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ABSTRACT

A grammar-based specification of logical file structure is described. Logical file structure is
the structure that the contents of a file appear to have from the user’s point of view. Physical file
structure is the way that the file is actually organized. Separating the two is useful because the
details of physical storage are irrelevant to the user view, serving only to complicate matters, and

because physical storage must be protected from misuse.

A conceptual model of a grammar-based file system is introduced and a prototype
implementation is explored. The programmer specifies the logical structure with a context free
grammar. The required interface routines (constructors, recognizers, selectors, parser, unparser
(pretty-printer) and structured file I/O) are genei'ated automatically from that grammar. Data
structures are manipulated by means of this generated interface and can be written to and read

from files, in structured form, to avoid the cost of unparsing and parsing.

The research is aimed at demonstrating the feasibility, applicability and productivity of this
grammar-based approach. Specifically, we have constructed a prototype grammar-based system

and have used it in an example application.
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CHAPTER 1

INTRODUCTION

This thesis presents a study of the application of grammar-based techniques to the.
specification, implementation and instantiation of lpgical file structure. We begin with a discussion
of abstract data types and then apply this concebt to the storage of structured information in files.
The result is the idea of a file data type and a system to support the use of such a type. This is
followed by some reasons motivating the‘ research into this class of system and a discussion of the

research work. An outline of the thesis structure concludes the chapter.

1.1 Abstract Data Types

A data type is a set of the values and the operations that may be used to manipulate those
values [GheJaz82]. Abstract data types (ADTs) are types that define values and operations
independently of implementation issues. An instance of a type is an object whose value is in the
value domain of that type and may be manipulated by the operations valid for that type. For
example, consider the distinction betweeh the type INTEGER, which is not a manipulable object,
and a variable of type integer, which can be manipulated (or operated upon). It is probably more
correct to consider type as an attribute of a variable rather than a variable as an instance of a type
since in languages that allow dynamic binding or are \yeak]y tvped, the type of a variable is not
necessarily constant. However, for the purposes of this thesis we can view a variable’s type as

unchanging and the variable as an instance of that type.

The intention of ADTs is to separate the essential characteristics of a type from the details of
its implementation. For example, consider a list type. We want w0 be able to apply retrieve, add,
remove, etc., operations to a list. As long as these operations are possible. correct, and expedient.

then the techniques used to implement the list are not immediately important. Thus, ADTs



séparate a concept from its implementation.

Creating and using an ADT consists of the steps: specifying the abstract structure,
specifying the required operations, implementing the required support routines, creating instances
of the data type and inserting and retrieving information. A typical ADT specification is in a
natural language (e.g. English). The operations are designed and implemented in an ad-hoc
manner as the need for them arises. The set of operations may not be complete and may not
provide a consistent interface unless the programmer is thorough. The notion of completenes; is a
relative one, as a set of operations is complete with respect to some property. An interface is
consistent if it is possible for a programmer to predict the syntax and semantics of an element of
the interface (a particular subroutine for example) from a knowledge of the conventions used to

create that interface.

1.2 File Data Types

Files store information and may be thought of as an ADT [PeSi83]. The user view of file
structure is usually different from the physical file structure. We say "usualiy” because in some
cases (notably UNIX) the file structure that is seen by the user may not be much different from the
underlying structure. The details of mapping the user view to the physical reality are handled by

the file system. It is this abstract to concrete mapping that we are investigating.

The user view_of a file that is provided by a file system is sometimes referred to as the logical
file structure. In the context of this thesis, we prefer to think of this structure as a logical file
structure. rather than the only one. The reason is that the logical file structure that is provided by
the file system ‘is. typically. different from the the logical structure that the programmer wishes
t,hu‘t the file svstem had provided. 1ln other words, u file mayv have several levels of logical
structure, depending upon who is doing the structuring. This situation is highlighted by

pointer-linked data structures. If the programmer wants to perform I/O on such entities, he is



forced to construct special routines on top of those provided for basic I/O.

This thesis considers the use of context free grammars (CFGs) to specify the logical file
strucmres that users see. Given a specific syntactic structure for files, determined by such a CFG,
a set of operations on the files is defined as an ADT. This ADT is called a File Data Type (FDT).

We will refer to instances of FDT's as structured files.

CFGs are well-suited to the specification of logical file structure for two reasons. First of all,
they allow for the definition of files of arbitrary complexity. For example, using a CFG for a given
programming language, an FDT can be set up for the programs of that language. Such programs

typically have a very complex logical structure which cannot otherwise be easily dealt with.

The second reason for using CFGs in defining FDTs is that they can provide a
human-readable form for the structured data. This is, of course, essential for the FDTs which are
defined for the input and output of application programs. Furthermore, programmers can benefit
from using such FDTs for storing and retrieving intermediate data structures as well; the ability to

view and edit such intermediate files can be quite useful.

Let us consider how to support FDTs. We need to consider the following questions. First,
how can FDTs be specified? Second, how can information be inserted into and retrieved from an
instance of some FDT? Third, what is the scope and lifetime of the FDT and the information that

its instances contain? We will deal with these questions in that order in the {ollowing paragraphs.

Before considering how to specify FDTs, let us look at what we want to specify.
Programming languages provide data description mechanisms that are composed of two kinds of
entities. The first kind are primitive types such as integer, character and real. The second kind
are aggregation mechanisms such as structures. arrayvs, and unions for static data structure
construction, and pointers to handle dynamic data structure construction. As these are the usual

mechanisms available in a general purpose language for the construction of FDTs (and they appear



to be sufficient), they are the ones that we wish to specify. This is expanded upon in Chapter 4.

" What kinds 6f support routines are required? The answer lies in an investigation of the
kinds of things that we want to do with an FDT and its instances. These things can be classified as

internal (memory resident) operations or as input/output (I/0) operations.

Internal operations are those that are primarily concerned with the manipulation of
instances of FDTs. The creation of a specific instance of an FDT, the selection of a particular
component of an instance, and the determination of whether or not a given instance is of a
particular type, are internal operations that are peculiar to a specific FDT. These operators
(subroutines in the implementation) are called constructors, selectors, and predicates.
Constructors are used to create instances of FDT components. Selectors are used to select specific
components of instances. Predicates are used to check the type of FDT components. Some editing
operations (such as replacement, deletion, and insertion of components) are examples of internal
operations that can be generic, that is, not specific to any particular FDT. In a grammar-based
system, this collection of operators has the properties that any syntactic element (syntagm) of the
language generated by the source grammar, can be constructed, and efficient run-time checks can

ensure that only correct syntactic structures can be constructed {CamIto84].

1/0 operations transfer information into and out of structured files. Implicit in these
transfers is the conversion of the data from one representatibn to another. For example, parsing a
character stream representation to produce a parse tree representation. The reverse pn';)cesé
consists of taking the instance and converting it into a format that is required elsewhere. It is

extremely useful to produce a human-readable output of the contents of structured file.

We have considered, in general terms. the kinds of support and manipulation facilities that
\
might be required. Can they be generated automatically? That is one of the questions that this

research addresses.



During the discussion of support routines, we saw how information might be inserted into
and retrieved from. FDT instances. That is, through the offices of the internal manipulation
routines or via the I/O operations. The precise details of how this is to be effected are be described

in later chapters.

The third question that we want to discuss is that of the scope and lifetime of an FDT and its
instances. The scope of an FDT is where it may be used and its instances may be accessed.
Lifetime is the period of time that a particular FDT and its instances are available to be accessed.
One of the purposes of this research is to consider the storage of structured information. Stored
information can have a lifetime that is greater than the execution time of any one program or set of

programs. Files can also have such lifetimes.

Since this structure is grammar-based and files are used for storage, we are discussing

grammar-based file structure and grammar-based file systems (GRAFS).

1.3 Motivation for this Research

The primary inspiration and motivation for the use of grammar-based specifications is
GRAMPS (GRAmmar-based MetaProgramming Scheme) |Camlto84]. GRAMPS stands for
GRAmmar-based MetaProgramming Scheme. It has been used to create metaprogramming

systems for both Pascal and Modula2 {Cam87b).

Several other researchers have investigated systems that are oriented around structured
information. Donzeau-Gouge et al. [Don83, Don84a, Donf4b), have developed MENTOR. a
system for handling structured documents. MENTOR uses a sorted algebra w specify structure
and a specialized iuhguuge. MENTOL, to manipulate that structure. Teitelbaum and Reps have
investigated syntax-based programming environments and implemented a system called the

Comell] Program Synthesizer [TeiReps81]). Lamb has looked at description techniques for sharing



data representations between programs [Lamb87]. This has been implemented in a system called

| IDL which appears to have reached the level of performance required for production use.

Ih the previous section, the comment was made that we needed a notation that would allow
us to specify FDTs and to facilitate the automatic generation of the support routines and tables.

Why would we want this? There are several reasons.

First of all, FDTs are useful from a software engineering standpoint, but are somewhat
tedious to implement completely and consistently. If support routines are generated automatically
then programmers will likely be more inclined to use them. The automatic generation of support
routines has a number of related benefits. Automatic generation of code results in less
implementation effort. Less programmer time spent on implementation of FDTs results in greater
productivity, both in terms of an increased amount of programmer output and in a decreased
number of machine cycles spent implementing each application. Increased use of FDTs should also
have benefits with regard to program maintainability and reusability. The FDT specification is the
real source of the support routines. If it is changed then the updated support routines aré
generated automatically with no chance of missing something important. FDTs can provide a

complete and consistent interface that may be usable in several different projects.

The ability to store information in structured form avoids the necessity for the lexical
analysis and parsing of data each time it is needed. Lexical analysis and parsing are expensive

and as much as 50% [He86] of program execution time can be taken up by lexical analysis. T,Bere

is also an increased potential for storage compaction [Cam8&6].

A grammar-based FDT system has the utility of a swiss army knife. Many applications fall
into the input-process-output category. They are either concerned with the manipulation of
instances of one FDT or with transformations from one FDT w another. 1t is not the intention to
suggest that such a FDT support system would be the greatest thing since sliced bread, however,

the uses to which it might be put seem limited only by the imagination.



1.4 Description of the Research

The intention of this research is to consider the feasibility of constructing GRAFS and the
applicability and productivity of this approach. As is perhaps obvious from the above, the research
has two stages. First, we implemented a prototype GRAFS, and second, we used it to evaluate the

capabilities and limitations of this kind of system.‘

The implementation of GRAFS consists of a generator and a subprogramming system
interface. The generator takes an FDT specification as input, and produces lexical analyzer tables,
parser tables, and selector, constructor and predicate subroutines. The FDT specification is a
context free grammar. Programmers then write application programs using both the interface
specific to each FDT, and the general GRAFS interface. A detailed description of the GRAFS
system and its use is given in Chapter 4 and Appendix A. An example GRAFS application

appears in Chapter 5 and Appendix B.

1.5 Thesis Structure

Chapter 2 contains a discussion of the body of work related to this thesis, shows how
previous work has motivated GRAFS and discusses how GRAFS differs from that previous work.

It also shows how GRAFS research relates to various fields of computing science.

A detailed discussion of the research and the conceptual model of GRAFS is given in Chapter
3. We present a general model of how GRAFS-style systems can be structured and show how the

prototype implementation fits into this model.

Chapter 4 discusses the GRAFS formalism and implementation. The design of the GRAFS
metagrammar is discussed and the svntax and associated semantics of the major GRAFS

grammar rules are introduced. The GRAFS prototype implementation is dissected and each part



is discussed with respect to design details, considerations and decisions.

An example application of GRAFS and an evaluation of that example are given in Chapter 5.
Finally, Chapter 6 concludes this thesis with a discussion of what has been learned from this

implementation of GRAFS and some directions for further work.



CHAPTER 2
A DISCUSSION OF RELATED WORK
Give a man an inch and he wants a foot, give a man a foot and he wants a yard, give a
man a yard and he wants a swimming pool installed in it. - Alfred E. Newman.
This chapter is intended to acquaint the reader with both where this‘ research fits in the
realm of computing science, and what other related work has been done. The chapter is divided

into two parts.

The first part contains a discussion of the routes that one might take into this research. This
area lies at the boundary of several areas of computing science. Therefore it is possible to find

one’s way into this work from several different directions, each with its own motivations.

The second part contains a survey of related work. It provides the reader with a background

for this research, and shows how other work motivates this thesis.

2.1 An Overview of the Field

This section begins with a map of the area in which GRAFS lies. We will discuss some of the

areas of computing science from which a researcher might find his way into the area of this thesis.
2.1.1 Databases and Data Dictionaries

Database work is partially concerned with separating the information contained in a
database from the way in which that information is stored. The idea is that the person that is
interested in retrieving information need not be concerned with the details of the location of
_information or the format in which it is stored. In the same vein, programs interfaced to a
database should not have to be modified just because the database administrator decides. for one

reason or another, that the internal organization of the database must be modified [Go84].



The need for independence of data from physical storage has lead to a quest for notations,
interfaces and structures tl;at support the separation of the structure as it appears to the user and
the structure as it is actually implemented. That is, the separation of the design and
implementation of the physical database from that of the logical structure seen by the user.
Providing users with a notation for logical structure and a consistent interface integrated with that
notation gives a basis upon which to construct database systems. Given that the interface remains
constant, the implementer or system administrator is free to make whatever internal changes that

he deems useful. It is just this kind of notation and interface that GRAFS is intended to provide.

Database theory and research is concerned with the relationships between data, and the
independence of those relationships from the way that the data is stored. GRAFS is oriented
towards individual files and the abstractions they represent. A set of access routines
(constructors, predicates and selectors) is provided by GRAFS, but the purpose of the logical
structure is beyond the scope and the interest of the GRAFS system. A database system might

well be implemented using GRAFS routines at the lower levels.

It may sometimes be preferable to work with a grammar description of a data object rather
than using a relational model of that object. For example, consider a class of entities that are
naturally described by grammars, programming languages. It is very difficult to separate the
notion of grammars from the description of the structure of programming languages. Thus it may
be more natural to use a grammar-based system directly for those objects whose structure is
normally described by a grammar. Some work has been done by Linton [Lin84] using a relational
database to store programs. Intere;tingly enough, the conversion of the program text into
relations was done by a parser and not by the database system. There is also the problem of
modeling various language aspects using relations. Consider the problem of dealing with nesting.
If we vdef'me a domain of subroutines, then the problem of describing the nesting relationships of
those subroutines may be complex, whereas this relationship is quite naturally expressed by a

grammar,

10



Data dictionaries are somewhat similar in> that they maintain, in a centralized location,
‘information about the data structures used in and between systems. The idea is to have a
consistent structural definition used in all of the programs and systems that make use of that
structure [Go84]. This may include consistency in the routines used to manipulate the data
structures, in which case access routines are either generated automatically by the system from
each structure specification or are hand-coded by a programmer and kept inviolate. Automatic
generation implies less work for the programmer and a correct and up-to-date implemeﬁtation.
The more complex the structure that can be dealt with, the less work for the programmer. These
are some of the issues that GRAFS addresses. A data dictionary can use GRAFS for construction
of some of its physical storage rout,ines.. GRAFS could be used to implement low-level database

operations but is not intended to replace high-level interfaces.
2.1.2 Programming Environments

Programming environments are complex software tools used to assist in the programming
process [BaShSa84]. The intention is to integrate the various tools used during the programming
process (editors, compilers, profilers, etc.) in such a way as to streamline and enhance the
programming process [HeeKli85]. Environments can range from integrated interactive and
interpreted language environments for APL or Lisp, to ad hoc collections of software tools for

Fortran or Pascal.

One thing that is common to all kinds of programming environments is the necessit& for
dealing with data structures; both the program source code, and the data objects that programs
manipulate. There are two aspects of the current research in programming environments that are
of interest with respect t,o GRAFS. First is the automatic generation of parsing, unparsing and
structure-access routines. This capability makes it less work to create these environments.
Second is the ability to store structured data easily. This allows the information in the data

structures to persist between program invocations.
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2.1.3 Abstract Data Types

As previously mentioned, ADTs are desirable. Thus anyone interested in research that
concerns ADTs and associated methodologies or using ADTs in production work will find
themselves considering abstract structure specification and automatic code generation sooner or

later.

Research in this area addresses issues ranging from software engineering issues concerning
the interaction of ADTs with the software life cycle, to mathematical issues of modeling ADTs as
algebras. Although there seems to be some conviction that "many sorted algebras are the right
mathematical tools to explain what abstract data types are." [EhMa85, p. 2], they do not seem
appropriate for writing down specifications of larger systems [EhMa85, p. 3]. Hence there is a
need to look for specification languages for larger systems. Such a search, in combination with

more specialized specification requirements, could lead to grammar-based approaches like GRAFS.

2.1.4 Metaprogramming

Metaprogramming is the activity of writing programs that have programs as data objects.
This covers quite a wide range; anything from the ubiquitous text-editor to a compiler. However,
in order {or a metaprogram to perform operations of anyv significance, it needs to know about the
structure of the programs being manipulated. Thus we confine the definition of a metaprogram to

one that has knowledge of program structure.

Analyzing the structure of a program involves.the syntactic analysis of that input program.
It should be noted that this is not the only way to construct metaprogramming systems, but it is a
natural one. The metubrogram works with a program’s parse-tree structure rather than its
textual representation. If the metaprogram performs any transformations, then the transformed
program can be converted back into textual form by unparsing the parse-tree representation.

These are a set of operations on an ADT, the ADT in this case being the parse tree type.
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Viewing a metaprogramming system as an ADT facility that is specialized to syntactic
structures leads to GRAFS. There are many different programming languages and hence there
exists the prob]em of creating metaprogramming systems for each language. Since these systems
can be grammar-based, a researcher in this area might find himself looking at GRAFS-like
systems with the idea of automatically generating metaprogramming systems for different

languages.
2.2 Related Work

In this section, we consider directly applicable or similar work that has been done as well as
some further motivation for GRAFS. We want to show the elements of current research that

support this thesis, and to differentiate this research from that done by others.
2.2.1 Historicul

This sub-section considers the facilities that have been traditionally provided for FDT
support. These are mostly limited to programming language 1/0 facilities and operating system

file subsystem interfaces.

The 1/0 facilities of existing programming languages (eg. PL/I) allow the file record
structure to be speciﬁed.[POISteSO]. However, the access roﬁtines must in general be constructed
by hand since the built-in I/O routines will not handle dynamic pointer-linked data struct;xres
directly. Thus, changes in the file or record structure will, in general, result in changes being made
in several places, making maintenance difficult and error prone. Any data abstraction must be

implemented and enforced manually.

Consider again the notion of type applied to files. 1f a system is unaware of the real
structure of a file, then it has no way of ensuring that access is compatible with that structure. In

this instance, file type is not strong: files have a specific logical structure but can be accessed
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without reference to or with incorrect reference to that structure. This weak typing allows bugs to

go undetected.

Operating system access methods are primarily concerned with machine performance. OS’s
can use several predefined methods for accessing files, and sometimes the programmer is given the
choice of which one to use [PeSi83]. However, this choice is not altogether useful for the logical
definition of the file structure since it concerns only efficient access to file records. Thus, no matter
which access method is chosen, the programmer must define the logical file structure and hand

code the appropriate abstract access routines.

The fact that the programmer must specify the logical structure of the file, regardless of the
0OS support, suggests the existence of two dimensions for classifyving ﬁle} systems. The first
dimension is the variation of access routines for maximum efficiency in accessing individual bytes
in the file. The second dimension is the variation in the manner in which the system supports the

definition of the logical structure of the file. This thesis research lies in this second dimension.

2.2.2 Recent Work

The last section was concerned with what sorts of logical file structure support facilities are
generally available to most programmers. This section is concerned with current research in this
area. It is interesting to look at the way in which GRAFS meshes with other research. Other
work may have similar intentions but be different in approach. or gimilax' in approach but with

different or more specific intentions (e.g., GRAMPS).

Some motivation for this research and confidence in its usefulness and success derives from
the work of Cameron and lto [Cam1t084]. Their application of grammar-based techniques 1o the
" specification and automatic generation of metaprogramming systems (GRAMPS) has been quite
successful. GRAMPS has been used w implement systems for both Pascal and Moduia2

(Cam87b). GRAFS uses similar grammar-based technigues for the more general task of data
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structure and file structure specification. However, GRAFS is not concerned with providing
higher-level functionality. Such things as semantic analyzers, structure editors and specialized
scanning routines are beyond the immediate scope of GRAFS, although they might be constructed
using GRAFS. The aim of the present research may be taken as both a subset and a
generalization of their work. GRAFS is a subset in the sense that it does not provide all of the
programming language oriented support routines of GRAMPS and a generalization in that GRAFS

is intended to apply to other applications as well as metaprogramming.

Some related work has been done by Donzeau-Gouge in a system called Mentor [Don83],
[Don84a] and [Don84b]. Mentor is concerned with the organization of documents such as
programs, prose (papers, books, etc.) and specifications. A BNF grammar in their earlier work
[Don83], and an algebraic specification formalism in their more recent work [Don84b] are compiled
to generate a parser, unparser and access functions. The difference between GRAFS and Mentor
lies in the scope of applicability and the efficiency of the implementation. In Mentor, a
specification-independent language, called MENTOL, is used to manipulate the abstract tree
structure. Thus, GRAFS and Mentor have very different interfaces in that the GRAFS interface is
intended to reflect the data structure being manipulated, whereas MENTOL is independent.
GRAFS is intended to be used directly on top of, or perhaps in place of, OS file system facilities in
an existing programming language. A system like Mentor could then be implemented using the
lower-level structured file support provided by GRAFS. GRAFS is intended to create an efficient

general-purpose tool that can be used to construct higher-level tools and systems such as Mentor.

Another approach has been taken by Lamb [Lamb87]. with a system called IDL (Interface
Definition Language). This work is concerned with using a notation to define data structure
.interf'aces between different. programs. The notation involved is similar to a grammar but is used
in stages. The rough structure is defined in one specification and then other specifications are used
to supply various structural and semantic refinements. IDL attempts to provide maximum

flexibility of semantics and hence it requires more programmer input in the code generation process

15



than does GRAT'S. "Also, IDL is not as strongly typed as GRAFS since IDL allows the
programmer a good deal more latitude in the manner that data structures are manipulated. IDLis
very much concerned with transformations between data structures and as such .is similar to
GRAFS. Its implementation seems to have passed the raw prototype stage and is almost ready for

production use (Lamb87].

Another problem that could lead to GRAFS is data transfer between different machines.
Sun XDR (eXternal Data Representation) [Sun85] is a protocol for the representation and transfer
of data. This work is quite similar to that of Herlihy and Liskov [HerLis82], although the Sun
" document contains no references to that work (or any other). Different computer systems have
different internal representations for data, so moving data from one machine to another requires
converting to the representation required on the farget machine. Transferring data around n
different machines requires n(n-1) (2 for each pair of machines) conversion procedures. If we make
use of a standard representation then we need only construct 2n different conversion procedures;
namely an encoder and a decoder for each machine. This considerably reduces the cost of program

construction and maintenance, at least as far as conversion programs are concerned.

The implementation of XDR consists of a set of routines for encoding and decoding primitive
C language data objects, such as ints, floats, etc.. Aggregate objects such as structures, require
the user to construct custom encoder/decader routines on top of the primitive XDR routines. To
transfer data, the user opens an XDR data stream, packs his encoded data into it, and decodes the
data at the other end with a corresponding decoder on another machine. The stream is not
intended for manipulation other than sequential reading and writing, since it is data encoded as a
byte stream, making editing operations (such as delete and replace) difficult. XDR does not keep
_track of where a particular data object is, leaving it up to the user. The implementation of the
encoding and decoding routines is left to the user: nothing is genevated automaticall_v', SO any
change in the data object specification requires a manual change in the encoding/decoding

subroutines.
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XDR and GRAFS have different intentions. XDR is concerned with physical representation
while GRAFS is concerned with logical representation. GRAFS could use XDR to implement the

internal file I/O routines.

Specialized environments make strong use of ADTs. For example, Lisp environments are
oriented around lists and MPS is oriented around abstract parse trees. It is convenient to store
information between runs of the programs that use it, thus allowing several different programs to
be invoked with the same information. This sort of facility is available in environments for Lisp
and APL. While these facilities must generally be custom built for each application, with GRAFS

they can be generated automatically.
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CHAPTER 3

THE GRAFS CONCEPTUAL MODEL

This chapter introduces a conceptual model of GRAFS and contains a more detailed
discussion of the research. The first section centains a discussion of the derivation and structure of
a conceptual model of GRAFS. The second section deals with the expressive power of GRAFS.
That is, what kinds of structures is it possible to construct using GRAFS. The third section
discusses the nature of the research and what it attempts to show. We consider the potential

benefits of such a system. The evaluation of the actual benefits is left to chapters 5 and 6.

3.1 The GRAFS Conceptual Model

What is the GRAFS conceptual model? It is a description of what this sort of system might
look like, and why it might look that way. We begin with thg idea of storing structured information
in files. As was noted during the discussion of database research in Chapter 2, files have both a
logical structure and a physical structure. For several reasons, we would like to keep these
separate. ADT methodologies are intended to separate logical structure from implementation
details (physical structure). We apply ADT concepts to the task of storing structured information
in files, to get the concept of FDT. This is the kind of thing that programmers do all the time. but
any time people are free to (or have to) build as they will, they are also free to make errors. Thus,

we would like to specify FDTs, and have them enforced by a structured file system.

What kinds of structures is the file system going to know about and allow? The same kinds
of structures that are available in current programming languages, since those are the structures
that programmers use. The more the file system knows about these structures, the more support
that it can give. This suggests providing the file system with a specification of each structure.

Also, since we want to have the file system control access, it has to have control of the access
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routines. This means the file system must have either a fixed, specification-independent interface,
6r else an interface that is custom-built for each specification. Regardless of which is chosen, it is
necessary to refer back to the specification. In the case of the independent interface, the routines
must check with the specification (in one way or another) to see if the action requested is allowed in
the given structural context. Specification-specific routines would have to do something similar,
but because they are compiled from the speéiﬁcation rather than having to interpret that
specification, there should be some performance advantage. Also, compiling the specifications to
give a specific interface could result more readable code, if the names of the interface routines

reflect the structure that they manipulate.

‘Grammar-based techniques provide a specification notation, and the ability to easily
generate a syntactically complete set of access routines. Furthermore, if we limit the grammar to
being context free, then any structure manipulation operations are local in scope. If the system
views the structure as context-free, then changes are local and do not propagate throughout or

depend upon the whole of the structure. This is important from a performance perspective.

The GRAFS conceptual modei is diagrammed in Figures 1 and 2. This model has two main
components. The first part is the GRAFS program interface consisting of the subroutines that
application programs use to communicate with GRAFS. The second is the generator which takes

an FDT specification and produces the required support routines and tables.

GRAFS is essentially an FDT support system. As mentioned in Chapter 1, we requireﬁ the
means to instantiate, manipulate, and perform I/O on typed files. Instantiation and manipulation
are, at least conceptually, fairly straightforward. Constructors, predicates, and selectors are
complete, in a grammar-based approach. in the sense that they allow the creation and
manipulation of any and all sentences of a language. However, 1/0 is a bit more complex. We
must deal with the questions of which data is to be stored, wherve it is to be stored. and how it is to

be stored. The first question involves what kinds of objects 1/0 must handle. The second question
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20




involves the source and destination of I/O operations. The third considers the ways in which data

can be stored, either as text or in structured form.

I/0 comes in two flavours, between GRAFS and the outside world, and within GRAFS itself.
One of the motivations for this research is the desire to store structured information in a file,
without the need for programmer intervention (i.e. hand-built access methods). Thus we need an

I/O subsystem that handles structured GRAFS files.

The other I/O requirement is the need to get data into GRAFS from outside GRAFS and,
from time to time, write it back out. One motivation for this is that peopie often find it useful to
see the contents of their data structures. A typical situation that arises is the necessity for data
structure dumps when debugging programs. It would be convenient to have dump routines
provided automatically. Also, a lot of information is stored as only implicitly structured text and so

it would be convenient to convert text streams into GRAFS structured files automatically.

In general, data that is external to GRAFS might be stored in any fashion and thus might
require cust,o'mized conversion facilities. The reason for this is that the structure to be input might
exceed the recognition capability of the parser. In these cases, conversion routines might he
constructed using the internal manipﬁlation ‘routines to construct a GRAFS structure directly
under the direction of a hand-built parser. For example, consider generating a metaprogramming
system for the C programming language. The C grammar 15 difficult to express using a context

free grammar, and is therefore not amenable to a context free parse.

The last component of GRAFS, which is not visible to the user, is the grammar-data module.
Each separate GRAFS grammar needs to have its own set of records that are to be made available
to the rest of the svstem as required. The prettyprinter. and some generic access routines. have to

check into details of a particular grammar before being able to perform their functions.
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The parts of the program interface are diagrammed in Figure 1. The old file system
. interface should probably be kept available, through GRAFS, to maintain compatability with other
systems. Even if GRAFS turns out to be the wave of the future, untyped files will continue to exist

for some time, thus GRAFS will have to retain the ability to handle them.
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The design of the generator is driven by the requirements of the program interface. We
require a recognizer (parser and lexical analyzer), grammar-specific manipulation routines, various
grammar tables, and what ever other grammar-specific entities are needed in the implementation.

The generator model is shown in Figure 2.

The generator can be thought of as a compiler of GRAFS specifications. It reads the
specification, performs lexical analysis and parsing operations on it to produce a parse tree. That
parse tree is then used as input to a parser generator, a lexical analyzer generator, an access
routine generator and whatever other routines that are required. The resulting data is written to

files in a format known to the rest of the GRAFS system.

3.2 Expressive Power

The details of the GRAFS notation and its associated semantics will be dealt with in Chapter
4. However, something that we might consider at this point is the expressive power of a grammar
with respect to FDTs. Herlihy and Liskov [Herlis82] state that the naming relationship among
objects can be modeled as a directed graph. The situation where one object that references another
object by name, can be represented graphically as two nodes that are joined by a directed arc. This
suggests that graphs are useful for modeling data structures. Therefore, we can consider what

sorts of graphs can be constructed using 2 GRAFS grammar.

We can certainly construct trees of arbitrary depth and complexity. Nodes of any degree
can be constructed using thg GRAFS constructiqn and repetition operations. A particular
structure may be repeated arbitrarily many times via the grammar mechanisms of recursion or
repetition. GRAFS lets vou construct arbitrary trees automaticallv, but arbitrary graphs
containing cvcles mﬁst be handled differently. In other words, entities such as circular lists have

to be supported by the application program that is using GRAFS.
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Let us consider cyclic data structures in more detail. How could we add cycles to GRAFS‘
structures? There is no prdvision for self-reference in a grammar in the sense of referring to a
particular instance via, for example, a pointer. ‘A specification is of structural type, it cannot know
which particular nodes will be used in a structure of that type. This sort of referential information
must be added when the structure is actually created. However, it is still possible for the
application to create cycles. Depending upon hdw GRAFS is implemented, it may be possible to
use editing operations on the parse tree to introduce cycles. If the implementation does not allow
this then virtual cycles can be created. The appliéation can keep track of extra links between
nodes in a separate structure. These extra links are not handled by GRAFS, are not seen by it,
and therefore create no linearization difficulties during.I/O operations. There is also the option of
using labels. A particular field of a record could act as the label (or name) of tha:t record and other

records could then refer to that particular record by referencing its label.

It is possible to model arbitrary graphs with GRAFS, however this just covers the form of
structures, it does not handle their contenF. We now have a method for creating arbitrary graphs,
but what kinds of nodes and edges can we use? The aggregation operations of construction,
alternation, and repetition, should allow the construction of any desired structure. Leaf nodes are
the entities that correspond to integers, reals, characters, etc. These are known as the base types
of a programming language. Leal nodes in GRAFS must be able 10 handle arbitrary base types.
This can be handled in fhe same way that programming laﬁguuges do, by providing a selection of
base types. Thus, GRAFS can have the. same ability to describe data structures as ir.s,\ host

language.

3.3 Direction of Research

The research consisted of implementing a rudimentary GRAFS based on the conceptual

model just described, and using it in an example application. The implemented system allows the
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programmer to specify the logical structure of files and then generates the required support
routines automatically. The logical structure is specified using a context free grammar (CFG).
The required access routines, parser tables (if required) and unparser (prettyprinter) tables are

generated automatically from that specification.

The research is intended to address questions of the feasibility, productivity and applicability
of this approach. Feasiblity is demonstrated by the successful construction of a prototype system.
Productivity is considered in the context of the computer, programmer and user. Applicability is

shown by using the prototype system in an example.

Computer productivity derives from the effective utilization of machine resources. There are
several ways that GRAFS effects this. GRAFS allows information to be stored in structured form
thus avoiding unnecessary conversion overhead (parsing and unparsing) and facilitating data
compaction. Lexical analysis and parsing are expensive [He88] so we want to minimize the
number of times that these operations are performed. Instead of parsing the input and creating
new data structures each time a program is run, that input can be parsed once and the resulting
data structures stored in a file between runs. As we noted in Chapter 2, an example of this lies in
the use of metaprogramming systems such as MPS [Cam8&7b]. If the internal parse tree
representation is stored in a file, then parsing ﬁeed only be done once, thereby increasing the
efficiency of the metaprogram. In fact. if the parse tree is constructed directly, as with a structure
editor or with constructor routines, then parsing neea not be done at all. Editing operations can be
done directly on the parse tree and text output can be produced when required by unparsing the

tree.

Programmer productivity stems from the effective utilization of programmer resources.
This is enhanced by GRAFS in the following ways. First, the programmer need no longer spend
time writing and debugging structure-specific code. Second, the fact that the specification is the

source of the data structure and support routines should serve to decrease maintenance activities
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because changes are made in one place (the specification) and support routines are generated
automatically. Third, FDTs are desirable from a software engineering standpoint, since the
automatic generation of access routines will likely motivate programmers to use an FDT

methodology.

User productivity comes from the effective utilization of the user’s resources. As this is
influenced by computer and programmer productivity, the improvements cascade. The increase in
programmer productivity shortens the time necessary to fill user requests. Improved computer
utilization results in better system response and increased resource availability to users. Greater

reliablility from stronger file typing results in fewer bugs and happier users.

Applicability is shown by using the GRAFS prototype to implement an example application
in a conceptually cleaner manner and with less effort than would be required if the GRAFS system
were not used. Specifically, the example application is a re-implementation of the lexical analysis
sub-system of GRAFS. We had to construct a lexical analyzer generator and interpreter for the

GRAFS prototype, and the example is a re-implementation of that sub-system using GRAFS.

It is impossible to prove (in a rigorous sense) any of these properties about GRAFS, since
they are all rather subjective and it would be difficult to perform experiments that would give
conclusive results. It is therefore hoped that the implementation and application serve to
demonstrate the potential of GRAFS-t};pe systems. The inbehtion of this research is to show that a

GRAFS-type system is feasible and that this class of system merits further investigation.

As might be expected, the GRAFS prototype is aimed at functionality rather than optimality.
In other words, we were more concerned with building a working prototype than in constructing a
production quality system. With this in mind, we used existing facilities when possible and
constructed basic facilities when needed. For example, we made use of the Modula-2 file system
interface in a very rudimentary fashion. The resuit was a functional but far from optimal GRAFS

prototype.
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CHAPTER 4

. GRAFS FORMALISM AND IMPLEMENTATION

- This chapter deals with the GRAFS formalism and implementation. It is divided into two
sections, the first dealing with aspects of the formalism and the second with implementation

details.

A simple example can help to clarify aspects of this material. ‘Therefore, we will consider
the construction of a data structure for a simple personal address book; using GRAFS. The idea is
to create a data structure to hold a list of address records. Each of these records contains a
person’s name, address, phone number, and occupation. We will use this example to illustrate
various facits of the GRAFS formalism and implémentation. The complete grammar for this

example is given in Figure 17.

4.1 GRAFS Formalism

The GRAFS formalism is modeled on that of GRAMPS [CamIto84]. GRAMPS, as has been
previously noted, is a grammar-based methodology for specifving and generating

metaprogramming systems.
4.1.1 Designing a MetaGrammar

GRAFS has to be told about the structure of a given FDT. In this section, we develop a

notation to describe FDTs. We first consider the nature of the grammar specification rules.

GRAMPS uses four different kinds of rules: construction, alternation. repetition and lexical,
although lexical rules are not strictly part of the GRAMPS formalism [Camlto84]. The GRAMPS
grammar notation itself is an extended Backus-Naur Form. Implementations of GRAMPS-stvle

systems (e.g., Pascal MPS, [Cam87b]), are partially generated and partially hand-coded.
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GRAMPS metaprogramming systems are not often constructed, whereas GRAFS specification
grammars are to be constructed often, and by programmers of varying experience. Thus, the
issues of providing a relatively firm, easy to understand and completely defined notation do not

arise in GRAMPS, but do arise in GRAFS.

A general problem in grammar design that also arises in GRAFS is of how much of the
GRAFS specification grammar is to be dealt with as a recognition problem and how much is to be
dealt with by semantic analysis. For example, in the GRAFS formalism, alternation rules are
composed of only non-terminals. This restriction is enforced by the GRAFS metagrammar, rather
than by internal checks. The metagrammar is constructed such that only non-terminals are
syntactically correct in an alternation rule. In some cases it is very difficult to specify restrictions
as a recognition problem. Consider the case of using a grammar to specify only those numbers
between 59 and 898. It is possible to do, but not easily or concisely [Pag81]. In this instance it is
better to treat the problem semantically. Why create extra parser or lexical states when a single
pair of comparisons will tell you whether the candidate number meets your criteria? Also, why
complicate the logical structure of the target grammar when the only result is to make
programming more difficult? If such restrictions are made part of the GRAFS grammar itself then
offending specifications cannot be expressed as a well-formed GRAFS specification. This does not
mean that the user cannot make mistakes in the specification, but at least the GRAFS grammar
specification can serve as a reasonably complete documentatioﬁ of what is correct and what is not.
Thus, there is a tradeoff between syntax and semantics, and some judgement must be exercised m

deciding on the best approach to take.

The GRAFS grammar specification is itself a grammar. It is a metagrammar: a grammar
grammar, that is also its own grammar. The GRAFS metagrammar describes all well-formed
GRAFS grammars including itself. The self-description provides an interesting bootstrapping

opportunity as we shall see in the implementation section of this chapter.
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Designing the GRAFS metagrammar involved deciding on a notation and then expressing
that notation in terms of itself. This is a rather challenging activity since it involved expressing an
incomplete notation in an incomplete notation as the notation is being developed. Not only must a
notation be gradually developed to express GRAFS grammars but it must also be extended to
express itself. This leads almost at the very beginning to problems with the use/mention
distinction. The problem comes in many guiseé and it cropped up often during the design and
development of the GRAFS system. This problem manifests as the mental confusion that results
when one forgets to distinguish between whether the notation is describing itself or something else.
That is, one slips mentally from one level to another or fails to distinguish use from mention. It is
not within the scope of this thesis to deal with the psychological issues inherent in the use/mention
distinction, however as it was a factor in the design and implementation it is included as part of the

experience.

The next issue that arose in the search for a notation was that of associated semantics. The
GRAFS system is intended to perform certain actions based upon the grammar handed to it. Since
the abstract structure of GRAFS data objects must be known to the user, the semantics of the
GRAFS grammar must also be known to him. For this reason, it was decided that constructs that

had different semantics should have different notation.

As noted by Cameron and Ito [Camlto84], the structure of the grammar used in
grammar-based systems is rather more cr»itical that in the case of more monolithic applications
(e.g., compilers). The structure of the grammar should reflect the data structures that will be
obtained from it. Thus, we required a parsing algorithm that was capable of easily creating the
structures described by the GRAFS notation. For these reasons an ELR(1) (Extended LR with a 1
token lookahead) [PurBro&1] grammar was chosen. In ELR grammars, the right hand side of a
production is a regular expression. Thus each ELR grammar rule can have concatenation.
repetition and alternation operators in it. However, the actions that GRAFS takes for, and the

structures created by, each of these operators are quite different, so for reasons of clarity, each of
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these operations occurs as a separate GRAFS rule class. Thus, the GRAFS grammar rules are a
subset of those of ELR. The result of all of this is that the GRAFS grammar rules can be parsed
as is; no transformations need be done on the grammar. More will be said about this in Section

4.2.3.

What are the rule classes of the GRAFS notation? They are the construction, alternation,
repetition, lexical, and lexical-class rule classes. The first three classes are aggregators and
roughly correspond to the record, union and array constructs, respectively, that are found in
- procedural programming languages. The repetition construct also corresponds to lists. The
difference in the interpretation as an array or as a list lies in the way that an element is accessed

(more on this in the next section).

Lexical and lexical-class rules are used to describe primitive data types which are the types
that are aggregated into structures, unions and arrays. They are considered as the leaves or

terminal nodes of the parse tree.
4.1.2 GRAFS Rules: Syntax, Semantics and Raison d’Etre.

This section discusses each rule and its associated semantics in turn. We will use structures
for the address book example to illustrate each rule. The GRAFS metagrammar is shown in

Appendix A.

Construction rules correspond to records. They aggregate an arbitrary but fixed number of
data objects of specified types. This heterogeneous collection of objects may now be referred to by

one name; the name of the construction rule that describes that particular aggregation.

The syntax of construction rules is quite simple and is shown in Figure 3. It consists of the
kevword "CONSTRUCT". followed by the name of the specific rule (a simple non-terminal).
followed by the keyword "1S", all followed by a list of the components of the rule. Each component

may be a terminal string (keyword), a compound non-terminal (a data element), a formatting
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<ConstructionRule> ::= ID "CONSTRUCT"
<Name:SimpleNonTerminal> "IS"
<ConstructionElements:ConstructionElementList> OD

<ConstructionElementList> ::=
<ConstructionElement> { <ConstructionElement> }

<ConstructionElement>

::= <Terminal> |
<CompoundNonTerminal> |

<OptionalPhrase> | <Directive>

Figure 3: Construction Rule Syntax.

directive (for the prettyprinter), or an optional phrase.

Keywords are signposts for the parser and the user. They are used in general grammar
design to disambiguat,e the grammar and document the output. For examplg, they are the reason
that no explicit separators (periods or commas for example) are required in the grammar itself.
They also serve to add contextual information that may aid the user in writing the input or reading
the output. For example, consider the case where the input data is a series of identifiers, each of
which has a specific meaning to GRAFS. The use of keywords can serve to remind the user of the
significance of each of the otherwise possibly indistinguishable objects. Keywords have no further
significance to GRAFS, and are not availabie or manipulable as data fields of the construction rule
of which they are a part. This will become clearer when we look at the GRAFS programming

interface.

Compound non-terminals correspond to field declarations in conventional programming
language record types, have two functions and hence two parts. The first part is called the

component name dnd the second is called the class name.

The component name corresponds to a record field name and is the device by which the user
seleets that component. The class name corresponds to the type of a record field, and is defined by
some other rule of the grammar in question. Each compound non-terminal in a given construction

rule must have a component namie that is unique to that rule. Note that the same component
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name may be used in several different construction rules. Also note that the component name and

the class names may be the same, on those occasions when inspiration fails.

Optional phrases were included for programming convenience. It is possible to achieve the
same result by defining a separate construct for each variation but this is clumsy. In the worst
case, for one option, there needs to be two separate rules, for two options, four rules, and so on.
This rapidly grows annoying. Also, the resulting application programs are more cumbersome
since each different rule must be checked for and dealt with separately. The use of optional
phrases allows the program to merely check for the existence of the given option. If it is there use
it, if it is not then do not. Optional phrases need to be used with some care to avoid introducing
ambiguities into a érammar. The use of keywords can be of some assistance here. As we shall
see when we get to repetition rules, lists may have zero or more elements. "Thus, the user should
not in general use list specifiers directly (that is, without guiding keywords) within an optional
phrase. If the list is empty, the parser generator will not know what to do. Is this an empty list or

a nonexistent one?

The last kind of component that can occur in a construction rule is a formatting directive.
Formatting directives are special keywords that help to control the operation of the prettyprinter
{there are other ways of controlling it as well, as we shall see in the implementation section of this

chapter).

The choice of formatting directives is still an open question [Opp80, Rub83, Wood86], 50 the
. set of directives chosen for GRAFS consists of only those directives that were found necessary
during implementation. Undoubtedly, as more projects are undertaken with this system, other

directives will be required.

There are five directives currently available. They are ID, OD. LB, NTS, and TS and stand

for InDent, QutDent. Line Break, No Token Spacing and Token Spacing.
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ID and OD move the left margin setting ink one tab stop and out one tab stop respectively.
The actual value of tabs can be found or set using the GRAFS interface. The new value of the left
margin does not come into effect until the next linefeed. These two directives are intended to allow
the nesting of various structures, thus each ID should be balanced at some point with a
corresponding OD. If this is not done, the printed output will have a slanted look to it. Possibly,

future implementations could reset indents automatically upon leaving a structure.

The LB directive forces line breaks. When the prettyprinter encounters one of these in the
grammar rule that describes the node currently being printed, it immediately prints an end-of-line

and continues printing at the left margin of the next line.

NTS and TS control the white space between individual tokens. There may be situations
where a group of tokens should be printed out in a contiguous stream with no separators between
them. An example of this (and in fact, the motivation for the inclusion of these directives) may be
found in the compound non-terminals in the metagrammar. These elements just did not look right
printed as "< component : class >" and turning the spacing off gave
"<component:class>", which looked much better. This example highlights the problem of
where to place white space and where not to. The problem could be handled by the construction of
a customized prettyprinter (more on this in the implementation section). However, we felt that it
would be useful to deal with as many problems as possible by the use of formatting directives. The

chosen solutions have thus far proven quite adequate.

Now that we have described construction rules, let us look at their use in the address book
example. Figure 4 shows a construction rule that defines a single record of the address book. As
was previously mentioned, the address book will consist of a list of these records. Notice the use of
the LB directive to force linebreaks so that the name and address fields, are on their own lines.
The Record is a simple structure that is. in essence, a set of keyword/value pairs. The kevwords

(e.g. "Name:") are used here for documentation purposes to tell the reader what each field means.
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Figure 5 shows a construction rule that defines the structure of an address. Note that the
Apartment field is optional. The reason for this is that not everyone lives in an apartment. In

order to avoid confusing the parser we add the keyword "APT".

CONSTRUCT <Record> 1S

"Name:" <Names:Names> LB

"Address:" <Address:Address> LB
"Phone:" <Phone:Phone>

"Occupation:" <Occupation:Occupation>

Figure 4: Construction Rule Example: Address Book Record.

CONSTRUCT <Address> IS

ID[ "APT" <Apartment :Number> ]

<StreetNumber :Number> <Street :Identifier> LB
<Town:Identifier> <Country:Identifier> <Code:Code>OD

Figure 5: Construction Rule Example: Address Record.

The next GRAFS ru'les are alternations. The syntax of these rules is much simpler than
that of construction rules and is shown in Figure 6. An alternation rule is composed of the
keyword "ALTERNATE", followed by the name of the alternation rule, followed by the keyword
"I1S", followed by a list of non-terminals separated by vertical bars. The non-terminals used in this
rule must be simple and not compound as is the case with construction rules. Simple
non-terminals have only a class name, no component name and hence no ":" separator. These
class names are, as before, the names of other rules in the grammar that specify other structures.

The component name is not required here since no selection operation need take place.

Alternation rules correspond roughly to unions as used in C or Pascal. This rule class

specifies the set of things that can be used in places where particular rule identifiers are used.
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<AlternationRule> ::= ID "ALTERNATE"
<Name:SimpleNonTerminal> "IS"
<Alternatives:SimpleNonTerminalList> OD

<SimpleNonTerminalList> ::=
<SimpleNonTerminal> { <SimpleNonTerminal> }

Figure 6: Alternation Rule Syntax.

Alternation structures need not be present in the structure being built internally.
Alternation rule names that occur in other rules can be thought of as place holders that may be
filled by any of the alternatives given in that rule. There is no selection to be done, since there is
only one element in use at any time. Also, this shortcut tends to simplify programming, since the
subroutine calls necessary to pass through the alternations (and which would have no other
function) are no longer required. Cameron and Ito [Camlto84] used this approach and this

research has uncovered no difficulties with it.

Let us see how alternations are used in our address book example. Consider the
representation of names. Since people do not all have the same number of names, we will use a
list. We have the further complication that some people use initials instead of their full name.
Thus, we need the option of having a name being an identifier (the name spelled out) or an initial.

The alternation rule in Figure 7 allows a name w he either spelled out or an initial.

ALTERNATE <Name> IS <Identifier> | <Initial>

Figure 7: Alternation Rule Example: Name or Initial.

The last aggregation rule is repetition. Repetition structures correspond to arrays or lists,
depending upon how they are accessed. That access may be direct. using the position number of

the desired element, or relative, using "next" operations. Repetition structures have the



advantage that the user need not be concerned with an upper limit on the number of elements, as is
the usual case with arrays. Repetition structures, like arrays (and in most cases, lists) are
homogeneous. The elements of the repetition are all of the same type. However, that type may be

an alternation, in which case you have the effect of non-homogeneity to a limited extent.

The syntax of repetition rules is shown in Figure 8. Each rule starts with the keyword
"LIST", followed as before by the name of the rule, followed by the keyword "OF", followed by the
simple non-terminal designating the type of each element. Next comes the keyword
"SEPARATOR", followed by the separator character to be used in this list. A blank may be used if

desired. After that comes an optional list of formatting directives.

Separator characters serve the same purpose in repetition rules as kevwords do in
construction rules. They aid the parser in figuring out what it is looking at and they aid the user in
writing the input and reading the output. For example, blanks are used in the construction
element list portion of construction rules. At the moment, separators are restricted to being single
characters. There is no particularly good reason for this restriction, it results from
lack-of-imagination on the part of the implementor and can be easily corrected if required. There
are other possibilities for separators, such as character strings or no character at all, but so far
single characters have proven to be adequate. Multiple character separators will be required

however, we will leave this enhancement to the next implementation.

There are three places in repetition constructs where formatting is important. These a;'e at
the beginning of the list, between each element of the list and at the end of the list. Formatting
before and after can be dealt with by using formatting directives in-an enclosing construction rule.
Since the list is homogeneous, each element should be treated identically, thus the list separator
and inter-clement formatting are speciﬁed once. The formatter list given in a repetition rule takes
effect between each eiement of the list, after the separator character is printed. 1If there is more
than one formatter in the list (e.g. LB ID) then the prettyprinter acts on each one in turn. 1If there

are no formatters in the list, then no action is taken. Experience has shown that no explicit
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<RepetitionRule> ::= ID "LIST"
<Name:SimpleNonTerminal> "OF"
<BaseType:SimpleNonTerminal> "SEPARATOR"
<Separator:Terminal> <Formattors:DirectiveList> OD

<DirectiveList> ::= <Directive> { <Directive> }

Figure 8: Repetition Rule Syntax.

formatting was required in most cases and that when it was, a simple forced line break (LB) was

sufficient.

We talked about using a list of address records for our address book. Figure 9 shows a
repetition rule that defines Records as a list of Record structures. The separator is blank
because we are going to use blank lines between f'ecords so we do not need explicit separator
characters. The blank line separation is achieved with the two LB directives. These directives
cause the prettyprinter to perform two line breaks in succession between each two records in the

list. The result is a blank line between each pair of records in the prettyprinted output.

LIST <Records> OF <Record> SEPARATOR " " LBLB

Figure 9: Repetition Rule Example: Address List.

That completes our discussion of aggregation rules. Now we need to have some primitive
data objects to aggregate. There are two rule classes that are used to define these primitives;
lexical rules and lexical-class rules. Lexical rules are the real bread-and-butter rules. The
lexical-class rules are not, strictly speaking, necessary and were included for implementation
reasons. Simply, lexical-class rules make it easy for GRAFS to construct simpler finite automata
by letting it know that there is a transition between two states for all the members of a
]exical-élass. It is possible to get the same result using state-minimization algorithms. for

example, but why force GRAFS to do unnecessary work.
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<LexicalRule> ::= ID "LEXEME"

<Name :GenericNonTerminal> "IS"

<Definition:RegularExpression>

[ <Delimiter:DelimiterExpression> ] OD
<DelimiterExpression> ::= ID

"L-DELIMITER" <LDelimiter:OneCharacter>

"R-DELIMITER" <RDelimiter:OneCharacter> OD
<RegularExpression> ::= <Term> | <AlternationExpression>
<Term> ::= <Factor> | <ConcatenationExpression>

<Factor> ::= <Terminal> | <ClosureExpression> |
<LexicalNonTerminal> | <BrackettedExpression>

<AlternationExpression> ::= ID <Operandl:Term> "|"
<Operand2:RegularExpression> OD

<ConcatenationExpréssion> ::= ID <Operand!:Term>
<Operand2:Factor> OD

<ClosureExpression> ::= ID "{"
<Operand:RegularExpression> "}" OD

<BrackettedExpression> ::= ID "("
<Operand:RegularExpression> ")" OD

Figure '10: Lexical Rule Syntax.

Lexical rules allow the user to tell GRAFS how to recognize primitive data objects (tokens).
The lexical rule name is the name of a token and the rule body describes how to recognize one. The
syntax of lexical rules is shown in Figure 10. These rules .begin with the keyword "LEXEME",
foliowed by the name of the particular rule, followed by the keyword "IS". Then follows a regl;lar
expression that describes the items to be recognized. The last part of the rule is optional, and is
used to specify the right and left delimiters. I this option is exercised, the keyword
"L-DELIMITER" followed by the single-character left delimiter to be used, followed by the keyword

"R-DELIMITER", followed by the single-character right delimiter, are added to the specific rule.

The regular expression may be constructed using alternation, concatenation and repetition

operations, in any combination. These operations have precedence (highest to lowest) repetition,
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concatenation, and alternation. The operators are right associative because of the parser
implementation used. However, bracketting is available to force the desired precedence and

associativity.

The primitive objects in a regular expression are terminals and lexical non-terminals.
Terminals are strings of characters delimited by‘double quotes ("). Lexiéal non-terminals are
similar to simple non-terminals except that the delimiters used are pairs of "#" rather than angle
brackets. They have been added as a notational convenience for the user to allow a more compact
expression. For example, identifiers are one letter followed by zero or more letters or digits.
Writing out the regular expressioﬁ for this using single character and digit strings would be a bit
tedious and would tend to obscure an otherwise straightforward concept. Lexical non-terminals
are defined using other lexical rules or lexical-class rules. The reason that lexical non-terminals
are distinct from simple non-terminals is to control where they may occur in the grammar. The
use of simple non-terminals instead would open the door to using aggregation rules to define
elements occurring within regular expressions. This could cause some implementation difficulties,

as we shall see later in this section when we consider the lexical analyzer/parser interface.

Delimiters can be a problem for the lexical analyzer. Are they part of the entity that they
delimit or not? The initial GRAFS lexical analyzer did not recognize delimiters as special. This
lead to having to deal with them explicitly -- sometim-es an annoyance. There will be more on this
problem in the section on lexical analyzer implementation (since that is where the problems arose).
However, for the moment consider a regular expression that begins and ends with " and 6ne that
begins and ends with "a". The first expression is supposed to be a delimited string and the second
is an identifier (for example). Any time strings were dealt with, it was necessary to strip off the
delimiters. In order to have this stripping done automatically, it was necessary to tell the system
explicitly what a delimiter was. So we introduced the optional part of the lexical rule class. If the
user does not want to have the delimiters stripped. it is only necessary to leave out the optional

section.
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Figure 11 shows a lexicalk rule that defines an Initial for our address book. This is a
very simple regular’expression that defines Initial as any one letter followed by a period ".".
Since no delimiters are specified explicitly, the delimiters are assumed to be blanks. In other
words, in order for the lexical analyzer to recognize "W." as an initial, there has to be a biank after

the ".".

LEXEME <Initial> IS #Letter# "."

Figure 11: Lexical Rule Example: Initial.

Lexical-class rules were added for implementation reasons. They are used to specify a
character class, for use in other regular expressions. The same thing can be accomplished using
lexical rules but there are some differences in the way that the lexical analyzer tables would be

constructed. More will be said about this later.

Lexical-class rule syntax is very simple and is shown in Figure 12. These rules consist of
the keyword "LEXICAL-CLASS", followed by the name of the rule (a lexical non-terminal)
followed by the keyword "IS", followed by a list of single characters delimited by quotes and
separated by blanks. The effect is that of an alternation rule of single character strings. An

example of lexical class rules, taken from the address book grammar, is shown in Figure 13.

<LexicalClassRule> ::=ID "LEXICAL~CLASS"
<Name:LexicalNonTerminal> "IS" <Members:CharacterList>

<CharacterList> : := <OneCharacter> { <OneCharacter> }

Figure 12: Lexical Class Rule Syntax.

Earlier in this section, the term "associated semantics" was mentioned with respect to

GRAFS rules. There are two aspects of GRAFS rules, what the rule looks like and what the rule
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LEXICAL-CLASS #UppercaseLetterg¢ IS "A"™ "B" "C" "D" "E" "F"
“G“ “H" "I ” "J" "K" "L“ "M" "N" "O" "P" "Q"

] "R" "s" “TW "va "V" “w" "x" "Y" "Z"

.LEXICAL-CLASS #LowercaseLetter# IS "a" "b" "¢" "d" "e" "f"
"g" "h" “i“ "j" "k" "l" "m" "n" "o" “p"
"q" "r" "s" "t" "u" "V" "w“ "X" "Y" "Z“

LEXICAL_CLASS #Digit# Is "0" "1" "2" "3" "4" “5" “6" "7"
"8" "9"

Figure 13: Lexical Class Rule Example.

means. We have discussed what the rules look like, it remains to consider what the rules mean.

Determining meaning was not much of a problem with aggregation rules. Records, unions
and arrays/lists seem to be universal concepts and easil.y understood. However, what does a
lexical rule mean? Along with use/mention, this was a major conceptual problem. The problem
that we had stemmed from not understanding that the recognition and conversion of tokens to
internal forms are separate processes, even though they may be intertwined. There are two parts
to the process of analyzing tokens. First of all, the tokens must be recognized. Recognition is the
process that is specified by regular expressions and is performed by finite automata. Recognition
tells you what the thing being looked at is. The second process, conversion, is turning the
character string representation into a form that the rest of the system can deal with. For
example, we see an integer as a string of digits, whereas the computer sees integers as a binary
encoding. Thus, in order for the rest of the system to deal with a token as an integer, the token
must be converted into the form of an integer. Conversion is not as str“aightforward a process as
recognition since it is implementation dependent. Hence, we decided to avoid the problem in the
prototype GRAFS by restricting leaves to the type, character string. This form requires no
conversion, If the application program using GRAFS requires that the information be in some
other form, then the application program can perform the conversion. The lexical class rules for

the address book example are shown in Figure 13.
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4.2 GRAFS Implementation

This section discusses the GRAFS implementation. GRAFS is in the raw prototype stage.
Therefore, we were mostly concerned with finding some way of getting GRAFS to work, rather
than with finding the most efficient way, since it was generally not obvious (at least initially)

where the bottlenecks in the system were going to be.
4.2.1 Bootstrapping

Bootstrapping is a term found in the domain of operating systems. It means having a
system gradually getting itself running by itself or pulling itself up by its bootstraps. The system
begins small and loads or constructs more and more of itself until the entire system is operational.
Bootstrapping has a similar meaning with regards language implementation. In the case of

GRAFS, it simply means that we use part of the system to construct another part of the system.

The situation is as follows. The system must take a specification and compile it to produce,
amongst other things, tables for the parser and lexical analyzer. In order to do this we need to
perform lexical analysis and parsing on the specification and then use a parser generator and
lexical analyzer generator on the specification’s parse tree, to produce tables for a parser and

lexical analyzer for structures in the language of the specification grammar input.

Why not use the generator routines to produce tables for the GRAFS metagrammar and thus
save the effort of hand-coding a parser and lexical analyzer? This turns out to be not terribly
difficult to do, although it does create a nice conceptual loop that can cause all kinds of confusion.
In order for the generator routines to work, there must exist a parse tree (or whatever structures
the generators need to see in order to work). In order to get a parse tree we need a parser, or do

we?

No, we can pretend that we have a parser. All we need is the parse tree. So, we write a
routine that constructs the parse tree in memory (using constructor routines that are custom-built

for the metagrammar) and then run the generators on that parse tree to produce parser and lexical
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analyzer tables for the metagrammar.

The result of implementing this bootstrapping technique is a program called boot, which
when run, produces the tables and files necessary to compile GRAFS specifications. The
metagrammar evolved during the implementation phase of this thesis, necessitating modifications
to boot. These changes were very easy to make, ‘even the most involved took only three or four
hours. Given the later experience with the complexity of parsers, it is unlikely that a hand-coded

parser would have been easier to modify.
4.2.2 Lexical Analysis

Lexical analysis is a critical phase of compilation since it can take up to 50 percent of the
total compilation time [He86]. Thus, if you are b;xilding a compiler, you wiil' want to construct a
fast lexical analyzer. Lexical analysis is not such an overwhelming issue in GRAFS, or at least
not from a performance standpoint. The reason for this is that one of the purposes of GRAFS is to

eliminate much of the need for lexical analysis.

Unfortunately, GRAFS needs to do lexical analysis from time to time. The generator
program has to lexically analyze specifications that are input as text, and users may wish to have
textual input converted into structural form. These events are seen as relatively rare, since most
of the time 1/0 should invoive only structured files, so the speed performance of the lexical analyzer
is not as critical. This is fortunate since the lexical analyzers used by GRAFS are automatically

generated and such analyzers tend to be slower than their hand-coded counterparts.

Heuring [He86] has done some interesting work on the generation of fast lexical analyzers.
Unfortunately, his approach doeé not appear to be particularly flexible, in that it requires the
tokens to be partitioned into classes according to how those syvmbols are to be recognized. This .
requires that the designer be able to so partition his tokens and that he be able to communicate all
of this to the GRAFS generator. Since we wanted to maintain maximum flexibility and interface

simplicity in the prototype, we did not pursue this approach further and instead chose the
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conventional table interpreter approach.

The lexical analyzer generator traverses a specification’s parse tree and constructs a
non-deterministic finite automaton (with epsilon moves) from the specification keywords, strings,
and any regular expressions defined in lexical rules. An equivalent deterministic automaton is
then constructed via the classical algorithms [AhoUll79]. The resulting tables are written to a file.

That file is read in as required, and interpreted by the lexical analyzer.
4.2.3 Parsing

Earlier in this chapter, we mentioned that an ELR(1) parsing algorithm was used. In this

section, we will go into a hit more detail as to why Extended LR(1) was chosen.

If GRAFS was a monolithic system, the choice of parser, providing that that parser was
sufficiently powerful, would not matter. In this case, the user would remain blissfully ignorant of
the nature and form of the structures created internal to the system. However, this is not the case
with GRAFS. The user is expected to write programs that manipulate the internal GRAFS data
structures and therefore must have a strong understanding of those structures. The structures
that are actually generated by GRAFS must behave exactly as the user expects them to. If these

structures are not what the user expects, manipulation will prove difficult.

GRAFS data structures are described by a grammar; Each different rule in the GRAFS
grammar describes a different and distinct structure. The question now is, how do we use the
grammar notation to produce a physical structure? There are two ways: with the access routines
(described in the next section) or with the parser. We are going to generate both access routines
and parser for each different grammar. Access routines are easy to generate, but parser

generation is much more difficult.

There are a number of different parsing algorithms. We needed one with sufficient power.

The obvious choice was some version of LL or LR. Which one to chose? LR is the more powerful
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[AhoUll79], and so was a tempting choice. However, the existing LL and LR algorithms use a
BNF grammar notation that is quite different from GRAFS grammar notation. For example,
repetitioh is achieved by recursion in BNF, whereas, GRAFS has repetition rules. Thus, in order
to use a conventional parser, we would need to transform the GRAFS grammar into a BNF. This
would result in the construction of a slightly different structure than the original GRAFS grammar
suggests. We could, of course, re-transform that structure to correspond with the original
grammar, but it would be much nicer to avoid the problem altogether. Fortunately, there exist

various ELR(k) algorithms, specifically {PurBro81], that remove most of the problem.

Extended LR is based on a slightly more powerful notation than that of BNF. Basically, the
right-hand-side of each productioh is a regular expression, with alternation, concatenation and
closure (repetition) operations. This fits very well v;rith the GRAFS grammal; notation. In fact,
ELR is more expressive than the GRAFS notation since GRAFS right-hand-sides are not full-blown

regular expressions. Thus, we chose to use the ELR(1) algorithm for the GRAFS parser.
4.2.4 The Parser/Lexical Analyzer Interface

An interesting design issue in GRAFS arises from the existence of two stages in the process
of constructing a parse tree from a text string. These stages are lexical analysis and parsing.
Lexical analysis is the process of breaking the input stream into tokens. Parsing is the processing
of taking the input tokens and creating a parse tree. The intéresting thing about this is that the
parser is capable of handling the task of token recognition without the aid of a separate lexical
analyzer. Since lexical analysis is a simpler process than syntax analysis, it is possible to

construct a more specialized and efficient recognizer for tokens than for syntactic structures.

If we make the decision to split the recognition process into two stages, we face the problem
of deciding how the grammar notation is to be dealt with, That is, which rules are for the parser
and which are for the lexical analyzer. It might be possible to make GRAFS smart enough to

figure this out on the fly, however for the prototype we decided on a fixed method. Construction,



alternation, and repetition rules specify syntactic structure and are dealt with by the parser.

Lexical and lexical-class rules specify tokens and are handled by the lexical analyzer.

This division of labour is fine from the point of view of GRAFS. However, what has
happened is that the programmer is left to make the decision of which construct is handled by

which level of analyzer. There are a number of things to be considered in making a decision.

What is the information that is to be manipulated? Consider that a simple non-terminal, and
identifier delimited by angle brackets, could be treated as a single token. However, the significant
information is in the identifier, not the angle brackets, so the brackets would need to be stripped by
the application program. If the simple non-terminal is dealt with as three tokens, then only the

identifier need be dealt with.

The other consideration is programmer convenience. Sometimes it is simply easier to specify
something as a single token. This is usually because there are several similar tokens that could
overlap and hence be very difficult for the lexical analyzer to recognize. Consider the case of
delimited strings. As was mentioned earlier in this chapter, the string delimiters are not really
part of the string that they delimit. The delimiters act as signposts for the analyzers. Once we
know that something is a string, the delimiters are no longer required. The temptation might be to
handle delimiters as separate tokens, but this can result in other difficulties. For example,

consider the string " abe Are the blanks before and after the "abc" part of the string or not?
This is a somewhat artificial example, in that the meaning can be decided upon. However, it

seems that although delimiters are not part of the token itself, they are not really separate from

the token either, and so should be handled at the same time.

The parser/lexical analyser interface solution that was chosen for the GRAFS prototype

seems to work well enough. However, future such systems might investigate other alternatives.
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4.2.5 Access Routines

At various times we have introduced the topic of access routines. We have mentioned the
grammar-specific constructors, selectors, and predicates, and the existance of generic, or
grammar-non-specific, routines. This section discusses the routines actually implemented and

some of the issues of that implementation.

Access routines fall into two categories: grammar-specific and generic. Grammar-specific
routines are generated for each particular grammar and only apply to that grammar. Generic
routines are built into GRAFS, are not changed by GRAFS, and apply to any appropriate grammar

and structure.

Grammar-specific routines fall iﬁto three classes: constructors, predicates, and selectors.
The first class, constructors, is used to make structures in the grammar. Alternation structures
are not needed in the parse tree so there is no point in being able to make them. Thus, "Make"
routines are generated for construction, repetition, and lexical rules only. The details of the
routine inteinals vary somewhat between rule classes, but are fairly consistent within the same

class. This allows us to use code templates for each class, and simply fill in the blanks as required.

Consider the following example. The construction rule that we wish to generate a "Make"

for is:
CONSTRUCT <REInput> IS <REList:REList> <SubREList :SubREList>

The resulting "Make" routine is shown iﬁ Figure 14. An examination of the routine will reveal the
places where blanks needed to be filled in. For example, the name of the routine, the structure
type (code), and name string, all come from the name of the rule "REInput”. The name‘of' the
grammar is taken from the name of the file that contains that grammar specification, in this case
"REGrammar”. The number of parameters. their types and positions are taken from the rule

body.

47



PROCEDURE MakeREInput ( x1, x2 : Node ) : Node ;
VAR n : Node ; ‘
‘BEGIN
n := MakeNodeRecord ( "REGrammar" ) ;
SetClass ( n, CONSTRUCTION_RULE_CLASS )
SetCode ( n, REInput ) ;
SetNodeType ( n, NONTERMINAL ) ;
SetNameString ( n, 'REInput' ) ;
GrammarCheck ( x1, "REGrammar" )
IF NOT ( REListQ ( x1 ) ) THEN
Error ( "MakeREInput: argument 1 is not a REList." ) ;
END ;
InsertComponentkK ( n, xt, 1 ) ;
SetParent ( x1, n ) ;
GrammarCheck ( x2, "REGrammar" ) ;
IF NOT ( SubREListQ ( x2 ) ) THEN
Error ( "MakeREInput: argument 2 is not a SubREList." ) ;
END ;
InsertComponentK ( n, x2, 2 ) ;
SetParent ( x2, n ) ; '
RETURN ( n ) ;
END MakeREInput ;

.
7

Figure 14: An Example Modula-2 'Make’ Routine.

Repetition rules generate a similar "Make" routine except that, since lists can contain zero
elements, there are no parameters. Creating a list node invoives first creating a nil length list

using a "Make" routine, and then using the generic append operations to add elements to that list.

Lexical rules are different in that the argument to the "Make" routine is a string rather than
some number of nodes. Lexical rules specify leal nodes that contain information stored as a

character string.

Predicates are generated for all rules except lexical-class rules. The name of each of these
routines consists of the name of the rule used to generate it, followed by the letter "Q". These
routines are functions returning a boolean value. Each routine checks the grammar type of the
node argument and then checks to see if its argument node is of the same type of node that would

be constructed by the grammar rule that was used to generate the routine.
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The observant reader should now be asking "ah yes, but what about alternation rules?".
Alternation rules are not used to generate nodes, but they do define classes of nodes. Thus, the
alternation rule predicates perform a logical "or" operation on the predicates of each of the
elements in the body of the alternation rule. For example, consider the following alternation rule:

ALTERNATE <Type> IS <Accept> | <Reject>
The resulting predicate is shown in Figure 15. This routine is, again, just an exercise in filling in

the blanks.

PROCEDURE TypeQ ( x1 : Node ) : BOOLEAN ;
BEGIN

IF x1 =Node ( NIL ) THEN RETURN ( FALSE ) ; END ;
GrammarCheck ( x1, "FAGrammar" ) :

r

RETURN ( AcceptQ ( x1 ) ORRejectQ ( x1) ) ;
END TypeQ ;

Figure 15: An Example Alternation Rule Predicate Routine.

The final routine category is that of selectors. There are two rule classes that generate
 selectors: construction and lexical. Construction rules define a collection of named fields. Thus,
each field can be addressed, or selected, by it symbolic name. Each field in a construction rule is a
compound non-terminal. Compound non-terminals have two parts, the first being the name of the
field, and the second being the type of that field. The first part is used to generate a selector
routine for that field. Generation of construction rule selectors is complicated somewhat by the
fact that the same field name may occur in different places in different rules, although a name can
only occur once in any given ruie. For example,

CONSTRUCT <A> IS <B:Thing1> <C:Thing2>
1s okay, whereas,

CONSTRUCT <A> IS <B:Thing1> <B:Thing2>

is definitely NOT okay.
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A particular selector name may occur in several different rules. This implies that a
particular selector name will have different results depending upon the rule. If the host language
does not allow overloading then we can only have one routine of that name, which will have to
ser\}ice several different types of nodes. Thus, each selector routine must check its node argument
to see which kind of node it is before the routine ¢can make the selection. The best way to make this
clear is with yet another examplé. Consider the following two construction rules:

CONSTRUCT <Default> IS "NEXT_STATE" <NextState:Number>
CONSTRUCT <Transition> IS
"CHARACTER" <CharacterList:CharacterList>
"NEXT_STATE" <NextState:Number>

This results in the "NextStateOf" selector which is shown in Figure 16.

PROCEDURE NextStateOf ( x1 : Node ) : Node :
VARDN : Node ; ’
BEGIN

GrammarCheck ( x1, "FAGrammar" ) ;

CASE CodeOf ( x1 ) OF

Default :

n :=GetComponent ( x1, 1) ;

| Transition :

n := GetComponent ( x1, 2 ) ;

ELSE

Error (

"NextStateOf: Operation incorrect on thisnode." ) ;

END ;

RETURN (n ) ;
END NextStateOf ;

Figure 16: An Example Selector Routine.

Lexical node selectors are a bit different in that there is not much choice about what is to be
selected. The idea is to extract the information contained in the node and return it to the caller.
The only form that the information can take in the current GRAFS implementation is character
string. These routines are named "Retrieve" followed b_\,:' the name of the lexical rule, and then

foliowed by "Of". So a lexical rule for "Number" would cause a "RetrieveNumberOf™ routine to be
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generated.

We will finish off this discussion of 'grammar-speciﬁc routines with a look at some of the
access routines that would be generated for the address book example. The construction rule
Record in Figure 4 would have the constructor MakeRecord, the predicate RecordQ and the
selectors NamesOf, AddressOf, PhoneOf, dccupationOf (corresponding to the name,
address, phone and occﬁpation fields) generated for it. The construction rule Address in Figure
5 would have the constructor MakeAddress, the predicate AddressQ, and the selectors
AptOf, StreetNumberOf, StreetOf, TownOf, CountryOf, and CodeOf generated
for it. Thus if the node currentltem was a Record, in which case
RecordQ ( currentItem ) would return true, then the street that the person:

NameOf ( currentItem ) liveson would be: |

StreetOf ( AddressOf ( currentltem) ).

The alternation rule for Name shown in Figure 7 would only have a predicate NameQ

generated for it. NameQ would be true if and only if IdentifierQor InitialQ were true.

The repetition rule for Records shown in Figure 9 would have both a predicate and a
constructor generated for it. The predicate would be called RecordsQ and would return true if
its node argument was a list of records. The constructor MakeRecords takes no arguments and
returns an empty list of records. Records may be added to the list using a generic append
operation. Selection on lists is also a generic operation since every element is the same. Thus list
elements must be refered to either by their position in the list, or by their relationship with some
other member of the list (i.e. give me the next one afler this one, or give me the previous one, and

s0 on).

Generic access routines are constructed by the GRAFS implementor as the need for them
becomes apparent. They are difficult to categorize completely for the reason that it is difficult to

know, a priori, all of the routines that might be wanted. The word "wanted" is used intentionally,
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" since grammar-based technique‘s can result in a syntactically complete set of operations (as
discussed in Chapt,ér 3). However, it may be more convenient to add routines that perform
operations in a more effective manner. For example, it is useful to have routines that allow data
stru‘cture navigation without being tied to any particular grammar structure. This allows the
construction of generalized search and replace routines, for example, that may be used in several

different situations.

What can be said about generic routines, in general, is that they must have access to
specification information on the structure being manipulated. This is to ensure that the requested
operation is relevant to the structure that that operation is being applied to. For example, the

append operation should only be applied to repetition class node.

The GRAFS implementation is a prototype and so generic routines were constructed as
required. The existing generic routines fall into the categories of parsing, prettyprinting,
structured file 1/0, list manipulation and generic predicates. All of these operations are abstract in

that theyv apply to any and all grammars.

Parsers differ in the source of their input. For example, one might wish to parse text stored
in a particular file, taken from a standard input, or taken from a character string. Only one
version is currently implemented and that one is designed to parse the text that is stored in a

particular file (the name of that file is an argument to the parser).

Prettyprinters differ in the choice of output destination and formatting routines. One
version, called PrettyPrint, uses default formatting routines and sends its output to stdout.
The other version, called UnParse, takes nothing for granted. The user provides a set of
formatting routines that control when and where output occurs. More is said about this in the

section on prettyprinting.

GRAFS does not automatically store its structures in files. Therefore, if the user wishes to

use a previously stored structure, or store a structure for future use, GRAFS must be informed.

52



There are two routines provided for this purpose. SaveParseTree saves the specified
structure (GRAFS views everything as a parse tree, hence the name), under the supplied name.
RecoverParseTree reconstructs the structure of the supplied name, and returns the root note

to the caller.

Lists are structured the same way in all grammars so they can be accessed using generic
routines. There are three such routines currently available: NthElement, ListLength,
and AppendNodeToList. NthElement retrieves a child node from the supplied list by
number. This is similar to array accesses; you specify the element required by its ordinal number.
ListLength returns the number of elements in the supplied list. AppendNodeToList glues
the supplied node onto the end of the supplied list. There are many other operations (e.g. next,

first, previous, insertNthElement, etc.) which could also be constructed.

Generic predicates are predicates that apply to classes of nodes. The only one currently
implemented is Empt yNodeQ. This predicate is true if its argument exists and false otherwise.
There are situations (such as optional nodes) where a nonexistant node may be selected. 'This
predicate allows the application to test for such cases. Many other generic predicates could be
constructed. For example, rule-class predicates could allow programs to scan structures in a

generic manner. An example of this sort of generic scanning occurs in PascalMPS [Cam87b].

Access routines are generated in two files for eachlgrammar. One file that contains a
Modula-2 definition module that includes all of the access routine header declarations for fhat
particular grammar. The other is a file that contains the corresponding implementation module.
These files must bc.e compiled and then linked to the user’s application program. The names of the
two files are taken from the name of the grammar being processed. For example, input of a
grammar file named. G1, would result in the generation of the files G1__GS.def and G1_(GS.mod,

containing the definition module and implementation module, respectively, for that grammar.
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4.2.6 PrettyPrinting

Constructing a prettyprinter is not difficult, it is mostly a matter of dealing with a number of
special cases. The details of the special cases are dependent upon the choice of formatting
diréctives and the nature of the structures that are to be printed. Each structure type and format
directive requires its own special handling. In this sense, the GRAFS prettyprinter algorithms are

quite standard. The classic reference on prettyprinting is Oppen {Opp80].

What criteria drove the design of the GRAFS prettyprinter? As usual there are two main
approaches, hard-coding a custom prettyprinter routine, or using a table interpreter with special
tables for each structure specification. For reasons of flexibility and speed of implementation, we
chose the table interpreter. The grammar information is already available in parse tree form and
manipulation routines were already in existence so we decided to use the parse tree directly. This
meant that because the prettyprinter had to know how its tables were structured then every
grammar had to be of the same type, so that one set of access routines would apply to all
specification grammars. All grammar specifications (including the metagrammar itself) are

instances of the metagrammar and hence have the same grammar type, "META".

Given the grammar-based nature of the specifications and the programming-language bias of
prettyprinters it seemed reasonable to take a svntax-directed approach {Rub83,Wood86]. That is,
that the structure of the specification grammar as opposed to sofne separate format specification,
as well as the explicit formatting directives control the appearance of the output. This added fuel /\

to the decision to use the specification parse tree to drive the prettyprinter.

The obhservant rAeader will probably have noted the slightly dubious tone of the previous
paragraphs, and might wonder if the decision to mix formatting directives in with the grammar is
somehow in doubt. Future implementations might want to consider separating structure
gpecification and formatting specification. Unfortunately there is no immediate answer to this

question but only more questions. First of all, current experience shows no difficulties with this
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decision. That means that for the work that has been done with GRAFS, it was possible (and in
fact, easy) to get the formatting effects desired. However, we could conceive of a situation where
the user might want to use different formatting conventions on the same grammar. Given that

grammar specification and file type are rather closely tied together, this might prove difficult.

The final source of inspiration for the GRAFS prettyprinter came f'rom the Pascal MPS
prettyprinter [Cam87bj. It is the notion of parameterization, and is dealt with in more detail by
Cameron [Cam87al. In essence, parameterizing the prettyprinter means abstracting the
prettyprinter algorithm, as much as possible, from various machine- and situation-dependent
considerations. This is done by having the user provide the low-level printing action routines.
These are "PrettySpaces", "PrettyNewLine", "PrettyString”, "EntryMonitor"”, and "ExitMonitor".
PrettySpaces is called by the prettyprinter t,o print some k number of spaces (blanks).
PrettyNewLine is called when the prettyprinter wants to cause a line break. PrettyString is called
to print out some text string. EntryMonitor is called each time the prettyprinter enters a new node

of the parse tree being printed and ExitMonitor is called each time the prettyprinter leaves a node.

There are two reasons motivating prettyprinter parameterization. The first is that the
prettyprinter may be applied in several different environments. Interactive structure editors
reqhire prettyprinted output to a CRT, whereas other applications may require prettyprinted
output to a file. Parameterization allows the user to supply routines that support the application
that is required. The second reason is that parameterization allows the user to have more control
of the prettyprinting process. Some awkward problems can be solved by eonstxgucting customized
formatting routines. For example, consider the situation where the user wishes to alter the textual
representation of tokens. A particular example of this occurs in Pascal, where some compilers use
a’ "’ to represent pointer references, and some use a '@’. A particular grammar will use only one
symbol. Hence, in order to create prettyprinters that will produce output that is acceptable to
either compiler, the programmer will have to alter the representation of pointer references.

Parameterization makes this possible.
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. 4.2.7 User Interface

The GRAFS user interface was designed to satisfy two basic criteria. First of all, the
interface had to contribute to the readability of the application program. This was satisfied by
using descriptive names for fixed GRAFS routines, and names that reflected the grammar
structure that was being manipulated, in the caée of generated GRAFS routines. Second, the
interface had to be as simple as possible. This was satisfied by making GRAFS do as much as

possible, and having it keep track of as much information as possible.
4.2.8 Type Checking

Type checking in GRAFS has two levels. The first ensures that we are dealing with the
correct grammar and the second ensures that the operation to be performed on a given structure is
appropriate for that structure. All type information is set, checked, and hidden by GRAFS, so
there is no opportunity for the programmer, through error or intent, to subvert the type checking

mechanisms.

The two levels of type checking have separate mechanisms. The grammar type of a node is
stored in each node as it is created by either the Make routines or the generic node constructors
that are used by the parser and the restore utility. Any time a node is to be manipulated, the
manipulating routine checks the node’s grammar type to confirm that that grammar type is to the
one that the routine was generated from. This has two effects. It confirms that the requested
operation is appropriate to the grammar and it guarantees that nodes of different grammar types
cannot be mixed together into the same structure. The grammar type checking mechanism is
quite simple.. Each node contains the grammar type. This information is compared with the

grammar type that the access routines are expecting.

The node code is, like the grammar type, also stored in each node record and is inserted by
Make routines or by the parser or restore utilities. The difference is that while grammar names

must be unique, node codes are only unique to a particular grammar. That is, grammars G1 and
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G2 will both have a node code of 1. Thus, grammar type and node codes must both be checked.

Node codes are generated internally by the GRAFS symbol table utility. After the gen
program parses a GRAFS specification and constructs the parse tree, the symbol table utility scans
through the parse tree and assigns codes to each different rule. A rule defines the structure and
hence the type of a particular node. Hence any noae created according to that rule is assigned the
code for that rule. This code is then checked by the manipulating routines to ensure that the
requested operation corresponds to the structure to bé manipulated by that routine. Consider the
effect of selecting a particular field, from a node that has no such field. If the programmer is

unlucky, the selection will take place resuiting in a bug that could be difficult to find.
4.2.9 Structured File Input and Output

Structured file input/output is handled by the Checkpoint and Restore utilities. Checkpoint
takes a GRAFS data structure and stores it, in structured form, in a file. Restore reconstructs a
GRAFS data structure from a structured file. The only information that the application program
n;eeds to supply to these routines is the root node of the structure and the name of the file. In order
to save a parse tree, GRAFS has to know its root, and in order to restore a parse tree, GRAFS has

to know where to put the root.

Simple structured I/O is not that big a problem to implement. The prototype GRAFS uses a
single data structure to construct parse trees; the node. Thus basic 1/0 is handled by constructing
routines to store and recover node data structures. It should be noted that we have not explored
methods of minimizing the storage of node information. Given that the information stored in a
node may change, since it is not clear what informatioﬁ has to be stored in a node, we chose not to

worry to much about storage compaction for the time being.

The more interesting part of structured 170 is the preservation of the relationships between
nodes of the parse tree. The nodes have a relationship to each other. In the first stages of the

GRAFS implementation, we were going to handle those relationships with pointers. However,
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. there is one major problem with the use of pointers; it ties you to a particular address space and a
particular program execution. A pointer is only valid for one computer and only for phe program
execuﬁion during which the pointer was assigned. It may be that case that a pointer is the same on
two different machines or program executions, but will not be so in general. Given that the
structures that GRAFS is to manipulate are intended to persist between program invocations and
might be transferred between or manipulated by, different machines, we wanted to remove the

dependence on pointers.

The solution chosen was to add a level of indirection. We created a virtual address space for
each grammar. Each node that was created for a particulér grammar was given a unique (to that
grammar) number. That number is then used,iin concert with the grammar type, to identify the
node. The grammar-support subsystem of GRAFS keeps track of all gramrﬁar node numbers and

handles requests for a particular node.

This solution has a number of pleasant effects. No pointer translation is required. That is,
saving a particular node and then restoring that node does not require changing any of the nodes

that refer to it. This saves quite a bit on implementation time and system complexity.

A parse tree does not have to be on a given machine all at once or, in fact, at all. Since the
node relationships are independent of the machine address spaces or storage device address space,
GRAFS can keep track of the location of nodes and move them around without having to worry
about appraising referencing nodes or application programs of the actual location of a node. For
example, this means that GRAFS can eventually handle data structures that are too large to be

completely contained in machine memory.

Unfortunately, this level of indirection does introduce the overhead of having to translate
node numbers to real addresses. However, this overhead can be minimized by using hashing
techniques. Another thing that could be done is to do the address translation only on /0. That is,

when a node is read in, its virtual address is converted into a real one and when the node is written
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out its real address is converted back to a virtual one. This would have the advantage of lessening
the address translation overhead. Given the research orientation of the prototype GRAFS, we felt
that the tradeoff of performance for flexibility was worthwhile. In fact, to maintain the flexibility
of GRAFS-style systems we conjecture that some sort of virtual scheme will be required. Whether

or not the method that we have used will prove to be optimal remains to be seen.
4.2.10 The Complete Address Book Example Grammar

The complete grammar for our address book example is given in Figure 17. As we noted
previously, the address book is just a list of records. Each record contains a name, address, phone
number and occupation. The first three are fairly straightforward. The only interesting thing of
note is the use of the NTS and TS directives in the Phone construct. These directives turn off the
token spacing so a phone number is printed as "937-1445", for example, instead of as "937 -
1445". The first three fields tend to be unique to a record. That is, it is unlikely that two people in
the book have the same name or the same address. Therefore, we have added the occupation field.
This information aliows you to write an application that could print out views of the addressbook.
For example, suppose that you wanted a list of phone numbers of facuity members. The
application code might look something like this:

addressBook := RecoverParseTree ( "AddressBook" ) ;
FOR1i :=1TOListLength ( addressBook ) DO
IF ProfessorQ (
OccupationOf ( NthElement ( i, addressBook ) ) ) THEN
PrettyPrint ( NameOf ( NthElement ( i, addressBook ) ) ) ;
PrettyPrint ( PhoneOf ( NthElement ( i, addressBook ) ) ) ;
END ;
END ;
All that this code fragment does is scan through the entries in the address book (it first reads in the
structured-file "AddressBook") and if the entry is for a professor, prettyprints the name and the
phone number. This fragment uses the default prettyprinter for simplicity. The result will be a

column of interleaved names and phone numbers, each on its own line. If a more readable list is

required, the parameterized prettyprinter Unpar se can be used instead.
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GRAMMAR

LIST <Records> OF <Record> SEPARATOR " " LB LB

CONSTRUCT <Record> IS "Name:" <Names:Names> LB
"Address:" <Address:Address> LB
"Phone:" <Phone:Phone> LB
"Occupation:" <Occupation:Occupation>

LIST <Names> OF <Name> SEPARATOR " "

ALTERNATE <Name> IS <Identifier> | <Initial>

LEXEME <Identifier> IS #Letter# { #Letter# }

LEXEME <Initial> IS #Letterg "."

CONSTRUCT <Address> IS ID [ "APT" <Apartment:Number> ]
<StreetNumber :Number> <Street:Identifier> LB
<Town:Identifier> <Country:Identifier> <Code:Code> OD

LEXEME <Number> IS #Digit# { 4Digit# }

LEXEME <Code> IS (#Letter# | #Digit#) {#Letter4 | #Digit#}

CONSTRUCT <Phone> IS [ "(" <Area:Number> ")" ]
NTS <Prefix:Number> "-" <Suffix:Number> TS

ALTERNATE <Occupation> IS <Student> | <Professor> | <Other>
CONSTRUCT <Student> IS "STUDENT"
CONSTRUCT <Professor> IS "PROFESSOR"
CONSTRUCT <Other> IS "OTHER"
LEXEME #Letter# IS #Uppercaseletter$ | #LowercaseLetter
LEXICAL-CLASS #UppercaseLetter# IS "A" "B" "C" "D"
” E ” ” F ” L1} G ” " H ” " I ” ” J ” " K " ” L ” "M" " N ” " O ” ” P "
” Q ” ” R L ” S ” "T ” "U ” "V" "w" "X ” ” Y " ” Z ”
LEXICAL-CLASS #LowercaseLetter# IS "a" "b" "c¢" "d"
" e ” ” f " " g " "h ” " i ” ”" j " " k " ” l ” "m" ” n " " o ” "p"

"q" "r " " s" "t" "U" "V" "w" "x " "Y" "Z "

LEXICAL_CLASS #Diglt# Is "O" u1|v "2" "3v| "4" "5" “6" "7"
"8" "9"

Figure 17: The Complete Address Book Grammar.
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One advantage to using a grammar for this example, is the ability that GRAFS has to check
the input. For exafnple, if you were entering information into the address book, GRAFS will only
accepi input that is syntactically correct. In other words, GRAFS will not be able to know if the
phone number that you have entered is a correct one, but it will be able to check that that phone
number at least appears to be correct. If you try entering "ABC-4566", GRAFS will reject it since
phone number prefixes can only contain numbers. It is possible to specify things a bit more
tightly, and design the grammar such that it would only accept phone number prefixes with exactly
three digits. However, then you need to know that every phone number will be structured that
way. Thus there is some tradeoff in design, between flexibility and the systems ability to detect

anomalous input.
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CHAPTER 5

GRAFS PROTOTYPE EVALUATION

This chapter looks at an example of using GRAFS. The first section considers the objectives
of this research, some motivations and criteria for selecting an example, and describes the chosen
example. The second section contains some observations made while the example was being
implemented. The idea is to look at what GRAFS is like to work with and what some of the
benefits and problems of this approach are. The third section contains an evaluation of the
example application. Is the application any good and what effects did GRAFS have on its design
and implementation? The last section contains a summary of the results of developing an
application program using GRAFS. It deals with the details of the application, evaluates that
application, and discusses the effect on the application, of using GRAFS as an implementation tool.
This last section also considers these effects as to whether they are artifacts of the GRAFS

implementation or model.

5.1 Prototyping a Lexical Analyzer Generator

One of the objectives of this research was to evaluate the applicability and functionality of
GRAFS. One way to perform this evaluation is to use GRAFS in an application. Further, it would
be useful if the application was implemented both with and without GRAFS, in order to get some
feel for how effective GRAF'S is. This comparison results in a subjective evaluation since only one
person is involved and knowledge gained from the first implementation can be applied to the
second. Also, there is more familiarity with conventional implementation than with GRAFS

implementation.

With the above considerations in mind, we have chosen to re-impiement a lexical analyzer

generator. Just such a device was implemented for (and is a part of) GRAFS. Now the problem is
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. to construct this device using GRAFS and make whatever comparisons, observations and

conclusions that are appropriate.

The original GRAFS lexical analysis sub-system has two parts. The first part is a generator
routine that takes a set of regular expressions and constructs a tabular representation of the
corresponding deterministic finite automaton. The second is a table interpreter that reads the
tables produced by the generator and accepts or rejects input strings accordingly. The new
implementation also uses a table interpreter approach, follows the strategies and algorithms of. the
original code as closely as possible, and, in fact, re-uses as much of the original code as practicable.
However, the second implementation makes use of GRAFS grammars to specify the major data
structures. Regular expression definitions are speqiﬁed with one grammar (REGrammar). Finite
automata, both deterministic and non-deterministic are described by 4the other grammar
(FAGrammar). In the original implementation, deterministic and non-deterministic automata
have separate and distinctly different representations. The second implementation had its data
structure support provided by GRAFS whereas the first implementation had its su‘pport routines

hand-coded.

The new implementation uses two grammars, one for regular expression definition and one
for finite automata. The generator proceeds in several stages. The first stage accepts regular
expression definitions and generates non-deterministic finite automata. The output of this stage
could be written out using the finite automaton grammar (FAGrammar), but is normally passed
directly to the second stage. This second stage converts a non-deterministic finite automaton into a
deterministic one. Finally, the deterministic automaton is stored in a structured file. The

analyzer component reads in that automaton and uses it to analvze the input.
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- 5.2 Observations

in this section, we discuss what it is like to work with GRAFS. It is interesting to take a
support tool like GRAFS from conception, through design and implementation and finally to the
stage of actually trying to do something useful with that tool. During most of the time that has
been spent with GRAFS, the system has been under development. From the user’s viewpoint, this
means that we had to- work with an incomplete and quirky system; a situation that does not
engender a lot of confidence. Thus, we were delighted to discover that GRAFS is not at all difficult

to work with, and we are coming to have some confidence in it.

We found it relatively easy to describe data structures using the GRAFS grammar notation.
The strong reflection of the semantics by the notation made it very easy to vfsualize the structures
that would be created. Running the specification through the generator gave immediate feedback
on problems of recognition, incompleteness, spelling mistakes and the like. Incomplete
specification of a grammar, whether through omission or spelling mistakes is caught by GRAFS
and brought to the programrﬁer’s attention. Problems with the parsability of the grammar are

pointed out by GRAFS.

The central problem of design is not made easier by GRAFS. GRAFS will heip you construct
a system once you know what the system is to do and how the system is to do it, but is not much
help prior to that. GRAF.S‘is a support system that deals with a lot of the drudgery that takes
time away from the design process. Consider that the designers of a system are interested in
solving some problem or set of problems. Unfortunately, in order to solve the problem, a number
of peripheral issues must be dealt with. Various support routines that have little to do with the
central issues must be constructed and debugged. Several of these routines have no function
except during the development of the sysiem and may be specific to some aspect of the design. If
the design changes then support routines may have to be modified. The process of evolving a

design is frustrated by having to deal with peripheral issues that have little to do with the actual
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design. In fact, there may even be considerable resistance to design changes caused by the amount
of peripheral work involved. It is not the intention to suggest that GRAFS immediately cleans up a
cluttered design process. The lexical analyzer generator is not a large program and we do not
assume that these techniques are applicable to any size of system. However, these techniques to

seem do be effective for programming-in-the-small. -

Let us look at some of the benefits that GRAFS has on the implementation process. First of
all, it saves considerablé time in the construction of support routines, if the programmer is using an
ADT methodology. GRAFS generates these routines automatically and correctly. Second,
GRAFS provides considerable support in debugging those parts of the program that have to be

constructed by the programmer.

Debugging support comes in various forms. For example, it is very difficult to use GRAFS
routines incorrectly and get away with it. A considerable amount of internal type checking is
performed. This checking is difficult to circumvent. Unfortunately, implementing GRAFS as a
subprogramming system results in a dependence on the security of the host language, in this case,
Modula-2. Since Modula-2 allows its type checking to be circumvented [Wir85], GRAFS type
checking can also be circumvented. However, the use of Modula-2 opaque types hides structural
information. Thus, although a language implementation may allow type circumvention via type
coercion mechanisms or variant record overlay techniques, the actual structure is kept hidden.

This is in contrast to Pascal, where type structure is always visible.

The prettyprinter can be invoked upon any node at any time, even from the debugger (dbx).
This saves the programmer the trouble of writing special data-structure printer routines that are
only used a few times and are just something else that needs to be designed, implemented,
debugged and then modified as things change. The prettyprinter provides a very readable output
and costs very little in terms of programmer effort. All that the programmer needs to do is insert

formatting directives in the original specification.
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The ability to store stfucturéd information in a file can also speed debugging. Consider the
case where a program funs in stages, each stage constructing a new structure from a previous one,
or modifying the previous one. As implementation and testing proceeds from stage to stage, the
progra‘m has to execute for longer and longer before it gets to the stage being tested. If the
structural information can be stored and recovered as required, then it is only necessary to run the
debugged portion of the program and store the resulting structures once. The progr;am section
under development need only restore those structures and run. The time required to construct
those structures from scratch on each run is saved. This save/restore process can, of course, be

done by hand but is time consuming; GRAFS provides this facility painlessly.

A last positive observation, is on the way that GRAFS affects program correctness. GRAFS
generates a parser and lexical analyzer for each grammar. Any errors in syntax will be caught.
The programmer does not ne’ed to be concerned about detecting anomalous input. Recall the
previous comments about the primary interest of the programmer being the central problem and
not the peripheral issues. Such a peripheral issue might be the user interface. Thus, the user
interface might be cobbled together on the fly, in order to get things running, and never be properly
completed. There is nothing more permanent than some temporary solutions! Also, the access
routines only allow the construction of svntactically correct structures. The application program is

thus not capable of generating a syntactically incorrect structure.

There are three problems with the current GRAFS implementation. GRAFS is incomplete;
slow, and uses too much storage. These issues are not seen as permanent and are be discussed

elsewhere,
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5.3 Evaluation

This section is concerned with the quality of the example application and the ways in which it

was influenced by. GRAFS.

The new implementation of the lexical analyzer and generator is a table interpreter and
generator. However, the data structure involved is not a simple state/character transition matrix
as was the case in the (;riginal. The reasons for this change were the storage limitations imposed
by GRAFS. The current GRAFS implementation uses a lot of storage and the storage of individual
nodes is not compact. Also there is a problem with the construction of sparse data structures.
There is currently no way to create a matrix withqut having it completely filled. A problem with
table-driven lexical analyzers is that the tables become quite large, even f;or fairly small finite
automata. Thus, in order to accommodate these problems, the data structure was modified. The

result is that access to information is not quite as fast as would be the case with a matrix.

The new implementation is- also slower than the original. There are three reasons for this.
First, as mentioned before, the data structure is a bit slower to retrieve information from. Second,
the current implementation of GRAFS is not as fast as it might be. There are several reasons for
this lack of performance. There is a considerable overhead due to type checking. Specifically, the
grammar checking mechanism is not well implemented. This is not seen as a problem, since other
techniques are available to speed this up considerably. The last reason, is that GRAFS currently
supports only one base data type; character strings. Thus, numeric data must be converted to and
from string representation every tirpe it is to be stored or manipulated. Again, this is not a
permanent situation, since we see no difficulty in extending GRAFS to support other base tyvpes,

thereby removing this conversion cost.

One limitation of that will affect application programs is the way that GRAFS uses storage.

Consider the simple record shown in Figure 18. Integers are stored in 4 bytes. Records ftelds are
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- stored more or less contiguously, so a variable of type Simple should use 16 bytes. Compare
that with the equiv'a]ent GRAFS construct shown in Figure 19 and diagrammed in Figure 20.
Thus CRAFS adds considerable storage overhead. At the moment, GRAFS uses a homogeneous
storage structure, the node. There is no particular reason while nodes have to be all the same.
Nodes could be custom built to only hold the information that is necessary for the structure that is
being represented, thus saving some storage. Also, lexical nodes could be compressed into their

parent nodes to save more storage. These changes will have to wait until a future implementation.

Simple = RECORD

int1 ¢ INTEGER;
int2 : INTEGER;
int3 : INTEGER;
int4 : INTEGER
END ;

Figure 18: A Simple Modula-2 Record.

Now that we have mentioned the bad effects of GRAFS and made some attempt at excusing
them, let us look at the positive side. It was very easy to convert and debug the original
implementation to get the new one. This was much faster than constructing the original even
considering the increased understanding of the problems and the reuse of code. The code required
considerable modification, only the main structure remained. Bugs that took some time to find in
the original came out somewhat faster with the aid of GRAFS. This was especially due to-the
availability of the prettyprinter for studies of incomplete structures. For example, the program
would occasionally get lost prior to completing the tables. The program could be halted, and the

prettyprinter called on the partially finished structure to get an idea of what was going on.

The experience of implementing the lexical analyzer twice, both times using a table driven
approach, has caused us to question the desirability of this approach. It is our intention to try a

re-implementation, at some point, using code-generation techniques, as was done in [Moss86]. In
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CONSTRUCT <Simple> IS
<intt1:Integer>
<int2:Integer>
<int3:Integer>
<int4:Integer>

LEXEME <Integer> IS #digit# { #digit# }

Figure 19: GRAFS Construct of the Figure 18 Record.

Iinteger
Simple
Integer
int1 &>
int2 —1
int3 »r—
int4 *r—
Integer
Integer

Figure 20: GRAFS. Storage for Figure 19.
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other words, insteaa of generating tables for a universal table interpreter, we would like to try
generating a customized lexical analyzer routine directly from the specification. Interestingly, if
the‘GRAFS parser generator and parser are enhanced enough to allow the GRAFS grammar to
describe Modula-2, then GRAFS could generate a Modula-2 metaprogramming system. Such a

metaprogramming system would support the code generation approach that we wish to use.

The new implementation was also an exercise in learning to ;.1se GRAFS. Even though we
had built GRAFS and understood how it worked, we still had to learn how to design structures and
specify them with a grammar. It turned out that grammar design problems were relatively easy
to recover from. That is, incorrect structural or interface choices were Jnot hard to correct.
Changes were simply a matter of changing the grammar, running the grammar through the
generator, and modifying the application program. Naturally, the severity of the modifications to
the appliéation program depended upon the severity of the structural modifications. Most of the

time, the structure modifications were minor and the program modifications were correspondingly

- minor.

Table 1: Comparison of Lines of Code in the Lexical Analyzers.

Routine GRAFS Example Analyzer
Class Internal Analyzer (using GRAFS)
_________________ e e e e e o e e o = e

RE -> NFA 308 281

NFA -> DFA 150 244

Support 304 103
Prettyprinting 188 0 (GRAFS)
Chkpt & Restore 51 (not shown) 0 (GRAFS)
Interpreter 231 310
_________________ +._.._..______-_—_—_—-_—__.._+...._._—_—.__..._—_-._—_.——
Total | 1232 | 938

One of the expected benefits of using GRAFS is a reduction in the amount of code that is
constructed manually by the programmer. This benefit manifested itself in the example program.

Table 1 shows the number of lines of code in the original (internal to GRAFS) analyzer
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- implementation and in the new (making use of GRAFS) implemenifation. The table breaks the two
implementations down into their components and shows the number of lines of code in each stage.
It should be noted that, although some support routines needed to be constructed in the new
implementation, the amount was reduced considerably. Also, prettyprinting and data structure
checkpoint/restore operations were completely pro{rided by GRAFS. The result is that the lexical
analysis programs constructed using GRAFS required approximately 24 percent fewer lines of
Modula-2 code than the lexical analysis sub-system of GRAFS. That 20 percent consisted of data
structure support routines that were provided by GRAFS. The conclusions that can be drawn from
this are limited by the inadequacy of lines-of-code as a software metric. For example, we have not
rigorously dealt with problems of the equivalence of the two implementations, and we are not
guaranteed that they have the same quality of code (assuming that we could agree on what that
means). However, given that the two implementations were done by the same person, it seems

reasonable to assume that there is some basis for comparison.

Another problem with evaluations, is that GRAFS applications can be difficult to compare
with non-GRAFS applications. Consider the protection that the type checking mechanism, or that
the parser provides complete syntax checking of input. It is unlikely that non-GRAFS applications
would be equivalent in this area. Also, consider the level of abstraction used in the application.
Programs with a lot of subroutine calls tend to run more slowly than programs with fewer
subroutines calls. Hence, a programmer who does not use abstraction techniques can probably
produce a faster program than someone who uses those techniques. However, problems may ;rise

when trying to maintain a system that was implemented without abstractions.

5.4 Results

This section contains a summary of the results obtained by using GRAFS to re-implement a

lexical analvzer generator.
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The current implementation of GRAFS is incomplete, slow, and uses too much storage.
Thus, GRAFS is not yet at the stage of being usable for production systems. However, there is no
evidence to suggest that the implementation has to remain incomplete, always be slow, or that the
current storage requirements will persist. For example, the current grammar-type checking

mechanism is clumsy and can be sped up considerably.

Many other avenues also remain to be explored. Work done by Heuring [He86], and
MossenBock TMoss86] suggests th.at the lexical analyzer can be made faster. Using a generated
code approach instead of a table-interpreter would remove the overhead of reading in and
initializing lexical analyzer data structures. Work remains to be done in the area of storage
compaction. For example, Cameron [Cam86] has used syntactic informatiqn to encode program
source code and store it more compactly. Hashing techniques can be used in the internal GRAFS
tables. The list goes on. Also, recent work by Lamb [Lamb87] on a system that has some

similarities to GRAFS indicates that such systems can approach production requirements.

We felt that using GRAFS sped prograh development. There were several ways in which
GRAFS aided in debugging and, in addition, it saved the programmer the effort of constructing the
required support routines. Also, GRAFS does enforce data abstraction. We have noted that, in
cases where the programmer is responsible for all the implementation details, abstraction may not

be used.
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CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH

This chapter summarizes the results of this research. The first part is a discussion of what

was learned about GRAFS and the second part considers the work that remains to be done.
6.1 Conclusions

The aim of this research was to consider GRAFS in terms of feasibility, applicability and
productivity. Feasibility is the question of "Can we build one?". Applicability means "What can
we do with it?". Productivity is a question of "Is it worth using?" or What do we gain by using it?".

This section addresses these questions in the light of the research that has been done.

The question of feasibility can be disposed of fairly quickly. The answer is that it is possible
to construct GRAFS. The evidence for this is that a functioning prototype was, in fact,

constructed.

Chapter 3 discussed the ways in which GRAFS could be used to describe arbitrary data
structures. The existing implementation covers a subset of the data structures available in
common programming languages. The range of base types is currently restricted to character
strings, but we strongly' conjecture that that range can be extended to cover the commonly
available base types. Simulation (or the effect) of pointers can be achieved with labelling
techniques. Thus a full data structure description capability should be achievable by this class of
system. Thus, we conclude that GRAFS will have applicability wherever complex data structures

are required. Whether it will be the method of choice remains to be seen.

In our experience, if a programmer is using abstraction techniques then the implementation
will proceed more quickly if GRAF'S is used than if not. The reasons for this are several. First,

data structure support routines are provided or generated automatically, eliminating the time
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" required to design, implement, and debug them. Second, the enhanced type checking makes it
more difficult to m.isuse data structures. Third, the availability of the prettyprinter and the
enhanéed type checking speed the debugging process. Fourth, GRAFS’ grammar-based orientation
makes it difficult (if not impossible) to create syntactically incorrect structures due to input errors

or interface misuse,

The prototype GRAFS is incomplete, slow, and uses too much storage. However, we
conjecture that these are artifacts of the prototype, and need not be the case with such a system.
Furthermore, in view of our own experiences with GRAFS we feel that systems of this class have

the potential to be extremely useful and that further research in this area is warranted.

6.2 Further Research

The model of GRAFS given in Chapter 3 coupled with the incompleteness of the current
implementation leaves room for further work. This section outlines some of the ideas for research

based on issues internal to GRAFS and those that are peripheral but closely related.

We need to expand on the associated semantics of lexical nodes. At the moment, lexical node
information can only be in the form of char_acter strings. However, there is no strong reason why
they have to be so limited and there appear to be some good reasons why they should not be. The
question then arises of what the semantics might be and how they might be specified. That is, do
we attribute base types to lexical rules or do we atter;lpt to provide a facility for inventing base

types?

Consider grammar design issues. Does the existing GRAFS grammar give sufficient
expressive power? For example, there is no explicit way to construct matrices in GRAFS notation.
The best that we can do is construct lists of lists, but there is nothing to say that all lists must be

the same length.
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Prettyprinting and formatting require further investigation. Should the grammar contain all
of the information about how to format the structures that it describes? Should there be several
different format descriptions and if so how would these tie to the original grammar? What

formatting operators are necessary (peripheral issue) and is it possible for the programmer to

define his own operators?

Several questions exist about the file system. Currently, structures exist in named entities
called files. These files exist in the context of a directory or hierarchy of directories. Could this be
handled by GRAFS as a series of hierarchical tree structures? How would we handle naming of
specific instances of GRAFS structures? What about optimizing the GRAFS save and restore

routines?

There is a major database research issue that also arises in GRAFS. How can we deal with
minor grammar changes? Grammar version 1 is changed to give version 1.1. Is it necessary to

explicitly convert or can the new grammar subsume the old one in some automatic fashion?

At the moment, GRAFS works in a single process on a single machine. What about
multi-process multi-machine versions? GRAFS itself has nothing to do with distributed computing,
however, GRAFS is a programming support tool and programmers are working in dis£ributed
environments. It therefore seems worthwhile to look at the implementation issues involved in

making GRATFS work in a distributed system.

75



APPENDIX A: THE GRAFS USER INTERFACE

This section deals with some of the details that are necessary to actually use GRAFS as
currently implemented. These details may overlap some of what has been presented in the body of

the thesis, but are presented here together to form a kind of limited user manual.

The GRAFS prototype is implemented in Modula-2 and runs on the SUN UNIX 4.2 release
3.2 operating system. The GRAFS interface consists of two parts. The first is a generator
program, gen, that takes a grammar specification and produces the grammar-specific routines
and tables. The second part is the program interface that is composed of a set of Modula-2

subroutines that are used by the user application to interface with GRAFS.

1 Generation of Grammar Routines

GRAFS is directly involved in two phases of the design process: design and implementation
of major data structures, and then application program implementation. The first of these phases‘
splits into two parts, designing and describing each major data structure, and then implementing
each. The second phase involves integrating the GRAFS interface routines into the application

program.
Once a data structure is decided upon, it must be described in a form acceptable to GRAFS. '
This is done with the notation described by the GRAFS metagrammar in the last section of this
appendix. The user writes that description into a file, called, for example, "Sample". That file is
then handed to the gen program as follows:
%gen -v Sample

The -v switch is optional, and will, if used, cause gen to produce a human readable symbol table,
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production table and parser table and direct them to stdout. These should not usually be needed,
but they are available for debugging or the curious. Regardless of the setting of ~v, gen will

produce the following grammar specific files:

Sample_GS.def -Modula-2 definition module.

Sample GS.mod -Modula-2 implementation module.
Sample ParseTree -grammar parse tree.

Sample_NodeData -other grammar data.

Sample_Tables -parser and lexical analyzer tables.
Sample.list | -input listing file plus syntax

errors, parser problems etc.

(Note: GS is an abbreviation for Grammar-Specific.)

The .list file contains a listing of the input grammar and any errors found. If
there is a syntax problem, GRAFS will tell the user what it was expecting and
approximately where the problem occured. Any problems with parser table generation
will also be included at the end of this file. Thus, after running gen, the user should

check the .list file for any problems before proceeding any further.

The grammar-specific subroutine definitions and implementation module are files
<grammarName>_GS.mod and <grammarName>_GS.def . These will need to be

compiled and linked to the user application.

The remaining three files are not of direct interest to the user. They contain
information that GRAFS will read as required to perform any grammar-specific
operations such as parsing and prettyprinting. The user need only be concerned with
these files being in the directory where the application is being used. GRAFS will find

and load them as required without further effort by the user.
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-9 Using the GRAFS Subroutine Interface

Using the GRAFS interface is quite simple. The prdgrammer need only include

the following modules:

(* data structures needed to talk to GRAFS *)
FROM DataTypes IMPORT Node, StringType ;

(* General interface routines - include what you need *)
FROM General IMPORT ParselnputFile, Prettyprint ... ;

* Grammar-specific routines ~ include each routine by
name or import the entire module and gualify each
routine name.

ROM <GrammarName> IMPORT ... ;

*
*

(
(
(
F

GRAFS structl‘xres are parse trees and are composed of Node objects. The
programmer does not have to be aware of what is in a node, but he will have to
allocate storage for them, pass them to GRAFS, and receive them from GRAFS.
StringType is the GRAFS type for handling character strings. The programmer
allocates storage of that type in the same ways as for Node. The only difference is
that StringType is really an array and therefore can not be returned by a

function, it has to be passed around as a VAR parameter.

The general interface routines that are currently available are as follows: .
DEFINITION MODULE General;
FROM DataTypes IMPORT Node, StringType ;
FROM PrettyPrinter IMPORT

(* procedure - takes a single StringType argument *)
PrettyStringProc,

(* procedure - takes a single CARDINAL argument *)
PrettySpacesProc,

(* procedure - no arguments *)
PrettyNewLineProc,
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(* procedure - takes a single Node argument *)
MonitorProc ;

(* Parser (* fileName - name of file to be parsed.

(* grammarName - name of grammar to use for parse.

(* startSymbol - name of grammar-rule to be used as parser
(* start symbol.

(* result - TRUE if parse succeeded, FALSE otherwise.

(* RETURN VALUE : root Node of constructed parse tree.
(*
PROCEDURE ParselnputFile (
fileName, grammarName, startSymbel : StringType ;
VAR result : BOOLEAN
) : Node ;

(* UnParsers *)
(* PrettyPrint - quick and dirty pretty printer. Uses default
(* formatting routines and prints to stdout.
(*
PROCEDURE PrettyPrint ( n : Node ) ;
(* UnParse - like PrettyPrint but you get to roll your own
(* formatting routines.
(*
PROCEDURE UnParse ( n : Node ;
(* string printer *)
PrettyString : PrettyStringProc ;
(* number of spaces printer *)
PrettySpaces : PrettySpacesProc ;
(* new line printer ¥*)
PrettyNewLine : PrettyNeleneProc H
(* EntryMonitor is called as the prettyprlnter

(* enters each node,

(* ExitMonitor is called as the prettyprinter
(* leaves each node.

(%

EntryMonitor, ExitMonitor : MonitorProc ) ;

(* List manipulation *)

(* NthElement - retrieves the ith child of the list x1.

(%

PROCEDURE NthElement ( i : CARDINAL ; x1 : Node ) : Node ;
(* ListLength - returns the number of children

(* in the list x.

(%

PROCEDURE ListLength ( x : Node ) : CARDINAL ;
(* AppendNodeToList - adds node to the end of list. *)
PROCEDURE AppendNodeToList ( list, node : Node ) ;
(* Generic Predicates *)

(* EmptyNodeQ - returns TRUE if the node exists,
(* FALSE otherwise.

(%
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’

PROCEDURE EmptyNodeQ ( x : Node ) : BOOLEAN ;

(* Post Processing call *)
(* PostProcessing - clean up at the end, application programs

(* should call this routine just before shutting
(* down,
(*

PROCEDURE PostProcessing () ;

(* Save/Recover Parse Tree Interface *) :
(* SaveParseTree - saves the parse tree at root n, in the
(* file, fileName.

(*

PROCEDURE SaveParseTree ( n : Node ; fileName : StringType ) ;

’

(* RecoverParseTree - reads in the file, fileName, reconstructs

(* the parse tree contained therein and returns
(* the root node to the calling routine.
(* '

PROCEDURE RecoverParseTree ( fileName : StringType ) : Node ;

’

END General.

3 The GRAFS Metagrammar

This section contains a description of the GRAFS metagrammar in terms of itself.
Thus, the following grammar defines the grammars that are acceptable syntactically, to
GRAFS.

GRAMMAR

CONSTRUCT <Grammar> IS "GRAMMAR" LB <Rules:RulelList>

LIST <RuleList> OF <Rule> SEPARATOR " " LB LB

ALTERNATE <Rule> IS <ConstructionRule> |
<AlternationRule> | <RepetitionRule> |
<LexicalRule> | <LexicalClassRule>

CONSTRUCT <ConstructionRule> IS ID "CONSTRUCT"
<Name:SimpleNonTerminal> "IS"
<ConstructionElements:ConstructionElementList>
oD

CONSTRUCT <AlternationRule> IS ID "ALTERNATE"

<Name:SimpleNonTerminal> "IS"
<Alternatives:SimpleNonTerminalList> OD
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CONSTRUCT <RepetitionRule> IS ID "LIST"
<Name:SimpleNonTerminal>
"OF" <BaseType:SimpleNonTerminal> "SEPARATOR"
<Separator:Terminal> <Formattors:DirectiveList>
oD :

CONSTRUCT <LexicalRule> IS ID "LEXEME"
<Name :GenericNonTerminal>
"IS" <Definition:RegularExpression>
[ <Delimiter:DelimiterExpression> ] OD

CONSTRUCT <DelimiterExpression> IS "L-DELIMITER"
<LDelimiter:OneCharacter>
"R-DELIMITER" <RDelimiter:OneCharacter> OD

CONSTRUCT <LexicalClassRule> IS ID "LEXICAL-CLASS"
<Name:LexicalNonTerminal> "IS"
<Members:CharacterList> OD

LIST <ConstfuctionElementList> OF
<ConstructionElement> SEPARATOR " "

ALTERNATE <ConstructionElement> IS <Terminal> |
<CompoundNonTerminal> | <OptionalPhrase> |
<Directive>

CONSTRUCT <OptionalPhrase> IS ID "["
<Head:BasicElementList>
<Body:CompoundNonTerminal>
<Tail:BasicElementList> "]" OD

LIST <BasicElementList> OF <BasicElement>
SEPARATOR " "

ALTERNATE <BasicElement> IS <Terminal> |
<Directive>

LIST <SimpleNonTerminalList> OF
<SimpleNonTerminal> SEPARATOR "|"

LIST <CharacterList> OF <OneCharacter>
SEPARATOR " "

ALTERNATE <RegularExpression> IS <Term>
<AlternationExpression>

ALTERNATE <Term> IS <Factor> |
<ConcatentationExpression>

ALTERNATE <Factor> IS <Terminal> |

<ClosureExpression> | <LexicalNonTerminal>
| <BrackettedExpression>
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CONSTRUCT <AlternationExpression> IS ID
<Operand1:Term> "|" <Operand2:RegularExpression>
OD

CONSTRUCT <ConcatenationExpression> IS ID
<Operand!:Term> <Operand2:Factor> OD

CONSTRUCT <ClosureExpression> IS ID "{"
<Operand:RegularExpression> "}" OD

CONSTRUCT <BrackettedExpression> IS ID "("
<Operand:RegularExpression> ")" OD

CONSTRUCT <CompoundNonTerminal> IS NTS "<"
<Component:Identifier> ":" <Class:Identifier>
">" TS

ALTERNATE <GenericNonTerminal> IS <SimpleNonTerminal>
| <LexicalNonTerminal> :

LIST <DirectiveList> OF <Directive> SEPARATOR " "

ALTERNATE <Directive> IS <IDRule> | <ODRule> |
<LBRule> | <TSRule> | <NTSRule>

CONSTRUCT <IDRule> IS "ID"
CONSTRUCT <ODRule> IS "OD"
CONSTRUCT <LBRule> IS "LB"
CONSTRUCT <TSRule> IS "TS"
CONSTRUCT <NTSRule> IS "NTS"

CONSTRUCT <LexicalNonTerminal> IS NTS "#"
<Identifier:Identifier> "#" TS

CONSTRUCT <SimpleNonTerminal> IS NTS "<"
<Identifier:Identifier> ">" TS

ALTERNATE <Terminal> IS <OneCharacter> |
<CharacterString> '

LEXEME <OneCharacter> IS
( #Character# | #Delimiter# )
.L-DELIMITER "\""
R-DELIMITER "\""
LEXEME <Identifier> IS #Letter¥ { #Letter# | #Digit# }

LEXEME <CharacterString> IS #Character# #Character#
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{ #Character# }
L-DELIMITER "\"" R-DELIMITER "\""

LEXEME #Letter# IS #UppercaseLetter# |
#LowercaseLetter#

LEXICAL-CLASS #UppercaseLetter4 IS "A" "B" "C" "D"
"E" "F" G" "H" "I" "J" "K" "'L" "M" "N" "O" "P"
"Q" "R" "S" "T" "U" "V" w" "X" "Y" " Z"

LEXICAL-CLASS #LowercaselLetter$ IS "a" "b" "¢" "a"
"e" "f" "g" "h" "i" "j" "k" "1" "m" "n" "o" "p"
ﬂq"' ” r" "S" ﬂt ” "u" "V" "w" "x " "y" "z ”

LEXICAL-CLASS #Digit# IS "Q" "{" "2m nw3nm ngn wgw
"6" "'7" "8" "9"

LEXICAL_CLASS #Special# IS "." "," "!" "@" "#" "$"

"%n nAn "&n wan
"(n ")n w,n ":" "oonow_n "l","+" n_on "[n. n]n '7\\"

vv/n n{n "i" -

"<" ">" "?" n~n " ” nwn

LEXICAL"CLASS #Character# IS "A" "B" "C" n"p" "E" "pnw "G "H"
wyMw onmgn mpe uwpn "M" TN" "Q" "p" "Q" wRM ngn nmn gnory"
"N mx" nyn ngn
" whpn nen ngn wan ngn ngn Th" "in vvj" Mpn o wynw npwe
TRt "on npn- nqn NpEW NMgh MEn g nGw mean wen "yn non
nQY wgn non n3n mam omgn nmgn ngn ngn ngn
" .'" " , "omym nan n#" "$" n%" Nan wan nen o w ( "

n)" nT,w ", 0 w w n_n win N nw n_mn "[" "]" n\\n

" / ” '" % ” " i ” "z" ” > ” non n~n ” ” new

LEXICAL-CLASS #Delimiter# IS "\""
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APPENDIX B: EXAMPLE LEXICAL ANALYZER GRAMMARS AND GRAMMAR

INTERFACES

This appendix contains the grammars, grammar-specific interface routines and
main source code for the GRAFS lexical analysis package implementation as well as
the source code for the GRAFS lexical analysis sub-system (the one internal to

GRAFS).

Sections 1 and 2 contain the regular expression grammar and its interface.
Sections 3 and 4 contain the finite automata grammar and its interface. Section 5
contains the lexical generator source code for both implementations. it is organized in a
side-by-side manner, sideways on the page (to get a reasonable code width), with the
old implementation on the left side and the new one on the right. Section 6 contains
the lexical analyzer source code for both implementations. As with Section 5, the two
implementations are laid side-by-side with the old implementation on the left and the
new one on the right. We have made some attempt to align corresponding sections of

the code to ease comparison.

1 Regular Expression Grammar

This grammar describes a structure for regular expressions.
GRAMMAR
CONSTRUCT <REInput> IS <REList:REList> <SubREList:SubREList>
LIST <REList> OF <REDefinition> SEPARATOR " " LB LB
LIST <SubREList> OF <SubREDefinition> SEPARATOR " " LB LB

CONSTRUCT <REDefinition> IS "DEFINITION" <Name:Identifier>
"IS"™ ID <Definition:RE> OD

ALTERNATE <SubREDefinition> IS <SubDefinition> |
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<ClassDefinition>

CONSTRUCT <SubDefinition> IS "SUB-DEFINITION"
<Name:Identifier> "IS" ID <Definition:RE> OD

CONSTRUCT <ClassDefinition> IS "CLASS-DEFINITION"
<Name:Identifier> "IS" ID <Definition:CharacterList> OD

LIST <CharacterList> OF <Terminal> SEPARATOR " "
ALTERNATE <RE> IS <Term> | <AlternationExpression>
ALTERNATE <Term> IS <Factor> | <ConcatenationExpression>

ALTERNATE <Factor> IS <Terminhal> | <ClosureExpression> |
<LexicalNonTerminal> | <BrackettedExpression> ‘

CONSTRUCT <AlternationExpression> IS <Operandl:Term> "|"
<Operand2:RE>

CONSTRUCT <ConcatenationExpreséion> 1S <Operandi:Term>
<Operand2:Factor>

CONSTRUCT <ClosureExpression> IS "{" <Operand:RE> "}"
CONSTRUCT <BrackettedExpression> IS "(" <Operand:RE> ")"

CONSTRUCT <LexicalNonTerminal> IS "#" <Identifier:Identifier>
"#"

LEXEME <Terminal> IS { #Character# }
L-DELIMITER "\"" R~-DELIMITER "\""

LEXEME <Identifier> IS #Letter$ { #Letter# | #Digit# }
LEXEME #Letter# IS #UppercaselLetter$4 | #LowercaseLetter#
LEXICAL~CLASS #UppergaseLetter# IS "A" "B" "C" "D" "E" "F"
"G" "H" "I ” "J" "K" "L" "M" "N" "o" "P" "Q"
"R" "S" "T" "U" "V" "W" "X" "Y" "Z"
LEXICAL-CLASS #LowercaseLetter$# IS "a" "b" "¢c" "d" "e" "f"
L g" "h" ” i ” L1 j ” " k ” " l " "m" L n ” "o" "p"

"q" "r" ” S" "t" "u" "V" "w" "x" "Y" "z ”

LEXICAL_CLASS #Digit# IS "0" "1 " "2" "3" "4" "5" "6" "7"

"8" ngn

LEXICAL"CLASS #Spec1al# 18 n.u n,n "!u nw u#w "S" vv%n n-on
n)" vv;n n:" n-n non o nwin o nan n_mn n[n n]" n\\n "/n n{" n}n
"t n(n vv&n LU LB TR | N U ] n?n nen n>n

LEXICAL-CLASS #Character4 IS "aA" "B"-"C" "D" "E" "F"
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ng"
ngn
LR
"m"
non
vv)n

n}n

nyn wyw
npw wgn
npt nen
npnoNen
nyn won
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":n ":n
nén n-}n

"'K"

"Jﬂ "L"
"V" "w" "X"
"d" "e" "f"
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2 Regular Expression Support Routines

The

preceding regular expression grammar.

following Modula-2 definition

"M"
nyn
[ 1}
e
nen

% " ”

"N"
” z "
"h"

u
ngn

~n

"

"&"

o" "pv nQn
in wan k"
v oMyt Ty
8" ngn

Mg "(n

” R"

”" l"
"Y"

"z "

nyn w_mn "[" n]" w\\" n/" n{n

non

file

DEFINITION MODULE REGrammar_GS ;

FROM DataTypes IMPORT Node, StringType

CONST (* Node Codes *)

Terminal = 1000 ;
Identifier = 1001 ;
REInput = 5000 ;

REList = 5001
SubREList = 5002
REDefinition = 5003
SubREDefinition = 5004 ;
SubDefinition = 5005 ;
ClassDefinition = 5006 ;
CharacterList = 5007 :
RE = 5008 ;

Term = 5009 ;

Factor = 5010 ;

AlternationExpression
ConcatenationExpression
ClosureExpression
BrackettedExpression
LexicalNonTerminal

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

’

5013

5015

5011 ;

5012

’

5014 ;

MakeREInput ( x1, x2

MakeREList () :

MakeSubREList () :
MakeREDefinition ( x1, x2
MakeSubDefinition ( x1, x2

Node ;

Node

was

[
14

automatically

.
14

MakeClassDefinition ( x1, x2 : Node )
MakeCharacterList () :

MakeAlternationExpression ( x1, x2 :
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Node ) Node ;
: Node ) : Node ;
: Node ;
Node ;
Node ) : Node
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PROCEDURE MakeConcatenationExpression ( x1, x2 : Node )
Node ; :
PROCEDURE MakeClosureExpression ( x1 : Node ) : Node ;
PROCEDURE MakeBrackettedExpression ( x1 : Node ) : Node ;
PROCEDURE MakeLexicalNonTerminal ( x1 : Node ) : Node ;
PROCEDURE MakeTerminal ( x1 : StringType ) Node ;
PROCEDURE MakelIdentifier ( x1 : StringType : Node ;
PROCEDURE REInputQ ( x1 : Node ) : BOOLEAN
PROCEDURE REListQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE SubREListQ ( x1 : Node ) : BOOLEAN :
PROCEDURE REDefinitionQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE SubREDefinitionQ ( x1 : Node ) : BOOLEAN
PROCEDURE SubDefinitionQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE ClassDefinitionQ ( x1 : Node ) : BOOLEAN
PROCEDURE CharacterListQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE REQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE TermQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE FactorQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE AlternationExpressionQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE ConcatenationExpressionQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE ClosureExpressionQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE BrackettedExpressionQ ( x1 : Node ) : BOOLEAN
PROCEDURE LexicalNonTerminalQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE TerminalQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE IdentifierQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE REListOf ( x1 : Node ) : Node ;
PROCEDURE SubREListOf ( x1 : Node ) : Node ;
PROCEDURE NameOf ( x1 : Node ) : Node ;
PROCEDURE DefinitionOf ( x1 : Node ) : Node
PROCEDURE Operand10f ( x1 ': Node ) : Node ;
PROCEDURE Operand20f ( x1 : Node ) : Node
PROCEDURE OperandOf ( x1 : Node ) : Node ;
PROCEDURE IdentifierOf ( x1 : Node ) : Node
PROCEDURE RetrieveTerminalOf ( x1 : Node ;
VAR str : StringType ) ;
PROCEDURE RetrieveldentifierOf ( x1 : Node ;
VAR str : StringType ) ; '

e e o0

4

4

.
’

~e

~e

~e

END REGrammar_GS .

3 Finite Automaton Grammar

This grammar describes a structure for finite automaton; both deterministic
non-deterministic.
GRAMMAR

CONSTRUCT <FA> IS <StateList:StateList>
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LIST <StateList> OF <State> SEPARATOR " " LB LB

CONSTRUCT <State> IS "STATE" <Number :Number> ID LB

"TRANSITIONS" <Transitions:TransitionList> LB
"DEFAULT" <Default:Default> LB
"TYPE" <Type:Type> OD

LIST <TransitionList> OF <Transition> SEPARATOR " " LB

CONSTRUCT <Default> IS
"NEXT_STATE" <NextState:Number>

CONSTRUCT <Transition> IS
"CHARACTER" <CharacterList:CharacterList>
"NEXT_STATE" <NextState:Number>
ALTERNATE <Type> IS <Accept> | <Reject>
CONSTRUCT <Accept> IS "ACCEPT" <Output:Number>
CONSTRUCT <Reject> IS "REJECT"
LIST <CharacterList> OF <Character> SEPARATOR "

ALTERNATE <Character> IS <NonPrintingCharacter>
<PrintingCharacter>

ALTERNATE <NonPrintingCharacter> IS <epsilon> | <eoln> |

<eof>
CONSTRUCT <epsilon> IS "EPSILON"
CONSTRUCT <eoln> IS "EOLN"
CONSTRUCT <eof> IS "EOF"
LEXEME <Number> IS #Digit# { #Digit# }
LEXEME <PrintingCharacter> IS #CharacterSet#

LEXICAL_CLASS #Digit# IS "1" "2" "3" "4" "5" "6"
"9" "0"

LEXICAL-CLASS #CharacterSet# IS "A" "B" "C" "D"
"H“ "I“ “J“ “K“ “L" "M“ "N“ “O" "P" "Q" "R"
Hvﬂ ﬂwll "X" " Y " ” Z ” ‘
"a ” " b" "C ” "d ” "e " ” f " " g " "h" ” i " ” j " ” k ”
"o" "p" "q" “r" "S" "t" "u" "v" "w" "x“ "Y"

non LR nzn vv3vv n4n "5" "6" ngn "8" 9n

n.vv n’n vv!n nn n#" vvsvv vv%n nAan "&n ")" vv;n "
"-vv n_w n | "ownw nw_mn vv[ "o on ] " n\\vv "/n L { "on } "
" ? LU LI L (R (R B ] ? "n o nwgEen N ( "nonen n> "
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4 Finite Automaton Support Routines

-The following Modula-2 definitions were generated from the preceding finite
automaton grammar.
DEFINITION MODULE FAGrammar_GS ;
FROM DataTypes IMPORT Node, StringType ;

CONST (* Node Codes *)
Number = 1000 ;
PrintingCharacter = 1001 ;

FA = 5000 ;
StateList = 5001 ;
State = 5002 ;
TransitionList
Default = 5004
Transition = 50
Type = 5006 ;
Accept = 5007
Reject = 5008
CharacterList
Character = 5010
NonPrintingCharacter
epsilon = 5012 ;
eoln = 5013 ;

eof = 5014 ;

O~ i

5 ;

H ~e ~e

5009 ;

~ O

5011

PROCEDURE MakeFA ( x1 : Node ) : Node ;
PROCEDURE MakeStateList () : Node :

PROCEDURE MakeState ( x1, x2, x3, x4 : Node ) : Node ;
PROCEDURE MakeTransitionList () : Node ;

PROCEDURE MakeDefault ( x1 : Node ) : Node
PROCEDURE MakeTransition ( x1, x2 : Node )
PROCEDURE MakeAccept ( x1 : Node ) : Node ;
PROCEDURE MakeReject ( ) : Node ;

PROCEDURE MakeCharacterList () : Node ;
PROCEDURE Makeepsilon ( ) : Node
PROCEDURE Makeeoln ( ) : Node ;
PROCEDURE Makeeof ( ) : Node ;

PROCEDURE MakeNumber ( x1 : StringType ) : Node ;
PROCEDURE MakePrintingCharacter ( x1 : StringType ) : Node ;
PROCEDURE FAQ ( x1 : Node ) : BOOLEAN ;

PROCEDURE StateListQ ( x1 : Node ) : BOOLEAN ;

PROCEDURE StateQ ( x1 : Node ) : BOOLEAN :

4

.
14
.
.

Node ;

.
4
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. PROCEDURE NextStateOf ( x1 : Node ) : Node ;

PROCEDURE TransitionListQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE DefaultQ ( xt : Node ) : BOOLEAN ;
PROCEDURE TransitionQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE TypeQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE AcceptQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE RejectQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE CharacterListQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE CharacterQ ( x1 : Node ) : BOOLEAN ;

PROCEDURE NonPrintingCharacterQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE epsilonQ ( x1 : Node ) : BOOLEAN ;

PROCEDURE eolnQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE eofQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE NumberQ ( x1 : Node ) : BOOLEAN ;
PROCEDURE PrintingCharacterQ ( x1 : Node )
PROCEDURE StateListOf ( x1 : Node ) : Node
PROCEDURE NumberOf ( x1 : Node ) : Node ;
PROCEDURE TransitionsOf ( x1 : Node ) : Node
PROCEDURE DefaultOf ( x1 : Node ) : Node ;
PROCEDURE TypeOf ( x1 : Node ) : Node ;

BOOLEAN ;

~-e oo

~e

’

PROCEDURE CharacterListOf ( x1 : Node ) : Node ;

PROCEDURE OutputOf ( x1 : Node ) : Node ;

PROCEDURE RetrieveNumberOf ( x1 : Node ;
VAR str : StringType ) ;

PROCEDURE RetrievePrintingCharacterOf ( x1 : Node ;
VAR str : StringType ) ;

END FAGrammar_GS .

90



‘U0 SSaJdXIBUNSO [ JANeW ‘UOLSSaJIdXJUOL JRUSIEOUO DD RN
*UOL}LUL JBQSSe | D9dfew ‘UuO0LSS3JUAdXIUOLIeuud]) | Yarnen
‘UOE UL IBQANSONEBY "UOL 3 tUL 3BJIYINEN
‘isti3yansanen .am_qumwxmzl.wnacmumwxmz
LYOdWI SO Jewweus3y WOdH
3 INesagadie * J04310rvaey)bul jul udgdAd L UIDY
*3042qUNNDOADLUIBY *J031BISIXSN ‘303INdINQ
‘303S19830RIEBYD ‘y0ddAL ‘jQsSuotiisued) ‘40J43QUNN
‘3Q3stiaiers ‘pdeidoedeyrbutriutlid ‘0J8QuUNN ‘030D
‘pulo3 ‘puo|tsds ‘pua1oBJBYIBULIULUJUON ‘DHudirdedey)
‘030alay ‘0rdadsoy *padA) ‘Ouoliisued] ‘OIStIUOL}LtSuUBU]
‘091e1S ‘03IStI8IRIS ‘OVd4 ‘du9iromaeydbuiiuradaen
SfJ9qunNael ‘31SLJ310BJIRYDINEW ' J0999EBW ‘u|Oo33en
‘uo| tsdaaep ‘i1oafayarew ‘i1dadoyaxnen ‘uotlisued)adnen
‘1S1UOLIISUBY OB ‘93B1ISINe ‘ISLI93eISaNeN ‘vidnenw
LYOdWI SO Jewwednyd wWodd
199419S4edJIdA0D3Y

‘8aJd)9sdedanes ‘03poNArdwl ‘3siio)aponpuaddy ‘yjzbusist

‘IUBWA L IYIN ‘Bsduedun ‘IuLtuadAriadd ‘"atdindulasaed
LY0dWI (eJd3uad Wodd
1 3X8ON
*3SJtd ‘931B1S18S9944 ‘93EISIBSANEN "931e1SIDS ‘0IasArdui]
‘39S3uUlud *313SJea ) ‘uotun ‘0S1IdSBOLIUIPL 'OXNJIIqWINW
'319SWOJ 491330 ‘138SULHJI8IU] ‘1859944 ‘1dSoNen ‘i8S
LJOdWI 3LNPOoWIasS WOod4
Hte)-DE-T- N |
‘yoeisaew ‘OArdwirionyoeis ‘dodxnoeirs ‘ysndrnoeirs ‘xnoeis
L130dWI 3LNPOWNOBIS WOH4
tdiSoipJde) ‘pJedofdiS LJ0dNI 3148AUO0D WOAHS
£34vY0011V3A °C3ILVI0T1TV LAHOIWI 86edors Woad
t3eouo0) ‘ubBissy ‘yibua ‘3 insayeodedwo) ‘asuaedwo)
130dWI Butairs WOod4
tiuawnbBuyian ‘siuswnbBUYIOON ‘3 INSAYLN
180dWI weaedxiun Wodd
‘pJeddYEdM ‘uBItum ‘BurJISeI UM LHO0dWI INOUI WOdd
tadAgBuiJ1S ‘SPON LH0dWI sadAiereq Wodd
140dd3 LHOIWI @ LNPOWJOoJIJI WOHS

tSlOoqQWAS 'uolewolnyian
*JBQWNNUOIRWOINYISE 19D ' JUBQWNNUOIBRWOINYISU S 4339
"BULUISUSNO118H *UBQUNNUBNO1ISET]IdH
‘JBqUINNUS®013ISJUL 4339 ‘uolewolrnyanSpul 4 ‘J0yy3
LY0dWI sloquASiewwedD) WONS
' 3XBN
‘3ISJl4 "231e3151858844 "931RITIASARN "931eISIaS ‘0I8SArdw3l
‘318S3uUlud 38SJE8{) ‘uotun '0SIBS|EOLIUSPI OXJBqUSKW
‘1BSWOU DI D] 'IBSULNHJIBIUI '1BS33U4 '13SANRW ‘19§
LI0dWI 3{NPOWIBS WON4
[ Fe1-3 XN
“oeisaew "0Ardwizonoeys “dodideiS "ysng)oeis ‘xnoels
L30dWI 3LNPOW@NoelS WAd4
. 1J0UJT LYOdWI D@LNPOWJOoUJ3 WONAS
t}nsayadJdedwo) ‘auedwo) 'yibusa 1YO4dWI Ourdis wodd
40493 1uwt 180N
‘40423 1wW 19QY 4043 ILWL|DQ ‘OleUlwJdUQNEBOLI X3
‘OUOLESSAIAXTIBINSOLD 'QuoLssSaJddxipallraxoedyg
‘OUOLSSaUdXJUOL FBUDIROUO)D ‘DUOLSSaUdX3uoLIeuddl |y
* jogpuedaadp ‘jopuedaddp *J0LPueaadQ
*30403eaedas ‘30431 3J13UBP] “JOUOLILUL 4BQ *J0SJIOquWaN
‘0@ NYLeDL X3 ‘0DdINYSse|D1edLtxd] ‘pleutlwddjuoNa|duts
‘Oleulwud) ‘JoBWeN ' JO0SIUBWI|LJUOLIONJIISUO) ‘DudL 4L3udp]
*OButulSJUaIorURYD "DdJD}OBURYDBUQ ‘J0JDL JLIUDPIBABLJIIDY
*306urLu3saadeuRYDBABLULDY ' J04B1IOBIBYDBUDDADL UIDY
LY0dWI SO v13IW Wodd
10A3dwl (HOAWI SOt JdudH WO
19| NYIDH ‘ 30SIUBUOdWOD JoUdqUNN " MIuduodwo)DIadn ‘ssedIap
. LA0dWI 3| NPOWSsJL3sded WOdS
1SSe | 09PON ‘SpoN ‘adAiButuls 13OdWI sadAtereq wodd
131v0011v3A '3ILVO01IV LAO0dWI 3beuolrs wodd
tauoQ ‘peay "pueddridm "BULUISIILUM 'UTBILUM T3 LUM
130dWI ¥NOUI WOd4

91

‘weaboudxal INAOW tuaHxa87 ITNAOW NOILVINININIWI

“3yBra 3yy uo st {S4vyo Bulsn) auo mau Byl pue 3343| Byl uo

S1 UOISJSA PO 8yl °'SJ403euduab (BD1x3| 8y} 40 SUOLISJUBA M3BU pue PO 3843 Ylog JOjJ SPOD 30J4NOS 38U} SULBIUOD UOL3IDAS SiYY

uostdeduo) J0l}eJddudy |BOLtXx31 §



N3HL Lenba = (J3iSaweu ‘ujis)adedwo) 4] ¢ SYVHOXVW =1 Sdeydxew 3
t(Jd1SaweU C((1SL89Y¥aNs ‘1 )1uswd | IYIN) J0SWeN) 'SYVHOLYVLS =: sdeydiydeis’ 3}
J0UDL JLIUDPIBABLULDY t{)aiqejuotrioyanen =: w—n_m._.co—yom.(v
04 (3st7123ans)yibualist] oL L = ! y0Od ‘()8lgeivaeden =i 3|qelaieis’ 3
NID3g L (PuODBYySd | gl J49ZA|RUY ROt XDT)3ZIS y.mh<0044<

NID3g

tadAjBuLuls ¢ Jl3Saweu YyA
s |gelJds8ZAleuy | BOLIL X3 1 )} YVA

! 3poN
(9PON : 3Istayans :adAjBuiruis @ Jd3s AVA Y rsajqeJdazAleuy|BOLX37 ¢ ()
uojewolnygnsSput 4 33NA300dd Sa|qelJdzA|euy | @Dt X379 33NQ3IJ0Yd
*aN3
JVNIQavD @ sSajejrSxeuw
PAVNIQYEYD © saeydxew
PTYNIQHVYD : sJdeydiders
:9|1gejuolidy : a|gejuotioe
‘a|gelvq - 9|qelareys
ay0d23y
= pJoDdaYsSI|geJdZieuy el x37]
!pJ0od3ysa|qedazieuy | edtxa] 01 J3ILINIOM
CIYNIQAEVYD ¢ J2qUNNUSX0)} * JBquNND3 el s = sa|gelJddzA|euy|edL X3
. PIYNTQYVYD i ud7astad CAN3 xtalepdieisSdey) | xitdlew Jy0d3y = PJI0I3Y3|geLuocltidy
9PON : 1S1718¥aANns ‘ista4u ‘ad ‘sadJu ‘ey ‘vdip 'PJ40O9Yy3 | qRLUOLIDY 0L ¥ILNIOd = 3|QeLuotidy
‘NV31008 : Aejo TANY xtdlepa@ieiSdey) [ xtdalrew Q¥0I3y = pPJodIYA|geivq
t}INS9Yy . }INnsad ‘pJod3Yya|gelva 0L ¥3INIOd = @lqgeLva
131nsaydn : i Insaydn TON3 Xtdleniasalelsdey) - o xtitdlew Q¥023Y¥ = PJOOIYI | qeLvaN
tadABuyduls @ J3Sdouue _ PJ008Y3 | gRLVAN 0L J3ILNIOd = ©19eLVAN
‘sweNa(ty ‘sweu ‘Gue ‘sweNdewweul ‘uis ‘uis|ley 1385 40 [S3ILVLIS XYW "+ ] " [SAVHOXVIW "SHVHOLIVLIS] AviAV
TIVYNIQYVD b+ ‘obue = XitJdlewilasaiyeirsdeyn
VA _ PTYNTQYVD
40 [S3ILVLIS XVW "+ ] “[SYVHOXVIN “SAVHILAVLIS] Avidv
P (LONYLSNOD *dILS) = Spow :(JoJdJda °*»0) = 3} NS3ay 3IdAl = XtdJdlewdireirsdeyd
P (LONYLSNOD °d3LS) = BPOW
(., .)Qd0 = SAUYHIXVW t(douud " 1e4 "x0) = }|Nnsay
(. ,)QU0 = SAUVHILAYVILS IdAl
‘0001 = S3ILVLIS XVW _
T = 3LVIS 1AVLS t0ZZ = S3LVIS XVUW
o= 1vd C(SYYHOXVW)IYHD = NOTISd3
‘0 = d0yd3 b+ (., ,)A¥0 = SYVHOXVW
1SNGD 0, . )QU0 = SAYVHOLYVILS

1SNGD
tQuotL}tuL yagsse|d ‘0uotiiulyaqagns ‘J0udt JL1IUBPIBADLULBY
‘30lBULWUB BABLULBY ‘3041 JLIUBPT ‘Jjopuedaddg ‘j0ZpuURJIBdO
‘Jorpueaadg ‘j0uolltulyag ‘jodweN ‘J03St13YANS
“303S1138 ‘OJ213LIUBPI ‘OlBULWUB] ‘OLBUIWJ3IUON| BDL X3
‘Quoissaudxipaliandoeug ‘Ouorssaudxjaunso|)d
cco,mmwgnxmco.amcwamucou *OuotLssaudx3juot jeudal | v
‘Quoldoeyd ‘QwWJad]l ‘03Y “QuUOLILULIBQIYAGNS ‘QuOLILuL JBQ3TY
*03S1133aNnS 031st13y “oInduily Cleutwuldlaxen
‘leUlWJd JUON | BDL X3 Ta%eW. 'uolSsaddx3ipalladeugarey

92



18PON : ISETUD YVA

P(IVYNIQAvD | ®1e31S0} ‘sjeisSwouy
'8poON : ey)
aAopuo | tsd3 33NA3D00dd

!831e3sSppy aN3
. *QN3
((()roalayarnen
*((43S1red)daqunNaren) I N sagaxnen
‘()3Istuorltsued)ayen
' (49gQUNNB1 e} S )9PONJBqUNNDI U] )
ajejsarnen
‘(e3j)J03stiareys)
1St 70 1apoNpuaddy
3513
L (93ISUan0Y ) JaqunNaXey )1daddyaney -
*((43SLLes)JaquUnNaeN )Y LNeIagaNen
‘()3siquoryisuedjanen
' (J9QWNNB1IELS )IPONIBQUNNEICdJ)D)
areisarnen
‘(es)301s11831€318%)
1St 10 18poNpuaddy
N3HL LONYLSNOD = apow JI
NI938
t(dpow @ opow :odAiBuials : Ju3Suaxo}
PIYNIQYYD @ J42qunNai1els 18pON : e3)
23ei1sppy 3AN0300dd

! SPONJBQWNN23IEe3J4D gN3
Y (43S) JaqunNedeWw ) Niangi3d
*ON3
{4 JOJUD UOLSUDAUOD :DPONJDQUNNDIBDUD, )U0Ju]
N3aHL Aexo I1ON 31
t(Aexo 'O ‘J4is ‘usqunnNalels)disojpue)
NI93g

: Nv3l008 @ Aexo
T adAButuls : J1S YVYA

: @PON
( JYNIQYYD : Jequnu ) SPONJRQUNN33I®3JD J¥NAQID0Ad

ruojewoinygqnsSput 3 aGN3
S((TIN)SPON) NiaNigL3y
*ON3
*ON3
L((3st123ans ‘'t )Iu2wd 1 IUIN) NaNL3d

s 30sJeydxewias dnN3
1D =: sdeydxew" 3}
NID38

t(sa|geliaszAleuy Dot xa3] : 3} :YNIQYVD : 2)

PIVYNIGYVD

J0SJeYDXEWIBS 3IYNAID0Ud

:jos4eydxenw ON3
tgsJeydxew 3}) Nini3d
NI93g

(sa|qgefaazAeuyedtxal] : })
j0sdeydxenw 33NA300Ad

:40SJ4eyDIJeISIasS anN3
10 =! sdeydlIJders’ 3}
NI938

t(sa|qefudzAleuyeOLtxa] : 3 :JYyNIQYVD : D) -

TIYNIQAVD

ta(geluol oy

‘@1qelvd

j0sJeydiJelsias 33yNa3idoAd

tj0sdaeydiqelrs gn3
gsdyeyjnideis- 1) NianiL3dy
NI938

(sa|gejudzA|euy|edtXxa] : })
j0sdJeyniIdgels Jy¥NAQ3Id0dd

1 j3091Qe (U0t 1oy AGN3
!(a|gejuotioe’ 1) NinL3y
NI©3g

(sa|qelduazAleuy|edLxal  })
J0@9eLuoL 3oy JJNGIo0Ad

‘j0@|9ey1sers aN3
‘(@1qelaieis” 3}) NiniLd
NI938

(sa|gejaazAieuyledtxal : })
jo@19eL@i1els IANAID0Ud

1S8 | Qe J4dzZA |euy (DL X313eW aN3I
_ $(3) N3NL3y
S3LVIS XVW =i s3ajeiSxew’ 3

93



‘1st19yans
‘{ad4)i0Lpueaadg
ey
*d3lLs)
Juojrewoinyp|tng
=! }|lNsadJ
(» Suotissauadxagns yioq yojew .)
N3IHL (®4)puolssaudxjuotieuaredsuod 41

Pl + 91ERISMBNIXOU =: B91}EBISMANIXSU
{31RISMBNIXBU = 91BISIUSIUND
1(93BISMONIXSU ‘J1VIST LYVIS ‘e3) DAOWuO|Lsd]
'(d3LS ‘uae 'DICISMANIXBU ‘B3) 331BISPPY

taN3

S{w 0443 UOLISUBAUOD uOlRWOINYP|ING, )I0dd]

N3HL Aexo JoN 41
f(Aen0o ‘0 ‘JISu90} ‘JUdgqUNNUBXN0Y )JISOoLpJeD

134VLST LAVLS =: 23e3SIusaund

P10NYLSNOD =: apow

t(UOL3IIUL JOdaU)J0UOLILULSDQ =: B4
NI93g

*NV3II008 : Aexo

tadA1butuis J3SI0UUd ‘dISUdY0} ‘d3s ‘dulSalels
‘apoyw : apow
tSpoON @ 3StIYd ‘8a
TIYNIQEYD
L1 INsay }LNSady

PIYNIQYVD
8)L}1SIXdU *9ILISIAES ‘BleISIUIJJINIISE| ‘BIeISIUBUUIND

VA
‘3Insay (TVYNIQYVD : 23BISM3INIXBU YVA

SIYNIQAVYD JagQWNNUa®0}
{DPON : 31S1793aNS ‘uotIilul }aJed ‘ey)
uoljewolnyp|tnNg 33NAI00Ad

t9A0OWuOo| L sd3 aN3
1(((®3121503)9PONJIBGUNNBIEAUD ‘ISt YD)
uotlisuedaney
*(((e4)3035171931L€1S *312ISWOUS)IUSWSL IYIN}
JOsuol}Lsued))
1s110139poNpuaddy
t(()uolssdaaxen ‘3s1IU2)istI0L1apoNpuaddy
NI93g

‘21e1SMENI xaU
*SUOL1IOVVYQAN
'YAN
A3 qUWNNU® X0}
‘(uojewolne) i pueuadp
‘d3Ls)
Juolewolnyp|lng
= }|Nsaq
(+» SuUOLlssaudxagns Yyloq ydlew ,)
NIH1 (udlewoine )PuotLssaddxjuot jeualeduond 41
th + 9IBISMONIXADU =: 91E}SMAONIXSU
!DIRISMBNIXBU =: BIRIFIUBJIJIND
1(@31e1ISMBNIXAU '31e3S3IUdaJdND "NOTISd3 'VAN)
19S91B1ISVANIXBNIaS
13LVLS 1¥VIS =: @3IeISIuadund
CLONYLSNOD =: 3apouw
S{OLNA)SOUOLILUL IBG = uUOlBWOINE
NI93g

13895 : 319S831E1SIXaU
tadA1BuLals : uis
. ‘8pOKW ": apouw
‘9pPON : uojewolne ‘Jajiwl|8Q4 ‘JS3twy 3AL ‘J231wy 8P
TIYNIQEvD ¢ 0 .@
ti1nsay 1 Nsay
TIVNIQYVO
91e1S1IX3U ‘"8je1SdAes ‘8jelgiuadun)ise| ‘831eisiusdaund
JVA
131nsS8y : (TVYNIQYVD : BIBRISMBNIXBU YVA
‘3|Qqeluol oy SUOL 1DVVAN
‘aiQeLyaN - vanN
TIVNIQYVO JaqUNNU®X30}
SBPON : BLNn4a)
uojewolinyp|tng J3NAI00Ad

*340S231e1SXeWIaS aN3
!5 =: sajeisxew’ 3
NIO389

t(salgeudzZAjeuy|BOIX3] : } SJYNIQYVD @ D)
J0s31e1SXEWIaS IYNA3II0Yd

*40s331eISxenN anN3l
t(sayeisxew’ 1) NiyNLIY
NI938

PIVNIQYVD .mw_DmthN>_mC<-mU_wa )

40S33123ISXeW 3IJNAID0dd

94



‘1St 1ayqns *apouw )

*(84)s0puraadg ’ Juorewoinyp(tng
‘ey = 3}|NSaJ
‘apow) 191elSIuduaunNd =: 39leriSaAnes
Juolrewolinyp|l tng N3HL (uolrewolne)puortssaddxijaunsod 415713
=: 3}|Nnsad aN3
193135 3IUBUIUND = D)rISIAAES D{J9qUNNUE8X0)} "831v31SiIudddnd ‘NDIISdI ‘SUOLIDYYAON)
N3IHL (34)0uoissaudx3iadnspid 41S13 uo13}0V3as
L 4+ 93BISMANIXBU =: 3}e)}ISMANIXAU N3HL 10NY¥1SNOD = apow 4I
!91RISMANIXBU =: B83IE}SIUBIUIND 1L+ 9)BISMONIXBU = BILISMBNIXDU
1(331EISMINIXIU '931BISIUBIUND ‘BY) BAOWUO|(isd] t93BISMONIXBU =: 8IBISIUIIIND
1(@31BISMBNIXBU ‘31EISIUBIUNDISEe| ‘BJ) dAOWUO|tsd] 1(®1RISMBNIXBU "83IBISIUBIUND "NOTISdI ‘VAN)
t(3pow ‘J3Sudi0)} ‘BIRISMINIXBU ‘BjY) 331°ISPPYV 195931 21SVYONIX3N3ISS
*ON3 1(931e3SMaNIxau "alelsiuaddn)dise| "NOTIS4d3I CVAN)
t{@3e1s53ud.44nd 19539115 VQONI X3N1aS
‘931e3ISMBNIXBU *aON3
*43ISUd0]) t(@31e353Uddund
‘3stLsyans ‘93)el)SMONI xau
*(@4)30gpuedadg *SUOLIDVVAN
‘ey : *VON
‘3pow) * JOQUNNUBYO0}
JuolewdlInyp( tng *(uojewolne ) jgzpuedadg -
. =: }LNnsau4 ‘apouw)
i3j1e188Aes =: 8)BISIUBIUIND Juojlewolrnyping
NIHL MO = ¥ |nsau 4] =! 3}|1NsSad4
t91BISIUSIUND = B3eISIUBUUNDISE| i93e)sSaAesS = 3ielSiIusddauand
f(@31e353Ud4und NIHL J404d4d » 3} NSdJ4 41
‘931e)SMANI xaU 1931V15IUBUIUND = BjeiSIudJdunDiIsSe|
tJd3suanol N t(231re3sIUBIUND
‘3stL8yagns ‘93)eISMBNI XBU
‘(®4) 404 pueaadp ‘SUOL }DVVYAN
‘e ‘vaN
‘apouw) * JBqUNNUBX0}
jJuojewoinyp|ing *(uoleuwolne )0t puraadg
=! }|LNSad .QUOEV
t@31e3siuauund =: ajelsanes juojewoinyp|tng
(= uUoissaudxagns uayita yodlew ,) =: }|{NSad
N3HL (d4)pQuorssaudxijuotieuual vy 41S73 . 1231e3S31Uus84und =: 331e)SAAES
tON3 {« UOLSSBUdXEQNS J4dYLIEd ydlew )
t(@31e353UdUUND NIH1 (uojewoine)puoissadadxjuotieuuar v 418713
‘@3e)SMaNIxXau *ON3
‘a3SuUano} "Amum«wvcwgglu
‘3stLagans . ‘2)e3ISMBNIXaU
*(3d4)30zZpUeaado ' *SUO13OVVAN
‘ey ' VON
‘apow) * UBQWNNUSM0)
Juojrewoinyp| i ng * (uolewoline) jozpuedadg
=! }|NSaJ ‘apow)
N3HL o = 3|nsadJd 4I Juolrewornyp | tng
I{3@3reysiIuaaund =: }LNS34
*8)e)SMaNI XaU N3HL YO = 3 |nsaJ 4]

*13SUax30} t{@31e353UddUnd

95



apow @ spouw) . :9poW : w)
Juolewolnyp | tnNg 331430034 Juojrewoinypitng 3J3NA3ID0A4

‘uojewolnyptng GN3
C(3LNsSadJd) NiNlL3y

t(®31e3SOARS '331B1ISIUBJUND ‘B3) BAOWUO|tsd]
{(91P1ISMONIXBU ‘DieiSdARS ‘BY) 9AOWuO |t sd]
t(Bpow ‘u3Suao} ‘91BISMBNIXBU ‘ejy) d1eISPPY
. f(@1ersIuaaund
‘91RISMBNI XU
tJ3Suaol

*aN3
t(, 9dA} 8pou 128.1400uUl uojeWOlNYP|iNg, jdodda3 35713
t(®31e1S3IUdIIND
‘931e3SMONI XU
tuojewolnyp | tNg AN3 ‘SUOL3IDVYVAN
t(3¥1NSad) NiNL3Y ‘vaN
taN3 tdagqunNuUa0l
t(, @adA} apou 1294402UL luOjewolnypP|tng, )Juodd3 3ISI3 ‘uojewoine
f(@3e3sIudaund . ‘apow)
‘a1eISMBNI XU Juolewoinypi tng
M FENVE-DTo B Y =! }iNsaug
'isiayans N3IHL (uQlewoline )| utwdd|UON| eIt X371 41IS13
‘ad t(@31e1siuaaund
‘e ‘931RISMBNI XBU
‘apow) 'SUO L 1OVVAN
guojewornyp|tng ‘VvaN
=:! }|NsSad * JAgGWNNUDO0}
N3IHL (®@dJ4)0lBUrwidUON(BDLIX3] 4IST3 ‘uojewolne
t(@31e3siIuaaund *apouw)
‘OIBISMANIXIU Juolrewoinyp | tng
‘J3ISuUano} =i }|NSdU
‘ist8yqans N3HL (uolewoine)pbutaisaaldeaey)d d0
‘au (uocjewoine )puaioedeydaug Yo (uoclrewoline)dieuiwda]l 31573
‘ey f(231e3183U344Nnd
‘apow) ‘931e)}SMaNE xBuU
Juojewoinyp|itng *SuUot10yYvaN
=1 }NsadJ ‘vanN
N3HL (®4)0leutwua)l 41573 " J9qUNNUS A0}
t(@31erSIusaund *(uojewoine ) jgpuedaadQ
‘8l1e}SMaNExau *9pow )
‘J3susnol Juojewoinyp|ling
*31S1t19yans =! }|Nsad
* (@4)J0pueaadg N3IHL (uolewoine)Quolssaldx3ipaiiandedg 41S13
‘es *aN3
‘apow) t(J9QUNNUDXY0Y "83e3SIUdddnd ‘NOTISd3 'SuUotIdVYVAN)
Juorewoinvyp|tng uoi131ovyias
=! }|Nnsad N3IHL L1ONYLSNOD = @8pow 4]
NIHL (d4)puoissaudx3ipalriaroedag 41513 '91e153ARS =: BieISIUdIIND
tL 4+ 91EBLISMANIXOU =@ BIRISMBNLIXIU 1{@31e31SaALRS ‘231e3SIudJIND *NOTISdI ‘VAN)
t91RISMONIXBU =: B3ILISIUDIUND 195912 1SYANIX3BNI3S

t(@i1e3siuaadnd
‘931e3SMaNI XaU
"SUoL31DOVYVYAN

‘vaN

* J3GWNNU3®OY

‘ (uojewoine) jgpueasadg

96



97

‘ (@4)j0cpuedadg = }|NsSaq
‘ey tajeisanes =: 3ireisIuUaIINd
‘apouw ) N3IHL J0uud & NS4 JI
Juojewoinyp|itng 1331B15IUSIUND = 33ie}SIuUdaun)ise|
=: }|NSa4 L{@31e3s3Iuldauand
!31e)sanes = 331e1SIUIJIND ‘331e}ISMaNI xau
N3IHL MO = }nsaa JI 'SUOL3IOYYQAN
$1931e3ISIUBIUND = BILISIUBIUINDISE| *¥YAaN
t(331e3153Usuund * 43QWNNUaO0}
‘83123 SMANI xBU *(uoiewoine) 0l pPueuadg
'a3Suanoy ‘w)
‘31s1793ans Juojewoinyp| tng
‘ (@4} i01pueaadg = 3}|NnsadJ
‘ey 19323ISIUBUIND =@ B3eITIAES
*3pow) N3HL (uojewolne)puoissaJddxjuotieudaal |y 41813
Juoiewoinyp|ing t(3ILnsad) NanL3ly
= }|NsS3au4 QN3
‘{331B3ISIUBIUND =: I}elSANes t({a31e3sIudd4dnd
N3IHL (®4)0uoissaudxijuotieuusl |y 415713 ‘@1elSMaNIxaU
AN3 'SUOLIDYY(QN
f(@31e3sIuddudnd ‘vaN
‘931RISMANI XU *JBqQUNNUBN®OY
*43SUaN0Y ‘{uojewolne) jozpuedaado
‘3st1719y3agns ‘w)
‘ (94)j0cpuedadg jJuojewoiInyp|tng
‘ej =! }|NSdBJ
‘apow) N3HL 0 = 3INS84a 4]
Juolrewoinyp | ing f{931e3sIuduaund
=: }({Nnsau ‘231e}SMaNI Xau
! N3IHL %0 = }|nNsSaJd J] ' 'SUOLIOVYVYQAN
t(331e3531Uus4und ‘YaN
‘331eISMBNIXBU ' JBQWNNUSAO0L
¢ d3ISUdN0) *{(uojewoine ) 0} pueasdo
‘istsyans ‘d31s)
*(®4) 301 pueaadg Juoiewoinyptng
‘el =: }|NsS3a4
*d31S) N3HL (UojewolNe}jQuoLssaudx3juotieualreduc) 4]
Juojrewornypling NI©38
=! }|NS3au
N3IHL (®4)Duoissaudxijuctieualeduo)d 41 . '8pON  u
N193g . tadAjButuys : J3ls
13185 : 19%331e1831x3dU
8PON : 3ISLIYO ‘u TIYNIQYVYD ¢ @3e3SIuddaun)ise| ‘@eisanes [
tadA1Butulg : J43S ‘J431$31LISIXBU *uigaIers ‘uaigdul t3INSdY : }|INSdU
PIYNIQAYD @ @3elSiusdun)ise| ‘areisadaes [ 7 AVA
t31INS3Y : 3| NsSad
AVA L3 INsay
(TYNIQAVD @ S3LISIUSUIIND 'DIBISMBNIXSU YYA
t3Lnsay $91Qqeuoildy  SUOoLIDVVYAN

(TYNIQYVD @ 21B1SIUBUJND ‘3IBISMBNIX3U YVA ‘2|qeVyaN : VAN
tadA1Butuls @ a3suanol . TTUNIQYEVYD @ J49quniuaX3o3
t9PON : 31St9YANSs ‘8d ‘ey t3PON | uojrwolne



‘L + 91RISMBNIX3BU =: B831BISMINIXAU
!91e3ISMBNIXBU =: Ba3lelgiuaddnd
L ((931e1SMENIXaU )3PONJIBqUNNBIRBJD *3St YD)
uotl}isued|aiepn
‘(((23)403S1123€3S "@3eISIUBaund)Iudwal JYIN)
jQsSuorytsueu])

1St 1018pOoNPuUaddy
t((93Sduy )a@rdedeydBbuliutadanen ‘1stIyo)
1st013poNpPuaddy
t()astla83oedeydaden =1 31Styo
t(epow ‘Jd3Sus0} ‘81BISMENIXBU ‘el ) B1eISPPY
t{e]43s =: [ ]4rSawy
0ad (43s)yibua) oL + =: t Y04
t(0)¥HD =: [Z]a3sdua

1(J3S ‘Bd)joleulwdld | aAd31LU}3Y
N3HL (@4)0)leultwua] 41IS73

N3IHL (uojewolne)pbutyiSdaaioedeyl YO
(uUojeBWO}NE )Nud}DRIRYJBUQ YO (UoIewolne)dieutwaa) 41573
‘(3Insad) NiNL3IY
1 (®3e353IUdUUND
‘931e}SMaNI xau
*SUOL1IDOYYAN
‘VvaN
' JAQUWNNUSYN0)
*(uojewolne) jopuedaadQ
“w)
yuojewoinvypitng
=: }|nsaq
NIHLl (uojewoine )pPuorssaadx3ipaliaxdedg 41813
t(31nsad) NynL3Y
*AGN3
(JI8qQUNNUB0} "931eISIUBUIND "NOTISd3 "SUOLIOVVAN)

t(331e353ua@ddns uol31oyias
‘331eISMBNIXBU N3IHL LONYLSNOD = w J]
‘43SuUano} t931e1S53ARS = 3ILIGIUSIIND
‘3}sti1ayans {93ei1sganes ‘£1e353Iud4dnd "NO1TISdI "VAN)
*(@4) j0puedaadg 195231e31SVANI XaN1as
‘e} - f(831e3153Uuddund
*apow) . ‘231e3ISMANI xaU
Jyuojzewoynyp | tng *SUOL IDVYVYAN
=7 }{Nsad ‘vON
N3HL (34)puotssaddx3paliaxoedg 41513 S I8qWNNU3X 0}
tl + DIBISMBNIXBU =: 331BISMBNIXSU ‘ (uojewolne)jopueaadg
L@IRISMBNIXBU =: B)LISIUSIIND ‘w)
{(231e153ABS ‘231e31SIUBUIND ‘’y) SAOWUO| 1 sd3 Juolewoinypi ing
$(93L1SMBNIXSBU ‘81e)gdnes ‘By) SAOWUO| 1 Sd3 =: 3}|NSau4

98

t(9pow ‘J31susxol} ‘33BISMANIXBU ‘e}) 31elrsppy

H AWFNFWFCULLJU
‘931 21SMBNI XU
*J43SuUaN0}
-*3stayans

* (84) s0pueaadg

‘e,
*apou )
Juoiewolinyp|tng
= } NS84
193123153UB4UND = B3le}SIAES
N3HL1 (@4)0uoissaddx3jadnsoj) JIS13
*aN3
'} + 9IBISMBNIXSU =: 31BISMAONIX3U

{9123 SMBNIXAU = 81B1ISIUBIIND
t(@3B1SMANIXAU *83B31SIUSIIND ‘B3 ) asowuotisd]
1(@31B3ISMBNIXaU ‘83e1SIusIdn)Ise| ‘e3) SAOWuo|Lsd]
f(®pow ‘J3SUSXOl ‘BIBISMINIXBU ‘B3) 9IBISPPY
t(@31e353Uddund
*3931e}SMONI XBU
‘d3SuUa8no}
‘3¥si8yans

1331e31531uUdadnd =: I}e}SaAES
N3IHL (uojewolne)}pPuoissdadxisunsot)d 11513
S(¥LNSad) NINLIY
*GN3
L (49QUWNNUS®OY 3931B1ISIUBIIND ‘NOTISdI “SuoLIDOYVYAN)
uot3ovias
N3IHL LONALSNOD = w 4]
Iy} + 9}BITMONIXDU = BIBISMONIXSBU
{3IBIGMONIXSBU =@ 331e3I$IUBIJIND
1{OIRISMBNIXBU "33e3SIu344nd *NOTISd3 'vAN)
195311ISVYANIX3NIDS
1(®3e3ISMBNIXBU "a3eiSIudJdUn)Isel *NOIVISdI “vAN)
19591 ISYONIX3NIDBS
*AN3
t(®31e353Uus4u4nd
‘231e3ISMBNIXBU
*SUOLIIOYVAN
‘vaN
* JBQUWNNUSM0}
*(uojewolne)jozpuedadQ
“w)
Juojrewoirnyp | tng



HY

1(I9S T 19S931eISIXAU YVA

*IVNIQ¥VDY © @3els

t8PON : viu)
19591e)Suo | 1 SAdIVINIXaNIaD J3NAIJ0YJ

tjuolewolnyptng AGN3
S(¥INsad) NaNl3y

*aN3
Y{ ., ©dA) 8pou 3}D34J40DUl :juolewoinypllng, )dodd3l 3573
. *AON3
‘adA] UOLi1iul 33QANS UMOUMUM :Yuolewoinyp|ting, )
40443
3s13
10 =: }|NSadJ
'} + 9SIBISMONIXBU =:@: 33}BISMANIXBU
t931BISMANIXBU =: 3}eISIUDJIJIND

L (((2121SMBNIXBU)SPONJIBqUNNIIEDU) *1SLIUD)
uoltltsuedjiarnen

‘(((e3d)3nisiierers 'areiSiuduadnd)iuawsd| JUiN)

josuotitsuedy)
st o taponNpuaddy
1aN3
t((d43s)a810edeybutjul udadew ‘1stud)
1St 0 13poNpuaddy
*aN3
T

W d810'deYD | < UOL}iUlagsse|d [yuorewolrnypling.

)
JoJddJd3
NIHL | < (43s)yibuai 41
$(J43S ‘((u)Jouotriuriag °1)Iuswad|IYIN)
JOlRULWUD ] BABL ULBY
00 ((u)jpuotriiurjyag)uibuaiast] OL b =' + 04
f()astluadrovaeyddey =: 1SEIYD
t(epow ‘J3}Suaxo)} ‘S1eISMINIXIU ‘ey) IrerSppy
NIHL A:voco.p_c-mwowmm_u EARE
HE-28-2 0 AVE-NN]ste)
‘a1elsmMaNIxXau
R EENEL Y [eh)
‘1stL9yans
*(u)spouorytut yaq
‘ey
‘ apoi)
yuojrewoinyp|ing
=: }|NsSadJd
N3IHL (u)Ouoilrurgaaans 41 -
‘(3st19dans ‘uis)uojewoinygnsput 4 =: u
(43S " (24)30491 413UBPT)J0UDL I IUSPIBADLUIDY
N3IHL (@4)0leutwdajuoN|eOL1 X8 31S73
0 =: }nsadJ
aN3

Juoiewoinyp|ing
=: 3} |1NS8J
N3HL (U)0a1NyLEdtxaT 41513
(®0) Nyni3y
DlelSMaNIxXau
23181S3IU3IIND
*aN3
*aN3
Y, 'UOLSE | 1GD Yyuolewoinypling. JJoJdl 3573
*aN3

14+ ©91BISMBNIXBU
t@1e1SMaNI XU

! (J9QUNNUBYO0}
‘a31r}SMaNIxau
“[t1a3s
‘SUOLIDVVAN)
uot 30yias
NIHL 1ON¥LSNOD = w dI
t(@31e31SMBNIXAU ‘a3e1sIuaddnd ‘[ ]41s "vaN)
19S93121SVANI XaN}¥3S
NIHL (19S91e1S53Ixdu)0IasAidul 41
1(2383S3U84und [ ]J41S "VAN)ISSS1BISYANIXBNISH
=: 319581231531 %X8U
$(43S "(} ' (U)3IDSJOqWAN)MIUBUOdWODIBD ]
j0do31oedRYIDUQDABLULDY

0d ((U)30SJ49qudw)0SIUaUOdWODI0I2qUNN 0L b =: ¢ ¥O04
NIHL (u)0aLnysseldledtxa] 41
:(435)uojewolnygnspul 4y =: U

$(J41S ' (UCIBWOINE ) JOUDL S1IUBPT ) I0JIDL 31IUBPIBADLUISY
: N3iHL (uojewolne)p|eulwddUON|eDtX3T 415713
1(0) Nini3y
1ON3
'aN3
t(J40JJd) NinL3y 35132

$(JOQUNNUBX0)} "93B3SIUSJIND ‘[ ]J1S ‘SUOLIDYYAN)

uot3ovias
NIHLl 30dd3
= (93231S3uUs84dnd ‘[l ]43sS °‘SUOLIOVYYAN)UOLIDOVI®Y {I
N3IHL LONYLSNOD = w 4]
taN3
*aN3
P(, UOLISL | |02 :jyuolrewornypling, )dJdoddal 3S3
'L+ 91IEISMANIX3U =: 3rEISMBNIXBU
19IRISMINIXSU =: 93eISIUBLIND
1 (931e3SMBNIXBU 831e3sIududnd ‘{r143s ‘vaN)
19S5391e)SYAaNIXBNIaS
N3IHL (3@S2@1e'1Sixau)0iasAidul 41
$(9383ISIUBuUND " [+ ]uIS "YAN)IDSSOILISVANIXBNIS8H

= }18S3831e153IXx3dU
00 (43s)yibua 0r + =: + HO3
*aN3

t(43S ‘uolewoine)jpbutJiSdaidedeydranstdisy i3s3
1(43S "UOIBWOINE) $0JBIDBIBYIBUQIASE JI3Y
NIHLl (uolewoine)pdaldoedeylaup 31

99



1318883 e35uo| 1 sdaviNIXaNI8H aN3J

1GN3
tGN3
. ‘aN3
uAvwwwvavw«wa .wvwvmvwa9vwaw¥prCw
‘aN3
b
«JOJUS UOLSUBAUOD :318833e1Suot tSAd3viNIXONIOD, )
’ JoJuud3
N3HL Ae3o L1ON JI
UA>NxO ‘aielsxau .L«wwvﬁvaXWCvULNUOPpr
1(43823e181X8uU (UOL}LsSuURU})I093LISIXAN)
048 QUINNSABLUL}DY
N3HL (yd)pQuojtrsda jI
f((uotitsuedy)gistidaioeaey) ‘f)ruswsd|IUiN =1 yd
oa
((uoritsuedl)j0istideidedey))yibuaiiset] oL + =1 [ 304
' t(suotiisuedl} ‘t)Iuswd|IYIN =: uotLitsuedy
04 (suotitsuedy)yibusiistl oL 1 =1 + ¥Od
t(((v4u)403St131L1S *33LIS)IUBWd | JUIN)JOSUOLItsued]
=! sSuoljtisueuy
t(195931e383X3Uu)rasuea|d

!NV3I0089 : Aexo
'YNIQYVD : 9jelSixau ‘f 'y
tadAjButals : J3S83eISIX3U
uGUOZ L yo ‘uoi}isued) ‘suotl}isuedy
' JVA

{(PJ023Yd3 1 qRIVAN)IZIS "3 )3LVIDTV
NIO38

19102 LVAN 3 VNIGQY¥vD [ 't o yva

‘3LQeLVAN - () SL19eLVANS1eW 33NA3D00dd

ra1geluol 3oVaMeW AaN3

(1) N3¥N13y
‘ON3
1aN3
_tdodd3 =: [ tt]xiayew” )
0Q S31VLS XVW 0L 31v1lS 1dvis =: [ 304
00 SAVHOXVW OL SPVHILAVLIS =: | 304
I((PJ0D29Y9 QR UOLIDV)IZIS "3 )ILVOOIIV
NI®3g

‘a|gefuot1oy : 3} IYNIQAv) [ 't yva

$919eluol}dy - () 819eluollIdvadeN 3I¥NA3IZ0Ad

‘91qeivaaienw aN3

(1) N3N13Y

*aN3

*aN3
PQINDISSVYNA =: [f_“t]xtarew 3

00 S3LVLIS XVW OL 31viS 1dvis =: [ 304
00 SYVHOXVIW OL SdVHOLYVLIS =: ! 3¥O4i
t((p40293yaiqgelva)3iZIS ‘3)3LvI01V

NID3g

to|gelva : 3 LIVYNIQAVO [ 'L Yva

: ‘319e1va - () d1gelvaadenw 33NA3d0dd

‘yuojewolinyp|ing aN3

*aN3
t(, 8dA1 8pou 1D3.40Duil :UOjewolINypP|iNng, )4odd3 3573
taN3
t(, 8PpOoU 24 |BOLX3| 31D34JODUL HUOlRWoINYP|Lng, )J0JJ]
3513

‘(3L1nsau) NiNL3Y
t(@3e1S3ulauund
‘@1e3ISMANI XU
‘SUOt 3IDVYVYAN
VAN
* JBQWNNU3X30)}
‘(u)jzouotitulyag
‘w)

100



CTYNIQAEVD © (TYNIQYVYD © 3ieisiuddund
YVHO D
931eISVJIXSNI3®9 3IJANA3IO0Ad

!9|gelVoN2244 aN3
PIN = 3
1((PJ029y2 | QeIVAN)IZIS “3)31VO0Tvag
*aN3
tanN3
(P ti)xtuzew 3)res@su4
00 S3LVIS XVW 0L 3L1viS 1dvis =: [ 304
00 SAVHOXVW DL SYVHOLAVLIS =: ¢t 304
taN3
nA...uw.—xw } . UsSaop 9|9e} HW—DM._.dh_ZWWL&..VLOLLm
NIHL 1IN = 3 41
NI93g

PIUYNIQAVD - [t dva

*{21Q21VAN 3 dVA) 21QeLlVANSBJd 3¥NG3ID0dd

!a|gejuoL3oya9Jd4 aN3
PAIN =}
H{{pJooaYd | QRIUOLIDY)IZIS 3)31VI01TIVIAQ
*ON3
S(w }SEX3d },USS0P 3|ge} :3|gBLUOLIDYDDUY, )JOUUT
N3HL TIN = 3 41
NI938

$(31QeLuUot oY 1} YVA) S1QeLuotioyaady JANAIdO0Ad

ta|gelygeaJs aN3
PIIN =@ 3
'((P4029¥21qe1Y@)3ZIS ‘3)3L1vD0711vad
*aN3
(. 3SLX® 3}, USOOpP B3|Qe} :3|gelygesadd, JJodda]
N3IHL 1IN = 3 41
NID38

(®19e1va * } dvA) d19eiv@sadJd4 3ING300dd

*91geLVANSYBW ON3

(3) Nanl3dy
‘aN3
ON3
()resaxen =: (I ‘tixtujew: 3
00 S3LVIS XVW OL 31v1S 13vlS =: [ 304

03 SAVHOXVW 0L SAVHOLYVILIS =: | d04d

101



118591 0ISVANIXONI39 AN3
te[®@3e3sIudaund " (D)qQuo)xtaiew 1) NANLIY
1aN3
t(. 91Ge1 ou :313S3ILISYANIXOINISD, }u0ud3
N3IHL (TIN)3tQeLvaN = 3 4dI
NID3g

'38S ° {TYNIQJvD @ 831ejsiusdaund

‘Y¥vHO 2

‘9iqelvaN ¢ 3})
18S331RISVANIXSNIS®Y 3J4NQ3D0AUd

tuo0t1OoVias ON3

tuotloR =: [93E3SIUBJUUND (D)0 ]xtulew 3
SAN3 f (., "91gel Ou 1uoL3IDYIdS, )J0udu3 N3IHL TIN = 3 dI
NI939

CCIVNIQYVD 1 uotrldoe ‘aielsiuaduand
dVHD ¢ 2
laigeLucLioy : 3})

uot31oVvias 3ANQ3J0AUd

tUu0tlovian AN3
([®31e3Siusuund ' (2)Qyo]xtuiew’ 1) N3NLIY
ON3 (., 81ge} Ou uoL1oyYiay, Juouuld NIHL 1IN = 3 41
_ NID38
TIVNIQHVD ¢ (TYNIQEvD © @31elsiuadgund
YVHD ¢ 2
UQ—DN._.CO_.HU< HE O |
uot31oVvViay IYNAID0AJ

. 191231SVQIXINIBS AaN3
1931Le151X8U =: [23LISIUSBUIUND ‘(D)a¥0]xtalrew” 3
$GN3 (., ’dlqge3 ou :831LISVQIXSNISS, )U0ud3 NIHL TIN = 3 JI
NID3g

CCTVNIQUYD @ 93e3Sixau *33elisiuadadnd
¥VHD D
ratqelva - 3})

231e1SVJIXaNIaS 34NQ300dd

19183SVAIXBNIB®Y ONIF

t([3@1e3SIuaaund “(D)gyo)xtdrew 3 ) NAINLIY

SON3 (., ®igel Ou :531EISYQIXANIBYD, )JI0J4u] NIHL TIN = 3 dI
NID3g

102



*aN3
1ON3
”.

, "d0dud BULUlS D131SIUIWIIIBP3UOU SB(GRIYANUT LS.,

40443
) 3513
1L+ 91BISMANIXBU =: 391BISHINIXBU
1831BISMaNIXBU = 81B1S51Ud44nD

{91R1SMANIXBU ‘931e1Siuduund ‘[ []u3s 'vaN)
195831 1SYONIX3NISS

N3IHL (33$33e3S3Ixau)0iasArdul 4]
1(@3e3siuduund [ []J3S "VAN)ISS31eISVANIXSNISD
=: 3}8%931e31S51x%dU
00 (J43s) yabusq oL + =: [ ¥o4
(7S ‘J43s *1)ButJdisusxnolian
1+ 91E1SM3BNIXAU =@ B8}BISMBNIX3U
!91RISMANIXBU = 83}IeISIUDUUND
1(33BISMBNIXSU "81@3SIUBJIND "NOTISHI “VvaN)
395231 21SVYONIX3NIaS
$3LIVLIS LYVLIS =: SIBISIUSIIND
0Q (1S)J43GUNNUD4011Se738H
0L (7S)J2QUNNUDYOL1ISJL 418D =1 | Y04
o+ ILVLIS L1Y¥VLIS = S1BISMBNIXIU
NID38

t3INS3y : rINnsad
!3PON @ uojewoOlne
1185 . 185931EiSiIxXau
CTYNIQYVY) ¢ 23EISMONIXBU ‘8leRSIUdUIND
tadA1BuLalg  Jls
SyNIayvd ¢ f oty
JvA

t(S1oquwAg : Is

:91QqeLuoLidy  SUOL1IDVVAON

!®1qeLlvaN : VAN)
S3|gelvaNUIlLt4 FJNAID0AJ

13195931 e1SVYANIXSNIS8S AN3

t([®3123SIUBIIND " (D)Q¥a)Xtulew ) ‘93IBISIXSU)IBSULHNISIUF

*aN3
(,'®31qex ou :335331BISVANIXSNISS, )JOodu]
N3IHL (TIN)®L1QelVvaN = 3} 41
NID38

S{IYNTQYVD : 931B1ISIXaU *931EBISIUBIUND
tYvHO ¢+ O
t21qeLvaN : })

319S91EB1ISVYANIXSNIBS 33NA3D00dd

103



t(BUOp ‘831e1513S ‘18G91B1S)ISJi 4 =: 931eLS
1 (19S23181S ‘@unso| )3 )juorun
t{)319SanNew =: duNso|Id
t()21e1519sa%ewy =: 21e1s31as
NI®3d

tadAjButuls © J41S83eISIXaU
t9PON : UOL}isSuedl ‘SuUOL}iSuURJ} ‘Y2 ‘3SLIYD
*NV3I009 : 3uop
'91e315313S : 8i1e1s1as
'313§ : @unso|)a
LIYNIQAVYD : w *) ‘@iels ‘a8ieisixau ‘1
VA

388 ¢ (®PON : Vv4u 185 : 18%2@31eis) 3J4nso|33 JANAID0AJL

0Q ®uop LON 31IHM
1({8UOP ‘81B1518S '19G31BIS)ISUL g =& |
t{)13SdNEW =: BJNsO|)dd
t()MoeISaNew =: ABoe3s
1()91e3151359%ew =: 21e1S31as
NID3g

*NV31009 @ auop
t@3e3sias : @jeysias
tYorRIS ! deis
1388  1885231e1SIX3U 94NS0|Dd
IIYNIQAVYD ¢ @3els ‘it
dVA

138S ¢ (@1delVvAN ¢ VAN 385 @ 18S81els) 3J4nsoid3 JANA3O0dd

!Sa|gelvdNUItLLtd AN3
tAN3
. ‘aN3
1. A3inBique uojewoine :S3|qeivdNULL Lt 4. )I0uul
N3HL J40uud = 3 |Nsada 4]
1(@31RISMANIXAU ‘'SUOLIOYYAN ‘VAN ! ‘uolewoine)
uojewolnyp|ing

=: 3INsad
(IS ‘L)uorewoinyian =: uojewoine
04 (1S)J42qunNUOIRWOINY1ISET13H
01 (1S)48QWNNUOIRWOINYISJUL 438D =: | Y04
*QN3
*ON3
un\ "SuUaxol} WJODOTDE< iSa1QelVONUTIiLt 4, )40uu3 3ST3
1(dOLS + ¢ °‘23e31S3IuUd4und ‘', , ‘SUOLIDYYQON IUOLIDYIaS
N3IHL d303d3
= (®3e3S3IUd3uund ', , ‘SUOL1IOYVYQN)IUOLIDOVI3Y) 41
‘ON3

(
, Jd0Jdud BULUlsS D131S1ULWUdIapauUoU Sa|qelVaNuTI Ll 4,
)
JOJdJu3
3573
'L+ 93}LRISMBNIXBU =: 91BISMANIXSU
t91RISMANIXAU =@ 38leiSiuaaund
L(BILISMANIXBU "3d3elSIudaund *, , ‘VYAN)
19531 21SVANI XaN1as
N3HL (38S331e1S3xau)piashidwl JI
1(®31e3531usaund ', |, ‘YON)3I9S21EISYONIX3NII9
=: }9S9}1elsixau
‘ON3
”.~ "sSuUanol mDODm_DEd :SaLqQelvygNuIlL LY 4, Ja0ud3 3873
t(y ‘@3eisiudauand {{]d41s ‘SuotiIdYVYaN)UOLIDV1IaS
N3HL 30333
= (@1eiSiuaduna ‘{[]4is *'SUOtIDVVANIUOCLIOVIa®Y dJ]

104



f()31asanen =: PanJILWIONSIILISA
1()1aSanen =: 31asajels
u»vwamawawmwxﬁi =: 9})}elSias
H{Q)AHD =: [Z]43Saud

NID38

C9PON @ SUOLIISUBJU} ‘UOLILlSUBU} ‘YD ‘31SiYyd
tadA)Butuys
J3S9IBISIXBU *UISUYD ‘u3SdIeIS “Ju3s ‘uisaindino
!NV3I1008 : 2uop °‘punoj ‘punojiou ‘Be| ipsjdenun ‘Ao
1931e315318S : 21€315313S
$3195 : 125931e}s '131asa3els
PIVNIQYVD ¢ D1e1SIX3U ‘B3eISAMINIXBU “aleisgpunoy
'931e3sdiuaddnd ‘indingmau ‘indino ‘w *x *[ ‘1 ‘*@8jeis
1395 ! pPI9NJBWIONSIIEIS]
tAeudyias @ saieisd
dVA

1385 40 [SILVLIS XVW O] AvddV = Aeauyias 3dAl

(9PON : V4P ‘viu) vQOIVANIJBAUO)D IFINAIO0Vd

19uNnsotd3 AaN3
t(24nso1)d) N3NLIY
(9312153198 )931e3153959344
*aN3
{(19%93e31S ‘'91e15)IaSWoUINaI3LaQ
P(duop '931e3S513S ‘}195931L1S)3SJi 4 =: Ijeis
‘aN3
*ON3
‘ON3
tAON3
t(19S93e1s ‘931e3SIXdaU)IaSUL HI33U]
{(9uUNsS0 ) °*931e31S51iXdU)IaSUL HJIBIUT
NIHL (9unsSO()ad '23e1S$3IXdBU)DNJIDqUIN ION d1
*AaN3
(4w JOUUD UOLSUBAUOD :3uNSO|DT, )J0uJu]
N3HL Ae¥o 10N 41
P(Aeyo ‘93e3181xXaU ‘u35931e315IXau)pJIedouls
(4359315 IXaU (UOLIISURUY) S093IBISIXIN)
J$0J4QUWNNDAB L U} DY
N3HL (uyo)ouojptisda 4]
S(ISLIYD ‘wW)IUSWBLIYIN =1 Ud
00 (3StWo)yibuaiisty 0oL + =: w yO4
t(uolitsuedl ) J0istidaidedeyd =: 1St IYd
L(SUoLIpsSURBIY "X)IUBWA|JYIN = uUOol}Lsued}
00 (suolitsueal)yibuaiisiy 0L ¢ =: M ¥0O4
P(((v4u)I01sL193L1S ‘931e3s)iuswd | JYIN) JQsuotytsued)
=: Suoi}isuedl
0Q dUOopP 10N 3ITIHM
t(39s@3eys ‘9jeis)iaswodynaiaiag

C(119G9%B = PIYIBWIONSDIRISQ

t()I9SAMe =: 18G93IEeLS
()21e1519S3Menw =: a3e3sias
NID39

INV31008 : @uUOp ‘punoiicu ‘Be|jpaxnJeRun
t931e3153135 : d31e3sias
1395 : 18S3d3els ‘19sajels
TIVNIQYVYD ¢ 231 ISOMINIXAU
*912315QPUNO ‘931B1ISJIUBJILND ‘UOLIDYMAU ‘uoiide “f ‘4
138S  PaxJeWIONsSa3elsd
tAeauyias : saieiysa
VA

1385 30 [SILVLIS XVW' "O] AvddV = Aeuuyias 3IdAl

J(91geLuoL1dy : SuoLiIdyvQ
tayqgelva : va
t91QqeluUOL3DY @ SUOL3IDVYAN
tatgeLvaN : VAN)
vQo1VANI49AUO) I¥NAID0Ud

:9JdNSOLD3 gN3
$(9JINs0123) NINLIY
. "AWamawameWamawuwwwwLu
taN3
taN3
UAGCOU .wvmvwawwvaxwz =: 1
. [ E]
u»xumam .m-EMDQxUNuw uANLDWO—Uw .,vvwaOXLNFCw
NIHL (9@4nsod@ ‘L)0yJ2qwal L1ON 41
0Q 3uop 10N ITIHM

t(Buop ‘'21e1S19S *395931eISIXBU)ISULY =1 L
1(93e3s 'NOTISdI "VAN)IISS3ILISVANIX3BNISH
=! }9633e3}siIxau
t(oeys)dodroers =: ayels
00 (voe1s)pArdwlionxoers ITIHM
taN3
t(3uop ‘'93e1539S)IXON = |

:(92e1S ‘1)ysngxoeis
t(@4NsSo|Dd ‘1 )3asuluaiul

105



t13asarels =: [@31eiSgMaNiIx3du]salreisg
(= Q O} 83e}S MaU e ppe .) N3IHL PUNOjlou 4]
*aN3
o+ 0= 0
*AN3
Pl =: 33eiIsgprunoy 3S5V4 =: puUNojiou
N3HL ([f]s®@3ieisq '1319S@3e1s)Psias|edriuapl 41
0Q Puno4iou ANV (331eisamanNixau > [) ITIHM

t31viS 1AvLs =: [
nmeh =: punogjiou
3s13
t9Ivd = @31e31sapunos NIHL (132S23eis)DIasAidul 4]
uAdmC .v@m@vﬂvm~0&3m0—0m = |i13S9iels
taN3
t(Buop '831vISIAS)IXABN =: {
1aN3
*aN3
taN3
NIHL (UD)odaisedeyybuiiutdduoN 31513
o \E]
uAvmmmvﬂvw .0¢N¢W¢XOCVVOWCTXLO¢CW
taN3
nA=LOLLO Uuoc L SJUaAnuodD ”<QO¥<DZFLO>COU=V
JOdJdda3

N3H1 >0 10N 41
$(M0 ‘93L1SIX3U *U3$3ILISIXAU)PIRIOLIIS

$(4352323S53IxaU ‘(UOL}ISURJL)I023BISIXEN)

J0JI9QUNNaABL U} 3Y
NIHL [1]43S = (})¥HD 41
1 (43S ‘yd)jpuairsedaeyrbuliutadoanaraiay
N3HL (ud)oueideaeysbuliutud 41
S(3IS1YD ‘w)IUBWI{IYIN = Yd
00 (3StUo)yibuaist] 0L | =: W yod
t(uotrisuedl ) JoIstidaideaey) =: ISHIYD
t(SuUOL3IISURUY *>)IUBWS|IYIN =: UO}ILsSued)}
0Q (suotitsuedy)yibusisil oL + =: 7 A04
t(((viu)s03st193eds ‘f)iuawaJYIN)I0SUOLILSUBI]
=: SuoL}LlSuURY)
0Q 3uopP 10N 3I1IHM
t(auop ‘@8jeisias ‘[93e3sgiuadund]saieysg)isury =: [
t(3¥9S2@3eys)iasdyed|d
(» "931E1S J1USJIUND BY} U} DILIS BWOS WOJY ,B, U0 )
00 |+ - SHVHOXVW 04 SAVHOLAVIS =: '+ ¥0d
 (PaNJRWIONS®1IRISQ *831©1SQIUSIIND)ISSWOUMa13 130
(« (X) 2118 juaJdnd uew .) 0d Hedipansenun ITIHM

t3NdL =: Beipanuaenun

! (POJIEWIONSDIRISO "931'1SQIUaLUND)IaSutHIdIU]
d(v4u ©318S93e3S)d4NSoI3 =: [@3e3SQiIuaguand]salelsq
1(318593e)sS 93e1ISQIUBUUND)IBSULHIAIU]

f1 4+ 23e1ISAIUDUIND = 8jeISOMaNIxau

131v1ST1dVLS =3 93e3SQIUBIUND

t()3asaven =: [IIvdi]saieisa

NIHL d0dd3 s UOLIDYM3U 4]

$(f *NOTISd3 ‘SUOLIDYYAN)UGLIDVIAD =@ UOLIDVM3BU
R SON3
*QaN3
tuotL3}dyMaU =:@ uotiioe

N3IHL (30333 = uotrlyoe)
¥0 (uoiide > uotijovmau) dJI

N3H1 303383 = uO131DYMau d]

(0 " (4)YHD "SUOLIOVYYQN)UOL13IDYIAD =: UOLIDYMBU
0Q auopP ION 3I1IHM
t(auop ‘8231B15318Ss ‘}139533eds)Isdtyd =: [
308y = uotrioe

‘(@3eisgpunoy ‘a@3eisgiua@adnd C(L)YHI ‘va)
831e1SVaIxaNiIas

N3IHL Q3INDISSVNN
= (831e3SQIusdund (1 )JHD 'vQa)d3eISVQIX3NI3Y JI

*AN3
*aN3
b+ 931E1SOMANIXBU =: 831e}SgMaNIxau
t(PanJBWIONS®IRIS “831eiSgpPunoj)iasutidialul
t931elIggMaNIxau =: 83el1sgpunod
t1319%831e1s =: [@31eiSgMaNlIxdu]saielisqa
(=~ Q O} 3)e)s MauU © ppe ) NIHL PUNO4lIOU 4]
AN3
o+ =0 0
aN3
tf =: 3ajeisgpunoi 3S7v4 =: puUNnojiou

N3HL ([[]s®@31e3sq "1318523e3s)0S3ias(edtiuap] 41
00 puncjiou ANV (83e3SaManNIxau > [) IT1IHM

131V1S 138v1S = f

3N¥L = puno4iou

3513
$IVd =: 93e3SaPuNoy NIHL (3asareis)piasAidwul Ji
nA<DZ .v@m@vmvaijmO—Um =: j)asayels

*aN3

‘(auop ‘'aje3sias)ixaN =: [

S((0 *(t)dHD 'VAN)3IBS2IBISYANIXBNISBYH ‘'j1asajels)

uotun
0Q 8auop LON 31IHM
»AGCOU ‘ajelsias .vamvmovchLDUHmwvmamouvawu = ﬂ

(3asareyrs)lrasueayd
(x ~©3E1S jUd44ND By} UL D3IV)S SWOS WOJI4 ,E, U0 )
00 + - SUVHIOXVW Ol SAVHOLYVILIS =: ¢ Y04
! (P@YJBNIONS21e1S3 ‘23e315QIUd44ND)IasSwosNaIalaq
(+ (X) 31©3IS JUB44ND duew ,) 00 BeldparJdewun ITIHM

t3NyL =: Bej yparxaepun

I (P@nJeWIONS23IeISd '331e3ISQIUSIIND)IASULHIDIUT
$(VaN ‘38S33eis)adnso(d3 =: [93e3I$QIUs844ND]saleisa
1{319523e)s '93L3I$QIUBIIND)IASULHYIDIU]

o+ 91B31SQIUSJUND =@ 23IBISOMANI XU

$31v1ST14VLS =i 83 3ISQIUBIUND

f()3esevenw =: [1Ivd]saieisa

106



04 ((suotjiisuedl)yibuaiysty => [)
ANV (PUNO4 1ON) uJHIﬂ
o= o
13S7v4 =: punoy
1(((v4P)403SiId1eIS ‘23E3SQIUBIUND )IUBWS | JUIN)
JosSuotLyisued)
=: sSuotljLsuedl

T(L)YHD =1 [ ]u3ISIyd
‘ taN3
‘aN3
‘aN3
t(dILS ‘we -'43ISOIEIS ‘ydipP) B3EISPPY
3513
$(L1ONYLSNOD *d31SINdino *u1saiels ‘vip) 91eisppy
'aN3

t(w 40JUd UOLSUBAUOD :ydOIYANIJDAUOD, )U0JJ]
N3HL Aexo |ON 41

t(Aexo 'O ‘J4isindino ‘3indino)uisolpde)d

N3IHL PUNO4 41

tAN3

(4 d0UJd UOLSUBAUOD :yJO3} VAN JBAUOD, )I0Ud]
N3HL AeOo 10N 41
t(Aexo ‘O 'J3saiels ‘ajeisgeunoy)daisolpde)d
(P3XJeWIONSdIEISg °‘33eISPPUNOY ) IBSULHUIBIU]

fh + BIEISAMBNIXDBU =: 3}IRISAMBNIXBU
t93RISAMBNIXaAU =: 33eISAPUNO
‘aN3
t(3uop ‘'a3eisias)ixaN =:
‘aN3
‘aN3
tyindingmau =: 3Indino

N3HL (¥0¥Y3 = Indino)
40 (yndingmau < Indino) 41
SAON3
f(y JOUUD UOESJUBAUOD :y(QOIVANIJIBAUOY, )
BI-NNE]
N3HL MO ION 41
1(M0 *INdinQMdau ‘u31SINdino )pJde)loLulsS
t(4383Indino
*((((viu)s03sri@iers '[)iuswdtIuinN)
303dA}1)
403nding)
3042qUNNBASL U3 3Y
tINYL =1 PUNOY
N3HL ((((vdu)ioistiareys “f)

JuBwWa | JUIN)
J0adAy)
03daooy 41
0Q (8uop 10N) ITIHM
L¥0YY3 =: Indino
£387Ivd =: punoy
quCOU .wuﬂumuww .wuwmwuﬂuwvqu_m = m

*aN3
Pa o)BULUISDILUM I((1)UYHD)DILUM
00 | - SYVHOXVW OL SHVHOILYVLIS =:@ ¢+ dOd
w W)BULUIS3YLUM
(o ®1Qe] 93e3}s }x3aN ,)Butaisaitum
NID3g

PIYNIQEVYD @ 3unoD ‘[ ‘L YA

(a1qeyivqg - 3) S1qeivgiutdd IYNAIO0Ud

tudzAleuy | edLxatadew aN3
Y(3) NINL3Y
1 (SUOLIDYYQAN )3 Qe LUOL }DY33u4
‘(vaN)aqeLvgNaaJuy
$((3)30891Qeiuotidy “(31)i1091Qe193e}S "SUOLIDYVYAN ‘VAN)
vJoivdanNidJaauo)
$(1S "SUOLlIOVYYAN “VAN)ISSQeLVANUILLLS
i()91qejuoriovadeny =: SUO!IDVVAN
‘()@1qeLvaNSen =: VAN
t()sa|qeldazAeuyedL xd1S ey =: }
NID38

lsa|qeliazAleuyeDdLxd] 3}
‘3(qeluol}oy  SuoiiIdYVAN
:d(qelvaN VAN

VA

107

:sagelJazZAteUyY | EDL X3
(S1OogQwAg : s :3PON : iSLidtnYyuewweud)
JazA|euyeOt x313MeN 3¥NA3II0AJ

1yQO3IVANI J8AUOD aN3
1(93B815195)93183153959944

*aN3
1aN3 B
t3NyL =: Be|jparndenun 3573
13$7vd =: Be[dipaxaenun NIHL duop JI
t(9UOP "931E}S1VS ‘PINICWIONSDILISQ)ISULS
=: 33IeISIUdIJIND
tan3
taN3
t(uoi3de '83BISAPUNOS ‘(! )YHD ‘SUOLIDYY(QIUOLIDYIBS
taN3
t(9uop ‘®31e31S3¥8S)IXSN = H
1aN3
1ON3

1UOL3IDYMBU =:@ UOi3}De
N3HL (30333 = uoilde)
¥0 (uOL3de > uoL}dymMau) 41



3573

f(JuTdItum (. @t 4Indul x| :abesn, )0ULJ}ISAYLUM
N3IHL T > 26ue 41
t()siuawnbBuy 00N =: 2Bue

taN3

P dOUUd UCLISUIAUCD uOlewolinyp|ing, )Jodud]

N3HL Aexo 10N 41

t(Aexo ‘0 'J3Suouud ‘HONYI)JISOLPdED
S(HuIaItum

t(wruotiezyijetitul, )Bulaisartam

: NID38

1 ¥QO3IYANIJ2AUOD ANJ
1 (Pa%JeWIONSD3IRISA) 19533
t(3¥9S231e3S5)1a53a4y

aN3

‘ON3

t3ndL =: Begpaydepun 3573
t3S7vy4 =: Be|dpaxJenun NIHL duop 41

quCOU .w#mum«wm .waLNZuOmevmquv#mLTm
=: 3IISIUdIunNd

tan3

. taN3

$(((43S212315)udqUNNDYRW ‘ISL YD )UoL It Sued j9xey

‘(((v4P)303S1123e1s ‘931e3$QIudddand)
IUBWA | FYIN)
Josuotyisuedy)
1s1 701 8poNPuUdddyY

((43S4UD)udroeaeydbutl Jutadareny ‘31siIyd)
3s1 701 8poNpuaddy

"Ayuqugwaomgm:omxmz =1 3S1IYd
*ON3

P, JOJUD UOLSUBAUOD :YJOIVANIJBAUOD, )JOIJIT

N3HL Aexo LON 41
t(Aexqo ‘0 ‘JiSajels ‘83eisgpuNoylaisolpdaed
N3HL (JIV4 # 23e31SgPunoj) OGNV (PUnoj 10N) 41

tON3
o+ =2
*aN3
*aN3
((43SJYyd)uaroeaeydrbutiutadaren
‘(uotitsuedl ) joistiuaideuey))
, 1st 0o 1apoNpuaddy
N3IHL 1Ivd # 3i1ers 4]
c3NAl =: punoy
N3HL @3e1SGPUNO} = 3leis 4l
1ON3

1("d0J443 UOISUBAUOD :Y(JOIVANIJBAUO)D, )I04d]

N3HL Aexo 10N 4I

(M0 *@31e1S °‘J1S)pUelnojJils

*(uotltsuedl )ipd1eiSiIxaN) J0I20UNNIADLILIY
t(suotiisueday ‘f)ruswdIYIN =: uotiltsueay

CYIUNIQAVD : 3unod 'L Y¥vA

(92192 udL31dy  3) d{QeluoLIdviutid JYNAID0AUJ

‘81QevaNIut dd aN3J

*aN3
SOIUTOILUM
*AN3
tAN3
) {9 ¢+ JUNOD =: JUNOD 3S$73
w L IBULUISBILUM 1 (JUNBILIM 0 =@ IUNOCO

N3HL 00} < 3unod JI
(s L )BurUISaILUM
[0 ty]xrajew: 3)3aSiutuad
00 SAVHIXVW 0L SAVHOLAVLS =: ¢ ¥0d
'O =: 3UNOD
(o w)BULUISEILUM
] _ H(0_'fF)paedaytum
00 S3ILVLIS XVW OL 31vlS Lavis =: [ dod
S)uIdI UM
t(,3,)Butuyrsartam
*aN3
T(a 0 )BULUISDILUM I((L)UHD)BILIM
-~ SYVHOXVW OL SYVHOLYVLS =: ! ¥04d
" w)BULUISBYLUM
SIUTPILUM
(e 91Qe] @33}S IXON ,)Butursaltupm
NI938

aa

-

TIYNIQEYD ¢ 3unod ‘L ‘i dvA

‘{@1qeLvyaN * 3}) d1qelvaNIutad 33NA300dd

t@1qelvgiutl 4d ON3

*AN3
S(udI UM
*aN3
‘AN3
'€ 4+ IUNOD =: 3UNOD 3573
H SIBULUISBILUM 1(JUTDILIM IO =1 JUNOD

NIHL O0F < 3IUNOD 4JI
(., ,)BULUISOILUM
(0 [ ‘r]xturew 1)pdedadtum
00 SIYVHOXVW 0L SAVHILHVIS =1 ! ¥Od
uO =. 3jUuNod
e w)BULJIISOILUM
T(0_“f)paedartum
00 $31VLIS XVW 01 31v1lS 1avis =: [ 04
t(Huisrtum
t(,9,)BuLIISaILUM

108



LEHUTOI L UM
P(w'SO®1Qe] via Butitum, )BULUISOYILUM
1(VviP ‘3 )VaoivaNI J4SAUOD

$(d3LS ‘ww “3ILVLIS LYV]S ‘V4IP) 21e1ISPPY

t(d3LS ‘we “TIVI "vVIP) S31E1ISPPV

(()ISHI91RISANEeN) VISR = V4P

HBIRCININT

t(. V40 O3 V4AN Bui1uaAu0), )BULIISDYLIM
tan3

L{(JBqUNNDILIS *UBQUNNUBY0] ‘1S 133agns 'Bda ‘ey)

uojewoinyp|ing

=! } NS84
P+ JBAQUNNUSYO0) =: JIBQUNNUDNO}
S(3ISL8U 1 )IUBWA (JYIN =1 Bd
0Q Ud73ISt]8a 0L b = t Y04
L o+ JequNnSlels = J49QWNNI1Ie1S
$(d3LS ‘ww ‘3LVLST LUVLIS ‘el 21°ISpPY
(d3ILS “ww "Ivi “ed) 31eirsppv
*aN3

f(w MOUUD UOLSUBAUOD X3 [, )J0uu]
N3IHL Ae3o 10N 41
t(Aexo 'O ‘Jastey ‘Ivi)aisorpued

P(()1S11931e15aNeN)VI9NeN = ey
1(S94)301S817139aNS =1 ISt ayans
t(3sti9u)yzbuaast] = uaiIstLu
1(S24)340351738 = 3IStId4

t31VLS LYVLIS =: JOqUNNBIELS

t0 = J9QUWNNUDNOL

L(IUTBI UM

t(w V4aN BUlIONUISU0D, )BULUISEILUM
3513

t)UTdILUM t(, PBLLtEY BSued. )BULUISIILUM

N3IHL Aexo 10N 41

$(Ae¥0 *,3Indul3y. . JEHWRUDIY, ‘OWENS(t})
8t 43ndulasued

=. S84
THUIoILUM
t(w 3ndur Bursded, )BuLuISaLILIM

taN3J
taN3
TO)LIVH
TIUTDILIM
f(w H0UJd JudWUDLSSE X9, )BULUISDILIM
N3IHL Ae>3o LON 41
t(Aexo ‘sweno |ty “Bae)ubissy
*aN3
T()LVH
SHuNBI UM

$ (. SWA|QOUd IUBWNBUY BUL pUBWLWOD X3, )BUlJlisallam

. N3IHL (PunojioNdn = 3nsaydn) JI
t(3Lnsaydn ‘Bue °1)iIuswunbayian

00 4 - obue Q0L 4 =: ¢ HO4

Tuspxa] AN3I

$9iqe|uotLidyiutdd aN3

*aN3
L{HUTBILUM
1aN3
taN3
TE + JUNOD =: UNOD 3%713
e W )BULUISBILUM I (JUTIBILUM 10 =1 JUNOD

N3IHL OO < 3Iunod 41
(. )BULUISOILUM
O [0 ti)lxiarew 3)pJaedaytum
00 SUVHOXVW Ol SYVHOLAHVILIS =: + ¥O4
Q0 =: 3UNOD
e »)BULUISEYILUM
(O ‘[)puedaitum
00 S31v1S XVW Ol 31V1S Lavls =: [ ¥04
LIUTBILUM
$(.®, )BULUISOIL UM
*aN3
Tla W )BULUISBILUM D ((LIYHDDIBILIM
00 SYVHOXVW Ol SAVHOLYVIS =: + 04
Sl w)IBULUISBILIM
TIUTBI UM
(e @1QeL uoL1dY ., )BULUISDILIM
NI®3g

109



weuboudgxai an3d
taN3
‘aN3
t(dweu “vip)esajasaedanes
*aN3
T J0UJS UOLIBUBIBDUOD XB], )J04J3 NIHL Aexo JON d1
t(Aeqo ‘aweu °',saiqelvdiq . °‘SWeNa(!j)ieduo)

110



1103 ‘1703 ‘ulpesy ‘Jeydpeady LI0MWI OI31durS WOYA
1403 1Negag “iLnejagernen - Jod@ioedeynbuiiutudanataiay
‘30JBQUNNBABLUIBY ‘30231L1ISIX3SN ‘3J03NndiInQ
‘301S1ud3deURy) ‘j09dAL ‘jOosuolilsuedy ‘JO0J49QUNN
©*3pIsti@yeys ‘puayoeueypbuliutug ‘OdJaGUWNN ‘0409
‘puloa@ ‘puojisda ‘puaideueynBbutiutuduonN ‘Oud3rdedey)
‘Dyoafay °‘0Didaocoy ‘DadAi ‘Ouolitsuedy ‘0istiuolilsued)
‘093elrs ‘Distiaielrs ‘0Ovd .quomgmsomc_wc_gawxmz
‘usquNNaden ‘1StJuaidedeydd e ° Joddxen ‘ulosareyn
‘uo | tsdaaxen ‘i1dafayorden ‘'i1dadoyaden ‘uUoLl}tsuediaren
*3Istjuolltsueu|anep ‘33e1SaNeRN 1S1T91eISINCW ViKW
LYOdWI SO vewweudyd WOHA
NN - R REY YooY ]
‘9au]asuedanes ‘0apoNAIdw] *isiolspoNpuaddy ‘yibuaiist
‘Iuswa | JUIN .mm;mac:v.uc—ga>uuwga ‘@1t 43Induiasaued .
1A0dWI Ledududd WOY4
$IX3N
*31SJ14 ‘@231e31$319$33ug ‘Ijeisiasaew ‘91eisias ‘0iasAidwl
$3883uUtdd ‘3asuea|d ‘uorun '0SIBSIEDLIUSPI OAHJIBQUINW
$39SWOUINDIDDC ‘IBSUIMNUBIUI ‘335U ‘3}3SIAMEeNW 13§
130dWI ®|NPOWIaS WOY4
- tyoeygaauy
‘joeigadenw ‘OAIdwilondoels ‘dodridels ‘ysndrioeis ‘oeis
L30dWI 3 1NpOow»@oelS WOoY4
tJ43SOpJe) 'PURDOLJIIS LYOdWI 3IJ8AU0D WOY4
$31v2077v3aA ‘31VI01IV LYOJWI abeuoirs WOoy4
t3eouon *ubissy ‘yibua ‘3 nsaysdedwo) 'aduedwo)d

130dWI ButrJis wodd tJOUUd3 LYOdWI S LNPOWJIOJIJI] WOHL
tjuawnBuyiay ‘siuswnBuay3IQON 3 LNS3YdN tadAjButuls 130dWI sodAjeireq WOY4
130dWI wededxtun Wodd INIMOL™ LAVIS 403 "d0HH3 1YO0AWI SioquASaewwedd WOHA
(pUBIBYI UM ‘UDILUM ‘BULUISBILUM LYODWI INOUI WOY4 _'dOlS "7Ivd "uoi3dvian
t2dAj6uuis ‘apON LYOIWI SadAjeieq WONL *931e1SYQIXaNIad ‘3ILVIS LYVIS ‘S1geLuotidy ‘alqervd
tJdOUJ] LYOdWI SINPOWJIOJIJT WONAL 130dW] UaHx37 WOH4
tweubouduazAeuyxal 3INAOW ta8zA|euyxa] IINAOW NOTLVINIWIVIWI

‘J21Sea uosiaedwod adew O} 8pOD JO SUOL DSBS Butpuodsaduod ayy ubi e
01 paidwairie aAey amMm eyl 930N “3UBlu 33Ul UO SI (S4VYD SISN UDIYM) UOLSUBA MBU BY} Pu® 3133| 3Y} U0 St (SJvyD ul pasn)

UOISUBA PO 3Yl ‘J3ZARU®R |e3i1X3| 8y} JO SUOISJUBA MU Pue PO 3Yl Ylog J0j BPOD BDJUNOS Byl SULBIUOD UOLIDBS Styy

uostdedwo) J8zAjeuy |edLxa] 9

111



13Ul Uax0 1189 AN3
*(3utuaroiise] ) NianiLA
NID3g

PIVNIQEVYD () 8uluax013189H JYNA3ID0Ad

ta9zZAleuy O X832t |BLYLUL ON3
tL o= Uwn|ojudolilse|
th = autLjuanolisel
$h o= oUwn|ojuadol
'} =: 8ULJUSYO0}
NID39

$() 99z |euyieOixa13Z! |BLIIUL 3¥NAII0UJ

TIYNIQAVD ¢ uwn|ojudsojiise| ‘autquadiolise|
CIYNIQYYD @ uwn|OJUSX0)} ‘autuariol
‘Nv3100g9 @ Belddois ‘Be|jeran
tTYNIQYUVD : peEdyYy00|
IMYNIQYVD : Lte} ‘peay
t4934ng ¢ udIINQ
*Nv3Ip0g : 6el303
!SPON : V4P
‘Nv3T008 : Aexo
I}INSdY : }|INsod
3 INSAY4N I INsSaYydn
tadA16ButLuls

sweNd |14 ‘sweu ‘Bue ‘ulsS ‘uiS|tes ‘JISUIMO} ‘Bwensd|gel

$IYNIQavD ¢ uaxol ‘4 obue
dVA

PAVHO 1 () 3¥NGII0Yd = D04dindug
LAYHD 40 [SS3AAAV d43434NT XV O] Avddv = J33ing
P(LDNYLSNDD ‘dILS) = 3POW
"ALOLLN "3O0) = }INSIAY
JdAL

16GZ = SS3I¥AAV ¥3IH4NA XVW
(., .)QU0 = SUYHIXVAW
(., .)Qd0 = SYVHOLYVILS
ty = 403
10005 = dOiS
1T = 3LVLS LivisS
o= 1vd
10 = ¥Ood¥u3
1SNOD

fautLquanolian anN3
t{autLquarolisel ) NanLd
NI©38

PAVNIQAVD @ () |durqus»0j31an J3NAIJ0dd

tdgzAleuy DL X@192ZL eI} tUT (ON3I
t4o=! uwnpojuaolilse|

'y = BsuLuanojise|
IEo=ouwn | oJusnol
t} =@ aulqua3ol

NID3g

1) J48zZAleUyY|ROIX3T8Z) | BIIIU] IYNGID0Ud

SIYNIQYYD ¢ uwnojuanojilse| ‘aut juarolise|
SAYNIQaYD - CEJPOUmeOH ‘aut JuUaxol
‘NV3IN008 : Be|4dois ‘OBe|ieian
SIYNIQUVYD ¢ peayyxnoo|
TIYNIQYVD @ Lte} ‘peay
td334Ng 1 ud33NQ
*Nv31008 : Bei403
AVA

THVHD 40 [$S3d0av ¥344NG XYW O] AvHNV = 4333ng 3dAL

'g6T = $S3AAAV ¥3IL4NG XVW LSNOD

112



TIUNIQ¥YD : (@dAIBuLJ3S @ Bulu3sSuanol Yva
t9PON : vip
tooudindul : ueydian)

uSx0131XdN 33NA3II0YJ

Jd@3tw 1agpul AaN3
c{3Sv4d) NaNL3N
SAN3
*AN3
$(3Nnda1) Nian13y 3s73
1(3Sv4) NYNL3A t3STv4 =: Berdeisw NIHL Berderaw 41
N3IHL ((LTH)YHD < 2) ¥0 (., . > 2) 41
NID38

‘Nv3il008
(NV37008 @ Be| 4238 ¥VA 1¥VHD : O dVA)
493 twi |agpul 3JNA3IO0AJ

td33tuwe 130 AN3
*(3S7v4d) NinL3d

*AN3 f(3NdL1) NINLIY N3IHL ((LZVI¥HD < 2) ¥0 (., . => D) 41l
$AN3 1(3STvd) NINL3Y :3STVvY =: Bejdeian NIHL Berderaw 41
NID3g
tNV31008

(NV3008 : Be|d4eisw dVA ¥VYHD : O ¥YVA)
! J93 1wt |8d 33NA3O0¥d

$403 aN3
(403 = (3)Qy0) NiniL3d
NID38

*NV31008 : (¥vHO * D) 403 33nA3J0dd
taul JuUao | JuswaUdU]l (ON3
th =@ UWN{ODUSOY } + SULIUSNOY =:@ BuULJUSHHOL
NID38
1() suruaoliuswaddul JANAIO0Ud
tUWN | oJUSY013189 AN3I
(uuniojudolise| ) NANL3Y

NID38

PTYNIQYVYD () uwn|oJudx01318Y 33NJ3ID0Ad

!aigeluoL}dy : uotloe
) ‘aigeyvag - 3
1o0udgindul : 4eydian)
ua2x0L3IxX3N JJNA3IJ0Ad

433wt |2QPU3I AN3I
$(3Svd) NaNl13d
“aN3
tON3
$(3Ndl) NJNL3d 3873
1(3STvd) NJNL3IY 13STvd =: Berieiaw N3IHL Beideisw J1
N3HL ((LZH)¥HO < 2) A0 (., , > 2) 4I
NIO38

*NV3T008
{(NV31009 : Gey4e3alW dvA JVHD : O YVA)
4231w 12gPUl 33NAIO0YJ

Jdayiwl 18g ON3
$43STvd) NInL3y

AN 1(3NAL) NANLIY NIHL ((LZHIAYHD < 2) A0 (. , => 2) dI
tON3 :(3STV4) NanL3y :3STvy =1 Beljeisw NIHL Oeideisw J1

NIO38
’ *Nv3l0o0d

(NV3T008 : Fe|deiaw dVA SdVHO : D AVA)
4831w |80 33NA3I00¥d

t303 ON3
(403 = (2)Qy0) Ninl13y
NIDag

'NV3T008 ° (dvHO * 3) 403 33NQa300dd
18aUL (U0 JUBWBJOU] aN3

I =: UWN|OJUDMOI :| + BULIUSMOL =: BUl U340}
NID38

() sulquUexOoIuUBWSIOUT FANAID0Ad

tUWN|0JuUaxn0 1389 AN3
f(uunjogua»olisel ) NiaNL3y
NID38

CIYNIQAVD ¢ () Uwuno)ua»0138H 33NA3IJ0dd

113



'} + pesyyxoo| =: peayyxoo| 3513
t0 =: peayyrnoo|
N3H1 SS3¥0aV ¥344N8 XVW = Pesyy3ooi 41
‘[Peayvy%00| Judsying =: O
3s73
tpeay =: peayvyxoal
t{peayyno0o| juaiing =: 2
*AaN3
n_I+ peay =: peay 3sI3
10 =: pesy NIHL SS3I¥AAV 3344NT XYW = Pesay 41
t()Jeynisn =: [peaylusiing
‘aN3
oo LLNG JB333Ng :aeyludjingueds, jJoadjl
NIHL L1te} = peay 4]
N3IHL Pe3Y = pe3ayyxnoo| 4l
NI93g

FAVHD ¢ D dVA

YVHI ¢ () JeyddaiinguedS 33NAIDAYd

‘pPeayYY®007J844Ng1aS3Y AN3I

*an3

Y+ Lte} =@ peayyxo00l 3513

0 =: pPeayvxoo| NIHL SS3HAAV d344N9 XYW = Lte} 41
NI938

$() pesyyx0074a33ng31asSay 33NA3I0AAd

_ - *0Ardw3iaai4ng aN3
PC((SS3AAQY ¥344NT XVW = L!E}) ANV (O = Peay))
40 ((} + 1te3) = peay))
NanL3y
. NID38

~

‘NV3Taa9 : () 0Ardwiluasing 33NA3DAAd

DIVNIQYV) : uotrldovyse|
TIVNIQYVD © unodBut ulSuaxol
TIVNIQEYD ot

PIYNIQYV) e

*Nv310089 : 8auogiou

SAYNTIQHVYD @ 83e153uaddnd
SIVYNIQYVD ¢ Aunodueyd

¥VHO 1 12 D

. VA

¢ 0 =: peayyxo0|
N3HL SS330av 3344N9 XVW = Peayyxoo| 41
‘[Peayyn00| juasying =: O
35173
rpeay =: peayyxnoo|
![peayynoo| ]uassng = O
*aN3
‘b .+ pedY =: peay 3573
10 = peay NIHL SS3IVAAV d344NT XVW = Peay 4]
t()deynian =: [peayluaiing
*AN3

2. LiNS 4933NQ :JBYDJSSINTUEDS, ) 40IU]
CN3HL 1tey = peay 41
N3IHL pPesy = peayv®00| 41
NID3g
TYVHD ¢ D dVA

HVHD ¢ () J4eydJua3inguedS 3¥NA3IJ0Ad

$pPeayv30014a44ng18S3y aN3

*aN3

b+ LBy =1 peayyxo00| 3573

10 =: PeayVA®00| NIHL SSIAQQV A3IJ4NT XVW = Lrer 4I
NID39

S() Peayyx00J4e3NgIasSay IJNA3IAAd

:0Aydw3uajiing aN3
$(((SSIHAAV dIH4NG XYW = Lte}) ANV (O = peay))
340 ((} + Lied) = peay))
NaNL3Yy
NID38

'NV3009 : () OAydwluaziing 3¥NA3II0Yd

SAVNIQYv) : uotidvase|
PIVNIQAVYD : 3UNno)But u} SUaxnol
SIVNIQAEVYD ot
CIVNIQYYD e
!NV31Q0g : auogiou
PTIAIVNIQYVD  @3e3siuadadnd
SAVYNIQAEVD ¢ 3Iunojueyd
C¥4YHO ¢ 1D ‘D

dVA

CIVNIQUVD ¢ (2dAIBUL IS ¢ BululSuaxnol Y¥vA

114



NI93g

8dABuL a1 : J3sS

‘Nv3logg : o

CVYNIQAVD leutpued [ *u

‘SPON : U2 ‘3S1JYD ‘uotiiSued)} ‘SUOL}LSUBJ}
YVA

*IYNIQAVYD

(TVYNIQYVD @ ®31eis YvHO @ O SPON ' VdIP)

81B1SVI0IX3NI39 JANAIJ0AL

taeydIa34NgI8D ON3
$(9) NanL3y
t} o+ UWINOJUSXOY =: UWN|OJU O}
tfrrex]aasyng =1 O
*aN3
1aN3
'L + peayyxoo| =: pesayyxool 3S13
t0 =: peayyiool
N3IHL SS3¥AaV Y¥344N8 XYW = Peayydoo| J1
_ N3HL Peayy3oo| =.[te} 41
*aN3
$y o+ (1} =: (te} 3573
$0 =: (+e} NIHL SS3¥AQv d343Ng XYW = L11e} JI
:aN3

Y(()4eUd139) NINLIY 4 + UBN|OJUBNO} =: UWN|OJUSAO}

N3HL ()0Ardw3usizyng JI
NID33

TPVHD ¢ O HVA

YVHD ¢ () 4eydJua43ngian 3¥NAIO0AUd

tdeyndaiingind adN3

‘aN3
‘b o+ peay =: peay 3513
t0 =: pedy NIHL $S3JAAV_ ¥344N3 XYW = Peay JI
(o =: [peayldaiing
N NI938

S(YVHO ¢ D) Jeydudiingind 33NA300Ud

TdeyldainguedsS aN3
1(2) N¥NL3Y
*aN3
ON3

o4

N3HL SS

0 =: (tey

t(()9eYd1a9) NINLIY

0 =: peay

!

tJdeyndasingian aN3

$(2) N3NL3Y
1L 4+ UN|OJUd®0} =: UWN|0JUa30}
tfrrer]ao@iing =: D
*aN3
: tON3
+ peayyxoo| =: pesayyxo0| 3513
‘0 =1 pesyyrnoo0|

3¥0AV ¥344N8 XVW = Peayyxo0| 41
NIHL peayy3oo| = [te} J1
1aN3

fh_+ Lted_=: (re} 3573
N3HL SS3¥0av d343N8 XVW = Lte} dI
‘aN3

Lo+ UWNoJU30)} = UWN|oJus)0o}
. N3HL ()0A3dw3iuajsyng J1

NID93g

YVHO 1 D YVA

YYHD ¢ () d4eydda3iingilan 33Nag3d0dd

taeyoJuassnging anN3

*AN3
b+ peady =: peay 3573
N3IHL SS3¥aav ¥344ng Xxvw = Pedy JI
10 =: [peaylussiing
NID38

S(YVHD : 2) Lmswgwmwjmwjn 33NAQ3003d

tueyydayynguess aN3

(2) NiN13Y
‘ON3
*aN3
+ peayy)oo| =: peayy)ool 3s13

115



L(MO ‘LBULpJED ‘J3}S)PJeDOLJIS
t(J3S *((S)309dA1)303NdINQ) I0IBQUNNIASL UIIY
N3IHL ((s)3408dA1)Dr1dadoy 4]
‘((vd4P)301St121€1IS ‘D31EIS)IUBWALIYIN =: S
NI9®39

SIYNIQEVYD @ Leurpdaed
tadA1Buluis : J3s
‘Nv31008 : o
‘8PON : S

) AVA

TIYNIQAVYD ¢ (TVYNIQYYD @ @31eds :8poN : viP)
ndinp1an 33NQ3ID0AL

121235V 3IQ3XON1I8D QN3
*(teutpaed) Nini13y
. *ON3
1w JOUUB UOLSUBAUOD : 3INdINQ1dH, )JOoJdd3 NIHL MO0 LION 41
(%0 ‘Leurpued *41S)PJedo]|JlS
t(Jdys
*((((viP)3J0rStId31EIS '91E1S)IUBWA3YIN)II0}LNEIBQ)
. J0231e1S1xaN)
F0IBQUNNBABL U1 BY
‘ON3
*aN3
*ON3
‘(s»'2lQel peg @ U3OLIX8N, )40Ju3
N3HL (ud)puoltisda 415713
N3HL (u2)0402 41513
N3HL (ud)ouio@ 4IS13
1aN3
t(leuipded) NiaNL3A
taN3
nA s JOUJUD UOLISUDBAUOD u.JQu.JOu.wG.. VLOLLW
N3HL O 1ON 41
1(MO0 ‘Leutpded 'Juls)pJdedolJdlrs
(43S ‘(UOL3IISURUL)S0DIBISIXEN)
J0JIBQUNNDBABL UL BY
. N3HL [+]493s = DO JI
(43S *yd)ioudrdeuaeynbuljurudanardiray
N3HL (U9)OJdrd'ueyOBUtIULUg 4T
(3styo ‘f)iuswaiIauydN =: yd
00 (3stiudo)yrbuatasti oL + =: [ ¥O4d
t(uotitsuedl ) J0istidaidoedey) =: 1sYd
f(sSuotiisuedl ‘L)Iusdwad | 3IYIN =: uotltsuedl
0d (Suoriisuedl)ybuaiist] Ot + =: | ¥OA
(((vdP)403st]a1e1S ‘*231e1S8)IUBWS | JYIN)JOSUOLILSURIY
=! SuUOol}isuedy

116



t0 =! junojJeyd
‘e = uoL3loVyise|
*dN3
10 =: [3Iuno)Butruisuaxnoy JButuisuarnos
AN3 f()4eyDud4ngian =i 1O NIHL , .. = 19 41
t()d4eynuajiingiay =: o
11+ IUNODBULJUISUB®OY =: JIUNODBUL UISUSNO]
0Q lunojueys oL | =: t 04
NIHL J0du3 < e 41
*aN3
‘AN3
$3S7v4 =: 8suoQgiou 3513
$3S7v4 =: Be|jeisw NIHL Belijeraw i1
dolS - e =: e
N3HL d401S < e 4]
f(231e3S3Uuduund ‘y4p)IndinQisy =: e
1+ 3UNoOdJeYD =: JunojHJeyd
N3HL 1Ivd # 831eisSiuadddnd 4]
(331e3S51Uduund ‘D ‘yY4p)@3eISVIJIXSBNIDY =@ 23eisiusaaund
0Qg auogiou
aNv (Bel Jeisw °*S)us3rtwt (8gPuU3l 1ON ANV (2)303 1ON I1IHM
*ON3
t()4eydueingueds =: O 3NYL =: Be|deisw NIHL ., = O 41
- t0¥Y3 =: uoilIdyise]
t3NYL =: Buogiou
131V1S LYVLS =: ®3eISIUIIUIND
0 =: 3uno)bul uisuarnoy
0 =:! 3UNojJeyd
*aN3
t()Jdeygualnguedss =: O (D)J4eydudiingind
N3HL (2)3403 ION 41
*AN3
L()9eylua33ing1dy =: o
0a (Be|deiaw ‘'DO)ua31twi 130 ANV (2)303 LON 3TIHM
ON3
1()4eydua34ngIan =: O 3Nyl =: Bepjersw NIHL .., = O 4I
AN3 f()Jeydua3sngIan =: O N3IHL (2)303 LON 4dI
*AN3 :(403) NinL3da N3HL Berdy03 41
t()peayy»o0Jaiingl1asay

lauLJuUeNo} =: Buljuaxojllse|
luWN | O0JUaX%0} =: UWN|OHUBXNO0|}Se|
NID38

'indinpisy an3l
*aN3
$(Joy¥¥3) NanL3y 3sS3
t(leutpuyed) Nan13Y
1aN3
uA=.LOLLw UO L SUBAUOD ¢ WJQFJO«wO:dLOLLm
N3HL %0 1ON 41

0 =L lunojddeyd

‘e =:. uolLlovise|
‘QN3
Y10 = H«csoumc¢gumcmx0u_mc_gumcwau
QN3 - )eeyDuad3yng1ay =: 0 N3IHL , .. = 1D 41
tg)ydeynualingiay = 10
Do+ IUNOOBULUISUBYNOY =@ IUNOJBUL UISUSNOI
0Q 3unojueyd 0L | =: | JO4d
N3HL Joxua3 < e 41
*QN3
*aN3
13S7vd4 =: 8uogiou 3573
13Svd =: Berjeirsw NIHL Be|djeirsw 4JI
‘dolsS - ' =!: ®©
N3HL d0LS < e dI
2(81e353ud4und ‘D 'uotiorjuoLIOVYIdYH = e
b+ unojueyd =: JjunojHuaeyd
N3HL 1IVvd » ®3eisiusaudnd 4f
uavaumwchLJU i) .H-@«MwW<DuX@Z«®O =! 3}LeIgIusdand

0Q 3auogiou

ONv (Be(deiaw 'S)u33twi2gPul LON GNV (2)303 LON 3ITIHM

‘aN3

t()deypuazingueds =: D 13NYL =: Ber4eisw NIHL .., = O 41
tY0yy3 =: uoLdyise|

3NAL =: Buogiou

P3LVLIS L¥VLIS =@ 831e3ISIusJund

*0 =: 3uno)Bbutiuisuaxnol
Q0 =@ IUNoOJueyd

*aN3

n.vLNSULWw$3mCMUm = D u.U'LNCUwamevll
N3HL (2)3403 L1ON 4I

tON3

UA-LNSULWw$3m~wO =: 2
00 (Beldjeiaw 'D)usrtwi 130 ANV (9)303 LON ITIHM
'AN3

()deyouayyngian =: o 3NYL =: BedeidwWw NIHL ., _., = O 4JI
PAN3 ()deydud33NgIan =: O N3HL (2)3403 LON 41

!AN3 :(403) NINL3Y N3IHL Be 403 41
1{)PE3aYYY00TUB4INGIBS3Y

tauULIUBY0)} =: ButluedojlIse|
tUWN|OJUd%0} =: UWN|OJUdNO]3Se|
NI938

117



1L o= peayyrooy

0 =i (e}

L = peay

SIUTBILIM

t{w-uoL}eZLl |BL}IIUL, )BululSa}tum
NID39

tJeyd31a aN3
*aN3
t{2) NiyNL3IY¥ 3513
$((403)3HD) NaN13¥ N3HL ()103 418713
AN (D) NANLIY¥ 3ST13 ((403)¥HD) NiNL3IY N3IHL ()103 4I
"»OvaU =: 2
)upeay
L )DULUSX0 1 IUBWBUDUL
N3HL ()103 LON GONV ()103 41

t(9)deyspesay ‘a9zl jeuyxal aN3
NID38 . $3Svd =: Bejqeran
t3s1v4 =: Beijo3
THVHD ¢ O HVA L =i, peayvioo|
!0 = 11e}
SAVHD () Jeydian 3ANA300dd bo=: peay
- NID3g
SUBYOLIX3N AN3 . fU3MO1I%XSN ON3I
t(uotiovisel) NiINL3A t(uotidoyise|) NaNniL3y
*AON3 : *ON3
taN3 taN3
t3ndl =: Bepdpl 3s73 : 3Nyl =: Beypipl :3513
$(403) N3N13Y N3HL J0¥Y3I = uoridyisel 4l 1(403) N3NL3Y¥ NIHL d0d¥3 = uorldvise| 4l
N3HL ()0A3dwiuayyng gNV (2)303 I N3HL ()0AIdw3uajlyng ANV (2)303 dI
L(0)UHD =: [+ + IunodButdisuarnoy Jbuldisuasol T(OYHHD =: [+ + uno)BbulJisuarnoy JBut aiysuarioy
‘ON3 ‘ON3
taN3 *aN3
aN3 ‘aN3
3Nyl =: Bejd4dois 35713 3NYL =: Bejjdois 3573
ty = IUNOJOBUL JISUIN0Y =: JuNOoJBuUL UISUSNHO) o~ 3uno)dBurJdisuarol =: junoj)buidisuarol
N3IHL + < 3unodBuiulsuaxnol} JiI NIHL | < 3unojbutalsuarioy 41
0Q (6ejjdois 10ON) 00 (Be|jdois LON)
ONV (. . = [3unodButdisuaxol J6ula3sSusaxol) ITIHM aNv (. . = [3unodButaisuaxoy J6utdisuarol) ITTHM
t351v4 =: Be|jdoys t351y4 =: Beyjdoirs
N3IHL O < 3IunodButJisuaroy 4I N3IHL O < 3junojbutJisuaxoy JI
*aN3 H\E]
SON3 N3
$387v4 =: auogiou 3573 ’ $3S7v4 =: auogiou 3$713
1aN3 *ON3
“AVLNSULm¢¢3mcuum =: 2 umeh = mN—uwumE HA-LNIULWWWDWCNUW =: 2 ”quh =1 mw—uwumi
N3HL \.\Homm N3IHL \.~H0m~
t{)Jeypdaszyngueds =: O 1 )4BYyOue 3 NguURdS =: 2

R fONI - ‘aN3

118



‘weubouaduazAeuyxa| gN3
*aN3

*aN3
S{dISUINOY V4R TJBYDIBHIUMDOLIXON =: U0}
P(IUNBILUM
P(a W )BULUISOYILUM
t(43SUa0} )BuLUISBI UM
{,:BULAISUB®O0Y, )BULUISDI UM
1(0 ‘U8%0} )pURIDILUM
t(w 1UD%03, )BULUISBLILUM

00 d0dYI # U0} ITIHM

$(435UX01 'V4P ‘deyDIBH)USHOLIXAN =: U0}
BT RERNNT.)

t(o stsAteuy, )Butdysaltum

t(BWweNa e} )89u13SuedudAoday = vip

LEIUTBILUM
t(as'S3lgel Buidsaooay, )Butdl1saltdm
{()49ZAtRUY |BDLI XDTIZ | @I IU]
1ON3
*ON3
() LvH
SR CIENT ]
f(a d0dud JuDWUBLSSE X3, )BUlulSaltum
N3HL Aexo 10oN 41
t(Aexo ‘awene|qe) ‘Bue)ubissy
*aN3
*()LvH
HUBY UM

$(ao SWIQoJd IUBWNGJIY BUL] PUBWWOD X3|, )BulJiSelLum

N3HL (punodloNdn = 31|nsajydn) 41
t(3Itnsaydn °*Gue ‘})iuswunbuyian

0d ¢+ - o6ue QgL + =: t 304
3573
SIUTIBILUM
$(w ®Lt43ndIn0< Bt 4Indul> @t gatqel xa| :abesn,)
Butuisartum
N3HL T > o6de 4]
t{)si1uawnbuyiQoN =: 2Bue
$357v4 =: Be|djeran

t357vd =: Be(403

119



REFERENCES

[AhoUll79]
Aho, A. V., Ullman, J. D., Principles of Compiler Design, Addison-Wesley, (1977).

[BaShSag84]
Barstow, Shrobe, and Sandewall, editors, Interactive Programming Environments,
McGraw Hill, (1984).

[Cam86]
Cameron, Robert D., "Source Encoding using Syntactic Information Source Models",
LCCR Technical Report 86-7, School of Computing Science, Simon Fraser
University, (Sept. 1986), 24 pages.

[Cam87al
Cameron, Robert D., "Prettyprinter Abstraction Using Procedural Parameters”,
LCCR Technical Report 87-4, School of Computing Science, Simon Fraser
University, (Feb. 1987), 10 pages. :

[Cam87b] . ’
Cameron, Robert D., "Pascal MPS Manual", School of Computing Science, draft
Simon Fraser University, (1987).

[Camlto84]
Cameron, Robert D. and Ito, M. R.. "Grammar-Based Definition of
Metaprogramming Systems", ACM Transactions on Programming Languages and
Systems, 6-1, (Jan. 1984) pp. 20-54. '

[Don83]
Donzeau-Gouge, V., Kahn, G., Lang, B., Melese, B., Morcos, E., "Outline of a
Tool for Document Manipulation”, IFIP, Paris, (Sept. 1983).

[Don84a]
Donzeau-Gouge, V., Kahn, G., Lang, B., Melese, B., "Document Structure and
Modularity in Mentor", SigPlan Notices, 19-5, (May 1984) pp. 141-148.

[Don&4b]
Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B., "Programming Environments
Based on Structured Editors: The Mentor Experience", Interactive Programming
Environments, ed. Barstow, Shrobe, and Sandewall, McGraw Hill, (1984).

[EhMa8g5]
Ehrig, H., Mahr, B., Fundamentals of Algebraic Specifications 1, Springer-Verlag,
(1985).

[Ghedaz82]
Ghezzi, C., Jazayeri, M., Programming Language Concepts, John Wiley and Sons,
Inc., (1982).

[Go8&4]

Gorman, Michael M., Managing Data Base: Four Critical Factors, QED Information
Sciences Inc., (1984).

120



[HeeKIli85] ‘
" Heering, J.;, and Klint, P., "Towards Monolingual Programming Environments",

ACM Transactions on Programming Languages and Systems, 7-2, (April 1985), pp.
'183-213.

[HerLis82]
Herlihy, M. and Liskov, B., "A Value Transmission Method for Abstract Data

Types", ACM Transactions on Programming Languages and Systems, 4-1, (Oct.
1982), pp. 527-551.

[He86]
Heuring, V. P., "The Automatic Generation of Fast Lexical Analysers”, Software
Practice and Experience, 16-9, (Sept. 1986), pp. 801-808.

[Lamb87]
Lamb, David A., "IDL: Sharing Intermediate Representations”, ACM Transactions
on Programming Languages and Systems, 9-3, (July 1987), pp. 297-318.

[Lin84]
Linton, Mark A., "Implementing Relational Views of Programs", SigPlan Notices,
19-5, (May 1984), pp. 132-140. '

[Moss86]
MossenBock, H., "Alex - A Simple and Efficient Scanner Generator", SigPlan
Notices, 21-12, (December 1986), pp. 139-148.

[Opp80]
Oppen, Derek C., "Prettyprinting", ACM Transactions on Programming Languages
and Systems, 2-4, (Oct. 1980), pp. 465-483.

[Pag81]
Pagan, F. G., Formal Specification of Programming Languages, Prentice-Hall, (1981).

[PeSi83]

Peterson J. and Silberschatz A., Operating System Concepts, Addison-Wesley,
(1983).

[PolSte80] '
Pollack, S. V. and Sterling, T. D., A Guide to Structured Programming and PLII,
3rd edition, Holt, Rinehart and Winston, (1980).

[PurBro81] .
Purdom, P. W., Brown, C. A., "Parsing Extended LR(k) Grammars", Acta
Informatica, 15-2, (1981), pp. 115-127.

[Rub83]
Rubin, Lisa F.. "Syntax-Directed Pretty Printing", IEEE Transactions on Software
Engineering, 9-2 (March 1983), pp. 119-127.

[Sun8&5]

External Data RAepresentation. Protocol Specification, Release 2.0, Sun Microsystems
Inc., Ca., (1985).

121



[TeiReps81]
Teitelbaum, T., Reps, T., "The Cornell Program Synthesizer: A Syntax-Directed
Programming Environment", Communications of the ACM, 24-9, (Sept. 1981),
pp-563-573.

[Wir85]
Wirth, N., Programming in Modula-2, Third, Corrected Edition, Springer-Verlag,
(1985). ,

[Wood86]
Woodman, M., "Formatted Syntaxes and Modula-2", Software - Practice and

Experience, 16-7, (July 1986), pp. 605-626.

122



INDEX

A Discussion of Related Work, 9

Abstract, iii

Abstract Data Types, 1, 12

Access Routines, 47

Acknowledgements, iv -

An Overview of the Field, 9

Appendix A: The GRAFS User Interface, 76
Appendix B: Example Lexical Analyzer Grammars and Grammar Interfaces, 84
Bootstrapping, 42

Conclusions, 73

Conclusions and Further Research, 73
Databases and Data Dictionaries, 9
Dedication, v

Description of the Research, 7

Designing a MetaGrammar, 27

Direction of Research, 24

Evaluation, 67

Expressive Power, 23

File Data Types, 2

Finite Automaton Grammar, 87

Finite Automaton Support Routines, 89
Further Research, 74

Generation of Grammar Routines, 76
GRAFS Formalism, 27

GRAFS Formalism and Implementation, 27
GRAFS Implementation, 42

GRAFS Prototype Evaluation, 62

GRATFS Rules: Syntax, Semantics and Raison d’Etre., 30
Historical, 13

Introduction, 1

Lexical Analysis, 43

Lexical Analyzer Comparison, 111

Lexical Generator Comparison, 91
Metaprogramming, 12

Motivation for this Research, 5

Observations, 64

Parsing, 44

PrettyPrinting, 54

Programming Environments, 11

Prototyping a Lexical Analyzer Generator, 62
Recent Work, 14

References, 120

Regular Expression Grammar, 84

Regular Expression Support Routines, 86
Related Work, 13

Results, 71

Structured File Input and Output, 57

The Complete Address Book Example Grammar, 59
The GRAFS Conceptual Model, 18

123



The GRAFS Metagrammar, 80

The Parser/Lexical Analyzer Interface, 45
Thesis Structure, 7

Type Checking, 56

User Interface, 56

Using the GRAFS Subroutine Interface, 78

124



