
Using X.500 to Facilitate
the Creation of Information Systems Federations

Eric Kolotyluk

B.Sc. University of British Columbia 1981

THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

O Eric Kolotyluk

SIMON FRASER UNIVERSITY

December 1994

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without permission of the author.

Approval

Name: Eric Kolotyluk

Degree: Master of Science

Title of Thesis: Using X.500 to Facilitate the Creation of in for ma ti^^ Systems

Federations

Examining Committee

Chai'r: Lou Hafer

- - ,

Jia-Wei Han
nior Supervisor

Associate Professor of Computing Science

Peter "Triantafillou
Supervisor

Assistant Professor of Computing Science

Tiko ~a&eda
External Examiner

Professor of Computing Science

December 9, 1994

date approved

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project
or extended essay (the title of which is shown below) to users of the Simon
Fraser University Library, and to make partial or single copies only for such
users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed
without my written permission.

Title of Thesis/Project/Extended Essay

Using X. 500 to Facilitate the Creation of Information Systems Federations.

Author: 4 .
(signatbe\

(name)

December 13, 1994

(date)

Abstract

X.500 is the international standard for a world-wide automated directory

system, the Directory, which enables people and automated systems to search for

information such as people, places, systems, services, etc. However, much of the

information that is expected to be found in the directory already exists in corpo-

rate and institutional databases as well as other information sources.

In the last ten years or so, computing experts have begun creating federa-

tions of information systems in order to give us easier access to a variety of infor-

mation sources. These range from simple but powerful network grazers like

Archie and Veronica to more sophisticated heterogeneous database projects like

Interbase, Myriad, ORECOM and others.

The issues of interfacing the X.500 Directory with existing information

sources are explored-in effect, the X.500 Directory is seen as a federation man-

ager of information systems. In particular, the integration of X.500 methods with

relational database technology is studied in the context of what is possible and

what makes sense. To test these ideas an existing Directory Service Agent has

been modified to access a commercial relational database management system,

allowing a directory administrator to map the tuples of a relation into the entries

of the directory. Results from this effort have revealed challenges not only in the

conceptual design of such a system, such as information schema translation, but

also in the pragmatics of system design, such as the registration of external infor-

mation sources within the Directory itself.

Finally, this thesis speculates on the ultimate scope of X.500 as an informa-

tion systems federation manager, where the global information network could be

headed and what we might see or invent along the way.

Dedication

to Jane Durrant

for lasting inspiration

Quotation

And the whole earth was of one language, and of one speech.

And it came to pass, as they journeyed from the east, that they
found a plain in the land of Shinar; and they dwelt there.

And they said one to another, Go to, let us make brick, and burn
them thoroughly. And they had brick for stone, and slime they
had for mortar.

And they said, Go to, let us build a city and a tower, whose top
may reach unto heaven; and let us make a name, lest we be
scattered abroad upon the face of the whole earth.

An the Lord came down to see the city and the tower, which the
children of men builded.

And the Lord said, Behold, the people is one, and they have all
one language; and this they begin to do: and now nothing will
be restrained from them, which they have imagined to do.

Go to, let us go down, and there confound their language, that
they may not understand one another's speech.

So the Lord scattered them abroad from thence upon the face of
all the earth: and they left off to build the city.

Therefore is the name of it called Babel; because the Lord did
there confound the language of all the earth: and from thence
did the Lord scatter them abroad upon the face of all the earth.

Genesis, Chapter 11, verses 1-9

Acknowledgments

X.500 has enormous potential as a guide through the ever expanding morass of

information and world-wide information systems. The many people who con-

tributed to its design should take pride in their work. Without the grassroots

development of a public domain X.500 service at University College London

there would not be the hundreds of X.500 sites throughout the world. In particu-

lar Steve Kille should be applauded for his vision and contributions to the effort.

Allan and Tim Howes should also be recognized for their technical support at the

end of e-mail wire (as well as their patience with at least one frustrated devel-

oper). Finally, without the initiative and exceptionally hard work of Marshall

Rose, there would not have been an ISODE, upon which the majority of X.500

sites are based.

The original topic of this thesis was going to be something like "benchmarking

commercial database management systems for use with X.500." Credit should be

given to my supervisor Peter Triantafillou who said this topic was not interesting

enough and proposed the broader, 'more interesting' topic on which this thesis is

based.

The statement "may you live in interesting times" was said to have been a curse,

and like much interesting work this thesis and its related project were not with-

out their curses. Fortunately, in addition to his academic expertise, the continu-

ous support, patience and motivation of my senior supervisor, Jia-Wei Han,

made these curses more bearable and kept the work going.

- vii -

Table of Contents
. Approval ... ii

. Abstract 111

. Dedication iv
Frontispiece . v
Quotation . vi . Acknowledgments vll ...

. Table of Contents viii

. Chapter 1 Introduction 1
. 1.1 The Directory 2

. 1.1.1 Other Directories 3
. 1.1.2 Why X.500? 4

. 1.2 Information Reuse and Synchronization 7
. 1.2.1 Replication and Static Translation 7

. 1.2.2 Dynamic Translation 8
. 1.3 The X.500/Relational Connection 9

. 1.3.1 Using a Relational Database System for the DIB 9
. 1.3.2 Using the Directory to View Raw Relations 15

. 1.3.3 Integrating the Directory With Existing Databases 20

. Chapter 2 Heterogeneous Information Systems 21
. 2.1 Terminology 22

. 2.1.1 Heterogeneous Databases 22
. 2.1.2 Federated Databases 22

. 2.1.3 Multidatabases 23

. 2.1.4 Interoperability 24
. 2.1.5 Levels of Heterogeneity 25

. 2.1.6 Research Areas 26
. 2.2 Schema Integration and Translation 28

. 2.2.1 Common Data Models 29
. 2.2.2 Higher-Order Logics 30

. 2.2.3 Entity Identification 30
. 2.3 Registration 31

. 2.4 Conclusion 32

. Chapter 3 Resolving X.500/Relational Differences 33
. 3.1 Mapping Multivalued Attributes 33

3.2 Mapping between Directory Hierarchy and Relation Tuples . . . 35
. 3.2.1 DN to Candidate-Key Maps 40

. 3.2.2 Directory Searching and RDBS Queries 40
. 3.3 Differences in Schema Content 49

. viii .

. 3.3.1 Expanding the Relational Schema 49
. 3.3.2 Augmenting Information via the DIB 50

. 3.4 Notation for Mapping Relations to X.500. 51
. 3.4.1 Mapping Tuples to Entries 51

. 3.4.2 Mapping Primary Keys to Distinguished Names 52
. 3.4.3 Handling Multivalued Attributes 53

. 3.4.4 Registration of Mapping Information 54

. Chapter 4 Implementation Experience 55
. 4.1 Introduction to Proxies 56

4.1.1 Proxy by Example . 57
. 4.2 Why Proxies? 58

. 4.2.1 Delegated Subtrees 58
. 4.2.2 Delegated Attributes 59
. 4.3 Implementing Proxies 61

. 4.3.1 Registering Mappings 63
. 4.4 Implementation Challenges and Other Issues 63

. 4.4.1 Information Isolation 63
. 4.4.2 DSA Caching 64

. 4.5 Implementation Status 64

. Chapter 5 Possible Future Directions 65
. 5.1 User Definable Hierarchies 65

. 5.2 Indexing Servers 68
. 5.3 More Powerful Indexing Servers 69

. 5.3.1 Walking the World Tree 70
. 5.3.2 Building the Master Index 71

. 5.3.3 Constructing a New Custom Hierarchy 72
. 5.4 Concept Hierarchies -72

. 5.5 The Universal Relation 74
. 5.6 The Open Systems Director 75

. 5.7 The Information Superhighway 76

. Chapter 6 Conclusion 79
. 6.1 Summary of Results 80

. 6.1 . 1 Three Issues of X.500-RDBS Interoperability 80
. 6.1.2 Interoperability Mapping Notation 81

6.1.3 Registering External Information Sources Using Proxies 81
. 6.2 Problems with X.500 83

. 6.2.1 Schema Control 83
. 6.2.2 Design Limitations 84

. 6.2.3 IS0 OSI 84
. 6.2.4 Complexity 84

. 6.2.5 Obscurity 85
. 6.3 Future Research and Development Needed 85

. 6.3.1 Add Support for Oracle 86
. 6.3.2 Complete X.500 Operations on RDBS Access 86

. 6.3.3 Support Hierarchy Mapping 86
. 6.3.4 Support Dynamic Registration 86
. 6.3.5 Wide-Area Information Access 87
. 6.3.6 Schema Translation Techniques 87

. 6.3.7 New Information Models 87
. 6.4 Final Remarks 88

. AppendixA X.500 Overview 90
. A.1 Information Model 90

. A.2 Schema Model 93
. A.3 Operational Model 94

. A.4 Security Model 96
. A.5 ISODE 97

. AppendixB Sample Directory Session 99

. References 103

Chapter Introduction

In the early to middle 1980's information management technology began creating

heterogeneous information systems in order to give us easier access to a variety of infor-

mation sources. This can be seen with the commercial success of information gateways

like Envoy-100 in Canada; Dialog, CompuServe, the Source, and EasyNet in the U.S; and

Inspect, Questel and 'ii' in Europe. More recently in the 1990's the popularity of 'free'

information browser/finder applications like Archie, Veronica, Gopher and Mosaic has

built upon the success of the Internet and has changed the style of information access by

acting more as information brokers than as gateways. However, even these services still

do not tap into more sophisticated database systems because of the more sophisticated

information models. To address this research, efforts like Interbase [27], Myriad [36],

ORECOM [32], IDEF-1X [32], EXPRESS [32], NIAM [32], and OSAM* [32] are attempting

to create powerful schema definition and translation methods which will give us the

capability for information retrieval from a diversity of information management systems.

The reason these efforts are so popular is that progressively our society depends on

information as a resource. As more information is collected into mountains, it increas-

ingly becomes important to be able to mine for useful information efficiently. The main

problem is that often each mountain of information requires a distinct method of infor-

mation mining. Thus, there are too many distinct methods and users rarely have the time

to learn all theses methods or have the resources to acquire them. What people increas-

ingly desire is a common means of accessing a wide variety of information sources.

Heterogeneous information systems promise the ability to hide several distinct informa-

tion mining (access) methods behind such a common interface.

As an endorsement of this new heterogeneous information technology, many of the

reference papers used in this Thesis were obtained in a short time browsing the World-

Wide-Web via NCSA's X/Mosaic application, instead of the many hours or days more

traditional library searches and other means would generally require. However, it still

takes many hours and days to read the rapidly increasing research results in this budding

area.

1.1 The Directory

X.500 [1,2,Appendix A] is the international standard for a world-wide automated

directory system1 which enables users (people and automated systems) to search for

information about people, places, and other things. From the user's perspective, the

Directory is similar to services like the Internet Name Service, and the PH servers for

POP mail, but vastly richer in features and sometimes equally frightening in complexity.

In most cases it is typically used for looking up electronic mail (e-mail) addresses of

people, but there are many efforts to expand the range of uses.

A related effort by the Object Management Group (OMG) is to create the Common

Object Request Broker Architecture (CORBA) [5] so that client applications may interop-

erate with objects on other systems. An important part of this is the ability to search for

objects and control access to objects through an object directory mechanism. Indeed the

CORBA directory design attempts to take into account existing directories such as X.500.

In the abstract sense the Directory is much more than a means of looking up e-mail

addresses. It is foremost a standard for Directory User Agents (DUAs) to communicate

with Directory Service Agents (DSAs). The DUA is the user interface to the Directory

(which is a collection of co-operating DSAs). The DSAs share the management of persis-

tent information known as the Directory Information Base (DIB). What is interesting and

important in this case is that X.500 in no way specifies how the information is stored in

the DIB, but how it is accessed and managed. In this sense the DSA is like an SQL (Struc-

tured Query Language) program, in that it only specifies how to access the information

but the actual physical storage and management of the information is an implementation

detail separated from the use of an SQL program. In fact, while SQL has been primarily

used with Relational Database Systems (RDBS) there have been attempts to use SQL with

other types of database systems.

Generally called the OSI Directory, or just 'the Directory.'

- 2 -

1.1.1 Other Directories

Directories are vital in an information-dependent culture such as ours. Imagine

going to a library with hundreds of thousands of books but no catalogue, or trying to find

a plumber to fix your sink but not having a telephone book or directory assistance.

On any computer system, the first operation everyone learns to do is search for files

in the file system directory. Without the file system directory it is hard to imagine how we

could ever make effective use of computers. However, the file system directory is not the

only directory of important information. In the ever popular Unix, for example, the files

/etc/passwd, /e tc/group, / e t c / h o s t s , /etc/networks, and so on, are all direc-

tories for various types of information. One unfortunate consequence of this implemen-

tation of directories is that each has its own particular syntax and access methods. A

program (or person) that is looking for files in the file systems has to use one method, but

when looking for host computers on the network, has to use a very different method.

In an environment where myriad computer systems and networks are the norm,

network-wide directories become increasingly important. In particular, there becomes a

need to base directories not in the context of a single computer system, but the network

as a whole. Sun Microsystems' Network Information Service (NIS) is an example of an

attempt to rationalize the directory in terms of the network. However, NIS only provides

a minor abstraction on the collections of file-based directories, and does not integrate the

file system information with other information. More importantly, the original NIS only

supported the concept of a network, and not a hierarchy of networks as is often the

administrative reality.

Efforts were made in the early to middle 1980's to develop a more generalized

distributed directory system with the Internet Name Service (or just name service). This

defined a truly hierarchical and slightly more abstract service in which people and auto-

mated systems could query the name service for information about named entities. While

the name service is a vital service in the international Internet, it was only designed to

address an immediate need to look-up network addresses of host computer systems and

was extended slightly to do directory-based routing of electronic mail addresses. While

other uses were proposed for the name service, it is rarely used for more than host

address lookup and mail routing.

Other popular directory systems include usenet (network news), Gopher, Archie,

and Mosaic. These are all light-weight standards in that they are designed to be easy to

implement and do not require a great deal of rigor in defining information standards,

especially in terms of schema. Each of these systems is also very specifically designed for

a particular application, often requiring different access methods for very similar infor-

mation.

There is an increase in building gateways from one information service to another

and in integrating information bases. For example, there is now a common Gopher/

Mosaic information server that permits administrators to combine the information base

resulting in reduced storage requirements as well as improved information synchroniza-

tion. There are even Gopher to X.500 and Mosaic to X.500 gateways permitting Gopher

and Mosaic users to browse information in the international X.500 directory.

1.1.2 Why X.500?

While development of X.500 started around the same time as the Internet Name

Service, the design goals of the international standards community were significantly less

ad-hoc and substantially more ambitious in terms of strictness of standards and richness

of features. In fact, the feature that distinguishes X.500 from all the previously mentioned

directory technologies and standards is that each of the previously mentioned directory

techniques is an ad-hoc attempt to design and implement a service. While such ad-hoc

methods have produced impressive results, none has really attempted to produce a

generalized information directory service that is truly multifunctional.

X.500, on the other hand, specifies a very generalized directory standard for looking

up information on arbitrary types of objects. While the Internet Name Service, Gopher

and Mosaic are capable of presenting very general types of information, they are much

weaker in their ability to search for specific types of information. For example, in the INS

you can search for a name of a unique object, but you cannot search for all the objects of

a particular type of host other than listing all hosts and doing the search yourself. In

Mosaic (and the World-Wide Web) you can search for information based on keywords,

but only if someone has created an keyword/index server for a particular subject area.

Furthermore, because schema standards are so much less formal, it makes it more diffi-

cult for automated tools to search and utilize much of the valuable knowledge available.

For example, while Mosaic is a very successful hypertext/hypermedia browsing utility,

the 'hyper-links' are typically built by hand or by custom ad-hoc indexing methods.

Having a standard form of entity attributes like X.500 would facilitate automatic creation

of such hyperlinks.

Table 1: X.500 Features

feature

hierarchical

naming

schema
control

description

Like the INS, Gopher, and Mosaic, X.500 facilitates easy browsing of infor-
mation structures.

Any particular object modeled in the directory can be uniquely identified
with a well defined hierarchical naming structure. While the Internet Name
Service (INS) supports a simple hierarchical name structure, names carry
far less information. For example:

INS: eric@sfu.ca

X.500: country=CAQorganization=Simon Fraser University@organization-
alUnit=Faculty of Applied SciencesQorganizational-Unit=School of Com-
puting Science@commonName=Eric Kolotyluk

While the X.500 name provides far more information about the named
object, it is not practical to remember or type, and so 'User Friendly Names'
can be used, specifying partial information.

UFN: Eric Kolotyluk, Simon Fraser University, CA

Unlike Gopher, Mosaic offers its own naming system, http names, which
can locate a 'page' of information via a variety of access methods. This
leads to cumbersome, difficult-to-remember names with a complex syntax.
While X.500 names can seem long and cumbersome, the syntax is simpler
as any information on access methods is removed from the name and can
be found in the attributes of the entry the name represents.

All information attributes must be encoded in a well specified manner. This
includes the names of attributes, the syntax of each type of attribute value,
the required and allowable attributes of each class of objects represented
in the directory, the allowable object classes allowed at particular locations
in the directory. This can make it easier for automated systems to make
sense of directory information since it is more standardized.

Table 1: X.500 Features

feature

information
update

authentication

access controls

search
mechanisms

information
modeling

description

Unlike services such as the INS, Gopher, and Mosaic, it is possible for the
user to update information in the directory through the same mechanism
for accessing the information. In these services it is necessary for a sys-
tems administrator to update such information. Part of the reason for this is
that, unlike X.500 with its well established schema controls, it can be very
dangerous for inexperienced users to update the information bases in
these other services.

X.500 supports the notion of a directory user 'binding' to the directory,
potentially requiring that the user authenticate themselves through pass-
words or public key techniques. This is even more important when people
may have update access to information.

Some implementations of the Directory support access controls on infor-
mation in the directory. In Quipu, Access Control Lists (ACLs) can specify
who is allowed to read, write, and compare a particular directory entry
(object), the child entries of that entry, or even individual attributes of the
entry.

This has very important implications in information access legislation
(rights to access and rights to privacy) that have not begun to be explored
in other information services.

While not as powerful as mechanisms like SQL, X.500 provides powerful
search mechanisms that enable directory users to search for specific
entries (objects) under a wide range of conditions.

With the growing research and development in knowledge-based intelligent
systems, it is increasingly important that the information be available in a
well-defined formal way. X.500 provides a very logical and object-oriented
model of information.

One particular ideal of the author is that from the computer users' perspective, at

sometime in the future we should be able to forgo the great diversity of directory and

information access techniques, and utilize a common, powerful mechanism, a super

browser or automated librarian to direct us to and access all the available information

resources on the international computer networks. X.500 offers more of the necessary

technical infrastructure to make this possible than systems like the Unix file system,

Gopher and the World-Wide-Web.

1.2 Information Reuse and Synchronization

While X.500 may appear to some as an elegant information management system, it

is just another information management system. Much of the information that is

expected to be found in the directory already exists in corporate and institutional data-

bases and other information sources. In order to make use of this information it must be

translated from its native format to a format that is suitable for use in the Directory. In

such a situation, there are really only the following two approaches handling multiple

information access mechanisms:

1.2.1 Replication and Static Translation

In this approach, the information from one system is replicated and translated to

another. This is generally the most straightforward approach for a number of reasons:

1.Once the information is translated it can be accessed immediately in the new

system.

2.There are generally a great many tools to aid in static translation. For example,

on Unix: ed, awk, pearl, and several other tools exist to transform information in

batches.

3.Hand tuning of the translation is generally quite practical because this transla-

tion is often a once only exercise.

4.Most vendors provide tools to translate external information sources into their

own format to encourage users to continue using their product.

A significant drawback to this, however, is that it is possible for the two systems to

disagree, over time, on the correct information (diminishing information integrity). If

someone updates information about a person on the first system, but is unaware of the

replicated information on the other system, the second system will no longer have consis-

tent replicated information.

In order to keep replicated information consistent it is necessary to devise and

implement synchronization mechanisms. Typically this involves either periodically

comparing the information in the two systems and resolving inconsistencies (yet another

interesting problem), or updating both information systems when ever a change is made

to either. In this last case we have effectively Replication with Dynamic Translation.

Eventually if replicated information is to be kept consistent, there will always have

to be mechanism for keeping the information consistent. In the long run this will always

require at least as much effort as implementing pure Dynamic Translation.

1.2.2 Dynamic Translation

Rather than replicating the information from one system, the information is trans-

lated dynamically each time a request is made for it at the second system. In essence, this

second system acts as a gateway to the first system. The main advantage of this approach

is that inconsistency of replicated information is impossible because there is no replicated

information. Another advantage is that as there is no replicated data, extra storage space

is not required.

Another variation is to allow replication via caching. This can enable better perfor-

mance of information access and increased availability of information, but also leads to

many problems of synchronization and information integrity. In many cases, lazy propa-

gation of new information to the cache would be tolerable. For example, on an hourly or

daily basis the directory could refresh its cache.

The primary disadvantage to Dynamic Translation is that it can be quite a lot of

work up front to devise and implement effective automated mechanisms to translate

information between two or more systems. With replication and static translation it is

possible to get a new directory system in service more quickly, postponing issues of infor-

mation consistency until later. Another disadvantage of Dynamic Translation is that if the

primary information system malfunctions the information will also not be available to

the directory.

Issues of replication and caching in distributed-replicated file systems have been

explored in systems like Coda[6], Sprite[7,8], and Locus[9].

1.3 The X.500lRelational Connection

There are at least three basic reasons why someone would want to connect the

Directory to a relational database management system:

1.To provide the persistent storage for the Directory Information Base (DIB).

2.To provide a means for Directory users to view the low-level raw information.

3.To allow Directory users higher-level access to an existing database.

While each of these goals has its own set of characteristic challenges, they are also related

in that there are good reasons to combine any two or all three for added benefits. In terms

of classifying the issues, however, this is a good division of approaches.

1.3.1 Using a Relational Database System for the DIB

Above all, one of the most important features of the Directory is that it has a persis-

tent store for information. On top of that it is desirable that the Directory has safe and

efficient access to that information. While some X.500 implementations have chosen to

create their own persistent store, others have used existing database management tools to

implement the DIB.

The main advantages to implementing a customized persistent store are that:

1.It can be more expedient. For example, the initial implementation of Quipu used

a simple, human readable/editable ASCII text file called an Entry Data Block

(EDB) file for each level of the Directory Information Tree (DIT). When the Quipu

DSA is started, all the EDB files are loaded into main memory and only used

again for update.

2.The persistent store can be customized and tuned to the specific requirements of

the Directory.

3.Dependence on proprietary systems can be avoided. For example, in a public

domain1 system like Quipu, accessibility and usability of the overall system can

be greatly compromised by dependence on proprietary components.

While Quipu and ISODE are not exactly in the 'public domain,' the availability of and distri-
bution of these systems are very similar to public domain systems.

- 9 -

On the other hand, there can be some disadvantages to creating a customized persistent

store:

1.Expedience often means trade-offs. For example, in Quipu: the DSA start-up time

can be very large (an hour or more), the virtual memory demands can be difficult

to manage1 (a hundred megabytes or more), and directory updates can be quite

slow2 (many second).

2.Customization often means 'reinventing the wheel.' Generally this means imple-

menting custom mechanisms for data integrity, data indexing, back-up and

recovery, transaction management, etc.

3.Dependence on non-proprietary or public domain technology can be limited in

terms of available technology and ongoing support.

The main advantages to using existing tools and products to implement a persistent

store are:

1.It can also be more expedient to avoid 'reimplementing the wheel.'

2.Using existing mature technology can take advantage of previous effort and

expertise at performance tuning, data reliability, and data management facilities.

3.0pportunities to integrate and interoperate directory information with informa-

tion in existing databases.

The disadvantages to using existing tools and products, however, include:

1.Selection of an existing database management System typically requires some

expertise in that area. For example, appropriate use of an Relational Database

Systems (RDBS) may require substantial expertise on the part of the directory

developer in architecting an appropriate database for a DIB.

2.An impedance mismatch between needs of the DSA and the access methods of

Excessive VM usage can lead to excessive paging, resulting in more time spent in paging
input/output than other useful work. Quipu paging can interfere with other applications
and visa versa, requiring the systems administrator to isolate Quipu and move other appli-
cations to different systems.

Slow individual updates can make bulk update of directory entries prohibitive. This typi-
cally requires locking the DIB from directory updates, updating the DIB through other
means, then restoring normal operation of the Directory.

the DBMS can lead to problems of performance, complexity, maintainability, etc.

For example, Sybase provides character string data-types for up to 255 charac-

ters, but X.500 routinely requires attribute values of more than 255 characters.

3.Reliance on proprietary technology can limit access to the particular directory

implementation because of licencing restrictions, royalties, government restric-

tions', etc., as well as increase the fiscal dependence on commercial products.

Ultimately, the goals and needs of the directory developer will determine a given

choice of DIB implementation. In some cases a combination of methods can be appro-

priate. For example, in the current version of Quipu's disk-based DIB (via GDA, the

Generic Directory API) the Gnu Database Management (GDBM) library is used to imple-

ment the persistent store and indices for the DIB, while allowing great flexibility in

customizing the persistent store to the needs of the Quipu DSA.

In regards to using a RDBS for implementing the DIB, the specific advantages to

doing this are:

1.Access to mature technology. The leading RDBS vendors offer products built on

many years of research, development, implementation experience, and user

testing. In fact, there is probably more known about relational database tech-

nology than any other database management technology.

2. Access to existing mechanisms important to DIB operation includes: performance

enhancements such as indexing mechanisms, data integrity, and transaction

management2. Furthermore, contemporary RDBS products such as Sybase

support multiprocessor host systems.

3.Many organizations, especially large ones, that are likely to run a directory are

For example, the US government is very proactive in limiting technology for export to other
countries, especially in the area of security technology such as encryption (an area very
important to the OSI Directory).

For example, the ISODE Consortium plans to implement DSA performance increases by
making the existing DSA software 'thread safe' and adding a multiprocessing package.
While this may be generally worthwhile, existing database management systems already
support such performance features. By contrast, an alternate to adding multiprocessing to
ISODE code would be to m multiple DSAs of the same DIB and rely on the RDBS for man-
aging concurrent access to the DIB.

also likely to have a commercial RDBS product. Having a DSA that utilizes their

existing RDBS would let them exploit existing expertise and investments in that

technology. In particular if that organization already has database information

that it would like to incorporate/interoperate with the directory, it would gener-

ally be much easier to construct mechanisms to move data from existing data-

bases to the DIB database, and keep each database in synchronization with the

other.

4.Relational databases offer a great deal of flexibility in database management that

would allow a DSA administrator to fine tune the DIB to organizational require-

ments. For example, in most RDBS products:

a.Indices can be created and dropped at anytime. Also, there is typically the

option to create different kinds of indices. This would give the DSA adminis-

trator great flexibility in experimenting and performance tuning of the DIB

while it is already operational.

b.SQL can allow extremely powerful access to the DIB. In particular, SQL can

offer the DSA administrator (and in some cases the Directory user) much more

powerful access to the DIB than through the standard X.500 search and update

mechanisms.

c. Views can be utilized to implement a degree of schema interface independence

between the needs of the DSA and the actual DIB implementation.

d.Many RDBS products have optimizers that can compile access plans for views

and SQL procedures. These are transparent to the operation of the DSA and

views and procedures can be recompiled whenever the underlying DIB

changes (i.e., index changes). Also, some RDBMS products (e.g., Sybase) offer

hand-tuning of the optimized plans that would give the DSA administrator

even more ability to fine tune the DIB to organizational needs.

In spite of the attractive features RDBS technology might offer to the DSA/DIB

developer, there can also be disadvantages:

1. While not necessarily a limitation of the relational model, contemporary products

have significant limitations in the data-types they provide. For example, in

Sybase the data-type 'varchar' would be a popular choice for storing X.500

attribute values. However, the maximum length of a varchar is limited to 255

characters. Although Sybase provides the 'text' data-type for character strings

longer than 255, this data-type cannot be accessed via SQL in the same manner as

varchar. Furthermore, for every 'text1 value, a minium of 2048 bytes of storage is

allocated in the databas~onsequently, text strings only slightly longer than 255

characters result in very poor storage utilization.

2.SQL was designed primarily for interactive database access by a person. While

many implementations provide program access through SQL, more program-

ming effort is required to access the data than systems like Objectstore where the

primary interface is via persistent variable in C++ (see below).

3.Associative access to data can incur a performance penalty. Even with efficient

index mechanisms like B-trees and hash tables, joining tables via indirect keys

imposes far more overhead than resolving direct pointers.

4.Inventing a relational schema appropriate for Directory use can be a challenge.

Because relational systems offer such great flexibility in database schema design

a great deal of expertise and experience is required to design an effective schema.

Furthermore, the issues raised in the previous points make this design task even

more challenging.

Using an OODB for a DIB

While relational database technology may be a very attractive platform for a Direc-

tory Information Base, Object-Oriented Database Systems (OODBS) can offer features not

always found in relational technology, which can, however, also be of benefit to a DSA/

DIB implementor. Because the X.500 model includes object-oriented features, the notion

of class and subclass for example, there may be closer schematic relationships between

the X.500 model and a given OODBS.

However, semantic kinship is not necessarily the most attractive feature of an

OODBS. Recent research and development in OODBS design has led to a much greater

variety of features between OODBSs than between contemporary RDBS products so it is

difficult to explore this kinship with every significant OODBS.

ObjectStore from Objective Designs Inc. belongs to a class of OODBS designs

known as the 'persistent store.' Previous work by the author investigating the application

of ObjectStore as a DIB showed:

1.The persistent store model offers a better impedance match between the persis-

tent data, data structures, and DSA code. This allows easier DIB implementation

compared to that possible with more conventional RDBS technology which typi-

cally requires access through SQL and cumbersome data transfer mechanisms.

2.Greater flexibility in data types and structures also makes it easier to meet DIB

requirements. For example, ObjectStore data types are those of C++, while

Sybase data-types are much more limited in use. More specifically, a 250-byte

character string is treated the same as a 260-byte character string in ObjectStore,

whereas the same cannot be handled effectively in Sybase.

3.0bjectStore's 'collections' class provides powerful tools (B-trees and hash tables)

for creating custom index methods directly. This also makes it possible to effi-

ciently implement associative search with performance rivaling a RDBS, in addi-

tion to the highly efficient direct access characteristic of OODB methods.

Interestingly enough, the object-oriented nature of ObjectStore was of little value with

respect to paralleling the 0-0 schema of X.500. Rather than statically implementing the

X.500 schema, ObjectStore was used to create a general mechanism where the schema

could be maintained dynamically. In this respect the same can be done via an RDBS.

Implementing a DIB via ObjectStore also has its drawbacks. Some of the disadvan-

tages include:

1.Schema evolution is still more difficult in ObjectStore than Sybase. While

improvements are being made in this area, at the time ObjectStore was investi-

gated for DIB design and implementation, there were no schema evolution mech-

anisms.

2. While ObjectStore does support powerful associative search capabilities, these

must be implemented directly into DIB code and optimization is left up to the

DIB implementor. Relational systems typically support effective optimizers and

the flexibility to tune performance after the database has been implemented.

Research has shown that it can be difficult to match Sybasefs associative search

performance using ObjectStore.

3.0bjectStore has no SQL interface. SQL can be a very powerful tool for a directory

administrator to analyze directory information or perform information mainte-

nance.

In spite of some serious evolutionary shortcomings, technology such as ObjectStore

would likely make for a more effective DSA/DIB implementation than a RDBS. This is

true, however, only if there will be no interoperability between the DIB and existing rela-

tional databases.

There is still much room for improvement in RDBS implementations, especially in

the area of impedance match with programming languages. If products like Sybase were

able to support the entire C++ data type and data structure suite the way ObjectStore

does, it would be a lot more desirable to use a RDBS for a DSA/DIB implementation.

Similarly, if better interfaces between program code and the underlying RDBS engine

could be developed, then RDBS-based DIB implementation would be much easier.

1.3.2 Using the Directory to View Raw Relations

Another intriguing use of the Directory would be to directly access the relations of

a given RDBMS. In a sense this would be quite straightforward, for example, given a rela-

tion of products:

Table 2: Example Parts Relation

number

12345

12346

1 2347

12348

name

HD107-1

HD223-2

12349

H D457-2f

HD768-2f

price

$21 5

$398

HD1024-2f16

$765

$1133

stock

239

465

$1370

description

107 MB SCSI-1 hard disk

223 MB SCSIP hard disk

310

127

457 MB fast SCSI-2 hard disk

768 MB fast SCSI-2 hard disk

97 1024 MB 16-bit fast SCSIP hard disk

The directory administrator might like to map this relation into a directory subtree with

the following entries:

organizationalUnit=Stock Parts
cornmonName=HD107-1
cornmonName=HD223-2
cornmonName=HD457-2f
cornmonNarne=HD768-2f
commonNarne=HD1024-2f 6

Performing a directory read on comrnonName=HD768-2f might be expected to return

something like:

cornrnonNarne=HD768-2f,
partNurnber=12348,
price=$l ,133,
stockQuantity=l27,
description=768 MB fast SCSI-2 hard disk

It might also seem reasonable to assure that, under the appropriate circumstances, a

directory user be able to update this database via directory access methods. For example,

the parts/inventory manager might want to change the description to "1024 MB wide

fast SCSI-2 hard disk." If the manager was already viewing the inventory via the X.500

user interface, it would be easier to update the information via X.500 than to start up an

SQL user interface and reformulate the update in SQL.

Overall this example demonstrates a useful purpose for viewing raw relations and

is fairly straightforward to implement. However, there are a number of issues that would

have to be addressed.

Database Schema

Rarely are tables in relational databases as simple as Table 2. More often than not, a

relation will have a number of fields which are (direct) foreign keys, or related attributes

will be found in other relations linked by their (indirect) foreign keys. Finally, the likeli-

hood of dealing with direct and indirect foreign keys typically increases for normalized

databases.

The straightforward solution to the problem of dealing with indirection via foreign

keys is to use relational views. By creating a view relation that joins all the necessary

tables into an appropriate view and eliminates foreign keys which would not be mean-

ingful if viewed through the directory, there again is a more straightforward mapping of

the relation into a set of directory entries. The fundamental catch to this solution is the

classic "view update problem" in the case where someone wanted to update the database

via the directory. While some commercial RDBMS products allow updates via views, it is

generally under very restrictive conditions. However, in many cases this is an easy lirni-

tation to live with, especially if update through the Directory is not required.

Another problem is that views often are joins across other relations. When this

happens the resulting information in the relation is no longer normalized, for example,

Table 11, "PhoneUsers," on page 34 is the result of joining the tables Person and Tele-

phone. One undesirable artifact is that the person, "William Havens," appears twice in

the view but we would not want two entries for "William Havens" to appear in the Direc-

tory.

These issues will be explored further in section 1.3.3 "Integrating the Directory With

Existing Databases" on page 20.

Directory Schema

We must face the Directory schema with its extensive control mechanisms [1,2]. In

particular, schema controls in the Directory would typically require the following restric-

tions on the mapping of the parts table:

1.Each entry in the subtree 'oranizationalUnit=Stock Parts' would also require an

objectclass attribute to specify the required and allowable attributes of each

entry. This objectClass would have to be previously defined to the DSA in ques-

tion.

2.Each attribute-type of each part entry would also have to be previously defined

to the DSA.

3.Each attribute-type would also have to have an associated attribute-value syntax

defined.

While many would consider this a simple matter of configuration, such configuration is

typically tedious and error-prone and would be better achieved through automatic

methods. Certainly there is enough information present in the definition of the parts rela-

tion that the appropriate schema could automatically be created in the Directory. Unfor-

tunately the current state of X.500 schema management does not yet allow this.

Schema Differences

Aside from the stringent schema enforced by the Directory there are some differences in

the Directory's schema and that of the basic RDBMS.

1.The Directory schema allows multiple values for a given attribute. Contempo-

rary RDBSs do not yet deal well with this concept. Typically the tuple is either

represented twice, with each distinct value, or the particular attribute is

expressed through a foreign key and a one-to-many relationship. There is

however theoretical work [10,11,12,13] that simplifies the expression of multi-

valued attributes in relational databases.

2.The directory is fundamentally a hierarchy, or tree, of information, hence the

term Directory Information Tree (DIT). Consider the following directory:

organization=Simon Fraser University

I
- organizationalUnit=Faculty of Applied Sciences

- organizationalUnit=School of Computing Science

t commonName=Eric Kolotyluk, position=staff

commonName=Jia-Wei Han, position=faculty

- organizationalUnit=School of Engineering Science

t commonName=Chao Cheun, position=staff

commonName=Jim Cavers, position=faculty

- organizationalUnit=Academic Computing Services

t commonName=Lional Tolan, position=staff

commonName=Robert Urquhart, position=staff

Consider a more typical relation of people in university departments where we

must find an appropriate mapping from departments to organizationalunits:

Table 3:

department

Computing Science

I Engineering Science I faculty I Jim I cavers I

Computing Science

Engineering Science

position

staff

While there may seem an obvious mapping to the reader, the basic problem is:

how do we specify this mapping in a more formal way so that a program may

perform the mapping automatically?

3.Another significant problem has to do with 'schema content.' Not only may the

schemas differ in structure, but in what they contain. For example, in the

previous university directory, there are only four attributes in each person entry.

But what if a person in the directory also requires a phoneNumber and electron-

icMailAddress attributes. These attributes are not represented in the relation, so

where do they come from? Do we extend the relational schema with the new

attributes or do we store these in the directory, and what are the pros and cons of

each technique?

faculty

staff

Computing Services

Computing Services

Summary

The basic problem with mapping raw relations into X.500 schema is that schema

management in the Directory is still not fully mature [4]. While there has been much

effort in this area, in particular, the addition of service attributes in the 1988 version of

X.500, there are few, if any, implementations of X.500 1988.

first name

Eric

In the very near future there will likely be enough support for and experience with

schema management in X.500 to make it extremely straightforward to map raw relations

into X.500 schema. This would make it commercially attractive for organizations to

last name

Kolotyluk

Jia-Wei

Chao

staff

staff

Han

Cheng

Lionel

Robert

-

Tolan

Urquhart

'publishf portions of their existing relational databases via the Directory. In this way

customers and potential customers could browse databases such as parts, reducing the

need for vendor newsletters, advertising, price lists, and other junk mail. Consequently,

this would make it commercially attractive to develop DSAs that can easily provide X.500

access to existing relational databases.

1.3.3 Integrating the Directory With Existing Databases

Using a RDBS to implement the DIB, or using the Directory to view raw relations

seems to be an acceptable and useful reason for integrating X.500 with a RDBS, but each

has certain limitations. In the first case, if we want the DIE3 to interoperate with an

existing information source, we still have to translate the information structures and the

schema between the two models. In the second case, we may not be able to capture the

full meaning of the entities in the database through one relation or even through a view.

The last significant approach is to access the relational database at a higher concep-

tual level, namely, the actual database level as opposed to the raw relation level. In this

case, rather than forcing the relational database administrator to create a new database

for the DIB, or creating the appropriate views to map into the Directory schema, the DSA

becomes a user of the actual database.

We saw a hint of this sort of problem in the previous section where we needed to

deal with foreign keys in raw relations, in particular, with handling multi-value

attributes. The approach was to create a new view of the data which more closely resem-

bled the structure of a directory entry. By extending this technique we would ultimately

deal with the entire relational schema by defining a set of views to support each partic-

ular type (or object class) of directory entry.

Chapter 2 Heterogeneous Information Systems

In Genesis chapter 11 from the Bible we see an interesting story of people, all of

whom speak the same language, seeming to work well enough together that even the

Lord was concerned of what they might achieve. He was so concerned that He chose to

intervene by confounding their language and scattering them abroad. We can at best spec-

ulate as to what danger the Lord saw, although one popular interpretation is that the

people building the city and tower were so proud and arrogant, boasting they could

reach heaven, that the Lord decided to teach them some humility. Whatever deep truth

the story holds, one fact that we can be sure of is that thousands of years ago people had

a sense of the power of standards and conventions, or conformity, and were equally aware

of the frustrations due to differences in communication and practices.

Indeed, thousands of years later we still grapple with these fundamental issues of

conformity vs. individuality, often with debate of religious passion. Ergo, the young field

of computing science is no exception as proponents of standardization continually

wrestle, intellectually, with proponents of the "free market of ideas and products" [17].

While much can be said, philosophically, about standardization, experience typi-

cally shows that standardization works best with mature technology. The nature of a

mature technology is that it need not change much. Any improvements in the technology

have likely already been incorporated, or can be incorporated within the framework of

the standard. The trick, therefore, is how to realize some of the benefits of standardization

in a young and rapidly changing technology.

As we saw in Chapter 1, there is increasing pressure on computing professionals to

offer better ways for computer users to access information quickly and easily whatever

the fundamental source. Inevitably many researchers and developers have accepted the

challenge, accepted that there is great diversity in information systems, accepted that

there is enormous investment in established systems, and accepted the fact that informa-

tion seekers want access anyway. The trick these people have discovered is to develop

technology that accepts these differences as well.

2.1 Terminology

In surveying some of the recent literature [18,27,29,34,35,36,38], there are a number

of terms used almost interchangeably: Heterogeneous Databases, Federated Databases,

Multidatabases, and Interoperability. One of the best overviews of this terminology

comes from Elmagarmid and Pu's Introduction to the Special Issue on Heterogeneous

Databases in the September 1990 issue of the ACM Computing Surveys 1171.

2.1.1 Heterogeneous Databases

Basically a Heterogeneous Database Management System (HDBS) is one where two

or more distinct information sources are accessed as though there were one homoge-

neous information source. These sources can be heterogeneous in terms of features like

the data model, query language, database schema, transaction processing, etc.

2.1.2 Federated Databases

According to Webster's dictionary, a federation is 'a union of organizations.' To

most people the common example of a federation is that of the federal government; a

union of the provincial or state governments. Most of us will also be familiar with the

distinctive nature of each of these separate organizations and the difficulty keeping the

federal process working. In many places in the world, it is nearly impossible to keep any

large federation of governments together at all for more than a few years at a time.

However, we continue to persevere forming federations and attempting to keep them

going because, in spite of all the problems, we find greater value in having them.

The most distinctive characteristic of a Federated DataBase System (FDBS) is the

effort to tightly couple the schema of the component databases. In particular, there is

quite a bit of effort in designing the 'federation manager' to be extremely flexible in

accommodating the various database schemas, typically through a single canonical form

which the other schemas are mapped into. From the user's point of view there is really

only one schema to consider. The main disadvantage is that it can be very difficult to find

a canonical form for databases with wildly different schemas.

2.1.3 Multidatabases

In [17] a multidatabase system (MDBS) is defined as "a collection of loosely coupled

element databases, without an attempt to integrate them using a unified schema." In

practice, there is a wide range of what we might call multidatabase systems, from infor-

mation gateways like, Envoy, Dialog, CompuServe, The Source, EasyNet, Inspect, and

Questel, to information finders like Archie and Mosaic, to full-fledged DBMSs like

Sybase, Empress V2, Ingres/Star, and Oracle V5. In the latter cases, these full-fledged

DBMSs have typically been extended with MDBS concepts and already share a common

data model, although they may have different schema. In this author's opinion, it is

misleading to include Sybase, Empress V2, Ingres/Star, and Oracle V5 in the category of

multidatabases.

tightly coupled
federated schema

loosely coupled
multidatabase schema

The main disadvantage of a multidatabase system is that the user will generally

have to be more aware of the different schemas and other characteristics of the compo-

nent databases. The advantage of this, though, is that for wildly different schemas the

multidatabase manager need not be too ambitious in its design and implementation by

relying on the 'intelligence' of the human user. In short, the multidatabase approach is a

more pragmatic one, while the federated database approach is a more idealized one.

What is important to remember about both of these approaches is the similarity of

the results-unified access to a heterogeneous set of database systems. While starting

with different assumptions, each approach works towards a similar goal that will become

increasingly similar as technology improves.

2.1.4 Interoperability

While the term interoperability is used often in the literature, there are few attempts

to define it clearly with respect to federated, and multi-databases. The impression is,

though, that interoperability is a horizontal concept, as opposed to a vertical one. That is,

in a federated database or multidatabase the component systems are 'driven' by a

managing agent, the FDBS or MDBS, and do not interact or interoperate with each other

directly. In this sense there is a hierarchy of control. On the other hand, interoperating

database systems can interact with each other directly. Rather than a hierarchy of control,

there is a lattice of control.

federated systems interoperating systems

In this sense, the X.500 Directory accessing information in a RDBS is also an issue of

interoperability. If we were to implement an SQL interface to X.500, we could realize two-

way interoperability between X.500 and relational databases without the need of a FDBS

or MDBS. In another sense, we can view both X.500 and the RDBS each as a heteroge-

neous database system. The basic limitation of not having a FDBS or MDBS component is

that each interoperating database (or information system) component is limited to its

own data model and operation suite, whereas a FDBS or MDBS can be designed to

encompass the data models and operation suites of its constitute members.

There are trends to increase interoperability with efforts like ANSI SQL, SQL2, and

SQL3 [15], by adding features which make it easier to support broader information

models. Over the long run we should expect to see increasing convergence between the

FDBS-MDBS approach and the interoperability approach, to the extent that every leading

DBS interoperates with every other DBS and each becomes a Federated DBS or Multi-

DBS. This should be a general goal for the information management community as, in the

end, it is not so important how we get to the information as how effectively we get the

information.

2.1.5 Levels of Heterogeneity

Within the field of heterogeneous information systems there are certain character-

izations we can make about so-called systems that we can group into levels of heteroge-

neity.

In [33] the authors try to characterize levels of heterogeneity in their "Spectrum of

Cooperative Problem Solving." In this characterization there are two dimensions of

criteria, Collaboration vs. Coordination, which they use to define the following spectrum:

Centralized Databases, Distributed Databases, Federated Databases, CSCW, Office Auto-

mation, Distributed Artificial Intelligence Problems.

While there are many other possible characterizations of heterogeneous database

methods and systems, the important point is that there are different levels or degrees of

heterogeneity to be considered.

Level 1 Heterogeneity
This class of heterogeneous systems includes systems where the various data

schemas may differ, but where the underlying data management model is the same. For

example, this would include a federated database system where the constituent members

are all relational database systems, possibly all made by the same vendor.

Another possibility would include a federation of OODBSs [30], but the significant

bulk of research is in fact focused on the heterogenous relational database systems. This

makes a certain degree of sense in that the bulk of production database systems are rela-

tional, yet unable to interoperate with each other.

Publications in this category include [29,30,36,37].

Level 2 Heterogeneity

This class of systems includes systems where the underlying data management

models are different. For example, this would include a multidatabase system where the

constituent members include distinct RDBS and OODBS products from different vendors.

While there is definitely growing research into systems which exhibit this level of

heterogeneity, it is definitely a more difficult problem to address as not only do all the

Level 1 challenges have to be addressed, but the additional task of dealing with some-

times profoundly different information management models.

Publications in this category include [22,27,31,32,34,39].

Level 3 Heterogeneity
This class of systems is more difficult to define, but is intended to describe hetero-

geneous information systems where the constituent members are radically different

beyond Level 2. For example, one might envision a heterogeneous information system

where the constituent members include relational, object-oriented, geographic, and CAD

databases, as well as information sources like on-line documentation, hypertext, multi-

media browsers, and spreadsheets. This definition is intended to make a distinction

between systems with powerful data models like database management systems, and

systems with little or no data models.

Publications in this category include [27,33].

2.1.6 Research Areas

Within the field of heterogeneous database research there are several broad areas of

study:

1. Architecture

2.Schema Integration and Translation

3.Transaction Processing (commitment and recovery)

4.Query Processing and Optimization.

Of the four, architecture is probably the most important because it sets the framework for

all the other pieces of the system. Architecture involves not only the architecture of the

component databases of a HDBS, but the architecture of the HDBS itself. Indeed, when

surveying the literature, it is common to find some discussion of architecture even if the

core issue is either Schema Integration and Translation or Transaction Processing,

Commitment and Recovery.

Schema Integration and Translation is probably the second most important issue

researched. Differences in schema are a direct result of working with heterogeneous data-

bases, where Architecture and Transaction Processing are well known issues from the

study of homogeneous databases. In this sense Schema Integration and Translation are

probably the most important area where further research is needed, whereas issues of

architecture are more mature and more in need of refinement and standardization.

While transaction processing issues are also important, as they relate to HDBS

management, most work is concerned with the extension and refinement of what has

been learned about transaction processing in homogeneous database systems. Two key

transaction processing issues which are a direct result of HDBS research are:

1.Distributed Processing. Heterogeneous database systems are almost always

distributed. As a result, good algorithms for distributed transaction processing

are fundamental to the success of any heterogeneous database system.

2.Autonomous Processing. More germane to HDBS transaction processing is the

reality that autonomous and often different models of transaction processing

must be accommodated.

Although transaction processing is also quite important to the task of utilizing X.500 as a

HDBS, it will not be covered in the rest of this thesis in order to limit the scope and avoid

tempting digression. More information on transaction processing in heterogeneous data-

base systems can be found in [26,45,46,47,49].

Like transaction processing, Query Processing and Optimization in an HDBS is

really an extension to what has already been learned from homogeneous database

systems. Two key issues relevant to this area are:

1.Query Translation. Because more than one component DBS is involved in a

HDBS, query translation is unavoidable. This may be case of translating one

higher level query into two or more queries (in the same query language) for

component DBSs, or it can be a matter of

2.Autonomous Processing. Like transaction processing, the autonomous operation

of constituent DBSs can present a problem for query processing, in particular for

query optimization.

While query processing, and in particular query optimization, are important issues even

in the context of X.500 as a heterogeneous database, the issues have more to do with

making database processing work better than work at all. For this reason, and to also

limit the scope of this thesis, the subject will not be covered further, except for query

translation which can be closely related to schema integration and translation. Further

information on query processing and optimization can be found in [24,26].

2.2 Schema Integration and Translation

Fundamentally the most challenging issues of HDBS operation come from dealing

with the realities of differences in schema between constituent DBSs. Differences in

schema can be small, on the order of lexical differences;

Table 4: Minor Schema Differences

create table Person
(name char(32),

roomNumber smallint
1

create table Person
(name char(40),

off ice char(5)
)

more moderate, on the order of syntactic differences;

Table 5: Moderate Schema Differences

create table Person
(name char(32),

roomNumber smallint)

create table Person
(firstName char(20),

IastName char(20)
off iceId smallint)

create table Off ice
(off iceId smallint,

buildingld smallint,
room char(8))

create table Building
(buildingld smallint,

buildingName char(24))

or even quite severe, on the order of semantic differences;

Table 6: Major Schema Differences

create table Person
(name char(32),

roomNumber smallint,

class Person : Object
{ name: char(32),

SIN: int }
class Employee : Person
{ department: *Department,

phoneNumber: char(l6) }
class Department : Object
{ division: *Division,

name: char(32),
manager: *Employee)

2.2.1 Common Data Models

Quite a bit of work [29,30,31,32,39] has gone into the definition of common data

models to deal with the problem of schema differences. By defining a powerful data

model which captures the essential features of all other significant data models, the

number of translators can be minimized. This contrasts with the approach of creating

translators between every pair of data models where the number of translators grows on

the order of the square of the number of data models. In reality the number of data

models does not necessarily grow very large and it can often be easier to design a custom

translator than a single powerful central model.

Some of the most recent work has taken the approach of defining a powerful

Object-Oriented common data model. The advantage of this approach is that it accom-

modates the more modern 0-0 schemas as well as the more common relational ones.

2.2.2 Higher-Order Logics

Once a common data model is defined, it is still necessary to define the translation

between existing database schemas and the canonical schema. While a variety of tech-

niques have been proposed [29,30,31,32,36,38], the use of logic programming techniques

seems quite promising[29]. In particular, logic programming lends itself well to the defi-

nition of meta-level information structures and translation rules. When coupled with an

object-oriented information model, the logic programming rules can be utilized as

methods1 for data translation and access.

2.2.3 Entity Identification

One of the central problems in schema integration and translation is identifying

similar or identical entities in different databases with different schemas. Consider the

following example from [37]. We have two tables which use different keys to identify

their tuples so we must search other attributes to find matching tuples. In this case it

seems the name attribute is a good start, but we may also need to compare the street

attribute in Relation A with the region attribute of Relation B.

Table 7: Relation A

I a2 I Ching I Co.B Rd. I Chinese I Hwang

ald -
a1

I a3 I Old Country I Penn. Ave. I American I Slagle

name

Village Wok

1. In object-oriented terminology a 'method' is a procedure or subroutine that is specifically
designed to work on the data of a particular class objects. By encapsulating methods with
data the relationship between the data and the methods can be better defined and managed.

a4

street

Wash. Ave.

Old Country

cuisine

Chinese

manager

Lim

HW. 7 American Tom

Table 8: Relation B

2.3 Registration

bld -
b l

b2

b3

One of the issues that does not seem to be covered well in much of the surveyed

literature is that of registration of external data systems. In particular, registration deals

with how one information system is made aware of the existence of another, probably

different, information system. Is this 'awareness' built into the underlying framework of

name

Village Wok

Ching

Old Country

the gven heterogeneous information system, or does there exist extensible mechanisms

for describing new types of information structures, schema translation methods, and the

region

UofM Campus

Roseville

Downtown

specialty

Hunan

Sechuan

Steak

actual communications protocols and connection mechanisms?

ratingB

Average

Excellent

Good

Most work in the area seems to assume that registration is an implementation

detail, or is built into the underlying heterogeneous design. This assumption is quite

likely due to the fact that much of the work in heterogeneous database systems centers

around heterogeneous relational database where there is a different data model and

schema, but a similar interface such as SQL. In particular, with the adoption of ANSI

Standard or Open SQL, it is possible for RDBS products from different vendors to inter-

operate with each other, so the issue of registrations is a simple configuration issue.

However, there is less (although increasing) work in the field addressed to the

interoperability of widely divergent database systems or information sources. In these

cases registration is generally ad-hoc and built in to the system design.

2.4 Conclusion

Perhaps database research will never build its Tower of Babel. Perhaps the task is

too difficult, or it is just not realistic to have one common database approach. This is

clearly the case today, yet it is essential that we build bridges between these towers.

Building these bridges are researchers with a keen sense that while there are differ-

ences between the various information storage systems, there is enough commonality

between the information stored within them that we can concentrate more on the infor-

mation and less on the systems. One of the 'building tools' which seems quite promising

is the use of logic programming techniques to build powerful schema definition and

translation mechanisms.

However, building bridges alone is not likely to be enough. Ultimately, we will

need to standardize the bridges. For example, what good is a narrow rope suspension

bridge to someone with an ox and a wide cart to haul? Standardization is inevitable

though to any mature technology and, as can be seen with standardization efforts such as

SQL-2 and SQL-3 to add support for OODB technology, progress continues to be made in

this area. Fundamentally, though, it will be our understanding of information and infor-

mation processes which will give us the ability to define good standards. By wrestling

with heterogeneous information systems, we can only hope to improve our under-

standing of information system.

Chapter 3 Resolving X.500lRelational Differences

As we saw in Chapter 1, there are some tempting similarities between the X.500

Directory model and the relational model, but there are also some significant differences,

especially with respect to their schema. Three main problem areas are: dealing with

multivalued attributes, mapping the directory hierarchy to the relation structure, and

dealing with schema content differences. Once all these issues are addressed, we need to

have some means for expressing how schema translation is to be performed.

3.1 Mapping Multivalued Attributes

As was discussed on page 18, the X.500 directory supports multi-valued attributes.

While most contemporary RDBM systems do not explicitly support multivalued

attributes (because relations must be in INF), there are extended relational models such

as the nested relational ones [10,11,12,13], which support non-atomic attribute values. If

we were fortunate enough to be interfacing the directory with such an extended rela-

tional model, we could make use of the nest and unnest operations to more easily inter-

face the X.500 model to relational databases.

In practice RDBMSs do handle multivalued attributes either through resembling

tuples1 or through foreign keys expressing one-to-many or many-to-many relationships.

For example, consider the relations People(firstName, IastName, idNumber) and

Phone(user, number), where user is a foreign key on idNumber in the People relation. We

might create a view by joining two relations, People and Phone, resulting in a number of

repeated tuples for people who use more than one phone.

By 'resembling tuple' I mean a tuple where all the fields are the same as some other tuple
except for one.

Table 9: People Table 10: Phone

firstName IastName idNumber

Eric Kolotylu k 123456789
William Havens 234567890
Jia-Wei 345678901

Table 11: PhoneUsers

firstName

Eric

Table 12: Nested Version of PhoneUsers

William
William
Jia-Wei

IastName

Kolotvluk

One key question is what do we want to model in order to map our relational data-

base into X.500 attribute values?

Havens
Havens
Han

firstName

Eric
William
Jia-Wei

1. We may choose to map resembling tuples into multi-values. For example, given a

view PhoneUsers(firstName, IastName, idNumber, phoneNumber) with tuples

{(William, Havens, ..., 291-4973), (William, Havens, ..., 291-4623)] we could use the

SQL statement,

select phoneNumber from PhoneUsers where idNumber=234567890

to extract the phone numbers for William Havens. One advantage of this tech-

nique is that the relation does not have to be in ~NF' [10,11], which is likely in the

case of views resulting from a join of two or more relations. The basic disadvan-

tage here, however, is that we quickly run into the view-update problem [10,11],

where we might want to add an additional phoneNumber for Jia-Wei Han by

way of the view PhoneUsers.

idNumber

123456789

In this case, the view PhoneUsers is not in 3NF because the attribute phoneNumber is not
dependent on the primary key idNumber since there is more than one phoneNumber
value for 234567890. In this case, idNumber cannot be a primary.

phoneNumber

291 -301 4
234567890
234567890
345678901

IastName

Kolotyluk
Havens
Han

291 -4973
291 -4623
291 -441 1

idNumber

123456789
234567890
345678901

phoneNumber

291 -301 4
(291 -4973,291 -4623)

291 -441 1

2. We may also choose to make more explicit use of foreign keys. For example, we

could just as easily use the SQL statement:

select number from Telephone, where idNumber=234567890

to extract the phone numbers for William Havens. The main advantage of this

technique is that we don't have to deal with the view update problem as we can

simply add another phone number for Jia-Wei Han with something like:

insert Phone value(345678901, 291 -1 234). The main disadvantage is that our

X.500-RDBS gateway now needs to know more about the schema of the under-

lying relational database. This adds to the overall complexity of the system.

3.In the case of a nested RDBS, we might make use of SQL-2 or SQL-3, which are

new versions of the SQL standard permitting multivalued attributes.

In practical terms, we should support both techniques 1 and 2 as it is entirely possible

that a given database may not be in 3NF, but we still want to interface with it.

3.2 Mapping between Directory Hierarchy and Relation Tuples

In the discussion on the Directory's hierarchical schema in Section 1.3.2 the problem

of mapping this hierarchy to the structure of a relation was pointed out. The following

discussion explores this issue more deeply.

There is a tempting duality between tree hierarchy and relational tables that we might

use to map between the structure of the hierarchy and the information in the tables. In

particular, for any relation R with attributes kl, k2, ... k, that form a candidate key, one can

represent this as a tree hierarchy where kl is the first level of the tree, k2 is the second

level, and so on. Conversely, given an arbitrary tree, one can construct a relation by

creating a candidate key with attributes kl, k2, ... k, where n is the number of levels in the

tree. In Figure 1, consider a relation where three attributes make up a candidate key,

where each attribute has three distinct values, and where every possible combination of

unique primary keys exists. In this case kl corresponds to the first level of the tree, k2 to

the second, and ks to the last level.

Figure 1. Duality of Candidate Key Attributes and Tree Hierarchy

k V

a a c

First we consider the case where we want to map a given Directory hierarchy into a

relational table (Table 13). This would be necessary when using an RDBS as the persistent

store for the Directory Information Base. In terms of the directory, the Distinguished

Name (DN) of each entry is essentially the primary key for that entry.

..., ou=Applied Sciences, ou=Computing Science, cn=Eric Kolotyluk

Composed of a sequence of Relative Distinguished Names (RDN), the DN also represents

the hierarchical location of the entry in the Directory Information tree (DIT). Conceptu-

ally one may simply view the Directory as one large relation where: each entry in the

Directory is represented by a tuple in the relation, the DN of the entry is the (composite)

primary key of the relation, and each RDN in the DN is represented by one of the candi-

date keys of the relation that forms the primary key.

Next we consider the case where we want to map a given relational table in a Direc-

tory hierarchy (Table 13). This would be necessary for X.500 interoperability when

presenting existing RDBS information via the Directory. In terms of the RDBS the

attributes forming a candidate key of each tuple are used to determine a specific location

in the Directory hierarchy.

(faculty, school), firstName, IastName

Given a database relation, we may want to map the tuples into entries of the DIT

and vice versa. In the simple case this might look like:

Table 13: Straightforward Mapping

o=Simon Fraser University

faculty

Applied Sciences
Applied Sciences
Science

cn=Eric ~olbtyluk cn=Jim davers c n = ~ d l ~ h Korteling

In this case we might assume that we simply map the first attribute of all tuples in

to the second level of the hierarchy;

faculty=Applied Sciences t, ou=Applied Sciences

faculty=Science H ou=Science

and map the second attribute of all tuples into the third level of the hierarchy;

school=Computing Science t, ou=Computing Science

school=Engineering Science H ou=Engineering Science

school=Chemistry H ou=Chemistry

To generalize, we map each attribute a, of a relation into the corresponding level 1, of the

directory and visa versa. In particular, in an automated system we might want to invent

a notation to specify this mapping, for example,

ou=faculty, ou=school

which means implicitly map the tuples with relational attribute values for faculty into

directory entries with attribute values for organizationalunit and the tuples with rela-

tional attribute values for school into directory entries with attribute values for organiza-

tionalunit where entries with 'school' attributes are subordinate to entries with 'faculty'

attributes.

school

Computing Science
Engineering Science
Chemistry

firstName

Eric
Jim
Ralph

IastName

Kolotyluk
Cavers
Korteling

This seems like an attractive mapping technique, but in practice, information struc-

tures are not always so well behaved. In particular the previous mapping notation fails

us in the following examples:

1.There may be a mismatch in the number of attributes forming a candidate key in

a given database relation and the number of levels in a DIT subtree.

Table 14: Attribute Count Mismatch 11 2 attributes in the
candidate key

department I firstName I IastName I (department,name)

o=Simon Fraser Universitv N

Computing Sclence
Engineering Science

cn=Eric ~olbtyluk cn=Jim C'avers cn=~dlph Korteling

This can be a typical problem because often the designer of a relational database

might choose one schema, say by department, and a directory administrator

might choose a more flexible schema, say by faculty by department.

Chemistry Ralph Korteling /%?E%on tree

tnc
Jim

Kolotyluk
Cavers 4 levels the

2.In the DIT, the depth of similar entries in the subtree can vary.

Table 15: Attribute Depth Mismatch

. .
I Applied Sciences

I I I

I Engineering Science I Jim 1 Cavers

IastName
Kolotyluk

o=Simon Fraser University

firstName
tr lc

faculty
Apphed Sclences

. .

Computing Services
Computing Services

In real world hierarchies, organizational trees are rarely balanced. Given a

composite candidate key with enough attributes to correspond to all levels in tree

school
Computmg Science

hierarchy, we can use nulls for attributes with no corresponding subtree entry.

However, since the candidate key itself should never be null at least one attribute

of the candidate key should be non null.

<<null>>
c<null>>

3. We can have a combination of 1 & 2.

Table 16: Attribute Count and Depth Mismatch

Lionel
Robert

1 department 1 firstName 1 IastName

Tolan
Urquhart

Computing Sclence I tr lc I Kolotyluk

o=Simon Fraser University

-

Engineering Science
Computing Services
Com~uting Services

Jim
Lionel
Robert

Cavers
Tolan
Urquhart

To handle these situations we need to formulate an effective strategy that resolves the

problem and does not pervert the duality between the tree hierarchy and relations.

3.2.1 DN to Candidate-Key Maps

The basic approach to handling both count mismatches and depth mismatches is to

maintain extra information in the form of an explicit map between DIT entries and the

candidate keys in our relation. For example, we might extend the previous notation

ou=department

with the explicit information

ou=(Applied Sciences), ou=department(Computing Science)

ou=(Applied Sciences), ou=department(Engineering Science)

ou=department

which means, group the relational tuples with attributes department=Computing

Science and department=Engineering Science under the directory subtree ou=Applied

Sciences. For all other tuples, simply map them to the Directory entries at the first level.

3.2.2 Directory Searching and RDBS Queries

When requesting searches in X.500, the scope of the search can either include the

entire subtree or, by default, be limited to the children of the current entry in the direc-

tory. When X.500 is used as a front end to a relational database there needs to be some

mechanism for translating a directory subtree search into an equivalent SQL query.

Fortunately, this can be quite straightforward once a hierarchy map exists. Consider the

following directory:

Table 17: Example Relation "FacultyPerson"

I faculty I school I firstName I IastName
I I I

Apphed Sc~ences I Computmg Sc~ence I t r ~ c I Kolotyluk . . I - I I Applied Sciences I Engineering Science I Jim
I

1 Cavers

o=Simon Fraser Universitv

. .

Computing Services
Computing Services

In this case there are three levels at which someone is likely to want to search:

1.The Simon Fraser University level, where the X.500 user would issue a query like

moveto "o=Simon Fraser University"

search -subtree sn=Kolotyluk

which would have to be translated to

select firstName, IastName from FacultyPerson

where lastName="Kolotyluk"

- -

<<null>>
<<null>>

2.The faculty level where the user X.500 user would issue a query like

moveto "o=Simon Fraser University@ou=Faculty of Applied Science"

search -subtree sn=Kolotyluk

which would have to be translated to

select firstName, IastName from FacultyPerson

where lastName="Kolotyluk"

and faculty="Applied Sciences"

3. The school level where the user X.500 user would issue a query like

moveto "o=Simon Fraser University@ou=Faculty of Applied Sciences@

ou=School of Computing Science"

search -subtree sn=Kolotyluk

Lionel
Robert

Tolan
Urquhart

which would have to be translated to

select firstName, IastName from FacultyPerson

where lastName="Kolotyluk"

and faculty="Applied Sciences"

and school="Computing Science"

In the third case it appears we could have left out the clause "and faculty= ..." While this

would have worked fine for the given data set, it would not have worked had there been

another School of Computing Science in, say, the Faculty of Arts.

In order to automate this process two steps are necessary: (1) we must create a map

from the Directory's Distinguished Name (DN) space to the various set of relation

attributes needed to perform a search for a given DN, (2) given a Directory search request

from a given DN, transform the Directory search into a relational (i.e., SQL) search. The

first step of this process need not be very efficient as it happens only at registration time

when the given Directory Service Agent (DSA) first starts up. The second step of this

process is invoked any time an appropriate Directory search request is made and so

should be as efficient as practical. The following two algorithms demonstrate these two

steps.

The least general rule for mapping is simply an ordering of the relevant keys in the

relation, for example (k2, kl, k3). In this case we simply assume that the Directory

attributes will have the same names and values as those in the relational database. To

handle problems such as count mismatch or depth mismatch we also have other rules

which map between Directory and relational attributes names and values.

Algorithm 1. Build a Hierarchy Map
Input: i) a database relation P, with n attributes {al, ..., a,]

ii) a mapping describing how to map the relation into a tree with the levels of

the tree ordered by attributes {kl, ..., k,}, where kl, ..., k, E {al, ..., a,) and ki

Output: A tree T containing mappings from the Directory's Distinguished Name space

and Directory Information Tree structure to sets of relational database

attributes.

Method:

DEFINE PartitionRelation(P, Level, MaxLevel)
IF Level <= MaxLevel THEN

sort relation P according to kLeve
partition relation P according to t k e values of KLeveI into PI, ..., PMaxLevel

where m is the number of values of KLeveI;
FOR i := 1 to m DO

P.children := Pi;
Pi.parent := P;
call PartitionRelation(Pi, Level +I);

END FOR
END IF

END
BEGIN

call PartitionRelation(P, 1, m); { m is the number of keys of kl, ..., k,};
END

Exp1anation:Mapping rules define a mapping between the hierarchical Directory name

space {nl, ..., n,} and relation attribute space {kl, ..., k,}. For simplicity we will

ignore the Directory names and concentrate on the structure of the directory

name space.

q
Vi.. v,...

vi ... v,...

The essence of the algorithm is to successively partition the relation P into a hier-

archy of 'key' attributes and their values, starting with the most significant attribute

representing the highest level of the hierarchy.

Example: Given a relation P of people in a university environment,

I Computing Services I <null>

faculty

Applled Sclences
Applied Sciences
Applied Sciences

and a rule of the form {faculty,school,role) which declares the candidate key

relevant to the mapping hierarchy as well as the order of the tree, we could

form the following mapping tree.

school

Computing Sclence
Computing Science
Engineering Science

ou=Applied Sciences + ou=Computing Services
facul =A lied Sciences C faculty=Math and Stats

ou=Engine+g +
~ChOOl=hgUIee~g Science

name

trlc K
Jia-Wei H
. . .

position=graduate + position=faculty +
role=grad student role=faculty

I I

cn=Eric Kolotyluk + cn=Jia-Wei Han +
name=Eric K name=Jia-Wei H

area

database
database
. . .

Pass 1: partition the relation P using the key attribute faculty.

role

grad student
faculty
. . .

Pass 1.1: partition faculty=Applied Sciences using the attribute school.

Pass 1.1.1: partition school=Computing Science using the attribute role.

Pass 1.1.2: partition school=Engineering Science using the attribute role.

Pass 1.2: partition faculty=Math and Stats using the attribute school.

Algorithm 2. Build a Hierarchy Map Using Auxiliary Mappings
Input:

Output:

Method:

i) a database relation PI with n attributes {al, ..., a,}

ii) a set A {al, ..., a,] of auxiliary mapping rules to resolve count mismatches or

depth mismatches. Each of these rules specifies the path of the tree branch

affected as well as the explicit relational attributes to use.

A tree T containing mappings from the Directory's Distinguished Name space

and Directory Information Tree structure to sets of relational database

attributes.

Construct a mapping tree T based on the input syntax of the mapping rules.

mappingRule ::= <<RDN>> <<relationalAssociation>> <<direction>

relationalAssociation ::= empty or "(" <<RHS>> "=" <<LHS>> ")"

direction ::= ":" or ",11 or ";"

Each node of the mapping tree corresponds to some entry in the Directory

Information Tree (DIT) and must have a corresponding Relative Distin-

guished Name (RDN). Optionally the rule will include an associated RDBS

attribute and value (RHS=LHS). Making this optional is how we deal with

count and depth mismatches. The direction notation states whether the next

rule is a child and that we should descend the tree (:), whether the next rule is

a sibling (,), or whether we should ascend the tree one level (;).

BEGIN
IF NOT endOfFile(lnput)
THEN

T := currentNode := new(Node);
LOOP

currentNode.RDN := parseRDN(1nput);
currentNode.relationalAssociation := parseRelationalAssociation(lnput);
direction := parseDirection(1nput);
IF endOfFile(lnput)
THEN

BREAK;
ELSE

newNode := new(Node);
CASE direction OF

newNode.parent := currentNode;
currentNode.child := newNode;
currentNode := newNode;

newNode.parent := currentNode.parent;
currentNode.sibling := newNode;
currentNode := newNode;

currentNode := currentNode.parent;
currentNode.parent := currentNode.parent;
currentNodesibling := newNode;
currentNode := newNode;

END CASE
END IF

END LOOP
output(T);
END IF

END

Explanation: In Algorithm 1 we constructed a mapping tree based on minimal specifica-

tion from the user or directory administrator. However, this mapping is not

able to handle conditions such as 'attribute count mismatch' or 'depth

mismatch.' In such cases it is necessary for the user or directory administrator

to specify auxiliary mapping rules that explicitly define the mapping between

directory scheme (tree structure) and relational schema.

Example: Given a relation P of people in a university environment,

and the auxiliary rules:

Table 18: Attribute Count and Depth Mismatch

o=Simon Fraser University:

department
C
ENSC
ACS
ACS

ou=Applied Sciences:

we could form the following mapping

firstName

Jim
Lionel
Robert

tree.

IastName -
Kolotyluk
Cavers
Tolan
Urquhart

ou=Applied Sciences ou=Computing Services +
department=ACS

In this example the mapping of commonName (cn) attributes has purposely been left out

in order to focus on the actual tree structure mapping.

Algorithm 3. Translate a Directory Search to an SQL Search
Input: i) the current directory position, a Directory Distinguished Name DN {N1, ...,

Np} where Nl is q=ul and 1 is from 1 to p.

ii) a mapping from a set of Distinguished Names {DN1, ..., DN,} to a set of

candidate keys corresponds to {ki=vil ..., ki=vj} in relation P. This mapping is

in fact the tree T built by algorithm 1 (i.e., hierarchy-to-relation mapping).

iii) a search expression E, used to further qualify the search.

Output: An SQL statement.

Method: Find a hierarchy map position based on the current directory position. This is

performed by starting from the root and locating the position based on a

Directory Distiguished Name DN IN1, ..., Np} where Nl is q=ul and 1 is from 1

to p. Suppose that the query expression generated at this point is E. Using the

map information at that point, establish a set of conjunctive predicates in the

SQL statement to restrict the search. The conjunctive predicates are built by

traversing along the path of the tree..

BEGIN
R := null; { Initially, set the conjunctive query expression to null.)
Current := the current dirctory position;
FOR i := 1 to r;

IF there exists an attribute name for Current which is Di
THEN add ki=y to R;

Current := Current.name;
ELSE print "Error! There exists no such name"

END FOR
OUTPUT "select * from" P Where" R "and E;

END

Explanation: This is simply traversal of the mapping tree T looking for the name Ni at

each level i in the tree. The time to search the tree is proportional to the length

of the distinguished name and the breadth of the tree. Each time a name is

found the corresponding relational key attribute-value pair is used to form a

conjunctive predicate of attribute-value pairs.

Example: Using the map from the example in Algorithm 1, and a current Directory posi-

tion of {ou=Applied Sciences, ou=Computing}, we are asked to search for

entries with area=database.

We look up ou=Applied Sciences in our map and add the attribute faculty=Ap-

plied Sciences to our conjunctive predicate. Next we lookup ou=Computing

Science and add the attribute school=Computing Science to our conjunctive

predicate. Finally we form the SQL statement:

select * from P where faculty="Applied Sciences" and school="Computing

Science" and area="databasen

3.3 Differences in Schema Content

The basic problem with schema content differences is that it is likely a given orga-

nizational database will not contain information that is generally found in the Directory

schema. More importantly, such a database will not have information that may be

required by the Directory schema. There are basically two ways we can handle this situ-

ation:

Lexpand the schema of the relational database to match that of the directory, or

2.maintain the extra information in the Directory's own DIB.

3.3.1 Expanding the Relational Schema

In this approach, the X.500/Relational interface would automatically create an extra

schema in the relational database to support essential information required by the Direc-

tory. For example, if the directory object class "sfuPerson" required that a person entry be

able to have a telephoneNumber attribute, but the given relational database of persons

does not have telephoneNumbers in its schema, a PhoneNumbers relation would be

created as is appropriate.

The main advantage of this technique is that the RDBS interface (generally SQL)

could have direct access to the new information. This would promote interoperability in

both directions; from the Directory to the RDBS, and from the RDBS to the Directory.

Also, since the format of the new information would be created by the Directory it would

be maintained in a format that is most convenient for the Directory to use as contrasted to

the situation where the Directory must be configured to utilize information formats

(schema) designed by a database administrator without consideration of the Directory.

The disadvantages of this technique are generally those disadvantages listed in

Section 1.3.1. In particular the impedance mismatch can be a problem. For example, in the

case of Sybase where char and varchar datatypes are limited to 255 characters, the direc-

tory would be forced to use the datatype text for attributes such as AccessControlList

(ACL) which are likely to be longer than 255 characters. However, ACL attributes are just

as likely to be less than 255 characters so the extra overhead associated with using text

datatypes must be implemented regardless. Finally, the format of the ACL attribute is

specialized to the uses of the directory and would not generally be useful for access via

the RDBS interface.

3.3.2 Augmenting Information via the DIB

In this approach the X.500/Relational interface is assumed to have access to its own

DIB persistent store mechanism which would be used to augment the relational database.

For example, if the directory object class "sfuPersonl' required that a person entry be able

to have a telephoneNumber attribute, but the given relational database of persons does

not have telephoneNumbers in its schema, a corresponding entry in the directory would

be created with the telephone number attribute, while the rest of the information would

continue to reside in the RDBMS.

The main advantage to this technique is that, assuming the Directory already has its

own persistent store, the information is already in a format that is most efficient for the

Directory to access-in short there is no impedance mismatch problem. Furthermore, for

specialized attributes such as ACL, efficient operation of the Directory will depend on the

most efficient access to the ACL information.

The main disadvantage to this approach is that it does not promote interoperability

from the RDBS to the Directory. Another disadvantage is that we assume that the Direc-

tory already has its own persistent store. However, even if the Directory has its own

persistent store, there are still reasons not to use it. In particular, there are entity identifi-

cation and synchronization problems which must be solved. First of all, for each tuple in

the RDB, there must be a unique correspondence of the tuple primary key and the

primary key (Distinguished Name) of the Directory entry. More importantly, there can be

serious synchronization problems since each time a modification is made to the directory,

it must be reflected in the RDB. However, each time a modification is made to the RDB,

the Directory will be unaware of this change, which can lead to data and schema incon-

sistencies.

3.4 Notation for Mapping Relations to X.500

Developing a formal notation for defining mappings is not easy. On the one hand

there is a strong desire to be concise, on the other, the notation should be readable and

familiar to relational database administrators, directory administrators, or both. The ulti-

mate goal of such a notation is that it could be used in registering a given relational data-

base with a given Directory Service Agent.

3.4.1 Mapping Tuples to Entries

At the most basic level we need to map the tuples of a relation into directory entries.

In addition to mapping tuple attributes to entry attributes, every directory entry must

belong to some object class, so we map the name of the relation to a given object class.

For example, given a RDBS relation Parts(partNumber, partName, price, description), if

we want to map each tuple into a directory entry belonging to the object class part we

might use

to denote this mapping.

While this seems straightforward, often the information in the table is not in the

same format as the directory. For example, by convention in the directory the common-

Name attribute of a person includes the person's first and last name (i.e., cn=Eric Kolot-

yluk), but information in an existing database might have separate attributes for the first

and the last name. We might use

to indicate that the directory attribute commonName is formed by the relational

attributes firstName and IastName, and separated by a space.

Alternately, an existing database may have just a name field of the form "lastname,

firstname" but we need to construct a surname attribute for our entries. To handle such a

situation we need to have an extended notation which includes pattern matching and

information manipulation operations. We might use,

to indicate that the directory attribute surname is formed by using a regular expression to

remove all the text before the comma in the relational attribute name.

3.4.2 Mapping Primary Keys to Distinguished Names

Another important requirement of directory entries is that some of the attributes be

distinguished so that we can form a distinguished name. In the simple case we might just

extend the previous notation to indicate which attributes are distinguished. For example

the exclamation mark is used to indicate that the commonName attribute is distin-

guished and thus is part of the distinguished name.

However, as was discussed in Section 3.2 we will likely want to be able to map the

relational attributes into the structure of the Directory Information Tree (DIT). While a

notation was developed there to express hierarchy mapping we can create more concise

notation by using the already developed notation for mapping tuples to entries. To do

this we treat distinguished names more explicitly. For example, if we want to map the

relation People(firstName, lastName, department, phoneNumber) into directory entries,

we might use the entry mapping notation

and the Distinguished Name mapping notation

to indicate that the relation People is mapped into a two-level subtree with the organiza-

tionalunit and commonName attributes forming that part of the distinguished name.

To handle less compatible information structures we might want to use a more

explicit form of DN mapping. For example, consider the previous relation, but an organi-

zation with more than one level in the directory hierarchy such as SFU.

ou=Faculty of Applied Sciences@ou=Computing Science(department=CMPT)

ou=Faculty of Applied Sciences@ou=Engineering Science(department=ENSC)

ou=Academic Computing Services(department=ACS)

This gives the administrator more flexibility in mapping. We may also want to handle a

relation like People(firstName, lastName, department, faculty) with an explicit form like

ou=Faculty of Applied Sciences(faculty=AS) @ou=Computing Science(depart-

ment=CMPT)

3.4.3 Handling Multivalued Attributes

There are basically two ways we can express mappings for multivalued attributes

by way of foreign keys. Given two relations, People(firstName, IastName, idNumber) and

Phones(userld, number), where userId is a foreign key on People.idNumber, we might

use:

Lallow for embedded SQL in our notation, for example

person=People(cn= ..., phoneNumber={select number from Phone, People where

user=idNumber).

2.some specialized notation, for example,

person=People(cn= ..., phoneNumber={Phone.number: user=idNumber})

Using SQL has the advantage that anyone familiar with relational databases will also be

familiar with SQL. Also, in a DSA implementation the specified SQL can easily be sent to

the SQL server. However, if the SQL is specified incorrectly this can lead to problems

which must be handled correctly.

Using a specialized notation has the advantage that it can be made more compact

(because it is specialized) and that it can be expanded (correctly) into SQL for data

retrieval. However, it is generally not good practice to introduce new terminology or

notation when not strictly required, so we will use the embedded SQL instead.

3.4.4 Registration of Mapping Information

The main point of developing a notation for specifymg schema mapping from rela-

tional database systems to the Directory is to be able to configure the Directory for access

to the information in the RDBS. That is, to register the RDBS with the Directory. In Section

4.3.1 a more tangible form of this notation will be used to specify these mappings so that

the directory may interoperate appropriately with the RDBS.

Chapter 4 Implementation Experience

One part of research is ideas, theories, conjectures, and so on. Another part is

testing ideas, theories, and conjectures, looking at details, getting one's hands dirty, and

resolving those ideas, theories, and conjectures in terms of the actual experience gained.

As Chapter 1 discussed there are a variety of reasons for using the Directory as a

multidatabase front-end to relational databases, and as Chapter 2 discussed there are a

variety of techniques of designing heterogeneous database systems in general. This

chapter discusses an approach and implementation that is interesting in a few aspects:

1.Rather than viewing the Directory as specialized homogeneous database, it is

viewed as a more generalized heterogeneous database.

2.Rather than trying to delegate an entire subtree of the directory [gda] to a new

information source, the new information source is integrated with the existing

Directory Information Base (DIB).

3.~eflecti0nl is used to extend the semantics of a directory entry by means of an

entity called a proxy to 'register' foreign databases with the Directory.

The overwhelming motivation for these features came from the author's experience both

as a systems designer and as a systems administrator. All too often a greater burden is

placed on the systems administrator to support a given design, than on designing a

system which addresses the reality of systems administration. Such practice has led to

not only increasing organizational dependence on a few highly skilled professionals, but

also a bottleneck in acquiring and utilizing new technologies-most organizations cannot

expect to hire more systems administrators whenever a new computer system is

acquired.

Reflection is the process of reasoning about and acting on the system itself [40,41,42]. To
expose, or reih its intemals, a reflective system embodies reifiable data that represents or
implements the structural and computational aspects of itself within itself at the meta-level.
Such data must be dynamically self-accessible and self-modifiable by the user program. Fur-
thermore, modification by the user must be 'reflected' to the actual computational state of
the user program-this property is termed as causal-connection. [quoted from 431

4.1 Introduction to Proxies

In terms of the Directory, a proxy is a sort of meta entry that, from the user's

perspective, is not really part of the directory information. In terms of the X.500-1993

specification, a proxy would likely be implemented as a service entry. Service entries are

not generally accessible through the primary directory service operations (i.e, read, list,

search) but have their own set of service operations. Since implementations of X.500-1993

are not generally available at this time, for now proxies have been implemented as

regular directory entries.

The main distinguishing feature of a proxy is that creating one and modifying its

attributes has the side effect of modifying the operation of the underlying directory

system. A more traditional method for implementing such effects is through configura-

tion files (e.g., Unix rc files, or in ISODE, tailor files) or back-door channels (e.g., Unix

signals). The problem with these mechanisms is that they are either restricted to start-up

time, in the case of configuration files, or that the directory administrator must login with

specialized privileges (i.e., root) in the system running the directory. By communicating

with the directory via manipulating entries and attributes, not only can operation be

affected dynamically, but a familiar and consistent communication channel is used. This

is likely why the 1993 version of X.500 introduces service entries and service attributes.

It is important to realize that a proxy is not just another name for a service entry.

While it may be implemented that way, a proxy1 is also an operational component of the

directory. In particular, a proxy is an agent which represents a collection of information

available from some foreign source which is to appear in the directory.

from Webster's Ninth New Collegiate Dictionary, First Edition
proxy \'pra"k-se-\ prox* ies
[ME procucie, contr. of procuracie, fr. AF, fr. ML procuratia, alter. of L procuratio procuration]
(154
1: the agency, function, or office of a deputy who acts as a substitute for another
2a: authority or power to act for another
b: a document giving such authority; specif :a power of attorney authorizing a specified per-
son to vote corporate stock
3: a person authorized to act for another: PROCURATOR- proxy adj

4.1.1 Proxy by Example

As an example of how proxies are used, consider an existing directory of cartoon

characters:

organizationalUnit=Cartoons
commonName=Pink Panther
commonName=Daffy Duck
commonName=Yogie Bear

Let's say a directory administrator had a request to list Disney cartoon characters under

this directory, and that they had access to an existing relational database of Disney

cartoons. Typically the administrator would write a program of some sort to extract the

information from the RDB, transform it as appropriate to a form suitable for the directory,

then load it into the directory. However, as was discussed in Chapter 1, maintaining the

integrity of the two sources of information can be a problem.

Rather than maintaining two sources of information, the administrator might create

a proxy entry for the database of Disney characters.

organizationalUnit=Cartoons
commonName=Pink Panther
commonName=Daffy Duck
commonName=Yogie Bear
proxy=Disney,

objectClass=proxySybase,
server=CMPT,
databaseUser=disney,
databaseUserPassword=<hidden>

The extra information here (i.e., objectClass=proxySybase) is used to direct the Directory

Service Agent (DSA) to where the external information is located and how to access it.

Thereafter, the Disney characters would be listed with the other cartoon characters in this

directory. If the information in the external database changed, this change would be auto-

matically reflected in this directory. For example, from the user's perspective, this direc-

tory would appear as

organizationalUnit=Cartoons
commonName=Pink Panther
commonName=Daffy Duck
commonName=Yogie Bear
proxy=Disney
commonName=Mickey Mouse
commonName=Minnie Mouse

Whether or not the entry proxy=Disney would actually appear to the user is discussed

later in this chapter.

4.2 Why Proxies?

In this project, the use of proxies was chosen for their conceptual simplicity. From a

directory administrator's perspective the proxy represents a single point of registration

for another information source, contrasted with delegated attributes as seen later.

From an implementation perspective proxies were easier to implement due to their

self-contained nature, as opposed to making sweeping changes to the existing DSA code.

Ultimately, an object-oriented approach to proxies was easy to develop, creating

subclasses of proxies to meet the specialized needs of other information sources.

4.2.1 Delegated Subtrees

The first approach considered in trying to integrate information from relational

databases with the Directory was to delegate an entire subtree to the relational database.

This would have been more consistent with the architecture of the Quipu Generic Direc-

tory API (GDA) of ISODE [gda]. Basically the GDA mechanism allows the Quipu DSA to

delegate an entire subtree of the Directory to another process. It is the responsibility of

this other process to receive DSA requests and to perform them. No particular assump-

tions are made of this other process and the information base it represents other than that

it be able to perform the operations requested. In fact, the first practical GDA application

developed (called qb) was a disk-based DIB implemented using gdbml.

GNU database management library, Free Software Foundation.

-58-

The GDA mechanism provides two important functions:

La defined interface to which developers can build an adaptor to a new type of

information base without having to worry about too many of the details of direc-

tory operation.

2.a fire-wall so that if the process fails it won't take down the entire DSA.

While this mechanism was well suited to the disk-based DIB, the disk-based DIB was

designed specifically to support not only an X.500 DIB, but a Quipu DIB. The primary

difficulty in federating the Directory with existing information bases is that they have

generally not been specifically designed to support an X.500 DIB.

4.2.2 Delegated Attributes

Another approach to introducing foreign information sources into the Directory

was recommended via the IC-Tech@isode.com mailing list by John Farrell of the ISODE

Consortium Inc. This is basically an extension of the existing QUIPU delegated subtree

mechanism, but of finer resolution, down to the attribute level. In this approach the direc-

tory administrator would create an 'Application Process' entry to denote an external

information source. To register the external information, the directory administrator

would create skeleton entries in the directory and add attributes of the form delegated-

Attribute=binding-information, where the binding information would detail the type of

the delegated attribute and from where the attribute values were derived. For example:

organizationalUnit=Cartoons
commonName=Pink Panther
commonName=Daffy Duck
commonName=Yogie Bear
commonName=Disney,

objectClass=applicationProcess & sybaseserver
server=CMPT,
databaseUser=disney,
databaseUserPassword=<hidden>

commonName=Micky Mouse
delegatedAttribute=Disney:artist
delegatedAttribute=Disney:conceptionDate

commonName=Minnie Mouse
delegatedAttribute=Disney:artist
delegatedAttribute=Disney:conceptionDate

The main strengths of this approach are greater consistency with the established QUIPU

delegation mechanism, and greater flexibility in integrating external information sources.

For example, the delegatedAttribute attributes of a given entry might point to different

information sources. This approach also inherently addresses the problem of differing

schema content in that the skeleton entries can maintain attributes not found in foreign

information sources. Also, there is a better division of information in the directory.

The fundamental disadvantage to this approach is complexity, both to the directory

administrator, and in the implementation. Consider:

1.Rather than creating just one proxy entry, the directory administrator must create

an applicationl'rocess entry (similar to the proxy entry) and create skeleton

entries. It is not clear how this would be done-by hand or by some other auto-

mated process?

2.The skeleton entries would take up storage space in the directory, in addition to

the information in the foreign system. In particular, the delegatedAttribute

attributes of each skeleton entry would likely be the same for each, resulting in

redundant duplication. This problem could be addressed through the use of

inherited attributes (a feature of QUIPU) so that the delegatedAttribute attributes

don't actually exist, save for one parent entry with the inheritedAttributes

attribute specifying inherited delegatedAttibute attributes. However, this only

increase the complexity of the setup to the directory administrator.

3.It is not clear how synchronization of entries occurs. For example, if the foreign

information source gains another cartoon character, how and when does another

skeleton entry get created in the directory.

4.Implementing delegatedAttributes would likely require more intimate and wider

sweeping changes to the DSA source code because of the wider number of

features and mechanisms provided. Overall this would add to the complexity of

the implementation.

The bottom line is that proxies were chosen to avoid complexity, but they don't offer all

the features of delegated attributes. However, one reasonable approach would be to

combine the two concepts by having a proxy mechanism which configures and manages

the delegatedAttribute mechanism. Ultimately from the directory administrator's

perspective this would offer a solution as simple as proxies, but more powerful than just

proxies alone.

4.3 Implementing Proxies

The current implementation of X.500 directory proxies is in ISODE's Quipu GDA

application as an enhancement to the existing qb disk-based Directory Information Base.

ISODE was chosen primarily because it is the most widely recognized development envi-

ronment for IS0 OSI applications and systems. In addition, ISODE is extremely afford-

able to educational institutions.

The current architecture of GDA is that of main Quipu DSA process and one or

more GDA processes. Each GDA process is responsible for a delegated subtree of the

Directory Information Tree (DIT).

GDA process 1

GDA process 2

GDA process n

organizationalUnit=Animals
organizationalUnit=Cartoons

objectClass=quipuDelegatedSubtree I delegate= GDA process 2

commonName=Pink Panther
commonName=Daffy Duck

I commonName=Yogie Bear

In this example the Quipu process is responsible for some portion of the world-wide

X.500 directory tree including the branch organizationalUnit=Entertainers. However, one

portion of this DIT, organizationalUnit=Cartoons, is delegated to GDA process 2. Note

how Quipu uses information from the Directory itself to associate the subtree with the

appropriate process.

The only GDA application distributed with ISODE' is the disk-based DIB. While

there is opportunity to develop other GDA applications, it was decided to adapt the

current qb GDA application to support proxies for the following reasons:

1.The proxy mechanism as previously discussed requires an existing DIB to resolve

the schema content problem as previously discussed.

2.The GDA mechanism is ideal for development and testing because software fail-

ures are isolated to the GDA application and have minimal impact on the parent

Quipu DSA process.

One serious problem with architecture however is that it ties the proxy mechanism to the

qb implementation. As the proxy mechanism is really just an abstraction on the DIT, it

would be more effective to implement it in the DSA process itself so that the proxy would

operate independent of the underlying information base mechanism. However, imple-

menting proxy support in the Quipu DSA process itself would add complexity to the

implementation and would bypass the fire-wall that the GDA mechanism provides. Also,

as the proxy mechanism is for the most part an experiment, it was more reasonable to

minimize development effort until more experience was gained.

There are two significant components to the proxy mechanism: the proxy manager

object, and the proxy objects themselves. At DSA initialization it is the responsibility of

the proxy manager object to scan the Directory for proxy entries, identify the type of

proxy, then create the appropriate proxy objects. Also, for all DSA operations, the proxy

manager determines if a proxy is involved, identifies the appropriate proxy objects and

passes on the request to them. Finally, if a result is returned, the proxy manager merges

the results from the proxy objects with the results from the rest of the DIB.

as of ISODE Consortium Release 1.2a, January 1994.

- 62 -

4.3.1 Registering Mappings

Using the mapping described in "Notation for Mapping Relations to X.500" on

page 51, the proxy depends on AVAs to acquire the knowledge to perform the mapping

from relational tables to directory entries. For this the following attributes are defined:

proxiedObjectClass, proxiedAttribute, and proxiedName.

Note that we decompose the notation slightly to structure the information as attribute-

value-assertions.

For example, we might create a proxy:

proxy=CMPT-ENSC People
objectclass= proxysybase
server= CMPT
databaseuser= quipu
databaseUserPassword= <hidden>
proxiedObjectClass= person=People
proxiedAttribute= cn=firstName " " IastName
proxiedAttribute= phoneNumber=

(select number from People, Phones where user = idNumber)
proxiedName= ou=Computing Science(department=CMPT) Qcn
proxiedName= ou=Engineering Science(department=ENSC)@cn

4.4 Implementation Challenges and Other Issues

Aside from the obvious challenges of resolving schema differences between X.500

and a RDBMS, there were a number of challenges in dealing with the X.500 model as well

as the ISODE implementation of it.

4.4.1 Information Isolation

One of the biggest challenges of developing code in the QUIPU GDA environment

is that there is no ready way to access entries in other parts of the Directory Information

Tree (DIT). While this is technically possible, as a DSA is entitled to attempt to access any

other DSA via the Directory Service Protocol, GDA just does not provide a function

library to support external access. Another significant reason proxies were chosen was

that it was straightforward to define the proxy in the same DIB as the proxied entries

were to appear.

4.4.2 DSA Caching

In the original QUIPU implementation the entire DIB was read from disk into

virtual memory. The GDBM-based implementation preserves this mechanism somewhat

in that a cache of the most frequently used entries is maintained in VM. When the cache

reaches a high-water mark, the least recently used entry is discarded.

While it would be tempting to use this mechanism for external information sources

like the proxy mechanism there is a serious problem of supporting such replicated data.

In the case of GDBM-based implementation, there is only one accessor to the database,

the DSA. In the case of the proxy mechanism the DSA is only one of potentially many

users accessing and modifying the underlying database. For this reason it was decided to

sidestep the entire issue of replication and not support caching of proxied information.

4.5 Implementation Status

The current implementation of proxies in ISODE is still very minimal in many

respects. It does not handle features such as access control lists and inherited attributes, it

does not support compare and search operations, it is grafted onto the GDA QB back-

end, and so wholly dependent upon it.

What the current implementation does provide is a demonstration of viability of

using X.500 to front-end other information systems. While there are no formal perfor-

mance results, casual use of the system seems no worse than that of the existing GDBM-

based directory.

Chapter 5 Possible Future Directions

While it is hard to say what directions information management systems will be

taking twenty, fifty, even one hundred years from now, it's probably safe to assume we

will continue to see exponential growth in the amount of information stored year by year.

Whether our frustration will increase, trying to find that piece of information we want, or

whether we will ever truly become masters of information depends on how we shape the

technology for storing and managing information.

In the preceding chapters we've seen how existing technology, X.500, can be shaped

and extended to serve new purposes and to access information types beyond many

people's expectations of the original design. Whether X.500 is the best design for a truly

international information directory remains to be seen, but while we have a nascent and

powerful model such as this we should see how far we can push the model before it

breaks. When we push it past the breaking point, we may start to imagine what should

come next to replace X.500.

5.1 User Definable Hierarchies

In Chapter 3 we saw how a given relation can be mapped into a tree hierarchy, and

that we can create a notation to define this mapping. However, what we did not explore

was, for a given relation, how many mappings are possible. For example,

Table 19:

faculty I school I field I position I gender I name
I I I I I

App. Sc. I Comp. SC. I Database I faculty I male I Han

App. Sc. I Comp. Sc. I Database I MSc. student I male I Kolotyluk

I I I I I

consider a database relation with a lot of demographic information. One way we might

present this information hierarchically is:

Atkins App. Sc.

App. Sc.

Comp. Sc.

Comp. Sc.

Systems

Int. Systems

faculty

MSc. student

female

female Cuckerman

y d Sciences

Intelligent Systems

L e r m a n

However, while this might be typical of how a directory administrator might set-up a

hierarchy, it is not the only possible hierarchy. Imagine a researcher in Women's Studies

studying gender balances in higher education. She might prefer the following hierarchy:

Simon Fraser University

Kolotyluk

or even

Simon Fraser University

/
female \ male

The point is, why should computer users be restricted to one view of the Directory?

It is generally recognized that often people prefer to look for information by browsing

hierarchical structures. Even though many times they have access to searching functions,

like the Unix f ind command, they will choose to browse hierarchically. For example in

Unix they would either use a sequence of 1s and cd commands, or would use a graph-

ical file system viewer to browse from directory to directory. This is not surprising when

considering how often people are looking for something, but are unsure of what they are

looking for, at least unsure enough to be unable to express it using search mechanisms.

Consider a more global example. Imagine that research papers were described by

Directory entries. Such an entry would list, via attributes, the title, the authors, the

abstract, the research areas, the location1 of the full paper, and any other pertinent

attributes. Trpically these entries would be found at the originating sites, under that site's

Directory hierarchy. For example, an entry named "c=ca@o=Simon Fraser University@

ou=Faculty of Applied Science@ou=Computing Science@ou=Library@paper=X.500 as a

Heterogeneous Database" might have attributes: field=computing, area=database,

keyword=heterogeneous. Someone looking for papers in this area might decide to search

the directory for entries based on those attributes. The problem is:

1.Searching the global Directory could take an enormous amount of time, and

chain the search operation to thousands of other Directory Service Agents all

around the world.

2.Most DSAs do not allow searching from the Directory root because of (1). In

general, most DSAs limit searches to the organization level and below.

3.As mentioned before, searching is not always appropriate when people have

only a vague notion of what they are searching for.

What might be preferable is that the Directory support an additional hierarchy from

the root, for example field=computing@area=database@ou=Masters Thesis@paper=X.500

as a Heterogeneous Database might name a directory entry which is an alias to the previ-

ously described entry. This hierarchy would have tremendous advantage to someone

who wanted to browse a given field for papers. As attractive as this new scenario is, what

is the correct hierarchy to define for research papers, and who's to say there is only one

appropriate hierarchy? Why not let Directory users define new hierarchies on demand?

The location of the actual paper itself might be described by attributes, for example, the
attribute ftp=ftp.cs.sfu.ca/papers/database/tech-report-23.p~. However, as we have seen
the directory can also map external data sources into attribute values, so we might just as
well define a PostScript attribute. When the value of this attribute is read, the directory
would return the full Postscript text of the paper-let the Directory handle the actual stor-
age or acquisition of the paper text. The paper entry might also have an SGML attribute
which might be a multimedia, hypertext version of the paper.

5.2 Indexing Servers

One of the most useful of new internet services is the Archie application. Basically,

Archie is an indexing service which routinely scans the wealth of internet ftp sites for

keywords to index. When someone is looking for a file in a particular subject area they can

request the Archie service to provide a list of ftp sites based on keyword search. Many

Archie user applications will provide a graphical browser of all such sites and allow the

user to even browse the ftp hierarchy of each listed site and retrieve selected files.

A related service, veronica1, indexes Gopher space, the collective known services

running the Gopher servers. Similarly, another service, ~ u ~ h e a d ~ , also indexes Gopher

space, but just the high level directories. ALIWEB~ is a first attempt at indexing World-

Wide-Web (WWW) space, the collection of servers which Mosaic is based on.

The power of Archie and friends lie in the fact that they build indexes. It would be

possible to implement a similar sort of service via the Directory by having DSAs which

also maintain such indexes via Directory alias entries. Such DSAs could also structure

these indexes hierarchically so that they could be browsed. This is something that is not

possible with Archie. You search on a keyword and receive a flat list of ftp sites matching

the search.

It is quite likely that a Directory-based Archie-style service would be much more

powerful than Archie. In particular, information found in the Directory is much more

structured through the use of attributes and object classes. This would likely increase the

efficacy of index building. Also, multidimensional indices could be built and maintained

as attributes. As we've seen, given a set of attributes, we can construct a number of

different organizational hierarchies. Building and maintaining such multidimensional

indices would make it possible for a DSA to be easily reconfigured to present a variety of

hierarchies leading to more flexible browsing.

Very Easy Rodent Oriented Nehvide Index to Computerized Archives.

Jonzy's Universal Gopher Hierarchy Excavation And Display.

Archie-Like Indexing for the WEB.

Another advantage to this scenario is that as has been shown in this Thesis, the

Directory can also be used to provide a gateway to other information sources, such as

relational databases. By bringing such information sources into the fold of the Directory

we can bring such information into the indexing mechanisms previously described. In

fact, we might even use a RDBS to manage the indices for a given DSA.

5.3 More Powerful Indexing Servers

Consider a world-wide X.500 service tymg together information systems for practi-

cally every organization in the world. As useful as this sounds, it is likely that the chosen

physical organization of world-wide hierarchy would be constructed according to polit-

ical and administrative goals rather than research or academic. However, a researcher

looking for information will likely have a preconceived notion of what hierarchy would

be most useful for his/her purposes. This section explores one scenario for implementing

powerful indexers capable of easily building custom hierarchies.

For convenience, we will limit the scope of this scenario to academic research

papers. First we assume that there exists an agreed upon standard for describing research

papers via Directory attributes based on some ontology or taxonomy. This taxonomy

itself might be maintained via the Directory to enable academics to more easily and thor-

oughly classify their work. This might result in some well defined organizational

attributes such as objectClass=Research Paper, researchDiscipline=Applied Science,

researchField=Computing Science, researchArea=Database, as well as a catch-all

attributes such as keyword=heterogeneous, keyword=federated, and keyword=interop-

erability.

The basic process for indexing this information would be:

1. Walk the world Directory Information Tree. At every level of the DIT, search for

research paper entries (i.e., objectClass=Research Paper).

2.Index each such entry in a relational database based on the prescribed taxonomy

of attributes.

3.Construct one or more new Directory Information Trees based on a given hier-

archy map and decorate the new tree(s) with alias entries pointing to the real

entries found during the world tree walk.

5.3.1 Walking the World Tree

This is potentially the most expensive part of the entire process, although very easy

to program. Ideally we would start at the root of X.500 directory and start a search oper-

ation searching for all occurrences of entries with objectClass=Research Paper. After all,

this is what the Directory was designed for. Unfortunately, most DSAs enforce service

limits. In particular, top DSAs, such as for a country, will not permit an entire subtree

search. In this case we simply use a tree-walk algorithm until we get to a level of the tree

where we can directly use a Directory subtree search. One other potential source of prob-

lems is that some DSAs might implement anti-dredging controls which could interfere

with our search.

Walking the entire world DIT more than once a week should not be necessary, and

could be done as seldom as once a month. Walking the tree more than once a week could

potentially be disruptive to some site's DSAs as had been the case with some ftp and

gopher sites which suffer from indexing services such as Archie and Veronica.

DIT walking might also be spread out over the day to minimize impact by

restricting the walk to off hours. This could be easily achieved through a number of

means, such as using country information to determine time zone.

5.3.2 Building the Master Index

For every target entry found (i.e., objectclass-Research Paper) a tuple in a relational

database would be created. Once completed, this relational database would be the master

index, and would look something like:

Table 20: Research Papers Master Index

DN

Applied
Sciences

research
Area

Liberal Arts

Science

where the DN attribute of the master index would identify the original Distinguished

Name of the entry that is indexed. The high-level attributes researchDiscipline, research-

Field, and researchArea would follow the strict taxonomy previously agree upon. The

remaining low level attributes such as keyword, would further aid in searching, but

would offer more flexibility beyond the standard taxonomy.

keywords research
Discipline

Computing
Science

Liberal Arts

The use of a relational database for the master index is important for a few reasons:

research
Field

History

Chemistry

1.Current RDBS technology is fairly mature and highly effective at organizing and

accessing information in this form.

Database

Psychology

2.As we have seen, it is straightforward to create a mapping between a relation

such as this and a hierarchy such as the Directory Information Tree. It is even

easier when the information structure is well behaved as in the case of a

prescribed taxonomy as indicated here.

heterogeneous, federated,
interoperability

Military

Polymer

3.As we have seen, there are a variety of hierarchies which can be defined from a

p e n relation. This is especially important when creating custom tailored hierar-

chies.

strategy, tactics, weapons

Infant language, reasoning

5.3.3 Constructing a New Custom Hierarchy

Once the master index is constructed we can proceed to define and build whatever

new Directory hierarchy we wish. Definition might happen once, statically where some

organization would maintain the standard research paper taxonomy hierarchy and so

define a standard relational to hierarchy map. Thereafter, each time a new master index is

constructed (say once per week), a new branch of the Directory Information Tree would

be constructed as per the map. This would be the reverse process of the world tree walk,

where each tuple in the master index would be placed in the new DIT as an alias for it's

original entry. Alternately, we might never physically construct a new DIT, rather the

map is used to transform all Directory queries into SQL queries against the master index.

This would save the trouble and storage space of physically maintaining a separate

subtree, with the small overhead of query translation on every directory operation

against the implicit directory subtree.

To appreciate the true power of the master index, consider the case where a

researcher wants to define their own research hierarchy. Consider a user customizable

DSA where the researcher registers their own hierarchy map against the master index

relation. Once this map was registered, they would query the Directory via standard

DUA tools, but see their own custom hierarchy. For each directory operation they initi-

ated, the operation would be dynamically translated in master index query, returning the

DN stored in the index being reflected back as directory aliases, which would ultimately

be dereferenced back to the original research paper entries in the world DIT.

5.4 Concept Hierarchies

How many times have you heard someone say, or caught yourself thinking, some-

thing to the effect of "stupid computer, do what I want, not what I say!"? This kind of

frustration is often encountered when dealing with information systems where a user

makes a query to search for information on some topic, but only receives a portion what

they really want, and often knows there is more information that they are looking for. But

how can an information system find more than what you ask for.

Another emerging technology in computing science is 'knowledge discovery' (or

'data mining') where information systems do try to deliver more of what you want, in

addition to what you ask for. An important aspect of knowledge discovery is the use of

Concept Hierarchies [45] to provide a framework for searching for information. The

concept hierarchy can be used as a sort of pattern matching template when performing

searches for information with particular attributes.

As an example application of this technology, consider the claim made at the begin-

ning of Chapter 1 that many of the reference papers used in this thesis were obtained

over the network using Mosaic. While this was particularly convenient, it was necessary

to make at least four separate searches on keywords like 'heterogeneous,' 'federated,'

'multidatabase,' and 'interoperate.' Each search returned a wealth of references not

related to thesis, for example, 'heterogeneous network systems' and 'interoperability of

network protocols.' In Chapter 2 a survey of the field revealed the taxonomy of the field

of work in heterogeneous database research. Using this taxonomy we might construct the

following Concept Hierarchy:
database

heterogeneous - interoperability

rnultidatabase federated

If you were to query a knowledge discovery system, with the given concept hierarchy, to

search for articles on 'database, heterogeneous' or 'database, interoperability' it could

return articles on multidatabases and federated database by induction on the concept

hierarchy.

Knowledge discovery relates to X.500 in a couple of ways:

1.The Directory supports the notion of 'imprecise matching' when searching for

entries. Typically this can be implemented by simple pattern matching such as

regular expressions or by soundex algorithms. Matching by concept hierarchies

would also be a useful way to search the Directory.

2. Where would the Directory find such concept hierarchies? Why not in, or

through, the Directory itself? Because the Directory is a global 'open system,' it

would be of enormous benefit if such concept hierarchies were available to all.

Furthermore, such concept hierarchies need not be static, for we might store the concept

hierarchy in a more abstract form such as a relational database, then map a given concept

hierarchy into a directory hierarchy for user browsing. The user might also instruct the

Directory, via the proxy mechanism, to formulate new concept hierarchies which would

in turn affect the directory's imprecise matching mechanism. Such mechanisms might be

used in concert with the dynamic hierarchy matching described earlier, for in a sense,

specifying a map from a relational database to the Directory hierarchy is like specifying a

concept hierarchy.

5.5 The Universal Relation

In [Ill Ullman introduces the notion of 'The Universal Relation.' The basic idea is to

forgo the notion of normalization of a relational schema, at least at the user interface

level. As there is substantial practical and theoretical reasons for normalizing relations,

this can likely hidden to the user and maintained by the RDBS itself.

The basic advantage to the user of the Universal Relation is the simplification of

queries. Rather than phrase a query in terms of relations and joins, the user frames the

query in terms of attributes only. For example, using:

SELECT NAME
WHERE PHONE-NUMBER = '291-3014' ;

as opposed to:

SELECT NAME
FROM PERSON,PHONE
WHERE PERSON.personId = PHONE-personId
AND PHONE-NUMBER = '291-3014' ;

is not only much more simple to type, but conceptually easier to formulate.

In [14], one of the first papers to discuss such an interface, the approach signifi-

cantly depends on the proper naming of attributes. Under such assumptions, the naming

chosen in Table 9, "People," and Table 10, "Phone," on page 34 would not have worked

well in the previous example. However, such naming is only a mapping issue and tech-

niques such as Sybase's primary-key and foreign-key tables could be used to accomrno-

date the Universal Relation model on existing database implementations. The point is,

much can be done to utilize higher level data models on existing databases.

In a sense the X.500 data model is quite close to the Universal Relation model. In

X.500, the search operation only specifies attributes. There is no notion of relations,

projection and joins, or of normalized schema. Such notions can be relegated to lower

levels of the information system.

In [14] Carlson and Kaplan showed that proper naming of attributes can (in their

case, must) be used to support the Universal Relation model by providing join informa-

tion. Another characteristic of X.500 is that its schema (including attribute names) is

highly formalized, and often highly descriptive. In the context of using X.500 as a front-

end to existing relational databases, this strictness in attribute naming could be of use in

automating the process tying together user visible X.500 attribute names, underlying

RDBS attribute names, and join information for normalized relations. The point here is

that if we hope to create Archie-like indexing and browsing systems for relational data-

base systems front-ended by X.500 DSAs, we need to keep the user interface simple, and

the administrative demands minimal.

5.6 The Open Systems Director

The Open Systems Director (OSD), or just ~irector', is a concept for a computer

application that the author invented several years ago. Basically it extends the concept of

file system utilities like Unix Is, cd, rm, rmdir, and like Apple's Finder for the Macin-

tosh, to that of the X.500 Directory. In addition to being a super browser, the Director

assumes that everything reachable by computer systems and computer networks is also

reachable via the X.500 directory. Such an assumption is based on the concepts explored

in this thesis, so that not only relational database information would be reachable

In a sense, the Director is just that, it directs you through the Directory.

through the Directory and the Director, but user files, user preferences, system resources,

research papers, stock market quotes, corporate product lists, etc.

Another way of viewing the Director is similar to applications like Gopher and

Mosaic where users can browse globally for all sorts of information. Additionally the

Directory would provide users with searching capabilities similar to Archie and friends,

but in one integrated application. By utilizing the kind of multidimensional indexing or

knowledge discovery techniques described previously, the Director would also allow

users and systems administrators the ability to easily create new information hierarchies,

or 'information spaces,' more appropriate to their needs. Furthermore, by utilizing

attributes and indices, the Director would make it easier to restrict the user's view of

Directory space as an aid to browsing and searching. The user might even want to define

multiple such views and store them via the Directory for easy reference later.

Another significant benefit to the user is that the Director user interface would be

based on the Universal Relation model, a model that is far more simple conceptually for

the user than the normalized relation model. Given that the X.500 model closely matches

the Universal Relation model, it should not be difficult to design the Open Systems

Director this way.

Another important aspect of the Director would be the graphical user interface

similar in some ways to the graphical file system browser found on most contemporary

computer system, but more able to handle the diversity of information systems as in the

InterBaseView Graphical User Interface 1281.

5.7 The Information Superhighway

One of the notions the popular media has characterized of late is that of the Infor-

mation superhighway1, a vast network of information destinations traversable at near

the speed of light. This, evidently, is to be the next major infrastructure our global civili-

zation is to become economically and socially dependent upon.

US Vice President Gore is often credited with actually coining the term

- 76 -

A significant distinction between the Information Superhighway and any previous

transportation system we've yet created is the destinations we are likely to visit. There

are two facets to this distinction:

1.In the current global transportation network most of us each year are likely to

visit less than a few destinations globally, and maybe a dozen or so regionally.

Via the Information Superhighway, we are likely to visit hundreds or even thou-

sands of different destinations globally each year.

2.Due to time and economic constraints we likely choose our destinations on the

current transportation network very carefully, and plan our travel itinerary with

equal concern. On the Information Superhighway we are likely not going to care

much where we go, or in what order we visit our destinations. Rather, we will

only care what is at each destination, and will not likely care about the destina-

tion itself.

The point here is 'road maps.' Current maps of the transportation system show destina-

tions from a geographic point of view. Trpically the most important features of a map are

'how you get there from here,' how far apart the destinations are, the political bound-

aries, etc. On the Information Superhighway we will need not only new maps, but a new

kind of map.

This new road map will not be static. It will have to be dynamic as information

destinations and pathways are likely to change daily. This new map will have to be inter-

active in that it will point out destinations not in terms of where they are, but in terms of

their feature (or attributes). We will not want to go to 'X', but we will want to go to a

place, any place, or perhaps all places that have 'X.' In these terms, the X.500 Directory

might make a nice map.

This new road map, however, will be fiercely more sophisticated than any map

previously created. The trouble is, it will likely be beyond the mastery of all but a few

highway experts or cyberpunks1, so good guides and chauffeurs will become indispens-

able. The kind of guide or chauffeur we will need will probably be something like the

Open Systems Director.

The term 'cyberpunk' is taken here to mean someone who is not only technically d t e d
enough to travel the information superhighway, but actually takes intellectual pleasure
from the experience. This is meant to mean someone who is willing to put an above average
amount of effort into mastering the tools of navigation and inordinate patience into pursu-
ing what they are looking for. It is the author's opinion that we should not all have to
become cyberpunks to navigate the Information Superhighway.

Chapter 6 Conclusion

The main motivation for developing this thesis was finding better ways to find and

access information. As an academic, the author has long been fascinated with directory

systems, and as a user, equally frustrated by their limitations. As a seasoned computer

systems administrator, there has been a growing concern with the increasing complexity

and variety of information systems and information management techniques. As an

experienced systems developer, there is a profound scepticism that we need to suffer this

much complexity and variety, as well as a profound belief that integration of technology

is the best means of simplifying information management. As a student, there is a sense

of awe at the richness of the database field, in particular, the ambitious efforts of other

heterogeneous database researchers-clearly what is an important subject.

The author sees X.500 as an important new technology that has not been fully

exploited, and even less recognized. In particular, X.500 is popularly seen only as an elec-

tronic mail address directory. In a few more cases, it is seen as a more general directory,

but still a limited or specialized form of database. What is often overlooked is that the

X.500 standard does not specify a database architecture so much as an information

model. It is this perspective that is so tempting to exploit: To see X.500 as not only an

opportunity to create a world-wide directory, but an opportunity to create a world-wide

information model which can be used as a standard for interoperating with a wide range

of other information systems.

X.500 is likely not the best information model for world-wide use, and we will

probably find a better model someday, but such a new model should be significantly

better lest we create yet another model for the sake of creating yet another model. In the

meantime, X.500 provides the opportunity to experiment with a whole new range of

information management applications, on a world-wide scale. While applications like

Gopher, Archie, and Mosaic are flourishing in their novelty, they are limited by the

underlying information models they depend on. X.500 provides an opportunity to do far

more, using an existing information model as well as an existing operational infrastruc-

ture.

6.1 Summary of Results

One of the first challenges was to take a subject as broad as X.500 interoperating

with relational databases and start to categorize the various related issues. Sometime

during this process it became clear that some things could be generalized and abstracted

to a higher level. For example, while a distinction is made between using X.500 to view

raw relations (Section 1.3.2) and integrating X.500 with existing databases (Section 1.3.3),

the process of viewing raw relations is merely a starting point and ultimately evolves into

the final integration of X.500 with an existing database. While there is however a larger

distinction between using X.500 to access relational databases and using relational data-

bases as a persistent store for X.500, even this distinction disappears when one considers

the whole context of information interoperability.

6.1.1 Three Issues of X.500-RDBS Interoperability

In terms of X.500 interoperability three main issues were explored:

1.Mapping Multivalued Attributes. Because X.500 deals with multi-valued

attributes explicitly and RDBSs support multivalued attributes implicitly, there

are many variables to consider in a proper mapping. Fortunately, more modem

RDBSs which utilize SQL-2 or SQL-3 will have more explicit support for multi-

valued attributes, making easier opportunities for X.500-RDBS interoperability.

2.Mapping Between Directory Hierarchy and Relation Tuples. For political, opera-

tional, and administrative reasons the Directory Information Tree is one of the

most prominent aspects of X.500. However, the flexibility of relational systems

makes information hierarchy less prominent in that one can easily view the infor-

mation by whatever hierarchy is convenient (e.g., SQL's 'group by' clause).

Consequently, there are compelling reasons to incorporate this sort of flexibility

into X.500.

3.Differences in Schema Content. There are two distinct approaches to dealing with

differences in schema content: extend the relational system or keep the differ-

ences in the Directory's specialized information store. In practice, a combination

of both techniques is most pragmatic. Ultimately, both techniques should always

be supported and the decision of which to use should be left to the discretion of

the Directory/RDBS administrator.

However, these three issues are by no means exhaustive of the problems to be solved in

X.500 interoperating with relational databases or any other type of database. In partic-

ular, the issue of Entity Identification is important to the issue of schema content, but has

not been considered in depth. Furthermore, issues such as query processing and optimi-

zation, and transaction processing have not really been considered. In spite of the limits

on the scope of investigation, it was still possible to construct a prototype system for

viewing the contents of raw relations through the X.500 Directory.

6.1.2 Interoperability Mapping Notation

The notation for mapping relational schema to X.500 schema was developed as a

necessary formalism for registering an external relational database with the Directory. In

particular it was designed to be simple to implement and to use, especially in the context

of defining mappings via the Attribute-Value-Association (AVA) model of an X.500 infor-

mation entry.

The basic approach taken was to map the external information source into a

common information model (the Directory's). This information model is roughly object-

oriented as well and having similarities to the Universal Relation Model (Section 5.5)

which seems to be comparable with any other model invented, but without having to

invent yet another canonical model. On the other hand, the notation used is very primi-

tive as compared to research efforts like Interbase, Myriad, ORECOM, IDEF-lX,

EXPRESS, NIAM, OSCAM, and SchemaLog.

6.1.3 Registering External Information Sources Using Proxies

During the actual implementation of a prototype X.500-RDBS federation, the many

details of contemporary software management made for slow progress. Nonetheless, the

process of designing and implementing a small working system revealed several impor-

tant design issues related to registration of external information sources:

1.Proxies and Reflection. When reasoning about meta-level issues such as registra-

tion, reflection techniques and information proxies offer a framework for

designing the registration system.

2.Proxies vs. Delegated Attributes. While the concept of Proxies was useful for a

simplified implementation and user interface, it is not completely compatible

with Quipu's intended model of delegated attributes. Both models offer advan-

tages and disadvantages, but not exclusive to each other. A workable integration

of both models is both likely and desirable.

3.Inband vs. Outband Registration. Should the registration of external information

sources and definition of the necessary mapping requirements be done inband

via the Directory's own information model and operations suite, or should it be

done outband behind the scenes using specialized custom interfaces? This author

believes profoundly that inband registration is critical to flexibility and porta-

bility of information system interoperability.

4. When designing an inband registration system, there are clear inadequacies in

the current implementation of ISODE's Quipu Directory. In particular, at the

lower levels of the DSA to DIB interface there needs to be easy access to the rest

of the Directory Information Tree (DIT). While a DSA must naturally have access

to the Directory Service Protocol (DSP), the Generic Database API (GDA) of

Quipu does not support access to the DSP interface. Both the Proxy and the Dele-

gated Attribute models demonstrate this need in order to access registration

information external to the system being registered.

5.0bject-Oriented techniques were useful both in the design of proxy directory

entries, and in the actual implementation of proxy objects within the DSA.

While there were many other important issues discovered in the prototype imple-

mentation (e.g., RDBMSs should be extended to support nested attributes and universal

relation models), issues of registration were most profound and still need much attention.

6.2 Problems with X.500

As much as this work has developed the notion of using X.500 as federated infor-

mation systems manager on a world-wide basis, there are problems with this approach.

6.2.1 Schema Control

X.500 has a great deal of machinery to support and control well defined information

schema. Schema controls affect which attributes an entry may or must have, the format of

the attribute values, whether or not an entry may have child entries, and even what

object classes of entries may appear in a given subtree. As well defined and controled the

Directory's schema is, there is a large price which is paid with all this control.

1.There is an enourmous burden on the Directory administrator to ensure that all

the schema definitions are configured properly.

2.There is often inconvenience to the Directory user who attempts to add informa-

tion to the Directory but is thwarted schema controls which refuse the addition of

nonconforming information, but offer little or no help in defining what

conforming information should look like.

3.The is a great deal of overhead to the developer adding new features to the

Directory and trying to understand and utilized the internal details of the schema

controls.

4.The problem with integrating the Directory with relational databases is that there

is no east to use mechanism in place to automatically and effectively define new

schema. This can be a paricular problem when mapping relational attributes to

directory attributes-ften the appropriate directory attributes do not exist.

Defining new attributes is an onerous task: allocating object identifiers, defining

new attribute classes, defining new attribute syntaxes and writing syntax transla-

tors, etc.

To deal with these problems there needs to be much more work done on making

schema management, to coin an overused term, userfirendly.

6.2.2 Design Limitations

X.500 was not designed to be a federated information systems manager, it was

designed to be a general purpose directory. The query and search mechanisms of X.500,

while fairly powerful, are much more limited than contemporary database systems.

X.500 has no standard means of defining and implementing behavior. Information

systems like Orecom, Myriad, Interbase, and others all have embeded programing

languages which allow the capabilities of the system to be extended.

6.2.3 IS0 OSI

X.500 and X.400 are the flag ships of IS0 OSI technology. Designed to bring forth

real applications to the growing international computer networks, X.500 and X.400 have

as their greatest liability their associations with IS0 OSI technology.

IS0 OSI technology has alway been controversial, especially in the United States.

While initially challenged by the pundits of Internet technology, then politely tolerated,

IS0 OSI technology is mostly being ignored in terms of real Internet development. The

reality of the evloving 'Information Superhighway' is that it is based on Internet tech-

nology, and most of that technology comes from the United States. The overwhelming

feeling towards intoducing IS0 OSI technology into the Internet is: "if it's not broken,

don't try to fix it." By it's very association with IS0 OSI, X.500 is at a serious disadvan-

tage to new technologies which are 'Internet inventions.'

6.2.4 Complexity

IS0 OSI critics are not without there valid critisisms. One of the biggest critisims is

of the overwhelming complexity of the standards and technology. This complexity is also

one of the biggest problems with X.500.

Complexity has made it difficult and expensive to develop X.500 as a technology,

difficult to administer it, and often difficult to use. Development of the Internet Name

Service took only a few short years since proposal of the standard to ubiquity of use.

Little or no development of the INS is still done. Development of X.500 continues to this

day and the cost of development continues to be quite high, primarily due to the

complexity of the technology.

To the systems administrator, installing and maintaining an X.500 service is easily

ten times more effort than the installing and maintaining the INS or Sun's NIS. This is

directly related to the massive complexity of X.500 systems, especially with respect to

schema controls.

The danger of using X.500 as a federated information systems manager is adding to

this increasinly unmanagable complexity. By adding new features which X.500 was not

designed for, there will be more working in setting up an maintaining the service, as well

as increased likelyhood of malfuntions.

6.2.5 Obscurity

Although X.500 is an international standard which has been in existence since 1988,

it has not overtaken similar systems like the Internet Name Service (INS) or Sun's

Network Information Service (NIS). X.500 would make an excellent replacement for these

two services, but has not. The Object Management Group (OMG) is defining new stan-

dards for distributed interoperability of objects and had developed its own name service.

Services like Archie, Veronica, Jughead, Gopher, and the World-Wide-Web are based

soley on the Internet Name Service.

Even though world-wide usage of X.500 continues to increase it has still not

increased enough to the point where it considered for use in other newly evolving

services. In spite of any technical merits X.500 may have, it is a failure in terms of

marketing and consumerism. In these terms it is hard to justify development efforts

based on a technology which is likely never become as ubiquitous as the INS or NIS.

6.3 Future Research and Development Needed

If this work is to continue successfully, there are a number of next steps possible. It

is hard to offer a priority to such work as there are many goals to consider, but the most

pragmatic course would be to continue establishing a working prototype with increasing

functionality.

6.3.1 Add Support for Oracle

While the current prototype supports access to Sybase databases, the proxy support

has been designed to easily implement other information providers. In particular, the

SQL interface to both Sybase and Oracle would likely make this very easy as Sybase,

Oracle, and other RDBS proxies would be implemented as subclasses of a more generic

RDBS proxy class.

6.3.2 Complete X.500 Operations on RDBS Access

The current prototype supports the X.500 List and Read operations, but does not

support Create, Delete, Modify, Modify RDN, Compare, or Search. Of these, Search is

likely to be the most interesting and most useful as this is one of X.500fs most powerful

features, as well as one of the most powerful features of relational databases.

6.3.3 Support Hierarchy Mapping

While hierarchy mapping has been discussed at length in this thesis, no actual

implementation exists. While such implementation is likely to be straightforward, real

implementation experience often contradicts such assumptions.

6.3.4 Support Dynamic Registration

The current implementation allows the Directory Administrator or User to register

an external information source with the directory via the Directory Access Protocol

(DAP) and a standard Directory User Agent (DUA). However, it is necessary to restart

the Directory Service Agent (DSA) before the new external information can be seen. It

would be a very powerful ability to see the external information immediately after regis-

tration, or after changes to the registration information. This would promote an evolu-

tionary approach to the registration process where the registration would proceed by

successive refinements. It would also promote better information exploration for people

either looking at new information sources, or looking at existing information sources in

different ways (i.e., different hierarchy mappings).

6.3.5 Wide-Area Information Access

The current success of initiatives like the ftp servers, Gopher, and the World-Wide-

Web, and applications such as Archie, Veronica, Jughead, and Mosaic demonstrate a clear

desire for public access to world-wide information sources. However, these information

systems are based on very simplistic information models which limit the ability of the

user to control their view of the information.

By implementing some of the techniques of multidimensional indexing described

in Section 5.3, experience could be gained as to the real benefits of a higher level wide-

area information access.

6.3.6 Schema Translation Techniques

While X.500 supports an object-oriented information model, one aspect which sets

X.500 apart from contemporary OODB systems is the lack of methods in X.500 (a means

of implementing behavior). This should not be seen as a deficiency in X.500, but rather an

opportunity to extend the X.500 standard with the latest technology in database access

and interoperability mechanisms.

In particular, it would be very tempting to use techniques such as SchemaLog [29]

and other techniques from Deductive Databases, Logic Programming Languages,

Constraint Logic Programming, and Intelligent Systems research to define powerful

mechanisms which could be used to register access and translation methods as entries

within the X.500 Directory.

6.3.7 New Information Models

Perhaps X.500 is not the best information model for a canonical heterogeneous

information model. Perhaps we can define a more powerful, more suitable model to

federate heterogeneous information sources. However, we need not throw away X.500,

rather we can adapt it to this model.

6.4 Final Remarks

Our ability to define and record information, to pass it on to others in a compact

and efficient form, to pass it on permanently from one generation to the next is something

shared by no other species. This information awareness is in a sense central to being a

modern human in that we likely devote more resources to information and information

management than to the basic needs of food, housing, and procreation.

Another aspect of the human condition is individuality; the need to express ideas in

one's own terms, to set one's self apart from the rest of humanity. However, society prag-

matically requires a degree of conformity as unchecked individuality can lead to ineffi-

ciency in social and economic mechanics. We see these tensions in the field of information

systems between leading edge researchers and developers breaking new ground in infor-

mation systems design and information system users who can ultimately only deal with

so much diversity.

Also true to human nature is the need for interesting challenges. This is often truest

in leading edge research laboratories where academics concentrate on the really tough

problems, and leave the details or pragmatics to others for consideration. Unfortunately

this often means that some important problems such as system usability or system

administration and maintenance can be overlooked and not worked into a total solution.

Throughout this thesis there have been a couple of philosophical goals which were

followed:

1.To not invent new technology unless necessary. Rather, retrofitting existing tech-

nologies such as X.500 formed the basis of this work.

2.To consider both the end-user of the technology as well as the administrator of

the technology. Consequently, more emphasis was spent on issues such as regis-

tration than is typical in other research.

In particular, it is hoped that restricting the introduction of new technology and consid-

eration of users and administrators can also be seen as interesting challenges.

Perhaps the biggest surprise to come out of this work was to see how issues of

information systems federations and interoperability could be extended to improve on

other emerging new technologies. In particular, the ability of a user or administrator to

easily define new information views, such as custom designed information hierarchies,

helps to build a bridge between individuality and conformity, giving us the best of both

styles.

AppendixA X.500 Overview

X.500 is an international standard for a world-wide distributed directory system.

Initial motivation for the design of the standard came in part from experience with X.400,

the international standard for electronic mail, where a need was seen for some sort of

directory service to map names of people into electronic mail addresses.

It was soon determined that there are many more uses for such a wide-spread direc-

tory than just e-mail users; for example, finding postal address, phone numbers, and

other information related to specific people. It was also envisioned that the Directory

could be used to map names into OSI network addresses (which are far more complex

than Internet Protocol addresses) for systems and services. In short, it was decided that

the Directory should be capable of storing information on just about anything.

A.l Information Model

Information is stored in the directory as a collection of directory entries. Each entry

in the directory is a collection of Attribute-Value Associations (AVA) which are of the

form attribute-type=attribute-value. For example, the author might have an entry like:

commonName=Eric Kolotyluk,
objectClass=sfuPerson,
surname=Kolotyluk,
userClass=staff,
rfc822Mailbox=eric@cs.sfu.ca,
otherMailbox=Eric~Kolotyluk@sfu.ca,
otherMailbox=eric@sfu.ca,
phoneNumber=+l -604-291 -301 4

These AVAs are basically information about an object the entry represents. It is interesting

to note that multiple AVAs may share the same type, as in the case of the attribute-type

otherMailbox.

Each entry in the directory is named by a collection of AVAs known as the Relative

Distinguished Name (RDN). In the previous example, the RDN for the entry is the AVA

commonName=Eric Kolotyluk, but it could just as well have been chosen to be two AVAs

such as commonName=Eric and surname=Kolotyluk.

A series of Relative Distinguished Names is used to form a Distinguished Name

(DN) for an entry. This DN gives each entry a name that is unique in the entire world-

wide directory and can be thought of (in relational database terms) as the primary key of

the entry. For example, the Distinguished Name of the author in the Directory is:

country=CA
organization=Simon Fraser University
organizationalUnit=Faculty of Applied Sciences
organizationalUnit=Computing Science
commonName=Eric Kolotyluk

where each AVA represents the RDN of a specific entry in the directory. Note: in most

cases abbreviations are used for attribute-types and RDNs are grouped to form a string

like: c=CA@o=Simon Fraser University@ou=Faculty of Applied SciencesOou=Cornputing Science@cn=Eric Kolotyluk

As this can still be quite lengthy to type, a mechanism known as User Friendly Names

(UFN) has been developed that offers shorter, yet possibly ambiguous names such as

"Eric Kolotyluk, Simon Fraser University, CA" and some interfaces to the directory

support aliases that support even shorter names like "Eric Kolotyluk, SFU, CA." Overall

the intent is that the Directory user interface be as easy to use as possible, in spite of the

complexity of the underlying mechanisms.

For convenience, directory entries are organized into a hierarchy known as the

Directory Information Tree (DIT). A portion of the current tree looks like:

ou=Faculty of ~pplied Sciences

\ ou=Engineering Science

Note: there is no actual entry for the world root.

It is important to realize that each level of the DIT is represented by some entry with

its own collection of attributes, and that the tree can be arbitrarily deep. In some directory

implementations the attributes of an entry can even affect the behavior of subordinate

entries (i.e., attribute inheritance).

The basic operations that can be performed on the Directory are:

Table 21: Basic Directory Operations

I list I List the entries immediately subordinate to a particular entry.

I read I Read the attributes of a particular entry.

I add I Add a new entry subordinate to a given entry.

Search the directory for an entry or entries whose attributes match a
given search expression.

delete

modify

modify-
RDN

Delete an entry from the Directory.

Modify the attributes of an existing entry.

Modify the Relative Distinguished Name of a given entry. This is a sep-
arate operation because unlike other attributes, the RDN must be
unique among all sibling entries.

The Directory is usually accessed in two ways:

compare

I

1.Browsing via the list and read operations is intuitively very simple for most

people.

Compare the specified attributes of an entry with given values and indi-
cate the results of the comparison. This is typically used to test a pass-
word match without allowing someone to read the password attribute.

2. Searching via the search and read operations is more powerful in that advantages

can be taken of the parameterization of information contained in each entry via

attributes. A search can compare the values of attributes for precise or imprecise

matches. The latter is useful when searching for names when the exact spelling is

not known and techniques like 'soundex' can be used. Also, unequal matches

such as not-equal, greater-than, less-than, etc., can be specified. Finally, match

specifications can be grouped with "and/orw to form powerful search patterns.

A.2 Schema Model

The Directory has a very strong sense of schema in that there are many rules that

govern which attributes an entry may hold, and what values attributes may take. In some

cases (i.e., quipu) there are even rules about the structure and contents of specific

subtrees.

A.2.1 Object Class

The most obvious schema control in the Directory is the requirement that each entry

belongs to a particular object class. This not only categorizes the entry, but determines

which attributes the entry must have and/or may have. There is a specific attribute-type

known as objectclass which every entry in the directory must have. Every entry in the

directory implicitly belongs to the object class top, which mandates the presence of the

objectclass attribute.

X.500 specifies a set of predefined object classes. For example, if an entry has an

AVA of objectClass=person, then the entry must also have attributes commonName and

surname, and may optionally have any of the attributes: telephoneNumber, seeAlso,

description, and userPassword.

It is also possible to define an object class as an extension or a subclass of another

object class. For example, the predefined X.500 object class residentialperson is subclass

of the object class person and inherits the same conditions with respect to the attributes

commonName, surname, telephoneNumber, seeAlso, description, and userPassword. In

addition, the object class residentialperson requires the entry to have a IocalityName

attribute, and any of the attributes: streetAddress, postalAddress, postalcode, stateor-

ProvinceName, postoff iceBox, physicalDeliveryOff iceName, preferredDeliveryMethod,

facsimileTelephoneNumber, internationaliSDNNumber, teletexTerminalldentifier, telex-

Number, preferredDeliveryMethod, destinationlndicator, registeredAddress, xl21Address,

or businesscategory.

It is also possible for an entry to belong to more than one object class. This is

denoted by having more than one objectclass AVA.

A.2.2 Syntax

The directory also governs the syntax of attribute values based on attribute-types.

For example, attributes such as commonName, surname, and description have a syntax of

CaselgnoreString whereas the serialNumber attribute has a syntax of PrintableString.

The syntax of attribute values also affects how search and compare operations

proceed. For example, the CaselgnoreString syntax will match two values regardless of

the chosen case of the alphabetic characters, whereas Printablestring requires an exact

match. This is actually an oversimplification of the X.500 standard, but is sufficient for

this presentation.

A.2.3 Inherited Attributes

Though not part of the X.500-1984 standard, the quipu implementation of X.500

supports the use of inherited attributes. Basically the inheritedAttribute attribute speci-

fies a set of AVAs that are to be inherited by the immediate subordinate entries.

A.2.4 Tree Structure

Though not part of the X.500-1984 standard, the quipu implementation of X.500

introduces the treestructure attribute. This attribute specifies which object classes are

permitted for all entries subordinate to the entry having the treestructure attribute.

A.3 Operational Model

The operational model of the Directory is not of much importance to directory users

as all they should be aware of is that the directory is a service. To the directory adminis-

trator and directory implementor the operational model is extremely important.

The two most important aspects of the operational model are the Directory User

Agent (DUA) and the Directory Service Agent (DSA). Basically the directory service is

implemented by a number of cooperating DSAs each managing a portion of the Direc-

tory Information Base (DIB). In this way the directory becomes a truly distributed appli-

cation. This distribution is key to the Directory's scalability world-wide.

DSAs communicate with one another via the Directory Service Protocol (DSP) and

DUAs communicate with other DSAs via the Directory Access Protocol (DAP). DUAs

never communicate with other DUAs.

DSP

Because the Directory is distributed, often one DSA cannot satisfy a request from a

DUA. There are two mechanisms available for DSAs to satisfy service requests from

DUAs. Through chaining a DSA can pass on a request to one or more other DSAs. When

the result are received they can be combined with other results, including those from the

DSA's own DIB, and passed back to the DUA. Through referrals the DSA can decline to

service the complete request, but indicate to the DUA one or more DSAs that likely can

service the request.

chaining m

referral

For a given directory request, it is possible that some arbitrary amount of chaining and

referrals will proceed.

A.4 Security Model

One of the most important features of the OSI Security Model is the use of RSA

public key encryption. To make use of public key encryption it is essential that the public

keys be available in some public place-the Directory is most obvious place for this.

A.4.1 Authentication

However, the Directory is not merely a repository for public keys. It is also a user of

the mechanism in that it supports the notion of Authentication through binding to the

directory. In the simplest case anyone (or anything) may attempt to bind to the directory

anonymously via some DSA, but the DSA may refuse this according to local policy.

Normally, however, a DUA will attempt to bind a user by identifying the user to the

directory. In this case, the user will have an entry in the directory, typically containing a

password attribute which the DUA will perform a compare request against. Under more

stringent circumstances the Directory can require/provide strong authentication in

which the DSA being bound to challenges the DUA with a random signature encrypted

with the user's public key. The DUA must decrypt the signature, then encrypt it again

with the user's private key, ensuring the user is not a pretender.

A.4.2 Access

Though not yet part of the standard [I think], the Quipu implementation of X.500

makes use of access control lists to control access to an entry, to its subordinate entries,

and even to each individual attribute.

As countries like Canada and the United States increasingly create legislation

governing individual rights to information-the right to know what information an orga-

nization holds about you, the right to have erroneous information corrected, and even the

right to what information an organization can share with others-increasingly it will be

important that organizations can abide by these laws. For example, if you went to an

organization and asked to see all the information they kept on you, the organization

might be hard pressed to tell you. If you asked that your home phone number not be

shared with anyone outside the organization, likely their computer database systems

could not implement such a request easily. If many people came to the organization with

similar requests, the administrative, clerical, and technical staff could be easily over-

whelmed trying to satisfy such requests, and even become unable to comply even though

the law requires it.

By using mechanisms like those found in QUIPU, we could give people increased

access to information about themselves, and increased control over how the information

is used (who can see it, who can change it).

A.4.3 Dredging

Even with authentication and access controls, it is still possible for unscrupulous

individuals to collect information from the directory through normal channels, yet

violate the intended used of the information via statistical or other analysis. For example,

by making repeated compare attempts they may try to guess a password, or by repeated

read requests they may attempt to gather a profile on an organization. QUIPU guards

against this somewhat by allowing the DSA administrator to cap the number of requests

made by a specific individual.

A.5 ISODE

The IS0 Development Environment is a project started in the mid 1980's by

Marshal T. Rose as an attempt to create an easily accessible test-bed for the implementa-

tion of IS0 OSI distributed applications. Central to this project was the development of a

working IS0 protocol stack. More important, however, was the development and distri-

bution of tools for constructing IS0 OSI applications which enabled development labora-

tories around the world to contribute to the overall development effort.

For the most part, the ISODE distribution exists in the 'public domain' in that

anyone is free to receive and use a copy of the distribution. Indeed hundreds, possibly

thousands, of sites around the world have installed ISODE and its OSI applications.

A.5.1 Quipu

In the ancient Inca civilization information was recorded on knotted strings called

'quipus.' These quipus were central to the functioning of a village in that they told who

lived where and owned what land, what debts were owed, etc.

By the late 1980's University College London (UCL) embarked on a project to

implement the IS0 OSI Directory service via ISODE, and chose the name Quipu to

symbolize the importance to the global information village.

A.5.2 GDA

The Generic Directory API' is a well defined interface between the QUIPU DSA

and the underlying persistent data store. It was designed to make it easier for developers

to implement new storage systems or adapt QUIPU to existing ones. The results of this

thesis indicate that GDA is a good start, but that there are important enhancements that

would benefit the design.

A.5.3 Consortium

In 1992 it was decided that the ISODE effort should be more formally recognized

and funded and so the ISODE Consortium (IC) was formed. The IC continues to deve-

lope and improve the on ISODE Version 8 (the last publicly available version), but makes

the development environment easily accessible to academics at a small cost.

Application Program Interface

AppendixB Sample Directory Session

The current implementation of the heterogeneous database proxy support is based

on ISODE Consortium release 1.2 of Quipu and the Generic Directory API (GDA). At this

time a special version of the qb disk database has been modified to support the proxy

model as this was expedient in terms of implementation strategy. A more effective design

would be to incorporate the proxy support into the main body of quipu, or to signifi-

cantly enhance the current GDA component.

What this appendix demonstrates is a sample session with Quipufs dish (Directory

SHell) and Sybase's isql (Interactive SQL). Note, the following specimen output has been

edited for readability.

Column-name Type Length Nulls Defaultgame Rulepame
--------------- --------------- ------ ----- --------------- ---------------
number int 4 0 NULL NULL
name varchar 16 0 NULL NULL
price smallmoney 4 0 NULL NULL
description varchar 6 4 0 NULL NULL
Object does not have any indexes.
No defined keys for this object.

(return status = 0)
1> 1> select * from Part
2> go
number name price description
------ ----------- -------- ..
12345 HD125s 259.00 125 MB SCSI hard disk
12346 HD233sf 427.00 233 MB fast SCSI hard disk
12347 HD455sf 721.00 455 MB fast SCSI hard disk
12348 HD785sf 1,033.00 785 MB fast SCSI hard disk
12349 HD785sfd 1,121.00 785 MB 16-bit fast SCSI hard disk

(5 rows affected)
1>

Here we see an example of a parts-price list a small company might want to publish via

the Directory.

Using the Directory User Agent (DUA) for Quipu we list the entries under the entry for

the Open Systems Laboratory. The first 9 entries are stored in the GDA-QB directory

information base via GDBM files. The last 5 entries are listed as a side effect of the exist-

ence of entry 9, proxy=Parts List, and are retrieved from the specified Sybase server.
- - - - -

aquarius{eric)4: dish
Welcome to Dish (Directory SHell)
Dish -> moveto osl
c=CA@o=Simon Fraser University@ou=Faculty of Applied Science@ou=Computing
Science@ou=Open Systems Laboratory
Dish -> list
1 commonName=aquarius
2 commonName=Directory Developer
3 commonName=Jane Doe
4 commonName=Joe Blow
5 commonName=John Doe
6 commonName=David Doe
7 surname=Kolotyluk%commonName=Eric
8 commonName=Max Knife
9 proxy=Parts List
10 commonName=HDl25s
11 comrnonName=HD233sf
12 commonName=HD455sf
13 commonName=HD785sf
14 commonName=HD785sfd
Dish -> showentry 9
c=CA@o=Simon Fraser University@ou=Faculty of Applied Science@ou=Computing
Science@ou=Open Systems Laboratory@proxy=Parts List
objectclass - quipuproxysybase
1astModifiedTime - Wed Mar 30 17:58:11 1994
1astModifiedBy - countryName=CA

organizationName=Simon Fraser University
organizationalUnitName=Faculty of Applied Science
organizationalUnitName=Computing Science
commonName=Eric Kolotyluk

accessControlList - others can read the child
self can write the child
others can read the entry
self can write the entry
others can read the default
self can write the default

proxy - Parts List
proxiedobjectclass - sfuPart=Part
proxiedAttribute - partNumber=number
proxieattribute - description=description
proxiedAttribute - commonName=name
proxieattribute - caPrice=price
proxiedName - commonName
sybaseserver - CMPT
sybaseuser - eric
sybaseUserPassword - Read but not displayed
sybaseApplication - QUIPU Proxy
sybaseDatabase - eric
Dish -> showentry 10
c=CA@o=Simon Fraser University@ou=Faculty of Applied Science@ou=Computing
Science@ou=Open Systems Laboratory@cn=HDl25s
objectclass - sfupart
commonName - HD125s
description - 125 MB SCSI hard disk
partNumber - 12345
caprice - $259.00
Dish ->

In this session note the attributes proxiedob j ectclass, p r o x i e a t t r i b u t e ,

and proxiedName are used to specify the mapping from the relational schema to the

directory schema. The proxi edOb j ec t C las s specifies the table name to construct

entries from, as well as the directory object class the proxied entries will belong to. The

p r o x i e a t t r i b u t e specifies each relational attribute name and the directory attribute

these are mapped to. Finally, the proxiedName specifies which attributes form the Rela-

tive Distinguished Name (RDN) of each proxied entry.

The other significant attributes, sybaseserver, sybaseuser, sybaseuser-

Password, sybaseApp1 i c a t ion, and sybaseDatabase are configuration informa-

tion for the proxy mechanism to connect to the appropriate server.

Finally, we see the effect of reading one of the proxied entries, HD12 5s, and note

that this corresponds to the relational database. If we alter the underlying relational data-

base,

1> insert Part values(23456, "HD1240sfn, $1389.00, "1.2 GB fast SCSI hard disk")
2> go
(1 row affected)
1 >

we can immediately see the result via the Directory.

Dish -> showentry commonName=HDl24Osf
c=CA@o=Simon Fraser University@ou=Faculty of Applied Science@ou=Computing
Science@ou=Open Systems Laboratory@cn=HD1240sf
objectclass - sfupart
commonName - HD1240sf
description - 1.2 GB fast SCSI hard disk
partNumber - 23456
caprice - $1389.00
Dish ->

The main significance of this is that once the DSA has been configured, any changes

in the underlying relational database are automatically available via the Directory. This is

an enormous saving for any database or directory administrators who might otherwise

have to develop and maintain custom mechanisms to download data from the relational

database to the directory, as well as ensure that this happens on a timely basis. Using

proxies, the directory administrator merely creates a proxy entry with the appropriate set

of attributes, then restarts the DSA.

Currently the proxy's configuration information is used only when the DSA starts

up, so the proxy entry must exist prior to DSA initialization. This is just a matter of devel-

opment expedience however. The ultimate intent is to have the proxy support become

active the moment the proxy entry is created. The main reason for not implementing this

feature is that it is still necessary, typically, for the directory administrator to modify the

underlying Quipu object-identifier (OID) tables, then restart the DSA anyway.

Prior to the above session, the author had to create the following entries in the

Quipu oidtable files: the attribute types partNumber and caprice, and the object class

s fupa r t . The attributes comrnonName and d e s c r i p t i o n already existed and could be

just as easily used or not. For example, the author might have decided to create a new

attribute type, partName, and used it instead of comrnonName.

It is hoped that after Quipu is converted to X.500-1993, object-identifiers can be

managed through the Directory itself. This would also lead the way for automatic

creation of new object identifiers and object classes based on the configuration parame-

ters of the proxy entry. Ultimately, registering a relational database (or any other informa-

tion source) with the Directory should be a simple, straightforward, one-step process for a

systems administrator, or even an ordinary computer user.

References

Marshall T. Rose. The Open Book: A Practical Perspective on OSI. Prentice Hall,
Englewood Cliffs, NJ, 1991.

CCITT. The Directory-Overview of Concepts, Models and Services, CCITT X.500
Series Recommendations. CCITT, December 1988.

Gerald Neufeld, Barry Brachman, Murray Goldberg, Duncan Stickings, The EAN
X.500 Directo ry Service, Internetworking: Research and Experience, Vol. 3, pp. 55-81,
John Wiley & Sons, 1992.

Daniel L. Silver, James W. Hong and Michael A. Bauer, X.500 Directory Schema
Management, International Conference on Data Engineering, Houston, Feb. 1994,
pp. 393-401.

OMG, The Common Object Request Broker: Architecture and Specification,

M Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H. Siegel, D.C. Steere,
Coda: a Highly Available File System for a Distributed Workstation Environment, IEEE
Transactions on Computers 39(4), April, 1990, pp. 447-459.

M.N. Nelson, B.B. Welch, J.K. Ousterhout, Caching in the Sprite Network File System,
ACM Transactions on Computer Systems 6(1), February, 1988, pp. 134-154.

J.K. Ousterhout, A.R. Cherenson, F. Douglis, M.N. Nelson, B.B. Welch, The Sprite
Network Operating System, Computer 21(2), February, 1988, pp. 23-36.

B. Walker, J. Popek, R. English, C. Kline, G. Thiel, The LOCUS distributed operating
system, ACM SIGOPS, Oper. Syst. Rev. 17,5 (Oct.) 1983, pp. 49-70.

Henry F. Korth and Abraham Silberschatz, Database System Concepts, Second Edition,
(1991) McGraw-Hill, Inc., New York, ISBN 0-07-044754-3.

Jeffrey D. Ullman, Principles of Database and Knowledge-Base Systems, Volume 11: The
New Technologies, 1989, Computer Science Press, Rockville, MD 20850,
ISBN: 0-7167-81 62-X.

A. Makinouchi, A Consideration of Normal Forms on Not Necessarily Normalized
Relations in the Relational Data Model, Proceedings of the International Conference on
Very Large Data Bases (1977), pages 447-453.

G. Jaeschke and H. J. Schek, Remarks on the Algebra of Non First Normal Form
Relations, Proceedings fo the ACM SIGACT-SIGMOD Symposium on Priciples of
Database Systems (1982), pages 124-138.

C. R. Carlson and R. S. Kaplan, A Generalized Access Path Model and Its
Application to Relational Database System, Proc. 1976 ACM SIGMOD International
Conference on Management of Data, Washington, D. C. (June 1976).

ISO-ANSI Working Draft, Database Language SQL (SQL3), February 5,1993, Digital
Equipment Corporation, Maynard, Massachusetts.

ACM Computing Surveys: Volume 22, Number 3, September 1990 (ISSN 0360-0300)
Association for Computing Machinery, New York, NY 10036.

Ahmed K. Elmagarmid, Calton Pu, Guest Editor's Introduction to the Special Issue on
Heterogeneous Databases, [16], pp. 175-178.

Amit P. Sheth, James A. Larson, Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases, [16], pp. 183-236.

Gomer Thomas, Glenn R. Thompson, Chin-Wan Chung, Edward Barkmeyer, Fred
Carter, Marjorie Templeton, Stephen Fox, Berl Hartman, Heterogeneous Distributed
Database Systems for Product ion Use, [16], pp. 237-266.

Witold Litwin, Leo Mark, Nick Roussopoulos, Interoperability of Multiple
Autonomous Databases, [16], pp. 267-293.

Research Issues in Data Engineering: Interoperability in Multidatabase Systems,
Proceedings April 1993, IEEE Computer Society Press, IEEE Computer Society
Press, Los Alamitos, California, USA.

Daniel A. Keim, Hans-Peter Kriegel, Andreas Miethsam, Integration of Relational
Databases in a Multidatabase Systems based on Schema Enrichment, [21], pp. 96-104.

Aidong Zhang and Jin Jing, On Structural Features of Global Transactions in
Multidatabase Systems, [21], pp. 199-206.

Hongjun Lu, Beng-Chin Ooi, Chen-Hian Goh, Multidatabase Que y Optimization:
Issues and Solutions, [21], pp. 137-143.

Ninth International Conference on Data Engineering, Proceedings, April 1993, IEEE
Computer Society Press, IEEE Computer Society Press, Los Alamitos, California,
USA.

L. Suardi, M. Rusinkiewicz, W. Litwin, Execution of Extended Multidatabase SQL,
[24], pp. 641-650.

Ahmed K. Elmagarmid (ake@cs.purdue.edu), Jiansan Chen (jchen@cs.purdue.edu),
Weirnin Du (du@hpl.hp.com), Rob Pezzoli (robp@bnr.ca), Omran Bukhres
(bukhres@mhdl.moorhead.musu.edu), InterBase: An Execution Environment for
Global Applications over Distributed, Autonomous, and Heterogeneous Software Systems,
Technical Report.

Xiangning Liu (xl@cs.purdue.edu), Jiansan Chen (jchen@cs.purdue.edu), Rob
Pezzoli (robp@bnr.ca), The InterBase View Graphical User Interface, Technical Report.

Laks V. S. Laksmanan, Fereidoon Sadri, Iyer N. Subramanian, On the Logical
Foundat ions of Schema Integration and Evolution in Heterogeneous Database Systems,
DOOD'93, e-mail: {laks, sadri, subbu}@cs.concordia.ca

Christiaan Thieme (ct@cwi.nl) and Arno Siebes (arno@cwi.nl), An Approach to
Schema Integration Based on Transformations and Behavior, Technical Report, CWI,
P.O. Box 4079 AB Amsterdam, The Netherlands

S. Y. W. Su, S. C. Fang, H. Lam, An Object-Oriented Rule-Based Approach to Data Model
and Schema Translation, Technical Report. Database Systems Research and
Development Center, CSE#470, Department of Computer and Information Sciences,
Department of Electrical Enpeering, University of Florida, Ganiesville, FL 32611,
e-mail: su@pacer.cis.ufl.edu, (sf, hlam}@reef.cis.ufl.edu

[32] S. Y. W. Su, S. C. Fang, A Neutral Semantic Representation for Data Model and
Schema Translation, Technical Report Number: TR-93-023, Database Systems
Research and Development Center, CSE#470, Department of Computer and
Information Sciences, Department of Electrical Engineering, University of Florida,
Ganiesville, FL 32611, e-mail: su@pacer.cis.ufl.edu, sf@reef.cis.ufl.edu

[33] S. Chakravarthy, K. Karlapalem, S. B. Navathe, A. Tanaka, Database Supported
Cooperative Problem Solving, Technical Report UF-CIS-TR-92-046, Department of
Computer and Information Sciences, Computer Science Engineering Building,
University of Florida, Gainesville, F132611, e-mail: sharma@snapper.cis.ufl.edu

[34] W. K. Whang, S. Chakravarthy, S. B. Navathe, Heterogeneous Databases: Inferring
Relationships for Merging Component Schernas, and Query Language, Technical Report
UF-CIS-TR-92-048, Department of Computer and Information Sciences, Computer
Science Engineering Building, University of Florida, Gainesville, Fl32611, e-mail:
sharma@snapper.cis.ufl.edu

[35] S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin, F. Lambay, A Federated Multi-
media DBMS for Medical Research: Architecture and Functionality, Technical Report
UF-CIS-TR-93-006, Department of Computer and Information Sciences, Computer
Science Engineering Building, University of Florida, Gainesville, Fl32611, e-mail:
sharma@snapper.cis.ufl.edu

[36] D. Clements, M. Ganesh, S.-Y. Hwang, E.-P. Lim, K. Mediratta, J. Srivastava,
J. Stenoien, H.-R. Yang, Myriad: Design and lmplemen ta tion of a Federated Database
Prototype, Technical Report, Deparment of Computer Science, University of
Minnesota, Minneapolis, MN 55455.

[37] Ee-Peng Lim, Jaideep Srivastava, Entity Identification in Database Integration: An
Evidential Resasoning Approach, University of Minnesota, Minneapolis, MN 55455.

[38] Sharad Mehrotra, Henry F. Korth, Avi Silberschatz, An Architecture for Large
Mu1 tida tabase Sys terns, Technical Report, Department of Computer Sciences,
University of Texas at Austin, Austin, TX 78712-1188.

[39] Yoram Kornatzhy, Peretz Shoval, Reverse Engineering from Relational to Object-
Oriented Databases, LAKS, October 4,1993

[40] Pattie Maes, Concepts and Experiments in Computational Reflection, OOPSLA
Proceedings, ACM SIGPLAN Notices, Vol. 22, October 1987, pp. 147-155.

[41] Brian C, Smith, Reflection and Semantics in LISP, Conference record of the ACM
Symposium on Principles of Programming Languages, pp. 23-35, ACM Press, 1984.

[42] Akinori Yonezawa, Takua Watanabe, An Introduction to Object-Based Refective
Concurrent Computations, Proceedings of the 1998 ACM SIGPLAN Workshop on
Object-Based Concurrent Programming, Vol. 24, pp. 50-54, SIGPLAN Notices, April
1989.

[43] Hidehiko Masuhara, Satoshi Matsuoka, Takuya Watanabe, Akinori Yonezawa,
Object-Oriented Concurrent Reflective Languages can be Implemented Eficiently,
OOPSLA Proceedings, ACM SIGPLAN Notices, Vol. 27, No. 10, October 1992,
pp. 127-144.

[44] Yasuhiko Yokote, The Apertos Reflective Operating System: The Concept and its
Implementation, OOPSLA Proceedings, ACM SIGPLAN Notices, Vol. 27, No. 10,
October 1992, pp. 414-434.

[45] Jia-Wei Han and Yongjian Fu, Dynamic Generation and Refinement of Concept
Hierarchies for Knowledge Discove y in Databases, AAAI '94 Workshop on Knowledge
Discovery in Databases, Seattle, Washington, July 1994, pp. 157-168.

[46] Ayellet Tal (ayt@princeton.edu) and Rafael Alonso (alonso@mitl.com), Integration of
Commit Protocols in Heterogeneous Databases, Technical Report, September 1992.

[47] Nandit Soparkar, Henry F. Korth, Abraham Silberschatz, Techniques for Failure-
Resilient Transaction Management in Multidatabases, Technical Report TR-91-10,
Department of Computer Sciences, University of Texas at Austin, December 1991.

[48] Sharad Mehrotra, Rajeev Rastogi, Yuri Breitbart, Henry F. Korth, and Abraham
Silberschatz, The Concurrency Control Problem in Multidatbases: Characteristics and
Solutions, Technical Report TR-91-37, Department of Computer Sciences, University
of Texas at Austin, December 1991.

[49] Nandit Soparkar, Henry F. Korth, Abraham Silberschatz, Transaction Managment for
Distributed Mutlidatabases, Technical Report TR-92-18, Department of Computer
Sciences, University of Texas at Austin, December 1991.

