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Abstract 

The thesis is concerned with the question of characterizing those computably enumerable (c.e.) 

classes of computably enumerable sets which have a computable enumeration without repetition 

(an injective enumeration). This problem can be traced back to 1958, when Friedberg proved that 

the class of all computably enumerable sets can be injectively enumerated. We go beyond the scope 

of the literature by extending the study to the problem of characterizing the c.e. classes which are 

c.e. with a bounded number of repetitions and with finite repetitions. 

An investigation of the question restricted to classes of cofinite sets leads to a satisfying answer 

in a special case but demonstrates the difficulties of the general problem. 

The property of a class of being c.e. with at most finite repetitions is shown to behave more 

naturally than injective enumerability. We prove an extension theorem with a characterization as a 

corollary. We also show that the corresponding statement does not hold for the property of being 

c.e. with bounded repetitions. 

By fixing an enumeration C of all computably enumerable classes it is possible to define index 

sets corresponding to properties of such classes. The index sets related to problems of enumerability 

with various constraints on the number of repetitions are shown to be complete at their natural level 

in the Arithmetical Hierarchy. For example 

{ e  : de) has a computable enumeration without repetition) 

is &-complete, and 

{ e  : de) has a computable enumeration with finite repetitions) 
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Chapter 1 

Introduction 

Consider a computer program that runs forever, possibly using an infinite amount of memory, and 

generating a sequence of infinitely many numbers. The set of numbers enumerated by the program 

is called computably enumerable. It is easy to alter the program so that the same numbers are enu- 

merated without repetitions. The program is modified so that it maintains an internal list of the 

numbers generated so far. When a new number is generated it is written to output only if it has not 

already appeared. 

Now consider a computer program that generates injinitely many sequences of numbers - the 

program generates infinitely many pairs of numbers and we understand that the first number of a 

pair is to be added to the sequence specified by the second number of the pair. We form a set from 

each of these sequences and say that the program enumerates the sequence of these sets. We form 

a class from all the sets and say that the program computably enumerates this class. The class is 

said to be computably enumerable. A basic result of recursion theory is that not all such classes are 

computably enumerable without repetitions. 

The simplest example of a class that can be enumerated without repetitions is the class of all 

singletons {{x) : x E w). The simplest example of a computably enumerable class that cannot be 

enumerated without repetitions is 

{{2x,2x + 1) : x E A) U ((2x1, (22 + 1) : x $ A), 
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where A is a computably enumerable set whose complement w - A is not computably enumer- 

able. This class is computably enumerable1 because A is. It is not computably enumerable without 

repetitions because otherwise w - A would be computably en~rnerable.~ 

This thesis is concerned with one of the classical questions of recursion theory: which com- 

putably enumerable classes can be computably enumerated without repetitions? 

1 .  Outline of the thesis 

The known results regarding the subject of this thesis can be divided into two parts. One part con- 

sists of a variety of sufficient conditions for a class to be computably enumerable without repeti- 

tions. The second part consists of a collection of computably enumerable classes which are not 

computably enumerable without repetitions. After fixing the notation in the next section we will 

present both parts in Sections 1.3 and 1.4. The main difficulty of the characterization problem is the 

lack of suitable necessary conditions on classes with a computable enumeration without repetitions. 

We discuss this in Section 1.5. Section 1.6 deals with connections of injective enumerations to other 

areas of computability theory. 

Let us define a class to be n-computably enumerable, w-computably enumerable if it has a com- 

putable enumeration in which each set occurs at most n times, finitely many times, respectively. 

In Section 1.4 it will be seen that there are many cases with respect to the number of repetitions 

required in a computable enumeration of a computably enumerable class: 

1. For every number n > 1 there are (n + 1)-computably enumerable classes which are not 

n-computably enumerable. 

2. There are classes which are not n-computably enumerable for any n but are w-computably 

enumerable. 

3. There are computably enumerable classes which are not w-computably enumerable - in every 

computable enumeration of such a class some set has to occur infinitely often. 

' k t  Vz, be (22) or {2x,2x + 1) according as x @ A or not and Vz,+l be (2x + 1) or (22 + 1,221 according as 
22 + 1 @ A or not. The class then is equal to {Vo, Vl, Vz, . . . ). 

2~uppose there is a computable enumeration of this class with no repetitions. Then x is in w - A if and only if 2x and 
22 + 1 are enumerated in different sets of this enumeration. Hence w - A is computably enumerable, contradiction. 
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These results suggest that the property of a class to be computably enumerable without repeti- 

tions should be studied within the hierarchy X. At the bottom of X are the 1-computably enumer- 

able classes, followed by the 2-computably enumerable classes etc. and at the top are the classes 

which have computable enumerations with at most finite repetitions. For each of these properties it 

would be desirable to have a characterization. More specifically, we are interested in a characteriza- 

tion of the 1-computably enumerable classes which naturally generalizes across the hierarchy. 

The results of this thesis fall into four groups. In Chapter 2 we roughly establish the form of 

the desired characterizations. In particular, we show that a first order characterization of the prop- 

erty "n-computably enumerable" in terms of computable predicates should be an existential prop- 

erty with four quantifier type alternations. It should be of the form 3V3V3R where 3 0  means 

existential (universal) quantification, and R is a computable predicate. Then we show that a char- 

acterization of the property "w-cornputably enumerable" should be an existential property with five 

quantifier type alternations, i.e. of the form 3V3V3VR. 

The characterization problem for classes of finite sets has found a solution due to Lachlan [15] 

(see Theorem 1.8). The restriction to classes of cofinite sets is studied in Chapter 3 as the next sim- 

plest case. We will construct three c.e. classes of cofinite sets with almost the same structure, two 

of which are 1-computably enumerable and the other not. This demonstrates the difficulties of the 

characterization problem. We also study a natural necessary property of 1-computably enumerable 

classes. It is sufficient for 1-computable enumerability in some cases, but fails in general. On the 

other hand, for classes with a designated bound on the co-cardinality we obtain a strong characteri- 

zation. 

The property of being w-computably enumerable turns out to behave more naturally than the 

properties "n-computably enumerable" with finite n. Chapter 4 presents an extension theorem for 

this property: the w-computable enumerability of a class A is shown to imply the w-computable 

enumerability for any c.e. class C > A, provided C and A stand in a certain relation to each other. 

As a corollary we obtain a characterization of the w-computably enumerable classes in terms of ex- 

istence of a winning strategy for a certain game. We show that the natural analogue of this theorem 

fails when n is finite. 
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1.2 Notation and definitions 

We follow the standard notation of the literature on recursion theory, as can be found in [29, 221. 

The set of natural numbers is denoted by w. Let cp be a Godel-numbering of the class of one place 

computable partial functions, and let Wi = Rng(cpi) be the i-th c.e. set. A class C of sets of natural 

numbers is called computably enumerable (c.e.), if its members are uniformly computably enumer- 

able; this means there is a computable function f such that {Wf(i) : i E w) = C. Equivalent 

definitions are: 

1. There is a computable partial binary function a such that {Rng(Xs.a(i, s))  : i E w) = C. 

Such a function a is then called an enumeration of C and ai := Rng(Xn.a(i, n)), the i-th set 

of the enumeration. 

2. There is an array (vt)),,,, of finite sets, such that the ternary predicate x E v i )  is com- 

putable and {Us,, di) : i E w) = C. 

An enumeration is called injective if for different indices i, j E w the i-th and j-th set of the enu- 

meration are different. Thus only infinite classes can have an injective enumeration. 

A set A is said to be repeated x times by the enumeration a if the set {i : ai = A) has cardinality 

x (x might be infinite). A computable enumeration a witnesses that A is n-c.e. (w-c.e.) if {i : ai = 

A) has cardinality at most n (is finite) for each A E A. 

We use the following notations 

the set of natural numbers 

the class of computable partial n-place functions 

the class of computable (total) n-place functions 

the partial function f is defined at n,  not defined at n, respectively 

a Godel-numbering of PI,  fixed throughout the thesis 

the i-th c.e. set Rng(cpi) 

the class of all c.e. sets 

the set W,e(i). If pe(i) r, then a!e) = 0 
the class {ale) : i E w) 
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fixed computable bijections between wn and w 

xn, where x = (xl, . . . , xn, . . . , x,) (m being clear from the context). 

theset{(n,a) : a ~ A ) , n ~ w , A & w  

theset{(n,m,a) : a E A ) , n , m € w , A C w  

the set { X ~ ( ~ Y ) ( ( Y , X )  E 4 1  
the set { x I ( ~ Y ,  Z)((Y, z, X)  E A)) 

the canonical enumeration of the class of finite sets of numbers, 

such that {Di : i E w) = { A  : A Cfi, w) 

the cardinality of A 

the power set of A 

the maximum of the set A. We let max(0) = -1 

these tAn(0 ,  ... ,x-1) 

the set of numbers enumerated in A after performing 

s steps of its enumeration 

the smallest initial segment of w containing A 

t h e s e t { a + n : a ~ A )  

the class of sets A of natural numbers for which there is a computable 

predicate R, such that 

where Q denotes existential or universal quantification, according as n 

is odd or even 
the class of sets A of natural numbers for which there is a computable 

predicate R, such that 

where Q denotes existential or universal quantification, according as n 

is even or odd 
the set of classes C {X & w : Iw - XI 5 n)  

(3 E Rl)(vi)(ai = PT(i)) 

the upper semilattice ({[ai],, : a enumerates C), I ,) .  
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( R ( ~ ) ) ~ ~ ~  is a computable enumeration of all computable enumerations of c.e. classes of c.e. subsets 

of w. ( ~ ( ~ ) ) e ~ ~  is a computable enumeration of all c.e. classes of c.e. subsets of w. 

1.3 Sufficient conditions for injective enumerability 

The study of the property of being injectively enumerable began in 1958 when Friedberg [2, Theo- 

rem 31 proved that W, the class of all c.e. sets, can be computably enumerated without repetitions. 

His methods are fundamental for the proofs of many of the results of this section and also of this 

thesis. We give a short description of his approach so that the reader can understand the context of 

the sufficient conditions to follow. 

Essentially, an injective enumeration $ of a given class A is constructed by copying the sets ai 

of a given computable enumeration a of this class. In Friedberg's construction, a! is chosen so that 

it enumerates W. The enumeration $ has to satisfy: 

1. (VA E A)(3i)(qi = A) and 

The strategy to satisfy the first requirement is to assign a number x to every number i. The number 

x is called a follower of i. This is to designate the intention of enumerating the members of ai in 

$,. It is possible to monitor the enumeration of ai and each time a number is enumerated in ai ,  it 

also is enumerated in $J,. 

Of course, this action ignores the second requirement. If a!( = air, then i and i' should not 

both have followers which last to the end of the construction. Therefore reassignment of certain 

followers during the course of the construction will certainly be necessary. The conflict between the 

two requirements is resolved by ensuring that only minimal a-indices acquire permanent followers. 

The smallest index of a set in an enumeration is called a minimal index. A number y is called a 

p e m n e n t  follower of i, if y is assigned to be the follower of i at some stage of the construction, 

and does not change this status at later stages. The set of minimal indices of an enumeration is C: 

in general and therefore not accessible directly. 

If i is a minimal index, then there is a number I ,  such that ai 11 # a!: 11 for all if < i. Whenever 

a follower is assigned to a number i, the value of such a number 1 is guessed in the variable g(i). 
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At any stage s it can occur that cqs rg(i) = (;Y~,,~ tg(i)  for some i' < i .  In this case we release the 

present follower of i  and set up a new follower together with the higher guess g(i) := g(i) + 1 .  If 

i  is not a minimal index, every follower of i  is released, and so only minimal indices may receive 

permanent followers. 

The problem is now reduced to determining a strategy for the released followers. We want to 

satisfy all requirements P( i ) ,  Q ( x )  and R(x):  

P ( i ) .  If i  is a minimal index, then i  has a permanent follower or cri = +, where x is a 

released follower. 

Q(x) .  If x is a released follower, then +, E A. 

R(x) .  I f  y < x then $, # +,. 

The most important feature of Friedberg's method is to order these requirements linearly, for exam- 

ple: 

P(0)  < Q(0) < R(0) < P ( l )  < Q(1) < R ( l )  < P(2) < Q(2) < R(2) < . . . . 

If in the course of the construction a conflict arises between two requirements then the lesser one in 

this order will prevail, and the other one will be injured. If we can arrange that such injuries occur 

only jinitely often for each requirement, then the overall requirements of the construction will be 

satisfied. This approach has been called the jinite injury priority method and is fundamental for all 

constructions in the area of this thesis. Moreover, it, together with sophisticated generalizations, is 

the central method of all of modem recursion theory. 

In some cases, however, the requirements are not problematic. For example, if we start out with 

an enumeration for which the set of minimal indices is c.e., then the simple strategy of only assign- 

ing followers to the minimal indices is sufficient. For instance, the minimal indices of any com- 

putable enumeration of a class of graphs of computable functions form a computably enumerable 

set. Therefore all infinite c.e. classes of graphs of computable functions are injectively enumerable. 

Friedberg's original construction has been refined and the reader can see in [22, p 2301 how to 

treat the problem of released followers for the class of all c.e. sek3  In 1965, Pour-El and Putnam 

[27, Theorem 11 show that Friedberg's construction can be viewed as an embedding theorem: any 

3~ummer has given the easiest proof of Friedberg's result, and we describe it on page 11. 
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infinite c.e. class has an extension by finite sets only, which is injectively enumerable. As the class 

of all c.e. sets is itself c.e. and already contains all finite sets, it is injectively enumerable. In partic- 

ular they obtain the following theorem by making a slight change in Friedberg's construction. 

Theorem 1.1 (Pour-El, Putnam) Let A be an infinite c. e. class and S an infinite c. e. set. Then 

there is an injectively enumerable class B 2 A such that 

1 .  X E 23 - A + X isfinite and 

2. X E B - A  + ( 3 Y E A ) ( X g Y U S ) .  

A corollary of this theorem yields a sufficient condition for a class to have an injective enumeration: 

Corollary 1.2 (Pour-El, Putnam) Let A be an infinite c.e. class. I f  every finite subset of UAEA A 

is a member of A, then A is injectively enumerable. 

Pro05 Choose S = UAEA A.o 

This covers the c.e. classes containing all finite sets. For example, it follows that the class of all 

computable sets is injectively enumerable. Pour-El and Howard [26, Theorem 21 give the following 

structural criterion for injective enumerability in 1964. The condition asks for a computable partial 

function to provide information about the structure of a given class. 

Definition 1.3 [Pour-El, Howard] Let A C 2'" and denote the class of all finite subsets of members 

of A by 3. A function h : 3 -+ w is called a heightfunction for A if it satisfies the following three 

conditions: 

1. h is monotonic: A G B E 3 + h(A) 5 h(B) .  

2. h satisfies the ascending chain condition: for any sequence A. G Al C A2 G . - of finite 

subsets of a member of A the sequence h(Ao) 5 h(A1) 5 h(A2) 5 . of associated 

heights is eventually constant. 

3. For any A E F there is B > A in F such that h(A) # h(B).  

We identify a function h : F -+ w with the partial function h* : w -+ w defined by h*(i) := h(Di) .  
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Theorem 1.4 (Pour-El, Howard) A c.e. class with a computable partial height function is injec- 

tively enumerable. 

From Theorem 1.4, Pour-El and Howard obtain the following sufficient conditions for injective enu- 

merability [26, Corollary 1,3,4] : 

Corollary 1.5 (Pour-El, Howard) Let A be an infinite c.e. class. 

1. If A consists only of finite sets and contains no member maximal with respect to inclusion, 

then A is injectively enumerable. 

2. If A does not contain the set w, but every proper initial segment of w has an extension in d, 

then A is injectively enumerable. 

3. I fA is closed underfinite unions but does not contain UAEA A, then A is injectively enumer- 

able. 

For 1, use the height function h(i) := 1 Di 1 and for 2 the height function 

where max(0) = 0. The third part follows from the second by constructing a computable bijection 

between UAEA A and w. A more involved application of Theorem 1.4 can be found in Chapter 3, 

Theorem 3.7. 

Theorem 1.4 was substantially strengthened by Lachlan in 1966. He defines [15, Definition 11 

the property (E) for c.e. classes. Let 3i denote the class {Wj : j E Di). A c.e. class A has the 

property (E) if there is a binary computable partial function f E Pz, such that if 3i G A, then 

f (i, j)  is defined if and only if the class 

is not empty, and then f (i, j) is an Q-index of this class. In [15, Theorem 1, Lemma 51 and [16] 

Lachlan shows: 

Theorem 1.6 (Lachlan) An infinite c.e. class has the property (E) if and only ifgiven afinite sub- 

class 3 & A the class A - 3 is injectively enumerable uniformly in 3. Any c.e. class that has a 

computable partial height function satisfies (E). 
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A criterion similar to those listed in Corollary 1.5 is given by Marchenkov in [20, Theorem 21. 

Theorem 1.7 (Marchenkov) Let A be a c.e. class. Suppose there is a c.e. subclass B C A consist- 

ing of disjoint s-chains without maximal elements, such that every Jinite subset of a member of A 

has an extension in 23. Then A has an injective enumeration. 

All the conditions mentioned so far admit no obvious generalization to non-trivial sufficient con- 

ditions for n-computable enumerability or w-computable enumerability. The following two condi- 

tions do allow this, as they are both extension theorems of the form: if a class A has an injectively 

enumerable subclass 23 such that the pair (A, B) satisfies some property, then A is injectively enu- 

merable. 

The first one can be found in [15, Definition 21, and applies only to classes of finite sets. Lachlan 

defines the property (F) of c.e. classes. informally4, a c.e. class C has the property (F) if there is 

a winning strategy for Player 11 in the following game with up to w rounds. At round n, player I 

specifies a finite set Fn. Then player I1 either specifies a c.e. set Vn or does not specify any set. The 

game has n rounds if and only if Player 11 specifies a set in rounds n' < n. Player 11 wins under the 

following two conditions. 

1. If Vn is specified at round n, then Fn & Vn E C and Vn $? {V, : i < n}. 

2. Player 11 specifies a set at round n if and only if there exists V, Fn E V E C such that 

V $! {V, : i < n). 

Otherwise Player I wins. 

Condition (F) is necessary for injectively enumerable classes. From an injective enumeration a 

of C one can obtain a strategy as follows. Given finite sets Fl, . . . , Fn determine the smallest s, if 

any, such that 

a0,s IS,. . . ,as,, ts 

contains n extensions of Fl, . . . , Fn. At any stage of the search if an extension aj for a set Fi is 

found and j is not reserved, reserve j for i. If the search terminates, answer with the sequence of 

indices of ajo7 . . . , q,, where ji is the index reserved for i. In [15, Theorem 21 Lachlan shows: 

4~ fonnal definition is given on page 60. 
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Theorem 1.8 (Lachlan) An injinite c.e. class ofJinite sets is injectively enumerable ifand only i f  it 

satisfies (F). 

In Chapter 4 we show how this theorem can be seen as an extension theorem in the sense just de- 

scribed and generalize the property (F) and Theorem 1.8. 

Another sufficient condition for injective enumerability in the form of an extension theorem is 

given by Kumrner [7], [8, Extension Lemma] in 1989. 

Lemma 1.9 (Kummer) Let A be a c.e. class such that there are two disjoint c. e. subclasses A1, A2 

A which cover A and satisfy 

1. A2 is injectively enumerable and 

2. evely Jinite subset of a member of Al has injnitely many extensions in A2. 

Then A is injectively enumerable. 

The obvious generalization for n-computable enumerability also holds. The proof of this result is 

significantly simpler than the proofs of the other criteria. So it is remarkable that Kummer obtains 

Friedberg's theorem as an easy corollary [7, p 301, [8]. Choose 

A1 := { A  : A is c.e. and has even or infinite cardinality) 

and 

A2 := { A  : A is finite with odd cardinality). 

A1 and A2 cover W and satisfy the other requirements of Lemma 1.9 to yield an injective enumer- 

ation of W. 

In 1965, Malt'sev and Wolf [19,32] obtain the following criterion from a variation of Friedberg's 

construction. 
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Theorem 1.10 (Malt'sev,Wolf) Let A be a c.e. class. Ifthere is a canonically enumerable subclass 

3 offinite sets such that 

1. every member of A is the limit of an increasing sequence of sets from F and 

2. every finite subset of a member of A has a proper extension in F, 

then A has an injective enumeration. 

Kummer [9, Theorem 61 contains the following generalization of this criterion: 

Theorem 1.11 (Kummer) I f  a c.e. class A has a canonically enumerable subclass F such that 

every finite subset of a member of A - .F has infinitely many extensions in F, then A is injectively 

enumerable. 

Friedberg's original result can be obtained from each of these criteria. In most cases the applica- 

tion is clear. Only Theorems 1.4 and 1.6 cannot be applied to the class of all c.e. sets directly. A 

class containing the union of its members cannot have a height function and the classes W - {Wi) 

are not c.e. uniformly in i. However, W - { w )  is easily seen to be c.e. and this class falls under 

Corollary 1.5. 

1.4 Classes without injective enumerations 

At the time of Friedberg's construction of an injective enumeration of the class of all c.e. sets, it 

was not clear whether all c.e. classes have injective enumerations or not - see the review [25] of 

Friedberg's paper [2]. The fact that there are c.e. classes without injective enumeration, whereas 

all infinite c.e. sets have computable enumerations without repetition, becomes plausible when one 

considers that equivalence of c.e. sets, i.e. the binary predicate Wi = Wj, is II! and that equivalence 

of numbers, i.e. the predicate i = j, is clearly decidable. 

The first examples of classes which have no injective enumeration can be found in [27, Theo- 

rem 21. This paper also introduces the concept of n-computable enumerability for c.e. classes. Fix 

n > 1 and let A be a c.e. set which is not computable. Define 
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:= {{ni), {ni + 1), . . . , {ni + (n - 1)) : i 6 A) U 

{{ni, n i  + 1, .  . . , ni  + (n - 1)) : i E A). 

is easily seen to be n-c.e. Given an (n - 1)-computable enumeration of one could compute 

A -therefore is not (n - 1)-c.e. Another example is the class 

which is computably enumerable, but not with at most finite repetitions [27, Theorem 41. Suppose 

there is a computable enumeration y of this class in which the set w appears finitely often. Then 

is computably enumerable, contradiction. 

For the upper end of the hierarchy 7-f we have the following three examples from [27]. By com- 

bining the classes A, n > 1 we obtain a class of finite sets which is w-c.e. but not n-c.e. for any n 

[27, Theorem 31. Define 

d := U {(n, A) : A E A). 
n> 1 

This class is c.e. with finite repetitions because the classes are n-c.e. uniformly in n. It is not 

n-c.e. itself because at least one of its components is not. 

Let & be a ~2-predicate which is not II;. Then the class 

is computably enumerable but not with at most finite repetitions [27, Theorem 61. Any computable 

enumeration of this class must repeat at least one set infinitely often. Given any member, however, 

it is possible to computably enumerate the class such that this set is enumerated exactly once. This 

is because every member of the class is finite. For c.e. classes of infinite sets it is possible that 

any computable enumeration has to repeat every member infinitely often. In particular, Pour-El and 

Putnarn show [27, Theorem 6a] that every element of the c.e. class 

{ { j  : W j  = Wi is provable in Peano-Arithmetic) : i E wI5 

5 ~ e  omit a proper formalization. 
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is repeated infinitely often in every computable enumeration of the class. In 1966, Young [33, 

Corollary 11 constructs a c.e. class which does not have any proper infinite c.e. subclass. See [I] 

for further elaboration. 

The latest addition to this list is given by Kurnmer [8, Theorem 81. He constructs a c.e. class 

F of graphs of finite functions such that, for each i, F is missing the graph of at most one finite 

function with f (0) = i, and such that R1 U F is computably enumerable but not injectively. Note 

that F is injectively enumerable by Corollary 1.5 [lo, p 691. 

1.5 Necessary conditions for injective enurnerability 

The literature on the theory of c.e. classes does not contain any non-trivial necessary conditions for 

injective enumerability. In fact, there are not many notions defined for c.e. classes or computable 

enumerations of c.e. classes. However, there has been extensive study of the partial order 5, defined 

on the collection of all computable enumerations of a c.e. class C, see [17]. 

Definition 1.12 Two enumerations a, of a class A satisfy a <, P if there is a computable func- 

tion r such that ai = PTci) for all i E w. 

This relation is reflexive and transitive and so 

is an equivalence relation, which is compatible with 5,. The resulting partial order is called L(C). 

It forms an upper semilattice with supremum [a],, $ [PIE, defined as [y],, , where 

Injective enumerations have minimal equivalence 

if i is even, 

if i is odd. 

classes in this semilattice. Pour-El [24, Theo- 

rem 11 constructs two injective enumerations of W that are <,-incomparable, thus showing that 

L(W) is not a lattice. Khutoretskii [13, Corollary 21 shows that there are infinitely many pairwise 

<,-incomparable injective enumerations of W, thus showing L(W) is infinite. An enumeration P 
is called positive if the set {(i, j) : Pi = Pj) is c.e. and negative if the set {(i, j )  : Pi # &) is 
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c.e. An injective enumeration is both positive and negative, and positive enumerations are minimal 

in this partial order. 

Khutoretskii [14, Corollary 11 gives a criterion for a c.e. class to have countably many pairwise 

non-equivalent minimal computable enumerations, each of which is not equivalent to a positive one. 

This criterion is satisfied by W [14, Corollary 21. He also shows how to construct a positive enu- 

meration of W [14, Example 21 such that no injective enumeration is below it with respect to 5,. 

Every computable enumeration a of the class 

where A is c.e., is positive6 and therefore <,-minimal. Because ,B <, a for any computable 

enumerations7 a, p of dA all computable enumerations of AA are also maximal - IL(AA) I = 1. 

If A is c.e. and not computable, AA is not injectively enumerable. Thus the existence of a positive, 

minimal or maximal computable enumeration is not sufficient for injective enumerability. Indeed, 

the notions minimal, positive, and injective have little in common. 

Any class with a negative computable enumeration is injectively enumerable, because the mini- 

mal indices of such an enumeration form a computably enumerable set (see page 7). The notion of 

negative enumeration has the following generalization: 

Definition 1.13 An enumeration P is called negative mod x, where x E w U {w), if there is a c.e. set 

A of pairs (i, j) such that pi # pj implies (i, j) E A and I{j # i : (2, j) E A and pj = < x 
for every number i. 

Observe that a class is n-computably enumerable if and only if it has a computable enumeration 

which is negative mod n, and similarly for computable enumerability with at most finite repetitions. 

This does give an equivalent definition of n-computable enumerability, but a very weak one. 

Other simple necessary conditions for a c.e. class d to be injectively enumerable are 

1. Any subclass 23, such that A - 23 is finite, is c.e. 

2. A has infinitely many c.e. subclasses. 

6 ~ f  a enumerates A*, ai = aj if and only if a, n aj + 0. 
'set r ( i )  = ( ( ~ ( n ,  s))(a,,, n Pi,= # 0))~. 
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3. A has an injectively enumerable subclass. 

All of these conditions are satisfied, for example, by the c.e., non-injectively enumerable class AA, 

where A is a c.e., non-computable set. 

If we monitor an injective enumeration, we can generate a c.e. enumeration of the same class 

such that at any stage the present approximation to the enumeration is injective. We define 

Definition 1.14 A computable enumeration a is called approximately injective if for every s > 0, 

the finite sequence 

ao,s, q s ,  . . , as,s 

has no repetition. (We allow numbers greater than s to be enumerated at stage s) 

Any injectively enumerable class is approximately injectively enumerable. But, of course any c.e. class 

of infinite sets is also approximately injectively enumerable, and so this notion does not yield a suf- 

ficient condition. 

The failure of the necessary property (F) described in the previous section to be sufficient is 

discussed in Chapter 4. We investigate another necessary condition in Section 3.3. None of the 

sufficient conditions of the previous section is necessary, nor is their disjunction. 

However, it is possible to "generate" all injective enumerations, and thus all injectively enumer- 

able classes, in the following sense. From an injective enumeration a we can construct a computable 

function f E R1 such that 

For every i there is a stage s and a number 1 such that a+ tl = ai 11 # aj,t t l  for all t 2 s and j < i. 
For every s, determine the smallest t > s such that ao,t It,. . . , as,t It contains no repetition. Set 

f (s) = t. On the other hand, given an enumeration y and a computable function f we can construct 

an injective enumeration /3 as follows. I f  at stage s,  (*) is satisfied, let Pi,, = a+ 1s for all i < s. If 
at stage s, (*) is violated, enumerate in each Pi only one more number, namely i + s, and stop the 

enumeration of Pi for all i E w. 

Clearly, for any choice of computable enumerations a and computable functions f E R1, P is an 

injective enumeration. For an injective enumeration a and an appropriate choice of f we obtain that 
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ai = pi for all i. This gives an effective mapping from all pairs of computable enumerations of c.e. 

classes and computable partial functions into the class of computable enumerations of c.e. classes. 

Restricting the second argument to the computable functions the image is the class of all injective 

enumerations of c.e. classes. 

1.6 Related research 

The characterization problem has one restriction of special interest, namely to the classes of graphs 

of partial functions8. Friedberg's original construction can be easily changed to yield an injective 

enumeration of the class all computable partial functions [2, Corollary to Theorem 31. As in the 

general case, non-trivial necessary conditions are not known. A relevant sufficient criterion is given 

by Kummer [9, Theorem 51. 

Theorem 1.15 (Kummer) Let C = S U C be a c.e. class of functions, such that C 2 R1 and 

S PI. IfS is c.e. and there is a canonically enumerable subclass 3 S such that every f E S 

is the limit of an increasing sequence from 3, then C is injectively enumerable. 

At the end of Section 1.4 we already described Kurnmer's class R1 U F which does not have an 

injective enumeration. Owings extends Friedberg's result to metarecursion theory (see [28], also for 

definitions) in [23, Theorem 1,2]: 

Theorem 1.16 (Owings) There exists a meta-r.e. sequence S(a) (a < wl) such that for every 

metaxe. set W there is exactly one a for which W = S(a). 

Theorem 1.17 (Owings) There is no meta-r.e. sequence S(a) (a < w l )  of IT: sets such that for 

each IT! set A there is one and only one a for which A = S(a). 

In 1980, in [3, Corollary 11, Goncharov obtains: 

Theorem 1.18 For every k there is a c.e. class A such that A has exactly Ic injective enumerations 

(up to -,). 

 or this section, we identify partial functions and their graphs. 
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He applies this to show that there are partial orderings and groups [4, 51, having exactly k non- 

autoequivalent constructivizations. A constructivization of a partial order (D; so) is a surjective 

mapping 7r : w + D such that the set { (n, m) : ?r (n) ID T (m) : n, m E w )  is computable. Two 

constructivizations T ,  d are autoequivalent, if there exist computable functions f, g E R1 and an 

automorphism 1C, : D + D of P such that 7 ~ .  = 1C, o d o g and n o f = 1C, o d. Similarly for groups. 

Let us define two functions f, g : w + w to be isomorphic, if there is a bijection .n : w + w 

such that f = n. o g o .IT-'. They are called computably isomorphic, if such a .rr can be chosen 

computable. This defines a partition of the class of computable functions into equivalence classes 

of computably isomorphic functions. Using Theorem 1.18, Khusainov [6, Theorem 11 and Kumrner 

[ l  1, Theorem 51 show that for each k there is a computable function having exactly k computable 

isomorphism classes. More applications can be found in [ l  11. 



Chapter 2 

Index set classifications 

A set A is said to be cE-complete, if it is a cE-set, and every cE-set can be reduced to it. The latter 

is also expressed by saying that A is C:-hard. It means that for every CE-set B there is a com- 

putable function r such that x E B if and only if r(x) E A, for all x E w. A basic fact of recursion 

theory is that a CE-complete set cannot be in II;, II; or C; for any m < n. By formulating the 

definitions of the properties 'n-computable enumerability ' and 'w-computable enumerability' in the 

first order language of computable predicates it is easy to see that the index sets 

CE, := {e : de) is n-cornputably enumerable) 

and 

CE, := {e : de) is w-computably enumerable) 

are C: and c:, respectively. The predicate Wi = Wj is II! in general, but also c!, if Wi, Wj are 

finite sets. Therefore the index set 

CE? := {e : c ( ~ )  is an n-computably enumerable class of finite sets) 

is in c:. In this chapter we will show that these index sets are complete at their respective levels. 

Therefore there can be no first order definition in terms of computable predicates of these properties 

with a simpler prefix than that of the natural definition. In fact, the reductions r constructed for 

S E I$ (and C i  for the classes CE?) satisfy for all x the stronger statements 
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x E S + dT(") )  is injectively enumerable and 

x @ S + c ( ~ ( " ) )  is not n-c.e. 

The properties n-c.e. and w-c.e. differ at a "cross over point". The properties of computable 

enumerations "having at most n repetitions", "having at most finitely many repetitions" and "enu- 

merating C" (C is a fixed class1) are c!, It!, II;, respectively. Thus the level of CE,, n E w, in the 

Arithmetical Hierarchy is not determined by the complexity of expressing the boundedness of the 

repetitions, but by the complexity of expressing the property of enumerating a given class. For CE, 

it is the other way round. 

The classification of the index set CE1 was left open in [12], where it was shown that CE1 is 

xi-hard. This article also states an example of a property whose natural definition does not agree 

with the completeness-level of its index set. Recall that L(C) denotes the upper semilattice of the 

equivalence classes of computable enumerations of C .  From the natural definition 

{ e  : de) G R1 and L ( c ( ~ ) )  has a greatest element) 

is a Cg-set. But by a result of Marchenkov [21, Theorem 31, L(F)  does not possess a greatest 

element for any class of computable functions F with L(F) > 1. Therefore the index set is equal 

to 

{e  : de) R1 and I L ( c ( ~ ) ) ~  = 1) 

which is IIi-complete [12]. 

2.1 Overview of Chapter 2 

In the next section we construct a class which is not n-c.e. The construction can be easily adapted 

to show that CE, is IIi-hard. This is done in Section 2.3. Based on this we show the C$hardness 

of CE, in Section 2.42. The proof of the c!-completeness of the index sets C E ~  turns out to be 

much simpler and is discussed in Section 2.5. The last section is devoted to the c:-completeness of 

the index set CE,. 

'Sets { e  : c ( ~ )  = C) are not necessarily II2-complete - see [12]. 
 he construction for the case n = 1 can be found in [30]. 
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2.2 A non-n-c.e. class 

We define [a, b] := {0,2,. . . ,2a, 1 ,3, .  . . ,2b + I), osup(A) := sup{a : 2a + 1 E A) and 

esup(A) := sup{a : 2a E A).  Fix i E w. Let 

~ ( ~ 1  = {(i, w)) U {(i, [a, b]) : a, b E w). 

Then we can effectively enumerate, uniformly in i, a class A(') C J(') such that the conjunction of 

implies that di) repeats some set more than n times. From this condition it is clear that the c.e. union 

Ui,, A(" is not n-c.e. The idea is to let A(') be either J(') or J(') with one finite set deleted. To ob- 

tain A(" we begin to enumerate the whole class $4. We also begin examining the sets Q:), j E w. 

If we find distinct mo, . . . , m, such that 

~2~ n (i, W) # 0,. . . , R;' n (i, w) # 0 

then we modify our enumeration of A(') in such a way that, if one of 02~ !, (i, w )  is finite, then 

one of the sets (i, [a, b]) is left out of A('). Of course, matters are arranged so that, if all sets R;;, 

0 5 j 5 n are members of ~ ( ' 1 ,  then the set omitted is one of them. 

Formally we define three partial computable functions a, b, m E PI by the following construc- 

tion, during which mo, . . . , m, may become defined. 

Step s: 

1. If some mj, 0 5 j 5 n, is not defined, then do the following. Let j be the least such that m j  

is undefined. Determine the smallest x < s, if any, such that x # my,  j' < j and there is a 
('1 number (2, a) E O,,,. Define m j  := x. 

2. If mo, . . . , m, are all defined let m = m(s) E {mo, . . . , mn) be the smallest such that 
('1 0 s u ~ ( ( i 2 ~ , , ) . ~ )  is minimal. Define b(s) := osup((f2k~,).z) and a(s) := esup((k,,).2). 

End of construction. 

We verify the following lemmas. They will also be used in the following two sections. 
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Lemma 2.1 Suppose in the course of the construction mo, . . . , m, all become dejined and one of 

the sets Rki,  . . . , R E  isjinite. Then the limits lim, b(s) = b and lim, a(s) = a exist and there is 

a set A and an index m such that esup( A) = a, osup (A) = b and 0% = (i, A). 

Prooj By hypothesis the set 

0 := {0 E w : o = osup((Rk)).2) and m E {mo,. . . mn)) 

is not empty. Therefore there is a smallest m E {mo, . . . m,) such that osup((Rk)).2) = min(0). 
(4 It follows that lim, m(s) = m, lim, b(s) = osup((Rm ).2) and lim, a(s) = esup((Rk))..). For 

A = ( R % ) . ~  the conclusion is satisfied0 

Lemma 2.2 I f  the sequence (b(s)),,, corzverges, then lim, a(s) E w U {oo). Ifsome b(s) J then 

lim, b(s) E w U (00). 

(4 Prooj If (b(s)),,, converges then lim, m(s) = m exists. It follows that lim, a(s) = e s ~ p ( ( R ~ , , ) . ~ ) .  

If b(s) 1, then ml ,  . . . , m, become defined, and lim, b(s) = min{osup((RkL).2) : 0 5 z 5 n)).  

We define the class 

where 

(i, [a, b]) if for no s > so is a(s) = a and b(s) = b 

Aa,b,sO := 

(i, w) otherwise. 

By inspection, is computably enumerable uniformly in i. 

Lemma 2.3 Zf A ( ~ )  = di) r l ~ ( ~ )  and 

di) n {A c w : (gz ) ( ( i ,  z )  E A)) c ,@ 

then ~ ( ~ 1  repeats some set more than n times. 
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Pmo$ If the hypothesis holds, then eventually all mj, 0 5 j 5 n, are defined in the course of the 

construction of a and b. Suppose every set is enumerated at most n times by ~ ( ~ 1 .  Then one of the 

sets OK;, . . . , OK),, is finite. By Lemma 2.1 lirn, a(s)  = a and lirn, b(s) = b exist and (i, [a, b]) E 

di). From the definition of (i, [a, b] ) I$ So # di) fl 3 ( i ) ,  contradiction.o 

Now we can define the c.e. class 

and from the last lemma it follows that A is not n-c.e. 

2.3 CE, is II2-hard 

Let [A,  x]  denote the union of all sets [a, x] such that a E A. The class A can be extended to 

which by Kummer's Lemma 1.9 has an injective enumeration. To recall the statement of this lemma: 

a class 23 has an injective enumeration, if there is a partition of 23 into c.e. classes 231, 232 such that Dl 

is injectively enumerable and every finite subset of a set in B2 has infinitely many extensions in &. 

An index for an injective enumeration of 23 can be found uniformly in indices for an enumeration of 

232 and an injective enumeration of 231. 

Here the class { (i, [w , b] ) 1 i ,  b E w )  is injectively enumerable (uniformly in i )  and contains in- 

finitely many extensions of every finite subset of a member of A. Below we will demonstrate that 

the class 

( ~ ( 4  if W, is finite. 

is computably enumerable uniformly in i,  x. This allows us to show that CE, is IIi-hard as fol- 

lows. Let S be a IIi-set. We first find an adequate representation of S. We know that there is a C! 

predicate Q such that x E S if and only if (Vi) (Q (i, x) ) .  Form the predicate P(i ,  x )  : = (Vi' 5 

i ) (Q( i f , x ) ) .  If x E S then P( i , x )  for all i E w and if x I$ S then (3io)(Vi 2 io)(-P(i ,x)) .  By a 
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standard fact of recursion theory (e.g. [29, p 611) the bounded quantifier "(Vi' < i)" may be ignored 

in counting quantifier complexity and so P is a C: predicate like Q. Because the predicate "W, is 

infinite" is IIi-complete (see e.g. [29, p 66]), there is a function f E R3 such that if P ( i ,  z) then 

(3 j) (Wf (i,j,z) is infinite) and if l P ( i ,  x) then (Vj) (Wf (i,j,,) is finite). Then f satisfies 

k E S @ (Vi)(3j)(Wf (i,j,k) is infinite), and 

(Vj) (Wf (io,j,k) is finite) + (Vi 2 io) (Vj) (Wf (i, j,k) is finite) 

for all io E w . Define r E R1 by the SF-Theorem such that 

Suppose k E S. Then for all i there exists j such that Wf (i,j,k) is infinite, so 

which has an injective enumeration. For k (2 S we know that there is io such that Wf (i,j,k) is finite 

for all i > io and j E w . If c('(~)) is n-c.e. witnessed by o ( ~ ) ,  then without loss of generality 

i > io. But for i > io, 

c ( ~ ( ~ ) )  n {A 5 w : (3z)((i, z) E A)) = A ( ~ )  

and this implies that does not enumerate c('(~)) with at most n repetitions by 

Lemma 2.3. 

Lemma 2.4 The class ~ ( ~ 3 " )  as dejined above is cornputably enumerable uniformly in i, x. 

Pro05 For A w let Â  := {b : (3a)(a 2 b and a E A)) be the smallest initial segment of w 

containing A. Now define the following sets, using the functions a, b as defined earlier: 

(i, [@,, b]) if W,,,, # 0 and b(s) # b for all s > so ,  

Bb,so := 

(i, w) otherwise. 
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( (i ,  [ W x ,  b])  if 1 W s 0  1 > a(so)  and a ( s )  = a(so)  and 

b(s)  = b(so) for all s > so, 

( (i, [ { n  : (3 > so) ( 1  Wxt 1 > n and a ( t )  > n ) } ,  b ] )  if b(s)  = b(so) for all s > 

Let 

F = {Bb,so Cb,so , Db,so : b, SO E w}. 

It should be clear that F is computably enumerable uniformly in i and x, is contained in 

A(') u { ( i ,  [w, b] )  : b E w }  

and that if W, is finite, 3 G A('). When W, is infinite, there are three cases. If the sequence 

(b(s)),,, diverges then for every b E w there exists so such that b(s)  # b for all s > so, so that 

Bb,so = (i, [w, b]) .  I f  ( b ( ~ ) ) , ~ ,  converges, by Lemma 2.2 either ( ~ ( s ) ) , ~ ,  converges and for every 

b E w one of the sets Cb,so is equal to (i, [w, b]) ,  or lim, a ( s )  is infinite and for every b E w one of 

the sets Db,so is equal to (i, [w, b]) .  Now ~ ( ~ 9 " )  = A(Z) U F ,  and 3 is clearly computably enumerable 

uniformly in i and x.0 

2.4 CE, is C:-hard 

The following constructions rely on the same approach as was presented above: we can arrange 

for the success of a diagonalization against a potential enumeration with at most n repetitions to 

depend on the infiniteness of a given set. Let S be a  set. Then there is a @ predicate Q such 

that if 1 E S then Q ( i , l )  for some i E w and if 1 @ S then l Q ( i , l )  for all i E w. Define the 

predicate P ( i ,  1 )  := (3' 5 i ) ( Q ( i l ,  1 ) ) .  Using the same ideas as in the previous section, we can 

represent S by a c.e. array of c.e. sets V : w4 + 2W such that for all 1 E w 
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1 E S if and only if (3) (Vj)(3k) (&,j,k,l is infinite), 

if (Vj )  (3k) (&,-,,j,k,l is infinite) then (b'i > io) (Vj) (3k) ( &,j,k,~ is infinite), an1 

if (3jo)('dk)(&,jo,k,l is finite), then ( V j  > jo)(Vk)(&,j,k,l is finite). 

Fix i and 1. Let 

3(i,j) := {(i, j, w)) U {(i, j, [a, b]) : a ,  b E w). 

The idea is to construct uniformly effectively from i, 1 a c.e. class ~ ( ~ 9 ' )  such that 

is not an enumeration of ~ ( ~ 1 ' )  with at most n repetitions 

if and only if 

(3jo) ( V j  > jo) (Vk)(&,j,k,l is finite). 

For every j E w we enumerate a class ~ ( ~ j * ' )  for which we try to arrange that if 

0 di) n { A  w : (gz)((i, j ,z)  E A))  c ~ ( ~ * j )  and 

a(W) = c(4  n  id 

then di) repeats one of its sets more than n times . 

This is the j-th attempt to diagonalize against di). It will succeed if and only if there is a num- 

ber k E w such that &,j,k,l is infinite and no lc E w such that &,j+l,k,l is infinite. As in the previous 

section the whole class $i*j) is enumerated in ~ ( ~ , j ! ' ) ,  and a finite member of ,7(i*j) may be deleted 

to effect the diagonalization - but only if there is an infinite set K,j,k,l. Also we adjoin the sets 

(i, j, [w, b] ), b E w if there is an infinite set K,j+l,k,l, because such infinite sets allows us to enumer- 

ate 17(~f,') injectively uniformly in i, j and 1. 

Of course, the infinite set K,j+l,k,l, while possibly frustrating the j-th attempt at diagonalizing 

against enables the ( j  + 1)-th attempt. The result is that the class ~ ( ~ ~ ' 1  = U. I Ew is 

diagonalized against di) as an enumeration with at most n repetitions if there exists jo such that 

&,j,+l,k,l is finite for all lc E w. Note that &,j,k,l is infinite for j = 0, so that there is at least one 

attempt for every i E w. 

Formally, given i, j E w and c.e. sequences of c.e. sets X = (Xn)nEw and Y = (Y,),,, we will 

construct c.e. classes ~ ( ~ 4 9 ~ )  and ~ ( ~ , j 7 ~ 9 ~ )  satisfying the following: 
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ii) If some X k  is infinite, then either R ( ~ )  repeats a set more than n times or ~ ( ~ l j l ~ )  + di) n 
JW). 

iv) ~ ( ~ j l ~ )  is injectively enumerable. 

vi) ( 3 k )  (Yk is infinite) + ~ ( ~ j ~ ~ ~ ~ )  = ~ ( ~ ~ j , ~ )  U { ( i ,  j ,  [w, b] ) : b E w ) .  

vii) An index of ~ ( ~ y j y ~ )  can be computed effectively from i ,  j and an index of X .  An index of 

~ ( ~ ~ j ~ ~ l ~ )  can be computed effectively from i ,  j  and indices of X and Y. 

Using these constructions, it can be shown that CE, is  hard as follows. Let X ( i ,  j ,  I) = (V,,j ,k,l)k,,  

and Y ( i ,  j ,  1) = (V, , j+l ,k, l )kEw. We use ~ ( ~ , j 3 "  as an abbreviation for ~ ( ~ ~ j ~ ~ ( ~ j ~ l ) ~ ~ ( ~ d , 1 ) )  and C ( ~ , ' )  

as an abbreviation for U j E w  ~ ( ~ a l ~ ) .  Define r as a computable function by the SF-Theorem such 

that 

We will show that the function r reduces S ,  the given C! set, to CE,. 

Suppose 1 E S.  Then there is a number i t  such that 

(Vi 2 i t )  (b'j) ( 3 k )  ( v , , ~ , ~ , ~  is infinite). 

Let io  denote the least such number i t .  By vi) for all i  2 io we have 

which is injectively enumerable uniformly in i  by Kurnrner's Lemma 1.9. Consider a particular 

i  < io .  There is a number jr such that V,,j ,k,l  is finite for all j  > j' and k E w .  Let jo ( i )  denote 

the least such number j r .  By iii) and v) we see that for all j  > jo ( i ) ,  = ~ ( ~ j ) ,  which is 

injectively enumerable uniformly in i ,  j .  By iv) and v), Z3(i1jo(i),1) is injectively enumerable. Finally, 

from vi) and Lemma 1.9, ~ ( ~ ~ j ~ ' )  is injectively enumerable for each j  < jo ( i ) .  Since, as j  varies, the 
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classes B ( ~ A ? ' )  are pairwise disjoint, ~ ( ~ 9 ' )  is injectively enumerable. Since, as i  varies, the classes 

~ ( ~ 9 ' )  are pairwise disjoint, c ( ~ ( ' ) )  is injectively enumerable. 

for all i E w. Towards a contradiction suppose c ( ~ ( ' ) )  is n-c.e., say by diO). From the choice of V, 

Ko,O,k,l = w for all k E w. Let jo be the greatest j  such that V,o,jo,k,l is infinite for some k E w. 

From i), v) and vi) 

where Z denotes (Ko,jo,k,l)ktw But from ii) we have ~ ( " 3 j 0 1 ~ )  # n j ( i o , j o ) ,  contradiction. 

Lemma 2.5 Given i , j  E w and indices of c.e. sequences of c.e. sets (Xn)nEw, (Yn)nEw, classes 

~ ( ~ j l ~ ) ,  B ( ~ ~ * ~ ~ ~ )  can be constructed such that the properties i)  . . . vii)from above hold. 

Proofi First we construct functions a, b, m E P3, similar to the functions a,  b, m from Section 2.2, 

which are designed to provide for the implicand of property ii). Then we define a, b, m E P3 and 

with these ~ ( ~ j j * ~ ) .  The last part is the definition of ~ ( ~ d y ~ > ~ ) .  We may assume without loss of 

generality that 

0 (Vk) ( X k  , Yk are initial segments of w )  

0 (Vk)(Xk infinite + Xk+1 infinite) 

0 (Vk) (Yk infinite 3 Yk+1 infinite) 

The argument k of a(k,  z,  s ) ,  b(k, z ,  s )  and m(k ,  z ,  s )  is used to guess which set Xk is the first in 

the sequence (Xk)kEw to be infinite and the argument z  is used to guess the cardinality of Xk-1, if 

such a set Xk exists. We omit the arguments of 6,  b, mo, . . . , m ,  in the following construction: 
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Step s 

1. If some md, 0 5 d 5 n is not defined, then do the following. Let d be the least such that md 

is undefined. Determine the smallest x < s, if any, such that x # mdt, d' < d and there is a 

number (i, j, 2y + 1) E flt,)s with y > k + z. Define md := x. 

2. If all mo, . . . , m, are defined let m E {mo, . . . , mn) be the smallest such that 
(4 o ~ u ~ ( f l ~ ? , ~ ) , ~  is minimal. Define 6 := o s u p ( ~ ~ ? , , ) . ~  and Q := e~up((fl,,~).,). 

End of construction. 

Now the statements analogous to Lemmas 2.1, 2.2 also hold for Xs.Q(k, z, s) , Xs.6(k, z, s) (k, z 

fixed). We define a by 

a(k, z, s) if JXk-l,sl = z and s E Xk, 

a(k, z, s) := 

otherwise. 

and b from 6 in the same way, where we assume X-1 = 0. We have the equivalence 

(k = min{k' : Xk, is infinite) and z = IXk-ll) e- 

(for almost all s E w)(a(k, z, s)  = a(k, z, s)  and b(k, z, s) = b(k, z, s)) 

From a and b we define the sets Az,y,so by 

( ( [ x  1 )  if there are no t > so,k,z E w such that a (k ,z , t )  = x and 

( i ,  w) otherwise, 

To see that ~ ( ~ > j ! ~ )  is computably enumerable note that, whether (i, j, [a, b]) is in the class or not, 

depends only on the behaviour of a(k, z, s)  and b(k, z, s)  for k + z < b. By (*) and the statement 

corresponding to Lemma 2.2, it follows that I - d(ijlx) ( 5 1. 
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Towards the definition of f3 ( i~ j*x~Y) ,  for all i ,  j E w ,  from each c.e. sequence X and c.e. set Z 

we define 
~ ( ~ j j j ~ )  U { ( i ,  j ,  [w,  b] ) : b E w )  if Z is infinite, 

D(&j,X,Z) := 

cq(i,j,X) if Z is finite. 

Then we set 

~ ( C j . x . y )  := U ~ ) ( i , j , X , ~ k ) .  

k ~ w  

Using the same idea as in the proof of Lemma 2.4 we see that ~ ( ~ j j * ~ l ~ )  is c.e. uniformly in i ,  j ,  and 

indices of X and 2. Hence ~ ( ~ ~ j ~ ~ ~ ~ )  is also c.e. uniformly. 

Now property i) obviously holds. For property ii) note that by the equivalence (*) the proof of 

Lemma 2.3 applies. Property iii) holds because if Xk is finite for every k E w, then a(k ,  z ,  s) and 

b ( k ,  z ,  s)  are undefined for all k ,  z E w and almost all s E w ,  whence d("jyx) is equal J("j ) .  

Because of - ~ ( ~ j j * ~ )  I 5 1 ,  iv) is satisfied. Properties v), vi) follow immediately from the 

definition of Z ? ( i ~ j ~ x ~ y ) .  All constructions were carried out uniformly, so vii) is satisfied.0 

2.5 The index set of n-c.e. classes of finite sets 

Let S be an arbitrary c:-set. We show how to reduce S to CE?. By routine manipulations similar to 

the ones described on page 23, we know that there is a computably enumerable array (V,,j ,k)i , j ,kEw 

such that 

k E S if and only if (3 i ) (Vj) (V, , j ,k  is finite), 

if ( V j )  ( K O ,  j ,k is finite) then (Vi > i o )  ( V j )  (V,, , j,k is finite), and 

if V,,jo,k is infinite, then V,,j,k is infinite for all j > jo. 

For all i ,  j ,  z ,  s E w define 

( "yesv (ho, . . . , m, < s pairwise different) 
(4 ( ( i ,  j ,  z ,  0) E f l # , s , .  . . , ( i ,  j ,  z , n )  E a,+),  

( ''no" otherwise. 
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Define for all x  5 nandal l i ,  j , k , z , t  E w 

, 0 , .  . . , , j  z ,  n ) }  if there is s > t such that (&,k,s( > JV;,j,k,tJ, 

I Q - l , k , s l  = z and g( i ,  j , z ,  s) = "yes", 

where &,-l,k is understood to be the empty set for all i,  k  E w. 

is computably enumerable uniformly in k  and contains only finite sets for every k  E w. By the SF- 

Theorem there is a computable function r such that ~ ( ' ( ~ 1 )  = We claim that, if k  E S then 

~ ( " ( ~ 1 )  is injectively enumerable, and not n-c.e, otherwise. 

Suppose that k  is not in S, and that R ( ~ )  enumerates with at most n repetitions. Let j  be rnin- 

imal such that V,,j,k is infinite and let z  = IT&l,k 1 ,  which is finite. If { ( i ,  j, z ,  O)}, . . . , { ( i ,  j ,  z ,  n ) )  

are all enumerated by ~ ( ~ 1 ,  then for all x 5 n ,  t E w  the set Ax,i,j,k,z,t is equal to { (i, j ,  z ,  O ) ,  . . . , (i, j, z ,  n) ). 

If a set containing (i, j, z ,  x )  is in then it has to be equal to some set Ax,i,j,k,z,t. Therefore R ( ~ )  

is not an enumeration of ~ ( ~ 1 .  On the other hand, if one of the sets { ( i ,  j, z ,  0 ) ) ,  . . . , { ( i ,  j, z ,  n ) )  is 

not enumerated by then g(i, j, z ,  s) is "no" for all s. Hence all of { ( i ,  j, z ,  0 ) ) ,  . . . , ((2,  j, z ,  n ) )  

belong to contradiction. Therefore is not n-c.e. 

Suppose that k is in S. We have to show that is injectively enumerable. Let io be maximal 

such that there is a number j  such that is infinite. For all i > io, all j, z  E w  there is a number t 

such that I K, j,k,t 1 = I &,j,k 1 .  Therefore the sets { (i, j, z ,  O )  1 ,  . . . , { (i, j, z ,  n) ) are members of ~ ( ~ 1  

and the class { (i, j, z ,  x )  : i > io, j, z  E w, x 5 n )  is injectively enumerable. 

The class 

{{ ( i , j , z ,O)  ,... , ( i , j , z , n ) )  : i > i o , j , z ~ w } ~ t 3 ( k )  

is computably enumerable and thus also injectively enumerable. Altogether, 
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is injectively enumerable. 

For i 4 io let ji denote the least j  such that &,j,k is infinite. For all i  4 io, j  > ji and z E w 

there is a stage t such that I &,j-l,k,t 1 > Z.  SO the sets { ( i ,  j ,  z ,  0 ) ) ,  . . . , { ( i ,  j, r ,  n ) )  are in 

and we can injectively enumerate the class 

by the same argument as was used for B?). Injectively enumerating 

requires only finite information about the enumerations di), i io and the sets K , j , k ,  i  I io, j  < 
ji. Thus B ( ~ ) ,  being equal to the disjoint union B1 U B2 U &, is injectively enumerable.~ 

2.6 The index set CE, 

Let S be an arbitrary c:-set. The following will show how S reduces to CE,. Let I'(i, j, k ,  1 ,  x )  

abbreviate "&,j,k,l,x is finite". One can show that we can choose an array ( ~ , j , k , l , z ) i , j , k , l , x ~ w  S U C ~  

that the following five conditions are valid: 

V l .  x E S ++ (3i) (Vj)(3k)(Vl)(I ' ( i ,  j, k ,  1, x ) ) .  

V 2 .  [ (Vj )  ( 3 k )  (Vl) (I'(i, j, k ,  1, x ) )  and i1 > i ]  + (Vj)(3k)(Vl)(I'(i1, j, k ,  1, x ) ) .  

V 3 .  (3 j ) (Vk) (31) (d ' ( i7  j ,  k ,  1 ,  x ) )  + (3!j)(Vk)(31)(1I '( i ,  j, k ,  1 ,  x ) ) .  

V 4 .  (Vl)(I ' ( i , j ,  k , l , x ) )  + (Vkl > k)(Vl)(I'(i,  j, k1,1,x)) .  

V 5 .  (31)(+(i,j, k ,  1, x ) )  + ( 3 ! l ) ( d ' ( i ,  j, k ,  1 ,  x ) ) .  

To prove the theorem we will use: 

Lemma 2.6 Given a computably enumerable array (Vk,l)k,lEw and an 0-index of a computable 

enumeration + such that 

1. if(Vl)(Vk,,l isjnite) then (Vk > ko)(Vl)(Vk,l is$nite) and 
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2. if(31)(Vk,1 is infinite) then there is only one such 1 (for k), 

we can uniformly construct an enumeration y of a class C such that 

1. if ( 3k )  (Vl) (V& is finite) then y repeats every set (except possibly the empty set) at most 

finitely often and 

2. if (Vk) (31) (V& is infinite) then $ does not enumerate C with at most finite repetitions, but 

there is an enumeration of C with at most finite repetitions. 

the enumeration which is uniformly generated by the construction of the lemma applied to the array 

( ~ , i , k , l , x ) k , l t u  and the 0-index of the enumeration d i , j )  defined by 

The latter can be obtained by the SF-Theorem. 

Let denote the class enumerated by y(i*jlx), omitting the empty set. Define the com- 

putable function r, again by using the SF-Theorem, to satisfy 

In case x E S we see from the first conclusion of the lemma that for almost all pairs (i, j )  the 

members of the class ~ ( ~ j l " )  are enumerated with at most finite repetitions by y(i9j>x), because from 

V2 and V3 there are only finitely many pairs ( i ,  j )  such that 

(#) (Vk) (31) (V,, j,k,l,x is infinite). 

For each pair satisfying (#) there exists an enumeration of C("j>") with finite repetitions from the 

second conclusion of the lemma. So the whole class ~ ' ( " 1  has an enumeration with finite repetitions. 

In the case that x $ S we know that 

(Vi) ( 3 j )  (Vk) (31) (V,,j,k,l,x is infinite). 

Suppose enumerates CT(") with finite repetitions. Then for the number jo such that 
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we derive a contradiction to the second conclusion of the lemma for the class C(~O~O," ) .  

Proof of Lemma 2.6. First, some remarks on the construction which follows. Broadly speaking 

there are two outcomes: either only finitely many actions are taken, or not. In the former case the 

construction is called Jinite, and in the latter injinite. It will be clear by inspection of step s below 

that, when the construction is finite, 

0 all but a finite number of the yi's are empty 

either one of the sets yi is not enumerated by $, or almost all the sets V ~ J  are empty. 

Hence the conclusions of the lemma are clear when the construction is finite. 

For the rest we discuss what happens when the construction is infinite. For each pair (k, 1) with 

VkI1 # 0 we will eventually appoint a leader m and a follower f for (k, 1). Each time a new leader 

is required we take the least even number x such that y, is still empty. This implies that no two 

pairs have the same leader. While 2i is not yet a leader, yzi remains empty. 

If step s is not vacuous, then we enumerate 0, 1, . . . , s - 1 into ~ 2 ~ + 1 .  Otherwise, yz,+l = 0. 

Followers are chosen in such a way that no two pairs have the same follower. If m, f are the re- 

spective leader, follower of some pair (k, 2), then (m, f )  is called a proper pair. The main property 

of followers is that, if (m, f )  is a proper pair, then at the end of the construction $f = 7,. 

The construction ensures that all the numbers enumerated into members of (yn)nEw by the end 

of step s are less than 2'+l and that at the end of step s, for each leader m, y, has a member which 

is not in any other yi. 

Without loss of generality we may assume that the effective simultaneous enumeration of the 

sets Vk,~, k, 1 < w, is such that, for each s, there is at most one pair (k, 1) such that Vk,l,s+l # Vk,l,s, 

and if there is such a pair then k, 1 < s. We now specify the construction. 

Step s. 

If there is no pair (k, 1) such that Vk,l,s+l # Vk,l,,, then pass immediately to the next step. Other- 

wise, proceed as follows with k, 1 denoting the unique numbers such that Vk,l,,+l # VkI1,,. We say 

that (k, 1) is active in step s. 
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Al. Does ( k ,  1) have a leader? If not, then let x be the least even number such that y, is still 

empty. Appoint x the leader of ( k ,  1). In any case, let m(k, 1) denote the leader of ( k ,  1). 

A2. For each leader m enumerate the number 2' + (m/2)  in 7,. (Note that m/2 5 s < 2'.) Look 

for the least t > s such that g f , t  = ym for each proper pair (m, f) and = ym(k,l) for 

some y < t. The sets yi remain fixed during this search. If ( k ,  1) does not yet have a follower, 

appoint the least such y as the follower of ( k ,  1). Denote the follower of ( k ,  1) by f ( k ,  1). 

A3. Enumerate 0, 1, . . . , s - 1 into ym(k,l). Look for the least u such that $ f  (k , l ) ,u  > 3;n(k,l). 

Again the sets yi are held fixed. 

A4. Enumerate 0, 1, . . . , s - 1 into y2,+1. 

End of construction. 

To see that the construction succeeds we establish four claims. Let ym,, denote the finite set 

enumerated in y, by the end of step s. 

Claim 1. Let (m, f) be a proper pair at the end of step s. Then ym,, C $ f .  

ProoJ: By induction on s. If step v is vacuous, then the conclusion for s = v follows immediately 

by the induction hypothesis. If step v is not vacuous, then y,,, $ f  follows from the fact that t is 

found in A2, and u is found in A3, of step v. This is enough. 

Claim 2. If either t is not found in A2 or u is not found in A3 of step s, then $ does not enumerate 

Proof. Suppose t is not found in A2. Consider a proper pair (m, f ). Let x be a number which 

is in y, at the end of step s - 1 but not in yi for any i # m. Since x < 2', x has the same 

property with respect to ym after the actions taken in A2 of step s. Thus ym is the only yi with 

which $f can agree. If there is no y such that ?It, > y,(k,~), then $ does not enumerate C. So 

suppose $y > ym(k,l). Since y,(k,l) is the only set yi which contains 2' + m(k, I), if $y  E C, then 

$y = ym(k,1). This is enough for A2, the argument for A3 is similar. 

Whenever the construction is finite, yi = 0 for almost all i. From Claim 2 it is apparent that, if 

the construction is finite because the search in some instance of A2 or A3 is infinite, then C is not 

enumerated by $. The other way the construction can be finite is through every step being vacuous 
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from some point on, in which case at most a finite number of the sets Vk,1 are non-empty. The 

conclusions of the lemma are immediate in both of these cases. So below we may assume that the 

construction is infinite. We see at once that for infinitely many s,  yzs+l = {0,1,. . . , s - 1 )  by A4. 

Thus C is injectively enumerable by Theorem 1.1 1. 

Claim 3. Let mo, ml be the leaders of distinct pairs (ko,  l o ) ,  ( k l ,  1 1 )  such that Vko,lo, Vkl ,ll are both 

finite. Then ymo # yml and at most one of ymo, yml is an initial segment of w. 

Proof As noted above, mo # ml . Let s be the greatest number such that either Vko,lo,s+l # Vko,lo ,, 
Or Vkl,ll,s+l # Kcl,ll,s. Then 2' + (m0 /2 )  E ymo - yml and 2' + (m1/2)  E yml - Tmo.o 

Claim 4. Let m be the leader of ( k ,  l ) ,  f the follower, and Vk,l be infinite. Then qf = ym = W. 

Proof From Claim 1 ,  ym G $ f .  For the opposite direction let s > 0 be any non-vacuous step at 

which (m, f) is already a proper pair. Since the search in A2 of step s is completed, $ f , s  G $fit 

7,. So $ f  E ym also. If ( k ,  1 )  is active at step s ,  then 0, 1, . . . , s - 1 are enumerated into ym in 

A3. This shows that ym = W .  

From Claim 3 we have the first conclusion of the lemma and from Claim 4 the second. This 

completes the proof. 
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Inj ectively enumerable classes of cofinite 

sets 

This chapter investigates the characterization problem for c.e. classes of cofinite sets. Section 3.1 

deals with classes C such that Pn(C) holds for some n E w, where Pn(C) means that Iw - A1 5 n 

for all A E C. Injective enumerability of classes satisfying Pl(C) will be characterized in terms 

of a notion of simplicity for subsets of w. More generally, it will be shown that, if C is an infinite 

c.e. class such that P,(C), then C is injectively enumerable if and only if, for every C' C, IC - 

C'I 5 2n-1 implies that C' is c.e. As this is a necessary condition for k-computable enumerability 

(Ic E w U {w)), it follows from this that all notions k-c.e., Ic E (w - (0)) U {w), are equivalent for 

classes with P,. 

In Section 3.2 three classes are constructed two of which are 1-c.e. and the other 2-c.e. but not 

1-c.e., which have very similar structure. These three classes taken together illustrate very clearly 

the difficulty of finding a non-trivial necessary and sufficient condition for injective enumerability. 

In Section 3.3 we find that neither of the injectively enumerable classes from the previous section 

satisfies any of the known sufficiency criteria. We look at a certain extractibility property which 

explains the injective enumerability of one of these classes and like classes. At the same time we 

show that this extractibility property does not yield a sufficient condition in general. 
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3.1 Classes with a bound on the co-cardinality 

In this section we characterize injective enumerability for the c.e. classes such that P,(C) holds for 

some bounding number n. First we look at classes C with PI (C). Understanding injective enumer- 

ability for these classes is essential for the more general case. 

3.1.1 Injective enumerability for classes with PI 

Observe the following 

Proposition 3.1 Let C be an inJinite c.e. class such that Pl (C). Then 

1. C is injectively enumerable ifand only ifC - {w) is c.e. 

2. C - {w) is c.e. ifand only ifC - {w) has an injinite c.e. subclass. 

ProoJ: 1 .  If a c.e. class C satisfying PI (C) is infinite then for every x > 0 the set (0, . . . , x) has an 

extension different from w in C. By Part 2. of Corollary 1.5, page 9, computable enumerability of 

C - {w) implies injective enumerability of C. 

2. The 'only if' part is trivial. The 'if' part can be seen as follows. Let S be an infinite c.e. sub- 

class of C - {w) .  From a pair (e, i )  we can effectively find an index of a computable enumeration 

of the class Se,i defined by: 

if i E We, 

Se,i := 

S U {We) otherwise. 

Now let V be a c.e. set such that C = {We : e E V). Then C - {w) is c.e. because it is equal to 

U{Se,i : e € V , i  E W ) .  o 

A class C with PI (C) is determined by the set {x : w - {x) E C) and whether w is a member of 

C. So the question of characterizing injective enumerability of such classes is a question about sets 

of natural numbers. And because of the observation above the question is: 
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For which sets of natural numbers A such that the class { w  - { x )  : x E A )  U { w )  

is computably enumerable1, is the class CA := { w  - { x )  : x E A )  also computably 

enumerable? 

An answer can be given in terms of 1-simple sets: 

Definition 3.2 A set A C w is called 1-simple if A is coinfinite, c.e. and there is no disjoint weak 

array which covers w - A each of whose members intersects w - A in exactly one point. 

Theorem 3.3 For an injinite set A C w such that { w  - { x )  : x E A )  U { w )  is c.e. the class 

CA := { w  - { x )  : x E A )  is c.e. ifand only ifthere is an injinite subset of A whose complement is 

c.e. but not 1-simple. 

ProoJ: To prove the 'if' part, suppose that B c A is co-c.e., infinite and its complement is not 

1-simple. Let (Fi)i, ,  be a disjoint weak array witnessing that w - B is not 1-simple. Then B := 

{w - { x )  : x E B )  is enumerated by (-yn)nEw where y is defined by 

23 is an infinite c.e. subclass of CA. By the second part of Proposition 3.1 it follows that CA is c.e. 

Let us turn to the 'only if' part. If CA is c.e., then by Proposition 3.1 it is injectively enumerable, 

say by $. We want to show that there is an infinite co-c.e. subset of A whose complement is not 1- 

simple. We carry out the following construction while simultaneously effectively enumerating the 

sets $i ,  i  E w.  Prior to stage s  we will have chosen distinct numbers fo, . . . , f S v 1 .  

Stage s .  

Part 1. Advance the enumeration of the sets $i ( i  E w )  until the following is true: for each i  < s ,  if 

bi,, denotes the least number not in $ fi ,,, then bi,, E $ for each j < s ,  j # i .  

Part 2. Advance the enumeration of the sets $i ( i  E w )  until k $! { f i  : i  < s )  is found such that 

{n : (3 < s ) ( n  5 bi,,)) c $k. Set f, = k. 

End of construction. 

'1n fact, the sets A for which {w - {x) : x E A) U {w) is c.e. are precisely the c:-sets. 
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For each i E w let bi denote the unique number such that $fi = w - {bi).  It is clear that for 

each i, bi,, = bi for all sufficiently large s. Now we define B := {bi : i E w )  and Fi := 

{bi,i+1, bi,i+z,.. . ). Clearly B 5 A and it is easy to check that that the sets Fi are pairwise disjoint 

and cover B and that F j  r l  B = {b j ) .  Further, w - B is c.e. because n is in w - B if and only if 

there exists s > n such that n $2 {bo,,, . . . , b,-I,,). This is enough.~ 

Corollary 3.4 Let C be an infinite c.e. class such that PI (C). Then C is injectively enumerable if 
and only if there exists a c. e. coinfinite set B C w which is not 1 -simple such that B u { x  : w - { x )  E 

C) = w. 

Proo$ Combine Proposition 3.1 and Theorem 3.3.0 

Theorem 3.5 Let H be a hyperhypersimple set. Then the c.e. class 

dz := {w - { x )  : x $2 H )  U { w )  

is not injectively enumerable. 

Proof. Every coinfinite c.e. extension of H is 1-simp1e.o 

3.1.2 Injective enumerability for classes with Pn 

Note, that if C is a computably enumerable class with Pl(C) then C - V is c.e. for every finite 

subclass V of C not containing w. If C is injectively enumerable or finite, this should be clear. 

Otherwise, C contains w by Proposition 3.1. In this case, let a be a computable enumeration of C. 

For V = { w  - {do) ,  . . . , w - {d,)) we define 

ai if do, . . . , dn E ai,t, 

P(i,t) = 

w otherwise. 

Then P is a computable enumeration of C - V. We use this observation to prove the following 

Theorem 3.6 For every number n > 0 there is a c.e. class C 2W such that Pn ( C )  holds, C has no 

injective enumeration but every subclass C' C with IC - C'I < 2(n-1) is computably enumerable. 
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Pro08 Fix n > 0 and choose a hyperhypersimple set H. We use the class dK defined above in 

Theorem 3.5. Define 

Suppose a is an injective enumeration of C. Then P defined by 

is a computable enumeration of dz in which the set w occurs 2(n-1) times. By the first part of 

Proposition 3.1, dR is injectively enumerable, contradiction. 

For the second part of the statement, suppose C' C C is such that IC - C'I < 2(n-1). Then there 

is a set w - B E C' such that B C {x E w : x < n - 1). Let 

S := {x : ( n -  1 )  + (w - {x)) E C -Cf). 

Then y defined by 

( ( n - l ) + ( w - { I ) )  i f x e H u S ,  

otherwise, 

is a computable enumeration which enumerates all sets from C', except possibly finitely many sets 

w - B' such that B' C {x E w : x < n - 1). Hence C' is computably enumerable. CI 

Our next theorem characterizes the c.e. classes C with Pn(C) which are injectively enumerable. 

The general approach is to work with subclasses of C which admit a height-function. The bound 

hinted at in Theorem 3.6 turns out to be sharp: 

Theorem 3.7 Let C be an injinite c.e. class such that we have Pn(C). Then C is injectively enumer- 

able ifand only i f  every subclass C' g C such that IC - C'I < 2(n-1) is computably enumerable. 

Pro05 Necessity is obvious. To prove sufficiency, suppose a class C is given, such that the hypoth- 

esis holds, i.e. Iw - A1 5 n for all A E C and every C' C C with 1C - C'I 5 2n-1 is c.e. Define the 

relation 5 on finite sets o, T w by: 



CHAPTER 3. INJECTNELY ENUMERABLE CLASSES OF COHNITE SETS 

Note that we let max(0) = -1. Given a class 23 2W we say that a finite set a C w is B-injinite- 

branching if for every a E w there is a set B E 23 such that a w - B and min(w - (Buo)) > a. A 

set is minimal 23-injinite-branching if it is 23-infinite-branching but contains no proper subset which 

is 23-infinite-branching. 

Lemma 3.8 Let 23 C_ 2W be a class such that P,(B), where m 1 1. 

1. 23-injinite-branching sets have cardinality less than m. 

2. There are only jinitely many minimal 23-injinite-branching sets. 

3. For almost every set in 23, its complement contains a 23-injinite-branching set. 

PmoJ: The first statement holds, because if a is 23-infinite-branching, then there exists T such that 

a [II T, w - T E 23 and min(r - a) is defined so that lo1 < 171 5 m. We prove the second and 

third statement simultaneously by induction on m. The base case m = 1 is clear because either the 

empty set is the unique minimal 23-infinite-branching set or 23 is finite and there are no B-infinite- 

branching sets. Suppose that the second and third statements hold for m = Ic 2 1. Let B 2W 

satisfy Pk+l (23). Let 

S := {min(w - X )  : X E 23 - {w)). 

There are two cases. If S is infinite, then the empty set is 23-infinite-branching and statements 2 and 

3 clearly hold. If S is finite, then the empty set is not 23-infinite-branching. For each s E S ,  define 

23, := {X U {s) : X E 23 and min(w - X) = s). 

Observe that a is 23-infinite-branching if and only if min(o) = s and a - {s) is 23,-infinite- 

branching for some s E S. We have Pk(B,) for each s E S. Applying the induction hypothesis, 

for each s E S ,  there are at most a finite number of minimal 23,-infinite-branching sets and all but a 

finite number of sets in 23, contain a minimal 23,-infinite-branching set. Since S is finite, statements 

2 and 3 for 23 follow immediately. This completes the induction step and the proof of the 1emma.o 

The key to finding the injective enumeration of C is provided by: 

Lemma 3.9 For any minimal C-infinite-branching set a the class C, := {A E C : a L w - A) is 

injectively enumerable. 
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Prooj It is enough to demonstrate that 

is computably enumerable. This is because 

h : { D  : D finite and (3C E C:)(D C C ) )  + w 

defined by 

h(D)  := ( p x ) ( x  > max(a) and x $! D and D C w - a )  

is a partial computable height-function for CL: because a is C-infinite-branching, h(D)  is defined 

just if D has an extension in C,,, and this also ensures that if h(D)  is defined, then there is E such 

that h ( E )  4, D 3 E and h ( D )  # h(E) .  Monotonicity and satisfaction of the ascending chain 

condition for h follow because w - a $! CL and if h ( D )  = x then x = (py)(y  > max(a) and y $! 

D).  By Theorem 1.4, C, is injectively enumerable. 

We construct a computable enumeration of C; as follows. Since P,(C) holds and by the first part 

of Lemma 3.8 there are at most 2(n-1) subsets of a and for 

we have IC - C:I 5 2(n-1). By the hypothesis of the theorem, C: is computably enumerable. Let 

us look at sets a - { n )  for members n of a. These sets are not infinite-branching, because a is 

minimal infinite-branching and so there must be a finite set F > max(a) such that 

(VA E C:) [(3n) ( a  - { n )  w - A )  -+ (3x E F )  ( x  $! A)] .  

With the help of such a set F we can enumerate C; as follows. Let y be an enumeration of Cz n { A  : 

(0, . . . , max(a))  - a C A). Define 

r if s is least such that a n ynlS # 0 and where 
fs+l(n) := 

(m, t )  is least such that ( F  U yn,s-l) C ym,t, 

( f.(n) otherwise. 
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and 

Pn := Us>o 'Yfs(n),s. 

Now p enumerates Ci. II 

To complete the proof of the theorem, let us look at 

m := max{x : (%)(a is minimal C-infinite-branching and x E a) ) .  

If m = max{@) = -1 then 0 is the only minimal C-infinite-branching set, and Lemma 3.9 shows 

that C is injectively enumerable. So suppose m 2 0. Below we will show that C* is computably 

enumerable, where C* denotes 

C* := { A  E C : w - A has an element > m and a C-infinite-branching subset). 

As above, one verifies that the computable partial function h defined by 

h(Di) := ( / A X  > m ) ( x  6 Di and (3A E C*)(Di A ) )  

is a height-function for C*. It follows from Theorem 1.4 that C* is injectively enumerable. By 

Lemma 3.8 the difference C - C* is finite. Hence the class C is injectively enumerable. 

Why is C* computably enumerable? For every minimal C-infinite-branching set o Lemma 3.9 

provides us with an enumeration of 

C::={A€C:w-Ahasanelement > m a n d a L w - A ) .  

Using these enumerations we can avoid enumerating sets whose complements have no C-infinite- 

branching subset. For the purposes of the following construction we suppose given a list L of the 

minimal C-infinite-branching sets. Further, for each a in L we suppose given an index of an injec- 

tive enumeration e0 of C:. Finally, given an enumeration $ of C, we define: 

I $i if (Vs)({O, . . . , m) - $i,, has an infinite-branching subset and 

x @ $id 

Bi,, := I 6 if s is the least such that $i,, contains x or meets every member 

of L, a is first in L such that a n # 0 and (m, t )  is least 

such that 8& 2 $i,s-l. 

Then {Bi,, : i, x E w, x > m )  = C* and BilX is computably enumerable uniformly in i and x.0 
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3.2 Three examples 

Classes of cofinite sets not satisfying P, allow the encoding of arbitrary c.e. sequences of classes 

of cofinite sets. We say that a sequence ( A ( ~ ) ) ~ ~ ,  of classes is computably enumerable, if there is a 

computable function f such that = ~ ( f ( ~ ) )  for all i  E w. Let D ( ~ )  := { 0 , 2 , 4 ,  . . . , 2 i ,  2i + 1 ) .  

We define a mapping 

t * ct 

from c.e. sequences of c.e. classes to c.e. classes as follows. For = (Ci)iEw we set 

This mapping plays a key role below. Notice that Ct is c.e. because { is. Moreover, Ct is n-c.e. if 

and only if the members of the sequence { are n-c.e. uniformly in i .  This is because for each set Y 

in Ct one can compute the unique i such that Y = D(Z) U ( X  + (2i + 3)) for some member X E Ci. 

The proof of Theorem 3.7 is not uniform. It requires information about the structure of the class 

and enumerations for certain subclasses. By Proposition 3.1 for infinite c.e. classes C of cofinite sets 

with Pl (C) it is sufficient for injective enumerability that an infinite subclass not containing { w )  be 

computably enumerable. The next lemma shows that such a class cannot be obtained uniformly. It 

is proved in Section 3.2.1. 

Lemma 3.10 One can uniformly construct, given a c.e. set V, an injective enumeration P of a class 

Bv such that PI (av), w E Bv, [ { A  : Iw - A1 = 1 )  - Bvl 5 1 and V $! Bv - {w).  

Proposition 3.1 implies that it is sufficient for injective enumerability of c.e. classes C with Pl (C) to 

have an injectively enumerable subclass. But one cannot uniformly obtain an injective enumeration 

of a c.e. class C from an injective enumeration of a subclass. This is clear from the following lemma 

to be proved in Section 3.2.2. 

Lemma 3.11 Uniformly in a computable enumeration 1C( we can injectively enumerate an inJinite 

class B+ such that PI (B+) and ?1, does not injectively enumerate B+ U {w} .  

From Lemma 3.10 we obtain the uniformly injectively enumerable sequence p := (Bw,)iEw. From 

Lemma 3.1 1 we obtain the two c.e. sequences a := (a,(, ,  U { w ) ) ~ ~ ,  and T := (Ba(i))iEw. Using 



the mapping + Cg defined above we obtain classes C,, C, and C,. Clearly, C,, C, and C, are all 

c.e. and C, & C,. All of these classes have the same structure, every finite set that has an extension 

in one of them, having infinitely many extensions in all three. The difference C, - C, is included in 

the "trivial" class 

C, := {D(~)  u (w + (2i + 3)) : i E w). 

Note that C, E C, because every member of the sequence a has w as a member. 

Because the members of the sequences T and p are uniformly injectively enumerable, C, and 

C, are injectively enumerable. But C, is not, because the members of a are not uniformly injec- 

tively enumerable. Suppose otherwise and let f be a computable function such that ~ f ( ~ )  injec- 

tively enumerates ai, the i-th member of a. By the recursion theorem there is a number io such that 

diO) = R ( ~ ( ~ o ) ) .  Then injectively enumerates Bn(,,, U {w), contradiction. 

However C, is 2-c.e. This is because C, is injectively enumerable, say by a. Let P injectively 

enumerate C,. Then y defined by 

if n is even, 

yn := 

P(n-1)12 otherwise 

only repeats sets in C, and these at most twice. 

3.2.1 Proof of Lemma 3.10 

The idea of the proof is as follows. In stages 0, 1, 2, . . . we will simultaneously enumerate the 

desired sets Pi. An important part in the construction is played by the injective finite function g, 

defined in stage s. The domain of g, is an initial segment of w, and 

where we shall explain ni below. If g,(i) = j E w, our intention at the end of stage s is to make 

Pi = w - {j). If gs(i) = w, our intention at the end of stage s is to make pi = w. 

A crucial role is played by a sequence (no, to), (nl, tl), . . . defined as follows. Set no = to = 0. 

Suppose that (ni, ti) has been defined. Let s > ti denote the least number if any such that 

min(w - V,) < s and ni E V, and I d ~ m ( ~ ~ , )  - V,I 5 1. 
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Set 

ni+l = min (w - V,) , ti+l = s + 1. 

We call stages to, t l ,  . . . the critical stages. In stage ti we guess that V = w - ini), and this guess 

guides the way we define g, in every stage s, ti 5 s < ti+l. Thus in (#) above i denotes the greatest 

number such that ti 5 s. 

There is another parameter which will be useful to us: for i > 0 such that ti 4, define mi = 

(gti-1)-l (ni). At stage ti we have to revise our target for p,, because it was pointed at w - Ini) 

which is our new guess as to what V is. 

The details of the construction are as follows. 

Stage 0. Set go = ((0, w)). 

Stage s + 1. Let i be the greatest number such that ti < s. Let 1 denote Idom(g,) 1. 

Part I. There are two cases: 

Case 1. s + 1 is not a critical stage. Define g,+l = g, U { ( I ,  1)). 

Case 2. Otherwise. There are two subcases: 

Subcase 2.1. i = 0 or mi+l E (0, mi). Let g,+l be obtained from g, by deleting the pairs 

and adjoining the pairs 

Subcase 2.2. Otherwise. Let g,+l be obtained from g, by deleting the pairs 

and adjoining the pairs 

Part II. For each j E dom(g,+l) enumerate into pj every number x < s such that x # g, ( j ) .  

End of construction. 
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For the verification we first establish some notation. Let g denote lim, g,. Note that g(i) = w 

means that for all x E w there exists y E w such that g,(i) 4 and g,(i) > x for all s > y. Let m, n 

denote lim, m,, lim, n, respectively. For i > 0, let ui denote ti - 1. Let &,, denote the finite set of 

numbers which have been enumerated in Pj by the end of stage s. 

By induction on s, it is easy to check that g, is injective, dom(g,) is an increasing initial segment 

of w of size greater than s, and (#) holds. At the same time we see that for all j E dom(g,), 

gs(j> $ Pj ,s .  

To check the success of the construction we consider four cases. 

Case 1. There exists i such that ti 4 and ti+l T. 

For the discussion of this case let i denote the unique such number. At every stage s > ti, Case 1 

holds in Part I. Since ti+l T, 

Also, g is a bijection from w to {w) U (w - {nil). So P injectively enumerates the class of all X 

such that I W  - XI 5 1 and X # w - ini). 

For the rest we may assume that ti 4 for all i. Clearly, ni is increasing with i, and V = w. 

Consider x E dom(gu,) - (0, mt,,, ). From stage ti and (#), gti (x) E dom(gt,). Since x # 
mt,+l, gt, (x) = gu,+l (x) E Vu,+l. Hence g, (2) = gt, (x) for all s > ti, and so 

Consider i > 0 and y < ni. Since ni < ti and y E V,,, (9,)-1(Y) = for all s 2 ti. 

Hence 

C a s e 2 . m $ a n d O < m < w .  

For all sufficiently large i, mi = mi-1 > 0 and Subcase 2.1 occurs at stage ti. Thus g,(O) changes 

only finitely often, g(0) < w, and g(m) = w. From (*) and (**), g is a bijection from w to w U {w). 

Case3.m.&andm=O. 

For all sufficiently large i, mi = 0 and Subcase 2.1 occurs at stage ti. So g(0) = w. From (*), for 

each x > 0, g(x) 4 and g(x) < w. So again g is a bijection from w to w U {w). 
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Case 4. Otherwise. 

For infinitely many i, Subcase 2.2 occurs at stage ti. Thus g(0) = w. From (*), for all x > 0, g(x) 4 
and g(x) < w. Again, g is a bijection from w to w U {w). 

In each of the Cases 2, 3, 4, V = w and p injectively enumerates the class of all X such that 

I w - X I 5 1. This completes the proof. 

3.2.2 Proof of Lemma 3.11 

Given the computable enumeration $ we construct an injective enumeration P of a class B for which 

the conclusion of the lemma holds. The class B will be equal to { A  : Iw - A1 = 1) or this class 

reduced by one member or this class extended by one element, namely w. For every n E w we rely 

on the n-strategy to ensure that 

The strategy consists in choosing a number p > n and leaving GP out of B, if it is not w. If the 

strategy is successful, $ does not injectively enumerate B U {w). However, the n-strategy has an 

effect on 23 only if n is minimal such that qlr, = w. 

Let f : ((-1) U w) x w + w be a computable binary function such that 

1. f (x, s)  is increasing in x and non-decreasing in s, 

3. lim, f (x, s )  = oo if and only if $g = w for some y 5 x. 

Using f we construct a binary computable partial function g. The meaning of the function g is that 

p, will be defined as w - {lim, g(m, s)). The meaning of the function f is that at stage s + 1 the 

n-strategy may assign g(x, s + 1) a value different from g(x, s)  only if f (n  - 1, s)  5 x < f (n, s). 

We say that the n-strategy requires attention at stage s + 1 through j if there is a number i such 

that each of the following holds. 

Cl .  f (n , s )  < f ( n , s + l ) a n d ( V z  <n)[ f (x , s )  = f ( x , s + l ) ] ,  

C2. i = (plc > n)(min(w - $J~,,) > max{g(x, s)  : x < f (n - 1, s))), 
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C3. f (n - 1, s) < j < f (n, s)  and g(j, s) $= min(w - $i,s), 

C4. max{g(x, s) : f (n - 1, s)  I x < g(j,  s))  < min(w - (&,s U {dj, s)))). 

Note that from C2 there is only one possibility for i. 

Construction of g. 

Stage 0. Do nothing. 

Stage s + 1. There are two cases. Case 1. s + 1 is odd. 

Let n be the least number such that the n-strategy requires attention. Denote n by n(s) 

if it exists. Let i(s) denote the associated i and j (s)  denote the least j through which 

n = n(s) requires attention. If n(s)  J., set 

where x is the least number such that g(x, s)  . 

Case 2. s + 1 is even. 

Set g(y, s + 1) = min(w - R n g ( X ~ . ~ ( x ,  s)))  where y is the least number such that 

S(Y, s)  T- 

In either case, for all k, if g(k, s)  $ and g(k, s + 1) has not been specified by the previous instruc- 

tions, then let g(k, s + 1) = g(k, s). 

End of construction. 

for all indices n and let 23 = {Pn : n E w). Then P is defined uniformly in $ and we verify the 

following claims. 

Claim 1. For 23 we have PI (23). 

Prooj If g(n, s + 1) # g(n, s)  $ then g(n+ 1, s + 1) = s + 1 so that pn is either w - {lim, g(n, s))  

or w depending on whether the limit exists or not.0 
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Claim 2. Suppose $ enumerates w. Let no be the least index such that $,, = w. 

1. For every m there is a stage s  such that if g(m, t )  # g(m ,  t - 1)  at a stage t > s  then no 

receives attention at stage t .  

2. There exists io > no such that for all sufficiently large s,  n ( s )  = no implies i ( s )  = io. 

Prooj Let fo  denote lim, f (no - 1, s) .  Fix m. By inspection of the construction, g(x ,  s )  4, if 
0  < x  5 [g] - 1. Consider a stage so such that 

By C1 no n < no receives attention after stage so. Consider s  > so and j  such that g( j ,  s  + 1)  # 
g( j ,  s )  4. By inspection of the construction s  + 1  is odd, n ( s )  4, and j  = j ( s )  4. By choice of so, 

no < n( s ) .  Suppose n ( s )  > no. Then by C3 and the properties o f f ,  

Since m < f (no, so), s  = so witnesses the first part. A similar argument shows that for m < fa  = 

f (no - 1, so),  g (m ,  s )  = g(m ,  so)  for all s  > so. Thus, as s  increases through values greater or 

equal so such that n ( s )  = no, by C2, i ( s )  is non-increasing, since max{g(x,  s )  : x  < f (no - 1, s ) )  

has a constant value. This is enough for the second part.o 

Claim 3. If /? enumerates w then so does $. 

Pmoj Suppose pj = w. Note that g( j ,  s )  4 for all s  2 2j + 2. By definition of pj there exist 

infinitely many s  such that g( j ,  s  + 1)  # g( j ,  s ) .  By inspection of the construction the set 

5' = { S  : n ( s )  4, s even, and j ( s )  = j )  

is infinite. From C1, C3 and the properties of f ,  

n ( s )  - 1 5  f ( n ( s )  - 1,O) 5 f ( n ( s )  - 1,s )  < j  

and 
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for all s  E S. So there exists m 5 j  + 1  such that f (m, s )  < f (m, s  + 1)  for infinitely many s. 

Hence $, = w  for some m I j  + 1.0 

Claim 4. The enumeration ,O is injective. 

Prooj By inspection, Xx.g(x, s )  is injective on its domain. Thus it is sufficient to show that P 
enumerates w at most once. Fix j  such that ,Oj = w  and k  # j. From the definition of Pj, g( j ,  s  + 
1)  # g  ( j ,  s )  for infinitely many s. Hence lim, g ( j ,  s )  = oo. From Claim 3, $ enumerates w. Let no 

denote the least $-index of w. From Claim 2 there exist io and so such that or all s  > so, if either 

g( j ,  s )  # g( j ,  s  + 1) or g(k,  s )  # g(k,  s  + l),then n ( s )  = no and i ( s )  = io. Consider sl 1 so such 

that n ( s l )  = no and k  < g( j ,  s l )  # g( j ,  sl + 1). From C4, g(k,  s l )  E $io,sl U {g( j ,  ~ 1 ) ) .  But 

Xg(x, s l )  is injective, so g(k ,  s l )  E $i0,,,. 

Consider s  > sl and assume for induction that g(k,  s) = g(k,  s l ) .  (Our discussion above shows 

that g(k ,  sl + 1)  = g(k ,  sl) .)  If g(k,  s + 1)  # g(k,  s ) ,  then n ( s )  = no, j ( s )  = k ,  and g(k,  s )  $2 

$J~,,, by C3. This contradicts our finding above, since g(k ,  s )  = g(k,  s l )  and $io,sl C $i0,,. So 

g(k,  s  + 1)  = g(k,  s )  and the induction is complete. Clearly, since lim, g(k,  s )  exists, Pk # w. q 

Claim 5. $ does not injectively enumerate B U {w).  

Prooj Let g  ( x )  : = lim, g  (x, s) .  As above let no and fo  denote the least $-index of w and lim, f (no - 

1, s )  respectively. From C1, for all sufficiently large s  such that n ( s )  4, n ( s )  1 no, and from C3, 

j  ( s )  2 fo. Thus g ( m )  4 for all m < fo. Let io denote 

From C2, for all sufficiently large s,  n ( s )  $= no implies i ( s )  = io. Suppose that qi0 = w - {p). 

Case 1. For infinitely many s ,  n ( s )  &= no. Then for all sufficiently large such s,  g ( j  ( s ) ,  s )  = p  

by C3, and g ( j ( s ) ,  s  + 1)  = s  + 1 by the action in stage s  + 1. So there is no x  such that g(x)  = p  

- in other words, p does not enumerate $i0. 

Case 2. Otherwise. From Claim 2, g(x )  J. for all x. For all sufficiently large s  such that C1 

holds with n = no we have: f (no - 1, s )  = fo, min(w - $io,s) = p, g (m ,  s )  = g ( m )  for all 

m < m=(fo, P) ,  and 
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So for all sufficiently large such s, there is no m in the half open interval [ f o ,  f (n, s ) )  with g(m ,  s )  = 

p. Otherwise, no requires attention through some j 5 m at stage s. We conclude as in Case 1 that 

p does not enumerate $i0. 

We conclude that either + does not enumerate w,  or no 4 and either qi0 does not have the form 

w - { p )  or ,B does not enumerate +i0. Since io > no, this is enough. 

Claim 6. If 1C, does not enumerate w,  then I3 = { A  : Iw - A1 = 1). 

Prooj Suppose that $ does not enumerate w. From Claim 2, g(x )  4 for all x.  Fix a E w. By 

inspection of the construction, for all sufficiently large s,  a E Rng(Xx.g(x, s ) )  and 

implies that n ( s )  4 and g ( j ( s ) ,  s )  = a. Let S denote the set of all s  such that (#) holds, n ( s )  4, 
and g ( j  ( s )  , s )  = a. From C2 and C3 for all s  E S, 

But since $ does not enumerate w, lim, f (n, s )  4 for all n. So for each m, n ( s )  $= m for at most 

finitely many s  by C1. It follows that S is finite which is enough.0 

Claim 7. I{A : I W  - A1 = 1 )  - 231 5 1. 

ProoJ: Let no denote the least $-index of w. If no T, we already have the desired conclusion from 

Claim 6. Fix a E w. We pursue the same line of reasoning as in the proof of Claim 6 with the 

same notation. Suppose S is infinite. By C1 no 5 n ( s )  for all sufficiently large s  E S. Since 

lim, f (no, s )  = oo and f (no, s )  5 f (n, s )  for all n 1 no, it follows from (*) that n ( s )  = no for 

all sufficiently large s  E S. Let io be the value associated to no by Claim 2. Again by (*), for all 

sufficiently large s  E S, a = min(w - $J~,,,). SO a = min(w - &,). Since io does not depend on 

a, this is en0ugh.o 

The lemma is proved. 
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3.3 Extracting injective enumerations from others 

The existence of the classes C, and Cp, constructed in Section 3.2 poses the question of how to 

separate classes of this form with and without an injective enumeration. Also the injective enumer- 

ability of Cp (and C,) cannot be explained from any of the known sufficient criteria for injective 

enumerability. The class C, (and C,) does not satisfy (E), because the property of p implies that 

is not computably enumerable. And no injectively enumerable subclass (which is not obtained from 

an injective enumeration of Cp (or C,)) can be found that would fit the other criteria mentioned 

in Section 1.3. This poses the question of finding a sufficient criterion for injective enumerability 

which covers these kinds of classes. 

Both questions can be answered in terms of extracting injective enumerations from injective enu- 

merations of larger and natural classes. Given any injective enumeration y and an injective com- 

putable function g, the enumeration y (9) described by 

is clearly injective. In this case we say that y(g) is extracted from y by g. Clearly, a class C of c.e. 

sets is injectively enumerable if and only if an enumeration of C can be extracted from an injective 

enumeration of an extension of C. Let C, C* denote the class enumerated by y,y (9) respectively. If 

C is a natural class, whose injective enumerability is obvious, we can explain the injective enumer- 

ability of C* by the fact that C has many injective enumerations and from one of them, namely y, 

we can extract an injective enumeration of C*, namely y (g), by g. 

The class 

S := { A  - { a )  : A is an initial segment of w and a  E A) U { w )  

is obviously injectively enumerable. It turns out that uniformly (modulo the information whether 

w E C) in an injective enumeration of a class C with PI (C) we can construct an injective enumera- 

tion y of S and an injective computable function g such that g extracts an injective enumeration of 

C from y: 
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Theorem 3.12 It is possible to construct, uniformlyfrom an injective enumeration of a class C with 

PI (C) and the information whether w E C, an injective enumeration y of S and an injective com- 

putable function g which extracts an injective enumeration C from y.  

Proo$ Let + be the given injective enumeration. If w E C we copy + into the even sets of y .  If 

w @ C we set yo = w and copy $J in the positive even sets of y.  Let g(n) := 2n for all n. The 

problem is to add the infinite sets of (S - C) in the sets yz,+l. For every x we set up a strategy 

that enumerates w - {x) in y.  The strategy consists in choosing an odd index m and enumerating 

w - {x) tl for a suitable 1 in 7,. We keep copying w - {x) into +,, until a set +y appears to 

be w - {x}. Then we pause until x is enumerated in $,. When this happens, we return to copying 

w - {x) into ym, until another set +y, appears to be w - {x), and so on. It is possible to pursue all the 

x-strategies so that y is injective and enumerates w - {x) if and only if + does not. To avoid conflict 

between x-strategies one only needs to ensure that at every stage the finite sets enumerated by the 

strategies are different. The class S is rich enough to accomplish this. In the following construction 

we assume that for any s E w, J{O, . . . , s) - ++ 1 5 1 for all i < s. 

Construction of y .  

Stage 0. Set mo = 1 and 7 2 ,  = +, for all n E w. 

Stage s+l 

Part 1. For all x such that m, is defined, in increasing order do the following. 

If there is no i < s such that $J~,, = (0,. . . , s) - {x) then enumerate (0, . . . ,1) - {x} 

in ymx where 1 is least such that (0, . . . ,1) - {x) # yi,, for all i E w. 

Part 2. Set m,+l to be the least odd n such that y,,, = 0. For all pairs (x, y) such that 

(2, y) < s and the set (0,. . . , x) - {y) is different from all sets 7 2 k + l  enumerated so 

far, enumerate (0,. . . , x) - {y) in yzc+l where c is least such that y2c+l is empty. 

End of construction. 

By the action taken in 1 we see that w - {x) @ C if and only if ymx = w - {x). Part 2 ensures 

that all finite sets from S are enumerated as odd sets of y.  By the choice of 1 in Part 1 and the pairs 

(x, y ) in Part 2, y is injective.~ 
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This tells us which classes obtained from uniformly c.e. sequences (Bi)iEw such that Pl(Bi) and 

w E Bi for all i E w,  have an injective enumeration: they are those for which the classes Bi are 

uniformly extractable from injective enumerations of S. 

This approach does not yield an answer for the general question as is illustrated by: 

Theorem 3.13 There is a class C with P2(C), which is injectively enumerable but no computable 

enumeration of C is extractable from an injective enumeration of an extension 7 of C containing 

{ A  : I W  - A1 = 1). 

We prove this by using the following lemma. 

Lemma 3.14 Uniformly in i, j ,  x E w there is an injective enumeration of a class CijlX with P2 (Ci,jlZ) 

such that min(w - C )  = x for all C E Ci,j,, and ifw - {x) E ~ ( j )  and O(j) is injective then 

From the properties of the classes Cif,, it follows that the class U,,j,w Ci,j,(i,j) satisfies the require- 

ments of the theorem. 

Proof of the Lemma. We carry out the construction of the enumeration y below, which satisfies the 

statement of the lemma. For every number n we set up a strategy which chooses a number k and 

enumerates numbers in yk in order to ensure 

(0;) = w - {x) and n $! Rng(cpi)) w (rk = w - {x)). 

Such a number k is called an attacker for n. At every stage s, the set yk,, is a finite set (0, . . . , z) - 

{I, uk) for a suitable uk. If at stage s,  O?) becomes more like w - {I), then uk is increased. This 

process is modified in the following respect: if m appears in R n g ( ~ i , ~ )  at stage t, then uk is not 

changed thereafter and yk will be w - {x, uk). 

Two further initiatives must be undertaken to avoid conflict between the strategies for m and n, 

where m < n. Firstly, we must arrange that at any stage uk and ukt are different, where k, k' are 

the attackers for m ,  n respectively. Secondly, we must ensure that the m-strategy and n-strategy do 

not both enumerate w - {x). This can be achieved by assigning higher priority to the m-strategy. 
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At any stage in which the set S22) gets closer to w - {I), the n-strategy is reset and has to start over 

again, with a new attacker. 

We say that a number n requires attention at stage s if 

1. n has an attacker and 

2. rnax{l : {0, . . . , I)  - {x) c R:!+~} > rnax{l : {O, 

Construction of 7. 

Stage 0. No n has an attacker. 

Stage s + 1. 

Part 1. For all n which require attention, in increasing order of n do the following: 

1. If k is the attacker of n, and k is in the state "attacking", then set g(k, s + 1) to be 

the least number greater than s + 1, x which is not in the range of g so far. If in 

addition k E Rng(cpi,,) then let k be in the state of "preventing" in all following 

stages. 

2. If the attacker of n is in the state of "preventing" then do the following for all 

n' > n (in increasing order) that have an attacker. Let k be least such that g(k) 

is undefined so far. Release the present attacker and let k be the new attacker. Set 

g(lc, s + 1) equal to the least number greater than x which is not in the range of g 

so far. 

Part 2. Let n > x be least such that n is not in the range of g so far. Let y be least such 

that g(y) is not defined so far. Define g(y, s + 1) = n. 

Part 3. Let lc be the least such that g(k) is undefined so far. Let k be the attacker of 

s. Set g(k, s + 1) equal to the least number greater than x which is not in the range 

of g so far. If s E cpi,t then s is in the state of "preventing", otherwise in the state of 

"attacking". 

End of construction. 
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and let Ci,j,, = {yn : n E w). 

Verification. By the assignments of values for g ( i ,  s) the enumeration y does not repeat any set 

w - {a, b} for a # b, we have Pz(Ci,j,,) and min(w - C) = x for all C E C. If w - {x) $! ~ ( j )  

then for every attacker k the limit lim, g(k, s) exists, and so y does not enumerate y - {x). If 

f$' = w - {x) and n is the least such number, then there is a number k such that k is the attacker 

of n at almost all stages. If n E Rng(cpi) then w - {x) $! Ci,j,x and otherwise it follows by the 

action taken in b) of Part 1. that only for k is yk = w - {x). 



Chapter 4 

On Extension theorems 

We define the following properties for computably enumerable classes. 

Definition 4.1 Let n E w U {w) .  A computably enumerable class C is said to have property (G,) if 

it has an n-c.e. subclass which contains, for every finite set, the same number of extensions as C. 

The property (G,) is clearly necessary for n-computable enumerability. In this chapter we first 

define properties (Fn), n E w U {w), as generalizations for the property (F), informally described on 

page 10. Lachlan's method for proving Theorem 1.8 is sufficient to prove that (F,) and (G,) imply 

n-computable enumerability for classes of finite sets. We show that (G,) is equivalent to (F,). 

For arbitrary classes, (GI) and (F1) are not sufficient for injective enumerability: the non-injectively 

enumerable class C, constructed in Section 3.2 satisfies (GI). This is witnessed by C,, for it contains 

infinitely many extensions for any finite set extended in C,. Also, the non-injectively enumerable 

class R1 U F constructed by Kummer in [8], which was mentioned on page 14, satisfies (GI) and 

(F1) because, as mentioned, the class F is injectively enumerable. 

In Section 4.2 we show that (G,) is sufficient for computable enumerability with finite repeti- 

tions. Therefore we obtain a characterization of computable enumerability along the lines of Theo- 

rem 1.8: a c.e. class is computably enumerable with at most finite repetitions if and only if it satisfies 

(F'J. 

In Section 4.3 we construct an example to show that (GI) is not sufficient for n-computable 

enumerability. 
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4.1 The properties (F,) 

We need the following preliminary definition: 

Definition 4.2 Let 6 be an injective enumeration of <,w (the set of all finite sequences of natural 

numbers) such that the ternary predicate x = 62)  and the binary predicate x = lh(6(')) are both 

computable. Here 6(" denotes the i-th member of 6,  lh(6(") the length, and 6 2 )  the n-th member. 

For a E <,w, and j E w, â j denotes the sequence obtained by concatenating o and (j). 

Definition 4.3 An infinite c.e. class C has the property (F,), n E w, if there is a partial computable 

function @ such that 

F3. if @(i) $and m < l h (6 (9 ) ,  then Dsk) W [qq) E C ,  Sm 

F4. if either @(i) 4 or di) is the empty sequence, and 

F5. if @ ( i )  4 and m < l h ( d i ) ) ,  then I{x : x < m and WSi@(t)) = W (qe)}l < n, 
6, 

Definition 4.4 An infinite c.e. class C has the property (F,), if there is a partial computable function 

@ such that F1, F2, F3, and F4 hold, and if f : w + w is a function, such that ~ ( f ( ~ ) )  C 6(f(i+1)) 

and @ o f is total, then I{m : (3i)(W (@cf(i))) = A)}I is finite for all A E C. 
am 

(F1) agrees with Lachlan's condition (F). Lachlan [15, Lemma 61 shows that (F) is necessary for 

a class of c.e. sets to be c.e. without repetition. The proof also shows that (F,) is necessary for 

n-computable enumerability (n finite or infinite). Here we show 

Theorem 4.5 The properties (Fn) and (G,) are equivalent for n E w U {w), n # 0. 
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Proof of (G,) =+ (F,). Let C be a c.e. class and V be a c.e. subclass of C witnessing that C satisfies 

(G,). Since (F,) is necessary for n-computable enumerability, there exists @ E PI, which wit- 

nesses that 27 satisfies (F,). We claim that @ also witnesses that C satisfies (F,). The only clause in 

Definition 4.3 (Definition 4.4) which needs checking, is F4. So suppose @(i) .J or di) is the empty 

sequence, (*) holds, and dk) = di)cj.. If (*) has no witness in V then Dj has more extensions in 

C than in V, contradicting that (G,) holds for C via 27. So (*) has a witness in V and @(k) 4 as 

required. 

Proof of (F,) + (G,). Let @ E PI witness that the c.e. class C satisfies (F,). Abusing notation we 

treat @ as a partial mapping from <Ww into <Ww. Let ((a,, bs))sEw be a computable enumeration of 

w x w in which every pair occurs infinitely often. We effectively enumerate sequences (a,),Ew and 

( T , ) , ~ ~  with a,, 7, E <Ww. For each s we will have @(a,) = rs; a(()) = (), by convention. 

StepO. Setao =TO = 0. 
Step s + 1. There are two cases. 

Case 1. a, 5 &(a,) and @,((a,~a,)Ab,) 4. 

By the remark above and the properties of @, @,((a, ta,)^b,) has the form (7, ta,)^i, where 

Db, C Wi E C and Wi $2 {W(,)z : x < a,). We speed up the enumeration of the sets W(,)=, 

a, 5 x < lh(r,), and the computation of @ (a,^b,) until either 

(b) we find x, a, < x < lh(r,), such that Dbs C W(,), . 

Since @ witnesses (F), either (a) or (b) eventually occurs. In case (a), set 

In case (b) pass to Case 2. 

Case 2. Otherwise. Set o,+l := a,, T,+I := TS. 

End of construction. 

Since (a,),Ew is a C-chain, so is ( T , ) , ~ ~ .  Let T denote USE, T, and $i := W(,), . Then $ enu- 

merates a class 23 C which repeats every set at most n-times if n is finite, and finitely often if 
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n = w. Consider a E w  and suppose that b - 1 is greatest such that $ J ~ - ~  extends Da, where we 

set b = 0 if D, has no extension in 23. Suppose that C has more extensions of D, than B. Then for 

all s, @((T, tb)̂ a) 4. For s sufficiently large with (a,, b,) = (a, b) this computation will be realized 

in stage s + 1 and a new extension &(Ts)  of D, will be adjoined through Case l(a), contradiction. 

Hence B and C have the same number of extensions of D, as required.o 

4.2 An extension theorem 

The strength of (G,) with respect to the number of repetitions required in a computable enumeration 

of a class satisfying it, is given by: 

Theorem 4.6 Zfa c.e. class C satisJies (G,), witnessed by the class 23, then C is computably enu- 

merable with Jinite repetitions. Moreover; there is a computable enumeration of C in which every 

member of C - B appears once, and every member of 23 appears Jinitely often. 

Pro05 The proof relies on the following lemma. 

Lemma 4.7 Given a Jinite collection of c.e. sets A = {ao, . . . , a,-1), a c.e. sequence of c.e. sets 

(Pi)iE, and a c.e. set A such that either 

2. for every Jinite F C A, F C Pi for injinitely many i, 

we can effectively enumerate an initial segment I of w  and c.e. sets yi (i E I) such that 

Ll. C C_ {A) U23, 

L2. ifA $! A U 23, then I isfinite and there is a unique i E I such that yi = A, 

LA. if every set occurs at most Jinitely often in the sequence (Pi)iE,, then the same is true of 

(?i)iE~. 

Here B denotes {Pi : i E w )  and C denotes {yi : i E I). 
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Let a be a computable enumeration of a class C which satisfies (G,), and let P be a computable enu- 

meration which witnesses that C satisfies (G,). Let y(i) be the enumeration constructed in the proof 

of the lemma, applied to the collection {ao, .  . . , ai-1, P o , .  . . , & I ) ,  the sequence Pi, Pi+l,  Pi+z, . . . 
and the c.e. set ai. Define the enumeration y' by 

and let y be obtained from y' by deleting the empty set from y'. By the statement of the lemma, y 

is a computable enumeration of C - ( 0 )  which repeats every set at most finitely often, and each set 

from C - B at most once. The last step is to add (0) fl C to y, which clearly is uniformly possible. 

Proof of Lemma 4.7. During the construction we will be simultaneously effectively enumerating the 

sets ao, . . . , an-l, P j ,  j E w and A. At stage s only numbers less than s are enumerated. We will 

also be enumerating the desired initial segment I in increasing order such that only numbers less 

than s are enumerated at stage s. 

At stage s we define a mapping pS : I, + w.  We may also appoint followers for A or dismiss 

them. If pS (i) = pS (i') and i # i', then i and i' are companions at the end of stage s. A number has 

at most one companion. Any follower in existence at the end of stage s is in I,. If i is a follower 

and i' # i, then i' is a follower if and only if i and i' are companions. But two numbers can be 

companions without being followers. We also use a variable called 1 .  In the absence of action to the 

contrary values of I ,  pS and followers persist. 

Stage 0. Set 1 = 1 and I. = = 0.  There is no follower. 

Stage s + 1. 

Case I. s + 1 is even. 

Continue enumerating numbers less than s + 1 into the sets ai, ,Bj and A, performing 

at least one step in the enumeration until one of the following occurs: 

El .  A 11 E {ao r l ,  . . . , a,-1 1 1 ) .  

E2. There exists j @ R n g w )  such that A E P j .  

E3. There exists e E I, such that Pps(e)  = A. 

According to which of the three events is the first to occur take the following action: 
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A1 . Dismiss any followers. Increase 1 by one. 

A2. Let j be the first number found witnessing E2. Proceed according to the first of 

the following subcases which holds: 

A2.1. There is no follower. Let k denote I I ,  I. Enumerate k in I, appoint k to be a 

follower, and set pS+' (lc) = j .  

A2.2. There is a unique follower i .  Set p S f l  ( i )  = j .  

A2.3. There are followers i ,  i' with it < i .  Dismiss i' and set ps+l( i )  = j. i  

becomes the unique follower. 

A3. Let e  denote the first witness found for E3 with the proviso that, if e  has a com- 

panion e', then e' < e. Proceed according to the first of the following cases which 

holds. 

A3.1. There is no follower or e  is a follower. Do nothing. 

A3.2. e  has a companion el. Dismiss the existing followers, appoint e  and e' as 

followers. 

A3.3. Let i  denote the (larger) follower. If i  has a companion, dismiss it. Appoint e  

to be a follower with i .  Set pS+' ( i )  = ps ( e ) .  

Case 11. s + 1 is odd. 

I f  i  is a follower at the end of stage s, enumerate A, in yi. If ps( i )  = j and i  is not a 

follower, then enumerate pj,, in yi.  

End of construction. 

Note that by the second hypothesis of the lemma, one of the events El ,  E2 and E3 must occur at 

every even stage. For i E I,, let yi,, be the set of numbers enumerated in yi by the end of stage s. 

We make the following two observations. 

1 .  I f  i  is a follower at the end of an odd stage s, then yi,, = A, 5 

2. If ps( i )  is defined and i  is not a follower at the end of stage s,  then yi,, = 
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This follows, because whenever i is a follower at the end of stage s, Pp8(i),S contains As. Whenever 

pS(i) 4, i is not a follower at the end of stage s - 1, but is a follower at the end of stage s, then 

As = Pps - l ( i ) , s -  

Claim 1. For each i E I one of the following holds: 

P( i ) .  eventually at the end of every stage i is the unique follower or i has a smaller companion. 

Q( i ) .  eventually i never has a smaller companion and is never the unique follower. 

ProoJ: For induction suppose that the conclusion holds for all i < n. Suppose n E Is and that 

each i < n has settled down by the end of stage s. Suppose further that, at the end of stage s, n 

is neither the unique follower nor has a smaller companion. Towards a contradiction suppose that 

stage t = u + 1 > s is the least stage at which either n is the unique follower or n has a smaller 

companion. Now n can become the unique follower at the end of stage t only by A2.3 which implies 

that n had a smaller companion at the end of stage u, contradiction. Hence n acquires a smaller 

companion at stage t. This implies that A3.3 holds at stage t with n = e and i < n. But in this 

case at stage t, i loses a smaller companion, which contradicts the choice of s. So there is in fact no 

stage t > s at the end of which n has either a unique follower or a smaller companion. 

Claim 2. Suppose that i E I, is not the unique follower at the end of stage s and that i never has a 

smaller companion at any stage t > s. Then pt ( i )  = pS ( i )  for all t > s. 

ProoJ: By inspection of stage s + 1, particularly A2.2, A2.3, and A3.3, if pt+l ( i )  # pt ( i ) ,  then either 

i is the unique follower at the end of stage t or i has a smaller companion. The latter contradicts our 

hypothesis. But i must have become the unique follower through an occurrence of A2.3 at a stage 

u, s < u 5 t. At the end of stage u - 1, i had a smaller companion, contradiction. 0 

Let p denote the partial function lim,,, pS. Claim 2 says that Q := { i  E I : Q ( i ) )  C dom(p). 

Since pS ( i )  = pS ( i f )  and i # it imply that i and i' are companions at the end of stage s, p is injective 

on Q. Note that yi = Pp(i) for all i E Q. 

Let P denote { i  E I : P ( i ) )  and let F denote the set of permanent followers. Note that (FI 5 2, 

and F = 0 if A E A by the action taken for El. Choose c : ( P  - F )  + w such that for all 

i E P - F ,  c( i )  < i and c(i)  is the companion of i infinitely often. Clearly, Rng(c) G Q and 

therefore yi = yc(i) = $(c( i ) )  for i E P - F .  
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Claim 3. Let C C w, Zl  = { i  E dom(p) : Pp(i) = C), and Z 2  = { i  E P - F : PPccci)) = C). 

Then 
F i f C = A ,  

{ i  : Ti = C)  = Zl  U Z 2  U 

0 otherwise. 

Proo$ "2" is clear, since yi = Pp(i) if i E dom(p), yi = ,Bp(c(i)) if i E P - F, and yi = A if i E F. 

We turn to the "2" part. Suppose yi = C. By Claim 1, i is either in Q or in P. For i E Q, i is in 

dom(p) by Claim 2. If i E P, either i E P - F, and then yi = y,(i) = or i E F, so that 

yi = A  = C. 

Claim 4. 

1.  If i # j and c(i)  = c ( j ) ,  then Pp(c(i)) = A. 

Proof 1. Consider i E P - F. Consider s sufficiently large such that at the end of stage s, c ( i )  

is not the unique follower nor does it have a smaller companion, and pS(c(i)) = p(c(i)). If c(i)  

becomes the companion of i at stage s + 1, then A3.3 holds with e = c(i)  and i the (larger) follower 

at the end of stage s. Hence Pp(c(i)),s = As. This is enough. 

2. Let X denote { i  E Q : Pp(i) = A). If X is infinite, there is nothing to prove. So suppose 

X is finite. Let Y be a finite subset of c-I ( X ) .  There exists to such that at all stages greater than 

to  every number y 5 max(Y)  has settled in the sense of Claim 1. After stage to if y E Y has 

a smaller companion, then that companion is in Q. Further, there exists tl > to such that for no 

s 2 t l ,  y E Y ,  and k E Q - X, do we have As = Pps(k),s. After stage t l ,  if y E Y acquires a 

smaller companion, that companion is in X. Thus there exists t2 > tl ,  such that for all y E Y any 

companion of y at a stage greater or equal t2 is in X .  At the end of stage tn each y E Y is either the 

unique follower or has a smaller companion in X. So JY J 5 J X J  + 1. If JY 1 = J X  1 + 1, then some 

y E Y, say yo, is the unique follower. At the first stage u > ta at which yo ceases to be the unique 

follower, yo must acquire a smaller companion. This is impossible because all members of X are 

engaged by other members of Y. Hence ( Y  1 5 IX 1 which completes the proof of the lemma. 

Claim 5. If A $! A U f3, then there is a permanent unique follower. 
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Pmo$ Clearly, I is finite since all followers are dismissed at most finitely often. We first establish 

that at every sufficiently large stage there is a follower. Because A g' A, E l  occurs at only finitely 

many stages. Let to be such that E l  does not hold at any stage s + 1 > to. Suppose there is no 

follower at any stage greater than to. Then at every even stage s + 1 > to A3.1 is executed with 

e not a follower and p( i )  = ptO (i) for all i E I. Since I is finite there exists i E I such that for 

infinitely many odd s ,  E3 holds at stage s + 1 with i = e. Therefore &(i) = A, contradicting A $! 23. 

So there is a stage t' > to at the end of which there is a follower. Since El  does not occur at any 

stage greater than t', at every stage greater than t' there is a follower. 

Fix t such that 

by the end of stage t every i E I has settled down in the sense of Claim 1, 

for all i E Q , p s ( i )  = p ( i )  for all s > t ,  

for all i E Q ,  Pp(i) , ,  = As never holds, and for s > t. 

there is a follower at every stage s 2 t. 

Consider an even stage s + 1 > t at which E3 holds for e. Suppose e has a companion e' < e. Then 

Q(e'),  hence p(e' ) = pS(e') = p5(e). So A, = 0,. (,),, = /3,(,,),, , contrary to the choice of t. Now 

suppose that e has no companion and is not a follower. Since Q ( e ) ,  we have the same contradiction. 

Thus at any such stage e is the unique follower and A3.1 is executed, i.e. there is no action. 

Now consider an even stage s + 1 > t at which E2 holds. At the end of stage s + 1 there is a 

unique follower. Further, if there is a unique follower i at the end of stage s, then i is the unique 

follower at the end of stage s + 1. 

From the observations above it is clear that there exists a unique follower at all stages greater 

thant+2.  ,, 

We are ready to demonstrate that the conclusion of the lemma is satisfied. L1 and L3 follow 

from Claim 3 and the fact that F = 0 if A E A. L2 follows from Claim 5. Suppose the set C is 

enumerated finitely often by P. We show that the sets Zl and Z2 defined in Claim 3 are finite. (We 

already stated that F is finite.) Recall that p is injective on Q. For i E dom(p) - Q either i E F or 
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i has the same smaller companion j at almost all stages. A number can only have one companion at 

almost all stages. Altogether, Z1 is finite. 

If C # A, then by the first part of Claim 4, c is injective on the set of i E P - F such that 

-yi = 2. As Q C Rng(c) and p is injective on Q, Z2 is finite. For C = A, the second part of Claim 

4 shows that Z2 is finite. Thus LA is ~atisfied.~ 

The theorem is proved.0 

Corollary 4.8 A c.e. class is computably enumerable with finite repetitions i f  and only i f  it satisfies 

(F 'd  

4.3 No extension theorem for n-c.e. 

Although the classes R1 U F and C, described in Sections 1.4 and 3.2 do not have injective enumer- 

ations, they are 2-c.e. This is because they are dense in the following sense: 

Definition 4.9 A computably enumerable class C is dense, if any finite set that has one extension in 

C has infinitely many extensions in C. 

For a dense class C with (GI) set A1 = C and AZ = 23, where 23 witnesses that C has (GI). The 

method of proof of Martin Kummer's Lemma 1.9 yields an enumeration of C in which every mem- 

ber of C - 23 occurs once, and every member of 23 occurs at most twice.' The paper [27] gives 

examples of c.e. classes of finite sets which are not n-c.e., but are (n + 1)-c.e., and of c.e. classes 

of finite sets which are not n-c.e. for any number n E w, but are computably enumerable with finite 

repetitions. 

The following theorem strengthens these results, and shows that there is no extension theorem 

for the property of being n-c.e. corresponding to Theorem 4.6. 

Theorem 4.10 There is a computably enumerable class C which has the property (GI) but is not 

n-c.e. for any number n. 

Note that such a class cannot be dense, has to have infinite members by Theorem 1.8 and has to be 

computably enumerable with finite repetitions by Theorem 4.6. 

%is idea can be found in Kummer's dissertation [lo, p 381. 
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ProoJ: First we define 

Definition 4.11 A c.e. class C has the property (G') if it has a subclass 23 which has an enumeration 

in which only the empty set appears more than once, and such that 23 has the same number of exten- 

sions of any finite set, as C does. A class is k-c.e. (up to the empty set) if it has an enumeration in 

which only the empty set is repeated more than k times. 

The proof of the theorem relies on Lemma 4.12: 

Lemma 4.12 Given an R-index e of a computable enumeration $ and a number n 2 1, it is possi- 

ble to construct enumerations of classes C,,, and Be,, uniformly in e, i, such that $ does not witness 

that C,,, is n-c.e. (up to the empty set)and Be,, witnesses that C,,, satisfies (G'). 

The statement of the theorem follows like this. By the SF-Theorem there is a computable binary 

function r such that R$'") = { z  : (i, n, t) E R$} for all i, n, m E w. 

Use the lemma to define 

C := U (i, n, G(i,n),n)- 
i,nEw 

Clearly C satisfies the conclusion of the theorem. 

We first describe how to prove the lemma for the case n = 1. Given $ = R(i), we construct an 

injective enumeration p of a class 23 and an enumeration y of a class C. We want to ensure that ,O 

witnesses that Ci,, := 23 U C has the property (G'), and $ does not injectively enumerate Ci,,. 

The first step is to enumerate a number a0 in the sets ,& and yo. Then we wait until a0 appears 

in a $-set (If such a set does not exist, $ is not an enumeration of C U 23). The situation looks like 

this: 

The next step is to enumerate in P1 a number a1 # ao. Again, we wait until a1 appears in a $-set. 

The constellation now is: 
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Now we extend the sets in p and y as follows: 

Here bo # ao, al. We wait until = {ao, bo) and . ICIp,  = {al ,  ao). If this does not occur then ?I, 

either repeats &I or does not enumerate C U 23. Otherwise the situation is: 

We repeat this, and if + enumerates what is enumerated by P and y without duplication, the result 

after m rounds is 

Here all numbers ao, . . . am+l, bo, . . . bm are chosen to be pairwise different. If this is continued 

infinitely often, then yo = {ai : i E w )  and this set is not enumerated by P or @. Moreover every 

finite subset of 70 has an extension in p. 

The strategy for arbitrary n > 1, relies on using the (n - 1)-strategy, recursively. In order to give 

a formal description we define the following concepts. An enumeration sequence a is a sequence 

( ~ i ) ~ < ~ ,  where L = L(a) E (w - (0)) U { w )  and where each ai is an instruction having one of the 

following forms: 

8 "do nothing" 

(n, p,  j )  "enumerate n in Pj" 
66 

( m y  ) enumerate m in Yk9' 

I "terminate" 
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where ai = I if and only if L E w and i = L - 1. We will be concerned only with enumeration 

sequences which are either finite or c.e. The enumerating sequence is called terminating if L E w 

and non-terminating otherwise. Let a, T be enumeration sequences; T extends a if o terminates, 

L(a) < L(T),  and ri = ai for all i < L(a) - 1. With the enumerating sequence a we associate 

computable enumerations P(o), y (a )  by 

By B(a) we denote the class enumerated by @(a), and by C(a) the union of the classes enumerated 

by P(a) and y (a).  We ignore occurrences of the empty set in P(a) and y(a). There are a number of 

parameters associated with a terminating enumeration sequence a. First, the length is denoted L(a). 

The lower bound of a denoted !(a) is the lesser of the least number occurring in any instruction of 

a (oo if every instruction is 0 or I) and the least i such that ai # 0. The upper bound denoted U (a )  

is the greatest number occurring in any instruction of a (0 if every instruction is 0 or I) and L(a). 

Furthermore, 

The enumeration sequence a is good if P(a) witnesses that C(o) satisfies (G'). A terminating enu- 

meration sequence a is n-good with respect to $ if GO,. . . ,G5 hold: 

GO. a is good. 

G3. there exists exactly one i < b(a) called the critical index for a such that 

P(o)~(,) is called the critical set. 
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G5. There are pairwise different i l ,  . . . , in such that $i,,L(cr) = P ( u ) ~ ( ~ )  for all a: = 1, . . . n. 

The critical set is denoted by A(a) and the critical index by i(a).  Note that A(a) # 0. 

Let tC(u) denote the enumeration $J defined by 

Lemma 4.13 Given e ,  N E w and n > 1 we can effectively generate an enumeration sequence a 

such that N < !(a) and either 

SI. a is terminating and n-good with respect to or 

S2. a is non-teminating, good, and C(a) is not enumerated by de) /C(a) ignoring occurrences 

of 0. 

Lemma 4.14 Given e E w, n > 1 and a terminating enumeration sequence a which is 1-good 

with respect to o ( ~ ) ,  we can effectively generate an enumeration sequence T extending o such that 

! (T )  = !(a) and one of the following holds: 

TI. T is non-terminating, good, and C ( T )  is not enumerated by LC ( T )  ignoring occurrences 

of 0. 

T2. T is ( n  + 1)-good with respect to de). 

T3. T is 1-good with respect to d e ) ,  i ( r )  1 b(a), P ( T ) ~  = P ( U ) ~  for all x < b(a) with x # i(o), 

,B(T)~(,) # A(r). A(o) is a proper subset of A(r), and if R $ ( ~ )  = A(a) then a$(T) # 

A(4 .  

We prove Lemma 4.13 for n, assuming Lemma 4.14 holds for n, and prove Lemma 4.14 for n + 1 

assuming Lemma 4.13 holds for n; simultaneously we prove Lemma 4.13 for n = 1. 

Proof of Lemma 4.14 assuming Lemma 4.13 for n. Given e and a, a terminating enumeration se- 

quence which is 1-good with respect to de), we construct an enumeration sequence T as follows. 

Step 1. Applying the construction of Lemma 4.13 find an enumeration sequence a' such that U(a) < 
!(a1) and at satisfies the conclusion of Lemma 4.13 for n. 
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Step 2. Use a' to extend a to an enumeration sequence T by letting 

Step 3. Suppose a' is terminating. We adjoin instructions to T to ensure that 

P ( T ) ~ ( ~ I )  = A(a) U A(al), and 

Step 4. Extend T by occurrences of 0 until G4 holds and if that occurs, extend T by I. 

End of construction. 

Verification. If for Step 2. a' is non-terminating, then T is non-terminating and satisfies TI. Sup- 

pose Step 2. terminates. Note that for j # i(a),  i ( d ) ,  if P(a) j is non-empty, then P ( 7 )  j = P ( 0 )  j ,  

and if P(al)j is non-empty, then P ( T ) ~  = P(al)j. Also, 

If for the last step G4 never holds, T is non-terminating and satisfies TI. So suppose T is ter- 

minating. Because a' is n-good by S1, there are pairwise different numbers i l ,  . . . in such that 

~ t $ ( ~ ~ )  = A(&) for x = I , .  . . n. By G4 and since A(r) is the unique member of C ( T )  which 

includes A(d ) ,  flf&,) = A(r) for s = 1, .  . . n. Let I = {i : fl$(,) = A(o)}, which is non- 

empty by assumption on a, and none of i, E I by assumption on a'. Because G4 holds for T ,  

fl!$,,, E {A(r) ,  A(a) U {U(o1) + 1)) .  Now there are two cases. Either there is an i E I ,  such that 

flie) = A(r); then T2 holds. Or fl!) = A(a) U { U ( d )  + 1))  for all i E I; then T3 holds. CI 

Proof of Lemmu 4.13 assuming Lemma 4.14 for n + 1. Given e and N we construct a as follows. 

Set ai = 0 for all i 5 N + 1 and CN+2 = (N + 1, P ,  N + l ) ,  UN+3 = (N + l , ~ ,  N + 1). Extend 

a by occurrences of 0 until G4 holds. If n = 1 extend o by I. 

If n > 1, do the following: 
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PI. Let p be the current sequence a extended by I. 

P2. Set i = L ( p ) .  

P3. Repeat, while ~i J,# o: set ai = ri and increase i by one. Here, T is obtained from Lemma 4.14 

for e, n + 1 and p. 

P4. If T is (n + 1)-good with respect to extend a by I. Otherwise continue at P1 

End of construction. 

Now, if a is terminating and n = 1 holds, then S1 is satisfied. If a is terminating and n > 1, then 

S2 is satisfied, since the last T obtained from Lemma 4.14, is (n + 1)-good. Clearly, if a is non- 

terminating and n = 1, then a is good, and because G4 does not hold, S2 is satisfied. Suppose a is 

non-te~minating and n > 1. There are two cases. Either one T obtained from Lemma 4.14 satisfies 

T1 or all satisfy T3. In the first case it follows immediately that a satisfies S2. For the second case, 

let us denote by 7 the set of all T obtained in P2. Then 7 is linearly ordered by "extends" and has 

a least element which we denote by TO. 

If we denote the smallest proper extension of T, in 7 by rn+1, then rn+l is obtained by an 

application of Lemma 4.14 from 7;. We have 7 = {ri : i E w).  The sequence a is the union of all 

T I ,  such that T I  is the largest initial segment of some T E 7 not containing I. 

Claim 1. If y ( U ) ~  is not empty, then y (a)i = UTE7 A(T) and this set is infinite. 

Pmoj Let y (a)i,  y (a) # 0. Then there is n, m such that y(Tn)i,  y (7,) # 0. Without loss of 

generality, suppose n > m. Then y ( rk) i  = y ( T ~ )  = A(rk) for all k > n, because ~k satisfies G3. 

By T3, A(T,) # A ( T ~ + ~ )  and therefore UTE7 A(T) is infinite.0 

Claim 2. All are finite. 

Pmoj Let P(a ) i  be non-empty. Then there is a smallest n such that P(Tn)i is non-empty. If 

P(rn)i  # A&) then, by T3, P ( ~ k ) i  = P ( ~ n ) i  = P(a ) i  for all 2 n. If P ( ~ n ) i  = A(7n)Y 

then P ( T , + ~ ) ~  # A(Tn+1), and again by T3, P ( ~ n + l ) i  = P(7k)i = P(0 )  for all k 2 n + 1. As Tn 

and Tn+l are terminating, P(Tn)i,  P(Tn+l)i are finite, and so P(an) i  is  finite.^ 

Claim 3. P ( a )  is injective (up to the empty set). 
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Proof Let i # j such that /3(o)i, P(o) are both non-empty. By the argument used for Claim 2 there 

is n such that = P(rn)i and P(o) = P(rn) j. Because Tn satisfies G2, P(rn) j # P ( h ) i .  This 

is enough.~ 

Claim 4. Every finite subset of UTET A(r) has infinitely many extensions in B(o). 

Proof Let F be a finite subset of UTET A(T). Let n be such that F C A(r,). By T3, F G A(rk) 

for all k > n. Let k > n. Because rk satisfies G3, F E P ( T ~ ) ~ ( ~ ~ )  C - P(u)i(Tk). BY T3, i (~k+l)  2 

b(rk) > i(rk) and so i(rk) # i (rk/)  for k # k ' . ~  

Claim 5. UTET A(r) @ d e ) ,  the class enumerated by ~ ( ~ 1 .  

Pmof Suppose Rle) = UTET A(T). Let s be least such that $,) is non-empty. By Claim 4 there is 

s such that P(oz) 2 a!:. By the argument used for Claim 2 there is n such that P(o), = P(rm), 

for all m 2 n. Let m > n be such that L(rm) 2 s. Then R$(Tm) n /3(rm), # 0. By 04,  

Ri:i(,, = f l ( ~ ~ ) ~  for some j. 

Suppose j # i(rm). Then P(rm)j = P(rk) j  for all k 2 m. By G2 there is bo such that 

bo E (P(rm) - @(u) j ~ )  for d l  j' # j. It follows that bo E and bo $! A ( T ~ )  UTET A(r),  

contradiction. 

(el Suppose j = i(rm). By T3, i is not an Ri -index of A ( T ~ + ~ )  with respect to rm+l,  contradiction.^ 

The lemma is proved. 

To complete the proof of Lemma 4.12 and of the theorem, let P = P(a) and y = y (0) where o 

is obtained (by using the recursion theorem) from the constructions of Lemma 4.13 with e, N = 0 

and n and Lemma 4.14.0 
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