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ABSTRACT 

In this thesis the hydrodynamical expansion and the possible 

experimental signature of quark-gluon plasma formation in a 

heavy ion collision, are studied. Initial conditions are 

simulated by using the parton cascade picture to describe the 

collision of two heavy ions at relativistic energies. The 

hydrodynamical equations for the time evolution of the plasma 

are solved numerically using the two-step Lax-Wendroff method. 

The possible experimental signature considered here for the 

formation of quark-gluon plasma is the relative abundance of 

kaons to pions. This ratio is proportional to the ratio of the 

strange quark density to the entropy density up to the 

corrections due to the final state interactions. On the basis of 

simple models, it has been found that kaons to pions ratio is 

large and therefore, it has been proposed as the most promising 

signal for the formation of quark-gluon plasma. Using the 

computer simulation, (which includes finite size, realistic 

cross sections, full three dimensional treatment etc.) we find 

this ratio to be much smaller than the ratio obtained by other 

authors using simple models. We emphasize that it is not likely 

to be a useful signature for the formation of quark-gluon 

plasma. 

i i i  
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CHAPTER P 

INTRODUCTION 

During the past two decades, our concept of an elementary 

particle has undergone a fundamental change. All hadrons are now 

thought to be a composite state of more elementary entities 
1 

known as quarks and gluons Today it is known that there are at 

least five different flavours of quarks, called up(u), down(d), 

strange(s1, charm(c) and bottom(b),respectively, and there are 

strong theoretical reasons to suspect the existence of one more 

flavour, called top(t). The quarks of various flavours differ 

widely by their mass. The quarks must carry one further internal 
9 
L 

quantum number which is called colour . This can be deduced from 
the existence of particles,for example the A++(1230), which 

contains three identical quarks with parallel spin in an s-wave 

state. The Paull principle requires that the quarks differ from 

each other by an additional quantum number. There are three 

different colour degrees of freedom.The colour quantum number is 

exactly conserved and it acts as the source of a force field 

which is of long range unless screened. The theory which deals 

with colour forces is known as quantum chromodynamics(QCD). The 

binding force between quarks inside an hadron ,which is called 

the strong force, behaves quite differently than that associated 

with gravity or electromagnetism. Until now quarks have not been 

observed in isolation and the non-observation of an isolated 

quark implies that the force increases with separation. On the 

other hand, at high momenta or short distances , this force 



becomes arbitrarily weak. For mediating the strong force between 

three different colour charges at least eight intermediate 

bssonic fields are needed; these fields are known as gluons. The 

predictions of QCD at large momenta or short distances are in 

good agreement with experiment. At large momenta QCD coupling 

becomes weaker and therefore, perturbation theory may give 

reliable results. This property of QCD is known as asymptotic 

freedom. This property of QCD and simple geometrical 

considerations imply the possibility of a very novel phase 

transition i.e. the transition from normal hadronic matter to a 

new form of matter known as the quark-gluon plasma. The 

possibility of such a phase transition can be illustrated with 

the help of following simple argument. The number density of 

normal nuclear matter is po- 0.145fm-~, i.e. only one nucleon 

per 7fm3, and the energy density is EN = mpo= 0.15Gev/fm3. On 

the other hand, the energy density within a typical hadron is EH - O.S~ev/fm~ which is three times the energy density of normal 

nuclear matter. Thus, with a modest increase of energy density 

from EN to EH, the dilute conditions will change to a dense 

condition in which neighboring hadronic wave functions overlap 

and the internal degrees of freedom, which are associated with 

quarks and gluons, become activated. This increase in energy 

density can be achieved either by compressing cold nuclear 

matter or heating up the matter and filling the space between 

the nucleons with mesons. This implies that at even higher 

energies normal hadronic matter will possibly go through a phase 

transition. The value of the temperature at which this 



transition occurs is not well established, but different 
3-5 

theoretical speculations and the lattice Monte Carlo 
6-8 

simulations give a value sf the order of 150-300MeV. Matter 

has already gone through such a phase transition in the very 

early universe when very high temperatures and pressures 

existed. Under laboratory conditions, it may be possible to 

create the quark-gluon plasma in the head on collision of two 

heavy nuclei (A=197 to 238) at ultrarelativistic energies ( ~ = 1 0  

to 10O~ev/A).At ultrarelativistic energies and with zero impact 

parameter nuclei are sufficiently transparent to nucleons that 

in a central collision the nuclei pass through each other, 

producing two highly excited nuclear fragmentation regions 

containing the net baryon number of the system. One of these 

regions' is known as the target fragmentation region(~l?R) 

corresponding to the target and other is known as the beam 

fragmentation region(SFR) corresponding to the projectile. As in 
9 

NN collisions these are expected to be joined together by a 

central rapidity region (CRR) with small net baryon number. The 

nuclear transparency just mentioned above is a result of strong 

time dilatation and Lorentz contraction. To understand nuclear 

transparency, consider a central collision of two nuclei with A 

>> 1 which are moving with an equal and opposite velocity v 

relative to the centre of mass. The velocity is such that the 

Lorentz factor y >> 1 .  In the longitudinal direction the nuclei 

are Lorentz contracted to a length = 2~"~/7 where RA is 

the radius of the nucleus. A basic ingredient in the space-time 

description of the collision is the existence of a strong 



interaction proper time scale T,= ' iAqcd = ~fm/c. In any 
hadronic collision, the produced fragments can only reinteract 

after a proper time 70 has elapsed after their production. If 

one now increases y ,the nuclei finally are so much Lorentz 

contracted that they entirely cross each other in a time less 

than 7,. The laboratory conditions and the condition which 

existed in the very early universe for the plasma are the same 

except for one major difference: the rate of cooling of the 

plasma. In case of the early universe the cooling was slow (of 

the order 10-6sec), whereas in the laboratory the rate of 

cooling is very fast (of the order ~ O - ~ ~ s e c ) .  In chapter 2 of 

this thesis nuclear transparency is discussed in detail. 

To create and study such a primordial plasma in the 

laboratory is one of the challenges for present day theoretical 

and experimental physics. The indications that such a novel form 

of matter can exist raises many difficult questions. First of 

all during the formation of the quark-gluon plasma, hadronic 

matter goes through the deconfinement phase transition and one 

would like to study the nature of this phase transition. The 

study of phase transitions requires the complete understanding 

of the statistical behaviour of the system which is equivalent 

to determining the grand canonical partition function of the 

system. For finding the grand canonical partition function one 

needs to know the exact form of the Hamiltonian of the system. 

To know the Hamiltonian, one needs an understanding of the 

interactions between the different constituents of the system. 



In our case it is equivalent to requiring comprehensive 

understanding of QCD, which is at present far from being 

completely understood. 

Another question is how much time does the system spend as a 

quark-gluon plasma, how much time as a mixed phase and how much 

time as hadronic matter before the matter decouples? How does 

this depend upon the initial conditions and the baryon number of 

the colliding nuclei? To study this question we need to know the 

time evolution of the plasma. The time evolution of the plasma 
10,11 

has been -studied in the recent past with special emphasis 

on the central rapidity region. There have been two reasons for 

this: first, this region shows approximately a plateau structure 

for the particle production as a function of the rapidity 

variable in pp collisions at very high energies, thus implying 

boost invariance along the collision axis; second, the net 

baryon number is close to zero and thus one can work with zero 

chemical potential. It has, however, been known since the 

beginning that these two simplifications do not apply to the 

reaction conditions achievable in the experiments planned in 
12 13,14 

near future . It is also known that the stopping power of 

nuclei is larger than what it was believed to be just a few 

years ago, therefore, the net baryon number will not necessarily 

be small. The time evolution of the plasma and nuclear stopping 

power will be discussed in chapter 2. The expansion dynamics of 

the plasma can still be studied easily if one makes the 

assumption of local thermal equilibrium. In this case the plasma 



can be treated 

apply the laws 

as a hydrodynamically expanding fluid and one can 

of relativistic hydrodynamics. ~ydrodynamics has 

a long history as a means of treating collisions of strongly 

interacting systems. It's application was originally proposed by 
15 

~andau in 1953, and it has been used to discuss very high 
16-19 

energy pp collisions. The application of hydrodynamics to 

the reaction of heavy nuclei seems more plausible than for pp 

collisions. Here the system is so large relative to the mean 

free path that the assumption of the local thermal equilibrium 

is not unjustified and so too the use of hydrodynamics. 

The equations which describe the hydrodynamic evolution of 

the plasma depend only on the condition of matter at some fixed 

time, and upon the equation of state which relates energy 

density and pressure. The boundary conditions may be chosen 

either as initial conditions or as the final configuration at 

very late times when the matter freezes out and subsequently 

evolves as free streaming particles to detectors. To determine 

the equation of state is equivalent to finding out the velocity 

of sound in the quark-gluon plasma. Recently Gavai and 
20 

Gocksch tried to determine the velocity of sound using a 

lattice Monte Carlo calculation. In this work, an equation of 

state with all of the properties needed to describe the change 

from an ideal hadronic gas (a description valid at low 

- temperatures) to an ideal quark-gluon plasma (valid for high 
21-23 

temperatures), is provided by the MIT bag model. 



The thermodynamics of the plasma will be discussed in 

chapter 2. There the partition function and other thermodynamic 

variables are calculated in the hadronic phase without the 

assumption of massless particles. Also a brief review of the MIT 

bag model is given in chapter 2. Hydrodynamics of the plasma is 

discussed in detail in chapter 2 as well. All the dissipative 

effects such as viscosity and thermal conductivity in the plasma 

will be neglected and only the relativistic ideal hydrodymanics 

will be discussed. For treating the plasma expansion exactly 

i.e. including the dissipative effects we need to know the full 

QCD kinetic theory and at present we do not know how to 

correctly treat A+A collisions in the QCD kinetic theory. 

One of the very important questions is the experimental 

signature of the plasma •’ormation. All the characteristic 

kinematical signatures of the plasma formation would almost with 

certainty be destroyed by the hadronic final state interactions. 
24,25 

An exceptional case may be the scenario of massive 

supercooling of the plasma phase during the expansion. There the 

subsequent transition to the hadronic phase proceeds like an 

explosion producing shock waves that should be clearly visible 

in the transverse momentum distribution of the emitted hadrons. 

Any analysis promising success must be based on the 

observation of properties that are not affected by final state 

interactions. Two such observables are: 

(a) particles that do not interact strongly (production of 
26-28 

dileptons), and 



(b) quantum numbers that remain unchanged by strong interactions 
29,3O 

(strangeness production). 

Most of the work in this thesis related to the possible 

experimental signatures for the plasma formation is concentrated 

on strangeness production. The significant changes in relative 
3 1 

and absolute abundance of strange particles such as A could 

serve as a possible probe for quark-gluon plasma formation. 
i 

~ifferent strangeness producing mechanisms and the relevant 

production rates as functions of the energy density of the 
30 

plasma state have been studied by Rafelski and Muller. Another 

possibility concerning strangeness production as a signal for 
32 

plasma formation is studied recently by J. Kapusta. In his 

work he has studied K-/n- ratio as a possible signature for the 

plasma formation. The production of dileptons and strangeness as 

possible experimental signatures are discussed in detail in 

chapter 4. 

The overall organisation of this thesis is as follows: In 

chapter 2 the time evolution, thermodynamics, hydrodynamics, 

equation of state and the bag model of the plasma are discussed. 

In chapter 3 the numerical solution of the hydrodynamic 

equations using an appropriate finite difference scheme is 

discussed. This discussion will also include the initialization 

and the stability analysis of the numerical solution. In chapter 

4 the most promising experimental signatures of the plasma 

formation are discussed. We will mainly concentrate on the 

strangeness production . Chapter 5 contains the conclusion and 



s u g g e s t i o n s  f o r  t h e  f u r t h e r  r e s e a r c h .  



CHAPTER 2 

THERMODYNAMICS AND HYDRODYNAMICS OF QCD PLASMA 

This chapter will start with a brief review of the 

thermodynamics of the quark-gluon plasma. The motivation for 

such a review is as follows: first of all, the knowledge of 

different thermodynamical variables and relations of both phases 

will be helpful in motivating the phase transition from the 

hadronic phase to the quark-gluon plasma phase. Secondly, using 

a simple model, which will be outlined in the next section, one 

can get rough estimates of the transition temperature and the 

latent heat of the transition. In discussing the thermodynamics 

of quark-gluon plasma phase, attention will be focused on the 

baryon . symmetric plasma (i.e. the chemical potential p =O). The 
P 

hadronic phase will be assumed to be a gas of massless pions. 

Obviousby, the above assumptims are oversimplified but still 

this model roughly describes the picture of the phase 

transition. In the next section, a summary of the results 

obtained from lattice QCD are also quoted. This chapter will 

include ideal relativistic hydrodynamics of the quark-gluon 

plasma. It will also include a discussion of the Bjorken-type 

picture of the time evolution of the plasma. 



2.1 THERMODYNAMICS - OF HADRONS PLASMA: 

The grand partition function for a many particle system at 
3 3  

temperature T and chemical potential p is defined as 

Here Boltzmann's constant is taken to be one and for later 

discussion it is assumed that both Planck's constant and 

velocity of light are equal to unity. In the above equation H is 

the Hamiltonian of the system and N is the particle number 

operator. All the formulas given below are valid for single 

component systems and the generalization of the treatment to 

several kinds of particles is straightforward. In the grand 

canonical ensemble both the energy and particle number fluctuate 

and their average values can be obtained in terms of Z as 

The logarithm of the grand partition function of particles and 

antiparticles with mass m, chemical potential p and degeneracy 

factor g in the large volume limit of a free gas is: 



with q = 1  for fermions and q = - 1  for bosons. In order to 

calculate the entropy density s and pressure P first recall the 

first law of thermodynamics 

which implies that the energy E is a thermodynamic function of 

the total entropy S, the volume V and the number of particles N, 

But for a grand canonical ensemble N is a varying quantity and 

therefore, another set of variables is more convenient than 

(S,V,N). One possible choice is (T,V,P) and the change of 

variables can be obtained by using a Legendre transformation 

i.e. 

where !J is the thermodynamic potential. The differential of 

equation (2.6) with the use of (2.5) leads to the following 

relation 

where 



The thermodynamic potential is also related to the grand 

partition function through the following relation 

  qua ti on (2.8) and (2.9) together give 

Also by putting (2.11) in (2.6) 

e = - P + s T + p n .  

In the case of fixed volume 

dP = s dT + n d p ;  

If there is no constraint on the particle number, the 

equilibrium value of N corresponds to a vanishing chemical 

potential. Then (2.12)~ (2.13) and (2.14) reduce to 

e + P = Ts; dP = s dT; de= T ds; B = 0. 

The momentum integral in equation (2.4), can be calculated 

exactly both for fermions and bosons if they are assumed to be 



massless 

TlnZ =g (V/12)[(7/30)n2T4+p 2~2+1/(2n2)p 
q q 9 

(2.16) 
9 

TlnZ = (ggV/90)n2T4 . 
9 

(2.17) 

For a free gas of quarks with two flavours and gluons, one finds 

the grand partition function of quarks, antiquarks and gluons 

where the degeneracy factors in accordance with the SU(3) gauge 

structure of QCD are calculated as 

For a pion gas the degeneracy factor is three and therefore, 

from (2.17) 

at the temperature T >> m 
W *  

Finally, an extra term is 

introduced in the partition function for the quark-gluon plasma 

which modifies eqn. (2.18) as follows: 

TlnZ =[(37/90)s~~~+p T2+1/(2n2)p '-B]v. 
P 9 q 

This extra term contains the bag constant B, which takes into 



account the difference of energy of true and QCD vacuum ground 
3 4  

states . As it was mentioned earlier that the plasma phase is 

taken to be baryon symmetric i.e. =0, one gets from eqn. 

i The energy density and pressure in the plasma phase can be 

. obtained by using eqn's (2.21, (2.11) and (2.21) 

For the'gas of massless pions, one can obtain the following 

relations for the energy density and pressure by using eqn9s 

(2.!9!,  ( 2 . 2 )  and (2.111, 

2 .  1. I PHASE TRANSITION: 

Now all the thermodynamic variables are kn6wn for both 

phases and one can construct a first order phase transition by 

using the Gibbs criteria i.e. 



where p, h and c refer to the plasma phase, hadronic phase and 

transition region respectively. In constructing the first order 

phase transition one should remember the following 

(a) only those solutions of equation (2.26) are acceptable which 

correspond to a stable hadronic phase at low densities, 

(b) the latent heat, E ,  - e 2  must be non-negative. 

The transition temperature 
I Tc 

for a first order phase 
I 

transition is determined by the condition: 

32 
For B = 3 1 8 ~ e ~ / f m ~  ,the transition temperature is 

The energy density corresponding to T and the latent heat of 
C 

the transition are 

Therefore, using this simple model a rough estimate of 

transition temperature is found. 



2 . 1 . 2  RESULTS - OF LATTICE GAUGE THEORY: 

The idea of the phase transition from hadronic matter to the 

quark-gluon plasma is also supported by the results of lattice 

gauge theory. This is a numerical non-perturbative approach to 
35.36 

finite temperature QCD, which allows one to treat the 

interaction exactly. This scheme is based on a stochastic 

sampling of the exact functional integral for the partition 

I 

I function of finite temperature QCD defined on a space-time grid. 
\ 

The partition function for a system described in terms of 

fields A(x) by a Hamiltonian H[A] is 

where 1/P is the temperature. The formulation of the theory for 

pure ~ ~ ( 3 1  Yang- ills theory can be described in three steps. 

(a)~he partition function Z is rewritten in the form of a 

functional integral over Euclidian space-time (i.e. with 

imaginary time variable): 

where L(A) is the Lagrangian of the ~ang-  ills field: 

The integration runs over all field configurations. 

(b)~n the next step, the Euclidian x-T continuum is replaced by 



a finite lattice, with Nx sites of spacing ax in the three 

spatial directions, and Nr sites of spacing aT in the time 

direction. 

(c)~n the last step, the gauge field variable A[(1/2)(xi+x.)] 
3 

associated with the link between two adjacent lattice sites i 

and j is replaced by the gauge transformation 

In this way the integration over all field configurations- is 

transformed into an integration over all elements of colour 

SU(~) at each lattice link. This gives us the partition function 

of the system and using that one can easily get the expression 

for the energy density. 

Figure ( 1 )  shows a plot of the ratio e/eSB versus T/A~ for a 
35 

lattice of size !Ox!0x!0x4. Elere 'SB refers to the energy 

density obtained by using the Stefan-Boltzmann law for an ideal 

gas of gluons, AL is the lattice parameter which has a typical 

value of 2MeV. The Fig. ( 1 )  shows a sudden drop of e/eSB from 

one to zero when the temperature T falls below about 80AL, 

corresponding to a value of the critical temperature Tc = 

208+20MeV. The above results are obtained for pure gluonic 

matter. This is shown instead of a gas of quarks and gluons 

because of the problems which from inclusion of fermions on the 

lattice. 3 6  



Fig. 1. The Monte Carlo s imula t ion  of pure SU(3) gauge theory .  



The conclusions of above discussion can be summarized as 

follows: the deconfinement phase transition seems to be a first 

order phase transition. The simple thermodynamical model used 

here and the more involved calculations of lattice QCD leads to 

a temperature range for the transition between 150MeV and 

250MeV. In case of lattice QCD calculations, what the result 

will be for the full theory inculding quarks is under heavy 

dispute and must be decided by future calculations. 

2.2 HYDRODYNAMICS - OF QUARK-GLUON PLASMA: 

The validity of the hydrodynamical description is dependent upon 

the very important assumption that there is local thermal 

equilibrium. To decide whether or not the plasma is in local 

thermal equilibrium very much depends upon the initial 

conditions and time evolution of the plasma. Consider a central 

collision of .two heavy ions with equal numbers of nucleons, A, 

at ultrarelativistic energies. At ultrarelativistic energies 

nuclei are highly Lorentz contracted in the direction of motion 

and sufficiently transparent to ' nucleons. The nuclear 

transparency is a result of time dilation ,length contraction 
14 

and the uncertainty principle. The idea can be illustrated as 

follows: A basic ingredient in the space-time description of the 

collision where particles are interacting through the strong 

interaction is the existence of a strong interaction proper time 
37  

scale 



reinteract after a proper time TO has elapsed after their 

production. The rapidity variable is 

/ v =z/t =tanhy, z= rsinhy, t= rcoshy 

~t the moment of collision, the system is excited to a state 

containing virtual fragments which materialize after a proper 
37 

time 70 = Ifm/c has elapsed. The virtual particles which are 

moving with a rapidity y materialize after travelling a distance 

r0 sinhy - exp(y) ro/2 . y>> 1 
3 , 1 4  

The l(y), which is known as the formation length increases 

exponentially with the rapidity variable. This exponential 

growth of length scales is also referred to as longitudinal 

growth. On the other hand the formation time of a particle 

increases linearly with the energy of that particle; that is, 

Also, nuclei are moving with a velocity which is close to 

velocity of light. Therefore, they are highly Lorentz contracted 

to a length 2RA /Y (where RA is the nuclear radius) in the 

direction of motion. In brief, an increase in the energy of a 



nucleus increases the formation length of virtual fragments i.e. 

secondary particles and decreases the length of a nucleus in the 

direction of motion. Therefore, at very high energies a nucleon 

can pass through a nucleus with little interaction and this is 

the origin of nuclear transparancy. 

In a central collision the nuclei pass through each other, 

producing two highly excited nuclear fragmentation regions 
B r 
\ containing the net baryon number of the system and these are 
I 

joined together by a central rapidity region with small net 
1 1  

baryon number but substantial energy density. The post 

collision geometry in the centre of mass frame, in which the 

nuclei are both highly Lorentz contracted pancakes, is 

represented in Fig. 2. The time evolution of the central 
1 1  

rapidity region has been studied by Bjorken with the 

assumption that at sufficiently high energy there is a central 

plateau structure for the particle production as a function of 

the rapidity variable. The essence of this assumption is the 

assertion that the space-time evolution of the system looks 

essentially the same in all centre-of-mass-like frames, i .e. in 

all frames where the emergent excited nuclei are, shortly after 

collision , highly Lorentz contracted pancakes receding in 

opposite direction from the collision point at the speed of 

light. 

The hydrodynamic equations also respect this symmetry. This 

leads to simple solutions of the hydrodynamic equations. I n  

particular , for central collisions of large nuclei, the fluid 
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- 
z =o 

c e n t r a l  r a p i d i t y  reg ion  
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Fig .  2 .  Schematic view of a c e n t r a l  c o l l i s i o n  of two h igh ly  
Lorentz-contracted u l t r a - r e l a t i v i s t i c  heavy i o n s  i n  t h e  c.m. 
frame, showing t h e  t a r g e t  and p r o j e c t i l e  fragmentat ion r eg ions ,  
and t h e  c e n t r a l  r a p i d i t y  regime. 



expansion near the collision axis is longitudinal and 

homogeneous. The fluid midway between the receding pancakes 

remains at rest, while the fluid a longitudinal distance z from 

that midpoint moves with longitudinal velocity z/t , where t is 

the time elapsed since the pancake collided. This picture is 

modified at large transverse distances, comparable to the 

nuclear radii. At large transverse distances, the fluid will 

/ expand radially outward, cooling more rapidly than the fluid in 
\ 

the interior. One of the very important ingredients which goes 

into the space-time description of the plasma is the initial 

energy density eo.In first applications of hydrodynamics to 
15 

hadronic collisions it was assumed that in the centre of mass 

frame nuclear matter would be stopped, thus leading to gigantic 

energy densities. For a simple proton-proton collision with each 

proton having centre of mass energy, E , of 25GeV and taking 

into account the relativistic c o n t r a c t i o n  in the longitudinal 

direction this leads to an energy density E given by 

38,11 
for a proton radius of 0.8fm. The recent estimates of about 

2GeV/fm3 differs from Landau's estimate because of the following 

two reasons: 
39 

(a) First of all it was realized that nuclear matter has a 

minimum thickness. Taking a nucleus and boosting to an infinite 

momentum frame does not produce a nucleus with vanishing 

thickness. The nucleus even in an infinite momentum frame will 



have finite thickness in the direction of motion and the 

thickness will be around lfm. This can be understood in terms of 

the individual constituents of nucleons. In the infinite 

momentum frame a nucleon contains large amounts of wee partons, 

i.e. constituents with almost zero momentum.Therefore, this 

implies a limiting thickness for nucleons , which in turns 
39 

implies a limiting thickness for a nucleus. This will modify 

i ~andau's original estimate drastically i.e. 

(b) The other factor which will reduce the initial energy 

density is the so called inside-outside cascade. As discussed 

before it will take a particle a proper time of T, ,after the 

collision, before it will materialize. Therefore, slow moving 

particles will materialize before the fast moving particles 

because of the time dilation. It implies that it is possible for 

very fast moving particles to materialize outside the nucleus 

thereby limiting the number of collisions. 

Bjorken's model takes into account both of the above 

mentioned effects. He estimated the initial energy density for a 

nucleus-nucleus collision by extrapolating the observed charged 

pion multiplicities in the central rapidity region in pp and pi 

collisions. For doing this, consider a thin slab of thickness 2d 

centered between the pancakes. Ignoring collisions between the 

produced hadrons, the energy contained within the thin slab is 



E =~(dE/dy)Gy =A(dE/dy)(l/2)2d/t . 

Therefore, the energy density in the central region is 

where V is the volume. In the energy range = 30-270GeV per 

nucleon, the number of charged pions per unit of rapidity is = 
40 

2-3, and one expects a total pion multiplicity density a 

factor 3/2 larger. The energy per unit of rapidity, assuming a 
41,42 

final pion energy = 0.4GeVI is thus d~/dy = 1.2-1.8GeV. 

Thus at the collision point one may estimate an energy density 

in the rest frame 

For t = r 0  = lfm/c, one gets 

c O  = 2 ~ e ~ / f m ~  

If it is assumed that the matter at r 0  consists of a gas of 

thermalized non-interacting quarks and gluons, then the 

temperature corresponding to the initial energy density of 



The energy density and temperature in the central region 

estimated by using charged pion multiplicities is roughly of the 

same magnitude as obtained by using thermodynamics. 

The criterion for the applicability of hydrodynamical laws 

is as follows: if the mean free path of particles is relatively 

short compared to the characteristic lengths of the system then 

one can apply the hydrodynamics. The mean free path of a 
k 
1 

\- particle is 

where n is the density of excited quanta and o is a mean 

scattering cross section in fm2 . For cold nuclear matter no = 

0.15 nucleons/fm3 and for a typical value of o = 4.0fm2 , the 

mean free path is X = 1.7fm. The increase in the energy density 

results in an increase of the total density of excited quanta 

which in turn implies a relatively short mean free path. 

2. 2. 1 HYDRODYNAMICAL LAWS : 

The laws of ideal relativistic fluid hydrodynamics are a direct 

consequence of conservation laws such as energy-momentum 

conservation, baryon number conservation etc. Most important of 

all is the law of energy-momentum conservation which is always 

true. In this respect the most important quantity is the 

energy-momentum tensor. The energy-momentum tensor can be 
43,44 

defined by using the kinetic theory as 



"here x is the position four vector, p is the momentum four 

vector, Po is the time component of the momentum four vector and 
f(x,p) is the one particle distribution function. The integral 

is taken over all the possible momentum states and the 

form of one particle distribution function is 

using the most general homogeneous Lorentz transformation and 

assuming the isotropy of f(x,p) in p one gets 

where e and P are the energy density and pressure respectively 

in the local rest frame. u' is the four velocity defined as 

The metric tensor gPv(for cartesian coordinates) is defined as 

goO,-gl 1,-g22,- g 3 3  = I ,  gDV = O  'Lfv 

The energy density 6 and pressure P are defined as 



(2.35) 

where all the barred quantities refer to the local rest frame. 

The energy-momentum tensor defined in eqn. (2.33) is a general 

tensor i.e. it is valid for any frame which is moving with a 

four velocity uD = ? ( I , ? )  with respect to the lab frame. It 

consists of 16 components where Too, is the energy density and 

 TO^ (i=1,2,3) correspond to the flow of energy density and ~~j 

correspond to the momentum density. The rest of the components 

form a 3x3 stress or momentum flow tensor. T'" is symmetric 
44 

tensor i . e. 

The symmetry of T" is a consequence of the law of conservation 

cf angular momentum. I n  the local r e s t  frame where uD=(i , s j .  The 

energy-momentum tensor is a 4x4 diagonal matrix i.e. 

The energy-momentum tensor i s  isotropic i n  the local rest frame 
- 

i.e. Pascal's law holds (what is equivalent to T 1  =TZ2 = T 3 3 )  . 
Beside all these properties, the energy-momentum tensor should 



obey another condition i.e. the non-negativity of the trace 

TV 20 or T O O - T " - T ~ ~ - T ~ ~  =€-3P > O  . 
v 

From eqn. (2.34) & (2.35) one gets 

where m is the rest mass and brackets represent the statistical 

average. In the case of massless particles or for very large E, 

one gets from eqn. (2.36) 

which is the equation of state for an ultrarelativistic gas. 

This implies that defining the energy-momentum tensor uniquely 

is equivalent to defining an equation of state. 

The hydrodynamical laws are essentially the same, when 

expressed mathematically, as the equation of continuity. In 

covariant formalism, for energy-momentum and baryon number - 
conservation, it implies that the 4-divergence of TPV and J' 

. should vanish i.e 



where J'= ?(n,vn) and n is the baryon number density in the 

local rest frame. In case of the central region, where the 

baryon number density is fairly small, one can drop eqn. (2.39). 

Therefore, here special emphasis is placed on eqn. (2.38) which 

is associated with the conservation of energy-momentum. The 

components of T" are given explicitly in eqn. (2.33). If in 

addition to conservation of energy-momentum, one places the 

1 requirement that the expansion of the matter takes place slowly 

compared to natural collision times, that is slow enough that 
/ 

38 
the expansion be reversible , then the entropy current is also 

conserved. This can be obtained directly from eqn. (2.38) by 

contracting with the four velocity uv 

from eqn. (2.33) 

or, upon using the fact that up is normalized to 1 one obtains 

uvaVe+( e + ~ )  aVuv =O . (2.41) 

Now by using the thermodynamic relations (2.12) and (2.14) in 

eqn. (2.41) one gets, 

~a~(U's) +pav(nuv) = O  



one finds the strict conservation law 

where s is the entropy density in the local rest frame. The 

entropy conservation in case of perfect fluids gives another 

reason, beside mathematical simplicity, for wishing to apply 

hydrodynamics only to perfect fluids. Entropy conservation 
f 
/ 

relates particle multiplicities at early times to those at later 

times i.e.it allows us to reconstruct primeval distribution from 

those observed in the final state of collision. Another set of 

equations can be obtained by contracting eqn. (2.38) with the 

tensor g M v - ~ M ~ v  . This leads to 

2.2. 2 ANALYTICAL SOLUTION OF HYDRODYNAMIC EQUATIONS: 

The analytical solution of eqn. (2.38) can be obtained for some 

very simple cases. For Bjorken's type of picture of time 

evolution of the plasma, eqn. (2.38) can be solved analytically 
1 1  

for one dimensional flow. One can note the following important 

points associated to Bjorken's type of picture of time evolution 

of the plasma: 

(1)1t is applicable only to the central region where baryon 

number density is vanishingly small. 

(2)1t assumes the existence of a central plateau which implies 

that the initial conditions imposed on this region, after a 



proper time = tfm/c, are invariant with respect to Lorentz 

transformations. 

(3)It assumes that the one dimensional flow should be a good 

approximation for times small compared to the radius of the 

nucleus : 

t < 1.2A= 7fm/c for U. 

/ 

(4)It also assumes that the velocity in the longitudinal 

direction follows a simple scaling relationship i.e. v = z/t, 

where z is the distance measured from the point of collision in 

the longitudinal direction and t is the time elapsed after the 

collision. 

The initial boundary conditions with the above assumptions 

- for the longitudinal evolution of the quark-gluon plasma are, 

7 = r0 =(t2 -z2) = constant 

Therefore, in this case hydrodynamic eqn. (2.40) simplifies to 

Also eqn. (2.42) for entropy conservation reduces to 

ds/d~ = -s/7, 



where so is the entropy density at proper time 70 . For an ideal 
relativistic fluid type of equation of state, one gets from eqn. 

1 

where p is replaced by (1/3)e. Finally integrating the above 
/ 

equation gives 

In this case e CY T4 and hence the temperature drops slowly, as 

T . One can also determine the differential equation for the 
time dependence of temperature of the fluid. From eqn. (2.'44), 

with E = e(P) and P = P(T), one gets 

Also 

where vs is the velocity of sound. Finally one gets 

dT/dr = -v /T . s 



One can now exploit the special form of the scaling solution 
38 

to discuss also the behaviour in the transverse direction. 

Since the scaling solution is invariant under Lorentz boosts 

along the longitudinal direction it is sufficient to go to one 

point where the equations are simple, z=0, and construct the 

solution in transverse direction. In the cylinderical 

coordinates with the beam direction as the z-axis the four 

i velocity is given by 

if there is azimuthal symmetry. At z=0 this reduces to 

u =y(l,O,v,,O) just as in the case of the longitudinal motion. 
Cz 

In case. of zero chemical potential and at z = 0, the entropy 

eqn. (2.42) and eqn. (2.43) reduces to 

(i/vS)aln~/at+vrvSay/at +(v~/v,)~T/ ar 

Addition and substraction of these two equations leads to the 

hydrodynamic equations of motion in the radial direction 

The important velocity in eqn. (2.49) is the velocity relative 



to the speed of sound. The first two terms in this equation 

correspond to a simple wave equation and last two terms in eqn. 

( 2 . 4 9 )  are the deriving terms. A class of solutions of eqn. 

(2 .49 )  also corresponds to simple rarefaction waves propagating 

into the fluid. Rarefaction waves are obtained by looking for 

the solutions independent of the proper time T. The following 

approximate rarefaction wave solution for eqn. (2.49) was 
38 

/ obtained by Baym 
\ 

where 



CHAPTER 3 

NUMERICAL SOLUTION OF HYDRODYNAMIC EQUATIONS 

This chapter includes a detailed discussion of the model 

used for initialisation of the quark-gluon plasma and details sf 

the numerical method used here to study the time evolution of 

the hydrodynamically expanding plasma. The kind of 

/ initialisation used here is formulated by using a parton cascade 
\ 4 5  

model based on perturbative QCD. Such a formulation will have 

obvious limitations in its applicability to such 

non-perturbative problems as pion multiplicities and entropy 

production in the hadronization region. Nevertheless, it 

involves more physics than the models being used by other 
46-48 

authors for generating the initial conditions for the 

plasma. Once the initial conditions are generated for the 

plasma, the hydrodynamic equa t ions  can be solved numericaliy by 

using an appropriate finite difference scheme. There are number 

of methods available for solving such equations 
48-50 

numerically . The method used here is the two-step 
51,52 

Lax-Wendroff method and it is chosen because of the 

following two reasons: 

(a) it centres the integration in the time and space variables 

properly; 

(b) it is simple and requires less storage and computer time 

than other available methods. 



3.9 INITIALISATION: 

The model used here consists of independent parton-parton 

scattering based on lowest order of QCD. The parton trajectories 

in coordinate space are classical. The collisions involved here 

are central and viewed in the centre-of-mass frame with equal 

target and projectile mass ( A  = 50 + A  = 50). The centre-of-mass 

energy is is = 2 0 G e ~ / ~  and all the results obtained here are for 

zero impact parameter. Each nucleon is represented by quarks and 

gluons, each carrying a fraction x of the nucleon's centre of 

mass momentum. The fractional momentum is distributed according 
5 3  

to 

where q(x)dx and g(x)dx are the number of quarks or gluons in an 

x interval dx. The integration of the above equation over the 

whole x range will clearly be an infinite number of partons. 

Equation (3.1) and (3.2) has a singularity at x=O, to avoid the 

singularity as x-0, a cutoff is put in around x,= 0.02. The 

cutoff is determined by demanding 



and is slightly different for quarks and gluons. One could 

choose a value of x o  closer to zero and follows the trajectories 

of even more partons. The advantage of this is better statistics 

but, this would slow the code down considerably and not 

necessarily provide that much improvement in accuracy for 

calculating processes involving hard partons. The antiquarks are 

omitted from the initialisation because for x0= 0.2, the 

corresponding integral over the antiquark distribution gives a 

value much less than 1. The fractional momenta to be used in the 

initialisation were stored in a lookup table with 200 entries. 

The entries x are determined by calculating the first 200 i 

values of from which 

gives an integral value. The code could then choose randomly 

from among these values during the initialisation. The partons 

were also assigned a momentum in the tranverse direction. This 

is being done by using a normal distribution with variance of 
5 4  

The coordinate space distribution was handled as follows: 

first the nucleon positions were assigned randomly within the 

spherical nucleus, and then the parton positions assigned 

randomly within a sphere of radius Ifm about the nucleon 

position. All of these coordinates were then Lorentz contracted 

as viewed from the centre-of-mass frame. The parton coordinates 



normal distribution of variance equal to the reduced de Broglie 

wavelength squared. Thus, the density of soft partons is lower 

than that of hard partons. 

The partons follow classical straightline trajectories until 

they undergo a collision. The method used here to determine that 

I 
a particular pair of partons undergoes a collision or not is 

simple: the three dimensional dot product of the relative 
/ 

position and momentum of each parton pair was evaluated at the 

beginning and end of each time step (assuming no collision). If 

the product changed sign in the step, a collision potentially 

had occured. If d s  (where s,t,u are the usual Mandelstam 

variables) involved in the collision were less than 2GeV, the 

collision was discarded. A check was made to see if the distance 

of closest approach was within do/n, the cross section a being 

defined by 

with do/dt defined below. 

The cross sections were taken from lowest order of QCD 
55  

results for 2-2 scattering . For simplifying the algorithm the 
most singular part in t of the differential cross section is 

taken i.e. 



One can find a value for t such that for a random number x 

between 0 and 1 ,  the following expression could be inverted 

analytically: 

[do/dt ldt 

The cutoff in t was determined by putting a cutoff of 1/2 GeV/c 

i in transverse momentum. 

The code also takes into account the scattering of off shell 

partons (i.e.inelastic collisions). Such off shell scatterings 

can not be omitted beacuse then the calculations would be 

unrealistic, the nuclei would be much too transparent to each 

other. In this code once a parton has been scattered off shell, 

it decays to two collinear zero mass partons with life time 

equal to g/asm, where as is the strong coupling constant.   he 

energy of parent parton is divided into fractions z and 1-z 

which is carried by daughters at the time step when it decays. 

The fractions are distributed according to the ~ltarelli-Parisi 
56 

splitting functions 

is the distribution of partons of type j, produced-in 
where Pi/j 
the decay of parton of type i, carrying off an energy fraction 



2 .  Lastly, the QCD constant as was set equal to 1/2 throughout. 

Once the events have been generated by the simulation, the 

next step is to bin the particles properly. To do this a 

computer code has been written which generates a space mesh of 

size 16x16~16, which is equivalent to 4096 fluid cells. The cell 

width in the longitudinal direction is of the size 0.5fm whereas 

in transverse directions it is lfm, giving a volume of each cell 

of 0.5fm3. The reason for a smaller width size in the 

longitudinal direction than in the transverse directions is 

because the cells are highly Lorentz contracted in this 

direction. For determining the motion of fluid cells, the 

procedure used here is to contruct a energy-momentum'tensor for 
4 3  

the N particles in each cell via 

where V is the volume of the fluid cell. The velocity components 

of each cell are determined by using the fact that momentum 

densities should vanish, T O i  = 0 ,  in the local rest frame of the 

cell. The transformed tensor is defined by 

where A: is the pure Lorentz boost defined as 



BY substituting the above equations in equation (3.10) one gets 

L the following expressions for three velocity components: 

where 

The above equations can be solved for different components of 

velocity by using a simple one-point iteration procedure. This 

binning code calculates the initial energy density E in the 

local rest frame of the cell by using the equation ( 3 . 1 0 ) .  The 

pressure P of a cell is determined by using an equation of state 

for an ideal relativistic fluid i.e P =(1/3)e. The energy 

density E, pressure P and the hydrodynamic velocity ? of each 

cell is stored in a file, which is then used as the initial 

conditions for the numerical solution of hydrodynamic equations. 



3.2 THE TWO-STEP LAX-WENDROFF SCHEME: 

In this section a numerical method of solving the hydrodynamical 

equations is presented. The hydrodynamical equations for the 

time evolution of the quark-gluon plasma are given by using the 

equation ( 2 . 5 4 ) ,  

where first of these equations is associated with the law of 

conservation of energy and the last three equations are 

associated with the law of conservation of momentum. The above 

equations consist of fir'st order hyperbolic partial differential 

equations and they are non-linear. The problem posed by the 

numerical solution of such equations is classified in a broad 

class of problem i.e. the initial-value problem. An 

initial-value problem is the one where the state of system is 

completly specified at some initial time with the help of 

certain variables associated with it. Then, with the help of a 

differential equation or a set of differential equations these 

variables evolve in time. In the case of the hydrodynamical 

- expansion of the quark-gluon plasma, variables of interest are 

the energy density E ,  pressure P and the hydrodynamic velociky 



In the code described here, these equations are solved at 

each point of a cubical mesh, where each point on the mesh is a 

representaive of some fluid cell. The mesh points or fluid cells 

at the boundaries are treated differently than the interior mesh 

points. Cartesian coordinates are being used, because these 

coordinates are the most appropriate for impact parameter 

averaging problems. For problems with non-zero impact parameter, 

1 the more appropriate coordinates for heavy ion collisions is 
44  

either cylinderical or spherical. But the use of spherical or 

cylinderical coordinates give rise to another problem i.e. the 

hydrodymaical equations can no longer be written in a 

conservative form(i.e. a form similar to the equation of 
50 

continuity). Another problem, which arises due to the use of 

spherical' or cylinderical coordinates is the appearance of the 

additional term, ra~/ar. When such a term is approximated on a 

computer generated mesh, the result is an unstable scheme at t h e  
57 

axis r=O. 

The time evolution of the variables E ,  P, V associated with 

a particular fluid cell is dependent upon the variables 

associated with the neighboring cells. This fact is taken into 

account by using the central difference scheme. It means the 

derivative at a mesh point i is calculated by using the values 

of the variable at mesh points i+l and i-1. This procedure is 

used for all the interior mesh points. The mesh points at the 

boundaries, for which i= i  a backward difference scheme .is max ' 
------------------ 
'1n here the term mesh point or a fluid cell will be used 
interchangably. 



used i.e. the derivaties at i are evaluated by using the values 

of the variables at mesh points i and i-1. The mesh points for 

which i=i mint a forward difference scheme is being used i.e. the 

derivatives at i are being evaluated by using the values of the 

variables at mesh points i and i+l. 

T" used in the above equations is defined according to the 

equation ( 2 . 4 9 )  as, 

Before discussing the numerical solution of the above equations 

we will write down these equations in a manner which is similar 

to the equation of continuity i.e. 

where p is the space density of some quantity and p? is the flux 

of this quantity. For doing that one can define the following 

variables, 

the variables E, Px, P and PZ represent the energy density and 
Y 

4 6  



the momentum density of a fluid cell in a frame with respect to 

which it is moving with a velocity C. e and P are the energy 

density and the pressure in the local rest frame of the fluid 

cell. Now all the components of tensor T" can be expressed in 

terms of E, Px, P and PZ with the help of equations ( 2 . 49 )  and 
Y 

(3 .19-3.22)  as follows: 

Using equation (3 .23 )  one can write equations (3.15-3.18) as 

follows: 

The method used here for solving the above set of equations 
52 

is the two-step Lax-Wendroff method. This method has second 

order accuracy in time and space variables. Before discussing 

the above numerical method, a few words will be said about the 

general formulation of the initial-value problem. To do this a 



simple differential equation in one dimension is considered. 

~ o s t  of the ideas applicable to a one-dimensional problem, can 

easily be generalized to a multi-dimensional problem. 

Consider a simple differential equation 

dx/dt = Ix 

where I is a non-linear integral operator. x(r,t) is a state 

vector of the system which defines the system over a space 

domain R=R(~) and for all time. If x=xO is defined at time t=O 

then the above differential equation determines x(r,.t) for all 

time, provided the form of I is known. For solving such a 

differential equation on the computer, one needs to define a 

discrete space-time mesh. Once this has been done, the time 

integration of the above equation relates the state vectors x n+ I 

and xn of the system at adjacent time points t and tn: 

The integral on the right-hand side of equation (3.28) cannot be 

evaluated exactly, since the vector x(t') is not known for all 

n time t' in the interval, t L t' stn+'. Hence the essential 

finite difference approximation is introduced by assuming that 

for small time steps, At = tn+'-tn, the integrand in equation 

(3.28) may be approximated by a finite Taylor series expansion, 

2 ~ n  here a particular time point is written as a superscript to 
the variable and a particular space point as a subscript to the 
variable. 



c 
Q 
i where p is the order of accuracy in the time step At to which 
5 

;< the integration scheme is carried out. Usually in a finite 

difference scheme higher order terms than the second are not 

included. In practice second-order accuracy can be achieved by 

using the variables at previous time levels, or by defining the 

intermediate time, or by using the unknown variable at the time 

step ahead. The above integration scheme, with second-order 

accuracy and by using the variables at the time step ahead, 

takes the following form: 

where 6 is the interpolation parameter and second-order accuracy 

is only maintained when 6 =1/2. In the special case when 6 =0,  

the new state u n+l is defined explicitly by the known state xn 

at the previous time step. In this event method is said to be 

explicit, while on the other hand if 6 # 0  the method is said to 

be implicit. 

The method used in this code is an explicit method and 

second-order accuracy in time is achieved by defining the 

intermediate time. Equations (3.24-3.27) have a general form of 

sort , 





at a boundary surface. The subscript N appearing in the above 

equation correspond to the boundary. It can take only two 

possible values i.e i or i max min when considered for the 

boundary in x-dire~tion.~ For a cubical mesh there are number of 

different boundary conditions such as boundary surfaces, 

boundary lines and boundary points. Equation (3.32) corresponds 

to a boundary surface and in the code we have six such equations 

corresponding to six surfaces of the cubical mesh. Similarly, 

there are 12 boundary lines which correspond to the subscripts 

of the form (N,N,k) and there are eight boundary points (N,NJ). 

For all these boundaries, equations similar to the equation 

(3.32) are being used with little changes. All of them are not 

written here explicitly because it is too cumbersome to write 

them down. 

Next,, from equations (3.24-3.27) and (3.31-3.32) one gets 

the values of E, Px, P and PZ at the intermediate time step and 
Y 

then these values are used to define the fluxes at the 

intermediate time. But, here all fluxes are defined in terms of 

E, Px, Py, PZ, vx, vy, vz and P I  and yet we do not know the 

values of vx, v v and P at the intermediate time. This can be 
Y' z 

accomplished with the help of equations (3.19-3.22) and the 

equation of state. Equations (3.19-3.22) reduce to 

4The subscripts i ,  j ,  and k will refer to x, y, and ~-directions 
respectively. 



The above set of equations can be solved simultaneously 

unknowns e ,  v v and vZ by using the known variables 
XI y f  

P and Pz at the intermediate time step. This is being 
Y' 

(3.35) 

(3.36) 

for the 

E, Pxf 

done by 

solving the following equation, which is obtained from equations 

(3.33-3.361, 

where z=?.? and p.p  are the squares of the magnitude of velocity 

and momentum vectors respectively. Equation (3.37) can be solved 

for z by iteration and the iteration procedure will be stable if 

dG(z)/dz is less than 1 ,  where G(z) is equal to the right-hand 

side of equation (3.37). The condition that dG(z)/dz < 1 is 

satisfied, if z < 1 and p.p  < E2. For hydrodynamical equations 
- 

both conditions are satisfied because v, the hydrodynamical 

velocity of a fluid cell, can never exceed the velocity of 

light(c = I ) .  p which is the total momentum density of the fluid 

cell is always less than or equal to E. In the code, however, 

some difficulties occur for the fluid cells at the edges where z 

> 1 .  Such a circumstance is physically impossible, corresponding 

to speeds exceeding that of light. This situation can be 

anticipated whenever p . p  > E2. A situation like this is always 

associated with stagnation of the fluid relative to the 

computational mesh, in which case the energy flux vanishes but 



the momentum flux remains appreciable. To avoid this difficulty, 

the code bypasses the iteration procedure and lets the cell move 

with the same speed as the neighbouring cells. 

Once the value of z is known at the intermediate time step, 

one can calculate y = 1/(1-z) and then e, vx, vy and vZ can ' .. 
be obtained for the time t n+1/2, by using equations (3.33-3.36) 

respectively. Using the new values of these variables, all the 

fluxes are updated for the time t "+'I2. Finally, the value of 
n+l variable u is calculated for the time step t , by using the 

following equation: 

The above equation is only valid for the interior mesh points, 

therefore, again for the mesh points at the boundaries equations 

similiar to the equation (3..32) are being used. Finally, using 

equations (3.33-3.37) the values of e, v v and vZ are x' Y - 

calculated for the time step tn+'. Then the same procedure is 

being used for all subsequent time steps. 

One of the most important requirements for the numerical. 

method is stability i.e. the solution obtained should be 

bounded. For a multi-dimensional two-step Lax-Wendroff method 
5 1 

the stability condition is 



where is the fastest propagation velocity anywhere on the 

space mesh. This condition is not surprising because one is 

required to choose a time step smaller than the smallest 

characteristic physical time in the problem. In this code, the 

size of time step is taken to be 0.lfm and the size of space 

step in x and y-directions is l.Ofm, whereas in the z-direction 

it is 0.5fm. These numbers obviously satisfy the equation (3.39) 

and ensures the stability of the numerical method used here. 

3 . 3  RESULTS: 

Before discussing our results, we say a few words about the 

computer generated initial conditions. As mentioned earlier, the 

hydrodynamics? description is valid only if the system is in 

local thermal equilibrium. Because of the limited number of 

particles in each fluid cell we can not check the momentum 

spectra of the particles in each direction to determine how 

close to thermal equilibrium the distribution is. However, a 

quick check of the computer generated initial distribution is to 

calculate the ratio of the spatial-diagonal components of the 

energy-momentum tensor in the local rest frame of the system. 

Obviously, this ratio should be unity if the momentum 

distribution is istropic. In our code, the components T", T~~ 

and T~~ of the energy-momentum Lensor are first transformed to 

the local rest frame of a fluid cell and then the ratio of 



- 
F33/T1 1 is calculated. A plot of this ratio versus the radius 

vector is shown in Fig. (3)(the radius vector of a fluid cell is 

defined as the distance from the origin of the space mesh). For 

most of the fluid cells, this ratio is between 0.5 and 1.75. The 

average ratio for the initial distribution is 1.57 where the 

average is taken over all fluid cells. 

In Fig. (4) the behaviour of energy density with respect to 

time is shown. It is a log log plot and a regression line is fit 

to the data. The slope of this line is -5/3 i.e. E is 

proportional to t -5/3. In case of simple longitudinal 
1 1  

expansion the energy density is proportional to t-4/3. The 

reason why we get a larger value for the time exponent is as 

follows: our model includes both the longitudinal and the 

transverse expansion of the quark- gluon plasma as compared' to 

the model used in reference 1 1  where only the longitudinal 

expansion is taken into account. At this point we would like to 
1 1  

mention that earlier it was calculated by Bjorken that after t 

2 3-4fm/c, for U-U collisions, no more than 50% of the fluid 

moves one dimensionally. In our case the'motion of the fluid is 

not one dimensional since the beginning. It can be seen in Fig. 

(4) where the energy density falls off with time as t -5'3 from 

the beginning. This is possibly a result of the intermediate 

mass number of nuclei we are looking at. 

In Fig. ( 5 ) ,  ( 6 1 ,  ( 7 )  and (8) we have plotted the 

longitudinal distributions of the energy density, temperature, 

longitudinal velocity and the transverse velocity. In all these 
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FlG.3. The ratio of T33 to TI1 is plotted versus the radius 
vector. The radius vector for a fluid cell is defined as the 
distance from the origin of space mesh. 



Log time 

Fig. 4. The log of energy density lotted versus the log of time 
for the fluid cells at the center o /= the computer generated mesh. 



Fig. 5. The longitudinal distribution of the energy density at  
times 0, 1, 3 and Sfm/c. The units of vertical axis is GeV per cubic 
frn and the units of horizontal axis is fermi. 



Fig. 6. The longitudinal distribution of temperature. The units 
of vertical axis are GeV and the units of horizontal axis are fm. 



Fig. 7. The longitudinal distribution of longitudinal velocity. 



Fig. 8. The longitudinal distribution of transverse velocity. 



graphs, the horizontal axis corresponds to the collision axis 

and the size of this axis is exactly the same as the size of 

longitudinal axis of the computer generated mesh. Each figure 

has four graphs which corresponds to different time steps. For 

calculating a variable at a particular point in the longitudinal 

direction an average is taken over transverse directions, In all 

the figures, the first plot corresponds to the computer 

generated initial conditions. In Fig. (5) where the longitudinal 

distribution of energy density is plotted, we see at z=O(where 

the longitudinal axis is labelled as z) the energy density is 

maximum and it falls off as we go away from z=0. With time the 

energy density decreases and finally at late times like t =4fm/c 

or t =5fm/c it is roughly zero for all the fluid cells. It means 

that around this time most of the fluid has expanded outside the 

boundaries of the computer generated mesh. Fig. (6) shows the 

behaviour of temperature. In Fig. ( ? )  and Fig. (8) we have 

plotted the longitudinal and the transverse velocities 

respectively. The transverse velocity of a fluid cell is defined 

as, vt=(vx2 + v 2 ,  'I2. For times between 0-Zfm/c most of the 
Y 

fluid cells in the center have zero longitudinal velocity 

whereas the fluid cells at the boundaries are moving with a 

velocity close to the velocity of light. Initially, the 

transverse velocity of the fluid cells at the center is small 

compare to the longitudinal velocity but it increases with time. 

Similarly in Fig. ( 9 ) ,  ( l o ) ,  ( 1 1 )  and (12) the transverse 

distribution of energy density, temperature, longitudinal 

velocity and the transverse velocity are plotted versus one of 



Fig. 9. The transverse distribution of energy density. 



Fig. 10. The transverse distribution of temperature. 



Fig. 11. The transverse didribution of longitudinal velocity. 



Fig. 12. The transverse distribution of transverse velocity. 



the transverse direction. The value of a variable, at a 

particular point in the transverse direction, is calculated by 

taking the average over the longitudinal direction. The 

transverse distribution of the energy density and the 

temperature, shown in Fig. (9) and Fig. ( l o ) ,  almost looks like 

a normal distribution. 



CHAPTER 4 

EXPERIMENTAL SIGNATURES OF THE PLASMA 

The quark-gluon plasma phase is very short lived i.e. the 

initial plasma temperature To will fall off very rapidly to the 

critical temperature Tc. This fall off is due to the volume 

expansion and the emission of particles from the surface of the 

plasma. There are number of possible scenarios that have been 
25,32,65 

discussed by different authors, as to how the system 
,' 

will go through the confinement phase transition. For example, - 
25 

in one scenario the system at Tc will exist in a mixed phase 

for an appreciable length of time. In that case an equilibrium 

phase transition, based on the Maxwell condition for coexisting 
32 

phase., occurs. In another scenario , the plasma supercools to 

some temperature T below Tc at which point the plasma makes a 
99 

sudden transition to a superheated hadron vapour at a 

temperature Th above Tc. In this scenario the transition from 
, 

one phase to the other is assumed to be instantaneous. Both 

possibilities are shown in Fig.(13). In any case, the 

interactions between the plasma constituents will not cease at 

the phase transition. The characteristic kinematical signature, 

if any, exhibited by the quark-gluon plasma, would almost with 

certainty be destroyed by these final state interactions. 

Therefore, any analysis which can be helpful in determining a 

direct or indirect signal for the plasma formation must be based 

upon the observables that are not affected by the final state 

interactions. One such observable has been discussed here in 
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Fig. 13. The equation of state and different possible scenarios 
for the phase transition are shown. 



6 
s detail; quantum numbers that remain unchanged by strong 

interactions such as strangeness or charm. 

30,32,58 
In recent years many authors have considered 

strangeness production as the most promising signal for the 

formation of quark-gluon plasma. The reason for this is as 

follows: as the quark-gluon plasma lifetime is much too short 

for weak interactions to be of importance, strangeness once 

produced can only be destroyed if a strang quark and a strange 

antiquark meet and annilihate. Such a process is not very likely 

unless strange quarks are very abundant. Therefore, the amount 

of strangeness observed, long after the reaction is over, can be 

expected to be a good signal for the formation of quark-gluon 

plasma, so long as interactions in the hadronic phase do not 

result in appreciable strangeness production as well. In the 

plasma phase, it is argued that a large amount of strangeness 

will be produced because of the small mass of the strange quark 

in comparsion to the temperatures of interest. 

An important question, which should be answered before one 

deals with the problem of strangeness production is, whether the 

plasma is in local chemical equilibrium or not. For a static 

quark-gluon plasma in chemical equilibrium, the chemical 

potentials ki and the number of particles n.(subscripts i refer 
1 

to different species) are constant with respect to time. When 

the plasma is not in chemical equilibrium, the question of how 

fast the plasma gets to the state of chemical equilibrium 

depends upon the relaxation time and lifetime of the plasma. The 



essential ingredients required for answering this question are 

the production and annihilation rates of strangeness inside the 

plasma. Such analysis also requires the knowledge of different 

chemical reactions responsible for the annihilation and the 

production of strangeness, and also the cross sections 

associated with them. With the help of rates and cross sections, 

one can evaluate the rate equation which will determine the time 

evolution of strange quarks. Another added complication arises, 

because of final state Pauli blocking on the rate constants for 

the strangeness production processes. As more and more strange 

quarks and antiquarks are produced they occupy, in part, the 

available phase space and may impede production through the 

influence of the Pauli exclusion principle. 

Therefore, in the next section, rates and cross sections are 

calculated for different strangeness producing reactions. A rate 

equation is discussed as well as some simple models which were 
3O,32 

used in the past for studying the strangeness production as 

a signal for the plasma formation are discussed. 

4.1 STRANGENESS PRODUCTION RATES AND CROSS SECTIONS: --- 

In lowest order in perturbative QCD ~ ; - ~ ~ a r k  pairs can be 

created by annihilation of light quark-antiquark pairs and in 

the collision of two gluons. Feynman diagrams governing the 

creation of ~ s - ~ u a r k  pairs are shown in Fig.(14). Diagrams 

(14a)-( 14c) correspond to the creation of ~ s - ~ u a r k  pair from 

gluon annihilation and diagram (14d) corresponds to the creation 



Fig .  14. The d i f f e r e n t  s t r angeness  genera t ing  processes  i n  
the  lowest  o rde r  of OCD i n  the  quark-gluon plasma. 



of ~ I - ~ u a r k  pair from light quark annihilation. The invariant 

matrix elements for processes in Fig.(14) have been calculated 
59 60 58 

by Georgi et.al, Combridge and by Matsui and McLerran. The 

squared invariant matrix elements, summed over initial and final 

colour, spin and flavour states are for the individual digrams 

shown in Fig.(l4) respectively: 

Here ~ = ( p , + p ~ ) ~ ,  t = ( ~ ~ - p ~ ) ~ ,  and ~=(p,-p,)~, which satisfy s+t+u 

= 2m2, are the Mandelstam variables. The four mon-ienta of the 

incoming particles are p1 and p2 while p, and p, are the four 

momenta of outgoing particles and m is the mass of strange 

quark. The number of light quark flavours contributing to the 
- - 

reaction qq-ss is Nf =2. The degeneracy factors for gluons and 



quarks are: 

The strong coupling constant a taken here at an invariant 
60 

momentum Q2 which is chosen as Q2 =s. AS this choice for Q~ is 

independent of the squared momentum transfer t, the averaged 

cross sections may be easily determined by integrating over the 

allowed range of t: 

where t+ =m2-(s/2)(1-~(s)), t- =m2-(s/2)(1+~(s)) and ~ ( s )  

=(1-4m~/s)'/~. Thus one finds: 

The rate R, which is a function of temperature, is defined 

to be the number of reactions of the specified kind per unit 

volume per unit time. For a reaction of the type a+b-c+d, the 

principal physics is contained in the factor <o(a+b-c+d)vrel>, 

where v is the relative velocity of a and b defined as re1 

PI - ~ 2 / 1  PI I I P ~  1 and the angular brackets denote an averaging 

over relative velocities of a and b. The invariant rate per unit 

time per unit volume for the elementary processes shown in 
58 

Fig.(l4) is then 



The factor 1/2 in front of the phase space density of gluons 

accounts for the fact that the double integration over p1 and p2 
58 

counts each gluon pair twice. In the above equation f (pi) and 
g 

f (pi) are the momentum distribution functions. These functions 
9 
are approximated by the Bose and Fermi distribution functions 

respectively: 

where for light quarks and gluons p2 =O and for strange quarks 

p2 =m2. For the gluonic part of R, the integrals over p1 and p2 

can be carried out analytically by expanding the Bose function 

in a power series in exp(-p/T) and putting this in equation 

(4.11); 

For calculating the quark contribution to the reaction rate, the 

- integrals must be evaluated numerically. The rates have been 

computed numerically and plotted in ref.30 for 0.43 I m/T 12.0. 

Another parametrization in that range suggested by J. Kapusta 



32 
and A. Mekjian is 

~ ( g g  or qq-ss) =2u:~'exp(-~m/~). 

For a =0.4 and m =180MeV, the plot of R versus-T using equation 
S 

(4.14) is shown in ~ig.(l5). 

For calculating the relaxation time, consider a static 

quark-gluon plasma. It means all thermodynamic variables depend 

on time and are uniform in space. What is needed here is a rate 

equation which can take into account both the annihilation and 

production of strange quarks. If the statistical independence of 

the production and annihilation processes is assumed then the 

loss term is proportional to the square of the density ns of 
30 

strange and antistrange quarks at a particular time. Then the 

following differential equation describes the time evolution of 

ns: 

where n eq* is the equilibrium density of strange at a particular 

temperature. For fixed temperature, the solution to (4.15) is 

where r is the relaxation time given by 

7 = neq*/(2~). s 
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Fig.15. The plot of production rate for strange uarks in the 
plasma phase, mass of the strange quark is ta en to be 0.180GeV 
and the strong coupling constant is 0.4. 

9, 



The s-quark equilibrium number density is 

For an expanding plasma, where all thermodynamic variables 

depend on time and space variables, a dilution term must be 

included in equation (4,151 to account for the change in volume 

with respect to time. In this case one can write 

Equations (4.14-4.18) will be used later, when a model used by 

J. Kapusta and A. Mekjian is discussed. 

4 .  1.  I KAON TO PION RATIO: --- 
A proposed signal for the formation of the quark-gluon plasma is 

the relative abundance of kaons to pions. This can be explained 

as follows for a baryon-free plasma: at a fixed temperature T 

the density of non-interacting strange quarks is much higher 

than the density of non-interacting kaon, because of the 

following two reasons. 

(a) Strange quarks have more degrees of freedom (two spin and 

three colour) than the kaons. 

(b) The current mass of a strange quark (roughly, m=180MeV) is 

less than the mass of kaon (mK=494~ev). This gives a much 

- greater suppression through the Boltzmann factor for kaons than 

for the strange quarks. 

For calculating the kaons to pions ratio, authors of ref.(32) 



6 1 
have used a thirty-year-old idea due originally to Landau. 

According to this idea, the measure of strangeness content is 

the strangeness density divided by the entropy density, which is 

a dimensionless number. Ref. 32 has taken simple Bjorken's model 

for longitudinal hydrodynamic expansion of the plasma. Most 

important of all, the entropy density in this model is 

determined as function of time through the following 

differential equation, 

For determining the temperature as function of time, the 

following expression for the entropy density in the plasma phase 
3 2  

is being used, 

Here only two flavours of quarks(up and down) are taken and they 

are assumed to be massless and the chemical potential of the 

plasma is taken to be zero. From eq.(4.19) and (4.20), one can 

find out the time development of temperature i.e. 

where To  is the initial temperature of the plasma. In this 

scenario, initially the system is completely in the quark-gluon 

plasma phase. By time t,, temperature has dropped to the 

critical temperature Tc and from then on system is assumed to be 



in mixed phase i.e. consisting of quark-gluon plasma and 

hadrons. During this adiabatic phase transition the system stays 

at Tc until all the latent heat is converted to expansion 

energy. The time t, when the system first enters the mixed 

phase, can be obtained from eq.(4.21), 

For calculating the entropy density in the mixed phase, let us 

denote f(t) as the volume fraction of matter which is in the 

plasma phase. Then 

where sh(T) i.e. the entropy density in the hadronic phase. For 

a hadronic gas consisting of massless pions, it is given by the 

follcwing equaticn, 

The change in the entropy density is due to the volume expansion 

of the system. By combining eq.(4.23) and (4.19)~ one can solve 

for f(t) i.e. 

The time t, at which the phase transition is completed, can be 

obtained with the help of condition that f(t2) = O r  



For tracking the time evolution of strangeness density the 

rate eq.(4.18) is being used. For one dimensional longitudinal 

expansion where V - l/t, eq.(4.18) gives 

where R is obtained by using eq.(4.14). The initial condition 
qg 

is chosen to be ns(to) =O. In the mixed phase. the rate equation 

for kaons is 

Here fl(t) =I-f(t) is the fraction of the system which is in the 

hadron phase. The r a t e  of strangeness production for the 
62 

hadronic phase is 

where mK is the mass of a kaon and K3 is the modified Bessel 

- function of order 3. The equilibrium number densities for 

strange quarks, pions and kaons used here, are 0btained.a~ 

follows; 



4l.1218 T', (if mn =O), (4.31) 

-$d3k/(2a) {exp[ (k2+mi)1/2/~]-l)-1 "K- - 1/(2n2)mi T K2(mK/~). (4.32) 

where m is the mass of pion which is 138MeV and K2 is the 
A 

modified Bessel function of second order. The integrals in 

eq. (4.30) and (4.32) are performed by taking the 

Maxwell-Boltzmann limit, whereas the integral in eq.(4.31) is 

performed by taking the non-relativistic limit. The initial 

condition, for eq.(4.28) is nK(t,) =O. Ratio of the strangeness 

density to the entropy density in the mixed phase is calculated 

as follows: 

The behaviour of the ratio nS/s is plotted versus time in 

~ig.(16), for two different values of initial temperature i.e. 

To =250MeV and To =500MeV. This ratio is a continuous function 

of the time, because the transition from one phase to other is 

continuous. For To =250MeV, ns/s ratio becomes constant around t 

=35fm/c and takes a saturation value which is roughly equal to 

0.035. The corresponding K-/a- can be obtained multiplying nS/s 

ratio by 5.4 (see eq.(4.31) and eq.(4.24)), and for this ratio 
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Fig. 16. The plot of the ratio of strangeness density to entropy 
density for two different values of initial temperature. This ratio 
is calculated by using the model of reference 32. 



one gets 0.217. For the initial temperature of 5OOMeV. nS/s 

ratio becomes constant around t =300fm/c and takes a saturation 

value which is equal to 0.055. The corresponding K-/n- ratio is 

0.297. The observed value of this ratio at the same energy, E 
- 63 

=lo-100GeV, for pp collisions is 0.07+0.02. It is fair to 

compare with pp collisions because they form a net baryon number 

equal to zero system. In this model the final ratio of K-/a- for 

the quark-gluon plasma is enhanced over that in pp collisions by 
a factor of about 3. An independent analysis of strangeness has 

been carried out simultaneously by T. ~atsui, B. Sevtitsky, and 
58 

L. McLerran with similar conclusions. 

4 .  1 .  2 THE MODEL: - 
For calculating the ratio of strangeness to entropy, we have 

taken a different approach than in reference 32. There are 

number of reasons for doing this and they are given below: 

( 1 )  The most important assumption of the model used by Kapusta 

et.al is the validity of one-dimensional scaling hydrodynamics. 

In this model the tranverse expansion of the system is 

neglected. This implies that the entropy density s(t) a t-' and 

the volume ~ ( t )  a t. Therefore, this simple one-dimensional 

model gives a more slowly expanding system than what one would 

for a full three-dimensional model. 

(2) In their model, when the system is in the mixed phase, the 

- rate at which strangeness is fed from the plasma into the hadron 
32 

phase is subject to some uncertainty. In one calculation the 

loss term was taken to be n,df/dt, so that equation (4.27) was 



used at Tc instead of equation (4.15). In another calculation it 

was assumed that strange quarks and kaons were in chemical 
58 

equilibrium. 

(3) The equilibrium densities for strange quarks and kaons are 

needed in the rate equations, which were calculated by using the 

Maxwell-Boltzmann limit. Therefore, this 

approximation in their model. 

In our model, the time evolution of 

governed by the following rate equation; 

d~H/dt = v ~ ~ ) R ~ ( T )  , 

introduces another 

strange quarks is 

(4.34) 

where N: is the total number of strange quarks at some time t in 

a cell i with volume vi. The production rate R for the strange 

quarks is taken from equation (4.14). In our model, first 

problem mentioned above has been cured by using full three 

dimensional treatment in the propagat.ion code. This code gives 

e ,  P and v ,  at each time step, for each individual cell. The 

cell temperature has been calculated in the code by using the 

following expression, 

- The volume of a moving cell is V(t) = y V , ,  where V, is the volume 

of the cell in the local rest frame. Using equation (4.35) in 

equation (4.14) one obtains the production rate, which has been 



used in equation (4.34), for calculating the number of strange 

quarks in a cell. The total number of strange quarks in the 

system is obtained by summing over all the cells. 

Note, in equation (4.34) we have dropped the annihilation 

term for the strange quarks and this takes care of the second 

problem. Dropping the annihilation term may slightly 

overestimate the number of strange quarks in the system, but 

even then the number of strange quarks obtained by us is smaller 

than the number of strange quarks obtained by other 
30,32,58 

authors . This also avoids the third problem because, the 
equilibrium densities of strange quarks and kaons are no longer 

needed. 

In our code, by t = 3.0fm/cI the system has expanded to the 

boundaries of computer generated mesh. At this point particles 

started to escape from the surface and Because of that t h e  total 

entropy and the energy of the system started to decrease. In 

principle, the entropy should be constant but in here it is not 

because of the small size of the mesh. This may possibly be 

achieved by taking a large space grid, but this requires much 

more computer memory, storage space and will slow the code down 

considerably. On the other hand, constant increase of the 

entropy in a numerical scheme implies that the numerical method 
64 

used is unstable. Therefore, the decrease in entropy is another 

check on the stability of the numerical used here. But this 

decreasing entropy causes a problem in the code i.e. we get a 

constantly increasing ratio of the strangeness to the entropy. 



To cure the problem, instead of using the entropy at a 

particular time step we take an average over first thirty time 

steps. The reason for taking the average over first thirty time 

steps is that it corresponds to t = 3.0fm/c for a time step of 

size 0.1 fm/c. 

4.2 RESULTS: 

Here we have shown two plots; the ratio of the strange quarks to 

the entropy versus time in Fig. ( 1 7 )  and the of the total number 

strange quarks versus time in Fig. (18). The ratio of the number 

of strange quarks to the entropy approaches a saturation value 

with respect to time and the number we obtained here for the 

saturation value of this ratio is 0.01. It is roughly equal to 
67 

the ratio obtained from pp experiments. Therefore, in our 

model we S,ee no enhancement of this ratio over the ratio 

obtained in pp experiments. The reason for this is that in our 
model the plasma is expanding much faster than in the model used 

by refernce 32. In reference 32 the effect of the transverse 

expansion of the plasma is neglected resulting in a slow 

expansion of the plasma. Hence, the variables such as energy 

density and temperature decrease slowly with time and there is 

more time available for strangeness production. The production 

rate for the strange quarks in the plasma phase is proportional 

- to the fourth power of the temperature. Therefore, i f  the 

temperature falls off rapidly with time, the production rate 

will fall off much faster with time. Therefore, the ratio of the 
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Fig. 17. The ratio of the total number of strange quarks in the 
plasma to the entropy of the plasma obtained by the computer 
simulation. 
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Fig.18. The plot of total number of strange quarks versus time. 
The total number of strange quarks is obtained from numerical 
simulation. 



total number of strange quarks to the entropy is small in the 

computer simulation than the ratio obtained in reference 32. On 

this basis our claim is that the ratio of the total number of 

strange quarks to the entropy can not serve as the experimental 

signature for the formation of quark-gluon plasma. At least this 

can be said with certainty for the medium mass nuclei, because 

this result is obtained for a nucleus with A =50.  The results 

might look different for the heavy nuclei such as Pb or U. 



CHAPTER 5 

CONCLUSIONS 

Evidently many important questions have not been addressed 

in this thesis. The dissipative effects such as viscosity and 

heat conduction have not been included in the transport 

equations. Also in the hydrodynamical description of the plasma 

the equation associated with the law of conservation of baryon 

number has been dropped. However, three important problems have 

been considered here. Namely, the proper initialisation, the 

transverse motion of the plasma and the experimental signature 

of the plasma. 

The, effect of considering the full three-dimensional 

expansion of the plasma is that the local energy density falls 

off faster with respect to time than for the simple 

one-dimensional model. In our model, we find that E is roughly 

proportional to t-5/3 compare to t -4/3 for the one-dimensional, 
11,5 

scaling hydrodynamics. It was expected earlier that the 

transverse expansion will not be significant until the late 

times i.e. roughly till 10fm/c. But the numerical simulation of 

initial conditions and the numerical solution of the 

hydrodynamic equations for the medium mass nuclei show that this 

assumption is not true. It is shown in chapter ( 3 )  of this 

thesis that the energy density fall off with respect to time is 

affected from the beginning of plasma expansion. 



The most important conclusion of this thesis is that 

strangeness production can not serve as a signal for the plasma 

formation for medium mass nuclei. The number for the ratio of 

the strangeness to entropy obtained by using our model is of the 

order of 0.01, which corresponds to K-/T- ratio of the order of 

0.054. Our estimate is lower by a factor of 4 than the recent 

estimates for ~ - / n -  ratio for the same initial temperature. The 

number we have obtained is approximately the same as obtained 
63 

for pp from the experiments . Therefore, we find that for the 
- 

quark-gluon plasma there is no K-/T- ratio enhancement over pp 

collisions. The reason why our model predicts such a small 

number for K/a ratio is as follows: the lifetime of the plasma 

predicted by simple models is much larger than the lifetime of 

the plasma predicted by the computer simulation. Theref ore, 

there is not enough time for the strangeness production. 

Further, the high temperature region in the reaction is aiso 

more spatially limited, which also leads to less strangeness 

production. 

For future studies, this model can be used for studying the 

other possible experimental signatures for the plasma formation 

such as the photon flux and dilepton production. There are a 

number of possibilities to improve this model, such as: 

1 .  taking a more appropriate equation of state. 

2. generating the initial conditions for different values of 

energy and the impact parameter. 

3. calculating the production rate for the strange quarks more 



precisely. One possibility is to calculate the one-particle 

distribution function at each time step and then use that in 

equation (4.11) to calculate the rates. This way the 

parametrization used for the reaction rate in equation (4.14) 

can be avoided and one can expect more accurate results. 

4. doing the same simulation for heavy nuclei such as Pb or U. 

Another problem we did not look at is that what happens at and 

below the transition temperature: How does the quark-gluon 

plasma' hadronizie? This is a very difficult question to answer 

without actually performing an experiment. Such experiments are 
12 

being planned for the near future at CERN and at BNL. 
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