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This thesis examines non—nested hypothesis testing with particular

emphasis on the Cox statistic. Intuitive interpretations of the existing

non-nested model tests are provided and then five selected topics are

examined:
+

a. An alternative derivation of the Cox statistic is provided for the

L.

regression mould.

b. The Cox statistic is shown to have asymptotic properties different

L]

_case in which the competing models fall into the classical linear

-

from those currently employedth

c. ”‘The;,Atkinson' test is shown to be inconsistent in contrast to
- 7 )
current belief.
d. The concept of the "direction™ of a model, abandoned by the
literature, is revived.

e. An alternative method for deriving the asymptotic distribution of

the Cox statistic under local alternatives is presented.
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Introduction and Conclusion. : -

When : testing several models, none of which .can be expressed as a

general case of another, a major problem which can arise is that there is no
meaningful way to nest therm together; In "this case the usual model-testing

method of first forming a general model and then applying the orthodox subset

Afﬂgéf;;del selection tests is not applicable (Judge et al, 1980). One approach to

~resolve this difficulty is to employ classical misspecification tests so that .

~any false model can be detected through misspecification problems such as
serial correlation or heteroskedasticity. The main defect of applying this

method is that the information of the existence of other competing models is

L e e a1 A e B

S Y

not used.
An alternative way of addressing this problem is through the so-called
non-nested model tests. These tests are designed to make use of the knowledge

of the existence of the competing models to determine the "truth" of a model

(as opposed mereiy to permit a choice between compefing models). In. the

-————literature, there are several non-nested model (NNM) testing techniques which
“ make use of this ;nformation. The most prominent are the Cox ;test (Cox,
1961,1962) and its variants, Dastoor’s R test. statistic (baétoo;,'1983), and

‘_the test statistics suggeéted by Davidson anq MacKinnon (1981) and their
associated variants. in general, these §ests'are concerﬁgd with the ability

of a (temporary) null model to prehict the behaviour of an estimator
formulated on the basis of a given alternative model:I Their ﬁain»advantage

ié the possibility of rejecting all the competing lodels. "~ Théir main

disadvantages are that they may yield inconclusive results and that they are

[P RP

I 1n contrast, the classica% subset model selection technique examines the

performance of the mull against the altermatives.

- o - - Ll r




large ééﬁple tests with unknown small sample propérties.

=

This thesis examines the testing ofsnon—nested models with particular

emphasis on the Cox test. There are three main parts. ParE‘I 1ntréduce§jsome
concepts and definitions that will be relevant to Part II and Part III. Part
IT1 consists of an intuitive interpretatioh of the existing'hon-nested'modei’

tests. No mathematies is involved here since all proofs of the results can -

either be found {n some of the referred articles or in Part 1III.

. Nevertheless, an understanding of the "mathematics™ in Part 1 will help. Part..
111 has five sections, each attempting to extend the literature relevant to

the Cox test 1im a particular area. Section 1 provides an alternative

7WE;fivéonﬁ of the Cox test statistic (CTS) and the Atkinson test statistic
(ATS) when the competing 'models a;e classical normal limear regression
models./ (The same method is glso applicable when these models are
‘non-linear.) Section 2 shows that the CTS under the’nullnhypdthesis does no;

have a zero mean, and has an asymptotic variance larger than that usuélly

employed. Subsequently, it is shown that if this non-zero bias is corrected,

the resulting standardized test statistic (TS) under certain conditions

yields a known non-nested TS, -the W- TS. Section 3 shows that the*Atkinsbnm L

test is an inconsistent test, ;in contrast to current belief. Section 4

“applies the concept of the "direction" of a modél, defined in Part 1, to the
Cox test. It is shown that in certain cases the direction of the true model

can be inferred from the sign of the CTS. Section 5 provides an-alternative
. B &, . - .
method for deriving the asymptotic distribution of the CTS under local

¥

v;altérnéfiﬁééIwimié”SEéfibﬁ’aléb"aéfiiég“fﬁé”ééyﬁﬁfaflé'diStribution of the
‘**‘f""‘f‘ﬁTS‘UUdEr4iUCaigﬂiterﬂatiVEST‘aﬁ6‘ShUWS‘tth;thEAHSYﬁPtUth‘diStTibﬂthﬂB‘Tﬁ;““‘*

the ATS and CTS are equivalent.




Preliminaries

»

This section briefly reviews some concepts in econotetricsl'stati'éti'cs;,

that are essential to an understanding\ of thoée points developed later inf

this thesis. 1In particular, the distinction between separate families of

probability density function (pdf) and non-nested models 1is discussed, the - - -

concept of the direction of a medel is developed, some comments on likelihood

functions are offered, and the notions of iInformation and entropy are

developed.
1.1.Separate families of pdf and non-nested models.
A statistical model 18 a characterization of the proBability

distribution of a variable in terms of some paraméters and, usually, some

exogenous variables. For example, if MM is the parameter space of a model,

T where for 1= 1,72, ’Fﬁé'”x{ ‘s Tﬂi@"ﬁtff@fﬁf‘ exogenous variables, and © i" 8

- =

and X is a set (matrix) of exogenous variables, then a statistical model is

the probability density function of a variable y given f(X, 0), -where 8 €-MM, - -

and f(‘x, @) is a function of X given e. It is deﬁoted here as: p(y|f(X, 8)).

Two statistical models are said to be of separate families, if one pdf cannot

be -approximated arbitrarily closely by another. That is, if y is the
variable, and two statistical models are:

P (TIE(X), €))), p,(FIE(Xy, 8,)) -

I
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this is when one disg

+

Although the Cox test was originally proposed for the testing of ~ .

-separate families of statistical wodels, it ' was later adopted Dby

econometricians to test in the context of non-nested classical normal

regresgion model (CHNEM). A CHRM is a class of pdf which has its variable

normally distributed and satisfies the classical assumptions. Two CNRM are

R ""*sai’rgbf’ﬁe nested 1if one 1s a special case of the other, rand ti:ey are»

non-nested, if otherwise. In the econometfics literature the Cok test has

beén, adopted for testing different models which have the -same families of

which pertains to different families of pdf’'s.

This thesis will deal na:lniy with (NRM. Unless otherwise specified, a
. model henceforth will mean a CNRM. Since the distinguishing element of one
CNRM fron ariother is the vector of the mean value of ¥, say f(X , b{), it 18

thm propet to refer te a -odel as a vector of f(x R b Ja

In thée case of a linear model, i.e. f()L'1 b ) = i’ one model differs

from another model when their vector spaces are diffgrrern”t: A model 18 a,

subset model if its parameter space is contained in another model’s parameter

»

subspace.

1.2. Direction of a uiel[vector. .

In this section, an attempt will be made to define the "direction” of a

model. 'rhis concept of direction haLngvgr ‘been emmminihe_mmmd —_—

model testing literature even tﬁough the term had once been used -(but was
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77J§7tgrirr‘gi§carded).2 The directional concept defined here is a wnatural =~

extension of the existing geometricél interpretation of regression analysis.

It is well-known that all vectors have lengths and directions. If x is

a vector, then its lez;gth Vis simply - -
, .o 172 ~——
Ixt = (x'x) /2,

Since direction is a relative term, the direction of a vector has to be

" defined relative to something, say another vector. A natural measure of the

"~ ‘direction of one vector relative to. another is the cosineyof the angle, r,

v

“7 " between them. 5o, if x and z are two vectors, and their "inner product" is =

o x’'z = |x{.lzl.cos (1),
lv &%
then

- : ) cos {r) =x"z/{Ixl|.lz1}.
This- definition of the direcﬁdn—vof one vector relafive to gnother is

intuitively appealing, because
: -1 < cos.(r) < 1, :
and, when cos (r) = 1, % and z :;1re parallel; 7when cos (r) = 0, x and z are o
1; ' ==} '%MMHWW
di_re.c'tion. It™#s to be notedrthat this definition bears close similarity to
Pei'.araﬂ's (1982 -Ap.129) definition of ‘“distance", as cos (r) is the
correlation coefficient of x and z, if these vecto—rs are centered, i.e. if.
~both x and z are orthogomal to the vector of unity.
Often, one may want to know the direction_ of a vector, say z, relative

to_a hyperplane in a vector space genmerated by (the colum vectors of) the

matrix X. An extension of the above idea to this case is quite simple. The

> 27 gee for eample, Pesaran, 1974, p.158; Fisher and McAleer, 1979, and
. - -
— Dascoor, 1981, p.114.

LN

e = AL T
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direction of 2z relative to this hf;éfphne can be defined in terms of the

the two vectors z and Pz is

cosine orfA the smallest angle, r, between z and this hyperplane. In other

words, it is the cosine of the angle between z and its closest ¥ector in this’
hyperplane. This closest 'vectot is the orthogonal projection/ of z onto the_

hyperplane, 'say Pz, where P = X(X’X)-IX". It represents the best -~

approximation to z in this hyperplane. Thus, given that the inner product of

N - 2’Pz = |zA}.‘ViPzri.cos ir)i
then o cos (r) = {Pz{/|z|= (Z’PZ)I/Z

It. appears that the following application of the above regults to

linear models has been overlooked in the literature. Suppiose there are two

/(z 2y 2. | (1)

linear models, X.b., and Xzbz’ and if the latter is the true model, then its

171

direction relative to the former is the cosine of the smallest angle between

it and its vector projection onto XI, i.e.

cos (r) = (u’Plu/U'u)l/Z,

where u = x2b2’ and P, = x,(x;x,)"lx;. Notice that b, does not appear in the

formula above bécause, by assumption, leI is not the true model, and hence

b, does not exist, Since X, b, is the true model, its best approximating model .

1 2

in the vector space generated by Xl is Plu. This is the least squares

estimate of X2b2 in the vector space generated by the columns < of Xl.

'1.3.Likelihood function.

By def'iniition,' the likelihood of a model given data y, with parameter

&

 space, MM, /and parameter, ©, is a comstant miltiplier of the probability of y

given 9, 1.e.

L(oly) = c.p(y|®), )

L



where ¢ is an arbitrary positive constant. This arbitrary constant, ¢, in the

-

likelihood function 'generates an equivaience class of similarly shaped

functions” (Fraser, 1976,p.312). This arbitrary constant can be a nuisance

- ;nder some circumstances, in particular, for non-nested model testing. One

- way tq avoia it is to use “relative likelihood" instead. Relativé‘likelihood
is formed by arbitrarily setting one of the liQZEihood functioné to unity

_ first and then”defiﬁe“othet,likghihqu,fungﬁigﬂs,relatiﬁé>F9Wi§t,2¢§f§??yg}ez
let © be a'parameter,'énd let 8* be any’par%icular value of ©, then by

setting

L L(e*iy)

c.p(yié*) =1,

[

=> c = 1/p(yi6*)
we can then get L(8**|y) = c.p(y|6*%)
| = p(y18**)/p(y|6*)
where 8** is any v;fﬁe of 6. Sometimes, it might be convenient to dé!?zgith
)

this constant systematically by setEing the maximum likelihood (ML o

equal to one, instead of the likelihood of any 6 {(Fraser, Edwards). In this
case, the likelihood ofathe estimate itself is the likelihood ratio (LR) of
the estimate to its maximum likelihood estimate (MLE).

The above method of eliminating the nqisance parameﬁers is applicable
only to nested models. If non—nested models are involved, these nuisance
constants cannot be eliminated by using the above method. To see this, lep
the parameter spaces of two non-nested models be MM(1l) and MM(2), with
parameters 6. and © resﬁecfively, then |

2

1

*

L(8; 1y)/L(8, ty))

¢ -P(718,)/(cyep(y18,)).

where ¢, and c, are some arbitrary éositive constants. Since ¢y F Cos this LR




is not the likelihood of 91 itself. It is beéause‘of this that LR is not

applicable to NNM testing. When this happens, a 'centered LR" is used

instead. This will be discusséd in Part II.

L
ERR A

1.3.1.Information and entropy. o -

-

Often, it is convenient to use the log-likelihood function instead of

the likelihood function because -1ln p(yl.) 1s a nice measure of "information"

a term from Information Theory.3 By informationxvggfmean the ’degrée“of-

uncertainty associated with an event. That is, a rare event implies a high

level of informatiom, as its occurrence will provide more information than

the occurrence of a frequent event. Thus for a rare event, -1ln p(yl.)
réflects this by being a very large positive number,'as opposed to zero for a

certainty.4
(-1n L) can also be interpreted as a measure of information because the \k

log of the arbitrary constant is a constant. Consider the LR of two models, &

In LR = -1m{(L,)/(L,)}
= -In{c;p, /(c,yp,)}

= ~1n (pl) - (-1n (pz)) - {lnc, = 1n c2}.

1

Thbs 1n LR is just the difference in the information from two models; when
the models are nested, the last term will disappear.
Another concept from Information Theory that will be useful later is
: ' N :

entropy, (E). Entropy is the expected information from an event, i.e.

(9%}

See for example, Jones (1979).

4 This measure of information has the additivity property, i.e. -ln((pl)(Pz))
= ~1n (pl) + (-1n pz).
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For laﬁer‘discussion, the following definition of entropy, (Eij), will be

T usgfui) If Py is the pdf of model i, and'pj is the pdf of model j, then the

expected information from ﬁb&el j, assuming that model i is true, is:

(B g

P

Ei(-In‘(Pj)).

-J (p)eln (O dy

.
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selection methods are not appliéable because of the non-existence of a

When non-nested models are involved, the orthodox subset mo

comprehensive model. The inapplicability of the LR test is due to the

-

~presence of the nuisance parameters, c, andic,. One way to solve the problem |

.- , ”
is to create an artificial nesting model (ANM), and use it as a comprehensive

model. Another method is to use a 'centered"” or "modified" LR, in which the

miisance parameters have disappeared. 1In this paper, the former will be —

=

called the "regression appréach", and the latter will be called the "centered

likelihood ratio approach'.

2.1.Centered likelihood ratio approach.

Because of the nuisance parameters, ¢y and Cos the LR test is not

applicable for non-nested model testing. In this situation, the centered
likelihood ratio approach can be used to get rid of these nuisance parameters
by subtracting from the LR another ferm which also contains ¢y and CZ: The
Cox test makes use of this principle. The statistic that is used to test oﬁg
model, say M(1l), against a specific alternative model, say M(2), is deriQéé

from comparing the difference of the log-likelihood of the two models to its

expected difference under the mull. In other words, the Cox test compares the

observed - .information _change (ic), . i.e. _information _using —M(2) less . . _

information using M(1), to the expected ic assuming M(1l) is true. If this

value is "near" zero, then the ic is consistent with the truth of M(l), as

el

10



L)

the ic should not be too different from.its expected ic under the null. Hence.

to reject the null when the statistic is near zero would not be appropriate.

L 4

If, on the other hand, the observed value is '"far" from zero in absolute

value, then this ic is not consistent with the truth of M(l), and’

consequently, M(1l) should be rejected.

2.1.2.Notes.

1. When this observed value (i.e. the CTS) is a large positive number, a o

case which arises when the observed ic 1is larger than the expected ic

assuming: M(1) is true, it means that the use of M(2) has produced more

information than expected when M(1l) is true. But this means, from the

£

definition of information in Part I, that M(2) is highly unlikely. This
suggests that a better model 1is not in the direction of M(2) {(from

M(1)). If this observed value is a large negative number instead, then

it "suggests that the use of M(2) has resulted in a reduction of

Agfgmggg,Agggginﬁnxmaﬁign. Hence, a better model is in the direction of M(2) (away
| from M(1)). Note that in both cases, M(1) should be rejected.'

2. This analysis, in note #1 above, which is in terms of the direction of
the moéels, has been discarded bf Dastoor (1981) as nonsensical because,
as he argues, it is not clear what the direction of a model means. In
his paper, he provides a case consisting of three non-nested classical
normal linear regression models. He shows that if neither of the models
specified in the test is the true model, then there is no means to tell

the direction of the true model when both of the models are rejected. A

moment 's reflection shows that he could not make any conclusive

statement on the direction of the true model because 'direction'" was

11



r

never defined in the first place. In Part III,

-

it will be shown that by

using the concept of direction as defined in the Preliminaries one can

infer thg direétion of the true model from the Cox test statistic.

3, It is obvious that this testing procedure can only test two non-nested
models at a time. As a result, if there are more than two competing
non-nested models, "the testing procedure will have to be repeated a

mumber of times for different combinations of models.

k;rrrThis test is fot symmetric because the test is conditional on the truth

of the null model, say M(l), and not on the truth of the alternative

model, say M(2). This means that when the null model is rejécted, the

alternative model is hdtigﬁzoﬁ;fizéily7;EEepfé&.7If pﬁe”;ishes to,tesir
the truth of M(2) (against, the same specific‘M(l)), the roles of the
previous null and alternative models can be réﬁersed for a second-round
testing. For this reason, this testing proéédure may yield ‘inconsistent

test results, e.g. accept both models. Herein lies its disadvantage.

However; an advantage is the possibility of rejecting both models (and

all models under consideration as well).
5. When comparing two. models,"there .is a . total .of nine conceivable
outcomes, This is shown .in Table 1 below.5

_ i
6. Sawyer (1983) has suggested a different test statistic, called here the

Sawyer test statistic (STS); which is based on the same idea as that of

Cox’s except that it uses entropy change (ec) instead of the ic.b

——

5 This table is similar to Fhe one provided by Fisher and McAleer (1979,

p.148). e e

e

6 The ec, from using M(1) to using M(2) when M(2) is assumed frue, is a

measure on the directed divergence from M(1l) in the direction of M{2). The

larger the ec (i.e. the larger is the difference in the expected ic resulting

12



{Significantly IInsignificant | Significantly|

- :,—,:,7;,,:7' e

fReject M(1). | t. M(2) Do not reject|{ A combination]

P 1 R
e |
. —————————

- |

I
|
| t. M(2) | ) ) | M{(2). | of the two |
‘ |
i

| models may |
| be useful. |

i 2 I _positive | 1 negative |
l {Re ject M(2) I Do not reject] Reject M(2) |
i | | M(2) | : |
| C'I‘S1 |” a. M(l)r ] ] t. M(1) |
| e e e e e , , ————- |
jSignificantly|Case a. jCase b. |Casé€ c. |
] positivq., {Reject. both |Reject M(1) |Reject both ]
iReject M(:1)..* |Look elsewhere|'"Qualified" | t. MC1) | :
oja. M(2) - jacceptance of | ' |
b | IM(2). Further | i
L - L jtesting is { |
| r Ineeded. I I ,
R S o , o ] . L _
tInsigficant. {Case d. {Case e. - |Case’ f. { )
‘I Do not reject|"Qualified” (Do not reject |Reject M(2). |
i M(1) | acceptance of jeither. {Do not reject |
} | M(1). Further|Insufficient |.M(1). |
! Iitesting is linformation | |
booo- | meededs -- 4+ to choose | ¢ - T
| ] | between them. ] |
| - - —————— e e ]
}Significantly|Case g. [Case h. {Case 1i. |
| negative. | Reject both. Reject-M(1). | Reject both. |-

- Table 1. Cox test.

* C‘TSi is the CTS resulted from testing M(i) agianst M(3)
where i, j =1, 2, and i # j.

* "é. M(i)." denotes "the true model is away from M(i)".

*  "t. M(i)." denotes "the true model is towards M(i)".
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However the Sawyer s TS appears to complicate matters. It has never been

shown that it will prov1de a better solutlon than the CTS,

2.2.Regression approach.

The regression approach uses an artificial nesting model (ANM), which

ccon£a1os each of the competlng models as spec1al -cases. In every ANM there

is a parameter aSSociated w1thr;each - of the competlng models. vLet' this
parameter be called an artificial parameter (ap). The sum of this set of;ap

is usually restricted to one; hence, each of the models is a spec1al case of -

_ o

this ANh when the art1f1c1a1 parameter assoc1ated with 1t is one wh11e “the

others are zeros.?— Thus, the ANM can 'perform> the same functionf as - a
comprehensive model, i.e. for all the competlng models ‘to be compared to. The
classical subset model select1on,tests can thus be used to test if any .of the

models is insignificantly different from the ANM., If ‘it is, then it is said

to be accepted as being comsistent with the data, otherwise it is not. There

3

are a few problems with this approach.

®(cont’d) f the use of one model to,another) the higher the preference is
for M(1) if its value is positive; the smaller the ec (in negative value),

the higher the preference is for M(2). (Sawyer, 1983.)

7 For example, suppose there dke two statistical models, pi and Pys then the
ANM is p = k.p?pgf where K~1 .[ p?P:HY» A+ A2 =1, and @D is the appropriate
region of integration. Here ), and M are the ap. If the two modefs are

class1cal normal linear regre581on models with pdf N(X SZI) as defined in

i i
equation (5) (see Part’ IIl), then the ANH is N( ol X b + aaxz 23

szl) wherew

o;s are functions of the ap, and 34riS4aAfﬁﬁct&oﬂ—ﬁ%—the~ap—aﬁd—&—r
this case, the test of di= 0 is equivalent to the test of ?4=

14



First, since the "closeness” of one model to the ANM would not preclude

the p0551b1e closeness of other models to it, more than one model can

possibly be found to be accepted. Secondly, when none of the coﬁbesing ﬁodels

is found to be true,'we will be forced to conclude that the ANM is the true

model, even though it is not, meaningful in expT/;ning the distribution of the

dependent variablé. (Though this is not a good.sign, it can be taken as a

sign Fh?’,,t,[,th,e true model is closer t0 the ANM than. any of the competing =~
" models.) Fhirdly, thefe’ére many ways?tb construct an ANM, It is not clear if

the results,obtained from using one particular form of ANM will be compatible

w1th the results obtalned Irom another form of ANM Slnce it 1s very poss1b1e

that they are not, one can never know if the existing non-nested tests are

optimum tests. (This could be ;n interesting area for future research.)

Lasfly, the unknown parameters within each of the models are usually not

identifiable from those artificial parameters; this problem is circumvented

by employing estimates of these unknown farameters.
fgé—~w——————iﬂ—%he—fegf9551en—apﬁfeaeb——%he—?%—ﬁseé—fﬁ—fest tf&*S?f*ff*TxmmftTng“*

models can be derived using the c1a551cal regression method or the maximum

likelihood approach. Two methods in this category will be d%scussed. One is

suggested by Dastoor (1983), the other by Davidson and MacKinnon (1981).

2.2.1.Dastoor’s R test gtatistics.
The test statistic suggested by Dastoor, called Dastoor’s R TS,

compares the best (maximum likelihood) estimate of the parameters of an

- alternative model, say M(Z), assuming H(Z) is true, to its best estimate when

the null model, say M{l), is assumed true. The difference between these two

estimates should have an expected value of zero if M(1) is in fact the true

15



_rejected; otherwise, it is rejected

model.  Hence, ~if . this difference is insignificant; then M(2) canmot be

This TS is' obviously asymmetric. In this cése, however, .there are-only

two possible outcomes (i.e. reject or not-to-reject a model) when testing the

truth of one model against a@other. Two more possible outcomes could come

“about upon reﬁersing,the roles of these two models; thus - giving rise to a

total of four possible outcomes. This is shown in Table 2 below.

-

- -2.2.2. Davidson and MacKinnon's test statistics. -

The method sugpested- by Davidson and MacKinnon (D&M) uses an ANM that

is formed by combining linearly all the competing models in a regression

"model. The idea of D&M’s test is that it attempts to test if the alternative
model, say M(2), can significantly explain the wvariation of the dependent

varfable that is not explained by the null model, say M(1). (It is assumed

here that there are only two competing models.) If it cannot, then M(1)
cannot be rejected as this is consistent with the truth of M(1). If, on the
other hand, it can, then M(l) has to be rejected. This is because the
occurence of this latter case is not consistent with the truth of M(1), for
if M(1) is in fact the true model, then the variation of y that cannot be
explained by M(1) should be random.

This test is obviously asymmetric, as it only tests the "truth" of the

mull  model, and,,no,,infe:ennemvéanﬂ be made -about  _the -the -truth -of —the

~alternative model. Hence, to test the truth of the alternative model, the

role of the previous mill and alternative models can be reversed for a second

16



i e entdontnienipodesdendesiend] I

|Insignificant. | Significant. - | S
{ Do not reject | Reject M(1). )

2 N M(1). i

i
|
; |
[Significant. | Do not reject | Reject M(1l) _, I
{Do not I either model.| Do not reject M(2)1
|
1
|
)
|

* | reject M(2).1i N I

' ———

|Significant. | ﬁo'not reject | Reject both.
jReject M(2). | M(1). i
-1

1 | Reject M(2).

*

]

* D’s Ri refers to Dastoor’s R TS in the test of the truth

-

of M(1), i =1 or 2.

R Y e S A A A R N N N N I T I O O A N A R N N N I S A I I N R

round testing. So, as with the Cox test, this may yiéld inconsistent tesﬁ
results. In the case of -only two‘competing models, there is a total of four - -
conceivable outcomes (instead of the nine pessible outcomes as suggested by
Fisher and McAleer (F&M) (1979)).8 This is shown in Table 3 below.
Fisher and McAleer suggest that the sign and magnitude of the estimates

of the ap can be employed to determine the "direction” of the trﬂ‘\gbdel.

Unfortunately, this only makes sense in a context in which the true model is

- - - N . e —

& Note that the reason for having only four possible outcomes here is

different from that of Dastoor s, whose arguments are based om the

presumption that the direction of a model does not make sense.

17
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{" Significant. | Insignificant. | - )
| Reject M{(1). | Do not reject M(1)| ‘ -

{

/

f

|

}

f

] H
| Reject M(2). | | Reject M(2). |
}

I

f

}

I

Significant. | Reject both. | Do not reject M(1)I -
- 3
Insignificant.! Reject M{1). | Reject neither.: - | .
Do not reject |Do not reject | ’ I
M(2). I M(2). | ]
]

- L]

_Table.3. J- test. e L

* .Ii refers to the test of the tgth of M(i), i =1 or 2.
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4
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‘ . ;
4 4

a “linear combination of the competing models. Consequently, this means of

asgessing the true direction of a model is of little value; the exposition of

-

section 3.4 utilizing the definition of direction given in section 1.2.

earlier is able to overcome this prc;blea oniy tﬁrouéhr Qse of ;;rher (.'IS.

One advantage of this test over the Cox test is that it can test
against several alternative models at thg same time, by using an ANM which
has as its regres:o’ts the regfessors of all cowmpeting models. In this case, a
"sequence' of tes;ts on the s‘et of alternative models is needed. They are

tested to see if the vector of ap’s is significantly different from the zero

vector. If they are, then the mll model can be rejected, otherwise it cannot

be rejected. The subsequent analysis of this case can be generalized from the

above discussion.

18
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2.3, Properties of tbe test statistics.

This section discusses the properties of the TS with the classical

norsal linear regression model as a special case.

2.3.1.The Cox and Sawyer procedures.
,The CIS 1is computed by subtracting an estimate of the expected

log—likelibood ratio, under the mzll from the actual 1og-1ikelihood ratio

4Cax, 1961, 1962) The - Sawyer - test stat ¢ (STS) can be computed by

subtracting an estimate of the expected ec ‘(under the null) from the actual

ec.? These TS can be shown to have an asymptotlc normal distribution with

zero mean and finite variance under the null hypothe51s (Sawyer, 1983).

Hence, one “an test if they are significantly different from zero by using

the asyeptotic normal teét.» .
Since the CTIS is of probability order10 o (T) under the mull hypothesis

(where T 1is the sample size), we can determine _its consistency by checking,

9 The ec used here is computed under the mimmmﬂmme—

model, M(2), is true.

10 Pour 'typres.ﬂi of “order” notations will be used in this thesis:ro(.); o(.)”,i
) Gp(')’ and op(.). Suppose u(T) and v(T) arxe two' different functions of T,
then as T tends to infinity, the notation u(T) = O(v(T)) denotes that
ta(T)/v(T)}t remains bounded as T tends to infinity, and the notation u(T) =
o(v(T)} denotes that lim {u{T)/v(T)} = O. Suppose X(T), T = 1,2,..., is a
sequence of random variable, and suppose further that it converges in

distribution to X, then we write X(T) = 0O (l). 1f there is another sequénce

of random variable, Y(T), then the notation T =0 (Yi)) denotes that the

sequence X{T)!Y{T} is © (i), and the notation X(T) =:op(Y(T)) denotes that

the seguence X{T}/YI{T) converges to zero in probability. Note that X(T) =
op(?(l')) implies that X(T) = OP(Y(T)). :
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the value of the probability limit of (1/T) times the TS under both the null

and alternative hypo;hesggi Tpis value can be shown to be zero under the
mll, and negafive underrthe alternative. Therefore, the'teét:is consistenf
(Pereira, 1977). Likewise, the consistency of the STS can be determineayas it
is also of probability order 6P(T). In this' case, the value of thié ’
probability limit can be shown to be zero under the null, and non-zero under

S s the"alternativev*Therefore;thisftest isfaisvaGnsistent.ll ‘*”’**ﬁ’ﬂ”"; R
2.3.1.1.Atkinson test statistic.

S ____ One_variant of the CTS that has often been di fugsfed in tpe literature .
is ;he Atkinson tédst statistic (ATS). This ATS employs estimators for the
parameters in the TS which are consistent’ when evaluated under the null
ﬁypothesis, whereas in the Cox test; the estimates used arevconsistent wﬁen
evaluateé under their respective hypotheses.12 This is an advantage over the

CIS, because the best performance of the TS bhas been allowed under the null,

Consequently, the null hypothesis is harder to reject when the alternative‘
hypothesis is. in fact true. Obviously, when compared to the CTS, this ATS
will havé a smaller size. | 7

The main disadvaﬁtage of wusing the ATS 1is  that the test is .

inconsistent, as has been proven by Pereira (1977). Pereira’s result has been

11 Although this has not been shown in the literature, it can be shown quite
easily by usipg equation (18)-of Sawyer (1983). ‘
12 15 other words, the difference between the ATS and the CTS is the ic from

using the estimated M(2) under H2 to using the estimated M(2) under HI. Since

the former is less than the latter mumerically, the ATS is thus larger than
the CTS. |

R - ] J" -
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————— —contested by Fisher and McAleer (1981), who argue that Pereira's conclusion

was incorrect because of his inability to show that the ATS has a negative
mean under the alternative Hypothesis. They attempt to prbve their case by
sﬁowing that, for the classical normal regression model, the ATS converges to
a mnegative valué withb probability one under the alternative hypothesis.

However, as we will show in part III, the ATS is in fact an inconsistent

'”tééf,7and”Fféﬁér'éhdwﬁéAiééf“ﬁave erred in their analysis. Even if Fisher. and

McAleer’s result is correct, there is no contradiction between theirs and

Pereira’s results, since their studies do not have a common basis for

comparison. Pereira discusses separate families
whereas Fisher and McAleer discuss non-nested GNRM. Non-nested CNRM is only a

class of statistical -models.

2.3.1.2. Small sample adjustment of the Cox test statistic.

The available results from Monte Carlo studies indicate that the Cox

ofi étéfiéf{ééir modeis,

-

test over-rejects the true null model in small samples, and the frequency of

this over~rejéction decreases as the sample size increases (Pesaran, 1974;

and D&M, 1982). According to Godfrey and Pesaran (1983), this maybbe caused

-1/2

by the small sample bias of the CTS, as T (CTS) has zero méan only

asymptotically. (This is because the large sample property of the test

statistic is used when there is only a small sample size, as the exact

distribution of the CTS is unknown in small samples.)

Thus - they suggest -an -adjusted TS, which 1involves two types of

adjustments: the use of unbiased estimators of the parameters in the €TS; and

an adjustment for the loss in the degrees of freedom in the statistic. This

~adjusted CTS, denoted here as ACTS, can be shown to have the same asymptotic
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properties as the CTS. Hence ‘the usual testing procedure as applled to the

~———CTIS can be udsed here.

-These adjustments in the CTS are only approximate. Simulation studies
have indicated that when the adjusted CTS ie used with the "0ld" variance ——-
this standarized Té is denoted here as ACTS* —--—- it still over-rejects the
true null hypothesis, and this over—rejection decreases as the sample eize

increases. It hhs also been shown that CTS and ACTS* perform about the sameh

by,type I error criterion (D&M 1982). However, in another simulation study
o2 ‘P"fb

where this ACTS was used with a new variance, it has significantly reduced

the frequency of rejecting the true mull hypothesis, relative to the use of

- CTS (Godfrey ‘and Pesaran, 1983) The new variance that is used along with the
ACTS is in fact the variance ofra new TS, cailed the W- TS, (This W- TS wil}
be discussed later.) This new variance is larger than the "old" variance of
CIS by one positive term.

There are two problems thatkneed’to be considered:

a. why the use of the ACTS with the smaller old variance will pot

reduce the over-rejection of the true null hypothesis, and why this
orer-rejection decreasee aslthe sample size increases?
b. why the use of ACTS with a larger variance will decrease the
over-rejection of the true nuil'hypothesis in small samples?
One possible explanation for these is that the usual suggested estimated
variaosg is not appropriate for fimite eample testing, ard a more appropriate
variance is one with a larger size, but their size difference will vanish as

the sample size increases. Later, in Part I1II, it will be shown that a more

—--appropriate variance to be used should have one more positive term, and this

extra term will converge to zero as the sample size increases.
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2.3.1.3.W-TS.

Godfrey éhd'PQSéiah’(19§357355évéuggé§iéd a new TS, called W- TS. This
TS was derived in an effort to search for a TS that can overcome the small
sample bias of the CTS. They look atrthe numerator of the linearized CTS, and
find that it has a non-zero mean under the null. A statistic is thus formed

by subtracting from it an unbiased estimate of its expected value under the

mill, This statistic when divided by its standard deviation is the W- TS.

o . v R
Since the denominator of the lipearized CTS converges to a finite constant ‘as

the sample size increases, and its numerator is of probability order unity,
-’ ) . -
the W- TS is thus a variant of CTS. It has the same asymptotic distribution

as that of the linearized CTS, and hence it is used as a CTS. A simulation
study has shown that this W- TS has reduced significantly the type I error of

the CIS (Godfrey and Pesaran, 1983).

2.3.2.Dastoor’s R TS.

{

As mentioned in sectionm 2.2.1, earlier, Dastoor’s R TS exa;;1155>the

differehce between two estimates of the parameters of the alternative model,
one estimated under thé m:ll and the other estimated under the alternative
hypothesis. This differemce can be shown to have a normal distribution, and
hence can be exploited, along with its variance-covariance matrix, to produce
a statistic with a chi-square distribution.

The variance of the residual error, which appears in the -
variance—covariance matrix is generally unknown:\ and hence have to be

estimated. Two commonly used estimated variances are: the variance estimated

when the muil hypothesis is assumed to be true, and the variance estimated

when the ANM is assumed to be true. The ANM used has as its regressors the
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‘combined regressors of -both models, M(1) and M(2). The use of the former

I

Lagrangian-multiplier (LM) TS for ﬁesting the null bypothesis of =zerog
restrictions on the parameters of M(2) in the ANM, while the use of ~th
latter would yield a test that is equivalent to the usual Wald.test.

Dastpor's R TS are equivalent to the orthodox LM and Wald TS.
Furthermore, they are distributedr asymptotically as central chi-square
v&fiétﬁé“uhdéf*fﬁéwédil B§p6£%é§{s; and as n6ﬁ4ééhtféi7éﬂ£;s§dé;é”;;ri;£ég
under the alternative hypothesis with a non-centrality parameter of order
O(T); Consequently, they are consistent tests.

Note that this wmethod looks at the problem indirectly. When the
expected difference between the two estimates is zero, it does not
necessarily mean that the first model is f%ue. An example is when the true
model is M(3), which is orthogonal to both M(1) and M(2).

~ »

2.3.3.Davidson and MacKinnon test statistics.

The D&M test can be done by regressing the dependent variable on the
set of competing models, with the restr ion that tﬁe sum of all the
artificial parameters associated with each of the cdmpeting models must equal
one. These parameters,ﬁif they are identifiable, are then teéted to see if
they are significantly different from zero. If they are not, then the null
model is to be rejected, otheryise not.

b

Since these artificial parameters are usually not identifiable, as the

set of competing models contain .- unknown parameters, at--least (N-1) of the
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models have to be estimated in order for the test to be carried outl3 (where

" N is the number of competing ﬁodelé to be ;onsidered in the test). For this
reason, there are two basic versions of the test. The first uses all
estimated models in the regression and the second uses (N-1) estimated models
for those models whose associated parameters needed to be identified in tﬂé‘

regression. The first test is called the C-test, while the second is called

- ) I e -

the J-test. o i
- - —}A - -

These &wo TS can be shown to have an asymptotic normal distfibution.
For the J-test, the TS has zero mean and finite varjance. Hence it can be
tested to see if it is significantly different from zero by using asymptotic ... _
normal test. As for the C-test, the TS has zero mean only when__gertain
consistent estimators are used, and it has a finite variance, which is biased
as shown by Davidson and MacKinnon (1981, p787). An unbiased estimated
variance for this C-test can be computed by doingran auxiliary regressién and
some other calculations. However, D&M note that a simpler method is to use
jngghet41egressiongnwdei—iﬁﬁeh/has—fhegﬂuil*moﬁei‘iiﬁééfiiéa‘fﬁliﬁégTirst
degree, while kéeping all the other competing models as they are. This is
called the P-Fest. Notice that this P-test will be exactly the same as the
J-test if thé &gll model is a linear model, because a linearized model of a

linear model is a linear model. 1

13 an example might clarify this. Suppose the competing models are the two

classical normal linear regression models as-mentioned in footmote #7, then

the test of of, equals zero is accomplished by first regressing y against X
- - ermme e

T 7 and tﬁé*Edhﬁbéitéx;E;iégiéjﬂiggggz;here 52 is a consistent estimate of b,),

and subsequently use a t- statistic to effect the required test.
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estimating the models by replacing their.. parameters with their. MLE under
their respéétive hypotheses. The resulting tests can be shown to be
consistent tests.

For phevJ-test, F&M have suggested estipating the alternative models by
using their consistent estimators wunder th null. This Dbears flqse
resemblance to fhé'KTS;”éhdwﬁéhcéfif”iswéaiiéd"tﬁe JA-test. In the case where
there are only two competing linear models, the distribution of the resulting
TS can be shown to have a t-distribution in finite samples under the null
hypothesis. For tﬁfé’reQEBHTé?%is JA-test has been suggested to be preferable
to the J-test. Nevertheless, because of its unknown distribution under ther
alternative hypothesis, the power function of the TS cannot be derived. It
can be shown that there is in fact a class of consistent estimators which,

when used in the J-test, will yield a TS that has a t-distribution under the

mill, Subsumed¥in this class is another set of consistent estimators that

will yield a TS with a t-distribution under both null and alternative
hypotheses, in finite samples. However, the gist of the problem .still
remains, namely that there is no unique "best" estimator within this class of

estimators.

2.4.Comparison of the TS.
Since all the above-discussed TS essentially do the same work, using

all of them will be a waste of. resources and time,,Fbr,this,reason,,it is .

necessary to compare these TS so as to determine the optimum one under

various conditions, and to evaluate their relative efficiency, so that the



loss in efficiency incurred in using any other test than the optimum can be -

determined, and thus a116§ us to weigh fﬁe costs _and benefits from using
these'sub—optimumiTS. |

There are many ways to define an optimum TS. For example, it can be
defined as one that maximizes-the power of the -test, or one that maximizes

the "local power" of the test, or one that involves the least computational

EN
costs, or some other criteria. In the following, we will discuss only a few

of these. Let us begin with relative efficiency.

Ane "efficient" test is the most powerful test in the class of tests

being considered. And if an efficient test of size- (X requires le

observations to attaim a certain power, and a second size~ X test requires

T2 observations to attain the same power against the same alternative, then
the relative efficiency of the second test in attaining that power against
that alternative 1is defined as TI/TZ' This definition of the relative

efficiency is not asymptotic; and it imposes no restriction upon the forms of

_the sampling distribution of the test being considered. It 1is possible to

compare any two tests in this way because the power functions of the tests,

from which the relative efficiency is calculated, take comprehensive-account
of the distributions of the TS; the power functions contain all the relevant
inf ormation for our comparison. Therefore, in order to determine the relative

efficiency of a TS, knowledge of its power function is required.

2.4.1.Comparison of the power functions of the test.

The power function of a test 1s a function that shows (a)the stze-of =

- of the test (when the null hypothesis is true), and (b)the probability of

rejecting the false mull hypothesis. It is determined by three factors: the
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size- ) of the test, the "distance” between the hypotheses tested, and the .
¢ .
sample size required by the efficient test. This means that three entries are-

needed, one for each of the three factors, In order to have a wuseful
cémpar;son of the power functions of different tests. Notice also that it is
.also necessary to define the '"distance between the hypotheses tested' before
we can have a fruitful discussion.

In the nested model case, the distance between the hypotheses can be

Wdefinedr interms c;f t};e mprartr'raﬁrréterrrs”’ values Vﬂroﬁeve;,ﬂ in th; noh—nested modeié
case, this is not possible because, by definition, there can be no connectioﬁ
between them in terms of the parameters of the models. In the non;nested
model testiné'lilr:'eraan"e; this diétar”lrczﬁjiws usually ndt explicitly fdefirnedr,
and not éven mentioned in some papers. Only Pesaran (1982) has attempted to
define this concept of distance. In the case of two non-nested models with
one independent variable for each model, the distrance between the two 1is
defined in terms of the correlation coefficient bet;ween the two variables.

*

Where there are more than one independent variable for the competing models,

the multicollinearity of the columms of the two matrices is used as a measure
- of distance instead. This multicollinearity measure isr possible. because he
assumes that there is a specific relationship between the two matrices.

Apart from this distance problem, there is also another problem. The
theoretical power functions of all the TS are unknown in finite samples
because their finite ‘sample distributions are unlg,ﬁa:n. .Furthermore, even

»

though these tests are consistent and have correct sizes asymptotically,

their power converges to one as the sample size increases. Thus, this is mot =~

problem. One is to use simulation to get an approximate power function of the
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test, and the other is to first impose certain restrictions to the effect _

<

that the asymptotic power of these tests do not converge to one, and then -

compare their asymptotic power. In the literature, the latter is analysed in

terms of local alternatives.

2.4.2.Local alternatives.

Pesaran (1982) has defined a sequence of alternative hypotheses which

approaches the mull hypothesis in some well-defined manner. This sequence of
alternative hypotheses, which approaches the mull as the sample size
increases, is called a set of local élternatives. It is used to compare the

rd

asymptotic efficiency of the tests as sample size increases.

Pesaran constructs the set of local alternatives in terms of the
regressor matrices. One,restfiction14 is that the regressor matrix of tbe
mull model, M(1l), must be at least as large as that of the alternative model,
M(2). It is also assumed that the two e#ogenous matrices are related in such

a way that the regressor matrix of M(2) is a combination of three matrices.

The first of these is linearly dependent on the regressors of M(l), and the

other two are matrices of constanés, one of which is of order O(T—l/2

the other is of order o('I'-l/2

). In addition, he assumes some regular/ity
conditions to keep the power bound away from unity as the alternative
hypothesis approacheé the mull, and to keep the two asymptotic moment
matrices of the regressors from exploding as the sample size tends to

infinity.

3

reversed for a second round testing.

7
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2.4.3.Note.

[

" Pesaran has applied this method to

the CTS, J-test and the LM~ test,

‘and it 15 gshown that the Cox test and the J-test have the same limiting local
power. VThe squar’e; of the CIS and the LM~ test both have no’n—cefx’tr'al
chi-s;[uare distribution, with one and K* degrees of freedom respectively, "and
they have the same non-centrality parameter. K* is the number of regressors
in the altermative model that are not found among the regressors of the null

model. This difference In the degrees of freedom suggests that the two

non-nested tests have more local power than the LM- test, since the larger
the degrees of freedom, the higher is the significance level for the same

critical point. Notice that, because of the way Pesaran designed his local

alternatives, the non-nested tests have greater power than the orthodox test
only when the mumber of regressors in the mull model is at least as large as
the mumber of regressors in the alternative model.

In part III, we will épply the same local alternatives analysis to the

ATS. It is shown that the ATS is asymptotically equivalent to the CTS.

-

1. Davidson and MacKinnon .(1982) éay that there are. two ways to design

local alternatives. One way is to assume that H, is fixed, while H

1 2

approaches H1 in some well-defined manner. This is the way suggested -by
Pesaran és discussed above. The other way 1is to assume that both M(1)

and M(2) are fixed, but the true model is known to lie "between" M(1)

and M(2), and this true model approachés M(1) in some well-defined

manner. They argue that this latter approach has an advantage over the =

. fust_appmaeh—m—ﬂ%neieher—ef—the—hypetheseﬁeeds—to—be—&ssmed to

be true. They thus used this approach in their analysis. In their
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o T 7i¥1§eisag5fion of the local power-of the P-, "PA—",15 and the Cox tests,
, i 7
) under their definition of local alternatives, it is found that the three
tests are asympt(;tiéally equivalent.
r i
4
15 pa=test is the P= test which uses all estimators evaluated under the mull
- hypothesis. It is based on the same idea as the JA- test. .
31 ‘
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= .
Part I1I11.

An Examination of Selected Aspects of Cox Test Statistic.

is provided.

-

& ’ )
The asymptotic properties of CTS are derived, and it 1is found

‘competing mwodels ‘are classical normal Iinear regression models’

4)

that a more suitable variance for the CTS in finite sample test

[

" should have a larger magnitude than that usually employed.

The ATS is shown to be an inconsistent test, in contrast to
current belief. -

The concept of the "direction" of a model defined 1T/Par; I is

applied to the Cox test and it is shown that in some cases the —

5)

-directiop of the true model can be inferred from the sign of

the CTS. e

An alternative method for deriving the asymptotic distribution

'of the CTS wunder local alternatives is provided. The

asymptotic properties of the ATS under local alternatives is

also provided.




Suppose there are two competing separate famiiig§7'0£ statistical

models:

N B o:py =p;(y,8, 1=1, 2, ‘
where for 1 = 1 or 2, Hi ‘denotes hypothesis i, P; is the probability density
of model i, y is a vector representing an .independently distributed dependent
variable, and Gf is & vector of parameters of model i. The CTS and ATS for
testing BI against BZ are respectively‘16
CIS = In(plfpz {E ln(pl/pz)} 1

————— e —

ATS = ln€p1/p2l) - {EI ln(pl/pz)}é1
where for i= }, 2, ;i is p(y,éi) {(here y represents the sample value of the

» _ - S S e S S

—— T — —

dependent variable) ﬁ' is p.{y, 9,,), 5 is p,(y, ) ), © is the
21 2 21 21 2 21 21

probability limit of éZ under Hl’ and 521 is its consistent estimate. Ei(')

denotes expectation under Hi‘ {"‘}é_ means evaluated atfei = éi' Since

- léeﬁffﬁz) is asymptotically equivalen:' to ln(pl/pZI),17 the following
formslae for the CTS and ATS can also be used. “

crs = In(3,/5,) - {E, Intpy /g5 (2)

ATS = 1n(p,/p,,) = {E; In(p,/p, )} 5, (3)

Sinee these— two statistics  are asymptotically equivalent under the -null,"
their asymptotic variances are thus equal. It is usually computed by using
the following general formula: 18

. -' cepy! | :
V (CTS) = V,(S) - {3(E;5)/38,} (D {3(E,5)/20,} (4)

© 16 See Cox (1961,1962); Atkinson (1970).

1 34 See Ualker (1967)

T

18 gee Walker (1967). -

-
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where, VI(S) is the wvariance of S wunder Hl’ S is In (pllpz), and (I) is the

information matrix of ela19
When non—-nested classical normal linear regression models are to be

tested, the above two teSt statistics can be specialized. Suppose there are

two competing models, for i = 1, 2:

2
Hi : y/V'N(Xibi, siI), given Xi’ (5)

R o> H o ry=Xb +€, &)
eirvfn(o, siI) (7)

where Xi is a 'matrix of independent variables, bi is a vector of parameters

of model i, € is a vector of random disturbances of model 1, and si is the
variance of 61. It is assumed that the columns of Xl and X2 are independent
but not orthogonal to each other. The TS are:20
CTS = —(T/2)1n {52, /52} (8)
214727% .
ATS = CTS + 1n (p2/p21) ’ | 9
= €1M2X1b1/521’ (10)
~—where Hi =T Pi’ amd Fi = "i(Xixi)—lxi. Using (4), the asymptotic variance of
these TS can be shown to be2l
(s2/s2 Ib/XIM M M. X b (11)
817821 )P X Mty MoK By

A consistent estimate of this asymptotic variance involves the replacement of

all unknown parameters in the formula by their respective consistent

19 This (1)'~1 is -{EI{SEIn pl)/(aelbei))} .

-

20 gee Pesaran (1974) for equation (8); and Fisher and McAleer (1981) for

equation (9), from -which- after some algebraic manipulation one "can get

equation (10).

2]l gee Pesaran (1974).



estimators;)

3.1.An alternative derivation of the CTS.

In

the literature, the CTS is derived by using Pesaran’s method, which

requiresAknowledge of large sample asymptotic distribution theory.22 When the

competing models are classical normal (linear) regression models, the CTS can

be derived without,this‘knowledge+23,Thisfalternative derivation makes use- of

the information that each of the pi's is normal pdf. So,

. 2 2
= - jz4 —(v— g -
In p, = -(T{2)1n(2 s;)=(y=X;b. )" (y=X,b,)/(2s]), for i =1, 2,
=> Inp, = —(T/2>1n(zﬂ,,§§) - 1/2, fori =1, 2, , 12y

Inp

‘ 2 . 2
o1 = ~(T/2)In(2 T s,,)=(y-¥,b,, ) (y-X5b,,)/(2s5,),

and {E (1o p) = 1n )} = —(T/2)1n(s%/s§1)'

: ~2 ,~2 .
=> {El(ln P, - 1n p21)}é1 = —(T/2)ln(sl/521). (13)

On substi

tuting (12) and (13) into (2), we get equation (8).

N
%]

3.

Pesaran derived the CIS as follows:

Assume that the limits of the products of the regressor matrices
exist; and are finite; i.e. (see equation (6)) 1lim Xi’Xj/? = Cij’
for i, j=1,2.

Replace a1l wunknown expected values of any function by the
probability limits (plim) of the function,

Replace the plim of the estimates by their consistent estimates;

and

Use maximum likelihood -estimates as the required consistent.

estimate:‘

23 This specialization is useful since econometricians deal mostly with the

-classical normal regression model.

35



a

It is worthwhile to note that the ATS in equation (10) can also be

derived in the same manner as above b&”éﬁiééifEiihg (12), (13) and

FN ”2 o - T A2
In b, = -(T/2)In(2 T 55 ~ T42 - & °X,b, /&5,

into (3).

-

3.2.Asymptotic properties of the CTS.

Thé results obtained here are different from those found in the literature in
two respects: the asymptotic mean is not zero under the null hypothesis, and
the asymptotic variance is larger by an extra term, which is positive in
value. The reéson for £hese différeuces is that the TS used in the literature

1/2

is truncated up to probability order op(T ). Any term of order less than

that is ignored (Cox, 1462, p.409). If only the terms of probability order
0 (Tl/z) are considered, the results obtained here will be exactly the same

as those in the literature,

The advantage of the following method for deriving the asymptotic
properties 3% the CTS is thar it yields a better estimate of the asymptotic
variance of{ the CTS. Furthermore, it allows us’ to see the relationship
between the CTS and the W- TS, and hence enable us to explain the improved

performance of the W- IS and the adjusted CTS over the conventional CTS.

Equation (8), uponm lineariziﬁg to the first order,zl4 becomes

24 Another form of linearized CTS is
. ~2 ~2,,-2
CTs < -(T/Z){(SZI - 52)/32}. (15)
Under Hl’
equation (l4). Hence, either form cin be used. However, equation (14) is used

In this section, the asymptotic properties of the CTS will be derived.

this linearized form is asymptotically equivalent to the form in_ -

4 E3 ) - -
‘here because it is more counvenient For our analysis in this section. Equation

(15) is used in a later section.
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"”**”*ﬁ"sampiéjﬁtééfi‘Hence;'1n similation studies,

o 22 a2 a2
CcTs X (T/Z){(s21 32)/321}

_ @, 2
= -y (Hl + PMP Mz}y/(2321).

17271

Under H,, equation (16) becomes:27

1)

CIS = {b1X1H2M1€l - €l (P

The two terms in the numerator are of probability order Op(T1
respectively, while the denominator converges in”probability,t0~s§11~ThefCTS—rw~~r -

thus has the same asymptotic distribution as its numbrator under H

{17) shows that it has a mean of
2 2
-(s})q/(ngl),

where q = (K2 - tr(Ple)), 2nd variance

2 ... 4 2 4
{Slb XXMM MXDb + sltr(P2 PIPZPI) /2}/321.

11727127171

2
o = B PpR)€)/2} sy

(17)

/2
) and Op(l)

1° Equation

. (18)

This variance is larger than the one in (l11) by its second term. This second

term is important because it has a

non—-zero value even

asymptotically. Its omission will increase the type I error of the (finite

mll hypothesis by the CTS and the reduction

25 ynder H2, equation (17) becomes
CTS=—{b/X_ A, X. b, +2b X A € +€

272717272 2727172 72

the over-rejection of the true

this frequency of

, ~2
(Py=P)P,P )€}/ (2s,,)

where A, = (I - P1P2P1)' The first term in the numerator is of order 0(T),

1

while the other two terms are of probability order OP(T

~

1/2
) and Op(l)

respectively. In this case, §,, converges in probability to 5512' So under H2

CIS has the same asymptotic distribution as its numerator with mean

o 2 2

1-2
and variance

4
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pot surprising results.

Since the asymptotic mean of CTS is not zero, it is possible to correct
for this "bias" in the test by using a "centered" CTS. This centered CTS is:
CCTS = CTS - {BI(CTS)}él. (19)
This TS obviously has an asymptotic zero mean and finite variance. This TS,
“if standarrrcilizried, ;cranr be used as the usual CTS.
On subistituting equation (14) and (18) into (19), we get
cers = ~(83) - 82y/(282 ) + $2a/(282 ) (20)

2 A2, a2 ~2
~{T(s3; = 8y) - 814}/ (2s;))

]

’ “2
~{y'(M, + PIM,P, - M, Mlq/T)y}/(ZSZI).
Since 52 converges to sgl and 8%12 with probablity one under Hl and H2

21
respectively, and since the mumerator is of probability order Op(':[’ll2

), only
the mumerator need to be considered if the purpose is to find the asymptotic

properties of the TS. Let

- B n = -y’ By, I S _

where B = -{c.M1 + PIH’ZPI - HZ}’ and ¢ =1 - q/T. This variate, n, under Hl,

obviously has an asymptotic zero mean and it can be written as

n“2bXH2M€ + € B€1

Thus under H it has a variance of

1’

4 2
Vl(n) 43 b XIHZHIHZXIbl + 25 trB .

While under HZ’ n can be written as
X.ZEX b, + 2b’ X.'ZB(:‘2 + 62’B€2.

This shows that, under H., it has a mean of

2’

éH. + P HzP )Xzb + s trB

and variance
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N

49 b szZX b, + 2s tr(B ) S ’

Thus the CCTS has an asymptotic zero mean, and a variance ofdvl(n)/(lfsgl)

under Hl; while under HZ’ it has an asymptotic mean of

2

{béXé(ch + PIHZPI)Xzb + s trB}/(25212)

and variance of

4
ZbZXZBZX b, + 232trB }/(48212

If all unknowns in the CCTS (equation (20)) are replaced by -unbiaged

{4s ).

estimators and it is appropriately standardized, the W- TS of Godfrey and

Pesaran (1983) is produced. In other words, this CCTS without the denominator

is the mumerator of the W- TS. Godfrey and Pesaran have called this W~ TS a

correction for the small sample bias of the CTS, since it is assumed that the
asymptotic mean of the CTS 1is zero. However, as mentioned eariier, the
asymptotic mean of the CTS ié not zero (even asymptotically); the correction
for the bias is thus not only for the small sample bias but also for the

"non-zero bias".

In essence, the adjusted CTS of Godfrey and Pesaran is the CTS that
uses all unbiased estimates. The W- TS is the standardized CCTS of equation

(20) when all the unknown estimates are replaced by unbiased estimates.

"3.3.Consistency of the Atkinson test statistic.

Pereira (1977) has proved the inconsistency of the @in:on test, when

it was applied to select separate families of statistical mode > by showing )

that the Atkinson test statistic indeterminate in sign under the

alternative hypothesis. However, recently, Fisher and McAleer (1981) "proved"

that the Atkinson test 1is still a consistent test when applied to test
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non-nested classical normal regression models; they also argued that Pereira

is'incorrecé in his conclusioﬁrbecéusé’éf hié inéﬁiiigf torshow thét the “ATS
has a negative mean under fhe alternative hypothesis.
| This section attempts to show that Fisher and McAleer are in error and
that for non-nested model testing the:Atkinson test is an inconsistent test.
'};‘By a consistent test we mean a test that has its power26 (evaluated at
a given fixed alternative hypothesis) converging to one as the sample size
tends té infinity. This means that a consistenf test will be one which has
T.plim.l {ATS/T} =
and
T.plim.2 {ATS/T} £ 0.
where plimi, i =1 or 2, denotes probability limit assuming ﬁ(i) is true.
On taking the plim of ATS we get: 27 (
T.pliml (ATS/T) = O

and

I*plimz‘(AISlT)'E”:LIlzlhIziGIhIziiszibQGij*b li¥i§*oﬁ*

26 That is, the probability of rejecting a false hypothesis.

27The following is useful for the derivations of the plim of the two

statistics.

plim, ggl = pl{m1 g% = s%l (by definition)
plim, (Gl'M2X b./T) =0
plim, (&) "M%, 1/T) 12 LY
plim, -%1 = ;2 +1b,7G;by, + bjG,b,
| Iphmz 2 = Sy
where b12 = C11 12b2, and

e e i e B
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with the equality sign holding when

by, 6yby, = 0 , , (21)

2
-1

P12 = € Craby : 0

Consider equation (21). If f(C12)= K, < K;, then b, # 0 because b, # 0 under

2

HZ’ and all colums of C12 are independent.28 However, if r(C_12) = Kl < K2,

then it is.ipossible for b12 to be zero because the columms of C12 are not

independent, meaning that it is possible’ to havé a non-zéro vector h such =~

that Clzh = 0. Since there is a non-zero chance for equation (21) to hold,

it is thus possible that the Atkinson test is an inconsistent test. This
shows,> that the conclusieon of Fisher and McAleer is incorreet. Their error
lies in the last equation of their 1981 paper (p.118), where they argue that
(in their symbols): |
7 r Y -l r
—91 {plll:n1 n Z PX(I Pz)sz}el s
-1 1

(which is equivalent to b2C21C11G1C11C12b2 in ‘the symbols of this paper) is

negative. As demonstrated, this is not necessarily true.

3.4.Interpreting the direction of the true model when neither of the tested
models is true.

Ever since Pesaran (1974) specialized the Cox statistic to the testing
of non-nested classical normal linear regression models, econometricians have

discussed pon-nested models as if there were a direction for each model.Z29

28 C;; is the moment matrix (1im X,’X,/T), 1,3j=1,2. Since all the columns of

17317 IR

X and Xz are linearly independent r'(C;j) = WI('i”("Kj tells us that the mumber

- of independent colums of X, is less than that of Xy, i £ J. : .
’ Y

29 ror examples, Pesaran (1974), and F&M (1981).
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Dastoor (1981) was the first to point out that this concept of direction of a 7

model has never been expounded and it is not clear exactly what it means. .
For example, in Pesaran (1974)3O it is not clear what is meant by "...é
significant positive wvalue for"No can be interpreted as strong evidence
vagainst H, in favour of a'nralterr’native which differs from H, in some sense
opposite to that in which H |

1

differs from H,." (The term N, refers to the

What follows 1is an attempt to show that, using the concept of the

direction of the model defined in the Preliminaries, it is possible to infer

the directiofi{ of the true model from the sign of the Cox statistic. The

following results are needed for this analysis. Suppose the true model is:

Hy: y = X3b, + €4 (22)
2
- In this case equation (8) can be written as:
_ 2 : .
Crs = (T/2)1n 3 X3 1 3b3/T + 83 + op(l)l

. iy s 2
R A R R L

where A1 = Ml + P1M2P1 = I - P1P2P1 This shows that CTS 1is still a

consistent test even when both of the hypotheses under test are false. (As it

| Ve

is obvioqs, that p11m3 (CTS/T) #£ 0.)

We can nov proceed to show our case. The following examplé is given by
Dasteor (1981) but tbé notation follows that used in this paper.
The three models used are as given in (6) and (22). H3 is assumed to be

the true model, while Hl and H2 are used as the mull and alternative

hypotheses. In the first test H1 is assmned to be the mll hypothesis and H2

30 Walker (1967) has also written a statement to the same effect,
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. )
the alternative hypothesis. Their roles are reversed in thé second test. Thus

the CTS are:

C'I'S1

C'I'S2

Since H3

CIs. =

CIs, =

where Al

1

~(1/)1n(E5 /52)

~2 -2
—(T/2)_ln(912/sl)

is assumed true, they can be rewritten as:

-(T/2)1n

~-(T/2)1n

= MI + P1M2P1'= I-

(23) and (24), one can see that the signs of CTS

of (a0-b0)/T and (al-bl)/T respectively, where

1

[ s r 2 ]
b3*'X3 A1x3b3/7T' +'S3 1 + op( l’) T A - T T T (723')7 T Tttt Tt
’ ’ - 2
-b3 X3 M2X3b3/T + s3 |
g s 2 )
b3 X3 A2X3b3jT + Sa. + 9?(1) (28
2
L1)3 X3 M1X3b3/T + 53 ‘
P1P2P1, and A2 =- M2 + P2M1P2 = I - P2P1P2.; From

and C']TS2 depend on the sign

L

aQ = u’qu, e
I 'BT»)";’H"PIPEPIU,
al = u’Plu,
bl = u'P2P1P2u, T
and u = ij3.

u reflects the true model (i.e. equation (22)). It is a vector in the vector

space spanned by the column vectoré of X3. It can be shown easily that31

a0-b0 >

0 =>

&
<0

('.'I'S1

-

: ) -
31 Note that this analysis is supposedly based on the limit of (a0~b0)/T and

- " (al-b})/T. However, since these limits are continuous functions of (a0-b0)/T

and (al-bl)/T gespe’étiveiy, and since the latter set of formulae are easier

to work with, they are thus used in this analy¥is.
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a0-b0 < 0

=> CI‘S1 >0
al-bl > 0 => t.','I‘S2 <0
al-bl < 0O => CI‘S2 >0

Given that the Cox test i8 a consistent test, and given the assumption that

M(3) is the true model, neither (aO;bO) nor (al-bl) can be expected to be

p zero, even though in finite samples, it is possible for it to be zero.

of the CTS, if the five cases where either or both of the CTS is zero are

ruled out. These are shown in Table 4 below. All four entries in the table

refer to cases in which ”Ehgﬂa]rag'p}rufg

valee of the CTS is large enough that

both of the models under test are rejected. However, different entries in the

table impart different messages regarding the direction of the true model.

The purpose here 1is to determine

if these messages are obtainable from

knowledge of the occurrence of a particular case. In other words, we wish to

see if we can determine the sizes of the cosine of the smallest angle between

The above shows that there are four pgssible combinations of the signs =

oo ——u—and-M({1)—relative to that —between —u —and M(2) from the signs of CTSy

and CTSZ.

The cases in the Table 4 are mumbered 1 to 4. Cases 1 to 3 are oumbered

as Dastoor has numbered them.

Case 4 1is analytically equivalent to case 2,

hence it is not discussed. These cases correspond to cases c, 1, g and a in

Table 1 above.

Ve

To begin, let us mould a0-b0 and al-bl to some forms useful for our

analysis. First, we need the following. Imagine that X

hyisérph’mes, and u is a vector. Let the smallest angle between

1 ®md % ere Doth

u and Xi

. 7,,1:
Xl and its closest vector in X

2

be r

3’

"i=1,2. Let the smallest angle between the vector projectiomn of u onto

and let the smallest angle between the




h
t

: |
CTS | Positive. - | Negative. |
ST CTS, @Iy | (Negative) | (Positive) | :
'(aO-gO) | | : |
| |
| Positive | Case 4. | Case 1. |
| (Negative) | Look elsewhere.| t. M(1). |
| , |
| Negative | Case 3. | Case 2. |
|(Positive) 1 te M(2). | A combination |
| . | , | of both. f
- |

"7* L }\v\ S '7 S e e ,,,,,:,, e m e e m s o e 'IV"'”*W - |

Table 4. Cox test.

* "a. M(i)." denotes "the true model is away from M(i)".

* . "t, M(i)." denotes '"the truezmodel is towards M(1i)".
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vector projection of u onto X2 and iits closest vector in Xl be r‘;‘. Notice
that when Xl and XZ are both vectors, Ty equals L

Using these and equation (1) in the Preliminaries, we get h

a0-b0 = u’P,u —u’P,P.P.u

2 17’271 .
a(')-hO-I=== u’u qu“ -la PIPZPlu]
u Plu_l Lu Plu u’u 1 u Plu J

S '-'cosz'*(ri)/'coszﬂfri)‘cosg (r3)-




= CO08 (rl)/cosz (rz) - Cosz (r‘.)

We can now proceed-to consider the three cases.

. Case 1.
- 2 2 2

a0-b0 < 0 => cos (rz) < cos (r3).cos (rl) (25)

al-bl > 0 => cos’ ) > cos’ - . cos’ C

Equation (25) confirns that r, < T,s while equation (26) does not tell us

@  (26) B

anything. (Note: cosz (r3) and c:oa2 (r[‘) both have values between,zero and
one.) This shows that M(3) is closer to M(1l) than to M(2) by our definition

of direction.

) Case 2.
2 2 2
ad-b0 > 0 => cos (rz) > cos (r3).cos (rl) (27)
al-bl1 > 0 = (:ocss2 (rl') > cosz (r[‘).'coel2 (tz) - (278)7 o

Neither equation (27) nor equation(28) reveals the relative sizes of r, and
Tys and consequently, no indication is given about the direction of M(3)

relative to that of M(1) and M(2).

Cage 3.

a0-b0 > 0 =5 cog® ) > cos® (r }rcosf(rl) (9 s

n
~
w
Q
R

= o8 Ty cos r,).cos (rz)

Equation (29) says nothing about the relative sizes of Ty f?d Ty but
o )




‘equation (30) indicates that r, <r,. This means that M(3) is closer to M(2)

) thgn to M(1).

All of the cases discussed above refer to cases where both models under
-test are rejected. By looking at the signs of the CTS under the two tests, in

which the roles of«the two models are reversed, the above analysis has shown -

noooo - that for cases ‘1 and 3 the signs-of the CTS1 and 'CTSZ can 1indicate - the -

direction of the true model relative to the models specified under the mull

and the alternative hypotheses. -

»

3.5.Local alternatives. '’
In this section, a simpler method of deriving asymptotic properties, in
the context of the CTS under local alternatives, 1s suggested. After that, _

the ésymtotic properties of the ATS under local alternatives are derived.

two exogenous matrices, Xl an# ;2, to be related in the following manner:

2, -1/2

%, = 53+ T V40 oy S )

\ )
vhere, B and (t) are Kl X Kz and T X K2 matrices of non-zero comstants, and

-{t) is such that the term ((t)'}!l(t)/’l‘) converges to a finite non-zero matrix .
as T tends to Iinfinity. The existence of the limit rof ((t)’MI(t)/T) is
mm&,to ensure that the alfernative hypothesis approaches the mull at a

slow enough rate to keep the power bound away from unity, while its non-zero

" assusption is needed to emsure that the power of the test is strictly larger

‘ ™ ze type error. n the t o t)H (t exists, K,

needs to be at least as large as Kz, otherwise, c22 would possidbly be

¥
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1. Local alternmatives for CTS.

Pesaran (1982) has derived the CTS under local alternatives in a

rather lengthy way. He first rewrites CTS in equation (8) as:

CTS = —(T/2)1n {(v /§§).(w2/w1).(§§1/w3)}

=-(T/2)1n (v /8 (T/2)1n w /w ) - - (T/2)1n (s / ),

'Awhere*wl s o and'wa are some functions of y. Be then tries to show that

the firsrt two terms in the last equation are of probability order

-1/2 -3/2

), while the last term is of probability order o, (T

o (T ) Thus

asynptotically, this third term can be dropped, leaving the first two
terms, which are then linearized to the first order. The resulting
equation is the CTS under local alternatives, i.e.:

~-1/2

_ -1 ” - -1/ v, ’ 2 . V
CIS = {~T 'bj(W)b, - T sz(:) M€, /sy +o (1P, (32)

where (W) = (t)’Hl(t). The first term is of (big) order unity, while the

second term is of probability order op(l).
N

- A shorter and simpler method to derive the CTS under local
alternatives is to first ’linéarize the CTS to ‘the first order, and then
derive the asymptotic TS. In other words, one can use the linearized CTS
of equation (15). On substituting equation (Zil) into it, and after some

algebraic manipulations, equation (32) above can be obtained.

32 This is because

= lim (Xéle'l‘) .

2

= B’ C"B + (e) (e)/T7,

and r(sz) ( r(C,,) if the second term above converges to zero. If K2 > Kl,

and 1f (t)'(t)/T" converges to a non-zero constant, then C22 is possibly
non-singular. However if 1(2 < Kl instead, then C22 is non-singular.
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9

If in the above derivation equation (l4) is used instead, the

resulting CTS under local alternatives will be one with sg In equation
(32) being replaced by (sg + Zbé(w)bz/T). This is because ggl converges

to (sg + Zbé(w)bzl'l‘) under local alternmatives. So, the TS is:

L L 2,
crs = by(Wb, - T 2b2(t) ME, +o (T

32
T2

Local alternatives for ATS.

/\‘
W Since no one hgs derived the ATS under local alternatives, it will

be derived here. Using (31) in (10) we can write ATS as:
Lelng L2 , Rk : 3

/2

, - , ’ —1
ATS = -bz(W)bz/T b2(t) M1€2/T + OP(T ).
2 , '
5, + 2b2(W)b2/T

Comparing this with equation (33), it shows that the ATS is

asymptotically equivalent to the CTS under local altermatives.

ﬂ-,,,Zbé(W,)hz/T,, e L

B
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