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Abstract 

In the last three decades there has been a widespread use of 

quantitative models in geography. The majority of models have 

been applied for descriptive, predictive and 

hypothesis-testing purposes. Quantitative geography is at a 

-stage where the benefits and limitations of most of these 

models nave been tested. Consequently, there has been a 

tendency to seek models considered to be more "appropriate" 

for geographical analysis. This work examines some of the 

most commonly used mathematical tools in human geography and 

presents a new family of models as an alternative for the 

mathematical representation of spatial structures. 
L 

The proposed models are based on tne notion of "geographical 

neighborhood" and are named neighborhooa moaels. In the 

formalization process mathematical concepts such as space and 

subspace are used to uodel the notion of "neighborhooa"; two 

quasi-mathematical structures (geo-spaces and geo-subspaces) 

are defined as an aid in this modeling. 

As a first step in the construction of neighborhood models a 

set of measures of local variation (heterogeneity indices) are 

introduced. The role playea by these indices from a 



mathematically formal point of view is funaamental, since 

through them it is possible to combine and benefit from two 

mathematical areas of knowledge: topology and fuzzy set 

theory. 

In tne second part of the thesis the indices are applied to 

two geographical problems: 1 )  the design of classification 

algorithms with regionalization purposes; 2) an aid in the 

,selection of sites for the allocation of resources in an 

educational planning environment. In the first case the index 

is used to define the degree of membership of an element to 

the interior (or border) of a region tnrough the topological 

concept of neighborhood and that of fuzzy set. In the second 

application several indices are used to describe spatial and 

temporal characteristics of tne demana for schools in an area 

in central Mexico. 

Finally, some future areas of research are proposed. Although 

these ideas concerning neighborhood models have not been 

completely explored and developed, it is clear that the 

approach provides a fruitful avenue for research. 
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Chapter 1 .  

INTRODUCTION 

Since the beginning of the Quantitative Revolution in 

Geography a considerable amount of mathematical models have 

been used to represent different aspects of the geographical 

landscape. There are, however, certain facets of spatial 

structures that have received less attention from modelers. 

Such is the case of the geographical notion of neighborhood. 

The main aim of this thesis is to build mathematical models 

designed to allow the formal representation of the 

geographical concept of neignborhhod. 

In the first part of this chapter, an overview of the role 

played by mathematical models in the discipline is given, 

while in the second part, intuitive notions of the 



1 .1  Mathematicai Models 

Models have played a fundamental role in the development of 

various areas of knowledge such as physics, engineering, 

architecture, computing, economics and geography. Commonly a 

model is said to be a representation of objects, events and 

processes of the real world (~ohnson, 1963, p.218). Depending 

on their purpose, models are classified into different groups. 

-For example, Forrester (1973, p.49) distiguishes between 

physical and abstract, dynamic and static, linear and 

nonlinear and stable and unstable models. A model is said to 

be mathematical when mathematical language is used in its 

representation. 

Mathematical models have been used extensively in the natural 

sciences. For example, in physics practically all knowledge 

is expressed in mathematical language, and theoretical 

advancement has been accomplished to a large degree through 

mathematical modeling. On the other hand, in the social 

sciences the use of mathematical models has not been as 

extensive or successful. In geography, models such as maps 

have always been intimately related to geographic knowledge. 

However, mathematical models did not have a notable presence 

in the development of geographical theory until the so-callea 

"Quantitative Revolution1' which took place in the 1950's. As 

a consequence, a new branch of geography, quantitative 



geography, was established. 

1 .2  Quantitative Geography 

As noted by Gregory (1 983, p.80) mathematics has been used in 

geography for a long time, particularly in the construction 

and use of maps. According to his view, trigonometry, 

Euclidean geometry and space transformations are areas in 

,which geographers are traditionally trained. 

The quantitative era in geography is characterized not simply 

by the presence of mathematical techniques but by the 

intensification and expansion of their use and the 

introduction of mathematical modeling and abstract theory. 

Although quantitative geography originated in the United 
b 

States in the 1g5O1s, its development in other countries shows 

distinctive characteristics. According to recent literature 

there are two major schools of quantitative geography: the 

Anglo-American and the Continental European schools. They can 

be identified by the facts and circumstances of their 

development. For example, Bennett (1981, p.1) characterizes 

the German and French tradition as being more concerned with 

deep methodological questioning, while in the English-speaking 

countries more importance has been given to the development of 

analytical techniques, and a more pragmatic approach has been 

pursued. 



In the 19801s, three decades after the initiation of the 

quantitative revolution, European researchers are engaged in 

the historical analysis of the quantitative approach and the 

contrastive analysis of the state of the art in the two 

principal schools. Several academic meetings have been 

organized to discuss these topics and their relevance to the 

future of quantitative and theoretical geography (~aining, 

,1984, Bennett , 1 981 and Beaumont, 1 983 ) . 

As a result of these meetings, a consensus seems to have 

emerged regarding the initial development stages of 

quantitative geography: In early research, too much 

importance was given to the techniques and not enough to their 

role in the development of geographic theory. For example, 
b 

the main purpose in applying mathematical techniques was often 

to test untried tools. In this respect Bennett and krigleyls 

more theoretical perspective ( 1  981 , p. 6) regarding "core" and 

"frame" disciplines are particularly interesting. 

According to these authors, core disciplines are "those areas 

of thinking which are providing new systems, concepts, and 

developing new explanatory paradigms." In contrast, frame 

disciplines "are those which derive in methodology, object of 

study, and terminology, from other external subjects.'' 

Adopting these terms, quantitative geography sought to be a 



core discipline in its initial stage while in most recent 

years it has become more of a frame discipline. Consequently, 

researchers in various branches of geography are making more 

extensive use of quantitative techniques without necessarily 

consid'er ing themselves "quantitative geographers. I' 

It should be mentioned that quantitative geography has evolved 

not only in its approach to the use of mathematical models but 

also in the kind of techniques used. For example, statistical 

inference in the 1960's "was seized as a panacea for 

geographical metnodologytt  enne nett and Wrigley, 1981, p.8), 
while in the 1970's the appropriatness of this methodology was 

questioned. As a result, statistical techniques for specific 

geographical purposes were designed. Such is the case of 

Cliff and Ordts autocorrelation (1973) and Clark's . 
geostatistics (1979). Bennett and Wrigley (1981, p.9) have 

anticipated that statistical inference will continue to be 

used in the future but not to the extent that it was in tne 

past. 

In general, early quantitative methods adapted mathematical 

models designed in otner areas of knowledge to represent the 

"geographical landscape." This is the case of such widely 

used models as tne gravity model, factor analytic methods, 
I 
I 

I 

1 regression models, cluster analysis as well as a wide range of 

statistical techniques. However, as a result of critical 



analysis by both geographers and scientists from other 

disciplines, in more recent years more appropriate models and 

discipline-specific techniques have been developed. 

1 .2.1 Galton1s Problem 

The criticisms maUe by Sir Francis Galton at the end of the 

last century of the use of correlation analysis in 

,anthropological studies is the point of departure of the 

present work. 

In 1889 at a meeting of the Royal Anthropological Institute, 

E. B. Tylor recognized that anthropology needed a scientific 

methodology for the analysis of ethnographic data and proposed 

a cross-cultural survey methodology. He applied this method . 
to data he had collected on different tribes and societies. 

The importance of Tylorls work resides in the fact that he was 

able to correlate distinct traits which were present in the 

1 various human groups under study. During the discussion 

period of the meeting, a comment made by Sir Francis Galton 

I had a significant impact on the future development of both 

anthropology and geography: 

It was extremely desirable for the sake of those who may wish 
to study the evidence for Dr. Tylorls conclusions, that full 
information should be given as to the degree in which the 
customs of the tribes and races which are compared together 
are independent. It might be, that some of the tribes had 
derived them from a common source, so that they were duplicate 
copies of the same original. Certainly, in such an 
investigation as this, each of the observations ought, in the 



language of the statisticians, to be carefully "weighted." It 
would give a useful iaea of the distribution of the several 
customs and of their relative prevalence in the world, if a 
map were so marked by shadings and colour as to present a 
picture of their geographical ranges (~ylor, 1889). 

As a consequence of this remark spatial dependence became an 

issue in both anthropological and geographical studies and 

spatial analysts became aware of the need to incorporate the 

"spatial dimension" in their mathematical models. One of the 

concepts that has been used in modeling spatial dependence is 

,that of "geographical neighborhood." 

1 .2.2 Neighborhoods 

A retrospective analysis of mathematical models and techniques 

makes it clear that certain aspects of the "geographical 

landscape" have been much more widely modeled than others. . 
For example, the modeling of properties such as distance and 

shape were part of the "new geometric tradition" of the early 

1960's (~aining, 1983, p.86) There are, however, other 

aspects of the geographical landscape which have received 

little attention from modelers. This is the case of the 

geographical notion of "neighborhood." 

The concept of neighborhood is treated in geographical stuaies 

at different levels and with different meanings. For example 

in urban studies neighborhoods are considered as sub-areas 
I 

with homogeneous characteristics such as level of income, age 



of population, etc. and are used as the basic elements for 

analysis  all, 1583). In other instances geometric 

characteristics of the geographical landscape are studied 

through the relationship among neighbors. Such is the case of 

the cardinal neighbor method (~lliott, 1983) where the 

geometric patterns of cities and population centers are 

identified and analysed, based on the neighborhood 

relationship among them. 

Neighborhoods also play an important role in other areas of 

knowledge. For example in mathematics, there is a whole 

discipline which is based on the formal notion of 

neighborhood, namely topology. In it, concepts that are 

usually defined in an euclidean space are generalized through 

the concept of neighborhood and the "topological 
b 

characteristics" of mathematical objects are studied (Firby 

and Gardiner, 1982). Furthermore these mathematical concepts 

have been applied in other disciplines such as chemistry, 

where the topological characteristics of tnree dimensional 

networks are used in the analysis of the chemical 

characteristics of compounds (springer, 1973) and in the 

classification ana characterization of gold compounds  all, 

Gilmour and Mingos, 1984), among other applications. 

Although the notion of neighborhood is conceived in different 

manners among distinct disciplines, at an intuitive level the 



concept is based on the idea that tne "space" that surrounds 

an entity or a specific portion of "space" is of special 

significance. At elementary levels of analysis in both 

mathematics and geography, the concept of neighborhood is 

related with the intuitive notion of "surrounding space". 

However, in both disciplines different definitions of 

neighborhood are used according to the problem at hand. For 

example in some quantitative techniques such as 

autocorrelation, geostatistics and topological data 

structures, specific meanings are given to the concept of 

neighborhood. There is however, no general treatment of this 

concept in the geographical literature. To exemplify some of 

the methods and techniques, specific definitions of 

neighborhood are used throughout the presentation, but 

emphasis is done on the general concept of geographical 
b 

neighborhood. 

Briefly, the principal objective of this thesis is the design 

of a family of formal tools that allow the modeling of the 

concept of "geographical neighborhood.'' 

In Chapter 2 some classical models as well as those that have 

incorporated the spatial dimension through the concept of 

neighborhood are reviewed. In Chapter 3 the notion of 

neighborhood model is introduced, and the mathematical 

concepts that are used in the modeling process are defined. 



In Chapters 4 and 5 two applications of neighborhood models 

are presented. The first is a theoretical application in 

regionalization. The second is an application to a specific 

problem in educational planning. Finally, tne appendix 

contains a mathematical discussion of some of the concepts 

used in the thesis. 



Chapter 2. 

PiATHhMATICAL IviODELS I N  HUIiAN GEOGKAPHY 

Prom the period of the "Quantitative Revolution'' in geography 

to the present, a considerable number of mathematical models 

and methods have been used for geographical analysis purposes. 

Many of them are adaptations of formal tools used in other 

sciences such as physics, biology, botany, economics and 

psychology. The development of quantitative geography is at a 
b 

stage where it has Pecome necessary to analyse the benefits 

and limitations of the techniques used in the past and to 

propose new ones. 

Mathematical models that have been used in the past have 

represented distinct aspects of spatial structures using 

various formal tools. Since the principal objetive of this 

work is to present neighborhood models as an alternative for 

the modeling of spatial structures, it is convenient to study 

some of the mathematical structures that have been 

incorporated into existing models. 



In this chapter some of the mathematical models that can be 

considered as classical in human geography are reviewed as 

well as those that have incorporated the notion of 

neighborhood in the representation of the geographic 

landscape. 

2.1 Classical Models 

Three of the models that have been extensively used in human 

geography are: factor models, the gravity model and networks. 

According to the purpose of application of each one of them, 

the geographical landscape has been moaeled in different ways. 

Whether the models actually include the entities and the 

relationships arnong them that are most important for 
L 

geographical studies remains an open question. The reason for 

presenting these three models is to establish which elements 

of the geographical landscape have been included and to 

discuss to what extent the spatial structure has been modeled. 

2.1 . I  Factor Models 

Factor analysis was originally developed to aid scientists in 

testing hypotheses concerned with the organization of mental 

ability. At the beginning of the century, psychologists wers 

interested in measuring "general intelligence" by defining and 



quantifying its components. The point of departure is an nxm 

matrix which includes for "ntt persons the scores of "mtt tests 

associated to each one of them. By means of factor analysis a 

small number (r<<m) of hypothetical factors are determined. 

These factors allowed psychologists to isolate what they 

viewed as fundamental personality components or "factors of 

the mind" ( ~ e e s ,  1971 , p.220). According to Lawley (1 971 , 
p.1) the method was initially restricted to psychometrics, and 

,for some time it remained the black sheep of statistical 

theory. Although it is considered to be a "complicatedtt 

technique, its use is increasingly widespread today due to the 

existence of easy-to-use computer packages which facilitate 

its application. 

This mathematical model nas been extensively described both 
b 

for researchers with a mathematical and statistical background 

( ~ a w l e ~ ,  1971 and Harman, 1976) and for those who lack such 

training (~aylor, 1977 and Berry, 1971). Since this study is 

principally concerned with the specific application of the 

model, only those mathematical aspects which are relevant to a 

geographic context will be discussed. 

Factorial Ecology 

Factorial ecology is the branch of quantitative geography 

which is concerned with tne use of factor models in 



geographical studies. Although principal component analysis 

was developed by Pearson (1901) and Hotelling (1933), factor 

analysis began with the work of Spearman (1904, 1926). 

Research in factorial ecology does not appear until the 

mid-fi'fties  ell, 1955 ) . However, the technique has becone 

well-established since then, and it is presently taught as 

part of the regular curricula in the geography programs 

offered by most universities. 

According to Taylor (1977, p.255) factorial ecology developed 

in a period in which two opposing groups of researchers were 

studying the structure of urban centers. On the one hand, 

there were the human ecologists who were interested in the 

ecology of urban areas and had proposed several spatial models 

(concentric ring model, sector model and the multiple nuclei 

model). On the other hand, there were the social area 

analysts who hypothesized that the urban social structure 

could be characterized through three indices or dimensions: 

economic status, family status and ethnic status. In fact, 

the initial application of ecological factor analysis was 

undertaken by Bell (1955). Its purpose was to test the 

hypothesis that urban populations could be adequately 

described by the three-status criteria. 

The results obtained by Bell were encouraging enough to cause 

widespread acceptance and use of the technique among urban 



social geographers. Studies of various cities in the U.S. 

(~alins, 1971, p.235) allowed researchers to undertake 

comparative (congruence) analysis: among the different 

metropolitan areas and over several points in time. In other 

major urban centers in the world, factor models were applied 

similarly (~aynes, 1971, p.324, Janson, 1971, Johnston, 1971, 

p.315). 

. , The extensive use of the factor analysis technique for 

hypothesis testing and as a descriptive tool has also made 

researchers increasingly aware of its limitations. In some 

urban ecology studies the use of the technique has been 

successful P U ~  that, as with any other formal tool, the 

appropriate use of factor models depends on tne understanding 

that the researcher has of both the problem and the technique. 
L 

Factorial Ecology as a Geographical Model 

Why and how does factorial ecology qualify as a geographical 

model? The fact that the model is applied through the use of 

areal units has been considered enough to automatically 

classify it as a spatial analysis technique. There have been 

some attempts to introduce the location variable as one of the 

variates in the factor model in order to transform it into a 

"more" explicitly geographic model. However, the results 

obtained from these procedures have come under strong 



criticism. For example, when latitude and longitude are 

included as variables in the factor model, two main 

disadvantages have been found: the circularity of method and 

the lack of invariance to the selection of axes ('Taylor, 1977, 

p.275)'. The first objection refers to the fact that in the 

procedure location variables (latitude and longitude) are used 

to calculate scores which are latter located on a map, 

producing as an effect the location of locations. In the 

second case, criticism is based on the fact that the selection 

of orthogonal axes is arbitrary so that the factors obtained 

in each case are not necessarily equal. In other words, the 

factorial model is sensitive to the change of axes of the 

location variables. 

In order to understand how factorial ecology models the 
L 

geographical landscape it is important to review some basic 

concepts behind the modeling process. 

When the decision to use a mathematical model is made, the 

common procedure is to develop or select the most appropriate 

from the existing models. The most relevant objects of the 

phenomenon under study, together with the most important known 

relationships among them, are usually expected to be included 

in the model. 

One of the advantages of using a mathematical model is that 



once the real environment has been identified with a 

mathematical structure, all mathematical knowledge is at the 

service of the researcher. 

Expected and unexpected relationships among the objects can 

emerge as the result of applying the mathematical techniques. 

This may allow the researcher to find optimum solutions to 

specific problems. In fact, the possibilities of using 

,mathematical models as aids in research and in the solution of 

specific problems is limited only by the researcher's ability 

to apply existing tools or to develop new ones. 

The history of the application of the model under discussion 

reveals that researchers took no special interest in the 

spatial relationships among objects (in this case areal 
b 

units). In fact, there has been no real conceptual difference 

in the use of the technique by geographers and psychologists. 

Once the areal units and the various census variables are 

defined and identified with a mathematical structure (in this 

case a matrix), all other crucial relationships beyond tne 

scope of the moue1 tend to be ignored. 

For example, factors that are extremely important for certain 

geographical analyses such as distance, nearness, relative 

Position, and contiguity are in no way subject to analysis by 

the factorial model. The model is insensitive to all these 



factors. As applied in Bell's study, the model is unable to 

consider the relevance of the size and spatial distribution of 

the census tracts. Whether the census tracts of the city of 

Los Angeles were arranged in a regular shape such as a square 

or in a chain mode or as they actually are, and whether 

similar tracts were close together or far apart, could not 

influence the conclusions Bell arrived at based on the 

factorial model. In short, the problem is the incapacity of 

,factorial ecology to model any spatial structure. 

The question that remains is not so much whether introducing 

the relative position or absolute location makes factorial 

ecology a "more" geographic model, but rather how important it 

is that the models used by urban social geographers take 

account of those spatial relationships which have been ignored 
L 

until now. This question is still subject to debate. 

2.1 .2 Gravity Models 

The law of universal gravitation announced by Newton in 1666 

is one of the cornerstones of modern science. The law can be 

stated as follows: 

Every particle in the universe attracts every other particle 
with a force that varies directly as the product of the masses 
of the two particles and inversely as the square of their 
distance apart. The direction of the force is along the 
straight line joining the two particles (~owles, 1970, p.139). 

The importance of movement in social phenomena inspired some 



social geographers to use models similar to those developed by 

physicists. A family of models analogous to the law of 

universal gravitation have been developed in geography to 

study such phenomena as migration between population centers 

and retail trade areas: the movements of persons (journey to 

work, journey to shop, etc .) and the movement of goods. 

The first models, such as the one used by Ravenstein in 1885 

,for migration studies in England and Wales, were strongly 

inspired by the Newtonian model. However, more recently 

geographers have developed a whole new family of interaction 

models that differ substantially from the physical model 

(~ilson, 1971 ) . As Wilson shows (1 971 , p. 1 ) "gravity model" 

has become something of a misnomer. For example, a conceptual 

distinction worth making is that while in physical terms the 

gravitational force is exerted in equal magnitude on both 

particles, and motion comes as a effect of that force, in 

geographical applications the equivalent of force is 

identified with movement (flows). 

Gravity models have been mainly designed for use as predictive 

and descriptive tools. In the past, planning decisions have 

been based on these models' predictions of traffic flows in 

several metropolitan areas in the United States, population 

migration between cities, and sales in a shopping center 

(Taylor, 1977, p.287). 



The mathematical expression of the model varies according to 

predictive or descriptive objectives. Below are two of tne 

most common equations. 

Migration Model 

The migration Tij between an origin i and a destination j is 

,directly proportional to the product of the sizes of the areas 

Oi and Dj and inversely proportional to the distance dij 

between them, raised to some power n. 

-n 
Tij = k Oi Dj (dij) ( 2 . 1 )  

Interaction Models 

L 

The interaction between zone i and j is directly proportional 

to the product of the "mass terms" Wi and Wj associated with 

the zones and inversely proportional to a measure of distance 

or cost of travel, raised to some power n. 

-n 
Tij = k Wi Wj ( ~ i j )  (2.2) 

In these types of models it is common to find additional 

Constraints. These restrictions are often related to 

knowledge of the total interaction, emerging or arriving flows 

of a zone. The full interaction model can be written as: 



Tij = Ai Bj Oi Dj f(~ij) (2.3) 

The difference between equation (2.3) and previous 

mathematical expressions of the model is that the constant k 

is substituted by the product of Ai and Bj. Equations (2.4) 

and (2.5) are derived from the constraints imposed on the 

model. 

According to Shepard (1969, p.8) tnere are two established 

methodologies to estimate the parameters of the gravity model: 

the regression and entropy maximization approaches. In the 

first case the researcher deals with tne model: 

-n 
Tij = k Oi DJ (dij) Eij (2.8) 

where Eij is a stochastic residual. To estimate the 

parameters with the ordinary least squares method, equation 

(2.8) is transformed through the logarithmic function. 



log Tij = log k + log Oi Dj - n log dij + log Eij (2.9) 

With the maximization entropy approach a metnod similar to the 

microcanonical ensemble technique in statistical mechanics is 

used. ' The details are not discussed in this work and the 

reader is referred to (~ilson, 1971, p.4 and Haggett, 1977, 

p.40). 

,The Gravity Model as a Spatial Model 

The Newtonian gravity model is undoubtedly extremely simple. 

Its geographic counterpart is also simple. Social processes 

such as migration and journey-to-work trips are predicted from 

the relationship between two entities: "mass" and "distance". 

Depending on the purpose of the application, mass and distance 

represent different quantities. Their relationship is clearly 

established in each one of the postulated models. For 

example, in equation (2.1) for a fixed mass the flow of 

population increases as the distance decreases (the inverse is 

also true). This is a well-known geographic relation which 

has been stated in various ways: "Towns attract more trade 

from near than from far locations" (~aylor, 1977, P-207); 

"Everything is related with everything else but near things 

are more related than distant ones" (~obler, 1970). Despite 

their simplicity, gravity models allow researchers to work 



with important aspects of spatial structure. 

It is important to note that by means of the law of universal 

gravitation it is possible to calculate the force exerted 

between two particles. However, if more than two particles 

are involved in the analysis the problem becomes more 

complicated. Although the motions of tne planets in the solar 

system have been calculated through numerical solutions 

, (Symon, 1969, p. 185), there is no general solution to the 

problem involving the motion of any number of particles under 

the forces exerted on one another. 

Analogously, some of the gravity models postulated in 

geography describe interaction exclusively between two 

entities. For example, in the prediction of migration between . 
two cities as represented in equation (2.1), it is assuued 

that there is no other interaction between either of these two 

cities and the rest of the universe of study. There are, 

however, geographic gravity models that have been designed to 

account for the effect of other cities in the interaction 

between two cities. For example, in the study of 

transportation it is assumed that the interaction between any 

two cities is reduced due to the presence of a third one. 

This assumption is based on the concept of "intervening 

Opportunityt1 which according to Taafe and Gauthier (1973, 

p.95) was first formulated by Stenffer in a study of 



intra-urban migration. This concept is derived from tne 

following reasoning: 

"The number of migrants from any point within a city to a zone 

at the periphery of the city was directly related to the 

number of opportunities or vacancies in that zone and 

inversely related to the number of opportunities between the 

originating point within the city and the zone in the 

periphery." 

.In the gravity model that includes this notion it is assumed 

that the relationship of intervening opportunity is similar to 

that of a distance. The model can be expressed as follows: 

-n 
Tij = k Oi Dj (dij) Pi j 

where Pij is the intervening opportunity. 

2.1.3 Networks 

One of the branches of mathematics that has had a wide range 

of application is graph theory. It has been used in physics, 

chemistry, computer technology, architecture, sociology, 

anthropology, linguistics, geography and other disciplines. 

According to Harary (1972, p.1 ) ,  graph theory has been 

independently discovered several times. In the 18th century 

Euler gave a solution to the Koningsberg Bridge Problem with 

the aid of graphs. In the 19th century Kirchoff and Cayley 

Solved problems in physics and chemistry respectively using 



elements of graph theory (~arary, 1372, p.2). 

Graphs are commonly represented through diagrams that greatly 

facilitate their interpretation. The diagram is composed of a 

set of points representing different entities and a set of 

lines joining these points, representing a pre-established 

relationship among the points. 

Formally a graph can be defined as follows: 

A graph consists of a finite set V=V(G) of p points together 
with a prescribed set X of q ordered pairs of distinct points 
,of V. Each pair x=(u,v) of points in X is a line of G, and x 
is said to join u and v. 
(~arary, 1972, 13.9) 

This simple mathematical structure has allowed researchers to 

solve a wide variety of problems and at the same time has 

encouraged the development of this branch of mathematics. In 

particular, the use of the model to represent geographic 

entities and their relationships is very common. For example,. 

graph theory as it relates to the concept of connectivity has 

been used to establish the definition of routes between two 

or more population centers. In a similar context, transport 

networks such as railway and road systems have been modeled 

with graphs and compared spatially and temporally through 

different measures. Since the economic development of various 

Countries has been related to the connectivity of railway 

networks, the technique has allowed researchers to establish 

interesting relationships. Studies have been carried out at 

different levels (urban, regional, international) using the 

appropriate measures in each case re eta index, density, etc.) 
? 



(~aggett, 1977, pp. 86-92). Additionally, temporal 

comparisons in the growth of transport networks permit Taaffe, 

Morrill and Gould to identify four phases of development in 

various countries. In other cases graphic simulation models 

have been developed to predict network growth (Haggett, 1977, 

p.301 ) 

Since graph theory is closely related to other branches of 

-mathematics including linear programming, combinatorics, 

matrix theory, topology and probability, it is common to find 

many other instances where graphs are used in a geographic 

context. Whenever any of these types of models is applied, 

graphs are often used either as part of the analysis or as an 

aid in the presentation and interpretation of results. 

Networks as Spatial Models 

Among the existing mathematical tools, graphs appear to be one 

of the most appropriate means to model spatial relationships 

among geographic entities. They have been used as descriptive 

and predictive tools and for hypothesis testing. 

The diagramatic representation of a graph gives the researcher 

the opportunity to obtain a complete image of the relationship 

among the entities under study. This is extremely important 

for spatial analysis purposes since it allows the researcher 



to perceive given relationships spatially and, if necessary, 

to correlate them with other spatial relationships. The model 

is flexible enough to allow various spatial relationships to 

be represented. Pletric relations, such as distances, either 

measured in the Euclidean plane or in a geographic space (e.6. 

traffic flows, route distances) can be represented in the 

model by attaching a weight and/or a direction to the 

corresponding link. Non-metric or qualitative relations such 

.as contiguity are also easily modeled. 

2.2 The Neighborhood Approach 

During the first stage of development of quantitative 

geography there was a strong tendency to use models that had 

been designed in other branches of knowledge. However, as a 
L 

consequence of the awareness of spatial analysts of the need 

to represent the notion of spatial dependence mathematically, 

several models that incorporate this concept have been 

developed in different branches of geography. 

Neighborhoods have been commonly used as a tool in the 

modeling of spatial dependence. This concept has different 

meanings in geographical and mathematical terms. Both 

meanings are fundamental to the development of "neighborhood 

models1I which is the major aim of the present work. 

In the first part of the following section the geographical 



and mathematical meanings of neighborhood are presented, and 

in the second part three models developed in the latter stage 

of the quantitative revolution which include the notion of 

neighborhood are discussed. 

2.2.1 Geographical and Topological Neighborhoods 

Geographical Neighborhoods. 

The notion of neighborhood appears frequently in geographical 

theory. For example, as cited by Taylor (1977) ,  in the 

central place theory proposed by Christaller (1933) and Losch 

(1940) it is assumed that settlements provide specialized 

functions for other settlements. The size and shape of the 

areas served by each of the "central places'' has been one of 

the main topics studied in this branch of geography. One of 

the best known hypotheses is that under certain conditions, 

including aspects such as demand for central goods, purchasing 

power, flow of consumers and other factors, the shape of the 

trade regions of the central places is hexagonal (~aggett, 

1977, p.146). Similarly, in applied branches of geography 

such as school location planning (see chapter 5), the areas 

surrounding a population center play an important role in 

educational planning. The areas served by a school or group 

of schools are called catchment areas. The distribution, size 



optimize the design of school districts, among other things. 

Similar neighborhood concepts have been useful in the planning 

of health services, shopping centers and banking facilities. 

These and other geographic notions of neighborhood have been 

formalized using different mathematical concepts including 

geometric entities and graphs. Commonly, the point of 

departure is a set of geographic units which are often 

,identified with either points or areas in the Euclidean plane. 

Geometric Entities.- 

When the Euclidean plane is the model involved, it is common 

to use regular geometric entities such as circles, rectangles 

or hexagons to delimit neighborhoods. Other geometric 

entities such as Thiessen polygons are also used to define . 
neighborhoods. In tnis case the polygons are constructed so 

that given a set of data points in the real plane, all points 

inside a polygon centered on a data point are closer to that 

point than to any other data point (~eucker et al., 1976, 

p.26). 

Geometric entities that satisfy a geographic condition are 

also used to define neighborhoods. For example, in the 

delimitation of catchment areas, traveling distances or 

existing physical barriers may determine the shape of the 

neighborhood (see Chapter 5). 



Two common characteristics of the neighborhoods described 

above are: a) the unit of interest (eitner a point or a line) 

belongs to the neighborhood and b) the resulting Euclidean 

subspace (the neighborhood) is connected in mathematical 

terms. 

It should be mentioned that in geographical applications it is 

,common to deal with either point or areal units. In both 

cases the treatment is very similar. When points are the 

units of interest they are often assumed to be in the center 

of the geometric entity. When dealing with areal units, each 

one is identified with a point (e.g. tne centroid) and the 

neighborhood is defined exactly as it is in the case of point 

units. 

Another way of defining the neighbors of an areal unit is 

through a contiguity relation. Among areal units it is said 

that two units are contiguous if they share a common boundary. 

In more formal terms, two areal units are neighbors if they 

have at least one segment in common, and the Euclidean 

subspace formed by the set of neighbors of a fixed areal unit 

11 ,,I is called the neighborhood of "a". 



Graphs . - 
When other models such as networks are used, two points are 

said to be neighbors if there is a line connecting them. For 

a given point "p" in the graph, the neighborhood of "ptt is 

defined as the set of neighbors of "p". When areal units are 

involved, it is possible to identify each one with a point and 

to draw a line between any two points, provided the 

corresponding areal units are neighbors. The original 

.structure involving areal units is known in graph theory as 

the dual of the graph (~arary, p.113), and the definition of 

neighborhood is very similar to the case where the units are 

points. 

The relations established in these graphs are sometimes 

represented in matrix form. Given "n" units, a nxn matrix is 
L 

defined as follows: 

1 if the units are neighbors 
mi j= 

0 otherwise 

In some applications weights are given to the neighboring 

relation. These quantities represent factors that are 

considered important for the phenomena under study. Examples 

might be the length of the boundary between two counties or 

the size of flows between two population centers. In this 

case the elements of the matrix are the values of the weights 

attached to each pair of units. 



Orders of Neighborhoods.- 

It has sometimes been useful in geographical analysis to 

define different orders of neighborhoods and neighbors. 

~ei~hborhoods like those defined in previous paragraphs are 

called first order neighborhoods and their elements first 

order neighbors. The set of points which are neighbors of the 

first order neighbors and are not first order neighbors 

,themselves are called second order neighbors. The resulting 

set is called a second order neighborhood. Third, fourth and 

successive orders of neighborhoods can be defined in a similar 

manner . 

Topological Neighborhoods 

. 
The concept of neighborhood plays a fundamental role in the 

development of topological theory. Some of this theory's 

basic concepts which will be used in subsequent chapters are 

discussed in the following paragraphs. 

First of all, it should be said that the definition of 

topological space is based on the notion of open set. A 

topology with which most readers are familiar is the "usual 

topology" in the real line. 



The Usual Topology.- 

Intervals are sets of real numbers commonly used in calculus 

and mathematical analysis. An interval is determined by two 

real numbers a, b where a < b. It is said that the interval 

is open if it does not contain its "extreme points a and b." 

Haaser et. al., (1959, p.23) define an open interval as 

follows : 

The open interval determined by two numbers a and b, where 
a < b, is the set of all real numbers x for which a<x<b. 

,This open interval is denoted by (a,b). Another way of 
writing this definition is 

An open set in the real line can be defined as follows: 

A set 0 is open if for every point x in 0 there is an open 
interval I such that x belongs to the interval I and the 
interval is contained in 0. The open intervals are examples 
of open sets (Royden, 1968, p.39). . 
A more formal definition is given by Hu (1964, p.39). 

A subset U of R is said to be an open set if for an 
arbitrarily given point u in U there exists a positive real 
number d such that a real number x is in U if I x-ul < d. 

In the real plane the open sets are defined in a similar way. 

Consider a disk surrounded by a tight ribbon. The ribbon is 

the "bordertt or limit of the disk. A circle (disk) that does 

not contain its border (ribbon) is called an open circle. 

Open circles are also examples of open sets in the usual 

topology of the real plane RxR. There are of course other 

definitions of open set which vary according to the 

5 
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topological space under consideration. 

The open set concept is crucial for establishing the concept 

of topological neighborhood. 

It is said that a set is a neighborhood of a point if it 

contains an open set that contains the point. 

Let X be a given space and p be a given point in X. A set 
- N  c X is said to be a neighborhood of the point p in the 
space X iff there exists an open set U of X such that 

This definition comprises the intuitive notion of 

neighborhood. The point of interest belongs to the 

neighborhood and the neighborhood is formed by the llspacel' 

that is near or proximal to the point. For example, in the L 

real plane an open circle with center in 'la1' is a neighborhood 

of point "a" (see figure 2.1 ) .  

Other topological concepts which have been useful in 

interpreting some of the results obtained in this study are 

those of interior, exterior and boundary points. Hu (1964, 

p.21) gives the following definitions: 

The point p is said to be an interior point of the set E 
provided that there exists a neighborhood N of p in X 
Contained in E. The point p is said to be an exterior point 
of E if there exists a neighborhood N of p in which X contains 
no point of E. Pinally, the point p is said to be a boundary 
Point of E in case every neighborhood N of p in X contains at 



least one point in E and at least one point not in E. 

By examining a particular case in the Euclidean plane it is 

possible to acquire a more intuitive grasp of this abstract 

c0ncep.t. Consider a circle in the real plane RxR. The points 

in tne circumference that limit the circle are border points 

while those in the circle are interior points (see figure 

2.1 ) .  

exterior point 

interior point 

border point 

............................................................ 
Figure 2.1 

9' 
P In other words, an open circle is defined as the set 

C = (x E RxR ; Ix-r'l <dl. All the points belonging to tne 

%. 
open circle are interior points of C. On tne other hand, the 

points lying on the circumference of the open circle, that is 
f 

jx E RxR ; I x-rll = dl, are boundary points of C. Finally, the 
I. 

B set of points that are neither in the open circle nor in its 



2.2.2 Spatial Autocorrelation 

A mathematical technique that was specifically designed for 

the study of spatial dependence is that of spatial 

autocorrelation. The concept of spatial autocorrelation can 

be summarized as follows: it is said that a set of areas 

exhibits positive spatial autocorrelation if high values of a 

variable in one area are associated with high values of the 

,same variable in neighboring areas. In brief, spatial 

autocorrelation is a statistical technique that allows the 

researcher to test hypotheses on spatial dependence. 

The entity under study is assumed to be a two-dimensional area 

which has been partitioned into non-overlapping regions that 

are exhaustive of the area. The basic areal units are called 

counties, but tne technique is equally valid if the objects of 

interest are point units. 

Since in the study of spatial dependence the relationship 

between an entity and its surrounding is fundamental, the 

concept of neighborhood has a key role in the spatial 

autocorrelation model. It is common practice to represent the 

neighborhood relationship in this type of analysis through tne 

use of a matrix. In some cases this permits the relations to 

be weighted and different orders of neighbors to be taken into 

Consideration. 



In order to test hypotheses on spatial autocorrelation various 

statistical techniques have been designed. One of the best 

known is the one proposed by Geary (cliff and Ord, 1973, p.8): 

2 
(n-1 ) .% f dij (xi-xj) 

1=1 ~ = 1  

where n is the number of units, 

xi is the value associated to the ith unit, 

Zi = xi-X ; the deviation with respect 
to the mean, 

0 if units i and j are not linked 
dij = - 

( 1  if units i and j are linked 

A= 1/2 Li ; the total number of links in 
the county system 

n 
Li= 2 Wi j ; tne number of units linked to unit i. 

Clearly, this measure is sensitive to the spatial pattern 

induced by the neighboring relation. However, it ignores 

other spatial characteristics of the units such as shape and 

size (cliff an Ord, 1973, p.272). 

There are many situations in which this type of technique has 

proven useful. Among them are map comparisons with 

applications to diffusion processes and the analysis of 



regression residuals (cliff and Ord, 1973, p.69, 105). 

2.2.3 Geostatistics 

~eosta'tistics is a field which was developed for, and mainly 

applied to, mining problems. Its relevance is not limited to 

mining however. Again tne concept of neighborhood is a 

fundamental part of the model. 

According to Clark (1979, p.1 ) geostatistics began in the 

early 1960's with the work of George Matheron and was then 

introduced as "The Theory of Regionalized Variables." The 

basic problem it addresses is the estimation of a sample at a 

particular location in space or time. A well-known 

application of these statistical techniques is the estimation 
b 

of ore reserves. 

The method is designed to permit local estimation. Given a 

relatively small number of samples in an area, how can the 

value of a fixed point belonging to that same area be 

estimated? 

The relative position of the point with respect to the samples 

is assumed to determine its value. This factor is accounted 

for in the model by means of the concept of distance. In fact 

it is often assumed that the difference in value between two 



points depends only on the distance between them and their 

relative orientation   lark, 1979, p.5). 

A basic concept in geostatistics is that of the variogram. 

Given the set of differences between the values of all the 

sample points, the variogram is defined as its standard 

deviation. 

>The experimental variogram is expressed as follows: 

Where h describes the distance and the relative orientation, g 

is the grade (value) associated with the point, x denotes the 

position of one sample and x+h the position of the other, and 

n is the number of possible pairs in the sample set. Y(h) is ' 

called the semi-variogram   lark, 1979, p.5). 

For a given distance and orientation (e.g. 100m and 

north-south) the values of the experimental variogram are 

calculated. The resulting set of values is plotted and used 

to calculate "expected" values of the difference between the 

grade values of two samples (Clark, 1979, p. 18) . 

According to Clark (1979, p.6) several semi-variogram models 

have been designed, but only a few are regularly used. These 

include the spherical and exponential models   lark, 1979, 

P - 6 )  



2.2.4. Topological Data Structures 

Another branch of geography in which the concept of 

geographical neighbornood has been especially important is 

that of Geographic Information Systems (GIS). There are in 

fact several areas where these applications have proven 

fruitful. Examples are image processing, digital terrain 

-models, computer cartography and census data bases. 

A similar process to mathematical modeling must be followed in 

systems design. A set of entities along with their 

characteristics and relationships has to be identified with 

formal structures that are representable in computer systems. 

Fortunately, there are several well-established computer 

representations for those mathematical structures such as 

graphs and matrices which are often used in geographic 

applications. 

In the design of a GIs it is particularly common to find 

spatial relationships that are easily manipulated through the 

use of graphs. Two examples are street structure in urban 

areas and transportation networks. Consequently, data 

structures that allow efficient manipulation of graphs have 

been designed in the past. These types of structures have 

been referred to in geographic literature as topological data 



structures. 

An example of an application of a topological data structure 

is the one Peucker et. al. proposed (1976) for the treatment 

of three-dimensional surfaces. 

The data is a set of irregularly distributed points of the 

surface. Each of the points is selected so that it has a high 

,content of information and is significant for the digital 

terrain model (~eucker and Chrisman, 1975, p.64). The data 

set is assumed to be "triangulated" so that every point is a 

vertex of a triangle. This triangular irregular network (TIN) 

is composed by triangular facets that cover the study area. 

The neighborhood of each point in the TIN is defined as the 

set of points that are connected to it by an edge of a 

triangle. The data structure is designed so that the 

neighborhood of each point is explicitly stored. 

This type of structure is important because it adequately 

represents a graph such as the TIN. However, its real value 

is that this representation of geographical data effectively 

allows the user to manipulate information using spatial 

criteria. The idea behind this type of structures is similar 

to the one proposed in this study and applied in a different 

context (~eucker and Chrisman, 1975). 



Many other GIs based on this type of structures are found in 

the literature. The reader is referred to Dutton, (1978) and 

Peucker and Chrisman (1975). 

The concept of neighborhood is also found in other areas of 

geoprocessing. For example, in image processing when the 

purpose is texture discrimination, it is common to replace the 

grey level of each point by the average grey level of its 

.neighborhood (~osenfeld, 1978, p.3), and in the manipulation 

of polygonal data the concept of local processing allows the 

user to work with an amount of data which would be impossible 

to consider if the whole data set were involved. 

2.3 Discussion 

Mathematical modeling has been used in geographical studies 

for the past thirty five years. The first stage of 

development of geographical quantitative techniques is 

characterized by the adaptation of existing techniques and 

models in other areas of knowledge, while a second stage can 

be identified by the development of models and techniques 

specifically designed for geographical purposes. Presently 

both the classical models and those that incorporate the 

notion of neighborhood continue to be widely used. 

It should be mentioned that besides those models that have 



Seen described there is a considerable amount of mathematical 

models and techniques that have been applied in a geographical 

context. Such is the case of regression analysis (~rouwer and 

Ni jkamp, 1984, Rogerson, l984), discriminant analysis 

(Fotheringham and Heeds, 1979, Yupa and Mayfield, 1978), 

probability theory ma or ley and Thornes, 1972, Burnett, 1978, 

Muckay, 1983), simulation (Phipps and Laverty, 1983, Morrill 

and Kelly, 1970) and linear programming (~romley and Hanink, 

,1985, Garfinkel and Nemhauser, 1970, Maxfield, 1972). 

Currently, three main tendencies of research are found in the 

area of quantitative geography: the application of existing 

models or techniques to real-world problems, the examination 

of the mathematical properties and characteristics of existing 

models and the modification of existing tools so that they 

overcome criticisms. 

Examples of the application, and in some cases adaptation of 

models to specific situations are the works of Brouwer and 

Nijkamp (1984) where a regression model is applied to the 

study of the regional quality-of-life and residential 

preferences in Holland and in that of Mulligan and Gibson 

(1984) where the purpose is to calibrate an economic base 

model for small communities. On the other hand, further 

studies of the characteristics of models are found in the 

research undertaken by Smith (1984) where the main purpose is 



to characterize the gravity model in theoretical terms and in 

: that of Jong, Sprenger and Van Veen (1984) where the extreme 

values of two spatial autocorrelation indices are derived. 

Finally, efforts to adapt existing models to conditions that 

had not been considered in the first design are found in the 

works of Bodson and Peeters (1 975) and Bivand (l984), 

regarding modifications of the linear regression model and the 

spatial dependence effect and in that of Schwab and Smith 

-(1985) and Slater (1984) where the question of the form of 

spatial interaction models regarding the level of spatial 

resolution is addressed. 

Since the initial stage of development of quantitative 

geography criticisms have been made at two different levels. 

At the more general level the criticisms are directed to the 

general use of quantitative techniques. The main argument is 

based on the idea that the quantitative approach is a 

positivist one  e en nett and Wrigley, 1981, p.10, Johnston, 
1981). At a second level comments are made around either the 

use of the models or in the mathematical characteristics of 

specific models and techniques. Most of the criticisms made 

in this second level are related with the statistical methods 

that are commonly found in geographical studies (~ould, 1970, 

Martin, 1974, Sheppard, 1979, Bennett and Wrigley, 1981, p.8). 

Quantitative geography is at a mature stage were the initial 



enthusiasm provoked by early results has faded, and the 

complete rejection of its benefits is not a current tendency. 

Mathematical modeling is viewed as a tool for geographical 

studies accepting that in some cases the quantitative methods 

have proven to be a fruitful approach and at the same time 

that their limitations are such that the search for better 

models is far from having come to an end. This last statement 

is particularly true in relation with the modeling of spatial 

,structures. 

As mentioned in the description of the classical models, 

widely used tools such as the factor models, were not designed 

for the representation of spatial structures. It is a fact 

that in the modeling of the geographical landscape two 

competing components are often found. On one hand the 

geographer is interested in studying the characteristics of a 

phenomena that are a consequence of the site itself but on the 

other hand geographical studies are focussed in the spatial 

relationships between a site and its surrounding. Berry 

(1968, p.226) describes this fact as the dichotomy within 

Geography, the dual concepts of site and situation: "Site is 

vertical referring to local, man-made relations, to form and 

morphology. Situation is horizontal and functional, referring 

to regional interdependencies and the connections between 

places, or what Ullman calls spatial interactions". These two 

competing components are present in the design of models. In 



f 
i. completely dominant over the "situation or Galton's" one, 

while in other nodels such as that of spatial autocorrelation 

the relationship is reversed. There is no doubt that to 

adequately represent spatial structures it is necessary to 

design models with a dominant "Galton's component" without 

obliterating the other one. In this thesis, models that 

incorporate Galton's component through the topological concept 

,of neighborhood are presented. 



Chapter 3. 

NEIGHBORHOOD MODELS 

Among the models presented in Chapter 2, those that use the 

notion of neighborhood to model spatial structure are clearly 

distinguishable. In each one of them geographical 

neighborhoods are represented through different abstract 

entities. However, a global treatment of the use of 

neighborhoods to represent spatial structures is not found in 

the literature. 

In the first sections of this chapter a quasi-mathematical 

structure is proposed as a general framework for the design of 

models that follow a neighborhood approach, and the concept of 

neighborhood model is presented. 

Different characteristics of neighborhoods are of interest for 

the spatial analyst. In the second section of the chapter, 

the notion of local variation of a neighborhood is formalized 

through various indices, and its geographical and mathematical 



interpretations are discussed. 

3.1 General Framework 

Since %he use of mathematical models in human geography is 

relatively new, the accumulated experience in formalizing (in 

a mathematical sense) geographical concepts is also relatively 

small. In the natural sciences it is a common practice to 

establish abstract models based on the scientist's knowledge 

of the phenomena under study. An analogous procedure has been 

followed in geographical models. 

It is, however, possible to establish explicitly, intermediate 

stages in the formalization process. This makes the modeler's 

task of selecting appropriate mathematical representations of 
b 

the geographical landscape easier. 

In this section two quasi-mathematical structures (geo-spaces 

and geo-subspaces) are defined as an aid in the design of 

models that incorporate neighborhoods. Both geo-spaces and 

geo-subspaces must be defined prior to designing the 

mathematical model. 

3.1.1. Intuitive Ideas 

Whenever the geographical landscape is modeled, geographical 



entities are commonly identified with mathematical entities 

such as points, lines, areas or surfaces. There are, however, 

other elements of importance to geographical analysis, such as 

the relative position of a entity with respect to its 

surrounding or neighborhood, that have seldom been dealt with 

mathematically. 

Maps are excellent examples of the fact that geographers are 

usually not interested in the study of isolated entities. 

Undoubtedly, the map is the most successful of geographical 

models. It allows the geographer to represent the most 

relevant spatial relationships including distance, contiguity, 

connectivity and shape. However, its most outstanding 

characteristic is that the relative position of all its 

elements with respect to their neighborhood is explicitly 
b 

represented. This fact allows geographers to manipulate the 

information content of maps using spatial criteria which focus 

on spatial relationships among the entities rather than on the 

entities themselves, although it should be mentioned that for 

geographers spatial relationships are often implicit in maps, 

and in many cases they deal with them in an intuitive manner. 

3.1.2 Spaces and Subspaces 

The major aim of this study is to present the development of 

formal models with characteristics similar to the ones 



mentioned above for maps. The first step in the design of 

such models is to formalize the concept of "geographical 

neighborhood.I1 Since it is a very broad concept, discussion 

in the following paragraphs is limited to the case where the 

"geographical landscape" has been modeled representing its 

entities and relations in a Euclidean space. Since Euclidean 

spaces are subject to very intuitive geometrical 

interpretations, their correspondence with geographical space 

becomes very natural. 

In crude terms a geographical neighborhood is either a 

geographical area limited by physical features or 

administrative boundaries or an area tnat surrounds a 

geographical entity such as a city, a school or an airport. 

In Euclidean space the concept of "geographical neighborhood" 
b 

can be identified with that of subspace, a concept which is 

often used in mathematical analysis. In general terms, a 

subspace of a Euclidean space is simply a subset of the 

original one. There are, however, other definitions of 

subspace depending on the mathematical structure in question. 

For example, Royden (1 968, pp.127, 137) gives the following 

definitions of metric space and subspace: 

A metric space ( ~ , p )  is a nonempty set X of elements (which we 
call points) together with a real-valued function p defined on 
XxX such that for all x,y and z in X: 

i> P(X,Y) 2 0; 
ii) p(x,~) = 0 if and only if x = y; 



iii> P(X,Y> = p(y,x); 
iv) P ~ Y )  I P(X,Z) + p(z,y) 

The function p is called a metric. 

If ( ~ , p )  is a metric space and S is a subset of X, then S 
becomes a metric space if we restrict p to S, that is to say, 
if we take as the distance between two points of 9 their 
distance as points of X. When we consider S as a metric space 
with this metric, we call S a subspace of X. 

In other words, a set of the space is a subspace if it 

inherits the mathematical structure defined in the space. In 

many other mathematical spaces, such as vector and 

topological, subspaces play an important theoretical role. 

Considered intuitively and transferred to a map context, the 

concept of subspace might be expressed as follows: for a 

given map, a piece of map is still a map. However, closer 

scrutiny of the analogy makes it clear that this statement is . 
not always true. If too small a piece of map is taken, it 

ceases to satisfy the function of a map. In the same way, if 

isolated elements of a map are cut out, tne result will 

probably not be a map. 

This observation clearly indicates that if the concept of 

geographical neighborhood is to be formalized, precautions 

should be taken so that the proposed model preserves certain 

features that are essential for spatial analysis. 

The conditions imposed on a set of a space to be a subspace 



must be analogous to the conditions imposed on the abstract 

entities selected to represent a geographical neighborhood 

regarding certain spatial conditions such as maximum distance, 

minimum area or contiguity constraints. 

3.1 . 3  Geo-Spaces 

Having established a resemblance between the concept of 

neighborhood in geographical terms and the mathematical 

concept of subspace, in order to proceed with the 

formalization process it is necessary to introduce the concept 

of geo-space. 

It is possible to ascribe roles to entities in geographical 

theory that are similar to these roles played by space and . 
subspace in mathematics. These entities are named geo-spaces 

and geo-subspaces. They are discussed in the the following 

paragraphs, and although their definition is intuitive and 

general, they have proved to be useful for the purposes of 

this study. 

In the geographic modeling process it is common to find a set 

of entities under study (such as rivers, roads, cities or 

census tracts) that are identified with mathematical entities 

(such as points and lines in a Euclidean space, nodes or links 

in a graph or elements of a matrix). One or more spatial 



relations are established among the entities. These spatial 

relations are represented mathematically through equations or 

specific mathematical structures. In the formalization 

process it is common to assume that the mathematical entities 

of interest are immersed in a mathematical space. Some of the 

most commonly used mathematical spaces in geographic 

applications are the Euclidean, matrix and topological spaces. 

A quasi-mathematical structure of this type is called a 

geo-space . 

To come back to the example in Section 2.1.2, in the modeling 

of migration it is common to find a set of population centers 

identified with a set of points in the Euclidean plane. The 

basic spatial relation is established through distance and is 

expressed in an equation such as equation 2.1 . In this case 
b 

we say that we have a Xuclidean geo-space. 

Clearly, a geo-space is not really a mathematical structure 

since it contains elements of the geographical landscape. 

Rather it is the quasi-mathematical product of an intermediate 

step in the modeling process. The purpose of using such an 

intermediate structure in the formalization process instead of 

a purely mathematical one is to ensure the inclusion of all 

the spatial relationships that have been identified as 

relevant. 



A natural way of conceptualizing a subspace of a geo-space is 

to consider a subset of the entities under study along with 

their mathematical counterpart, where the spatial relations 

established in the geo-space are preserved along with their 

mathematical expressions. The subsets considered have to be 

part of a subspace of the mathematical space under 

consideration whenever the latter is part of the geo-space. 

For example, a subspace of the Euclidean geo-space described 

in the previous section is simply a subset of the set of 

cities considered and the points in the Euclidean space with 

which they are identified. The spatial relation established 
b 

among the points is preserved, since in the Euclidean space it 

is always possible to calculate the distance between any two 

points. 

In mathematical metric spaces the constraint imposed on the 

subspace is the preservation of the distance function. 

Similarly, in the case of geo-subspaces the main constraint is 

related to the preservation of the spatial relationships 

established in the geo-space. 



3.2 Definition of Neighborhood Model 

Once the spatial relationships of interest have been 

explicitly expressed either verbally or mathematically in the 

definition of the geo-space and the corresponding 

geo-subspaces have been identified, the next stage is to 

formally establish the mathematical model to be used. 

As will be seen in the following chapters the concept of 

geo-subspace permits the design of formal tools to model the 

concept of geographical neighborhood. 

Formal tools that are designed to represent mathematically the 

spatial structure through the notion of neighborhood are 

called Neighborhood Models. 

These models are suitable whenever the interest of the study 

resides in the characteristics or behavior of sub-spaces 

rather than in single or isolated entities. Autocorrelation, 

geostatistics and topological data structures are examples of 

neighborhood models. 

3.3. The Heterogeneity Index 

Section 2.2 shows that the notion of "geographical 

neighborhood" figures in the most recent geographical models. 



It is vital here to achieve the previously stated objective of 

modeling the "geographical landscape" through the concept of 

geo-subspace. One of the characteristics of a subspace that 

interests the geographer is "variation." The similarity ( or 
-- - -.- 

difference) between an entity and its surrounding is a measure 

of this variation. Throughout this chapter several measures 

of variation of a geo-subspace are proposed and possible 

interpretations are indicated. These measures will be called 

,heterogeneity indices -- 
\--. _ . 

3.3.1 Formal Definition 

In order to begin formalizing the idea of local variation it 

is assumed that the study area is partitioned into 

non-overlaping areal units that completely cover it and that 

the variable of interest associated with each areal unit is 

only one and it is of interval scale type. Additionally, it 

is assumed that the geo-subspace of each areal unit is 

well-defined. Thus, the number of geo-subspaces (in this case 

neighborhoods) is equal to the number of areal units. The 

definitions would also be valid if the units of study were 

points. 

The heterogeneity index associated with the neighborhood of 

unit "a" , Ia is defined as follows: 



where Xi is the value associated with the ith areal unit, Xa 

is the value of unit "a" and k is the number of neighbors of 

unit "a." 
11 

Ia is therefore the sum of squares of deviations _ __I_____ - -----.. 

between unit "a" and its k neighbors. , u'-- 
- -  - - '. - ---- 

'Clearly, this index is highly dependent on the units of 

measurement. Therefore, in order to make comparisons between 

neighborhoods easier a new index is defined as follows: 

Imax - Ia 
Ha = 

Imax - Imin 

/,, I 
',- ,' '1 3 where Ia is the heterogeneity index associated with the 

neighborhood of "a" , and Imin and Imax are the maximum and 

minimum value of the set of heterogeneity indices associated 

with the neighborhoods of the areal units under study. Ha 

takes values between zero and one. The higher the degree of 
u- - - 

/- /, / 17-1- r - 
variation of - the neighborhood, the closer the value of Ha to 

-* ./" /,- fl - . / - \ - - - 
zero. 

Another measure of variation which appears natural under the 

same assumptions is that of local variance defined as follows: 



k+ 1 2 
(xi - Xa) 

va = I 
i=l k+ 1 

where k is the number of neighbors of unit "at', Xi is the 

value associated to the ith unit and Xa is the mean value of 

the values associated with unit "a" and its neighbors i.e. 

Xi 
2- ; where Xa = X k+l 

k + l  

Va is therefore the sum of squares of deviations towards the 

mean. 

A way to standardize this method has been previously proposed 

(silk, p.20). Since comparisons are essential in this type of 

analysis, a similar standardization is proposed for Va as 

follows : 

In statistical terms, the index as defined in equation 3.3. 

corresponds to the variance of the geo-subspace. Usually, for 

a given sample a mean and a variance are associated to it. In 

this case, for a given geo-space a set of variances and means 

are associated to it, one for each of the geo-subspaces under 



study. It is, however, also possible to calculate the mean 

and variance of the set of heterogeneity indices associated to 

a geo-space. For example, consider a geo-space represented 

via a graph where each point is connected to all the other 

points, of the graph (i.e. it is a complete graph) as shown in 

figure 3.1. In this case, for each point its neighbors are 

the remaining points in the graph, and as will be show in the 

following paragraph, the value of the heterogeneity index as 

defined in equation 3.3 is the same for every one of the 

points. 

Let al, a2, a3, ... an be the points of the graph and Xal, 

Xa2, ... Xan the values associated to each one of them. The 

heterogeneity index of the geo-subspace of each point ai is: 

Vai = 
n 

- Xal + Xa2 + ... + Xan 
where X = 

n 

In this case, since all the heterogeneity indices of the 

geo-subspaces have the same value, the variance of the indices 

for this particular geo-space is always zero. 

However, as shown in section 4.3.2, the most common case in 

geographical studies is that of a geo-space represented via a 



non-complete graph, so that the variance of its heterogeneity 

indices will differ from zero in most cases. 

Complete graphs of three and four points. 
Figure 3.1 . 

The Multivariate Case 

In spatial analysis the researcher often deals with several 

traits which characterize each of the units. Therefore, it 

becomes necessary to extend the definition of the 

heterogeneity index to the multivariate case. 

The purpose of such an index is to summarize for the different 

values associated to each of the spatial units the 

relationship between each of the units and its neighbors. A 

feasible way of doing this is by obtaining the heterogeneity 

index separately for each one of the variables of interest and 

then adding them. 



The multivariate heterogeneity index for unit "a" is defined 

as follows: 

where Xij is the value of the jth variable for the ith 

neighbor of "att, Xaj is the value of the jth variable 

associated with unit "a" , p is the number of variables and k 
'is the number of neighbors of unit "a". 

Similarly, as the heterogeneity index was defined as a measure 

of the local variance in equation 3.3, it is feasible to 

define a multivariate index adding the variances associated to 

each variable for a given geo-subspace as follows: 

p k+l - 2 

I t 
( Xij - Xj ) 

where Xj is the mean value of the jth variable associated to 

unit "a" and its neighbors. 

Analogously to the univariate case, the variance of the set of 

multivariate heterogeneity indices can be calculated for the 

geo-space under study. 

There are various problems involved in the multivariate case. 



The most obvious one is tne fact that the variables are 

measured in different units which are often non-comparable. 

The usual procedure to overcome this restriction is to apply a 

transformation to the original variables. An example of a 

transformation used to equalize the variables is to force them 

to have unit variance. There is no complete agreement on the 

merits of these methods, and the discussion of whether to 

ignore the problem or to apply a transformation is left to the 

judgment of the analyst of the problem at hand. 

Nevertheless, it is possible to redefine the index so that 

comparisons among the various indices associated with the 

different variables become easier. Let Haj be the index 

associated to regional unit "at' according to variable j. The 

new index is defined as follows: 

P 
H a =  Haj 

j =1 

The value of this index is between zero and p. The smaller 

the variation of the neighborhood with respect to the p 

variables, the closer the value of Ha to p. 

Another problem that arises when several variables are 

included in the analysis is related to the definition of 

neighborhood. 



The geo-spaces generated by the study of two variables are not 

necessarily the same. As a consequence a geo-subspace of one 

of them is not necessarily a geo-subspace of the other. In 

terms of neighborhoods this means that for a given unit "a" 

its neighbors with respect to one variable are not necessarily 

the same with respect to another one. If the neighborhood 

relation for each variable were represented by means of a 

graph, the generated graphs could be different. 

The definition of the multivariate heterogeneity index has to 

be altered as follows to consider this contingency: 

where kj is the number of neighbors of unit "a" induced by 

the jth variable and kj = kl, ..., kp. 

As with previous indices, the deviation with respect to the 

value of unit "a" is calculated for each one of the "p" 

variables. However, in this case the neighbors and their 

number can vary from one variable to the other. 

3 . 3 . 2  Interpretations 

In the previous section measures of local variation were 

proposed for univariate and multivariate cases. However, no 



geographical meaning was given to their values. Two possible 

interpretations of the heterogeneity indices are described in 

t'he following paragraphs. 

The Heterogeneity Index as a Topological Measure 

In the interpretation of the heterogeneity index as a 

topological measure, knowledge of two branches of mathematics 

,is combined. Concepts that are a traditional part of 

topological studies such as the interior and boundary of a 

region, are combined with concepts from the relatively new 

area of fuzzy sets, such as the degree of membership of an 

element to a set. 

In order to fully understand the role of the heterogeneity 
L 

index it is necessary to establish the assumptions upon which 

the interpretation rests. Thus, in the first part of this 

section some basic mathematical concepts are mentioned prior 

to interpreting the index. 

Topological Concepts.- First of all, it is assumed that the 

point of departure is a connected graph G that forms part of a 

geo-space. That is, the entities under study have been 

identified with the nodes and links between them that 

represent a spatial relationship. Additionally, the neighbors 

of a node are defined as its first order neighbors. 



For convenience, a topology is defined on the graph so that 

every subgraph formed by a node and its neighbors is a 

topological neighborhood. The mathematical details of this 

definitions are discussed in section 3.4. 

Fuzzy Set Concepts.- In the classic concept of membership of 

an element to a set, the element either belongs or does not 

belong to the set. This concept was expanded by Zadeh (1965) 

to reflect more accurately situations which often arise in the 

real world. Whether an element belongs to a class is often a 

matter of degree. To model these situations mathematically 

Zadeh proposed an entity which he called "fuzzy set." 

Zadeh's definition of fuzzy set (1965) follows: 

L 

Given X a space of points, a fuzzy set A in X is characterized 
by a menbership function fa(x) which associates with each 
point in X a real number in the interval (0,1), The nearer 
the value of fa(x) to unity, the higher the grade of 
membership of x in A. 

Based on this definition, operations and concepts similar to 

those studied in ordinary sets have been applied to the study 

of fuzzy sets. Examples of such operations include union and 

intersection, convexity and algebraic operations. 

The concept of fuzzy sets has been widely applied in areas 

that include metamatnematics, numerical taxonomy and pattern 

recognition. A large amount of research has been undertaken 



since the concept was formulated by Zadeh in the 1960's. 

A Geographical Interpretation.- One of the problems that has 

traditionally worried geographers is the definition of classes 

among a set of entities. It is in this context that the 

heterogeneity index becomes meaningful. In this thesis the 

idea is to define the degree of membership in a class for each 

one of the nodes of the graph. 

Since in this initial process there are no pre-defined 

classes, the degree of membership is better understood as the 

potential for becoming an interior point of a hypothetical 

class. 

For a fixed point p in the graph G the heterogeneity index Hp 

can be interpreted as a measure of the potential of membership 

of p to the interior of a hypothetical region. According to 

the topological definition of the interior of a region, a 

point is in the interior if there exists a neighborhood of p 

that belongs to the region. In this case the topological 

neighborhood of point p is the set of its first order 

neighbors. It is at this stage that the concept of fuzzy set 

becomes relevant. 

Although it can not be established at this point whether the 

neighborhood belongs to the region or not, it is possible to 



measure the degree of membership of the neighborhood to the 

interior of the region. This measure is given by the 

heterogeneity index associated with the neighborhood of p. 

The closer the value of Hp to one, the higher the degree of 

membership of the neighborhood to the interior of the region. 

Inversely, the closer the value of Hp to zero, the lower the 

degree of membership of the neighborhood to the interior. 

This relationship corresponds to our intuitive conception of 

the interior of a region. If a geo-subspace tends to be 

homogeneous; that is, if the similarity between an entity and 

its surrounding is high, then it must be in the interior of a 

region. As expected, in this case the value of the index is 

close to one. In the inverse case, if the subspace is highly 

heterogeneous, it must belong to the border of a region and 

the value of the heterogeneity index is close to zero. 

It should be noted that in our problem the notion of the 

exterior of a region is meaningless since there are no defined 

regions. Therefore, it is possible to distinguish only 

between interior and boundary points. 

This interpretation of the heterogeneity index as a measure of 

the potential of a point to be either in the interior or 

border of a region will be applied in a classification context 

in the following chapter. 



The Heterogeneity Index as a Geographical Measure 

The homogeneity of a geo-subspace has also been a traditional 

problem for geographers. While the number of geographical 

studies related to regionalization (see Chapter 4) is quite 

large, the study of the heterogeneity of a geo-subspace has 

not received much attention. Intuitively however, the concept 

seems to be very important for spatial analysis studies. 

For example, in issues related to mapmaking the cartographer 

sometimes views the areas of "heterogeneity" as an indicator 

of the scales that should be used. In such cases, the 

assumption is that for areas that show a "uniform landscape" 

there is, in general terms, less interest in producing larger 

scale maps. A second example comes from social geography, 

where the study of urban spatial patterns has received much 

attention, particularly regarding the distribution of social 

groups (silk, 1979, p.100). Urban areas have been 

differentiated by the social characteristics of their 

population. Nevertheless, spatial patterns of the boundaries 

of the "city neighborhoods" are intuitively equally important. 

Two contiguous city neighborhoods most likely interact 

significantly through their boundaries. If this is so, 

"highly heterogeneous" boundaries must play a different role 

in the study of social interaction than "less heterogeneous" 

ones. A high income residential neighborhood surrounded by a 



low income one must interact in a different manner with its 

surroundings than a similar high income residential 

neighborhood would with a middle-class one. 

Heterogeneity indices similar to the ones proposed in this 

chapter could be used in the study of geographical 

heterogeneity. An example of an application of this concept 

is found in the educational planning problem presented in 

Chapter 5. 

3.4. Fuzzy Topology 

A close examination of the intuitive ideas behind the 

mathematical theory of topology clearly points out the strong 

resemblance between the geographical problem posed in this 

thesis and one commonly encountered in this branch of 

mathematics. Firby and Gardiner (1982) give an excellent 

overview of the main ideas that are the basis for the 

development of topological theory. The term "topologyt' was 

originally introduced in the 19th century by one of Gausst 

students and was used in addition to "analysis situs" to refer 

to this new branch of mathematics. Two parallel developments 

of topological theory can be identified: point-set or general 

topology and algebraic topology. Point-set topology was first 

inspired by Cantor's work (1880) on the general theory of 

sets, but its major advancement occurred only in this century 



in the work of Frechet (1906) and Hausdorff (1912). 

In general topology, concepts that are usually defined in a 

Euclidean space such as "limit" and "continuity" are 

generalized to abstract sets through the notion of 

neighborhood. 

For example, the definition of continuity of a function 

,defined in the real plane (HXK) is based on the notion of open 

interval as can be appreciated from the following formal 

definition given by Haaser et.al. (1959, p.327). 

The function f is continuous at the point Xo in Df if for each 
c > 0 there exists a d > 0 such that 

whenever X E Df and [ X  - XO/ < d. Df denotes the domain of 
the function f. 

In a similar manner the concept of continuity is generalized 

to abstract sets using the concept of open set and 

neighborhood. 

For example, a function from a metric space X to a metric 

space Y is continuous if and only if for each open set 0 in Y, 

- 1 
the set f (0) is an open set in X (~oyden, 1968, p.132). 

In summary, the space surrounding a point or, in other words, 

the notion of nearness to a point is formalized in general 

topology by means of the concepts of open set and neighborhood 



and is used to generalize ideas that had been developed when 

the set of interest was the real numbers. 

In contrast, algebraic topology, inspired by more geometrical 

problems, was introduced by Poincare between 1895 and 1905. 

It should be mentioned that this thesis focusses on the 

application of general rather than algebraic or surface 

topology. Nevertheless, it is recognized that concepts 

developed in areas where there is a geometrical approach, such 

as surface topology, can be of interest for certain 

geographical studies. 

3.4.1 Definition of Fuzziness 

As in many other branches of mathematics, general topology is . 
based on the traditional concept of membership to a set where 

an element either belongs or does not belong to it. As 

mentioned in section 3.3.2 the concept of fuzzy set has been 

used in various branches of mathematics to generalize 

theories. For example in traditional systems of formal logic 

a proposition is either true or false. However, the 

application of the notion of fuzziness has permitted the 

development of a multi-valued logic which has been found 

useful in the design of the so-called artificial intelligence 

expert systems. 



In the case of general topology the idea of fuzziness in a 

geographical context appears in a natural manner. In the same 

way as the bivalent notion of membership to a set does not 

provide an adequate model for some real problem-solving 

situations in applied mathematics, in geography the bivalent 

notion of the interior of a set as defined in topology is not 

always adequate for regionalization purposes (see section 

4.304) 

With the aid of the heterogeneity index it is possible to 

formalize the idea of fuzziness in topological terms. For 

example, once a geo-space under study has been identified with 

a graph as defined in section 3.3.2, a topology can be defined 

on this set. 

b 

Since the operations among graphs are implicit in the concept 

of topology, the definitions of union and intersection between 

graphs have to be established. 

Union: Given two graphs G1 and G2, with their corresponding 

sets of nodes V1 and V2, and of links X1 and X2, the union 

between G1 and G2 (GI U G2) is the graph G with V = V1 U V2 

and X = X1 U X2 (~arary, 1972, p.21 ) .  

Intersection: The intersection GI fl G2 is defined through the 

links as follows: X = X1n X2 and V is the set of all the nodes 



represented in X. 

For convenience the following definition of a topology on G is 

given: 

U is an open set of G if: 

i) U is a subgraph of G and 

ii) for every point p E v(u), there 

exists a non-empty connected subgraph 

N of U such that v(~)f(pj and p E v(N). 

It can be proven that these open sets satisfy the conditions 

required to be a topology of G (see Appendix A). 

In particular for every point p in V(G) the subgraph formed by 

p and its neighbors is a topological neighborhood. This can 

also be proven (see Appendix A). 

It should be remembered that other topologies can be defined 

on G. The convenience of this particular definition is that 

entities which have been previously used to model the notion 

of "geographical neighborhood" such as the subgraph formed by 

a node and its first neighbors are also topological 

neighborhoods. 

As a result, the heterogeneity index associated to a 



geographical neighborhood becomes part of a topological space. 

The heterogeneity index can be interpreted topologically as 

the degree of membership of a neighborhood to the interior of 

a set. 

3.5 Other Indices 

In the definition of the heterogeneity index it was assumed 

that the variables involved were of interval scale. At this 

point the question of whether it is possible to define 

equivalent indices for other types of variables is considered, 

and an equivalent index is proposed for those cases in which 

the variables are of nominal type. 

The class to which a particular unit belongs can be determined 
C 

by a nominal variable. These types of variables are 

encountered in geographical problems in which characteristics 

that can only be described through classes are involved. Such 

is the case of spatial analysis problems where variables such 

as sex (female, male), income (low, medium, high), religion, 

or nationality characterize the spatial units under study. 

There are several measures used to assess the similarity 

between units with respect to nominal variables. The 

comparison is made in terms of whether the units have the same 

or different scores on the variables ( ~ n d e n b e r ~ ,  1973, p.123). 



The following "matching coefficient" is one of those 

similarity measures: 

Nab 
Sab = - 

T 

where Sab is the similarity between units !'a1' and "b" , Nab is 

the number of variables on which the units match and T is the 

total number of variables. The more similar two units are, 

the closer to 1 the value of Sab. 

The particular objective at this point is to define a 

similarity index that reflects the relationship between a unit 

and its neighbors. The index should be defined so that the 

more similar a unit is to its neighbors, the larger the value 

of the index; the more heterogeneous a unit is with respect 

to its neighbors, the closer to zero the value of the index. 

The proposed index follows: 

1 Nia 

where Nia is the number of variables on which units "a1' and 

I, i I! match, T is the total number of variables and k is the 

number of neighbors of "a". 

If unit "a" and its k neighbors match in all the variables 



then the index Ia equals 1.  If unit "a" does not match in any 

of the variables with any neighbor, the value of the index is 

zero. 

There are many other matching coefficients. Therefore, the 

heterogeneity index has to be redefined in every case 

depending on the measure used. Whether a particular index is 

appropriate or not depends on the problem at hand. 

3.6 Conclusions 

A general framework for the design of models that represent 

spatial structure mathematically using the notion of 

neighborhood was established in the first part of this 

chapter. The benefits of this approach can be appreciated in 
b 

the design of the two neighborhood models in the following 

chapters. 

As a first step in the development of neighborhood models 

measures of local variation of a geo-subspace were defined and 

through them the geographical notion of neighborhood was 

related to the topological concept of neighborhood. 

These measures, heterogeneity indices, are meaningful in both 

geographical and mathematical terms. From a geographical 

point of view, this formalization is important for the modeler 



since the geographical entity of neighborhood is identified 

with an element of a mathematical structure which has been 

broadly studied during this century. On the other hand, in 

mathematical terms the indices allow the definition of 

fuzziness in a topological space. A development which to the 

best of the knowledge of the author has not been explored 

before and could lead to the development of a new topology, a 

fuzzy topology. 



Chapter 4. 

A TOPOLOGICAL APPROACH TO REGIONALIZATION 

Regionalization is probably one of the best known branches of 

geography. One of the central issues in regionalization 

problems is homogeneity. It seems natural, therefore, to 

apply a concept like local variation of a geo-subspace to the 

process of region building. In this chapter an application of 

the heterogeneity index in the design of classification 
L 

algorithms is presented. In the first and second sections an 

overview of regionalization is given, and several existing 

spatial algorithms are discussed. In the final sections two 

regionalization algorithms that use a heterogeneity index are 

presented, and a hypothetical case is included. 

4.1 Regionalization as a Classification Problem 

The identification of areal groups that show a homogeneous 

distribution of one or more characteristics but differ from 

other groups is one of the central issues in regional 



geography (~obler , 1958, p. 1 4 0 ) .  

Regionalization is the process by which regions are identified 

and classified. Bunge (1966) clearly recognizes the 

definition of regions as a classification or taxonomic 

problem. In taxonomic terminology, a uniform region is 

equivalent to an areal class, a single feature region is a 

classification using a single category, etc. From this point 

of view a regionalization is a classification of geographic 

units. 

A whole body of classification techniques have been developed 

as an inquiry tool for other sciences such as biology and 

botany. The methods developed in classification or cluster 

analysis are in essence formal; that is, they employ a 

mathematical frame. The intent of such methods is to find a 

solution to a classification problem similar to the one 

produced by a specialist. Decision rules for classifications 

are usually designed in the form of algorithms. Various 

disciplines use algorithms that are in essence equal but have 

been adapted to different circumstances. Regional geography 

shares universally accepted methods such as "central 

agglomerative procedures." Geographic studies which adopt a 

classification methodology to various contexts have been 

reported. Some examples are the studies of areal patterns in 

cities  ones, 1977), the partition of an area into adequate 



zones for the optimal location of service centers such as 

hospitals and schools (~cott, 1969) and political districting 

(~arfinkel and Nemhauser, 1968). 

According to Haggett et al. (1 977, p.451 ) there are three 

classificatory approaches that have been used by geographers: 

uniform regions, nodal regions and planning or programming 

regions. Uniform regions are those in which places located 

within the regions are homogeneous with respect to one or more 

properties. The regions are disjoint, contiguous and 

completely exhaust the study area. Nodal regions measure 

interactions between units such as migration and number of 

telephone calls. Planning regions are created to satisfy 

specific needs of an institution, to implement policy 

decisions or for administrative purposes. The criteria 

selected to define these regions reflect the objectives for 

which they were created. Such is the case of the definition 

of enumeration areas for a census. The resulting regions are 

not necessarily contiguous and might not exhaust the study 

area. 

In addition to the clear differences among types of regions it 

should be emphasized that the classification of locations into 

regions also serves different purposes. The main ones are: 

hypothesis testing, administration and programming. In the 

case of nodal and uniform regions, classification is often 



undertaken as an exercise to substantiate spatial theories. 

The definition of programming regions serves specific 

purposes. This does not mean that the types of regions are 

not closely related. In fact, the definition of programming 

regions is often constrained by previously defined nodal or 

uniform regions. 

4.1 .1 Elements of a Regionalization 

Depending on the purpose of regionalization, different choices 

are available to the analyst. Each one has an impact on the 

result of the process. Therefore, the appropriate selection 

of units, algorithms, etc is of vital importance. In some 

cases choices are almost equivalent, while others differ 

drastically. These decisions often depend on the analyst's 

understanding of the problem itself. It could therefore be 

argued that this introduces a subjective factor to the 

regionalization process. 

When a classification exercise is carried out, the first stage 

consists in defining its elements. A regionalization has the 

same basic elements as other classifications, but it also adds 

spatial constraints. The elements of regionalization are: 

- the units for the regionalization 
- the properties that characterize the regions 
- a measure of homogeneity or similarity 



- spatial constraints such as contiguity 
and compactness 

- a grouping criterion 
- the algorithm to create the regions 
- the number of regions. 

At this point it is worth mentioning the principal factor that 

singularizes region-building in comparison to other 

classification schemes: the data units have an implicit 

locational characteristic (~unge, 1966). In numerical 

taxonomy similarity and nearness are equivalent; however in 

spatial applications it is important to draw a distinction 

between the two terms. Similarity measures are commonly 

applied with a nearness or contiguity constraint. 

4.1.2 The Geographic Units 

The two main limitations which the analyst faces in the 

selection of units are the availability and the level of 

aggregation of the data. According to Sawicki (1973), the 

availability of locational data for urban and regional 

researchers is very limited. In most cases it is obtained 

from secondary sources such as census and administrative 

offices. Data is often compiled for fixed administrative 

areas such as school districts or for street blocks. The 

accessibility of census data and availability of statistical 



packages has increased, but spatial analysts have become 

increasingly aware that existing data is not always compatible 

with the hypothesis under study (~awicki, 1973, p. 146). 

The two most common regionalization units are areal and point 

types. It appears that the most popular areal level used in 

urban studies has been the census tract (~awicki, 1973, 

p.110). Tracts are delineated so that they are homogeneous 

.with respect to characteristics such as income and 

topographical features, as well as constraints such as 

population size and contiguity. It seems to be the case that 

analysts have a vast range of levels of aggregation from which 

an appropriate selection may be made. However, spatial 

analysis done at different levels of aggregation has shown not 

only different but contradictory results (~awicki, 1973, 

p.110). The fact that the selection of units determines to a 

great extent the results of spatial analysis severely 

restricts the researcher since s/he often does not have 

control of the definition of units used to compile data. 

4.1.3 Measures of Homogeneity 

In geographic studies regions are considered "areal systems 

based on levels of similarities and differences in spatially 

distributed traits" (~obler, 1958, p.140). Homogeneity is 

identified with low areal variance and heterogeneity with high 



areal variance (~unge, 1966, p.22). Regions must be 

internally homogeneous and differentiated from other regions. 

It is in this context that the grouping of areas into regions 

has been approached as a classification problem. 

Identifying homogeneity with similarity as it is understood in 

numerical taxonomy has made it possible to define regions 

using the same techniques as in cluster analysis. To carry 

,out a regionalization it is therefore necessary to establish 

the significance of homogeneity or similarity among areas and 

regions. 

In the following paragraphs some of the measures of similarity 

and.dissimilarity that have been used for grouping purposes 

are presented. The point of departure is a set of units and a 
b 

set of variables characterizing them. Depending on the scale 

of measurement the variables can be classified in four groups: 

nominal, ordinal, interval and ratio. 

1 .  A nominal scale allows distinctions to be 

made between classes. 

2. An ordinal scale induces an ordering of the objects. 

3. An interval scale allows comparisons of two objects 

by neans of the differences between them. 

4. A ratio allows comparisons of two objects by 

both a difference and a ratio. 

(Andenberg, 1973, p.27) 



Some of the similarity measures used for interval scale data 

follow: 

Minkowski Metric 

The distance between units "i" and "j" according to the 

Minkowski metric is: 

where q>l and p is the number of variables. In particular for 

q = 2, Dq is the Euclidean distance. 

The greater the dissimilarity between units "k" and "j", the 

larger the value of Dq. The measure increases with decreasing 

similarity and decreases with increasing similarity. In 

geographic applications the Euclidean distance is the most 

commonly used metric. 

When the Minkowski metric is used, it is assumed that the 

variables are immersed in an orthogonal space. This poses 

some limitations in geographic applications, since the 

variables are often not orthogonal. Principal component 

analysis has been used to overcome this restriction (~yfulgen 



and Nordgard, 1973). 

Correlation Analysis 

The prbduct moment correlation coefficient can be used as a 

measure of association between units. In geographic terms the 

degree of association has been interpreted as a measure of 

"regional bonds" (~aggett et. al., 1977, p.476). One of the 

,central problems of this method is that the variables 

associated to a unit involve different measurement units. 

This renders mean and variance meaningless (~ndenberg, 1973, 

p.113). The correlation between data units "j" and "k" is 

defined as: 

P - - 
(xij - xj) ( ~ i k  - xk) 

i= 1 
Rjk = 

P - 2 P - 2 112 [r (xij -xj) z ( ~ i k - X k )  ] 
i=l i= 1 

P 
where Xi = lIp Xi and p is the number of variables. 

i=l 

Analysis of Variance 

There are at least four measures of similarity that have been 

used in terms of analysis of variance. The first two 

quantities (a and b below) are used in univariate cases while 

the last two (c and d below) are used in multivariate cases. 



a) In grouping procedures the following quantity is used as 

an objective function: 

where Wi is the weight assigned to each data unit, n is the 

number of units and 5 denotes the weighted arithmetic mean of 

1 those Xi that are assigned to the subset to which element lli'l 

belongs  ishe her, 1958, p.789). D decreases as the groups 

become more homogeneous. D is known as the sum of squares 

within groups in the sense of analysis of variance. In 

grouping procedures the objective is to minimize D. 

b) In building regions it is desirable to have internal 

differences minimized and differences between regions 

maximized. That is, homogeneity within regions and 

heterogeneity between regions should characterize the 

grouping. 

The following measure shows these inter and intra-regional 

differences. 

external variation (between regions) 
H = (4.5) 

internal variation (within regions) 

The closer the grouping fits the desired requirements, the 



h i g h e r  t h e  v a l u e  o f  "H1I. I t  s h o u l d  be  n o t e d  t h a t  t h i s  

q u a n t i t y  is  u s e d  as a t y p e  o f  o b j e c t i v e  f u n c t i o n  r a t h e r  t h a n  

as a c r u d e  m e a s u r e  o f  h o m o g e n e i t y .  

c )  The Ward Method 

Ward d e f i n e d  t h e  f o l l o w i n g  m e a s u r e  b a s e d  on t h e  i d e a  t h a t  

whenever  t h e r e  is a g r o u p i n g  t h e r e  is a l o s s  o f  i n f o r m a t i o n :  

t o t a l  w i t h i n  r e g i o n  
e r r o r  sum o f  s q u a r e s  ( 4 . 6 )  

P mk - 2 
Ek = I: ( x i  jk-Xik)  e r r o r  sum o f  s q u a r e s  

i=1 j=1 f o r  r e g i o n  k 

- mk 
X i k  = l /mk  X i j k  mean o f  t h e  i t h  

v a r i a b l e  f o r  a r e a s  
i n  r e g i o n  k 

Where X i  j k  = v a l u e  o f  t h e  i t h  v a r i a b l e  f o r  
t h e  j t h  a r e a  i n  t h e  k t h  r e g i o n ,  

n  = number o f  areas,  

m = number o f  r e g i o n s ,  

mk= number o f  a r e a s  i n  r e g i o n  k ,  

p = number o f  v a r i a b l e s .  

I n  t h i s  c a s e  E is  u s e d  as a n  o b j e c t i v e  f u n c t i o n  t h a t  h a s  t o  be  
- 

m i n i m i z e d .  The more i n f o r m a t i o n  t h a t  is l o s t  i n  a 

r e g i o n a l i z a t i o n ,  t h e  l a r g e r  t h e  v a l u e  o f  "E". 



d) Cliff and Haggett (1970) defined a similar homogeneity 

measure as: 

1 - E  
B = 

max E 

where E is the total within-region error sum of squares, and 

the maximum is taken over all the possible values of E. In 

-fact the maximum value is obtained when the resulting region 

is only one; that is, when all the units are grouped together. 

Since B is equal to zero when all areas are grouped into one 

region and equal to one when each area is a region, the closer 

B is to one the better the regional system performs in terms 

of homogeneity. 

It should be added that there are many other similarity 

measures that have been used for grouping purposes. The 

reader is referred to Andenberg (1973), Hartigan (1974) and 

Cormack (1 971 ) . 

4.1.4 Regionalization Constraints 

In addition to homogeneity there are other constraints that 

are sometimes imposed on regionalizations. Among the criteria 

that have been used for both districting and region building 

are: 



1 . Equality of population 
2. Contiguity 

3. Compactness 

4. Preservation of political or 

administrative boundaries 

5. Region boundaries should follow 

geographic features such as rivers 

and mountains (~horesson, p. 237). 

Even though all of these constraints are in essence spatial, 

the contiguity constraint is particularly interesting for this 

work since it is strongly related to the notion of 

geographical neighborhood. 

Contiguity 

Homogeneity, as understood in classification analysis, means 

either similarity or nearness. Regional homogeneity, however, 

refers to both similarity and geographical nearness. 

There are two manners in which the contiguity constraint can 

be interpreted: 

a) When the units are of areal type, a 

region is contiguous if for any two 

units, a1 and a2, that belong to it, 

it is possible to travel from a1 to 



a2 through a path wholly contained 

in the region. In mathematical 

terms this is called a connected set. 

b) In some other instances the need for 

contiguity does not necessarily 

imply a physical border-to-border 

relation but simply a neighborhood 

one as described in Chapter 2. 

There has been some disagreement among geographers about the 

necessity of imposing a contiguity constraint on a 

regionalization. In some instances, such as the definition of 

administrative zones or electoral districts, there can be no 

doubt concerning the need for such a constraint. However, the 

requirement is less clear in the use of grouping for research . 
purposes. 

There are two basic reasons researchers carry out 

regionalizations: as an exploratory tool or to test a 

hypothesis. However, it should be remembered that there is an 

important difference between using the grouping itself to test 

a hypothesis and testing the hypothesis of whether there are 

clusters or not. Classification or cluster analysis can only 

be used as such in the first case. 

Two approaches to the building of uniform regions are 



possible: 

a) A classification without a contiguity 

constraint (called a typification) is undertaken, 
_-- 

followed by the mapping of results. 

b) A classification with a contiguity 

constraint is undertaken. 

According to Byfulgien and Nordgard (1974) these two 

,approaches are "not necessarily conflicting but 

complementary." However, this is not a universally accepted 

position. For example, Johnston (1970) argues that 

Itregionalization with contiguity constraints over-simplifies 

and operates against efficient hypothesis testing." 

The problem arises in the interpretation of results. The f' 
product o f a  typification is a set of groups that satisfy a 

"2---___--- 

condition of homogeneity, but are not necessarily contiguous. 

These results have a value in themselves. However, when the 

resulting groups are mapped, the units are implicitly 

classified by another variable, that of location. Sets of 

units that belong to the same group and are contiguous seem to 

form regions. However, it can not be ascertained that these 

newly formed regions satisfy the same homogeneity condition as 

the original grouping. 



4.1 .5  The Number of Regions 

In a regionalization problem the main task is to find a 

grouping of the units that "best1' satisfies the needs of the 

analyst. Therefore, the first idea that comes to mind is to 

select from all the possible groupings the one that best 

satisfies the constraints. Cliff and Haggett (1970) have 

,looked into some combinatorial aspects of the regionalization 

problem. They were able to calculate the number of different 

aggregations to form "m" regions given "nu areas without a 

contiguity constraint. 

n! (gl! .... gj!) 
lU = 2 

-A u 

17 fi! 
i= 1 

where gj is the number of regions which comprise j units, fi 

is the number of areas combined to form region i and the 

summation is over all m element partitions of n. For example, 

if the number of units is four ( n = 4 )  and the number of regions 

is two ( m = 2 ) ,  the m element partitions of n are two; ( 3 , l )  and 

(2,2). 

They also calculated the number for the case where the areas 

are under a strong contiguity constraint, i.e. when they form 

a chain. 



As Cliff and Haggett (1970, p.288) nave shown, in both cases 

the number is too large to permit approaching the 

regionalization problem by exhausting the possibilities. This 

is the reason why it has become necessary to design heuristic 

algorithms to find solutions which approximate the "best" 

,result. 

When a classification approach is undertaken the number of 

regions to which "n" areas should be aggregated often has to 

be defined by the analyst. As will be seen in the following 

section, hierarchical methods group "n" units in any number 

between one and m. It is the task of the analyst to decide on 
C 

the "best" level of aggregation. In non-hierarchical methods 

the number of seeds determines the number of regions. In 

other instances, such as some of the algorithms described in 

section 4.3, the number of regions is a result of the 

algorithm. 

4.1 .6 The Algorithms 

Once a similarity measure as well as the constraints for the 

grouping have been established, it is necessary, in order to 

actually obtain the regions, to define a procedure by which 



the areas are to be clustered. The existing methods can be 

classified as hierarchical or non-hierarchical. 

Hierarchical Methods 

In a hierarchical method the starting point is a set of "n" 

data units, and it ends with the universal region in which all 
, .. 

the units are grouped in one region. In some cases the -- - 1- ,- . - /- -- 

.procedure is divisive because it starts from the universal 

region. What is common to the hierarchies, whether they are 

divided or grouped is that they remain as such throughout the 
-- - 

entire remaining process. 

An easy way to visualize this process is by neans of tree 

diagrams as shown in figure 4.1. Each node represents a 

region, and the stages of the procedure are shown in the axis 

below the tree. In the first step the two most similar units 

are merged, and the number of regions (or units) left is 

reduced to 'In-1". After the ith step the number of regions is 

11 n- i II . The process involves 'In-1 I' steps. 

According to Andenberg (1973, p.132) there are three major 
- 

hierarchical clustering methods: linkage, centroid and - -- _-- 

variance. Briefly, in the single linkage method, clusters are 

merged using the shortest distance (similarity) between their 

elements as a criterion. In the centroid method, the 
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similarity between clusters is given by the similarity between 

their means. Finally, in the Ward method the clusters that 

produce the minimum increase in the total within-group error 

sum of squares (as defined in section 4.1.3) are merged. 

Specific hierarchical methods used in geographical studies 

will be presented in the next section. 

Non-hierarchical Methods 

The difference between hierarchical and nonhierarchical 

methods is that in the latter two units that belong to the 

same region, at any stage of the process, do not necessarily - ..--- 

remain joined. In fact, nonhierarchical methods are based on 

the assumption that given an initial partition of the units, 

subsequent improvements -- - - - are feasible. Usually the first step 
L 

is the selection of a set of units called seeds. An initial - 
partition is defined by joining each unit to its most similar 

seed. In the following stages each new partition is defined 

by taking the previous one as a point of departure. The 

process ends when the llbest'l partition is found. 

4.2 Spatial Algorithms 

The algorithms that geographers have used for regionalization 

purposes can be divided into two groups. The first is 

composed of those shared with other disciplines, such as the 



Ward and Singe linkage methods. The second group is composed 

of those algorithms that include specific spatial constraints 

such as contiguity and compactness. 

The first group has been extensively described in the 

literature (see Andenberg, 1973, Cormack, 1971, Hartigan, 

1975) and will not be discussed in further detail here. The 

second group is of more interest. It will be referred to 

,throughout this study as "spatial algorithms." 

From a methodological point of view we can distinguish three 

types of spatial algorithms: 

a) those in which the contiguity of groups can only 

be assured by checking if the units have a common border; 

b) those that use the notion of neighborhood to identify 

contiguous groups; 

c) those in which contiguity is assured together 

with other constraints imposed on the resulting 

regions. 

For comparative purposes some "typical" algorithms of the 

first two types will be described. The third type of spatial 

algorithms which is not described here, uses techniques such 

as integer programming and is usually applied to districting 

problems (~arfinkel, 1970). 



4.2.1 Byfulgien and Nordgard Algorithm 

The following method was originally introduced by McQuitty and 

later transformed into a spatial algorithm by Byfulgien and 

Nordgard (1973).  This is an example of a hierarchical 

algorithm of the first type. The similarity measure is the 

Euclidean distance, and the clustering criterion is of the 

,single linkage type. The number of resulting regions is 

determined by the algorithm. The main characteristic of the 

resulting regions is that "all basic units have their most 

similar contiguous unit within the same region." 

Byfulgien and Nordgard applied this method in eastern Norway 

to agricultural data and concluded that it can produce regions 
L 

with very dissimilar units. This is because the condition 

required to add a unit to a region is its similarity to just 

one of the other units of the region. 

The Algorithm 

Def. 1 .  "A" is the set of "nu areal units in 

which the area of study is subdivided. 

That is, A = {al, ... ani. 
Def. 2. Dij is the distance between areal 

units ai and aj. 



Def.  3. M i s  a nxn m a t r i x  t h a t  c o n t a i n s  a l l  t h e  

d i s t a n c e s  between a r e a l  u n i t s .  That  is  

m i j = D i j ; i ,  j = l , .  . . n  

S t e p  

S t e p  

S t e p  

S t e p  

S t e p  

S t e p  

S t e p  

S t e p  

1 .  Find t h e  two most similar a r e a l  u n i t s .  

L e t  a i  and a j  be t h e s e  two u n i t s .  

2 .  Check if t h e  a r e a l  u n i t s  a i  and a j  

have a b o r d e r  i n  common. If t h e y  a r e  

c o n t i g u o u s  c o n t i n u e  w i t h  S t e p  3. Otherwise  

l e t  D i j  be a " l a r g e  number" and c o n t i n u e  

w i t h  S t e p  1 .  

3. Merge u n i t s  a i  and a j  t o  form r e g i o n  R.  

4 .  L e t  N be t h e  s e t  of a r e a l  u n i t s  t h a t  have 

a borde r  i n  common w i t h  R .  For each  e lement  

of  N check i f  i t  is c l o s e r  t o  one o f  t h e  

u n i t s  t h a t  be long  t o  R t h a n  t o  any o t h e r  

of  i t s  c o n t i g u o u s  u n i t s .  

5 .  Le t  F be t h e  s e t  of u n i t s  t h a t  s a t i s f y  

t h e  c o n d i t i o n  s t a t e d  i n  s t e p  4 .  If t h e r e  is 

no such  u n i t ,  i . e .  F = 0, c o n t i n u e  t o  S t e p  7 .  

6 .  Form a new r e g i o n  merging r e g i o n  R and 

t h e  p r e v i o u s l y  d e f i n e d  s e t  F. That  is ,  t a k e  

R U F and c a l l  i t  R.  Cont inue  w i t h  S t e p  4.  

7. Region R i s  one of  t h e  r e s u l t i n g  r e g i o n s .  

8. Take t h e  s e t  of a r e a l  u n i t s  t h a t  do n o t  

be long  t o  any r e g i o n  and o b t a i n  i ts  



distance matrix M. 

Step 9. If all areal units belong to a region, 

then end the grouping process. Otherwise 

repeat the procedure starting from step 1 .  

4.2.2 Berry's Algorithm 

Berry (1961) modified a central agglomerative procedure to 

.include a contiguity constraint and used it for an economic 

regionalization. Most of the central agglomerative procedures 

follow the general scheme given by Andenberg (1 973, p. 133). 

The modified or "spatial" general procedure is as follows: 

Def. 1 "A" is the set of "n" areal units in 

which the area of study is subdivided. 

That is A = (al, a2, ..., an1 
Def. 2 Dij is the distance between areal 

units ai and aj 

Def. 3 M' is a n X n matrix where: 

i Di j if ai and aj are contiguous; 
mij = 

co otherwise 
(or a very large number); 

In this case the matrix M' reflects not only the similarity 

between regions but also ___-. their contiguity __. relation. ---- 

Step 1 .  Begin with n areal units. 

Step 2. Search the matrix MI for the two most 



similar pairs of contiguous regions. 

Let the chosen regions or units 

be labeled ai and aj. 

Step 3. Reduce the number of regions (or units) 

by one merging regions ai and aj. Label 

the resulting region ai and update matrix 

M' to reflect the similarities between ai 

and all other existing regions (or units). 

Delete the row and column of PIt that 

corresponds to region (or unit) aj. 

Step 4. Perform Steps 2 and 3 a total of 

(n-1)  times. 

Both areal and point units can be used with this type of 

algorithm. The range of similarity measures and clustering 

criteria that can be incorporated into this algorithm is the 

same as that of a non-spatial central agglomerative procedure. 

.Other constraints such as compactness can be included without 

changing the basic structure of the algorithm. 

One of the disadvantages of this type of algorithm is that 

sometimes it produces a chaining process. This occurs when in ---- - - - 

every stage a unit is merged to the same (or to a few) 

region(s). The result is that at any stage there are a few 

"larget' regions together with ungrouped units, 



In this type of algorithm the user decides on the number of 

resulting regions, since the procedure starts with n regions 

and ends with one. 

4.2.3 Lankford Algorithm 

An example of an algorithm that uses the notion of 

neighborhood to identify regions is described by Lankford 

(1 969) . This algorithm was not specifically developed for 

cases where there are contiguity constraints and the units 

themselves are not necessarily spatial. 

Given the set of variables which represent the attributes with 

which the units are characterized, it is assumed that they are 

immersed in a m-dimensional orthogonal space. A similarity 

measure designed to detect zones of "high density" in the 

m-dimensional space is introduced. 

The Algorithm 

Def. Let the density ~ ( a )  for areal unit "a" be defined 

as follows: 

I - 1 
w(4 =(I 1 4  d( a, x) 

XEN( a) 

where n is the number of neighbors of unit "a" 9 d( a , d  



denotes the Euclidean distance between units "a" and "x" 

and ~ ( a )  is the neighborhood of 'la." 

This measure was designed to detect the high density zones. A 

unit i'mmersed in a dense zone has a high I1W" value associated. 

Def. Let f(a,b) be the association between units ''a" and " b " :  

This expression resembles the one for gravitational 

attraction. 

The following definitions are necessary to extend the concepts 

previously given to the case of units already grouped. . 

Def. Two groups G and H are called neighbors 

if there is an element g in G such that 

its neighborhood ~ ( g )  intersects H 

i.e. ~ ( g )  n H  # 0 .  

Def. The interface I(G,H) between two groups G 

and H is the subset of elements of G (or H) 

such that its neighborhood intersects H (or G). 



Def. The association between neighbor groups G 

and H is the average of the associations 

between all pairs (g,h) in the interface: 

where m is the number of pairs in the 

interface, and (g,h) E I(G,H). 

The algorithm itself is a central agglomerative procedure 

using "f" as the measure of similarity. This procedure was 

applied in a two-dimensional space. Apparently, no attempt 

has been made to use it in a more general case. 

4.2.4 Brantingham Algorithm 

Brantingham (1978) has presented an algorithm that uses 

topological concepts not only intuitively but in a formal 

sense as well. The procedure is designed in such a way that 

at each stage it is decided whether two units should be 

separated by a border. In this sense it differs radically 

from previously described algorithms, in which the main 

decision leads to the grouping of units. 

City blocks were used as basic units in the regionalization. 

The similarity measure is based on the difference of absolute 



values, and it is a multivariate grouping. 

The Algorithm 

Def. 1 "At1 is the set of "n" areal units in 

which the area of study is subdivided. 

That is A = {al, a2, ..., an1 
Def. 2 Let ~ ( a j )  be the set of units 

contiguous to aj. 

Def. 3 Let fi(aj) be the value of the ith 

variable associated to aj. 

Def. 4 A basis of a topology T in X is a 

subcollection B of T such that every open 

set U in T is a union of some open sets 

in B (HU, 1964, p. 17). 

Def. 5 A basis set Bi of the topology is the set 

of all contiguous units such that the 

interunit variation of the variable of 

interest is less than some fixed percentage. 

Step 1 .  Fix a maximum percentage of interunit 

variation, call it b. 

Step 2. Let ak be an element of the basis Bi 

(i=l the first time), where ak is an 

arbitrary unit. 

Step 3 .  For each element aj in Bi (which has not 



been t e s t e d  b e f o r e )  per form s t e p s  4 t o  7 .  

S t e p  4. For each  e lement  a j  i n  B i  check among t h e  

n e i g h b o r s  of  a j  t h a t  do n o t  be long  t o  B i ,  

i f  t h e y  exceed t h e  maximum p e r c e n t a g e  

o f  i n t e r u n i t  v a r i a t i o n  w i t h  r e s p e c t  

t o  a j .  That  is :  

I f ( a j )  - f ( a i ) l  > max [ b f ( a i )  , b f ( a j )  1 

where a j  E B i ,  a i  E ~ ( a j ) ,  a i  $ B i  and 

0 < b  < 1 .  Call F t h e  s e t  of  u n i t s  t h a t  

exceed t h e  maximum p e r c e n t a g e  of i n t e r n a l  

v a r i a t i o n  and I t h e  complement. That  is: 

S t e p  5 .  D r a w  a b o r d e r  between e v e r y  e lement  

of  F and a j .  

S t e p  6. Those u n i t s  t h a t  do n o t  exceed t h e  

i n t e r u n i t  v a r i a t i o n  are added t o  B i .  

Rede f ine  B i  as B i  U I .  

S t e p  7 .  If t h e r e  a r e  e l e m e n t s  of B i  t h a t  have 

n o t  been t e s t e d  f o r  t h e  p e r c e n t a g e  of  

i n t e r n a l  v a r i a t i o n ,  c o n t i n u e  w i t h  s t e p  3. 

S t e p  8. The r e s u l t i n g  s e t  Bi  is a b a s i s  s e t .  

S t e p  9. If t h e r e  a r e  s t i l l  u n i t s  t h a t  do n o t  



belong to any basis set, then choose 

any arbitrary element of this set and 

continue to step 2 to create a new basis 

set. 

In this case the basis sets are interpreted as the resulting 

regions. If the pattern that appears from the above procedure 

is not satisfactory, a new value for the internal variation is 

-fixed and the procedure is repeated. The basis sets are 

defined so that the newly defined variation is smaller than 

the previous variation used. This guarantees that once a 

border is drawn between two units it will remain as such 

through the whole process. 

4.3 The Design of Algorithms 

From the previous sections it can be seen how cluster analysis 

techniques have been used for regionalization purposes. In 

some cases the techniques have been applied without any 

modifications, while in others they have been adapted for 

spatial analysis purposes. 

Considering that one of the interpretations of the 

heterogeneity index is as a measure of the degree of 

membership of a point to a set, it seems natural to use it in 

a region-building process. 



In this case the heterogeneity index is assumed to be an 

indicator of the potential of an element to belong to the 

interior of a region. The closer the value of the index to 1 ,  

the higher the potential of the element to be an interior 

point. 

As is common in a regionalization problem, it is assumed that 

>the elements under consideration are clustered into 

homogeneous groups. That is, every element is either an 

interior point of a homogeneous region or is on its border. 

4.3.1 A Topological Algorithm 

The next objective is to define a procedure that integrates 

the heterogeneity index and the grouping process. A 

hierarchical method is proposed in which the clustering 

criterion is determined by the heterogeneity index. The 

algorithm is designed so that the order in which the elements 

are grouped is determined by the index. Intuitively, those 

elements that have a higher potential to be in the interior of 

a region should be clustered before the ones that have a high 

potential to be on the borders. The proposed algorithm is 

described below: 

Def. 1 "At '  is the set of Itnu areal units in which 



the area of study is subdivided. That is: 

A =  {al, a2, ..., ani. 
Def.2 A unit that does not belong to any region 

is called an "elementary unit." 

Def. 3' A region is the union of at least two 

/elementar$ units. 

Def. 4 A unit is an entity that originally was 

elementary but now constitutes part of a 

region. 

Def. 5 N(ai) is the set of neighbors of entity "ai". 

The possible entities are: region, unit 

and elementary unit. 

Def. 6 The heterogeneity index associated with 

a region is similar to the one defined 

for elementary units as follows: 

where Xij is the value of the jth variable 

for the "k" neighboring entities of the region 

and Xrj is the value of the variable 

associated with the region. The manner 

in which these quantities are calculated 

depends on the problem at hand. 

Step 1. Select the elementary unit with the highest 



value in the heterogeneity index. 

Call it ai. 

Step 2. Search for the most similar neighbor to ai. 

Call it aj. 

Step 3. If aj is an elementary unit then group 

ai and aj. Call the region Rk. 

Step 4. If aj is a unit then group ai and the 

region that contains aj. Note that ai 

and aj are no longer elementary units. 

Step 5. If there are more elementary units left, 

return to step 1 ;  otherwise continue with 

step 6. 

Step 6. If the number of resulting regions is less 

than desired then finish the procedure. 

Otherwise continue with step 7. 

Step 7. Rename the regions as elementary units. 

Establish the neighborhooa relations for 

the new elementary units. 

Step 8. Start again with step 1.  

General Characteristics of the Algorithm 

This type of algorithm can be used when the units of interest 

are either areas such as census tracts, counties and provinces 

of a country or points such as airports in a transportation 

network. The selection of the similarity measure depends on 



the problem at hand, but it has to be consistent with the 

definition of the heterogeneity index. That is, if a 

neighborhood N "tends" to be in the interior of a region, it 

should also be homogeneous with respect to the similarity 

measure used. 

The heterogeneity index can be redefined to consider this 

restriction as follows: Assume S to be the function of 

,similarity between any two elements. The heterogeneity index 

associated to the neighborhood of unit "a" is of the form: 

where s(x~,x~) is a measure of similarity between the value 

associated to the ith neighbor and unit "a" and k is the b 

number of neighbors. 

This algorithm was designed to assure that the resulting 

regions satisfied a contiguity constraint. However, other 

constraints such as that of compactness could be introduced 

without altering the basic structure of the algorithm. The 

algorithm is hierarchical, but it differs basically from 

others in its clustering criterion. In this case there are 

two clustering criteria: a spatial and a non-spatial one. The 

heterogeneity index determines the order in which the grouping 

is going to take place, while the similarity measure 



determines which units are to be grouped. Any of the several 

criteria used in hierarchical algorithms as described in 

section 4.1 .6 could be adapted. 

The number of resulting regions obtained by this type of 

algorithm is not the same as in a typical hierarchical one. 

The number of regions in each stage is determined by the data. 

While in typical cases the analyst can choose any number 

-desired between 1 and n, in this case it can only be selected 

from the results. This constraint can actually be an 

advantage, if the analyst has no way of anticipating the 

number of regions there may be. 

4.3.2 The Regions as Graphs 

The structure of the units in a clustering problem can be 

viewed as a graph (Andenberg, 1973, p.150). The nodes of the 

graph are the units themselves, and the lengths of the edges 

are given by the similarity between the units. The graph is 

complete since all its nodes are adjacent. The single linkage 

method finds the minimal spanning tree; that is, the shortest 

tree with (n-1 ) edges that connects all the nodes (~ndenberg, 

1973, p.150). In a regionalization problem the structure of 

the data units can also be viewed as a graph. Again, the 

nodes of the graph represent the units. There is an edge 

between two nodes if the units are neighbors, and the length 



of the edges is given by the similarity measure. This graph 

is in fact a subgraph of the complete graph G1 generated in a 

classification problem without a contiguity constraint. 

When a single linkage criterion is used in the proposed 

algorithm, the resulting regions obtained in a first stage 

generate a set of graphs where the nodes represent the 

elements that belong to each region and the edges are defined 

.through the clustering criterion. Each of them is a subgraph 

of G I .  Moreover, each one of these subgraphs is a minimal 

spanning tree of the subgraph of G I  formed by the nodes that 

belong to the regions together with their neighboring 

relations. 

If the algorithm is repeated until all the units are grouped 
b 

in a single region, the resulting graph will also be a minimal 

spanning tree of G I .  

Both the topological algorithm and the original single linkage 

method will generate a minimal spanning tree. The basic 

difference is that at any given stage the order in which the 

units are grouped is not necessarily the same. A hypothetical 

case that exemplifies this is presented in the following 

paragraphs. 



A Hypothetical Example 

To illustrate the issues discussed in this section concerning 

the concept of minimal spanning tree, a brief example is 

presented. The purpose of the exercise is to regionalize the 

18 areal units shown in figure 4.2. The areas were grouped 

according to two different algorithms: a single linkage 

method with a contiguity constraint and the topological one 

presented in section 4.3.1. In both cases two areas are said 

to be contiguous if they have at least one segment in common. 

The similarity between two areas is given by the absolute 

difference. That is: 

dij = IXi - ~ j l  
where Xi is the value associated to the ith area. 

Figure 4.3 shows the resulting regions obtained after the 

first stage of the topological algorithm. Each one of the 

subgraphs (one for each region) shown in figure 4.4 is a 

minimal spanning tree. In the second stage of the procedure 

all the areal units are grouped into one region. The minimal 

spanning tree generated is shown in figure 4.5. 

The dendogram generated by the usual linkage method is shown 

in figure 4.6. Since the procedure is hierarchical, in the 

final stage all the units are grouped into one region. The 

minimal spanning tree generated by this procedure is shown in 
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figure 4.7. 

As can be appreciated by comparing graph G t  (figure 4.8) to 

the graphs formed after the first stage of the topological 

algorithm (figure 4.4), each one of the latter is a subgraph 

of GI. Analogously, the minimal spanning tree (figure 4.5) is 

also a subgraph of G I .  Finally, it should be noted that the 

minimal spanning trees generated by the two algorithms 

(topological and single linkage) are not necessarily the same. 

4.3.3 Heterogeneous Regions 

Like homogeneity, heterogeneity may also be used as a 

constraint in the definition of regions. In some instances 

researchers seek to identify groups of elements that are 

heterogeneous and spatially clustered. In these cases 

measures of dissimilari,ty and the heterogeneity index can be 

used in the design of algorithms, just as similarity and the 

homogeneity index were used in the cases mentioned previously. 

4.3.4 Fuzzy Regions 

In section 4.3.1 a hierarchical algorithm incorporating the 

concept of heterogeneity index was proposed. The index was 

used as an indicator of the order in which the units were to 

be merged. There are other ways in which the index can be 



used in the design of algorithms. In this section an 

alternative hierarchical algorithm which uses the notion of 

fuzzy sets is proposed. 

The heterogeneity index associated with the neighborhood of 

unit "a" is interpreted as the degree of membership of the 

unit to a hypothetical region. When the decision to group two 

units is made, it becomes natural to ask what the degree of 

membership of the resulting group is to the hypothetical 

region. Intuitively, the two units that have the higher 

degree of membership to a region are the ones that should be 

clustered first. The concept of fuzzy set makes it possible 

to assign a value to the degree of membership of the set of 

two units to a region. 

Given two contiguous units ai and aj , their corresponding 
neighborhoods ~ ( a i )  and ~ ( a j )  and associated heterogeneity 

indices Hai and Haj, the degree of membership of the set 

{ai,aj] to a hypothetical region R can be defined as follows: 

~(ai,aj) = min { Hai,Haj 1 (4 .18)  

The above definition can be extended to the case where the 

units are entities as defined in the preceding algorithm, 

since both the heterogeneity index and the concept of 

neighborhood have been defined for regions (see Def.6, section 



The terms and assumptions under which the proposed algorithm 

is de~cribed are exactly the same as the ones presented for 

the preceding algorithm except for an additional matrix M1 

defined as follows: 

mij = H(ai,aj) 

where ai and aj are either regions or elementary units as 

defined in section 4.2.1. 

Step 1 . Find the two contiguous entities ai and aj 
with the maximum value of H. That is, 

find the maximum value in MI; 

~(ai,aj) = max { ~(a,m,an) : for all pairs of 
contiguous units] 

Step 2. Group entities ai and aj and name it 

ai (i<j). 

Step 3. Update the ith row and column of matrix 

M 1 ,  and delete the jth row and column 

of matrix M I  . 
Step 4.  If there are elementary units left in MI, 

then start again with step 1.  Otherwise 

the renaining elements of PI1 represent 

the resulting regions. 



This procedure,like the preceding algorithm, can be repeated 

until all the units are clustered in one region. 

Given the resulting regions R1, ... Rk, the heterogeneity index 
associated to an element ai E Ri can be interpreted in fuzzy 

set terms as the degree of membership of "ailf to the interior 

of Ri. Its conplement (1-~ai) can be interpreted as the 

degree of membership of "ai" to the border of Ri. Therefore, 

it can be said that the resulting groups are fuzzy regions. 

As in many other areas of knowledge, in regionalization 

studies, regions are defined so that for every element of the 

universe of study it is clearly distinguishable whether or not 

it belongs to the region. There are however, certain 

geographical problems that can benefit from a "fuzzy" 

definition of the degree of membership of an element to a 

region. For example, consider an ecological study of an urban 

area such as Mexico City. Although there are no previous 

studies of this type for this particular area, an obvious 

characteristic of the city is its lack of clear-cut 

differences in residential areas as well as in land use. That 

is, it is common to find "border areastf between urban 

neighborhoods where middle and low income families or even 

high and low income families dwell on contiguous pieces of 

land. Similarly, it is common to find areas with various 



simultaneous uses. Such is the case of zones that are 

residential, providers of public services, educational, 

medical and industrial. 

In a study area with these characteristics a method that 

incorporates tha definition of fuzzy regions seems to be the 

most appropriate choice. 

There are precedents for the application of the concept of 

fuzzy set in the design of classification algorithms (~unn, 

1974). In the cases Dunn mentions, the result is a set of 

regions where each of the elementary units has assigned a 

degree of membership to each region. On the other hand, the 

proposed algorithm differs from previous ones, since the 

degree of membership is assigned only to the interior and the b 

border of a given region. 

4.3.5 The Heterogeneity Surface 

In the design of the previously discussed classification 

algorithms it was assumed that the units under study were 

clustered in homogeneous or heterogeneous groups. There are, 

however, some instances where researchers do not know the 

number of regions or have no previous information on the 

spatial patterns of the data. In these cases they can use the 

heterogeneity index to increase their knowledge. 



To illustrate the manner in which the heterogeneity index can 

be applied in these situations, a heterogeneity "surfacet1 is 

defined as follows: 

where p is a point inside the areal unit "aV1 and Ha is its 

associated index. F is a step function; therefore its graph 

is not a continuous surface. However, for illustrative 

purposes it can be said that a "basin" in the graph is a set 

of contiguous areal units that have a value of F close to 

zero, and "ridges" are areal units with values close to one. 

This graph can provide some significant information. For 

example, basins indicate the presence of the interior of a 

region, and ridges indicate boundary points. If it is assumed 

that the elements are clustered into regions, then the graph 

must be composed of basins surrounded by ridges. In such 

cases F can be used to estimate the number of resulting 

regions. 

F may also be used in cases where the area under study is 

composed of both homogeneous and heterogeneous regions. The 

"highlands" in F indicate the presence of heterogeneous 

regions in the same manner as "lowlands1' indicate the 



existence of homogeneous ones. The graph of F can therefore 

be used in the identification of such regions. 

In other cases the lack of pattern in the heterogeneity 

surface might indicate an absence of regions in the study 

area. 

Finally, the possibility of using the heterogeneity surface in 

multivariate cases is worth mentioning. When the objective of 

regionalization is to obtain homogeneous regions with respect 

to more than one characteristic, the first question that 

arises is whether it is possible to obtain homogeneous regions 

with respect to all the variables simultaneously. 

For each one of the variables involved, let Fi be the function 

associated with the ith variable. A quick look at a pair of 

graphs can aid the analyst in deciding on the compatibility of 

the variables. If the two graphs show that basins and ridges 

coincide, then it may be concluded that the variables are in 

fact compatible. However, if for one variable there "tend" to 

be basins where there are ridges in the other, grouping the 

areas using both variables simultaneously is intuitively 

outruled . 



4.4 A Comparative Example 

In section 4.3.1 a modified agglomerative single linkage 

algorithm was presented. As mentioned before, the main 

difference between the usual single linkage method and the 

topological algorithm resides on the order in which the units 

are aggregated. Besides this obvious difference there are 

other ones that are derived from the use of a neighborhood 

approach. To exemplify these ideas as well as to test the 

performance of the topological algorithm the method was 

applied to a hypothetical case and the results were compared 

with those of a contiguity-constrained single.linkage method. 

4.4.1 A Hypothetical Case 

The hypothetical case is defined on a regular area subdivided 

into 240 units as shown in figure 4.9. The classification of 

the units is based on three variables and the values of each 
--- ---- - _ . 

variable were assigned under the assumption that the area is 

formed by homogeneous regions considering each of them 

separated and simultaneously. That is, if each one of the 

variables were to be represented on a map, homogeneous regions 
-- -.- -- - 

would be present. Moreover i/f:the three above-mentioned maps 
L '0 

were combined, the resulting mLp would also be formed by 
y--\ 

homogeneous regions. The values were assigned so that 

variable "A" was used as a basis. Therefore in the first 
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stage the values of variable "A" were defined as shown in 

figure 4.10. The values of variable "B" were defined so that 

the regions formed under it, were sub-regions of variable "At1 - -- . 
(see figure 4.10). Finally, the values of variable " C "  were 

assigned in such a way that its "border zonesw did not 
- - 

necessarily coincide with those of variable "A1' and "B"  (see 

figure 4.10). 

One of the central issues in the application of a topological 

algorithm is the definition of the neighborhood relationship. 
1-- _ - 

The advantage of using a regular structure is the ease of the 

implementation of the algorithm since the neighborhoods for 

each of the areal units is explicitly defined. In this case 

it was decided to define the neighborhood of each of the units 

as the set of bordering units together with the unit itself. - -'------__I____ __ - -- - .-- L/", 
The areas that are connected to a unit solely by a point-weye ' 

-- - - - 

excluded to avoid regions linked through points. 

Two regionalization algorithms were applied to this 

hypothetical problem, the topological algorithm as described 

in section 4.3.1 and a contiguity-constrained - single linkage - - -- - 

method that follows the general format as described in section 

4.2.2. Both algorithms are hierarchical and use the same 

grouping criterion but differ in other aspects. The 

topological algorithm is based on the neighborhood approach 

which is reflected in the algorithm through the inclusion of 



the heterogeneity index concept, while the other algorithm 

follows the traditional approach were the area is assumed to 

be formed by units rather than by geo-subspaces or 

neighborhoods. 

The Topological Algorithm 

The first step in the application of the algorithm to the 

,multivariate hypothetical case is the calculation of the 

standardized heterogeneity index using equations 3.1 and 3.2. 

In this case, the heterogeneity index can be interpreted as 

the degree of membership of a unit to the interior of a 

region. The closer the value to one, the higher the degree of 

membership to the region. The nultivariate heterogeneity 

index was calculated according to equation 3.7 as shown in 

figure 4.11. Again, the closer the value of the index to 

three, the higher the degree of membership of a unit to a 

region formed according to the three variables. 

The heterogeneity index plays a fundamental role at this stage 

of the analysis in the definition of the "grouping pattern" . 
Assume for example, that one of the variables of interest is 

the column-wise position of each of the units. That is, all 

the units that are positioned in the ith column have assigned 

a value of "i" . The value of the heterogeneity index for an 

interior unit is a constant. That is, the degree of 
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membership of all these units is exactly the same, so that 

there is no grouping pattern. Since the algorithm is designed 
h 

to be applied to problems were a grouping pattern exists, it 

is not advisable to include in the classification a variable 

such as the one previously described. 

An additional criterion was added to the algorithm to solve 
, 

cases $ere two or more neighbors satisfy the grouping 

.criterion. If two or more neighbors are at the same distance 

from a unit, then the one selected to be grouped is the one 

that satisfies the following conditions: a) it already belongs 

to a region and b) is the first clock-wise neighbor. 

First Stage.- 

Under the assumptions described above, the algorithm was 

applied obtaining as a result the regions shown in figure 

4.12. It should be remembered that the number of resulting 

regions in this type of algorithm is part of the results of 

the procedure. That is, contrary to a usual hierarchical 

method were the analyst has to decide on the number of 

resulting regions, in this method the number of regions is 

determine through the heterogeneity index. In this 

application, the number of resulting regions from the first 

stage is 69. 

Since the heterogeneity index can be interpreted as the degree 
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of membership of a unit to a region, the result of the 

classification procedure is not restricted to the definition 

of each of the regions but, allows the analyst to gain 

information on the "interiorityu of a unit. In this sense, 

the resulting regions are fuzzy. For example, both units 19 

and 48 belong to the same region. However, according to their 

heterogeneity indices, unit 19 has a higher degree of 

membership to the region than unit 48. To ease the reading of 

,this measure, the multivariate heterogeneity index was 

standardized as shown in figure 4.13. In it, the degree of 

membership of each of the units to the defined regions is 

clearly appreciated. The closer the value to one, the higher 

the degree of membership i.e. the more interior to the region 

is the unit. Analogously, the closer the value of the unit to 

zero, the lower the degree of membership i.e. the unit is . 
characterized nore as a "border" element. It should be noted 

that Itborder" units are not necessarily always in the actual 

border of a region. 

Second Stage.- 

It is possible to iterate this type of algorithm in order to 

obtain a smaller number of regions, as described in section 

4.3.1. The 69 resulting regions from the first stage, were 

re-named, values for the three variables were assigned to the 

new elementary units and a neighborhood relationship was 

established. This task can be accomplished in several ways. 
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I n  t h i s  c a s e ,  t h e  chosen  p rocedure  w a s  t o  a s s i g n  t o  t h e  new 

u n i t s  t h e  mean v a l u e  of t h e  e l e m e n t a r y  u n i t s  t h a t  belonged t o  

i t .  T h i s  p rocedure  was r e p e a t e d  f o r  t h e  t h r e e  v a r i a b l e s  as 

shown i n  f i g u r e  4.12.  

The t o p o l o g i c a l  a l g o r i t h m  was a p p l i e d  t o  t h e  69 new u n i t s  and 

as a r e s u l t  21 r e g i o n s  were formed as shown i n  f i g u r e  4 .14 .  

Again,  i n  t h i s  c a s e ,  t h e  h e t e r o g e n e i t y  index  a s s o c i a t e d  t o  

l e a c h  e l e m e n t a r y  u n i t  can  be i n t e r p r e t e d  as t h e  d e g r e e  of 

membership t o  t h e  r e g i o n .  For  example,  t h e  u n i t s  formed w i t h  

o r i g i n a l u n i t s  { 2 ,  3 ,  4 ,  5 ,  181 and i17 ,  1 9 ,  20 ,  31, 32 ,  33, 

34 ,  35 ,  48 ,  49,  581 be long  t o  t h e  same r e g i o n  however,  i t  can 

be s t a t e d  t h a t  t h e  f i r s t  u n i t  is more an  i n t e r i o r  e lement  of 

t h e  r e g i o n  t h a n  t h e  second one as can  be a p p r e c i a t e d  from t h e  

h e t e r o g e n e i t y  index  v a l u e s  as shown i n  f i g u r e  4 .12 .  

There  a r e  o t h e r  manners i n  which t h e  v a l u e s  of t h e  v a r i a b l e s  

and t h e  neighborhood r e l a t i o n s h i p  can  be d e f i n e d .  For  

example,  i n s t e a d  of  u s i n g  t h e  mean v a l u e ,  t h e  minimum, o r  t h e  

maximum o r  a weighted  mean cou ld  have been c o n s i d e r e d  and even 

t h e  o r i g i n a l  v a l u e s  of t h e  e l e m e n t a r y  u n i t s  cou ld  have been 

p r e s e r v e d .  I n  t h i s  las t  c a s e ,  t h e  n e i g h b o r s  of a r e g i o n  could  

be d e f i n e d  as t h e  s e t  of o r i g i n a l  e l emen ta ry  u n i t s  t h a t  have a 

b o r d e r  i n  common w i t h  i t ,  and t h e  d i s t a n c e  between t h e  r e g i o n s  

cou ld  be c a l c u l a t e d  c o n s i d e r i n g  t h e  e l e m e n t a r y  u n i t s  i n  t h e  

b o r d e r  of each  r e g i o n .  
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The Single Linkage Method 

To illustrate the difference between the results obtained by 

using the topological algorithm with other existing methods, a 

contiguity-constrained single linkage procedure was applied to 

the same problem. Since the main purpose was to evaluate the 

differences due to the inclusion of the heterogeneity index, 

,the similarity measure used was also the euclidean distance 

and the contiguity relations and grouping criterion were 

preserved. 

The single linkage method is a hierarchical procedure where 

given "ntt elementary units there are "n-i" regions in the ith 

step. To have results comparable to those obtained via the . 
topological algorithm, the procedure was stopped at the 171th 

and 219 steps. The 69 and 21 resulting regions are shown in 

figure 4.15 and 4.16 respectively. 

A Comparison 

Comparison of regionalization algorithms can be undertaken 

focussing on different aspects and at various levels. Murtagh 

( 1 9 8 5 )  for example, compares contiguity-constrained algorithms 

under two main aspects, their computational performance and 

the differences derived from the inclusion of a contiguity 
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constraint. The purpose of the comparison between the 

topological algorithm and the single linkage one is to look 

into the differences derived from applying a neighborhood 

approach to the design of regionalization procedures. 

Both algorithms are hierarchical and follow a single linkage 

grouping criterion, however the order in which the units are 

grouped is not necessarily the same, therefore the spatial 

 structures portrayed in the resulting regions are not 

necessarily equal. 

This fact points to a fundamental issue in the formalization 

of regionalization procedures. It was mentioned before that 

one of the advantages of using a mathenatical framework in the 

classification problems is that once an algorithm is 

established, the solution becomes reproducible. However, it 

should also be considered tnat the design of the algorithm 

depends on the analyst's knowledge and understanding of the 

problem at hand. Therefore, the resulting regionalization 

depends on the assumptions made in the design of the algorithm 

and the different regionalizations obtained from different 

procedures can be explained under these considerations. 

Comparison of the regionalizations obtained by both algorithms 

shows that different aspects of the spatial structure of the 

data emerges from the two procedures. While the topological 



algorithm regions have a tendency to be small and compact and 

there are no isolated elementary units, the single linkage 

method tends to produce larger regions as well as single-unit 

regions. On the other hand, while in the single linkage 

method' the regions are well-defined, the resulting groups from 

the topological algorithm are "fuzzy regions". 

Finally, it should be remembered that since both algorithms 

,are hierarchical it is possible to continue the process until 

all the units are grouped into one single region. However, it 

was considered for this particular example, that the 

comparison of results at the two presented stages satisfied 

the purpose of the exercise and therefore no further stages 
d 

were implemented. 

4.4.2 A Topological Ward Algorithm 

Two of the most commonly used algorithms in regionalization 

problems are the contiguity-constrained Single Linkage and 

Ward Methods. The Ward Method is a hierarchical procedure 

where the grouping criterion as described in section 4.1.3 is 

defined so that the increase in the within group variance as 

defined in equation 4.6 is minimized. Similarly, as the 

neighborhood approach was applied to a single linkage method, 

it is possible to include the heterogeneity index concept in 

the design of a Ward-type algorithm. 



The algorithm is similar to the one proposed in section 4.3.1 

except that in this case step 2 has to be modified as follows: 

Step 2. Search for the neighbor of ai such that 

the increment of the error sum of squares 

as defined in equation 4.7, is the smallest. 

Call it aj. 

Again the main difference between the usual 

contiguity-constrained Ward method and the topological one, is 

the order in which the units are grouped. 

4.4.3 Conclusions 

Iri 

There are many classification algorithms that can be applied 

for regionalization purposes and the selection of the 

appropriate procedure depends on the knowledge and 

understanding the analyst has on the problem at hand. This 

knowledge is reflected in every decision made regarding the 

different elements that are involved in the design of the 

algorithm. For example, in the case of the two algoritnms 

that were compared, the single linkage and the topological, 

the introduction of the heterogeneity index had a significant 

effect in the results. The conclusions that can be drawn froa 

the exercise are: the algorithms were designed to discover 



different aspects of the spatial structure and the single 

linkage method is a "sensitive model1' to changes in the 

grouping order. Besides the abovementioned, it should be 

added that the different manners in which the two algorithms 

group the units clearly points to the importance of an 

adequate selection of parameters. Although the most evident 

border lines are identified by both procedures, the final 

geometric patterns are clearly different. If the analyst is 

&interested in avoiding single-area units and regions 

dissimilar in size, then a topological algorithm would be an 

appropriate approach in a similar problem as the one presented 

here. Moreover, if the analyst needs to measure the degree of 

interiority within a region, a topological algorithm would 

have to be applied since it is the onlj existing procedure 

that provides this type of information. 

To better understand the issues involved in the use of a 

classification scheme with regionalization purposes, it should 

be remembered that the design of a regionalization algorithm 

can be viewed as a modeling process. In the case of the 

neighborhood approach the point of departure is the intuitive 

notion that certain aspects of the geographical landscape can 

be adequately represented through the topological concept of 

neighborhood. These notions are formalized through the 

heterogeneity indices and applied in the design of algorithms. 

In this case the form of the algorithms is intimately related 



with that of a more general model, where the main elements of 

study of the spatial structure are geo-subspaces. It can 

therefore be stated that the application of a topological 

algorithm is of interest where the Galton's component is an 

important factor in the analysis of the problem. 



Chapter 5. 

AN APPLICATION TO EDUCATIONAL PLANNING 

5.1 Introduction 

In general, the heterogeneity index may be interpreted as a 

measure of the local variation of the geographical landscape. 

In particular, the study of the heterogeneity of geo-subspaces 

may be used as an aid to solve planning problems. In this 

chapter an application of a neighborhood nodel in an 

educational planning environment is presented. 

Background 

This application is part of a major project of the Mexican 

government to provide planning agencies with cartographic 

products and technical support in all aspects related to the 

geographic information required for their activities. 

The 25 million student education system was selected for two 



reasons. First it is one of the current Mexican 

administration's highest priorities. Second, geographic 

information has not yet been systematically applied to 

educational planning in Mexico. 

One of the main concerns of Mexican educational planners is 

the location of present and future school services. In the 

past, the decisions made by the government regarding the 

>location of schools have not included spatial criteria. 

However, a geographic information system for educational 

planning purposes is currently being developed by the Ministry 

of Education. It is expected that 1986 will be the first year 

when the spatial criteria is incorporated into the decision 

making process. 

Some methods to solve school location problems have been 

developed by the World Bank, the International Institute for 

Educational Planning. However, spatial models and methods 

such as those presented in this thesis are believed to improve 

the solutions provided by previously used methods. 

5.2 School Location Planning 

Many different models and methods have been developed for 

educational planning purposes. Most of them have been applied 

to regional or national planning, but little emphasis has been 



given to spatial aspects. For example, models and methods for 

projecting school enrollments and manpower requirements are 

often presented at a national level (Davis, 1980), although 

maps and some spatial criteria have been included for local 

planning purposes. 

School location planning and area planning are the names that 

several authors (~avis and Schefelbein, 1980, Gould, 1978) 

have given to the set of administrative policies, models and 

methods that are used "to plan the distribution, size and 

spacing of schools" (~ould, 1978, p.2). 

According to Davis and Schefelbein (1930), the basic purposes 

of educational planning for areas are: 

-To assess the outreach, or coverage, and 
distribution of educational services to 
population in areas within a nation state. 

- To compare the coverage between and among the 
areas, usually on the basis of the percentages 
of the relevant population receiving service. 

-To compare the coverage of the area with 
national norms, standards or plan targets. 

-To inventory facilities and resources 
allocated to programs in the areas. 

-To plan the provision of educational services 
so as to expand coverage, enhance equity in the 
coverage, and to improve the efficiency and 
effectiveness of educational services in the 
areas. 



5.2.1 Models and Methods 

Maps are the spatial models that are most commonly used in 

area planning. Usually, various indicators are mapped to 

study their spatial distribution. 

Which indicators or variables are represented on a map depends 

on the depth of the analysis. Indicators and variables can be 

.classified into three major groups: 1 )  basic indicators such 

as population, enrollments and school services; 2) efficiency 

and effectiveness indicators such as the enrollment ratios, 

percentage of enrollees who graduate; and 3) complementary 

variables such as topography, highways and trails, and 

potential usage of soil. 

The first group of inventory indicators aids the planner in 

gaining knowledge of the spatial location of educational 

services. The second group allows the planner to make 

comparisons among areas. The third group of complementary 

variables provides information necessary to understand the 

spatial behavior of the previous two. Another group of 

indicators and spatial variables provides guidelines for the 

location of new school services. Examples are threshold 

population density and range measurements. Threshold 

population density represents the minimum total population 

necessary for establishing a school, and range is the maximum 



distance children are expected to travel to school (~ould, 

1978) 

5.2.2 Administrative Policies 

In addition to the specific procedures developed for school 

location planning, strong emphasis has been given to the 

administrative policies that would lead to successful 

,implementation of a plan. 

Gould (1978) gives a detailed description of the role of both 

central authorities and local officials according to the World 

Bank's guidelines for school location. 

Central authorities, through their national ministries, are 

expected to do the following: provide norms for the sizes and 

costs of schools and classrooms; establish construction 

standards; ensure that adequate data is compiled for area 

diagnosis; administer the allocation of resources among the 

various regions; and analyse spatial patterns of the services 

schools provide. Local officials are expected to apply the 

norms established by the ministries and to provide the data 

required by the central authorities. 

School location planning has often been applied in Third World 

countries. UNESCO and the International Institute for 



Educational Planning, for example, have undertaken studies of 

school location planning in Costa Rica (~allak, 1975), Sri 

Lanka (~uruge and Ariyadasa, 1976) and Uganda (~ould, 1 9 7 3 ) .  

5.3 Educational Planning in Mexico 

5.3.1 Historical Background 

In order to understand the relevance of school location 

planning in the overall context of Mexican educational 

planning, historical perspective is important. The 

promulgation of the 1917 Constitution and the Lopez Mateos 

Eleven-Year Plan are two events of this century considered by 

experts as crucial in the development of Mexican education . 
. 

When the 191 0 Mexican Revolution ended in 191 7, a new 

Constitution was prornulgatea. Article 3 stipulated that 

education be compulsory, secular and free for all Mexicans. 

More than 40 years later, during the administration of Adolfo 

Lopez Mateos (1958-64), an eleven-year plan was developed and 

partially carried out. 

The main goal of the plan was to completely satisfy the demand 

for elementary education throughout the country. To achieve 

this there were several major programs. First, there was 

massive construction of classrooms. Between 1958 and 1964, 



21,000 classrooms were built at the rate of "... one classroom 
every two hours.. . I t  (Solana et al. 1981 ) . Second, a National 

Commission in charge of publishing free textbooks for all 

elementary school students was organized. In addition, 

important curricular changes were carried out, and Finally, 

special attention was given to programs for the in-service 

training of elementary school teachers (Solana et al., 1981). 

,Like Lopez Mateos virtually all post-Revolutionary Mexican 

administrations have dedicated considerable human and 

financial resources to elementary education. This certainly 

does not mean that other levels of education have been 

abandoned. However, the main targets have been the lower 

levels. 

5.3.2 Planning Experiences 

Before 1970, an educational planning agency did not exist 

within the Mexican government. It was not until the 

administration of Luis Echeverria (1970-76) that an 

organization for educational planning was formally established 

within the Ministry of Education (secretaria de ~ducacibn 

P6blica). 

As would be expected, one of the main goals of the planning 

agency was to assure every school-age child access to 



elementary education." 

For this purpose various quantitative analyses were 

undertaken, and in some cases sophisticated mathematical 

models were used to predict, among other things, the flow of 

students through the lower levels of education. 

In order to use quantitative techniques it was necessary to 

.develop an information system. This system would contain 

reliable, up-to-date data on the number of students and 

teachers at the various educational levels as well as data 

describing the schools1 physical resources. 

During the following administration of President J O S ~  ~ 6 ~ e z  

Portillo (1976-82), the general tendencies in educational 

planning remained the same. It has only been in the last 

three years that planners have started looking more closely 

into the quality of education. This is probably a natural 

consequence of the considerable progress the country has made 

in quantitative terms. (see Figure 5.1). 

As Figure 5.1 shows, the number of schools has increased 

............................................................ 
* The Mexican educational system comprises various levels. 
Among them are elementary, secondary and preparatory levels. 
Children are expected to enter elementary school at the age of 
6 or 7 and remain there for six years. The following two 
levels are secondary and preparatory with a duration of three 
years each. There are different types of secondary and 
preparatory schools (technical, general, etc). 
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throughout the century. The early demand for elementary 

schools was so great that establishing one almost anywhere was 

beneficial to the local community and to the country. Now 

however, the precise location of a school has become 

particularly important. Today's density of schools obliges 

the planner to make a detailed and accurate study of the 

geographic distribution of resources before making decisions. 

,Another factor which has become important is the need to 

ensure the coordinated growth of the educational levels. 

There is no point in building a secondary school where there 

is an insufficient flow of students from the elementary 

schools or if migration affects the school-age population 

significantly. Geographic information is essential to permit 

rational planning of these educational issues. 

The use of geographic information in educational planning in 

Mexico has not been systematic, but there is increasing 

awareness of the need to support educational planning with 

spatial analysis methods. 

5.4 A Case Study of the State of San Luis Potosi 

As mentioned in the previous section, the Mexican government's 

investment in education has been mainly directed to the 

elementary level. However, the government has dedicated 



considerable attention to the development of the secondary 

system during the last six years, especially in the state of 

San Luis Potosi. As can be observed in figures 5.2 and 5.3, 

the distribution of both elementary and secondary schools 

throughout the area is reasonably uniform; that is, the 

growth of both systems has apparently been coordinated. This 

pattern is not maintained at the next level of education. The 

number of preparatory schools capable of receiving the flow of 

-secondary graduates is evidently insufficient, as can be seen 

in figure 5.4. The Central Planning Office has become aware 

of this problem and has decided to alleviate it through the 

allocation of additional resources. 

In this section a neighborhood model is proposed as an aid in 

the selection of sites for the location of preparatory schools 

and in school location planning in general. Although the 

technique is presented within a specific context, an analysis 

of the different alternatives for the allocation of additional 

resources (such as the establishment of a new school) is not 

undertaken and no particular solutions are proposed. However, 

in the presentation of the model, some possible 

interpretations are indicated to point out potential uses of 

this tool in an educational planning environment. 
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5.4.1 The Data 

Originally the state of San Luis Potosi had been selected as 

the area of study on the basis of the availability of data. 

Studies at the local level require disaggregated data. At a 

settlement level, census data has only been processed for a 

few areas, among them San Luis Potosi. 

In order to test the proposed model in a reasonable period of 

time only a portion of the study area was selected. This area 

includes eight counties in the northern part of San Luis 

Potosi as shown on figure 5.5. This area is interesting 

because of its apparently "heterogeneous landscape". 

The two main sources of information were the Ministry of 
b 

Education and the National Institute of Statistics, Geography 

and Informatics. The Ministry has established a nationwide 

information system with detailed data on its own human and 

material resources as well as on the country's students. 

Every elementary, secondary and preparatory school in the 

country is registered, and information is stored on the number 

of enrollees per group; the total number of groups, teachers 

and classrooms; the estimated capacity and location of 

schools; the number of students that have graduated, passed to 

the following grade, failed or dropped out. 
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The National Institute of Statistics, Geography and 

Informatics is in charge of the national census and of the 

production of diverse cartographic products at a national 

level. 

5.4.2 The Geo-Space 

A set of entities of interest to the present study are the 

,settlements inside the selected area that have a secondary 

and/or a preparatory school. The flow of graduates among 

these entities is assumed to depend on their spatial 

relationship. In this case the spatial factor considered 

decisive was the distance a student has to travel to attend 

school ("traveling distance"). 

Graphs were the mathematical models that were considered 

appropriate to represent both the entities and their 

relationships. Each node in the graph represents a 

settlement, and the links between them are defined through the 

spatial relation of traveling distance. 

The Traveling Distance Network 

In order to determine the traveling distance between any two 

settlements of the geo-space, a network was defined through 

the existing communication network. Although the feasibility 



of traveling from one town to another depends on the physical 

characteristics of the terrain, it was assumed that the 

highway and trail system could provide enough information to 

compensate for these differences. 

The network was defined with the aid of topographic maps 

(scale 1:250,000) as follows: a link was established between 

any two settlements whenever they were connected by any type 

,of road without passing through a third settlement. The 

resulting network is shown on figure 5.6. 

According to the definition of the network, each link 

represents a road connecting two settlements. Since the type 

of road is an important factor to be considered in terms of 

the ease of transportation, each road was divided in at most 
b 

two representative sections. For example, the road between 

two settlements could be composed of a section of highway 

together with a section of trail. Two weights at most were 

attached to each link according to the type of road of its 

sections. The five types of roads together with their weights 

are: paved (I), unpaved (1.5), trail (2), unpaved road or 

trail in a mountainous area (3) and footpath (4). These 

weights were determined by a reliable informant familiar with 

the area of study so the values assigned to the roads are, to 

some extent, subjective. 





The traveling distance between two settlements is calculated 

using the network as follows: 

Let ti and tj be two settlements that are connected through a 

link and the distance between them, Dij is: 

Dij = wik dik + wkj dkj 

where wik, wkj and dik, dkj are the two weights and distances 

attached to the link between settlements ti and tj. 

If ti and tj are not linked, the traveling distance is 

calculated by the sum of distances of the shortest path 

between ti and tj. 

5.4..3 The Geo-Subspaces 

From a spatial point of view the flow of secondary school 

graduates between settlements is one of the relevant factors 

to be considered in the allocation of new schools. The 

subsets of settlements that have the possibility of 

interacting through the flow of students are therefore part of 

the geo-subspaces of interest in the present problem. With 

this idea in mind a neighborhood of each of the nodes was 

defined through the traveling distance. 

For a given maximum traveling distance dm, the neighborhood of 

the node  ti) is the set of nodes where the traveling 



distance to ti is less or equal to dm. 

 ti) = { tj ; Dij < dm 

The maximum traveling distance can be fixed at different 

values. Consequently, a network can be associated with each 

one of them as follows: the nodes of the network are the set 

of settlements of the geo-space, and a link exists between any 

two of them if they are neighbors. 

In order to test different maximum traveling distances a small 

computer system that allows the user to postulate different 

distances and to plot the resulting networks was implemented. 

Figures 5.7, 5.8, 5.9 and 5.10 show the results obtained by 

testing different values for the maximum traveling distance 

for the study area of San Luis Potosi. 

Each of the networks shows a different spatial pattern 

according to the fixed distance. For example, for the 25 km 

threshold, most of the settlements are clustered in two large 

networks and only a few of them appear isolated. In contrast, 

in the 10 km case most of the settlements are isolated .The 

percentage of settlements without neighbors for each of the 

distances considered are: 6 0 $ ,  26.42$, 13.57% and 5.71% for 

the 10, 15, 20 and 25 km networks respectively. These 

observations allow the planner to better understand the 

spatial dispersion of the units in the area. 











Besides the measures commonly used in area planning, (number 

of students per classroom, enrollment ratios, etc), some of 

the specific characteristics of these networks can be included 

as criteria for the location of schools. The percentage of 

isolated units and the number of neighbors of each node are 

indicators of the degree of communication of each of the 

settlements. Table 5.1 shows the values of these quantities 

,associated with each settlement and for the different 

distances. The settlements are identified in the table by 

their code, as shown in table 5.3. 

Catchment Areas 

The catchment area associated to a school is simply the area . 
served by it. In defining a catchment area factors such as 

transportation facilities and terrain are considered. In this 

case each of the networks can be used in the definition of 

these areas. Since the interaction relationships are 

explicitly represented through the set of links in this case, 

each of the networks can be used in the definition of the 

catchment areas. Figure 5.11 shows the catchment areas of 

each of the existing preparatory schools, assuming a maximum 

traveling distance of 20 km. 

The lack of service at the preparatory level was quantified 
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using the number of secondary graduates, the capacity of each 

of the preparatory schools and the catchment areas. A measure 

of the coverage of each of the settlements with preparatory 

schools was calculated as follows: 

k 
( Z xi) + Xj - Cj 
i= 1 

Lj = 
k 

( Xi) + Xj 
i=l 

where Lj is the lack of service associated with the jth 

settlement, Xi is the number of secondary school graduates the 

ith settlement and a fixed year, k is the number of neighbors 

of the jth settlement and Cj is the capacity of its 

preparatory schools. Table 5.2 shows the results obtained 

using a traveling distance of 20 km and 1984 data. In this 

case the lack of service for Charcas is a negative number. 

This means that there is a surplus in the service for this 

particular settlement. 

Settlement C i Li % 

Charcas C 1 =392 L1=-0 0481 -4.81 $ 

Mat ehuala C2=1242 L2= 0.1573 15-73 % 

Table 5.2 Service of preparatory 
schools for a 20 km traveling distance 

( 1  984 data) . 



5.4.4 Some Spatial Characteristics of the Demand for 

Preparatory Schools 

One of the factors that is considered crucial in the location 

of preparatory school services is the spatial distribution of 

the demand. In this case the study of the demand was carried 

out using the number of secondary school graduates for three 

'consecutive years (1983-85) (see table 5.3). It was 

additionally assumed that all graduates demand preparatory 

school services, and that there is no flow of students from 

neighboring counties outside the study area. 

Interaction Spaces 

Besides the local demand generated by a settlement, the 

possible flow of secondary graduates among settlements is 

another of the issues that has to be considered in the 

location of a preparatory school. In this case the space 

where a flow of students to attend a preparatory school is 

expected, is delimited by the neighborhood of each of the 

settlements. This space is called interaction space. A 

measure of the expected intensity of interaction among 

settlements in a geo-subspace is given by the heterogeneity 

index of the neighborhood. For the study area of San Luis 

Potosi, a univariate heterogeneity index (equation. 3.2) was 



SETTLEMENT 

Real de  C a t o r c e  
L a s  Ad j u n t a s  
A l a m i t o s  d e  10s D i a z  
La Canada 
C a r d o n c i t a  
Cas t a R o n  
Los  C a t o r c e  
G u a d a l u p e  d e l  C a r n i c e r o  
La Maroma 
E l  M a s t r a n t o  
P o t r e r o  No.1 
R a n c h i t o  d e  C o r o n a d o s  
E l  S a l t o  y Anexos 
S a n  A n t o n i o  d e  C o r o n a d o s  

~ S a n  J o s e  d e  C o r o n a d o s  
S a n t a  Cruz  d e  C a r r e t a s  
S a n t a  Maria d e l  R e f u g i o  
Tanque d e  D o l o r e s  
Vigas d e  Coronado  
Wadley 
C e d r a l  
E l  B l a n c o  
C e r r o  de  las  F l o r e s  
La Cruz  
C u a r e  j o  
H i d a l g o  
J e s u s  Maria 
L a g u n i l l a s  
P a l o  B l a n c o  
P r e s a  Verde  
R e f u g i o  d e  las Monjas  
E l  S a l a d i t o  
S a n  I s i d r o  
S a n  L o r e n z o  
S a n  P a b l o  
S a n t a  R i t a  d e  S o t o l  
Tanque Nuevo 
Zamarr i p a  
P r o g r e s o  
Char  c a s  
A l v a r o  Obregon 
Caiiada Verde  
E l  C a p u l i n  
E l  Cedazo 

CODE 

101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
1 1 1  
112 
113 
114 
1 1  5 
1 1  6 
117 
118 
119 
120 
20 1 
202 
20 3 
204 
205 
206 
207 
208 
209 
21 0 
21 1 
21 2 
21 3 
21 4 
21 5 
21 6 
21 7 
21 8 
21 9 
30 1 
30 2 
303 
304 
305 

Number o f  S e c o n d a r y  G r a d u a t e s  
p e r  s e t t l e m e n t .  

T a b l e  5 .3  



E m i l i a n o  Z a p a t a  
F r a n c i s c o  I .  Madero 
G u a d a l u p e  V i c t o r i a  
La B o r c i l l a  
Lo d e  A c o s t a  
M i g u e l  H i d a l g o  
N o r i a  d e  C e r r o  Gordo 
P o c i t o s  
P r e s a  S a n t a  G e r t r u d i s  
S a n  R a f a e l  
E l  T e r r e r o  
V i c e n t e  G u e r r e r o  
La Z a p a t i l l a  
G u a d a l c a z a r  
Amoles 
B u e n a v i s t a  

, C h a r c o  B l a n c o  
C h a r c o  C e r c a d o  
E l  P r a i l e  
La  H i n c a d a  
H u i s a c h e  
IYi lagro  d e  G u a d a l u p e  
Negritas 
N o r i a  d e l  R e f u g i o  
NuHez 
P e y o t e  
La P o l v o r a  
P o t r e r i t o s  
P o z a s  d e  S a n t a  Ana 
Pozo de  Acufia 
P r e s a  d e  G u a d a l u p e  
P r e s a  de  T e p e t a t e  
Q u e l i t a l  
Reale j o  
S a n  A n t o n i o  d e  T r o j e s  
S a n  F r a n c i s c o  d e l  T u l i l l o  
S a n  I g n a c i o  
S a n  J o s e  d e  C e r v a n t e s  
S a n  Rafael d e  10s N i e t o s  
S a n t a  R i t a  d e l  R o c i o  
S a n t o  Domingo 
V e n t a n a  
La R o s i t a  
l l a t e h u a l a  
A r r o y i t o  d e  Agua 
La B o n i t a  
La  C a b r a  
La Caja 
La C a r b o n e r a  

T a b l e  5 . 3  ( c o n t . )  



E l  Carmen 
Concepcion 
Encarnacion  de Abajo 
Es tanque  de Agua Buena 
Guer re ro  
E l  Mezquite 
P a s t o r i z a  
Los P o c i t o s  
Pozo de S a n t a  Clara 
Rancho Nuevo 
Sacramento 
San Antonio de las  Bar rancas  
San Antonio de 10s C a s t i l l o  
San F r a n c i s c o  C a l e r o s  
San J o s e  de l a  Viuda 
San J o s e  de 10s Guajes  

,San Miguel 
S a n t a  Cruz 
S a n t a  Luc ia  
Tanque Colorado 
E l  Vaquero 
Los Cinco Sefiores 
Vanegas 
E l  G a l l o  
H u e r t e c i l l a s  
La Punta  
E l  Sa lado  
San J u a n  de Vanegas 
San Vicen te  
Tanque de Lopez 
E l  T e p e t a t e  
Zaragoza 
V i l l a  de Guadalupe 
Biznaga 
Guadalupi  t o  
Llano de J e s u s  Maria 
La Masita 
La P r e s i t a  
P u e r t o  de Magdalenas 
Rancho Alegre  
San B a r t o l o  
San F r a n c i s c o  
S a n t a  I s a b e l  
S a n t a  T e r e s a  
Zaragoza de S o l i s  
La Paz 
San Antonio de las  T r o j e s  

Tab le  5 . 3  ( con t  . ) 



calculated using the number of secondary school graduates for 

each settlement and the neighborhood relation established in 

the 20 km network. 

As can be observed in table 5.4, the pattern of the demand is 

very similar in all three cases. The spatial distribution for 

1983 is shown in figure 5.12. Two areas are distinguished by 

"less homogeneous" subspaces. These are the area surrounding 

.Matehuala, the largest settlement inside the study area, and a 

smaller area around Charcas, the second most important urban 

center. The heterogeneity index therefore indicates that the 

geo-subspaces that form the area around Matehuala and Charcas 

are characterized by relative heterogeneity in the demand. 

The standardized heterogeneity index associated with each 

settlement shows that the city of Matehualals variation is 
b 

much more significant than that of the rest of the 

settlements. The settlement of Guerrero is the only other one 

where the value of the index is smaller than 0.5. 

In fact, the values associated with most of these settlements 

is close to 1 which means that the geo-subspaces associated to 

them are homogeneous in comparison with Matehualals. 

In those areas that are formed by heterogeneous geo-subspaces, 

greater interaction among the settlements can be expected than 

in areas where homogeneity prevails. Thus, the impact of the 







location of a school on a settlement immersed in a 

heterogeneous environment should be analysed in greater 

detail. For example, the settlement of Guerrero is in the 

catchment area of two settlements with very different demands: 

Matehuala and La Presita. In this case, before a decision is 

taken regarding the location of a school, several alternatives 

related to the possible flow of students have to be analysed. 

For example, Matehuala could become a point of attraction for 

the secondary school graduates of Guerrero. On the other 

hand, the location of a school in La Presita could satisfy the 

demand of Guerrero and avoid the overcrowding of Matehuala. 

In summary, the measure of the local variation of interaction 

spaces allows the planner to identify the degree of expected 

interaction in settlements. This aids in the delimitation of 

zones where "intense" interactions are expected. Similarly, 

the index can serve in the definition of zones formed by 

geo-subspaces of homogeneous demand. 

Finally, to test the impact of a change in the criterion of 

maximum traveling distance on the spatial pattern of 

variation, the heterogeneity index was calculated using the 15 

and 25 km network for the year 1983. As can be seen in table 

5.5, the pattern presented is similar to the one obtained for 

the 20 km network. There are however, differences in the 

values associated with particular settlements. This indicates 
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that although no significant change should be expected in the 

general interaction pattern if any of the three (15,20,25 km) 

maximum traveling distances is taken as a threshold, in the 

analysis of individual settlements attention has to be given 

to the' heterogeneity values associated in each case. 

A Temporal Analysis 

,Up to this point the whole analysis has focussed on the state 

of the educational system at a fixed point in time. However, 

the analysis of the evolution of the system is important both 

to understand its present state and to evaluate the impact of 

planning actions. 

Temporal Stability 

At this point local variation of temporal subspace was studied 

insofar as it could be expected to indicate temporal 

"stability" of the demand in each of the settlements. 

A heterogeneity index similar to the spatial heterogeneity 

index was used to calculate the temporal variation of the 

demand for each settlement. The temporal heterogeneity index 

is defined as follows: 



and 

- 
where k is the number of school years considered, X is the 

mean value of the demand and Xi is the demand in the ith year. 

,This index can be standardized in a similar manner to the 

spatial case. 

The index was applied to the study of the temporal stability 

of the demand for a specific type of secondary schools 

"telesecundarias. It 

Three different types of secondary schools can be 

distinguished in the school system: general, technical and 

TV-secondary. TV-secondary is the type of school that has 

been established in most of the settlements in San Luis 

Potosi. In fact, the only places where there are technical 

and general schools are the county seats. TV-secondaries are 

designed to serve communities where the size of the population 

is too small to establish a regular school, and the settlement 

can not be serviced by neighboring ones. Televised classes 

keep the number of teachers required to a minimum. 



Besides the deficit of preparatory school service in those 

settlements that have regular secondary schools, there is also 

a lack of preparatory schools for the students graduating from 

a TV-secondary in the area. The number of students in each of 

these schools is in the interval [1,50]. There are, however, 

variations in the number of students from one school year to 

the next. The temporal heterogeneity index was used as a tool 

,to quantify this variation (see table 5.6). 

With the aid of this index it is possible to identify those 

settlements where temporal variation is significant. The 

value of the index can be interpreted as a measure of 

"temporal stability" of demand for preparatory services. For 

planning purposes a preparatory school in a settlement or 

catchment area which has an "unstable" demand is not 

advisable. 

Degree of temporal stability is a measure that has been 

associated to each settlement as an isolated entity. There 

is, however, an interaction space related to each settlement 

that must also be considered. The spatial distribution of 

temporal stability as shown in figure 5.13 presents a 

"heterogeneous pattern." A heterogeneity index was applied 

using the value of the temporal heterogeneity index as a 

variable to quantify this spatial variation and the 20 km 



network as a basis to define the neighborhoods (see table 

5.7) 

The value of the index associated with a settlement is that it 

provides a measure of the spatial variation of its 

neighborhood according to the temporal variation of the 

settlements. For example, values close to zero indicate that 

the spatial neighborhood is "highlytt heterogeneous with 

,respect to "temporal stability." On the other hand, values 

close to 1 indicate that the spatial neighborhood is "much 

less" heterogeneous with respect to the "temporal stability" 

of the settlements inside it. 

The map in figure 5.14 shows the spatial distribution of the 

spatial heterogeneity index of temporal stability. Both maps 
b 

(figures 5.13 and 5.14) can be used to identify neighborhoods 

where temporal stability is high and spatial heterogeneity is 

low. Assuming that the temporal trend is maintained, this 

characteristic of a neighborhood indicates to the planner that 

demand in the catchment area of a settlement where a school is 

to be located will not have a large temporal variation. 

5.4.5 Additional Considerations 

Besides the use of the heterogeneity index as an aid in the 

study of the spatial characteristics of demand, this same 
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S ~ a t i a l  distribution of the temporal 
heterogeneity index. 

Figure  5.13 



Distribution of the spat ial  heterogeneity 
index applied to  temporal stability. 

Figure 5.14 



measure can be used to study other aspects of educational 

planning. Some examples follow: 

1 .  Various indicators can be used to compare efficiency in 

the settlements studied. The rate of students graduating from 

elementary and secondary schools for a fixed cohort may be an 

indicator of the quality of the educational services. 

,The heterogeneity index can be used to test the uniformity of 

the services provided. Settlements with high values indicate 

anomalous conditions either superior or inferior to those of 

surrounding settlements. Homogeneous zones receive similar 

services, while heterogeneous zones show disparate services. 

2. The number of inhabitants per school in the different age 

groups and at different educational levels is an indicator of 

the distribution of the resources among the areas. 

The interpretation of the heterogeneity index in this case is 

similar to the previous example. Other variables that 

indicate the amount of resources given to a settlement can 

receive a similar treatment. 

3. If two or more indicators of the equity or efficiency of 

the system have been defined, a multivariate heterogeneity 

index can aid the planner in identifying zones or settlements 



by equity/inequity or efficiency/inefficiency measures. 

4. Finally, a time series analysis of the evolution of school 

services in such aspects as equity and efficiency can give the 

planner important information in order to better understand 

the present state of the educational service and to anticipate 

future developments. 

,5.5 Summary 

The heterogeneity index as a measure of the degree of 

membership of an areal unit to a region was applied in the 

design of regionalization algorithms. There are however other 

possi-ble interpretations of a measure of local variation of a 

geo-space. Planning was selected for tne application of the 
L 

heterogeneity index because areas of "high contrast" are of 

special interest for planners. In particular in school 

location planning various indicators are used in tne 

characterization of the spatial distribution of human 

resources and material assets of the school systems. The 

usual procedure in school location problems has two stages, 

first a definition of measures of interest for the planner, 

such as efficiency and effectiveness is done, and second, a 

representation of these indicators is made in maps. As 

mentioned before, one of the main differences between the 

neighborhood approach presented in this work and previous ones 



is that while in the most traditional models the 

representation of the geographical landscape is made through 

isolated entities such as lines,points and areas, in 

neighborhood models the basic units of study are 

geo-subspaces . 

In the first part of the chapter a "school location problem 

scenario" is established. The area of study is the northern 

,part of the state of San Luis Potosi in central Mexico. The 

Mexican school system has reached a point where there is a 

need to assure a coordinated growth among the different levels 

of education. Although since the 1970's a planning system was 

established within the government, very little emphasis has 

been done on the spatial aspects in the different school 

systems models that have been implemented. Currently, the . 
information system that supports the decision making is being 

transformed into a geographic information system. That is, 

for the first time, location variables are being included into 

the planning system at a national level. 

The area of study is characterized by a significant secondary 

school system growth, as a consequence there is a greater 

demand on the higher levels of education. The central 

authorities are aware of this phenomena and have decided to 

satisfy the demand establishing new schools. 



It is a common practice to use various indicators as well as 

their spatial distribution and catchment areas in the decision 

process for the location of schools. There are however 

besides the above-mentioned spatial aspects of the school 

location problem, other ones that have not been studied. In 

the second part of the chapter several indicators based on the 

notion of "local variation" are proposed as tools in a further 

study of the spatial characteristics of the problem. However, 

,it is important to mention that the basic goal is to present 

the tools rather than specific solutions for the location of 

new schools. It is clear that in a problem of the complexity 

of the one presented here, in order to reach the best feasible 

solution it is necessary to include in the analysis social, 

cultural, administrative and financial factors besides the 

geographical aspects. 

The geo-space of interest is defined as the set of settlements 

inside the study area that have a secondary and/or a 

preparatory school, together with the spatial relationships 

that are relevant to the problem, the geo-subspaces are 

defined as sub-sets of settlements. The size and shape of the 

geo-subspaces is not necessarily fixed. It is in fact a 

parameter that the planner can use at the decision making 

stage. Such is the case of the traveling distance, that can 

be used in the definition of the "optimum" number of schools 

to be located if there is a limitation on the number of 



schools to be established, since it allows the planner to 

determine the size of the catchment areas. For example, if it 

is assumed that the "optimum" traveling distance for a 

secondary graduate is less than 10km (figure 5.10) it is clear 

that the number of schools is larger than if the optimum is 

fixed at 25 km. (figure 5.7). 

Two indices were applied in the study of the demand of 

,preparatory schools in the area of interest. In the first 

case the heterogeneity of the geo-subspaces was interpreted as 

a measure of the expected degree of interaction within a 

catchment area. Since the degree of interaction is a measure 

of the flow of secondary graduates, this characteristic of the 

geo-subspaces can be used as a factor in the analysis of the 

impact of the location of new schools. The second index is a . 
measure of the local variation of the temporal stability of 

the demand. In this case, the demand's stability or 

unstability in a region can be used in similar studies. 

In brief, the study of the local variation of the 

geo-subspaces that form the area of study allows the planner 

to include into the decision process, spatial aspects such as 

the degree of communication of the settlements, the level of 

interaction within a neighborhood and the local variation of 

the temporal stability, that were not previously considered. 



Chapter 6. 

CONCLUSIONS 

6.1 Summary 

A common criticism of the mathematical models used in human 

geography is that in many cases key features that are 

considered essential for geographical analysis purposes are 

not represented. This limitation has been discussed with 

regard to factor analytic models and statistical inference in 

section 2.1 . I  (see also Haining, 1983) .  Heighborhoods is one 

of the geographical concepts that had received little 

attention by modelers until the latter part of the 

quantitative revolution. Although there are several 

mathematical models that that have been specifically designed 

to represent geographical neighborhoods, there has been no 

general attempt to establish an overall framework for the 

development of these tools. Therefore, as mentioned in the 

introduction, the principal objective of this work has been to 

present a general approach to the modeling of the notion of 



geographical neighborhood as well as to develop mathematical 

representations of it. 

Three different levels of modeling are found in the thesis. 

In the' first and most general, the notion of neighborhood 

model has been introduced through the mathematical concepts of 

space and subspace. Second, the local variation of 

geo-subspaces has been modeled through the heterogeneity 

,index. Finally, two neighborhood models have been developed 

and applied to specific situations: the design of 

regionalization algorithms and the definition of spatial 

criteria for school location planning. 

The first level of modeling is based on the intuitive notion 

that subjacent to the geographical landscape there are spaces 
b 

and subspaces. In the development of mathematical theory, 

spaces and subspaces play a fundamental role. 

Since the mathematical concepts of space and subspace satisfy 

certain requirements that make them appropriate as elements of 

representation of the geographical notion of neighborhood, two 

corresponding quasi-mathematical structures, geo-spaces and 

geo-subspaces, have been introduced to further the objective 

of establishing a general framework for the design of 

neighborhood models. 



A general approach to the design of neighborhood models has 

been discussed, and tools have been developed to the study of 

geo-subspaces. Although other existing techniques such as 

autocorrelation and geostatistics have incorporated 

neighb'orhoods in models with predictive purposes, the present 

research is based on the assumption that the concept of 

geographical neighborhood has not been fully modeled 

previously. 

With this idea in mind a measure of "local variation" of a 

geo-subspace has been defined. Although the measure itself 

resembles that of statistical variance, in this case the 

treatment is non-inferential. In fact, formalization has been 

carried out in topological rather than in statistical terms. 

Applications of topological concepts in spatial analysis are 

found in several branches of geography including geomorphology 

(~ark,1977), geographic information systems (~utton, 1968) and 

transportation (~aggett and Chorley, 1969). The topological 

entities on which these applications are based are graphs. 

There are however other topological concepts of interest for 

geographical purposes. One of the main sub-branches in 

topology is general, or set, topology. Based on the 

mathematical concept of neighborhood, in set topology, 

concepts such as that of limit and continuity are extended to 

abstract sets ( ~ i r b y  and Gardiner, 1982). Topological 



concepts such as the boundary or interior of a region, open 

set and neighborhood are used to model the geographical 

concept of neighborhood. 

Here, the introduction of a topology to an specific element of 

a geospace, a graph, has allowed the identification between 

the geographical and topological concepts of neighborhood. 

This might be expected since both notions have their origin in 

.,the same conception of nearness to a point or entity. 

The idea of fuzziness as developed by Zadeh ( 1 9 6 5 )  has been 

incorporated to a topological space through the heterogeneity 

index. This result suggests the possible development of a new 

mathematical structure, Fuzzy Topology. 

In the third level of modeling, neighborhood models have been 

applied in two instances: the design of regionalization 

algorithms and the definition of criteria for the location of 

schools. 

The algorithms designed are presented as examples of the use 

of the neighborhood approach. As mentioned previously, 

algorithms have to be designed according to the problem at 

hand. That is, the algorithms that have been presented are 

not necessarily adequate for every regionalization problem, 

although for the specific case of a central agglomerative 



procedure the application of the heterogeneity index has been 

fully described. 

The fuzzy set algorithm presented provides the analyst with 

information which is not available when a bivalent logic is 

used. A degree of membership of an element to a region has 

been given as a result of the classification procedure. It is 

important to note that geographical concepts have been 

,previously modeled using fuzzy sets no ale, 1972 and Leung, 

1982). However, in the design of classification algorithms 

that include a contiguity constraint the use of fuzzy concepts 

has posed some special problems. Contiguity is a 

characteristic that has been considered essentially bivalent, 

although in some cases (cliff and Ord, 1973) quantities such 

as the length of the border have been used as a measure of 

"contiguousness." In the algorithm discussed here the 

fuzziness refers, in topological terms, to the degree of 

"interiority" of a point to a set. As a result, the 

"membership" of an element to a region has not been described 

in terms of its "membership" to contiguous regions but rather 

with respect to its degree of membership to the border or the 

interior of the region. 

In the second application a neighborhood nodel has been 

designed to aid in a school location problem. In this 

particular area of educational planning the use of spatial 



models has been scarce, although indicators that include some 

spatial criteria are generally used as an aid in the selection 

of sites to establish new schools. In this case the 

heterogeneity index has been applied to aid the study of some 

spatial and temporal aspects of the demand for preparatory 

schools. The spatial interaction among settlements and the 

temporal stability of demand are two spatial factors that have 

been pointed out as important indicators in the analysis of 

,alternatives for the allocation of resources. 

6.2 Discussion 

It has been stated that three levels of modeling have been the 

concern of this study: 1 )  the establishment of a general 

framework for tne design of neighborhood nodels; 2) the 

design of tools for the study of geo-spaces and 3) the 

application of neighborhood nodels to specific geographical 

problems. 

This concluding section contains some brief and somewhat 

speculative remarks on the general importance of each level of 

analysis. 

At the third and most detailed level of modeling two 

neighborhood models were applied to geographical problems: 

regionalization and school location planning. Although in 



neither case was the use of the technique exhaustive, the 

results obtained indicate that the mathematical modeling of 

geographical landscape through "neighborhoods" constitutes a 

fruitful avenue of inquire for both applied and basic research 

purposes. 

At the second tool design level, it was the development of the 

heterogeneity index as a measure of local variation of a 

,geo-subspace that made the third-level applications possible. 

It would seem to follow that the same conceptual tool could be 

applied not only to similar contexts in the future but also to 

the study of the set of neighborhoods that conform a 

geo-space. One obvious area of exploration would be to 

substitute neighborhoods for tne entities used in existing 

models. For example, a measure of correlation could be 

applied to two or nore sets of neighborhoods of one or more 

geo-spaces. Similarly, the representation of a geo-space 

through a topological space with fuzzy characteristics, raise 

the possibility of using topological and fuzzy set theory for 

a thorough study of the geographical landscape. In this case, 

even though fornalization was achieved by identifying 

geographical entities with mathematical ones, the use of the 

mathematical models themselves was not extensive. It must 

therefore be acknowledged that the strengths and weaknesses 

of the application of topological and fuzzy set theory to 

geographical problems remains largely unexplored. 



Finally, from a more general point of view, this thesis 

illustrates the kind of discoveries that can be expected from 

high-level communication and interaction among two or more 

fields' of inquiry. In this particular case the 

geo-mathematician finds, on one hand, a previously unknown 

universe of applications of abstract mathematical theory, and 

on the other hand, the equally unsuspected possibility of 

,modeling the fundamental notion of geographical neighborhoods. 



APPENDIX A 

MATHEMATICAL CONCEPTS 

This appendix contains the mathematical details of the 

.,definitions of a topology in a connected graph, as presented 

in chapter 3. The definitions of some mathematical concepts 

necessary for the discussion are given in the first section. 

A.l Mathematical Definitions 

1 ) A graph with m points and q lines is called a 

b,q) graph. 

2) Walk of a graph. 

A walk of a graph is an alternating sequence of 

points and lines VO,X1 , V1 ,X2, . . . ,Vn-1 ,Xn,Vn 
beginning and ending with points, in which each 

line is incident with the two points immediately 

preceding and following it. 

3) Path of a graph. 

A path of a graph is a walk where all the points 



( and  t h u s  a l l  t h e  l i n e s )  a r e  d i s t i n c t .  

4 )  Connec ted  g raph .  

A g r a p h  G  is  connec ted  i f  e v e r y  p a i r  of  p o i n t s  

a r e  j o i n e d  by a p a t h .  

5 )  Subgraph .  

A s u b g r a p h  of  G  i s  a g r a p h  h a v i n g  a l l  i t s  p o i n t s  

and l i n e s  i n  G .  

6 )  D i f f e r e n c e .  

For t h i s  p a r t i c u l a r  a p p l i c a t i o n  t h e  d i f f e r e n c e  

be tween  two g r a p h s  G1 and G 2  i s  d e f i n e d  as 

f o l l o w s  : 

The l i n e s  i n  G1 - G 2  a r e  a l l  t h e  l i n e s  t h a t  

b e l o n g  t o  GI and  do n o t  b e l o n g  t o  G 2 .  Tha t  is: 

X ( G I - ~ 2 )  = X ( G ~  ) - x ( G ~ )  

The p o i n t s  i n  G I - G 2  a r e  t h o s e  t h a t  a r e  

r e p r e s e n t e d  i n  X ( G ~  - ~ 2  ) . 

7 )  Topology  

L e t  X  be  a g i v e n  s e t  of  o b j e c t s  c a l l e d  t h e  

p o i n t s  o f  X .  

A t o p o l o g y  i n  X i s  a non-empty c o l l e c t i o n  of  



s u b s e t s  o f  X c a l l e d  open  s e t s  s a t i s f y i n g  t h e  

f o l l o w i n g  f o u r  a x i o m s :  

Ax. 1 

Ax. 2 

A X .  3 

Ax. 4 

The empty se t  is open .  

The s e t  X i t s e l f  is open .  

The u n i o n  o f  a n y  f a m i l y  of open  

s e t s  is  open .  

The i n t e r s e c t i o n  o f  any  ( a n d  h e n c e  

o f  a n y  f i n i t e  number o f )  open  s e t s  

is  o p e n .  

A s e t  is s a i d  t o  b e  t o p o l o g i z e d  i f  a t o p o l o g y  

h a s  b e e n  g i v e n  i n  X .  A t o p o l o g i z e d  s e t  X is 

c a l l e d  a t o p o l o g i c a l  s p a c e  and t h e  t o p o l o g y  T i s  

c a l l e d  t h e  t o p o l o g y  o f  t h e  s p a c e  X ( H U ,  1964, 

p . 1 6 ) .  

I n  t h i s  c a s e  t h e  s e t  o f  i n t e r e s t  is a c o n n e c t e d  g r a p h  G w i t h  

p o i n t s  V(G) and  l i n e s  x ( G ) .  To a p p l y  t h e  c o n c e p t  o f  t o p o l o g y  

t o  G, t h e  c o n c e p t  o f  s u b s e t  is  i d e n t i f i e d  w i t h  t h a t  o f  

s u b g r a p h .  

To e x e m p l i f y  some o f  t h e s e  d e f i n i t i o n s  assume t h a t  GI, G 2 ,  G3 

a n d  G4 a r e  f o u r  g r a p h s  as shown i n  f i g u r e  A .  1 . 

By d e f i n i t i o n  G 5  = GI U G2 i s  s u c h  t h a t :  



V(GI U G2) = V(GI) U v(G~) = 

= { V1, V2, V3, V4, V5, V6 V7 1 and 

X(G1 U ~ 2 )  = x(G1) U x(G~) = 

= ( ( ~ 1  ,~2),(~2,~3)~(~3,~4)~(~3,~5),(~2,~6),(~6,~7)1 

G5 is' shown diagrammatically in figure A.2. 

The intersection between G1 and G3 (G6 = G1 fl G3) as defined 

in Chapter 3 is such that: 

. ,  X(G~ n ~ 3 )  = X(GI ) n ~ ( ~ 3 1  = 

= {(vl ,v2)7(v2,v3)1 

and it points are those represented in ~ ( G l n  ~ 3 )  so that 

V ( G I ~ G ~ )  = (vl, v2, v31. G6 is shown in figure A.2. 

As another example of the intersection of two graphs consider 

G7 = G3 n G4. In this case since x(G~) = 8, G7 is the (0,O) 

graph. 

The difference between G1 and G3 (1;8 = G1 - G3) is such that: 
X(G8) = x(G1 ) - X(G3) = 

= {(v3,~4),(~3,~5)1 

and v(G~) = [v3,v4,v51 

= V(G4) 

Moreover, as expected G1 - G4 = G3, G3 U G4 = G1 and 

G3 - GI is the (0,0) graph since x(G~) c X(GI ) . 



F i g u r e  A .  1 

Figure A.  2 



A.2 Mathematical Discussion 

Given ( m , q )  a connected graph G such that q#O then the 

following propositions are true: 

Proposition 1. The collection of open sets as defined in 

section 3.4 is a topology of G 

Ax.1 The (0,O) graph is an open set. This is true by the 

empty condition. 

Ax.2 i) G is an open set. By definition G is a subgraph of 

ti. 

ii) Let p E v(G). Since G is connected and q # 0, 

there exists a point pl such that (p,pl) E x(G). Let 

subgraph N be defined as: V(N) = [p,pl 1 and 

X(N) = ((p,pl ) ) .  N is a non-empty connected subgraph of 

G such that V(N) # (pi and p E V(N). Therefore G 

is an open set. 

Ax.3 The union of any family of open sets is open. 

Let 01, 02, ... On be a family of open sets of G and 



n n  
i )  By d e f i n i t i o n  V ( O ) =  U ~ ( 0 i )  and x ( o ) =  U ~ ( 0 i ) .  

i= 1 i= 1 

Given p  E V ( O )  and ( p l  , p 2 )  E x ( O ) ,  t h e r e  e x i s t  open s e t s  

O i  and O j  such  t h a t  p  c V ( 0 i )  and ( p l , p 2 )  E ~ ( 0 j ) .  

S i n c e  O i  and O j  a r e  subgraphs  of G ,  t h e n  p  E V ( G )  and 

( p l , p 2 )  E x ( G ) .  T h e r e f o r e  a l l  t h e  p o i n t s  and l i n e s  of 0  

belong t o  G and 0  i s  a subgraph of G .  

i i )  Given p  E V(0) t h e r e  e x i s t s  O i  such  t h a t  p  E ~ ( 0 i ) .  

S i n c e  O i  is an  open s e t  t h e r e  e x i s t s  a non-empty 

connected  subgraph N of O i  such  t h a t  V ( N )  # ( p ]  and 

p E v ( N ) .  However N is a l s o  a connected  subgraph of 0  

s i n c e  V ( N ) c  ~ ( 0 i )  C V ( O )  and X ( N ) c X ( O i )  c X ( 0 ) .  . 
T h e r e f o r e  f o r  eve ry  p o i n t  p i n  0 t h e r e  is  a non-empty 

connected  subgraph N such  t h a t  V ( N )  # ( p j  and p  E V(N) . 
T h e r e f o r e  0  is  an  open s e t  

Ax.4 The i n t e r s e c t i o n  of  any two open s e t s  is open. 

L e t  01 and 02 be two open s e t s  and 0 = 01 1302 = ( m , q )  

where q # 0 .  

i)  By d e f i n i t i o n  X(0) = ~ ( 0 1 )  f lX(02)  and V ( O )  a r e  a l l  t h e  

p o i n t s  t h a t  be longs  t o  a t  l e a s t  one p a i r  i n  ~ ( 0 ) .  

L e t  ( p l , p 2 )  E x ( o ) ,  t h e n  ( p l , p 2 )  E ~ ( 0 1 )  and 



( p l  , p 2 )  E X ( 0 2 ) .  S i n c e  01 and 02 a r e  s u b g r a p h s  o f  G ,  

( p l  , p 2 )  E X ( G )  and l e t  p C v ( o ) ,  t h e n  p G V(01:)and 

p  c V ( 0 2 ) .  But  01 and 02 a r e  subgraphs  of  G ,  t h e n  

p €  V ( G ) .  T h e r e f o r e  a l l  t h e  p o i n t s  and l i n e s  of 0  b e l o n g  

t o  G ,  s o  0  is a subgraph  of  G .  

i i )  L e t  pl be a p o i n t  i n  0 ,  pl E ~ ( 0 ) .  By d e f i n i t i o n  

t h e r e  e x i s t s  a l i n e  i n  0 ,  ( p , p l )  s u c h  t h a t  

( p , p l ) ~  ~ ( 0 1 )  and ( p , p l )  E X ( 0 2 ) .  L e t  N be d e f i n e d  as 

f o l l o w s :  V ( N )  = { ~ , ~ l l  and X(N)  = { ( p , p l ) j .  N is a 

nonempty connec ted  s u b g r a p h  of 0  s u c h  t h a t  V ( N )  # { P I  and 

P  E V ( N  
T h e r e f o r e  0  is a n  open s e t .  

P r o p o s i t i o n  2 .  For  e v e r y  p o i n t  p  E V ( G )  t n e  s u b g r a p h  formed by 

i t s  f i r s t  o r d e r  n e i g h b o r s  and t h e  l i n e s  j o i n i n g  

them t o  p ,  is a t o p o l o g i c a l  ne ighborhood of p. 

P r o o f :  

L e t  p l , p 2 ,  . . . p  n be t h e  s e t  of  n e i g h b o r s  of p. De f ine  N 

as f o l l o w s :  

V ( N )  = ( p ,  p l , p 2 ,  . . . p  n j .  ( V(N) # { p j  s i n c e  G is 

connec ted  ) and X ( N )  = ( ~ , p l  ) ,  ( p , p 2 ) ,  . . . ( p , p n ) ] .  L e t  

p i  be a n  a r b i t r a r y  n e i g h b o r  of  p  and U a s u b g r a p h  of N 

s u c h  t h a t  V ( U )  = { P , P ~ ]  and X ( U )  = { ( p , ~ l )  1 .  U is a n  



open set such that p is a point of U and U is a subgraph 

of N. Therefore N is a topological neighborhood of p. 
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