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Abstract 

Ray tracing techniques for image rendering have produced some of the most realistic 

images to  date. Ray tracing, however, is computationally expensive because of the floating 

point calculation involved in ray-object intersection and the number of such intersections 

that must be performed t o  render an image realistically Conventional mini-computers take 

anywhere between an hour and several days to  render a single image of moderate 

complexity 

In this thesis, we propose a pipelined machine. PERT, which according to  our simulation 

results, shows a substantial reduction in the rendering time. 

The key features of PERT are: a) the use of bounding volumes and hierarchical data 

organization to  reduce the number of ray-object intersections, b) a 3-processor pipeline that 

executes a 3-task ray tracing algorithm, c) microcoded, custom designed. VLSl processors 

in each stage of the pipeline, and d) extensibility t o  a multi-PERT architecture that 

consists of several PERTs working in parallel. 
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Chapter 1 

RAY TRACING 

The potential of ray tracing techniques to produce realistic images has been extolled by 

so many that i t  is on the verge of becoming a cliche. Nevertheless. the images speak for 

themselves; images which can be virtually indistinguishable from photographs. These 

realistic images are a product of both good scene descriptions or models which describe 

the shape and position of objects. and good rendering techniques We are concerned with 

the latter In this chapter we shall discuss what creates the illusion of realism and why 

ray trac I I S ~  I P ~  hnwues are capable of exploiting this. 

1.1. The Shading Model 

As stated above, ray tracing techniques have generated some of the most realistic images 

to  date. To understand what contributes to  the realism of a synthetic image, one must 

first understarid the process that occurs naturally in the real world. 

It is generally accepted that a colour video camera produces a realistic image. So let us 

first consider how the camera records a scene onto the phosphors or pixels of a monitor. 

Imagine that for each pixel on the monitor screen, these is a corresponding sensor on the 

camera s focal plane behind the lens. The surfaces in the scene visible to  the camera 

. reflect or transmit light into the lens and onto the sensors that in turn measure the light 

and send signals to their respective display pixels. The colour of each pixel is determined 

by the colour of the corresponding area in the scene. The colour of a surface is 



determined by the properties of the surface and the light falling on the it; this means we 

have to  know how the light interacts with the surface. 

In rendering a scene, it must be possible to  model these light interactions in order to  

simulate the light being reflected or transmitted to the sensors. Examination of the light 

falling upon an area of the surface allows it to  be classified in one of two ways. The 

first is light coming directly from emitting sources (eg. the sun, an incandescent bulb, a 

flourescent tube); this type of light is referred to  as a direct source. The second type is 

light being reflected onto the surface from other surfaces; this constitutes an indirect or 

global source 

Next examtning the surface with which these two sources of light interact. we can 

distingutsh thrw urface characteristics which influence these interactions. The first of 

these is the roughness of the surface at the microscopic level. This determines how light 

falling on the surface is scattered by reflection in all directions and thus how good it is as 

a diffuse reflector The second characteristic, the opposite of the first, is the smoothness 

at the microscopic level that in turn determines the degree to  which the surface can be 

characterized as a mirror; this property results in a specular reflection. Finally the third 

characteristic determines how well a surface transmits light from a light source from 

behind 

Combining these characteristics with the types of light sources, a formula can be derived 

which models the cumulative effect of the six combinations according to  the physical laws 

of optics. This formula is referred to as the shading or illumination model. When 

rendering an image, we can now model the interaction of light with a surface by applying 

the shading model to  the point being examined. Consequently. it is the completeness of 



the shading model which determines the degree of realism of a computer generated image. 

Figure 1-1 shows examples of the same scene with different light interactions being 

modeled. 

Figure 1-1: Examples of different light interactions . 

Shading models have become more sophisticated since the early days of computer 

graphics when diffuse Lambertian shading (diret r source diffuse reflection) was used. In a 

sense, the evolution in the shading model can be compared to  the evoJy#ion in painting 

that occurred with the Italian renaissance when the flat two dimensional-like Byzantine 

technique was surpassed by the vibrant realism of Michelangelo and Raphael with their 

studies of both light and form. 

This evolution toward a better shading model began when Phong [PHON73] proposed a 

shading model based on empirical observations which included a term for direct source 



specular reflection and global source diffuse reflection. Blinn [BLIN77]. Kay [KAY79]. 

Whitted [WHIT80], and Cook and Torrance [COOK821 have contributed t o  making shading 

models more physical and less empirical by defining terms for, among other things, global 

and direct source transmission, the Fresnel relationship for angle of incidence, and direct 

source specular reflection Most of these contributions have been brought together nicely 

by Hall [HALL831 in his shading model that is illustrated in Figure 1-2 

4 * I t w H ) " R , ? ,  
I I 

d m  t reflected 

+ k ,  N A)I) T,  I, 
/ = I  

direct transmitted 

t ks R, { F~~~ 
global reflected 

dt + kS T ,  I, F,  
global transmitted 

+ la Rd 
global diffuse 

dr = distance of reflected ray travel 
dt I distance of refracted ray travel 
F, = trans per unit length of reflected ray 

- trans per u n ~ t  length of refracted ray 
d u n ~ t  reflect~on mirror -direction vector 

u n ~ t  trans mirror direction vector 
I = intensity of point 

la = intensity of global ambient light 
1. = intensity of j t h  direct light source 
/ r = intensity of reflected ray 

It = intensity of refracted ray 
j = direct light source index 
kd = diffuse reflection coefficient 
k = specular reflection coefficient 
I = number of direct light sources 
r = unit light source vector 
n = exponent for glossiness 
70 = unit surface normal vector 
R, = Fresnel reflectance curve 
Rd = diffuse reflectance curve 
T ,  = Fresnel transmtssion curve 

Figure 1-2: The Hall shading model 



1.2. Ray Tracing 

When rendering an image from a 3-dimensional scene model, the following two functions 

are executed: a) the visibility of the surfaces is determined with respect t o  the viewpoint 

and b) light interaction with the visible surfaces and the production of colour is 

characterized. Most rendering techniques, such as z-buffering, cannot exploit the complex 

shading models because they determine visibility by projecting the 3-D modeling space onto 

the 2-D Image plane and thus lose the third dimension necessary for the simulation of the 

light ~nteractions 

Uav trdclng, on the other hand can explo~t the shading models because i t  determines 

vtstb~lttv not on the 2-D image plane but in the 3-D modeling space. The origin of ray 

traclng is found in ray casting that was proposed by Appel [APPE68] and implemented by 

Goldstein and Nagle at MAGI (GOLD711 as a visible surface algorithm However. 

Whitted's classic algorithm [WHIT801 brought ray casting and a good shading model 

together in the technique now known as ray tracing 

Going back t o  the example of the colour video camera, ray tracing simulates its operation 

in reverse Instead of than recording the light rays being reflected from the visible 

surfaces through the lens and onto the sensors. ray tracing sends out rays originating at 

each sensor on the focal plane (image plane) through the lens ( f oca l  point) into the 

scene (a model described in 3-D). An i n i t i a l  ray  for each pixel o f  the image plane is 

sent out in this manner. Each ray is then intersected with each object in the scene to  

find the closest surface that is visible. 

Once the nearest intersection point is found. the shading model is used t o  compute the 

colour. This involves spawning the following rays from the intersection point: 



1. toward each direct light source in the scene (light rays) t o  determine if i t  is 
visible t o  the point and what contribution it makes t o  the diffuse, specular and 
transmitted components of the shading model; 

2. in the mirror reflection direction ( ref lected ray) t o  determine the light intensity 
coming from that direction for calculation of the global source specular 
component; and 

3. in the refracted ray direction (transmitted ray) t o  determine the light intensity 
from that direction for calculation of the global transmitted component of the 
shading model. 

The algorithm's elegance lies in recursion because once spawned, the reflected and 

transmitted rays are traced in the same fashion as the initial rays If these rays intersect 

other surfaces. the shading model is applied and new rays are spawned until the rays leave 

the scene or intersect a non-reflecting surface. In this fashion the intersection tree for 

each pixel IS built up The intersection tree has at its root the pixel. interior nodes are 

intersected sortdc es and leaves are direct light sources or the exterior of the scene. The 

branches of the mtersection tree are the rays spawned during the tracing of the pixel. 

Figure 1-3 follows the tracing of a ray and the resulting intersection tree. An initial ray 

(ir) strikes object 1 (01). The shading model' is applied at the intersection point and 

three secondary rays are spawned. Light ray 2 (lr2) is blocked and thus ignored. The 

reflected ray ( r r l )  strikes the semi-transparent object 2 (02). Again, secondary rays are 

spawned The reflected ray (rr2) leaves the scene and is ignored. The transmitted ray 

( t r l )  would be traced further. 

Once all the rays have been traced for a pixel. the intersection tree will contain all the 

light source information in the leaf nodes and all the surface characteristic information in 

the interior nodes. The tree is traversed in a depth-first order t o  calculate the final pixel 

colour . 



pixel 

ir 

Figure 1-3: Example of the tracing of a pixel and the 
building of the intersection tree 

1.3. An Analysis 

As shown, ray tracing is a simple recursive algorithm which exploits a good shading 

model However, the obvious advantages of using ray tracing are almost outweighed by 

~ t s  principal disadvantage: computational cost. As an illustration of how severe this is. 

most of the reported times for published images rendered using DEC VAX/780's have been 

measured In hours. 

Why is the algorithm so computationally intensive? 

all computations are executed in floating point. 

0 extensive use is made of the square root function for vector normalization of 
rays, normals and dot products. 



complex intersection computations are required for some classes of objects such 
as fractals and 3-D spline surfaces. 

the number of intersection calculations is large since determination of the closest 
surface requires that a ray be tested be tested against all objects in the scene. 

the number of rays spawned during the ray tracing process is also large. 

T o  show the sheer number of computations required in ray tracing an image, we shall 

use an analysis of the complexity of ray tracing similar t o  that found in [DIPP84]. We 

shall also use data from the run-time profile of the program used t o  generate Figure 1-4 

on a DEC VAX/750 with a floating point unit. T o  do this, we make the following 

assumptions: 

each intersection tree has depth D = 4. 

the average number of recursive reflected and transmitted rays spawned per 
intersectwn N = l 1 (100% of the intersections will spawn a reflected ray; 
10%. a transmitted ray) 

the number of objects in the scene 0 = 1093 (833 spheres and 250 polygons) 
which corresponds t o  the scene model used t o  generate Figure 1-4. 

the number of direct light sources L = 1 

the resolution of the image Ro = 512x384 = 196608 pixels. 

the average intersection calculation time Ti = 0.000429 seconds. 

0 the average ray spawning time T s  = 0.000710 seconds. 

The resulting calculations are given below: 

D *(N -1) 

total number of rays traced: Rt = (I+L) = 1824915. 

total number of intersections: I t  = OR, - 2'. 



0 total time: T t  = Rt(TS+TjO)  Approx 238 hours. 

Figure 1-4: Sample scene for analysis 

Varying the size of the parameters can significantly increase the number of intersection 

calculations that must be performed. For example: r - 

0 doubling image resolution Ro t o  1024x768 increases It by a factor of 4. 

0 adding 2 more direct light sources t o  the scene doubles I t .  

0 doubling the number of objects in the scene also doubles I f .  

This analysis was based on the standard algorithm whereby all rays are intersected with 

all objects. Fortunately, many modifications have been proposed to  the algorithm t o  

increase its performance. These improvements are discussed in the next chapter. 



Chapter 2 

ALGORITHM IMPROVEMENTS 

Whitted [WHIT801 has stated that intersection calculations can account for up to 95% of 

the rendering time Using the standard recursive algorithm, the work due to  intersection 

ialculations is expressed as number of rays x number of objects To reduce the time 

to acconiplish a task one can either work faster or one can work more efficiently 

Working taster means using faster computers special-purpose processors or specialized 

architectures These are issued discussed in the next chapter Working more efficiently 

means redllclng the number of intersection calculations by either reducing the number of 

rays spawned or by reducing the number of objects that must be intersected, or both. In 

this chapter, proposed improvements to the standard algorithm are discussed. 

2.1. Reducing Rays 

The number of rays spawned during the rendering of an image is dependent on many 

factors such as the number of pixels to be traced, the number of lights the amount of 

empty space in the scene and the density of reflective and transparent surfaces. These 

factors are outside the control of the renderer. Where the renderer has control over the 

number of rays is in the process of spawning secondary rays 

Adaptive tree depth proposed by Hall [HALL831 is aimed at controlling the depth of a 

pixel's intersection tree Before spawning a ray, the maximal contribution that the ray 

could potentially make to  the final pixel value is calculated. If this contribution is below a 



pre-determined threshold, the ray is not spawned. Hall has shown that even in highly 

reflective scenes such as a room of mirrors, the average tree depth was 1.71. 

Assuming an average tree depth of 1.71 in the analysis discussed in the previous 

chapter both the number of rays traced and the intersection time would be reduced by 

62%. 

2.2. Reducing Objects 

Reducing the number of objects with which a ray must be intersected holds the greater 

potential for increasing performance. Rather than doing a blind search through the entire 

list of objects techniques have been proposed to partition the objects or the scene to  

permit a more efficient search The objective is t o  determine the subset of objects which 

are spatdly t lose to  a given ray such that the chances of the ray intersecting any of 

these ob~ects 1s greater In all techn~ques discussed below. the data organization particular 

t o  each IS created as a pre-processing step The time penalty for pre-processing is typical 

less than 8% of the new image generation time which is, in turn, significantly less than 

the standard algorithm time. 

2.2.1. Bounding Volumes 

Objects that require complex intersection calculations, such as is needed for fractal or 

spline surfaces, can be enclosed in a bounding volume, such as a sphere or a rectangular 

parallelepiped t h ~ s  results in  a much simpler intersection calculation that will potentially 

save time If the ray does not intersect the bounding volume, then there is no need to  

execute the test w ~ t h  the complex object. Similarly, if one has built an object from a 

collection of objects, for example, the collection of spheres making up the forearm of the 

jogger in Figure 1-4 . this logical collection of spatially related objects can also be enclosed 

within a bounding volume t o  save on intersection calculations. 



The concept of bounding volumes. [CLAR76]. [WHIT80]. involves enclosing a complex 

object or a collection of objects as tightly as possible within a volume which is simple to  

intersect. If a ray is tested for intersection against this volume and fails, the result is 

that the enclosed object or objects are efficiently eliminated from the intersection 

calculation. 

Figure 2-1 shows a 2-D view of a collection of spheres bounded by a box. Ray a 

intersects the volume and so must be tested against every enclosed sphere; ray b fails the 

intersection test with the volume thus avoiding 12 intersection calculations with the 

enclosed objects 

Figure 2-1: Example of a bounding volume 

The decision on how to  group objects and on which bounding volume to  choose is 

largely in the hands of the user who models the scene Weghorst et. al. [WEGH84] have 

done some work on the automatic selection of bounding volumes using the criteria of void 

area and a total cost of intersection test function. Both of the criteria are ray dependent 

and thus scene dependent. 



At this stage we have a collection of bounding volumes. The next step would be to  

have a process whereby only bounding volumes lying along a ray's path are tested for 

intersection. 

2.2.2. Hierarchical Data Description 

From a collection of bounding volumes, a hierarchical data description. [CLAR76]. 

[WEGH84], can be built using a similar approach as for the definition of bounding volumes. 

Collections of bounding volumes that are spatially close can be enclosed by a larger 

bounding volume and so on, until the whole scene is enclosed The result is a tree where 

the root node IS t h~s  volume the interior nodes are bounding volumes enclosing bounding 

volume.: and the leaves are bounding volumes enclosing objects. Again the choice of 

volume and the grouping of the volumes are largely defined by the user during the 

modeling process 

The purpose of the hierarchy is to  rapidly eliminate bounding volumes and objects from 

the intersection calculation. When a ray is spawned, it is assumed to  always intersect the 

root volume. It is tested against the second level bounding volumes. If a volume is 

intersected, a recursive descent of the hierarchy begins. The saving occurs because a 

bounding volume is tested for intersection if and only if its parent volume has been 

intersected by the ray. The hierarchy is pruned down to the leaf level. Figure 2-2 shows 

a 2-D representation of a scene with its corresponding hierarchy. 

Weghorst et. al have shown savings of 12% to 55% over the use of bounding volumes 

only. Our own results have shown that the use of both bbunding volumes and a 

hierarchical data structure decreases rendering times by up to 95% over the standard 

algorithm. 



The efficiency of using bounding volumes with a hierarchical data structure is largely in 

the hands of the user. The depth of the data tree, the number of children per node, the 

number of objects per bounding volume are critical t o  the performance o f  the algorithm. 

This dependence may seem t o  be a liability but it may also be an advantage for the 

following reason. The performance of any ray tracing algorithm is dependent on the scene 

model. A user with a good understanding of the use of bounding volumes can thus tailor 

these volumes for efficiency. 

2.2.3. Octree Subdivision 

Glassner [GLAS84] has proposed a technique based on octrees for sub-dividing the 

rnodellng .pace into hierarchical structure of subvolumes Octrees allow dynamic 

recurwe sub d~vislon of the modeling space until each subvolume or voxel satisfies the 

termination ~ o n d ~ t i o n  The cvndition or threshold is designed t o  t o  ensure that each voxel 

represents a uniform amount of work. The measure of work here is the number of 

objects that are wholly or partially contained in the voxel. The resulting voxel data 

organization allows the direct identification of the voxels lying along the ray's path. 

The recursive sub-division of voxels begins by defining a cube which completely encloses 

the scene. This cube is the root o f  the hierarchical subvolume structure. The cube is 

divided into eight cubes or voxels each of which is tested for the termination condition. If 

a voxel fails the test, i t  is in turn subdivided and so on until all voxels have no more 

than the threshold number of objects. An example of the sub-division is shown in Figure 

2- 3 

Unlike the hierarchical data description described above, the hierarchy of voxels is in itself 

unimportant t o  the rendering process. There is no need t o  traverse a data tree. Only the 
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Figure 2-2: Example of a hierarchical data description 



Figure 2-3: Examples of voxel sub-division 

leaf voxels are kept along with their associated object lists. Using this structure. Glassner 

has proposed a method of quickly computing the transfer of a ray from one voxel to 

another. When a ray is spawned, its first voxel intersection is computed. From there, if 

no intersections are found within the voxel, the next voxel along the ray's path is 

computed and the intersection test begin with it 's children. Voxels are examined in same 

order that the ray encounters them in the modeling space. If an intersection is found in 

the current voxel, the ray need not be traced any further 

Published results using this approach have shown decreases in total rendering time of 

. 70% to 90% compared to  the standard algorithm. 

This approach to eliminating object intersections is straight forward and elegant. It 

allows one to intersect only those objects associated with the voxels lying along a ray's 



path. It also gives the ray access t o  voxels in order of increasing distance, allowing 

termination of the tracing process if an intersection in found in the current voxel. 

However, there are potential weaknesses. The first is that the voxel threshold is based on 

the number of objects as opposed to  the computational work required t o  process the voxel. 

A complex object could unbalance a voxel. Secondly. an object could span several voxels. 

necessitating several ray-object intersections for the same ray and object. Again, with 

complex objects, this could be a significant drawback. 

2.2.4. Modeling Space Subvolumes 

Another approach to  reducing the number of ray-object intersections is modeling space 

subdivision [ULLN83] and [CLEA83] Although developed primarily for parallel processor 

implementat~on, the technique itself is presented here within the context of a sequential 

algorithm The concept is similar to octree subdivision in that the modeling space is 

divided into subvolumes where each* subvolume has a list of objects that it wholly or 

partially contains. The difference is that the subvolumes are geometrically uniform 

subdivisions in two or three dimensions and are not recursively subdivided. The process of 

tracing a ray is similar t o  the process used with the octree subdivision technique. 

Unfortunately, in addition to  having the same weaknesses as octree subdivision. modeling 

space subvolumes have an added disadvantage - there is no attempt t o  balance the 

workload associated with each subvolume. As mentioned, the algorithm's strength lies in 

its adaptability t o  parallel processing and, as such, i t  is discussed within that context in 

the next chapter. 



2.2.5. Light Rays 

The last technique discussed here has more t o  do with how a light ray is processed 

than with a more efficient search. The purpose of light rays is t o  determine if a direct 

light source is visible t o  the origin of the ray. If the light ray intersects any surface, the 

direct light source for which the ray was spawned does not contribute to  the colour of the 

point and can be ignored. The search through the object list can then be stopped on 

finding the first intersection. Since light rays can account for 50% or more of the rays 

spawned, the potential reduction is significant. 

2.3. Discussion 

Improvements to  the standard algorithm have been presented. Two  techniques, adaptive 

tree depth and light rays, can be incorporated in any algorithm. On the other hand, a 

choice has t o  be made between octree subdivision or bounding volumes with hierarchical 

data structure. Unfortunately, published results do not use the same scene models. 

resolutions, shading models, performance measurements, and computers, making absolute 

comparisons difficult Until someone publishes a good comparative study, the choice of 

algorithm must be made on different criteria, eg.. which one has the least significant 

weaknesses. 



Chapter 3 

ARCHITECTURAL PERSPECTIVE 

Ray tracing machines can be loosely classified into 3 classes based on the aspect of 

concurrency they exploit. The intelligent pixel machines exploit parallelism by distributing 

local intelligence to  each pixel (or a group o f  pixels). This is possible since pixel 

computations are independent of each other. In the intelligent object class. processing 

power is allocated to  each object. Thus, for a given ray, each object computes 

intersections in parallel. The intelligent volume machines subdivide 3D modeling space into 

subregions and allocate processing power to  each region, which is now solely responsible 

for the objects that lie within its own .volume. 

In this chapter we shall the examine architectures that have been proposed or built 

specifically for ray tracing. We shall conclude with a discussion of the relative merits and 

drawbacks of the various architectures proposed. 

3.1. Ullner's Machines 

Ullner [ULLN83], in his doctoral thesis, proposes three different machine organizations. In 

the first approach, the intersection computation itself is massively pipelined t o  provide high 

throughput In the second approach, which would fall under the intelligent object 

classification suggested above, each object is processed simultaneously. Finally, in the third 

approach, objects are separated into disjoint regions, and these regions are processed 

independently, thus following the intelligent volume approach. 



3.1.1. The Ray Tracing Peripheral 

As observed by Whitted and Rubin [WHIT80. RUB1801. most of the time in a ray 

tracing algorithm (70-90%) is spent in finding ray surface intersections. Therefore, if these 

intersection computations could be cast into hardware. one could significantly reduce the 

running time of the ray tracing algorithm. 

Ullner proposed a ray tracing processor which acts as a peripheral t o  a host computer. 

The host computer fires rays at the peripheral which in turn returns the closest polygon 

intersected along with the intersection information. The ray tracing peripheral has i ts own 

copy of the scene model which besides reducing the load on the host's memory, also 

permits the model t o  be organized in a way that is suitable for intersection computation. 

At the topmost level the ray tracing peripheral is organized as a three stage pipeline, see 

figure 3-1, each of which may be internally pipelined. The first stage fetches successive 

polygons from a scene model memory and passes their representations to  a second stage, 

which performs the actual intersection. The third stage examines each new intersection and 

discards all but the the one closest t o  the origin of the ray. Note that the ray must be 

intersected against each polygon in the scene model before the closest one can be 

determined Since most of the work must be done by the intersection stage, it may 

internally be pipelined, as shown in figure 3-2. t o  increase its performance. Applying 

stepwise refinement we can further internally pipeline each of the stages shown in figure 

3-2 until we reach the level of the actual operators implementing the arithmetic. 

T w o  potential problems need to  be addressed at this point. In order t o  keep the pipe 

full, the polygon parameters used must be accessed in parallel. This is resolved by storing 

each of the twenty polygon parameters in one of twenty independent memories so that all 
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Figure 3-1: The three major pipeline stages in the ray tracing peripheral 
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Figure 3-2: Pipeline stages within the Intersection Processor 



may be accessed simultaneously. The second point is that an exception, such as in the 

divide operation, may be generated within the pipe, since the results may be undefined for 

some values of inputs. To resolve this Ullner associated a validity bit with each 

intermediate result flowing through the pipe. By convention. operations in the pipeline will 

always produce a result, but will mark that result to  indicate its validity. Although later 

stages will accept these invalid values as if they were meaningful, the fact that their own 

results are invalid will be reflected in the validity bit of the output. The last stage in the 

pipeline takes into account the validity bit in determining the closest intersection. 

All of Ullner's machines use floating point number representation which has a far greater 

dynamic range than fixed point numbers, freeing the user from having to  pay much 

attentron to scaling Analysis of the ray tracing peripheral assumes that all the data 

operators in the pipeline are implemented using a parallel multiplier manufactured by TRW 

which is capable of producing a 48 bit product from two 24 bit operands in a maximum 

of 285 ns Using the TRW multiplier, and a few "glue chips", a floating point multiplication 

takes about a third of a microsecond. but the other floating point operations cannot be 

completed so quickly. Each one of these operations may however be pipelined to operate 

at the same rate. Thus using this fully pipelined arithmetic the complete peripheral can 

produce three results every microsecond. 

Using the above metric, we could make some estimates for the time required to  generate 

a picture using the ray tracing peripheral. Assuming a scene model consisting of a 

thousand polygons, it would take a third of a millisecond to intersect a ray with each of 

these surfaces. In an image with 512 X 512 pixels of resolution, it would take a minute 

and a half to  trace one ray per pixel. Of course, the number of rays increases if shadows 

are to be modelled and antialiasing is to  be performed. Note that the time is linearly 

dependent on the number of polygons in the scene. 



3.1.2. The Ray Tracing Pipeline 

The ray tracing peripheral described earlier was not very extensible; it could not be easily 

enhanced t o  accomodate a more complex scene. The ray tracing peripheral has a single but 

fast intersection processor, but the intersection process has t o  be repeated for each 

polygon. Consider the other extreme now. If we had a less complex, and therefore slower. 

intersection processor, we could have many more of these processors working in parallel t o  

achieve similar performance. The obvious advantage would be extensibility. The greater the 

number of these intersection processing units, which could be implemented as custom VLSl 

processors, the shorter would be the time for a more complex scene. Ideally, every object 

in the scene model could be attached to  one of these processors typifying the intelligent 

object paradigm. 

Based on the above principles. Ullner proposed the ray tracing pipeline which comprised 

intersection processors strung together t o  form the pipeline shown in figure 3-3. Each 

processor stores the description for a single polygon and i t  passes the description of rays 

through its input and output ports. On receiving a ray description the processors 

determine whether that ray intersects its stored polygon, and if so locates the intersection 

point. Each ray is represented by a descriptor which has a field for the identity of the 

closest polygon encountered so far. and another for the t value of the polygon. The t 

value is initialized to  infinity before entering the pipe. As i t  flows through the pipeline. 

each processor. on finding an intersection compares its t value with current t value in the 

descriptor field. If it is less, then that processor's polygon must be closer, and hence it 

swaps the identity of the polygon and the t value before passing it on through the output 

port t o  the next processor. Finally, when the ray descriptor leaves the pipeline i t  contains 

the identity of the closest polygon and corresponding t value. 



I. 

Host 

* Intersect + 

Figure 3-3: The Ray Tracing Pipeline 

Since the ray tracing pipeline assumes the availability of low cost custom designed 

intersection processors, i t  would not be feasible to  devote substantial chip area required to 

implement parallel multiplication circuitry to  match the performance of the TRW multiplier 

used in the ray tracing peripheral. The alternative is to  use a space effective. but slower. 

shift and add multiplier. Ullner estimates such an multiplier would perform a full 32 bit 

floating point multiplication in five microseconds, and also shows how other floating point 

operations can be implemented in the same area and speed. 

Intersect 

Based on the above, we can conclude that the ray tracing pipeline can complete a ray 

tracing computation every five microseconds. Since Ullner estimates, for bit serial 
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communication, the transmission time to be roughly five microseconds, we are still looking 

at a ray being processed every five microseconds. For a machine with a thousand 

processors. the latency would be 5 ms.. and a 512 X 512 pixel image could be generated 

in 1.3 seconds assuming one ray per pixel. 

3.1.3. The Ray Tracing Array 

In the ray tracing array, a three dimensional grid is superimposed on the modelling space 

to  section off the volume into a collection of subvolumes, each one of which has, at least 

in concept a dedicated processor typifying the intelligent volume approach. Each of these 

processors is responsible for maintaining the surface models in its own subvolume, as well 

as for computing intersections of these surfaces with the rays passing through the 

subvolume With such an arrangement one would expect a 3 dimensional lattice of 

processors, each connected to  its six neighbouring processors. However, the cumbersome 

nature of wiring entailed by such an organization, acts as a major deterrent. Ullner 

overcame this problem by organizing the machine as a 2 dimensional array of processors 

with the third dimension of the partitioning grid simulated within each processor in the 

array. This structure allows each processor to communicate with its four neigbouring 

processors, as shown in figure 3-4. Each processor is also assumed to  be a general 

purpose computing element since each processor should now be capable of carrying out 

shading computations, which in previous architectures were carried out in the host. Each 

processor also has some special purpose intersection hardware to aid in intersection 

computation. 

The processors communicate with each other through messages. Each processor is 

responsible for a block of pixels corresponding to  its position in the array and has an 

independent frame buffer used to store the pixel intensities. The different fields of the ray 



Figure 3-4: Organization of processors in a 16 processor ray tracing array 

k Message type (e.g. vision, shadow, etc.). 
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ro Origin of this ray. 

rd Direction of this ray. 

c Color contribution of this ray. 

Figure 3-5: Fields of a ray message 



message are show in figure 3-5 Processors create initial ray messages for pixels that lie 

within their portion of the frame buffer. The processor then computes the closest 

subvolume which the ray enters, and then passes the ray message in the direction of the 

processor responsible for that subvolume. On reaching the destination processor, the ray is 

tested for intersection against all the objects within the subvolume. If no intersection is 

found then the processor incrementally computes the next closest subvolume which is 

handled by one of the four adjacent processors, and sends the ray message in that 

direction. If an intersection is found, a result message, which contributes to  the intensity 

of its originating pixel, is passed of f  t o  the processor responsible for that pixel. Any 

secondary rays such as reflected, refracted or light rays are passed off t o  appropriate 

subvolumes for further intersection tests. 

Cleary, et. al. [CLEA83] also proposed a similar processor array for ray tracing. They 

considered both square arrays and cubic arrays, and found that, in general, square arrays 

perform better than cubic arrays. A machine based on a 10 x 10 square array is currently 

under construction at the University of Calgary. 

3.2. Dippe's Parallel Architecture 

Mark Dippe & John Swensen [DIPP84], proposed an architecture for ray tracing which is 

quite similar t o  the ray tracing array proposed by Ullner. thus belonging t o  the intelligent 

volume family. The major difference between the two is that Dippe's parallel architecture 

allows for the subdivision of object space to  be adaptively controlled, in order t o  maintain 

a roughly uniform load amongst the different processors. This turns out t o  be a serious 

drawback in Ullner's ray tracing array where no attempt was made t o  address the issues 

of uniform load distribution over the subregions. Uneven object distribution amongst 

different subregions can lead t o  load disparities between processors. causing computing 



power to  be wasted. Therefore the ability to  adaptively redistribute over time is crucial 

because load distributions are extremely difficult to calculate a prior;, and hence must be 

done dynamically during the actual execution of the ray tracing process. 

Since the operation of this parallel architecture is very similar to the ray tracing array, 

we shall concentrate on the dynamic load distribution aspect of this organization. The three 

dimensional space of the scene to be rendered is divided into several subregions which are 

initially assigned volumes more or less uniformly, and object descriptions are loaded into 

the appropriate subregions. As computational loads are determined, the space is 

redistributed among the subregions to  maintain uniformity of load. Unlike the 

straightforward orthogonal subvolumes in Ullner's architecture, Dippe considered several 

different shapes for subregions. The choice of a subregion shape is influenced by the 

following criteria: 

1. the complexity of subdividing the problem e.g. intersecting objects or rays with 
the boundaries. 

2. the ability to subdivide space without splitting objects, and 

3. the uniformity of the distributed loads attainable with the shape. 

A strong candidate based on the abovementioned criteria would be "general cubes", which 

resemble the familiar cube, except they have relaxed constraints on the planarity of faces 

and on convexity. General cubes allow the most local control of subregion shape at the 

cost of slightly higher complexity of boundary testing. 

The load information is shared among the neigbouring subregions, and this allows 

relatively more loaded subregions to  reduce load by adjusting their boundaries. The load 

metric is primarily determined by the product of 



1. number of objects and their complexity, and 

2. number of rays 

Load is transferred by moving corners of a subregion. Once the new position for a corner 

of a subregion has been determined, object descriptions and other information are 

redistributed to reflect the new subdivision. 

Due to  the subdivision. a speedup of the order of 0(s2I3) is expected by the authors. 

where S is the number of subdivisions of the object space. The parallel architecture is 

estimated to be three orders of magnitude faster than the standard algorithm with 125 

computers working in parallel. 

3.3. The LINKS-I Multimicrocomputer System 

LINKS-1 [NISH81] was an experimental machine which was built and tested at Osaka 

University in Japan The system consists of 64 unit computers which are interconnected 

with a root computer such that a number of unit computers constitute a pipelined 

computer and such pipelined computers work in parallel, all controlled by the root 

computer. The number and length of each pipeline can be controlled dynamically, although 

it is not readily apparent how this dynamic reconfiguration would be useful. On the other 

hand the organization is general enough to be used for other image creation applications by 

means of more sophisticated parallel processing schemes which utilize different numbers of 

pipelines, perhaps with different lengths. Intercomputer program/data transfer is greatly 

facilitated by the use of a device called the intercomputer memory swapping unit (IMSU). 

LINKS-1 permits neighbouring unit computers to exchange data/programs using IMSU. and 

also between each unit computer and the root computer. There also exists a slow serial 

link between each unit computer and the root computer. 



The root computer distributes the programs and data to  be executed t o  the unit 

computers and the results are collected by the data collector. Each unit computer 

comprises five units: 

1. the Control Unit for data transfer and communication control, 

2. the Arithmetic Processing Unit for floating point calculations. 

3. the 1Mb Memory Unit. 

4. the I/O unit to be used as an outlet for debugging and monitoring, 

5. the Intercomputer Memory Swapping Unit (IMSU). 

The IMSU has two memory areas which are connected to a pair of control units through 

a bus exchange switch. Each of the control unit works independently on a memory area, 

and upon finishing they send a bus exchange signal which connects them to the other 

memory area.The IMSU is used to  exchange program/data both between the root computer 

and the unit computers and also between two adjacent computers. 

3.4. Discussion 

Both the ray tracing peripheral and the ray tracing pipeline are, in a way, brute force 

approaches to the ray tracing problem, since they attempt to  intersect every ray with every 

polygon. As noted in earlier chapters, techniques such as object space subdivision and 

bounding volumes can be used to significantly minimize the most computationally expensive 

operation - the ray surface intersections. The ray tracing peripheral, however, can be 

modified to use object space subdivision. The basic idea here is to superimpose a three- 

dimensional grid on the object space. The objects are then partitioned into these 

subvolumes An extra stage is added to  the pipeline which computes the subvolume which 

the ray intersects and passes the descriptor addresses of the polygons residing in the 



subvolume onto the next stage. Thus, the subsequent stages only have t o  compute 

intersections with a small number o f  polygons. No such arrangement is possible with the 

ray tracing pipeline since a separate pipe would be required with each subvolume. 

The ray tracing pipeline is ostensibly fast, but on careful observation one quickly realizes 

that no general purpose host could keep up with i t  since it is unreasonable t o  expect a 

host t o  generate ray descriptions at this rate and deal with responses in the same time. 

O f  course, one can design a special purpose host, sacrificing the flexibility offered by a 

general purpose host. It is also impossible for the ray tracing pipeline to  process a scene 

with more objects than the number of processors in the pipeline. Note that this does not 

pose a problem for the peripheral since in the worst case all that needs to  be done is t o  

increase memory size. In case of the ray tracing pipeline, however, it becomes infeasible 

t o  increase the number of processors after a certain point. 

Ullner's machines assume convex quadrilaterals as the basic modelling primitive. T o  

achieve maximum performance, all intersection processors are dedicated t o  ray intersections 

with polygons. In computer graphics, however, it is often advantageous t o  model with 

alternative surface representations, such as bicubic patches, splines. quadric surfaces etc. 

The dedicated intersection processors are incapable of performing these intersections. On 

one hand, it appears in order t o  accommodate a variety of modelling surfaces, the 

intersection processors should be general purpose with fast floating point hadware t o  boost 

performance. On the other hand, we could tesselate most modeling surfaces into polygons 

and continue using dedicated intersection processors. Interestingly enough, there are 

- devices available. such as the Weitek Transformation Engine [WEIT85a], which perform the 

tesselation functions with great speed. 
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The ray tracing array i s  probably the most promising approach of the three machines 

proposed by Ullner. Its chief drawbacks stem from the straightforward orthogonal 

subdivision of object space, which can cause immense disparity in object distribution among 

the subvolumes. Dippe's architecture takes care of this problem by using an adaptive 

subdivision approach. Also, for some choices of viewing position, not all processors are 

equally busy. 

The Links-1 has a topology that allows work to  be distributed by the root computer so 

that i t  can be performed independently in parallel, or pipelined from neighbour to neighbour. 

or some combination of both. This allows a variety of image creation algorithms to be 

used. But, the connection topology is restricted enough that any situation which demands 

substantial communication amongst the various unit computers would be almost impractical. 



Chapter 4 

A 3-TASK RAY TRACING ALGORITHM 

In the previous chapters we discussed approaches for improving ray tracing performance 

by reducing the amount of computation and by increasing the speed of computation. As 

demonstrated in the modeling space subvolume approach, algorithms can be designed that 

directly map onto system architectures. 

In this chapter we describe our modified ray tracing algorithm which maps directly onto a 

pipelined parallel processor architecture. T o  reduce the number of intersection calculations. 

our algorithm is based on bounding volumes and the hierarchical description of data. This 

approach also allows the tracing of a ray to  be divided into three balanced tasks that map 

onto the pipeline architecture. In addition, the potential for parallelism lies in image space 

subdivision where a pipeline can independently compute the value of a given set of pixels. 

4.1. Definition of Terms 

The following definitions are for terms used in this and following chapters. Some of the 

terms are similar t o  those used in [WEGH84]. 

contribution factor 
factor which determines the contribution made t o  the pixel by the 
intensity found at the end of the ray. 

data tree the hierarchical description of the scene; its non-terminal nodes are parent 
shells and its terminal nodes, leaf shells. 

initial ray a ray originating at the eye and passing through a pixel on the image 
plane. 
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leaf shell a shell which encloses primitives; whose children are primitives. 

light a geometric entity with an associated set of emittance characteristics. 

light ray a ray spawned on intersecting a reflecting surface in the scene; i ts origin 
is the intersection point and its direction is toward a specific light. 

object a geometric or procedural entity with an associated set of surface 
characteristics reflecting and possibly transmitting light. 

parent shell a shell which encloses shells; whose children are shells. 

prim processor performs the ray-primitive intersections. 

primitive an object or a light. 

ray a vector with a specific origin and direction. 

reflected ray a ray spawned on intersecting a reflecting surface in the scene; its origin 
is the intersection point. 

refracted ray a ray spawned on intersecting a transmitting surface in the scene: its 
origin is the intersection point. 

scene the uppermost parent shell in the hierarchical description; i t  has no parent 
shell. 

shade processor spawns initial and secondary rays: also computes the contribution a ray 
makes toward the final pixel value. 

shell a bounding volume. 

shell processor performs the ray-shell intersections 

t-value a parametric value that defines a point on a ray where the ray intersects 
a surface. 



4.2. Overview 

Before delving into the details, we present a brief overview of the algorithm. An initial 

ray is spawned. This ray is tested for intersection against the nodes o f  the data tree in 

a recursive depth-first descent. If a parent node is intersected by the ray. all its children 

are in turn tested: if not. that branch of the tree is ignored. A list of all leaf shells 

intersected is generated and sorted in order of increasing t-value. The next step is to 

determine the closest primitive intersected. Beginning with the leaf shell closest t o  the 

origin of the ray, its child primitives are tested for intersection. If no intersection is 

found, the child primitives of the next closest leaf shell is tested and so on. 

When an intersection is found, secondary rays are spawned. Using the surface 

characteristics associated with the intersected surface, the contribution each secondary ray 

makes to  the final pixel value is computed and tagged onto the ray. Secondary rays are 

then processed in the same fashion as the initial ray. When all rays spawned for a pixel 

have been traced, the pixel value calculation is complete. 

4.3. Features 

Several features of our algorithm are important t o  its eventual mapping onto an 

architecture. 

4.3.1. Data Tree 

The data tree has two  restrictions. The first of these is that all primitives must be 

enclosed within a leaf shell, either individually or within a collection of other primitives. 

Secondly, a parent shell can only have shells as children: a leaf shell can only have 

primitives as children. 



4.3.2. Shell Shape 

So far we have talked about shells without making any specific reference t o  the shape of 

the shells. The shape of the shell is an important issue, as discussed in [WEGH84]. We 
< ,  

explored two of the possible alternatives for shells - spheres and orthogonal boxes. 

Orthogonal boxes have sides parallel t o  the axes of the modeling space coordinate system. 

In general, orthogonal boxes serve as better shells than spheres for the following reasons: 

In general, orthogonal boxes have less void area than spheres: they enclose their 
primitives more tightly. This increases the probability that a ray will intersect 
an enclosed primitive if i t  intersects the shell. 

The ray-shell intersection test is faster t o  compute. Note that if we only needed 
to  know whether a ray hits or misses a shell. then spheres would be better 
since they require fewer floating point operations. If the exact point of 
intersection is also desired, then the intersection of a sphere, which requires 
computation of a square root, is slower. 

Table 4-1 shows results that support the argument regarding shell shapes. The total 

rendering time is tabulated for a sample scene using the two shapes. 

SPHERES 

Figure 4-1: Total time taken for rendering a sample scene 
using spherical shells and orthogonal box shells 

4162.01 secs. 

ORTHOGONAL BOXES 

Another possibility is t o  use randomly oriented boxes, which potentially have less void 

area than orthogonal boxes. However. more overhead is associated with these boxes. The 

2727.29 sew. 

ray has t o  be transformed into the coordinate system of the random box and more data 



(the transformation matrix) must be stored. As we shall see later. in the context of our 

proposed architecture, the extra computations and the larger size of the shell data set 

could prove to be costly. Hence, orthogonal boxes represent a compromise between 

architectural demands and intersection efficiency. 

4.3.3. Simplified Shader 

The algorithm used a simplified version of the Hall shading model described in Chapter 

1. The current algorithm does not trace rays through transparent surfaces. Fresnel 

reflectance and transmission curves and distance factors are also not implemented. 

Intensities and reflectance characteristics are represented using RGB triplets ( a value for 

each of the primary colours - red, green and blue). The same RGB triplet is used for 

both specular and diffuse reflections. Using terms defined in Figure 1-2, our model is as 

follows: 

I = [ k ,  (Wr) + k , (R-??)" I  Rd li 

Our algorithm and proposed architecture do not limit the complexity of the shading 

model. The reason for its simplicity has more to  do with our emphasis on architecture. 

4.3.4. N o  Intersection Tree 

Although useful for describing the concept of ray tracing, intersection trees are not 

necessary in practice. Secondary rays are spawned to  determine the intensities of various 

sources of illumination. The maximum contribution to the final pixel value that can be 

made by the intensity of a source of illumination can be computed. This contribution 



factor is calculated from the intersected surface characteristics and the intersecting ray 

factor. If a source of illumination does contribute, its intensity is multiplied by the 

contribution factor and the result added to  the pixel value. T o  keep track of which ray 
I 

belongs to  which pixel, each ray is tagged with the pixel coordinates. 

The advantage of this approach (ULLN831 is in removing the memory requirements and 

computation overhead associated with building and traversing intersection trees. This is 

especially important in the context of a VLSl processor pipeline. 

4.3.5. Adaptive Tree Depth 

Computing the contribution factor of a ray before i t  is traced enables us to  use adaptive 

tree depth. If the factor is below a significant threshold, its contribution can be ignored 

and thus the ray need not be traced. 

4.3.6. Primitives Types 

Currently, the types of objects that our algorithm can render is limited to  spheres and 

polygons Work is currently underway to  add fractals t o  the system. The algorithm is 

not really limited to  those primitives and could easily be expanded to  include other 

geometric or procedural primitives such as cylinders, cones, surfaces of revolution, prisms. 

and 3-dimensional curved surfaces. 

4.3.7. Sorting Leaf Shells 

Instead of performing a depth-first descent down t o  and including enclosed primitives, the 

algorithm initially tests only as far as the leaf shells. The intersected leaf shells are then 

sorted in order of increasing t-value (distance from the origin of the ray). In a strategy 

similar t o  that described for octree subdivision in chapter 2, the primitives enclosed by the 



nearest shell are tested for intersection. The closest surface intersected is identified. If 

such a surface is found, then the search is stopped; otherwise the primitives enclosed in 
1 

the next closest shell are tested. This process is repeated until either a surface is 

intersected or no more leaf shells are left, implying that the ray does not intersect any 

primitive. 

Unlike octree subdivision, hierarchical data organization may not produce disjoint leaf 

shells, i.e.. shells whose volumes do not overlap. Fortunately, the above technique can be 

modified for use with overlapping shells. The t-value of an intersected primitive tp is 

checked against the t-value of the next closest leaf shell t,. If t, < t,, then the 

primitive is the closest. Otherwise the primitives in the next leaf shell must be checked. 

Figure 4-2 illustrates this point. The two shells enclose exactly one primitive each 

Primitive A belongs t o  shell A and primitive B t o  shell B. Shell A is closer than shell B 

t o  the origin of the ray, i.e.. tshel,-A < tshell-B. Hence, primitive A would be tested for 

intersection first. Let us assume that the ray does intersect primitive A at tA. However, 

as can be readily observed, primitive A is - not the closest primitive (tA is not less than 

tshell-~ ) The primitives of shell B have to  be tested before the closest surface can be 

identified. Here, primitive B is the closest primitive, although shell B is farther from the 

ray's origin than shell A. 

This technique permits the identification of the closest primitive intersected without 

necessarily testing all the primitives in all the intersected leaf shells. Test results from 

rendering the scene in Figure 1-4 show that, on average, a ray tests the contents of only 

80% of the sorted leaf shells. 



Figure 4-2: A 2-dimensional view of overlapping shells 

4.4. The 3 Data Sets 

Examining the data required by our algorithm. we can identify three disjoint data sets. 

This partitioning of the data also corresponds to  the partitioning of the tasks described in 

the next section. The data sets are the shells of the hierarchical data description, the 

collections of primitives enclosed by the leaf shells and the different surface characteristics 

found in the scene model. 



4.4.1. Shell Data 

The basic element of the shell data set is the structure SHELL illustrated in Figure 4-3. 

The collection of shells making up the hierarchical data description is stored in an array 

called SHELL-ARRAY illustratgd in Figure 4-4. The organization of data in this array 

retains the tree structure of the data tree. An entry in this array is a linked list of 

sibling shells, i.e. children of the same parent. The variable leaf  indicates whether the 

shell is a leaf or parent shell. For a parent shell, the variable child-index is the index t o  

i ts list of children. For a leaf shell, the variable is an index into the PRIM-ARRAY where 

the child primitives are stored. By convention. the index to  the children of the scene or 

root shell is 0. 

4.4.2. Prim Data 

The basic element of the primitive dataset is the structure PRIM illustrated in Figure 

4-5. The variable type indicates what type of primitive be i t  a sphere, polygon or 

whatever The variable p is the union structure through which the geometric description 

can be accessed The variable s u r f a c e i n d e x  is an index into the SHADE-ARRAY where 

the surface characteristics associated with the particular primitive are stored. The 

collection of primitives making up the model description is stored in an array called 

PRIM-ARRAY illustrated in Figure 4-6. An entry in this array is a linked list of sibling 

primitives, i.e.. children o f  the same parent. 



typedef s t ruc t  she l l  I 
i n t  l ea f  ; 
i n t  chi ld- index; 
COORD max ; 
COORD min; 
s t r u c t  she l l  *next;  
SHELL; 

Figure 4-3: SHELL data structure 
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Figure 4-4: illustration of SHELL-ARRAY 



typedef  s t r u c t  pr im 4 
i n t  prim-id; 
i n t  s u r f  ace-i ndex; 
i n t  type ; 
PTYPE P ;> 
s t r u c t  p r i m  *next ;  
$ PRIM;  

Figure 4-5: PRIM data structure 
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Figure 4-6: Illustration of PRIM-ARRAY 



4.4.3. Shade Data 

The basic element of the shade data set is the structure SHADE illustrated in Figure 

4-7. Unlike the previously described arrays, the array for the shade data set is a simple 

array of SHADE structures.   he variables reflectance and ttansmittance are triplets for 

red, green and blue values. Although the structure is designed for reflectance 

characteristics, emittance data can also be stored in the same structure by interpreting the 

reflectance variable as an emittance triplet and setting all other variables to  0. 

typedef s t r u c t  shade # 
f l o a t  k s .  
f l o a t  kd; 

t n t  n; 
RGB r e f l e c t a n c e ;  
RGB t ransmi t tance;  
$ SHADE[]; 

Figure 4-7: SHADE data structure 

4.5. The 3 Tasks 

Our sequential ray tracing algorithm described above can be cleanly divided into the 

following tasks. 

1. The first task spawns all the initial and secondary rays. I t  also computes the 

contributron factors that these rays make t o  the final pixel values. 

2. The next task traverses the hierarchical tree with a given ray and makes up a 
sorted list of all the leaf shells intersected by the ray. 

3. The third task intersects primitives contained in the leaf shells t o  compute the 
closest intersecting primitive. 

In this section we shall outline each task's basic algorithm and the input and output 

data structures used by each. 



4.5.1. The Shade Task 

The first task. called ShadeTask, spawns rays for a given set of pixels. For each ray. 

an output data structure (illustrated in Figure 4-9) is filled and sent t o  the ShellTask 

described below. The variable ray-type indicates whether the ray is an initial, reflected or 

light ray. The coordinates of the pixel t o  which the ray belongs are found in pixel-index 

and the ray's contribution in factor .  

When a ray returns t o  the ShadeTask after being traced, the combination of ray-type 

and what i t  hit, hit-type, determines the action t o  be taken. When a ray leaves the 

scene or when a light ray is blocked. the ray is ignored. Otherwise, if the ray is a light 

ray, the product of the intensity and fac to r  is added to  the pixel: if it is another type of 

ray, the product of the ambient intensity and fac to r  is added to  the pixel and new 

secondary rays are spawned The algorithm is illustrated in Figure 4-8. 

4.5.2. The Shell Task 

The second task. called ShellTask, is outlined below in Figure 4-10. Receiving the 

structure SHADE-TO-SHELL as its input, the this task traverses the SHELL-ARRAY 

tree with the given ray. When a leaf shell is intersected by the ray, the child index and 

the t-value which defines the point of intersection are stored in the LeafShellList of the 

output data structure. When the traversal has been completed, the list is sorted on 

ascending t-values. 

The output of the ShellTask is a structure similar t o  the one shown in Figure 4-11. 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Func t i on :  ShadeTask 
Purpose : Spawn rays  and compute c o n t r i b u t i o n  f a c t o r s  accord ing t o  t he  

shading model. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ShadeTask () 

beg i n  
i f  ( l i g h t  ray)  

beg in  
i f  ( s e l f  h i t )  p i x e l  += l i g h t  i n t e n s i t y  * f a c t o r ;  
e  l se ignore  ray ;  
end 

e l s e  
beg i n  
i f  (no  h i t )  i gno re  ray; 
e l s e  

beg i n  
p ~ x e l  += ambient i n t e n s i t y  * f a c t o r ;  
spawn secondary rays  and compute c o n t r i b u t i o n ;  
end 

end 

i f  ( p i x e l  i s  f i n i s h e d )  spawn i n i t i a l  ray f o r  next  p i x e l ;  
end 

Figure 4-8: The ShadeTask algorithm 

typedef s t r u c t  j 
i n t  ray-type; 
PIXEL p ixe l - index;  
RGB f a c t o r ;  
RAY EQN ray; 
1 SHADE-TO-SHELL; 

Figure ,4-9: Output structure from ShadeTask 



............................................................................. 
Funct ion :  She l lTask  
Purpose : Produce a  l i s t  o f  c h i l d  i n d i c e s  and t-values ( ~ e a f S h e l l L i s t )  

o f  l e a f  s h e l l s  i n t e r s e c t e d  by the  r d .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

She l lTask  ( i x )  

beg i n  

/* Let  - S be the  se t  o f  a l l  she1 I s  p o i n t e d  t o  by SHELL-ARRAY[ix] */ 

f o r  each s h e l l  E 5 
beg i n  
i f  ( t h e  ray i n t e r s e c t s  the  s h e l l )  

beg in  

i f  ( l e a f  she1 I )  LeafShel l L i s t  6 LeafShel I L i s t  U # c h i  l d - i ndex , t va lue# ;  
e l s e  She l lTask(ch i ld - index o f  s h e l l ) ;  
end 

end 

So r t  LeafShe. l lL is t  on i nc reas ing  t-value; 
end 

Figure 4-10: The ShellTask algorithm 

typedef s t r u c t  4 
i n t  ray-type; 
PIXEL p ixe l - index;  
RGB f a c t o r ;  
RAY EQN ray;  
LSS L e a f S h e l l L i s t  [ 5 0 ] ;  
i n t  LeafShel [Count; 
$ SHELL-TO-PRIM; 

Figure 4-11: Output structure from ShellTask 



4.5.3. The Primitive Task 

The third task, which we shall call PrimTask, receives the shell t o  prim data structure 

as input. This task executes exactly what has been described in the overlapping shell 

discussion above. The task proceeds t o  intersect primitives starting with the primitives 

enclosed in the closest leaf shell and stops on finding the closest primitive. It then also 

computes the information needed by the first task. the Shader Task, such as the surface 

normal at the point of intersection. 

The detailed algorithm is show in figure 4-12. Note that in the actual implementation the 

algorithm treats different types of rays differently. For example, light rays need not find 

the closest intersection but any intersection will do. On the other hand, for initial and 

reflected rays the algorithm goes through all the primitives in the given primitive list. 

The output of the PrimTask is a structure similar t o  the one shown in Figure 4-13. 

The variables filled by the task when an intersection is found are surface-index, point 

that contains the coordinates of the intersection point and the surface normal at that 

point, and hit-type which describes what the ray hit. 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Func t i on  : PrimTask 
Purpose : To compute the  neares t  p r i m i t i v e .  
Note : 1 .  L e a f S h e l l L i s t  comes f rom t h e  Shel lTask.  

2. I n d i c e s  i n  the  s e t  L e a f S h e l l L i s t  a re  accessed i n  order  i .e .  
we get  the  element w i t h  t he  l eas t  t-value f i r s t .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

P r  imTask() 

beg in  

f o r  each index E LeafShel 

beg i n  

/* Le t  P be a l l  P r i m i t  - i v e s  p o i n t e d  t o  by the  cu  r r e n t  index 

f i n d  the  nea res t -p r im i t i ve  E r; 
i f  (t -value o f  n e a r e s t - p r i m i t i v e  

< t-value o f  next  index i n  L e a f S h e l l L i s t )  
beg i n  

/* we have found the  nearest  p r i m i t i v e  */ 

found = TRUE; 
break;  
end 

end 

i f  ( found) compute i n f o  ( i n t e r s e c t i o n  p o i n t ,  normal, sur face- index);  
e l s e  r e p o r t  no h i t ;  
end 

Figure 4-12: The PrimTask Algorithm 

typedef s t  r u c t  4 
i n t  ray-type; 
i n t  h i  t - type;  
PIXEL p ixe l - index;  
RGB f a c t o r ;  
RAY EQN ray;  
INTER p o i n t ;  
i n t  surface- index;  
1 PR I M-TO-SHADE ; 

Figure 4-13: Output structure from PrimTask 



Chapter 5 

A PIPELINED ENGINE FOR RAY TRACING 

In this Chapter. we propose a pipelined architecture. P E R T ,  which executes the 3-task 

ray tracing algorithm discussed in the previous chapter. PERT consists of a 3-stage 

pipeline of processors Each stage in the pipeline is a microcoded. custom designed, VLSl 

processor that greatly enhances performance. PERT forms the basic computing element of 

a parallel architecture for ray tracing [GAUD85], which is a multi-PERT architecture with 

an innovative interconnection scheme. 

5.1. The Single-PERT Configuration 

PERT is a pipeline of three processors connected cyclically as shown in figure 5-1. This 

architecture IS a direct map of the ray tracing algorithm described earlier, with the three 

processors performing the three tasks - the ShellProcessor performing the ShellTask, the 

PrimProcessor performing the PrimTask and the ShadeProcessor performing the ShadeTask. 

The organization deviates from the classical Von-Neumann architecture, since three 

instruction streams are concurrently active on three independent data sets, and hence would 

be classified as a MlMD organization under Flynn's [FLYN66] taxonomy. 

PERT can be used in 2 different configurations: a) in a s ing le-PERT configuration. 

- where each of the 3 processors has access t o  an independent memory module that stores 

the appropriate data set, and b) in a multi-PERT configuration that consists of an 

interconnection of N PERTs working in parallel. PERTs in this configuration do not have 



scene data available to them in local memory. but access it from three broadcast buses; 

one for each processor within PERT. Since this thesis is primarily concerned with the 

design and performance of a single-PERT configuration. for the remainder of this thesis. 

the term PERT, should be taken to mean single-PERT configuration, unless explicitly 

specified. We shall briefly discuss multi-PERT configuration in section 5.2, but for a 

complete analysis the reader is referred to  [GAUD85]. 

The 3 processors comprising PERT are identical internally. except for their microcode. 

Figure 5-2 shows the internal organization of the processors. We shall now briefly discuss 

the various modules comprising each processor. 

5.1.1. The SJ16 Processor 

SJ16 is a 16 bit microprocessor that was intended to be used as a hardware building 

block for multiprocessor systems [HO.BS8la]. SJ16 - fabricated as a single chip VLSl 

processor using a 5 micron GTE ISO-CMOS process, and currently being tested at Simon 

Fraser University - was a natural processor choice: it was microprogrammabie, it had 

excellent hardware features such as an ALU with a barrel shifter, and on-chip hardware 

stack, a register file with 32 general purpose registers, and an independent up/down 

counter to simplify loop handling. Since microcode development for the various task 

algorithms was a key issue in the PERT design, the most attractive feature of SJ16 was 

the microprogramming environment - the Architecture Support Package (ASP). The ASP 

allows higher-level microprograms for SJ16 to be written in an APL like notation called 

microAPL. MicroAPL code can then be translated into real SJ16 microcode by a 

microAPL compiler and linker. Besides microcode development, the ASP also permits 

emulation of hardware modules by APL functions. allowing investigation of new hardware 

constructions. Details of microcode development for SJ16 can be found in [HOBS82]. 



ShadeProcessor 

r 

ShellProcessor PrimProcessor 

Figure 5-1: Block diagram of PERT 

5.1.2. The Floating Point Unit 

The floating pomt unit (FPU) is capable of fast execution of floating point operations. 

For simulation purposes, this special function unit was modeled around the Weitek 

WTL1164/1165 low-latency floating point chip set [WEIT85b] capable of executing floating 

point operations with speeds above 2.78 Mflops. Recalling the voracious appetite of the ray 

tracing algorithm for floating point computation. one can see that the high throughput of 

the Weitek chip set makes it a prudent choice. 

All floating point operations on PERT are performed in single precision. Details of the 

internal design and simulation of the FPU are covered in section 6.2.2. 



5.1.3. The Memory Module 

The memory module provides independent storage for each of the three processors. The 

memory module is primarily used to  store the data set associated with each processor. 

Both the ShellProcessor and the PrimProcessor also need some extra storage for global 

variables, stack space, etc. This extra storage required is minimal. The ShadeProcessor 

however. requires extra memory t o  be used as the frame buffer. 

Reads and writes to  the memory can be streamed - the memory controller buffers data 

words and hence after the first access, memory can be accessed sequentially in a single 

cycle. 

5.1.4. Communication 

The ShellProcessor and the PrimProcessor communicate with the ShadeProcessor using 

FIFOs. However, communication between the ShellProcessor and the PrimProcessor must 

be done with a dual buffer since the ShellProcessor uses one of the two buffers t o  fill in 

leaf shell ids and then performs a sort on them, which means that the PrimProcessor 

cannot read the shell ids on a FIFO basis but must wait until the ShellProcessor has 

completed its sort. With the dual buffer the PrimProcessor reads from one buffer while 

the ShellProcessor is busy filling the other with shell ids. 

The three processors of PERT are hardware embodiments of the three tasks of the ray 

tracing algorithm. Since the operation of the ray tracing algorithm has been covered in 

great detail in chapter 4, and the operation of PERT is identical, it will not be discussed 

here. 
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Figure 5-2: Detailed block diagram of each processor 
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5.2. The Multi-PERT Configuration 

4 

SJ16 
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The basic difference between the two configurations is the way the data sets are 

accessed. In a single-PERT configuration this turns out to  be easy since the data sets are 

stored in local memory and hence can be directly accessed. In a multi-PERT configuration 

however. we cannot afford the luxury of replicating the entire scene in each PERT, since 

that would be a brute force approach. What is needed is a way of allowing concurrent 

access. by PERTs, to  a global shared memory. 
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5.2.1. Broadcasting 

Our solution t o  the problem consists of having three external buses connected t o  each of 

the three processors, on which data is broadcasted. We draw on an analogy here to  

illustrate the concept of broadcasting. Assume we have a disk subsystem and think of 

the output of the read/write head as a (single line) bus to  which several processors are 

attached as shown in figure 5-3. Let us further assume that our hypothetical disk has 

only one track and the readlwrite head, set t o  read mode, is permanently positioned over 

i t .  Now, what appears on the bus is a bit-stream that is repeated periodically owing to  

the circular nature of the track containing the bits of information. Each processor has 

access to  any bit in the stream, but the access is sequential as opposed to  being random. 

Thus, associated with each bit access, is a potential latency delay. We shall herewith 

refer t o  such a per~odic transmission of data over a bus as broadcasting, the bus, which 

is the broadcast medium as the broadcast bus, and the time taken to  cycle through the 

entire set of data as the broadcast cycle t ime. 

5.2.2. System Organization 

In reality, the function of the hypothetical disk is taken over by fast broadcast 

processors that have access to  the global memory, and the processors in our analogy are 

really PERTs. The broadcast processors transmit data at high speeds over their broadcast 

buses. Speed is a critical issue here. since the slower the broadcaster. the greater would be 

the access latency. Each of the PERTs can now, irrespective of the others, access -data 

off the bus as needed, without any contention for memory. O f  course, for this, one has 

to  pay a price, access delays because o f  latency. This could however, be minimized by the 

techniques discussed in the next section. 

Figure 5-4 shows the overall system organization of a multi-PERT configuration. The 



Figure 5-3: Example to illustrate broadcasting 

engines. PERT1 thru PERTn, are connected to  each of the three buses as illustrated. 

There are many ways in which distribution of work can be accomplished in a multi-PERT 

configuration One possible scenario would be to  partition .the image space by dividing it 

into sets of scan lines that could be distributed amongst the engines. Thus, each PERT 

operates independently on the set of scanlines allocated to i t .  Note that this places the 

multi-PERT machine in the intelligent pixel category. Memory contention for the frame 

buffer is avoided by partitioning the frame buffer, and providing each PERT with an 

independent portion of the frame buffer that stores pixel values associated with its scan 

line set. 
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Figure 5-4: Multi-PERT configuration 
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5.2.3. Bus Interface Controller 

The processors within a multi-PERT machine are not connected directly to  the broadcast 

buses, but are connected through a device called the Bus lnterface Controller (BIC) which 

reduces significantly the latency associated with accessing data from the broadcast bus. 

Data on the broadcast bus is transmitted in form of packets. A packet has an 

identification number (ID) followed by a logical collection of data. The logical collection of 

data could be for instance, a set of shell data on the ShellBus, geometric description of a 



set of primitives on the PrimBus, or reflective and refractive characteristics of a set of 

primitives on the ShadeBus. SJ16 makes requests for these packets by writing the desired 

IDS into a available ID-register within the BIC (see fig. 5-5). The BIC associatively 

matches each ID appearing an the broadcast bus with the contents of the ID-registers. If a 

match is found, two activities occur. First, a hit flag is raised, which is a signal t o  the 

broadcast processor t o  transmit the remaining data portion of the packet. Actually all the 

hit-flags of PERTs are inclusive-ORed, and the single output line sampled by the broadcast 

processor. The broadcast processor will only transmit the data portion of a packet if one 

or more PERTs raise their hit-flags. This drastically reduces the broadcast cycle time and 

hence latency time Second, the data portion o f  the packet is copied on transmission, into 

a double buffer This way the BIC could be filling in packet information in one buffer, 

while SJ16 is reading the other The double buffer is similar t o  the IMSU on the LINKS-I 

machine except that the individual buffers are FlFOs as opposed to  being RAMS. The 

FlFOs permit SJ16 t o  read their contents in one cycle 

T o  summarize, the BIC offers 3 distinct advantages: 

It serves as an 1/0 processor for SJ16 by relieving it of data collection chores. 
Also, since it operates in parallel with SJ16, the overall processing time is 
reduced. 

It reduces latency since it has multiple ID-registers and looks for a match with 
any one ID contained in the registers. 

0 It reduces broadcast cycle time because of the hit-flag feedback to  the 
broadcast processors that prevents data from being needlessly transmitted. 

There are a host of other issues regarding broadcasting that are beyond the scope of 

this thesis. An exhaustive study of broadcasting in context of a multi-PERT organization is 

currently being undertaken as a master's thesis research project [GAUD851 by Severin 
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Gaudet, who is simulating the broadcasting effects on PERT to study performance 

degradation because of access latency. Preliminary results seem to suggest minimal 

degradation, showing promise in the broadcasting technique for a multi-PERT organization. 
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Chapter 6 

SIMULATION OF PERT 

T o  evaluate the effectiveness of PERT, we decided t o  model it in software and run 

some benchmarks on i t .  As mentioned earlier, PERT derives its strength from two 

principal sources: a) the pipeline architecture, and b) the microcoded custom VLSl 

processor Thus, t o  accurately simulate the ray tracing engine, we would have to  provide 

simulation at two levels: 

1 A higher-level simulation indicating the performance of the pipeline. 

2 A lower-level microcode simulation to  evaluate benefits accruing from 
microcoding the task algorithms. - 

Since in the process of developing our ray tracing package, we had specifically structured 

the software to  reflect the tripartite distribution of work. the simulation at level 1 turned 

out t o  be straightforward. The simulator was easily added to  the ray tracing software 

package. 

The simulation at level 2 had two aspects t o  it. First, the SJ16 processor simulator was 

already available in the ASP environment, but we still had to  build a software model for 

the floating point unit. Second, the task algorithms had to  be microcoded, debugged, and 

timed in the ASP environment. Finally. one had to  merge the results of simulation level 2 

into the simulation level 1 to  provide a complete simulation of PERT. 

In the following sections we shall discuss in detail the two levels of simulation. 



6.1. Level 1 Simulation 

The ray tracing software package, which performed simulation at level 1, was written in 

C under UNIX, and was based on the algorithm described in Chapter 4. To  accurately 

simulate the pipeline, the three software modules which emulate their hardware 

counterparts, were implemented as three independent processes under UNIX that 

communicated with each other through inter-processor communication sockets. 

If we were to run the simulation as is, we would get the equivalent of PERT with a 

VAX 11/750 for each of its constituent processors. To  simulate a real PERT with each of 

its constituent processors being constructed with SJ16, the timings collected from the 

various modules would have to be microcode timings This is precisely the function of the 

simulation at level 2, which provides pre-computed microcode timings for each function. 

These timings are then inserted into the various modules. 

6.2. Level 2 Simulation 

In the following sections we will discuss the ASP to give a flavor of the environment 

used for microcoding, the FPU modeling by APL functions, and some issues about the 

microcode written. 

6.2.1. Architecture Support Package 

The Architecture Support Package [HOBS82, HOBS8lbl is an APL workspace wherein 

SJ16 primitives have been modeled with APL functions. T o  illustrate this point consider 

the following example taken from [HOBS8lb]. Assume we wish to add the contents of 

two registers. In natural APL this would be represented as: 
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Unfortunately, the '+' in an ALU causes flags t o  be set as a side-effect. Such effects 

cannot normally be captured in APL. A simple solution is t o  define a diadic function PLUS 

which simulates the appropriate ALU action. The ASP therefore consists entirely of such 

user defined APL functions and global variables required by microprogrammers t o  drive 

Microcode is written as microAPL statements, a subset of APL. MicroAPL can be 

executed and as a side effect of microAPL execution a global variable in the workspace. 

called CLOCK, reflects the number of clock cycles required for the simulation run. The 

process of microcode development is best illustrated by a simple example. Assume we 

wanted to wrtte a mlcroalgorithm to  evaluate the following fragment of code that computes 

ten numbers from the Fibonacci series starting from the third: 

/* Compute Fibonacci  numbers * / .  

F i r s t  = 0; 
Second := 1; 
f o r  i:= 10 downto 1 

beg i n 
Next := F i r s t  + Second; 
F i r s t  := Second; 
Second := Next; 

end 

The corresponding microcode is shown in figure 6-1. 

This simple example does illustrate some key features of the ASP environment. Recall 

that SJ16 has a built in counter for loop handling. The setup routine (fig. 6-1) is an APL 

function and not microAPL. It simply serves t o  initialize the CLOCK, call the function 

FIB1, and print the CLOCK value. The REG statement on line 5 is a compiler declarative 

that attaches the symbolic names FIRST, SECOND, and NEXT to  registers RO. R l ,  and 

R2. 



Figure 6-1: MicroAPL functions for Fibonacci series 

V TESTAE'IB;FIRST;SECOND;NEXT 
C13 A NOTE THAT THIS IS NOT MICROAPL. 
C23 A IT IS USED AS A SETUP PROGRAM. 
C33 A 
C43 STROINIT 
C53 REG FIRSPRO A SECONDcRl A NEXiPcR3 
C63 FIB1 
C7 3 'CLOCK : ' ,rCLOCK 

v 

V FIBl 
C13 A MICROAPL FOR COMPUTING FIBONACCI NUMBERS. 
C23 A 
C33 RcFIRSTI*OPY D ' 0' 
C43 RCSECONDI.~COPY D '1' 
C53 COUNTEACNEGATE D ' 10 ' 
C63 COUNT 
C73 LOOP:RCNEXTI+RCFIRSTl PLUS RCSECONDI 
C83 RCFIRSTJ+COPY RCSECOND~ 
C93 RCSECONDI.~COPY RCNEXT I 
[lo] +LOOP IF-COUW 

v 

V FIB2 
C13 R IMPROVED MICROAPL FOR COMPUTING FIBONACCI NUMBERS. 
C23 A 

C3l COUNTEACNEGATE D ' 10' 
C41 COUNT A RCFIRSTlcCOPY D '0' 
C53 RCSECOlDl+COPY D '1' 
C63 LOOP:RCNEXTI+RCFIRST3 PLUS RCSECONDI 
C73 RCFIRSTlcCOPY RCSECONDJ 
C83 +LOOP IF-COUNT A RCSECONDl+COPY RCNEXTI 

v 
FIBl CLOCK: 44 

FIB2 CLOCK: 33 
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Each microAPL statement, which gets translated by the compiler to  one line of SJ16 

microcode, consists of one or more microperations. One is the norm, but under special 

circumstances it is possible to fit two or more microperations per microAPL statement. For 

example, it is possible to  increment and test the counter in parallel with an ALU operation. 

We could thus, combine lines 9 and 10 of F l B l  and write one microAPL statement. We 

can also combine lines 6 and 4 of FIBI. The improved microAPL function FIB2 is shown 

in figure 6-1 The same figure also shows that it takes FIB1 44 clock cycles to execute, 

whereas FIB2 takes 33. a decrease of 10 clock cycles. 

Note that F l B l  and FIB2 are directly APL executable since all SJ16 primitives PLUS, 

COUNT, etc are actually APL functions that emulate the real primitives. 

6.2.2. Modeling the FPU 

As mentioned earlier, the selection .criteria for the floating point coprocessor was mainly 

the throughput speed The Weitek [WEIT85b] WTL 1164165 low-latency chip set. capable 

of performing both 32 and 64 bit floating point arithmetic, is possibly the fastest 

coprocessor on the market today. The WTL 1164 Floating Point Multiplier can do a 32 

bit multiply in 360 nsec. The WTL 1165 Floating Point ALU can perform a 32 bit 

add/subtract/convert/compare in 360 nsec. Besides, the WTL 1165 ALU is also capable of 

performing a 32 bit floating point divide in 1.86 psec. 

Before we can model in software the Floating Point Unit. we need to  conceptualize in 

hardware the internal organization - the control and the datapaths of the floating point 

- subsystem. The proposed FPU organization is shown in figure 6-2. It consists of two 

subunits, the ALU and the multiplier MUL, which can operate concurrently. 

The A and B input registers. which are 32 bits wide, buffer data coming in from the 16 



Figure 6-2: Organization of the Floating Point Unit 



bit SJBUS. since the FPU operates at a speed much higher than SJ16 (60 nsec. clock vs. 

an estimated 200 nsec.). The C register buffers a 32 bit result which can be read onto 

SJBUS, 16 bits at a time. The two  8 bit  command registers hold commands for the 

subunits, and can be loaded in parallel, in one SJ16 clock cycle. Loading the command 

register also implicitly starts an FPU operation. 

In performing successive floating point operations, it is sometimes useful t o  direct the 

output of one subunit into either one of its own input registers or into the input register 

o f  the other subunit. This is done within the same time slot as that needed to  complete 

a floating point operation. In absence of such data paths, an extra data transfer cycle 

would be needed to  transfer data from the output register into an input register. There 

could be 8 possible data paths - 4 from output of ALU to  input registers and 4 from 

output of MUL to  input registers. Complete realization of all data paths would entail a lot 

of multiplexor circuitry. As a compromise we decided t o  use only 4 data paths as shown 

in figure 6-2. Note that this is an acceptable compromise since for one, multiplication is 

commutative, and hence there need only be one path from CALU to  MUL inputs, and 

secondly the path from CMUL t o  AALU was rarely used. In the rare event of a CrVIUL to 

AALU transfer. an extra data transfer cycle must be used. In general, this model was 

found to  be quite tractable within the framework of our arithmetic expressions. 

The control of the data transfer is encoded in the command words broadcasted t o  the 

subunits. The 2 most significant bits of the ALU command word are to  be interpreted as 

follows: 

00 no transfer 

01 CALU -) AALU 

10 CALU -) B~~~ 

11 C ~ ~ u  -) and C~~~ -) B~~~ 



The remaining 6 bits are the function codes. The encoding for the MUL is similar and 

can be obtained by interchanging the register subscripts show above. 

There are actually 2 more registers, not shown in figure 6-2, which are status registers. 

The status register holds the exception or conditions codes i f  any and for a compare 

operation on the ALU, status codes 0.1.2 represent = . < . and > respectively. To 

provide more flexibility we provide a extended status register that derives extended status 

codes of # ,  6 ,  and 2 using simple combinational hardware. After a comparison 

function in the ALU the extended status register is read into the SJ16 status register 

where general purpose bit-testing can be performed to  provide the entire gamut of 

comparison operators 

Based on the proposed hardware FPU model. APL functions to emulate the FPU were 

written. 

6.2.3. Microcoding the Task Algorithms 

At first glance, attempting to microcode 3500 lines of C code appears to  be a 

gargantuan task. It turns out. however, for the ray tracing algorithm, a major percentage of 

the execution time is spent in the inner loops of the algorithm that comprises relatively 

few lines of code. Thus an early decision was made regarding microding - we would 

microcode only the inner loop code, and from the timings obtained, extrapolate the timings 

for the entire task algorithms. To  ensure reasonable simulation, we made sure that the 
I 

modules microcoded represented at least 80% of the total execution time. This was 

- determined by the UNlX profiler gprof .  Table 6-1 gives an idea as to  how much of the 

C code was actually microcoded for each of the 3 task algorithms. It represents the 

percentage of the total execution time taken up by functions that were actually 

microcoded. 



ShellProc 

Table 6-1: Percentage of total execution time for microcoded functions 

8170 

ShadeProc 

6.3. Merging Simulation Results 

95% 

Once microcode timings were available for the three tasks, this information was 

embedded into the C code. Thus, when a C function is called, it increments a global 

variable INT-CLOCK. by and amount equal to  the number of clock cycles taken by an 

equivalent function in microcode. We could have avoided the awkwardness of having to run 

microcode simulations on one machine (IBM 3033 running the Michigan Terminal System), 

and then transferring the results to  the other simulation (running under UNlX on a VAX 

11/750), by writing our ray tracing package in APL. But then APL is far too slow in 

execution to  be used realistically as a rendering tool, which we hoped our software package 

would eventually be used for. Besides, under UNlX we had access to a whole set of 

software tools, which we used extensively. but which were unavailable under MTS. 



Chapter 7 

RESULTS AND CONCLUSION 

7.1. Results 

Results are presented in three parts. First. the timings, of a microcoded (SJ16) function 

versus the timings of the same function implemented in C on a VAX 750, are shown. 

Second, a table showing the performance of the pipeline: the processing and the idle time 

for each processor, and pipeline efficiency, is presented. Third, the overall execution time 

on a VAX 11/750 and the simulated execution time on PERT are presented. All timings 

are based on the assumption that SJ16, a 16 bit processor, operates at a clock speed of 5 

Mhz. 

7.1 .I .  Microcode Timings 

Table 7-1 shows microcode timings for CheckSpherelntersection. a function that computes 

sphere-ray intersections. These timings are compared with the timings of same function 

coded in C, on our 2 VAXs: one with floating point hardware and one without. 

All floating arithmetic in C is carried out in double-precision; whenever a f loat appears in 

an expression it is lengthened t o  double by zero-padding its fraction [KERN78]. The 

microcode timings, on the other hand, are based on single-precision arithmetic. A 

straightforward comparison, therefore, would be unfair. T o  rectify this, we took the 

assembly output of CheckSpherelntersection and changed i t  so that all floating point 

operations were done in single-precision. Incidentally. double-precision floating poiht 
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operations on the VAX take approximately 25% more time than their single-precision 

counterparts [HOBS84], a fact that needs to be considered while comparing overall VAX 

time with PERT. 

Table 7-1: Timings for the function CheckSpherelntersection 

7.1.2. Pipeline Timings 

SJ16 with FPU VAX 750 with FPU 

Table 7-2 illustrates pipeline performance. The idle time for each processor is compared 

with the processing time. A utilization factor (q) is shown for each scene where is 

defined as: 

VAX 750 

* T, is the total processing time (sum of all processing times). 

T, is the time taken by the pipeline. 

N is the number of processors (3) in the pipeline. 

Notice that the shader has a comparatively high idle time. A more sophisticated shader 

- for instance, a full implementation of Hall's shading model - would make the pipeline 

more balanced, or a slower cheaper processor could be used. 

The scenes used for testing were generated to test different combinations of tree order 

and the number of primitives per leaf shell: the 2 in scene 208 indicates a binary tree and 



the 08 indicates that there were 8 primitives per leaf shell. There were a total of 512 

spheres in each of the three scenes. The timings shown are for a raster size of 64 x 48 

pixels. 

7.1.3. VAX 111750 versus PERT 

Table 7-3 shows the overall rendering times for 5 scenes on a VAX 750 (with FPU) and 

PERT. In addition to  the scenes discussed in the previous section, timings for scenes 23 

and 45 which are moderately complex scenes (1093 and 2754 primitives) are also shown. 

Scene 23 is shown in figure 1-4 and scene 45 in figure 7-1. The bubble bodies in scenes 

23 and 45 were generated using the SFU kinematic simulation system [CALV82]. 

For the different types of scenes, PERT is on average. 24 times faster than VAX. Recall 

from earlier sections that an adjustment up t o  25% may need to  be made for VAX 

timings because of the double-precision overhead. Overall timing reduction. however. would 

be less than 25% because the actual floating-point computation time forms only a fraction 

of the total execution time. Even with a 25% decrease in VAX timings, PERT is 

approximately 18 times faster. 

7.2. Discussion 

7.2.1. Processor improvement 

All timings generated so far were based on a 5Mhz clock for SJ16. This was done 

because our current version of SJ16 runs at roughly 5Mhz. With plunging feature sizes in 

- current CMOS technology, it appears possible t o  fabricate SJ16 running at a clock speed 

of 8 Mhz by going t o  a 3 micron process. It is even possible t o  fabricate SJ32, a 32-bit 

version of SJ16. The effect of these changes on the running time of the function 



SCENE 208 

ShellProcessor 

PrimProcessor 

Wait time Processing time 

2.88 

2.55 

ShadeProcessor 

SCENE 408 I Processing time Wait time 

1.40 

r )  = 65.77% 

ShellProcessor 

ShadeProcessor 

Table 7-2: Pipeline processing and wait times for 3 sample scenes. 

3.22 

SCENE 808 

ShellProcessor 

PrimProcessor 

ShadeProcessor 

0.39 

r )  = 66.15% 

1.40 2.22 

r )  = 61.18% 

Processing time 

4.23 

2.58 

1.41 

Wait time 

0.25 

1.90 

3.07 



SCENE VAX 750 (sec) 

Scene 208 092. 10 

Scene 408 

Scene 808 

092.91 

108.50 

Scene 23 

PERT (sec) 

101.02 

Scene 45 

Table 7-3: Total times taken by VAX and PERT 

138.03 

-- - 

CheckSpherelntersection is shown in table 7-4. SJ32 performance at 5 Mhz is almost the 

same as SJ16 at 8 Mhz, but SJ32 would consume a substantially larger chip area and 

would need a more expensive memory interface. The saving in chip area for SJ16 could be 

used for the BIC, thus reducing chip count. 

The exact overall performance improvement in the running time is difficult to predict. 

Since FPU exe~ution time does not change with the clock rate or bus width, the 

improvement depends upon the fraction of the time spent by the tasks in data transfer. 

The best case running time would be obtained if there were no floating point operations. 

. For SJ16, the percentage decrease in running time by going from a 5Mhz to  8Mhz 

processor would be: 



Figure 7-1: Scene 45 used in VAX-PERT timing comparisons 

Table 

To  compute a lower bound for performance improvement let us examine what a floating 

point operation entails. First, we must transfer at least 2 data words to the FPU. The 

SJ32 8Mhz 

30 88ys 

FPU then takes constant time to  execute the operation. If tc is the clock time, and tfp, 

7-4: Running times with improvement in processors 

SJ32 5Mhz 

4 0 . 4 0 ~ ~  

SJ16 5Mhz 

5 4 . 6 0 ~ ~  

the FPU execution time. Then the total time required to  perform a complete floating 

SJ16 8Mhz 

3 9 . 7 5 ~ ~  

point operation is: 



If the clock time is changed t o  tc' then the new time is: 

Therefore the percentage improvement in time is: 

t ,  - t ,  ' 
- -  - 18.75% 

tl  

where t c  is 200ns. tc' is 12511s. and tfpu is 4OOns The value of ttp,, actually depends 

upon the floating point operation. For add, subtract, and multiply i t  is 400ns. for a divide 

it is 1 . 8 6 , ~ .  Since divide is infrequently used, tfpt, was chosen to  be 400ns. For SJ16 

running at 8Mhz. therefore, the ~mprovement In running time would be at least 18.75% and 

would not exceed 37.5% 

7.2.2. Multi PERT performance 

Figure 7-2 shows the overall improvement in performacne with the increase in the 

number of PERTs used to  construct a multi-PERT organization. The results are based on 

scene 45 (see figure 7-1). The Y-axis represent the ratio of the rendering time on VAX 

and the rendering time on the multi-PERT machine. For more details the reader is referred 

t o  [GAUD85]. 

7.2.3. Host-PERT interaction 

T o  produce a complete working rendering system. PERT would have to  be connected to  

a host machine. typically a graphics workstation The host maintains all the data sets on 

disk, and uses the PERT as a peripheral. The host initiates a frame rendering by loading 

PERT with the three data sets. The host is then free t o  start pre-processing the next 

frame of data while PERT works on the last one, giving rise to  additional parallelism. 



number of PERTs 

Figure 7-2: Number of PERTs vs. Performance 



7.2.4. Advantages & Disadvantages 

The biggest advantage of PERT is that it is modular. Many PERTs can easily be 

connected to  form a multi-PERT machine for ray tracing Even a single-PERT configuration 

is at least 20 times faster than the VAX. Besides, unlike Uliner's ray tracing peripheral or 

ray tracing pipeline, there is no limitation on the type of surface that can be used for 

modeling. New surfaces can be added by merely changing the microcode of the 

PrimProcessor to perform intersections with new surfaces. Using microprogrammable 

processors allows for a more flexible PERT which can be tailored t o  applications instead of 

being a fixed hardware solution. The potential for downloading microcode means that one 

could extend the ShellProcessor t o  handle other bounding volume shapes: add to  the 

PrimProcessor functions for other geometric and procedural objects; and extend the 

ShadeProcessor t o  handle better shading models and techniques such as texture mapping. 

On the other hand, a drawback of this architecture is that is depends very much on the 

way the user chooses to  hierarchically structure his data If the user chooses a hierarchical 

tree that causes imbalance amongst the processors - a pathological case being no 

hierarchy at all - then serious degradation may occur. O f  course, such a degradation 

would occur even on a uni-processor system. 

7.2.5. Extensions 

One question remains to  be answered: Given a fixed number of primitives what is the 

best possible way to  hierarchically structure data to  achieve minimum rendering time on 

PERT? Is it better t o  have binary trees, quad trees, octrees? What is the best number 

of primitives to  have per leaf-shell? These questions cannot be fully answered until further 

investigation is done. Table 7-5 shows the total rendering time for different combinations 

of tree order and number of primitives/leaf-shell on a scene consisting of 512 spheres. The 



Number o f  Primitives/Shell 

Table 7-5: Timings for different combinations of tree order and prim/shell 

L 

Binary tree 

Quad tree 

Oct tree 

-- 

least rendering time (3 18 secs.) was taken by a binary tree, with 4 primitives/shell. 

Although the table indicates a clear advantage in lower order trees and lower number of 

primitives/leaf-shell, the results cannot be generalized and applied to  scenes with a mix of 

different types of primitives. 

2 

3.36 

3.69 

4.82 

If we can identify a clear strategy for structuring data, or maybe even reduce it t o  a set 

4 

3.18 

3.42 

4.33 

of heuristic rules, it should be possible t o  write a front-end program t o  automatically 

20 

6.48 

6.50 

6.64 

8 

3.46 

3.62 

4.48 

cluster data into a hierarchical tree. Such a program would then free the naive user from 

deciding how to  organize his data, or use its expertise to  aid a more experienced user in 

building the hierarchy. 

12 

4.19 

4.27 

5.03 

7.3. Conclusion 

16 

5.25 

5.28 

5.69 

In this thesis a 3-processor pipelined engine model. PERT. has been presented which 

executes a ray tracing algorithm that has been subdivided into 3 tasks. The entire scene 

data is also partitioned into 3 data sets; one for each task. PERT is highly modular - 

many such individual PERTs can be connected in parallel with the scene data being 

globally distributed on 3 buses by means of broadcasting. Besides, microcode can be 



downloaded into PERT, providing flexiblity in handling a wide variety of bounding volumes. 

modeling surfaces, and shading models. 

Simulation results show that a single PERT, in itself performs about 20 times faster 

than a VAX 111750 with floating point hardware. Multiprocessor simulation 

results [GAUD851 indicate performance improvements greater than two orders of magnitude 

with 8 PERTs in a multi-PERT configuration using sample scenes of moderate complexity. 

Although we have partly addressed the issue of creating optimal data trees which keep 

the constituent processors in PERT balanced, further work needs to be done in this area. 

especially when considering scenes which have primitives with widely varying ray 

intersection costs. 



References 

[APPE68] Appel, A. 
Some techniques for shading machine renderings of solids. 
In AFIPS Spring Joint Conference, pages 37-45. AFIPS. 1968. 

[BLIN77] Blinn. J.F. 
Models of light reflection for computer synthesized pictures. 
In Siggraph'77 Conference Proceedings. pages 192-198. ACM, San 

Jose, California, 1977. 

[CALV82] Calvert. T.W.. Chapman. J.. and Patla, A. 
Aspects of the Kinematic Simulation of Human Movement. 
IEEE Computer Graphics and Applications 2(9):41-49. November. 1982. 

[C LAR761 Clark. J H 
Hierarchical geometric models for visible surface algorithms. 
Communications AC-M 19(10):547-554, October, 1976. 

[CL EA831 Cleary. J.G.. Wyvill. B.. Birtwistle. G. M.. and Vatti. R. , 
Multiprocessor ray tracing. 
Technical Report 83/128/17. University of Calgary. October. 1983 

[COOK821 Cook. R.L.. and Torrance. K.E. 
A reflection model for computer graphics. 
ACM Transactions on Graphics 1(1):7-24. January, 1982. 

[DIPP84] Dippe, M., and Swensen. J. 
An adaptive subdivision algorithm and parallel architecture for realistic , 

image synthesis. 
In ACM (editor), SIGGRAPH'84 Conference Proceedings, pages 

149-157. ACM. New York. 1984. 

[FLY N66] Flynn, M.J. 
Very high-speed computing systems. 
In Proceedings o f  the IEEE, pages 1901-1909. 1966 

[GAUD851 Gaudet, S. 
A parallel architecture for ray tracing. 
Master's thesis. Simon Fraser University, May. 1985. 



[HOBS82] 

[HOBS84] 

[KAY 791 

[KERN781 

[NISH81] 

Glassner. A.S. 
Space subdivision for fast ray tracing. 
I E E E  Computer Graphics and Applications 4(10):15-22. October. 1984. 

Goldstein. R.A., and Nagel. R. 
3-D visual simulation. 
In S I M U L A T I O N ,  pages 25-31. January. 1971. 

Hall. R.A.. and Greenberg, D.P. 
A testbed for realistic image synthesis. 
I E E  E Computer Graphics and Applications 3(10):10-20. Novem ber. 1983. 

Hobson, Richard. 
Structured Machine Design: An Ongoing Experiment. 
In Proceedings of the 8th Symposium on Computer Architecture. 

pages 37-55. SIGARCH. Minneapolis, May. 1981. 

Hobson. Richard, Hannon P.. and Thornburg J. 
High-level Microprogamming with APL syntax. 
Technical Report T R  81-2. Simon Fraser University. 1981. 

Hobson. Richard. 
SAMjr Microprogamming guide, Version 2.1. 
1983. 

Hobson. R.. Gudaitis. J.. and Thornburg. J. 
A New Machine Model for High- Level Language Interpretation. 
Technical Report C M P T  T R  84-18, Simon Fraser University, 1984. 

Kay. D.S. 
Transparency, refraction, and ray-tracing for computer synthesized images. 
Master's thesis. Cornell University. January. 1979. 

Kernighan. B.W.. and Ritchie, D.M. 
The  C Programming Language. 
Prentice-Hall, Inc., Englewood Cliffs. New Jersey 07632. 1978. 

Nishimura. H.. Ohno. H.. Kawata. T.. Shirakawa, I., and Omura, K. 
LINKS-1: A parallel pipelined multimicrocomputer system for image 

creation. 
In ACM (editor). Proceedings of the 10th Symposium on Computer 

Architecture. pages 387-394. ACM. New York, 1981. 

Phong B-T. 
Illumination model for computer generated pictures. 
Communications A C M  l8(6). June. 1975. 



[RUB1801 Rubin, S.M.. and Whitted, T. 
A %dimensional representation for fast rendering of complex scenes 
In ACM (editor), SIGGRAPH'80 Conference Proceedings, pages 

110-116. ACM. New York. 1980. 

[ULLN83] Ullner, M.K. 
Parallel machines for computer graphics. 
PhD thesis. California Institute of Technology. 1983. 

[W EG H 841 Weghorst, H.. Hooper, G.. and Greenberg. D.P. 
Improved computational methods for ray tracing. 
ACM Transactions on Graphics 3(1):52-69. January. 1984. 

[W EIT85aI Weitek Solids Modeling Engine. 
Weitek Corporation Product Literature. 1985 

[WEIT85b] WTL1164/1165 Low-Latency 64-bit IEEE Floating Point Multiplier/ALU. 
Weitek Corporation Product Literature. 1983. 

[W H IT801 Whitted T 
An improved illumination model for shaded display. 
Communications A C M  23(6).343-349, June. 1980. 


