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ABSTRACT 

A model for the evolution of the profile of a growing and 

melting interface has been studied. The parameter of the model 

is the average net growth velocity v of the interface which is 

determined by the difference between the rates of deposition and 

evaporation. For the case of reversible growth (v=O) the problem 

is exactly solved by mapping the system onto a one-dimensional 

kinetic Ising model. For the irreversible growth (~$0) Monte 

Carlo methods were employed to calculate the dynamic structure 

factor S(k,t) and the time correlation functions. It is found 

that S(k,t) obeys the dynamic scaling form : ~(k,t)-k-~+-(k't) 

with p 0  for all v. For v-0, 2=2 and for v#O we obtained ~ 3 / 2  

which is in excellent agreement with the previous numerical 

simulations and analytical results. The question of universality 

of dynamic growth processes is also discussed. 
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CHAPTER I 

INTRODUCTION 

The physics of nonequilibrium processes is a rich branch of 

physics. Among the nonequilibrium processes are the aggregation 

of smoke particles (see Figure 1 1 ,  colloid aggregation, 

dielectric breakdown, fluid displacement in porous media, 

crystal growth and many others. ' An understanding of these 
nonequilibrium phenomena is certainly important theoretically 

and technologically. 

Unfortunately our understanding of nonequilibrium phenomena 

is relatively limited in comparison to equilibrium phenomena at 

the present time. For example, the equilibrium properties of a 

thermodynamic system can be obtained quite satisfactorily from 

the basic assumptions of statistical mechanics. However, 

nonequilibrium properties are beyond this simple tool. Consider 

the processes we have mentioned above. Not only do we know 

little about the microscopic interactions controlling some of 

these processes, but also we are dealing with nonequilibrium 
< 

processes. Although the equations describing these processes may 

be well defined, theoretical advance is hampered by the fact 

that the surfaces are highly convoluted, display large 

fluctuations and boundary conditions are changing with time. 

Another difficulty is the lack of knowledge of their spatial 

structures. Models have to be proposed to deal with these 

processes. I t is found' that some nonequi 1 i br i um phenomena can 

be dqscribed in terms of models in which a single cluster grows 





20 Latt~ce Constdnts , - . . - -. , 

. . 

Figure 2: DLA aggregate  o f  3,000 pa r t i c . l e s  on a  square l a t t i c e .  

Fiqure 3: The Eden aggregate  on a  square l a t t i c e  of L=96. The 
f i g u r e  shows only the  t o p  rows, conta in ing  su r face  s i t e s .  

3 



through the addition of individual particles. Two elementary and 

well studied growth models are the diffusion-limited aggregation 

(DLA) model2 and the Eden modelO3 Several variants of these two 

models have also been proposed. 

The DLA process was proposed by T.A. Witten and 

L.M. ~ a n d e r . ~  The rules of the model are quite simple. One 

starts with a seed particle at the origin of a lattice. Another 

particle is allowed to walk at random (i.e. diffuse) from far 

away until it arrives at one of the lattice sites adjacent to 

the occupied site. There it is stopped and another particle is 

launched and halted when adjacent to an occupied site, and so 

forth. If a particle touches the boundaries of the lattice in 

its random walk it is removed and another introduced. An 

arbitrarily large cluster may be formed in this way. Figure 3 

shows a 3,000-particle aggregate on a square lattice. One sees 

immediately the striking similarity with the smoke particle 

cluster of Figure 1. 

The Eden model3 is also very simple. The process is started 

by placing a seed particle on a lattice site. The cluster is 

then grown by adding particles at randomly selected unoccupied 

sites adjacent to the existing cluster. Alternatively one can 

consider the initial state to be a substrate of finite length or 

area and confine the growing cluster to a strip or a column. 

Figure 2 shows the surface configuration of particles 

' accumulated on a strip of length L= 96 on a square lattice. 



In both the DLA process and the Eden model, the algorithm is 

assumed without explicit reference to the details of the forces 

between the particles. The reason is that some features of 

aggregation processes are rather insensitive to the details of 

the particle-particle interaction. For example, very different 

processes such as dielectric breakdown5 and smoke particle 

aggregation6 have strong similarity in their spatial structures. 

It seems likely that at least the structures arising in 

aggregation processes can be understood without considering the 

details of the interaction. As we can see from Figure 2, the 

clusters grown by DLA are fractals, while those from the Eden 

algorithm are compact but have a rough surface. 

The DLA process and its variants seem to describe very well 

a wide variety of phenomena which at first sight are unrelated 

such as the aggregation of smoke particles,6 colloid 

aggregation7 and dielectric breakdown. The DLA process is 

diffusion controlled. The exposed ends of the cluster grow more 

rapidly than the interior because the added particles are 

captured, with high probability, before they reach the interior. 

The fractal dimension D of the DLA model is less than d, 2,4 

where d is the Euclidean dimension of the space in which the 

process takes place. In studying the DLA process, the 

calculation or measurement of the fractal dimension D is 

important, since the density-density correlation function, the 

radius of gyration and the number of particles of the aggregate, 

etc. are all associated with D. For instance, the 

density-density correlation function of a fractal object is 



described by the equation: 

where < > denotes an ensemble average and the exponent A is 

related to D by D=d-A. A can be determined from the slope when 

one plots log<p(?+F')p(?')> vs log(r). In two dimensions, D is 

found to be about 1.7.* However, D is by no means the only 

exponent needed to describe the DLA process completely. As 

pointed by P. Meakin and T.A. Witten,~r.,~ DLA clusters have a 

characteristic scaling property besides their fractal dimension, 

namely the mass of the interface. Various measurements of this 

mass are consistent with each other. This mass in turn scales 

with a well-defined power 6 of the size of the cluster. It seems 

likely that this power can not be expressed in a simple way in 

terms of the fractal dimension D of the aggregate and the 

dimension d of space. More recently Halsey, Meakin and 

~rocaccia' have pointed out that an infinite number of exponents 

may be necessary for a complete description of such clusters. 

The fractal dimension is only the most obvious of these. At the 

present time the physical meaning and hence methods of 

determining the hierarchy of exponents are still unclear. 

Some nonequilibrium processes may be described particularly 

well by the DLA model. The smoke particle aggregation process is 

. , one of them. The aggregates studied by Forrest and witten' were 

formed when a melted vapor produced by heating a plated filament 

condensed. The particles--approximately 4 0 i  in radius-- 

accumulated in a thin spherical shell of roughly Icm radius. 



Then they drifted down to a transmission electron microscope 

(TEM) slide where a photo of the aggregate was taken (see Figure 

1 ) .  The technique described above can of course be used and was 

actually used to analyze the photograph of the aggregate. The 

result D11.7 is in excellent agreement with that calculated from 

the DLA model. 

DLA clusters, and fractals in general, are scale invariant. 

The criterion for scale invariance one may use is that in a 

scale invariant object correlation functions are unchanged up to 

a constant under rescaling of lengths by an arbitrary factor b: 

this is only another form of 

<p(3+Z0)p(F')>-r -A  

which has been proven true. This means that each part of the 

aggregate, statistically speaking, is similar to the whole. The 

aggregate has no natural length scale. 

Scale invariance is most familiar to us in the context of 

critical phenomena in equilibrium thermodynamic systems. In 

equilibrium thermodynamics the critical properties of many 

seemingly different systems are determined only by the general 

features of the systems such as the spatial dimensionality, the 

symmetry of the Hamiltonian and the symmetries of the equation 

of motion. This notion became known as the universality 

hypothesis. The universality hypothesis has been verified 

experimentally for fluids and magnetic systems. Since there is 



empirical evidence that power law behavior is found even in 

nonequilibrium processes, one can ask whether the concept of 

universality applies in these situations and, if so, what the 

important features of the dynamical processes are that determine 

the universality class of a system. 

If the DLA process obeys the universality hypothesis, its 

properties should not depend on the lattice on which the cluster 

grows and the details of growth rules. Indeed, simulations of 

the DLA process on the square lattice, on the triangular lattice 

on no lattice at all and that of a partly absorbing modified DLA 

process show that the universality hypothesis holds for the DLA 

model. 

The Eden process is often used to simulate biological growth 

processes and crystal growth. It is quite different from DLA and 

one of the essential differences is the compactness of the 

spatial structures. There is evidence from simulations that the 

process is space filling and its fractal dimension is the same 

as the Euclidean dimension. l o t  Therefore, in the Eden model 

and its variants, the evolution of the surface of the aggregates 

is probably the most interesting quantity since the resulting 

clusters are compact. It is easily seen from ~igure 3 that the 

surface is rough. The roughness was first measured in spherical 

geometry by M. ~lischke and Z.R6cz. The width of the 

surface is found to behave as tN-NB where N is the number of 

particles in the cluster, while the mean radius of the cluster 

scales as Z~-NV-N'/~ in both two dimensional and three 



dimensional cases. Here d is again the ~uclidean dimension of 

the space in which the process occurs. M. Plischke and 2.  R6cz 

found that k v ,  indicating the presence of a second diverging 

length in the Eden model. R. Jullien and R. Botet first studied 

the Eden model in a strip geometry. Their result for S / v  in the 

two dimensional case is 0.3k0.03, giving evidence to the 

inequality k v .  The evolution of the surface of two-dimensional 

Eden deposits grown in a strip of width L was also studied by 

M. Plischke and 2 .  R~cz.'~ The advantage of the strip geometry 

is that it provides a convenient separation of control 

parameters. The width L of the strip and the average height 5 of 

the surface, or, in appropriate units, the time of the growth 

t-E can be varied independently. Therefore, one can study the 

effects of changing L and 5 separately which is impossible in 

spherical geometry where the cluster starts growing from a seed 

particle and a single parameter N, the number of particles in 

the cluster, controls both the wheight", i.e. the mean radius 
- 
rN-~v-~'/d, and the strip "widthw. One expects that curvature 

effects are negligible for N+-. 

The scaling properties of Eden clusters in spherical 

geometry can be obtained from those in strip geometry. For 

example, in strip geometry the width of the surface is known to 

have the scaling form t(L, t )-L~G(~/L') with G(x)+const as x.-0 

and G(x)-x as x-0, where x and z are constant exponents when 

d is fixed. For a cluster growing in a spherical geometry with a 

radius fNd-t-L the width of the surface behaves as 



f(fN,t) - 7  t .  If ZN-NY and z>l we have tN-~' with 

~=xv/z=x/dz. In the two dimensional model, x and z are found to 

be 1/2 and 1.55+0.15, respectively. This also supports S<v. 

The question of whether the universality hypothesis holds 

for the Eden process can also be asked although the Eden model 

does not have very obvious scale invariance property. For 

instance, one can ask: are x and z in f(L,t)-LX~(t/LZ) 

universal ? Besides computer simulations of the two dimensional 

Eden model, analytical analysis of a model differential equation 

was carried out1 which gave x=1/2 and z=3/2, in excellent 

agreement with numerical results mentioned earlier in this 

thesis. 

The dynamic scaling form ~(L,~)-L~G(~/L~) and the value of x 

and z are also regained by studying the "ballistic deposition" 

model. There are also a number of simulations confirming that 

for a strip geometry the width scales as L~ as t+- with 

x=1/2. 12f13,14,16~17 These results coming from different models 

seem to support the universality hypothesis. Within the Eden 

model itself, it has been conjectured18 that x=1/2 and z=3/2 may 

apply even for d=3 and higher dimensions. This superuniversality 

of the Eden model is still to be confirmed numerically or 

analytically. 

Besides the above universality class, x=1/2 and z=3/2, 

another class with x=1/2 and z=2 was also found in Kardar 

e t  a1 . 's renormalization group calculation. ' Long before this 
work the same universality class was obtained by S.F. Edwards 



and D.R. Wilkinson. l 9  Comparing these two theories we. see that 

Kardar e t  al.'s model is an improvement over the Edwards and 

Wilkinson model which already contains the essential features of 

the deposition process. Both groups started from the Langevin 

equation for local growth of the profile: 

where h(?,t) is the height of the profile measured from an 

appropriately chosen reference level and ~(%,t) represents the 

noise. Edwards and Wilkinson studied the case in which hX=O. The 

universality class x=1/2 and z=3/2 corresponds to the case in 

A *  which ~ ~ $ 0 .  The nonlinear term -(Vh(%,t))2 seems to play an 
2 

essential role in driving the system from one universality class 

to the other. 

It is important to understand what kind of features of the 

system underlie the universality class change. For 

nonequilibrium processes, if the universality hypothesis holds, 

one may classify simple growth processes according to general 

features of the processes. To calculate critical exponents only 

highly idealized models which contain the relevant features of 

the growth processes are needed. 

In this thesis, we study a simple two dimensional model of 

. interface dynamics which describes a surface tension biased 

process of simultaneous deposition and evaporation of particles. 

The model is so simple that it can be treated analytically, at 

least in one special case, and large simulations can be carried 



out. This model helps US to understand the role of the nonlinear 

term and gives support to the universality hypothesis. This 

model has two universality classes. The change from one class to 

the other is controlled by the average translational velocity v 

of the interface. In the equilibrium case (v=O), the growth 

algorithm is microscopically time reversible and an exact 

solution leads to the exponents x=1/2 and z=2. When v#O and time 

reversal symmetry is broken, an exact solution is no longer 

possible. Monte Carlo simulations were carried out for both 

reversible and irreversible processes of the model. For 

irreversible cases, simulations yield x=1/2 and z=3/2 which are 

consistent with results from other irreversible models, while 

for the reversible case, simulations yield x=1/2 and z=2. The 

change of z from 2 to 3/2, i.e. the change from one universality 

class to the other, can thus be interpreted as being due to the 

breaking of time reversai symmetry. 

1 . I  Model - 

We consider here the simple case of a square lattice with a 

as the lattice constant (a=l for convenience). The sites of the 

lattice may be occupied by particles of radius 42. The motion of 

the surface is restricted to an infinite strip in the (1,1) 

direction of the square lattice. We assume periodic boundary 

condition in the direction perpendicular to the strip. The 

initial configuration is chosen as shown in Figure 4. 



Figure 4: The initial configuration of the model. Circles 
represent particles. Deposition occurs randomly at one of the 
valleys, thus the sites marked by o are eligible deposition 
sites. Particles marked by + are eligible to evaporate. 

13 



The dynamics is introduced into the model by depositing and 

annihilating particles at eligible sites on the surface. Local 

minima of the surface are eligible sites for deposition and 

local maxima of the surface are eligible sites for evaporation 

(see Figure 4 ) .  The algorithm restricts the heights of 

neighboring columns to differ only by +1 or -1. The constraint 

that deposition and evaporation takes place only at valleys and 

peaks is similar to a surface tension. 

Particles are deposited or evaporated one at a time with a 

time interval T between events. Time is measured from the 

beginning of the process, thus t=t,=n?, where n is the number of 

particles deposited and evaporated from the start of the 

process. At time n7 either a new particle is added to an 

eligible site on the surface or a particle at an eligible site 

is evaporated. The probabilities of depositi~n and evaporation 

are P+ and P, (P++P,=1) respectively and the site where the 

event takes place is selected randomly from all the eligible 

sites. This model may simulate molecular exchange between solid 

and vapor phases. 

The model can be mapped onto a one dimensional kinetic Ising 

model. Let's connect all the nearest neighbor surface sites with 

bonds and denote the slope of the ith bond by oi (see Figure 4). 

. Obviously oi is either +1 or - 1  depending on whether the bond 

goes up or down. To each surface configuration corresponds a set 

of oi (i=1,2, ......, L), denoted by {oil. Hence we have converted 
the surface configuration into a set of two state variables at 



any given time tnf and the system can then be treated as a 

kinetic Ising model. 

Note that for the periodic boundary condition to be valid at 

all time, L has to be an even integer and oi (i=1,2, ......, L) 
are not all independent of each other. ~t is always true that 

L 
Z oi(tn)=O for all n 

i=l 

The rate of deposition or evaporation at time t at column i 

can now be expressed as: 

where 7 is a constant which sets the time scale and 

X=P+-P,=2P,-1 ( 1 * 1 . 3 1  

Although we shall be working with this model throughout this 

thesis, generalization to other lattices and higher dimension 

should be obvious from the construction. It is not, however, 

possible to express the surface configuration in terms of Ising 

spins in arbitrary dimension and on any given lattice. 

1.2 Quantities to be calculated - -- 

  on equilibrium processes reach a steady state in a long 

period of time. We are interested in steady state properties as 

well as dynamic properties of systems. Steady state properties 



are usually easier to obtain analytically than dynamic 

properties. We shall give an example of how an equilibrium 

model--the two dimensional solid-on-solid (SOS) model--can be 

treated analytically, but first we introduce a few 

quantities--the width of the surface t(L,t), the structure 

factor S(k,t), the relaxation function +(k,t) and time 

correlation function @(k,r). 

A) The width of the surface E(L,~); 

For compact models, one of the easiest and most interesting 

quantities is probably the width t(L,t) of the surface zone. For 

a particular configuration {h)=(hi(tn)), t2 is defined as 

- 
where ( denotes the average of ( ) over L. 

, Let the distribution function be ~({h),L,t,) and < > denote 

the average over p({h),L,tn). The macroscopic quantity t 2  is 

then defined as the average of ~2({h],~,t,) over all possible 

configurations: 



B) The structure factor ~(k,t); 

A more detailed characterization of the surface can be 

obtained by decomposing the surface into Fourier modes and 

investigating the static and dynamic properties of these modes. 

Define 

for a particular configuration, with 

Hence (1.2.2) can be rewritten as 

where 

The quantity S(k,t) is called the dynamic structure factor. 

C) The relaxation function 9(kft) and the time correlation 

function 9(k,r); 

The evolution of the surface is expected to become 

stationary and E2(L,t) and S(k,t) become time independent in the 

long time limit. The behavior of E2(LIt) and S(kft) must be 

quite different tor stationary state and far-from-stationary 

state. The far-from-stationary state dynamics can be studied by 

investigating the relaxation function 



The decay of fluctuations in the stationary state can be 

characterized by the time correlation function 

The Hamiltonian of the simplest two dimensional SOS model is 

given by 
L 

where c is a constant and hi is the height of column i of a 

strip of length L. 

We assume periodic boundary conditions and Fourier transform 

h .=- I Z6(k)e ikj ' r/Lk 

We thus have 

where e(k)=2e(l-cosk). 

From the law of equipartition of energy we obtain 



r(k)<i(k)i(-k)>=~~T/2 ( 1  -2.9) 

where KB is the Boltzmann constant and < > denotes the average 

over the ensemble. 

Therefore, the square of the width of the surface is 

For large L and small k, e(k)-k2, hence (1,Z.g) becomes 

And (1.2.10) is 

with q-0 

The surface is rough as L+= (or, equivalently, k-0 in 

momentum space) and the limit L-0 may be considered a critical 

point of the system. 

Now suppose we assume that dynamics is modeled by 

where r is a constant, qi(t) is noise with <qi(t)>=O and 
<qi(t)q.'(t8)>= 2D6i j6(t-t8), and the average is the average over 3 
the noise. 



Fourier transforming qi(t) and hi(t), we obtain 

hi(t)= 1 G(k.t) e ikj 
r/L k 

1 A 

qi(t)= - C q(k,t) e ikj 
k 

Consequently, we have 

~t is easy to obtain that <;(k,t)>=o and <;(klft1);(k2,t2)>= 

2D6k1 ,-k2 6(tl-t2). 

we solve this equation and obtain 

For simplicity, we assume that we start the process from a 

flat substrate, thus 6( k,0)=0. Therefore, we have, assuming 

t2>t 1 

This yields that for small k (thus e(k)=k2), 



and 

and 

1 X A 

@(k,r)= lim -m c h(k.t+r)h(-kft) >a e -rk2r 
t-= 

Since there is no mechanism that restricts the long 

wavelength fluctuations, one expects that the fluctuations 

diverge as L approaches infinity. Thus L+= can be regarded as a 

critical point. This critical point should also be reflected in 

the structure factor as a singular point. The small k-vector 

long time limit of the structure factor may be analyzed in terms 

prescribed by dynamic scaling theory for finite size systems: 

s (kt t )-k-2+qf ( kZt 1 (1.2.11) 

where the static (q) and dynamic ( 2 )  exponents determine the 

universality class the model belongs to. 

Therefore the calculation above gives us explicitly the 

dynamic scaling forms and the dynamic exponent z=2. 

We know that in the two dimensional Eden model on a strip of 

length L the width of the surface of the cluster behave's as 

where G(x)+const as x+-= and G(x)-x xi2 as x-0. 

That is 

t (L, t 1-LX (t-, steady state) 

and 



This power law behavior of dynamic and static states of the 

process resembles the power law behavior in the critical 

phenomena in equilibrium thermodynamics. 

In the following chapters we shall be examining our model by 

studying the width of the surface, the structure factor ~(k,t) 

the relaxation function q(k,t) for far-from-stationary state 

dynamics and the time correlations @ ( k , r )  in the stationary 

state. The Fourier decomposition method described in the example 

is used. The analysis, in terms of a Fourier decomposition, is 

not obvious. We are assuming that the system has normal modes 

which can be indexed by k. This does not have to be true since 

no Hamiltonian such as ( 1 . 2 . 7 )  describes this model. In any 

case, this analysis turns out to be very helpful. 

It is easily seen that overhangs are excluded in our model. 

Therefore when measured from a chosen reference level, the 

height of the surface is single valued. Any configuration of the 

aggregate can be uniquely expressed by the height hi(tn) of all 

the columns, where hi(tn) is given by 

. where ho(tn) is a constant at time t, and where we have chosen 

the average height of the initial state as the reference level. 



Once hi(tn) is measured in Monte Carlo simulations or 

calculated analytically, various properties of the surface can 

be obtained. We present the results of our simulations of these 

quantities in Chapter I11 and first discuss the exactly solvable 

reversible case of the model. 



CHAPTER I I 

ANALYTICAL ANALYSIS 

In order to derive analytical results it is convenient to 

work with the continuous time version of our model. In the 

continuous time version, time t is taken as a continuous 

variable. However, the time scale can be related to that of the 

discrete case by equating the average number of particles 

deposited or evaporated during period t to the number of those 

during period tn in the discrete model: 

The continuous time version can be described by the 

probability distribution ~({h),t) and is defined through the 

master equation: 

(2.2) 

where {hIi is the configuration right before the deposition or 

evaporation of a particle at column i (i=1,2, ..., L). The profile 
{h) of the surface can be expressed in terms of 1sing spins by 

(1.2.13). The master equation (2.2) then becomes an equation for 

the probability distribution PI([o],t) of the Ising states. 



where ioIi and lo) differ by a flip at site i (if allowed), and 

w!*) is given by (1.1.2) 

A deposition or evaporation at site i involves two "spins", 

(ui , oi+l , - u ~ + ~  ) since in our model a deposition or 

evaporation of a particle requires so. Therefore, t h e  allowed 

spin flip processes conserve the magnetization. 

Inserting ( 2 . 4 )  into (2.3), we thus obtain 

where (a1,..., -oi,-~i+,,..,~o is (uIi mentioned above- L 

We shall show later that the width of the surface region 

E(L,t) and the structure factor ~(k,t) can be expressed in terms 

of spin-spin correlation functions and we therefore concentrate 

on a derivation of these correlation functions by solving the 

master equation (2.5). 

The spin-spin correlation functions are defined as 

As above we denote the correlation functions by <ojoj+m'* 
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growth (h#O) the three-spin correlation functions appearing on 

the right hand side do not, in general, cancel with each other, 

and equations (2,9a,b) are not exactly solvable. We shall return 

to the nonequilibrium case, but the exactly solvable case of XPO 

will be discussed first. 

1 )  X=O (v=O) equilibrium growth 

We have used the term "equilibrium" in the text. By this we 

mean that the average growth velocity is equal to zero. The 

average velocity is defined by E(tn)/tn in our discrete model, 

where 6(tn) is the mean height of the surface at time tn and is 

obtained through the following formula 

where again we have chosen the average height of the initial 

state as the reference level. In the continuum version the same 

result is given since we have related the continuum version to 

the discrete model by (2.1). 

Because of (1.1.1) and (2.41, (2.1) becomes 

while in the continuum model 



It is clear from (2.10) and (2.12) that unless P+=1/2 (and 

consequently, X=O) the surface moves on the average with a 

non-zero velocity. 

Due to the periodic boundary conditions, we have 

translational invariance of the correlation functions in the 

equilibrium case. That is 

< O ~ U ~ + ~ > =  <uj'~j'+~> for all j,j' and m (2.13) 

and obviously, 

Therefore we may simply denote gjlm by g,. Letting h be zero 

and using translational invariance, we obtain from (2.9) and 

(2.7) that 

Note that gL-i(t)=gi(t) due to periodic boundary conditions. 

In particular, gl(t)=gL-l(t). Thus 



with this substitution the L-1 equations (2.15) are now all 

of the same form. 

If we ignore the trivial correlation function go (t) , we can 
consider the L-1 functions gl,...tgL-l to be periodic with 

periodicity L-1 so that the left nearest neighbor and the right 

nearest neighbor of gl are gL-l and g2 respectively. Therefore 

we may include (2.15) and (2.16) in one equation: 

ag (t) 
gm right neighbor + gm left 

The set of gl, g2 , . . .  ,gL-. can be ~ourier transformed 

according to the discrete Fourier transformation, 

(q=2nn/(~-1), n=0,+1,+2, ...,+ (L/2-1)) 
(m=1,2,...,L-1) 

Thus (2.17a) becomes an equation for 4(q,t): 



where X -2 ( 1 -cos (9) ) (2.20) 9- 

Since for our initial configuration g,(0)=(-1)~, g(9.0) can 

be derived from (2.18b) 

The final result for gm(t) is then 

It is easy to see that gL-j=gj is satisfied by (2.23). 

As discussed above, the height of column i at time t is 

Theref ore 







while S(O,t)=O, which follows from the identity Z(hi-K)=O. There 
i 

are no singular terms in (2.32) since X #X for any k or q. k q 

We now examine (2.28) in more detail: 

obviously, 

and we see that t(L,=)-L as~-3-. 

If the width of the surface is of the scaling form 

t(L,t)-LXG(t/LZ) where G(x)+const as X- and G(x)-x 1/22 as 

x-30 as has been found for the Eden model, the plot of the 

function t(L,t)/~'/~ versus t/~' should be a single curve for 

all L large enough if the exponent z is chosen appropriately. 

Since in our case the surface of the initial configuration is 

not flat (i.e. t(L,O)#O), t(L,O) must be subtracted from t(L,t) 

in order to obtain the scaling form ((L,~)-L~G(~/L'). 

It may not be obvious from (2.25) that t(L,t) has the 

scaling form t(L,t)-LXG(t/LZ). However we can convince ourselves 

by plotting [t2(L,t)-E2(L,0))I 'I2/L1l2 against t/~' for L.96, 

192, 384 and 768 with 2=2.0 (see Figure 5). 

We can also show the scaling form of 5 from equation (2.28): 

where we have approximated X by q2 since the dominant 
9 



contribution comes from small q. 

Consider the formula above for two cases: 

a) t+= at fixed L 

b) L+= at fixed t 

Let y=q(t/r) 'I2. Then (2.33) becomes 

If t/L2+0 and t is relatively large, then the formula above 

becomes 

Therefore we have shown that (2.33) has the scaling form 

~ ( L , ~ ) - L ~ G ( ~ / L ~ )  with the exponents x=1/2 and 2=2. 

The scaling property of ~(k,t) can be obtained in the same 

way, of course. This function is more interesting since it 

contains more detailed information about the relaxation process. 

We now demonstrate the scaling form of this function 

analytically. Consider (2.32) for small k and large L (L+=). 

Given k=2nn/L with n fixed, the sum in (2.32) is dominated by 

the q=+q(n)=+2nn/(L-1) terms since 



= 2k2/L - L - ~  (2.34) 

while X -X - L - ~  for other values of q. Separate the q(n) 
9 k 

terms, we obtain 

S(k,t)- 1 [I-exp(-hqt/?)] as L+ 
k 

which shows that s(k,t) has the scaling form 

~(k,t)-k-~+qf(k~t) 

with q=O and z=2. 

A plot of k2s(k,t) vs kzt is shown in Figure 6 and a plot of 

the relaxation function ,(k,t) vs kzt is shown in Figure 7. In 

Figure 7, cases of L=48 and 96 are distinguished by different 

types of symbols and show us the finite size effect. 

2) Nonequilibrium growth (X#O) 

For nonequilibrium growth the three-spin correlation 

functions appearing on the right hand sides of (2.9afb) do not 

cancel, in general, with each other. The loss of time reversal 

symmetry associated with the moving interface complicates the 

equations. Even two-spin correlation functions get more 

. complicated. Let's consider the term <oi(oi+,-oi-,)>. In the 

equilibrium case we have used the property <oi~i+~>=<uioi-~ >. By 

examining <oi (oi+l -oi-, ) >  we find that the property 

< ~ ~ a ~ + ~ > = < o ~ o ~ - ~ >  does not hold in the nonequilibrium case. 



Suppose we take the length of the lattice to be 6 and calculate 

<ui (ui+l-Ui-l ) >  at time tn=r. The initial configuration is 

represented by {oI={l,-i,i,-l,l,-1) which has < U ~ U ~ + ~ > = < U . ,  1 i - ~ > *  

~t time tn=r, a number of different configurations are possible. 

For equilibrium growth, the six possible configurations are 

{-1,1,1,-1,1,-11, 11,1,-1,-1,1,-11, {I,-1,-1,1,1,-11, 

11,-1,1,1,-1,-11, {It-1,1,-1,-1,11 and {-1,-1,1,-1,1,1). They 

appear at time tn=r equiprobably. < O ~ ( U ~ + ~ - U ~ - ~ ) >  can thus be 

calculated . It has been verified that < U ~ ( U ~ + ~ - U ~ - ~  ) >  equals to 

zero at time r for all i (i=1,2,.. .,I,) for equilibrium growth. 

The situation is different for nonequilibrium growth. At 

time r the three possible configurations (if ~ + = l )  are 

{1,1,-It-1,1,-11, {l,-l,l,lt-l,-l~ and {-1,-1,1,-l,lrl]. They 

also appear equiprobably, which leads < U ~ ( U ~ + ~ - U ~ - ~ ) >  "on-zero, 

in general. For instance, <u5(u6-u1>=(0+2+2)/3#o. 

It is unfortunate that we can not solve (2.9a.b) exactly. 

However, one may still conjecture the properties of the 

interface by relating the model, at least in an approximate way, 

to the field theoretic model of Kardar e t  al. 

The Langevin equation used by Kardar e t  al. l 5  is 

where h(z,t) is the height of the profile. The first term on the 

right describes relaxation of the interface by a surface tension 
* 

v . the second term is the lowest order nonlinear term which can 



In two dimensions, (2.36) becomes 

ah(x,t) * A*  -=v v2h(~,t)+-(Vh(~,t)) '+q(x1t) 
2 

The slope of the interface is denoted by f(x,t): 

We differentiate (2.36) with respect to x and average it 

over the noise to obtain 

We now show the average slope of the interface in our model 

obeys a similar equation. 

An equation for the average slope can be obtained from the 

master equation (2.5). Multiply (2.5) by oi and sum over all 

possible configurations {o] and note that <oi>= Z ui~(~o],t). We 
id 

obtain 

Replacing the finite differences by derivatives we obtain 

and one can see a term by term agreement between (2,391 and 



We further argue that our model has the distinguishing 

features of the field theoretic model: 

I )  the particles are deposited in the valleys and evaporate 

from the peaks which is essentially a surface tension driven 

relaxation process producing the a2h/ax2 term in (2.36); 

ah 
2) non-zero velocity is responsible for the (--I2 in (2.36); 

ax 

ah 
3) the property $ - dx-o is reflected in our model by the 

0 ax 
conservation of total magnetization and no other obvious 

conservation laws exist. 

Since there is a close resemblance of these two models, we 

expect that our model has the same scaling properties as that of 

the field theoretic model. Kardar e t  al. studied (2.36) using a 

dynamic renormalization group technique. They found three 

different universality classes (or three fixed points in the 
* * 

parameter space). The fixed point X =O and v =O corresponds to 

the random deposition model and obviously can not be reached in 
* * 

the parameter space of our model. The fixed point (X =O,v $0) 

corresponds to our equilibrium growth, which gives the exponents 

(x,z,q)=(1/2,2,0). The fixed point ( v*#o, X*#O) determines the 

universality class (~,z,q)=(1/2,3/2,0) which a moving interface 

belongs to.  his expectation is supported by the results of 

. Monte Carlo simulations presented in Chapter 111. 



Fi ure 5 Analytical calculations of [[2(L,t)-[2(L,0)11/2/~1/2 
-(2.28) for the equilibrium growth ( X = O )  regime plotted as 
function of t/Lz with 2.2. Systems with L=96 (A), 192 ( + ) ,  384 
(x )  and 768 ( 0 )  are included. 
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Fiqure 6: Analytical calculations of k 2 ~ ( k , t )  from (2.32) for 
the equilibrium growth ( X = O )  regime plotted as function of kzt 
with z=2. Systems with L=192, 384 and 768 are included. The data 
points are from the region k<a/12 of the Brillouin zone. 



Fi ure 7 Analytical calculations of the relaxation function 
&m- equation (1.2.5)) for the equilibrium growth ( X = O )  
regime plotted as function of kzt with z=2. Systems with L=48 
( a ) ,  96 ( + I ,  192 (A), 384 (A) and 768 (A) are included. The data 
points are from the region k<7r/12 of the Brillouin zone. Cases 
of L=48 and 96 are distinguished by different types of symbols 
and show us the finite size effect. 
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CHAPTER I I I 

SIMULATIONS AND RESULTS 

The process of deposition and evaporation of particles in 

our model can be simulated by computer. On a strip of length L, 

with periodic boundary conditions applied, particles are 

deposited or evaporated one by one with the probabilities P+ and 

p - I  respectively. The procedure is that given the probability P+ 

(P++P-=I) and the initial configuration of the cluster, the 

computer generates a random number R between 0 and 1. If R<P+, a 

particle is dropped, otherwise a particle is evaporated. Once it 

has been decided whether to deposit or evaporate a particle, the 

computer selects a random site from all the eligible deposition 

sites or evaporation sites. These steps are repeated when more 

particles are added or evaporated. A cluster, or a sample, is 

formed by many particles. For each sample, one can determine 

various macroscopic quantities, such as S(ihl,L,t) and 

~({h),k,t). The average quantities of these simulated aggregates 

are the corresponding quantities averaged over the possible 

ensemble. This is realized by computer by forming enormous 

number of samples and averaging the interesting quantities. The 

more samples one generates, the more accurate the quantities 

are. This is limited only by the available computer time. 

In the previous chapter we conjectured that the evolution of 

the interface could be described in terms of the dynamic 

renormalization group equations of Kardar e t  a / . .  They predicted 

that for any non-zero XI q=0 and z=3/2, whereas for X=O, q=0 and 



z=2. We verify this for our model by first considering the 

scaling form of the structure factor ~(k,t). 

Since in the long time limit the evolution of the surface is 

expected to become a stationary process, we use the term "long 

enough timew to denote the period it takes for the process to 

get to stationary state. This "long enough time" is determined 

by examining the behavior of S2(L,t) or S(k,t). For example, 

E2(L,t) for L=12, P+=1.0 is plotted in Figure 8. Any time longer 

than tL is long enough for the process to reach stationary 

state. Of course, tL is dependent on L and P+. 

We have investigated the behavior of S(k,t) for long times 

(t+=). In Figure 9 a plot of the function k2S(k,=) is shown for 

three values of the parameter X(0,0.5,1.0) (that is 

P+(1/2,3/4,1)) and for various lengths L. In all three cases the 

function k2S(k,=) seems to approach a finite non-zero limit as k 

approaches zero, indicating that q is zero or at least very 

small. Therefore, if one assumes that q=0, the following holds 

~(k,=)-k-~'n 

with q=O for all X. 

Whether S(k,t) has the scaling form ~(k,t)-k-~f (kzt) and, if 

so, the value of the exponent z for various X, can be determined 

by the following analysis. 



Figure 8:  [(L,t) ( ~ = 1 2 )  for the full growth ( h = l )  regime plotted 
as function of t ,  where the time scale is so chosen that t=h. 
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Fiqure 9: Steady state structure factor ~ ( k , = )  multiplied by k 2  
for the equilibrium (h=O, denoted by + I ,  full growth (h=l: A )  

. and the intermediate growth (h=0.5; x) regime. The data is 
obtained by growing 3.000 deposits for each strip-width of L=24, 
48 and 96 ( ~ = 1 9 2  has also been investigated for h=l) and all the 
points with k<n/6 are displayed. 
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This is the equilibrium case. We display kzS(k,t) as 

function of the scaled variable kzt for several of the smallest 

k q s  and for various lengths L in Figure 10, where the time scale 

is so chosen that ~=E=N/L where N is the number of total 

deposited and evaporated particles. 

The relaxation function q(k,t) and the stationary state 

correlation function +(k,r) are displayed in Figure 1 1  and 

Figure 12, respectively. The time scale is the same as above. In 

both figures the data have collapsed quite precisely onto a 

single curve, with the exponent z=2. To compare with the 

simulation results, the analytical solution of *(k,t) is also 

plotted in Figure 1 1 .  The time scale of the simulation results 

is appropriately set (see (2.1)) that it may be plotted in the 

same plot of the analytical solution which comes from the 

continuum version of our model. Since our lengths of the strip 

are relatively small, we expect, as discussed for the analytical 

solution q(k,t) in Chapter 11, quite strong finite size effect. 

However, they are quite well collapsed onto a single curve. The 

best estimate of z is judged by eye. By comparing the collapse 

of the data of q(k,t) when plotting *(k,t) against kzt with 

various z, we may determine the best estimate of z and 

approximate error bars. 

The computer simulations of the equilibrium case yield the 

best estimate of z to be 2.0f0.1. Our analytical and simulation 

i results match each other quite well. 



Piqure 10: k Z ~ ( k , t )  for the equilibrium growth (X=O) regime as 
function of the scaled variable kzt with z=2. Systems with L=24 
( A ) ,  48 ( + I  and 96 (x) are included and at least 3,000 clusters 
have been grown for each L. The data points are from the region 
k<n/6 of the Brilliouin zone. 



Figure 1 1 :  Relaxation function 9(k,t) (equation (1.2.5)) for the 
equilibrium growth ( X = O )  regime plotted as function of kzt with 
2=2. Systems with L=24 (A), 48 ( + )  and 96 (x) are included and 
at least 3,000 clusters have been grown for each L. The data 
points are from the region k<n/6 of the Brilliouin zone. Also 
included is the analytical calculation of P(k,t) (denoted by 0 ) .  

The time scale of the simulation results is appropriately set 
(see (2.1)) that it may be plotted in the same plot of the 
analytical solution which comes from the continuum version of 
our model. 
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In Figure 13 and Figure 14 the relaxation function *(k,t) 

and the stationary state correlation function @(k,r) are plotted 

for maximum growth rate as function of the scaled variables kzt 

and k2r with ~~1.55. This value of z  produces the best collapse 

of the data for all these functions. The effect that the steady 

state correlation function separates into two universal branches 

has been noticed in studying the Eden model.14 The upper branch 

corresponds to the smallest non-zero k=2r/~ in the Brillouin 

zone; the lower branch corresponds to the rest of the k's used 

in the plot. Both branches are quite well collapsed for a single 

value of z. One could also obtain the value of z by plotting 

E(L,~)/L 'I2 against the scaled variable t/~'. However the best 

estimate of z comes from the relaxation function *(k,t) since 

this function probes the scaling region directly. According ts 

our simulation data, the best estimate of z is 1.55+0 .1 .  

We last discuss the intermediate case between equilibrium 

and maximum growth. Guided by what we have done successfully for 

equilibrium and maximum growth cases and the expectation that 

all cases with non-zero growth velocity belong to the same 

universality class of q=O and z = 3 / 2 ,  we first plotted the 

relaxation function q(k,t) for small k's of various lengths of 

the strip on which the process occurs, hoping that a single 

value of z, expected to be about 1.5, would yield the collapse 

of the ,data. Unexpectedly, when 9(k,t) was plotted as a function 



Fi ure 12 The steady state time-correlation function O ( k , r )  
I 2 . 6  ) for the equilibrium growth (X=O) regime 

plotted as function of kzr with z=2. Systems with L=24 ( A ) ,  48 
( + )  and 96 (x) are included and at least 3,000 clusters have - - 

been grown for each L. The data points are from the region k<n/6 
of the Brilliouin zone. 



Fiqure 13: Relaxation function Q(k,t) for the full growth (X=O) 
regime plotted as function of kzt with 211.55. Systems with L=24 
(A), 48 ( + )  and 96 ( x )  and 192 ( a )  are included and the data is 
obtained from growing 6,000 clusters for each L=24, 48 and 96 
and 3,000 deposits for L=192. The data points are from the 
region k<a/6 of the Brillouin zone. 
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Figure 14: Same as Figure 13 but for Q ( k , r )  for strips of width 
L=24, 48 and 96. 



of the variable kzt for L=24, 48 and 96, the data did not fall 

on a single curve for any single value of z. However, when 

plotting q(k,t) vs kzt for each L separately, we found that 

q(k,t) did scale, with z dependent on L when L is relatively 

small. This L dependence of z is so strong, in other words, the 

finite size effect is so strong, that a single value of z for 

all L simply does not exist. We expect that if L is large 

enough, this finite size effect will vanish and a single value 

of z will be universal for all large L. Simulations for L larger 

than 96 were then carried out. In Figure 15,16,17,18 and 19, 

q(k,t) is plotted as function of kzt for L=48, 96, 192, 384 and 

768 separately. For L=768 only 1,200 samples were generated 

since the simulations were very time consuming. The best 

collapse of the data occurred for z(48)=1.85, z(96)=1.75, 

z(192)=1.70, z(384)=1.65 and z(768)=1.57. One can see that z 

approaches 1.5 when L gets larger. The data for L=768 collapses 

onto a single curve fairly well even for only 1,200 samples. The 

curve is quite scattered but no systematic variation of the 

relaxation function is observed. We expect that if more samples 

are generated the curve will be less scattered and the larger L 

gets the closer z approaches 3/2. 

These simulations are consistent with our analytical results 

and give support to the universality classification of the zero 

growth velocity model and the non-zero growth velocity model. 

Simulations yield that for zero growth velocity case the 

exponents q and z are 0 and 2, respectively, while q=O and z=3/2 

for non,-zero growth velocity case. 



. Fiqure 15: Relaxation function *(k,t) with L=48 for the 
intermediate growth (h=0.5) regime as function of kzt with 
2.1.85. The 4 lowest values of k are included and the data is 
obtained from growing 9,000 clusters. 

54 



Figure 16: Relaxation function +(k,t) with L=96 for the 
intermediate growth (h.0.5) regime as function of kzt with 
2~1.75. The 5 lowest values of k are included and the data is 
obtained from growing 9,000 clusters. 
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Figure 17: Relaxation function +(k,t) with L=192 for the 
intermediate growth (X=0.5) regime as function of kzt with 
z=1.70.  The 6 lowest values of k are included and the data is 
obtained from growing 3,195 clusters. 



Fiqure 18: Relaxation function +(k,t) with L=384 for the 
intermediate growth (X=0.5) regime as function of kzt with 
z=1.65.  The 9 lowest values of k are included and the data is 
obtained from growing 1,000 clusters. 
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. Fiqure 19: Relaxation function 9(k,t) with L.768 for the 
intermediate growth (1.0.5) regime as function of kzt with 
~ ~ 1 . 5 7 .  The 7 lowest values of k are included and the data is 
obtained from growing 1,200 clusters. 
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CHAPTER IV 

SUMMARY 

In this thesis we study a model for the evolution of the 

profile of a growing interface. The motivation was that this 

model is so simple that it is possible to obtain an exact 

solution and it closely resembles a field theoretic model which 

has been studied by renormalization group methods. These two 

models can be compared and the universality hypothesis could be 

tested. 

We classify the growth processes by zero average growth 

velocity and non-zero average growth velocity. In Chapter 11 and 

Chapter 111, we investigated the model both analytically and 

numerically. We conclude that our model may belong to two 

different universality classes depending on the c o n t r o l  

parameter. This is in agreement with the results by Kardar 

e t  a1 .. One of the universality classes is (~,z,~)=(1/2,2,0). 
Another is (x,z,q)= (1/2,3/2,0). We have found that these two 

classes correspond to zero average growth velocity process and 

non-zero average growth velocity processes respectively. 

According to the universality hypothesis in the study of 

critical phenomena in equilibrium thermodynamics, the critical 

. properties of many seemingly different systems are determined by 

the general features of the systems such as the spatial 

dimensionality, the symmetry of the Hamiltonian and the 

symmetries of the equation of motion. Our results support this 



hypothesis. Firstly, our model is different in detail from the 

model of Kardar e t  a l e .  Still they belong to the same 

universality classes. Secondly, the change in z from 2 to 3/2 is 

accompanied by the breaking of time reversal invariance. The 

last statement needs more evidence and M. Plischke and 2 .  Rdcz 

have a modified model which gives support to it. The modified 

model is shown in Figure 20. Particles are deposited with equal 

probability P+ at any site except at local maxima of the surface 

at which deposition is forbidden. A particle which attempts to 

deposit at a local maximum is discarded. Evaporation occurs with 

probability P,=I-P+ at any site on the surface except at local 

minima. The growth rules are certainly not identical to the 

rules of the model we have been studying in this thesis. However 

Monte Carlo simulations show that the modified model has the 

same two universality classes of our model. Again the class 2=2 

appears when P+=1/2. Thus we conclude that the breaking of time 

reversal symmetry. is responsible for the change of the dynamic 

critical exponent z. More work could be done to give further 

evidence for or against our argument. For example, starting from 

a bulk of gathered particles, applying the Eden growth rules and 

allowing evaporation simultaneously, one might investigate an 

equilibrium and nonequilibrium Eden model. 

In conclusion, we have found two universality classes of our 

model. The growth process for zero average growth velocity 

belongs to the class of q=O, x=1/2 and 252. And the growth 

processes of non-zero average growth velocity belong to the 

class,of q=O, ~=1/2 and z=3/2. The time reversal symmetry in the 



equilibrium growth process plays an important role. The change 

in the dynamic exponent z is related to the breaking of time 

reversal symmetry which occurs as the average growth velocity 

becomes non-zero. 



t 
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Fiqure 20: M. Plischke and Z. R6cz's model of interface 
evolution defined by deposition and evaporation events. 

. Deposition (evaporation) occurs randomly at any site except at 
local maxima (minima) denoted by heavy dots (crosses) where 
deposition (evaporation) is forbidden. The rate of deposition 
and evaporation is proportional to P+ and P-=I-P+ respectively. 

62 



BIBLIOGRAPHY 

1. Kinetic of A re ation and Gelation edited by F. Family and 
D.P. ~U-Hxand, Amsterdam, 1984) 

2. T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981) 

3. M. Eden, ~roceedinqs -- of the Fourth Berkeley Symposium on - 
~athematics, Statistics and Probability, edited by 
F. Neyman, 4, 223 ( 1961 1- 

4. T.A. Witten and L.M. Sander, Phys. Rev. B27, 5686 (1983) - 
5. L. Niemeyer, L. Pietronero, and H.J. Wiesmann, ~hys. Rev. 

Lett. 52, 1033 (1984) 

6. S.R. Forrest and T.A. Witten, Jr., J. Phys. A s ,  L109 (1979) 

7. D.A. Weitz and M. Oliveria, Phys. Rev. Lett. 52, 1433 (1984) - 
8. P. Meakin and T.A. witten, Jr., Phys. Rev. ~ 2 8 ,  2985 (1983) - 
9. T.C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev. Lett. 

56, 854 (1986) - 
10. H.P. Peters, D. Stauffer, H.P. Holters, and K. ~eowenich, Z. 

Phys. B34, 399 (1979) - 
1 1 ,  M, Pllschke and Z. RAcz, Phys. Rev. Lett. 53, 415 ( 1984 )  - 
12. Z. Rbcz and M. Plischke, Phys. Rev. AX, 985 (1985) 

13. R. Jullien and R. Botet, J. Phys. ~ 1 8 ,  2279 (1985) - 
14. M. Plischke and Z. RAcz, Phys. Rev. A32, 3825 (1985) - 
15. M. Kardar, G. Parisi, and Yi-Cheng Zhang, Phys. Rev. Lett. 

56, 889 (1986) - 
16. F. Family and T. Viscek, 9. Phys. ~ 1 8 ,  L75 (1985) - 
17. M. Plischke and Z. Rbcz, Phys. Rev. Lett. 54, 2056 (1985) 

18. M. Kardar, G. Parisi, and Yi-Cheng Zhang, Phys. Rev. Lett. 
57, 1810 (1986) - 

19. S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. Lond. A=, 
17 (1982) 


