotes a standard

model for SPDL.

DuMm:

M,s = [skip]F <% Vit(sRagpt = M,t = F)
Mo wys=t=> M,tEF)
< M,sEF.

Hence M, s |= [skip]F < F.

ABORT: By condition M2’ we have Rapory = 0. Let s be a state in a standard

SPDL-model. For every state t, sRaportt implies M,t |= F, hence M, s = [abort]F.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 25

Conb:

M, s = [if E then a else §|F

Vt(SRuézhenaelseati M,tE F)

Vt(((M,s |E E and sR,t) or (M, s =F and sRst)) => M,t | F)

Vt(((M,sE E and sR,t) => M,t E F)

and (M, s E -~F and sRgt) => M,t | F))

Vi((M,s |E E and sR,t) = M,t E F)

and V¢((M, s -F and sRgt) => M,t F)

Vi(M,s | E = (sRat = M, t|E F)) and V¢(M,s |E ~E = (sRgt => M,t | F))
(M,s|E E = Vt(sR,t = M,t | F)) and (M, s -E = Vi(sRgt = M,t | F))
(M,sE E = M,sE [a]F) and (M,s|E -E = M,s = [B]F)

(Mys k= E — [a]F) and (M, s | =E — [8]F)

M,s = (E — [a]F) A (-E — [B]F)

|E5

’

I I

!

11811

Hence M, s | [if E then o else 8]F & ((E — [a]F) A (=E — [8]F)).

WHILE]L:

M,s |= -F Vt(SRwhile Edoal = 8= t)

$Rwhile E do a$
(M, s |= [while E do a]F => M,s = F)
M, s | [while E do a]F — F.

I

Hence M, s -F — [while E do a]F — F.

WHILE2: Suppose M, s = [while E do a]F and M,s |= E. We need to show
that M, s |= [a][while E do a]F. Let t be such that sR,t. Then for every u such that
t Rwhile E do ot We have sRwhile E do o 50 M, 2 |= F, and hence M, t |= [while E do o]F.
Hence M, t |= [while E do a]F for every t such that sR,t, and so as required we get
M, s |= [a][while E do o]F.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 26

HOARE’S ITERATION RULE: Suppose M | (E A F) — [a]F. Let s be any
state such that M,s | F. We show that M,s | [while E do a]F. Let t be such
that sRwhile E do of- Then there exist n € N and sg, 81,...3, such that s = sg, t = 3y,
M,t —E, and for all j < n we have 8;R,3;41 and M,s; = E. By induction we show
that M, s; |E F forall j, 0 < j < n. We are given M, so |= F so the base case holds. Now
suppose M, s = F for some k < n. We also know M, sx = E, hence M, s, = (EA F) so
M, s; | [a]F. As sgRq8k41 it follows that M, s,y |= F as required. Hence s Rwhile E do of
implies M,t = F, so M, s |= [while E do a|F. Thus M, s | F — [while E do a|F for
every s € §,s0 M | F — [while E do a]F and Hoare’s Iteration Rule holds for M.

O

3.5 Completeness of SPDL

In this section we will show that SPDL is complete with respect to the class of standard
SPDL models. As for PDL we show that every non-theorem of SPDL is not valid in some
standard SPDL model. We first construct the canonical model. The canonical model for

SPDL is the model M® = (S, {RS :a € PsppL}, VE) where

e SC is the set of all maximal SPDL-consistent sets

e For each a € PsppL, RS is the binary relation defined by
sRSt <= {GeF:[a]JGes}Ct

o VO :® — B(S°) is the function given by VC(p) = {s € SC :pes).

Lemma 3.5.1 Let F be a formula of SPDL. Then for every s € S¢, MC,sE F <
Fes.

Proof: By induction on formulas. 00

It follows that every theorem of SPDL is valid in MCE, and no non-theorem of SPDL is
valid in M€. However M is not necessarily a standard model of SPDL. We now construct

for each non-theorem A of SPDL a standard model in which A is not valid.

CHAPTER 3. SOUNDNESS AND COMPLETENESS : 27

Definition 3.5.2 A set I of SPDL-formulas is called FLg-closed if it is closed under sub-
formulas and the following conditions hold for all F,G € FsppL and a, 8 € PsppL:

(i) [e;8]F €T = [a][B]F €T
(i) [while E do o]F € T = [a][while E do o]F €T

(iii) [if E then a else §]F € T = [a]F € T and [B]F € T.

Let T be a FLg-closed set of SPDL formulas. As for PDL we define the notions of a

(T, a)-filtration of a binary relation, and a I'-filtration of a model.

Lemma 3.5.3 Suppose that MT = (ST {RL : a € P'},VT) is a T-filtration of the model
M = (5,{Ry : @ € P}, V) such that T is finite, and let T be a subset of ST. Then there is
a formula At such that Ay € s if and only if [s| € T.

Proof: As for PDL. O

Let A be a non-theorem of SPDL. Let T'4 be the smallest FLg-closed set containing A.
As before we can show that T'4 is finite. Again note that |ST| < 2IC4l, hence it follows that

ST is finite, and we can apply Lemma 3.5.3.
Lemma 3.5.4 T'4 13 finite.

Proof: The proof is essentially as for PDL. We need the following observations for conditions

(ii) and (iii):

(ii) Every subformula of [a][while E do a]F, except [a][while E do o]F itself, is a
subformula of [while E do «]F.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 28

(iii) Every subformula of [a]F or [8]F, except for [@]F and [G]F, is a subformula of
[if £ then a else §]F.

a

For the rest of this section let MT denote the model (ST, {RL : @ € PI'}, VL), where
I'=T4 and

o RL is a I'y-filtration of RS for v € T4

o RU is arbitrary for 7 € I1 \ IIT4

o Rfkip = idgr

. Rgbort =0

o RI is defined by the standard model conditions for SPDL otherwise.

We will prove simultaneously by induction that for every formula F € T'4, MC s F
if and only if MT,[s] = F, and that RL is a (T, a)-filtration of RS for every o € PF. To do
this we need to define the following sets:

Py is the set of programs in PT that contain no while or if statements.

F, is the set of formulas of I'4 that contain programs only from P,.

Pr+1 is the set of programs in P such that any statement of the form “while E do 5"
or “if E then 3 else v” has E € F,, and 3,7 € Py.

We observe that Pl = Unen Pr, and Tq = U, en Fa-

Theorem 3.5.5 For every formula F € T4, M€, s |= F if and only if MT,[s] = F, and
for every program a € PT, RL is a (T, a)-filtration of RS.

Proof: It suffices to prove that for every n € N the following hold:
(i) for every a € P,, RE is a (I, a)-filtration of RS
(ii) for every F € F,, M®,s k= F if and only if MT,[s] = F.

We use strong induction on n.

Base step: n = 0. For (i) we use induction on the construction of programs in Po.

CHAPTER 3. SOUNDNESS AND COMPLETENESS 29

Case 1: a € II'. Then RL is a ['4-filtration of RS by definition of RL.
Case 2: a = skip.
G1: We need the following implication:

sRGipt <> {F € FsppL : [skip]F € s} C t
&Y (Fe FoppL: Fes}Ct
= sCt.

Hence s = t as both s and ¢ are maximal. By definition [s]ngip[s] hence [s]REkip[t] as

required, and G1 holds.

G2: This is proved as follows:
[s]REkip[t] and M, s |= [skip|F and [skip|F € T4
s~ t and M, s |= [skip]F and [skip]F € ['4
M, t | [skip]F
M, tE F.

gL U

Case 3: a = abort.

G1: Suppose sRS .t. Then {F € FsppL : [abort]F € s} C t. This implies false € ¢,

abort

hence there is no ¢t such that sRS, ¢, and trivially sRS, .t implies [SIRE, o relt]-

G2: There does not exist t such that [s]RL, .[t], hence trivially
([S]RL, o [t] and [abort]F € T 4 and MC, s |= [abort]F) implies MC tE F.
Case 4: a = ;. This is proved as in Lemma 3.3.7.

For (ii) we use induction on the construction of formulas in Fo, which are formulas that

contain no programs containing while or if statements.
Case 1: F =pe &, Then

Mc,s|=p JEIN s € V(p)
= [eVip)
E M s Ep

CHAPTER 3. SOUNDNESS AND COMPLETENESS 30

Case 2: F = true. From S2 we have both M®,s |= true and MT,[s] |= true hence
MC s | true if and only if MT,[s] = true.

Case 3: F = false. From S3 we have both MC,s |~ false and MT,[s] & false hence
MC s |= false if and only if MT,[s] | false.

Case 4: F = ~G. Then

MCsEF & MCsiEG
& M [EEG

& MU [§|EF

Case 5: F=GV H. Then

MC s EF JELN MC . sEGor MC s H
E MU s|EGo MY [s]E H
S MO [s|EF.

Case 6: F = [a]G, where & € Py and by induction G € Fo. From (i) RL is a (Ta,a)-
filtration of R,. We prove each direction of the equivalence separately.
For the first suppose that M, s |= [a]G. We know [a]G € T'4, so it follows from G2 that
[s]RL[t] implies MC,t = G, which by the induction hypothesis for G implies MLt EG.
Hence M"',[s] = [a]G as required.
For the other direction suppose ML, [s] £ [a]G. We need the following chain of implica-
tions:
sRCt =5 [s]RL[Y]
= MOHEG
IH

= MO tEG.
Hence MY, s | [a]G.

Induction step: Assume (i) and (ii) hold for P; and F; respectively for every ¢ < n. We
first show that (i) holds for P,41. There are two cases we need to consider (the remaining

cases are proved as for the base case):

CHAPTER 3. SOUNDNESS AND COMPLETENESS 31

Case 1: @ = while F do 3, where £ € F, and § € Ui<n Pi.

G1l: Let A, be a formula such that A, € t if and only if there is an m € N such that
[s)(E | RY)™[t], where (E | Ry) = {([s],[t]) : [s]R}[t] and MT,[s] = E} (such an A, exists
by Lemma 3.5.3). We now show that M€ = (E A A,) — [8]A,. Let u be any state such
that M€, u |= E A A,, and suppose uRgt.

MC u= (E A A,) and uRgst

& MCuE A, and M u = E and [u]R5[t]
32 4, € wand MT,[u] | E and [u]RG[{]
& 3Im([s|(E | Rs)"[u]) and M, [u] = E and [u]RE[t]
= (3m)([s)(E| Rs)"[u]) and [W](E | RE)[t]
= Im([s|(E | Re)™*'[1])
— A,€t
L MO tE A,.

Hence

MC ulE(EAA,) = uRgt=> MCtE A,
=> M, uf=[B)A,.

Hence M,u |= (E A A,) — [8]A, for every state u, so M |= (EA A,) — [8]A,. By Hoare’s
iteration rule we get M = A, — [while E do B)(A, A ~E). As [s](E | Rp)°[s] we have
A, € 8, so by Lemma 3.5.1 M€, s = A, and so M, s |= [while E do 8](A, A —F). Hence
MC tle A, A-E
MEC tE A, and MC t|= ~E
A, € tand MC t | -~F
Im([s)(E | R5)™[t]) and MC,t = =E
Im([s](E | R5)™[#]) and M, [t] | ~E

S$Rwhile E do gt

2= ET L

[s] Rehile E do slt]-

Hence G1 holds.

CHAPTER 3. SOUNDNESS AND COMPLETENESS . 32

G2: Suppose (3] Rwhile E do g[t], [While E do 8]G € T'4 and MC s = [while E do B8|G.
Then, as [s] Rwhile E do g[t], there exist m € N and sg,s1,...5m € S such that [so] = [s],
[sm] = [t], MF,[sm] E ~F and for every j < m, [s;]Rp[s;+1] and MY, [s;] E E. We now
use induction to show that M, s; |= [while E do 8]G for every i < m.

Base step: ¢ = 0. This is true by hypothesis.

Induction step: Assume M€, s, = [while E do 8]G, for some k < m. As MT,[s] E E,
and E € F,, we have MC, s |= E. From the axiom schema [WHILE2:] we have

MEC s, = [B][while E do 8]G. As T'4 is FLg-closed, [3][while E do 8]G € T4. We also
know [sk]Rg[skH]. As B € P, we know R is a (T, §)-filtration of R§ and G2 holds. This
yields MC, s = [while E do j]G.

Hence M€, s, |= [while E do 8]G. From above M, [s;] E =E. As -E € F,, we have
ME s, = =E. The axiom schema WHILE] yields M, s | G, which is what was required
to show G2 holds.

Case 2: a = if F then [else v

G1: Let A, be a formula such that A, € t iff [s]Rf; & shen g e1se 4[t]: We now show that
M, s (E = [B]4,) A (~E — [7]A4s).
MC sEE 2 MU SEE

2L ngt => ([s]Rg[t] and MP, s I: E)
I

ool

SRSt = [3]Rit £ then 6 else 1]
sRGt = A, €t

sRGt = MC,t | A,

= M sk [8]4,.

Il

w
=
=

Hence M€ | E — [8]A4,. Similarly we can show that M® | -E — [7]4,. Thus
MC = (E — [B]A,) A (=E — [7]A4,). The axiom schema COND yields
MC s |= [if E then 3 else v]A,. We can now use this to show G1 holds:

. S6
MC s |= [if E then j else 7]4, <= SR E then g else 1 = MC tE A,
3.5.1 c
~ ‘SRif E then [else ‘yt = A-’ €t
r
— SRS' E then 3 else —yt = [S]Rif FE then 3 else -y[t]'

CHAPTER 3. SOUNDNESS AND COMPLETENESS 33

Hence G1 holds.

G2: Suppose that [s]RY £ (hen 5 else 4[t], and also that [if E then § else 7]G € I'4 and
M, s | [if E then § else v]G. We want to show that M,t = G. We need the following

implications:

(SR £ then petse 4lf] <> (MT,[s] = B and [s]R[1])
or (MF,[s] £ —E and [s]R][#]) (3.9)
[if £ then felsey]Gel'y = [f|GeT4and [y]GET4 (3.10)
M, s = [if E then § else]G 22 M sk (E = [8]G) A (-E — [7]G)
= M° sEE-[8G

and M® s = -E — [1]G. (3.11)
We now use these implications to show that G2 holds:

[$]RY £ then g else 4[] 2nd [if E then 3 else ¥)G € T4

and M, s [[if E then g else 7]G

((M",[s] = E and [s]RE[t]) or (M",[s] £ ~E and [s]R[t]))

and [§]G € T4 and [7]G € T4 and M€, s E E — [8]G

and M® s ~FE - [7]G

LN ((MC,s k= E and [s]R5[t]) or (M, s |z ~E and [s]RU[t])) and [8]G € T4
and [y]G € T4 and M®,s E E — [8]G and M®,s|E ~E — [7]G

(3:9)(319)(3.11)

= (M, s £ E and [s]R5[t] and [8]G € T4 and M®,s E E — [8]G)

or (M®, s £ ~E and [s]R][t] and []G € T'4 and M®,s = ~E — [7]G)
= ([s)R5[f] and [A]G € T4 and MC, s = [8]G)

or ([s]BC[t] and [7]G € T4 and MC, s = [1]G)
RUN MC tEG.

Hence G2 holds.

Hence (i) holds for Pp41. The proof that (ii) holds for Fy,,; is the same as for the base case.
0

CHAPTER 3. SOUNDNESS AND COMPLETENESS 34

Lemma 3.5.8 M' = (ST {RL : a € PI'}, V") is a standard model for SPDL.

Proof: We need to show that M1 and M2'-M5’ are satisfied. These all hold by definition of
RL. O

Theorem 3.5.7 SPDL is complete with respect to the class of standard models for SPDL.

Proof: For any non-theorem A of SPDL we let 'y denote the smallest FLg-closed set
containing A. We showed in Lemma 3.5.5 that the model M' is a T'4 filtration of the
canonical model for SPDL. As A is a non-theorem, —A is consistent so there is a maximal
consistent set of formulas containing ~A4. Suppose =4 € s € §¢. Then by Lemma 3.5.1
MC s = ~A, s0 MC s [£ A. As A € T4, then by Lemma 3.5.5 ML, [s] ¢ A. By Lemma
3.5.6 MT is a standard model for SPDL, hence A is not a valid. Thus the only formulas of
SPDL which are valid are the theorems of SPDL, so SPDL is complete with respect to the
class of standard models for SPDL. 00

3.6 Soundness and Complefeness of SPDL+U and SPDL+x*

It follows from the proofs of Theorems 3.2.1 and 3.4.1 that SPDL+U and SPDL+x* are sound
with respect to the appropriate classes of standard models. Completeness follows from the

proofs of Theorems 3.3.9 and 3.5.7.

Chapter 4

Expressive Power

4.1 Definitions

For this section we use £ to denote one of the logics PDL, SPDL, SPDL+4-U, and SPDL+x,
and when we refer to a “logic” we mean one of these logics.

Given a nonempty set S, a collection {R, : a € II} of binary relations, and a function
V : ® — BP(S) we can use the standard model conditions for £ to define a unique set
of relations {Ry : @ € Pc \ II} such that M = (S,{R, : « € Pc},V) is a standard
model for £. Thus we could have defined a model (for any of the logics) to be a structure
M = (5,{Rs : @ € I1},V), and defined relations {R, : @ € P¢ \ II} using the standard
model conditions for £. In this section it will be convenient to suppose that to have been
done. Hence M = (§,{R,: @ € I1},V) is a standard model for each of the four logics we
are considering. We write M, s |=¢ F to denote that a formula F' of the logic £ is true at
state s in M.

Definition 4.1.1 Let F; be a formula of a logic £, and F, be a formula of a logic £,. We
say Fy and F; are equivalent, written F} = F5, if for every model M = (§,{R,: a € [T}, V)
and every s € § we have M, s =, Fy if and only if M, s ¢, Fa.

Definition 4.1.2 Let a; be a program of a logic £; and a; be a program of a logic £,. We
say a; and a, are equivalent, written o = a3, if for every model M = (§,{R,: a € I}, V)

we have Ry, = R,,.

35

CHAPTER 4. EXPRESSIVE POWER 36

Definition 4.1.3 Let £,, £, be logics. We say that a formula F (or program a) of £; can
be erpressed in L, if there is a formula F’ (or program ') of £, which is equivalent to F

(or @).

Definition 4.1.4 We say £, and £; have equivalent ezpressive power if every formula of
L, can be expressed in £, and every formula of £; can be expressed in £;. We say that
L, has greater ezpressive power than L, if every formula of £, can be expressed in £, but
there is a formula of £, which cannot be expressed in £,. In this case £ has less expressive

power than L,.

4.2 Expressive Power of PDL and SPDL

We now compare the expressive powers of PDL and SPDL. We will show that PDL has
greater expressive power than SPDL. We first show that every formula of SPDL can be
expressed in PDL, then give a formula of PDL which cannot be expressed in SPDL. We
will in fact prove that every formula and also every program of SPDL can be expressed
in PDL. Every program of SPDL is deterministic, hence any non-deterministic program of

PDL, such as o U or o*, cannot be expressed in SPDL.
Lemma 4.2.1 Every formula and program of SPDL can be expressed in PDL.

Proof: By induction on the construction of formulas and programs. We only show the cases
for programs, as the cases for formulas are trivial. Let a be a program of SPDL. We consider

the possibilities for a:
Case 1: a € II. Then a is a program of PDL.
Case 2: a = skip. Let o' = true? € Pppr. Then
R, = {(s,s): M,sFEppL true}
= {(s,8):8€ S}
= 1idg

= Rskip

= R,

CHAPTER 4. EXPRESSIVE POWER ~ 37

Case 3: a = abort. Let o’ = false? € Pppr,. Then

R,

{(8,8) M, s I::PDL false}
= 0
= Rabort

- R,

Case 4: a = ;7. By induction there exist programs 3’ and v’ of PDL which
are equivalent to 3 and «v respectively. Then o = (3';7’ is a program of PDL which is

equivalent to a.

Case 5: a = while E do 3. By induction there exist a formula £’ and a program

B’ of PDL which are equivalent to E and 3 respectively. Let o’ = (E'?; 3')*; ~E'?. We have

Rgr = {(s,8): M,sppL E'}
= {(s,s): M, s EsppL E'}
Rgng = {(s,8):(s,8) € Rpr and (s,s') € Rpr}
= {(s,s): M,s =sppy, E and (s, ') € Rs)
Rigrgy = {(s,8):(3n)(3s0,-..5, € §)(s = 50,8 = 3p, and
(Vi < n)((s5,85+1) € REmypr))}
= {(s,5") : (3n)(3s0,...3n € S)(s
(Vj < n)(M,s; k=sppL E and (sj,8;41) € Rp))}

80,8 = sn, and

Ry = Rgrpne-gn
= {(s,9):
(Vj <n)

= {(s,9):
(Vj < n)(M,s; Esppr E and (s;,5;41) € Rg and M, s' EsppL E)}

(3n)(3s0,...8, € S)(s = 80,8’ = 3n, and

(M, s; E=sppL E and (sj,3;41) € R and (s, s") € R-g»)}
(n)(3sg,...5n, € §)(s = s0,8" = sn, and

(

= Rwhile Edo g

= R,

CHAPTER 4. EXPRESSIVE POWER 38

Case 6: a = if F then 3 else 7. By induction there exist a formula E’ and
programs 3’ and 7’ of PDL which are equivalent to E, 8 and 7 respectively. Let
o = (E'?B)U(-E'?7"). Then

Ra = Rgmipyu(-Ery)
= Rgp U Roproyy
= {(s,8') : M, s EppL E' and (s,s') € Ry}
U{(s,s') : M, s EppL ~E’ and (s,s') € R}
= {(s,¢) : M,sEsppL F and (s,s') € Rg}
U{(s,s') : M, s [=sppL ~F and (s,8') € R,}
= RiE then g else ~

= R,

Lemma 4.2.2 There is a formula of PDL that cannot be ezpressed in SPDL.

Proof: This is proved by Halpern and Reif in [5]. The idea of the proof is as follows:
associated with every model is an edge-labelled directed graph, where the vertex set is the
set of states, the edge set is the set of transitions of atomic programs, and edges are labelled
with the names of the corresponding atomic programs. A tree model is a model for which the
associated graph is a tree such that the edge sets corresponding to distinct atomic programs
are disjoint. It is shown in [5] that every satisfiable formula is true at the root node of a tree
model, and further, that every satisfiable formula of SPDL is true at the root node of a tree
model with a polynomial number of nodes at each level. We now consider the PDL-formula
F = [(c UT)*)({(o)true A (r)true). This formula is satisfiable, and an example of a model
for F is an infinite binary tree that can be drawn so that o is the set of transitions from
each node to its left hand child, and 7 is the set of transitions from each node to its right
hand child. However it can be shown using induction that every tree model for F' has at

least 2™ nodes at level n. Hence F' cannot be expressed in SPDL. O

CHAPTER 4. EXPRESSIVE POWER 39

Theorem 4.2.3 PDL has greater ezpressive power than SPDL.

Proof: This follows from Lemmas 4.2.1 and 4.2.2. O

4.3 Extensions of SPDL

We now consider the extensions of SPDL by “U” and “*”, the logics SPDL+U and SPDL+x.
We are interested in whether or not the expressive powers of SPDL+U and SPDL+* are
equivalent to the expressive power of PDL, or the expressive power of SPDL. We will show
that SPDL+* and PDL have equivalent expressive power, and that PDL has greater ex-
pressive power than SPDL+U, which has greater expressive power than SPDL.

We first show that each of SPDL+U and SPDL+x* has greater expressive power than
SPDL. As every formula of SPDL is also a formula of SPDL+U and SPDL+x, it follows that
every formula of SPDL can be expressed in both SPDL+U and SPDL+*. We now show
that there are formulas of SPDL+U and SPDL+x* which cannot be expressed in SPDL.

Lemma 4.3.1 There are formulas G of SPDL+U and H of SPDL+x* which cannot be
ezpressed in SPDL. '

Proof: We use the result of Lemma 4.2.2 that the formula [(¢ U 7)*]({o)true A (T)true) of
PDL cannot be expressed in SPDL. We now consider the formulas

G = [while ((o)true A (T)true) do (o U 7)|false and H = [(¢*;7*)*]({(0)true A (T)true).
We show that G and H are each equivalent to F = [(¢ U 7)*]({o)true A (r)true), and
hence cannot be expressed in SPDL. F is satisfied if ((o)true A (r)true) is true after the
program (o U T) has been repeated any finite number of times. G is satisfied if we can never
reach a state in which ((o)trueA (r)true) is false by repeating the program (¢ U). Hence
F and G are equivalent. To show that F and H are equivalent notice that the programs

(cUT)* and (o*; 7*)* are equivalent. O

Thus both SPDL+U and SPDL+x* have greater expressive power than SPDL. We are
now interested in whether either of SPDL+U and SPDL+x* have expressive power equivalent

CHAPTER 4. EXPRESSIVE POWER 40

to PDL. It follows from Lemma 4.2.1 that every formula and program of SPDL+U and
SPDL+x can be expressed in PDL. To show that every formula of PDL can be expressed in
SPDL+* we need the following:

Definition 4.3.2 A program a of PDL is in U-normal form if a = §, U...UQ,, where each

B; is constructed from atomic programs and tests using only the operators “;” and “x”.
Lemma 4.3.3 FEvery program a of PDL is equivalent to a program ay in U-normal form.
Proof: By induction on the construction of programs. Let a be a program of PDL. We
consider the possible cases for a:

Case 1: a €1l

Case 2: a = F? for some F € FppL.

Case 3: a = a';a?. By induction there exist al, = ﬂi Uu...u B,"H as above, for
i=1,2. Then
a = a';a?
= olia}
= (BiU...UBL) (BU...UBL)
(85 1) U (813 B3) U ... U (Bh,; B2,)-

Hence ay, = (6}; 62) U (BL; 83 U...U(B,;BL,).

Case 4: a = o' Ua?.
Case 5: o = 6*. By induction there exists 6 = §; U...U B, as above. We use
the result that (a U 8)* = (a"; 8%)".
a = §
= 6
= (/1U...UB)"
(B15(B2U ..U B)")"
(813 (B35 (B3 ... U Br)*))*
(B (B2 (---Ba)" .-))"

CHAPTER 4. EXPRESSIVE POWER 41

Hence ay = (87; (83; (... B5)"...)") .

d

We can now show that every formula of PDL can be expressed in SPDL+4#:
Lemma 4.3.4 Every formula of PDL can be expressed in SPDL+x.

Proof: We use induction on the construction of formulas and programs. The only difficult
case is for formulas of the form F = [a]G. By induction we can assume that there is a
formula G’ of SPDL + * which is equivalent to G. By Lemma 4.3.3 we know that every
program of PDL can be expressed in U-normal form. Hence we can assume o = 5, U...Uf,
where each 3;, 1 < j < n, is constructed from atomic programs and tests using only the
operators ; and *. By induction we can assume that for every test E? occurring in 3; there
is a formula E’ of SPDL + + which is equivalent to E. Let 3} be obtained from 3; by
replacing each test E?7 by (if E’ then skip else abort). Then each 8 is a program of
SPDL + #,and a = B{ U...U f,. Hence

F = [o]G
= [fiU...UBLG
= [BIG'A...A[BL]G.

Thus F' = [3])G' A ... A [B,]G’ is a formula of SPDL+# which is equivalent to F. O

We now have the following:
Theorem 4.3.5 SPDL+x% and PDL have equivalent expressive power.

We have shown that every formula and program of SPDL+* can be expressed in PDL,
and every formula of PDL can be expressed in SPDL+%. However not every program of
PDL can be expressed in SPDL+#. Consider the PDL-program ¢ U 7, and the model
MY = (5,{Ry : @ € I}, V), where S = {s,t,u}, R, = {(s,t)}, R, = {(s,u)}, Ry = 0
otherwise, and V(p) = 5 for every p € ® (see Figure 4.1).

CHAPTER 4. EXPRESSIVE POWER RPN

S T u
SRP AR

o

t o

Figure 4.1: The model M"Y

From state s the program ¢ U 7 has transitions to both ¢ and u, but as there are no
transitions from either ¢ or u except to themselves any program of SPDL+# has a transi-

tion from s to at most one of t and u. Thus oUT is not equivalent to any program of SPDL+ .

We know that every formula and program of SPDL+U can be expressed in PDL. We
now show that there is a formula of PDL that cannot be expressed in SPDL+U, and hence
that PDL has greater expressive power than SPDL+U. To do this we construct a class of
infinite models {Mgy : d € N} such that for each formula F of SPDL+U either V(F) or
V(-F) is finite in some model in the class, and show that there is a formula G of PDL with

both V(G) and V(~G) infinite in every model in the class.

. .>_ -
Sd1 Sd 8d-1 Sd-2 89 S S0

Figure 4.2: The segment model Sy

For each d € N we define a segment model Sz, where the transitions for the atomic
programs o, T € II are as shown in Figure 4.2, and for every other atomic program = € II
we have R, = 0. Also V(p) = {So,.-.,84+1} for every p € ®.

M, is constructed by concatenating infinitely many copies of Sg, identifying endpoints
of adjacent copies, and adjoining an additional state 3, as shown in Figure 4.3. Let 5 € V(p)

for every p € ®.

CHAPTER 4. EXPRESSIVE POWER 43

t+1 t+1 _ t-1 1 . .0 (0]
Sd+1 80" =831 S0 = Sgy 80 = Sd41 S0

Figure 4.3: The model My

e

Hence My = (§,{Rx: m € II},V) where § = {3,80,57,...,8,; = s§,s},...}, R, and
R, are as shown, R, = 0 for # # 0,7 and V(p) = S for every p € ®.

Lemma 4.3.8 There is a formula G of PDL for which both V(G) and V(~G) are infinite
in My for everyd € N.

Proof: Consider the PDL-formula ((¢*;7;0% 7)*)[o U r]false. We show this formula is
true in states sj when ¢ is odd and false in states s, when ¢t is even. We observe that
My, s = [0 Ut]false if and only if s = §, hence My, s{ | ((o*;7;0%7)*)[o U r]false if and

only if s§R(s4;7,0;r)»3. From any state s with h < d, the program o*; 7 is a transition to

either ;! or sf,; = sttl. From s! the program o*;7 is a transition to either si7? or
s, and from s{t! the program o*;7 is a transition to either s} or sf,” Hence from state

si with h < d the program o*;1;0™, 7 is a transition to one of sd sf), sd, or sf,“ Notice

that SR(y+.r;0+;r)+3 if and only if s = s} for some h < d. Hence s{ R(y+.7,5+;r)+3 if and only if
t =1 mod 2 i.e. if and only if ¢ is odd. Hence the formula is true in infinitely many states

and false in infinitely many states. O

Hence we have a formula of PDL which is true at inifitely many states and false at
infinitely many states. To show that no formula of SPDL+U has this property we need the

following;:

Definition 4.3.7 An SPDL+U program a is in normal form if a = $, U...U B, where
B; = Yj15- .- ;¥jm, for each j,1 < j < n, and for each v;x,1 < k < mj, one of the following
holds:

i)y €Il

ii) vk is a test, i.e. of the form if E then skip else abort, abbreviated E?

ili) ;5 = while E;; do 6.

CHAPTER 4. EXPRESSIVE POWER 44

Lemma 4.3.8 Fvery program a of SPDL+U 1is equivalent to a program an which is in

normal form.

Proof: Use induction on programs.
Case 1: a €1I.
Case 2: a = skip. Then ay = true?

Case 3: a = abort. Then ay = false?

1, .2

Case 4: a = a';a®. Suppose o' has normal form ajv = ﬂ; Uu...u ﬂ,';'.. Then

a = 01;02

= ajjal
= (B1U...uBl);(BEu...UBL)
(BB V(BB U...U(B];8E,)U...U(BL;B82,).

Hence ay = (8};83) U (B1;83)U...u(BLB82)u...u (B} ; BZ).
Case 5: a = while F do §.

Case 6: a = if E then §! else §2. Suppose §' has normal form &, = 8i U.. .U,B;,. Then

a = if E then §! else §*

(E?;6') U (~E?; 6%)

(E?;68) U (-E?;6%)

= (E%(B1U...UBL))U(-ET(BiU...UBL))
(
(

(E%81) U(E%B3) V.. U(EY By)) U ((-EY B V... U(-ET B7))
E% B U (E%B) U -U(E?;ﬂll)U (-E%BY) V.. .U(-E82).

Hence ay = (E%;8))U(E?; B U.. .U (EYBL)U(-EY B3 U...U(=ET; B2).

CHAPTER 4. EXPRESSIVE POWER 45

Case 7: a = al Ua?.

In each My let Rg o(8) denote the set {t € S;: sRwhile E do ot} Intuitively this is the
set of states reached from state s in My by the program “while E do o”. For each B € P
let Rp(s) = {t : sRpt}.

We say a formula F is finite (cofinite) in My if V(F) is finite (cofinite) in M.

In the next lemma we prove that for any formula F of SPDL + U we can find d such
that F is either finite or cofinite in M. We in fact show that F is either finite or cofinite
in My for all sufficiently large d. To prove this we also show that for every program of the
form “while E do a” the sets Rg (3) satisfy certain conditions for all sufficiently large d.

The conditions Wilm uses in [10] are very similar. As well as showing that every formula
F is either finite or cofinite in M, whenever d is sufficiently large, Wilm shows there exists
t € N such that F is either true in every state above s in My or false in every state
above s in My whenever d is sufficiently large. For the assertion about while-programs
we will show that for all but finitely many states the sets Rg o(s) satisfy certain conditions
whenever d is sufficiently large. Wilm shows that there exists t € N such that the conditions
are satisfied for every state above sf in My whenever d is sufficiently large. We now state

and prove the lemma.

Lemma 4.3.9 (i) For every formula F of SPDL+U there erists dp € N such that F is
either finite or cofinite in My for all d > dF.

(ii) For every program of the form “while E do a” of SPDL+U there ezists dgo € N
such that for all d > dg o one of the following holds for My:

(P)(i): {s: RE,a(3) # {s}} is finite.

(P)(ii): there is a finite set Sg . of states of My such that for all but finitely many
s€S, REo(s) = SEa-

Proof: We use induction on the construction of formulas and programs to prove (i) and (ii)
simultaneously. We first consider the statement about formulas. There are four possible

cases:

CHAPTER 4. EXPRESSIVE POWER 46

Case 1: F = p for some p € . By the definition of V in M, we have V(F) = S,
hence F'is cofinite in My for d > dF = 0.

Case 2: F' = -~(G. By induction there exist dg € N such that G is either finite
or cofinite in M, for all d > dg. Set dp = dg, and let d > dp. F is finite in My if G is

cofinite, and cofinite if G is finite.

Case 3: F =GV H. Set dr = max{dg,dy} and let d > dp. If both G and H
are finite in My then so is F, otherwise at least one of G and H is cofinite in My, and

hence so is F.

Case 4: F = [a]G. We show that for every formula F of SPDL+U if there exists
dg such that F is either finite or cofinite in M for every d > dg, then for every subprogram
o of a there also exists d,qg such that [o']E is either finite or cofinite in M, for every

d > djong- The proof is by induction on the construction of programs.

Case 4.1: o’ € 1I, so @ is an atomic program. If &’ # 0,7 then Ry = @ and
E [']E for every formula E, and [¢']E is cofinite in My for d > 0. For o’ = o, T note that
for any state s both ¢ and T are transitions to a state at most d + 1 states away. Hence if
E is finite (cofinite) in M, then so are [¢]E and [r]E. Hence [@']E is finite or cofinite in

Md for d > d{a']E = dE

Case 4.2: o' = skip. Suppose E is finite or cofinite in My for every d > dg.
We know [= [skip]E < E for any formula E from the axiom schema DUM. Set dj,qg = dg
and let d > djg- Then [o/]E is finite (cofinite) in My if E is.

Case 4.3 o’ = abort. Since Raport = # we have = [abort]E for any formula E,
hence [@]E is cofinite in My for d > dj,1g = 0.

Case 4.4 o’ = ;7. We know = [3;7]E < [B][y]E for any formula E by the
axiom schema CoMP. Suppose E is finite or cofinite in My for every d > dg. From the
induction hypothesis we know for any formula E’ if there exists dgs such that E’ is either
finite or cofinite in Mgy for d > dps then there exist diggs,d[ygr € N such that [G]E’ is
either finite or cofinite in My for d > digg/, and [7]E’ is either finite or cofinite in My
for d > dy /. For E' = E we get d,)g € N such that [7]E is either finite or cofinite

CHAPTER 4. EXPRESSIVE POWER : 47

in Mgy for d 2 di,)g. Then for E' = [y]E we get dig),jg € N such that [§][y]E is either
finite or cofinite in My for d > dig),jg. Hence [3;7]F is either finite or cofinite in M for
d 2 dig;5iE = dig)py) -

Case 4.5 o’ = while H do . By induction there exist dy 53 € N such that for
all d > dy s either (P)(i) or (P)(ii) holds for M,4. Suppose E is finite or cofinite in My for
d > dg. Set djyg =max{dy,g,dg}. Then for d > dj,1g one of the following occurs:

Case 4.5.1: (P)(i) holds. Then {s : Ry g(s) # Rskip(s)} is finite, and there is
tu,s € N such that Ry g(sh) = Rekip(sh) = {s.} for every t > ty 5 and h < d + 1. Note
that {s? : t <ty 3} is finite. If E is finite (cofinite) in My then
{st :t>tyg,h <d+1,My,s, E E} is finite (cofinite). It follows that
{st :t>typg,h <d+1,Mq, s} E [while Hdo B|E} is finite (cofinite) and so [/]E is
finite (cofinite) in Mg.

Case 4.5.2: (P)(ii) holds. Then there is a finite set Sy g of states of My such
that for all but finitely many s € S, Ry g(s) = Swps. Hence there is ty s such that
Ry p(st) = Syp for every t > typ and h < d + 1. Again note that {s} : t < ty g} is
finite. If M, s = E for every s € S(H,3) then M, s, |= [while E do S]E for every state
sh such that t > tys and h < d + 1, and [@']E is cofinite in M,. Otherwise there is a
state s € S(H,B) such that M,s & E, and in this case M, st = ~[while E do S]E for
every state s} such that £ > tg 5 and h < d + 1, and [@]E is finite in M.

Case 4.6: o’ = if H then (8 else y. From the axiom schema CoND we know
E [if H then § else 7]E — ((H — [B]E)A (=H — [y]E)) for any formula E. Suppose E
is finite in My for sufficiently large d. By the induction hypothesis for Case 4, [5]F and
[v] £ are also each either finite or cofinite in M, for sufficiently large d. Also by the main
induction hypothesis H (and hence —H) is also either finite or cofinite in M for sufficiently
large d. Set dj,g =max{digg,d|,|g,dn}. Then for d > di g, [if H then j else 7]E is

either finite or cofinite in My.

Case 4.7: o/ = fUy. We know [BU~Y]E « ([B]E A []E) for every formula E
by the axiom schema ALT. Suppose E is finite or cofinite in M, for sufficiently large d.

By the induction hypothesis [3]E and [y]E are also each either finite or cofinite in My for

CHAPTER 4. EXPRESSIVE POWER 48

sufficiently large d, hence so is ([8]E A [y]E) = [¢/]E.

We now prove the statement about while-programs. Given a program of the form
while E do a, we consider the normal form of the program ¢, ay = $; U...U (8, where
B; = Y13+ 37im, for each j (1 < j < n), and each v;; is either an atomic program, a test,
or a program of the form “while F do §”.

For each j (1 < j < n) we define the following:

T;

{F : either F? =v;; or - F? = 4;; for some i,1 < ¢ < m;}

dr, = max{dr:F €T,}.

J

We can now define

T UanTj

dr = max{dr,:1<j< n}
If none of the v;;’s are tests then set dr = 0.
If 4ji is the program while F' do é then by induction there exists dps € N such that

for all d > dps either (P)(i) or (P)(ii) holds in M. If some 7;; is a while-program then we

can define the following

W;

{(while F do §): v;; = (while F do 6) for some i, 1 < i < mj}
max{dr;s : (while F do §) € W;}.

dWJ
We can now define

w

Uj<n W

dw = max{dw,:1 <j<n}

Otherwise if no v;; is a while-program then set dw = 0.
Each 3; is a sequence of atomic programs, tests and while-programs. As R, = 0 for
every 7 ¢ {0, 7}, each 3; with non-aborting executions is a sequence of occurrences of o, 7,

tests and while-programs. Let f; be the greatest number of times o occurs consecutively

CHAPTER 4. EXPRESSIVE POWER 49

in 3;, interspersed with tests and while-programs but not with any occurrences of 7. Let
fo = max{fj : 1 < j < n}. By the induction hypothesis for E there exists dg € N such
that E is either finite or cofinite in My for every d > dg. Set

dE,a = max{dEadTydW72fa+1}

Let d > dg be fixed. Then each formula F € T is either finite or cofinite in Mg,
E is also either finite or cofinite in My, and either P(i) or P(ii) holds for My for every
while-program in W. Let t be such that E, and every F' € T, are either true in every state
st with t > ¢, or false in every state s}, with ¢ > #, and for every while-program in W either
Rrps(st) = {si} for every state st with t > {, or Rrs(st) = S for every state st with
t >t Set tEo = t + 1. Then for every d > dg o, each test occuring in one of the B;’s is
either equivalent to skip in every state s} with t > tg, — 1, and h < d + 1, or equivalent
to abort in every state s{ witht > tg, — 1, and h < d+ 1. Every while-program is either
equivalent to skip in every state sﬁl witht > tgo —1,and h < d+ 1, or a transition to

a state below ng"‘ in every state s, with t > tgo — 1, and h < d + 1. Hence for each

tE.a

®* or some state above s;”* there is a

G; which has non-aborting executions in state 3:,
sequence of occurences of o, 7, skip and while-programs for which (P)(ii) holds, such that

a

. . tEo
any execution of 3; in or above state So'® is equivalent to an execution of the concatenation

of this sequence until a state below s;=° is reached.
We need to show that (P)(i) or (P)(ii) holds for while £ do a in M . We consider two

cases:

Case 1: E is finite in My. Then My, s} |E ~E forevery t > tg,and h < d+1,
so from the definition of Rwhile £ do « We have Rg,(sh) = {s}} for every t > tg, and
h < d+ 1, and (P)(i) holds for M.

Case 2: FE is cofinite in M,. For every t > tg, —1and h < d+ 1 we have
M, st | E, and each g, is equivalent at s} to a sequence of occurences of o, T and programs
of the form “while F do 6” as described above. Suppose for some fixed ¢ > tg, and
h' < d+1 that sﬁ:,Rwhile E do o8’ Where s’ is a state in M. We show that s} Rwhile E do oS’

for every t > tg o, and h < d+ 1.

CHAPTER 4. EXPRESSIVE POWER 50

Figure 4.4: The buffer zone

a

We consider the section of My between states s;ﬁ_'l_l and s:)E”_l, shown in Figure 4.4.
We call this the buffer zone. As Sf,’wahile E do oS’ there is a sequence f81,..., 3,k such
that sﬁl',Rg,l;...;gJ,‘s’, and we know M, s’ = =F, so s’ must be below state séE"’_l. For each
program “while F' do 6” which occurs in one of the §;’s either condition (P)(i) or (P)(ii)

holds for My for every state .sﬁl with ¢ > tg, — 1 and A < d + 1. We consider 2 cases:

Case 2.1: no program of the form “while F' do é” for which (P)(ii) holds occurs

in any of 8;1,..., Bk, or the system is at a state below s:f"’—l when the first such program
occurs.
By the choice of dg , and tg,q, for each state in the buffer zone the execution of each g; is
equivalent (until a state below s:,E"'_l is reached) to a sequence of occurrences of ¢ and 7
as described above, and My, SZE’C'—I E E for every h < d+ 1. Also 33:' is above the buffer
zone and s’ is below it, so the program f;1;... ;6 has transitions through this section.
Further, it follows from the structure of My that every state between sﬁ:, and s’ (which
includes every state in the buffer zone) must be visited.

We make the following observations:

Observation 1: For every t > tg , —1 no program f3; is a transition from a state
above s} to a state below s;.

Justification: To reach a state below sf, from a state above s), we must have a
program with a sequence of d consecutive occurrences of 0. As we chose dg o > 2f, + 1
none of the programs 8;, 1 < j < n, satisfy this condition.

Observation 2: there is a program [which is equivalent to a sequence of oc-

currences of o when executed in any state s} with ¢ > tg, — 1 and h < d + 1 (provided

CHAPTER 4. EXPRESSIVE POWER 51

tga-l .
no state below s,”° " is reached).

Justification: Suppose not. Every occurence of T at a state SZE"’—I for0O< h<d

. tga—1 . .
forces a transition back to sdi"l’ , and as we chose dg o > 2f, + 1 if every 3, contains an

tg,a—1 tpa—1
occurence of T then we can never reach state s,>° " (or below) from a state above s,°°" .
This is a contradiction, as the program f3;1;... ; B;x reaches a state below .s0 ~ 1 from

-1
a state above sdE -

Observation 3: There is a program §; with an odd number of occurrences of 7.

Justification: Consider a program J; in the sequence 3;1;. .. ; Bjk, such that the

tg,a—1
system is in or above state 3d+1 ! before executing 3] and in a state below 3d+1 after

-1 .
executing 3;. The ﬁrst occurence of 7 in this program must occur at state sdi‘l’ , as if

o

it occured above 3d+'1 ! then there would be a transition to 3d+’1 and, by Observation 1,

tEa—1 . ‘s
B; couldn’t rea.ch a state below 30 = sdi‘l’ . So the first occurence of 7 is a transition

tEa

from s d 1 tos d . Now suppose there is a second occurence of 7. This must cause

a transition back to sdi‘l’_l (by the choice of dg o > 2f, + 1) and the system will stay in

this state until a third occurrence of 7, which must happen as 3] ends in a state below

tEa—

Sdi1 Clea.rly B] must contain an odd number of occurences of 7. Set §; = By.

Observation 4: There must be a state 32’}3,"’_1, 0 < h” < d such that

tE,a—1 /
Shua Rwhile E do a$ -
-1

Justlﬁcatlon The final state reached by the program f; is below Py d i1 and
must be above s by Observation 1. Let sif," denote this state. Clearly
t a™
$:2° 7 Ryhile £ do a¥'-

Observation 5: For every t > tg o and h < d+1 there is a program o, which is

. . . a1
a concatenation of a finite sequence of programs B; (1 < j < n) such that s} Rq, , 3 ;ﬁ

Justification: Set n =t — tg o + 1. Define a; = ((Br)%; 8™
Intuitively the program a4 is the following: repeat By enough (at most d) times to reach
state s§, then use B to reach a state s 1 Repeat this procedure to reach sh =2, then si 3
and so on until state 3 F is reached. Repeating B; another d times we reach 30 Eo then

a1
B will reach s h,,’

Hence for every t > tg, and h < d + 1 there is program oy such that

tg o—1 . . .
sﬁlRat hshE 7" Rwhile E do o8’ and as a;p is a the concatenation of a finite sequence of

CHAPTER 4. EXPRESSIVE POWER : 52

programs 3; (1 < j < n) it follows that st Rwhile E do ', as required.

Thus there is a set of states S(E, @) such that for every ¢t > g, and h < d + 1,

REpo(sl) = S(E,a)in My. As each state sin S(E, a) is below s:f"'_l, and there are only
finitely many states below sff"'-l, then S(E, a) must be finite and (P)(ii) holds for M.

Case 2.2: there is a while-program in 8;i;...; §;x for which (P)(ii) holds and
which is first reached at a state above s:,E"’—l. Let “while F do 6" be the first such program
to occur, and suppose it occurs in 3;, when the system is in state sﬁ:,', for some t" > tg , — 1
and A" < d+ 1. Let k be such that ;4 is the first occurrence of “while F do §” in §;. Set
v = %15 3%ik-1 and Y = Yikg15. .05 Yimg» 50 Bi = 7’5 7ik; 7"+ By induction there is a
finite set of states S(F,6) such that S}(F,6) = S(F,6) foreveryt >tg,—1and h < d+1.
In particular S¢,(F,6) = S(F,6). As st Rwhile E do o8 We must have sRwhile E do o5’ for

some s € S(F,8), and there is a state s” such that sR,»s” Rwhile E do o5’

We now consider a general state st in My, where t > tg, and h < d + 1. At this state
g h)
v’ is equivalent to a sequence of occurrences of o and 7, and can only reach states above

tE’a—l

t -
t E,a
X (as sy, is above s,

! and, by Observation 1 proved for the base case, none of the
B;’s can be a transition from a state above sZE"’_I to a state below s:,E"‘—I). So there is
a state s, such that s Rst, and st, is above s§82~1 | which means S (F,6) = S(F,6).
In particular sﬁ:,l,RwEne F do §8, Where s is as above, so sR,s"Rwhile E do o8- Hence
st Ry sty Rwhile F do §5R7s" Rwhile E do o8, 50 84 R, Rwhile E do o', Which yields

st Rwhile E do o8’ Which is what was required. Hence there is a set of states S(E,a) such
that S}(E,a) = S(E,a) for every t > tg o and h < d + 1. Again we observe that there are
only finitely many states below s:f"‘—l so S(E, @) must be finite, and (P)(ii) holds.

0

Lemma 4.3.10 There is a formula of PDL which cannot be ezpressed in SPDL+U.

Proof: 1t follows from Lemma 4.3.9 that for every formula F of SPDL+U there is a d such
that either V(F) or V(~F) is finite in M,. We showed in Lemma 4.3.6 that there is a

CHAPTER 4. EXPRESSIVE POWER 53

formula G of PDL such that both V(G) and V(~G) are infinite in M, for every d € N,
hence G is a formula of PDL which cannot be expressed in SPDL+U. O

We have now proved the following theorem:
Theorem 4.3.11 PDL has greater ezpressive power than SPDL+U

Hence adding the non-deterministic operator U to SPDL does not give expressive power
equivalent to that of PDL. In order to get expressive poWer equivalent to PDL we must add

the highly non-deterministic * operator.

Bibliography

[1] FiscHER, M.J. AND LADNER, R.E. Propositional modal logic of programs, Proceed-
ings of the 9th Annual ACM Symposium on Theory of Computing (1977),
pp. 286-294.

(2] GoLDBLATT, ROBERT, Axiomatising the Logic of Computer Programming,
Springer-Verlag, Berlin Heidelberg, 1982.

[3] GoLpBLATT, ROBERT, The semantics of Hoare’s iteration rule, Studia Logica 41
(1982), pp. 141-158.

[4] GoLpBLATT, ROBERT, Logics of Time and Computation, Centre for the Study of

Language and Information, Stanford, 1992.

[5] HALPERN, J.Y. AND REIF, J.H., The propositional dynamic logic of deterministic,
well-structured programs, Proceedings of the 22nd Annual IEEE Symposium
on Foundations of Computer Science (1981), pp. 322-334.

[6] HAREL, D. Dynamic logic, Handbook of Philosophical Logic Vol. 2, Gabbay, D.
and Guenthner, F. eds, Reidel, Dordrecht, 1984, pp. 497-604.

[7] HugHEes, G.E. AND CRESSWELL, M.J., An Introduction to Modal Logic, Rout-
ledge, London, 1968.

[8] HuGHES, G.E. AND CRESSWELL, M.J., A Companion to Modal Logic, Methuen,
London, 1984.

54

BIBLIOGRAPHY 55

[9] PraTT, V.R., Semantical considerations on Floyd-Hoare logic, Proceedings of
17th Annual IEEE Symposium in Foundations of Computer Science (1976),
pp- 109-121..

[10] WiLM, ANDREAS, Determinism and non-determinism in PDL, Theoretical Com-
puter Science 87 (1991), pp. 189-202.

