
PERT
A PIPELINED ENGINE FOR RAY TRACING GRAPHICS

Pradeep Chilka

B.Tech., Banaras Hindu University, 1979

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department

Computing Science

@ Pradeep Chilka 1985

SIMON FRASER UNIVERSITY

August 1985

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Name: Pradeep Chilka

Degree: Master of Science

Title of Thesis: PERT: A Pipelined Engine for Ray ~ r a c i n ~ Graphics

Examining Committee:
Chairperson: Dr. Art Liestman

Dr. Richard Hobson
Senior Supervisor

Dr. Thomas Calvert

Roy Hall
Graphics Consultant,
External Examiner
(in absentia)

2 4 May 1985

Date Approved:

PARTIAL COPYRIGHT LICENSE

I hereby g ran t t o Simon Fraser U n i v e r s i t y the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser U n i v e r s i t y L ib rary , and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther u n i v e r s i t y , o r o the r educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users, I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

copy i ng

I lowed

by me o r the Dean o f Graduate Studies,

o r p u b l i c a t i o n o f t h i s work f o r f lnanc

w i thout my w r i t t e n permission.

I t i s understood t h a t

i a l ga in s h a l l not be a

T i t l e o f ~hes is /Pro jec t /Ex tended Essay

PERT: A P i p e l i n e d E n a i n e for R a v T u c i n a G r a D h j c s

Author:

(j i g n a t u r e)

P r a d e e p C h i l k a

(name 1

1 9 8 5 Augus t 1 4

(date

Abstract

Ray tracing techniques for image rendering have produced some of the most realistic

images to date. Ray tracing, however, is computationally expensive because of the floating

point calculation involved in ray-object intersection and the number of such intersections

that must be performed t o render an image realistically Conventional mini-computers take

anywhere between an hour and several days to render a single image of moderate

complexity

In this thesis, we propose a pipelined machine. PERT, which according to our simulation

results, shows a substantial reduction in the rendering time.

The key features of PERT are: a) the use of bounding volumes and hierarchical data

organization to reduce the number of ray-object intersections, b) a 3-processor pipeline that

executes a 3-task ray tracing algorithm, c) microcoded, custom designed. VLSl processors

in each stage of the pipeline, and d) extensibility t o a multi-PERT architecture that

consists of several PERTs working in parallel.

To my parents

"in the beginning was the Word "

John, 1.1

"in the beginning was the Word ail right, but i t wasn't
a fixed number of bits"

R.S. Barton. Software Engineering

Acknowledgements

I wish to thank the following people:

Dr. Rick Hobson. my senior supervisor, for his patience and guidance throughout the

course of this work.

Dr. Tom Calvert, Dr. Lou Hafer, and Dr. Binay Bhattacharya for their many thoughtful

contributions to my work.

Severin Gaudet, my research partner, with whom this thesis was carried out as a joint

project

This work has been supported by the Science Council of B.C. grant #40 (RC-10)

Table of Contents

Approval
Abstract
Acknowledgements
Table of Contents
List of Figures
List of Tables
1. RAY TRACING
l I The Shadmg Model
I 2 Ray Tracing
1 3 An Analys~s

2. ALGORITHM IMPROVEMENTS
2 1. Reducmg Rays
2.2 Reducing Objects

2.2 1 Bounding Volumes
2.2.2. Hierarchical Data Description
2.2.3. Octree Subdivision
2.2.4. Modeling Space Subvolumes
2.2.5. Light Rays

2.3. Discussion

3. ARCHITECTURAL PERSPECTIVE
3.1. Ullner's Machines

3.1.1. The Ray Tracing Peripheral
3.1.2. The Ray Tracing Pipeline
3.1.3. The Ray Tracing Array

3.2. Dippe7s Parallel Architecture
3.3. The LINKS-1 Multimicrocomputer System
3 4 Discussion

4. A 3-TASK RAY TRACING ALGORITHM
4 1 Definition of Terms
4.2. Overview
4 3. Features

4.3.1. Data Tree
4.3.2. Shell Shape

4.3.3. Simplified Shader

ii
...
111

v i

vii

X

x i

1

1
5
7

10

10
11
I I
13
14
17
18
18

19

19
20
23
25
27
29
30

33

33
35
35
35
36
37

4.3.4. No Intersection Tree
4.3.5. Adaptive Tree Depth
4.3.6. Primitives Types
4.3.7. Sorting Leaf Shells

4.4. The 3 Data Sets
4.4.1. Shell Data
4.4.2. Prim Data
4 4.3. Shade Data

4.5. The 3 Tasks
4.5.1 The Shade Task
4.5.2 The Shell Task
4 5 3 The Primitive Task

5. A PIPELINED ENGINE FOR RAY TRACING
5.1 The Single-PERT Configuration

5.1.1. The SJ16 Processor
5.1.2. The Floating Point Unit
5.1.3. The Memory Module
5.1.4. Communication

5.2. The Multi-PERT Configuration
5.2.1. Broadcasting
5 2.2. System Organization
5.2.3 Bus Interface Controller

6. SIMULATION OF PERT
6.1. Level 1 Stmulation
6.2. Level 2 Simulation

6.2.1. Architecture Support Package
6.2.2. Modeling the FPU
6.2.3. Microcoding the Task Algorithms

6.3. Merging Simulation Results

7. RESULTS AND CONCLUSION
7.1. Results

7.1.1. Microcode Timings
7.1.2. Pipeline Timings
7.1.3. VAX 11/750 versus PERT

7.2 Discussion
7 2.1. Processor improvement
7 2.2. Multi-PERT performance
7 2 3. Host-PERT interaction
7.2.4. Advantages & Disadvantages
7.2.5. Extensions

7.3. Conclusion

References

List of Figures

Figure
Figure
Figure

Figure 1-4:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3.1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 4-1:

Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 6-1:
Figure 6-2:
Figure 7-1:
Figure 7-2:

Examples of different light interactions 3
The Hall shading model 4
Example of the tracing of a pixel and the building of the 7
intersection tree
Sample scene for analysis 9
Example of a bounding volume 12
Example of a hierarchical data description 15
Examples of voxel sub-division 16
The three major pipeline stages in the ray tracing peripheral 21
Pipeline stages within the Intersection Processor 21
The Ray Tracing Pipeline 24
Organization of processors in a 16 processor ray tracing array 26
Fields of a ray message 26
Total time taken for rendering a sample scene using spherical 36
shells and orthogonal box shells
A 2-dimensional view of overlapping shells 40
SHELL data structure 42
Illustration of SHELL-ARRAY 42
PRIM data structure 43
Illustration of PRIM-ARRAY 43
SHADE data structure 44
The ShadeTask algorithm 46
Output structure from ShadeTask 46
The ShellTask algorithm 47
Output structure from ShellTask 47
The PrimTask Algorithm 49
Output structure from PrimTask 49

Block diagram of PERT 52
Detailed block diagram of each processor 54
Example to illustrate broadcasting 56
Multi-PERT configuration 57
The Bus Interface Controller 59
MicroAPL functions for Fibonacci series 63
Organization of the Floating Point Unit 65
Scene 45 used in VAX-PERT timing comparisons 74
Number of PERTs vs. Performance 76

List of Tables

Table 6-1: Percentage of total execution time for microcoded functions 68
Table 7-1: Timings for the function CheckSpherelntersection 70
Table 7-2: Pipeline processing and wait times for 3 sample scenes. 72
Table 7-3: Total times taken by VAX and PERT 73
Table 7-4: Running times with improvement in processors 74
Table 7-5: Timings for different combinations of tree order and prim/shell 78

Chapter 1

RAY TRACING

The potential of ray tracing techniques to produce realistic images has been extolled by

so many that i t is on the verge of becoming a cliche. Nevertheless. the images speak for

themselves; images which can be virtually indistinguishable from photographs. These

realistic images are a product of both good scene descriptions or models which describe

the shape and position of objects. and good rendering techniques We are concerned with

the latter In this chapter we shall discuss what creates the illusion of realism and why

ray trac I I S ~ I P ~ hnwues are capable of exploiting this.

1.1. The Shading Model

As stated above, ray tracing techniques have generated some of the most realistic images

to date. To understand what contributes to the realism of a synthetic image, one must

first understarid the process that occurs naturally in the real world.

It is generally accepted that a colour video camera produces a realistic image. So let us

first consider how the camera records a scene onto the phosphors or pixels of a monitor.

Imagine that for each pixel on the monitor screen, these is a corresponding sensor on the

camera s focal plane behind the lens. The surfaces in the scene visible to the camera

. reflect or transmit light into the lens and onto the sensors that in turn measure the light

and send signals to their respective display pixels. The colour of each pixel is determined

by the colour of the corresponding area in the scene. The colour of a surface is

determined by the properties of the surface and the light falling on the it; this means we

have to know how the light interacts with the surface.

In rendering a scene, it must be possible to model these light interactions in order to

simulate the light being reflected or transmitted to the sensors. Examination of the light

falling upon an area of the surface allows it to be classified in one of two ways. The

first is light coming directly from emitting sources (eg. the sun, an incandescent bulb, a

flourescent tube); this type of light is referred to as a direct source. The second type is

light being reflected onto the surface from other surfaces; this constitutes an indirect or

global source

Next examtning the surface with which these two sources of light interact. we can

distingutsh thrw urface characteristics which influence these interactions. The first of

these is the roughness of the surface at the microscopic level. This determines how light

falling on the surface is scattered by reflection in all directions and thus how good it is as

a diffuse reflector The second characteristic, the opposite of the first, is the smoothness

at the microscopic level that in turn determines the degree to which the surface can be

characterized as a mirror; this property results in a specular reflection. Finally the third

characteristic determines how well a surface transmits light from a light source from

behind

Combining these characteristics with the types of light sources, a formula can be derived

which models the cumulative effect of the six combinations according to the physical laws

of optics. This formula is referred to as the shading or illumination model. When

rendering an image, we can now model the interaction of light with a surface by applying

the shading model to the point being examined. Consequently. it is the completeness of

the shading model which determines the degree of realism of a computer generated image.

Figure 1-1 shows examples of the same scene with different light interactions being

modeled.

Figure 1-1: Examples of different light interactions .

Shading models have become more sophisticated since the early days of computer

graphics when diffuse Lambertian shading (diret r source diffuse reflection) was used. In a

sense, the evolution in the shading model can be compared to the evoJy#ion in painting

that occurred with the Italian renaissance when the flat two dimensional-like Byzantine

technique was surpassed by the vibrant realism of Michelangelo and Raphael with their

studies of both light and form.

This evolution toward a better shading model began when Phong [PHON73] proposed a

shading model based on empirical observations which included a term for direct source

specular reflection and global source diffuse reflection. Blinn [BLIN77]. Kay [KAY79].

Whitted [WHIT80], and Cook and Torrance [COOK821 have contributed t o making shading

models more physical and less empirical by defining terms for, among other things, global

and direct source transmission, the Fresnel relationship for angle of incidence, and direct

source specular reflection Most of these contributions have been brought together nicely

by Hall [HALL831 in his shading model that is illustrated in Figure 1-2

4 * I t w H) " R , ? ,
I I

d m t reflected

+ k , N A)I) T, I,
/ = I

direct transmitted

t ks R, { F~~~
global reflected

dt + kS T , I, F,
global transmitted

+ la Rd
global diffuse

dr = distance of reflected ray travel
dt I distance of refracted ray travel
F, = trans per unit length of reflected ray

- trans per u n ~ t length of refracted ray
d u n ~ t reflect~on mirror -direction vector

u n ~ t trans mirror direction vector
I = intensity of point

la = intensity of global ambient light
1. = intensity of j t h direct light source
/ r = intensity of reflected ray

It = intensity of refracted ray
j = direct light source index
kd = diffuse reflection coefficient
k = specular reflection coefficient
I = number of direct light sources
r = unit light source vector
n = exponent for glossiness
70 = unit surface normal vector
R, = Fresnel reflectance curve
Rd = diffuse reflectance curve
T , = Fresnel transmtssion curve

Figure 1-2: The Hall shading model

1.2. Ray Tracing

When rendering an image from a 3-dimensional scene model, the following two functions

are executed: a) the visibility of the surfaces is determined with respect t o the viewpoint

and b) light interaction with the visible surfaces and the production of colour is

characterized. Most rendering techniques, such as z-buffering, cannot exploit the complex

shading models because they determine visibility by projecting the 3-D modeling space onto

the 2-D Image plane and thus lose the third dimension necessary for the simulation of the

light ~nteractions

Uav trdclng, on the other hand can explo~t the shading models because i t determines

vtstb~lttv not on the 2-D image plane but in the 3-D modeling space. The origin of ray

traclng is found in ray casting that was proposed by Appel [APPE68] and implemented by

Goldstein and Nagle at MAGI (GOLD711 as a visible surface algorithm However.

Whitted's classic algorithm [WHIT801 brought ray casting and a good shading model

together in the technique now known as ray tracing

Going back t o the example of the colour video camera, ray tracing simulates its operation

in reverse Instead of than recording the light rays being reflected from the visible

surfaces through the lens and onto the sensors. ray tracing sends out rays originating at

each sensor on the focal plane (image plane) through the lens (f oca l point) into the

scene (a model described in 3-D). An i n i t i a l ray for each pixel o f the image plane is

sent out in this manner. Each ray is then intersected with each object in the scene to

find the closest surface that is visible.

Once the nearest intersection point is found. the shading model is used t o compute the

colour. This involves spawning the following rays from the intersection point:

1. toward each direct light source in the scene (light rays) t o determine if i t is
visible t o the point and what contribution it makes t o the diffuse, specular and
transmitted components of the shading model;

2. in the mirror reflection direction (ref lected ray) t o determine the light intensity
coming from that direction for calculation of the global source specular
component; and

3. in the refracted ray direction (transmitted ray) t o determine the light intensity
from that direction for calculation of the global transmitted component of the
shading model.

The algorithm's elegance lies in recursion because once spawned, the reflected and

transmitted rays are traced in the same fashion as the initial rays If these rays intersect

other surfaces. the shading model is applied and new rays are spawned until the rays leave

the scene or intersect a non-reflecting surface. In this fashion the intersection tree for

each pixel IS built up The intersection tree has at its root the pixel. interior nodes are

intersected sortdc es and leaves are direct light sources or the exterior of the scene. The

branches of the mtersection tree are the rays spawned during the tracing of the pixel.

Figure 1-3 follows the tracing of a ray and the resulting intersection tree. An initial ray

(ir) strikes object 1 (01). The shading model' is applied at the intersection point and

three secondary rays are spawned. Light ray 2 (lr2) is blocked and thus ignored. The

reflected ray (r r l) strikes the semi-transparent object 2 (02). Again, secondary rays are

spawned The reflected ray (rr2) leaves the scene and is ignored. The transmitted ray

(t r l) would be traced further.

Once all the rays have been traced for a pixel. the intersection tree will contain all the

light source information in the leaf nodes and all the surface characteristic information in

the interior nodes. The tree is traversed in a depth-first order t o calculate the final pixel

colour .

pixel

ir

Figure 1-3: Example of the tracing of a pixel and the
building of the intersection tree

1.3. An Analysis

As shown, ray tracing is a simple recursive algorithm which exploits a good shading

model However, the obvious advantages of using ray tracing are almost outweighed by

~ t s principal disadvantage: computational cost. As an illustration of how severe this is.

most of the reported times for published images rendered using DEC VAX/780's have been

measured In hours.

Why is the algorithm so computationally intensive?

all computations are executed in floating point.

0 extensive use is made of the square root function for vector normalization of
rays, normals and dot products.

complex intersection computations are required for some classes of objects such
as fractals and 3-D spline surfaces.

the number of intersection calculations is large since determination of the closest
surface requires that a ray be tested be tested against all objects in the scene.

the number of rays spawned during the ray tracing process is also large.

T o show the sheer number of computations required in ray tracing an image, we shall

use an analysis of the complexity of ray tracing similar t o that found in [DIPP84]. We

shall also use data from the run-time profile of the program used t o generate Figure 1-4

on a DEC VAX/750 with a floating point unit. T o do this, we make the following

assumptions:

each intersection tree has depth D = 4.

the average number of recursive reflected and transmitted rays spawned per
intersectwn N = l 1 (100% of the intersections will spawn a reflected ray;
10%. a transmitted ray)

the number of objects in the scene 0 = 1093 (833 spheres and 250 polygons)
which corresponds t o the scene model used t o generate Figure 1-4.

the number of direct light sources L = 1

the resolution of the image Ro = 512x384 = 196608 pixels.

the average intersection calculation time Ti = 0.000429 seconds.

0 the average ray spawning time T s = 0.000710 seconds.

The resulting calculations are given below:

D *(N -1)

total number of rays traced: Rt = (I+L) = 1824915.

total number of intersections: I t = OR, - 2'.

0 total time: T t = Rt(TS+TjO) Approx 238 hours.

Figure 1-4: Sample scene for analysis

Varying the size of the parameters can significantly increase the number of intersection

calculations that must be performed. For example: r -

0 doubling image resolution Ro t o 1024x768 increases It by a factor of 4.

0 adding 2 more direct light sources t o the scene doubles I t .

0 doubling the number of objects in the scene also doubles I f .

This analysis was based on the standard algorithm whereby all rays are intersected with

all objects. Fortunately, many modifications have been proposed to the algorithm t o

increase its performance. These improvements are discussed in the next chapter.

Chapter 2

ALGORITHM IMPROVEMENTS

Whitted [WHIT801 has stated that intersection calculations can account for up to 95% of

the rendering time Using the standard recursive algorithm, the work due to intersection

ialculations is expressed as number of rays x number of objects To reduce the time

to acconiplish a task one can either work faster or one can work more efficiently

Working taster means using faster computers special-purpose processors or specialized

architectures These are issued discussed in the next chapter Working more efficiently

means redllclng the number of intersection calculations by either reducing the number of

rays spawned or by reducing the number of objects that must be intersected, or both. In

this chapter, proposed improvements to the standard algorithm are discussed.

2.1. Reducing Rays

The number of rays spawned during the rendering of an image is dependent on many

factors such as the number of pixels to be traced, the number of lights the amount of

empty space in the scene and the density of reflective and transparent surfaces. These

factors are outside the control of the renderer. Where the renderer has control over the

number of rays is in the process of spawning secondary rays

Adaptive tree depth proposed by Hall [HALL831 is aimed at controlling the depth of a

pixel's intersection tree Before spawning a ray, the maximal contribution that the ray

could potentially make to the final pixel value is calculated. If this contribution is below a

pre-determined threshold, the ray is not spawned. Hall has shown that even in highly

reflective scenes such as a room of mirrors, the average tree depth was 1.71.

Assuming an average tree depth of 1.71 in the analysis discussed in the previous

chapter both the number of rays traced and the intersection time would be reduced by

62%.

2.2. Reducing Objects

Reducing the number of objects with which a ray must be intersected holds the greater

potential for increasing performance. Rather than doing a blind search through the entire

list of objects techniques have been proposed to partition the objects or the scene to

permit a more efficient search The objective is t o determine the subset of objects which

are spatdly t lose to a given ray such that the chances of the ray intersecting any of

these ob~ects 1s greater In all techn~ques discussed below. the data organization particular

t o each IS created as a pre-processing step The time penalty for pre-processing is typical

less than 8% of the new image generation time which is, in turn, significantly less than

the standard algorithm time.

2.2.1. Bounding Volumes

Objects that require complex intersection calculations, such as is needed for fractal or

spline surfaces, can be enclosed in a bounding volume, such as a sphere or a rectangular

parallelepiped t h ~ s results in a much simpler intersection calculation that will potentially

save time If the ray does not intersect the bounding volume, then there is no need to

execute the test w ~ t h the complex object. Similarly, if one has built an object from a

collection of objects, for example, the collection of spheres making up the forearm of the

jogger in Figure 1-4 . this logical collection of spatially related objects can also be enclosed

within a bounding volume t o save on intersection calculations.

The concept of bounding volumes. [CLAR76]. [WHIT80]. involves enclosing a complex

object or a collection of objects as tightly as possible within a volume which is simple to

intersect. If a ray is tested for intersection against this volume and fails, the result is

that the enclosed object or objects are efficiently eliminated from the intersection

calculation.

Figure 2-1 shows a 2-D view of a collection of spheres bounded by a box. Ray a

intersects the volume and so must be tested against every enclosed sphere; ray b fails the

intersection test with the volume thus avoiding 12 intersection calculations with the

enclosed objects

Figure 2-1: Example of a bounding volume

The decision on how to group objects and on which bounding volume to choose is

largely in the hands of the user who models the scene Weghorst et. al. [WEGH84] have

done some work on the automatic selection of bounding volumes using the criteria of void

area and a total cost of intersection test function. Both of the criteria are ray dependent

and thus scene dependent.

At this stage we have a collection of bounding volumes. The next step would be to

have a process whereby only bounding volumes lying along a ray's path are tested for

intersection.

2.2.2. Hierarchical Data Description

From a collection of bounding volumes, a hierarchical data description. [CLAR76].

[WEGH84], can be built using a similar approach as for the definition of bounding volumes.

Collections of bounding volumes that are spatially close can be enclosed by a larger

bounding volume and so on, until the whole scene is enclosed The result is a tree where

the root node IS t h~s volume the interior nodes are bounding volumes enclosing bounding

volume.: and the leaves are bounding volumes enclosing objects. Again the choice of

volume and the grouping of the volumes are largely defined by the user during the

modeling process

The purpose of the hierarchy is to rapidly eliminate bounding volumes and objects from

the intersection calculation. When a ray is spawned, it is assumed to always intersect the

root volume. It is tested against the second level bounding volumes. If a volume is

intersected, a recursive descent of the hierarchy begins. The saving occurs because a

bounding volume is tested for intersection if and only if its parent volume has been

intersected by the ray. The hierarchy is pruned down to the leaf level. Figure 2-2 shows

a 2-D representation of a scene with its corresponding hierarchy.

Weghorst et. al have shown savings of 12% to 55% over the use of bounding volumes

only. Our own results have shown that the use of both bbunding volumes and a

hierarchical data structure decreases rendering times by up to 95% over the standard

algorithm.

The efficiency of using bounding volumes with a hierarchical data structure is largely in

the hands of the user. The depth of the data tree, the number of children per node, the

number of objects per bounding volume are critical t o the performance o f the algorithm.

This dependence may seem t o be a liability but it may also be an advantage for the

following reason. The performance of any ray tracing algorithm is dependent on the scene

model. A user with a good understanding of the use of bounding volumes can thus tailor

these volumes for efficiency.

2.2.3. Octree Subdivision

Glassner [GLAS84] has proposed a technique based on octrees for sub-dividing the

rnodellng .pace into hierarchical structure of subvolumes Octrees allow dynamic

recurwe sub d~vislon of the modeling space until each subvolume or voxel satisfies the

termination ~ o n d ~ t i o n The cvndition or threshold is designed t o t o ensure that each voxel

represents a uniform amount of work. The measure of work here is the number of

objects that are wholly or partially contained in the voxel. The resulting voxel data

organization allows the direct identification of the voxels lying along the ray's path.

The recursive sub-division of voxels begins by defining a cube which completely encloses

the scene. This cube is the root o f the hierarchical subvolume structure. The cube is

divided into eight cubes or voxels each of which is tested for the termination condition. If

a voxel fails the test, i t is in turn subdivided and so on until all voxels have no more

than the threshold number of objects. An example of the sub-division is shown in Figure

2- 3

Unlike the hierarchical data description described above, the hierarchy of voxels is in itself

unimportant t o the rendering process. There is no need t o traverse a data tree. Only the

22 3 3
spheres spheres

18
spheres

Figure 2-2: Example of a hierarchical data description

Figure 2-3: Examples of voxel sub-division

leaf voxels are kept along with their associated object lists. Using this structure. Glassner

has proposed a method of quickly computing the transfer of a ray from one voxel to

another. When a ray is spawned, its first voxel intersection is computed. From there, if

no intersections are found within the voxel, the next voxel along the ray's path is

computed and the intersection test begin with it 's children. Voxels are examined in same

order that the ray encounters them in the modeling space. If an intersection is found in

the current voxel, the ray need not be traced any further

Published results using this approach have shown decreases in total rendering time of

. 70% to 90% compared to the standard algorithm.

This approach to eliminating object intersections is straight forward and elegant. It

allows one to intersect only those objects associated with the voxels lying along a ray's

path. It also gives the ray access t o voxels in order of increasing distance, allowing

termination of the tracing process if an intersection in found in the current voxel.

However, there are potential weaknesses. The first is that the voxel threshold is based on

the number of objects as opposed to the computational work required t o process the voxel.

A complex object could unbalance a voxel. Secondly. an object could span several voxels.

necessitating several ray-object intersections for the same ray and object. Again, with

complex objects, this could be a significant drawback.

2.2.4. Modeling Space Subvolumes

Another approach to reducing the number of ray-object intersections is modeling space

subdivision [ULLN83] and [CLEA83] Although developed primarily for parallel processor

implementat~on, the technique itself is presented here within the context of a sequential

algorithm The concept is similar to octree subdivision in that the modeling space is

divided into subvolumes where each* subvolume has a list of objects that it wholly or

partially contains. The difference is that the subvolumes are geometrically uniform

subdivisions in two or three dimensions and are not recursively subdivided. The process of

tracing a ray is similar t o the process used with the octree subdivision technique.

Unfortunately, in addition to having the same weaknesses as octree subdivision. modeling

space subvolumes have an added disadvantage - there is no attempt t o balance the

workload associated with each subvolume. As mentioned, the algorithm's strength lies in

its adaptability t o parallel processing and, as such, i t is discussed within that context in

the next chapter.

2.2.5. Light Rays

The last technique discussed here has more t o do with how a light ray is processed

than with a more efficient search. The purpose of light rays is t o determine if a direct

light source is visible t o the origin of the ray. If the light ray intersects any surface, the

direct light source for which the ray was spawned does not contribute to the colour of the

point and can be ignored. The search through the object list can then be stopped on

finding the first intersection. Since light rays can account for 50% or more of the rays

spawned, the potential reduction is significant.

2.3. Discussion

Improvements to the standard algorithm have been presented. Two techniques, adaptive

tree depth and light rays, can be incorporated in any algorithm. On the other hand, a

choice has t o be made between octree subdivision or bounding volumes with hierarchical

data structure. Unfortunately, published results do not use the same scene models.

resolutions, shading models, performance measurements, and computers, making absolute

comparisons difficult Until someone publishes a good comparative study, the choice of

algorithm must be made on different criteria, eg.. which one has the least significant

weaknesses.

Chapter 3

ARCHITECTURAL PERSPECTIVE

Ray tracing machines can be loosely classified into 3 classes based on the aspect of

concurrency they exploit. The intelligent pixel machines exploit parallelism by distributing

local intelligence to each pixel (or a group o f pixels). This is possible since pixel

computations are independent of each other. In the intelligent object class. processing

power is allocated to each object. Thus, for a given ray, each object computes

intersections in parallel. The intelligent volume machines subdivide 3D modeling space into

subregions and allocate processing power to each region, which is now solely responsible

for the objects that lie within its own .volume.

In this chapter we shall the examine architectures that have been proposed or built

specifically for ray tracing. We shall conclude with a discussion of the relative merits and

drawbacks of the various architectures proposed.

3.1. Ullner's Machines

Ullner [ULLN83], in his doctoral thesis, proposes three different machine organizations. In

the first approach, the intersection computation itself is massively pipelined t o provide high

throughput In the second approach, which would fall under the intelligent object

classification suggested above, each object is processed simultaneously. Finally, in the third

approach, objects are separated into disjoint regions, and these regions are processed

independently, thus following the intelligent volume approach.

3.1.1. The Ray Tracing Peripheral

As observed by Whitted and Rubin [WHIT80. RUB1801. most of the time in a ray

tracing algorithm (70-90%) is spent in finding ray surface intersections. Therefore, if these

intersection computations could be cast into hardware. one could significantly reduce the

running time of the ray tracing algorithm.

Ullner proposed a ray tracing processor which acts as a peripheral t o a host computer.

The host computer fires rays at the peripheral which in turn returns the closest polygon

intersected along with the intersection information. The ray tracing peripheral has i ts own

copy of the scene model which besides reducing the load on the host's memory, also

permits the model t o be organized in a way that is suitable for intersection computation.

At the topmost level the ray tracing peripheral is organized as a three stage pipeline, see

figure 3-1, each of which may be internally pipelined. The first stage fetches successive

polygons from a scene model memory and passes their representations to a second stage,

which performs the actual intersection. The third stage examines each new intersection and

discards all but the the one closest t o the origin of the ray. Note that the ray must be

intersected against each polygon in the scene model before the closest one can be

determined Since most of the work must be done by the intersection stage, it may

internally be pipelined, as shown in figure 3-2. t o increase its performance. Applying

stepwise refinement we can further internally pipeline each of the stages shown in figure

3-2 until we reach the level of the actual operators implementing the arithmetic.

T w o potential problems need to be addressed at this point. In order t o keep the pipe

full, the polygon parameters used must be accessed in parallel. This is resolved by storing

each of the twenty polygon parameters in one of twenty independent memories so that all

Ray Tracing Peripheral

I I
I I
I Fetch Intersect Select I I I
I I
I I

.---------c---------__________C_____________--__________C_____________

Ray Descriptions

Figure 3-1: The three major pipeline stages in the ray tracing peripheral

- -

Figure 3-2: Pipeline stages within the Intersection Processor

may be accessed simultaneously. The second point is that an exception, such as in the

divide operation, may be generated within the pipe, since the results may be undefined for

some values of inputs. To resolve this Ullner associated a validity bit with each

intermediate result flowing through the pipe. By convention. operations in the pipeline will

always produce a result, but will mark that result to indicate its validity. Although later

stages will accept these invalid values as if they were meaningful, the fact that their own

results are invalid will be reflected in the validity bit of the output. The last stage in the

pipeline takes into account the validity bit in determining the closest intersection.

All of Ullner's machines use floating point number representation which has a far greater

dynamic range than fixed point numbers, freeing the user from having to pay much

attentron to scaling Analysis of the ray tracing peripheral assumes that all the data

operators in the pipeline are implemented using a parallel multiplier manufactured by TRW

which is capable of producing a 48 bit product from two 24 bit operands in a maximum

of 285 ns Using the TRW multiplier, and a few "glue chips", a floating point multiplication

takes about a third of a microsecond. but the other floating point operations cannot be

completed so quickly. Each one of these operations may however be pipelined to operate

at the same rate. Thus using this fully pipelined arithmetic the complete peripheral can

produce three results every microsecond.

Using the above metric, we could make some estimates for the time required to generate

a picture using the ray tracing peripheral. Assuming a scene model consisting of a

thousand polygons, it would take a third of a millisecond to intersect a ray with each of

these surfaces. In an image with 512 X 512 pixels of resolution, it would take a minute

and a half to trace one ray per pixel. Of course, the number of rays increases if shadows

are to be modelled and antialiasing is to be performed. Note that the time is linearly

dependent on the number of polygons in the scene.

3.1.2. The Ray Tracing Pipeline

The ray tracing peripheral described earlier was not very extensible; it could not be easily

enhanced t o accomodate a more complex scene. The ray tracing peripheral has a single but

fast intersection processor, but the intersection process has t o be repeated for each

polygon. Consider the other extreme now. If we had a less complex, and therefore slower.

intersection processor, we could have many more of these processors working in parallel t o

achieve similar performance. The obvious advantage would be extensibility. The greater the

number of these intersection processing units, which could be implemented as custom VLSl

processors, the shorter would be the time for a more complex scene. Ideally, every object

in the scene model could be attached to one of these processors typifying the intelligent

object paradigm.

Based on the above principles. Ullner proposed the ray tracing pipeline which comprised

intersection processors strung together t o form the pipeline shown in figure 3-3. Each

processor stores the description for a single polygon and i t passes the description of rays

through its input and output ports. On receiving a ray description the processors

determine whether that ray intersects its stored polygon, and if so locates the intersection

point. Each ray is represented by a descriptor which has a field for the identity of the

closest polygon encountered so far. and another for the t value of the polygon. The t

value is initialized to infinity before entering the pipe. As i t flows through the pipeline.

each processor. on finding an intersection compares its t value with current t value in the

descriptor field. If it is less, then that processor's polygon must be closer, and hence it

swaps the identity of the polygon and the t value before passing it on through the output

port t o the next processor. Finally, when the ray descriptor leaves the pipeline i t contains

the identity of the closest polygon and corresponding t value.

I.

Host

* Intersect +

Figure 3-3: The Ray Tracing Pipeline

Since the ray tracing pipeline assumes the availability of low cost custom designed

intersection processors, i t would not be feasible to devote substantial chip area required to

implement parallel multiplication circuitry to match the performance of the TRW multiplier

used in the ray tracing peripheral. The alternative is to use a space effective. but slower.

shift and add multiplier. Ullner estimates such an multiplier would perform a full 32 bit

floating point multiplication in five microseconds, and also shows how other floating point

operations can be implemented in the same area and speed.

Intersect

Based on the above, we can conclude that the ray tracing pipeline can complete a ray

tracing computation every five microseconds. Since Ullner estimates, for bit serial

-,
1

Intersect *- - - *+-I

25

communication, the transmission time to be roughly five microseconds, we are still looking

at a ray being processed every five microseconds. For a machine with a thousand

processors. the latency would be 5 ms.. and a 512 X 512 pixel image could be generated

in 1.3 seconds assuming one ray per pixel.

3.1.3. The Ray Tracing Array

In the ray tracing array, a three dimensional grid is superimposed on the modelling space

to section off the volume into a collection of subvolumes, each one of which has, at least

in concept a dedicated processor typifying the intelligent volume approach. Each of these

processors is responsible for maintaining the surface models in its own subvolume, as well

as for computing intersections of these surfaces with the rays passing through the

subvolume With such an arrangement one would expect a 3 dimensional lattice of

processors, each connected to its six neighbouring processors. However, the cumbersome

nature of wiring entailed by such an organization, acts as a major deterrent. Ullner

overcame this problem by organizing the machine as a 2 dimensional array of processors

with the third dimension of the partitioning grid simulated within each processor in the

array. This structure allows each processor to communicate with its four neigbouring

processors, as shown in figure 3-4. Each processor is also assumed to be a general

purpose computing element since each processor should now be capable of carrying out

shading computations, which in previous architectures were carried out in the host. Each

processor also has some special purpose intersection hardware to aid in intersection

computation.

The processors communicate with each other through messages. Each processor is

responsible for a block of pixels corresponding to its position in the array and has an

independent frame buffer used to store the pixel intensities. The different fields of the ray

Figure 3-4: Organization of processors in a 16 processor ray tracing array

k Message type (e.g. vision, shadow, etc.).

(r.c) Row and column of pixel for this ray.

ro Origin of this ray.

rd Direction of this ray.

c Color contribution of this ray.

Figure 3-5: Fields of a ray message

message are show in figure 3-5 Processors create initial ray messages for pixels that lie

within their portion of the frame buffer. The processor then computes the closest

subvolume which the ray enters, and then passes the ray message in the direction of the

processor responsible for that subvolume. On reaching the destination processor, the ray is

tested for intersection against all the objects within the subvolume. If no intersection is

found then the processor incrementally computes the next closest subvolume which is

handled by one of the four adjacent processors, and sends the ray message in that

direction. If an intersection is found, a result message, which contributes to the intensity

of its originating pixel, is passed of f t o the processor responsible for that pixel. Any

secondary rays such as reflected, refracted or light rays are passed off t o appropriate

subvolumes for further intersection tests.

Cleary, et. al. [CLEA83] also proposed a similar processor array for ray tracing. They

considered both square arrays and cubic arrays, and found that, in general, square arrays

perform better than cubic arrays. A machine based on a 10 x 10 square array is currently

under construction at the University of Calgary.

3.2. Dippe's Parallel Architecture

Mark Dippe & John Swensen [DIPP84], proposed an architecture for ray tracing which is

quite similar t o the ray tracing array proposed by Ullner. thus belonging t o the intelligent

volume family. The major difference between the two is that Dippe's parallel architecture

allows for the subdivision of object space to be adaptively controlled, in order t o maintain

a roughly uniform load amongst the different processors. This turns out t o be a serious

drawback in Ullner's ray tracing array where no attempt was made t o address the issues

of uniform load distribution over the subregions. Uneven object distribution amongst

different subregions can lead t o load disparities between processors. causing computing

power to be wasted. Therefore the ability to adaptively redistribute over time is crucial

because load distributions are extremely difficult to calculate a prior;, and hence must be

done dynamically during the actual execution of the ray tracing process.

Since the operation of this parallel architecture is very similar to the ray tracing array,

we shall concentrate on the dynamic load distribution aspect of this organization. The three

dimensional space of the scene to be rendered is divided into several subregions which are

initially assigned volumes more or less uniformly, and object descriptions are loaded into

the appropriate subregions. As computational loads are determined, the space is

redistributed among the subregions to maintain uniformity of load. Unlike the

straightforward orthogonal subvolumes in Ullner's architecture, Dippe considered several

different shapes for subregions. The choice of a subregion shape is influenced by the

following criteria:

1. the complexity of subdividing the problem e.g. intersecting objects or rays with
the boundaries.

2. the ability to subdivide space without splitting objects, and

3. the uniformity of the distributed loads attainable with the shape.

A strong candidate based on the abovementioned criteria would be "general cubes", which

resemble the familiar cube, except they have relaxed constraints on the planarity of faces

and on convexity. General cubes allow the most local control of subregion shape at the

cost of slightly higher complexity of boundary testing.

The load information is shared among the neigbouring subregions, and this allows

relatively more loaded subregions to reduce load by adjusting their boundaries. The load

metric is primarily determined by the product of

1. number of objects and their complexity, and

2. number of rays

Load is transferred by moving corners of a subregion. Once the new position for a corner

of a subregion has been determined, object descriptions and other information are

redistributed to reflect the new subdivision.

Due to the subdivision. a speedup of the order of 0(s2I3) is expected by the authors.

where S is the number of subdivisions of the object space. The parallel architecture is

estimated to be three orders of magnitude faster than the standard algorithm with 125

computers working in parallel.

3.3. The LINKS-I Multimicrocomputer System

LINKS-1 [NISH81] was an experimental machine which was built and tested at Osaka

University in Japan The system consists of 64 unit computers which are interconnected

with a root computer such that a number of unit computers constitute a pipelined

computer and such pipelined computers work in parallel, all controlled by the root

computer. The number and length of each pipeline can be controlled dynamically, although

it is not readily apparent how this dynamic reconfiguration would be useful. On the other

hand the organization is general enough to be used for other image creation applications by

means of more sophisticated parallel processing schemes which utilize different numbers of

pipelines, perhaps with different lengths. Intercomputer program/data transfer is greatly

facilitated by the use of a device called the intercomputer memory swapping unit (IMSU).

LINKS-1 permits neighbouring unit computers to exchange data/programs using IMSU. and

also between each unit computer and the root computer. There also exists a slow serial

link between each unit computer and the root computer.

The root computer distributes the programs and data to be executed t o the unit

computers and the results are collected by the data collector. Each unit computer

comprises five units:

1. the Control Unit for data transfer and communication control,

2. the Arithmetic Processing Unit for floating point calculations.

3. the 1Mb Memory Unit.

4. the I/O unit to be used as an outlet for debugging and monitoring,

5. the Intercomputer Memory Swapping Unit (IMSU).

The IMSU has two memory areas which are connected to a pair of control units through

a bus exchange switch. Each of the control unit works independently on a memory area,

and upon finishing they send a bus exchange signal which connects them to the other

memory area.The IMSU is used to exchange program/data both between the root computer

and the unit computers and also between two adjacent computers.

3.4. Discussion

Both the ray tracing peripheral and the ray tracing pipeline are, in a way, brute force

approaches to the ray tracing problem, since they attempt to intersect every ray with every

polygon. As noted in earlier chapters, techniques such as object space subdivision and

bounding volumes can be used to significantly minimize the most computationally expensive

operation - the ray surface intersections. The ray tracing peripheral, however, can be

modified to use object space subdivision. The basic idea here is to superimpose a three-

dimensional grid on the object space. The objects are then partitioned into these

subvolumes An extra stage is added to the pipeline which computes the subvolume which

the ray intersects and passes the descriptor addresses of the polygons residing in the

subvolume onto the next stage. Thus, the subsequent stages only have t o compute

intersections with a small number o f polygons. No such arrangement is possible with the

ray tracing pipeline since a separate pipe would be required with each subvolume.

The ray tracing pipeline is ostensibly fast, but on careful observation one quickly realizes

that no general purpose host could keep up with i t since it is unreasonable t o expect a

host t o generate ray descriptions at this rate and deal with responses in the same time.

O f course, one can design a special purpose host, sacrificing the flexibility offered by a

general purpose host. It is also impossible for the ray tracing pipeline to process a scene

with more objects than the number of processors in the pipeline. Note that this does not

pose a problem for the peripheral since in the worst case all that needs to be done is t o

increase memory size. In case of the ray tracing pipeline, however, it becomes infeasible

t o increase the number of processors after a certain point.

Ullner's machines assume convex quadrilaterals as the basic modelling primitive. T o

achieve maximum performance, all intersection processors are dedicated t o ray intersections

with polygons. In computer graphics, however, it is often advantageous t o model with

alternative surface representations, such as bicubic patches, splines. quadric surfaces etc.

The dedicated intersection processors are incapable of performing these intersections. On

one hand, it appears in order t o accommodate a variety of modelling surfaces, the

intersection processors should be general purpose with fast floating point hadware t o boost

performance. On the other hand, we could tesselate most modeling surfaces into polygons

and continue using dedicated intersection processors. Interestingly enough, there are

- devices available. such as the Weitek Transformation Engine [WEIT85a], which perform the

tesselation functions with great speed.

32

The ray tracing array i s probably the most promising approach of the three machines

proposed by Ullner. Its chief drawbacks stem from the straightforward orthogonal

subdivision of object space, which can cause immense disparity in object distribution among

the subvolumes. Dippe's architecture takes care of this problem by using an adaptive

subdivision approach. Also, for some choices of viewing position, not all processors are

equally busy.

The Links-1 has a topology that allows work to be distributed by the root computer so

that i t can be performed independently in parallel, or pipelined from neighbour to neighbour.

or some combination of both. This allows a variety of image creation algorithms to be

used. But, the connection topology is restricted enough that any situation which demands

substantial communication amongst the various unit computers would be almost impractical.

Chapter 4

A 3-TASK RAY TRACING ALGORITHM

In the previous chapters we discussed approaches for improving ray tracing performance

by reducing the amount of computation and by increasing the speed of computation. As

demonstrated in the modeling space subvolume approach, algorithms can be designed that

directly map onto system architectures.

In this chapter we describe our modified ray tracing algorithm which maps directly onto a

pipelined parallel processor architecture. T o reduce the number of intersection calculations.

our algorithm is based on bounding volumes and the hierarchical description of data. This

approach also allows the tracing of a ray to be divided into three balanced tasks that map

onto the pipeline architecture. In addition, the potential for parallelism lies in image space

subdivision where a pipeline can independently compute the value of a given set of pixels.

4.1. Definition of Terms

The following definitions are for terms used in this and following chapters. Some of the

terms are similar t o those used in [WEGH84].

contribution factor
factor which determines the contribution made t o the pixel by the
intensity found at the end of the ray.

data tree the hierarchical description of the scene; its non-terminal nodes are parent
shells and its terminal nodes, leaf shells.

initial ray a ray originating at the eye and passing through a pixel on the image
plane.

33

leaf shell a shell which encloses primitives; whose children are primitives.

light a geometric entity with an associated set of emittance characteristics.

light ray a ray spawned on intersecting a reflecting surface in the scene; i ts origin
is the intersection point and its direction is toward a specific light.

object a geometric or procedural entity with an associated set of surface
characteristics reflecting and possibly transmitting light.

parent shell a shell which encloses shells; whose children are shells.

prim processor performs the ray-primitive intersections.

primitive an object or a light.

ray a vector with a specific origin and direction.

reflected ray a ray spawned on intersecting a reflecting surface in the scene; its origin
is the intersection point.

refracted ray a ray spawned on intersecting a transmitting surface in the scene: its
origin is the intersection point.

scene the uppermost parent shell in the hierarchical description; i t has no parent
shell.

shade processor spawns initial and secondary rays: also computes the contribution a ray
makes toward the final pixel value.

shell a bounding volume.

shell processor performs the ray-shell intersections

t-value a parametric value that defines a point on a ray where the ray intersects
a surface.

4.2. Overview

Before delving into the details, we present a brief overview of the algorithm. An initial

ray is spawned. This ray is tested for intersection against the nodes o f the data tree in

a recursive depth-first descent. If a parent node is intersected by the ray. all its children

are in turn tested: if not. that branch of the tree is ignored. A list of all leaf shells

intersected is generated and sorted in order of increasing t-value. The next step is to

determine the closest primitive intersected. Beginning with the leaf shell closest t o the

origin of the ray, its child primitives are tested for intersection. If no intersection is

found, the child primitives of the next closest leaf shell is tested and so on.

When an intersection is found, secondary rays are spawned. Using the surface

characteristics associated with the intersected surface, the contribution each secondary ray

makes to the final pixel value is computed and tagged onto the ray. Secondary rays are

then processed in the same fashion as the initial ray. When all rays spawned for a pixel

have been traced, the pixel value calculation is complete.

4.3. Features

Several features of our algorithm are important t o its eventual mapping onto an

architecture.

4.3.1. Data Tree

The data tree has two restrictions. The first of these is that all primitives must be

enclosed within a leaf shell, either individually or within a collection of other primitives.

Secondly, a parent shell can only have shells as children: a leaf shell can only have

primitives as children.

4.3.2. Shell Shape

So far we have talked about shells without making any specific reference t o the shape of

the shells. The shape of the shell is an important issue, as discussed in [WEGH84]. We
< ,

explored two of the possible alternatives for shells - spheres and orthogonal boxes.

Orthogonal boxes have sides parallel t o the axes of the modeling space coordinate system.

In general, orthogonal boxes serve as better shells than spheres for the following reasons:

In general, orthogonal boxes have less void area than spheres: they enclose their
primitives more tightly. This increases the probability that a ray will intersect
an enclosed primitive if i t intersects the shell.

The ray-shell intersection test is faster t o compute. Note that if we only needed
to know whether a ray hits or misses a shell. then spheres would be better
since they require fewer floating point operations. If the exact point of
intersection is also desired, then the intersection of a sphere, which requires
computation of a square root, is slower.

Table 4-1 shows results that support the argument regarding shell shapes. The total

rendering time is tabulated for a sample scene using the two shapes.

SPHERES

Figure 4-1: Total time taken for rendering a sample scene
using spherical shells and orthogonal box shells

4162.01 secs.

ORTHOGONAL BOXES

Another possibility is t o use randomly oriented boxes, which potentially have less void

area than orthogonal boxes. However. more overhead is associated with these boxes. The

2727.29 sew.

ray has t o be transformed into the coordinate system of the random box and more data

(the transformation matrix) must be stored. As we shall see later. in the context of our

proposed architecture, the extra computations and the larger size of the shell data set

could prove to be costly. Hence, orthogonal boxes represent a compromise between

architectural demands and intersection efficiency.

4.3.3. Simplified Shader

The algorithm used a simplified version of the Hall shading model described in Chapter

1. The current algorithm does not trace rays through transparent surfaces. Fresnel

reflectance and transmission curves and distance factors are also not implemented.

Intensities and reflectance characteristics are represented using RGB triplets (a value for

each of the primary colours - red, green and blue). The same RGB triplet is used for

both specular and diffuse reflections. Using terms defined in Figure 1-2, our model is as

follows:

I = [k , (Wr) + k , (R-??)" I Rd li

Our algorithm and proposed architecture do not limit the complexity of the shading

model. The reason for its simplicity has more to do with our emphasis on architecture.

4.3.4. N o Intersection Tree

Although useful for describing the concept of ray tracing, intersection trees are not

necessary in practice. Secondary rays are spawned to determine the intensities of various

sources of illumination. The maximum contribution to the final pixel value that can be

made by the intensity of a source of illumination can be computed. This contribution

factor is calculated from the intersected surface characteristics and the intersecting ray

factor. If a source of illumination does contribute, its intensity is multiplied by the

contribution factor and the result added to the pixel value. T o keep track of which ray
I

belongs to which pixel, each ray is tagged with the pixel coordinates.

The advantage of this approach (ULLN831 is in removing the memory requirements and

computation overhead associated with building and traversing intersection trees. This is

especially important in the context of a VLSl processor pipeline.

4.3.5. Adaptive Tree Depth

Computing the contribution factor of a ray before i t is traced enables us to use adaptive

tree depth. If the factor is below a significant threshold, its contribution can be ignored

and thus the ray need not be traced.

4.3.6. Primitives Types

Currently, the types of objects that our algorithm can render is limited to spheres and

polygons Work is currently underway to add fractals t o the system. The algorithm is

not really limited to those primitives and could easily be expanded to include other

geometric or procedural primitives such as cylinders, cones, surfaces of revolution, prisms.

and 3-dimensional curved surfaces.

4.3.7. Sorting Leaf Shells

Instead of performing a depth-first descent down t o and including enclosed primitives, the

algorithm initially tests only as far as the leaf shells. The intersected leaf shells are then

sorted in order of increasing t-value (distance from the origin of the ray). In a strategy

similar t o that described for octree subdivision in chapter 2, the primitives enclosed by the

nearest shell are tested for intersection. The closest surface intersected is identified. If

such a surface is found, then the search is stopped; otherwise the primitives enclosed in
1

the next closest shell are tested. This process is repeated until either a surface is

intersected or no more leaf shells are left, implying that the ray does not intersect any

primitive.

Unlike octree subdivision, hierarchical data organization may not produce disjoint leaf

shells, i.e.. shells whose volumes do not overlap. Fortunately, the above technique can be

modified for use with overlapping shells. The t-value of an intersected primitive tp is

checked against the t-value of the next closest leaf shell t,. If t, < t,, then the

primitive is the closest. Otherwise the primitives in the next leaf shell must be checked.

Figure 4-2 illustrates this point. The two shells enclose exactly one primitive each

Primitive A belongs t o shell A and primitive B t o shell B. Shell A is closer than shell B

t o the origin of the ray, i.e.. tshel,-A < tshell-B. Hence, primitive A would be tested for

intersection first. Let us assume that the ray does intersect primitive A at tA. However,

as can be readily observed, primitive A is - not the closest primitive (tA is not less than

tshell-~) The primitives of shell B have to be tested before the closest surface can be

identified. Here, primitive B is the closest primitive, although shell B is farther from the

ray's origin than shell A.

This technique permits the identification of the closest primitive intersected without

necessarily testing all the primitives in all the intersected leaf shells. Test results from

rendering the scene in Figure 1-4 show that, on average, a ray tests the contents of only

80% of the sorted leaf shells.

Figure 4-2: A 2-dimensional view of overlapping shells

4.4. The 3 Data Sets

Examining the data required by our algorithm. we can identify three disjoint data sets.

This partitioning of the data also corresponds to the partitioning of the tasks described in

the next section. The data sets are the shells of the hierarchical data description, the

collections of primitives enclosed by the leaf shells and the different surface characteristics

found in the scene model.

4.4.1. Shell Data

The basic element of the shell data set is the structure SHELL illustrated in Figure 4-3.

The collection of shells making up the hierarchical data description is stored in an array

called SHELL-ARRAY illustratgd in Figure 4-4. The organization of data in this array

retains the tree structure of the data tree. An entry in this array is a linked list of

sibling shells, i.e. children of the same parent. The variable leaf indicates whether the

shell is a leaf or parent shell. For a parent shell, the variable child-index is the index t o

i ts list of children. For a leaf shell, the variable is an index into the PRIM-ARRAY where

the child primitives are stored. By convention. the index to the children of the scene or

root shell is 0.

4.4.2. Prim Data

The basic element of the primitive dataset is the structure PRIM illustrated in Figure

4-5. The variable type indicates what type of primitive be i t a sphere, polygon or

whatever The variable p is the union structure through which the geometric description

can be accessed The variable s u r f a c e i n d e x is an index into the SHADE-ARRAY where

the surface characteristics associated with the particular primitive are stored. The

collection of primitives making up the model description is stored in an array called

PRIM-ARRAY illustrated in Figure 4-6. An entry in this array is a linked list of sibling

primitives, i.e.. children o f the same parent.

typedef s t ruc t she l l I
i n t l ea f ;
i n t chi ld- index;
COORD max ;
COORD min;
s t r u c t she l l *next;
SHELL;

Figure 4-3: SHELL data structure

_r+. pelvis right leg
0 1 18Tq 0 1 3 2 v

, -

. thigh foot
1 l O I + 1 1 4 v

Figure 4-4: illustration of SHELL-ARRAY

typedef s t r u c t pr im 4
i n t prim-id;
i n t s u r f ace-i ndex;
i n t type ;
PTYPE P ;>
s t r u c t p r i m *next ;
$ PRIM;

Figure 4-5: PRIM data structure

-
0

sphl 2 lo- rooO IGJ -
-

sph (12 1 o- sphl 12 (o- sph 12 - rOOO

Figure 4-6: Illustration of PRIM-ARRAY

4.4.3. Shade Data

The basic element of the shade data set is the structure SHADE illustrated in Figure

4-7. Unlike the previously described arrays, the array for the shade data set is a simple

array of SHADE structures. he variables reflectance and ttansmittance are triplets for

red, green and blue values. Although the structure is designed for reflectance

characteristics, emittance data can also be stored in the same structure by interpreting the

reflectance variable as an emittance triplet and setting all other variables to 0.

typedef s t r u c t shade #
f l o a t k s .
f l o a t kd;

t n t n;
RGB r e f l e c t a n c e ;
RGB t ransmi t tance;
$ SHADE[];

Figure 4-7: SHADE data structure

4.5. The 3 Tasks

Our sequential ray tracing algorithm described above can be cleanly divided into the

following tasks.

1. The first task spawns all the initial and secondary rays. I t also computes the

contributron factors that these rays make t o the final pixel values.

2. The next task traverses the hierarchical tree with a given ray and makes up a
sorted list of all the leaf shells intersected by the ray.

3. The third task intersects primitives contained in the leaf shells t o compute the
closest intersecting primitive.

In this section we shall outline each task's basic algorithm and the input and output

data structures used by each.

4.5.1. The Shade Task

The first task. called ShadeTask, spawns rays for a given set of pixels. For each ray.

an output data structure (illustrated in Figure 4-9) is filled and sent t o the ShellTask

described below. The variable ray-type indicates whether the ray is an initial, reflected or

light ray. The coordinates of the pixel t o which the ray belongs are found in pixel-index

and the ray's contribution in factor .

When a ray returns t o the ShadeTask after being traced, the combination of ray-type

and what i t hit, hit-type, determines the action t o be taken. When a ray leaves the

scene or when a light ray is blocked. the ray is ignored. Otherwise, if the ray is a light

ray, the product of the intensity and fac to r is added to the pixel: if it is another type of

ray, the product of the ambient intensity and fac to r is added to the pixel and new

secondary rays are spawned The algorithm is illustrated in Figure 4-8.

4.5.2. The Shell Task

The second task. called ShellTask, is outlined below in Figure 4-10. Receiving the

structure SHADE-TO-SHELL as its input, the this task traverses the SHELL-ARRAY

tree with the given ray. When a leaf shell is intersected by the ray, the child index and

the t-value which defines the point of intersection are stored in the LeafShellList of the

output data structure. When the traversal has been completed, the list is sorted on

ascending t-values.

The output of the ShellTask is a structure similar t o the one shown in Figure 4-11.

.
Func t i on : ShadeTask
Purpose : Spawn rays and compute c o n t r i b u t i o n f a c t o r s accord ing t o t he

shading model.
.

ShadeTask ()

beg i n
i f (l i g h t ray)

beg in
i f (s e l f h i t) p i x e l += l i g h t i n t e n s i t y * f a c t o r ;
e l se ignore ray ;
end

e l s e
beg i n
i f (no h i t) i gno re ray;
e l s e

beg i n
p ~ x e l += ambient i n t e n s i t y * f a c t o r ;
spawn secondary rays and compute c o n t r i b u t i o n ;
end

end

i f (p i x e l i s f i n i s h e d) spawn i n i t i a l ray f o r next p i x e l ;
end

Figure 4-8: The ShadeTask algorithm

typedef s t r u c t j
i n t ray-type;
PIXEL p ixe l - index;
RGB f a c t o r ;
RAY EQN ray;
1 SHADE-TO-SHELL;

Figure ,4-9: Output structure from ShadeTask

...
Funct ion : She l lTask
Purpose : Produce a l i s t o f c h i l d i n d i c e s and t-values (~ e a f S h e l l L i s t)

o f l e a f s h e l l s i n t e r s e c t e d by the r d .
.

She l lTask (i x)

beg i n

/* Let - S be the se t o f a l l she1 I s p o i n t e d t o by SHELL-ARRAY[ix] */

f o r each s h e l l E 5
beg i n
i f (t h e ray i n t e r s e c t s the s h e l l)

beg in

i f (l e a f she1 I) LeafShel l L i s t 6 LeafShel I L i s t U # c h i l d - i ndex , t va lue# ;
e l s e She l lTask(ch i ld - index o f s h e l l) ;
end

end

So r t LeafShe. l lL is t on i nc reas ing t-value;
end

Figure 4-10: The ShellTask algorithm

typedef s t r u c t 4
i n t ray-type;
PIXEL p ixe l - index;
RGB f a c t o r ;
RAY EQN ray;
LSS L e a f S h e l l L i s t [5 0] ;
i n t LeafShel [Count;
$ SHELL-TO-PRIM;

Figure 4-11: Output structure from ShellTask

4.5.3. The Primitive Task

The third task, which we shall call PrimTask, receives the shell t o prim data structure

as input. This task executes exactly what has been described in the overlapping shell

discussion above. The task proceeds t o intersect primitives starting with the primitives

enclosed in the closest leaf shell and stops on finding the closest primitive. It then also

computes the information needed by the first task. the Shader Task, such as the surface

normal at the point of intersection.

The detailed algorithm is show in figure 4-12. Note that in the actual implementation the

algorithm treats different types of rays differently. For example, light rays need not find

the closest intersection but any intersection will do. On the other hand, for initial and

reflected rays the algorithm goes through all the primitives in the given primitive list.

The output of the PrimTask is a structure similar t o the one shown in Figure 4-13.

The variables filled by the task when an intersection is found are surface-index, point

that contains the coordinates of the intersection point and the surface normal at that

point, and hit-type which describes what the ray hit.

.
Func t i on : PrimTask
Purpose : To compute the neares t p r i m i t i v e .
Note : 1 . L e a f S h e l l L i s t comes f rom t h e Shel lTask.

2. I n d i c e s i n the s e t L e a f S h e l l L i s t a re accessed i n order i .e .
we get the element w i t h t he l eas t t-value f i r s t .

.

P r imTask()

beg in

f o r each index E LeafShel

beg i n

/* Le t P be a l l P r i m i t - i v e s p o i n t e d t o by the cu r r e n t index

f i n d the nea res t -p r im i t i ve E r;
i f (t -value o f n e a r e s t - p r i m i t i v e

< t-value o f next index i n L e a f S h e l l L i s t)
beg i n

/* we have found the nearest p r i m i t i v e */

found = TRUE;
break;
end

end

i f (found) compute i n f o (i n t e r s e c t i o n p o i n t , normal, sur face- index);
e l s e r e p o r t no h i t ;
end

Figure 4-12: The PrimTask Algorithm

typedef s t r u c t 4
i n t ray-type;
i n t h i t - type;
PIXEL p ixe l - index;
RGB f a c t o r ;
RAY EQN ray;
INTER p o i n t ;
i n t surface- index;
1 PR I M-TO-SHADE ;

Figure 4-13: Output structure from PrimTask

Chapter 5

A PIPELINED ENGINE FOR RAY TRACING

In this Chapter. we propose a pipelined architecture. P E R T , which executes the 3-task

ray tracing algorithm discussed in the previous chapter. PERT consists of a 3-stage

pipeline of processors Each stage in the pipeline is a microcoded. custom designed, VLSl

processor that greatly enhances performance. PERT forms the basic computing element of

a parallel architecture for ray tracing [GAUD85], which is a multi-PERT architecture with

an innovative interconnection scheme.

5.1. The Single-PERT Configuration

PERT is a pipeline of three processors connected cyclically as shown in figure 5-1. This

architecture IS a direct map of the ray tracing algorithm described earlier, with the three

processors performing the three tasks - the ShellProcessor performing the ShellTask, the

PrimProcessor performing the PrimTask and the ShadeProcessor performing the ShadeTask.

The organization deviates from the classical Von-Neumann architecture, since three

instruction streams are concurrently active on three independent data sets, and hence would

be classified as a MlMD organization under Flynn's [FLYN66] taxonomy.

PERT can be used in 2 different configurations: a) in a s ing le-PERT configuration.

- where each of the 3 processors has access t o an independent memory module that stores

the appropriate data set, and b) in a multi-PERT configuration that consists of an

interconnection of N PERTs working in parallel. PERTs in this configuration do not have

scene data available to them in local memory. but access it from three broadcast buses;

one for each processor within PERT. Since this thesis is primarily concerned with the

design and performance of a single-PERT configuration. for the remainder of this thesis.

the term PERT, should be taken to mean single-PERT configuration, unless explicitly

specified. We shall briefly discuss multi-PERT configuration in section 5.2, but for a

complete analysis the reader is referred to [GAUD85].

The 3 processors comprising PERT are identical internally. except for their microcode.

Figure 5-2 shows the internal organization of the processors. We shall now briefly discuss

the various modules comprising each processor.

5.1.1. The SJ16 Processor

SJ16 is a 16 bit microprocessor that was intended to be used as a hardware building

block for multiprocessor systems [HO.BS8la]. SJ16 - fabricated as a single chip VLSl

processor using a 5 micron GTE ISO-CMOS process, and currently being tested at Simon

Fraser University - was a natural processor choice: it was microprogrammabie, it had

excellent hardware features such as an ALU with a barrel shifter, and on-chip hardware

stack, a register file with 32 general purpose registers, and an independent up/down

counter to simplify loop handling. Since microcode development for the various task

algorithms was a key issue in the PERT design, the most attractive feature of SJ16 was

the microprogramming environment - the Architecture Support Package (ASP). The ASP

allows higher-level microprograms for SJ16 to be written in an APL like notation called

microAPL. MicroAPL code can then be translated into real SJ16 microcode by a

microAPL compiler and linker. Besides microcode development, the ASP also permits

emulation of hardware modules by APL functions. allowing investigation of new hardware

constructions. Details of microcode development for SJ16 can be found in [HOBS82].

ShadeProcessor

r

ShellProcessor PrimProcessor

Figure 5-1: Block diagram of PERT

5.1.2. The Floating Point Unit

The floating pomt unit (FPU) is capable of fast execution of floating point operations.

For simulation purposes, this special function unit was modeled around the Weitek

WTL1164/1165 low-latency floating point chip set [WEIT85b] capable of executing floating

point operations with speeds above 2.78 Mflops. Recalling the voracious appetite of the ray

tracing algorithm for floating point computation. one can see that the high throughput of

the Weitek chip set makes it a prudent choice.

All floating point operations on PERT are performed in single precision. Details of the

internal design and simulation of the FPU are covered in section 6.2.2.

5.1.3. The Memory Module

The memory module provides independent storage for each of the three processors. The

memory module is primarily used to store the data set associated with each processor.

Both the ShellProcessor and the PrimProcessor also need some extra storage for global

variables, stack space, etc. This extra storage required is minimal. The ShadeProcessor

however. requires extra memory t o be used as the frame buffer.

Reads and writes to the memory can be streamed - the memory controller buffers data

words and hence after the first access, memory can be accessed sequentially in a single

cycle.

5.1.4. Communication

The ShellProcessor and the PrimProcessor communicate with the ShadeProcessor using

FIFOs. However, communication between the ShellProcessor and the PrimProcessor must

be done with a dual buffer since the ShellProcessor uses one of the two buffers t o fill in

leaf shell ids and then performs a sort on them, which means that the PrimProcessor

cannot read the shell ids on a FIFO basis but must wait until the ShellProcessor has

completed its sort. With the dual buffer the PrimProcessor reads from one buffer while

the ShellProcessor is busy filling the other with shell ids.

The three processors of PERT are hardware embodiments of the three tasks of the ray

tracing algorithm. Since the operation of the ray tracing algorithm has been covered in

great detail in chapter 4, and the operation of PERT is identical, it will not be discussed

here.

1 SJBUS

Figure 5-2: Detailed block diagram of each processor

................
: BIG :.>.

................

5.2. The Multi-PERT Configuration

4

SJ16

-

The basic difference between the two configurations is the way the data sets are

accessed. In a single-PERT configuration this turns out to be easy since the data sets are

stored in local memory and hence can be directly accessed. In a multi-PERT configuration

however. we cannot afford the luxury of replicating the entire scene in each PERT, since

that would be a brute force approach. What is needed is a way of allowing concurrent

access. by PERTs, to a global shared memory.

t -

Local
Memory

. *

4 FPU

5.2.1. Broadcasting

Our solution t o the problem consists of having three external buses connected t o each of

the three processors, on which data is broadcasted. We draw on an analogy here to

illustrate the concept of broadcasting. Assume we have a disk subsystem and think of

the output of the read/write head as a (single line) bus to which several processors are

attached as shown in figure 5-3. Let us further assume that our hypothetical disk has

only one track and the readlwrite head, set t o read mode, is permanently positioned over

i t . Now, what appears on the bus is a bit-stream that is repeated periodically owing to

the circular nature of the track containing the bits of information. Each processor has

access to any bit in the stream, but the access is sequential as opposed to being random.

Thus, associated with each bit access, is a potential latency delay. We shall herewith

refer t o such a per~odic transmission of data over a bus as broadcasting, the bus, which

is the broadcast medium as the broadcast bus, and the time taken to cycle through the

entire set of data as the broadcast cycle t ime.

5.2.2. System Organization

In reality, the function of the hypothetical disk is taken over by fast broadcast

processors that have access to the global memory, and the processors in our analogy are

really PERTs. The broadcast processors transmit data at high speeds over their broadcast

buses. Speed is a critical issue here. since the slower the broadcaster. the greater would be

the access latency. Each of the PERTs can now, irrespective of the others, access -data

off the bus as needed, without any contention for memory. O f course, for this, one has

to pay a price, access delays because o f latency. This could however, be minimized by the

techniques discussed in the next section.

Figure 5-4 shows the overall system organization of a multi-PERT configuration. The

Figure 5-3: Example to illustrate broadcasting

engines. PERT1 thru PERTn, are connected to each of the three buses as illustrated.

There are many ways in which distribution of work can be accomplished in a multi-PERT

configuration One possible scenario would be to partition .the image space by dividing it

into sets of scan lines that could be distributed amongst the engines. Thus, each PERT

operates independently on the set of scanlines allocated to i t . Note that this places the

multi-PERT machine in the intelligent pixel category. Memory contention for the frame

buffer is avoided by partitioning the frame buffer, and providing each PERT with an

independent portion of the frame buffer that stores pixel values associated with its scan

line set.

I Frame Buffer I
I I

A 4 A 4
3 - - -

Control 1
2

I I I
PERT1 PERT2 PERT3 o o o PERTn

1" t A t t '
ShadeBP 1-1-11L

- - - - - - -

PrimBP - - - - -

Figure 5-4: Multi-PERT configuration

bus

bus

bus

5.2.3. Bus Interface Controller

The processors within a multi-PERT machine are not connected directly to the broadcast

buses, but are connected through a device called the Bus lnterface Controller (BIC) which

reduces significantly the latency associated with accessing data from the broadcast bus.

Data on the broadcast bus is transmitted in form of packets. A packet has an

identification number (ID) followed by a logical collection of data. The logical collection of

data could be for instance, a set of shell data on the ShellBus, geometric description of a

set of primitives on the PrimBus, or reflective and refractive characteristics of a set of

primitives on the ShadeBus. SJ16 makes requests for these packets by writing the desired

IDS into a available ID-register within the BIC (see fig. 5-5). The BIC associatively

matches each ID appearing an the broadcast bus with the contents of the ID-registers. If a

match is found, two activities occur. First, a hit flag is raised, which is a signal t o the

broadcast processor t o transmit the remaining data portion of the packet. Actually all the

hit-flags of PERTs are inclusive-ORed, and the single output line sampled by the broadcast

processor. The broadcast processor will only transmit the data portion of a packet if one

or more PERTs raise their hit-flags. This drastically reduces the broadcast cycle time and

hence latency time Second, the data portion o f the packet is copied on transmission, into

a double buffer This way the BIC could be filling in packet information in one buffer,

while SJ16 is reading the other The double buffer is similar t o the IMSU on the LINKS-I

machine except that the individual buffers are FlFOs as opposed to being RAMS. The

FlFOs permit SJ16 t o read their contents in one cycle

T o summarize, the BIC offers 3 distinct advantages:

It serves as an 1/0 processor for SJ16 by relieving it of data collection chores.
Also, since it operates in parallel with SJ16, the overall processing time is
reduced.

It reduces latency since it has multiple ID-registers and looks for a match with
any one ID contained in the registers.

0 It reduces broadcast cycle time because of the hit-flag feedback to the
broadcast processors that prevents data from being needlessly transmitted.

There are a host of other issues regarding broadcasting that are beyond the scope of

this thesis. An exhaustive study of broadcasting in context of a multi-PERT organization is

currently being undertaken as a master's thesis research project [GAUD851 by Severin

ID Latch 0-

COMPARATOR

ID Regn m

SYNC

I

Figure 5-5: The Bus Interface Controller

(1

- -

Gaudet, who is simulating the broadcasting effects on PERT to study performance

degradation because of access latency. Preliminary results seem to suggest minimal

degradation, showing promise in the broadcasting technique for a multi-PERT organization.

1 I

F f

DUAL
BUFFER

Chapter 6

SIMULATION OF PERT

T o evaluate the effectiveness of PERT, we decided t o model it in software and run

some benchmarks on i t . As mentioned earlier, PERT derives its strength from two

principal sources: a) the pipeline architecture, and b) the microcoded custom VLSl

processor Thus, t o accurately simulate the ray tracing engine, we would have to provide

simulation at two levels:

1 A higher-level simulation indicating the performance of the pipeline.

2 A lower-level microcode simulation to evaluate benefits accruing from
microcoding the task algorithms. -

Since in the process of developing our ray tracing package, we had specifically structured

the software to reflect the tripartite distribution of work. the simulation at level 1 turned

out t o be straightforward. The simulator was easily added to the ray tracing software

package.

The simulation at level 2 had two aspects t o it. First, the SJ16 processor simulator was

already available in the ASP environment, but we still had to build a software model for

the floating point unit. Second, the task algorithms had to be microcoded, debugged, and

timed in the ASP environment. Finally. one had to merge the results of simulation level 2

into the simulation level 1 to provide a complete simulation of PERT.

In the following sections we shall discuss in detail the two levels of simulation.

6.1. Level 1 Simulation

The ray tracing software package, which performed simulation at level 1, was written in

C under UNIX, and was based on the algorithm described in Chapter 4. To accurately

simulate the pipeline, the three software modules which emulate their hardware

counterparts, were implemented as three independent processes under UNIX that

communicated with each other through inter-processor communication sockets.

If we were to run the simulation as is, we would get the equivalent of PERT with a

VAX 11/750 for each of its constituent processors. To simulate a real PERT with each of

its constituent processors being constructed with SJ16, the timings collected from the

various modules would have to be microcode timings This is precisely the function of the

simulation at level 2, which provides pre-computed microcode timings for each function.

These timings are then inserted into the various modules.

6.2. Level 2 Simulation

In the following sections we will discuss the ASP to give a flavor of the environment

used for microcoding, the FPU modeling by APL functions, and some issues about the

microcode written.

6.2.1. Architecture Support Package

The Architecture Support Package [HOBS82, HOBS8lbl is an APL workspace wherein

SJ16 primitives have been modeled with APL functions. T o illustrate this point consider

the following example taken from [HOBS8lb]. Assume we wish to add the contents of

two registers. In natural APL this would be represented as:

62

Unfortunately, the '+' in an ALU causes flags t o be set as a side-effect. Such effects

cannot normally be captured in APL. A simple solution is t o define a diadic function PLUS

which simulates the appropriate ALU action. The ASP therefore consists entirely of such

user defined APL functions and global variables required by microprogrammers t o drive

Microcode is written as microAPL statements, a subset of APL. MicroAPL can be

executed and as a side effect of microAPL execution a global variable in the workspace.

called CLOCK, reflects the number of clock cycles required for the simulation run. The

process of microcode development is best illustrated by a simple example. Assume we

wanted to wrtte a mlcroalgorithm to evaluate the following fragment of code that computes

ten numbers from the Fibonacci series starting from the third:

/* Compute Fibonacci numbers * / .

F i r s t = 0;
Second := 1;
f o r i:= 10 downto 1

beg i n
Next := F i r s t + Second;
F i r s t := Second;
Second := Next;

end

The corresponding microcode is shown in figure 6-1.

This simple example does illustrate some key features of the ASP environment. Recall

that SJ16 has a built in counter for loop handling. The setup routine (fig. 6-1) is an APL

function and not microAPL. It simply serves t o initialize the CLOCK, call the function

FIB1, and print the CLOCK value. The REG statement on line 5 is a compiler declarative

that attaches the symbolic names FIRST, SECOND, and NEXT to registers RO. R l , and

R2.

Figure 6-1: MicroAPL functions for Fibonacci series

V TESTAE'IB;FIRST;SECOND;NEXT
C13 A NOTE THAT THIS IS NOT MICROAPL.
C23 A IT IS USED AS A SETUP PROGRAM.
C33 A
C43 STROINIT
C53 REG FIRSPRO A SECONDcRl A NEXiPcR3
C63 FIB1
C7 3 'CLOCK : ' ,rCLOCK

v

V FIBl
C13 A MICROAPL FOR COMPUTING FIBONACCI NUMBERS.
C23 A
C33 RcFIRSTI*OPY D ' 0'
C43 RCSECONDI.~COPY D '1'
C53 COUNTEACNEGATE D ' 10 '
C63 COUNT
C73 LOOP:RCNEXTI+RCFIRSTl PLUS RCSECONDI
C83 RCFIRSTJ+COPY RCSECOND~
C93 RCSECONDI.~COPY RCNEXT I
[lo] +LOOP IF-COUW

v

V FIB2
C13 R IMPROVED MICROAPL FOR COMPUTING FIBONACCI NUMBERS.
C23 A

C3l COUNTEACNEGATE D ' 10'
C41 COUNT A RCFIRSTlcCOPY D '0'
C53 RCSECOlDl+COPY D '1'
C63 LOOP:RCNEXTI+RCFIRST3 PLUS RCSECONDI
C73 RCFIRSTlcCOPY RCSECONDJ
C83 +LOOP IF-COUNT A RCSECONDl+COPY RCNEXTI

v
FIBl CLOCK: 44

FIB2 CLOCK: 33

64

Each microAPL statement, which gets translated by the compiler to one line of SJ16

microcode, consists of one or more microperations. One is the norm, but under special

circumstances it is possible to fit two or more microperations per microAPL statement. For

example, it is possible to increment and test the counter in parallel with an ALU operation.

We could thus, combine lines 9 and 10 of F l B l and write one microAPL statement. We

can also combine lines 6 and 4 of FIBI. The improved microAPL function FIB2 is shown

in figure 6-1 The same figure also shows that it takes FIB1 44 clock cycles to execute,

whereas FIB2 takes 33. a decrease of 10 clock cycles.

Note that F l B l and FIB2 are directly APL executable since all SJ16 primitives PLUS,

COUNT, etc are actually APL functions that emulate the real primitives.

6.2.2. Modeling the FPU

As mentioned earlier, the selection .criteria for the floating point coprocessor was mainly

the throughput speed The Weitek [WEIT85b] WTL 1164165 low-latency chip set. capable

of performing both 32 and 64 bit floating point arithmetic, is possibly the fastest

coprocessor on the market today. The WTL 1164 Floating Point Multiplier can do a 32

bit multiply in 360 nsec. The WTL 1165 Floating Point ALU can perform a 32 bit

add/subtract/convert/compare in 360 nsec. Besides, the WTL 1165 ALU is also capable of

performing a 32 bit floating point divide in 1.86 psec.

Before we can model in software the Floating Point Unit. we need to conceptualize in

hardware the internal organization - the control and the datapaths of the floating point

- subsystem. The proposed FPU organization is shown in figure 6-2. It consists of two

subunits, the ALU and the multiplier MUL, which can operate concurrently.

The A and B input registers. which are 32 bits wide, buffer data coming in from the 16

Figure 6-2: Organization of the Floating Point Unit

bit SJBUS. since the FPU operates at a speed much higher than SJ16 (60 nsec. clock vs.

an estimated 200 nsec.). The C register buffers a 32 bit result which can be read onto

SJBUS, 16 bits at a time. The two 8 bit command registers hold commands for the

subunits, and can be loaded in parallel, in one SJ16 clock cycle. Loading the command

register also implicitly starts an FPU operation.

In performing successive floating point operations, it is sometimes useful t o direct the

output of one subunit into either one of its own input registers or into the input register

o f the other subunit. This is done within the same time slot as that needed to complete

a floating point operation. In absence of such data paths, an extra data transfer cycle

would be needed to transfer data from the output register into an input register. There

could be 8 possible data paths - 4 from output of ALU to input registers and 4 from

output of MUL to input registers. Complete realization of all data paths would entail a lot

of multiplexor circuitry. As a compromise we decided t o use only 4 data paths as shown

in figure 6-2. Note that this is an acceptable compromise since for one, multiplication is

commutative, and hence there need only be one path from CALU to MUL inputs, and

secondly the path from CMUL t o AALU was rarely used. In the rare event of a CrVIUL to

AALU transfer. an extra data transfer cycle must be used. In general, this model was

found to be quite tractable within the framework of our arithmetic expressions.

The control of the data transfer is encoded in the command words broadcasted t o the

subunits. The 2 most significant bits of the ALU command word are to be interpreted as

follows:

00 no transfer

01 CALU -) AALU

10 CALU -) B~~~

11 C ~ ~ u -) and C~~~ -) B~~~

The remaining 6 bits are the function codes. The encoding for the MUL is similar and

can be obtained by interchanging the register subscripts show above.

There are actually 2 more registers, not shown in figure 6-2, which are status registers.

The status register holds the exception or conditions codes i f any and for a compare

operation on the ALU, status codes 0.1.2 represent = . < . and > respectively. To

provide more flexibility we provide a extended status register that derives extended status

codes of # , 6 , and 2 using simple combinational hardware. After a comparison

function in the ALU the extended status register is read into the SJ16 status register

where general purpose bit-testing can be performed to provide the entire gamut of

comparison operators

Based on the proposed hardware FPU model. APL functions to emulate the FPU were

written.

6.2.3. Microcoding the Task Algorithms

At first glance, attempting to microcode 3500 lines of C code appears to be a

gargantuan task. It turns out. however, for the ray tracing algorithm, a major percentage of

the execution time is spent in the inner loops of the algorithm that comprises relatively

few lines of code. Thus an early decision was made regarding microding - we would

microcode only the inner loop code, and from the timings obtained, extrapolate the timings

for the entire task algorithms. To ensure reasonable simulation, we made sure that the
I

modules microcoded represented at least 80% of the total execution time. This was

- determined by the UNlX profiler gprof . Table 6-1 gives an idea as to how much of the

C code was actually microcoded for each of the 3 task algorithms. It represents the

percentage of the total execution time taken up by functions that were actually

microcoded.

ShellProc

Table 6-1: Percentage of total execution time for microcoded functions

8170

ShadeProc

6.3. Merging Simulation Results

95%

Once microcode timings were available for the three tasks, this information was

embedded into the C code. Thus, when a C function is called, it increments a global

variable INT-CLOCK. by and amount equal to the number of clock cycles taken by an

equivalent function in microcode. We could have avoided the awkwardness of having to run

microcode simulations on one machine (IBM 3033 running the Michigan Terminal System),

and then transferring the results to the other simulation (running under UNlX on a VAX

11/750), by writing our ray tracing package in APL. But then APL is far too slow in

execution to be used realistically as a rendering tool, which we hoped our software package

would eventually be used for. Besides, under UNlX we had access to a whole set of

software tools, which we used extensively. but which were unavailable under MTS.

Chapter 7

RESULTS AND CONCLUSION

7.1. Results

Results are presented in three parts. First. the timings, of a microcoded (SJ16) function

versus the timings of the same function implemented in C on a VAX 750, are shown.

Second, a table showing the performance of the pipeline: the processing and the idle time

for each processor, and pipeline efficiency, is presented. Third, the overall execution time

on a VAX 11/750 and the simulated execution time on PERT are presented. All timings

are based on the assumption that SJ16, a 16 bit processor, operates at a clock speed of 5

Mhz.

7.1 .I . Microcode Timings

Table 7-1 shows microcode timings for CheckSpherelntersection. a function that computes

sphere-ray intersections. These timings are compared with the timings of same function

coded in C, on our 2 VAXs: one with floating point hardware and one without.

All floating arithmetic in C is carried out in double-precision; whenever a f loat appears in

an expression it is lengthened t o double by zero-padding its fraction [KERN78]. The

microcode timings, on the other hand, are based on single-precision arithmetic. A

straightforward comparison, therefore, would be unfair. T o rectify this, we took the

assembly output of CheckSpherelntersection and changed i t so that all floating point

operations were done in single-precision. Incidentally. double-precision floating poiht

69

operations on the VAX take approximately 25% more time than their single-precision

counterparts [HOBS84], a fact that needs to be considered while comparing overall VAX

time with PERT.

Table 7-1: Timings for the function CheckSpherelntersection

7.1.2. Pipeline Timings

SJ16 with FPU VAX 750 with FPU

Table 7-2 illustrates pipeline performance. The idle time for each processor is compared

with the processing time. A utilization factor (q) is shown for each scene where is

defined as:

VAX 750

* T, is the total processing time (sum of all processing times).

T, is the time taken by the pipeline.

N is the number of processors (3) in the pipeline.

Notice that the shader has a comparatively high idle time. A more sophisticated shader

- for instance, a full implementation of Hall's shading model - would make the pipeline

more balanced, or a slower cheaper processor could be used.

The scenes used for testing were generated to test different combinations of tree order

and the number of primitives per leaf shell: the 2 in scene 208 indicates a binary tree and

the 08 indicates that there were 8 primitives per leaf shell. There were a total of 512

spheres in each of the three scenes. The timings shown are for a raster size of 64 x 48

pixels.

7.1.3. VAX 111750 versus PERT

Table 7-3 shows the overall rendering times for 5 scenes on a VAX 750 (with FPU) and

PERT. In addition to the scenes discussed in the previous section, timings for scenes 23

and 45 which are moderately complex scenes (1093 and 2754 primitives) are also shown.

Scene 23 is shown in figure 1-4 and scene 45 in figure 7-1. The bubble bodies in scenes

23 and 45 were generated using the SFU kinematic simulation system [CALV82].

For the different types of scenes, PERT is on average. 24 times faster than VAX. Recall

from earlier sections that an adjustment up t o 25% may need to be made for VAX

timings because of the double-precision overhead. Overall timing reduction. however. would

be less than 25% because the actual floating-point computation time forms only a fraction

of the total execution time. Even with a 25% decrease in VAX timings, PERT is

approximately 18 times faster.

7.2. Discussion

7.2.1. Processor improvement

All timings generated so far were based on a 5Mhz clock for SJ16. This was done

because our current version of SJ16 runs at roughly 5Mhz. With plunging feature sizes in

- current CMOS technology, it appears possible t o fabricate SJ16 running at a clock speed

of 8 Mhz by going t o a 3 micron process. It is even possible t o fabricate SJ32, a 32-bit

version of SJ16. The effect of these changes on the running time of the function

SCENE 208

ShellProcessor

PrimProcessor

Wait time Processing time

2.88

2.55

ShadeProcessor

SCENE 408 I Processing time Wait time

1.40

r) = 65.77%

ShellProcessor

ShadeProcessor

Table 7-2: Pipeline processing and wait times for 3 sample scenes.

3.22

SCENE 808

ShellProcessor

PrimProcessor

ShadeProcessor

0.39

r) = 66.15%

1.40 2.22

r) = 61.18%

Processing time

4.23

2.58

1.41

Wait time

0.25

1.90

3.07

SCENE VAX 750 (sec)

Scene 208 092. 10

Scene 408

Scene 808

092.91

108.50

Scene 23

PERT (sec)

101.02

Scene 45

Table 7-3: Total times taken by VAX and PERT

138.03

-- -

CheckSpherelntersection is shown in table 7-4. SJ32 performance at 5 Mhz is almost the

same as SJ16 at 8 Mhz, but SJ32 would consume a substantially larger chip area and

would need a more expensive memory interface. The saving in chip area for SJ16 could be

used for the BIC, thus reducing chip count.

The exact overall performance improvement in the running time is difficult to predict.

Since FPU exe~ution time does not change with the clock rate or bus width, the

improvement depends upon the fraction of the time spent by the tasks in data transfer.

The best case running time would be obtained if there were no floating point operations.

. For SJ16, the percentage decrease in running time by going from a 5Mhz to 8Mhz

processor would be:

Figure 7-1: Scene 45 used in VAX-PERT timing comparisons

Table

To compute a lower bound for performance improvement let us examine what a floating

point operation entails. First, we must transfer at least 2 data words to the FPU. The

SJ32 8Mhz

30 88ys

FPU then takes constant time to execute the operation. If tc is the clock time, and tfp,

7-4: Running times with improvement in processors

SJ32 5Mhz

4 0 . 4 0 ~ ~

SJ16 5Mhz

5 4 . 6 0 ~ ~

the FPU execution time. Then the total time required to perform a complete floating

SJ16 8Mhz

3 9 . 7 5 ~ ~

point operation is:

If the clock time is changed t o tc' then the new time is:

Therefore the percentage improvement in time is:

t , - t , '
- - - 18.75%

tl

where t c is 200ns. tc' is 12511s. and tfpu is 4OOns The value of ttp,, actually depends

upon the floating point operation. For add, subtract, and multiply i t is 400ns. for a divide

it is 1 . 8 6 , ~ . Since divide is infrequently used, tfpt, was chosen to be 400ns. For SJ16

running at 8Mhz. therefore, the ~mprovement In running time would be at least 18.75% and

would not exceed 37.5%

7.2.2. Multi PERT performance

Figure 7-2 shows the overall improvement in performacne with the increase in the

number of PERTs used to construct a multi-PERT organization. The results are based on

scene 45 (see figure 7-1). The Y-axis represent the ratio of the rendering time on VAX

and the rendering time on the multi-PERT machine. For more details the reader is referred

t o [GAUD85].

7.2.3. Host-PERT interaction

T o produce a complete working rendering system. PERT would have to be connected to

a host machine. typically a graphics workstation The host maintains all the data sets on

disk, and uses the PERT as a peripheral. The host initiates a frame rendering by loading

PERT with the three data sets. The host is then free t o start pre-processing the next

frame of data while PERT works on the last one, giving rise to additional parallelism.

number of PERTs

Figure 7-2: Number of PERTs vs. Performance

7.2.4. Advantages & Disadvantages

The biggest advantage of PERT is that it is modular. Many PERTs can easily be

connected to form a multi-PERT machine for ray tracing Even a single-PERT configuration

is at least 20 times faster than the VAX. Besides, unlike Uliner's ray tracing peripheral or

ray tracing pipeline, there is no limitation on the type of surface that can be used for

modeling. New surfaces can be added by merely changing the microcode of the

PrimProcessor to perform intersections with new surfaces. Using microprogrammable

processors allows for a more flexible PERT which can be tailored t o applications instead of

being a fixed hardware solution. The potential for downloading microcode means that one

could extend the ShellProcessor t o handle other bounding volume shapes: add to the

PrimProcessor functions for other geometric and procedural objects; and extend the

ShadeProcessor t o handle better shading models and techniques such as texture mapping.

On the other hand, a drawback of this architecture is that is depends very much on the

way the user chooses to hierarchically structure his data If the user chooses a hierarchical

tree that causes imbalance amongst the processors - a pathological case being no

hierarchy at all - then serious degradation may occur. O f course, such a degradation

would occur even on a uni-processor system.

7.2.5. Extensions

One question remains to be answered: Given a fixed number of primitives what is the

best possible way to hierarchically structure data to achieve minimum rendering time on

PERT? Is it better t o have binary trees, quad trees, octrees? What is the best number

of primitives to have per leaf-shell? These questions cannot be fully answered until further

investigation is done. Table 7-5 shows the total rendering time for different combinations

of tree order and number of primitives/leaf-shell on a scene consisting of 512 spheres. The

Number o f Primitives/Shell

Table 7-5: Timings for different combinations of tree order and prim/shell

L

Binary tree

Quad tree

Oct tree

--

least rendering time (3 18 secs.) was taken by a binary tree, with 4 primitives/shell.

Although the table indicates a clear advantage in lower order trees and lower number of

primitives/leaf-shell, the results cannot be generalized and applied to scenes with a mix of

different types of primitives.

2

3.36

3.69

4.82

If we can identify a clear strategy for structuring data, or maybe even reduce it t o a set

4

3.18

3.42

4.33

of heuristic rules, it should be possible t o write a front-end program t o automatically

20

6.48

6.50

6.64

8

3.46

3.62

4.48

cluster data into a hierarchical tree. Such a program would then free the naive user from

deciding how to organize his data, or use its expertise to aid a more experienced user in

building the hierarchy.

12

4.19

4.27

5.03

7.3. Conclusion

16

5.25

5.28

5.69

In this thesis a 3-processor pipelined engine model. PERT. has been presented which

executes a ray tracing algorithm that has been subdivided into 3 tasks. The entire scene

data is also partitioned into 3 data sets; one for each task. PERT is highly modular -

many such individual PERTs can be connected in parallel with the scene data being

globally distributed on 3 buses by means of broadcasting. Besides, microcode can be

downloaded into PERT, providing flexiblity in handling a wide variety of bounding volumes.

modeling surfaces, and shading models.

Simulation results show that a single PERT, in itself performs about 20 times faster

than a VAX 111750 with floating point hardware. Multiprocessor simulation

results [GAUD851 indicate performance improvements greater than two orders of magnitude

with 8 PERTs in a multi-PERT configuration using sample scenes of moderate complexity.

Although we have partly addressed the issue of creating optimal data trees which keep

the constituent processors in PERT balanced, further work needs to be done in this area.

especially when considering scenes which have primitives with widely varying ray

intersection costs.

References

[APPE68] Appel, A.
Some techniques for shading machine renderings of solids.
In AFIPS Spring Joint Conference, pages 37-45. AFIPS. 1968.

[BLIN77] Blinn. J.F.
Models of light reflection for computer synthesized pictures.
In Siggraph'77 Conference Proceedings. pages 192-198. ACM, San

Jose, California, 1977.

[CALV82] Calvert. T.W.. Chapman. J.. and Patla, A.
Aspects of the Kinematic Simulation of Human Movement.
IEEE Computer Graphics and Applications 2(9):41-49. November. 1982.

[C LAR761 Clark. J H
Hierarchical geometric models for visible surface algorithms.
Communications AC-M 19(10):547-554, October, 1976.

[CL EA831 Cleary. J.G.. Wyvill. B.. Birtwistle. G. M.. and Vatti. R. ,
Multiprocessor ray tracing.
Technical Report 83/128/17. University of Calgary. October. 1983

[COOK821 Cook. R.L.. and Torrance. K.E.
A reflection model for computer graphics.
ACM Transactions on Graphics 1(1):7-24. January, 1982.

[DIPP84] Dippe, M., and Swensen. J.
An adaptive subdivision algorithm and parallel architecture for realistic ,

image synthesis.
In ACM (editor), SIGGRAPH'84 Conference Proceedings, pages

149-157. ACM. New York. 1984.

[FLY N66] Flynn, M.J.
Very high-speed computing systems.
In Proceedings o f the IEEE, pages 1901-1909. 1966

[GAUD851 Gaudet, S.
A parallel architecture for ray tracing.
Master's thesis. Simon Fraser University, May. 1985.

[HOBS82]

[HOBS84]

[KAY 791

[KERN781

[NISH81]

Glassner. A.S.
Space subdivision for fast ray tracing.
I E E E Computer Graphics and Applications 4(10):15-22. October. 1984.

Goldstein. R.A., and Nagel. R.
3-D visual simulation.
In S I M U L A T I O N , pages 25-31. January. 1971.

Hall. R.A.. and Greenberg, D.P.
A testbed for realistic image synthesis.
I E E E Computer Graphics and Applications 3(10):10-20. Novem ber. 1983.

Hobson, Richard.
Structured Machine Design: An Ongoing Experiment.
In Proceedings of the 8th Symposium on Computer Architecture.

pages 37-55. SIGARCH. Minneapolis, May. 1981.

Hobson. Richard, Hannon P.. and Thornburg J.
High-level Microprogamming with APL syntax.
Technical Report T R 81-2. Simon Fraser University. 1981.

Hobson. Richard.
SAMjr Microprogamming guide, Version 2.1.
1983.

Hobson. R.. Gudaitis. J.. and Thornburg. J.
A New Machine Model for High- Level Language Interpretation.
Technical Report C M P T T R 84-18, Simon Fraser University, 1984.

Kay. D.S.
Transparency, refraction, and ray-tracing for computer synthesized images.
Master's thesis. Cornell University. January. 1979.

Kernighan. B.W.. and Ritchie, D.M.
The C Programming Language.
Prentice-Hall, Inc., Englewood Cliffs. New Jersey 07632. 1978.

Nishimura. H.. Ohno. H.. Kawata. T.. Shirakawa, I., and Omura, K.
LINKS-1: A parallel pipelined multimicrocomputer system for image

creation.
In ACM (editor). Proceedings of the 10th Symposium on Computer

Architecture. pages 387-394. ACM. New York, 1981.

Phong B-T.
Illumination model for computer generated pictures.
Communications A C M l8(6). June. 1975.

[RUB1801 Rubin, S.M.. and Whitted, T.
A %dimensional representation for fast rendering of complex scenes
In ACM (editor), SIGGRAPH'80 Conference Proceedings, pages

110-116. ACM. New York. 1980.

[ULLN83] Ullner, M.K.
Parallel machines for computer graphics.
PhD thesis. California Institute of Technology. 1983.

[W EG H 841 Weghorst, H.. Hooper, G.. and Greenberg. D.P.
Improved computational methods for ray tracing.
ACM Transactions on Graphics 3(1):52-69. January. 1984.

[W EIT85aI Weitek Solids Modeling Engine.
Weitek Corporation Product Literature. 1985

[WEIT85b] WTL1164/1165 Low-Latency 64-bit IEEE Floating Point Multiplier/ALU.
Weitek Corporation Product Literature. 1983.

[W H IT801 Whitted T
An improved illumination model for shaded display.
Communications A C M 23(6).343-349, June. 1980.

