National Library

of Canada du Canada

Canadian Theses Service

- Ottawa, Can’ada '
K1A ON4
)

CAI\!ADIAN THESES :

NOTICE

The quality of this microfiche is heavily dependent upon the
quality of the original thesis submitted for microfilming. Every -

effort has been made to ensure the highest quality of reproduc-

-tion possible.

F

if pages are missing, contact the university which granted the

- degree.

Some pages may have indistinct print especially if the original |

pages were typed with a poor typewriter ribbon or if the univer-
sity sent us an inferior photocopy.

Previously copyrighted materials. (journal articles, published
tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the

Canadian Copyright Act, R.S.C. 1970, c¢. C-30.

FA
{

N
L.

HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

Bibliothéque nationale

THIS DISSERTATION

Services des théses canadiennes

THESES CANADIENNES |

P Avs

. ‘ &

La qualité de cette microfiche dépend grandement de la qualité
de la thése soumise au microfilmage. Nous avons tout fait pouu

- assurer une qualité supéneure de reproduction. —

s

S'il manque des pages, veuillez communiguer avec I'univer:
sité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser &
désirer, surtout si les pages originales ont été dactylographiée:s
a 'aide d'un ruban usé ou si 'université nous a fait parveni
une photocopie de qualité inférieure. .

Les documents qui font déja I'objet d'uh droit d'auteur (articles
de revue, examens publiés, etc.) ne sont pas microfiimes.

La reproduction, méme partielle, de ce microfilm est soumise
a I8 Loi canadienne sur le droit d'auteur, SRC 1970, ¢. C-30

] _ .

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

i

- | pqnqt‘l:n'

ELFS: ENGLISH LANGUAGE FROM SOL
by - '

Stephen C. Kloster

B.A., Luther College, 1965
. M.A., University bg‘California, 1867

Ph.D., University of Iowa, 1971

THESIS SUéMITTED IN PARTIALiFULFILLMENT OF
THE REQﬁIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE |
in the Departﬁeht
of

Computing Science

©- Stephen C. Kloster 1985
SIMON FRASER UNIVERSITY

September 1985 ‘\\

All rights reserved. This thesis may not\‘be
reproduced in whole or in part, by photocopy
or other means, without permission of the aythor.

‘\/’\’,

~
A

\/

. neither

J

Permission has been granted
to the National Library of
Canada to microfilm
thesis and to lend or sell
copies: of the fflm.

The author
has reserved
publication- rights, and
the thesis nor
extensive extracts from it
may De printed or otherwise
reproduced without his/her
written permission.,

(copyright owner)
other

ISBN

this

F

‘'du Canada de

L'autorisation a’ &t& accordé&e
a la .Biblioth&que nationale
microfilmer
cette th&se et de préter ou
de vendre des exemplaires du
film.

L'auteur (titulaipe du droit
d'auteur) se réserve les
autres: droits de publication;

ni la thé&se ni de longs
extraits de <celle-ci ne
doivent @&tre 1imprimé&s ou

autrement reproduits sans son
autorisation écrite,.

0-315-30778-1

%

- APPROVAL

Name: Steve Kloster .

Degree: Master of Science

Title of thesis: ELFS: English Language From SQL

Examining Committee:

Chairman: Dr. Tiko Kameda

Dr. Wo=ZShun- Luk
Senior Supervisor

Dr. Nick Céercone

(in absentia)
Dr. Veronica Dahl

. . Dy. James P. Delgrande
External Examiner
School of Computing Science
Simon Fraser University

29 August 1985

Date Approved

i1

PART 1AL COPYRIGHT LICENSE

- s
\\.

— ~,
A

| hereby grant to Simon Fraser Unlvergffy~¢hedfqght to lend
my thesis, projecf'or exfénded essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in }equnse to a request from the
library of any other university, or other educational institution, on
its own behalf or for one of its users. - | fur*her agree that petmjssion\'
for multiple copying of Th}s work for scholarly purposes may be gfanfed
by me or the Dean oflGraduaTe Studies. |t is understood that copying-
or publication of this work ¥9r financial gain shall not be allowed ‘

without my written permission.

Title of Thesﬁ§/Projecf/Exfended Essay

ELFS: English Language From SQL’

Aythor:
(signature)

Steve Kloster

(name)

16 September 1985

(date)

ABSTRACT

We describe a system which, when given a query in a SQL-like

relational database language, will display its meaning in clear, \iu

unambiguou§ natural language. The translgtion mechanism is

independent .of the appli%%tion domain. The system hqs direct .

applications in the design of computer-based SQL tuﬁorial-
}\\aystems and program debugging s{stéms. The research results

obtarﬁed in the the51s will also, be useful in query optimization

8

i

\“h

51gn of a front-end Wthh will be more user-friendly

anélth

gq thaﬂ SQL

‘i

g;il‘

1i1

ACKNOWLEDGEMENTS

"1 would like to‘thank Wo-Shun Luk for all of the assistance he

has given me.

o

" =3

e

Fl

L
>
o]
o
e
v <
I
* £
et £, Csg
& ‘ o%
b
-
.)
P :
#
S
g
4

[

1v

i
TABLE OF CONTENTS
- i

| <

Approval et e it eet e e ee e S O
ADSELACE +reneeeennnnnn. N e et Ceeeeenn .oiii
Acknowledgements eeareieanan T PEP T ceeseann .. iv
CHAPTER I Introduction P Mt e e e en e 71
CHAPTERVII ELFS (English Language From SOL) v eveeceosens 11
cﬁApTER 111 Query Transformer (QT) Ry 14
Queries without "EXIST' D L...;.... 17
Queries with 'EXIST' ...; EEEEE . 27
CHAPTER 1V Natural Language Generator (NLG) 36
CHAPTER V Implementé£ion of ELFS s e et 41
CHAPTER VI Applicatioqs ...;....,;: i 50
CHAPTER VII Conclusion éAd Prospects for the Future 56
Reférences e e et ;..;...: ;. 58

-

CHAPTER 1

INTRODUCTION

This thesis desc;ibes a system named ELFS (English Language
From SQL), which is capable of constructing an English
translation of an SQL-like Qquery. Giyen a guery written in SQL,
an English sentence will be produced which is equivalent to the
| guery. Our main concern is to unravel the obscure,
hard-to-understand structure of an SQL gquery imposed by the
chrrent SQL syntax. The basic approach adopted in this reasearch
1s to analyse all SQL gueries up to three levels deep, and then

classify them into different types of Queries.

'The,ELFS system has two major componemté: (1) the Query
Transformer (QT) and (ii) the Natural Language' Generator (NLG).
The Query Transformer transforms complicated gqueries into
pseudo-SQL queries. Simple queries will be left alone. In the
NLG phase, the application-sensitive portions of the guery,
e.g., attribute naﬁes, relation names and constant values which.
- have been left unchanged in the first phase, will be
interpreted. Tables, similar to thdsevfound in [Codd78], are
supplied by the users which contain phrases to express the
assoclation of two.attributes in a relation. An English sentence
that 1s eguivalent to the guery is then generated from the

pseudo-SQL qguery with the help of these user-supplied tqbles.

SQL is one of the current database languagég. A database
language N\s an integral part of a database m%ﬁégement system
(DBMS) that provides the user with én intef?éée to the system's
internal functions. Some database languéges are high-level
 nonprocedural guery languages which allow nonprogramming users
to expregs their database processing reguirements in
English-like gueries without specifying how the data is to be
retreived.’ Among all mainstream database models, the relation
model 1is most amenable to the use of a query language as a
database language. SQL (Structured Query Language) is perhaps
the most popular guery lahguage for relational database systems.
Two well-known relatiénal database systems, IBM's SQL/DS and
DRACLE Corp's ORACLE, employ SQL exclusively, either in |
stand-alone mode” or embedded in a procedural language, to
provide data definition, manipulation, and control facilities.
Many DBMS's designed for microcomput;rs use SQL too. Although

SQL is more than a query language for database accessing, the

focus in this thesis is the data retrieval portion of SQL.

Versions of SQL have been in existence since the early 70's
under the the name SEQUEL. The development of SEQUEL, in tutn,
is an evolutionary reffﬁ?ﬁent of DSL ALPHA, a predicate
calculius-based query ianguage Ekoposed by Codd as part of the
relational model [Codd70]. In between ALPHA and SEQUEL was ‘i
SQUARE, a gquery language which eliminated the need for
guantifiers and bound variables reguired By ALPHA. To improve on

SQUARE, SEQUEL replaced the concise mathematical notation of

SQUARB«wiEh a block-structured English keyword syntax. SQL is,

by and large, just SEQUEL minus a few functions.

Although we expect the reader to be somewhat familiar with
the SQL language, we explain, via a simgie*example, the main
. < O
features of SQL which are relevant to the sdbject matter of this

thesis. This’example llke most of otger examples cited below,

‘15 based on the famlllar Part- Suppller Project database schema :

~-

PART (P4, PNAME , COLOR, WEIGHT , PCITY) .
SUPPLIER(S#, SNAME, STATUS, SCITY) N B
PROJECT(J# , JNAME, JCITY))
SHIPMENT(P%,S%,J%,QTY)

If a 4-tuple (P#,5%,J%#,Q0TY) belongs to the gelation SHIPMENT, 1t

means that part P# was sent by supplier S# to project J¢ in the
quantity QTY. Attrlbutes underlined are primary keys or parts of
primary keys. In addition, PNAME, SNAME, and JNAME are candldate

keys. All keys are unigue by definition.

Example 1:
SELECT PNAME ‘ el
FROM PART S :

WHERE P4 IN
(SELECT P:
FROM SHIPMENT ' ‘ #
WHERE Ji="'J2")
This guery consists of two query blocks. A query block has three
clauses: SELECT-clause, FROM-clause and WHERE-clause. The first
“two clauses identify the attributes and the relation to be By

retrieved. The WHERE-clause is actually a predicate which, when

evaluated against a given tuple of the relation in the

=

FROM-clause, yields either a 'TRUE' or 'FALSE' value.

Recursively, a predicate can contain many predicates connected -

—

by logical connectives, 1i.e., "AND' and 'OR'. In SQL, a -
predicate can contain another SELECT-FROM-WHERE block. We call
this type of predicate a complex pre?icate. A predicate which is
free of any nested SELECT-FROM-WHERE blocks is a simple
predicate. In the above example, the last line contains a simple
predicate. The predicate in the first WHERE-clause is a complex
predicate, as 1t contains another quefy block. We call this
guery block a second level guery block. Each g%ery block returns
a set‘§g values. Blocks may be nested to arbitrary depth. We use
the terms 'query block' and 'query (or subguery)'
inﬁerchangéably.‘The query itself can be-considered as a query

block at the first ieyel.‘The guery block at the second or lower

- .
ievel can be considered as a subguery.

ée adopt the version of SQL syntax as stated in Bradley
[Bradg2]. This syntax is a simplified version of SEQUEL II
syntax [Cham76], for the purpose of illustrating the essential
features of SQL. While it retains the structural complexity of
SEQUEL II, it ignores minor details. For example, it allows the
SELECT-FROM-WHERE blocks to be nested to arbitrary depth, but it
does not specify, as SEQUEL II syntax does, the types and the
formats of the constants it will accept. Since thé current
version of SQL is not i1dentical to SEQUEL II, there are minor
differences between IBM's SQL syntax and Bradley's own'syntax.

The most important difference is perhaps the 'CONTAIN' function,
\

1

which was dropped during the modification of SEQUEL II. Because

of this, it has been claimed (in.{Kimwg2}7,‘that‘thé current -

version of SQL does not implement the division operation,

- “However, as will be shown below, the 'CONTAIN' function may be

emulated using the 'EXIST' and 'NOT EXIST' functions available

in SQL. On the other hand, the ;

i

EXIST' function, which is not

fourrd in Bradley's syntax, canfhg emulated by using 'DOES NOT

CONTAIN'

and the null set. Below we present the SQL Syntax

according to [Brad82]:

SELECT [UNIQUE] attribute-1, attribute-2,

FROM

&

relation-1 [label-1], relation-2 [label-2],

[WHERE requirement]

[GROUP BY (attribute) HAVING requirement]

‘ -

1. The requirement clause has the form

1 .

1 .

requirement {AND, OR} reguirement

1.2. logical-relation

2. The logical-relation clause has the form

2.

1 .

attribute (==, =, >, <, =>,-<) {cohstant,
attribute} |

attribute {IN, NOT IN} {SQL—expressibn, set,
SET (attribute)}

{sQL-expression, set, SET(attribute)}, {CONTAINS,

' DOES NOT CONTAIN, ==, =} {(SQL-expression),

set, SET(attribute)}

1

‘ 4 Tow
i 4 : | v ® 5 W
Consider the following scenario for retrieval of informat¥on
%y the user. The user has a. request for information from the4 |
database. This request either existsdin the user's mind, or is
physically recorded on some medium. A gquery, 1n our case &an SQL
query, is formulated based on the given request. This que}§ is
1nput to the database system which. subseqLentlv produces the
answer to the query. There are two translatlons ‘involved in this
process: from request to query, and then from query to answer.
.
We assume thrdughout that the latter translation is always
correct, i.e., the software/hardware system is bug-free. We
explain below how the answer to an SQL query is derived. Of
interest to us is the often imperfect process of query

formulation.

We need a precise notion of incorréct translatfon from a
request to a query. Let us first define query egquivalence. Two
queries are\the same if they retrieve the same answer frcm every
possible database that the database definition (i.e., database
schema) permits. Conceptually, a request for information by the
user can be treatq\-iE\E/Lﬁlrtual) query. An SQL query
constructed for a reguest for information is incorrect 1if there
1s at least one valid database that will yieid an answegyfor

that query which does not match the request.

We now describe how the answer to an SQL guery 1s obtained
strictly according to the syntax of SQL. We use Example 1 to

illustrate this process. For each tuple of PART, the

t

WHERE—cléuse must yield a 'TRUE' value in‘brder that the value
of PNAME for that tuple be iﬁcluded in the answer set. To
process‘the WHERE- ause,.the guery block at the second level
must“firét be processed to yield a set of P#'s. To do so, each
tup&sﬁof Fhe relatio%*SHIPMENT 1s retrieved to examine whether’
the WﬁERE-clause J#=:J2' is satisfied. If that tuple has a valuye
of J2 for the attribute J#, the P# of the tuple will be includea‘
in the answer set for the query block. When all the tuples of
SHIPMENT E?ve been ‘examined, the answer of the query biock 1s
obtained. %hen this answer is seafched to determine whether the
P¢ of the PART tuple 1s found there. When all the tuples of PART
have been processed in this way, we have a set of PNAME values

%

as the answer of the query. This answer will represent all the

names of the parts that are used for project J2.

Quer{es such as Example 1 can be very easiiy understood by
someone with some exposure to the SQL language. Howevér, there
are other SQL gueries that are not so English-like, Many of
these queries are useful in that they represent non-trivial
requests for information from the database, but théy are not .
easily accessible because of their hard-to-comprehend formats.
Parédoxically, the evolution from DSL ALPHA to SQL wasadriven by
the rationale tHat the database }anguage should cater to users
in the non-programming community. However, at least as far as
SQL 1s concerned, the éain in ease of use may come at the

expense (albeit a small one) of reduced power in retrieval.

There is a certain limit to how far software designers can push

~.

N

N

. : <l
‘ . |
5

for user-f;iendliness. Sevérql human factogg:séudies reveal that
everyd English may not be, the ideal way té‘communicate with
computers [Shne78]. The universal quantifier is<preéen;‘in
LLPHZ, but not in SEQUEL (SQL). It is debatablé.whether the
eliminaiion of some mathematical (or logical) notation will help
the user to formulate the query. We shall illustrate this point
by considering the following request: "find the projects located
in those cities which manufacture énly red parts”. One can ‘
express the guery in ALPHA as follows: -

retrieve J4 where V P (IF PCITY=JCITY THEN PART.QOLOR=RED)
Note that we mod{fy the syntax Sﬂightly for readabiiity(i.e. IF
A2 THEN B is to be interpreted as ~A OR B). The e%#ivalent query

in SQL will be:

Example g:‘
SELECT J#%
FROM PROJECT

WHERE JCITY NOT IN
(SELECT- PCITY
~ FROM PART
WHERE PART.COLOR-='RED"')

8

‘

The universal guantifier 1in the ALPHA guery 1s disguised under
the form ('NOT' '=") in SQL. It is hard to understand this query
withgﬁ; knowing how this form of.'double negation' 1is
transformed into a universal quantifier. What may be more
confusing 1s the fact that such a transformagion 1s not alwgys
valid. Consider another request: find the suppiiers which supply

only red parts. At first glance, it seems the SQL guery can be

written as follows:

Example 3:

SELECT St#

FROM SHIPMENT

WHERE P# NOT IN : , ,
(SELECT P% ‘)
FROM PART

WHERE PART.COLOR-='RED') .

However, this query will -not retrieve the required information.
Instead, it wili get suppliers which supply at-least one red
part in addition to parts of any other colors. The correct guery

for this seemingly simple reguest takes on a rather formidable

form:

Example 4: | , : E)

SELECT S#¥

FROM SHIPMENT SHIPMENTX

WHERE NOT EXIST B e y
(SELECT P# - -~ T+
FROM_ PART ’
WHERE PART.COLOR-='RED')

AND P4 IN
(SELECT P#%
. FROM SH¥ PMENT
N WHERE SHIPMENT.S#=SHIPMENTX.S#)

There are actually two features in this query contributing to
its opagueness. The first is 'double négation',li.e., "NOT

N
EXIST" and "PART.COLOR-='RED'". The second has to do with the

interblock referenge 'SHIPMENT.S# = SHIPMENTX.S#'.

Senior undergraduate computer science majors 1in an
introduétory database course find that it is difficult to
understand queries like the ones above, and even more aifficult
to construct them. Moreover, the students‘lack confidence 1n the
correctness of the queries they construct themselves, since a

slight displacement of a keyword may change the guery to an

i

e e

-

}

inequivalent one. For example, it has been pointed out in

[KimWB82] that the following two queries are not equivalent:

Example 5: - .
a) SELECT SNAME b) SELECT SNAME
FROM - SUPPLIER . FROM ~ SUPPLIER %
"WHERE . S# NOT IN WHERE S# IN
(SELECT S# (SELECT S#
FROM SHi PMENT . ~ FROM SHIPMENT
‘ WHERE P#="P1") WHERE P§-="P1') .
Query al/gii;~tg§rieve the names of suppliers which do not

- ‘ .
supply part P1, whereas query b) will retrieve the names of

//éhose suppliers which supp}y-some part other than P1 (but may

supply P1 as well).‘“‘—TN//ﬂ \f\4xa
This thesis is organized as follows. Chapter 2 containé an

overview of ELFS with emphasis on the two important modules of

the system, i.e:,'the Query Transformer (QT).and the Natural

Language Generator (NLG). Chapters 3 and 4 are devoted to QT and

NLG respectively. Chapter 5 describes the implementation of FE§7““’

ELFS pro&?am. In chapter 6 we outline some applications of our

research results presented here.‘We give the conclusions and

prospects for the future im chapter 7.

10

CHAPTER 11

ELFS (ENGLISH LANGUAGE FROM SQL)

We ha&e implemented a system, called ELFS, which is capable‘.
of-producing an English sentence equivalent to a given SQL
query. This syséem has two major componentsf (1) Query
T;;n;former (QT) and (1}) Natural Language Generator (NLG). The
input into ELFS is an SQL query formulated according to the SQL

syntax as specified above.

To describe the division of labor between QT and NDG, let us
analyse the éontents of an SQL query. To understand an SQ;
query, we need two types of knowledge: the structure and the
context of the query. It is presumed that the two are
independent of each other and thus can be handled by QT and NLG

i

respectively.

The structure of a guery is independent of the attributes
and relations which may &ary from one application to another,
although it is necessary for QT to know whether an attribute 1is
a key or not. Basicall&, gi&en the 'shell' of the query, QT
determines whether the structure of the query is simple enough
that NLG is capable of. interpreting it and producing an English
sentence equivalent to the query. If, in QT's judgement, the
structure is too complicated, QT will transform it-into a;
pseudo-query and pass it onto NLG. We define extended SQL to

contain these pseudo-queries in addition to usual SQL gueries.

11

The task of NLG is to mechanically translate the outputféf OT in
an English sentence(s). Example 1 illustrates the type of query
that QT will pass onto NLG w{thout transformation. The oufput of
NLG will be: "Select names of the parts which are shipped tb
project J2." If tﬁ% WHERE-clause in the query block at the
second le&el were instead to reaa: S#="'S82", £hen the phrase
"shipped to project J2" would be changed to "supplied by
supplier S2". These phrases are coﬁsf%ucted on the basis of the
knowledge of the application which must be provided to NLG in

-

some appropriate format.

The majority of querieggafé, of course, not so simple.
Translatihg‘themhliterai{y without transformation will result in
'"bad' English, or worse,‘gene;atermisleading sentences. Consider
‘Example 3. The query c¢an be translated without transformation to
read: "Select the S#-values of suppliefs who ship parts not

belonging to the set of parts which are not red." This is rather

unclear. It certainly requires more effort to understand éhan’
tﬁe following: "Select the S#-values of suppliers who ship at
least ohe’red part(s)." There is a more importaﬁt reéson why
literal translation would nof work‘for somevquerieg. Example 2
1s a case in point. This query can be translated witﬁout
transformation to read: "Select the J#-values of projects not
located in those Lities which do not produce red parts". The
output of this translation is defiaitely confusing. If one‘reads

this sentence carefully, he will arrive at a wrong

interpretation of the query!! The output indicates that projects

‘ located in cities which produce no red part will be excluded.
from the answer. In other words, projects located in cities

which produce at least one red part and possibly parts of other

——

colors will be included in the answer. In fact, the true
interpretation is quite different: "Select J#-values of projects

located in those cities which_produce only red parts."

L

In the following chapters, we discuss in detaill the

functions performed by QT and NLG respectively.

13

CHAPTER 111

QOUERY TRANSFORMER (QT)

In this chapter, we identify precisely what types of Qqueries
will be processed by QT, and then we show how these queries will
be transformed. Proofs will be provided to show that query

transformation does not alter the answer of the original query.

G?We have been able to identify a few features or functions of
thgaiﬁfhat render a,query difficult to understand or open to
misinterprétation.‘
(i) Negation: A predicate in a WHERE-clause of a query block is P
said to be in negative form if it contains a 'NOT' or its | A/
;ghivéﬁénts {e.g. '~'). As noted in Example 5, negative |

predicates are easily misinterpreted. Nested negative

—_——

————

predicates, such as 'double negation' and 'triple negation', are
much worse. We discovered that the confusion has something to do
with the uniqueness (or lack thereof) of the attribute(s) in the
SELECT clause of the gquery block with the negative prediééte. Wé
call this attribute(s) the link attribute{s). In Example 25 the

_attribute PCITY in the SELECT-clause of the query block at
second level is not a unique attribute; ifé., PCITY is not a Kkey
in the relation PART. In contrast, the corresponding attribute
Pt in Example 3 is the key of the relation PART. That explains
why two seemingly similar qQueries may not bé interpreted in the
same way.

(ii) Interblock Referencing: This refers to the situation where

14

the WHERE-clause of a query block refers to attribute(s) of a
relation in a FROM-clause outside the guery block. Most of the
predicates Beginning with 'EXIST' o£ "NOT EXIST' will contain
interblock references. It is particularly difficult to
un@;rstand the query when the relations in the FROM—clauses‘éf
“two nésted guery blocks are essentially the same, suach as the
clause in Example 4, 'SHI?MENT.S#=SHIPMENTXLS#'; where SHIPMENTX

is an alias of SHIPMENT.

*

Guided by the above analyéis, we now classify queries into
various categories and develop a transformation scheme for each
category of queries. Before we do so however, we have to define
the scope of the gueries we afe prepared to deal with. In this
thesis, we restrict ourselves to t@ose gueries with up to three
levels of query blocks. Some SUppért for this restriction can be
found in the fact no query ig)Date's book [Date81!] has more than
three levels. We hope the reader will understand the essence of
our interpretation scheme and shgre our belief that there will
not be any major conceptual difficulties when we relax this

restriction, although a, greater number of classes of queries

would have to be handled.

We present an oufline form of the master plan for QT-which_
shows how the queries are classified and what transformation
method is used for each class. Part of the classification
depends on where the negations occur. For example, we use the

notation '(+,-)' to denote a nested guery in which the outer

block is positive, and the inner block is negative.
1. No 'EXIST' occurs in the query
“a. No interblock references: NtoP Rule (theorems 1 and.2)
b. Interblock references’
1) Adﬁacent blocks
a) Different relations: NtoP Rule
b) 1Identical relations
i) (+,+): always true
ii) (-,+): always false
111)(+,-): "AT LEAST ONE' ‘
iv) (-,-): 'NUMBER = 1'
é) Non-adjacent blocks: analysis by case
2. 'EXIST' occurs
a. Double negations: theorems 3 and 4

b. Single negations or no negations: translate directly

The primary division classifies queries into two large
groups: the group of gueries without any occurence of 'EXIST'
(or '"NOT EXIST'), and the other group in which there is such an

occurence.

16

Queries without 'EXIST'

Nt oP Rule.

e
e 3

Fundamental to t%é proceSsing of the query at this stage 1is
a transférmétion fule thch eénverts a negative predicate into a
positive one by 'passing on' the negation to the predicate one
level below. Hence we call this transformation rule the NtoP

Rule. This transformation rule is justified by the following two

theorems.

‘These theorems concern two different cases. The first case
occurs when the link attribute is unigue, and the second occurs
when it i1s not unigue. In the unique case, the negation can be
'passed on} in a simple way. This'is done in theorem 1. The
non-unigue case is‘not so simple, and leads to the introduction
of the guantifier 'FOR ALL'. Example 3 1llustrates the~unique‘

case, and Example 2 1llustrates the non-unique case.

Theorem 1: If the link attribute L is unique in the relation R,

and R has no null values, then all instantiations of the forms

=

a) and b) below are equivalent as WHERE clauses in any query:

>

a) L NOT IN b) L IN
(SELECT L (SELECT L
FROM R FROM R
WHERE COND) , WHERE ~COND)

Proof: Let L1,L2,...,Ln be the attributes of R and suppose that
L is the first attribute, L1, Ifet R(L1,L2,...,Ln) denote the
proposition which asserts that the n-tuple (L1!,L2,...,Ln)

belongs the relation R. The proposition is true when the n-tuple

17

belongs to the relation, and false when: the n-tuple does not. '

Clause a) asserts that L is not in the set S, where

S={L1: exists L2,...,Ln (R(L1,L2,...,Ln)&COND)}.
This is eguivalent to asserting that L is in the complement of

S. Denoting the complement by COMP(S), we have COMP(S)

={L1: for all L2,...,Ln (R(L1,...,Ln)->"COND)}.
But now since L1 1s unique in R, all the values for L2,...,Ln

are determined by L1, so we don't need the universal quantifier.

COMP(S) 1is ‘

{L1: (R(L1,...,Ln)->"COND)}.
Since there are no null values, for each value of L1, fhere

exist L2,...,Ln such that R(L1,L2,...,Ln). Thus COMP(S) is

{L1: -~COND)}.

This set is the one described by clause b), completing the

proof.

- Theorem 2: If the link attribute NU is not unique in the
relation R, and R has no null values, then all instantiations of

the forms a) and b) below are equivalent as WHERE clauses in any

query:
a) NU NOT IN b) NU IN
(SELECT NU - (SELECT NU
FROM R . FROM R -
WHERE COND) WHERE FOR ALL X IN RX

(RX.NU=R.NU ->-~COND))
Proof: Let L1,L2,...,Ln be the attributes of R, .and for the sake

of argument, suppose that NU is the first attribute, L1. (This

18

will not affect the nature of the proof.) Clause a) asserts that

S

NU is not in the set S where

S={L1: exists L2,...,Ln (R(L1,L2,...,Ln)&COND)}.
This is equivalent to assertfng that NU is in the complement of
S. Denoting the complement by COMP(S), we have COMP(S)
=¢L1: for all Lé,..},Ln (-(R(L1,...,Ln)&COND))}
={L1: for all L2,...,Ln (-R(L1,...,Ln) or ~COND)},
by De Morgan's law. Using the definition of implication, this

can be written as

{L1: for all L2,...,Ln (R(L1,...,Ln)->"COND)}.

To assert that NU is in this set is equivalent to saying

-

FOR ALL X IN RX (RX.NU=R.NU ->"COND)}.’

»
This set is the one described .by clause b), thus compléting the

proof of theorem 2.

We have seen that form b) arises in a natural way from the
proof. However, it does contain some information which is

redundant. Form c) below 1s more compact.

c) NU IN o
(SELECT NU
FROM R

WHERE FOR ALL R ~COND)

We extend SQL so that WHERE clauses of the form

FOR ALL R COND

are allowed. All gueries of form c) will be included in this

19

‘"extended SQL". This form is utilized ‘to construct the.

translation of the guery.

The univefsal gquantifier "FOR ALL X" in form b) ranges over
the set of all n—tUplesAof the relation R. Note that RX is just
another copy of the relation R. The WHERE clause in \h) asserts-xx

ythat if we take an? n-tuple X of RX, ;f the NU-attribute haé the
specified value R.NU, then ~COND holds. If tpere are any

interblock references in COND, they are treated as constants.

3
n

Now we describe how the NtoP Rule is applied to the negation
of a predicate. The first step is to remove the 'NOT' from the

Pl

predicate,_and then negate the predfcate one level below. If the
link attrib

e in. the subguery one level below is non-unigue,
add the keyword 'FOR ALL' beforé’the predicate at that level.
Typically, the transformation rule is applied to the query
repeatedly from the first lével until the only pgssible negative
preéicate in the entire query is at the bottom level. No
transformation 1s needed for a positive predicate, except that
1f the attribute in a clause of the predicate can have multiple
values associated with one value of, the link éttribute, we, must

add the phrase 'AT LEAST ONE' before the clause.

~Let us give some exgmples showing how the NtoP Rule 1is
N : (
acplied. Recall that in Example 2 the WHERE clause _is
JCITY NOT IR
(SELECT PCITY

FROM PART
WHERE PART.COLOR-='RED')

20

By theorem 2, this can be transformed to

JCITY IN

(SELECT PCITY

FROM PART :

WHERE FOR ALL PARTS PART.COLOR='RED')
In the relation PART, the attributes P#,” PNAME, COLOR;'aﬂd
WEIGHT are considered as variables which are free to vary over
the tuples of PARTS. The effect of the condition
'PART®% PCITY=PART.PCITY' in form b) is to fix the value of °
PCITY. One translation of this clause would be "cities having
the property that for all parts p, if p is made in the city,

then p is colored red". The advéntage of translations like the

above 'is that Ehey can .be used for a large class of queries.-The

disadvantage 1is that the output is not as~clear as 1t could be.

t

A simpler translation is "cities making only red parts". In the

: AN
next example, the WHERE clause 1is the conjunction of two

conditions.

Example 6:

PCITY NOT IN,
(SELECT PCITY
FROM PART
WHERE PART.COLOR-='RED’
AND PART .WEIGHT=20)

By theorem 2, this 1s eguivalent to
PCITY IN
(SELECT PCITY
FROM PART
WHERE FOR ALL PARTS
(PART.COLOR="'RED' OR PART.WEIGHT-=20))

There is a choice of translations in this case. One possibility

is "cities having the property that for all parts p, if p is

madé in the city, then p is colored red or'p does not weigh 20
lbs." Another pdssibiliﬁy is "cities having the property that

all parts made in the city weighing 20 lbs. are red."

- The WHERE clause above is a conjunction of the form -C1 AND
C2. For theérem 2 we need the -negation of this, which is Ct OR
~C2. This can be<expressed as C2 -> C1, and leads us to the
second translation above. To decide which translation is easier
to understand could be a topic for further research. It seems to
us, however, that reducing the number of negations to the ’
minimum produces the most understandable result. Fo; instance,
if the WHERE clause has the form .

“C1 & "C2 & ... & "Ci & Ci+l & ... & Cn
and there are no negations in the C's, then the negation of the
clause could be expressed as

Ci+1 & ... & Cn -> C1 OR C2 OR ... OR Ci.

This form has no negations, and we expect that it would be the

most understandable form which 1s logically equivalent to the

original.

For the rest of this_thesis, predicates with negative as

well as positive clauses are considered as negative predica?es

\ ~ j
and they will be processed in the manner as describqﬁfgbbv’i

22

s

Queries without 'EXIST' and without Interblock References

1

e
e -

We are now ready to describe the algorithm to transform
T ‘J)

gueries in'th class mentioned in the heading. For a query block
©
with_positibegpredi;ates, the phrase 'AT-LEAST-ONE' 1is inserteq
before‘fﬁéibredicéte if the link attribute ts not unigue. For
guery blocks with negative predicates, application of the NtoP
Rule alone is sufficient. A 3-level query with an even number of
hegative prédicates will be;ome a posiFive query. Otherwiﬁg, the
transformation will result in .a negaf?ve predicate at the bottom:
level. Let us denote eight possible combinations of
positive/negative predicates according to the level it occurs,
by (+,+,+), (+,+,-), ..., and (-,-,=). The NLG is certainj&
capable of translating cases such as (-,+,+) or (+,-,+) without
’jransformétion‘at this stage. The output might perhaps be |

improved by ’using NtoP Rule. For simplicity, we adopt/;he method

of "pushing” all negation to the lowest level possible.

Queries without "EXIST but with Interblock References

First, we consider the type of interblock references where
~the predicate of a subguery refers to an attribute of a relation
in the Query block immediately above the subguery. A typical

guery 1s shown below:

* t

23

g b

SELECT *

FROM R1
WHERE L12 {NOT} IN -
SELECT L2
FROM R2

WHERE L23 {-}= R1.L13

The items.in curly brackets may or may not be present. This
query implies a match (or mismatch) of two relatioﬁships: L12-L2
in R1 and L23-L13 in R2. Should we treat these relationships as:
identical, even Qhen they are in different contexts (i.e.
different relations)? The answer to this guestion involves. a
much larger issue: the universal relation assumption (URS) and
the controveries surrounding it ([Atze82] and [Ullm82]). We have
avoided this issue so far and now.explain the issue in the

context of this research. -

-

-

There are several versions of ‘URS, with subtle‘differepces
among them. Two of them concern us here. One of them presumes
the uniqdeness of the meaning of the attribute within the entire
schema. In other words, the meaning of the'attribute is

identical in whatever relation it appears. The other version

presumes the unigueness of relationship of each pair of

~attributes within the entire schema. Our position concerning

these éssq@ptions 1s that the user is the one to decide whether
any of these aésumptions 1s valid and he can communicate’h}s
decilsion thfough thé tables for attribute associations which
will be used by NLG to produce a sentence. For simplicéty, we
have adgpted the assumption‘of uniqueness of meaning of an

attribute within the entire database schema. However, 'it can be

24

seen that the theorems do not rely on this assumption, 'so are

»

still valid without it. In our database, PCITY, JCITY and SCITY

all mean cities and as such are used as link attributes in

subgueries. It seems very awkward to have to refer to PCITY as

"citles where parts are produced" all the time. N

- ‘/'f'?‘:

-

On the other hand, we assume the relationships are different .

if the relations are different. Therefore there will be no extra

meaning beyond the simple value matching of the two

relationships. For example, let R1{(EMPLOYEE, EMPLOYEE) and

R2 (EMPLOYEE ,EMPLOYEE) be the two relations in the above example.

We shall assume the relationship EMPLOYEE-EMPLOYEE in R1 to be

different from the relationship EMPLOYEE-EMPLOYEE in R2. For

instance, the former could be father-son and the latter

foreman-worker. The guery then requests information about

_ foremen who have their sons working under them. Thus, for this

type of query, we shall first apply the NtoP Rule and then

transform it into another type of pseudo-guery, such as the

following:

SELECT
FROM
WHERE

*

R1 R2
FOR R1.L12 = R2.L2
(FOR ALL or AT-LEAST-ONE) R2: R2.L23 {-}= R1.L13

If R1 and R2 are identical, then the two relationships will

be treated as identical relationships, and therefore a different

tansformation method must be used. Instead of value matching,

each of the four possible cases, i.e. (+,+), (+,-), (-,+), and

(-,-) 1s to be interpretedidifferently. The (+,+) and (-,+)

25

AN

cases are trivial,‘the predicate of the former being always true
and that of the latter being always false. The Li,-? case 1S
meant to retrieve all tuples whéré thé>value of L12 (or L2) is
associated with at least two different values of L12 (or £2§) in

different tuples. Consider the following example:

Example 7:
, SELECT *
FROM SHIPMENT SHIPMENTX
WHERE S# IS IN
SELECT S#
FROM SHIPMENT

WHERE J# —~= SHIPMENTX.J#
The above query willJFetrieve information about suppliers who
supply parts to at least two different projects. The predicate

at the bottom will be transformed into 'AT-LEAST-TWO-DIFFERENT

"%

J4'. . . X ,
The (-,-) case of the above example after the NtoP

transformation is shown as follows:

Example 8:
SELECT *
FROM SHIPMENT SHIPMENTX
™ WHERE S# IS IN
" SELECT S#
FROM SHIPMENT

SHIPMENTX.J#4

fl

WHERE FOR ALL SHIPMENT: J#
The predicate at the bottom asserts that all projects to which
the supplier ships -have one project number. Thus we can replace

the predicate with the predicate 'NUMBER(J#) = 1',

What remains to be handled in this category of queries
without the 'EXIST' keyword is‘the.class of queries where y

interblock references are not between two neighbouring guery

<

P 1

26

S,

~

blocks. A typical query is shown below:

SELECT * . A .

FROM R1
WHERE L12 {NOT} IN
SELECT L2
FROM . R2
WHERE L23 {NOT} IN
SELECT L3
FROM R3

WHERE L31 {~}= R3.L13
The approach to transform this type of.quéry is almost identical
to the one for the type of queries with two neighbouring query
blocks referring to each other. Hence, we shall not describe it
here. It suffices to say that the péeudo—quefies after
transformations will have no interblock references, just as

other pseudo-queries we have created.

Quer&es with '"EXIST'

We shall first show that all occurrences of 'EXIST' can be
eliminated by transforming the query to one which uses
-'CONTAINS'. This fransformétion is valid fdr queries of
‘arbitrary deéth. 1f a query has n occurences of 'EXEST', the
transformation will be applied n times, and the rgg{ii will not

contain any 'EXIST's.

This general scheme has the drawback that the resultant
query may not have a very natural direct translation. (An
example is given below.) Theorem 3 provides us with an

improvement over the general scheme. In.theorem 3, we show .that .

v

27

a pair of 'NOT EXISTS" can be transformed to a single 'CONTAINS'

which provides a more natural interpretation.

1f 'EXIST' occurs in a WHERE clause, it must occur either

_ positively or negatively. The positive,fo?m'mgy be w;itten as
follows: N

EXIST
(SELECT * ,
FROM R

WHERE COND)

This.can be transformed to

EMPTYSET
DOES NOT CONTAIN
) (SELECT *
.__ FROM R
WHERE COND)

Here EMPTYSET denotes the empty set. It can be defined in any

database. One definition would be

(SELECT *

FROM R
WHERE FCOND)

where FCOND 1is always failse.
‘The negative form of 'EXIST' may be written as follows:

NOT EXIST
(SELECT *
FROM R
WHERE COND)

This can be transformed to

28

EMPTYSET."

CONTAINS
(SELECT *
FROM R

WHERE- COND)

P
e

N,

In the above discussion, the predicate COND was allowed to
contain nested queries. Let us define a simple predicate to be
one which does not contain any nested query. In this»speeiel
case, a simpler transformation can be given., If CONDris a simple

predicate, consider any gquery of the form below: S

SELECT A

FROM R

WHERE EXIST

- (SELECT * ‘
FROM R2

" WHERE "COND)
I1f COND does not have any reference to any attribute of R1, the
query 1s superfluous because either all or none of A-values of
R1 will be retrieved. Or the other hand, if COND takes the form:

'"R2.B = R1.B', then the query can be reduced to _one with no

"EXIST':
SELECT A
FROM R1

WHERE R1.B=R2.B

We give an example of a query which contains several

"EXIST's. (This is example 7.26 in [Date81])

29

Examglé 9:

SELECT J#
FROM SHIPMENT SHIPMENTX
WHERE NOT EXIST
(SELECT *
FROM SHIPMENT SHIPMENTY
WHERE EXIST
(SELECT *
* FROM SHIPMENT
WHERE S#='S1'
AND P4#=SHIPMENTY.P#)
AND NOT EXIST
(SELECT *
FROM SHIPMENT
WHERE S#='S1'
AND P#=SHIPMENTY . P#
AND J#=SHIPMENTX.J4%))

I1f we were to transform this using the EMPTYSET transformations,

we would end up with the following:

‘SELECT J#
FROM SHIPMENT SHIPMENTX ‘ .
WHERE EMPTYSET
CONTAINS
(SELECT *

FROM SHIPMENT SHIPMENTY
WHERE EXIST

(SELECT *

FROM SHIPMENT

WHERE S#='S1'"

AND P#=SHIPMENTY.P#)
AND EMPTYSET

CONTAINS

(SELECT *

FROM SHIPMENT

WHERE S#='S1'

AND P#=SHIPMENTY.P#
' AND J#=SHIPMENTX.J4%))

This query 1s still very hard to understand.

s
/

Queries like Example 9 arise when one wants to express

queries which involve universal quantification in a version of

30

SQL which does not have ‘CONTAINS'. Then one must resort to
,m;uaing'a double 'NOT EXIST'. Theorem 3 shows that those queries
which use a double 'NOT EXIST' to express universal
quantification can be mechanicéily transformed into queries
uging 'CONTAINS'.

Theorem 3: All instantiations of forms a) and b) below are

equivalent as WHERE clauses 1n any query.

a) NOT EXIST b) (SELECT A
(SELECT * FROM R2
FROM R1 R1Y WHERE COND2)
WHERE CONDI CONTAINS
AND NOT EXIST (SELECT A
(SELECT * FROM R1Y
FROM R2 ~ WHERE COND1)
WHERE COND2
AND R2.A=R1Y.A))

Proof: We assume that the clause R2.A=R1Y.A is the only clause
joining the two blocks (i.e., joining R2 to R1Y.) (If there were
other clauses, we could treat A as a tuple, and the proof would
be generalized.) Notice that in b) COND2 comes before CONDI,
Also, the clause joining relations R1 and R2 is not needed in

b) .
Clause a) asserts the following:
NOT EXIST A,¥2,...,Ym {R1(A,¥2,...,Ym) AND CONDI

AND NOT EXIST X2,...,%Xn (R2(A,X2,...,%Xn) AND COND2)}.
We assume that R!1 is an m-ary relation and R2 1is an n-ary
relation, .and that the joining attribute A is the first

attribute—in both relations. We indicate the fact that the

31

Al

i3

relations are joined on this attribute by using the variable A

in both relations. The above condition is eguivalent to

FOR ALL A,Y2,...,¥Ym ~{R1(A,Y2,...,Ym) AND COND1

AN
AND NOT EXIST X2,...,X%n (R2(A,X2,..>an) AND COND2)}.

By De Morgan's law, this can be written
FOR ALL A,¥2,...,Ym {~(R1(A,¥2,...,Ym) AND CONDI)

OR EXIST X2,...,%Xn (R2(A,X2,...,Xn) AND COND2)}.

Equivalently,
FOR ALL A, {NOT EXIST Y2,...,Ym (R1(A,Y¥2,...,Ym) AND C§ND1)}

OR {EXIST X2,...,Xn (R2(A,X2,...,Xn) AND COND2)}.

" Or,
FOR ALL A, {EXIST Y2,...,Ym (R1(A,¥2,...,Ym) AND COND1)} T

-> {EXIST X2,...,%¥n (R2(A,X2,...,Xn) AND COND2)}.
This last condition is exactly what clause b) asserts, .and this

completes the proof.

We now apply theorem 3 to Example 9. When matching this
example to the form a), we see that R2 is 'SHIPMENT', R1 is
"SHIPMENT', and R1Y is 'SHIPMENTY'. Only one clause joins these
relations, and that is 'P#=SHIPMENTY.P#'. Thus the attribute A
is 'P#', and COND2 is "S#="'S1' AND J#?SHIPMENTX.J#"; Note.that

in the original query, the clauses which form COND2 may be

/.

32

separated by the join clause. After applying theorem 3, the

‘query is transformed into the following QUery:

SELECT J# s
FROM SHIPMENT SHIPMENTX i .
WHERE (SELECT P#
\ FROM . SHIPMENT

WHERE S#='S1’ .

AND § J#=SHIPMENTX.J#)

CONTAINS

(SELECT P#

FROM - SHIPMENT SHIPMENTY .

WHERE EXIST '

(SELECT * .
FROM SHIPMENT ‘ \ \5
WHERE S#="'S1"' ‘

AND P#=SHI PMENTY.P#))

This query still contains one "EXIST', but it occurs with a
predicate that refers to the attribute P#. According to the
ahalysis given just before the statement of Example 9, the
entire predicate from 'EXIST' to the end of the query can be
replaced by one single predicate, "S#='S1'", Using the
transformation for this speciai case, we obtain
SELECT J#
FROM SHIPMENT SHIPMENTX
WHERE (SELECT P#
FROM SHIPMENT
WHERE S#='S1'
AND J#=SHIPMENTX.J#)
CONTAINS
(SELECT P#
FROM SHIPMENT
WHERE S#='S1")
The subguery situated above the word 'CONTAINS' selects
those parts supplied to project J# by S!. The subquery below the
word 'CONTAINS' selects all the parts supplied by St1. This

transformed query, after being passeg\on to the NLG, would be

33

)

"Selert the Jt-values of projects satisfying the following

translated as follows: , %

~onditions: if part P: is supplied by S1, then S1 sent a
shipment of part P= to project J#." The translation Date gives
for this query 1Is

"Get J& wvalues for projects supplied by supplier St with all

‘carts that supplier S1 supplies”.

ST
The next theorem is similar to Theorem 3, and Is useful for

queries like Example 4. It permits us to eliminate a double

negation. :

Theorem 4: All instantiations of the forms a) and b) below are

egquivalent as WHERE clauses in any query.

&) NOT EXIST b) (SELECT &

(SELECT A FROM R

FROM R1 : WHERE COND1)

WHERE NOT COND1, CONTAINS

,AND A IN (SELECT A
(SELECT & FROM R2 :
FROM R2 : WHERE COND2)

WHERE COND2), .

Proof: Analogous’to'theorem 3.7

When we apply Theorem 4 to Example 4, we obtain

SELECT S# .
FROM SHIPMENT SHIPMENTX
WHERE

(SELECT Pz

FROM PART

WHERE PART.COLOR="RED"')

CONTAINS
(SELECT P# -
FROM SHIPMENT '

WHERE SHIPMENT.S#=SHIPMENTX.S%)

34

. “
The translation of this query 1s "Select the S#-values of

suppliers who supply only red parts.”

35 :

CHAPTER IV

//

v " NATURAL LANGUAGE GENERATOR (NLG)

The method used by NLG is based on the tables approach
originating from Codd'éiwork on the RENDEZVOUS project. The aim
of Codd's project was’to allow users to use English to
interrogate a database. The initial input'was an English-
sentence, which was translated internally into a query in -
DEDUCE. This was theﬁ translated back into English aqg\
displayed. The user could then either cohfirm that ﬁ%’ééptured
his intenpion or reqguest a aorrection. The translation back into
English was célled the generation step, and it its this step
which 1s similar to our work. However, Codd did not develop his
éystem to the point where it could handle universal
guantification, the general use of neéation, or the use of 'OR',
and 'AND'. Our system will handle all of these features, and
‘thus extends Codd's wérk. Some new ideas weré introduced; for
example, recursion was used _for the "OR' case. Codd's
translation was from DEDUCE into English, while ours is from SQL

into English. There are many database systems which use SQL, and

our program could easily be adapted to be used with them.

Another.difference between our system and Codd's is fhat
Codd combined nouns and adjecfives in the same table. Since a
noUn phrase may contain any number of adjectives, but may only
have one noun, it is advantageous to keep thé table for the

adjectives distinct from the one for the nouns.

36

One of the advéntages of the table method is that all of the
domain specific information is located in a gmall number of
tables. When changing from one domain to another, the tables can
be changed in a straightforward manner. Below we consider a
sample query and show how the table method is used. This example
shouldimake it clear how the domain specific informati?n can be

put into a table.

To discuss our ideas, let us consider the following example
of an SQL query:
SELECT J#
FROM: SHIPMENT
WHERE S#='S1'
Qur translation of this guery will be: "Select the J#;values of
projects, supplied by supplier S1." Our method of translation

involves setting.up tables for each of the relations. Here, for

example, is the table for the 'SHIPMENT' relation:

37

SHIPMENT(A,B)

 B-attribute English phrasg
_ A=P# * - supplied
QTY in a quantity
S# by :
J# to
A=S# * who sent a shipment
P# of
QTY) in a quantity
J# to
; . A=J% * supplied
P4 with
- QTY ~in a quantity
S# by

Here A refers to the attribute involved in the SELECT
clause. The value of A determines which part of the table to
Qse. 1f A=P#, use the first four rows, if A=S#, use the second
four rows, and if A=J#, use the last four rows. (Notice that the
English phrase depends mostly on the value of B, but does depend
also on the value of A. Since it depends on two'attributes, it

is an example of a two-dimensional table.)

‘It is straightforward to generéte the firét part of the
translation "Select the J#-values of projects". To obtain ﬁhe
remainder, we use the table. In the example, the SELECT clause
contains J#. Thus A is J#, which means we must use thé bottom
four rows of the table. The right column contains the'English
phrase. The asterisk indicates that the cofresponding phrase is

- always to be output. In our example, we get 'supplied'. Let COND

38

denote the compléte WHERE clause. In our case, COND is
"SHIPMENT.S#="'S1'". The table, is scanned sequentially. Whenever

one of the attributes in the left column occurs in COND, we

~

. output the phrase to the right. (This phrase needs to be

completed, and this is done by another table.) In our case, P#

and QTY do not occur in COND. However, the attribute S# does
occur, so 'by' is output. The completion of this phrase,

'supplier S1', is provided by a table for the S relation.

As another illustration of the table method, let us consider
the following queryf ~. |

SELECT J#

FROM SHIPMENT

WHERE S#='S1' AND P#='P3'
Again, the SEiECT clause conﬁains J#, so we go to the bottom
four rows of the table. We must use the phrase across from the
asterisk, and so we get ‘suppliéd', This time COND is "S#='S1'
AND P#="'P3'". The att;ibutes given 1in the femainder of the table
are P#, QOTY, and S#, in that order. We -examine COND, looking for
each attribute }n turn. Since P# occurs 1in COND,Voutput 'with'.
Next we output 'parts P3', éince that is the value given 1in
COND. Then we go looking for 'QTY' in COND. It does not occur,
so the phrase 'in a quantity' is not output.rFinally, we gét to
the last line of the table, which concerns 'S#'. It doéﬁ occur
1n COND,’and we get 'by' as 1in the previ;ws example. In
addition, we also get 'supplier S1'. Putting eyerything

s

together, the transltation is: "Select the J#-vafues of projects

supplied with parts P3 by suppiier S1."

39

Tables can be extended so as to take care of single
negagions, but not double negations. When a double negation is
encountered, we invoke the query transformer (QT). The guery is
transformed into an extended SQL form, which is passed on to
NLG. NLG is able to translate this exténded SQL form in a

straightforward way by making use of the existing tables.

CHAPTER V

IMPLEMENTATION OF ELFS

One impﬁementation of ELFS was done in PL/I, and one was
done in Prolog. The Prolog program is given in the Appendix.

First we describe exactly what inputs are allowed to the
. AT

N

program. Then we proceed to describe the details of the

algorithms used.

The program can handle queries of the following form:

AN
1. any level 1 guery of the form below:

SELECT A
FROM R
WHERE COND

2. Any level 2 query of the form below:

SELECT A
FROM R
WHERE B {NOT} IN
"(SELECT B
FROM R2

WHERE COND2)

The curly brackets éround the 'NOT' indicates‘that 1t may be
either present; or not present. Bofh single ana double negations
are allowed. Any number of 'AND's and 'Og's are allowéd in the
WHERE clauses. At presept, interblock reference and "EXIST' are
not allow%F. The 'CONTAINS' and 'GROUP-BY' Eonstruc£s are not

implemented.

The basic translation algorithm used by NLG is given below.
Any level 2 guery can be put in the same form as'?ig‘levél 1
guery above if we allow COND to contain a query. We will allow
this in the foll§Wing discussion. Let LOGICOP be the major
connective in COND. If LOGICOP='AND', or if COND has only one
condition, we'use this translation scheme: ’ B
1. "Select the"+NOUNS(A)+PREP(A)
2. TRANS(A,0,COND)

3. TABLES(R,0,COND,R(A)).

I1f LOGICOP='0OR', (which means that COND can be written 'P1 OR
P2'), we use the following alternate scheme:'
1. "Select the"+NOUNS(A)+PREP(A)+NOUNS(R(A))

2. "satisfying the following conditions:”

3, "they are"+TRANS(A,0,P1)+TABLES(R,0,P1,R(A))
4. LOGICOP \
5. “they are"+TRANS(A,0,P2)+TABLES(R,0,P2,R(A)) -

These algorithms use four subroutines: NOUNS, PREP, TRANS,

and TABLES. TRANS invokes a fifth routine called MOD.

NOUNS simply translates the attribute A into the
corresponding noun. Thus SNAME gives "names", SCITY gives

"cities", and so on. This routine is domain-dependent. -

PREP selects the proper preposition to use for the attribute

A. For example, for SNAME, we should use "of", but we should not

\ 42

/ﬂm__J

-

use "of" for SCITY. A translation like "Select the cities of cg?‘égﬁf

suppliers who sent a shipment to London" is a bit awkward. A
better translation is "Select the cities with suppliers who sent
a shipment to London". This rodtine, 1ike-NOUNS, 1is

domain-dependent.

The purpose of TRANS is to find a complete noun phrase.
TRANS takes 3 arguments, A, NOT, and COND. NOT is a boolean
vari@h&g which indicates whether or not negatioq is in effect.
The value 0 indicates that no negation is involved. The
‘transiation schemes given above use the value 0 in the top level’
calls to TRANS and TABLES. TRANS is quite simple, as it contains
only two steps:
1. NOUNS(R(A)).
2. MOD(A,NOT,COND) .
The function R(A) finds the relation to which the attribute A

belongs.

MOD is a routine which finds all the modifiers of A in the
condition COND. Since a noun phrase may contain any nQQSer of
modifiers, the MOD routine must have a recursive nature. Notice
that MOD does not have to concern itself with finding the noun;

= that is the job that TRANS is respoﬁsible for. Although MOD must
refer to some domain-dependent files, we have succeeded 1n
keeping it domain-independent. It takes 3 parameters as input:

A, NOT, and COND. MOD consists of the following 5 steps:

43

1. Check for the occurréﬁag\of "FOR ALL' and process
\

™

accordingly. y
1

- ‘ ‘ -
2. 1f COND includes an 'IN' form like _ -

A {NOT2} IN d
(SELECT A e
FROM R2-

WHERE COND2),
{

then: a. call MOD(A,NOT+NOT2,COND2)
b, If R2;is multi-dimensional,

call 'TABLES(R2,NOT,COND2,R(A)).

i
" /

~_/ {
3. If COND includes an equality, 'R.A = A-constant’',

output A-censtant.

s
-

//,

d |
4. If COND has major connective LOGICOP,

thegé a. call MOD(A,NOT,P1), *
{ b, output LOGICOP(NOT),
ih,c. call MOD(A,NOT,P2), and retufn.
We shSQId output LOGICOP only if both MOD's return

\ .
non-empty 'strings.

44

Al

5. Finduthe table for the relation R(A) and go through
the attribute list.
a. Set B to the first attribute of the table.
b. If there are occurences of R.B in COND, they
should be of the(form 'R.B OP X'.
Call PRINTCQMP(OP,X).
c. Move to next the next attribute B and go to step b

above. ’ v

PRINTCOMP stands for "print comparison". For example,

PRINTCOMP(<,30) will give us the English phrase "less than 30".

The TABLES routine performs the task of scanning the
multi-dimensional tables of the database. (In our sample

database, the only such table is the one for SHIPMENT.) TABLES

takes four parameters: R, NOT, COND, and A. It has 3 steps.

45

If

call TABLES(R,NOT,P1,R(A)), —

OR is the major connective, (i.e., COND=Pi1 OR P2),

~
—

RN
output OR(NOT), -

N

call TABLES(R,NOT,P2,R(A)), and return.

J
- \‘
B o S t\\'/r*\\‘:
i

. Set B to the first attribute in the table. (If"NOT 1is

in

effect, use an alternate taple/ﬁith negations.)

-
7

s

While B-=' ' do

. If B='*','thi% put the English phrase in buffer -

called phrasel.

If 'R.B' occurs in a predicate P in COND, and is
the first such occurrence, outptt phrase1‘and the
phrase correspénding to B.

If it is nét the first occurrence, output only the
phrase corresponding to B,

Call TRANS(B,0,P). (To find any modifiers of B).
I1f B=QTY, set the value of COMPCOL.

Move -to next line of table.

PRINTCOME takes two parameters, OP, and B-constant. €OMPCOL
is a flag that is set by TABLES, and determines the phrase to be

used in comparisons. The steps of PRINTCOMP are listed below:

46

1. If OP is '=%, output B-constant,

2. If OP is '-=', output "other than" B-constant.

3. Else use column COMPCOL

Let us give some complete examples to show how the routines

of NLG work.

Example 10:

SELECT S#
FROM SHIPMENT
WHERE (SHIPMENT.J#='J1"'
, OR SHIPMENT.J#='J2")
AND P# IN
(SELECT P#
FROM PART
WHERE PART.COLOR='RED');
Y
The translation for Example 10 comes out to be: "Select the
S# values of suppliers who sent a shipment of parts colored red

to project J1 or project J2."

Even though this is a level 2 query, we can put it into the
‘general form given for a level 1 query by taking A to be S#, R
to be SHIPMENT, and COND to-beleverything after the first
"WHERE". Note that the.major conneétive in COND is "AND", so we

use the simpler translation scheme.

According to step 1, we must find NOUNS(S#) and PREP(S#).
NOUNS(S#) is "S#-values™, and PREP(S#) is- "of". Thus the output

from step 1 is the phrase "Select the S#-values of".

(‘) 47

In step 2, we obtain TRANS(S#,COND). Now NOUNS(R(S#))=
NOUNS (SUPPLIER)="suppliers". MOD(A,NOT,COND) turns out to be the

empty phrase, so step 2 gives us "suppliers”.

In step 3 we must find TABLES(SHIPMENT,NOT,COND,SUPPLIER),
where COND 1s
(SHIPMENT.J#="'J1"
OR SHIPMENT.J#='J2")
AND P IN Q2 '
and the’subquery Q2 1is
(SELECT P%

FROM PART :
WHERE PART.COLOR='RED');

The table fof the relation SHIPMENT was given”in chapter 4.
Theurows corresponding to "SQPPLIER" are those in the middle
third of the table.‘Finst we get the English phrase "who sent a
shipmént", by stepg3a of the TABLES routine. Goinq}down the
tabie, we come to Pi., We see that P# does occur in COND, SO
output "of". The phrase {:'COND contatning P# 1s "P# IN Q2". To
cbmplete thi§ brepoéitional phrése, we call TRANS(P#, 0, P# INV
Q2). This produces "parts", and a call to MOD(P#} 0, P# IN 02).
Looking at how MOD works, we see that this makes a call to

MOD(P#, 0, PART.COLOR='RED'). The output from MOD is "colored

red

Back in the table, we go to the next line, containing J¥#.
Now J# occurs in COND, so output "to". Call TRANS(J#, O,

SHIPMENT.J#='J1"' OR SHIPMENT.J#='J2'). NOUNS gives us

48

"projects". Call MOD(J#, 0, SHIPMENT.J#='J!' OR
SHIPMENT.J%='J2'). Since the major connective is "OR", we call
MOD(J#, 0, SHIPMENT.J¢ ='J1'), output "OR", and call MOD(J#, O,

IPMENT.J#="J2'). The first MOD gives "project Ji™, and the

. .f'
second gives "progécrt J2". fi
Example 11: ‘ .

SELECT S# R
FROM SHIPMENT S~
WHERE J# IN

(SELECT J#%

FROM PROJECT -

WHERE PROJECT.JCITY='LONDON'

OR PROJECT.JCITY="'PARIS")
AND . P# IN ’

(SELECT P#

FROM PART

WHERE PART.COLOR='RED');

For this example, the translation will be: "Select the ‘
- e

Sz-values of suppliers who sent a shipment of.parts colored red
to projects located in London or located in Paris.”
Here A is S#, R is SHIPMENT, and COND is everything after

i
the first "WHERE". Again we use the simpler translation scheme.

Step ! gilves us "Select the S#-values of", step 2 gives us
"suppliers”, and step 3 gives us "who sent a shipment of parts

colored red to projects located in London or located in Paris".

Id

R

49

+ CHAPTER VI
APPLICATIONS
We stated earlier that the objective of this thesis is to

pregent a method to intefpret an SQL query and translate it }nto
natural language. At first, this may seem a bit odd, in view of
the current trend of translating natural language to a database
languége such as SQL. In this chapter, we‘outllpéﬁagmg potential
applications of our research results as described i;\?aé

previous chapters.

2| 7
(1) SQI”Tutorials: Consider.the design of a computer-based

tutorial system to teach programmers and users how to use\SQL to
interact with the database system. Most likely there will be a
drill session following a brief introduction to the essential
featureg of the language. The trainee will be given a sample
database schema such as our Part-Supplier—Projfct schema. Then
for each reguest of information, such as "finddall suppliers who
supply at least one red‘part", the trainee is asked to formulate
aquQL guery correctly. %he least the tutorial system sﬁould do
iéltb determine whether the submitted guery is syntaétically

correct, a task an SQL interpreter/compiler must be able to

perform. Thus, we can assume the syntax of the guery 1s correct.

e

nighly desirable feature of such a tutorial system 1is to
provide feedback tc the trainee regarding the correctness of the
query, il.e., whether the query will do what 1t 1s supposed to

de. One possible way of providing such.a facility is to have the

tutorial system use the query to>retrieve information from a
sample database and alléw Fhe trainee to check the answer by
examining the entire sample database. One of the pitfalls. of
thisvapproach is that the answer might be correct even if the
guery is incorrect, which may happen 1f the sample database is
very small. The alternative is to make use of Qgr‘proposea
system to inform the trainee of the English translation of the
guery 1in a clear and unambiguous way. To take this approach one
step further, it is possible to expand our system into an expert

system which can diagnose a submitted guery and suggest ways to

modify the query.

‘(i() SQOL Programming &id: The same feedback mechanism described
above will also be helpful to exper%enced end-users and o
programmers who want to exploit the full retrieval power of SQL.\
This mechanism can’be embBedded into the database system as an
option for debugging purposes. Experience has shown thaﬁ most
obscure progfam bugs occur because the program neglects to

handle "boundary" conditions properly. Example 8 will illustrate

cur point here. after the interpretation of QT, we obtain the

(28 31

[

@]
~

O
E

wing psuedo-SQL guery:

SELECT J# | ,
FROM SHIPMENT SHIPMENTX
WHERE (SELECT P#

FROM SHIPMENT

WHERE S#='S1' .

AND J#=SHIPMENTX.J#) o .
CONTAINS ;
(SELECT P# N

FROM SHIPMENT !

WHERE S#='S1') '

The "boundary" condition of this guery is the condition that SiI
supplies no parts to any projects. When this condition is true,

which means the "CONTAINS' predicate is always trué, all J¢'s

will be retrieved as the answer. This boundary condition can ber ;
detected by our system and displayed to the programmer as part

of the feedback. In this case, the sentence "...or S1 supplies

no parts to any projects" is appended to the normal output.

(Hii) Syntactic Query Optimization: This is in contrast go
éemantic query optimization [kingSl], which makes usé of -
knowledge of data semantics to speed up guery processing. The
latter is very dependent on the application domain because the
gemantic knowledge is expressed in the form of semaﬁtic
integrity constraints of the database, suchhgg "Every project
located in London must be supplied by local suppliers"”.
Syntax-based guery optimization has been suggestedﬂpy other
database researchers. [KimW82], for example, proposed ;omé rules

— |
by which certain types of gueries can be transformed into other

~
queries and showed the transformation can reduce processing
cime. The rules we have proposed for the QT can be applied with

~similar results. For example, the conversion of double 'NOT

EXIST' into 'CONTAINS' reduces the number of levels of the query
by one. Still greater savings can be obtained by interpreting

queries. E;;%$le 7 is a case in point. To retrieve the answer to
this. query, we need only to look for tuples with the same value
offS# but different values of q#. Thus one - pass of‘thé relation
SHIPMENT will be sufficient. A secondary index on S# or sorting
the tuples by S# will help, bug neither of them is strictly |

necessary. To further illustrate this approach, consider the

following complicated query:

SELECT S#
FROM SHIPMENT SHIPMENTX
WHERE S# NOT IN .
(SELECT S#
FROM SHIPMENT
) WHERE J# IN
<:“" (SELECT J# ' '
‘ . FROM SHI PMENT |

o WHERE P4 —-= SHIPMENTX.P#))

After the processing by QT, this query becomes a psuedo-SQL

guery as follows:

SELECT S#
FROM SHIPMENT SHIPMENTX -
WHERE S# IN o
(SELECT S#
FROM SHIPMENT

WHERE FOR ALL SHIPMENT: J# IN
’ (SELECT J#%
' FROM SHIPMENT ¥
WHERE FOR ALL SHIPMENT:P#=SHIPMENTX.P#))
(or equivalently, NUMBER(P#)=1)

The translation of this guery is: "Find suppliers such that each
project such a supplier supplies uses only one part". Of course,
our proposed system can identify this guery by its syntax,

without actually deriving its meaning, which is application

53

dependent. In fa;t,.this query belonés to the category of
queries without }EXIST', ha3 interblock reference, and is of the
type (-,+,-) in terms of negation by levels. For this class of
queries, there will be a predetermined search strategy with the
attributes involved (in this case S#, J# and P#) as the&input
paraméters. In order to estimate the processing time'of this
strategy, we assume the relation SHIPMENT is sorted by S# and
then by J#. Since the'primary key of the relation consists of
S4, J# and P#, ény two tuﬁles with the same value of»S# and J#
must have different values under P#. Thus for a value of S# to
be included into the answer, all J#'s associated with thés value
of S# must be different from each other. Agaih, one pass of the

relation SHIPMENT will yield the answer.

(iv) 'Extended' SQL: We have loosely defined Extended SQL to
include all forms of tranéformation output by the QT and, of
course, SQL itself, It is not the intention of this thesis to
preéent a preéiSe definition of Extended SQL, but we believe it
could form the Basis of an improved language interface. The
advantages are obvious. It allows the users to use more -
Ehglish—like queries to retrieve a greater yariety of
information without having to modify the SQL language processor.
While we are-aware SQL ib}i:i a perfect database language (as

(Date84) points out) ther e already plenty of existing

database systems that are using SQL or SQL-like languages. For
these systems, a front-end can be written to accept psuedo-SQL

gueries and then transform them into a form accepted by the SQL

54

language processér of the database system. In fact, a future
research direction is to pursue-the idea of extending SQL to
bring it is as close to natural lanquage as possible, while

keeping its characteristic of apblication independence 1ntact.

55

CHAPTER VII

CONCLUSION AND PROSPECTS FOR THE FUTURE

The ELFS system iS basgd on Codd's work with tables, but we
have made several extensions. The 1dea of a Query Transformer is
a new contribution. The transformations‘we discovered are new;
and we were able to prove several theorems which rigorously
established the correctness of these transformations. The ELFS
system goes beyond previous work in its ability to handle
universal quantification, the general use of negation, and the

use of 'OR' and 'AND'.

Aithough‘SQL is rapidly becoming the de facto standard/for
data lahguage"for relational database systems, it has many
éhor;comings. [DateBQ] has presented a critigue of the language.
Our'concerns here focus on the untapped power of the database
language for casual ﬁsers; Even for simple, day-to-day and
u%contrived requests for information, one has to resort to
complex, unnatural, and therefore hard-to—unde;stand queriés.
These concerns have motivated us to deQelop a systém to
translate an SQL query into natural language. The obvious
applications of this system will be found when developing
computer-based SQL tutorial systems and SQL debugging aids..
During the process of translation, knowledge about. the syntax of
the query 1s acquired, which will be useful in ' query |
gptimization. The whole exercise described in this thesis could

lead to construction of a more user-friendly, restricted natural

56

C

language front-end to the existing SQL language, which can
easily migrate from one application démain to another.

L}

An interesting topic for further research would be to see
how easily one could transport the ELFS system to a different
database. Also, tools could be developed to aid in the
construction of ELFS systems for different applications. There
should be a systematic way bf generating the tables used in the
translations. There is much more work that coul@ be done on the
algorithms for QT and NLG. In addition, ELFS could be
generalized to include interblock reference. Finally, one could

investigate gueries with more than three levels.

57

References

"[Atze82] _ .
Atzeni, P. and D.S. Parker, "Assumptions in Relational’
Database Theory", Proc. of ACM Symp. on Principles on
Database Systems", -1982, Pp. 1-9

[Brad82] ~
Bradley, J., "File and Data Base Techniques™", Holt, Rinehart
& Winston, New York, 1982

[Codd70]

. Codd, E.F., "A Relational Model of Data for Large Shared.

Data Banks", Comm. ACM, No. 6, Vol. 13, 1970, pp. 377-387
. a ,

[Codd78] ,
Codd, E.F. et. al., "Rendezvous Version 1: An Experimental

English-Language Query Formulation System for Casual Users
of Relational Data Bases", Research Report RJ2144, IBM
Research Lab., San Jose, Calif., 1978
[Cham76]) ~
Chamberlin, D.D. et. al. "SEQUEL 2: A unified Approach to
Data Definition Manipulation, and Control", IBM~a.TgEsearch
& Developments, Nov. 1976, pp.560-575 ,

[Date81]

Date, C.J., "An Introduction to Database Systems", ‘
Addison-Welsey, Readings, Mass., 1981
[Date84]

Date, C.J., "A Critique of the SQL Database Language", ACM
SIGMOD Record, No:. 3, Vol. 14, 1984

[RimWw82] . _ /
Kim, W. "On Optimizing an SQL-like Nested Query", ACM TODS,
No. 3, -Vol. 7, 1982, pp.443-469 v

[King81]
King, J.J., "QUIST: A System for Semantic Query Optimization
in Relational Databases", Proc. of VLDB, 1981, pp. 510-517

[Shne78] .
Shneiderman, B., "Improving the Human Factors Aspect of
Database Interactions", ACM TODS, No. 4, Vol. 3, 1978,
pp.417-439 !

(U11m82]

Ullman, J.D., "The U.R. Strikes Back", Proc. of ACM Symp. on
Principles of Database Systems, 1982, pp. 10-22. .

58

Appendix : Prolog program.
?

We give a listing of the Prolog program, which includes some
comments. In this program, the relations of the sample database
were given the shorter names S, P, J, and SPJ. At the end, a
sample of the output is given. '

We can make some comparisons between the Prolog program and
the PL/I1 program, Many string manipulation routines had to be
written in PL/I which are already built-in in Prolog. If we
exclude all these utilities from the PL/I program, it is still
about four times as long as the Prolog program. The ,
pattern-matching facilities of Prolog eliminate a whole series
of IF-THEN-ELSE clauses in the cehtral routines of ELFS. There
was some concern that Prolog might not be fast enough, but this
proved to be unfounded. For our sample database, the processing
time was under 1 second per guery.

-

~,
/J

=7

59

/***/

/* This part contains some of the simple functions. */

/* These are domain dependent. *x/
/***/

/* ATOREL finds the relé:?Zn that an attribute belongs to. */

APOREL(S,S).

ATOREL (SNAME, S).

ATOREL (STATUS,S) . ‘
ATOREL(SCITY,S).
"ATOREL(P,P).
ATOREL (PNAME,P).
ATOREL (COLOR,P).)
ATOREL (WEIGHT,P). —
ATOREL(PCITY,P).

“ATOREL(J,J). :

ATOREL (JCITY,J).

ATOREL (JINAME, J).

/* RELATION is true if its argument is a relation of the

/* database, * /
/* ATTRIB is true if its argument is an attribute,. */
RELATION(S).
RELATION(P).
RELATION(J) .

RELATION(SPJ).

ATTRIB(S).
ATTRIB(SNAME) .
ATTRIB(STATUS).
ATTRIB(SCITY).
ATTRIB(P).
ATTRIB(PNAME) .
ATTRIB(COLOR). -
ATTRIB(WEIGHT) . ‘e
ATTRIB(PCITY).
ATTRIB(J). .
ATTRIB(JCITY).
ATTRIB(JNAME) .
ATTRIB(QTY).

60 ,

b

/* RELNQUNS provides the noun corresponding to a relation. */
/* NOUN provides the nouns for attributes and for the keys */
/* of relations. . * /

RELNOUN(S,suppliers).
RELNQUN(P,parts).
RELNOUN(J,projects).

NOUN(S,S values).
NOUN(P,P values).
NOUN(J,J values).
NOUN(SNAME names) .
NOUN(STATUS,statuses).
NOUN(SCITY,tities).
NOUN (PNAME, names) .
NOUN(COLOR, colors).
NOUN (WEIGHT,weights).
NOUN(PCITY,cities).)

/* Utilities */

PRINT(*X.*Y)<- WRITECH(*X) & WRITECH(' ') & PRINT(*Y) &/.
PRINT(NIL). /* <-WRITECH('nil '). */

APPEND(NIL,*L,*L).
APPEND(*X *L1 *[,2,*X.*L3)<-APPEND(*L1,*L2,*L3).

61

)RS o o

/* ALTER performs the basic translation algorithm of NLG. */
/* It can handle both level 1 and level 2 queries. x/

ALTER(SELECT.*A.FROM.*RLIST.WHERE,*COND, *OUT)
ATTRé{(*A) & NOUN(*A,*NOUN)

ATOREL(*A,*RA) & RELNOUN(*RA,*RNOUN) & /
NEWLINE = : .
PRINT(.Start.of.new.gquery. ~NLL) & NEWLINE &NEWLINE
PRINT(Query is.SELECT.*A.FROM.*RLIST.WHERE.*COND)
MOD (*RA , *COND, *MOD)

TABLES(*A,*RLIST,*COND,*TABLES)
APPEND(Select.the.*NOUN.of . *RNOUN.NIL, *MOD, *QUT1)
ABPEND (*OUT1, *TABLES, *OUT) ‘

NEWLINE &PRINT(Translatipn is.:.NIL) & NEWLINE
PRINT(*OUT)

NEWLINE & NEWLINE.

' lN"a N 'a N ‘o I ‘o B ‘o BN - g B 'a B ' B ' B '« B

4

/* MOD(*RA,*COND, *MOD)
/* returns in *MOD a list of all modifiers of RNOUN

s

/* 1n *COND.
/* i1t calls MODA for each poss:ble attribute of that noun.

*

/,
x/
*/

/

/* Check for occurence of a "FOR ALL" , : */

*

MOD(*R,FOR.ALL.X.IN.*RX.*RY.*BY.- *RZ *B,IMPLIES.*COND, *OUT)
<- NOUN(*B,*NOUN) & ATOREL(*B,*RB) & RELNOUN(*RB, *RNOUN)
& MOD(*RB,*RB.*B.=,*NOUN.NIL,*MOD1)
& MOD(*RB,*COND, *MOD2) \
& APPEND(hav1ng the.prop.that. for all.*RNOUN.x.if.x.1s.NIL,
*MOD1, *OUT1) .
& APPEND(thenm§ is.NIL,*MOD2,*MOD22)
& APPEND(*OUT1t,*MOD22, *OUT).

/* Break up the AND's. y ' x/

MOD(*RA,*C1.AND.*C2, *MOD)
<- MOD(*RA,*C1,*M1) -

& MOD(*RA,*C2,*M2)

& APPEND(*Ml *M2 *MOD) . .
)

// . . .
/* Now *COND should contain only a single condition. x/

N .

/

MOD (S, *COND, *MOD) :

<~ MODA(S ,*COND, *§) -
& MODA (SNAME, *COND,*SN) ~ v

MODA (STATUS , *COND, *ST)

MODA (SCITY, *COND,*SCITY)

APPEND(*S,*SN,*L1) -

APPEND (*L1,*ST,*L2) & APPEND(*L2,*SCITY, *MOD).

)

g o

3

62

A

MOD (P, *COND, *MOD) (
<~ MODA (P “*COND, *P) o
& MODA (PNAME, *COND,*PN) a\\\MJ

&

& MODA (COLOR, *COND, *PC) .

& MODA(WEIGHT, *COND, *WT) , o . e
& MODA(PCITY, *CCND,*PCITY) S :

& APPEND(*P, *PN, *L1) & APPEND{*L1,*PC,*L2) .

& APPEND(*L2, *WT *L3)& APPEND(*L3 *PCITY, *MOD) .
MOD (J, *COND, *MOD) , - ° s,

<- MODA(J™ ,*COND,*J) .- - A -

& MODA (JNAME, *COND, *JN)

,& MODA(JCITY,*COND,*JCITY)
& APPEND(*J,*JN,*L1) .
& APPEND(*L1,*JCITY,*MOD).

/* MODA 'goes into' any IN-clause. */
MODA(*A,*A.;N.SELECT,*B.FROM.*RLIST.WHERE.*COND,*MODA)
<- ATOREL(*A, *RA)

& MOD(*RA,*COND, *MOD)

& ‘#ABLES(*B,*RLIST,*COND, *TABLES)

& APPEND (*MOD, *TABLES , *MODA') . " '
MODA (S *.S.=,%S NIL, *S .NIL).
MODA (SNAME, *.SNAME.=.*SNAME.NIL, named.*SNAME.NIL).

MODA (STATUS , * . STATUS . = . XSTATUS .NIL, having.a.status.*STATUS.NIL).

MOD%(SCITY, % SCITY.=.*SCITY.NIL, located.in.*SCITY.NIL).
MOD&XB, ,¥* . P.=.*P.NIL, *P.NIL).
MODA (COLOR, *.COLOR.=.*C.NIL, colored.*C.NIL).
* MODA (PNAME, *.PNAME.=,*PN.NIL, named.*BN.NIL).
MODA (WEIGHT, * .WEIGHT.=.*WT.NIL, weighting.*WT.NIL).
MODA (PCITY, *.PCITY.=.*PCITY.NIL,made.in.*PCITY.NIL).
MODA (J . *.J.=.*J.NIL, *J.NIL) .
MODA (JNAME . *.JNAME.=.*JNAME.NIL,named. *JNAME NIL).
MODA(JCITY, *.JCITY.=.*JCITY.NIL,located.in.*JCITY.NIL).
. MODA (*,* NIL)
AN \

63

)

/* Distribute TABLES over the relation list. */

TABLES (*A, *R, *REST, *COND, *T)

<- TABLE(*A,*R,*COND,*T1)

& TABLESI*A,*REST,*COND,*T2) t
& APPEND(*T1,*T2,*T).

TABLES(*A,NIL,* , NIL).

/*§§PJ table (domain dependent) * / : ,
/* *MP contains the modifiers for P. */ p;

/* *NPP is the-rfoun phrase. */

TABLE(S,SPJ,*COND, *TABLE)

<- QTY(*COND, *QTY) :
§ MOD(P,*COND,*MP) & P(S,*MP,*NPP)
& MOD(J,*COND,*MJ) & J(*MJ,*NPJ) .
/* & PRINT(MODP.=,NIL) &PRINT(*MP) &NEWLINE

& PRINT(MODJ.=.NIL) &PRINT(*MJ) &NEWLINE ,

& PRINT(*NPP) & NEWLINE , . .
& PRINT(*NPJ) & NEWLINE */

APPEND (who.sent.a.shipment .NIL,*NPP,*OUT1)
APPEND(*OUT1, *QTY, *0OUT2)
APPEND(*QUT2, *NPJ, *TABLE) .

&PRINT(*OUT1) & NEWLINE ,
&PRINT(*QUT2) & NEWLINE. */ _ -7 = -,

2 -

TABLE(P,SPJ,*COND, *TABLE)
<- QTY(*COND, *QTY) .
& MOD(S,*COND,*MS) & S(*MS,*NPS)
& MOD(J,*COND,*MJ) & J(*MJ,*NPJ)
& APPEND{supplied.NIL,*QTY,*OUT1)
& APPEND(*OUT1,*NPS,*0UT2) & APPEND (*OUT2, *NPJ, *TABLE) .

TABLE(J,SPJ,*COND, *TABLE)
<~ QTY(*COND, *QTY)
& MOD(P,*COND,*MP) & P(J,*MP,*NPP)
MOD(S,*COND,*MS) & S(*MS,*NPS)
‘APPEND (supplied.NIL,*NPP,*OUT1)
APPEND (*OUT1,*QTY,*OUT2) &APPEND(*OUT2,*NPS,*TABLE).

r

2

[

/* S,P and J tables are NIL : */

TABLE(*,S,* ,NIL).
TABLE(*,P,* ,NIL).
TABLE(*,J,*,NIL).

{

" 64

Y

/* The SPJ table calls the functions below to form noun */
/* phrases from the modifiers it has found. *’

S(NIL NIL)
S{*L, *NPS) <- APPEND(by.suppliers. NIL,*L,*NPS).

P(S,NIL,NIL).
P(S,*L, *NPP)< APPEND(of .parts.NIL,*L, *NPP) .

P(J,NIL, NIL).
P(J,*L, *NPP)< APPEND (with. parts.NIL,*L, *NPP).
v»\<
J(NIL,NIL), N :
J(*L, *NPJ)< APPEND(to.projects.NIL,*L,*NPJ).

QTY(*U.QTY.*COMP, *CONST in.a.qguantity.*COMP. *CONST)
QTY (*U, NIL)

—

/* level 2 example ' x/ =7

-~

<-ALTER(SELECT.S.FROM. (SPJ.NIL).WHERE.P.IN. =~ -~
SELECT.P.FROM. (SPJ.NIL) .WHERE.SPJ.S.=.S1.NIL, *OUThs——_ _

/* end of the Prolog program. */ ?

\

Here is the output produced by the above program.

\ \ *
#Execution beginkf 21:37:26 : *
Prolog/MTS 0.2 ' » ‘ T

_ Start of new guery _

Query is ’
SELECT S FROM SPJ.NIL WHERE P IN SELECT P FROM SPJ.NIL
WHERE SPJ S = S

Translation 1s : R

Select the S values of suppliers who sent a shipment of parts
supplied by suppl1ers S

»

65

