GENERIC FRAMEWORK FOR FEDERATED SECURITY
ENABLED SOFTWARE SYSTEMS

by

Ashok Shah

B.Sc (Chemistry) South Gujarat University, 1999

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in the School
of

Interactive Arts and Technology

© Ashok Shah 2006
SIMON FRASER UNIVERSITY
Fall 2006

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy
or other means, without the permission of the author,
except for non-profit, scholarly use, for which

no further permission is required.

APPROVAL

Name: Ashok Shah

Degree: Master of Science

Title of thesis: Generic Framework for Federated Security Enabled Software
Systems

Examining Committee:

Dr. Chris Shaw

Dr. Marek Hatala, Senior Supervisor

Dr. Dragan Gasevic, Supervisor

Dr. Mohamed Hefeeda, External Examiner,
School of Computing Science,

Simon Fraser University

Date Approved: ,ge,{) ‘fw ber 2 5 doob

ii

& Uhnversnivlibrary

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this

author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2006

Abstract

There is a remarkable growth in the number of organizations providing online services, some
of which are free and some are not. Federated security is a concept that allows different
organizations to share access to services based on their mutual trust and user’s security
credentials. Different federated security solutions (FSS) come with their specifications and
guidelines for interacting software components in the software system. The boundary be-
tween 'federation’ and the software component is often murky, and some FSS guidelines lack
stringent requirements for implementing the federation concept. In this thesis we analyze
the concept of federation, and how different software components interact with each other
with respect to the federation. Based on the analysis we develop a generic framework that
can be used to connect any existing FSS. The generic framework provides the features that

are superset of features provided by any existing FSS.

Keywords:

federated security, federation, framework, inter-operable federation, security, Shibboleth

iii

This thesis is dedicated to my parents for all their love, encouragement, and support.

iv

Acknowledgments

My first and foremost gratitude goes to my senior supervisor, Dr. Marek Hatala for his
guidance through out the thesis. I am grateful for all the research opportunities and the
endless discussion for my research.

I would like to thank my thesis committee for their guidance and feedbacks. I thank Dr.
Dragan Gasevic for the numerous discussions in search of solutions to different problem. I
would like to thank Dr. Mohamed Hefeeda for his critical feedback on my thesis.

My sincere appreciation goes to Dr. Griff Richards for all the new ideas and different
research visions. I thank Ty Mey Eap for his insights in different aspects of my thesis.

I would like to thank all my colleagues working on eduSource, LORNET, and LionShare
research projects. I would like to thank my friends Amit, Shital, Dhaval, Davis, Jurika,
Shilpi, Jeff, Nima, Baljeet, Kandy, and Deval for their support and occasional adventures

through out my thesis.

Contents

Approval

Abstract

Dedication

Acknowledgments

Contents

List of Tables

List of Figures

List of Programs

1 Introduction

1.1

Motivation e e e e e e e e e

1.2 Objectives e

2 Background

2.1

2.2
2.3

Well-known federated security solutions
2.1.1 Centralized federated security solution
2.1.2 Distributed federated security solution
Academic federated security solutions 0oL

SUMMATY . . ¢ . e e e e e e e e e e

vi

ii

iii

iv

vi

ix

xi

3 The Generic Framework

3.1 Requirements collection
3.1.1 Shibboleth Federation
312 WS-Federation
3.1.3 Liberty Alliance Federation
3.2 Specification for the generic framework
3.3 The generic framework
331 Overview
Implementation
4.1 The generic framework implementation.
4.2 Federation specific implementation
4.3 The generic framework modularity
4.4 SUMMArY . . .« v C v i e e e e e e e e
Analysis
5.1 Complexity analysis
5.1.1 Integration complexity analysis

5.1.2 Code reusability and evolution analysis

52 Security analysis
5.3 Discussion L o e
5.4 Summary e e e e e

Future Work and Conclusion

6.1 Summary
6.2 Scope and limitations
6.3 Futurework
Abbreviations

Java Interface for the Generic Framework

B.1 FederationHandle
B.2 IdentityProviderFederationHandle
B.3 ServiceProviderFederationHandle
B.4 ClientFederationhandle.

vii

..........

..........

21
21
22
26
29
32
36
37

46
46
47
50
ol

53
53
o4
L)
59
65
68

69
69
70
70

71

Bibliography

Index

viii

80

85

List of Tables

3.1
3.2
3.3

4.1
4.2

5.1

5.2
5.3

Shibboleth Federation technical functionalities 24
WS-Federation technical functionalities 28
Liberty Alliance technical functionalities 31
The generic framework modularity table 50
The generic framework features implementation summary 52
Requirement of understanding of implementation technologies by end-user

application developers e 55
Complexity analysis e 58
Security analysis 62

ix

List of Figures

1.1 Communication flows with two federations using a generic framework com-
PONENE . . . o v it e e e e e e e e e e e e e e e e e e e 6
2.1 Shibboleth metadata example L. 9
2.2 Shibboleth Federation 10
2.3 WS-Federation e 13
2.4 Liberty Alliance Architecture 16
2.5 Liberty Alliance L. e e 17
3.1 Detail Shibboleth Federation 23
3.2 Detail WS-Federation 27
3.3 Detail Liberty Alliance Federation 30
3.4 Use case diagram for generic federation framework 33
3.5 The Generic Framework Overview 38
3.6 The Generic Framework FederationHandler 39
3.7 The Generic Framework ServiceProviderHandler 40
3.8 The Generic Framework IdentityProviderHandler 41
3.9 The Generic Framework Client’s Federation Handler 42
3.10 The generic framework flow diagram 45
5.1 Federation Anatomy Diagram e 66
5.2 Mapping of Federation Anatomy and Shibboleth Federation 67

List of Programs

4.1 Representation of types of relationship between organizations 47
4.2 TImplementation to populate trusted organizations 48
4.3 Implementation to fetch technical information about a ServiceProvider . . . 49
4.4 Signature of abstract class CentralizedFederationSaslClientHandle 49
4.5 Signature of abstract class CentralizedFederationCASClientHandle 49
4.6 Shibboleth implementation to check if the user is a federation member . . . 49

xi

Chapter 1

Introduction

A federated security solution (FSS) provides a scalable security solution for organizations
to share their resources with other organizations. Traditional one-on-one security solutions
do not scale when large number of organization are involved. It requires each organization
to create seperate account for each user in each organization. A FSS provides a scalable
security solution by providing mechanisms to trust and exchange end-user security informa-
tion between organizations. A FSS is similar to a passport system. A Canadian passport
is recognized by every country in the world. If a Canadian citizen wants to go to the USA,
the USA recognizes the Canadian passport and respects its value. Allowing the Canadian
citizen to enter the USA border without any prior visa. In this example, the whole world
could be considered as a ’federation’. A Canadian passport is the credential, and Canada
is an identity provider that issues a Canadian passport to a Canadian citizen. The USA
is a service provider where a Canadian citizen is seeking entry. A security policy could be
considered as rules that govern the access of service. For example, USA has a security pol-
icy that allow citizens of Canada to enter the USA without acquiring a visitors visa. USA
'trusts’ the government of Canada for issuing the passport. The passport holders decide
themselves which country they want to federate their identity, that is to which country they
want to travel.

In a software system anyone who offers a service is called a service provider. The ser-
vice provider may want to allow access to specific end-users only, based on the end-user’s
credentials. An entity that issues end user’s security credential or assertion is called an

identity provider . The end user’s security credentials are the end-user’s properties inside

CHAPTER 1. INTRODUCTION 2

an organization: For example, John is a graduate student. This statement describes two at-
tribute values. The attribute name ’status’ has value ’graduate student’, and the attribute
name ’student name’ has value ’John’ in this example. Security credentials are security
statements issued by some entity. A group of organizations that wants to participate in
federated security have to have a common agreement for mutual trust.

The FSSs define sets of specifications and standards that are used to develop a complete
FSS framework. This framework provides user management and access control solutions to
organizations. The framework includes the message interaction sequence between different
software entities and corresponding security requirements. For example, a FSS typically
describes how service provider interacts with identity provider. A complete FSS consists of
core federation components, and the supporting infrastructure components. A core federa-
tion component would provide the information about the members of the federation only.
Whereas, the supporting infrastructure components use this information and allow users
access, based on this information. Both core federation and infrastructural components
work hand in hand to achieve federated security. Keeping a clear boundary between the
core federation and other components allows easier implementation efforts and chances of
interoperability with other federations. However, the message interaction sequences defined
by FSSs consider the whole software system as one, and do not separate the interaction
between the core federation components and the supporting infrastructural components.

FSSs depend on languages that allow communication of security credentials between
different software entities. Assertions are a type of security credentials. There are two
different types of assertions: authentication assertion and attribute assertion . Authentica-
tion assertions have a unique handle that could be used to obtain the attribute assertion.
An authentication assertion could be considered as a proof that the user has authenticated
with the identity provider and has other security information to obtain an actual attribute
assertion if needed. An attribute assertion is a list of attribute names and values that par-
ticular end user holds within an organization. For example, if John Doe is a manager at
BusinessXY7Z, ”employee status” could be thought of as the attribute name and ” manager”
is the attribute value.

eXtensible Access Control Markup Language (XACML) [45], and Security Assertion
Markup Language (SAML) [17] are two languages that allow the transfer of security cre-
dentials between different software entities. XACML(45] is a flexible access control markup

language for access control policies and a request/response language for FSSs. XACML

CHAPTER 1. INTRODUCTION 3

also dictates the data flow between different software entities in a system, which take up
different roles in the data flow. Policy decision point (PDP) is an entity in the XACML
data flow that makes the authorization decision of whether the access to requested resource
should be granted. Policy enforcement point (PEP) is a first point of intercept for any
incoming request in XACML data flow. Context handler is an entity in XACML data flow
that converts decision requests from native request format to XACML canonical form, and
vice versa.

SAML [17] is a markup language for expressing and exchanging security credentials
only. It defines the message format for security credentials, queries, and responses. SAML
assertions are the security credentials that are used for decision-making services. The entity
that enforces access authorization, for example PEP, at the service provider uses the SAML
assertions to take authorization decisions. SAML varies from XACML in that SAML allows
for secure transfer of credentials between two entities over a network only. XACML provides
a framework for making access control decisions. FSSs use SAML when exchanging security
credentials between two software entities over a network.

Trust and Federation are the foundation of FSSs. They represent the type of relation-
ships that exist between any two organizations in a FSS. Trust allows two organization to
recognize security credentials issued by other organizations that are trusted. Federation
allows taking an authorization decision. Trust is required between two organizations before
users federate their credentials. FSSs consist of different software entities that are assigned
some responsibilities in the software system. For example, identity providers are responsible
for authenticating users and issuing credentials, and service provider provides some kind of
service or resource to the user. Federation member is a term used for organizations that are
part of a federation.

In this thesis we want to understand the requirement in FSS from two perspectives. First,
we want to have a clear understanding of different message interaction sequences between
the core federation components and the supporting infrastructural components. Second,
we want to define a common set of functionalities that would enable an existing software
application to be part of a federation with minimum efforts. We will use this understanding
of a common set of functionalities required to develop a framework that allows an existing

software application to connect and share resource with any FSS systems.

CHAPTER 1. INTRODUCTION 4

1.1 Motivation

Our initial experience with developing a federated security system [31] [32] left a few ques-
tions. The implementation was not smooth, compared to other modules of the project. We
spent much time on understanding the different components in the whole F'SS. It was difficult
to track which components in the federation would interact with the end-user application.
The time and efforts spent on understanding the FSSs raises several questions. Could this
implementation be done in a better way? Could the implementation be made easier? Is it
possible to reuse any of the code that we had already developed for this implementation?
One of the major efforts for the FSSs implementation is in handling the PKI credentials
and dealing with the message interaction sequences between different software entities in
FSSs. However, the implementation for a particular FSS remains the same. One of the
main motivations for this thesis was the realization that if the implementation for particular
FSS remains the same, a lot of design and code could be reused. To enable an end user
application to connect and interact with FSSs, we could reuse code developed in our previous
implementation. If we extract the technical functionalities from FSSs and make it generic
enough to work with any existing federation, it would be of great help to the developers of the
end user application to interact and connect to FSSs. These generic technical functionalities
would reduce a lot of programming efforts for the developers who want to interact and
connect to FSSs by reusing an existing implementation. The reusable nature of the code also
increases the security of the software system because the security requirements are dealt with

in the implementation once, and do not need to be taken care of in every implementation.

1.2 Objectives

The initial pilot study of existing FSSs indicated that each FSS supports a similar type
of technical functionalities. But the message interaction sequences and syntax between
different software entities within an organization in FSSs are complex, and different for
different FSSs. We believe that it is possible to develop a middleware layer that would allow
for easier implementation for software systems to connect to FSSs. We call the middleware
layer a generic framework for federated security enabled software systems. Figure 1.1 shows
the concept of the generic framework. This generic framework would interact with the FSSs

and return the interaction results to the end user application. The end user application

CHAPTER 1. INTRODUCTION 5

developers do not have to deal with the message interaction sequences in different FSSs.
Instead, the generic framework would provide a set of technical functionalities through which
the user application could interact and connect to the FSSs. The proposed framework would
act as a middleware layer between the software systems and the FSS components. As we
see in figure 1.1, the generic framework allows the end user application to connect to two
different kinds of FSS. The end-user application interaction with the generic framework is
the same for both, even though the message interaction sequences in both FSSs are different,
step number 1 and 8, and step number a and h. It should be noted that the thesis provides
the research on FSSs only. The thesis doesnot provide any argument for comparing FSSs
with traditional security solutions. The list of our objectives to develop a generic framework

for software systems that want to interact and connect with FSSs follows:

e Understand existing FSSs
We would first study existing FSSs to understand different components involved in the
whole software system. This understanding should allow us to differentiate between
the core federation components and the supporting infrastructure components in FSSs.
This study would allow us to understand the dependencies for each software entities
in FSSs. We would also study any attempts to achieve a similar goal to develop a

generic framework.

e Define a specification with generalized technical functionalities for FSSs
Once we understand existing FSSs, we would generalize the technical functionalities
provided by each federation. End user applications have a common set of features
available in each FSSs. The specification would be the union of the generalized tech-

nical functionalities needed by each FSSs.

e Propose a generic framework
We then propose a generic framework for software systems to enable them to commu-
nicate in F'SSs based on this specification. The framework is generic in that the end
user application could connect to any kind of federation using the proposed frame-
work. Ideally, only the implementation of particular components of the framework
would differ for different federated security providers. The generic framework would
make the implementation efforts easy for end user application developers. The imple-
mentation of the proposed framework for one type of FSS could be reused by other

implementers, hence allowing code reusability.

CHAPTER 1. INTRODUCTION

JOPIACI BINBS B
» \\..\M\\\ TN saunasey (6
7 \Rn:cmm;m&:im] N
NN
// N
N
N
\.
N
NN,
UBPIADI)u&ﬁ // \.
N
\ Y i
yogiasee ///, ﬁ\mWw.,nnm Jasn pug
: mfd:oﬁzﬂm\ ///
S S AT DI - %,
ZAXSSaUIENG £zZissauls ; y et 5
CO_EN_CMQ.—O . :O_aﬂﬂ_cwm._o aEfumgny (g Y WQE. 571 z‘\
65In0s8y eossousiaBatn, uor | soysanbay P b
e . -
SiEfuaPer Weae (P e
/l// \.\\

uonesapai sm

1BRIAOI B0IAIBG

JUNCSAY {2

|
wo.:ogt “ﬁwwacmm (1

001G VONRIUIDYINY + BNCSAS IsAnhaY (v

Lonesse

(5

w w§~m-5‘c.»ﬁschmnmu rf Co_am‘_mvwn* vw .Fx_m_:n_ﬁc_mu._w.aw.aﬂmm,

srefuapersyeanbsy i

..

]
YT

-
o~ /f«)

£ N

T, o /

S AN

d Anuep)

uopezjuebiQ Jojsanbay

udgeagueny {¢ |

uonesspay YivjoqqIys

SWIDISAS BIBMYOS POjqeud ARInoas
pIlRIOPa) Jof Niomawey opdusb oyl = '

Figure 1.1: Communication flows with two federations using a generic framework component

Chapter 2

Background

This section provides a detailed review of currently existing FSSs. These solutions can be
divided into two parts: well-known federated security solutions that are developed by and
used in software industry, and academic federated security solutions. Typically, well-known
expert entities in the industry are involved in developing standards and implementations for
the security solutions provided by well-known federated security. The academic federated
security solutions are developed by researchers in the academic world. Academic federated
security solutions are typically based on a well-known federated security solution, solving
some specific problem in existing well-known FSS. Studying each would allow us to iden-
tify different components and understand the message interaction sequences between the

software entities in F'SSs.

2.1 Well-known federated security solutions

This section reviews existing well-known federated security solutions, that is, set of spec-
ifications/implementations that are recognized and used by commercial as well as non-
commercial organizations. The FSSs in this section are further divided into two categories:
centralized federated security solution (CFSS) , and distributed federated security solutions
(DFSS) . In a CFSS, end-user do not have any control over which organizations are part of
the federation. A centralized entity is responsible for managing federation member infor-
mation and serving it to other infrastructural components. In a DFSS users could federate
their identity to different providers over the network, and there is no centralized entity.

Each end-user application is responsible for managing its own federation members list.

CHAPTER 2. BACKGROUND 8

2.1.1 Centralized federated security solution

This section describes major CFSSs in detail. The decision to include organizations in
federation is made by some centralized entity. Users can not explicitly federate their identity
to different identity providers and service providers. A centralized federation management
manages the list of organizations that are part of the federation. This list is also referred to
as a federation members list. Typically, when a new organization wants to become a part
of a federation for CFSS type of federation, they have to communicate with the federation
management outside the scope of the software system and conclude with an agreement. The
federation management, after concluding with an agreement, includes the new organization

in the federation. One well known FSS is: Shibboleth Federation.

Shibboleth Federation

Shibboleth [5] is a project of Internet2/MACE, developing architectures, policy structures
and open source implementation to support inter-institutional sharing of web resources.
Shibboleth uses a model called the Trust Federation model, which means that the members
that are trusted are automatically part of the end-user’s federation. End-users do not have
the ability to directly federate or defederate their identity to other organizations.

Shibboleth has a complex message interaction sequence to achieve the federated security.
Here we will mainly describe the parts of Shibboleth Federation that are relevant for the
purpose of achieving FSS. There are three main components involved in Shibboleth Fed-
eration: origin site, target site or service provider, and identity provider. The portal from
where the request originates is called the origin site. The portal that holds the resource that
is being requested is called the target site. The entity that is responsible for issuing security
credentials is called the identity provider. Home organization is defined as the organization
that holds the credential for the end-user/requester.

Typically the origin site and the target site are from different organizations. To allow
an end-user access to resources at the target site, using federated security, the origin site
organization and the target site organization should have an agreement with federation
management beforehand, so that both organizations can recognize and respect each other’s
identity and credentials.

Shibboleth provides a federation metadata file that holds the list of information about

identity providers and service providers in the federation. How the metadata file is made

CHAPTER 2. BACKGROUND 9

available to the federation members is not stringent in Shibboleth federation documents.
The information about a service provider and a identity provider includes technical in-
formation, for example the digital certificate of the organization, as well as non-technical
information, such as the name of the organization. The certificate included with the ser-
vice provider or identity provider information allows other members to check the integrity
of the security credentials, and confirm that the credentials were not compromised while

transferring between different software entities over the network.

- <EntityDescrptor entitylD="urn:mace:ing nrc-cnre.ge.ca® s
- <10PSSODescrigtor protocsiSupportEnumeration="urm:oasis:names:tc:SAML:1. 1:protocol urn:mace:shibboleth:1.0">
- <Extensionss
<shibmeta:Scope wming: shibmeta="urrcmace:shibboleth:metadata:1.0" regexp="false">nrc-
conrc.gc.ca</shibmeta: Scopes
</EXtensions
' SETSigning >
- <GE REYIRTG xmins:ds="http://www.w3.0rqg/ 2000 /09 / xaidsigR”>
<ds:KeyName >electra.cisti.nrc.ca </ds: KeyName>
</ds Keylnfon
<KeyDescriptor>
<SingleSignOnService Binding="urm:mace:shibboleth:1.0:profiles:AuthnRequest”
Location="http:/ / electra.cisti.nrc.ca: 8000/ shibboleth /HS"
3 ok >

KeyDescriptor

AttributeAuthorityDescriptor

£ cAttributeAuthorityDescrptof brotocolSupporiEnumeratinn="urn:oasis:names:tc:SAML: 1. L:protocol -

JENARS

<shibmeta: Scope xmins:shibmeta="urn:mace:shibboleth:metadata:1.0" regexp="false’>nrc-
cnrc.ge.ca<’shibmeta: Scopes
</Extensions> AttributeService
: hdnig = urn:oasis:names:tc:SAML:1.0:bindings:SOAP-binding”
LOTanBHE p:/ /electra.cisti.nrc.ca: 8000/ shibboleth/AA" />
</ AttriputeAuthorityDescaptor>
~ <Qrganzations>
<OrganizationName xmiziang="en">National Research Councit of Canada</OrganizationName»
<OrganizationDisplayNams xmllang="an" »National Research Council of Canada «/OrganizationDisplayName>
<OrganizationURL xmidang="en">http:/ / www.example.com/ </OrganizationURL >
</Organization>
- «CortactPersan contactType="technical”>»
<GivenNamesDave Dearman </GivenName:»
<Emailaddress >David.Dearman@nrc-cnre.go.ca</EmailAddrass >
«iContactPersans
<EntityDeschptor>

Figure 2.1: Shibboleth metadata example

Figure 2.1 shows a snippet of an entry for an identity provider information in a Shibbo-
leth Federation metadata. The KeyDescriptor tag holds the certificate information of the
identity provider. The Attribute AuthorityDescriptor holds the information about the entity
that issues credentials. The AttributeService is a part of AttributeAuthorityDescriptor
that holds the end point information where a service provider could query the identity
provider to obtain end-user’s security credentials. A Shibboleth Federation metadata also
contains the information about the service provider. The format is similar to the code shown

in figure 2.1.

CHAPTER 2. BACKGROUND 10

Requestor Organization Resource Organization

Trust
B /"_"__,_.—-*—"‘ W\

g ¥

Foderation information % Federation j;f:qufaﬁon information |

Hdentity Provider \

E
L JJJ_/ Tldentity Validatorj
" 5) Verify ¢redential
1) Adthenticate N)
) Regu entials
%\\\

—

fanSs

2} Aughentication
apsertion

3} Request resource

3

6) Resource Servi

-

Provider

End user pplication

Figure 2.2: Shibboleth Federation

Figure 2.2 outlines the higher level message interaction sequence between different soft-
ware components in Shibboleth. The figure separates the identity validator and the service
provider for a clear understanding of the processes involved. In a real Shibboleth Federa-
tion, both service provider and identity validator reside on the same machine. As shown
in figure 2.2 the end-user application authenticates with the identity provider and obtains
authentication assertion, which is a unique identifier, as a proof of authentication. The
end-user application includes this unique identifier with the request for the resource. The
service provider retrieves the credentials from the end-user’s identity provider. The service
provider then validates the credentials before authorizing the request for resource.

When the end-user tries to access a resource from an organization other than the home
organization, he/she is asked to authenticate to the home organization, if not already authen-
ticated. Once authenticated with identity provider, Shibboleth Federation uses a complex
message interaction sequence between different software entities to allow the target site to
acquire the end-user’s credentials from his/her identity provider. The details of the mes-
sage interaction sequence are not relevant to this thesis. Software entities, that is service
providers and identity providers, in the Shibboleth Federation should consult the federa-
tion metadata before issuing the credentials and verifying the credentials. When a service
provider requests the end-user’s credentials, the identity provider consults the federation

metadata to check if the service provider is in the federation. The target site (service

CHAPTER 2. BACKGROUND 11

provider) consults the federation metadata to check if the identity provider that issued the
authentication assertion is in the federation. The acquired credentials allow the service
provider to make an authorization decision about the requested resource. If the identity
provider that issues the credentials is not a part of the federation, the request is denied
without any further processing. Additionally, the identity provider signs the issued creden-
tials so that the target site can verify that the credentials are not compromised while being
transferred between different software entities over the network.

Studying different Shibboleth Federation implementations [6], [1], [3], [2] shows that the
actual implementation of the federation metadata file distribution varies from federation to
federation. Shibboleth does not provide stringent requirements for federation implementers
for distributing the federation metadata file. From figure 2.2 we can clearly see that the
software entities are divided into two categories, one which is core federation specific, that
is, it provides the federation metadata file, and others that use the federation metadata file.

The user application that wants to interact and connect to the Shibboleth Federation
should deal with different libraries for different technologies, for example, the login mecha-
nism for the identity provider. The end-user application should also be able to handle an
attribute assertion and an authentication assertion from the identity provider and be able
to present it to the service provider at the correct time of the message interaction sequence,
when trying to access a resource at the target site.

To summarize, Shibboleth has following characteristics.
e Shibboleth uses the notion of trust federation.

e Shibboleth is a centralized FSS, in a sense that each organization in the federation

has the same set of trusted entities.

e Shibboleth Federations have a federation metadata file that serves as a core federation

component.
e The federation implementation varies from one organization to another.
e Shibboleth does not have a trust brokerage system.

e An end-user application should be aware of different technologies involved in the whole
federation, and should be able to communicate with other software entities using those

technologies.

CHAPTER 2. BACKGROUND 12

2.1.2 Distributed federated security solution

This section describes in detail existing DFSSs. End-users can explicitly federate and defed-
erate their identity to different identity providers and service providers. Different identity
providers and service providers can interact with each other to establish trust. There is
no centralized entity to manage trust and federation for end-users, as CFSS. End-users in
DFSS create and manage their own federation. DFSS introduces the concept of federating
the security credentials to other organization. As a result, each organization involved in
this interaction has the security credential mapping of the end-user’s security credentials.
The security credential mapping could also be considered as a mapping of the end-user’s
security credentials at each organization involved in this transaction. CFSS only allows
the software entities to query the federation members for information from the federation
metadata. The federation metadata is managed outside the scope of the software system.
DFSS introduces technical functionalities that also allow the software entities in the soft-
ware system to update the federation members’ list. There are two DFSS: WS-Federation

and Liberty Alliance Federation.

WS-Federation

WS-Federation [10] is a specification that defines mechanisms to allow different organi-
zations to establish a FSS by allowing trust and federation between organizations. WS-
Federation is based on other Web service standards, like WS-Security[46], WS-Policy([12],
WS-PolicyAttachment[11], WS-Trust[9] etc. WS-Federation provides a distributed approach,
where different identity providers in different organizations can interact with each other to
establish trust. To achieve a federated security, WS-Federation provides a two layer ap-
proach. First is the trust between different identity providers and service providers. Second
is the end-user’s ability to federate their identity to other organizations. End-users cannot
federate their identity to an organization unless it is trusted. Once the trust exists between
a identity provider and a service provider of different organizations, end-users from one or-
ganization could federate their identity to the other trusted organization. If trust between
the organizations does not exist already, WS-Federation provides different trust brokering
methods that allow establishing trust between organizations. For example, the transitive
trust model is transitive in the sense that if identity provider A trusts identity provider B,

and identity provider B trusts identity provider C, then trust between identity provider A

CHAPTER 2. BACKGROUND 13

and identity provider C can be brokered. One of the substantial features of WS-Federation
is the user’s ability to have different credentials at different organizations in federation. For
example, let’s say user John Doe is a MBA student at Simon Fraser University, and an
Associate Professor at University of British Colombia. Both Simon Fraser University and
the University of British Colombia are part of a federation, let’s say the Canadian Univer-
sity Federation. If a resource at some organization in the Canadian University Federation
has an access rights policy that allows access to only associate professors, WS-Federation
would allow gathering multiple credentials from different organizations in the federation to
satisfy the access rights policy for the requested resource, allowing John Doe access to the

requested resource.

~
Organization
BusinessABC
john@business 123 = doe@BusinessABC
N
Requestor Resource
Organization V Organization
Business123 L < RysinessXYZ
", 3
4) Establish Trust
ntity Provider| . “Idemtity Provider
5 3) Obtai (/ doe@BusinessABC
: ain Niia N .
1 3?“""3““5&‘3 J ohrwm@cl:;ﬁ SSXYZ john_doe@BusinessXYZ
2) Attribute | T
assertioh | T
. // . dentials
h 5) Request resource with credentials hj
f ;;' john_doe@BusinessXYZ R
J
End user application 7) Resource Service Provider
jokn@Business123

Figure 2.3: WS-Federation

WS-Federation allows different kinds of message interaction sequences between different
software entities. An end-user application could either obtain attribute assertion directly
from the identity provider and present them to the service provider or the end-user could

present an authentication assertion to the service provider, when requesting a resource. The

CHAPTER 2. BACKGROUND 14

service provider uses this authentication assertion to fetch the end-user’s attribute assertion
from the identity provider. Depending on what the end-user application provides, the service
provider either fetches the attribute assertion from the identity provider and verifies them,
or just verifies the attribute assertion.

Figure 2.3 shows a message interaction sequence between different software entities in
WS-Federation where the end-user first authenticates with the identity provider, and then
wants to request a resource from the service provider. There are different message inter-
action sequences possible in WS-Federation, but the federation functionality remains the
same. In figure 2.3 there are three organizations involved: organization Business123, Busi-
nessABC, and BusinessXYZ. A direct trust exists only between Business123 and Business-
ABC, and BusinessABC and BusinessXYZ. Business123 and BusinessXYZ do not have a
direct trust relation. The end-user first authenticates with its own identity provider, that is
Business123, and obtains attribute assertion. For simplicity, lets say the attribute assertion
is john@Business123.com. The real attribute assertion would be more complex. The end-
user application then provides that information to the identity provider at BusinessXYZ
requesting security credential mapping. Obtaining a security credential mapping is equiva-
lent to federating the identity across another organization. Because BusinessXYZ does not
have a direct trust relationship with Business123, BusinessXYZ initializes the process to
establish trust with Business123, if possible. Because Business123.com and BusinessXYZ
are connected through a transitive trust model, BusinessXYZ consults with BusinessABC,
and brokers the trust for Business123 and derives the security credentials mapping, which
is john@QBusiness123, equivalent to john_doeQBusinessXY Z. BusinessXYZ returns this
security credentials mapping to the end-user application. The end-user application then
includes this security credential, john_doe@QBusinessXY Z, along with the request to the
resource to BusinessXYZ’s service provider.

As we see in figure 2.3, there is no direct notion of trust between Business123 and
BusinessXYZ. Instead it is a trust brokering architecture between a set of software entities
that allow trust brokering if trust does not exist already. The WS-Federation does not have
any equivalent to Shibboleth’s federation metadata. Instead, each end-user application
maintains its own list of trusted entities. It is worth noting that only identity providers
are responsible for handling end-user’s credentials and their corresponding mapping, as
shown in figure 2.3 in WS-Federation. The service provider does not handle any security

credentials information themselves. The service provider is only responsible for verifying

CHAPTER 2. BACKGROUND 15

the security credentials. The service provider depends on the identity provider for being a
part of federation and when security credentials mapping is needed.

The end-user application that wants to interact and connect to WS-Federation systems
should deal with different libraries for different technologies involved in the WS-Federation.
For example, the end-user application should be able to handle different kinds of assertion,
and should also be aware of different message interaction sequences that allow end-users to
federate the identity to other identity providers.

To summarize, WS-Federation has following characteristics:

o WS-Federation uses the notion of trust and federation to establish a F'SS.

o WS-Federation is a distributed FSS, in that each end-user has their own federation.
o Only identity providers can be a part of federation in WS-Federation.

e WS-Federation has trust brokerage system.

e End-user application should be aware of different technologies involved in the whole
federation, and should be able to communicate with other software entities using those

technologies.

Liberty Alliance Federation

Liberty Alliance is a consortium of more than 150 companies working together towards de-
veloping an open, interoperable standard for federated security. The concept of federation
in Liberty Alliance is very similar to the WS-Federation concept of federation. Liberty Al-
liance has a distributed trust federation system, like WS-Federation. However, the message
interaction sequence and syntax between different software entities in Liberty Alliance is
different than WS-Federation. In WS-Federation only identity providers can handle and
interact with each other to broker trust and federate identity. In Liberty Alliance, both a
service provider and a identity provider can interact with each other to broker trust and
federate the end-user’s identity. Both a service provider and a identity provider can be part
of the federation.

Figure 2.4 shows a conceptual model of a FSS as in Liberty Alliance project. Liberty
Alliance has a so-called ‘circle of trusts’. End-users can have different profiles like 'work

profile’ and/or "home profile’, each having one or more identity providers as shown in figure

CHAPTER 2. BACKGROUND 16

Cisco
Sarvice provider
e TR /’//
/ \\\Pircle of trust Red hat e
N . . /
T Senvice provider—
i/
// T
== Lircle of trust \\
. P .
p / . \\
4 AN
/ ~ e N
! Paypdl acoount_ _ \\
identity provider Service provider)
/

Waebsite /

Service provier/ //
~_Identity provider Visa creditcard ,//
e— Service provider "

e SBIVICE PrOVIQEr

Home pmﬁ\e\

.

Figure 2.4: Liberty Alliance Architecture

2.4. If a service provider is out of the ’circle of trust’, a trust brokering mechanism could
be used to establish trust. If so, Liberty Metadata and Schema [23] dictate a message
interaction sequence between different software entities in Liberty Alliance to add a service
provider to the end-user’s circle of trust. A circle of trust in Liberty Alliance is end-user
oriented, in the sense that each end-user would have his/her own circle of trust.

To understand the Liberty Alliance federation in generic terms, that is the terms used
with other FSSs discussed in this secion, the circle of trust could be called a federation.
Liberty alliance also has two layers, similar to WS-Federation to achieve federated security.
First, trust should exist between different identity providers and service providers. Second,
users federate their identity to other identity providers and service providers, that is, create
their circle of trust.

Figure 2.5 shows a message interacton sequence in the Liberty Alliance federation where

the end-user authenticates with the Royalbank identity provider and wants to access a

CHAPTER 2. BACKGROUND 17

YT e
Circle of trust ™~

& s N\
) % AY
Paypal account The Bay \
Service provider Website \

Service provier

ation <N
Werify credentia
3 e

;jjé cretlitcard //
v rovider
iGé provi -

9¢ User infy,

4)Request /

Visa Creditcard
service provider?

Figure 2.5: Liberty Alliance

resource at the Visa creditcard service provider. The Visa creditcard service provider and
Royalbank identity provider have a trust agreement already in place. When the end-user first
authenticates with the Royalbank identity provider for first time he is asked if he wants to
federate his identity to the Visa creditcard service provider. If the end-user agrees to federate
the identity, Royalbank identity provider and Visa creditcard service provider exchange
messages to federate the identity. As a result, each entity involved in this message interaction
would have a mapping of the end-user’s security credentials at the other organization. This
step happens for each entity the user selects to federate his/her identity. Once the identity
of the end-user is mapped on both sides, the end-user can authenticate at either end, and
provide the authentication assertion to other organization to access any resource as if they
were on the same domain.

The end-user application that wants to interact and connect to Liberty Alliance systems
should deal with different libraries for different technologies involved in the WS-Federation.
For example, the end-user application should be able to handle different kinds of assertion,

and should also be aware of different message interaction sequences that allow users to

CHAPTER 2. BACKGROUND 18

federate the identity to other identity providers.

To summarize, Liberty Alliance federation has following characteristics:
o Liberty Alliance uses the notion of trust and federation in the software system.

e Liberty Alliance is a distributed FSS in the sense that each end-user has their own

federation.

e Both identity providers and service providers can be a part of a federation in Liberty

Alliance.
e Liberty Alliance has a trust brokerage system.

e End-user application should be aware of different technologies involved in the whole
federation, and should be able to communicate with other software entities using those

technologies.

2.2 Academic federated security solutions

In this section we will describe different FSSs that are developed in the academic community.

Different approaches towards FSSs have been proposed, by authors of [36], [59], [29],
(24], [34], [49], and [53]. The approach in [36] is very similar to the Shibboleth Federation
approach. Shibboleth uses different markup languages to represent attribute release policies
at identity provider and the attribute assertions for end-users. Attribute release policies
are partly equivalent to the user’s ability to federate identity to other organizations. The
attribute release policies in Shibboleth allow the end-user to control who could access their
resources. The end-user cannot add organizations to the federation, but the end-user could
deny releasing attributes to other organizations, which is equivalent to defederating identity
in WS-Federation and Liberty Alliance federation systems. [36] proposes a common XACML
[45] based message syntax for attribute release policies at identity provider and attributes
assertions for end-users.

The authors of [59] proposes a federated security model where proxies are needed to act
on behalf of the end-user. Present FSSs do not take into consideration the need for proxy
servers acting on behalf of users. [59] addresses the user privacy issue in a software domain
where proxy servers need to act on behalf of users. [34] presents a FSS which is very similar

to the Liberty Alliance federation. [34] puts an additional layer of policies at the identity

CHAPTER 2. BACKGROUND 19

provider to better preserve user privacy. [24] proposes an authorization model for a federated
system that can take care of the end-user’s security need in the federation. Typically FSSs
are developed for client server architecture. The end-user application acts as a client, and
a service provider acts as the server providing services. [24] provides a framework where an
end-user can share their objects in a secure fashion in a federated security system, that is,
an end-user applicatoin can also become a service provider.

[43], [8], [48], [52], and [37] presents the security and privacy analysis of different FSSs.
[43] argues that the FSS, though it increases the scope of a software system, is just as secure
as any other software system without F'SS. The security authentication features are collected
as an entity, which makes it easier for administrators to manage security, and detect a
possible threat. The security measures can be increased, for example, strong authentication
encryption, at the few authentication and authorization points in the federated systems. [8]
presents a security and privacy analysis of different F'SS in a matrix format. These papers
help in understanding the concept of federation in a FSS, but do not provide an exact
separation between federation and supporting software components.

The authors of [25] has goals very similar to this thesis, but a major difference exists
in the approach. [25] describes author’s understanding of federation in FSSs, and then
provides a study of different existing federated security systems. [25] tries to map software
entities from existing FSSs to the author’s conceptual model. In our approach, we first try
to understand different F'SSs, and then propose a conceptual model for a generic framework

for FSSs. We describe the resulting differences in the Analysis section.

2.3 Summary

To summarize, we realized that there are three major, well-established F'SSs available. FSSs
developed in an academic environment typically solve a specific problem in a well-known
federated security system. Well-established FSSs gather the understanding of those prob-
lems, and consider them in newer versions of standards and implementations. Security and
privacy analysis done by researchers in an academic environment are useful in understanding
the different components involved in a federation. But neither of them analyze any FSSs
to understand the functionality of federation, as in this thesis. The end-user application
in existing FSSs should be aware of different technologies used by the software entities in

the federation, and be able to communicate using those technologies. Each FSS has two

CHAPTER 2. BACKGROUND 20

components: first, the core federation component that provides different software entities in
the FSS with the federation information, second the supporting infrastructure components,
that is, a service provider, an identity provider and an end-user application that uses the
information provided by the core federation to achieve federated security. [25] has similar
goal as this thesis to analyze the concept of federation in FSSs, but the approach is very
different, producing different results. In section 5 we provide a comparison and proof of how

our solution would outshine this solution.

Chapter 3

The Generic Framework

In this section we will first sketch the requirements for the generic framework for the FSSs
discussed in section 2. We will then propose a specification defining a set of technical func-
tionalities that the generic framework should support, followed by the generic framework.
The technical functionalities are collected from two perspectives: first, the technical func-
tionalities needed by the identity provider and service provider in a FSS to communicate
with the core federation, and second, the technical functionalities needed by the end-user
applications in FSSs. Separating the requirement collection into two perspective allows us to
capture a bigger picture of the FSS, and develop the generic framework with the maximum

possible generalization.

3.1 Requirements collection

We will now describe the message interaction sequence for FSSs discussed in section 2
in detail. Each FSS discussed in section 2 has a dedicated sub-section for requirement
collection that describes the detail message interaction sequence. By describing the detail
message interaction sequence, we want to understand the technical functionalities of different
software entities in the F'SS. In each sub section for requirement collection we cover different
types of message interaction sequences to collect all the technical functionality in FSSs.
Each requirement is identified by a unique requirement id. For a given requirement id the
corresponding technical functionality remains the same, but the software entities that use

the technical functionality may differ.

21

CHAPTER 3. THE GENERIC FRAMEWORK 22

3.1.1 Shibboleth Federation

Shibboleth’s approach toward federation is simple compared to the WS-Federation and
Liberty Alliance Federation. The service provider and identity provider are the only infras-
tructural components that interact with the core federation component to obtain federation
information. Because Shibboleth is CFSS, core federation is only required to serve the in-
formation about the federation members. The update of the federation members happens
outside the software, with mutual agreement between different organizations.

Figure 3.1 shows the detail message interaction sequence for Shibboleth where the user
authenticates with the identity provider and then accesses some resource from a service
provider. When joining the federation the service provider specifies the set of attributes that
it needs to make any kind of authorization decision. The end-user first authenticates with
the identity provider and obtains an authentication assertion. The authentication assertion
contains a unique identifier as a proof of authentication. A service provider when receives
the request for a resource, including an authentication assertion, contacts the authenticat-
ing identity provider to obtain an attribute assertion. The identity provider contacts the
federation to obtain information about the service provider before issuing the attribute as-
sertion. First, it checks if the service provider requesting the assertion is in the federation.
Second, the identity provider fetches the required attribute list for the service provider from
the federation. Third, the identity provider obtains the certificate for the service provider
to check the integrity of the assertion request from the service provider.

When the service provider obtains the attribute assertion, it passes the attribute as-
sertion to the identity validator. Please note that to explain the flow of federation clearly,
identity validator and service provider are shown as separate entities in the diagram. Typ-
ically they would reside on the same entity called service provider. The identity validator
fetches information from the federation to verify the attribute assertion. First, the identity
validator checks if the assertion is issued by an identity provider that is a member of the fed-
eration. Second, the identity validator obtains the identity provider certificate and checks
the message integrity. If all the checks are completed successfully, the identity validator
then runs the attribute assertion against the resource policy to grant access to the resource.

Table 3.1 summarizes the list of federation functionalities used by different software
entities in the Shibboleth Federation:

23

CHAPTER 3. THE GENERIC FRAMEWORK

18DIACLY BOIAIBS

a2n0say (9

/

[Enuepaig Ajusa (g

usp

ERuUspaIn)

uoljelapo
1817 J9pIAoId
nuepi1e9 (1'g

Sleoy

w.
@Ewb\.w.w,mﬁ}a »

Jooud uopesnusyny + 801Nosal 1sanbay (g

<

1511 lapiADid
aapueg 189 (L't

vy

S
uopeziueBi aainosay

g

suod UoloRISH UOBISPS 4

uoneziuebip joysenbay

Figure 3.1: Detail Shibboleth Federation

CHAPTER 3. THE GENERIC FRAMEWORK

Table 3.1: Shibboleth Federation technical functionalities

Requirement ID:

Step :
Feature :

Description :

1

0.1

Set required attributes

A service provider use this technical functionality to specify

minimum credentials required to request any resource.

Requirement ID:

Step :
Feature :

Description :

2

1

Authenticate

An end-user application in FSSs uses this technical function-
ality to login to identity provider and obtain an authentica-

tion assertion.

Requirement ID:

Step :
Feature :

Description :

3

3

Request resource

End-user application uses this technical functionality to re-

quest a resource from service provider.

Requirement ID:

Step :
Feature :

Description :

4

4.1

Get federation service provider list

An identity provider uses this technical functionality to
check if the service provider requesting the attribute asser-
tion is part of the federation. If the service provider is not
in the federation members list, then the identity provider

would not issue attribute assertion to the service provider.

Requirement ID:

Step :

Feature :

)
4.2
Get required attributes

Continued on next page. ..

24

Description :

CHAPTER 3. THE GENERIC FRAMEWORK

Table 3.1 — continued
An identity provider uses this technical functionality to get
the list of attributes required by the service provider. Iden-
tity provider issues the attribute assertion based on the re-

quired attributes set by the service provider.

Requirement ID:

Step :
Feature :

Description :

6

4.3

Get service provider certificate

An identity provider uses this technical functionality to get
the certificate of the service provider that requests the at-
tribute assertion. The certificate allows the identity provider
to check the integrity of the attribute assertion request sent

by the service provider.

Requirement ID:

Step :
Feature :

Description :

7

5.1

Get federation identity provider list

An identity validator uses this technical functionality to re-
trieve the list of identity providers that are part of the fed-
eration. If the identity provider that issued the attribute
assertion is not in the federation member list identity val-

idator does not verify the attribute assertion.

Requirement ID:

Step :
Feature :

Description :

8

5.2

Get identity provider certificate

An identity validator uses this technical functionality to re-
trieve the identity provider certificate that issued the at-
tribute assertion. Identity provider uses this certificate to
check the integrity of the attribute assertion and the iden-

tity of the entity that issued the credentials.

Requirement ID:

Step :

Feature :

9
5

Verify credentials

Continued on next page. ..

25

CHAPTER 3. THE GENERIC FRAMEWORK 26

Table 3.1 — continued

‘ Description : A service provider uses this technical functionality to verify

end-user’s security credentials.

3.1.2 WS-Federation

WS-Federation’s approach toward federation is more complex compared to Shibboleth. WS-
Federation provides a different message interaction sequence to achieve federated security.
Identity provider, service provider and the end-user application can interact with the core
federation to achieve federated security. The core federation component in WS-Federation
should provide the federation member information, as well as technical functionalities to
update the federation members list.

Figure 3.2 shows a message interaction sequence in WS-Federation where the end-user
authenticates with the identity provider and wants to access resource from a service provider
that is not part of the federation. The scenario described in figure 3.2 is the same as shown
in figure 2.3. Figure 3.2 shows a detailed explanation of the exact message interaction
sequence between different software entities in the federated system. The end-user first au-
thenticates with Business123’s identity provider and obtains an attribute assertion. Before
sending a request to access the resource at BusinessXYZ, the end-user first federates his
identity to BusinessXYZ. The federation manages internally how the identity is federated
to BusinessXYZ’s identity provider. When BusinessXYZ receives the federation request
from Business123’s user, BusinessXYZ first checks if Business123 is trusted. Because Busi-
nessXYZ does not trust Business123, BusinessXYZ tries to establish trust by mechanisms
defined in WS-Federation [10]. The details of the mechanisms used by WS-Federation to
broker the trust between BusinessXYZ and Business123 is not relevant to this thesis. As
discussed in section 2.1.2, federation uses a transitive brokerage method to establish trust
between Business123 and BusinessXYZ. Once the trust is established, BusinessXYZ maps
the users attribute assertion, that is, john@Business123, to the new attribute assertion
that it recognizes, that is, john_doe@QBusinessXY Z.

Once the end-user application obtains the new mapped attribute assertion from -
john@Business123 to john_doe@QBusinessXY Z, the end-user could request object from
the service provider at BusinessXYZ as john_-doe@BusinessXY Z. The service provider
would recognize the provided credentials without any input from the federation because the

credentials are provided by service providers in its own organization.

CHAPTER 3. THE GENERIC FRAMEWORK

@ = Service provider or identity provider
interaction with federation

Organization
BusinessABC

john@Business123 = doe@BusinessABC

Requestor e
Organization !
Business123

Federation

|dentity Prowidis

k.
,:/ M‘\/"\u/\ -
) Fedarate
john@Business123
toBusinessXYZ.com
And obtain a
/ credential mapping

2) Attribute
assertion john@Business 123

4) Raqusst resource
hs

Ty

john_doe@iBysinessXYZ

T Y N identity Provilie:
[

Resource
Organization
BusinessXYZ

Ident{fy ProW

s

5) Verify Gredentialy
{ A

End user apﬂﬁéﬁon 6) Reis(§
john@Business123

urce

Sarvice Provider

Figure 3.2: Detail WS-Federation

27

CHAPTER 3. THE GENERIC FRAMEWORK

Table 3.2: WS-Federation technical functionalities

Requirement ID:

Step :
Feature :

Description :

2

1

Authenticate

An end-user application in FSSs uses this technical function-
ality to login to identity provider and obtain an authentica-

tion assertion.

Requirement ID:

Step :
Feature :

Description :

10

3

Federate identity to other organization

End-user applications use this technical functionality to fed-

erate their identity to other identity providers .

Requirement ID:

Step :
Feature :

Description :

11

3.1

Is particular organization trusted

An identity provider uses this technical functionality to
check if a particular organization is trusted. Identity
provider is required to check the trust with user organization

before accepting the identity federation requests.

Requirement ID:

Step :
Feature :

Description :

12

3.2

Request trust brokerage

An identity provider uses this technical functionality to es-
tablish trust with other organization. The WS-Federation
system handles the actual details of how the trust is estab-
lished. Identity provider only needs to submit the request

for trust brokerage.

Requirement ID:

Step :

Feature :

9
5

Verify credentials

Continued on next page. ..

28

CHAPTER 3. THE GENERIC FRAMEWORK 29

Table 3.2 — continued
Description : A service provider uses this technical functionality to verify

end-user’s security credentials.

Requirement 1D: | 3

Step : 4
Feature : Request a resource
Description : An end-user application uses this technical functionality to

request a secured resource from the service provider. De-
pending on the end-user’s preference, the end-user applica-

tion either includes an authentication assertion or an at-

tribute assertion with the request for a resource.

3.1.3 Liberty Alliance Federation

Liberty Alliance’s approach is very similar to WS-Federation’s. The message flow sequence
in Liberty Alliance and WS-Federation are similar at the conceptual level. The core feder-
ation component in Liberty Alliance should also provide information about the federation
members, as well as technical functionalities, to update the federation members list.
Figure 3.3 shows a message interaction sequence in Liberty Alliance Federation where
the end-user authenticates with the identity provider, and wants to access a resource from
a service provider. The identity provider asks the end-user to set preferences for which
entities to federate his/her identity when the account is accessed the first time, or each time
the identity provider adds a new member to its trust list. For example when the end-user
authenticates with the Royalbank identity provider, Royalbank identity provider asks the
user if he wants to federate his identity to Visa creditcard service provider. Royalbank iden-
tity provider remembers this preference and federates (or does not) the end-user’s identity
to the Visa creditcard service provider every time the end-user authenticates. If the trust
between the entities that are involved in federating identity does not exist, a trust brokerage
mechanism is used to establish trust, if possible. The federation handles the details of how
the trust is established, if it is possible. The end-user when requests a resource from the
Visa creditcard service provider using Royalbank identity provider security credentials. The
Visa creditcard service provider can give access to the resource. Because Royalbank iden-
tity provider federated the end-user’s identity to Visa creditcard service, the Visa creditcard

service does not need to perform any additional check when it receives a request from that

30

CHAPTER 3. THE GENERIC FRAMEWORK

:ozmo:aam, Jasn puz

<N

~.

S . {IBPINCIT.GOIAISS PIBDJIPSID BSIA
82unosay (g d \\\ N O} AludR! @jeiepa4 (Z
\\ 4 \\.\ // haN
e

\,,,\ \

mwa@umscmm (€

/ /////
sjeonuaying (|
7/// /

\\,\ //
1opir0id B0IAIES \\\ \\ Jepinosd soIAas /
piEOypaID BSIA)\/))J) PJEONPaIO BSIA
f/\\ ‘_w‘_ﬁwwwmw Mow“mm o} Ajjuapt Jasn w1
S IP8ID ESIA i
=k ™\ 01 Amuapt Jesn N owped et
Ne) seiepad (pz¢ UOlNBIDP3A - BSIA UM
NM. \ ff 1snuL UsiigeIs3 (272
* LL\ pajsnd).
T o5 esIASI (12

sjepuapso AJUaA ..Nv

suiod uooelEul uBIBPS

O

Figure 3.3: Detail Liberty Alliance Federation

CHAPTER 3. THE GENERIC FRAMEWORK

user.

To summarize, table 3.3 is the requirement from core federation in Liberty Alliance:

Table 3.3: Liberty Alliance technical functionalities

Requirement ID:

Step :
Feature :

Description :

2

1

Authenticate

End-user applications in FSSs use this technical functional-

ity to login to identity provider and obtain an authentication

assertion.
Requirement ID: | 11
Step : 2.1
Feature : Is particular organization trusted
Description : A identity provider uses this technical functionality to check

if a particular organization is trusted. Identity provider is
required to check the trust with the end-user organization

before accepting the identity federation requests.

Requirement ID:

Step :
Feature :

Description :

12

2.2

Request trust brokerage

A identity provider uses this technical functionality to es-
tablish trust with other organization. The WS-Federation
system would handle the actual details of how the trust is
established. Identity provider would only need to submit

the request for trust brokerage.

Requirement ID:

Step :
Feature :

Description :

10

2.3

Federate identity to other organization

An identity provider uses this technical functionality to fed-

erate user’s identity to other organization.

Requirement ID:

Step :

9
4

Continued on next page. ..

31

CHAPTER 3. THE GENERIC FRAMEWORK 32

Table 3.3 — continued
Feature : Verify credentials
Description : A service provider uses this technical functionality to verify

end-user’s security credentials.

Requirement ID: | 3

Step : 3
Feature : Request a resource
Description : An end-user application uses this technical functionality to

request a secured resource from the service provider. De-
pending on the user preference, the end-user application

either includes an authentication assertion or an attribute

assertion with the request for resource.

3.2 Specification for the generic framework

In section 3.1 we studied different federated systems with the goal of understanding the
detail message interaction sequences between different software entities in the federated sys-
tem. The study allowed us to analyze technical functionalities needed by different software
entities in F'SS. This section gathers these technical functionalities, and presents a generic
specification that could be used to develop a generic framework to enable software systems
with federated security. The analysis of the existing F'SSs in section 3.1 shows that there are
three main software entities in the FSSs that need to interact with the core federation: the
identity provider, the service provider, and the end-user application. The generic specifica-
tion technical functionalities should be the union of the technical functionalities analyzed
for each F'SSs in section 3.1. Figure 3.4 shows the UML usecase diagram for the union of the
technical functionalities analyzed for each FSSs in section 3.1. The technical functionalities
are divided into four categories: technical functionalities needed only by identity providers,
technical functionalities needed only by service providers, technical functionalities needed
by both service providers and the identity providers, and the technical functionalities needed
by the client application.

Below is the description of the technical functionalities for the generic specification for
the FSS:

o Get identity provider information

33

CHAPTER 3. THE GENERIC FRAMEWORK

uojpuuOiul Japroid
Amuap A4 pads

SQINOS3) Y}
104 S0 APAD
paanbal W8 4

1BPROIQ Ao

snjefs diysiaquiaw
uoneispy
§,Jasn ¥ayo

Aywap)
Bsn apispalag

Aywiapt
iasn sjeleps 4

$Japmoid Jayp
0] §SNJ} 3Y0AIY

sipnoid Jayp ym
sriysiqels3

UoLEUL O 480K
AjRuspl LR 4

uoljBuNOjU 1aproid
0K PP 3

snisis By
iBomo.d 334D

RPNoId BMAIRS

92Un0s8. 0

uoieuuQiUl JapRod
anAes A padg

Jo} sjegUaPAId
painba) 4pads

adnosal Ky
Banbal ay} o} paydepe
SIBIIBPAIO A/ 1434

add] Aue

<< 8pNpui »» ,

<< 3pNpU »»

.

uoppasse
U0 RONIBUING LIS

uoss s
sinquRs Wia 4

<<apnpu;>»! << 3pnpuU »» ,*

fprnoid aoals
0} 2UNOS.
a0} panba puas

uogsonddy sas

Japwoid Ayuspl
wouj J3sn
auino Bol

£apasd Auap!
ayj oysesn uibo]

Eepmnad PR 4

Figure 3.4: Use case diagram for generic federation framework

CHAPTER 3. THE GENERIC FRAMEWORK 34

The infrastructural components use this technical functionality to get the information

about an identity provider in trust list. This technical functionality generalizes the

requirement id 8.

e Set identity provider information
Identity provider use this technical functionality to upload its technical information

to the federation, for example X509Certificate.

e Get service provider information
The infrastructural components use this technical functionality to fetch the infor-
mation about other service providers in the trust list. This technical functionality

generalizes the requirement id 6.

e Set service provider information
Service providers use this technical functionality to upload its technical information

to the federation, for example X509Certificate.

e Set required credentials
Service providers use this technical functionality to upload the information about the
minimum credentials that they require to process any kind of request for resource.

This technical functionality generalizes the requirement id 1.

o Get required credentials
An identity provider uses this technical functionality to fetch the information about the
minimum credentials required by the service provider to process any kind of request

for resource. This technical functionality generalizes the requirement id 5.

e Is organization a trusted member
The infrastructural components use this technical functionality to check whether a
particular organization is trusted. This technical functionality generalizes the require-
ment id 11.

o Is user a federation member
The infrastructural components use this technical functionality to check if the user
federated his/her identity.

e Federate identity

The infrastructural components use this technical functionality to federate end-user’s

CHAPTER 3. THE GENERIC FRAMEWORK 35

identity to other organizations. This technical functionality generalizes the require-
ment id 10.

o Defederate identity
The infrastructural components use this technical functionality to defederate the end-
user’s identity from other organizations. This technical functionality is used by the
sign out technical functionality described in WS-Federation [10] and Liberty Alliance

[4] specifications.

e Establish trust
The infrastructural components use this technical functionality to establish trust with
other organizations. For example, this technical functionality acts as a wrapper for
establishing trust using the community trust model or brokerage trust model in Liberty

Alliance [4]. This technical functionality generalizes the requirement id 12.

e Revoke trust
The infrastructural components use this technical functionality to revoke trust with

any organization in the trust list.

e Login
An end-user application uses this technical functionality to allow end-users to login
to the identity provider. The end-user application do not have to deal with the com-
plications of handling the login procedure. For example, if the identity provider uses
Kerberos ticket mechanism in JAAS to allow the end-user to login, the implementation
of this technical functionality in the ClientFederationHandler API would take care
of the implementation of the same. The end-user application just needs to provide the
user name and password to obtain the Kerberos ticket. This technical functionality

generalizes the requirement id 2.

e Logout
An end-user application uses this technical functionality to logout the end-user from
the identity provider, after which the identity provider does not issue the end-user’s

credentials to anyone.

e Send request

An end-user application uses this technical functionality to allow the end-user to send

CHAPTER 3. THE GENERIC FRAMEWORK 36

a request for a resource to any federation member’s service provider. This technical
functionality helps in simplifying the implementation efforts for end-user application
developers. This technical functionality would interact with multiple entities in the
federation if required to obtain the resource. For example, if an SFU student wants
to access an online book from the UBC library website, this technical functionality
interacts with the service provider entity at UBC and the identity provider entity, if
needed to obtain the access for the resource. This technical functionality generalizes

the requirement id 3.

e Verify credentials
A service provider and an end-user application use this technical functionality to verify
the credentials coming from other federation members. This technical functionality
simplifies the implementation efforts at the end-user application. This functionality
would interact with multiple entities in the federation if required to verify the creden-
tials. For example, when the end-user application gets request for a resource which has
only authentication assertion. The generic framework would communicate with the
identity provider that issued the authentication assertion and obtain a user attribute

assertion and verify them. This technical functionality generalizes the requirement id
9.

3.3 The generic framework

This section sketches the generic framework based on the generic specification described in
section 3.2. The generic framework can be used by the end-user application developers to
allow the end-user application to connect and communicate with the FSS. Figure 3.4 high-
lights that the usecases/technical functionalities for the generic framework can be divided
into four categories: technical functionalities needed by identity providers only, technical
functionalities needed by service providers only, technical functionalities needed by both
service providers and the identity providers, and the technical functionalities needed by the

end-user application.

CHAPTER 3. THE GENERIC FRAMEWORK 37

3.3.1 Overview

Section 3.2 highlights the three software entities involved in FSSs: identity providers, service
providers, and end-user applications. Section 2 highlights the well-known federated security
systems are divided into two categories: CFSS and DFSS. The generic framework is based
on these two types, with the insights from the academic FSSs. The generic framework pro-
vides abstract classes for each software entity that needs to interact with the core federation.
These abstract classes are divided based on the software entity they represent, and the type
of federation they belong to. For example, the generic framework provides two abstract
classes, CentralizedFederationIdentityProvider for identity provider in a CFSS, and
DecentralizedFederationldentityProvider for identity provider in a DFSS. The ab-
stract classes in the generic framework provide implementation of technical functionalities

that remain common throughout the type of FSS the class represents.

Description

Figure 3.5 shows the overview of the framework, which is explained in detail in the following
figures. Figure 3.5 shows four categories for the generic framework:
ServiceProviderFederationHandler, IdentityProviderFederationHandler, and

ClientFederationHandler. Each represents an interface for a software entity they repre-
sent. For example ServiceProviderFederationHandler represents the service provider in
a FSS. FederationHandler represents an interface that holds the technical functionalities
that are common to all three entities in the FSS, service providers, identity providers, and
end-user applications.

Figure 3.6 shows the details of the common technical functionalities needed by all three
entities in FSS. Figure 3.7 shows the details of the technical functionalities needed by the
service provider. Figure 3.8 shows the details of the technical functionalities needed by the
identity provider. Figure 3.9 shows the details of the technical functionalities needed by the
end-user application.

The FederationHandler, in figure 3.6 provides an interface for two kinds of techni-
cal functionalities to communicate with the core federation in a FSSss: query and update.
Technical functionalities in the query category allow the software system that implements
this abstract class to query the federation and obtain the information about the service

provider and the identity provider that are part of the federation. Technical functionalities

CHAPTER 3. THE GENERIC FRAMEWORK 38

«< interface >>
FederstionHendle

=< interface =»

< ilerface »» \dentityProviderFederationand e

ServiceProviderFederati

<< interface »=

ClientFeders ati

Figure 3.5: The Generic Framework Overview

in the update category allows the implementing software system to modify the federation
members list. CentralizedFederationProviderHandler and

DecentralizedFederationProviderHandler are abstract classes that provide implemen-
tation for the technical functionality that allows updating the federation information in
FederationHandler that is generic for a CFSS and a DFSS respectively. Provider is a
wrapper class that holds the information about the service provider or the identity provider.

The ServiceProviderFederationHandler, in figure 3.7, provides technical function-
alities specific to the service provider. It allows the implementing software system to set
information required to obtain access to its secured resource, and verify the end-user’s
credentials when the end-user tries to access a secured resource. The abstract class
CentralizedFederationServiceProviderHandler provides implementation for some tech-
nical functionalities that are common to the CFSS. The abstract class
DecentralizedFederationServiceProviderHandler does not provide any implementation
but is present to keep the framework consistent.

The IdentityProviderFederationHandler, in figure 3.8, provides technical function-
alities specific to the identity provider. It allows the implementing software system to get
information required to obtain access to its secured resource at the service provider in
a FSS. CentralizedFederationIdentityProviderHandler provides implementation for
some technical functionalities that are common to the CFSS.
DecentralizedFederationIdentityProviderHandler does not provide any implementa-
tion but is present to keep the framework consistent.

The ClientFederationHandler is an interface, shown in figure 3.9, that provides tech-

nical functionalities that are required for the end user application.

CHAPTER 3. THE GENERIC FRAMEWORK

+getDescription(: Object
+setCedificate(cenificate: Certificate): vaid
+getCerti ficate():Certificate K}

Provider IdentityProvider
-x509Certificate: Certificate
~description: Object 3 _ X . . .
. . . +set Altribut eServiceAddress(attributeServiceAddress: String): void
-idertifier.String etAttibuteServiceAdd Stri

. :

type String getAttrnbuteS ervice Address(): String
+setDescrption(description: Object]) void £

ServiceProvider

+setldertifer(id ertifier: Object): void
+getidentiter() Object

+getT ype() String

+setTypeype: String) void

+setServiceE nopoirt(setviceE ndpoirt: String): void
+getSetviceEnd poirt():String

+setRequiredC redertials(requiredCredenials: Cotlection): void
+getRequiredCredenti éls() Collection

<< interface »»
FederationHandle

+getT rustedProviderList() Collection

+getF ederationP roviderList() C oliection

+defedrate! dentity(providerldentifier:Object) boolean
+setfFederationP rovideList (providerList: Callection Y vaid
+getide rtityP rovider(provideridenti fier; Object) Pravider
+setTrustedP roviderList(providerList.Collection): void
+isProviderTrustMember(orovider| dertifer: O bject): boalean
+remaveTrustMember (provider: Provider).boolean

+addT rustM ember(provider: Providerlbool ean

+removeF e derationM ember(provider-Provider).boolean
+revokeT nist(provideridenti fier: Object).boalean

+isUserF ederationMember (userC redential s O bject tederationiderti fer: Object).boolean
+addF ederationM ember(orovider: Provider) boolean

+establishTrust (providerl denfifier Object).booiean

+getSetviceP rovider(praviderl dentifier: Object) Provider
+federgteldentty(providerldentifier: Objectlboolean

iy

iy

tralin BFoderabi P Ak
ntralizm df

+establishTrust (provideridentifier. Object).boolean
+revok eTru st{provideridentifier:Object).boolean
+federateldeniity(provideridenti fier: Objectyboolean
+defedratel dentity(provideriderti fier: Object) boolean
+isProviderT ustMember(provideridentifer:Object):.boolean
+getS erviceProvider(provideri derti fer. Object) Provider
+remaveTrustMember (provider.Provider).boolean
+addTrustM ember(provider:Provideryboolean
+removefederationMember(provider.Provider):boalean
+getide ntityProvider(providerlderifer: Object} Provider
+addF ederationMemb er(provider:Pravider).boalean

+isProviderTrustMemb er(provideridentifier.Object). baolean
+getServiceProvider(provideridentifier: Object) Provider
+removeTrustMember (provider:Provider):boolean

+addT rustM ember(provider: Provider Jboolean

+removef ederationMe mber(provider.Provider): bootean
+getldertityProvider(provideridentifier: Object) P rovider
+addF ederationMember(provider:Pravider).boolean

Figure 3.6: The Generic Framework FederationHandler

39

40

THE GENERIC FRAMEWORK

CHAPTER 3.

PIOA{UONIS|07) S [l 3P AO)SIBILARAI JP3INDI yIas+
ue3 [00q:JUOIJR UUOJU U3 PIAGI JDKIBSIAS +

HPHELIDMAOLONALOS HOREIIPAI P IZHEHUIINT

HPNEBLLIOPIAGIT I NAIOG RONELIPIIP DZYELOD

v

Wi Y
UESHOOG (10O 51BN IPIIIIST)NENUIPIIN AU+
UEDSOOY (FU O BUID RILI AN S BOIAIISIOS +

uBa)00q:(ISPIADI 4 1ap WO.IC).13 qUIS UD 18 19p3 JpPB+
13IADAJ 103100 43y (Juap|43p Koud) sap w0 gAY ap Rat+
uB3100q1(18pIADI g 48P KO0.d)Iag W BUONEISP B JSAO WS+
uBa|poq L IaplAni 4 iaproid)iaqua Wisnd | ppe+
uB3|00q:(J3PIADI d: 1P K0I0) /U NISNI [3AD WAL+

13p1A04 ¢ (3990 O 13y [JUAP |1p K0.Id) 1aPIAD L dIDIAB S1af+
UBa|0001:(333(q O 43P YUBP 48P KO IC) I3 G IS WIS | 19PIADI ¢S+

PHOA{UORONON SIENU SP & D)SIBINSPIINPEIND YOS +

S|PURHUDNE APA] P10 149 BS
<< NBUII >>

..... Dlowpuepuonenpa k] - - - -

UBa{00G:(J3PIADI (f.19p WoJd)Ia G Wa INUD 118.10p3 Jopa+
18101 d(}03IG (434 HUIP |1BPMOIA) 1BP KO I dATIUBP JA6 +
Ue3J00q (JSPIACI 4 JBPK0IG) I LIS INUDIFEISP 3 JSAD WS+
UB300G [13PIAD 13 2apK0.d)13q W3 WISNJ | PPE+
uB3j00q:(I3PIACI 4 13pK0.d) JI3W3 NISNI | AW+
13pIAD1 d (3031 O 13]3P 4ap woid)IapIAD A gadIAa S1ab+
uBa100g:(303fq Q19 ISP [13P W0 It) 13 G WA INESTU | J9PIACI gSH+
Ue3|00q (13190 oy U3P AP KOIA)AYILISP (238l PR+
Ue3|00q (031G 42y ap LapKo.d)AULA P 3181503 +
UB3100q (193101 43y WP AP KOS NI | 3 §OARI+
UB3(00q (103G U3y WAP 1P NOId) NI L YSIgBlSa+

<< SOBUBJUI »»

A PUEILIIPIAGIIHODRIPAIPIZYCHNIINT

PUBHLISDIAOK] HOREIIPILD RYELUDD

Figure 3.7: The Generic Framework ServiceProviderHandler

41

CHAPTER 3. THE GENERIC FRAMEWORK

UoiR3)j0 3:(231q 013k uapuaphoud) e kiapal opanbayiab+

uoi09)0 3:(RAlG O AN uap iap kaid)sie piapal Dpainba M«
we3(00¢: (U0 R WICJULISPIAC dAUIUBP IS +

APUBLLIIPIACKSANIIOPS

PELOPSPOCHTLY, J

AV Y

uoRad||0 D (P8l O sy uap epoid)sieluapal Dpalnbe yab+
usa|ooq QUONBULIGIU|IBPIACI JAHILSP IS +

UB3|00q {IBPIACI 48P0 id)Ia quwa WuoNBIaps Jppe+
13p1A0.d(38IQ 0 sy 1iap iap kosd)Iap ko dANkI ap (el +

UB3 000 (ISPIACI 4 AP0 Id) o0 WS NUONBIZD 3 JOAD W+
UB3|00G 43PIA0. 4 I3pn0Id)IaqWa WisnJ 1 ppe+

U000 ((JAPIACI 4 13PN 0.Id) Jag WIS WISNI | BA0WI+

1BpIA0L d (328lg O 18y IIap | 18p no.d)Japia0l daa1Ala Sabi+
uB3 004G (153l 048y JUIP 4P K0 QUIBISTU | ISPIACIJSI+

3 PuUs HUD R JIP2J JIPI A0 GABUIP]
<< S0BUA >

HPNSHLIPPIAGIS ROGEIIPAIPIZYBINIINT

|||||| _Vu_....—_s—t..e_-.BBN_A e - = =

uRaj00q:(JapIA0i d:48p NOA).Ia quia JUO iz Japa Jope+
19PIK0.4 (IO I3y uap 4ap0d)Bp Kol dANUap IaB+
Ue3 |00 (49pIA0.I d13pr0id)IaguI 3 WUORRISP 3 JA0 WS+
uea|00q (43PIA0Id 1aprod) Iaqua INISNI L ppe+

UB2(00q (JBPIA0LJ 3P KO JC WA ISNI | BAD WAL+
lapiaoig (}pafq O iay uspapnoid)iapino. dadinia siabi+
uBa1000:(}0301O 19y UBP ISP OIS G WBNISN | IBPIADI 48!+
uB2|00q (1210 O 8y epHap Kod)A ISP jajeIpajap+
Uea100G 3030 0499 Uap | /ep KoId) ARIUS P191BapY +
uB3|00q (}02i0 0 I8y uapLpRoId)IS N L NOwal+
UBa|004:(131Q 0 Jay u3pIBpnod) SN LUS Igelsa+

&< SOBUAI| 33

HPUTHLIIPIAOIS U ONRIDPIJP WHBLHADY

The Generic Framework IdentityProviderHandler

Figure 3.8

42

THE GENERIC FRAMEWORK

CHAPTER 3.

18 0 300 JUOBORUBYINGF

10800300 dUORBLISINGS

P .

LiDoz; g

HPUEY{ R NONBIIPAJD YD JUYY

v

AV

pioA(J0alq0 AJent’ JepueH ssuodsa i alpue Hasu odsa)’ 103ig O 1ay (uap|ep Koud)isanba ypuss+
R3IQ0 (RGO ISP IR 0.AUOIHISS YUY 0
P3[q 0 JUoISS T U0 RO LUy 108

UB2|00q (2IPUB HAPBAIIL 2 LBJpUB HHORG||e) IS YUK+
wfqO:Quib o+
ue3 aq:(yobo+

ueajooq:()noboi+
walgo:Quibol+
UB9|00q (43 [PUB HXIBG] |62 JjpUBH PBGIBO) ST (B U+

apusjuone 2pa 3Bl
=« 30BUAIUN »>

v}

Y

UB3 100G (4pIADI 4 Jepr0.Id) I8 QU IWUOTIRISPS JPRE+
13pIA01 4 (12900 0434 IUP ISP K040)I9P KO gAML P BB+
ULa00q:(AR IK040)JoG W3 NUDIRIID D JOADU I+

Uea100q (12pIAD1d: 2P KDJd)IaqWa WISN LPRB+

UB3|00q (49PIADI 4 1P ROI) JSWB WIST | SAD WAL+

Japlaoid (108l O sy 1JUap|4ap KOH}IaPIA0I dadIAIa Seb+
uBa|00q (}alt 01138 uap uapKoId) 13 QUIWISTU | ISPIADIJSIH+

ploA:Bulys Hswjaladwodisanbai+
ProA (LD (0 D SYNSaL P8I O Janad' Buils Hs w)esuods ayss 00xd+
pioa(Bunis BS w)paz e upsanbal+

Spue yasuodsay
=< 06U »»

pue HIORRIPR 4

<< ORUIIUI »>

UB3 j00G:(3PIADI 4 3P K0ID) IS QI NLO B JFP3 JPPB+
19p1A0I d (1Rl 0 18y BRSO KOI)JSP KOIdANM Bp b+
uBa100q:(9pIADI d 4aPI0A) BQWIINUDIIRIBP 3 J9A0 WA+
UE2(000 (OPIA01d 3P KO.Id QWS SN L PPB+
UB8|00q.{JBPIAC. d:19PK0.d) JOqWa WISTU | BAC WA+
1IP0I (0100 USSP JIP KO)ISPIACI dadinla STal+
UBBI00R:(}I9IQ O Y AP AP KOI) IS GUIBNISTU | JBPIADI dS1+
ueaoog (}02(q O R PP Ke.d)AILEP RiRI PRy ap-+
UB9{00q (}09f 0434 URpepKOId)ATIUS P [ojR 9P} +
ue2j00q (J08i O 4By ISP JFPKOIT)IS U {9 JOAD I+
uBaEOY(RRIq 0 LAY UApLEPKOId) I |USIIgB)Sa+

W PUEHIIIDIAOLF RONRIIPIID RYDH MY

t’s Federation Handler

en

The Generic Framework Cli

Figure 3.9

CHAPTER 3. THE GENERIC FRAMEWORK 43

CentralizedFederationClientHandler and DecentralizedFederationClientHandler
are abstract classes that provide implementation of the federation specific technical func-
tionalities needed by the end-user application. These abstract classes allow the end-user
application to worry only about the implementation of the search results. The complex
handling of the security credentials and authentication is handled by the implementation
in these abstract classes. The abstract class CentralizedFederationSaslClientHandler
shows that the design of the generic framework is modular. It provides implementation
for the authentication mechanism to the SASL type of authentication system at iden-
tity provider. SASL [44] is a framework for authentication that decouples authentication
mechanisms from application protocols. It allows the end-user applications to select the
authentication mechanisms that are supported by the server on the run. If an end-user
application wants to use any customized type of authentication mechanism, it could ex-
tend abstract class CentralizedFederationClientHandler and provide the implementa-
tion for the technical functionalities that are specific to the authentication mechanism.
ClientFederationHandler uses a listener class ResponseHandler to allow the end-user
application to extract the response sent by the service provider to the generic framework.
The end-user application that needs to connect to FSS should extend appropriate abstract
class based on the type of federation they want to connect.

Figure 3.10 shows the overall flow of messages in the framework. The end-user appli-
cation developers should first initialize the class implementing ClientAppHandler. The
technical functionality initialize allows the ClientAppHandler class to fetch the authen-
tication information from the client, for example username and password. The end-user
application then fetches the list of service providers where the resources are available. The
end-user application sends a request for a resource to one of the service provider on this
list. When the ClientAppHandler gets the request for a resource from the user, it first
checks if the user is authenticated at the identity provider; if not, it authenticates with the
identity provider. ClientAppHandler then obtains the attribute assertion from the identity
provider and sends the request to the service provider. The attribute assertion is not stored
at the ClientAppHandler. Instead a new attribute assertion is obtained for each request
for a resource, enforcing the privacy that is recommended by the F'SSs. The service provider
when receives the request for a resource, first checks if the identity provider that issued the
attribute assertion is trusted, then it checks if the user has federated his/her identity before

verifying the attribute assertion. If all the checks are finished without error, the service

CHAPTER 3. THE GENERIC FRAMEWORK 44

provider returns the response to the ClientAppHandler. ClientAppHandler returns the
results to the end-user application through the listener class that is provided during the

initial request for the resource.

45

CHAPTER 3. THE GENERIC FRAMEWORK

i
1 . }
1 “ i
i ¥
1 1 }
! m R,
1 ¢
i 3 asuodsoy 1w
t - » i
i asuadsay 4 M
i
¥
SjeljuBpasAJen A 1 ;
]
H
i ! \
! |
1BQUABRNUOLEIBNG JI85()S] AM i I
]
i
1 1 4
!]
HOCBINISTS ISP A 1 {
! 1
i 1 (
" “ t
! 1s8nbeaypues 1 ¢
i .\.»\\'_ §
I UOMIBSSYBINgIRT GG 1 1
] Ty {
1 ! i
H t
i Jgboy 1 §
! !
1 i i
[ol H
i N. wonbappLes {
H bl H
i Y SryEInlEd i
H bl 1
| ! Fzyens]
| ! :
! ! {
:
8

Figure 3.10: The generic framework flow diagram

Chapter 4
Implementation

This section presents the detailed description of the implementation of the generic framework
proposed in section 3. The implementation of the generic framework is divided into two
categories, first, implementation of the generic framework, which in includes providing a
skeleton that would provide the features that are discussed in section 3.1. We than use this
generic framework implementation to implement the second part, which is implementing
the generic framework for a specific federation. We choose Shibboleth federation for the
federation sepcific implementation. Towards the end of this section we present a modularity

metric for the generic framework.

4.1 The generic framework implementation

The generic framework acts as a local federation information manager for the end-user ap-
plications. This framework allows the end-user application to abstract the functionality
required by the FSSs, and acts as a layer between the end-user application and the actual
federation. All the communication happens through the generic framework. The implemen-
tation consists of interfaces, abstract classes, and wrapper classes. There are three wrap-
per classes defined in the generic framework: ServiceProvider, IdentityProvider, and
ResponseHandler. ServiceProvider and IdentityProvider hold technical information
about service provider and identity provider respectively. ResponseHandler is a wrapper
class to handle the response coming from other service providers in the FSS.

The abstract classes provide implementation for the common feature for the type of fed-

eration they represent, that is, either CFSS or DFSS. The implementation in the abstract

46

CHAPTER 4. IMPLEMENTATION 47

classes provides ways to use and/or modify the federation members information. The in-
formation about the two type of relationships between organizations as described in section
1 are represented as protected variables in CentralizedFederationProviderHandler and

DecentralizedFederationProviderHandler, shown in program 4.1.

protected static Collection trustProviderList;
protected static Collection federatiomProviderList;

Program 4.1: Representation of types of relationship between organizations

These variables are protected to allow access to any class extending either of
CentralizedFederationProviderHandler or
DecentralizedFederationProviderHandler. These variables are populated during the ini-
tialization of the end-user application. For a given end-user application, trustProviderList
holds the technical information about each organization that is trusted by the end-user ap-
plication, and federationProviderList holds the technical information about each orga-
nization that is part of the end-user’s federation. Program 4.2 is the code snippet for the
implementation to populate trustProviderList for Shibboleth type of federation.

The generic framework uses these two variables to retrieve information about the trusted
organizations or organizations that are in end-user’s federation. For example, the implemen-
tation of getServiceProvider method in the CentralizedFederationProviderHandler
abstract class gives the technical information about a service provider with given identifier.

If the service provider with such an identifier is not in the trusted list then it returns null.

4.2 Federation specific implementation

This section describes the details of the federation-specific implementations needed for the
generic framework. The federation-specific implementation is required for the requirement
ids 10, 11, 12 as introduced in section 3.1.

For example, the code shown in program 4.6 shows the Shibboleth Federation specific
way to check if the user is a federation member.

Because the Shibboleth Federation is a CFSS, Shibboleth does not allow any update
features (discussed in section 3.1.1). If implementing a DFSS: WS-Federation or Liberty

Alliance Federation, the end-user application developers should provide a federation-specific

CHAPTER 4. IMPLEMENTATION

Program 4.2: Implementation to populate trusted organizations

public Collection getTrustedProviderList() {
ConfigManager.setHome ("conf");
String home = ConfigManager.getHome();
String metadataFile = home + "IQ-metadata.xml";
try {
if (federationMetadata == null) {
System.out.println("FederationMetadata
is null");
URL metadatalUrl = new File(metadataFile).toURL();
Document metadataDocument = Parser.loadDom(metadatalUrl, false);
if (metadataDocument == null) {
throw new NullPointerException("Parse error while"
+ "parsing metadata file:"+metadataFile);
}
Element metadata = metadataDocument.getDocumentElement () ;
XMLMetadataProvider mdp =
new XMLMetadataProvider(metadata);
if (mdp == null) {
throw new NullPointerException("error creating "
+ "XMLMetadataProvider from parsed XML metadata");
}
System.out.println("FederationMetadata all set");
federationMetadata = mdp;
EntitiesDescriptor ed =
federationMetadata.getRootEntities();
Iterator it = ed.getEntityDescriptors();
while (it.hasNext()) {
EntityDescriptor obj=(EntityDescriptor)it.next();
String id = obj.getId();
AttributeAuthorityDescriptor
attributeAuthorityDescriptor = obj
.getAttributeAuthorityDescriptor(
"urn:oasis:names:tc:SAML:1.1:protocol");
if (attributeAuthorityDescriptor != null) {
IdentityProvider pi = new IdentityProvider();
pi.setldentifier(id);
pi.setType(FrameworkConstants.IDENTITY_PROVIDER);
pi.setDescription(attributeAuthorityDescriptor);
providerInformationHashMap.put(id, pi);
System.out.println("Found AttributeAuthorityDescriptor");
}
SPSSODescriptor spssoDescriptor = obj.getSPSSODescriptor(
"urn:oasis:names:tc:SAML:1.1:protocol");
if (spssoDescriptor != null) {
ServiceProvider pi = new ServiceProvider();
pi.setldentifier(id);
pi.setType(FrameworkConstants.SERVICE_PROVIDER) ;
pi.setDescription(spssoDescriptor);
providerInformationHashMap.put(id, pi);
System.out.println("Found SPDescriptor");

}
}
} catch (Exception e) {throw new RuntimeException(e);}
return providerInformationHashMap.values();

CHAPTER 4. IMPLEMENTATION

public ServiceProvider getServiceProvider(Object providerIdentifier) {
if (!isInitialized()) {
initialize();
}
Iterator it = providerList.iterator();
while (it.hasNext()) {
ServiceProvider pi = (ServiceProvider) it.next();
if (pi.getType().equals(FrameworkConstants.SERVICE_PROVIDER)) {
if (pi.getldentifier().equals(providerIdentifier)) {
return pi;
}
}
}

return null;

Program 4.3: Implementation to fetch technical information about a ServiceProvider

public abstract class CentralizedFederationSaslClientHandle extends
CentralizedFederationClientHandle

Program 4.4: Signature of abstract class CentralizedFederationSaslClientHandle

public abstract class CentralizedFederationCASClientHandle extends
CentralizedFederationClientHandle

Program 4.5: Signature of abstract class CentralizedFederationCASClientHandle

public boolean isUserFederationMember(Object userCredentials,
Object federationldentifier) {
if (userCredentials != null){
if (userCredentials instanceof SAMLAssertion){
SAMLAssertion samlAssertion = (SAMLAssertion) userCredentials;
String issuer = samlAssertion.getIssuer();
IdentityProvider identityProvider = getIldentityProvider(issuer);
if (identityProvider !'= null){
return true;
}
}
}
return false;

}

Program 4.6: Shibboleth implementation to check if the user is a federation member

49

CHAPTER 4. IMPLEMENTATION 50

implementation for methods that update the federation information: federateIdentity,
defederateIdentity, establishTrust, and revokeTrust. The developers should also pro-

vide implementation for other federation specific implementation that are discussed above.

4.3 The generic framework modularity

This section presents the modular nature of the generic framework. Different implemented
classes are divided into different levels each of which provides implementation for a features
that are common to the level they fall into. Different classes implemented at different level
could be implemented further to get a federation sepcific implementation of the generic
framework. This ability to extend any class at any level provides a highly modular en-
vironment for end user application developers. For example, if the end user application
developer wants to connect the end user application to a CFSS that uses SASL-CA as an
authentication mechanism, they could reuse a technology specific implementation of the
generic framework, that is CentralizedFederationSaslClientHandle as shown in table
4.1. Similarly if a group of experts provided implementation of Shibboleth specific feder-
ation that would fall into level three and the end user application developers could reuse
that implementation, hence allowing high code reusability. It should be noted that not all
the classes fall into one or the other level, only the classes that provide abstraction for the
features of a FSS are shown in the table 4.1. The classes that are wrapper classes or listener
classes that do not represent any federation and/or technology specific implementation do

not fall into any level shown in table 4.1.

Table 4.1: The generic framework modularity table

Level Generic framework levels

ClientFederationHandle
IdentityProviderFederationHandle
ServiceProviderFederationHandle

FederationHandle

CentralizedFederationClientHandle

DecentralizedFederationClientHandle

CentralizedFederationFederationldentityProviderHandle

2
Continued on next page...

CHAPTER 4. IMPLEMENTATION 51

Table 4.1 — continued

Level Generic framework levels
DecentralizedFederationFederationIdentityProviderHandle
CentralizedFederationFederationServiceProviderHandle

DecentralizedFederationFederationServiceProviderHandle

CentralizedFederationSaslClientHandle

jend-user application specific classes;,

Level 1 represents a very abstract level of the generic framework. It includes only the
interfaces that provide a raw skeleton of the features for end user application developers.
Level 2 represents federation type specific implementation. That is, the implementation of
the features in the generic framework based on either it is for CFSS or DFSS. Level 3 repre-
sents technology specific implementation of the generic framework. This implementation is
typically provided by expert implementers. The end user application is expected to extend

one or more classes at this level to connect the FSS.

4.4 Summary

Dividing the implementation into different interfaces and abstract class gives more flexibility
to the framework. The end-user application developer has flexibility to either extend the
implementation available in the generic framework, or can implement the whole generic
framework by implementing four main interface classes: FederationHandle,
IdentityProviderFederationHandle, ServiceProviderFederationHandle , and
ClientFederationHandle.

However, if the end-user application developer chooses to use only a certain part of the
implementation of the generic framework he could extend the abstract classes at a different
level shown in table 4.1. CentralizedFederationSaslClientHandle abstract class pro-
vides implementation for an end-user application that uses a SASL type of authentication
mechanism to login to a CFSS. If the end-user application developer wants to develop im-
plementation for some other authentication mechanism, he could use the same signature of
the abstract class CentralizedFederationSaslClientHandle with a different name. For
example, the end-user application developer could implement another abstract class called

CentralizedFederationCASClientHandler with the signature as shown in program 4.5,

CHAPTER 4. IMPLEMENTATION

similar to the signature of abstract class CentralizedFederationSaslClientHandle as
shown in program 4.4. The actual implementation of the abstract class shown in program
4.5 could be for a CAS (Central Authentication Service) type of authentication mechanism.

The table 4.2 shows the numerical facts about the number of methods implemented for

the different type of federations.

Table 4.2: The generic framework features implementation

summary

Description of federation type

Number of methods

cific federation

Total number of methods in the generic framework 27
Total number of methods implemented for CFSS 15
Total number of methods implemented for DFSS 8
Total number of methods implemented for Shibboleth spe- 5

Chapter 5
Analysis

This section presents the analysis of the generic framework proposed in section 3. The
analysis comprises of two parts: complexity, and security analysis. The complexity analysis
compares the efforts needed to implement the generic framework with other FSSs. We use
the software architecture analysis presented in [26] as a base for comparing the software
architecture of the generic framework. The security analysis presents the assessment of
security parameters to verify the security measures in the generic framework. We use the
security analysis methods and taxonomy presented [21] and [57] to form a base matrix for
security analysis of the generic framework. The actual values for each column in this matrix
are derived by studying and comparing the standards for different FSSs. For each type of
security threat we check if the attack is possible in theory for the given type of federation.
In conclusion we present a comparison discussion of the generic framework architecture with

another similar approach.

5.1 Complexity analysis

The complexity analysis presents an assessment of the integration efforts needed for the
generic framework and other FSSs. The main goal of this analysis is to compare the com-
plexity involved in implementing the generic framework with implementation efforts for
other FSSs.

53

CHAPTER 5. ANALYSIS 54

5.1.1 Integration complexity analysis

For a given set of technologies and software architectures, the software architecture that
require the implementers to know and use smaller number of technologies is considered less
complex over other software architectures. The count of number of technologies used in
implementing a given software architecture could also prove to be an excellent comparison
of the complexity.

The existing FSSs use four main technologies to keep the system secure: PKI infrastruc-
ture, SAML [17], federation specific libraries, and authentication mechanism. PKI infras-
tructure is an arrangement that provides for trusted third party vetting of, and vouching
for, end-user credentials. The PKI infrastructure is used in combination with other tech-
nologies like, X509Certificate, encryption and digital signatures. SAML [17] is an assertion
markup language that allows for exchanging authentication assertion and attribute asser-
tions. The federation specific libraries are used to handle federation specific features. For
example Shibboleth libraries provides a wrapper class that holds the technical as well as
non technical information about the identity provider and service provider. The identity
provider authenticates the end-users before they issue authentication assertions and/or at-
tribute assertions. The authentication mechanism require at least one set of libraries to deal
with the authentication mechanism chosen by the identity provider, for example SASL [44].

Table 5.1 shows the comparison of different technologies needed for implementation of
each federation. The values of the fields are defined as "N’ or "Y’. "N’ is equal to Not Required,
and 'Y’ is equal to Required. We analyzed the specification documents and implementation
guidelines for each of the studied federations to understand the technologies that would be
required for the implementation. If a federation asks for the end-user application developer
to directly interact with certain technology and use a third party API than we consider that

the knowledge of that particular technology is required.

CHAPTER 5. ANALYSIS 55

Table 5.1: Requirement of understanding of implementation

technologies by end-user application developers

PKI SAML Federation Authentication -
library mechanism
The generic | N N Y N
framework
Shibboleth Y Y Y Y
WS-Federation Y Y Y Y
Liberty Alliance |Y Y Y Y

Table 5.1 shows that the generic framework requires the developers to understand and use
the least number of technologies. However, when comparing the maintaining and updating
in F'SSs and the generic framework, other parameters affect the difficulty level as well, for
example, the complexity of the implemented modules themselves. If the code is designed
modular, that is keeping different functionality in separate modules, the easier it is to
maintain and update the code. Because the generic framework collects the federation-
specific features in the framework, and presents a simple interface to the end-user application
developers, the maintaining of the code is divided into modules, and hence easy. For example
the authentication mechanism that the identity provider uses to authenticate the end-user.
If the identity provider changes the authentication mechanism, only the implementation of
the login functionality is changed. The end-user application is not affected by that change.
In the implementation for other FSSs, because the clients use the federation libraries directly,
any change in the federation, or message interaction sequence would require a change in the
end-user application as well. Table 5.2 in section 5.1.2 shows the comparison of the code

reusability and evolution for different FSSs and the generic framework.

5.1.2 Code reusability and evolution analysis

This section presents the complexity analysis of the generic framework from the perspective
of reusability and code evolution. The purpose of the analysis is to compare the amount of
code that can be reused for a given FSS. [26] presents a comprehensive study of different
software architecture analysis methods. [26] shows an example comparison matrix for dif-

ferent software architecture comparison methods. Two main software architecture methods

CHAPTER 5. ANALYSIS 56

that are described in [26] and used in the analysis are Scenario-Based Architecture Analysis
Method (SAAM) and Software Architecture Analysis Method for Evolution and Reusability
(SAAMER). SAAM presents a scenario based software architecture evaluation matrix. The
main goal of SAAM is to verify basic architectural assumptions and principles against the
desired properties of an application. SAAMER extends SAAM to present a verification of
the quality attributes like evolution and reusability in software architecture.

SAAMER presents a framework to gather and analyze the software architecture informa-
tion. Gathering the information about the software architecture for analysis is divided into
four perspectives, Stakeholder Objectives, Architectural Objectives, Scenarios, and Qual-
ity Assurance. Stakeholder objectives cover only the interaction with the software system
from the stakeholder perspective. Other architectural objectives are not part of stakeholder
objectives. Architectural objectives, on the other hand, are the objectives for the software
systems. Scenarios are different use cases that the software system should support. If all
scenarios for the software system are known, architectural goals could be considered as a
subset of the scenarios. Because the use cases described in previous sections are a complete
set of use cases that the F'SS should support, architectural objectives are not considered in
the comparison to remove redundancy. In this section we present the software architecture
comparison using the stakeholder objectives and scenarios. Quality assurance compares the
quality of the software architecture in its development phase. The next section presents the
comparison of the quality assurance in the form of security analysis.

For any FSS the stakeholder could be considered as the end-user application developer.
The main goal of the end-user application developers is to be able to connect to the FSS
and to be able to communicate with the FSS. Connecting to the FSS includes being able
to authenticate to some entity in the F'SS, and communicate with the FSS means to be
able to share/retrieve metadata or objects from other software systems using the same
FSS. Section 3.2 shows the complete list of different use cases that the FSS should support.
These use cases can be divided into either of the two stakeholder objectives. Table 5.2 shows
the complete list of stakeholder objectives and the use case scenarios. The comparison is
based on whether implementation for a specific use case is required in the given software
architecture. Two possible values for the comparison are 'Required’ and 'Not Required’.
Given two software architectures, if a use case requires implementation by the end-user
application developers and the other does not require implementation efforts, than the

software architecture that does not require implementation is simpler for implementers. We

CHAPTER 5. ANALYSIS 57

use the requirements presented in figure 3.4 as the basis for comparison. For a given use
case if a federation requires the end-user application developers to implement that use case
than we consider that the implementation is ”Required”.

Table 5.2 shows that the generic framework provides implementation for a larger number
of use cases than any other software architecture, and hence provides a lot of code reusabil-
ity, and is much simpler to implement than other software architectures. The implementers
of the generic framework could take extra care while implementing the technical function-
alities critical to the security of the whole system. The reusable security related technical
functionalities of the FSS increases the security of the system because the end-user applica-
tion developers do not need to implement all the security related technical functionalities.

They benefit from the expert implementers of the generic framework for FSS.

CHAPTER 5. ANALYSIS

Table 5.2: Complexity analysis
Stakeholder Code changes analysis
Objective UseCases Generic | WS- Libery Shibboleth
frame- Federation| Alliance | Federa-
work Federa- tion
tion
Login to identity | Not Required | Required | Required
Connect to | provider required
federated Logout at identity | Not Required | Required | Required
security provider required
enabled Federate identity | Not Required | Required | Not
software to other providers | required required
systems Defederate iden- | Not Required | Required | Not
tity to other | required required
providers
Fetch attribute | Not Required | Required | Required
assertion required
Fetch authentica- | Not Required | Required | Required
tion assertion required
Establish trust Not Required | Required | Not
required required
Revoke Trust Not Required | Required | Not
required required
Interact Send request | Required | Required | Required | Required
with for resource and
federated interpret the
security response
enabled Specify required | Required | Required | Required | Required
software credential for
systems resources
Verify credentials | Required | Required | Required | Required

Continued on next page. ..

CHAPTER 5. ANALYSIS 59

Table 5.2 — continued

Stakeholder Code changes analysis
UseCases
Objective Generic | WS- Libery Shibboleth
frame- Federation| Alliance | Federa-
work Federa- tion
tion
Set service | Required | Required | Required | Required
provider informa-
tion
Get identity | Not Required | Required | Required
provider informa- | required
tion
Check provider | Not Required | Required | Required
trust required
Check user feder- | Not Required | Required | Required
ation status required

5.2 Security analysis

Security in FSSs is understood as securing the resource at the service provider, and at
the same time preserving the end-user’s privacy. FSSs are built on the least revealing
architecture, that is the access to the resource should be granted based on the minimum
required knowledge about the user. For example, if the resource in a library is accessible
to any student at the university, a library connected via FSSs should be able to authorize
access based on the knowledge that the end-user is a student at the university, and should
not need to know the actual identity of the end-user.

[21] presents a discussion of the security analysis of the software architecture in a top
down approach. A comprehensive taxonomy of the software security and analysis is pre-
sented in [57] togather with a matrix for comparing the software security with different type
of possible security threats. [57] divides the security evaluation of the software architecture
at three different layers, application layer, platform layer, and network layer. The generic

framework is an application that is independent of the platform and the network layers.

CHAPTER 5. ANALYSIS 60

In this section we present the security analysis at the application layer only. [57] an-
alyzes four major types of application layer security threats, credential theft, functional
manipulation, data theft, and application denial of service. Credential theft describes the
types of threat in which an attacker gains unauthorized access to the security credentials
in the end-user application without consent by the entity responsible. Functional manipu-
lation is the type of attack in which the attacker is able to manipulate some or all of the
functionalities provided by the software architecture. Data theft is the type of attack in
which the attacker gets unauthorized access to the data used by the application internally
or externally. Application denial of service is similar to the Denial of Service at the network
layer. In application denial of service the attacker is able to affect the availability of the
systerm.

The security analysis is divided into five properties of the software application[57]: cor-
rectness, reliability, efficiency, integrity, and usability. Correctness is the extent to which a
program satisfies its specification and fulfills the customer’s functional objectives. Reliability
refers to the correctness of the system at any given time. Efficiency is the least possible use
of computational resources to achieve a given task. Integrity is the method to verify that
the data is not compromised over the network. Usability is the time and resource required
to learn and operate the program. Some software application properties like reliability and
usability are not appropriate for a software security comparison of the generic framework.
However, [21] asks for more security analysis properties like Confidentiality and Privacy in
addition to the properties metioned above.

Table 5.3 shows the comparison of each security application properties against the type
of security threat. In table 5.3, G stands for the generic framework, W stands for WS-
Federation, L stands for Liberty Alliance Federation, and S stands for Shibboleth Federation.
There are three possible values for each possible combination of analysis: either empty, *
or **. * means that particular combination of security threat has a negative effect on the
given system, but does not pose any irreparable damage. ** shows that the particular
combination of security threats have a strong negative effect, and causes irreparable harm.
The empty cell shows that the given security threat does not have any effect on the given
system. The analysis is a theoretical analysis, we study the specification documents and
guidelines for each federation to understand the security requirements and guidelines. The
security parameter that are only recommended by certain FSSs are considered vulnerable

because of the possibility of miss handling by the end-user application developers during the

CHAPTER 5. ANALYSIS 61

implementation. For a given type of security threat in a given FSS if the threat presents a
strong negative effect that is irreparable, we derive a **. Similarly if it presents a negative
effect which is reparable, we derive a *.

We will show how to read the above table 5.3 for the first security property Correctness.
We will show how to read and interpret each row in this particular security property, and
explain how the analysis values are derived.

To interpret the first row for Correctness we ask the following questions:

Given that the credential theft has happened how much of the Correctness in the generic
framework?

Given that the Credential theft has happened how much of the Correctness in WS-
Federation is affected?

Given that the Credential theft has happened how much of the Correctness in Liberty
Alliance is affected?

Given that the Credential theft has happened how much of the Correctness in Shibboleth
is affected?

EXPLAINATION:In the three major F'SSs, that is Shibboleth, WS-Federation, and Liberty
Alliance, end-user application developers need to handle the security credentials, and follow
the standards and recommendation. This leaves a possibility for the end-user application
developers to accidentally mishandle the security credentials. IF the security credential theft
happens it does not affect the correctness of the other FSSs because the application does
not use the stolen security credentials, hence that the security threat has negative imple-
mentation on the application but does not pose any irreparable changes in the application.
Whereas in the generic framework, the end-user application developers do not have to han-
dle any kind of security credentials. The generic framework handles security credentials
for the user enforcing the recommendations in the standards provided by the FSSs. This

removes any possibility of the credential theft happening in the generic framework.

CHAPTER 5. ANALYSIS

Table 5.3: Security analysis

G

Correctness

Credential theft

*

Function manip-

ulation

*%

* %

* %k

*%

Data theft

App. denial of

service

*%

*%

*%

*%

Efficiency

Credential theft

Function manip-

ulation

Data theft

App. denial of

service

*%

* %

*%

*%

Integrity

Credential theft

Function manip-

ulation

* %

*%

* %

* %

Data theft

App. denial of

service

Confidentiality

Credential theft

Function manip-

ulation

* %

* %

* %

* %

Data theft

App. denial of

service

Privacy

Credential theft

* %

* %

* %

Function manip-

ulation

* %

* %

* %

* %

Data theft

* %

* %

* %

Continued on next page. ..

62

CHAPTER 5. ANALYSIS 63

Table 5.3 — continued
G W | L S

App. denial of

service

To interpret the second row for Correctness we ask the following questions:

Given that the Function manipulation has happened how much of the Correctness in the
generic framework?

Given that the Function manipulation has happened how much of the Correctness in
WS-Federation is affected?

Given that the Function manipulation has happened how much of the Correctness in
Liberty Alliance is affected?

Given that the Function manipulation has happened how much of the Correctness in
Shibboleth is affected?

ExPLAINATION:Function manipulation happens when an attacker is able to replicate the
library and the actual function call sequence, replacing it with their own function. In this
situation the application loose control of the application and is completely vulnerable, and
hence the security threat for each FSSs including the generic framework for this type of
threat have a strong negative effect.

To interpret the third row for Correctness we ask the following questions:

Given that the Date theft has happened how much of the Correctness in the generic
framework?

Given that the Date theft has happened how much of the Correctness in WS-Federation
is affected?

Given that the Date theft has happened how much of the Correctness in Liberty Alliance
15 affected?

Given that the Date theft has happened how much of the Correctness in Shibboleth is
affected?

EXPLAINATION:In the three major FSSs, that is Shibboleth, WS-Federation, and Liberty
Alliance, end-user application developers need to handle the application date, and follow
the standards and recommendation. This leaves a possibility for the end-user application
developers to accidentally mishandle the application data. If the data theft has happened it

does not affect the correctness of the other FSSs because the application data that is stolen

CHAPTER 5. ANALYSIS 64

is not reused in the application and, hence the data threat has negative implementation
on the application but does not pose any irreparable changes in the application. Whereas
in the generic framework, the end-user application developers do not have to handle any
application data. The generic framework handles application data for the user enforcing the
recommendations in the standards provided by the FSSs. This removes any possibility of
the data theft happening in the generic framework.

To interpret the fourth row for Correctness we ask the following questions:

Given that the Application denial of service has happened how much of the Correctness
in the generic framework?

Given that the Application denial of service has happened how much of the Correctness
in WS-Federation is affected?

Given that the Application denial of service has happened how much of the Correctness
tn Liberty Alliance is affected?

Given that the Application denial of service has happened how much of the Correctness
tn Shibboleth is affected?

EXPLAINATION:In application denial of service attack, the attacker is able to keep the
application busy with the fake requests making it unavailable for actual requests. Typically
the application should be protected at the network layer rather than in the implementation
of any standards in an application. If application denial of service has happened in any kind
of FSSs it has a strong negative effect.

Table 5.3 shows that the generic framework provide the same level of security as other
FSSs, and higher level of security other security threats. It shows that the generic framework
has better security than other F'SS when it comes to the privacy for data theft, privacy for
credential theft, and correctness for the credential theft compared to other FSSs. The major
security threats that the generic framework deals with are credential theft and data theft.
The generic framework provides a local middleware layer between the end-user application
and the F'SS. The generic framework implements and enforces certain security requirements
for handling the credentials and data in the FSSs. This prevents problems like credential
theft and data theft from.

CHAPTER 5. ANALYSIS 65

5.3 Discussion

This section presents an architectural comparison between the generic framework and [25].
The main goal of the paper [25] is to identify the fundamental concepts, structure and
operation underlying the trust realm in FSSs. Trust realm dictates how different software
components from different organizations recognize, trust, and interact with each other.
Trust realm is similar to the concept of federating the identity in this thesis. A part of
this thesis presents the analysis of the FSSs, how different software entities interact with
each other in the FSS to achieve the federated security. This analysis is used to develop
the generic framework. The generic framework hides the technical details and simplifies the
programming efforts for end-user applications by categorizing the FSSs and providing the
implementation of certain components that remain common for certain types of federations.
The design of generic framework allows the implementers to integrate the FSSs with the
minimal knowledge required to operate with FSSs. However, the basic goal of this thesis
and the paper [25] are the same; that is, to understand the requirements for a FSSs.

[25] first presents the understanding of the FSSs from the author’s perspective and then
draws a sketch of different components that would be required in a FSS. [25] introduces
four main components for a FSSs: Policy Enforcement Point (PEP), Policy Decision Point
(PDP), Security Token Service (STS), and Credential Processing Service (CPS). A PEP is
the first point of contact for an incoming request, or a last point of contact for an outgoing
request. PEP acts a coordinator for the internal message flow on how the request, incoming
or outgoing, is handled. PDP is the authorization point where the security credentials in
the request are checked against the security policy for the resource. STS is a service that
'issue’ and ’verify’ security credentials for the FSS infrastructural components. STS could
be considered a superset of identity provider as described in this thesis. CPS is a service
that transforms the security credentials that are domain independent so that they can be
understood by other software entities on local network.

The four major components described in [25] work hand-in-hand to achieve federated
security. [25] describes different message interaction sequences between different software
components, similar to Liberty Alliance and WS-Federation, to achieve a federated security.
Figure 5.1 shows a generic message interaction sequence for the architecture proposed in
[25] when a request is sent to the service provider .

One of the major differences in this thesis and [25] is the approach. [25] first describes

CHAPTER 5. ANALYSIS

A/'W\,\)\
Federation

‘\«_A,\)J/V

Requaester’s Organization

\ > 12)

End user application

Resource Organization

Service Provider

Figure 5.1: Federation Anatomy Diagram

66

CHAPTER 5. ANALYSIS 67

Requestor Organization Resource Organization

4 3) Get federation |

Infarmation
C O

2} Authénticate

4) Attri but\é@sserﬁon

1) quuegt ras

5) Regourcg s
PEP Service Provider

Figure 5.2: Mapping of Federation Anatomy and Shibboleth Federation

the author’s understanding of the FSSs, and then tries to map other existing F'SSs to their
understanding. This thesis tries to understand the existing FSSs, and then generalizes the
FSSs based on that understanding. The difference is clearly visible in the end results. [25]
presents a mapping of their architecture with other FSSs like Shibboleth, WS-Federation,
and Liberty Alliance. Figure 5.2 shows a mapping of Shibboleth architecture with the
architecture described in [25]. In figure 5.2 it is hard to visualize which entities would
interact with the core federation. The paper [25] introduces additional software entities
that are designated very specific roles. Comparing this with the generic framework, the
architecture for the generic framework is much simpler. The generic framework hides details
of other software entities and technologies. If we compare figure 5.2 with figure 1.1 it is
clear that the architecture presented in the generic framework is much simpler than the

architecture described in [25)].

CHAPTER 5. ANALYSIS 68

5.4 Summary

The complexity analysis shows that for end-user application developers to connect the ap-
plication to the federation is much less complex using the generic framework compared to
implementing the FSS directly. The generic framework is modular, that is it separates the
features needed by the core federation and the software entities, which allows easy updating
and maintaining of the generic framework. The generic framework categorizes the FSSs
and provides the implementation for certain features that remain constant throughout the
type of federation. The security analysis shows that the generic framework can handle the
privacy of the user in a better way than other implementations of FSSs. The generic frame-
work enforces the security parameters recommended by the FSSs wherever applicable, hence
making the system more secure. The discussion shows that the architecture in the generic
framework is simpler than the architecture of the system designed with a similar goal of

understanding the underlying structure of the FSSs.

Chapter 6

Future Work and Conclusion

This chapter presents the summary, scope and limitation, and future work of this research.

6.1 Summary

This research analyzed the requirements for connecting software applications to the net-
work that uses the concept of federation as a method to make access decision about user
requests. Based on the understanding of the existing FSSs, we have proposed a generic
framework with interfaces that are necessary for connecting end-user applications to the
federation. We have implemented a test infrastructure to demonstrate the feasibility of
the proposed solution. We tested our implementation by connecting it to the InQueue (2]
which is a Shibboleth-based federation. We showed that the implementation for our generic
framework could be reused by other software clients to connect to similar kind of federation
systems. This implementation could be used to connect to other Shibboleth-based federa-
tions like InCommon [2], Haka [1] etc. The end-user application developer would only need
to change the configuration parameters so that the implementation could communicate with
the desired federation entities over the Internet.

We see the following impacts made by the work in this thesis. First, the generic frame-
work clearly defines required software entities and their interactions as well as interactions
with the connected system. Secondly, by following the proposed generic framework, it is
possible to connect the end-user applications to any existing FSSs. The implementation
for this component can be reused for similar kind of federations. The generic framework

provides a modular approach, allowing end-user application developers to reuse different

69

CHAPTER 6. FUTURE WORK AND CONCLUSION 70

modules of federation implementation code or develop their own code implementation of
each interfaces defined by the generic framework. Finally, we have implemented the generic

framework and provided implementation one popular federation that is in use.

6.2 Scope and limitations

Shibboleth, Liberty Alliance, and WS-Federation are three federated security solutions used
in the academic as well as professional environment. This research generalizes the federated
security requirements for these providers. We only tested our proposed solution by imple-
menting the system connected through a Shibboleth-type federated security system. To
our best knowledge, based on the research done in this field, the generic framework would
be able to connect software clients to any existing FSSs. However, it is possible that we
might have not foreseen some basic requirements that might be introduced in the upcoming
FSSs. To accommodate those requirements, some changes might be needed in the generic

framework to operate with the new FSSs.

6.3 Future work

In this thesis we proposed and implemented a generic framework to connect software clients
to FSSs. We implemented the generic framework for InQueue[3], which is a Shibboleth-
based federation. We would like to connect our generic framework with more federations, for
example, Haka[l], and Switch[6]. We would also like to implement our generic framework for
DFSSs like Liberty Alliance and WS-Federation. Currently WS-Federation does not have
an implementation available, and the implementations available for Liberty Alliance are
commercial. We want to use the experience gained from implementation of different FSSs to
conceptualize an inter-operable plug-in in the generic framework that allows one type of F'SS
to communicate with others. We believe that if the F'SSs are generalized with proper care, it
is possible to develop interoperability between different kinds of federations. Interoperability
in this sense means that a software client using the implementation for a Shibboleth-based
federation would be able to communicate to the WS-Federation. We understand that it
is possible that the interoperability plug-in cannot support all the functionalities in each
federation, but some basic functionality such as sharing and requesting objects could be
fulfilled.

Appendix A

Abbreviations

e FSS - Federated Security Solution

e CFSS - Centralized Federated Security Solution

e DFSS - Decentralized Federated Security Solution

e SASL - Simple Authentication and Security Layer

e CAS - Central Authentication Service

o PKI - Public Key Infrastructure

e JAAS - Java Authentication and Authorization Service
o SAML - Security Assertion Markup Language

e XACML - eXtensible Access Control Markup Language
e PDP - Policy Decision Point

e PEP - Policy Enforcement Point

e STS - Security Token Service

e CPS - Credential Processing Service

e SAAM - Scenario-Based Architecture Analysis Method

e SAAMER - Software Architecture Analysis Methods for Evolution and Reusability

71

APPENDIX A. ABBREVIATIONS

e API - Application Programming Interface

e UML - Unified Modeling Language.

72

Appendix B

Java Interface for the Generic

Framework

The following interfaces are defined in the Generic Framework.

B.1 FederationHandle

package ca.sfu.federation.framework;

import ca.sfu.federation.framework.wrappers.ldentityProvider;
import ca.sfu.federation.framework.wrappers.Provider;

import ca.sfu.federation.framework.wrappers.ServiceProvider;

/%%
* This interface defines the common technical functionalities required by both
* ServiceProviders and IdentityProviders.
*
*/
public interface FederationHandle {
[*%
* This method is used to defederate end user’s identity from other service
* and identity providers.
* Qparam providerIdentifier the unique identifier for a provider where
* the user wants to defederate his/her identity.
* Qreturn true if the identity has been defederated successfully, false
* otherwise.
*/
public boolean defedrateldentity(Object providerIdentifier);

73

APPENDIX B. JAVA INTERFACE FOR THE GENERIC FRAMEWORK

/x%

* Used to set the organizatioms that are part of end user’s federation.
* @param providerList the <code>Collection</code> of providers that are
* part of end user’s federation

*/

public void setFederationProviderList(java.util.Collection providerList);

/%%
* Returns the technical information about the identity provider with the
* given identifier
* @param providerIdentifier identifier of required IdentityProvider
* @return IdentityProvider with the given unique identifier
*/
public IdentityProvider getIdentityProvider(Object providerIdentifier);

/%
* Used to set the organizations that are part of end user’s trust network.
* @param providerList the <code>Collection</code> of providers that are part of
* end user’s trust network.
*/
public void setTrustedProviderList(java.util.Collection providerList);

VAL

* Checks the trust status of the Provider with given identifier.

* @param providerIdentifier identifier of the Provider to check the trust

* member ship

* Q@return true if the Provider with given identifier is in trust network, false otherwise.
*/

public boolean isProviderTrustMember(Object providerIdentifier);

/%%
* Removes the trust relationship with Provider of given identifier
* @param provider Provider to remove the trust
* Qreturn true if the trust is removed successfully with the given
* provider, false otherwise.
*/

public boolean removeTrustMember(Provider provider);

VAL
* Adds the trust relationship with Provider of given identifier
* Qparam provider Provider to add the trust
* Qreturn true if the trust is added successfully with the given provider,
* false otherwise.
*/
public boolean addTrustMember(Provider provider);

APPENDIX B. JAVA INTERFACE FOR THE GENERIC FRAMEWORK

/*x

* Removes the federation with Provider of given identifier

* Qparam provider Provider to has to be removed from the federation.

* Q@return true if the federatiom is removed successfully with the given
* provider, false otherwise.

*/

public boolean removeFederationMember(Provider provider);

/xx

* Initiates the process to revoke the trust with the Provider that has
* given identifier.

* Qparam providerIdentifier the identifier of the provider to revoke

* trust with.

* Qreturn true if the trust is revoked successfully, false otherwise.
*/
public boolean revokeTrust(Object providerIdentifier);

/x*

* Checks if the organization that issued the given user’s credential
* is a part of federation member list.

* @param userCredentials usre’s credentials

* Qparam federationIdentifier The identifier of the federation to check
* the membership with.

* @return true if the given user’s credentials are part of given

* federation membership list.

*/
public boolean isUserFederationMember(Ubject user(Credentials,

Object federationIdentifier);

[**
* Adds the Provider to federation member list.
* Qparam provider Provider to add to the federation member list.
* Qreturn true if the federation membership is added successfully with
* the given provider, false otherwise.
*/
public boolean addFederationMember(Provider provider);

/x*

* Returns the list of the Providers that are part of trust network.

* Qreturn Collection of the ServiceProvider and IdentityProvider that
* are part of the trust network.

*/

public java.util.Collection getTrustedProviderList();

/x*
* Initiates the process to establish the trust with the Provider that

* has given identifier.

75

APPENDIX B. JAVA INTERFACE FOR THE GENERIC FRAMEWORK

* @param providerIdentifier the identifier of the provider to establish
* trust with.
* @return true if the trust is established successfully, false otherwise.
*/

public boolean establishTrust(Object providerIdentifier);

/%%

* Returns the list of the Providers that are part of the end user’s federation.
* Qreturn Collection of the ServiceProvider and IdentityProvider

* that are part of the end user’s federation.

*/
public java.util.Collection getFederationProviderList();

/%%

* Returns the technical information about the service provider with
* the given identifier

* Qparam providerIdentifier identifier of required ServiceProvider
* Qreturn ServiceProvider with the given unique identifier

*/

public ServiceProvider getServiceProvider(Object providerIdentifier);

/**

* This method is used to federate end user’s identity to other service

* and identity providers.

* Qparam providerIdentifier the unique identifier for a provider where

* the user wants to federate his/her identity.

* @return true if the identity is fedarated successfully, false otherwise.
*/
public boolean federateldentity(Object providerIdentifier);

B.2 IdentityProviderFederationHandle

package ca.sfu.federation.framework.identityprovider;
import java.util.List;

import ca.sfu.federation.framework.FederationHandle;

import ca.sfu.federation.framework.wrappers.Provider;

/*%

* This interface defines the techmical functionalities required by the
* IdentityProvider.

*/

interface IdentityProviderFederationHandle {

/xx

76

APPENDIX B. JAVA INTERFACE FOR THE GENERIC FRAMEWORK

* This method should be used to submit the technical information about

* the IdentityProvider to the federation management.

* Q@return true if the IdentityProvider information is submitted to the

* federation management successfully, false otherwise.

*/
public boolean setldentityProviderInformation();

/%%

* Returns the minimum required credentials by the ServiceProvider that
* has the given identifier.

* Q@param providerIdentifier the identifier of the ServiceProvider to

* fetch the required credentials for.

* @return Collection of the credentials required by the ServiceProvider.
*/

public java.util.Collection getRequiredCredentials{Object providerIdentifier);

B.3 ServiceProviderFederationHandle

package ca.sfu.federation.framework.serviceprovider;
import java.util.List;
import ca.sfu.federation.framework.FederationHandle;

/%%

* This interface defines the technical functionalities required by the
* ServiceProvider.

*/
public interface ServiceProviderFederationHandle {

/%%
* This method should be used to submit the minimum required set of
* credentials to the federation management. This information shows the
* minium required credentials by this ServiceProvider to take any
* authorization decision.
* Qparam credentials Collection of the minumum required credentials
* needed to take any authorization decision.
*/
public abstract void setRequiredCredentials(java.util.Collection credentials);

/xx

* This method should be used to submit the technical information about
* the ServiceProvider to the federation management.

* Qreturn true if the ServiceProvider information is submitted to the
* federation management successfully, false otherwise.

*/

APPENDIX B. JAVA INTERFACE FOR THE GENERIC FRAMEWORK

public abstract boolean setServiceProviderInformation();

[k

* This method is used by the ServiceProvider to take authorization

* decision for the incoming request with end user’s credentials.

* @param userCredentials end user credentials to verify

* @return true if the user’s organization is trusted and the user is in
* the fedration of this ServiceProvider.

*/

public abstract boolean verifyCredentials(Object userCredentials);

B.4 ClientFederationhandle

package ca.sfu.federation.framework.client;
import javax.security.auth.callback.CallbackHandler;

import ca.sfu.federation.framework.wrappers.Provider;

import ca.sfu.federation.framework.wrappers.ResponseHandler;

/%%
* This interface defines the technical functionalities required by the
* end user application to communicate and connect to a federation.
*/
public interface ClientFederationHandle {
[*%
* This method should be used to intialize this class. The callback handler
* chould provide all the information required to authenticate to the
* IdentityProvider and fetch the attribute assertion.
* Qparam callbackHandler callback handler.
* @return true if the initialization process is completed successfully,
* and the callbackhandler is able to handle all required type of
* callbacks, false otherwise.
*/
public boolean initialize(CallbackHandler callbackHandler);

[*x

* This method should be used to send a request for resource to a

* ServiceProvider.

* Qparam query the query to send to the ServiceProvider

* Q@param toProvider The provider to send the request for resource to.
* @param counter counter to hold result counters if any.

* Qparam responseHandler ResponseHandler to handle the response from
* the ServiceProvider.

*/

78

APPENDIX B. JAVA INTERFACE FOR THE GENERIC FRAMEWORK

public void sendRequest(Object query, Provider toProvider,
Object counter, ResponseHandler responseHandler);

/%
* This method is used by the end user application to authenticate to the
* IdentitProvider.
* Qreturn true if the end user application is able to authenticate with
* the IdentityProvider successfully, false otherwise.
*/

public Object login();

AL
* This method should be used to logout from the IdentityProvider.
* Qreturn true if the user is logged out from the IdentityProvider,
* false otherwise.
*/
public boolean logout();

79

Bibliography

[1] Haka Federation. http://www.csc.fi/suomi/funet/middleware/english /index.phtml.
[2] InCommon - shibboleth implementation. http://www.incommonfederation.org/.

[3] InQueue - shibboleth implementation. http://inqueue.internet2.edu/.

[4] Liberty alliance project. https://www.projectliberty.org/index.php.

[5] Shibboleth Project. http://shibboleth.internet2.edu/.

[6] SWITCH - NetServices. http://www.switch.ch/aai/.

[7] Proceedings of the The First International Conference on Awailability, Reliability and
Security, ARES 2006, The International Dependability Conference - Bridging Theory
and Practice, April 20-22 2006, Vienna University of Technology, Austria. IEEE Com-
puter Society, 2006.

[8] Gail-Joon Ahn, Dongwan Shin, and Seng-Phil Hong. Information Assurance in Feder-
ated Identity Management: Ezrperimentations and Issues, volume 3306. January 2004.

[9] Steve Anderson et al. Web Services Trust Language (WS-Trust).
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf, 2005.

[10] Siddharth Bajaj et al. Web Services Federation Language (WS-Federation).
http://specs.xmlsoap.org/ws/2003/07/secext/ WS-Federation.pdf, 2003.

[11] Siddharth Bajaj et al. Web Services Policy Attachment (WS-PolicyAttachment).
http://specs.xmlsoap.org/ws/2004/09/policy /ws-policyattachment.pdf, 2006.

[12] Siddharth Bajaj et al. Web Services Policy Framework (WS-Policy).
http://specs.xmlsoap.org/ws/2004 /09 /policy /ws-policy.pdf, 2006.

[13] Bhagyavati and Glenn Hicks. A basic security plan for a generic organization. J.
Comput. Small Coll., 19(1):248-256, 2003.

[14] K. Bhoopalam, K. Maly, F. McCown, R. Mukkamala, and M. Zubair. A Flezible
Framework for Content-Based Access Management for Federated Digital Libraries, vol-
ume 3652. September 2005. doi:10.1007/11551362_49.

80

BIBLIOGRAPHY 81

[15] L. C. Briand, J. W. Daly, and J. K. Wust. A unified framework for coupling mea-
surement in object-oriented systems. Software Engineering, IEEE Transactions on,
25:91-121, 1999.

[16] Wentong Cai, Stephen J. Turner, and Boon Ping Gan. Hierarchical federations: an
architecture for information hiding. In PADS ’01: Proceedings of the fifteenth workshop
on Parallel and distributed simulation, pages 67-74, Washington, DC, USA, 2001. IEEE
Computer Society.

[17] Scott Cantor et al. Assertions and Protocols for the OASIS Security Assertion Markup

Language (SAML) V2.0. http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-
os.pdf, 2005.

[18] Seung-Lyeol Cha, Thomas W. Green, Chong-Ho Lee, and Cheong Youn. The Hier-
archical Federation Architecture for the Interoperability of ROK and US Simulations,
volume 3397. January 2005.

[19] Brent N. Chun and Andy Bavier. Decentralized trust management and accountability
in federated systems. In HICSS ’04: Proceedings of the Proceedings of the 37th An-
nual Hawaii International Conference on System Sciences (HICSS'04) - Track 9, page
90279.1, Washington, DC, USA, 2004. IEEE Computer Society.

[20] D. Cooper et al. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile.

[21] F. Copigneaux and S. Martin. Software security evaluation based on a top-down mccall-
like approach. Aerospace Computer Security Applications Conference, 1988., Fourth.

[22] C. Cowan. Software security for open-source systems, 2003.

[23] Peter Davis et al. Liberty Metadata Description and Discovery Specification.
http://www.projectliberty.org/specs/liberty-metadata-v1.1.pdf.

[24] Sabrina De Capitani di Vimercati and Pierangela Samarati. An authorization model
for federated systems, volume 1146. June 1996. doi:10.1007/3-540-61770-1_30.

[25] L. Djordjevic and T. Dimitrakos. A note on the anatomy of federation. BT Technology
Journal, 23(4):89-106, 2005.

[26] Liliana Dobrica and Eila Niemela. A survey on software architecture analysis methods.
IEEFE Transactions on Software Engineering, 28(7):638-653, 2002.

[27] Asa Elkins, Jeffery W. Wilson, and Denis Gracanin. Security issues in high level archi-
tecture based distributed simulation. In WSC ’01: Proceedings of the 33nd conference
on Winter simulation, pages 818-826, Washington, DC, USA, 2001. IEEE Computer
Society.

BIBLIOGRAPHY 82

[28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

37]

(33]

[39]

[40)

Jacky Estublier, Herve Verjus, and Pierre-Yves Cunin. Designing and building software
federations. euromicro, 00:0121, 2001.

K. Geihs, R. KalcklA?sch, and A. Grode. Single Sign-On in Service-Oriented Comput-
ing, volume 2910. January 2003.

W.G. Griswold, H. Rajan, M. Shonle, K. Sullivan, N. Tewari, Yuanfang Cai, and
Yuanyuan Song. Modular software design with crosscutting interfaces. Software, IEEF,
23.

Marek Hatala, Ty Mey (Timmy) Eap, and Ashok Shah. Federated security: Lightweight
security infrastructure for object repositories and web services. nwesp, 0:287-292, 2005.

Marek Hatala, Ty Mey (Timmy) Eap, and Ashok Shah. Unlocking repositories: Fed-
erated security solution for attribute and policy based access to repositories via web
services. ares, 0:895-903, 2006.

Marek Hatala, Griff Richards, Timmy Eap, and Jordan Willms. The interoperability
of learning object repositories and services: standards, implementations and lessons
learned. In WWW Alt. '04: Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, pages 19-27, New York, NY, USA,
2004. ACM Press.

Jingsha He and Ran Zhang. Towards a Formal Framework for Distributed Identity
Management, volume 3399. January 2005.

Wolfgang Hommel. Using XACML for Privacy Control in SAML-Based Identity Fed-
erations, volume 3677. September 2005. doi:10.1007/11552055_16.

Wolfgang Hommel. Policy-Based Integration of User and Provider-Sided Identity Man-
agement, volume 3995. January 2006. doi:10.1007/11766155_12.

Audun Jøsang, John Fabre, Brian Hay, James Dalziel, and Simon Pope. Trust
requirements in identity management. In CRPIT ’/4: Proceedings of the 2005 Aus-
tralasian workshop on Grid computing and e-research, pages 99108, Darlinghurst, Aus-
tralia, Australia, 2005. Australian Computer Society, Inc.

Rick Kazman, Len Bass, Mike Webb, and Gregory Abowd. Saam: a method for
analyzing the properties of software architectures. In ICSE ’94: Proceedings of the

16th international conference on Software engineering, pages 81-90, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press.

Susan Landau et al. Liberty ID-WSF Scurity Privacy Overview.
http://www.projectliberty.org/specs/liberty-idwsf-security-privacy-overview-v1.0.pdf.

Seok Won Lee, Robin A. Gandhi, and Gail-Joon Ahn. Establishing trustworthiness
in services of the critical infrastructure through certification and accreditation. In

BIBLIOGRAPHY 83

[41]

[42]

[43]

[44]

[45]

[46]

147)

[48]

0]

[50]

[51]

52

[53]

SESS ’05: Proceedings of the 2005 workshop on Software engineering for secure systems
building trustworthy applications, pages 1-7, New York, NY, USA, 2005. ACM Press.

G. Della Libera et al. Web Services Security Policy Language (WS-SecurityPolicy).
http://www.oasis-open.org/committees /download.php/16569/.

Chung-Horng Lung, Sonia Bot, Kalai Kalaichelvan, and Rick Kazman. An approach
to software architecture analysis for evolution and reusability. In CASCON ’97: Pro-
ceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative
research, page 15. IBM Press, 1997.

Paul Madsen, Yuzo Koga, and Kenji Takahashi. Federated identity management for
protecting users from id theft. In DIM ’05: Proceedings of the 2005 workshop on Digital
identity management, pages 77-83, New York, NY, USA, 2005. ACM Press.

John Meyers, Alexy Melnikov, and Kurt Zeilenga. Simple authentication and security
layer (sasl). http://tools.ietf.org/html/4422, 2006.

Tim Moses et al. eXtensible Access Control Markup Language (XACML) Version 2.0.
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf, 2005.

Anthony Nadalin. Web Services Security : SOAP Message Security 1.0 (WS-
Security). http://docs.oasis-open.org/wss/2004/01 /oasis-200401-wss-soap-message-
security-1.0.pdf, 2004.

B. Pfitzmann and M. Waidner. Analysis of liberty single-sign-on with enabled clients.
Internet Computing, IFEE, 7, 2003.

Birgit Pfitzmann. Privacy in Enterprise Identity Federation, volume 2760. December
2003.

Birgit Pfitzmann and Michael Waidner. Federated Identity-Management Protocols, vol-
ume 3364. September 2005. doi:10.1007,/11542322_20.

Rubén Prieto-Díaz. Domain analysis: an introduction. SIGSOFT Softw.
Eng. Notes, 15(2):47-54, 1990.

Susanne Röhrig and Konstantin Knorr. Security analysis of electronic business
processes. Electronic Commerce Research, 4(1-2):59-81, 2004.

Christian Schlaeger and Guenther Pernul. Authentication and Authorisation Infras-
tructures in b2c e-Commerce, volume 3590. January 2005. doi:10.1007/11545163_31.

Christian Schldger, Thomas Nowey, and José A. Montenegro. A reference model for
authentication and authorisation infrastructures respecting privacy and flexibility in
b2c ecommerce. In ARES [7], pages 709-716.

BIBLIOGRAPHY 84

[64] P. Seltsikas. Can europe’s governments manage identity? BT Technology Journal,
23(4):80-88, 2005.

[55] Akinori Shiraga, Tsuyoshi Abe, and Masahisa Kawashima. An authentication method
for interaction between personal servers based on the exchange of addresses. In DIM
'05: Proceedings of the 2005 workshop on Digital identity management, pages 6369,
New York, NY, USA, 2005. ACM Press.

[56] Victor L. Voydock and Stephen T. Kent. Security mechanisms in high-level network
protocols. ACM Comput. Surv., 15(2):135-171, 1983.

[67] Huaiqing Wang and Chen Wang. Taxonomy of security considerations and software
quality. Communications of the ACM, 46.

[58] Thomas Wason et al Liberty ID-FF Architecture Overview.
http://www.projectliberty.org/specs/draft-liberty-idff-arch-overview-1.2-errata-
v1.0.pdf.

[59] Sven Wohlgemuth and GA(Enter MAEller. Privacy with Delegation of Rights by Iden-
tity Management, volume 3995. January 2006. doi:10.1007/11766155_13.

[60] Uwe Zdun. Loosely Coupled Web Services in Remote Object Federations, volume 3140.
January 2004.

[61] N. Zhang, L. Yao, J. Chin, A. Nenadic, A. McNab, A. Rector, C. Goble, and Q. Shi.
Plugging a scalable authentication framework into shibboleth. In WETICE ’05: Pro-
ceedings of the 14th IEEE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprise, pages 271-276, Washington, DC, USA, 2005.
IEEE Computer Society.

Index

Academic federated security solutions, 7
Attribute assertion, 2
Authentication assertion, 2

Centralized federated security solutions, 7
CFSS, 7

DFSS, 7
Distributed federated security solutions, 7

FSS, 1

PDP, 2
PEP, 2

Well-knows federated security solutions, 7

85

