
GRAMMAR-BASED FILE STRUCTURE

Brian William Terry

B.Sc.(Hons.), Simon Fraser University, 1985

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

Brian William Terry 1987

SIIVIOK FRASER UNIVERSITY

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Brian William Terry

Degree: Master of Science

Title of thesis: Grammar-Based File Structure

Examining Committee:

Chairman: Dr. Wo-Shun Luk

Dr. Robert D. Cameron
Senior Supervisor

Dr. M. Stella Atkins - '
External Examiner

DateAppl-oved: N O V E M B E R 1 3 , 1 9 8 7

11

PARTIAL COPYRIGHT LICENSE

I hereby g ran t t o Slmon Fraser U n i v e r s l t y the r i g h t t o lend

my thes is , proJect o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ibrary, and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o the r un ive rs i t y , o r o ther educational I n s t i t u t i o n , on

i t s own behalf o r f o r one o f I t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in sha l l not be al lowed

wi thout my w r i t t e n permission.

Author: - - - -

(s ignature)

ABSTRACT

A grammar-based specification of logical file structure is described. Logical file structure is

the structure that the contents of a file appear to have from the user's point of view. Physical file

structure is the way that the file is actually organized. Separating the two is useful because the

details of physical storage are irrelevant to the user view, serving only to complicate matters, and

because physical storage must be protected from misuse.

A conceptual model of a grammar-based file system is introduced and a prototype

implementation is explored. The programmer specifies the logical structure with a context free

grammar. The required interface routines (constructors, recognizers, selectors, parser, unparser

(pretty-printer) and structured file 110) are generated automatically from that grammar. Data

structures are manipulated by means of this generated interface and can be written to and read

from files, in structured form. to avoid the cost of unparsing and parsing.

The research is aimed a t demonstrating the feasibility, applicability and productivity of this

grammar-based approach. Specifica!!y, we hatre constructed a prototype grammar-based system

and have used it in an example application.

iii

ACKNOWLEDGEMENTS

My senior supervisor, Rob Cameron, provided me with inspiration, support and guidance.

Thanks, Rob. I also thank my examining committee, Lou Hafer and Stella Atkins, for their input

and criticism of this work.

One of the great pleasures of graduate school is the people that one meets. I am indebted to

several people in the computing department. Two in particular need to be acknowledged.

Discussions with Mike Dyck helped me to understand parsers, and almost everything else of

significance in GRAFS. Both Mike Dyck and Ed Merks were kind (and masochistic) enough to

proofread this thesis. They will both make great senior supervisors someday.

Several people had no direct input into this thesis work but had a great deal to do with my

remaining functional. In particular, Jon Forsberg and Peter Mulhern were friends when I needed

them.

DEDICATION

To the two ladies who made it all possible, my wife Sylvia, and my mother Gladys.

TABLE OF CONTENTS

.. Abstract iii

... List of Tables .. ix

List of Figures ... x

1 . Introduction ... 1

Abstract Data Types .. 1

File Data Types ... 2

1.3 Motivation for this Research ... 5

1.4 Description of the Research ... 7

1.5 Thesis Structure .. 7

2 . ' A Discussion of Related Work .. 9

2 . i An Overview of the Field ... 9

.. 2.1.1 Databases and Data Dictionaries 9

2.1.2 Programming Environments .. 11

2.1.8 Abstract Data Types .. 12

2.1.4 Metaprogramming ... 12

2.2 Related Work ... 13

2.2.1 Historical ... 18

... 2.2.2 Recent Work 14

3 . The GRAFS Conceptual Model ... 18

3.1 The GRAFS Conceptual Model ... 18

3.2 Expressive Power .. 23

3.3 Direction of Research ... 24

4. GRAFS Formalism and Implementation 27

... 4.1 GRAFS Formalism

4.1.1 Designing a MetaGrammar ..
......... 4.1.2 GRAFS Rules: Syntax, Semantics and Raison d'Etre

... 4.2 GRAFS Implementation

4.2.1 Bootstrapping ...
4.2.2 Lexical Analysis ... i

.. 4.2.3 Parsing

4.2.4 The ParserLexical Analyzer Interface
4.2.5 Access Routines ...
4.2.6 Prettyprinting ..
4.2.7 User Interface ...
4.2.8 Type Checking ..
4.2.9 Structured File Input and Output ...
4.2.10 The Complete Address Book Example Grammar

S . GRAFS Prototype Evaiuation ..
5.1 Prototyping a Lexical Analyzer Generator ...
5.2 Observations ..
5.3 Evaluation ...
5.4 Results ... 71

6 . Conclusions and Further Research ... 73

.. 6.1 Conclusions 73

6.2 fur the^. Research ... 74

Appendix A: The GRAFS User Interface ... 76

1 Generation of Grammar Routines .. 76

2 Using the GRAFS Subroutine Interface ... 78

vii

...................................... 3 The GRAFS Metagrammar .. 80

............. ~ ~ ~ e n d i x B: Example Lexical Analyzer Grammars and Grammar Interfaces 84

.. 1 Regular Expression Grammar 84

........*...................... 2 Regular Expression Support Routines ... 86

3 Finite Automaton Grammar ... 87

4 Finite Automaton Support Routines .. 89

.. 5 Lexical Generator Comparison 91 .
X

6 Lexical Analyzer Comparison .. 111

... References 120

... Index 123

viii

LIST OF TABLES

Page

1 Cornparsion of Lines of Code in the Lexical Analyzers. 70

LIST OF FIGURES

Figure Page

The GRAFS System Structure ...
The GRAFS Generator Structure ...
Construction Rule Syntax ..
Construction Rule Example: Address Book Record ...
Construction Rule Example: Address Record ...
Alternation Rule Syntax ..
Alternation Rule Example: Name or Initial ..
Repetition Rule Syntax ..
Repetition Rule Example: Address List ...
Lexical Rule Syntax ..
Lexical Rule Example: Initial ...
Lexical Class Rule Syntax ..
Lexical Class Rule Example ...
An Example Modula-2 'Make' Routine ..
An Example Alternation Rule Predicate Routine ..
An Example Selector Routine ...
The Complete Address Book Grammar ...

A Simple Modula-2 Record ...
GRAFS Construct of the Figure 18 Record ...
GRAFS Storage for Figure 19 ...

CHAPTER 1

INTRODUCTION

This thesis presents a study of the application of grammar-based techniques to the

specification, implementation and instantiation of logical file structure. We begin with a discussion

of abstract data types and then apply this concept to the storage of structured information in files.

The result is the idea of a file data type and a system to support the use of such a type. This is

followed by some reasons motivating the research into this class of system and a discussion of the

research work. An outline of the thesis structure concludes the chapter.

1.1 Abstract Data Types

A data type is a set of the values and the operations that may be used to manipulate those

values [GheJaz82]. Abstract data types (ADTs) are types that define values and operations

independently of implementation issues. An instance of a type is an object whose value is in the

value domair, of that type and iniiy be manipulated by the operations vaiid for that type. For

example, consider the distinction between the type INTEGER, which is not a manipulable object,

and a variable of type integer, which can be manipulated tor operated upon). It is probably more

correct to consider type as an attribute of a variable rather than a variable a s an instance of a type

since in languages that allow dynamic binding or are weak]? typed, the type of' a variable is not

necessarily constant. However, for the purposes of this thesis we can view a variable's type as

unchanging and the variable as a n instance of that tvpe.

The intention of ADTs is to separate the essential characte~.istics of a type from the details of

its implementation. For example, consider a list type. We want 1.0 be ablc to appl!. r.etrwvc.. add,

remove, etc., operations to a list. A s long as these ope~~ations are possible. correct. and expedient.

then the techniques used to implement the list are not immediately important. Thus, ADTs

a concept from its implementation.

Creating and using an ADT consists of the steps: specifying the abstract structure,

specifying the required operations, implementing the required support routines, creating instances

of the data type and inserting and retrieving information. A typical ADT specification is in a

natural language (e.g. English). The operations are designed and implemented in an ad-hoc

manner as the need for them arises. The set of operations may not be complete and may not

provide a consistent interface unless the programmer is thorough. The notion of completeness is a

relative one, as a set of operations is complete with respect to some property. An interface is'

consistent if it is possible for a programmer to predict the syntax and semantics of an element of

the interface (a particular subroutine for example) from a knowledge of the conventions used to

create that interface.

1.2 File Data Types

Files store information and may be thought of as an ADT [PeSi83]. The user view of file

structure is usually different from the physical file structure. We say "usually" because in some

cases (notably UNIX) the file structure that is seen by the user map not be much diflerent from the

underlying structure. The details of mapping the user view to the physical reality are handled by

the file system. It. is this abstract to concrete mapping that we are investigating.

The user view of a file that is provided by a file system is sometimes referred to a s the logical

file structure. In the context of this thesis, we prefer to think of this structure as n logical file

structure. rather than the only one. The reason is that the logical file structure that is povided by

the file system is. typically. different from the the logical structure that the programmer wishes

that the file system had provided. In other words, a file may have several levels of logical

stl,ucture, depending upon who is doing the stiwcturing. This situation is highlighted by

pointer-linked data structures. If the programmer wants to perform 110 on such entities, he is

F
forced tO construct special routines on top of those provided for basic 110.

This thesis considers the use of context free grammars (CFGs) to specify the logical file

structures that users see. Given a specific syntactic structure for files, determined by such a CFG,

a set of operations on the files is defined as an ADT. This ADT is called a File Data Type (FDT).

We will refer to instances of FDTs as structured files.

CFGs are well-suited to the specification of logical file structure for two reasons. First of all,

they allow for the definition of files of arbitrary complexity. For example, using a CFG for a given

programming language, an FDT can be set up for the programs of that language. Such programs

typically have a very complex logical structure which cannot otherwise be easily dealt with.

The second reason for using CFGs in defining FDTs is that they can provide a

human-readable form for the structured data. This is, of course, essential for the FDTs which are

defined for the input and output of application programs. Furthermore, programmers can benefit

from using such FDTs for storing and retrieving intermediate data structures as well; the ability to

view and edit such intermediate files can be quite useful.

Let us consider how to support FDTs. We need to consider the following questions. First,

how can FDTs be specified? Second, how can information be inserted into and retrieved from an

instance of some FDT? Third, what is the scope and lifetime of the FDT and the information that

its instances contain? We will deal with these questions in that order in the following paragraphs.

Before considering how to specify FDTs, let us look a t what we want to specify.

Programming languages provide data description mechanisms that are composed of two kinds of

entities. The first kind are primitive types such as integer, character and real. The second kind

are aggregation mechanisms such as structures. ~ r a y s . and unions fiw static. data structure

constlwctlon, and pointers to handle dvnamic data structure const~ucalon. As these are the usual

mechanisms available in a general purpose language for the construction of FDTs (and they appear

to be sufficient), they are the ones that we wish to specify. This is expanded upon in Chapter 4.

What kinds of support routines are required? The answer lies in an investigation of the

kinds of things that we want to do with an FDT and its instances. These things can be classified as

internal (memory resident) operations or as input/output WO) operations.

Internal operations are those that are primarily concerned with the manipulation of

instances of FDTs. The creation of a specific instance of an FDT, the selection of a particular

component of an instance, and the determination of whether or not a given instance is of a

particular type, are internal operations that are peculiar to a specific FDT. These operators

(subroutines in the implementation) are called constructors, selectors, and predicates.

Constructors are used to create instances of FDT components. Selectors are used to select specific

components of instances. Predicates are used to check the type of FDT components. Some editing

operations (such a s replacement, deletion, and insertion of components) are examples of internal

operations that can be generic, that is, not specific to any particular FDT. In a grammar-based

system, this collection of operators has the properties that any syntactic element (synta,sm) of the

langsage generated by the source grammar, can be constructed, and emeiene run-time checks can

ensure that only correct syntactic structures can be constructed [CamIto84].

110 operations transfer information into and out of structured files. Implicit in these

transfers is the convei.sion of the data from one representation to another. For example. parsing a

character stream representation to produce a parse tree representation. The reverse process

consists of taking the instance and converting it into a format that is required elsewhere. It is

extremely useful to plwluce a human-readable output of'the contents of stlwtui.ed file.

We have considered, in general terms. the kinds of support and manipulation facilities that
\

might be required. Can they be generated automatically? That is one of the yuestions that this

research addresses.

During the discussion of support routines, we saw how information might be inserted into

&d retrieved from FDT instances. That is, through the offices of the internal manipulation

routines or via the I10 operations. The precise details of how this is to be effected are be described

in later chapters.

The third question that we want to discuss is that of the scope and lifetime of an FDT and its

instances. The scope of an FDT is where it may be used and its instances may be accessed.

Lifetime is the period of time that a particular FDT and its instances are available to be accessed.

One of the purposes of this research is to consider the storage of structured information. Stored

information can have a lifetime that is greater than the execution time of any one program or set of

programs. Files can also have such lifetimes.

Since this structure is grammar-based and files are used for storage, we are discussing

grammar-based file structure and grammar-based file systems (GRAFS).

1.3 Motivation for this Research

The primary inspiration and motivation for the use of grammar-based specifications is

GRAMPS t GIt.4mmar-based MetaP~xgrarnm ing Scheme) 1 Cam1 to841. GRAMPS stands for

GRAmmar-based MetnProgramming Scheme. It has been used to create metaprogramming

systems for both Pascal and Modula2 [Cam87bl.

Several other researchers have investigated systems that are oriented around structured

information. Donzenu-Gouge e t al. [DoncSS, Don84a, Don84b1, have developed MENTOR. a

system for handling structured documents. MENTOR uses a sorted algebra to specify structure

and a specialized language. MENTOL, to manipulate that structure. Teitelbaum and Reps have

investigated syntax-based programming environments and implemented a system called tht.

Cornell Program Synthesizer [TeiReps81]. Lamb has looked at description techniques for sharing

data representations between programs [Lamb87]. This has been implemented in a system called

IDL which appears to have reached the level of performance required for production use.

In the previous section, the comment was made that we needed a notation that would allow

us to specify FDTs and to fad i ta te the automatic generation of the support routines and tables.

Why would we want this? There are several reasons.

First of all, FDTs are useful from a software engineering standpoint, but are somewhat -
tedious to implement completely and consistently. If support routines are generated automatically

then programmers will likely be more inclined to use them. The automatic generation of support

routines has a number of related benefits. Automatic generation of code results in less

implementation effort. Less programmer time spent on implementation of FDTs results in greater

productivity, both in terms of an increased amount of programmer output and in a decreased

number of machine cycles spent implementing each application. Increased use of FDTs should also

have benefits with regard to program maintainability and reusability. The FDT specification is the

real source of the support routines. If it is changed then the updated support routines are

generaked autematical!y with nc chance of missing something important. FETs can provide a

complete and consistent interface that may be usable in several different projects.

The ability to store information in structured form avoids the necessity for the lexical

analysis and parsing of data each time it is needed. Lexical analysis and parsing are expensive

and as much as 50% [He861 of program execution time can be taken up by lexical analysis. There

is also an increased potential for storage compaction [Cam86].

A grammar-based FDT system has the utility of a swiss army knife. Many applications fall

into the input-process-output, category. They are either concerned with the manipulation of

instances of one FDT or with transformations from one FDT to another. I t is not the intention to

suggest that such a FDT support system would be the greatest thing since sliced bread, however,

the uses to which it might be put seem limited only by the imagination.

1.4 Description of the Research

The intention of this research is to consider the feasibility of constructing GRAFS and the

applicability and productivity of this approach. As is perhaps obvious from the above, the research

has two stages. First, we implemented a prototype GRAFS, and second, we used it to evaluate the

capabilities and limitations of this kind of system.

The implementation of GRAFS consists of a generator and a subprogramming system

interface. The generator takes an FDT specification as input, and produces lexical analyzer tables,

parser tables, and selector, constructor and predicate subroutines. The FDT specification is a

context free grammar. Programmers then write application programs using both the interface

specific to each FDT, and the general GRAFS interface. A detailed description of the GRAFS

system and its use is given in Chapter 4 and Appendix A. An example GRAFS application

appears in Chapter 5 and Appendix B.

1.5 Thesis Structure

Chapter 2 contains a discussion of the body of work related to this thesis, shows how

previous work has motivated GRAFS and discusses how GRAFS differs fiom that previous work.

It also shows how GRAFS research relates to various fields of computing science.

A detailed discussion of the research and the conceptual model of GRAFS is given in Chapter

3. We present a general model of how GRAFS-style systems can be structured and show how the

prototype implementation fits into this model.

Chapter 3 discusses the GRAFS fi)rmalism and implementation. The design of the GRAFS

metagrammar is discussed and the syntax and associated semantics of' the major GRAFS

grammar rules are introduced. The GRAFS prototype implementation is dissected and each part

is discussed with respect to design details, considerations and decisions.

An example application of GRAFS and an evaluation of that example are given in Chapter 5 .

Finally, Chapter 6 concludes this thesis with a discussion of what has been learned from this

implementation of GRAFS and some directions for further work.

CHAPTER 2

A DISCUSSION OF RELATED WORK

Give a man an inch and he wants a foot, give a man a foot and he wants a yard, give a
man a yard and he wants a swimming pool installed in it. - Alfred E. Newman.

This chapter is intended to acquaint the reader with both where this research fits in the

realm of computing science, and what other related work has been done. The chapter is divided

into two parts.

The first part contains a discussion of the routes that one might take into this research. This

area lies a t the boundary of several areas of computing science. Therefore it is possible to find

one's way into this work from several different directions, each with its own motivations.

The second part contains a survey of related work. It provides the reader with a background

for this research. and shows how other work motivates this thesis.

An Overview of the Field

This section begins with a map of the area in which GRAFS lies. We will discuss some of the

areas of computing science from which a researcher might find his way into the area of this thesis.

2.1.1 L)atc~bascs und Data Dictionuries

Database work is partially concerned with separating the information contained in a

database from the way in which that information is stored. The idea is that the person that is

interested in retrieving information need not be concerned with the details of the location of

information or the format in which it is stored. In the same vein. programs interfaced to a

database should not have to be modified just because the databast* administrator decides. fbr one

reason or another, that. the internal organization of the database must be modified CGo841.

The need for independence of data from physical storage has lead to a quest for notations,

interfaces and structures that support the separation of the structure a s it appears to the user and

the structure as it is actually implemented. That is, the separation of the design and

implementation of the physical database from that of the logical structure seen by the user.

Providing users with a notation for logical structure and a consistent interface integrated with that

notation gives a basis upon which to construct database systems. Given that the interface remains

constant, the implementer or system administrator is free to make whatever internal changes that

he deems useful. I t is just this kind of notation and interface that GRAFS is intended to provide.

Database theory and research is concerned with the relationships between data, and the

independence of those relationships from the way that the data is stored. GRAFS is oriented

towards individual files and the abstractions they represent. A set of access routines

(constructors, predicates and selectors) is provided by GRAFS, but the purpose of the logical

structure is beyond the scope and the interest of the GRAFS system. A database system might

well be implemented using GRAFS routines a t the lower levels.

It, z a y sometimes be preferable to work with a grammar description of a data object rather

than using a relational model of that object. For example, consider a class of entities that are

naturally described by grammars, programming languages. It is very difficult to separate the

notion of grammars from the description of the structure of programming languages. Thus it. may

be more natural to use a grammar-based system directly for those objects whose structure is

normally described by a grammar. Some work has been done by Linton [Lint341 using a relational

database to store programs. Interestingly enough. the conversion of the program text into

relations was done by a parser and not by the database system. There is also the pl.oblem of

modcling various language aspects using ~.elations. Consider the problem of dealing with nesting.

If we define a domain of subroutines, then the problem of desclibing the nesting relat~onships of

those subroutines may be complex, whereas this relationship is quite naturally expressed by a

grammar.

Data dictionaries are somewhat similar in that they maintain, in a centralized location,

information about the data structures used in and between systems. The idea is to have a

consistent structural definition used in all of the programs and systems that make use of that

structure [Go84]. This may include consistency in the routines used to manipulate the data

structures, in which case access routines are either generated automatically by the system from

each structure specification or are hand-coded by a programmer and kept inviolate. Automatic

generation implies less work for the programmer and a correct and up-to-date implementation.

The more complex the structure that can be dealt with, the less work for the programmer. These

are some of the issues that GRAFS addresses. A data dictionary can use GRAFS for construction

of some of its physical storage routines. GRAFS could be used to implement low-level database

operations but is not intended to replace high-level interfaces.

2.1.2 Programming Environments

Programming environments are complex software tools used to assist in the programming

process [BaShSa84]. The ihtention is to integrate the various tools used during the programming

process (editors, compilers, pmfilers, ek.) in such a way as to streamline and enhance the

programming process [HeeKligFjI. Environments can range from integrated interactive and

interpreted language environments for APL or Lisp, to ad hoc collections of software tools for

Fortran or Pascal.

One thing that is common to all kinds of programming envil-onments is the necessity for

dealing with data structures; both the program source code, and the data objects that programs

manipulate. There a1.e two aspects of the current research in programming environments that are

of interest with respect to GRAFS. First is the automatic generation of parsing, unparsing and

stluxwe-access I-outines. This capability makes it less work LO CrcaLc these envwonments.

Second is the ability to store sti.uctuwd data easily. This allows the inlbrmation in the data

structures to persist between program invocations.

2.1.3 A bstract Data Types

As previously mentioned, ADTs are desirable. Thus anyone interested in research that

concerns ADTs and associated methodologies or using ADTs in production work will find

themselves considering abstract structure specification and automatic code generation sooner or

later.

Research in this area addresses issues ranging from software engineering issues concerning

the interaction of ADTs with the software life cycle, to mathematical issues of modeling ADTs as

algebras. Although there seems to be some conviction that "many sorted algebras are the right

mathematical tools to explain what abstract data types are." IEhMa85, p. 21, they do not seem

appropriate for writing down specifications of larger systems [EhMaM, p. 31. Hence there is a

need to look for specification languages for larger systems. Such a search. in combination with

more specialized specification requirements, could lead to grammar-based approaches like GRAFS.

2. I .4 Metaprogrumming

Metaprograrnrning is the activity of writing programs that have programs as data objects.

This covers quite a wide range; anything from the ubiquitous text-editor to a compiler. However,

in order for a metaprog~am to perform operations of any significance, it needs to know about the

structure of the programs being manipulated. Thus we confine the definition of a metaprogam to

one that has knowledge of program structure.

Analyzing the structure of a program involves. the syntactic analysis of that input program.

It should be noted that this is not the only way to construct metaprogramming systems, but it is a

natural one. The metaprogram works with a p~.og~.am's parse-tree structure rather than its

textual representation. If the metqxogram performs an?; tl.ansformations, then the tl.ansl'ormed

program can be converted back into textuai form by unpar-slng the parse-tree representation.

These are a set of operations on an ADT. the ADT in this case being the parse tree type.

Viewing a metaprogramming system as an ADT facility that is specialized to syntactic

structures leads to GRAFS. There are many different programming languages and hence there

exists the problem of creating metaprogramming systems for each language. Since these systems

can be grammar-based, a researcher in this area might find himself looking at GRAFS-like

systems with the idea of automatically generating metaprogramming systems for different

languages.

-
2.2 Related Work

In this section, we consider directly applicable or similar work that has been done as well as

some further motivation for GRAFS. We want to show the elements of current research that

support this thesis, and to differentiate this research from that done by others.

2.2.1 Historical

This sub-section considers the facilities that have been traditionally provided for FDT

support. These are mostly limited to programming ianguage iiO faciiities and operating system

file subsystem interfaces.

The I/O facilities of existing programming languages (eg. PL/I) allow the file record

structure to be specified [PolSteSO]. However, the access routines must in general be constructed

by hand since the built-in 110 routines will not handle dynamic pointer-linked data structures

directly. Thus, changes in the file or record structure will, in general, result in changes being made

in several places, making maintenance difficult and error prone. Any data abstraction must be

implemented and enforced manually.

Consider again the notion of type applied to files. If a system is unaware of' [.he real

structure of a file. then it has no way of ensuring that access is compatible with that structure. In

this instance, file type is not strong: files have a specific logical structure but can be accessed

without reference to or with incorrect reference to that structure. This weak typing allows bugs to

go undetected.

Operating system access methods are primarily concerned with machine performance. OS's

can use several predefined methods for accessing files, and sometimes the programmer is given the

choice of which one to use EPeSi831. However, this choice is not altogether useful for the logical

definition of the file structure since it concerns only efficient access to file records. Thus, no matter

which access method is chosen, the programmer must. define the logical file structure and hand

code the appropriate abstract access routines.

The fact that the programmer must specify the logical structure of the file, regardless of the

OS support, suggests the existence of two dimensions for classifying file systems. The first

dimension is the variation of access routines for maximum efficiency in accessing individual bytes

in the file. The second dimension is the variation in the manner in which the system supports

definition of the logical structure of the file. This thesis research lies in this second dimension.

2.2.2 Recent Work

The last section was concerned with what sorts of logical file structure support facilities

the

are

generally available to most programmers. This section is concerned with current research in this

area. It is interesting to look a t the way in which GRAFS meshes with other research. Other

work may have similar intentions but be different in approach. or similar in approach but with

different or more specific intentions (e.g., GRAMPS).

Some motivation for this research and confidence in its usefulness and success derives from

the work of Cameron and lto [Carnlto841. Their application of grammar-based technques t o the

spcification and automatic generation of' metaprogramming systems rGRAhTPS) has been yultc

successf'ul. GRAMPS has been used to implement systems For both Pascal and hloduiai!

[Csm87b]. GRAFS uses similar grammar-based techniques for the more general task of data

structure and file structure specification. However, GRAFS is not concerned with providing

higher-level functionality. Such things as semantic analyzers, structure editors and specialized

scanning routines are beyond the immediate scope of GRAFS, although they might be constructed

using GRAFS. The aim of the present research may be taken as both a subset and a

pneralization of their work. GRAFS is a subset in the sense that it does not provide all of the

programming language oriented support routines of GRAMPS and a generalization in that GRAFS

is intended to apply to other applications a s well as metaprogramming.

Some related work has been done by Donzeau-Gouge in a system called Mentor Don831,

[Don84a] and [Don84b]. Mentor is concerned with the organization of documents such as

programs, prose (papers, books, etc.) and specifications. A BNF grammar in their earlier work

[Don831, and an algebraic specification formalism in their more recent work [Don84bl are compiled

to generate a parser, unparser and access functions. The difference between GRAFS and Mentor

lies in the scope of applicability and the efficiency of the implementation. In Mentor, a

specification-independent language, called MENTOL, is used to manipulate the abstract tree

structure. Thus, GRAFS and Mentor have very different interfaces in that the GRAFS interface is

intended to reflect the data structure being manipulated, whereas MENTOL is independent.

GRAFS is intended to be used directly on top of, or perhaps in place of, OS file system facilities in

an existing programming language. A system like Mentor could then be implemented using the

lowe14evci structured file support provided by GRAFS. GRAFS is intend4 to create an efficient

general-purpose tool that can be used to construct higher-level tools and systems such as Mentor.

Another approach has been taken by Lamb [Lamb87]. with a system called IDL (Interface

Definition Language). This work is concerned with using a notation to define data structure

interfaces between different. programs. The notation involved is similar to a grammar but is used

in stages. The rough stxucture is defined In one specification and then other specifications are used

to supply vai'~ous structural and semantic refinements. IDL attempts to provide maximum

flesibility of semantics and hence it requires more programmer input in the code generation process

than does GRAFS. 'Also, IDL is not a s strongly typed a s GRAFS since IDL allows the

programmer a good deal more latitude in the manner that data structures are manipulated. IDL is

very much concerned with transformations between data structures and a s such is similar to

GRAFS. Its implementation seems to have passed the raw prototype stage and is almost ready for

production use rLamb871.

Another problem that could lead to GRAFS is data transfer between different machines.

Sun XDR (external Data Representation) [Sun851 is a protocol for the representation and transfer

of data. This work is quite similar to that of Herlihy and Liskov [HerLis82], although the Sun

document contains no references to that work (or any other). Different computer systems have

different internai representations for data, so moving data from one machine to another requires

converting to the representation required on the target machine. Transferring data around n

different machines requires n(n-1) (2 for each pair of machines) conversion procedures. If we make

use of a standard representation then we need only construct 2n different conversion procedures;

namely an encoder and a decoder for each machine. This considerably reduces the cost of program

construction and maintenance, at least a s far as conversion programs are concerned.

The implementation of XDR consists of a set of routines for encoding and decoding primitive

C language data objects. such a s ints. floats, etc.. Aggregate objects such as structures. require

the user to construct custom encoderldecoder routines on top of the primitive XDR routines. To

transfer data, the user opens an XDR data stream. packs his encoded data into it, and decodes the

data a t the other end with a corresponding decoder on another machine. The stream is not

intended for manipulation other than sequential reading and writing, since it is data encoded as a

byte stream, making editing operations (such as delete and replace) difficult. XDR does not keep

track of where a particular data ob.iect is, leaving it up to the user. The implementat~on of the

encoding and decoding routines is left to the user; nothing is generated automaticall?;, so any

change in the data object specification requires a manual change in the encodinp/decoding

subroutines.

XDR and GRAFS have different intentions. XDR is concerned with physical representation

while GRAFS is concerned with logical representation. GRAFS could use XDR to implement the

internal file I10 routines.

Specialized environments make strong use of ADTs. For example, Lisp environments are

oriented around lists and MPS is oriented around abstract parse trees. I t is convenient to store

information between runs of the programs that use it, thus allowing several different programs to

be invoked with the same information. This sort of facility is available in environments for Lisp

and APL. While these facilities must generally be custom built for each application, with GRAFS

they can be generated automatically.

CHAPTER 3

THE GRAFS CONCEPTUAL MODEL

This chapter introduces a conceptual model of GRAFS and contains a more detailed

discussion of the research. The first section contains a discussion of the derivation and structure of

a conceptual model of GRAFS. The second section deals with the expressive power of GRAFS.

That is, what kinds of structures is it possible to construct using GRAFS. The third section

discusses the nature of the research and what it attempts to show. We consider the potential

benefits of such a system. The evaluation of the actual benefits is left to chapters 5 and 6.

3.1 The GRAFS Conceptual Model

What is the GRAFS conceptual model? Jt is a description of what this sort of system might

look like. and why it might look that way. We begin with the idea of storing structured information

in files. As was noted during the discussion of database research in Chapter 2, files have both a

logical structure and a physical structure. For several reasons, we wouid like to keep these

separate. ADT methodologies are intended to separate logical structure from implementation

details (physical structure). We apply ADT concepts to the task of storing structured information

in files, to get the concept of FDT. This is the kind of thing that programmers do all the time. but

any time people are free to tor have to) build as they will, they are also free to make errors. Thus,

we would like to specify FDTs, and have them enforced by a structured file system.

What kinds of structures is the file system going to know about and allow? The same kinds

of structures that are available in current programmmg languages, since those are the structures

that pt-og~.amrners use. The mow the file system knows about these structm'es. the more support

that ~t can give. This suggests providing the file system with a specification of each structure.

Also. since we want to have the file system control access, it has to have control of the access

routines. This means the file system must have either a fixed, specification-independent interface,

or else an interface that is custom-built for each specification. Regardless of which is chosen, it is

necessary to refer back to the specification. In the case of the independent interface, the routines

must check with the specification (in one way or another) to see if the action requested is allowed in

the given structural context. Specification-specific routines would have to do something similar,

but because they are compiled from the specification rather than having to interpret that

specification, there should be some performance advantage. Also, compiling the specifications to

give a specific interface could result more readable code, if the names of the interface routines

reflect the structure that they manipulate.

Grammar-based techniques provide a specification notation, and the ability to easily

generate a syntactically complete set of access routines. Furthermore. if we limit the grammar to

being context free, then any structure manipulation operations are local in scope. If the system

views the structure as context-free, then changes are local and do not propagate throughout or

depend upon the whole of the structure. This is important from a performance perspective.

Tine GEAFS conceptuai moaei is diagrammed in Figures I and 2. This modei has two main

components. The first part is the GRAFS program interface consisting of the subroutines that

application programs use to communicate with GR.4FS. The second is the generator which takes

an FDT specification and produces the required support routines and tables.

GRAFS is essentially an FDT support system. As mentioned in Chapter 1, we require the

means to instantiate, manipulate, and perform 110 on typed files. Instantiation and manipulation

are, a t least conceptually, fairly straightforward. Constructors, predicates, and selectors are

complete. in a grammar-based approach. in the sense that they allow the creation and

manipulation of' a n y and all sentences of a language. However. 110 is a bit more complex. We

must deal with the questions of which data is to be stowd, where i t is to be stored. and how it is to

be stored. The first question involves what kinds of objects 110 must handle. The second question

Application Program

Grammar-Based File S ~ s t e m (GRAFS)

Figure 1: The GRAFS System Structure.

involves the source and destination of 110 operations. The third considers the ways in which data

can be stored, either as text or in structured form.

UO comes in two flavours, between GRAFS and the outside world, and within GRAFS itself.

One of the motivations for this research is the desire to store structured information in a file,

without the need for programmer intervention (i.e. hand-built access methods). Thus we need an

UO subsystem that handles structured GRAFS files.

The other UO requirement is the need to get data into GRAFS from outside GRAFS and,

from time to time, write it back out. One motivation for this is that people often find it useful to

see the contents of their data structures. A typical situation that arises is the necessity for data

structure dumps when debugging programs. It would be convenient to have dump routines

provided automatically. Also, a lot of information is stored as only implicitly st]-uctured text and so

it would be convenient to convert text streams into GRAFS structured files automatically.

In general, data that is external to GRAFS might be stored in any fashion and thus might

require customized conversion facilities. The reason for this is that the structure to be input might

exceed the recognition capability of the parser. In these cases, conversion routines might be

constructed using the internal manipulation routines to construct a GRAFS structure directly

under the direction of a hand-built parser. For example, consider generating a metaprogramming

system for the C programming language. The C p a m m a r is difficult to express using a context

free'grammar, and is therefore not amenable to a context- free parse.

The last component of GRAFS. which is not visible to the user, is the grammar-data module.

Each separate GRAFS grammar needs to have its own set ol' records that are to be made available

. to the rest of the ssstem as required. Thth prcttyprinte~.. and some generic access routines. have to

check into details of' a pal-t.iculw gmmmal before being able to perfor~n the~r functions.

Specification File

GRAFS
Generator Program

Parser Access Grammar

- Routines I

Figurc 2: The GRAFS Generator Structure.

The parts of the program interface are diagrammed in Figure 1. The old file system

. interface should probably be kept available, through GRAFS, to maintain compntability with other

systems. Even if GRAFS turns out to be the wave of the future. untyped files will continue to exist

for some time, thus GRAFS will have to retain the ability to handle them.

The design of the generator is driven by the requirements of the program interface. We

require a recognizer (parser and lexical analyzer), grammar-specific manipulation routines, various

grammar tables, and what ever other grammar-specific entities are needed in the implementation.

The generator model is shown in Figure 2.

The generator can be thought of a s a compiler of GRAFS specifications. I t reads the

specification, performs lexical analysis and parsing operations on it to produce a parse tree. That

parse tree is then used as input to a parser generator, a lexical analyzer generator, an access

routine generator and whatever other routines that are required. The resulting data is written to

files in a format known to the rest of the GRAFS system.

3.2 Expressive Power.

The details of the GRAFS notation and its associated semantics will be dealt with in Chapter

4. However, something that we might consider a t this point is the expressive power of a grammar

with respect to FDTs. Herlihy and Liskov [HerLisa21 state that the naming relationship among

objects can be modeled as a directed graph. The situation where one object that references another

object by name, can be represented graphically as two nodes that are joined by a directed arc. This

suggests that graphs are useful for modeling data structures. Therefore, we can consider what

sorts of graphs can be constructed using a GRAFS grammar.

We can certainly construct trees of arbitrary depth and complexity. Nodes of any degree

can be constructed using the GRAFS construction and repetition operations. A particulal-

structure may be repeated arbitrarily many times via the grammar mechanisms of recursion 01.

. repetit~on. GRAFS lets vou construct arbitrary trees automatically, but arbitlwy g1.3phs

containing cvcles must be handled differently. In ot.her words. entities such as cii.cular lists have

to be supported by the application program that is using GRAFS.

i' Let us consider cyclic data structures in more detail. How could we add cycles to GRAFS

structures? There is no provision for self-reference in a grammar in the sense of referring to a

particular instance via, for example, a pointer. A specification is of structural type, it cannot know

which particular nodes will be used in a structure of that type. This sort of referential information

must be added when the structure is actually created. However, it is still possible for the

application to create cycles. Depending upon how GRAFS is implemented, it may be possible to

use editing operations on the parse tree t~ introduce cycles. If the implementation does not allow

this then virtual cycles can be created. The application can keep track of extra links between

nodes in a separate structure. These extra links are not handled by GRAFS, are not seen by it,

and therefore create no linearization difficulties during 110 operations. There is also the option of

using labels. A particular field of a record could act a s the label ior name) of that record and other

records could then refer to that particular record by referencing its label.

I t is possible to model arbitrary graphs with GRAFS, however this just covers the form of

structures, it does not handle their content. We now have a method for creating arbitrary graphs,

but what kinds of nodes and edges can we use? The aggregation operations of construction,

alternation, and repetition, should allow the construction of any desired structure. Leaf nodes are

the entities that correspond to integers, reals. characters, etc. These are known as the base types

of a programming language. Leaf nodes in GRAFS must be able to handle arbitrary base types.

This can be handled in the same way that programming languages do, by providing a selection of

base types. Thus, GRAFS can have the same ability to describe data structures as its host

language.

3.3 Direction of Research

The research consisted of' implementing tt rudimentary GRAFS based on the conceptual

model just described, and using it in an example application. The implemented system allows the

programmer to specify the logical structure of files and then generates the required support

routines automatically. The logical structure is specified using a context free grammar (CFG).

The required access routines, parser tables (if required) and unparser (prettyprinter) tables are

generated automatically from that specification.

The research is intended to address questions of the feasibility, productivity and applicability

of this approach. Feasiblity is demonstrated by the successful construction of a prototype system.

Productivity is considered in the context of the computer, programmer and user. Applicability is

shown by using the prototype system in an example.

Computer productivity derives from the effective utilization of machine resources. There are

several ways that GRAFS effects this. GRAFS allows information to be stored in structured form

thus avoiding unnecessary conversion overhead (parsing and unparsing) and facilitating data

compaction. Lexical analysis and parsing are expensive [He861 so we want to minimize the

number of times that these operations are performed. Instead of parsing the input and creating

new data structures each time a program is run, that input can be parsed once and the resulting

data structures stored in a file between runs. As we noted in Chapter 2, an example of this lies in

the use of metaprogramming systems such a s MPS [Cam87b]. If the internal parse tree

representation is stored in a file, then parsing need only be done once. thereby increasing the

efficiency of the metaprogram. In fact. if the parse tree is constructed directly, as with a structure

editor or with constructor routines, then parsing need not be done a t all. Editing operations can be

done directly on the parse tree and text output can be produced when required by unparsing the

tree.

Programmet. pl.oductivity stems from the efictive utilization of' programme1 resources.

This 1s enhanced by GRAFS in the following ways. Filest, the prugmrnmel. need no longel. spend

tlme writing and debugging structure-specific code. Second. the fact. that t.he specification is the

source of the data structure and support routines should serve to decrease maintenance activities

because changes are made in one place (the specification) and support routines are generated

automatically. Third, FDTs are desirable from a software engineering standpoint, since the

automatic generation of access routines will likely motivate programmers to use an FDT

methodology.

User productivity comes from the effective utilization of the user's resources. As this is

influenced by computer and programmer productivity, the improvements cascade. The increase in

programmer productivity shortens the-time necessary to fill user requests. Improved computer

utilization results in better system response and increased resource availability to users. Greater

reliablility from stronger file typing results in fewer bugs and happier users.

Applicability is shown by using the GRAFS prototype to implement an example application

in a conceptually cleaner manner and with less effort than would be required if the GRAFS system

were not used. Specifically. the example application is a re-implementation of the lexical analysis

sub-system of GRAFS. We had to construct a lexical analyzer generator and interpreter for the

GRAFS prototype, and the example is a re-implementation of that sub-system using GRAFS.

It is impossible to prove (in a rigorous sense) any of these properties about GRAFS, since

they are all rather subjective and it would be difficult to perform experiments that would give

conclusive results. It is therefore hoped that the implementation and application serve to

demonstrate the potential of G R A F S - ~ ~ ~ ~ systems. The intention of this research is to show that a

GRAFS-type system is feasible 'and that this class of system merits further investigation.

As might be expected, the GRAFS prototype is aimed a t functionality rather than optimality.

In other words, we were more concerned with building a working prototype than in constmcting a

production qua1it.v system. With this in mind. wtl used existing facilities when possible and

constructed basic facilities when needed. For example. we made use of the Modula-2 file system

interface in a very rudimentary fashion. The result was a functional but far from optimal GRAFS

prototype.

CHAPTER 4

GRAFS FORMALISM AND IMPLEMENTATION

This chapter deals with the GRAFS formalism and implementation. I t is divided into two

sections, the first dealing with aspects of the formalism and the second with implementation

details.

A simple example can help to clarify aspects of this material. Therefore, we will consider

the construction of a data structure for a simple personal address book, using GRAFS. The idea is

to create a data structure to hold a list of address records. Each of these records contains a

person's name, address, phone number, and occupation. We will use this example to illustrate

various facits of the GRAFS formalism and implementation. The complete grammar for this

example is given in Figure 17.

4.1 GRAFS Formalism

The GRAFS formalism is modeled on that of GRAMPS [CamIto84]. GRAMPS, as has been

previously noted, is a grammar-based methodology fbr specifving and generating

metaprogramming systems.

4.1 .I Designing (L MetnGrrrmmar

GRAFS has to be told about the structure of a given FDT. In this section, we develop a

notation to describe FDTs. We first consider the nature of the gramrnal. specification rules.

GRAMPS uses four different kinds of rules: construction. alternation. repetition and lesical,

although lexical rules are not strictly part of' the GR.4MPS fbrmalism [CamItoS4 I . The (;RAMPS

gmrnmar notation itself is an extended Backus-Naur Form. Implementations of' (;RAMPS-style

systems (e.g., Pascal MPS, [Cam87bl), are partially generated and partially hand-coded.

GRAMPS metaprogramming systems are not often constructed, whereas GRAFS specification

grammars are to be constructed often, and by programmers of varying experience. Thus, the

issues of providing a relatively firm, easy to understand and completely defined notation do not

arise in GRAMPS, but do arise in GRAFS.

A general problem in grammar design that also arises in GRAFS is of how much of the

GRAFS specification grammar is to be dealt with a s a recognition problem and how much is to be

dealt with by semantic analysis. For example, in the GRAFS formalism, alternation rules are

composed of only non-terminals. This restriction is enforced by the GRAFS metagrammar, rather

than by internal checks. The metagrammar is constructed such that only non-terminals are

syntactically correct in an alternation rule. In some cases it is very difficult to specify restrictions

as a recognition problem. Consider the case of using a grammar to specify only those numbers

between 59 and S98. It is possible to do, but not easily or concisely [Pagall. In this instance it is

better to treat the problem semantically. Why create extra parser or lexical states when a single

pair of comparisons will tell you whether the candidate number meets your criteria? Also, why

complicate the logical structure of the target grammar when the only result is to make

programming more difficult? If such restrictions are made part of the GRAFS grammar itself then

offending specifications cannot be expressed a s a well-formed GRAFS specification. This does not

mean that the user cannot make mistakes in the specification, but a t least the GRAFS grammar

specification can serve as a reasonably complete documentation of what is correct and what is not.

Thus, there is a tradeoff between syntax and semantics, and some judgement must be exercised in

deciding on the best approach to take.

The GRAFS grammar specification is itself a grammar. It is a metagrammar: a p a m m a r

grammar, that is also its own grammar. The GRAFS metagrammar desciibes all well-formed

GRAFS grammars including itself'. The self-desc~.iption provides an intewsting bootstrapping

opportunity as we shall see in the implementation section of this chapter.

Designing the GRAFS metagrammar involved deciding on a notation and then expressing

that notation in terms of itself. This is a rather challenging activity since it involved expressing an

.incomplete notation in an incomplete notation a s the notation is being developed. Not only must a

notation be gradually developed to express GRAFS grammars but it must also be extended to

express itself. This leads almost a t the very beginning to problems with the uselmention

distinction. The problem comes in many guises and it cropped up often during the design and

development of the GRAFS system. This problem manifests a s the mental confusion that results

when one forgets to distinguish between whether the notation is describing itself or something else.

That is, one slips mentally from one level to another or fails to distinguish use from mention. I t is

not within the scope of this thesis to deal with the psychological issues inherent in the use/mention

distinction, however as it was a factor in the design and implementation it is included as part of the

experience.

The nest issue that arose in the search for a notation was that of associated semantics. The

GRAFS system is intended to perform certain actions based upon the grammar handed to it. Since

the abstract structure of GRAFS data objects must be known to the user, the semantics of the

GRAFS grammar must also be known to him. For this reason, it was decided that constructs that

had different semantics should have different notation.

As noted by Cameron and Ito [CamIto841, the structure of the grammar used in

grammar-based systems is rather more critical that in the case of more monolithic applications

(e.g., compilers). The structure of the grammar should reflect the data structures that will be

obtained from it. Thus, we required a parsing algorithm that was capable of easily creating the

structures described by the GRAFS notation. For these reasons an ELR(I I (Extended LR with a 1

token lookahead) IPurBro811 grammar was chosen. In ELR grammars. the right hand side of a

production is a regular expression. Thus each ELR grammar rule can have concat.enation.

repetition and alternation operators in it. However, the actions that GRAFS takes for, and the

structures created by, each of these operators are quite different, so for reasons of clarity, each of

these operations occurs as a separate GRAFS rule class. Thus, the GRAFS grammar rules are a

subset of those of ELR. The result of all of this is that the GRAFS grammar rules can be parsed

a s is; no transformations need be done on the grammar. More will be said about this in Section

4.2.3.

What are the rule classes of the GRAFS notation? They are the construction, alternation,

repetition, lexical, and lexical-class rule classes. The first three classes are aggregators and

roughly correspond to the record, union and array constructs, respectively, that are found in

procedural programming languages. The repetition construct also corresponds to lists. The

difference in the interpretation a s an array or a s a list lies in the way that an element is accessed

(more on this in the next section).

Lexical and lexical-class rules are used to describe primitive data types which are the types

that are aggregated into structures, unions and arrays. They are considered as the leaves or

terminal nodes of the parse tree.

4.1.2 GRAFS Rules: Syntux, Semantics and Raison d'Etre.

This section discusses each rule and its associated semantics in turn. We will use structures

for the address book example to illustrate each rule. The GRAFS metagrammar is shown in

Appendix A.

Construction rules correspond to records. They aggregate an arbitrary but fixed number of

data objects of specified types. This heterogeneous collection of objects may now be referred to by

one name; the name of the construction rule that describes that particular aggregation.

The svntax of construction rules is quite simple and is shown in Figure 3. It consists of the

keyword "CONSTRUCT". fbllowed by the name of the specific rule (a simple non-terminal).

followed by the keyword "IS", all followed by a list of'the components of the rule. Each component

may be a terminal string (keyword), a compound non-terminal (a data element), a formatting

<ConstructionRule> ::= ID "CONSTRUCTw
<~ame:SimpleNonTerminal> "IS"
<ConstructionElements:ConstructionElementList OD

Figure 3: Construction Rule Syntax.

directive (for the prettyprinter), or an optional phrase.

Keywords are signposts for the parser and the user. They are used in general grammar

design to disambiguate the grammar and document the output. For example, they are the reason

that no explicit separators (periods or commas for example) are required in the grammar itself.

They also serve to add contextual information that may aid the user in writing the input or reading

the output. For example, consider the case where the input data is a series of identifiers, each of

which has a specific meaning to GRAFS. The use of keywords can serve to remind the user of the

significance of each of the otherwise possibly indistinguishable objects. Keywords have no further

significance to GRAFS. and are not available or manipulable as data fields of the construction rule

of which they are a part. This will become clearer when we look a t the GRAFS programming

interface.

Compound non-terminals correspond to field declamtions in conventional programming

language record types, have two functions and hence two parts. The first part is called the

component name and the second is called the class name.

The component name corresponds tx) a record field name and is the device by which the user

selects that component. The class namta corwsponds to the type of a tword field, and is defined by

some other rule of the grammar in question. Each compound non-terminal in a given construction

rule must have a component name that is unique to that rule. Note that the same component

name may be used in several different construction rules. Also note that the component name and

the class names may be the same, on those occasions when inspiration fails.

Optional phrases were included for programming convenience. I t is possible to achieve the

same result by defining a separate construct for each variation but this is clumsy. In the worst

case, for one option, there needs to be two separate rules, for two options, four rules, and so on.

This rapidly grows annoying. Also, the resulting application programs are more cumbersome

since each different rule must be checked for and dealt with separately. The use of optional

phrases allows the program to merely check for the existence of the given option. If it is there use

it, if it is not then do not. Optional phrases need to be used with some care to avoid introducing

ambiguities into a grammar. The use of keywords can be of some assistance here. As we shall

see when we get to repetition rules, lists may have zero or more elements. Thus, the user should

not in general use list specifiers directly (that is, without guiding keywords) within an optional

phrase. If the list is empty, the parser generator will not know what to do. Is this an empty list or

a nonexistent one?

The !ast kind of component that can occur in a constrwtion mie is a formatting directive.

Formatting directives are special keywords that help to control the operation of the prettyprinter

(there are other ways of controlling it as well, a s we shall see in the implementation section of this

chapter).

The choice of formatting directives is still an open question [Opp80, Rub83, Wood861, so the

set of directives chosen for GRAFS consists of only those directives that were found necessary

during implementation. Undoubtedly, as more projects are undertaken with this system, other

directives will be ~equired.

There are five directives currently available. They are ID, 01). LU, NTS. and TS and stand

for InDent, OutDent. Line Break, No Token Spacing and Token Spacing.

/

ID and OD move the left margin setting in one tab stop and out one tab stop respectively.

The actual value of tabs can be found or set using the GRAFS interface. The new value of the left

margin does not come into effect until the next linefeed. These two directives are intended to allow

the nesting of various structures, thus each ID should be balanced a t some point with a

corresponding OD. If this is not done, the printed output will have a slanted look to it. Possibly,

future implementations could reset indents automatically upon leaving a structure.

The LB directive forces line breaks. When the prettyprinter encounters one of these in the

grammar rule that describes the node currently being printed, it immediately prints an end-of-line

and continues printing a t the left margin of the next line.

NTS and TS control the white space between individual tokens. There may be situations

where a group of tokens should be printed out in a contiguous stream with no separators between

them. An example of this (and in fact. the motivation for the inclusion of these directives) may be

found in the compound non-terminals in the metapammar. These elements just did not look right

printed as "< component : class > " and turning the spacing off gave

"<component : e ?ass> ", which looked much better. This example highlights the problem of

where to place white space and where not. to. The problem could be handled by the construction of

a customized prettyprinter (more on this in the implementation section). However, we felt. that it

would be useful to deal with a s many problems a s possible by the use of formatting directives. The

chosen solutions have thus far proven quite adequate.

Now that we have described construction rules, let us look a t their use in the address book

example. Fipui-e 4 shows a constl.uction rule that defines a single record of' the address book. As

was previously mentioned, the address book will consist of ;t list of these records. Notice the use of

the LB directive to force linehl.eaks so that the name and address fields, art. on their own lines.

The Record is a simple structure that is. in essence, a set ofkeyword~value pairs. The keywords

(e.g. "Name:") are used here fbr documentation purposes to tell the reader what each field means.

Figure 5 shows a construction rule that defines the structure of an address. Note that the

Apartment field is optional. The reason for this is that not everyone lives in an apartment. In

order to avoid confusing the parser we add the keyword " APT".

CONSTRUCT <Record> I S
"Name:" <Names:Names>LB
"Address:" <Address:Address>LB
"Phone:" <Phone:Phone>
"Occupation:" <Occupation:Occupation~

Figure 4: Construction Rule Example: Address Book Record.

CONSTRUCT<Address> IS
ID ["APT" <Apartment:Number> 1
<StreetNumber:~umber><~treet:Identifier>LB
<Town:Identifier><Country:Identifier~~Code:Code~OD

Figure 5: Construction Rule Example: Address Record.

The next GRAFS rules are alternations. The syntax of these rules is much simpler than

that of construction rules and is shown in Figure 6. An alternation rule is composed of the

keyword "ALTERNATE", followed by the name of the alternation rule, followed by the keyword

"IS", followed by a list of non-terminals separated by vertical bars. The non-terminals used in this

rule must be simple and not compound as is t.he case with construction rules. Simple

non-terminals have only a class name, no component name and hence no ":" separator. These

class names are, a s before, the names of other rules in the grammar that specify other structures.

The component name is not required here since no selection operation need take place.

Altermation i.ules correspond roughly t.o unions as used in C or Pascal. This rule class

specifies the set of' things that can he used in places u7he1.e particular. rule iden~ifiers are used.

Figure 6: Alternation Rule Syntax.

Alternation structures need not be present in the structure being built internally.

Alternation rule names that occur in other rules can be thought of as place holders that may be

filled by any of the alternatives given in that rule. There is no selection to be done, since there is

only one element in use a t any time. Also, this shortcut tends to simplify programming, since the

subroutine calls necessary to pass through the alternations (and which would have no other

function) are no longer required. Cameron and Ito [CamIto84] used this approach and this

research has uncovered no difficulties with it.

Let us see how alternations are used in our address book example. Consider the

representation of names. Since people do not all have the same number of names, we will use a

list. We have the further complication that some people use initials instead of their full name.

Thus. we need the option of having a name being an identifael- (the name spelled out) or an initial.

The alternation rule in Figure 7 allows n name tx) be either spelled out. or an initial.

AETERNATE<Name>IScIdentifier> 1 <Initial>
Figure 7: Alternation Rule Example: Name or Initial.

The last aggregation rule is repetition. Repetition structures co~.r.espond to arrays or lists,

depending upon how they are accessed. That access may be direct. using the position numbel of

the desired element, o r relative, using "next" operations. Repetition structures have the

advantage that the user need not be concerned with an upper limit on the number of elements, as is

the usual case with arrays. Repetition structures, like arrays (and in most cases, lists) are

homogeneous. The elements of the repetition are all of the same type. However, that type may be

an alternation, in which case you have the effect of non-homogeneity to a limited extent.

The syntax of repetition rules is shown in Figure 8. Each rule starts with the keyword

"LIST", followed as before by the name of the rule, followed by the keyword "OF", followed by the

simple non-terminal designating the type of each element. Next comes the keyword

"SEPARATOR", followed by the separator character to be used in this list. A blank may be used if

desired. After that comes an optional list of formatting directives.

Separator characters serve the same purpose in repetition rules a s kevwords do in

construction rules. They aid the parser in figuring out what it is looking a t and they aid the user in

writing the input and reading the output. For example, blanks are used in the construction

element list portion of construction rules. At the moment. separators are restricted to being single

characters. There is no particularly good reason for this restriction, it results from

iack-of-imagination on the part of the implementor and can be easiiy corrected iT required. There

are other possibilities for separators, such as character strings or no character a t all. but so far

single characters have proven to be adequate. Multiple character separators will be required

however, we will leave this enhancement to the next implementation.

There are three places in repetition constructs where formatting is important. These are a t

the beginning of the list, between each element of the list and a t the end of the list. Formatting

before and after can be dealt with by using formatting directives in an enclosing construction I-ule.

Since the list is homogeneous, each element should be treated identically, thus the list separator.

and inter-element formatting are specified once. The formatter list given rn a iq~etition rule takes

effect between each element of the list. after the separator character is prrnted. If thert. 1s more

than one formatter in the list (e.g. LB ID) then the prettyprinter acts on each one in turn. If there

are no formatters in the list, then no action is taken. Experience has shown that no explicit

<RepetitionRule> ::= ID "LIST"
<~ame:Sirnple~on~erminal> "OF"
cBaseType:Simple~onTerminal> "SEPARATOR"
<Separator:Terminal> <Formattors:Directive~ist> OD

Figure 8: Repetition Rule Syntax.

formatting was required in most cases and that when it was, a simple forced line break (LB) was

sufficient.

We talked about using a list of address records for our address book. Figure 9 shows a

repetition rule that defines Records as a list of Record structures. The separator is bl-ank

because we are going to use blank lines between records so we do not need explicit separator

characters. The blank line separation is achieved with the two LB directives. These directives

cause the prettyprinter to perform two line breaks in succession between each two records in the

list. The result is a blank line between each pair of records in the prettyprinted output.

LISTcRecords>OF<Record> SEPARATOR" "LBLB

Figure 9: Repetition Rule Example: Address List.

That completes our discussion of aggregation rules. Now we need to have some primitive

data objects to aggregate. There are two rule classes that are used to define these primitives;

lexical rules and lexical-class rules. Lexical rules are the real bread-and-butter rules. The

lexical-class rules are not, strictly speaking. necessary and were included for implementation

reasons. Simply, lexical-class rules make it easy for GRAFS to construct simpler finite automata

by letting i t know that there is a transition between two states for all the members of a

lexical-class. I t is possible to get the same result using state-minimization algorithms. fol

example, but why force GRAFS to do unnecessary work.

<LexicalRule> ::= ID "LEXEME"
<Name:GenericNonTerminal> "ISn
<Definition:RegularExpression>
[<Delimiter:DelimiterExpression>] OD

<DelimiterExpression> ::= ID
"L-DELIMITER" <LDelimiter:OneCharacter>
"R-DELIMITER" <RDelimiter:OneCharacter> OD

Figure 10: Lexical Rule Syntax.

Lexical rules allow the user to tell GRAFS how to recognize primitive data objects (tokens).

The lexical rule name is the name of a token and the rule body describes how to recognize one. The

syntax of lexical rules is shown in Figure 10. These rules begin with the keyword "LEXEME",

followed by the name of the particular rule, followed by the keyword "IS". Then follows a regular

expression that describes the items to be recognized. The last part of the rule is optional, and is

used to specify the right and left delimiters. If this option is exercised, the keyword

"L-DELIMITER" followed by the single-character left delimiter to be used. followed by the keyword

"ItI3ELIMITER", lidlowed by the single-character right delimiter. are added to the specific rule.

The regular expression may be constructed using alternation, concatenation and repetition

operations, in any.combination. These operations have precedence (highest to lowest) repetition,

\

concatenation, and alternation. The operators are right associative because of the parser

implementation used. However, bracketting is available to force the desired precedence and

associativity.

The primitive objects in a regular expression are terminals and lexical non-terminals.

Terminals are strings of characters delimited by double quotes ("). Lexical non-terminals are

similar to simple non-terminals except that the delimiters used are pairs of "#" rather than angle

brackets. They have been added a s a notational convhience for the user to allow a more compact

expression. For example, identifiers are one letter followed by zero or more letters or digits.

Writing out the regular expression for this using single character and digit strings would be a bit

tedious and would tend to obscure an otherwise straightforward concept. Lexical non-terminals

are defined using other lexical rules or lexical-class rules. The reason that lexical non-terminals

are distinct from simple non-terminals is to control where they may occur in the grammar. The

use of simple non-terminals instead would open the door to using aggregation rules to define

elements occurring within regular expressions. This could cause some implementation difficulties,

a s we shall see later in this section when we consider the lexical analyzer/parser interface.

Delimiters can be a problem for the lexical analyzer. Are they part of the entity that they

delimit or not? The initial GRAFS lexical analyzer did not recognize delimiters a s special. This

lead to having to deal with them explicitly -- sometimes an annoyance. There will be more on this

problem in the section on lexical analyzer implementation (since that is where the problems arose).

However, for the moment consider a regular expression that begins and ends with " and one that

begins and ends with "a". The first expression is supposed to be a delimited string and the second

is an identifier (for example). Any time strings were dealt with, it was necessary to strip off the

delimiters. In order to have this stripping done automatically, it was necessary to tell the system

explicitly what a delimiter was. So we introduced the opt~onal part of the lesical rxle class. If the

user does not want to have the delimiters stripped. it is only necessary to leave out the optional

section.

\

Figure 11 shows a lexical rule that defines an Initial for our address book. This is a

very simple regular expression that defines I n i t i a 1 as any one letter followed by a period ".".

Since no delimiters are specified explicitly, the delimiters are assumed to be blanks. In other

words, in order for the lexical analyzer to recognize "W." as an initial, there has to be a blank after

the ".".

LEXEME<Initial>IS#Letter# "."
Figure 11 : Lexical Rule Example: Initial.

Lexical-class rules were added for implementation reasons. They are used to specify a

character class, for use in other regular expressions. The same thing can be accomplished using

lexical rules but there are some differences in the way that the lexical analyzer tables would be

constructed. More will be said about this later.

Lexical-class rule syntax is very simple and is shown in Figure 12. These rules consist of

the keyword "LEXICAL-CLASSi', followed by the name of the rule (a lexical non-terminal)

followed by the keyword "IS", followed by a list of single characters delimited by quotes and

separated by blanks. The effect is that of an alternation rule of single character strings. An

example of lexical class rules, taken from the address book grammar, is shown in Figure 13.

<LexicalClassRule> : : = ID "LEXICAL-CLASS"
<~ame:LexicalNonTerminal> llIS1l<Members:CharacterList>

Figr~re 12: Lexical Class Rule Syntttx.

Earlier in this section, the term "associated semantics" was mentioned with respect to

GRAFS rules. There are two aspects of GRAFS rules, what the rule looks like and what the rule

LEXICAL-CLASS #LowercaseLetter# IS "a" "b" " c " "d" "e" " f n
tv 11 *I h IV 11 j vv 11 j w w k IV i i l n timrc nnrc now

w p m
w q r r w r r r l v S w

w t n W ~ I I w V w n W w l v X n
w y w

I I ~ I I

LEXICAL-CLASS #Digit# IS " O w " 1 " " 2 " " 3 " " 4 " " 5 " "6" "7"
"8" "9"

Figlire 13: Lexical Class Rule Example.

means. We have discussed what the rules look like, it remains to consider what the rules mean.

Determining meaning was not much of a problem with aggregation rules. Records, unions

and arraysllists seem to be universal concepts and easily understood. However, what does a

lexical rule mean'? Along with uselmention. this was a major conceptual problem. The problem

that. we had stemmed from not undel-standing that the recognition and conversion of tokens to

internal forms are separate processes, even though they may be intertwined. There are two parts

to the process of analyzing tokens. First of aii, the tokens must be recognized. Recognition is the

process that is specified by regular expressions and is performed by finite automats. Recognition

tells you what the thing being looked a t is. The second process, conversion, is turning the

character string representation into a form that the rest of the system can deal with. For

example, we see an integer a s a string of digits, whereas the computer sees integers as a binary

encoding. Thus, in order for the rest of the system to deal with a token as an integer, the token

must be converted into the form of an int.eger. Conversion is not a s ~t~raightforward a process a s

recognition since it. is implementation dependent. Hence, we decided to avoid the problem in the

prototype GRAFS by rest]-icting leaves to the type. character string. This form requires no

conversion. If' the application progmm using GRAFS wquires that the information be in some

other form, then the application program can perform the conversion. The lexical class rules for

the address book example are shown in Figure 13.

4.2 GRAFS Implementation

This section discusses the GRAFS implementation. GRAFS is in the raw prototype stage.

Therefore, we were mostly concerned with finding some way of getting GRAFS to work, rather

than with finding the most efficient way, since i t was generally not obvious (at least initially)

where the bottlenecks in the system were going to be.

, 4.2.1 Bootstrapping

Bootstrapping is a term found in the domain of operating systems. I t means having a

system gradually getting itself running by itself or pulling itself up by its bootstraps. The system

begins small and loads or constructs more and more of itself until the entire system is operational.

Bootstrapping has a similar meaning with regards language implementation. In the case of

GRAFS. i t simply means that we use part of the system to construct another part of the system.

The situation is as follows. The system must take a specification and compile it to produce,

amongst other things, tables for the parser and lexical analyzer. In order to do this we need to

perform lexical analysis and parsing on the specification and then use a parser generator and

lexical analyzer generator on the specification's parse tree, to produce tables for a parser and

lexical analyzer for structures in the language of the specification grammar input.

Why not use the generator routines to produce tables for the GRAFS metagrammar and thus

save the effort of hand-coding a parser and lexical analyzer? This turns out to be not terribly

difficult to do, although i t does create a nice conceptual loop that can cause all kinds of confusion.

In order for the generator routines to work, there must exist a parse tree (or whatever structures

the generators need to see in order to work). In order to get a parse tree we need a parser, or do

we? No, we can pretend that we have a parser. All we need is the parse tree. So, we write a

routine that. constructs the parse tree in memory (using constructor routines that are custom-built

for the metagrammar) and then run the generators on that parse tree to produce parser and lexical

analyzer tables for the metagrammar.

The result of implementing this bootstrapping technique is a program called boot, which

when run, produces the tables and files necessary to compile GRAFS specifications. The

metagrammar evolved during the implementation phase of this thesis, necessitating modifications

to boot. These changes were very easy to make, even the most involved took only three or four

hours. Given the later experience with the complexity of parsers, i t is unlikely that a hand-coded

parser would have been easier to modify.

4.2.2 Lexical A nulysis

Lexical analysis is a critical phase of compilation since i t can take up to 50 percent of the

total compilation time [HegCi]. Thus, if you are building a compiler, you will want to construct a

fast lexical analyzer. Lexical analysis is not such an overwhelming issue in GRAFS, or a t least

not from a performance standpoint. The reason for this is that one of the purposes of GRAFS is to

eliminate much of the need for lexical analysis.

Unfortunaiely, GRAFS needs to do iexical anaiysis from time to time. The generator

program has to lexically analyze specifications that are input as text, and users may wish to have

textual input converted into structural form. These events are seen as relatively rare, since most

of the time I/O should involve only structured files, so the speed performance of the lexical analyzer

is not as critical. This is fortunate since the lexical analyzers used by GRAFS are automatically

generated and such analyzers tend to be slower than their hand-coded counterparts.

Hcuring [He861 has done some interesting work on the generation of fast lexical analyzers.

Unfortunately, his approach does not appeal to be particular.ly flexible, in that it requires the

tokens to be partitioned into ckisses according to how those svmbols are to be recognized. This

requires that the designer be able to so partition his tokens and that he be able to communicate all

of this to the GRAFS generator. Since we wanted to maintain maximum flexibility and interface

simplicity in the prototype, we did not pursue this approach further and instead chose the

conventional table interpreter approach.

The lexical analyzer generator traverses a specification's parse tree and constructs a

non-deterministic finite automaton (with epsilon moves) from the specification keywords, strings,

and any regular expressions defined in lexical rules. An equivalent deterministic automaton is

then constructed via the classical algorithms [AhoU11791. The resulting tables are written to a file.

That file is read in as required, and interpreted by the lexical analyzer.

4.2.3 Parsing

Earlier in this chapter, we mentioned that an ELR(1) parsing algorithm was used. In this

section, we will go into a hit more detail as to why Extended LR(1) was chosen.

If GRAFS was a monolithic system, the choice of parser, providing that that parser was

sufficiently powerful. would not matter. In this case, the user would remain blissfully ignorant of

the nature and form of the structures created internal to the system. However, this is not the case

with GRAFS. The user is expected to write programs that manipulate the internal GRAFS data

structures and therefore must have a strong understanding of those structures. The structures

that are actually generated by GRAFS must behave exactly as the user expects them to. If these

structures are not what the user expects, manipulation will prove difficult.

GRAFS data structures a re described by a grammar. Each different rule in the GRAFS

grammar describes a different and distinct structure. The question now is, how do we use the

grammar notation to produce a physical structure? There are two ways: with the access routines

(described in the next section) or with the parser. We are going to generate both access routines

and parser for each different grammar. Access routines are easy to generate, but parser

generation is much more difficult.

There are u number of different parsing algorithms. We needed one with sufficient power.

The obvious choice was some version of LL or LR. Which one to chose? LR is the more powerful .

[AhoU11791, and so was a tempting choice. However, the existing LL and LR algorithms use a

BNF grammar notation that is quite different from GRAFS grammar notation. For example,

repetition is achieved by recursion in BNF, whereas, GRAFS has repetition rules. Thus, in order

to use a conventional parser, we would need to transform the GRAFS grammar into a BNF. This

would result in the construction of a slightly different structure than the original GRAFS grammar

suggests. We could, of course, re-transform that structure to correspond with the original

grammar, but it would be much nicer to avoid the problem altogether. Fortunately, there exist

various ELR(k) algorithms, specifically [PurBro81], that remove most, of the problem.

Extended LR is based on a slightly more powerful notation than that of BNF. Basically, the

right-hand-side of each production is a regular expression, with alternation, concatenation and

closure (repetition) operations. This fits very well with the GRAFS grammar notation. In fact,

ELR is more expressive than the GRAFS notation since GRAFS right-hand-sides are not full-blown

regular expressions. Thus, we chose to use the ELR(1) algorithm for the GRAFS parser.

4.2.4 The ParserlLcxicd Analyzer Interface

An interesting design issue in GRAFS arises from the existence of two stages in the process

of constructing a parse tree from a text string. These stages are lexical analysis and parsing.

Lexical analysis is the process of breaking the input stream into tokens. Parsing is the processing

of taking the input. tokens and creating a parse tree. The interesting thing about this is that the

parser is capable of handling the task of token recognition without the aid of a separate lexical

analyzer. Since lexical analysis is a simpler process than syntax analysis, it is possible to

construct a more specialized and efficient recognizer for tokens than for syntactic structures.

If we make the decision to split the recognition process into two stages, we face the problem

of deciding how the grammar notation is to be dealt with. That is, which rules are for the parser

and which are for the lexical analyzer. I t might be possible to make GRAFS smart enough to

figure this out on the fly, however for the prototype we decided on a fixed method. Construction,

alternation, and repetition rules specify syntactic structure and are dealt with by the parser.

Lexical and lexical-class rules specify tokens and are handled by the lexical analyzer.

This division of labour is fine from the point of view of GRAFS. However, what has

happened is that the programmer is left to make the decision of which construct is handled by

which level of analyzer. There are a number of things to be considered in making a decision.

What is the information that is to be manipulated? Consider that a simple non-terminal, and

identifier delimited by angle brackets, could be treated as a single token. However, the significant

information is in the identifier, not the angle brackets, so the brackets would need to be stripped by

the application program. If the simple non-terminal is dealt with as three tokens, then only the

identifier need be dealt with.

The other consideration is programmer convenience. Sometimes it is simply easier to specify

something as a single token. This is usually because there are several similar tokens that could

overlap and hence be very difficult for the lexical analyzer to recognize. Consider the case of

delimited strings. As was mentioned earlier in this chapter, the string delimiters are not really

part of the string that they delimit. The delimiters act a s signposts for the analyzers. Once we

know that something is a string, the delimiters are no longer required. The temptation might be to

handle delimiters as separate tokens, but this can result in other difficulties. For example,

consider the string " abc ". Are the blanks before and after the "abc" part of the string or not?

This is a somewhat, artificial example, in that the meaning can be decided upon. However, it

seems that although delimiters are not part of the token itself, they are not really separate from

the token either, and so should be handled a t the same time.

The parser/lexical analyser interface solution that was chosen for the GRAFS prototype

seems to work well enough. However, future such systems might investigate other alternatives.

4.2.5 Access Routines

At various times we have introduced the topic of access routines. We have mentioned the

grammar-specific constructors, selectors, and predicates, and the existance of generic, or

grammar-non-specific, routines. This section discusses the routines actually implemented and

some of the issues of that implementation.

Access routines fall into two categories: grammar-specific and generic. Grammar-specific

routines are generated for each particular grammar and only apply to tha t grammar. Generic

routines are built into GRAFS, are not changed by GRAFS, and apply to any appropriate grammar

and structure.

Grammar-specific routines fall into three classes: constructors, predicates, and selectors.

The first class, constructors, is used to make structures in the grammar. Alternation structures

are not needed in the parse tree so there is no point in being able to make them. Thus, "Make"

routines are generated for construction, repetition, and lexical rules only. The details of the

routine inkrnals vary somewhat between rule classes, but are fairly consistent within the same

class. This allows us to use code templates for each class, and simply fill in the blanks as required.

Consider the following example. The construction rule that we wish to generate a "Make"

for is:

CONSTRUCT<REInput> IS cREList:REList> <SubREList:SubREList>

The resulting "Make" routine is shown in Figure 14. An examination of the routine will reveal the

places where blanks needed to be filled in. For example, the name of the routine, the structure

type (code), and name string, all come from the name of the rule "REInput". The name of the

grammar is taken from the name of the file that contains that grammar specification, in this case

"REGrammar". The number of parameters. their types and positions are taken from the rule

body.

PROCEDURE MakeREInput (xl, x2 : Node) : Node ;
VAR n : Node ;
BEGIN
n := MakeNodeRecord ("REGrammar") ;
SetClass (n, CONSTRUCTION - RULE - CLASS) ;
SetCode (n, REInput) ;
SetNodeType (n, NONTERMINAL) ;
SetNameString (n, 'REInput' ;
GrammarCheck (xl, "REGrammarw) ;
IF NOT (REListQ (xl)) THEN
Error (" ~ a k e ~ ~ ~ n ~ u t : argument 1 is not a R E L~S~.") ;

END ;
InsertComponentK (n, XI, 1) ;
SetParent (xl, n) ;
GrammarCheck (x2, "REGrammar") ;
IF NOT (SubREListQ (x2)) THEN
Error ("MakeREInput: argument 2 is not a S u b ~ ~ ~ i s t . ") ;

END ;
InsertComponentK (n, x2, 2) ;
SetParent (x2, n) ;
RETURN (n) ;

END MakeREInput ;

Figure 14: An Example Modula-2 'Make' Routine.

Repetition rules generate a similar "Make" routine except that, since lists can contain zero

elements, there are no parameters. Creating a iist node involves first creating a nil length list

using a "Make" routine, and then using the generic append operations to add elements to that list.

Lexical I-ules are different in that the argument to the "Make" routine is a string rather than

some number of nodes. Lesical rules specify leaf nodes that contain information stored as a

character string.

Predicates are generated for all rules except lexical-class rules. The name of each of these

routines consists of the name of the rule used to generate it, followed by the letter "Q". These

routines arc functions returning a boolean value. Each routine checks the grammar type of the

node argument and then checks to see if' its argument node is of the same type of node that would

be constructed by the grammar rule that was used to generate the routine.

r

The observant reader should now be asking "ah yes, but what about alternation rules?".

Alternation rules are not used to generate nodes, but they do define classes of nodes. Thus, the

alternation rule predicates perform a logical "or" operation on the predicates of each of the

elements in the body of the alternation rule. For example, consider the following alternation rule:

The resulting predicate is shown in Figure 15. This routine is, again, just an exercise in filling in

the blanks.

PROCEDURE TypeQ (x 1 : Node) : BOOLEAN ;
BEGIN
IF x l =Node (NIL) THENRETURN (FALSE) ; END ;
Grammarcheck (x l , "FAGrammar") ;
RETURN (AcceptQ (x l) OR RejectQ (x l)) ;
END TypeQ ;

Figure 15: An Example Alternation Rule Predicate Routine.

The final routine category is that of selectors. There are two rule classes that generate

selectors: construction and iexicai. Construction rules define a coiiection of named fields. Thus,

each field can be addressed, or selected, by it symbolic name. Each field in a construction rule is a

compound non-terminal. Compound non-terminals have two parts, the first being the name of the

field, and the second being the type of that field. The first part is used to generate a selector

routine for that field. Generation of construction rule selectors is complicated somewhat by the

fact that the same field name may occur in different places in different rules, although a name can

only occur once in any given rule. For example,

CONSTRUCT<A>IS<B:Thingl><C:Thing2>

is okay, whereas,

CONSTRUCT<A> IS<B:Thingl><B:Thing2>

is definitely NOT okaj7.

A particular selector name may occur in several different rules. This implies that a

selector name will have different results depending upon the rule. If the host language

does not allow overloading then we can only have one routine of that name, which will have to

service several different types of nodes. Thus, each selector routine must check its node argument

to see which kind of node it is before the routine can make the selection. The best way to make this

clear is with yet another example. Consider the following two construction rules:

CONSTRUCT<Transition>IS
"CHARACTER" <CharacterList:CharacterList>
"NEXT - STATE" <NextState:Number>

This results in the "NextStateOf"' selector which is shown in Figure 16.

PROCEDURE Nex tStat eOf (x 1 : Node) : Node ;
VAR n : Node ;
BEG1 N
Grammarcheck (x 1 , "FAGrammarW) ;
CASE CodeOf (x 1) OF
Default :
n :=Getcomponent (xl, 1) ;

I Transition:
n := Getcomponent (x1, 2 ;
ELSE
Error (
"NextStateOf:Operationincorrectonthisnode.") ;

END ;
RETURN (n) ;
END NextStateOf ;

Figure 16: An Example Selector Routine.

Lexical node selectors are a bit different in that there is not much choice about what is to be

selected. The idea is to extract the information contained in the node and return it to the caller.

The only form that the information can take in the current GIPAFS implementation is character

string. These routines are named "Retrieve" followed by the name of' the lexical rule, and then

followed by "Of'. So a lexical rule for "Number" would cause a "RetrieveNumberOf' routine to be

generated.

We will finish off this discussion of grammar-specific routines with a look a t some of the

access routines that would be generated for the address book example. The construction rule

Record in Figure 4 would have the constructor Ma keRecor d, the predicate Rec or dQ and the

selectors Name SO•’, Addr e ssOf , PhoneOf, Occ upa t i onOf (corresponding to the name,

address, phone and occupation fields) generated for it. The construction rule Address in Figure

5 would have the constructor Ma keAddress, the predicate AddressQ, and the selectors

AptOf, StreetNumberOf , StreetOf, TownOf, Countryof, and CodeOf generated

for it. Thus if the node current1 tem was a Record, in which case

Rec ordQ (current I t em) would return true, then the street that the person:

NameOf (currentItem) livesonwouldbe:

StreetOf (Addressof (currentItem)) .

The alternation rule for Name shown in Figure 7 would only have a predicate NameQ

generated for it. NameQ would be true if and only if I dent i f i e rQ or I n i t ialQ were true.

The repetition rule for Records shown in Figure 9 would have both a predicate and a

constructor generated for it. The predicate would be called RecordsQ and would return true if

its node argument was a list of records. The constructor MakeRecords takes no arguments and

returns an empty list of records. Records may be added to the list using a generic append

operation. Selection on lists is also a generic operation since every element is the same. Thus list

elements must be refered to either by their position in the list, or by their relationship with some

other member of the list (i.e. give me the next one after this one, or give me the previous one, and

so on).

Generic access routines are constructed by the GRAFS implementoi as the need for them

becomes apparent. They are difficult to categorize completeljr for the reason that it is difficult to

know, a priori, all of the routines that might be wanted. The word "wanted" is used intentionally,

since grammar-based techniques can result in a syntactically complete set of operations (as

discussed in Chapter 3). However, it may be more convenient to add routines that perform

operations in a more effective manner. For example, it is useful to have routines that allow data

structure navigation without being tied to any particular grammar structure. This allows the

construction of generalized search and replace routines, for example, that may be used in several

different situations.

What can be said about generic routines, in general, is tKat they must have access to

specification information on the structure being manipulated. This is to ensure that the requested

operation is relevant to the structure that that operation is being applied to. For example, the

append operation should only be applied to repetition class node.

The GRAFS implementation is a prototype and so generic routines were constructed as

required. The existing generic routines fall into the categories of parsing, prettyprinting,

structured file 110, list manipulation and generic predicates. All of these operations are abstract in

that they apply to any and all grammars.

Parsers differ in the source of their input. For example, one might wish to parse text stored

in a particular file, taken from a standard input, or taken from a character string. Only one

version is currently implemented and that one is designed to parse the text that is stored in a

particular file (the name of that file is an argument to the parser). -

Prettyprinters differ in the choice of output destination and formatting routines. One

version, called P r e t t y P r i n t , uses default formatting routines and sends its output to stdout.

The other version, called U n P a r s e , takes nothing for granted. The user provides a set of

formatting routines that, control when and where output occurs. More is said about, this in the

section on prettyprinting.

GRAFS does not automatically store its structures in files. Therefore, if the user wishes to

use a previously stored structure, or store a structure for future use, GRAFS must be informed.

I
There are two routines provided for this purpose. SavePa r seTr ee saves the specified

structure (GRAFS views everything as a parse tree, hence the name), under the supplied name.

Recover Par seTree reconstructs the structure of the supplied name, and returns the root note

to the caller.

Lists are structured the same way in all grammars so they can be accessed using generic

routines. There are three such routines currently available: Nt hElemen t , L i st Leng t h ,

and AppendNodeToList. NthElement retrieves a child node from the supplied list by

number. This is similar to array accesses; you specify the element required by its ordinal number.

L i st Length returns the number of elements in the supplied list. AppendNodeToL i s t glues

the supplied node onto the end of the supplied list. There are many other operations (e.g. next,

first, previous, insertNthElement, etc.) which could also be constructed.

Generic predicates are predicates that apply to classes of nodes. The only one currently

implemented is EmptyNodeQ. This predicate is true if its argument exists and false otherwise.

There are situations (such a s optional nodes) where a nonexistant node may be selected. This

predicate allows the application to test for such cases. Many other generic predicates could be

constructed. For example, rule-class predicates could allow programs to scan structures in a

generic manner. An example of this sort of generic scanning occurs in PascalMPS [Cam$7b].

Access routines are generated in two files for each grammar. One file that contains a

Modula-2 definition module that includes all of the access routine header declarations for that

particular grammar. The other is a file that contains the corresponding implementation module.

These files must be compiled and then linked to the user's application program. The names of the

two files are taken from the name of the grammar being processed. For example, input of a

grammar file named. G1, would result in the generation of the files C1 - GS.def and G I - GS.mod,

containing the definition module and implementation module, respectively. for that grammar.

Constructing a prettyprinter is not difficult, it is mostly a matter of dealing with a number of

special cases. The details of the special cases are dependent upon the choice of formatting

directives and the nature of the structures that are to be printed. Each structure type and format

directive requires its own special handling. In this sense, the GRAFS prettyprinter algorithms are

quite standard. The classic reference on prettyprinting is Oppen [Opp80].

What criteria drove the design of the GRAFS prettyprinter? As usual there are two main

approaches, hard-coding a custom prettyprinter routine, or using a table interpreter with special

tables for each structure specification. For reasons of flexibility and speed of implementation, we

chose the table interpreter. The grammar information is already available in parse tree form and

manipulation routines were already in existence so we decided to use the parse tree directly. This

meant that because the prettyprinter had to know how its tables were structured then every

grammar had to be of the same type, so that one set of access routines would apply to all

specification grammars. All grammar specifications (including the metagrammar itself) are

instances of the metagrammar and hence have the same grammar type, "METAff.

Given the grammar-based nature of the specifications and the propamming-language bias of

prettyprinters it seemed reasonable to take a svntas-directed approach [Rub83,Wood86]. That is,

that the structure of' the specification grammar as opposed to some separate format specification,

a s well a s the esplicit formatting directives control the appearance of the output. This added fuel

to the decision to use the specification parse tree to drive the prettyprinter. a

The observant reader will probably have noted the slightly dubious tone of the previous

paragraphs, and might wonder if the declsion to mix formatting directives in with the grammar is

somehow in doubt. Future ~mplementations might want to consider separating structure

specification and formatting specification. Unfortunatelv there is no immediate answer to this

question but only more questions. First of all, current experience shows no difficulties with this

decision. That means that for the work that has been done with GRAFS, it was possible (and in

fact, easy) to get the formatting effects desired. However, we could conceive of a situation where

the user might want to use different formatting conventions on the same grammar. Given that

grammar specification and file type are rather closely tied together, this might prove difficult.

The final source of inspiration for the GRAFS prettyprinter came from the Pascal MPS

prettyprinter [Cam87b]. It is the notion of parameterization, and is dealt with in more detail by

Cameron IGam87al. In essence, parameterizing the prettyprinter means abstracting the

prettyprinter algorithm, a s much as possible, from various machine- and situation-dependent

considerations. This is done by having the user provide the low-level printing action routines.

These are "PrettySpaces", "PrettyNewLine", "Prettystring", "EntryMonitor", and "ExitMonitor".

PrettySpaces is called by the prettyprinter to print some k number of spaces (blanks).

PrettyNewLine is called when the prettyprinter wants to cause a line break. Prettystring is called

to print out some text string. EntryMonitor is called each time the prettyprinter enters a new node

of the parse tree being printed and ExitMonitor is called each time the prettyprinter leaves a node.

m1 lnere are two reasons motivating prettyprinter parameterization. T i e first is that the

prettyprinter may be applied in several different environments. Interactive structure editors

require prettyprinted output to a CRT, whereas other applications may require prettyprinted

output to a file. Parameterization allows the user to supply routines that support the application

that is required. The second reason is that, parameterization allows the user to have more control

of the prettyprinting process. Some awkward problems can be solved by constructing customized

formatting routines. For example, consider the situation where the user wishes to alter the textual

representation of tokens. A particular example of this occurs in Pascal, where some compilers use

a Y A ' to represent pointer I-eferences, and some use a 'a'. A particular grammar will use only one

symbol. Hence, in order to create prettyprinters that will produce output that is acceptable to

either compiler, the programmer will have to alter the representation of' pointer references.

Parameterization makes this possible.

4.2.7 User Interface

The GRAFS user interface was designed to satisfy two basic criteria. First of all, the

interface had to contribute to the readability of the application program. This was satisfied by

using descriptive names for fixed GRAFS routines, and names that reflected the grammar

structure that was being manipulated, in the case of generated GRAFS routines. Second, the

interface had to be as simple as possible. This was satisfied by making GRAFS do as much as

possible, and having it keep track of as much information as possible.

4.2.8 Type Checking

Type checking in GRAFS has two levels. The first ensures that we are dealing with the

correct grammar and the second ensures that the operation to be performed on a given structure is

appropriate for that structure. All type information is set, checked, and hidden by GRAFS, so

there is no opportunity for the programmer, through error or intent, to subvert the type checking

mechanisms.

The two levels of type checking have separate mechanisms. The grammar type of a node is

stored in each node as it is created by either the Make routines or the generic node constructors

that are used by the parser and the restore utility. Any time a node is to be manipulated, the

manipulating routine checks the node's grammar type to confirm that that grammar type is to the

one that the routine was generated from. This has two effects. I t confirms that the requested

operation is appropriate to the grammar and it guarantees that nodes of different grammar types

cannot be mixed together into the same structure. The grammar type checking mechanism is

quite simple. Each node contains the grammar type. This information is compared with the

grammar type that the access routines are expecting.

The node code is, like the grammar type, also storwl in each node record and is inserted by

Make routines or by the parser or restore utilities. The difference is that while grammar names

must be unique, node codes are only unique to a particular grammar. That is, grammars G1 and

56

i

G2 will both have a node code of 1. Thus, grammar type and node codes must both be checked.

Node codes are generated internally by the GRAFS symbol table utility. After the gen

program parses a GRAFS specification and constructs the parse tree, the symbol table utility scans

through the parse tree and assigns codes to each different rule. A rule defines the structure and

hence the type of a particular node. Hence any node created according to that rule is assigned the

code for that rule. This code is then checked by the manipulating routines to ensure that the

requested operation corresponds to the structure to be manipulated by that routine. Consider the

effect of selecting a particular field, from a node that has no such field. If the programmer is

unlucky, the selection will take place resulting in a bug that could be difficult to find.

4.2.9 Structrrred File Input and Output

Structured file inputloutput is handled by the Checkpoint and Restore utilities. Checkpoint

takes a GRAFS data structure and stores it, in structured form, in a file. Restore reconstructs a

GRAFS data structure from a structured file. The only information that the application program

needs to supply to these routines is the root node of the structure and the name of the file. In order

to save a parse tree, GRAFS has to know its root, and in order to restore a parse tree, GRAFS has

to know where to put the root.

Simple structured 110 is not that big a problem to implement. The prototvpe GRAFS uses a

single data structure to construct parse trees; the node. Thus basic 110 is handled by constructing

routines to store and recover node data structures. I t should be noted that we have not explored

methods of minimizing the storage of node information. Given that the information stored in a

node may change, since it is not clear what information has to be stored in a node. we chose not to

worry t.o much about storage compaction for the time being.

The more interesting part of structured 110 is the preservation of the relationships between

nodes of the parse tree. The nodes have a relationship to each other. In the first stages of the

GRAFS implementation, we were going to handle those relationships with pointers. However,

5 7

there is one major problem with the use of pointers; it ties you to a particular address space and a

particular program execution. A pointer is only valid for one computer and only for the program

execution during which the pointer was assigned. It may be that case that a pointer is the same on

two different machines or program executions, but will not be so in general. Given that the

structures that GRAFS is to manipulate are intended to persist between program invocations and

might be transferred between or manipulated by, different machines, we wanted to remove the

dependence on pointers.

The solution chosen was to add a level of indirection. We created a virtual address space for

each grammar. Each node that was created for a particular grammar was given a unique (to that

grammar) number. That number is then used, in concert with the grammar type, to identify the

node. The grammar-support subsystem of GRAFS keeps track of all grammar node numbers and

handles requests for a particular node.

This solution has a number of pleasant effects. No pointer translation is required. That is,

saving a particular node and then restoring that node does not require changing any of the nodes

that refer to it. This saves quite a bit on impiementation time and system compiexity.

A parse tree does not have to be on a given machine all a t once or, in fact, a t all. Since the

node relationships are independent of the machine address spaces or storage device address space,

GRAFS can keep track of the location of nodes and move them around without having to worry

about appraising referencing nodes or application programs of the actual location of a node. For

example, this means that GRAFS can eventually handle data structures that are too large to be

completely contained in machine memory.

Unfortunately, this level of indirection does introduce the overhead of having to translate

node numbers to real addresses. However, this overhead can be minimized by using hashing

techniques. Another thing that could be done is to do the address translation only on 110. That is,

when a node is read in, its virtual address is converted into a real one and when the node is written

out its real address is converted back to a virtual one. This would have the advantage of lessening

the address translation overhead. Given the research orientation of the prototype GRAFS, we felt

that the tradeoff of performance for flexibility was worthwhile. In fact, to maintain the flexibility

of GRAFS-style systems we conjecture that some sort of virtual scheme will be required. Whether

or not the method that we have used will prove to be optimal remains to be seen.

4.2.1 0 The Complete Address Book Example Grammar

The complete 'grammar for our address book example is given in Figure 17. As we noted

previously, the address book is just a list of records. Each record contains a name, address, phone

number and occupation. The first three are fairly straightforward. The only interesting thing of

note is the use of the NTS and TS directives in the Phone construct. These directives turn off the

token spacing so a phone number is printed as "937-1445", for example, instead of as "937 -

1445". The first three fields tend to be unique to a record. That is, i t is unlikely that two people in

the book have the same name or the same address. Therefore, we have added the occupation field.

This information allows you to write an application that could print out views of the addressbook.

For example, suppose thai you wanted a iist or' phone numbers of faculty members. The

application code might look something like this:

addressBook :=RecoverParseTree ("AddressBook") ;
FOR i := 1 TOListLength (addressBook) DO
IFProfessorQ (
OccupationOf (NthElement (i , addressBook))) THEN
PrettyPrint (Nameof (NthElement (i, addressBook))) ;
PrettyPrint (Phoneof (~ t h ~ l e m e n t (i,addressBook))) ;
END ;
END ;

All that this code fragment. does is scan through the entries in the address book (it first reads in the

structui-ed-file "AddressBook"i and if the entry is for a professor, prettyprints the name and tht.

phone number. This fragment uses the defhult prettyprinter for simplicity. The result will be a

column of interleaved names and phone numbers, each on its own line. If a more readable list is

required, the parameterized prettyprinter Unpa r se can be used instead.

GRAMMAR

LIST <Records> OF <Record> SEPARATOR " " LB LB

CONSTRUCT <Record> IS "Name:" <Names:Names> LB
"Address:" <Address:Address> LB
"Phone:" <Phone:Phone> LB
"Occupation:" <Occupation:Occupation~

LIST <Names> OF <Name> SEPARATOR " "

ALTERNATE <Name> IS <Identifier> I <Initial>
LEXEME <Identifier> IS #Letter# { #Letter#)

LEXEME <Initial> IS #Letter# "."

CONSTRUCT <Address> IS ID ["APT" <Apartment:Number>]
<StreetNumber:Number> <Street:Identifier> LB
<Town:Identifier> <Country:Identifier> <Code:Code> OD

LEXEME <Number> IS #Digit# { #Digit#)

LEXEME <Code> IS (#Letter# I #~igit#) {#~etter# I #~igit#)

CONSTRUCT <Phone> IS [" (" <Area:Number> ")" 1
NTS <Prefix:Number> "-" <Suffix:Number> TS

ALTERNATE <Occupation> IS <Student> I <Professor> I <Other>
CONSTRUCT <Student> IS "STUDENT"

CONSTRUCT <Professor> IS "PROFESSOR"

CONSTRUCT <Other> I S "OTHER"

LEXEME #Letter# IS #UppercaseLetter# I #LowercaseLetter#

LEXICAL-CLASS #LowercaseLet ter# IS "a" "b" "c" "d"
1 leW llfW l l g W llhll l l i W lljll llkll Will llmll W n l l W o l V lIp?l

rr it vi 11 11 vr i c t ri 11 v 11 w t i w w 11 11 ti 11 vt

Figure I T : The Complete Address Book Grammar.

One advantage to using a grammar for this example, is the ability that GRAFS has to check

the input. For example, if you were entering information into the address book, GRAFS will only

accept input that is syntactically correct. In other words, GRAFS will not be able to know if the

phone number that you have entered is a correct one, but it will be able to check that that phone

number a t least appears to be correct. If you try entering "ABC-456611, GRAFS will reject it since

phone number prefixes can only contain numbers. I t is possible to specify things a bit more

tightly, and design the grammar such that it would only accept phone number prefixes with exactly

three digits. However, then you need to know that every phone number will be structured that

way. Thus there is some tradeoff in design, between flexibility and the systems ability to detect

anomalous input.

CHAPTER 5

GRAFS PROTOTYPE EVALUATION

This chapter looks a t an example of using GRAFS. The first section considers the objectives

of this research, some motivations and criteria for selecting an example, and describes the chosen

example. The second section contains some observations made while the example was being

implemented. The idea is to look a t what GRAFS is like to work with and what some of the

benefits and problems of this approach are. The third section contains an evaluation of the

example application. Is the application any good and what effects did GRAFS have on its design

and implementation? The last section contains a summary of the results of developing an

application program using GRAFS. I t deals with the details of the application, evaluates that

application, and discusses the effect on the application, of using GRAFS a s a n implementation tool.

This last section also considers these effects a s to whether they are artifacts of the GRAFS

implementation or model.

5.1 Prototyping a Lexical Analyzer Generator

One of the obiectives of this research was to evaluate the applicability and functionality of

GRAFS. One way to perform this evaluation is to use GRAFS in an application. Further, it would

be useful if' the application was implemented both with and without GRAFS, in order to get some

feel for how effective GRAFS is. This comparison results in a subjective evaluation since only one

person is involved and knowledge gained from the first implementation can be applied to the

second. Also, there is more familiarity with conventional implementation than with GRAFS

. implementation.

With the above considerations in mind, we have chosen to re-implement a lexical analyzer

generator. J u s t such a device was implement.ed for (and is a part of) GRAFS. Now the problem is

to construct this device using GRAFS and make whatever comparisons, observations and

conclusions that are appropriate.

The original GRAFS lexical analysis sub-system has two parts. The first part is a generator

routine that takes a set of regular expressions and constructs a tabular representation of the

corresponding deterministic finite automaton. The second is a table interpreter that reads the

tables produced by the generator and accepts or rejects input strings accordingly. The new

implementation also uses a table interpreter approach, follows the strategies and algorithms of the

original code as closely as possible, and, in fact, re-uses as much of the original code as practicable.

However, the second implementation makes use of GRAFS grammars to specify the major data

structures. Regular expression definitions are specified with one grammar (REGrammar). Finite

automata, both deterministic and non-deterministic are described by the other grammar

. (FAGrammar). In the original implementation, deterministic and non-deterministic automata

have separate and distinctly different representations. The second implementation had its data

structure support provided by GRAFS whereas the first implementation had its support routines

hand-coded.

The new implementation uses two grammars, one for regular expression definition and one

for finite automata. The generator proceeds in several stages. The first stage accepts regular

expression definitions and generates non-deterministic finite automata. The output of this stage

could be written out using the finite automaton grammar (FAGrammar), but is normally passed

directly to the second stage. This second stage converts a non-deterministic finite automaton into a

deterministic one. Finally, the deterministic automaton is stored in a structured file. The

analvzel component reads in that automaton and uses it to analyze the input.

5.2 Observations

In this section, we discuss what i t is like to work with GRAFS. It is interesting to take a

support tool like GRAFS from conception, through design and implementation and finally to the

stage of actually trying to do something useful with that tool. During most of the time that has

been spent with GRAFS, the system has been under development. From the user's viewpoint, this

means that we had to work with a n incomplete and quirky system; a situation that does not

engender a lot of confidence. Thus, we were delighted to discover that GRAFS is not at all difficult

to work with, and we are coming to have some confidence in it.

We found it relatively easy to describe data structures using the GRAFS grammar notation.

The strong reflection of the semantics by the notation made it very easy to visualize the structures

that would be created. Running the specification through the generator gave immediate feedback

on problems of recognition, incompleteness, spelling mistakes and the like. Incomplete

specification of a grammar, whether through omission or spelling mistakes is caught by GRAFS

and brought to the programmer's attention. Problems with the parsability of the grammar are

pointed out by GRAFS.

The central problem of design is not made easier by GRAFS. GRAFS will help you construct

a system once you know what the system is to do and how the system is to do it, but is not much

help prior to that. GRAFS is a support system that deals with a lot of the drudgery that takes

time away from the design process. Consider that the designers of a system are interested in

solving some problem or set of problems. Unfortunately, in order to solve the problem, a number

of peripheral issues must be dealt with. Various support routines that have little to do with the

central issues must be constructed and debugged. Several of these routines have no function

except. during the development of'the syst.em and may be specific to some aspect of the design. If'

the design changes then support routines may have to be modified. The process of evolving a

design is frustrated by having to deal with peripheral issues that have little to do with the actual

design. In fact, there may even be considerable resistance to design changes caused by the amount

of peripheral work involved. It is not the intention to suggest that GRAFS immediately cleans up a

cluttered design process. The lexical analyzer generator is not a large program and we do not

assume that these techniques are applicable to any size of system. However, these techniques to

seem do be effective for programming-in-the-small.

Let us look a t some of the benefits that GRAFS has on the implementation process. First of

all, it saves considerable time in the construction of support routines, if the progra$mer is using an

ADT methodology. GRAFS generates these routines automatically and correctly. Second,

GRAFS provides considerable support in debugging those parts of the program that have to be

constructed by the programmer.

Debugging support comes in various forms. For example, it is very difficult to use GRAFS

routines incorrectly and get away with it. A considerable amount of internal type checking is

performed. This checking is difficult to circumvent. Unfortunately, implementing GRAFS a s a

subprogramming system results in a dependence on the security of the host language, in this case,

Modula-2. Since Modula-2 allows its type checking to be circumvented [WircSFj], GRAFS type

checking can also be circumvented. However, the use of Modula-2 opaque types hides structural

information. Thus, although a language implementation may allow type circumvention via type

coercion mechanisms or variant record overlay techniques, the actual structure is kept hidden.

This is in contrast to Pascal, where type structure is always visible.

The prettyprinter can be invoked upon any node at any time, even from the debugger (dbx).

This saves the programmer the tivuble of writing special data-structure printer routines that are

only used a few times and are just something else that needs to be designed, implemented,

debugged and then modified as things change. The p~vttyprinter provides a very readable output

and costs very little in terms of programmer effort. All that, the programmer needs to do is insert

formatting directives in the original specification.

The ability to store structured information in n file can also speed debugging. Consider the

case where a program runs in stages, each stage constructing a new structure from a previous one,

or modifying the previous one. As implementation and testing proceeds from stage to stage, the

program has to execute for longer and longer before i t gets to the stage being tested. If the

structural information can be stored and recovered a s required, then it is only necessary to run the

debugged portion of the program and store the resulting structures once. The program section

under development need only restore those structures and run. The time required to construct

those structures from scratch on each run is saved. This savelrestore process can, of course, be

done by hand but is time consuming; GRAFS provides this facility painlessly.

A last positive observation, is on the way tha t GRAFS affects program correctness. GRAFS

generates a parser and lexical analyzer for each grammar. Any errors in syntax will be caught.

The programmer does not need to be concerned about detecting anomalous input. Recall the

previous comments about the primary interest of the programmer being the central problem and

not the peripheral issues. Such a peripheral issue might be the user interface. Thus, the user

interface might be cobbled together on the fly, in order to get things running, and never be properly

completed. There is nothing more permanent than some temporary solutions! Also, the access

routines only allow the construction of syntactically correct structures. The application program is

thus not capable of generating a syntactically incorrect structure.

There are three problems with the current GRAFS implementation. GRAFS is incomplete,

slow, and uses too much storage. These issues are not seen as permanent and are be discussed

elsewhere.

5.3 Evaluation

This section is concerned with the quality of the example application and the ways in which it

was influenced by GRAFS.

The new implementation of the lexical analyzer and generator is a table interpreter and

generator. However, the data structure involved is not a simple statelcharacter transition matrix

as was the case in the original. The reasons for this change were the storage limitations imposed

by GRAFS. The current GRAFS implementation uses a lot of storage and the storage of individual

nodes is not compact. Also there is a problem with the construction of sparse data structures.

There is currently no way to create a matrix without having i t completely filled. A problem with

table-driven lexical analyzers is that the tables become quite large, even for fairly small finite

automata. Thus, in order to accommodate these problems, the data structure was modified. The

result is that access to information is not quite a s fast a s would be the case with a matrix.

The new implementation is. also slower than the original. There are three reasons for this.

First, a s mentioned before, the data structure is a bit slower to retrieve information from. Second,

the current implementation of GRAFS is not as fast a s it might be. There are several reasons for

this lack of performance. There is a considerable overhead due to type checking. Specifically, the

grammar checking mechanism is not well implementred. This is not seen as a problem, since other

techniques are available to speed this up considerably. The last reason, is that GRAFS currently

supports only one base data type; character strings. Thus, Iiumeric data must be converted to and

from string representation every time it is to be stored or manipulated. Again, this is not a

permanent situation, since we see no difficulty in extending GRAFS to support other base tvpes,

. therebv removing this conversion cost.

One limitation of' that, will affect application programs is the way that GRAFS uses storage.

Consider the simple record shown in Figure 18. Integers are stored in 4 bytes. Records fields are

stored more or less contiguously, so a variable of type Simple should use 16 bytes. Compare

that with the equivalent GRAFS construct shown in Figure 19 and diagrammed in Figure 20.

Thus GRAFS adds considerable storage overhead. At the moment, GRAFS uses a homogeneous

storage structure, the node. There is no particular reason while nodes have to be all the same.

Nodes could be custom built to only hold the information that is necessary for the structure that is

being represented, thus saving some storage. Also, lexical nodes could be compressed into their

parent nodes to save more storage. These changes will have to wait until a future implementation.

Simple =RECORD
int 1 : INTEGER;
int2 : INTEGER;
int3 : INTEGER;
int 4 : INTEGER
END ;

Figure 18: A Simple Modula-2 Record.

Now that we have mentioned the bad effects of GRAFS and made some attempt a t excusing

them, let us look a t the positive side. I t was very easy to convert and debug the original

implementation to get the new one. This was much faster than constructing the original even

considering the increased understanding of the problems and the reuse of code. The code required

considerable modification, only the main structure remained. Bugs that took some time to find in

the original came out somewhat faster with the aid of GRAFS. This was especially due to the

availability of the prettyprinter for studies of incomplete structures. For example, the program

would occasionally get lost prior to completing the tables. The program could be halted, and the

prettyprinter called on the partially finished structure to get an idea of what was going on.

The experience of implementing the lexical analyzer twice, both times using a table driven

approach, has caused us to question the desirability of this approach. I t IS our intention to try a

re-implementation, a t some point, using code-generation techniques, a s was done in [Moss86]. In

CONSTRUCT <Simple> IS
<intl:Integer>
cint2:Integer>
cint3:Integen
<int4:Integer>

LEXEME <Integer> IS #digit# #digit# 1

Figure 19: GRAFS Construct of the Figure 18 Record.

Simple

Figure 20: GRAFS. Storage for Figure 19.

other words, instead of generating tables for a universal table interpreter, we would like to try

generating a customized lexical analyzer routine directly from the specification. Interestingly, if

the GRAFS parser generator and parser are enhanced enough to allow the GRAFS grammar to

describe Modula-2, then GRAFS could generate a Modula-2 metaprogramming system. Such a

metaprogramming system would support the code generation approach that we wish to use.

The new implementation was also an exercise in learning to use GRAFS. Even though we

had built GRAFS and understood how it worked, we still had to learn how to design structures and

specify them with a grammar. I t turned out that grammar design problems were relatively easy

to recover from. That is, incorrect structural or interface choices were not hard to correct.

Changes were simply a matter of changing the grammar, running the grammar through the

generator, and modifying the application program. Naturally, the severity of the modifications to

the application program depended upon the severity of the structural modifications. Most of the

time, the structure modifications were minor and the program modifications were correspondingly

- minor.

Table I : Comparison of Lines of Code in the Lexical Analyzers.

Total I 1232 1 938

Routine GRAFS Example Analyzer
Class I Internal Analyzer

-----------------+-----------------------+------------------

One of the espected benefits of using GRAFS is a reduction in the amount of' code that is

constructed manually by the programmer. This benefit manifested itself in the example program.

RE -> NFA
NFA -> DFA
Support
Prettyprinting
Chkpt & Restore
Interpreter

Table 1 shows the number of lines of code in the original (internal to GRAFS) analyzer

7 0

-----------------+-----------------------+------------------

308
150
304
188

5 1 (not shown)
231

28 1
2 4 4
103

0 (GRAFS)
0 (GRAFS)

310

implementation and in the new (making use of GRAFS) implementation. The table breaks the two

implementations down into their components and shows the number of lines of code in each stage.

It should be noted that, although some support routines needed to be constructed in the new

implementation, the amount was reduced considerably. Also, prettyprinting and data structure

checkpointlrestore operations were completely provided by GRAFS. The result is that the lexical

analysis programs constructed using GRAFS required approximately 24 percent fewer lines of

Modula-2 code than the lexical analysis sub-system of GRAFS. That 20 percent consisted of data

structure support routines that were provided by GRAFS. The conclusions that can be drawn from

this are limited by the inadequacy of lines-of-code a s a software metric. For example, we have not

rigorously dealt with problems of the equivalence of the two implementations, and we are not

guaranteed that they have the same quality of code (assuming that we could agree on what that

means). However, given that the two implementations were done by the same person, it seems

reasonable to assume that there is some basis for comparison.

Another problem with evaluations, is that GRAFS applications can be difficult to compare

with non-GRAFS applications. Consider the protection that the type checking mechanism. or that

the parses provides complete syntax checking of input. I t is unlikely that non-GRAFS applications

would be equivalent, in this area. Also, consider the level of abstraction used in the application.

Programs with a lot of subroutine calls tend to run more slowly than programs with fewer

subroutines calls. Hence, a programmer who does not use abstraction techniyues can probably

produce a faster program than someone who uses those techniques. However, problems may arise

when trying to maintain a system that was implemented without abstractions.

5.4 Results

This section contains a summary of the results obtained by using GRAFS to re-implement a

lexical analyzer generator.

The current implementation of GRAFS is incomplete, slow, and uses too much storage.

Thus, GRAFS is not yet a t the stage of being usable for production systems. However, there is no

evidence to suggest that the implementation has to remain incomplete, always be slow, or that the

current storage requirements will persist. For example, the current grammar-type checking

mechanism is clumsy and can be sped up considerably.

Many other avenues also remain to be explored. Work done by Heuring [He86], and

MossenBock 1Moss861 suggests that the lexical analyzer can be made faster. Using a generated

code approach instead of a table-interpreter would remove the overhead of reading in and

initializing lexical analyzer data structures. Work remains to be done in the area of storage

compaction. For example, Cameron [Cam861 has used syntactic information to encode program

source code and store it more compactly. Hashing techniques can be used in the internal GRAFS

tables. The list goes on. Also, recent work by Lamb [Lamb871 on a system that has some'

similarities to GRAFS indicates that such systems can approach production requirements.

We felt that using GRAFS sped program development. There were several ways in which

GRAFS aided in debugging and, in addition, it saved the programmer the effort of constructing the

required support routines. Also, GRAFS does enforce data abstraction. We have noted that, in

cases where the programmer is responsible for all the implementation details, abstraction may not

be used.

CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH

This chapter summarizes the results of this research. The first part is a discussion of what

was learned about GRAFS and the second part considers the work that remains to be done.

6.1 Conclusions

The aim of this research was to consider GRAFS in terms of feasibility, applicability and

productivity. Feasibility is the question of "Can we build one?". Applicability means "What can

we do with it?". Productivity is a question of "Is it worth using'?" or What do we gain by using it?".

This section addresses these questions in the light of the research that has been done.

The question of feasibility can be disposed of fairly quickly. The answer is that it is possible

to construct GRAFS. The evidence for this is that a functioning prototype was, in fact,

Chapter 3 discussed the ways in which GRAFS could be used to describe arbitrary data

structures. The existing implementation covers a subset of the data sti.uctures available in

common programming languages. The range of base types is currently restricted to character

strings, but we strongly conjecture that that range can be extended to cover the commonly

available base types. Simulation (or the effect) of pointers can be achieved with labelling

techniques. Thus a full data structure description capability should be achievable by this class of

system. Thus, we conclude that GRAFS will have applicabilit,?; wherever complex data structures

. are required. Whether it will be the method of choice remains t.o be seen.

In our experience. ~f a programmer is using absti.action techniques then the implementation

will proceed more quickly if GRAFS is used than if not. The reasons for this are several. First,

data structure support routines a re provided or generated automatically, eliminating the time

required to design, implement, and debug them. Second, the enhanced type checking makes it

more difficult to misuse data structures. Third, the availability of the prettyprinter and the

enhanced type checking speed the debugging process. Fourth, GRAFS' grammar-based orientation

makes it difficult (if not impossible) to create syntactically incorrect structures due to input errors

or interface misuse.

The prototype GRAFS is incomplete, slow, and uses too much storage. However, we

conjecture that these are artifacts of the prototype, and need not be the case with such a system.

Furthermore, in view of our own experiences with GRAFS we feel that systems of this class have

the potential to be extremely useful and that further research in this area is warranted.

6.2 Further Research

The model of GRAFS given in Chapter 3 coupled with the incompleteness of the current

implementation leaves room for further work. This section outlines some of the ideas for research

based on issues internal to GRAFS and those that are peripheral but closely related.

We need to expand on the associated semantics of lexical nodes. At the moment, lexical node

information can only be in the form of character strings. However, there is no strong reason why

they have to be so limited and there appear to be some good reasons why they should not be. The

question then arises of what the semantics might be and how they might be specified. That is, do

we attribute base types to lexical rules or do we attempt to provide a facility for inventing base

types?

Consider grammar design issues. Does the existing GRAFS gmmrnar give sufficient,

expressive power? F O I example, there is no explicit way to construct matrices in GItAFS notation.

The best thnt we can do is construct lists of lists, but there is nothing to say thnt all lists must be

the same length.

Prettyprinting and formatting require further investigation. Should the grammar contain all

of the information about how to format the structures that it describes? Should there be several

different format descriptions and if so how would these tie to the original grammar? What

formatting operators are necessary (peripheral issue) and is it possible for the programmer to

define his own operators?

Several questions exist about the file system. Currently, structures exist in named entities

called files. These files exist in the context of a directory or hierarchy of directories. Could this be

handled by GRAFS as a series of hierarchical tree structures? How would we handle naming of

specific instances of GRAFS structures? What about optimizing the GRAFS save and restore

routines?

There is a major database research issue that also arises in GRAFS. How can we deal with

minor grammar changes? Grammar version 1 is changed to give version 1.1. Is it necessary to

explicitly convert or can the new grammar subsume the old one in some automatic fashion?

At the moment, GRAFS works in a single process on a single machine, What ahout

multi-process multi-machine versions? GRAFS itself has nothing to do with distributed computing,

however, GRAFS is a programming support tool and programmers are working in distributed

environments. It therefore seems worthwhile to look at the implementation issues involved in

making GRAFS work in a distributed system.

APPENDIX A: THE GRAFS USER INTERFACE

This section deals with some of the details that are necessary to actually use GRAFS a s

currently implemented. These details may overlap some of what has been presented in the body of

the thesis, but are presented here together to form a kind of limited user manual.

The GRAFS prototype is implemented in Modula-2 and runs on the SUN UNIX 4.2 release

3.2 operating system. The GRAFS interface consists of two parts. The first is a generator

program, g e n , that takes a grammar specification and produces the grammar-specific routines

and tables. The second part is the program interface that is composed of a set of Modula-2

subroutines that are used by the user application to interface with GRAFS.

1 Generation of Grammar Routines

GRAFS is directly involved in two phases of the design process: design and implementation

of major data structures, and then application program implementation. The firr;f. of these phases

splits into two parts, designing and describing each major data structure, and then implementing

each. The second phase involves integrating the GRAFS interface routines into the application

program.

Once a data structure is decided upon, i t must be described in a form acceptable to GRAFS.

This is done with the notation described by the GRAFS metagrammar in the last section of this

appendix. The user writes that description into a file, called. for example, "Sample". That file is

then handed to the gen program as follows:

- 8 ; g e n - v S a m p l e

The -v switch is optional, and will, if used, cause gen to produce a human readable symbol table,

production table and parser table and direct them to stclout. These should not usually be needed,

but they are available for debugging or the curious. Regardless of the setting of -v, gen will

produce the following grammar specific files:

Sample - GS.def -Modula-2 definition module.

Sample-GS.mod -Modula-2 implementation module.

Sample - ParseTree -grammar parse tree.

Sample - NodeData -other grammar data.

Sample - Tables -parser and lexical analyzer tables.

Sample.list -input listing file plus syntax
errors, parser problems etc.

(Note: GS is an abbreviation for Grammar-Specific.)

The .l ist file contains a listing of the input grammar and any errors found. If

there is a syntax problem, GRAFS will tell the user what it was expecting and

approximately where the problem occured. Any problems with parser table generation

will also be included a t the end of this file. Thus, after running gen, the w e r S ~ C U ! ~

check the .list file for any problems before proceeding any further.

The grammar-specific subroutine definitions and implementation module are files

<grammarName> - GS.mod and <grammarName> - GS.def . These will need to be

compiled and linked to the user application.

The remaining three files are not of direct interest to the user. They contain

information that GRAFS will read as required to perform any grammar-specific

operations such as parsing and prettyprinting. The user need only be concerned with

these files being in the directory where the application is being used. GRAFS will find

and load them as required without further cff'or~ by the user.

2 Using the GRAFS Subroutine Interface

Using the GRAFS interface is quite simple. The programmer need only include

the following modules:

(* data structures needed to talk to GRAFS *)
FROM DataTypes IMPORT Node, StringType ;

(* General interface routines - include what you need *)
FROM General IMPORT ParseInputFile, Prettyprint ... ; -
(* Grammar-specific routines - include each routine by
(* name or import the entire module and qualify each
(* routine name.
FROM <GrammarName> IMPORT ... ;

GRAFS structures are parse trees and are composed of Node objects. The

programmer does not have to be aware of what is in a node, but he will have to

allocate storage for them, pass them to GRAFS, and receive them from GRAFS.

StringType is the GRAFS type for handling character strings. The programmer

allocates storage of that type in the same ways as for Node- The cm!y differegce is

that Str ingType is really a n array and therefore can not be returned by a

function, i t has to be passed around as a VAR parameter.

The general interface routines that are currently available are as follows:

DEFINITION MODULE General;

FROM DataTypes IMPORT Node, StringType ;

FROM Prettyprinter IMPORT

(* procedure - takes a single StringType argument *)
PrettyStringProc,

(* procedure - takes a single CARDINAL argument *)
PrettySpacesProc,

(* procedure - no arguments *)
PrettyNewLineProc,

(* procedure - takes a single Node argument *)
MonitorProc ;

(* Parser (* fileName - name of file to be parsed.
(* grammarName - name of grammar to use for parse.
(* startsymbol - name of grammar-rule to be used as parser
(* start symbol.
(* result - TRUE if parse succeeded, FALSE otherwise.
(* RETURN VALUE : root Node of constructed parse tree.
(*
PROCEDURE ParseInputFile (

fileName, grammarName, startsymbol : StringType ;
VAR result : BOOLEAN
) : Node ;

(* UnParsers *)
(* prettyprint - quick and dirty pretty printer. Uses default
(* formatting routines and prints to stdout.
(*
PROCEDURE Prettyprint (n : Node) ;

(* UnParse - like Prettyprint but you get to roll your own
(* formatting routines.
(*
PROCEDURE UnParse (n : Node ;

(* string printer *)
Prettystring : PrettyStringProc ;
(* number of spaces printer *)
Prettyspaces : PrettySpacesProc ;
!* new line printer * I
PrettyNewLine : PrettyNewLineProc ;
(* EntryMonitor is called as the prettyprinter
(* enters each node,
(* ExitMonitor is called as the prettyprinter
(* leaves each node.
(*
EntryMonitor, ExitMonitor : MonitorProc) ;

(* List manipulation *)
(* NthElement - retrieves the ith child of the list xl.
(*
PROCEDURE NthElement (i : CARDINAL ; xl : Node) : Node ;
(* ListLength - returns the number of children
(* in the list x.
(*
PROCEDURE ListLength (x : Node) : CARDINAL ;

- (* ~ppendNodeToList - adds node to the end of list. *)
PROCEDURE AppendNodeToList (list, node : Node) ;

(* Generic Predicates *)
(* EmptyNodeQ - returns TRUE if the node exists,
(* FALSE otherwise.
(*

PROCEDURE EmptyNodeQ (x : Node) : BOOLEAN ;

(* Post Processing call *) -

(* PostProcessing - clean up at the end, application programs
(* should call this routine just before shutting
(* down.
(*
PROCEDURE ~ostProcessing 0 ;

(* Save/~ecover Parse Tree Interface *)
(* SaveParseTree - saves the parse tree at root n, in the
(* file, fileName.
(*
PROCEDURE SaveParseTree (n : Node ; fileName : StringType) ;
(* RecoverParseTree - reads in the file, fileName, reconstructs
(* the parse tree contained therein and returns
(* the root node to the calling routine.
(*
PROCEDURE RecoverParseTree (fileName : StringType) : Node ;

END General.

3 The GRAFS Metagrammar

This section contains 2 des~rin%n -- -r"- af t.he GRAFS metagrmxxar in terms cf itse!f.

Thus, the following grammar defines the grammars that are acceptable syntactically, to

GRAFS.

GRAMMAR

CONSTRUCT <Grammar> IS "GRAMMAR" LB <Rules:RuleList>

LIST <RuleList> OF <Rule> SEPARATOR " " LB LB

ALTERNATE <Rule> IS <ConstructionRule> I
<AlternationRule> I <RepetitionRule> I
<LexicalRule> I <LexicalClassRule>

CONSTRUCT <ConstructionRule> IS ID "CONSTRUCT"
<Name:SimpleNonTerminal> "IS"
~ConstructionElements:ConstructionElementList~
OD

CONSTRUCT <AlternationRule> IS ID "ALTERNATE"
<Name:SimpleNonTerminal> "IS"
<~lternatives:SimpleNonTerminalList> OD

CONSTRUCT <RepetitionRule> IS ID "LIST"
<Name:SimpleNonTerminal>
"OF" <BaseType:SimpleNonTerminal> "SEPARATOR"
<Separator:Terminal> <Formattors:DirectiveList>
OD

CONSTRUCT <LexicalRule> IS ID "LEXEME"
<Name:GenericNonTerminal>
"IS" <Definition:RegularExpression>
[<Delimiter:DelimiterExpression> 1 OD

CONSTRUCT <DelimiterExpression> IS "L-DELIMITER"
<LDelimiter:OneCharacter>
"R-DELIMITER" <RDelimiter:OneCharacter> OD

CONSTRUCT <LexicalClassRule> IS ID "LEXICAL-CLASS"
<Name:LexicalNonTerminal> "IS"
<Members:CharacterList> OD

LIST <ConstructionElementList> OF
<ConstructionElement> SEPARATOR " "

ALTERNATE <ConstructionElement> IS <Terminal> I
<CompoundNonTerminal> 1 <OptionalPhrase> I
<Directive>

CONSTRUCT cOptionalPhrase> IS ID " ["
<Head:BasicElementList>
<Body:CompoundNenTermir!al>
<Tail:BasicElementList> "] " OD

LIST <BasicElementList> OF <BasicElement>
SEPARATOR " "

ALTERNATE <BasicElement> IS <Terminal> I
<Directive>

LIST <SimpleNonTerminalList> OF
<SimpleNonTerminal> SEPARATOR " 1 "

LIST <CharacterList> OF <Onecharacter>
SEPARATOR " "

ALTERNATE <RegularExpression> IS <Term> I
<AlternationExpression>

ALTERNATE <Term> IS <Factor> I
<ConcatentationExpression>

ALTERNATE <Factor> IS <Terminal> I
<ClosureExpression> I <LexicalNonTerminal>
I <BrackettedExpression>

CONSTRUCT <AlternationEx~ression> IS ID

CONSTRUCT <ConcatenationExpression> IS ID
<Operandl:Term> <Operand2:Factor> OD

CONSTRUCT <ClosureExpression> IS ID "it'
<Operand:RegularExpression> ") " OD

CONSTRUCT <BrackettedExpression> IS ID " ("
<Operand:RegularExpression> ") " OD

CONSTRUCT <Compound~on~erminal> IS NTS "<"
<Component:Identifier> ":" <Class:Identifier>
">'' TS

ALTERNATE <GenericNonTerminal> IS <SimpleNonTerminal>
I <LexicalNonTerminal>

LIST <DirectiveList> OF <Directive> SEPARATOR " "

ALTERNATE <Directive> IS <IDRule> I <ODRule> I
<LBRule> I <TSRule> I <NTSRule>

CONSTRUCT <IDRule> IS "ID"

CONSTRUCT <ODRule> IS "OD"

CONSTRUCT <LBRule> IS "LB"

CONSTRUCT <TSRule> IS "TS"

CONSTRUCT <NTSRule> IS "NTS"

CONSTRUCT <LexicalNonTerminal> IS NTS " # "
<Identifier:Identifier> " # " TS

CONSTRUCT <SimpleNonTerminal> IS NTS "<"
<Identifier:Identifier> ">" TS

ALTERNATE <Terminal> IS <Onecharacter> I
<Characterstring>

LEXEME <Onecharacter> IS
(#Character# I #Delimiter#)
.L-DELIMI TER "\" "
R-DELIMITER "\""

LEXEME <Identifier> IS #Letter# { #Letter# I #~igit# 1

LEXEME <Characterstring> IS #Character# #Character#

8 2

i #Character# I
L-DELIMITER "\"" R-DELIMITER "\""

LEXEME #Letter# IS #UppercaseLetter# I
#LowercaseLetter#

LEXICAL-CLASS #LowercaseLetter# IS "a" "b" " c " "dm
We" " f " ngw "hW "i" "j" "k" "1" Vm " W n " llo" Wp"
wqt r w r w lts l l w t w w U w w V w w W w w X w " Y " " z "

LEXICAL-CLASS #Digit# IS "Of' " 1 " "2" "3" "4" "5"
"6" l t 7 W " 8 " 1 1 9 W

LEXICAL-CLASS #Delimiter# IS "\""

APPENDIX B: EXAMPLE LEXICAL ANALYZER GRAMMARS AND GRAMMAR

INTERFACES

This appendix contains the grammars, grammar-specific interface routines and

main source code for the GRAFS lexical analysis package implementation as well as

the source code for the GRAFS lexical analysis sub-system (the one internal to

GRAFS).

Sections 1 and 2 contain the regular expression grammar and its interface.

Sections 3 and 4 contain the finite automata grammar and its interface. Section 5

contains the lexical generator source code for both implementations. It is organized in a

side-by-side manner, sideways on the page (to get a reasonable code width), with the

old implementation on the left side and the new one on the right. Section 6 contains

the lexical analyzer source code for both implementations. As with Section 5, the two

implementations are laid side-by-side with the old implementation on the left and the

new one on ihe righi. We have made some attempt to align corresponding sections of

the code to ease comparison.

1 Regular Expression Grammar

This grammar describes a structure for regular expressions.

GRAMMAR

CONSTRUCT <REInput> IS <REList:REList> <SubREList:SubREList>

LIST <REList> OF <REDefinition> SEPARATOR " " LB LB

LIST <SubREList> OF <SubREDefinition> SEPARATOR l1 " LB LB

CONSTRUCT <REDefinition> IS "DEFINITION" <Name:Identifier>
"ISw ID <Definition:RE> OD

ALTERNATE <SubREDefinition> IS <SubDefinition> I

84

CONSTRUCT <subDefinition> IS "SUB-DEFINITION"
<Name:Identifier> "IS" ID definition:^^> OD

CONSTRUCT <ClassDefinition> IS "CLASS-DEFINITIONn
<Name:Identifier> "IS" ID <Definition:CharacterList> OD

LIST <CharacterList> OF <Terminal> SEPARATOR ,, "

ALTERNATE <RE> IS <Term> I <AlternationExpression>
ALTERNATE <Term> - IS <Factor> I <ConcatenationExpression>
ALTERNATE <Factor> IS <Termifial> I <ClosureExpression> I

<LexicalNonTerminal> I <BrackettedExpression>
CONSTRUCT cAlternationExpression> IS <Operandl:Term> " 1 "

<Operand2:RE>

CONSTRUCT <ConcatenationExpression> IS <Operandl:Term>
<Operand2:Factor>

CONSTRUCT <ClosureExpression> IS " { " <Operand:RE> ") "

CONSTRUCT <BrackettedExpression> IS " (" <Operand:RE> ") "

CONSTRUCT <LexicalNonTerminal> IS "#" <Identifier:Identifier>
" # "

LEXEME <Terminal> IS { #Character#)
L-DELIMITER "\" " R-DELIMITER "\" "

LEXEME <Identifier> IS #Letter# { #Letter# 1 #Digit#)

LEXEME #Letter# IS #UppercaseLetter# I #LowercaseLetter#

LEXICAL-CLASS #LowercaseLetter# IS "a" "b" " c " "d" "e" "fn

LEXICAL-CLASS #Character# IS "A" "B" ."C" "D" "E" "F"

2 Regular Expression Support Routines

The following Modula-2 definition file was automatically generated from the

preceding regular expression grammar.

DEFINITION MODULE REGrammar - GS ;
FROM DataTypes IMPORT Node, StringType ;

CONST (* Node Codes *)
Terminal = 1000 ;
Identifier = 1001 ;

REInput = 5000 ;
RELlst = 5001
SubREList = 5062
REDef inition = 5063
SubREDefinition = 5064 ;
SubDefinition = 5005 ;
ClassDefinition = 5006 ;
CharacterList = 5007 ;
RE = 5008
Term = 5006 ;
Factor = 5010 ;
AlternationExpression = 5011 ;
ConcatenationExpression = 5012 ;
ClosureExpression = 5013 ;
BrackettedExpression = 5014 ;
LexicalNonTerminal = 5015 ;

PROCEDURE MakeREInput (X I , x2 : Node) : Node ;
PROCEDURE ~akeREList 0 : Node ;
PROCEDURE MakeSubREList 0 : Node ;
PROCEDURE MakeREDefinition (X I , x2 : Node) : Node ;
PROCEDURE MakeSubDefinition (X I , x2 : Node) : Node ;
PROCEDURE ~akeclass~efinition (xl, x2 : Node) : Node ;
PROCEDURE MakeCharacterList (1 : Node ;
PROCEDURE MakeAlternationExpression (x l , x2 : Node) : Node ;

PROCEDURE MakeConcatenationExpression (X I , x2 : Node) :
Node ;

PROCEDURE MakeClosureExpression (xl : Node) : Node ;
PROCEDURE MakeBrackettedExpression (xl : Node) : Node ;
PROCEDURE MakeLexicalNonTerminal (xl : Node) : Node ;
PROCEDURE MakeTerminal (xl : StringType) : Node ;
PROCEDURE MakeIdentifier (x1 : StringType) : Node ;
PROCEDURE REInputQ (x1 : Node) : BOOLEAN ;
PROCEDURE REListQ (xl : Node) : BOOLEAN ;
PROCEDURE SubREListQ (xl : Node) : BOOLEAN ;
PROCEDURE REDefinitionQ (x1 : Node) : BOOLEAN ;
PROCEDURE SubREDefinitionQ (x1 : Node) : BOOLEAN ;
PROCEDURE SubDefinitionQ (xl : Node) : BOOLEAN ;
PROCEDURE ClassDefinitionQ (xl : Node) : BOOLEAN ;
PROCEDURE CharacterListQ (xl : Node) : BOOLEAN ;
PROCEDURE REQ (xl : Node) : BOOLEAN ;
PROCEDURE TermQ (xl : Node) : BOOLEAN ;
PROCEDURE FactorQ (xl : Node) : BOOLEAN ;
PROCEDURE AlternationExpressionQ (xl : Node) : BOOLEAN ;
PROCEDURE ConcatenationExpressionQ (xl : Node) : BOOLEAN ;
PROCEDURE ClosureExpressionQ (xl : Node) : BOOLEAN ;
PROCEDURE BrackettedExpressionQ (xl : Node) : BOOLEAN ;
PROCEDURE LexicalNonTerminalQ (xl : Node) : BOOLEAN ;
PROCEDURE TerminalQ (xl : Node) : BOOLEAN ;
PROCEDURE IdentifierQ (xl : Node) : BOOLEAN ;
PROCEDURE REListOf (xl : Node) : Node ;
PROCEDURE SubREListOf (xl : Node) : Node ;
PROCEDURE NameOf (xl : Node) : Node ;
PROCEDURE Definitionof (xl : Node) : Node ;
PROCEDURE Operand!Of (x! : N ~ d e) : Node ;
PROCEDURE Operand20f (xl : Node) : Node ;
PROCEDURE Operandof (xl : Node) : Node ;
PROCEDURE Identifierof (x1 : Node) : Node ;
PROCEDURE RetrieveTerminalOf (xl : Node ;
VAR str : StringType) ;

PROCEDURE RetrieveIdentifierOf (xl : Node ;
VAR str : StringType) ;

END REGrammar - GS .

3 Finite Automaton Grammar

This grammar describes a structure for finite automaton; both deterministic and

non-detel~ministic.

GRAMMAR

CONSTRUCT <FA> IS <StateList:StateList>

LIST <StateList> OF <State> SEPARATOR " " LB LB

CONSTRUCT <State> IS "STATE" <Number:Number> ID LB
"TRANSITIONS" <Transitions:TransitionList> LB
"DEFAULTw <Default:Default> LB
"TYPE" <Type:Type> OD

LIST <TransitionList> OF <Transition> SEPARATOR " " LB

CONSTRUCT <Default> IS
"NEXT-STATE" <NextState:Number>

CONSTRUCT <Transition> IS
"CHARACTER" <CharacterList:CharacterList>
" N E X T - S T A T E " N ~ X ~ S ~ ~ ~ ~ : N U ~ ~ ~ ~ >

ALTERNATE <Type> IS <Accept> I <Reject>

CONSTRUCT <Accept> IS "ACCEPT" <Output:Number>

CONSTRUCT <Reject> IS "REJECT1'

LIST <CharacterList> OF <Character> SEPARATOR " "

ALTERNATE <Character> IS <NonPrintingCharacter> I
<Printingcharacter>

ALTERNATE <NonPrintingCharacter> IS <epsilon> I <eoln> (
<eof >

CONSTRUCT <epsilon> IS "EPSILON"

CONSTRUCT <eoln> IS "EOLN"

CONSTRUCT <eof> IS "EOF"

LEXEME <Number> IS #Digit# { #~igit# 3

LEXEME <Printingcharacter> IS #Characterset#

4 Finite Automaton Support Routines

The following Modula-2 definitions were generated from the preceding finite

automaton grammar.

DEFINITION MODULE FAGrammar - GS ;

FROM DataTypes IMPORT Node, StringType ;

CONST (* Node Codes *)
Number = 1000 ;
Printingcharacter = 1001 ;

FA = 5000 ;
StateList = 5001 ;
State = 5002 ;
TransitionList = 5003 ;
Default = 5004
Transition = 5065 ;
Type = 5006
Accept = 500; ;
Reject = 5008 ;
CharacterList = 5009 ;
Character = 5010 ;
NonPrintingCharacter = 5011 ;
epsilon = 5012 ;
eoln = 5013 ;
eof = 5014 ;

PROCEDURE MakeFA (xl : Node) : Node ;
PROCEDURE MakeStateList : Node ;
PROCEDURE Makestate (xl, x2, x3, x4 : Node) : Node ;
PROCEDURE MakeTransitionList : Node ;
PROCEDURE MakeDefault (xl : Node) : Node ;
PROCEDURE MakeTransition (xl, x2 : Node) : Node ;
PROCEDURE MakeAccept (xl : Node) : Node ;
PROCEDURE MakeReject () : Node ;
PROCEDURE MakeCharacterList 0 : Node ;
PROCEDURE Makeepsilon () : Node ;
PROCEDURE Makeeoln () : Node ;
PROCEDURE Makeeof () : Node ;
PROCEDURE MakeNumber (xl : StringType) : Node ;
PROCEDURE Makeprintingcharacter (xl : StringType) : Node ;
PROCEDURE FAQ (xl : Node) : BOOLEAN ;
PROCEDURE StateListQ (xl : Node) : BOOLEAN ;
PROCEDURE StateQ (xl : Node) : BOOLEAN ;

PROCEDURE TransitionListQ (x l : Node) : BOOLEAN ;
PROCEDURE DefaultQ (x1 : Node) : BOOLEAN ;
PROCEDURE TransitionQ (x1 : Node) : BOOLEAN ;
PROCEDURE TypeQ (x l : Node) : BOOLEAN ;
PROCEDURE AcceptQ (xl : Node) : BOOLEAN ;
PROCEDURE RejectQ (x l : Node) : BOOLEAN ;
PROCEDURE CharacterListQ (x l : Node) : BOOLEAN ;
PROCEDURE CharacterQ (x l : Node) : BOOLEAN ;
PROCEDURE NonPrintingCharacterQ (x l : Node) : BOOLEAN ;
PROCEDURE epsilonQ (x l : Node) : BOOLEAN ;
PROCEDURE eolnQ (x l : Node) : BOOLEAN ;
PROCEDURE eofQ (x l : Node) : BOOLEAN ;
PROCEDURE NumberQ (x l : Node) : BOOLEAN ;
PROCEDURE PrintingCharacterQ (x l : Node) : BOOLEAN ;
PROCEDURE StateListOf (x l : Node) : Node ;
PROCEDURE NumberOf (x l : Node) : Node ;
PROCEDURE TransitionsOf (x l : Node) : Node ;
PROCEDURE Defaultof (xl : Node) : Node ;
PROCEDURE TypeOf (x l : Node) : Node ;

. PROCEDURE NextStateOf (xl : Node) : Node ;
PROCEDURE CharacterListOf (x l : Node) : Node ;
PROCEDURE OutputOf (x l : Node) : Node ;
PROCEDURE RetrieveNumberOf (x l : Node ;
VAR str : StringType) ;

PROCEDURE Retrieveprintingcharacterof (x l : Node ;
VAR str : StringType) ;

END FAGrammar - GS .

5

L
e
x
i
c
a
l

G
e
n
e
r
a
t
o
r

C
o
m
p
a
r
i
s
o
n

T
h
i
s

s
e
c
t
i
o
n

c
o
n
t
a
i
n
s

t
h
e

s
o
u
r
c
e

c
o
d
e

f
o
r

b
o
t
h

t
h
e

o
l
d

a
n
d

n
e
w

v
e
r
s
i
o
n
s

o
f

t
h
e

l
e
x
i
c
a
l

g
e
n
e
r
a
t
o
r
s
.

T
h
e

o
l
d

v
e
r
s
i
o
n

is

o
n

t
h
e

l
e
f
t

a
n
d

t
h
e

n
e
w

o
n
e

(
u
s
i
n
g
 G
R
A
F
S
t

is

o
n

t
h
e

r
i
g
h
t
.

I
M
P
L
E
M
E
N
T
A
T
I
O
N

M
O
D
U
L
E

L
e
x
G
e
n
:

F
R
O
M

I
n
O
u
t

I
M
P
O
R
T

W
r
i
t
e
.

W
r
i
t
e
L
n
.

W
r
i
t
e
S
t
r
i
n
g
.

W
r
i
t
e
C
a
r
d
.

R
e
a
d
.

D
o
n
e
:

F
R
O
M

S
t
o
r
a
g
e

I
M
P
O
R
T

A
L
L
O
C
A
T
E
.

D
E
A
L
L
O
C
A
T
E
:

F
R
O
M

D
a
t
a
T
y
p
e
s

I
M
P
O
R
T

S
t
r
i
n
g
T
y
p
e
.

N
o
d
e
.

N
o
d
e
c
l
a
s
s
:

F
R
O
M

P
a
r
s
e
T
r
e
e
M
o
d
u
l
e

I
M
P
O
R
T

G
e
t
c
l
a
s
s
,

G
e
t
C
o
m
p
o
n
e
n
t
K
.

N
u
m
b
e
r
O
f
C
o
n
~
p
o
n
e
n
t
s
O
f
.
 G
e
t
R
u
l
e
:

F
R
O
M

G
e
n
e
r
i
c
s

I
M
P
O
R
T

E
m
p
t
y
Q
:

F
R
O
M

M
E
T
A
-
G
S

I
M
P
O
R
T

R
e
t
r
i
e
v
e
O
n
e
C
h
a
r
a
c
t
e
r
O
f
.

R
e
t
r
i
e
v
e
C
h
a
r
a
c
t
e
r
S
t
r
i
n
g
O
f
.

R
e
t
r
i
e
v
e
I
d
e
n
t
i
f
i
e
r
O
f
.

O
n
e
C
h
a
r
a
c
t
e
r
Q
.

C
h
a
r
a
c
t
e
r
S
t
r
i
n
g
Q
.

I
d
e
n
t
i
f
i
e
r
Q
.

C
o
n
s
t
r
u
c
t
i
o
n
E
l
e
m
e
n
t
s
O
f
.

N
a
m
e
O
f
.

T
e
r
m
i
n
a
l
Q
.

S
i
m
p
l
e
N
o
n
T
e
r
m
i
n
a
l
Q
,

L
e
x
i
c
a
l
C
l
a
s
s
R
u
l
e
Q
.

L
e
x
i
c
a
l
R
u
l
e
Q
.

M
e
m
b
e
r
s
o
f
.

D
e
f
i
n
i
t
i
o
n
o
f
.

I
d
e
n
t
i
f
i
e
r
o
f
.

S
e
p
a
r
a
t
o
r
O
f
.

O
p
e
r
a
n
d
l
O
f
.

O
p
e
r
a
n
d
o
f
.

O
p
e
r
a
n
d
2
0
f
.

A
l
t
e
r
n
a
t
i
o
n
E
x
p
r
e
s
s
i
o
n
Q
,

C
o
n
c
a
t
e
n
a
t
i
o
n
E
x
p
r
e
s
s
i
o
n
Q
~

B
r
a
c
k
e
t
t
e
d
E
x
p
r
e
s
s
i
o
n
Q
.

C
l
o
s
u
r
e
E
x
p
r
e
s
s
i
o
n
Q
.

L
e
x
i
c
a
l
N
b
n
T
e
r
m
i
n
a
l
Q
.

D
e
l
i
m
i
t
e
r
o
f
.

R
D
e
l
i
m
i
t
e
r
O
f
.

L
D
e
l
i
m
i
t
e
r
O
f
:

F
R
O
M

S
t
r
i
n
g

I
M
P
O
R
T

L
e
n
g
t
h
.

C
o
m
p
a
r
e
.

C
o
m
p
a
r
e
R
e
s
u
l
t
:

F
R
O
M

E
r
r
o
r
M
o
d
u
l
e

I
M
P
O
R
T

E
r
r
o
r
:

F
R
O
M

S
t
a
c
k
M
o
d
u
l
e

I
M
P
O
R
T

S
t
a
c
k
.

S
t
a
c
k
P
u
s
h
.

S
t
a
c
k
P
o
p
.

S
t
a
c
k
N
o
t
E
m
p
t
y
Q
.

M
a
k
e
S
t
a
c
k
.

F
r
e
e
S
t
a
c
k
:

F
R
O
M

S
e
t
M
o
d
u
l
e

I
M
P
O
R
T

S
e
t
.

M
a
k
e
S
e
t
.

F
r
e
e
S
e
t
.

E
n
t
e
r
K
i
n
S
e
t
.

D
e
l
e
t
e
K
f
r
o
m
S
e
t
.

M
e
m
b
e
r
K
Q
.

I
d
e
n
t
i
c
a
l
S
e
t
s
Q
.

U
n
i
o
n
.

C
l
e
a
r
S
e
t
.

P
r
i
n
t
S
e
t
.

E
m
p
t
y
S
e
t
Q
.

S
e
t
S
t
a
t
e
.

M
a
k
e
S
e
t
S
t
a
t
e
.

F
r
e
e
S
e
t
S
t
a
t
e
.

F
i
r
s
t
,

N
e
x
t
 :

F
R
O
M

G
r
a
m
m
a
r
S
y
m
b
o
l
s

I
M
P
O
R
T

E
R
R
O
R
.

F
i
n
d
S
u
b
A
u
t
o
m
a
t
o
n
.

G
e
t
F
i
r
s
t
T
o
k
e
n
N
u
m
b
e
r
.

G
e
t
L
a
s
t
T
o
k
e
n
N
u
m
b
e
r
.

G
e
t
T
o
k
e
n
S
t
r
i
n
g
.

G
e

tF
ir

s
tA

u
to

m
a

to
n

N
u

m
b

e
r.

G
e
t
L
a
s
t
A
u
t
o
m
a
t
o
n
N
u
m
b
e
r
,

G
e
t
A
u
t
o
m
a
t
o
n
.

S
y
m
b
o
l
s
:

M
O
D
U
L
E

l
e
x
p
r
o
g
r
a
m
;

F
R
O
M

E
r
r
o
r
M
o
d
u
l
e

I
M
P
O
R
T

E
r
r
o
r
:

F
R
O
M

D
a
t
a
T
y
p
e
s

I
M
P
O
R
T

N
o
d
e
.

S
t
r
t
n
g
T
y
p
e
:

F
R
O
M

I
n
O
u
t

I
M
P
O
R
T

W
r
i
t
e
S
t
r
i
n
g
.

W
r
i
t
e
L
n
.

W
r
i
t
e
C
a
r
d
;

F
R
O
M

U
n
i
x
P
a
r
a
m

I
M
P
O
R
T

U
P
R
e
s
u
l
t
.

N
o
O
f
A
r
g
u
m
e
n
t
s
.

G
e
t
A
r
g
u
m
e
n
t
:

F
R
O
M

S
t
r
i
n
g

I
M
P
O
R
T

C
o
m
p
a
r
e
.

C
o
m
p
a
r
e
R
e
s
u
l
t
,

L
e
n
g
t
h
.

A
s
s
i
g
n
.

C
o
n
c
a
t
:

F
R
O
M

S
t
o
r
a
g
e

I
M
P
O
R
T

A
L
L
O
C
A
T
E
.

D
E
A
L
L
O
C
A
T
E
;

F
R
O
M

C
o
n
v
e
r
t

I
M
P
O
R
T

S
t
r
T
o
C
a
r
d
.

C
a
r
d
T
o
S
t
r
:

F
R
O
M

S
t
a
c
k
M
o
d
u
l
e

I
M
P
O
R
T

S
t
a
c
k
.

S
t
a
c
k
P
u
s
h
,

S
t
a
c
k
P
o
p
.

S
t
a
c
k
N
o
t
E
m
p
t
y
Q
.

M
a
k
e
S
t
a
c
k
,

F
r
e
e
S
t
a
c
k
:

F
R
O
M

S
e
t
M
o
d
u
l
e

I
M
P
O
R
T

S
e
t
.

M
a
k
e
S
e
t
,

F
r
e
e
S
e
t
.

E
n
t
e
r
K
i
n
S
e
t
.

D
e
l
e
t
e
K
f
r
o
m
S
e
t
.

M
e
m
b
e
r
K
Q
.

I
d
e
n
t
i
c
a
l
S
e
t
s
Q
.

U
n
i
o
n
.

C
l
e
a
r
S
e
t
.

P
r
i
n
t
S
e
t
.

E
m
p
t
y
S
e
t
Q
.

S
e
t
S
t
a
t
e
.

M
a
k
e
S
e
t
S
t
a
t
e
.

F
r
e
e
S
e
t
S
t
a
t
e
,

F
i
r
s
t
.

N
e
x
t
 :

F
R
O
M

G
e
n
e
r
a
l

I
M
P
O
R
T

P
a
r
s
e
I
n
p
u
t
F
i
l
e
.

P
r
e
t
t
y
p
r
i
n
t
.

U
n
P
a
r
s
e
.

N
t
h
E
l
e
m
e
n
t
,

L
i
s
t
L
e
n
g
t
h
.

A
p
p
e
n
d
N
o
d
e
T
o
L
i
s
t
.

E
m
p
t
y
N
o
d
e
Q
,

S
a
v
e
P
a
r
s
e
T
r
e
e
.

R
e
c
o
v
e
r
P
a
r
s
e
T
r
e
e
;

F
R
O
M

F
A
G
r
a
m
m
a
r
-
G
S

I
M
P
O
R
T

M
a
k
e
F
A
.

M
a
k
e
S
t
a
t
e
L
i
s
t
,

M
a
k
e
s
t
a
t
e
.

M
a
k
e
T
r
a
n
s
i
t
i
o
n
L
i
s
t
.

M
a
k
e
T
r
a
n
s
i
t
i
o
n
,

M
a
k
e
A
c
c
e
p
t
,

M
a
k
e
R
e
j
e
c
t
,

M
a
k
e
e
p
s
i
l
o
n
.

M
a
k
e
e
o
l
n
.

M
a
k
e
e
o
f
.

M
a
k
e
C
h
a
r
a
c
t
e
r
L
i
s
t
.

M
a
k
e
N
u
m
b
e
r
:

M
a
k
e
p
r
i
n
t
i
n
g
c
h
a
r
a
c
t
e
r
.

F
A
Q
.

S
t
a
t
e
L
i
s
t
Q
,

S
t
a
t
e
Q
.

T
r
a
n
s
i
t
i
o
n
L
i
s
t
Q
.

T
r
a
n
s
i
t
i
o
n
Q
.

T
y
p
e
Q
.

A
c
c
e
p
t
Q
.

R
e
j
e
c
t
Q
.

C
h
a
r
a
c
t
e
r
Q
.

N
o
n
P
r
i
n
t
i
n
g
C
h
a
r
a
c
t
e
r
Q
.

e
p
s
i
l
o
n
Q
.

e
o
l
n
Q
.

e
o
f
Q
.

N
u
m
b
e
r
Q
.

P
r
i
n
t
i
n
g
C
h
a
r
a
c
t
e
r
Q
.

S
t
a
t
e
L
i
s
t
D
f
.

N
u
m
b
e
r
o
f
.

T
r
a
n
s
i
t
i
o
n
s
O
f
,
 T
y
p
e
O
f
.

C
h
a
r
a
c
t
e
r
L
i
s
t
O
f
.

O
u
t
p
u
t
o
f
.

N
e
x
t
S
t
a
t
e
O
f
,

R
e
t
r
i
e
v
e
N
u
m
b
e
r
O
f
.

R
e
t
r
i
e
v
e
P
r
i
n
t
i
n
g
C
h
a
r
a
c
t
e
r
O
f
.

M
a
k
e
D
e
f
a
u
l
t
:

F
R
O
M

R
E
G
r
a
m
m
a
r
-
G
S

I
M
P
O
R
T

M
a
k
e
R
E
I
n
p
u
t
.

M
a
k
e
R
E
L
i
s
t
,

M
a
k
e
S
u
b
R
E
L
i
s
t
.

M
a
k
e
R
E
D
e
f
i
n
i
t
i
o
n
.

M
a
k
e
S
u
b
D
e
f
i
n
i
t
i
o
n
.

M
a
k
e
A
l
t
e
r
n
a
t
i
o
n
E
x
p
r
e
s
s
i
o
n
,

M
a
k
e
C
l
a
s
s
D
e
f
i
n
i
t
i
o
n
.

M
a
k
e
C
o
n
c
a
t
e
n
a
t
i
o
n
E
x
p
r
e
s
s
i
o
n
.

M
a
k
e
C
l
o
s
u
r
e
E
x
p
r
e
s
s
i
o
n
.

C
O

N
S

T

S
T

A
R

T
C

H
A

R
S

=

O
R

D
('

')

:

M
A

X
C

H
A

R
S

=

D
R

D
(
'

'
1

 +

1
:

E
P

S
IL

O
N

 =

C
H

R
(M

A
X

C
H

A
R

S
1

:
M

A
X

-S
T

A
T

E
S

=

2
2

0
:

T
Y

P
E

R

e
s

u
lt

=

(o
k

.
F

a
il

.

e

rr
o

r)
:

M
o

d
e

 =

(S
T

E
P

.
C

O
N

S
T

R
U

C
T

):

C
h

a
rS

ta
te

M
a

tr
ix

=

A
R

R
A

Y

[S
T

A
R

T
C

H
A

R
S

..
M

A
X

C
H

A
R

S
].

[I

..
M

A
X

-S
T

A
T

E
S

]
O

F

C
A

R
D

IN
A

L
:

C
h

a
rS

ta
te

S
e

tM
a

tr
ix

=

A
R

R
A

Y

[S
T

A
R

T
C

H
A

R
S

..
M

A
X

C
H

A
R

S
].

[I

..
M

A
x

-S
T

A
T

E
S

]
O

F

S
e

t:

N
D

A
T

a
b

le

=
P

O
IN

T
E

R

T
O

N

D
A

T
a

b
le

R
e

c
o

rd
;

N
D

A
T

a
b

le
R

e
c

o
rd

 =

R
E

C
O

R
D

m

a
tr

ix

:
C

h
a

rS
ta

te
S

e
tM

a
tr

ix
 E

N
D

:
D

A
T

a
b

le
 =

P

O
IN

T
E

R

T
O

D

A
T

a
b

le
R

e
c

o
rd

:
D

A
T

a
b

le
R

e
c

o
rd

 =

R
E

C
O

R
D

m

a
tr

ix

:

C
h

a
rS

ta
te

M
a

tr
ix

E

N
D

:
A

c
ti

o
n

T
a

b
le

 =

P
O

IN
T

E
R

T

O

A
c

ti
o

n
T

a
b

le
R

e
c

o
rd

:
A

c
ti

o
n

T
a

b
le

R
e

c
o

rd

=
R

E
C

O
R

D

m
a

t
r

ix

:

C
h

a
rS

ta
te

M
a

tr
ix

E

N
D

:
L

e
x

ic
a

lA
n

a
ly

z
e

rT
a

b
le

s

=
P

O
IN

T
E

R

T
O

L
e
x
i
c
a
l
A
n
a
l
y
z
e
r
T
a
b
l
e
s
R
e
c
o
r
d
:

L
e
x
i
c
a
l
A
n
a
l
y
z
e
r
T
a
b
l
e
s
R
e
c
o
r
d

=
R

E
C

O
R

D

s
ta

te
T

a
b

le

:

D
A

T
a

b
le

:
a

c
ti

o
n

T
a

b
le

:

A
c

ti
o

n
T

a
b

le
:

s
ta

r
tc

h
a

r
s

:

.C
A

R
D

IN
A

L
:

m
a

x
C

h
a

rs

:

C
A

R
D

IN
A

L
:

m
a

x
S

ta
te

s

:

C
A

R
D

IN
A

L

E
N

D
 :

P
R

O
C

E
D

U
R

E

M
a
k
e
L
e
x
i
c
a
l
A
n
a
l
y
z
e
r
T
a
b
l
e
s

(
)

:
L

e
x

ic
a

lA
n

a
ly

z
e

rT
a

b
le

s
:

V
A

R

t

:
L

e
x

ic
a

lA
n

a
ly

z
e

rT
a

b
le

s
:

B
E

G
IN

A

L
L

O
C

A
T

E
tt

.
S
I
Z
E
~
L
e
x
i
c
a
l
A
n
a
l
y
z
e
r
T
a
I
?
1
e
s
R
e
c
o
r
d
I
~
:

tA
.s

ta
te

T
a

b
le

 :
=

M

a
k

e
D

A
T

a
b

le
(

1:

t^
.a

c
ti

o
n

T
a

b
le

:=

M

a
k

e
A

c
ti

o
n

T
a

b
le

(
1:

tA

.s
ta

r
tC

h
a

r
s

 :
=

S

T
A

R
T

C
H

A
R

S
;

tA
.m

a
x

C
h

a
rs

:=

 M
A

xC
H

A
R

S
:

M
a
k
e
B
r
a
c
k
e
t
t
e
d
E
x
p
r
e
s
s
i
o
n
.

M
a

k
e

L
e

x
ic

a
lN

o
n

T
e

rm
in

a
l.

M

a
k

e
T

e
rm

in
a

l.

R
E

In
p

u
tQ

.
R

E
L

is
tQ

.
S

u
b

R
E

L
is

tQ
.

R
E

D
e

fi
n

it
io

n
Q

,
S

u
b

R
E

O
e

fi
n

it
io

n
Q

.
R

E
Q

,
T

e
rm

Q
,

F
a

c
to

rQ
.

A
lt

e
rn

a
ti

o
n

E
x

p
re

s
s

io
n

Q
.

C
o

n
c
a

te
n

a
ti

o
n

E
x
p

re
s
s
io

n
Q

,
C

lo
s

u
re

E
x

p
re

s
s

io
n

Q
.

B
ra

c
k

e
tt

e
d

E
x

p
re

s
s

io
n

Q
.

L
e

x
ic

a
lN

o
n

T
e

rm
in

a
lQ

.
T

e
rm

in
a

lQ
.

Id
e

n
ti

fi
e

r
Q

.
R

E
L

is
tO

f.

S
u

b
R

E
L

is
tO

f.

N
a

m
e

O
f,

D

e
fi

n
it

io
n

o
f.

O

p
e

ra
n

d
IO

f,

O
p

e
ra

n
d

2
O

f.

O
p

e
ra

n
d

o
f.

Id

e
n

ti
fi

e
r
o

f.

R
e

tr
ie

v
e

T
e

rm
in

a
lD

f.

R
e

tr
ie

v
e

Id
e

n
ti

fi
e

r
O

f.

S
u

b
D

e
fi

n
it

io
n

Q
.

C
la

s
s

D
e

fi
n

it
io

n
Q

:

C
O

N
S

T

E
R

R
O

R

=
0
:

F
A

IL
 =

1

:
S

T
A

R
T

-S
T

A
T

E

=
2

:
M

A
X

-S
T

A
T

E
S

=

1
0

0
0

;
S

T
A

R
T

C
H

A
R

S

=
O

R
D

('

'1
:

M
A

X
C

H
A

R
S

=

O
R

O
(
'

'
)
:

T
Y

P
E

R

e
s

u
lt

 =

(o
k

.
e

rr
o

r)
:

M
o

d
e

 =

(S
T

E
P

.
C

O
N

S
T

R
U

C
T

):

V
A

R

a
rg

c
.
i

:

C
A

R
D

IN
A

L
;

f
a

il
S

t
r

.

s
tr

.
g

ra
m

m
a

rN
a

m
e

.
a

rg
.

n
a

m
e

,
fi

le
N

a
m

e
,

e
r

r
o

r
S

t
r

:

S
tr

in
g

T
y

p
e

:
u

p
R

e
s

u
lt

:

U
P

R
e

s
u

lt
:

re
s

u
lt

:

R
e

s
u

lt
:

o
k

a
y

:

B
O

O
L

E
A

N
:

d
F

A
.

fa
.

re
s

,
re

,
r
e

li
s

t
,

s
u

b
R

e
L

is
t

:
N

o
d

e
:

r
e

L
is

tL
e

n
 :

C

A
R

D
IN

A
L

:
s

ta
te

N
u

m
b

e
r.

to

k
e

n
N

u
m

b
e

r
:

C
A

R
D

IN
A

L
:

P
R

O
C

E
D

U
R

E

F
in

d
S

u
b

A
u

to
m

a
to

n

(V
A

R

s

tr

:

S
tr

in
g

T
y

p
e

:
s

u
b

R
e

L
is

t
:

N
o

d
e

)
:

N
o

d
e

 :

V
A

R

n
a

m
e

S
tr

:

S
tr

in
g

T
y

p
e

:

B
E

G
IN

F

O
R

i

:=

1

T
O

L

is
tL

e
n

g
th

(s
u

b
R

e
L

is
t1

 D
O

R

e
tr

ie
v

e
Id

e
n

ti
fi

e
r

O
f

(N
a

m
e

O
f(

N
th

E
le

m
e

n
t(

i,

s
u

b
R

e
L

is
t)

),

n
a

m
e

s
tr

):

I
F

 C
o

m
p

a
re

(s
tr

,
n

a
m

e
S

tr
)

=
e

q
u

a
l

T
H

E
N

te
.m

a
x

S
ta

te
s

 :
=

 M
A

X
-S

T
A

T
E

S
:

R
E
T
U

R
N

(

t
 1;

E
N

D

M
a

k
e

L
e

x
ic

a
lA

n
a

ly
z

e
rT

a
b

le
s

;

P
R

O
C

E
O

U
R

E

S
ta

ts
T

a
b

le
O

f
(

t
 :

L

e
x

ic
a

lA
n

a
ly

z
e

rT
a

b
le

s
)

:
D

A
T

a
b

le
;

B
E

G
IN

R

E
T
U

R
N

(
t-

s
ta

te
T

a
b

le
)
:

E
N
D

S
ta

te
T

a
b

le
O

f:

P
R

O
C

E
D

U
R

E

A
c

ti
o

n
T

a
b

le
O

f
(
t
 :

L
e

x
ic

a
lA

n
a

ly
z

e
rT

a
b

le
s

)
:

A
c

ti
o

n
T

a
b

le
:

B
E

G
IN

R

E
T
U

R
N

(
te

.a
c

ti
o

n
T

a
b

le
)
:

E
N

D

A
c

ti
o

n
T

a
b

le
O

f:

P
R

O
C

E
O

U
R

E

S
ta

rt
C

h
a

rs
O

f
(

t
 :

L

e
x

ic
a

lA
n

a
ly

z
e

rT
a

b
le

s
l

:
C

A
R

D
IN

A
L
;

B
E

G
IN

R

E
T
U

R
N

(
te

.s
ta

r
tC

h
a

r
s

)
:

E
N

D

S
ta

rt
C

h
a

rs
O

f;

P
R

O
C

E
D

U
R

E

S
e

tS
ta

rt
C

h
a

rs
O

f
-

(
c

 :

C
A

R
D

IN
A

L
:

t
:

L
e

x
ic

a
lA

n
a

ly
z

e
rT

a
b

le
s

):

B
E

G
IN

t^

.s
ta

r
tC

h
a

r
s

:=

c

:
E
N
D

S
e

tS
ta

rt
C

h
a

rs
O

f:

P
R

O
C

E
D

U
R

E

M
a

x
C

h
a

rs
O

f
(

t
 :

L

e
x

ic
a

lA
n

a
ly

z
e

rT
a

b
le

s
)

:
C

B
E

G
IN

R

E
T
U

R
N

(t

^
.m

a
x

C
h

a
rs

):

E
N

D

M
a

x
C

h
a

rs
O

f:

A
R

D
IN

A
L
:

P
R

O
C

E
D

U
R

E

S
e

tM
a

x
C

h
a

rs
O

f
(

c
 :

C

A
R

D
IN

A
L
:

t
:

L
e

x
ic

a
l A

n
a
 l

y
z

e
r-

T
a

b
le

s
) :

B
E

G
IN

t+

.m
a

x
C

h
a

rs
 :

=
 c

:
E
N

D

S
e

tM
a

x
C

h
a

rs
O

f:

R
E
T
U

R
N

(N

th
E

le
m

e
n

t(
i,

s

u
b

R
e

L
is

t)
):

E
N
D
 ;

EN
D
 ;

R
E
T
U

R
N

(N

o
d

e
(N

1
L

)
;

EN
D

F
in

d
S

u
b

A
u

to
m

a
to

n
;

P
R

O
C

E
D

U
R

E

C
re

a
te

N
u

m
b

e
rN

o
d

e

(
n

u
m

b
e

r
:

C
A

R
D

IN
A

L

)
:

N
o
d
e

;

V
A

R

s
t
r

:

S
tr

in
g

T
y

p
e

:

o
k
a

y

:
B

O
O

LE
A

N

:

B
E

G
IN

C

a
rd

T
o

S
tr

(s
ta

te
N

u
m

b
e

r.

s
tr

,
0
.
 o

k
a

y
);

IF

 N
O

T
o

k
a

y

T
H

E
N

E

rr
o

r(
 "
C

re
a

te
N

u
m

b
e

rN
o

d
e

:
c

o
n

v
e

rs
io

n
 e

r
r
o

r
."

)
;

E
N
D
 :

R
E
T
U

R
N

(

M
a
k
e
N

u
m

b
e

r
(

s
t
r

)

1:

EN
D

C
re

a
te

N
u

m
b

e
rN

o
d

e

;

P
R

O
C

E
O

U
R

E

A
d

d
S

ta
te

(

f
a

 :

N

o
d

e
:

s
ta

te
N

u
m

b
e

r
:

C
A

R
D

IN
A

L
;

to
k

e
n

S
tr

:

S
tr

in
g

T
y

p
e

:
m

o
d
e

:
M

o
d

e
);

B

E
G

IN

I
F

 m
o
d
e

=
C

O
N

S
TR

U
C

T
T
H

E
N

A

p
p

e
n

d
N

o
d

e
T

o
L

is
t

(S
ta

te
L

is
tO

f
(
fa

)
.

M
a

k
e

S
ta

te

(C
re

a
te

N
u

rn
b

e
rN

o
d

e
(s

ta
te

N
u

m
b

e
r)

.
M

a
k

e
T

ra
n

s
it

io
n

L
is

t(
)

.
M
a
k
e
~
e
f
a
u
l
t
l
M
a
k
e
N
u
m
b
e
r
(
f
a
i
1
S
t
r
)
)
.

-
~
a
k
e
~
c
c
e
p
t
(
M
a
k
e
N
u
m
b
e
r
(
t
o
k
e
n
S
t
r
)
)
)
)
;

E
LS

E

A
p

p
e

n
d

N
o

d
e

T
o

L
is

t
(
S

ta
te

li
s

to
f

(
fa

)
.

M
a

k
e

S
ta

te

(C
re

a
te

N
u

m
b

e
rN

o
d

e
(s

ta
te

N
u

m
b

e
r)

.
M

a
k

e
T

ra
n

s
it

io
n

L
is

t(
)

,

M
a
k
e
D
e
f
a
u
l
t
(
M
a
k
e
N
u
m
b
e
r
(
f
a
i
1
S
t
r
)
)
.

M
a

k
e

R
e

je
c

t(
)

 1
):

E
N
D
 :

EN
D

A
d

d
S

ta
te

:

P
R

O
C

E
D

U
R

E

E
p

s
il

o
n

M
o

v
e

(
f
a

:

N
o

d
e

:
fr

o
m

s
ta

te
.

to
s

ta
te

:

C
A

R
D

IN
A

L
);

V
A

R

c
h

L
is

t
:

N
o

d
e

:

P
R

O
C

E
D

U
R

E

M
a

x
S

ta
te

s
O

f
(

t
 :

L

e
x

ic
a

lA
n

a
ly

z
e

rT
a

b
le

s
l

:
C

A
R

D
IN

A
L
;

B
E

G
IN

R

E
T
U

R
N

tt

^
.m

a
x

S
ta

te
s

):

EN
D

M
a

x
S

ta
te

s
O

f;

P
R

O
C

E
D

U
R

E

S
e

tM
a

x
S

ta
te

s
O

f
(

c

:

C
A

R
D

IN
A

L
;

t
:

L
e

x
ic

a
lA

n
a

ly
ie

t'
T

a
b

le
s

);

B
E

G
IN

ta

.m
a

x
S

ta
te

s

:=
 c

:
E
N
D

S
e

tM
a

x
S

ta
te

s
O

f;

P
R

O
C

E
D

U
R

E

B
u

il
d

A
u

to
m

a
to

n

(
r

u
le

 :

N
o

d
e

;
to

k
e

n
N

u
m

b
e

r
:

C
A

R
D

IN
A

L
;

N
D
A

:
N

D
A

T
a

b
le

;
N

D
A

A
c
ti

o
n

s

:
A

c
ti

o
n

T
a

b
le

:
V

A
R

n

e
x

tN
e

w
S

ta
te

:

C
A

R
D

IN
A

L
)

:
R

e
s

u
lt

V
A

R

c
u

rr
e

n
ts

ta
te

.
la

s
tc

u
rr

e
n

ts
ta

te
,

s
a

v
e

s
ta

te
.

n
e

x

C
A

R
D

IN
A

L
:

r
e

s
u

lt

:

R
e

s
u

lt
:

i
.
 j

:
C

A
R

D
IN

A
L
:

d
e

li
m

it
e

r
.

1
D

e
li

m
it

e
r.

r
D

e
li

m
it

e
r
.

a
u

to
m

a
to

n

:
m

o
d
e

: .
M

o
d
e
 ;

s
t
r

:

S
tr

in
g

T
y

p
e

;
n

e
x

ts
ta

te
s

e
t

:
S

e
t:

B
E

G
IN

a

u
to

m
a

to
n

:=

D

e
fi

n
it

io
n

O
f(

r
u

le
\:

m

o
d
e

:=

C
O

N
S

T
R

U
C

T
:

c
u

r
r
e

n
ts

ta
te

:=

S

T
A

R
T

-S
T

A
T

E
;

S
e

tN
e

x
tN

D
A

S
ta

te
S

e
t

(N
D

A
.

E
P

S
IL

O
N

.
c

u
rr

e
n

ts
ta

te
.

n
e

x
tN

e
w

S
ta

te
):

c

u
r
r
e

n
ts

ta
te

:=

n

e
x

tN
e

w
S

ta
te

:
n

e
x

tN
e

w
S

ta
te

:=

n

e
x

tN
e

w
S

ta
te

+

1

:
IF

 C
o
n
c
a
t
e
n
a
t
i
o
n
E
x
p
r
e
s
s
i
o
n
Q
(
a
u
t
o
m
a
t
o
n
~
 T

H
E
N

(

*
 m

a
tc

h
 b

o
th

 s
u

b
e

x
p

re
s

s
io

n
s

+

J

r
e

s
u

lt

:

=
B

u
il

d
A

u
to

m
a

to
n

R

(
S

T
E

P
.

O
p

e
ra

n
d

1
0

f(
a

u
to

m
a

to
n

).

to
k
e

n
N

u
m

b
e

r.

N
O

A
,

N
D

A
A

c
ti

o
n

s
.

n
e

x
tN

e
w

S
ta

te
.

N
o
d
e
 ;

B
E

G
IN

A
p
p
e
n
d
N
o
d
e
T
o
L
i
s
t
(
c
h
L
i
s
t
,

~
a

k
e

e
p

s
il

o
n

o
)
:

A
p

p
e

n
d

N
o

d
e

T
o

L
is

t
(T

ra
n

s
it

io
n

s
O

f
(N

th
E

le
m

e
n

t(
fr

0
m

S
ta

te
.

S
ta

te
L

is
tO

f(
fa

)
)
)
.

M
a

k
e

T
ra

n
s

it
io

n

(
c

h
L

is
t.

C
r
e
a
t
e
~
u
m
b
e
r
N
o
d
e
(
t
o
S
t
a
t
e
)
)
)
:

EN
D

E
p

s
il

o
n

M
o

v
e

:

P
R

O
C

E
D

U
R

E

B
u

il
d

A
u

to
m

a
to

n

(
f
a

.

r
e

D
e

fi
n

it
io

n
.

s
u

b
R

e
L

is
t

:
N

o
d

e
:

to
k
e

n
N

u
m

b
e

r
:

C
A

R
D

IN
A

L
:

V
A

R

n
e

x
tN

e
w

S
ta

te

:

C
A

R
D

IN
A

L
)

:
R

e
s

u
lt

:

V
A

R

c
u

rr
e

n
ts

ta
te

.
la

s
tc

u
r
r
e

n
ts

ta
te

.
s

a
v

e
s

ta
te

.
n

e
x

ts
ta

te

:

C
A

R
D

IN
A

L
;

r
e

s
u

lt

:

R
e

s
u

lt
;

i
,
 j

:

C
A

R
D

IN
A

L
;

r
e

.
c

h
L

is
t

:
N

o
d

e
;

m
o
d
e

:
M

o
d
e
;

s
ta

te
S

tr
,

s
tr

.
to

k
e

n
s

tr
.

e
r
r
o

r
S

tr

:
S

tr
in

g
T

y
p

e
;

o
k

a
y

:

B
O

O
LE

A
N

:

B
E

G
IN

r

e
 :

=
 D
e
f
i
n
i
t
i
o
n
O
f
(
r
e
D
e
f
i
n
i
t
i
o
n
)
:

m
o
d
e

:=
 C

O
N

S
T
R

U
C

T
;

c
u

r
r
e

n
ts

ta
te

:=

S

T
A

R
T
-S

T
A

T
E

;
C

a
rd

T
o

S
tr

(t
o

k
e

n
N

u
m

b
e

r.

to
k

e
n

s
tr

.
0
.

o
k

a
y

);

I
F

 N
O

T
o

k
a

y

T
H

E
N

E

r
r
o

r
(
 "
B

u
il

d
A

u
to

m
a

to
n

:
c

o
n

v
e

rs
io

n
 e

r
r
o

r
."

)
;

E
N
D
 :

A
d

d
S

ta
te

(
fa

,
n

e
x

tN
e

w
S

ta
te

.
""

. S
T

E
P

):

E
p

s
il

o
n

M
o

v
e

(
fa

,
S

T
A

R
T
-S

T
A

T
E

,
n

e
x

tN
e

w
S

ta
te

):

c
u

rr
e

n
ts

ta
te

:=

n

e
x

tN
e

w
S

ta
te

:
n

e
x

tN
e

w
S

ta
te

:=

n

e
x

tN
e

w
S

ta
te

 +

1
;

I
F

 C
o
n
c
a
t
e
n
a
t
i
o
n
E
x
p
r
e
s
s
i
o
n
Q
(
r
e
)

T
H

E
N

(

'
m

a
tc

h
 b

o
th

 s
u

b
e

x
p

re
s

s
io

n
s

*

)

re
s

u
l t

:

=
B

u
il

d
A

u
to

m
a

to
n

R

(
S

T
E

P
.

fa
.

O
p

e
ra

n
d

IO
f

(
r

e
 b.

s

u
b

R
e

L
is

t.

c
u
r
r
e
n
t
s
t
a
t
e
)
:

IF

r
e
s
u
l
t

=
o
k

T
H
E
N

r
e
s
u
l
t

:=

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

(
m
o
d
e
,

O
p
e
r
a
n
d
2
0
f
(
a
u
t
o
m
a
t
o
n
)
,

E
N
D
 :

E
L
S
I
F

A

t
o
k
e
n
~
u
m
b
e
r
 ,

N
D
A
 .

N
D
A
A
c
t
i
o
n
s
.

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
s
t
a
t
e
)
:

(
a
u
t
o
m
a
t
o
n
)
 T
H
E
N

(
*

 m
a
t
c
h

e
i
t
h
e
r

s
u
b
e
x
p
r
e
s
s
i
o
n

*
)

s
a
v
e
s
t
a
t
e

:=

c
u
r
r
e
n
t
s
t
a
t
e
;

r
e
s
u
l
t

:=

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

(
m
o
d
e
.

O
p
e
r
a
n
d
t
O
f
(
a
u
t
o
m
a
t
o
n
)
.

t
o
k
e
n
N
u
m
b
e
r
.

N
D
A
 ,

N
D
A
A
c
t
i
o
n
s
,

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
s
t
a
t
e
 l

:
l
a
s
t
c
u
r
r
e
n
t
s
t
a
t
e

:=
 c
u
r
r
e
n
t
s
t
a
t
e
:

IF

r
e
s
u
l
t

a
e
r
r
o
r

T
H
E
N

c
u
r
r
e
n
t
s
t
a
t
e

:=

s
a
v
e
s
t
a
t
e
:

r
e
s
u
 1
t

:
=

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

I m
o
d
e
.

.
D
p
e
r
a
n
d
2
0
f
(
a
u
t
o
m
a
t
o
n
)
.

t
o
k
e
n
N
u
m
b
e
r
.

N
D
A
 .

N
D
A
A
c
t
i
o
n
s
.

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
s
t
a
t
e
)
:

E
N
D
 :

S
e
t
N
e
x
t
N
D
A
S
t
a
t
e
S
e
t

(
N
D
A
.
 E
P
S
I
L
O
N
.

l
a
s
t
c
u
r
r
e
n
t
s
t
a
t
e
.

n
e
x
t
N
e
w
S
t
a
t
e
)
:

S
e
t
N
e
x
t
N
D
A
S
t
a
t
e
S
e
t

(
N
D
A
.
 E
P
S
I
L
O
N
.

c
u
r
r
e
n
t
s
t
a
t
e
.

n
e
r
t
N
e
w
S
t
a
t
e
)
:

c
u
r
r
e
n
t
s
t
a
t
e

:=
 n
e
x
t
N
e
w
S
t
a
t
e
:

n
e
x
t
N
e
w
S
t
a
t
e

:=

n
e
x
t
N
e
w
S
t
a
t
e

+

1

:
I
F
 m
o
d
e

=
C
O
N
S
T
R
U
C
T

T
H
E
N

S
e
t
A
c
t
 i
o
n

(
N
D
A
A
c
t
i
o
n
s
.
 E
P
S
I
L
O
N
,

c
u
r
r
e
n
t
s
t
a
t
e
.

t
o
k
e
n
N
u
m
b
e
r
)
:

E
N
D
 :

E
L
S
I
F

C
l
o
s
u
r
e
E
x
p
r
e
s
s
i
o
n
Q
(
a
u
t
o
m
a
t
o
n
~
 T
H
E
N

s
a
v
e
s
t
a
t
e

:=

c
u
r
r
e
n
t
s
t
a
t
e
:

r
e
s
u
l
t

:=

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

I m
o
d
e
.

t
o
k
e
n
S
t
r
 .

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
S
t
a
t
e
)
:

I
F

r
e
s
u
l
t

=
o
k

T
H
E
N

r
e
s
u
l
t

:=

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

(
m
o
d
e
.

f
a
.

O
p
e
r
a
n
d
2
0
f
 (
r
e
)
 .

s
u
b
R
e
L
i
s
t
.

t
o
k
e
n
S
t
r
.

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
s
t
a
t
e
)
;

E
N
D
 :

E
L
S
I
F

~
l
t
e
r
n
a
t
i
o
n
E
x
p
r
e
s
s
i
o
n
9
(
r
e
)
 T
H
E
N

(
'

m
a
t
c
h

e
i
t
h
e
r

s
u
b
e
x
p
r
e
s
s
i
o
n

*
)

s
a
v
e
s
t
a
t
e

:=

c
u
r
r
e
n
t
s
t
a
t
e
;

r
e
s
u
l
t

:=

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

(
m
o
d
e
.

f
a
.

O
p
e
r
a
n
d
t
O
f
 (
 r
e
)
.

s
u
b
R
e
L
i
s
t
.

t
o
k
e
n
S
t
r
,

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
S
t
a
t
e
)
 :

l
a
s
t
c
u
r
r
e
n
t
s
t
a
t
e

:=
 c
u
r
r
e
n
t
s
t
a
t
e
:

IF

r
e
s
u
l
t

=
o
k

T
H
E
N

c
u
r
r
e
n
t
s
t
a
t
e

:=

s
a
v
e
s
t
a
t
e
:

r
e
s
u
l
t

:
=

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

(
m
o
d
e
.

f
a
.

O
p
e
r
a
n
d
2
0
f
(
r
e
)
.

s
u
b
R
e
L
i
s
t
.

t
o
k
e
n
S
t
r
 ,

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
S
t
a
t
e
)
;

E
N
D
 :

A
d
d
S
t
a
t
e

(
f
a
,
 n
e
x
t
N
e
w
S
t
a
t
e
.

t
o
k
e
n
S
t
r
,

m
o
d
e
)
;

E
p
s
i
l
o
n
M
o
v
e

(
f
a
.

l
a
s
t
C
u
r
r
e
n
t
S
t
a
t
e
,

n
e
x
t
N
e
w
S
t
a
t
e
)
:

E
p
s
i
l
o
n
M
o
v
e

(
f
a
.
 c
u
r
r
e
n
t
s
t
a
t
e
.

n
e
x
t
N
e
w
S
t
a
t
e
)
:

c
u
r
r
e
n
t
s
t
a
t
e

:=

n
e
x
t
N
e
w
S
t
a
t
e
;

n
e
x
t
N
e
w
S
t
a
t
e

:=
 n
e
x
t
N
e
w
S
t
a
t
e

+

1
;

E
L
S
I
F

C
l
d
s
u
r
e
E
x
p
r
e
s
s
i
o
n
Q
(
r
e
)
 T
H
E
N

s
a
v
e
s
t
a
t
e

:=

c
u
r
r
e
n
t
S
t
a
t
e
:

r
e
s
u
l
t

:
=

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

(
m
o
d
e
.

f
a
,

O
p
e
r
a
n
d
o
f
 (
r
e
)
.

s
u
b
R
e
L
 i
 s
t
 .

a
u

to
m

a
to

n

:
N

o
d

e
;

to
k
e

ri
N

u
m

b
e

r
:

C
A

R
D

IN
A

L
:

N
D
A

:
N

O
A

T
a

b
le

:
N

D
A

A
c
ti

o
n

s

:
A

c
ti

o
n

T
a

b
le

;
V

A
R

n

e
x

tN
e

w
S

ta
te

.
c

u
rr

e
n

tS
ta

te

:
C

A
R

O
.(
N

A
L
)

:
R

e
s

u
l t

 ;

V
A

R

r
e

s
u

lt

:

R
e

s
u

lt
;

i
.
 j
.

s
a

v
e

s
ta

te
.

la
s

tc
u

r
r
e

n
ts

ta
te

:

C
A

R
D

IN
A

L
:

n
e

x
ts

ta
te

s
e

t
:

S
e

t;

s
t
r

:

S
tr

in
g

T
y

p
e

:
n

:

N
o

d
e

:

B
E

G
IN

I

F
 C
o
n
c
a
t
e
n
a
t
i
o
n
E
x
p
r
e
s
s
i
o
n
Q
~
a
u
t
o
m
a
t
o
n
)
 TH

E
N

r
e

s
u

lt

: =

B
u

il
d

A
u

to
m

a
to

n
R

(
S

T
E

P
.

O
p

e
ra

n
d

1
0

f~
a

u
to

rn
a

to
n

).

to
k
e

n
N

u
m

b
e

r.

N
D
A
 .

N
D

A
A

c
ti

o
n

s
.

n
e

x
tN

e
w

S
ta

te
.

c
u

r
r
e

n
ts

ta
te

)
 :

I
F

 r
e

s
u

lt

=
o

k

T
H

E
N

r
e

s
u

lt

:=

B
u

il
d

A
u

to
m

a
to

n
R

(m

.
O

p
e

ra
n

d
2

0
f(

a
u

to
m

a
to

n
).

. t

o
k
e

n
N

u
m

b
e

r.

N
D
A
 .

N
D

A
A

c
ti

o
n

s
.

n
e

x
tN

e
c

S
ta

te
.

c
u

r
r
e

n
ts

ta
te

:

E
N
D
 ;

R
E

T
U

R
N

(
r
e

s
u

l t
)

 ;

E
L

S
IF

A
l
t
e
r
n
a
t
i
o
n
E
x
p
r
e
s
s
i
o
n
Q
(
a
u
t
o
m
a
t
o
n
)

T
H

E
N

s

a
v

e
s

ta
te

:=

c

u
r
r
e

n
ts

ta
te

:
r
e

s
u

lt

:
=

B

u
il

d
A

u
to

m
a

to
n

R

(
ni

 .
O

p
e

ra
n

d
lO

f(
a

u
to

m
a

to
n

).

to
k
e

n
N

u
rn

b
e

r.

N
D
A
 .

N

O
A

A
c
ti

o
n

s
.

n
e

x
tN

e
w

S
ta

te
.

c
u

r
r
e

n
ts

ta
te

)
:

la
s

tc
u

r
r
e

n
ts

ta
te

:=

 c
u

r
r
e

n
ts

ta
te

:
I

F
 r

e
s

u
lt

e

r
r
o

r

T
H

E
N

c

u
r
r
e

n
ts

ta
te

:=

s

a
v

e
s

ta
te

;
r
e

s
u

 1
t

:
=

fa
,

r
e

.
s

u
b

R
e

L
is

t
:

N
o

d
e

;
to

k
e

n
S

tr

:
S

tr
in

g
T

y
p

e
:

V
A

R

n
e

x
tN

e
w

S
ta

te
,

c
u

r
r
e

n
ts

ta
te

:

C
A

R
D

IN
A

L
)

:
R

e
s

u
lt

:

V
A

R

r
e

s
u

lt

:

R
e

s
u

lt
:

.
i
.
 j
.

s
a

v
e

s
ta

te
,

la
s

tc
u

r
r
e

n
ts

ta
te

:

C
A

R
D

IN
A

L
:

tm
p

S
tr

.
s

ta
te

S
tr

.
n

e
x

tS
ta

te
S

tr
,

s
t
r

:

S
tr

in
g

T
y

p
e

:
n

.
c

h
L

is
t

:
N

o
d

e
:

B
E

G
IN

I
F
 C
o
n
c
a
t
e
n
a
t
i
o
n
E
x
p
r
e
s
s
i
o
n
Q
(
r
e
)

T
H

E
N

re

s
u

 1
t

:
=

B
u

il
d

A
u

to
m

a
to

n
R

I S

T
E

P
,

fa
.

O
p

e
ra

n
d

 IO
f (

 r
e

 1.

s
u

b
R

e
L

is
t.

to

k
e

n
s

tr
,

n
e

x
tN

e
w

S
ta

te
,

c
u

r
r
e

n
ts

ta
te

)
:

I
F

 r
e

s
u

lt

=
o

k

T
H

E
N

,

r
e

s
u

l t

:
=

B
u

il
d

A
u

to
m

a
to

n
R

(
m

o
d
e
.

fa
.

O
p

e
ra

n
d

2
0

f
(
r

e
 1

.
s

u
b

R
e

L
is

t.

to
k

e
n

S
tr

 ,

n
e

x
tN

e
w

S
ta

te
.

c
u

r
r
e

n
ts

ta
te

)
:

E
N

0
:

E
L

S
IF

A
l
t
e
r
n
a
t
i
o
n
E
x
p
r
e
s
s
i
o
n
Q
(
r
e
)

T
H

E
N

s

a
v

e
s

ta
te

:=

c

u
r
r
e

n
ts

ta
te

;
re

s
u

 1
 t

:
=

B
u

il
d

A
u

to
m

a
to

n
R

(
m

o
d
e
.

fa
.

O
p

e
ra

n
d

IO
f

f
r
e

)
.

s
u

b
R

e
L

is
t.

to

k
e

n
s

t
r
.

n
e

x
tN

e
w

S
ta

te
.

c
u

r
r
e

n
ts

ta
te

)
:

la
s

tc
u

r
r
e

n
ts

ta
te

:=

c

u
r
r
e

n
ts

ta
te

;
I

F
 r

e
s

u
lt

=

o
k

T
H

E
N

c

u
r
r
e

n
ts

ta
te

:=

s

a
v

e
s

ta
te

:
r
e

s
u

lt

:=

B
u

il
d

A
u

to
m

a
to

n
R

(
m

o
d
e
.

fa
.

O
p

e
ra

n
d

2
0

ff
re

).

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

(
m
.

O
p
e
r
a
n
d
2
0
f
(
a
u
t
o
m
a
t
o
n
)
.

t
o
k
e
n
N
u
m
b
e
r
,

N
D
A
 .

N
D
A
A
c
t
i
o
n
s
.

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
s
t
a
t
e
)
:

E
N
D
 :

S
e
t
N
e
x
t
N
D
A
S
t
a
t
e
S
e
t

(
N
D
A
.
 E
P
S
I
L
O
N
.

l
a
s
t
c
u
r
r
e
n
t
s
t
a
t
e
.

n
e
x
t
N
e
w
S
t
a
t
e
)
;

S
e
t
N
e
x
t
N
D
A
S
t
a
t
e
S
e
t

(
N
O
A
.
 E
P
S
I
L
O
N
.

c
u
r
r
e
n
t
s
t
a
t
e
.

n
e
x
t
N
e
w
S
t
a
t
e
)
:

c
u
r
r
e
n
t
s
t
a
t
e

:=

n
e
x
t
N
e
w
S
t
a
t
e
:

n
e
x
t
N
e
w
S
t
a
t
e

:=

n
e
x
t
N
e
w
S
t
a
t
e

+

1:

IF

m

=
C
O
N
S
T
R
U
C
T

T
H
E
N

S
e
t
A
c
t
 i
o
n

(
N
O
A
A
c
t
i
o
n
s
.
 E
P
S
I
L
O
N
.

c
u
r
r
e
n
t
s
t
a
t
e
.

t
o
k
e
n
N
u
m
b
e
r
)
;

E
N
D
 ;

R
E
T
U
R
N

(
r
e
s
u
l
 t
)

 ;

E
L
S
I
F

C
l
o
s
u
r
e
E
x
p
r
e
s
s
i
o
n
Q
(
a
u
t
o
m
a
t
o
n
)

T
H
E
N

s
a
v
e
s
t
a
t
e

:=

c
u
r
r
e
n
t
s
t
a
t
e
:

r
e
s
u
l
t

:=

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

I m
.

O
p
e
r
a
n
d
O
f
(
a
u
t
o
m
a
t
o
n
)
.

t
o
k
e
n
N
u
m
b
e
r
,

N
D
A
 .

N
D
A
A
c
t
i
o
n
s
.

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
s
t
a
t
e
)
 :

S
e
t
N
e
x
t
N
D
A
S
t
a
t
e
S
e
t

(
N
D
A
.
 E
P
S
I
L
O
N
.

c
u
r
r
e
n
t
S
t
a
t
2
.

s
a
v
e
s
t
a
t
e
l
:

c
u
r
r
e
n
t
s
t
a
t
e

:=

s
a
v
e
s
t
a
t
e
:

IF

m

=
C
O
N
S
T
R
U
C
T

T
H
E
N

S
e
t
A
c
t
 i
o
n

(
N
D
A
A
c
t
i
o
n
s
.
 E
P
S
I
L
O
N
.

c
u
r
r
e
n
t
s
t
a

E
N
D
 :

R
E
T
U
R
N

(
r
e
s
u
l
 t
)
:

E
L
S
I
F

B
r
a
c
k
e
t
t
e
d
E
x
p
r
e
s
s
i
o
n
Q
(
a
u
t
o
m
a
t
o
n

r
e
s
u
 1
t

:

=
B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

(
m
.

O
p
e
r
a
n
d
O
f
(
a
u
t
o
m
a
t
o
n
)
.

t
o
k
e
n
N
u
m
b
e
r
 .

N
D
A
 ,

N
D
A
A
c
t
i
o
n
s
.

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
s
t
a
t
e
)
 :

R
E
T
U
R
N

(
r
e
s
u
l
 t
 1
:

t
e
.

t
o
k
e
n
N
u
m
b
e
t
-
1
;

T
H
E
N

E
L
S
I
F

T
e
r
m
i
n
a
l
Q
(
a
u
t
o
m
a
t
o
n
l

O
R

O
n
e
C
h
a
r
a
c
t
e
r
Q
(
a
u
t
o
m
a
t
o
n
)

O
R

C
h
a
r
a
c
t
e
r
S
t
r
i
n
g
Q
(
a
u
t
o
m
a
t
o
n
)

T
H
E
N

s
u
b
R
e
L
i
S
t
.

t
o
k
e
n
S
t
r
.

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
s
t
a
t
e
)
:

A
d
d
S
t
a
t
e

(
f
a
.

n
e
x
t
N
e
w
5
t
a
t
e
.

t
o
k
e
n
S
t
r
.

m
o
d
e
)
;

E
p
s
i
l
o
n
M
o
v
e

(
f
a
.

1
a
s
t
C
u
r
r
e
n
t
S
t
a
t
e
.

n
e
x
t
N
e
w
S
t
a
t
e
)
:

E
p
s
i
l
o
n
M
o
v
e

(
f
a
.
 c
u
r
r
e
n
t
s
t
a
t
e
,

n
e
x
t
N
e
w
S
t
a
t
e
)
;

c
u
r
r
e
n
t
s
t
a
t
e

:=

n
e
x
t
N
e
w
S
t
a
t
e
;

n
e
x
t
N
e
w
S
t
a
t
e

:=

n
e
x
t
N
e
w
S
t
a
t
e

+

1;

E
N
D
 ;

E
L
S
I
F

C
l
o
s
u
r
e
E
x
p
r
e
s
s
i
o
n
Q
(
r
e
)
 T
H
E
N

s
a
v
e
s
t
a
t
e

:=

c
u
r
r
e
n
t
s
t
a
t
e
:

r
e
s
u
l
 t

:
=

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

(
m
o
d
e
.

f
a
.

O
p
e
r
a
n
d
o
f
 (
r
e
)
.

s
u
b
R
e
L
 i
s
t
 .-

t
o
k
e
n
s
t
r
,

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
S
t
a
t
e
f
:

A
d
d
S
t
a
t
e

(
f
a
,
 n
e
x
t
N
e
w
S
t
a
t
e
.

t
o
k
e
n
s
t
r
,

m
o
d
e
)
;

E
p
s
i
l
o
n
M
o
v
e

(
f
a
.
 s
a
v
e
s
t
a
t
e
,

n
e
x
t
N
e
w
S
t
a
t
e
)
;

E
p
s
i
l
o
n
M
o
v
e

(
f
a
.
 c
u
r
r
e
n
t
S
t
a
t
e
,

s
a
v
e
s
t
a
t
e
)
;

c
u
r
r
e
n
t
s
t
a
t
e

:=

n
e
x
t
N
e
w
S
t
a
t
e
:

n
e
x
t
N
e
w
S
t
a
t
e

:=

n
e
x
t
N
e
w
S
t
a
t
e

+

1

;
E
L
S
I
F

B
r
a
c
k
e
t
t
e
d
E
x
p
r
e
s
s
i
o
n
Q
(
r
e
)

T
H
E
N

r
e
s
u
l
t

:
=

B
u
i
l
d
A
u
t
o
m
a
t
o
n
R

(
m
o
d
e
.

f
a
.

O
p
e
r
a
n
d
O
f
(
r
e
)
.

s
u
b
R
e
L
i
s
t
.

t
o
k
e
n
S
t
r
.

n
e
x
t
N
e
w
S
t
a
t
e
.

c
u
r
r
e
n
t
s
t
a
t
e
)
;

E
L
S
I
F

T
e
r
m
i
n
a
l
Q
(
r
e
1

T
H
E
N

R
e
t
r
i
e
v
e
T
e
r
m
i
n
a
l
D
f
(
r
e
.

s
t
r
)
;

t
m
p
S
t
r
[
2
]

:=

C
H
R
(
0
)
;

F
O
R

i
:=

I
T
O

L
e
n
g
t
h
(
s
t
r
1

D
O

t
m
p
S
t
r
[
 I

]
 :

=

s
t
r
[
 l
];

A
d
d
S
t
a
t
e

(
f
a
.
 n
e
x
t
N
e
w
S
t
a
t
e
.

t
o
k
e
n
S
t
r
,
 m
o
d
e
)
;

c
h
L
i
s
t

:=

M
a
k
e
C
h
a
r
a
c
t
e
r
L
i
s
t
(
)

:
A
p
p
e
n
d
N
o
d
e
T
o
L
i
s
t

(
c
h
L
i
s
t
.
 M
a
k
e
P
r
i
n
t
i
n
g
C
h
a
r
a
c
t
e
r
(
t
m
p
S
t
r
)
)
;

A
p
p
e
n
d
N
o
d
e
T
o
L
i
s
t

(
T
r
a
n
s
i
t
i
o
n
s
O
f

(
N
t
h
E
l
e
m
e
n
t
(
c
u
r
r
e
n
t
S
t
a
t
e
.

S
t
a
t
e
L
i
s
t
O
f
(
f
a
)
)
)
.

M
a
k
e
T
r
a
n
s
i
t
i
o
n

(
c
h
L
i
s
t
.
 C

re
a

te
N

u
m

b
e

rN
o

d
e

(n
e

x
tN

e
w

S
ta

te
))

):

c
u
r
r
e
n
t
s
t
a
t
e

:=

n
e
x
t
N
e
w
S
t
a
t
e
;

n
e
x
t
N
e
w
S
t
a
t
e

:=

n
e
x
t
N
e
w
S
t
a
t
e

+

I
:

IF
 O

n
e

C
h

a
ra

c
te

rQ
(a

u
to

m
a

to
n

)
T
H

E
N

R

e
tr

 ie
v

e
O

n
e

C
h

a
ra

c
te

r0
f (

a
u

to
m

a
to

n
.

s
t
r

 1
:

E
LS

E

R
e
t
r
i
e
v
e
C
h
a
r
a
c
t
e
r
S
t
r
i
n
g
O
f
(
a
u
t
o
m
a
t
o
n
.

s
t
r

)
:

E
N
D
 :

FO
R

i

:=

I
 T

O

L
e

n
g

th
ls

tr
)
 D

O

n
e

x
ts

ta
te

s
e

t
:=

G

e
tN

e
x
tN

D
A

S
ta

te
S

e
tf

N
D

A
.

s
t

r
[

~

1.
 c

u
rr

e
n

ts
ta

te
):

IF

 E
m

p
ty

S
e

tQ
(n

e
x

tS
ta

te
S

e
t)

 T
H

E
N

S

e
tN

e
x
tN

D
A

S
ta

te
S

e
t

(N
D

A
.

s
t
r

[
i]

,

c
u

rr
e

n
ts

ta
te

.
n

e
x

tN
e

w
S

ta
te

);

c
u

r
r
e

n
ts

ta
te

:=

n

e
x

tN
e

w
S

ta
te

:
n

e
x

tN
e

w
S

ta
te

:=

n

e
x

tN
e

w
S

ta
te

 +

1
;

E
LS

E

E
rr

o
r(

'B
u

i1
d

A
u

to
m

a
to

n
R

:
c

o
ll

is
io

n
 '

)
;

E
N
D
 :

E
N

0
:

I
F

 m

=
C

O
N

S
TR

U
C

T
T
H

E
N

IF

 G
e

tA
c

ti
o

n
(N

D
A

A
c

ti
0

n
s

.
s

t
r

[
i]

.

c
u

rr
e

n
ts

ta
te

)
=

E
R

R
O

R

T
H

E
N

S

e
tA

c
t
io

n

(N
D

A
A

c
ti

o
n

s
.

s
t
r

[
i]

.

c
u

rr
e

n
ts

ta
te

.
to

k
e

n
N

u
m

b
e

r)
:

E
LS

E

R
E
T
U

R
N

(
e

r
r
o

r
)
:

E
N

D
 :

E
N

D
:

R
E

T
U

R
N

(o

k
 1:

E

L
S

IF

L
e
x
i
c
a
l
N
o
n
T
e
r
m
i
n
a
l
Q
(
a
u
t
o
m
a
t
o
n
)

T
H

E
N

R
e
t
r
i
e
v
e
I
d
e
n
t
i
f
i
e
r
O
f
4
I
d
e
n
t
i
f
i
e
r
O
f
i
a
u
t
o
m
a
t
o
n
)
.

s
t
r

n

:=

F

in
d

S
u

b
A

u
to

m
a

to
n

(s
tr

):

IF
 L

e
x

ic
a

lC
la

s
s

R
u

le
Q

tn
)

T
H

E
N

F

O
R

i

:=

1

T
O

N

u
m

b
e

rO
fC

o
m

p
o

n
e

n
ts

O
f~

M
e

m
b

e
rs

O
f~

n
~

R

e
tr

ie
v

e
o

n
e

c
h

a
ra

c
te

ro
f

(G
e

tC
o

m
p

o
n

e
n

tK
(M

e
m

b
e

rs
0

f t
n
)
 .
i
 1

.
s

t
r

)
:

n
e

x
ts

ta
te

s
e

t
:=

G

e
tN

e
x
tN

O
A

S
ta

te
S

e
t(

N
D

A
.

s
t
r

[
l
]
.

c

u
rr

e
n

tS
ta

te
):

IF

 E
m

p
ty

S
e

tQ
(n

e
x

tS
ta

te
S

e
t)

 T
H

E
N

S

e
tN

e
x
tN

D
A

S
ta

te
S

e
t

(N
D

A
.

s
t
r

[
l]

.

c
u

rr
e

n
ts

ta
te

.
n

e
x

tN
e

w
S

ta
te

):

I
F

 m

=
C

O
N

S
TR

U
C

T
T
H

E
N

S

e
tA

c
t
io

n

(
N

D
A

A
ct

 i
o

n
s

.
s

t
r
r
 1

 I
.

n
e

x
tN

e
w

S
ta

te
.

to
k
e

n
N

u
m

b
e

r
)
:

E
N
D
 :

E
LS

E

E
rr

o
r4

6

u
il

d
A

u
to

m
a

to
n

R
:

c
o

ll
is

io
n

.
')

;

E
N
D
 :

E
N
D
 :

c
u

r
r
e

n
ts

ta
te

:=

n

e
x

tN
e

w
S

ta
te

;
n

e
x

tN
e

w
S

ta
te

:=

n

e
x

tN
e

w
S

ta
te

+

1

:
R

E
T
U

R
N

(o

k
)
:

E
L

S
IF

L

e
x

ic
a

lR
u

le
Q

tn
)

T
H

E
N

re

s
u

 1
t

:
=

B
u

il
d

A
u

to
m

a
to

n
R

E
N
D
 :

r
e

s
u

lt

:=

o
k

:
E

L
S

IF

L
e

x
ic

a
lN

o
n

T
e

rm
in

a
lQ

(r
e

)
T
H

E
N

~
e
t
r
i
e
v
e
~
d
e
n
t
i
f
i
e
r
~
f
(
~
d
e
n
t
i
f
i
e
r
O
f
(
r
e
)
.

s
t
r

)
:

n

:=

F
in

d
S

u
b

A
u

to
m

a
to

n
(s

tr
.

s
u

b
R

e
L

is
t)

;
IF

 S
u

b
D

e
fi

n
it

io
n

Q
(n

)
T
H

E
N

re

s
u

 1
 t

:
=

B
u

il
d

A
u

to
m

a
to

n
R

(m

o
d
e
.

fa
.

D
e

fi
n

it
io

n
O

f(
n

)
,

s
u

b
R

e
L

is
t.

to

k
e

n
S

tr
 .

n
e

x
tN

e
w

S
ta

te
,

c
u

rr
e

n
ts

ta
te

);

E
L

S
IF

~

la
s

s
~

e
f
in

it
io

n
Q

(
n

)

T
H

E
N

A

d
d

S
ta

te

(
fa

.
n

e
x

tN
e

w
S

ta
te

,
to

k
e

n
s

tr
.

m
o

d
e

);

c
h

L
is

t
:=

M

a
k

e
C

h
a

ra
c

te
rL

is
tO

;
FO

R

i

:=

1
 T

O

~
i
s
t
L
e
n
g
t
h
(
D
e
f
i
n
i
t
i
o
n
O
f
(
n
)
)
 D

O

R
e

tr
ie

v
e

T
e

rm
in

a
lO

f
(N

th
E

le
m

e
n

t(
i.

D

e
fi

n
it

io
n

O
f(

n
)
)
,

s
t
r
)
;

IF
 L

e
n

g
th

(s
tr

)
>

1
 T

H
E

N

E
rr

o
r

(
"B

u
il

d
A

u
to

m
a

to
n

R
:

C
la

s
s

D
e

fi
n

it
io

n

>

I

c
h

a
ra

c
te

r.
"

)
:

E
N

D
:

A
p

p
e

n
d

N
o

d
e

T
o

L
is

t
Ic

h
L

is
t.

M

a
k

e
P

ri
n

ti
n

g
C

h
a

ra
c

te
r(

s
tr

))
:

E
N

0
:

A
p

p
e

n
d

N
o

d
e

T
o

L
is

t
(
T

ra
n

s
 i
 t

io
n

s
O

f
(
N
t
h
E
l
e
m
e
n
t
(
c
u
r
r
e
n
t
S
t
a
t
e
.
 S

ta
te

L
is

tO
f(

fa
)
)
)
.

M
a

k
e

T
ra

n
s

it
io

n

(c
h

L
is

t.

~
re

a
te

N
u

m
b

e
rN

o
d

e
(n

e
x

tN
e

w
S

ta
te

))
);

c

u
rr

e
n

ts
ta

te

:=

n

e
x

tN
e

w
S

ta
te

;
n

e
x

tN
e

w
S

ta
te

:=

n

e
x

tN
e

w
S

ta
te

 +

1
;

r
e

s
u

lt

: =

o

k
:

E
LS

E

E
rr

o
r

(
'B

u
il

d
A

u
to

m
a

to
n

R
:

U
n

k
n

o
w

n

S

u
b

O
e

fi
n

it
io

n
 T

y
p

e
.'

):

E
N
D
 :

E
LS

E

E
rr

o
r(

'B
u

i1
d

A
u

to
m

a
to

n
R

:
in

c
o

rr
e

c
t

n
o

d
e

ty

p
e

.'
)
:

EN
D
 :

R
E
T
U

R
N

(

r
e

s
u

lt
 1
:

E
N
D

B
u

il
d

A
u

to
m

a
to

n
R

:

P
R

O
C

E
D

U
R

E

G
e
t
N
e
x
t
N
F
A
E
p
s
i
l
o
n
S
t
a
t
e
S
e
t

(n
F

A

:
N

o
d

e
:

s
ta

te

:
C

A
R

D
IN

A
L
:

V
A

R

n
e

x
ts

ta
te

s
e

t
:

S
e

t)
:

(m
.

D
e

fi
n

it
io

n
o

ft

to
k
e

n
N

u
m

b
e

r.

N
D
A
 .

N
O

A
A

c
ti

o
n

s
,

n
e

x
tN

e
w

S
ta

te
.

c
u

r
r
e

n
ts

ta
te

)

R
E

T
U

R
N

(
re

s
u

l t
)

 :

E
LS

E

E
rr

o
r(

'B
u

i1
d

A
u

to
m

a
to

n
R

:
in

c
o

rr
e

c
t

le
x

ic
a

l
r

e
 n

o
d

e
.'

):

E
N
D
 :

E
LS

E

E
rr

o
r(

'B
u

i1
d

A
u

to
m

a
to

n
:

in
c

o
rr

e
c

t
n

o
d

e

ty
p

e
.'

)
:

E
N
D
 ;

E
N

D

B
u

il
d

A
u

to
m

a
to

n
R

:

P
R

O
C

E
D

U
R

E

M
a

k
e

D
A

T
a

b
le

(

:
D

A
T

a
b

le
:

V
A

R

4
,

j
:

C
A

R
D

IN
A

L
;

t
:

O
A

T
a

b
le

;

B
E

G
IN

A

L
L

O
C

A
T

E
(t

.
S

IZ
E

(D
A

T
a

b
1

e
R

e
c
o

rd
))

;
FO

R

i

:=

S

T
A

R
T
C

H
A

R
S

TO

M

A
X
C

H
A
R

S

DO

FO
R

j
:=

S

T
A

R
T
-S

T
A

T
E

TO

M

A
X

-S
T
A

T
E

S

DO

tA
.m

a
tr

ix
[i

.
j

]

:=

U
N

A
S

S
IG

N
E

D
:

E
N
D
 :

E
N
D
 :

R
E

T
U

R
N

(

t
)
:

E
N

0
M

a
k
e

D
A

T
a

b
le

:

P
R

O
C

E
D

U
R

E

M
a

k
e

A
c

ti
o

n
T

a
b

le

(
1

 :

A
c

ti
o

n
T

a
b

le
:

V
A

R

i
.

B
E

G
IN

A

LL
O

C
A

FO

R

i

F
O

R

j
:

C
A

R
D

IN
A

L
:

t
:

A
c

ti
o

n
T

a
b

le
:

T
E

(t
.

S
I
Z
E
(
A
c
t
i
o
n
T
a
b
1
e
R
e
c
o
r
d
)
)
:

:=

S

T
A

R
T
C

H
A

R
S

T

O

M
A
X
C

H
A
R

S

DO

j
:=

S

T
A

R
T
-S

T
A

T
E

TO

M

A
X

-S
T

A
T

E
S

DO

t"

.m
a

tr
ix

[i
.

j
]

:=

E
R

R
O

R
:

E
N
D
 :

E
N
D
 ;

R
E

T
U

R
N

(

t
 I:

E
N
D

M
a

k
e

A
c

ti
o

n
T

a
b

le
:

P
R

O
C

E
D

U
R

E

M
a
k
e
N

D
A

T
a
b
le

f

)

:

N
D

A
T

a
b

le
:

V
A

R

i
,
 j

:
C

A
R

D
IN

A
L
:

t
:

N
D

A
T

a
b

le
:

V
A

R
 tr
a

n
s

it
io

n
s

,
tr

a
n

s
it

io
n

.
c

h

:

N
o

d
e

;
n

e
x

tS
ta

te
S

tr

:
S

tr
in

g
T

y
p

e
:

i
,
 j
,

n
e

x
ts

ta
te

:

C
A

R
D

IN
A

L
;

o
k

a
y

:

B
O

O
LE

A
N

:

C
le

a
rS

e
t(

n
e

x
tS

ta
te

S
e

t)
:

tr
a

n
s

it
io

n
s

:=

T
r
a
n
s
i
t
i
o
n
s
O
f
(
N
t
h
E
l
e
m
e
n
t
(
s
t
a
t
e
.

S
ta

te
L

is
tO

f(
n

F
A

))
);

FO

R

i

:=

1
TO

L

is
tL

e
n

g
th

(t
ra

n
s

it
i0

n
s

)
DO

tr

a
n

s
it

io
n

:=

N

th
E

le
m

e
n

t(
i.

tr

a
n

s
it

io
n

s
)
:

FO
R

j

:=

I
T

O

L
i
s
t
L
e
n
g
t
h
(
C
h
a
r
a
c
t
e
r
L
i
s
t
O
f
(
t
r
a
n
s
i
t
i
0
n
)
)

DO
 c

h

:=

N
th

E
le

m
e

n
t(

j.

C
h
a
r
a
c
t
e
r
L
i
s
t
O
f
(
t
r
a
n
s
i
t
i
0
n
)
)
;

IF
 e

p
s

il
o

n
Q

(c
h

)
T
H

E
N

R

e
tr

ie
v
e

N
u

m
b

e
rO

f
(
N
e
x
t
S
t
a
t
e
O
f
(
t
r
a
n
s
i
t
i
0
n
)
.

n
e

x
ts

ta
te

s
tr

)
:

S
tr

T
o

C
a

rd
(n

e
x

tS
ta

te
S

tr
,

n
e

x
ts

ta
te

,
o

k
a

y
);

I

F
 N

O
T

o
k

a
y

T
H

E
N

E

rr
o

r
("

G
e

tN
e

x
tN

F
A

E
p

s
il

o
n

S
ta

te
S

e
t:

c

o
n

v
e

rs
io

n
 e

r
r
o

r
"

)
:

E
N

0
;

E
n

te
rK

in
S

e
tt

n
e

x
tS

ta
te

,
n

e
x

ts
ta

te
s

e
t)

;
EN

D
 :

E
N
D
 :

E
N
D
 :

E
N
D

G
e

tN
e

x
tN

F
A

E
p

s
il

o
n

S
ta

te
S

e
t;

B
E

G
IN

-

A
L
L
O

C
A

T
E

(
t
,

S
IZ

E
(N

D
A

T
a

b
1

e
R

e
c
o

rd
)

1
:

F
O

R

i

:=

S
T

A
R

T
C

H
A

R
S

T

O

M
A

X
C

H
A

R
S

D

O

F
O

R

j

:=

S
T

A
R

T
-S

T
A

T
E

T

O

M
A

X
-S

T
A

T
E

S

D
O

t

-
.

m
a

t
r

ix
t

i.

j
]

:=

M

a
k

e
s

e
t(

 1
:

E
N

D
 ;

E
N

D
 ;

R
E

T
U

R
N

(
t
)
:

E
N

D

M
a

k
e

N
D

A
T

a
b

le
:

P
R

O
C

E
D

U
R

E

F
re

e
D

A
T

a
b

le

(V
A

R

t

:
D

A
T

a
b

le
):

B
E

G
IN

I

F
 t

=
N

IL
 T

H
E

N

E
rr

o
r(

"F
re

e
D

A
T

a
b

1
e

:
ta

b
le

 d
o

e
s
n

E

N
0

 ;

D
E

A
L

L
O

C
A

T
E

(t
,

S
IZ

E
(D

A
T

a
b

1
e

R
e

c
o

rd
)

t
:=

 N
IL

;
E

N
D

F

re
e

D
A

T
a

b
le

:

'
t
 e

x
is

t.
"

)
:

1
:

P
R

O
C

E
D

U
R

E

F
re

e
A

c
ti

o
n

T
a

b
le

(V

A
R

t

:
A

c
ti

o
n

T
a

b
le

):

B
E

G
IN

I

F
 t

=
N

IL
 T

H
E

N

E
r

r
o

r
(

 "
F

re
e

A
c

ti
o

n
T

a
b

le
:

ta
b

le
 d

o
e

s
n

't

e
x

is
t.

"
)

:
E

N
D

 :
D

E
A

L
L

O
C

A
T

E
(t

.
S
I
Z
E
(
A
c
t
i
o
n
T
a
b
1
e
R
e
c
o
r
l
)
)
;

t
:=

N

IL
:

E
N

D

F
re

e
A

c
ti

o
n

T
a

b
le

:

P
R

O
C

E
D

U
R

E

~
r

e
e

~
~

~
~

a
b

l
e

f

V
A

R

t

:
N

D
A

T
a

b
le

:

V
A

R

i
,
 j

:
C

A
R

D
IN

A
L

;

B
E

G
IN

I

F
 t

=
N

IL
 T

H
E

N

E
rr

o
r(

"F
re

e
N

D
A

T
a

b
1

e
:

t
a

b
le

 d
0

e
s

n
.t

 e
x

is
t.

"
)

:
E

N
D

 ;

FO
R

i

:=

S
T

A
R

T
C

H
A

R
S

T

O

M
A

X
C

H
A

R
S

D

O

FO
R

j

:=

S
T

A
R

T
-S

T
A

T
E

TO

M

A
X

-S
T

A
T

E
S

D

O

F
r

e
e

'3
e

t(
tA

.m
a

tr
ix

[i
.

J
]

)
;

E

N
D

 :

E
N

D
 :

D
E

A
L

L
D

C
A

T
E

ft
.

S
IZ

E
(N

D
A

T
a

b
1

e
R

e
c

o
t-

d
l)

:
t

:=

N
IL

:
E

N
D

F

re
e

N
D

A
T

a
b

le
:

P
R

O
C

E
D

U
R

E

G
e

tN
e

x
tD

A
S

ta
te

c

:
C

H
A

R
:

c
u

r
r

e
n

ts
ta

te

:
C

A
R

D
IN

A
L

)
:

C
A

R
D

IN
A

L
:

B
E

G
IN

I

F
 t

=
N

I
L

 T
H

E
N

 E
rr

o
r(

'G
e

tN
e

x
tD

A
S

ta
te

:
n
o

ta
b

le
.'

)
:

E
N

D
:

R
E

T
U

R
N

(t

-.
m

a
tr

ix
[O

R
D

(c
).

c

u
rr

e
n

ts
ta

te
])

:
E

N
D

 G
e

tN
e

x
tD

A
S

ta
te

;

P
R

O
C

E
D

U
R

E

S
e

tN
e

x
tD

A
S

ta
te

(
t
 :

D

A
T

a
b

le
:

c
:

C
H

A
R

:
c

u
rr

e
n

ts
ta

te
.

n
e

x
t

s
t

a
t

e

:

C
A

R
D

IN
A

L
):

B
E

G
IN

I

F
 t

=
N

IL

T
H

E
N

E

rr
o

r(
'S

e
tN

e
x

tD
A

S
ta

te
:

n
o

ta
b

le
.'

)
;

E
N

D
;

t-
.m

a
tr

ix
[D

R
D

(c
).

c

u
r

r
e

n
tS

ta
te

]
:=

n

e
x

ts
ta

te
:

E
N

D

S
e

tN
e

x
tD

A
S

ta
te

:

P
R

O
C

E
D

U
R

E

G
e

tA
c

ti
o

n

(
t

 :

A
c

ti
o

n
T

a
b

le
;

c

:
C

H
A

R
:

c
u

rr
e

n
ts

ta
te

:

C
A

R
D

IN
A

L
)

:
C

A
R

D
IN

A
L

:

B
E

G
IN

IF

 t

=
N

IL
 T

H
E

N
 E

r
r

o
r

(
'G

e
tA

c
ti

o
n

:
n

o

ta
b

le
.'

):

E
N

D
;

R
E

T
U

R
N

(

t-
.m

a
tr

~
x

[O
R

D
(

c
)

,
C

u
r

r
e

n
tS

ta
te

])
:

E
N

D

G
e

tA
c

ti
o

n
;

P
R

O
C

E
D

U
R

E

S
e

tA
c

ti
o

n

.
I
t

:

A
c

ti
o

n
T

a
b

le
;

c

:
C

H
A

R
:

c
u

rr
e

n
ts

ta
te

.
a

c
ti

o
n

:

.C
A

R
D

IN
A

L
):

B
E

G
IN

I

F
 t

=
N

I
L

 T
H

E
N

 E
r

r
o

r
(

 '
S

e
tA

c
ti

o
n

:
n
o

ta
b

le
.'

)
:

E
N

D
:

t^
.m

a
tr

ix
[O

R
D

(c
).

c

u
rr

e
n

ts
ta

te
]

:=

a

c
ti

o
n

:
E

N
D

S

e
tA

c
ti

o
n

;

P
R

O
C

E
D

U
R

E

G
e

tN
e

x
tN

D
A

S
ta

te
S

e
t

(
t

 :

N
D

A
T

a
b

le
;

c

:
C

H
A

R
;

c
u

rr
e

n
ts

ta
te

:

C
A

R
D

IN
A

L
)

:
S

e
t:

B
E

G
IN

I

F
 t

=
N

D
A

T
a

b
le

(N
1

L
)

T
H

E
N

E

rr
o

r(
'G

e
tN

e
x

tN
D

A
S

ta
te

S
E

t:

n
o

ta
b

le
.;

)
:

E
N

D
 :

R
E

T
U

R
N

It

a
.m

a
tr

ix
[O

R
D

(
c

l.

c
u

r
r
e

n
ts

ta
te

ll
;

E
N

D

G
e

tN
e

w
tN

D
A

S
ta

te
S

e
t:

P
R

O
C

E
D

U
R

E

S
e

tN
e

x
tN

D
A

S
ta

te
S

e
t

(
t
 :

N

D
A

T
a

b
le

:
c

:

C
H

A
R

:
c

u
rr

e
n

ts
ta

te
.

n
e

x
ts

ta
te

:

C
A

R
D

IN
A

L
);

B
E

G
IN

IF

 t

=
N

D
A

T
a

b
le

(N
1

L
)

T
H

E
N

E
r
r
o
r
(
'
S
e
t
N
e
x
t
N
D
A
S
t
a
t
e
S
E
t
:

n
o

ta

b
le

.'
)
:

E
N
D
 ;

E
n

te
rK

in
S

e
t(

n
e

x
t5

ta
te

.
t^

.m
a

tr
ix

[O
R

D
(c

).
 c

u
rr

e
n

tS
ta

te
])

;
E
N
D

S
e

tN
e

x
tN

D
A

S
ta

te
S

e
t:

P
R

O
C

E
D

U
R

E

F
il

lI
n

N
D

A
T

a
b

le
s

(N

D
A

:

N
D

A
T

a
b

le
:

N
D

A
A

c
ti

o
n

s

:
A

c
ti

o
n

T
a

b
le

:
s
L

:

S
y

m
b

o
ls

):

V
A

R
 i
. j

:

C
A

R
D

IN
A

L
:

s
t
r

:

S
tr

in
g

T
y

p
e

:
c

u
rr

e
n

ts
ta

te
.

n
e

x
tN

e
w

S
ta

te

:

C
A

R
D

IN
A

L
:

n
e

x
ts

ta
te

s
e

t
:

S
e

t:

a
u

to
m

a
to

n

:

N
o

d
e

:
r
e

s
u

lt

:

R
e

s
u

lt
;

B
E

G
IN

n

e
x

tN
e

w
S

ta
te

:=

S

T
A

R
T
-S

T
A

T
E

+

1

:
FO

R

i

:=

G
e

tF
ir

s
tT

o
k

e
n

N
u

m
b

e
r(

s
L

)
T

O

G
e

tL
a

s
tT

o
k

e
n

N
u

m
b

e
r(

s
L

)
DO

c

u
r
r
e

n
ts

ta
te

:=

S

T
A

R
T
-S

T
A

T
E

:
S

e
tN

e
x
tN

D
A

S
ta

te
S

e
t

(N
D

A
.

E
P

S
IL

O
N

.
c

u
rr

e
n

ts
ta

te
.

tt
e

rt
N

e
w

S
ta

te
):

c

u
r
r
e

n
ts

ta
te

:=

n

e
x

tN
e

w
S

ta
te

:
n

e
x

tN
e

w
S

ta
te

:=

n

e
x

tN
e

w
S

ta
te

 +

1
:

G
e

tT
o

k
e

n
S

tr
in

g
fi

.
s

t
r

.

sL

):

FO
R

j
:=

1

T

O

L
e

n
g

th
ls

tr
)
 D

O
n

e
x

ts
ta

te
s

e
t

:=

G
e

tN
e

x
tN

D
A

S
ta

te
S

e
t(

N
D

A
.

s
t
r

[
j
]
.

c

c
tr

re
n

tS
ta

te
):

IF

 E
m

p
ty

S
e

tQ
(n

e
x

tS
ta

te
S

e
t)

 T
H

E
N

S

e
tN

e
x
tN

D
A

S
ta

te
S

e
t

(N
D

A
.

s
t
r
[
 j

1.
 c

u
rr

e
n

ts
ta

te
.

n
e

x
tN

e
w

S
ta

te
):

c

u
rr

e
n

ts
ta

te

:=

n

e
x

tN
e

w
S

ta
te

:
n

e
x

tN
e

w
S

ta
te

: =

n

e
x

tN
e

w
S

ta
te

+

1
;

E
LS

E

E
rr

o
r

I
'F

il
lI

n
N

D
A

T
a

b
le

s
:

n
o

n
e

d
e

te
rm

in
is

ti
c

s

t
r
in

g
 e

r
r
o

r
.'

)
:

EN
D
 :

EN
D
 :

I
F

 G
e

tA
c

ti
o

n
(N

D
A

A
c

ti
o

n
s

.
s

t
r

[
j
 1

.
c

u
rr

e
n

ts
ta

te
)

=
E

R
R

O
R

T
H

E
N

S

e
tA

c
ti

o
n

(N
D

A
A

c
ti

o
n

s
,

s
t
r

[
j]

.

c
u

rr
e

n
ts

ta
te

.
i
)
:

E
LS

E

E
rr

o
r(

'F
il

lI
n

N
D

A
T

a
b

1
e

s
:

A
m

b
ig

u
o

u
s

to
k

e
n

s
.

'1
:

E
N
D
 ;

n
e

x
ts

ta
te

s
e

t
:=

G

e
tN

e
x
tN

D
A

S
ta

te
S

e
t(

N
0

A
.

'
'
.

c
u

rr
e

n
ts

ta
te

):

IF
 E

m
p

ty
S

e
tQ

(n
e

x
tS

ta
te

S
e

t1
 T

H
E
N

S

e
tN

e
x
tN

D
A

S
ta

te
S

e
t

(N
D

A
.

'
'.

 c
u

rr
e

n
ts

ta
te

.
n

e
x

tN
e

w
S

ta
te

):

c
u

r
r
e

n
ts

ta
te

:=

n

e
x

tN
e

w
S

ta
te

:
n

e
x

tN
e

w
S

ta
te

:=

n

e
x

tN
e

w
S

ta
te

+

1

:
E

LS
E

E

rr
o

r
('F

il
lI

n
N

D
A

T
a

b
le

s
:

n
o

n
e

d
e

te
rm

in
is

ti
c

s

t
r
in

g
 e

r
r
o

r
.'

)
:

E
N
D
 :

IF
 G

e
tA

c
ti

o
n

(N
D

A
A

c
ti

0
n

s
.

'
'
,

c
u

rr
e

n
ts

ta
te

)
=

E
R

R
O

R

T
H

E
N

S

e
tA

c
ti

o
n

lN
D

A
A

c
ti

o
n

s
.

'
'.

 c
u

rr
e

n
ts

ta
te

.
i

+

S
T

O
P

):

E
LS

E

E
rr

o
r(

'F
i1

lI
n

N
D

A
T

a
b

le
s

:
A

m
b

ig
u

o
u

s

to
k

e
n

s
.

'
)

;

E
N
D
 :

E
N
D
 ;

FO
R

i

:=

G
e

tF
ir

s
tA

u
to

m
a

to
n

N
u

m
b

e
r(

s
L

)
T

O

G
e

tL
a

s
tA

u
to

m
a

to
n

N
w

m
b

e
r(

s
L

)
D

O

a
u

to
m

a
to

n

:=

G
e

tA
u

to
m

a
to

n
(i

.
s

L
)
:

r
e

s
u

lt

:

=
B

u
il

d
A

u
to

m
a

to
n

(a

u
to

m
a

to
n

.
i
.
 N

D
A

.
N

D
A

A
c

ti
o

n
s

.
n

e
x

tN
e

w
S

ta
te

):

IF
 r

e
s

u
lt

=

e
r
r
o

r

T
H

E
N

E

rr
o

b
(;

F
il

lI
n

N
D

A
T

a
b

le
s

:
a

u
to

m
a

to
n

 a
m

b
ig

u
it

y
.'

)
:

E
N
D
 :

E
N

D
:

E
N

D

F
il

lI
n

N
D

A
T

a
b

le
s

:

P
R

O
C

E
D

U
R

E

E
C

lo
s

u
re

(
s

ta
te

s
e

t
:

S
e

t:

N
D
A

:
N

D
A

T
a

b
le

)
:

S
e

t:

V
 A

R
 i
,
 s

ta
te

:

C
A

R
D

IN
P

L
:

e
c

lo
s

u
re

.
n

e
x

ts
ta

te
s

e
t

:
S

e
t:

s

ta
c

k

:
S

ta
c

k
;

s
e

ts
ta

te

:
S

e
tS

ta
te

:
d

o
n

e

:
B

O
O

LE
A

N
:

B
E

G
IN

s

e
ts

ta
te

:=

 M
a

k
e

s
e

ts
ta

te
(

1:

s
ta

c
k

:

=
M

a
k

e
s

ta
c

k
(

)
:

e
C

lo
s

u
re

: =

M

a
k

e
s

e
t(

 I
 :

i

:
=

 F
ir

s
t(

s
ta

te
S

e
t.

s

e
ts

ta
te

.
d

o
n

e
):

W

H
IL

E

N
O

T
d

o
n

e

DO

P
R

O
C

E
D

U
R

E

E
C

lo
s

u
re

(
s

ta
te

s
e

t
:

S
e

t:

nF
A

:

N
o

d
e

)
:

S
e

t:

V
 A

R
 i
,
 n

e
x

ts
ta

te
,

s
ta

te
.

k.

m

:
C

A

e
C

lo
s

u
re

:

S
e

t:

s
e

ts
ta

te

:

S
e

tS
ta

te
;

d
o

n
e

:

B
O

O
LE

A
N

:
c

h
L

is
t.

c

h
.

tr
a

n
s

it
io

n
s

.
tr

a
n

s

n
e

x
tS

ta
te

S
tr

:

S
tr

in
g

T
y

p
e

;

R
D

IN
A

L
:

it
io

n
 :

N

o
d

e
:

B
E

G
IN

s

e
ts

ta
te

:=

M

a
k

e
s

e
ts

ta
te

(
)
:

e
C

lo
s

u
re

:=

 M
a

k
e

s
e

t(
 l

:
U

n
io

n
(e

C
1

o
s

u
re

.
s

ta
te

s
e

t
)
:

s
ta

te

:=

F

ir
s

tt
s

ta
te

S
e

t.

s
e

ts
ta

te
.

d
o

n
e

):

E
n

te
rK

in
S

e
t(

 1
.

e
c

lo
s

u
re

);

S
ta

c
k

p
u

s
h

(
i
 .

s
ta

c
k

):

i

:=

N

e
x

t(
s

e
tS

ta
te

.
d

o
n

e
):

E
N

D
 ;

W
H

IL
E

S

ta
c
k
N

o
tE

m
p

ty
Q

(
s

ta
c

k

DO

s
ta

te

:
=

S
ta

c
k

p
o

p
(

s
ta

c
k

);

n
e

x
ts

ta
te

s
e

t
:=

G

e
tN

e
x
tN

O
A

S
ta

te
S

e
t(

N
O

A
,

E
P

S
IL

O
N

.
s

ta
te

)
:

i

:=

F
ir

s
t(

n
e

x
tS

ta
te

S
e

t.

s
e

ts
ta

te
.

d
o

n
e

):

W
H

IL
E

N

O
T

d
o

n
e

DO

IF

 N
O

T
M

e
m

b
e
rK

Q
(1

.
e

C
lo

s
u

re
)

T
H

E
N

E

n
te

rK
ip

S
e

t(
i,

e

c
lo

s
u

re
l:

S

ta
c

k
P

u
s

h
fi

,
s

ta
c

k
);

E
N
D
 :

i

:=
 N

e
x

t(
s

e
tS

ta
te

.
d

o
n

e
);

E
N
D
 ;

E
N
D
 ;

F
re

e
S

e
tS

ta
te

(s
e

tS
ta

te
);

R

E
T
U

R
N

(e

c
lo

s
u

re
);

E
N

D

E
C

lo
s

u
re

:

P
R

O
C

E
D

U
R

E

C
o

n
v
e

rt
N

D
A

to
D

A

(N
O

A

:
N

O
A

T
a

b
le

;
N

O
A

A
c
ti

o
n

s

:

A
c

ti
o

n
T

a
b

le
:

DA

:
D

A
T

a
b

le
:

D
A

A
c

ti
o

n
s

:

A
c

ti
o

n
T

a
b

le
):

T
Y

P
E

S

e
tA

rr
a

y

=
A

R
R

A
Y

[O

..
M

A
x
-S

T
A

T
E

S
]

O
F

S

e
t;

V
A

R

D
S

ta
te

s

:
S

e
tA

rr
a

y
:

D
S

ta
te

s
N

o
tM

a
rk

e
d

:

S
e

t;

i
,
 j
.

a
c

ti
o

n
,

n
e

w
A

c
ti

o
n

.
c

u
rr

e
n

tD
S

ta
te

.
fo

u
n

d
D

S
ta

te
.

n
e

x
tN

e
w

D
S

ta
te

:

C
A

R
D

IN
A

L
;

s
ta

te
S

e
tl

.
s

ta
te

s
e

t
:

S
e

t:

s
e

ts
ta

te

:
S

e
tS

ta
te

:
u

n
M

a
rk

e
d

F
la

g
.

n
o

tf
o

u
n

d
,

d
o

n
e

:

E
O

O
LE

A
N

:

B
E
G
I
N

s
e

ts
ta

te

:=
 M

a
k

e
s

e
ts

ta
te

(
1:

s

ta
te

s
e

t
:=

M

a
k

e
s

e
t(

)
:

D
S

ta
te

s
N

o
tM

a
rk

e
d

:=

M

a
k

e
s

e
t(

)
:

O
e

le
te

K
fr

o
m

S
e

t(
s

ta
te

.
s

ta
te

s
e

t)
;

W
H

IL
E

N
O

T
d

o
n

e

DO

tr

a
n

s
it

io
n

s

:=

T
r
a
n
s
i
t
i
o
n
s
O
f
(
N
t
h
E
l
e
m
e
n
t
(
s
t
a
t
e
.

S
ta

te
L

is
tO

f(
n

F
A

))
):

FO

R

k

:=

1

TO

L

is
tL

e
n

g
th

(t
ra

n
s

it
i0

n
s

)
DO

tr

a
n

s
it

io
n

:=

N

th
E

le
m

e
n

t(
k

,
tr

a
n

s
it

io
n

s
)
;

c
h

L
is

t
:=

C
h
a
r
a
c
t
e
r
L
i
s
t
O
f
(
t
r
a
n
s
i
t
i
0
n
)
;

F
O

R

m

:=

1

TO

L

is
tL

e
n

g
th

(c
h

L
is

t)
 D

O

c
h

:=

N

th
E

le
m

e
n

t(
m

.
c

h
li

s
t)

;
IF

 e
p

s
il

o
n

Q
(c

h
)

T
H

E
N

R

e
tr

ie
v
e

N
u

m
b

e
rO

f
(
~
e
x
t
~
t
a
t
e
~
f
(
t
r
a
n
s
i
t
i
o
n
)
.

n
e

x
tS

ta
te

S
tr

):

S
tr

T
o

C
a

rd
(n

e
x

tS
ta

te
S

tr
.

n
e

x
ts

ta
te

.
o

k
a

y
):

I

F
 N

O
T

o

k
a

y

T
H

E
N

E

rr
o

r(
"E

C
1

o
s

u
re

:
c

o
n

v
e

rs
io

n

e

r
r
o

r
"
)
;

E
N
D
 ;

I
F

 N
O

T
M

e
m

b
e

rK
Q

(n
e

x
tS

ta
te

.
e

c
lo

s
u

re
)

T
H

E
N

1)

E
n

te
rK

in
S

e
t(

n
e

x
tS

ta
te

.
e

C
lo

s
u

re

E
n

te
rK

in
S

e
t(

n
e

x
tS

ta
te

.
S

ta
te

s
e

t
E
N
D
 :

E
N
D
 ;

E
N

D
 ;

E
N

D
 ;

s
ta

te

:=

F
ir

s
t(

s
ta

te
S

e
t.

s

e
ts

ta
te

,
d

o
n

e

D
e

le
te

K
fr

o
m

S
e

t(
s

ta
te

,
s

ta
te

s
e

t)
;

E
N
D
 ;

F
re

e
S

e
tS

ta
te

fs
e

tS
ta

te
);

R

E
T
U

R
N

(e

C
lo

s
u

t-
e

);

E
N
D

E
C

lo
s

u
re

:

P
R

O
C

E
D

U
R

E

C
o

n
v
e

rt
N

D
A

to
D

A

(n
F

A
,

dF
A

:

N
o

d
e

);

T
Y

P
E

S

e
tA

rr
a

y

=
A

R
R

A
Y

[O

..
M

A
X

-S
T

A
T

E
S

]
O
F

S
e

t;

V
 A

R

D
S

ta
te

s

:

S
e

tA
rr

a
y

:
D

S
ta

te
s

N
o

tM
a

rk
e

d

:

S
e

t;

s
ta

te
.

i
.

j,

k

.
m

.
o

u
tp

u
t.

n

e
w

o
u

tp
u

t.

c
u

rr
e

n
tD

S
ta

te
.

fo
u

n
d

D
S

ta
te

.
n

e
x
tN

e
w

D
S

ta
te

,
n

e
x

ts
ta

te

:

C
A

R
D

IN
A

L
:

s
ta

te
S

e
tl

.
s

ta
te

s
e

t
:

S
e

t;

s
e

ts
ta

te

:
S

e
tS

ta
te

:
o

k
,

u
n

M
a

rk
e

d
F

la
g

.
n

o
tf

o
u

n
d

,
fo

u
n

d
.

d
o

n
e

:

B
O

O
LE

A
N

:
o

u
tp

u
tS

tr
.

s
t
r
.

s
ta

te
s

tr
.

c
h

rS
tr

.
n

e
x

tS
ta

te
S

tr

:
S

tr
in

g
T

y
p

e
;

c
h

L
is

t.

c
h

,
tr

a
n

s
it

io
n

.
tr

a
n

s
it

io
n

s

:

N
o

d
e

:

B
E

G
IN

c

h
rS

tr
(2

1

:=

C
H

R
(0

);

s
e

ts
ta

te

:=
 M

a
k

e
S

e
tS

ta
te

o
;

s
ta

te
s

e
t

:=
 M

a
k

e
S

e
to

:
D

S
ta

te
s

N
o

tM
a

rk
e

d

:=

M
a

k
e

s
e

t(
 1

:

D
S

ta
te

s
[F

A
IL

]
:=

M

a
k

e
s

e
t(

 1
:

c
u

rr
e

n
tD

S
ta

te

:=

S

T
A

R
T
-S

T
A

T
E

;
n

e
x

tN
e

w
D

S
ta

te

:=

c
u

rr
e

n
tD

S
ta

te

+

1
:

E
n

te
rK

in
S

e
t(

c
u

rr
e

n
t0

S
ta

te
.

s
ta

te
s

e
t)

;
D

S
ta

te
s

[c
u

rr
e

n
tD

S
ta

te
]

:=

E
C

lo
s

u
re

(s
ta

te
S

e
t,

N
D
A

E
n

te
rK

in
S

e
t(

c
u

rr
e

n
tD

S
ta

te
.

D
S

ta
te

s
N

o
tM

a
rk

e
d

):

u
n

M
a

rk
e

d
F

la
g

:=

T
R

U
E

:
W

H
IL

E

u
n

M
a

rk
e

d
F

la
g

DO

(

+
 m

a
rk

c

u
rr

e
n

t
s

ta
te

(
x

)

D
e
l
e
t
e
K
f
r
o
m
S
e
t
(
c
u
r
r
e
n
t
D
S
t
a
t
e
.

D
S

ta
te

s
N

o
tM

a
rk

e
d

FO

R

i

:=

S
T
A

R
T
C

H
A

R
S

TO

M

A
X
C

H
A
R

S

-
1

 D
O

(
*

 o
n

'a

'
fr

o
m

 s
o
m

e

s
ta

te

i
n

 t
h

e
 c

u
rr

e
n

t
s

ta

C
le

a
rS

e
t(

s
ta

te
S

e
t

)
;

j
:=

~

ir
s

t(
~

S
ta

te
s

[c
u

r
r

e
n

tD
S

ta
te

].

s
e

ts
ta

te
.

d
o

n
e

):

W
H

IL
E

N
O

T
d

o
n

e

DO

U

n
io

n

(
s

ta
te

s
e

t.

G
e

tN
e

x
tN

D
A

S
ta

te
S

e
t(

N
D

A
,

C
H

R
(i

).

j)
)

:

j
:=

 N
e

x
t(

s
e

tS
ta

te
.

d
o

n
e

);

E
N
D
 ;

s
ta

te
s

e
t1

:=

E

C
lo

s
u

re
(s

ta
te

S
e

t.

N
D

A
);

I

F
 E

m
p

ty
S

e
tQ

(s
ta

te
S

e
t1

)
T
H

E
N

fo

u
n

d
D

S
ta

te

:=

F
A

IL
;

E
LS

E

n
o

tF
o

u
n

d

:=

T
R

U
E

;
j

:=

S
T

A
R

T
-S

T
A

T
E

:
W

H
IL

E

(
j

 <

n
e

x
tN

e
w

D
S

ta
te

)
AN

D

n
o

tF
o

u
n

d
 D

O

I
F

 I
d
e
n
t
i
c
a
l
S
e
t
s
Q
(
s
t
a
t
e
S
e
t
1
.

D
S

ta
te

s
[j

])

T
H

E
N

n

o
tF

o
u

n
d

:=

F

A
L
S

E
;

fo
u

n
d

D
S

ta
te

:=

j
:

E
N
D
 :

J

:=

J

+

1
:

E
N
D
 :

IF
 n

o
tF

o
u

n
d

 T
H

E
N

(

*
 a

d
d

 a
 n

e
w

s

ta
te

 t
o

 D
 *

)

D
S

ta
te

s
[n

e
x

tN
e

w
D

S
ta

te
]

:=

S

ta
te

S
e

tl
;

fo
u

n
d

D
S

ta
te

:=

n

e
x
tN

e
w

D
S

ta
te

;
E

n
te

rK
in

S
e

t(
f0

u
n

d
D

S
ta

te
.

D
S

ta
te

s
N

o
tM

a
rk

e
d

);

n
e

x
tN

e
w

D
S

ta
te

:=

n

e
x
tN

e
w

D
S

ta
te

+

1

;
E
N

D
 :

E
N
D
 :

IF
 G

e
tN

e
x

tD
A

S
ta

te
(D

A
.

C
H

R
(1

).

c
u

rr
e

n
tD

S
ta

te
)

=
U

N
A

S
S

IG
N

E
D

T
H

E
N

S

e
tN

e
x

tD
A

S
ta

te

(D
A

.
C

H
R

(1
).

c

u
rr

e
n

tD
S

ta
te

.
fo

u
n

d
D

S
ta

te

a
c

ti
o

n

:=

E
R

R
O

R
:

j
:=

F

ir
s

tf
s

ta
te

S
e

tl
.

s
e

ts
ta

te
.

d
o

n
e

):

W
H

IL
E

N
O

T
d

o
n

e

DO

n
e

w
A

c
ti

o
n

:=

G

e
tA

c
ti

o
n

(N
D

A
A

c
ti

o
n

s
.

C
H

R
(

I
F

 n
e

w
A

c
ti

o
n

 =

E
R

R
O

R

T
H

E
N

IF

(n

e
w

A
c

ti
o

n
 <

a

c
ti

o
n

)
 O

R

(
a

c
ti

o
n

 =

E
R

R
O

R
)

T
H

E
N

a

c
ti

o
n

:=

 n
e

w
A

c
ti

o
n

:
E
N
D
 ;

E
N

D
:

-

~

n
e

w
A

c
ti

o
n

:=

 ~
e

t
~

c
t

i
o

n
(

~
~

~
~

c
t

i
o

n
s

.

E
P

S
IL

O
N

.
j

)
;

I
F

 n
e

w
A

c
ti

o
n

 5

E
R

R
O

R

T
H

E
N

D
S

ta
te

s
[F

A
IL

]
:=

M

a
k

e
S

e
to

;
c

u
rr

e
n

tD
S

ta
te

:=

S

T
A

R
T
-S

T
A

T
E

;
n

e
x
tN

e
w

D
S

ta
te

:=

c

u
rr

e
n

tD
S

ta
te

 +

1
;

E
n

te
rK

in
S

e
t(

c
u

rr
e

n
t0

S
ta

te
.

s
ta

te
s

e
t)

;
D

S
ta

te
s

[c
u

rr
e

n
tD

S
ta

te
]

:=

E
C

lo
s

u
re

(s
ta

te
S

e
t.

n

F
A

):

E
n

te
rK

in
S

e
t(

c
u

rr
e

n
t0

S
ta

te
.

D
~

t
a

t
e

s
~

o
t
~

a
r

k
e

d
)

;

u
n

M
a

rk
e

d
F

la
g

:=

T
R

U
E

;
W

H
IL

E

u
n

M
a

rk
e

d
F

la
g

DO

(
*

 m
a

rk

c
u

rr
e

n
t

s
ta

te

(
x

)

*

)

D
e

le
te

K
fr

o
m

S
e

t(
c

u
rr

e
n

tD
S

ta
te

.
~

~
t

a
t

e
s

~
o

t
~

a
r

k
e

d
)

:

F
O

R

i

:=

S

T
A

R
T
C

H
A

R
S

TO

M

A
X
C

H
A
R

S

-

1
 D

O
(

*
 o

n

'a
'

fr
o

m

so

m
e

s
ta

te

i
n

 t
h

e
 c

u
rr

e
n

t
s

ta
te

.
*

)

C
le

a
rS

e
t(

s
ta

te
S

e
t)

;
j

:=

F
ir

s
t(

D
S

ta
te

s
[c

u
rr

e
n

tD
S

ta
te

].

s
e

ts
ta

te
,

d
o

n
e

);

W
H

IL
E

N
O

T
d

o
n

e

D
D

tr
a

n
s

it
io

n
s

:=

T
r
a
n
s
i
t
i
o
n
s
O
f
(
N
t
h
E
l
e
m
e
n
t
(
j
.

S
ta

te
L

is
tO

f(
n

F
A

))
);

F

O
R

k

:=

I
 T

O

L
is

tL
e

n
g

th
(t

ra
n

s
it

io
n

s
)

DO

tr
a

n
s

it
io

n

:=

N
th

E
le

m
e

n
t(

k
.

tr
a

n
s

it
io

n
s

)
;

c
h

L
is

t
:=

C
h
a
r
a
c
t
e
r
L
i
s
t
D
f
(
t
r
a
n
s
i
t
i
0
n
)
:

FO
R

m

:=

1
 T

O

ti
s

tL
e

n
g

th
(
c

h
L

is
t)

DO

c

h

:=
 N

th
E

le
m

e
n

t(
m

,
c

h
L

is
t)

;
IF

 P
ri

n
ti

n
g

C
h

a
ra

c
te

rQ
(c

h
)

T
H

E
N

~
e
t
r
i
e
v
e
P
r
i
n
t
i
n
g
C
h
a
r
a
c
t
e
r
O
f
(
c
h
.
 s

t
r
)
;

I
F

 C
H

R
(i

)
=

s
t
r

[
l]

T
H

E
N

R

e
tr

ie
v

e
N

u
m

b
e

rO
f

(
N
e
x
t
S
t
a
t
e
O
f
(
t
r
a
n
s
i
t
i
o
n
)
.

n
e

x
tS

ta
te

S
tr

);

S
tr

T
o

C
a

rd
(n

e
x

tS
ta

te
S

tr
.

n
e

x
ts

ta
te

.
o

k
);

IF

 N
O

T
o

k

T
H

E
N

E

rr
o

r
("

C
o

n
v
e

rt
N

D
A

to
D

A
:

c
o

n
v

e
rs

io
n

 e
r
r
o

r
"
)
;

E
N
D
 :

E
n

te
rK

in
S

e
t(

n
e

x
tS

ta
te

.
s

ta
te

s
e

t)
;

E
N
D
 ;

E
L

S
IF

N
o
n
P
r
i
n
t
i
n
g
C
h
a
r
a
c
t
e
r
O
(
c
h
)

T
H

E
N

EN

D
 ;

EN
D
 ;

E
N

D
:

j
:=

 N
e

x
t(

s
e

tS
ta

te
.

d
o

n
e

);

EN
D
 :

s
ta

te
s

e
t1

:=

E

C
lo

s
u

re
(s

ta
te

S
e

t.

n
F

A
);

I

F
 E

m
p

ty
S

e
tQ

(s
ta

te
S

e
t1

)
T
H

E
N

fo

u
n

d
D

S
ta

te

:=

F
A

IL
;

E
LS

E

n
o

tF
o

u
n

d

:=

T
R

U
E

:
j

:=

S
T
A

R
T
-S

T
A

T
E

;
W

H
IL

E

(
J

 <

n
e

x
tN

e
w

D
S

ta
te

)
AN

D

n
o

tF
o

u
n

d
 D

O

IF

I
d
e
n
t
i
c
a
l
S
e
t
s
Q
(
s
t
a
t
e
S
e
t
1
.

D
S

ta
te

s
[j

])

T
H

E
N

n

o
tF

o
u

n
d

:=

 F
A

L
S

E
;

fo
u

n
d

D
S

ta
te

:=

j;

EN

D
 ;

j
:=

J

+

1
;

EN
D
 :

I
F

 n
o

tF
o

u
n

d

T
H

E
N

(

*
 a

d
d

 a
 n

e
w

s

ta
te

 t
o

 D
 *

)

D
S

ta
te

s
[n

e
x

tN
e

w
D

S
ta

te
]

:=

s
ta

te
S

e
t1

;

I
F

 (
n

e
w

A
c

ti
o

n
 <

a

c
ti

o
n

)
O

R

(
a

c
t i

o
n

 =

E
R

R
O

R
)

TH
E
N

a
c

ti
o

n

:=

n
e

w
A

c
ti

o
n

:
EN

D
 :

EN
D
 :

j
:=

N

e
x

t(
s

e
tS

ta
te

.
d

o
n

e
):

EN

D
 ;

S
e

tA
c

ti
o

n
~

O
A

A
c

ti
o

n
s

, C
H

R
(

1
1

.
fo

u
n
d
D

S

EN
D
 ;

EN
D
 :

c
u

rr
e

n
tD

S
ta

te

:=

F
ir

s
t(

D
S

ta
te

s
N

0
tM

a
rk

e
d

.
s

e
ts

ta
te

.
d

o
n

e

I
F

 d
o
n
e

TH
E
N

u

n
M

a
rk

e
d

F
la

g

:=

F

A
L
S

E
:

E
LS

E

u
n

M
a

rk
e

d
F

la
g

:=

T
R

U
E

:
EN

D
 :

EN
D
 :

F
re

e
S

e
tS

ta
te

(s
e

tS
ta

te
):

EN

D

C
o

n
v
e

rt
N

D
A

to
D

A
:

ta
te

.
a

c
ti

o
n

):

1
:

P
R

O
C

E
D

U
R

E

M
a

k
e

L
e

x
ic

a
lA

n
a

ly
z

e
r

(g
ra

m
m

a
rR

u
le

L
is

t
:

N
o

d
e

:
s
L

:
S

y
m

b
o

ls
)

:
L

e
x

ic
a

lA
n

a
l~

z
e

rT
a

b
le

s
:

V
A

R

N
D
A

:
N

D
A

T
a
b
le

:
N

D
A

A
c
ti
o

n
s

:

A
c

ti
o

n
T

a
b

le
;

t
:

L
e

x
ic

a
lA

n
a

ly
z

e
rT

a
b

le
s

:

B
E

G
IN

t

:=

M

a
k

p
L

e
x

ic
a

lA
n

a
ly

z
e

rT
a

b
le

s
(

1:

N
D
A

:=

M

a
k
e
N

D
A

T
a
b
le

(
1:

N

D
A

A
c
ti
o

n
s

:=

M

a
k
e

A
c
ti

o
n

T
a

b
le

(
)
:

F
il
lI

n
N

D
A

T
a

b
le

s
lN

D
A

.
N

D
A

A
c
ti

o
n

s
.

s
L

I:

C
o
n
v
e
rt

N
D

A
to

D
A

C

N
D

A
.

N
D

A
A

c
ti

o
n

s
.

S
ta

te
T

a
b

le
O

f(
t1

.
A

c
ti

o
n

T
a

b
le

O
f(

t)
):

F

re
e

N
D

A
T

a
b

le
(N

D
A

)
:

F
re

e
A

c
t
io

n
T

a
b

le
(N

D
A

A
c
t i

o
n

s
);

R

E
TU

R
N

(
t

)
;

EN
D

M
a

k
e

L
e

x
ic

a
lA

n
a

ly
z

e
r:

P
R

O
C

E
D

U
R

E

P
ri

n
tD

A
T

a
b

le

(

t
 :

D
A

T
a

b
le

):

V
A

R

i
.
 j
.

c

o
u

n
t

:
C

A
R

D
IN

A
L
:

B
E

G
IN

W

r
it

e
s

tr
in

g
(
"

N

e
x
t

S
ta

te

T

a
b

le

"
)

;

W
ri

te
s

tr
in

g
(

"
"

1;

F
O

R

i

:=

S
T
A
R

T
C

H
A
R

S

T
O

M

A
X
C

H
A
R

S

-
1

D
O

W

ri
te

(C
H

R
li

))
:

W
r
it

e
s

tr
in

g
(
"

"
I
:

EN
D
 :

j
:=

F

ir
s

t(
s

ta
te

S
e

t1
.

s
e

ts
ta

te
.

d
o

n
e

);

fo
u

n
d

:=

F
A

L
S

E
;

o
u

tp
u

t
:=

E

R
R

O
R

;
W

H
IL

E

(N
O

T

d
o

n
e

)
DO

I

F
 A

c
c
e
p
tQ

 (T
y
p

e
o

f
(N

th
E

le
m

e
n

t
(

j
,

S
ta

te
L

is
tO

f(
n

F
A

))
))

TH

E
N

fo

u
n

d

:=

T
R

U
E

;
R

e
tr

ie
v
e

N
u

m
b

e
rO

f
(O

u
tp

u
to

f
(
T

y
p

e
o

f
(N

th
E

le
m

e
n

t(
j.

S

ta
te

L
is

tO
f(

n
F

A

o
u

tp
u

ts
tr

)
;

S
tr

T
o

C
a

rd
(o

u
tp

u
tS

tr
.

n
e

w
o

u
tp

u
t.

o

k
):

I

F
 N

O
T

o
k

TH
E
N

E

rr
o

r
("

C
o

n
v
e

rt
N

D
A

to
D

A
:

c
o

n
v

e
rs

io
n

e

r
r
o

r

EN
D
 :

I
F

 (
o

u
tp

u
t

>

n

e
w

o
u

tp
u

t)

O
R

(o

u
tp

u
t

=
E
R

R
O

R
)

TH
E
N

o

u
tp

u
t

:=

n

e
w

D
u

tp
u

t:

EN
D
 :

EN
D
 ;

j
:=

 N
e

x
t(

s
e

tS
ta

te
.

d
o

n
e

);

EN
D
 ;

fo
u

n
d

D
S

ta
te

:=

n

e
x
tN

e
w

D
S

ta
te

:
n

e
x
tN

e
w

D
S

ta
te

:=

n

e
x
tN

e
w

D
S

ta
te

+

1

;
E
n
t
e
r
K
i
n
S
e
t
(
f
0
u
n
d
D
S
t
a
t
e
.

D
S

ta
te

s
N

o
tM

a
rk

e
d

);

C
a

rd
T

o
S

tr
(f

o
u

n
d

D
S

ta
te

.
s

ta
te

s
tr

,
0
.
 o

k
a

y
):

I

F
 N

O
T

o
k
a

y

TH
E
N

E

rr
o

r(
"C

o
n

v
e

rt
N

D
A

to
D

A
:

c
o

n
v

e
rs

io
n

e

r
r
o

r
."

)
;

EN
D
 :

I
F

 f
o

u
n

d

TH

E
N

C

a
rd

T
o

S
tr

(o
u

tp
u

t.

o
u

tp
u

tS
tr

.
0
.
 o

k
a

y
):

I

F
 N

O
T

o
k
a

y

TH
E
N

E

rr
o

r(
"C

o
n

v
e

rt
N

D
A

to
D

A
:

c
o

n
v

e
rs

io
n

e

r
r
o

r
."

)
;

EN
D
 :

A

d
d

S
ta

te

(d
F

A
,

s
ta

te
S

tr
,

o
u

tp
u

ts
tr

.
C

O
N

S
T
R

U
C

T
);

E
LS

E

A
d

d
S

ta
te

(d

F
A

.
s

ta
te

S
tr

.
""

. S
T

E
P

):

EN
D
 :

EN
D
 :

EN
D
 ;

c
h

r
S

tr
[l

]
:=

 C
H

R
(

I
)
:

tr
a

n
s

it
io

n
s

:=

T

ra
n

s
it

io
n

s
O

f
(N

th
E

le
m

e
n

t(
c

u
rr

e
n

tD
S

ta
te

,
S

ta
te

L
is

tO
f(

d
F

A
1

))
;

fo
u

n
d

:=

F

A
L
S

E
:

j
:=

1

;
W

H
IL

E

(N
O

T

fo
u

n
d

)
AN

D

(
j

 <
=

L

is
tL

e
n

g
th

(t
ra

n
s

it
1

o
n

s
))

 D
O

W
ri

te
s

tr
in

g
(

'e
'

)
:

W
r

 i
 te

L
n

(
)
:

F
O

R

j

:=

S
T

A
R

T
-S

T
A

T
E

T

O

M
A

X
-S

T
A

T
E

S

DO

W
ri

te
C

a
rd

fj
.

0
)
:

W
r
it

e
s

tr
in

g
(
"

"1

:
c

o
u

n
t

:=

0

:
FO

R

i

:=

S
T
A
R

T
C

H
A
R

S

T
O

M

A
X
C
H
A
R
S

D
O

~

r
it

e
~

a
r

d
lt

-
.
m

a
t
r

ix
[
i.

j

]
.

0
)
:

W
ri

te
s

tr
in

g
(

'
'

)
;

I
F

 c
o

u
n

t
>

1
0
0

TH

E
N

c
o

u
n

t
:
=

0
:

W
r

 i
 te

L
n

(
)
;

W
r

 i
 te

S
tr

 i
n

g
(
"

"
1
:

E
LS

E

c
o

u
n

t
:=

c
o

u
n

t
+

3

:
EN

D
 :

EN
D
 ;

W
r

 i
 te

L
n

(
)
:

EN
D
 :

EN
D

P
ri

n
tD

A
T

a
b

le
:

P
R
O

C
E
D
U
R
E

P
ri

n
tN

D
A

T
a

b
le

(

t
 :

N

D
A

T
a

b
le

):

V
A

R

i
,
 j

,

c
o

u
n

t
:

C
A

R
D

IN
A

L
:

B
E

G
IN

W

ri
te

s
tr

in
g

("

N

e
x
t

S
ta

te

T

a
b

le

"
)

:

W
r

 i
 te

L
n

(
)
:

W
ri

te
s

tr
in

g
("

"
)
 :

F
O

R

i

:=

S
T
A
R

T
C

H
A
R

S

T
O

M

A
X
C
H
A
R
S

-
1

D
O

W

ri
te

(C
H

R
(i

))
:

W
ri

te
s

tr
in

g
("

"
)
:

EN
D
 :

W
ri

te
S

tr
-i

n
g

(
'e

'
1:

W

r
 i
 te

L
n

(
)
:

F
O

R

j

:=

S

T
A

R
T
-S

T
A

T
E

T

O

M
A

X
-S

T
A

T
E

S

D
O

W

ri
te

C
a

rd
(j

,
0
)
;

W
ri

te
s

tr
in

g
("

"1

:
c

o
u

n
t

:
=

0
:

F
O

R

i

:=

S
T
A
R

T
C

H
A
R

S

T
O

M

A
X
C
H
A
R
S

D
O

P

r
in

tS
e

t(
t'

.m
a

tr
ix

[i
.

j
]

)
:

W

ri
te

s
tr

in
g

('

')
:

I
F

 c
o

u
n

t
>

1
0
0

T
H

E
N

c
o

u
n

t
:

=
0

:
W

r i
 te

L
n

(
)
;

W
r

 i
te

S
tr

 i
n

g
(

"
"

)
:

E
LS

E

c
o

u
n

t
:=

c

o
u

n
t

+

6
;

EN
D
 :

EN
D
 :

W

r
 i
te

L
n

(
1
:

EN
D
 ;

EN
D

P
ri

n
tN

D
A

T
a

b
le

:

P
R
O

C
E
D
U
R
E

P
ri

n
tA

c
ti

o
n

T
a

b
le

(

t
 :

A

c
ti

o
n

T
a

b
le

):

V
A

R

i
,
 j
,

c
o

u
n

t
:

C
A

R
D

IN
A

L
;

tr
a

n
s

it
io

n

:=

N

th
E

le
m

e
n

t(
j.

tr

a
n

s
it

io
n

s
)
:

~
e
t
r
i
e
v
e
~
u
m
b
e
r
~
f
(
~
e
x
t
~
t
a
t
e
~
f
(
t
r
a
n
s
i
t
i
o
n
)
,

s
t
r
)
;

S
tr

T
o

C
a

rd
(s

tr
.

s
ta

te
.

o
k

):

I
F

 N
O

T
o

k
a

y

TH
E
N

E

rr
o

r(
"C

o
n

v
e

rt
N

D
A

to
D

A
:

c
o

n
v

e
rs

io
n

 e
r
r
o

r
."

)
:

EN
D
 :

I
F

 s
ta

te

=
fo

u
n

d
D

S
ta

te

T
H

E
N

fo

u
n

d

:=
 T

R
U

E
:

I
F

 s
ta

te
 w

F

A
IL

TH

E
N

A

p
p

e
n

d
N

o
d

e
T

o
L

is
t

(
~
h
a
r
a
c
t
e
r
L
i
s
t
O
f
(
t
r
a
n
s
i
t
i
0
n
)
.

M
a

k
e

P
ri

n
ti

n
g

C
h

a
ra

c
te

r(
c

h
rS

tr
))

:
EN

D
 :

E
N

0
;

j
:=

j

+

1
;

EN
D
 ;

I
F

 (
N

O
T

fo
u

n
d

)
AN

D

(f
o

u
n

d
D

S
ta

te

#

F
A

IL
)

T
H

E
N

C

a
rd

T
o

S
tr

(f
o

u
n

d
D

S
ta

te
.

s
ta

te
s

tr
.

0
.

o
k

a
y

);

I
F

 N
O

T
o

k
a

y

T
H

E
N

E

rr
o

rl
"C

o
n

v
e

rt
N

D
A

to
D

A
:

c
o

n
v

e
rs

io
n

 e
r
r
o

r
."

)
:

E
N

0
:

c
h

L
is

t
:

=
~

a
k

e
~

h
a

r
a

c
t
e

r
~

is
t
'(

)
:

A
p

p
e

n
d

N
o

d
e

T
o

L
is

t
(c

h
L

is
t.

M
a
k
e
P
r
i
n
t
i
n
g
C
h
a
r
a
c
t
e
r
(
c
h
r
S
t
r
)
)
;

A
p

p
e

n
d

N
o

d
e

T
o

L
is

t
(T

ra
n

s
it

io
n

s
O

f
(N

th
E

le
m

e
n

t
(c

u
rr

e
n

tD
S

ta
te

.
S

ta
te

L
is

tO
f(

d
F

A
))

).

M
a

k
e

T
ra

n
s

it
io

n
(c

h
L

is
t.

M

a
k

e
N

u
m

b
e

r(
s

ta
te

S
tr

))
):

EN

D
 ;

EN
D
 ;

c
u

rr
e

n
tO

S
ta

te

:=

F
ir

s
t(

D
S

ta
te

s
N

o
tM

a
rk

e
d

.
s

e
ts

ta
te

,
d

o
n

e
);

IF

 d
o
n
e

T
H

E
N

u

n
M

a
rk

e
d

F
la

g

:=

F
A

L
S

E
;

E
LS

E

u
n

M
a

rk
e

d
F

la
g

:=

T
R

U
E
:

E
N

D
;

EN
D
 ;

F
re

e
S

e
t(

s
ta

te
S

e
t)

:
F
r
e
e
S
e
t
t
D
S
t
a
t
e
s
N
o
t
M
a
r
k
e
d
)
:

EN
D

C
o
n
v
e
rt

N
O

A
to

D
A

:

B
E

G
IN

Wr
it
eS
tr
in
g(
"I
ni
ti
a1
iz
at
io
n.
')
;

W
r

 1
te

L
n

(
)
:

C
a
rd

T
o
S

tr
(E

R
R

0
R

.
e

r
r
o

r
s

tr
,

0
.

o
k

a
y

):

I
F

 N
O
T

o
k
a
y

T
H

E
N

E

rr
o

r(
"B

u
i1

d
A

u
to

m
a

to
n

:
c

o
n

v
e

rs
io

n
 e

r
r
o

r
."

)
;

EN
D
 :

a
rg

c

:=

N

o
O

fA
rg

u
m

e
n

ts
(
)
;

I
F

 a
rg

c

<

2
T
H

E
N

W

ri
te

S
tr

in
g

("
U

s
a

g
e

:
le

x

In

p
u

tF
il

e
."

)
;

W
ri

te
L

n
O

;
E
LS

E

B
E

G
IN

W

r
it

e
s

tr
in

g
(
"
 A

c
ti

o
n

T

a
b

le

"
)
:

W
r

 i
 te

L
n

l
)
;

W
r
it

e
S

tr
in

g
l"

"1

;
,

FO
R

i

:=

S
T
A

R
T
C

H
A

R
S

TO

M

A
X
C

H
A
R

S

DO

W
ri

te
(C

H
R

(i
1

):

W
r
it

e
s

tr
in

g
(
"

"1
:

E
N

0
:

W
ri

te
S

tr
in

g
I

'e
'

1:

W
r i
 te

L
n

(
:

F
O

R

j

:=

S
T
A

R
T
-S

T
A

T
E

T

O

M
A

X
-S

T
A

T
E

S

DO

W
ri

te
C

a
rd

(j
,

0
)

:

W
r
it

e
s

tr
in

g
(
"

"
)
:

c
o

u
n

t
:=

0

;
FO

R

1

:=

S

T
A

R
T
C

H
A

R
S

T

O

M
A
X
C

H
A
R

S

DO

~
r
it

e
C

a
r
d

(
t
^

.
m

a
t
r
ix

[
i.

 j
]
.
 0

1
:

W
r
it

e
s

tr
in

g
(
'

'
)
:

IF
 c

o
u

n
t

>

1
0

0

T
H

E
N

c

o
u

n
t

:=
 0

:
W

ri
te

L
n

(
)
:

W
r
it

e
s

tr
in

g
(
"

'
I

)
:

E
LS

E

c
o

u
n

t
:=

c

o
u

n
t

+

3
:

E
N
D
 :

E
N
D
 :

W
r

i
 te

L
n

I
I
;

E
N
D
 :

E
N
D

P
ri

n
tA

c
ti

o
n

T
a

b
le

:

EN
D

L
e

x
G

e
n

FO
R

i

:=

I

T
O

a

rg
c

-

1
 D

O

G
e

tA
rg

u
m

e
n

t(
i.

a

rg
,

u
p

R
e

s
u

lt
);

I

F
 (

u
p

R
e

s
u

lt

=
u

p
N

o
tF

o
u

n
d

)
T
H

E
N

W

ri
te

S
tr

in
g

("
1

e
x

:
C

o
m

m
a
n
d

L
in

e
 A

rg
u

m
e

n
t

P
ro

b
le

m
s

."
):

W

r i
 te

L
n

(
)
:

H
A

L
T

(
1;

EN

D
 ;

A
s

s
ig

n
(a

rg
.

fi
le

N
a

m
e

.
o

k
a

y
):

IF

 N
O

T
o

k
a

y

T
H

E
N

W

ri
te

S
tr

in
g

("
1

e
x

:
a

s
s

ig
n

m
e

n
t

e
r
r
o

r
."

)
;

W
r

 i
 te

L
n

(
:

H
A

L
T

I
):

E
N
D
 :

E
N
D
 :

W
ri

te
S

tr
in

g
("

P
a

rs
in

g

In
p

u
t.

"
)
:

W
r

 i
te

L
n

(
)
:

re
s

:=

P

a
rs

e
In

p
u

tF
il

e

(f
il

e
N

a
m

e
.

"R
E

G
ra

m
m

a
r"

.
"R

E
In

p
u

t"
.

o
k

a
y

):

I
F

 N
O

T
o

k
a

y

T
H

E
N

W

ri
te

s
tr

in
g

(
"P

a
rs

e

F
a

il
e

d
.

'
I
)
:

W
ri

te
L

n
(

1;

-

E
LS

E

W
r
i
t
e
S
t
r
i
n
g
(
"
C
o
n
s
t
r
u
c
t
i
n
g

N
D

F
A

."
):

to
k
e

n
N

u
m

b
e

r
:=

 0
:

s
ta

te
N

u
m

b
e

r
:=

S

T
A

R
T
-S

T
A

T
E

:
r

e
ii

s
t

:=

R
E

L
is

tO
f(

re
s

);

re
L

is
tL

e
n

:=

L

is
tL

e
n

g
th

(r
e

L
is

t)
:

s
u

b
R

e
L

is
t

:=

S
u

b
R

E
L

is
tO

f(
re

s
):

f
a

:=

M

a
k

e
F

A
(M

a
k

e
S

ta
te

L
is

t0
);

C

a
rd

T
o

S
tr

(F
A

1
L

.
f
a

il
S

t
r

.

0
.

o
k

a
y

):

I
F

 N
O

T
o

k
a

y

T
H

E
N

E

rr
o

r(
"
1

e
x

:
c

o
n

v
e

rs
io

n
 e

r
r
o

r
."

)
;

E
N

D
:

A
d

d
S

ta
te

(
fa

.
F

A
IL

.
""

. S
T

E
P

):

A
d

d
S

ta
te

(
fa

.
S

T
A

R
T
-S

T
A

T
E

,
"
"
,
 S

T
E

P
);

s
ta

te
N

u
m

b
e

r
:=

s
ta

te
N

u
m

b
e

r
+

I
:

F
O

R

i

:=

1
 T

O

re
L

is
tL

e
n

 D
O

r
e

 :
=

N

th
E

le
m

e
n

tt
 i
.
 r

e
li

s
t
)

;

to
k
e

n
N

u
m

b
e

r
:=

to

k
e

n
N

u
m

b
e

r
+

1

:
re

s
u

 1
 t

:
=

B
u

il
d

A
u

to
m

a
to

n

(
fa

.
r
e

.
s

u
b

R
e

L
is

t.

to
k
e

n
N

u
m

b
e

r.

s
ta

te
N

u
m

b
e

r)
:

E
N

0
:

W
ri

te
S

tr
in

g
("

C
o

n
v

e
rt

in
g

 N
D

FA

t
o

 D
F

A
."

):

W
r

 i
 te

L
n

(
l:

dF

A

:=

M
a

k
e

F
A

lM
a

k
e

S
ta

te
L

is
tO

):

A
d

d
S

ta
te

(d

F
A

.
F

A
IL

.
"
"
,
 S

T
E

P
);

A

d
d

S
ta

te

(d
F

A
,

S
tA

R
T

-S
T

A
T

E
.

'
I
"

.

S
T

E
P

):

C
o

n
v

e
rt

N
D

A
to

D
A

If
a

.
d

F
A

):

W
ri

te
S

tr
in

g
("

W
ri

ti
n

g

D

F
A

T
a

b
le

s
."

):

W
r

 i
te

L
n

I
)
:

-
L
0
L
L

. a, - 8
>. 0
m .-
1 C
0 m

c - a,
a t '
E m
m 0
C C
0
0

ul ..
a X - 0)
n-
m =
C -
a L
LL 0
a L

I L = LU

- z
a w
E I
m I-

S x - m
'- 1
e 0 -
Y L-

6

L
e

x
ic

a
l

A
n

a
ly

z
e

r
C

o
m

p
a

ri
s
o

n

T
h

is

s
e

c
ti

o
n

c

o
n

ta
in

s

th
e

s

o
u

rc
e

c
o

d
e

f
o

r
 b

o
th

 t
h

e
 o

ld
 a

n
d

 n
e
w

v

e
rs

io
n

s

o
f

th
e

le

x
ic

a
l

a
n

a
ly

z
e

r.

T
h

e

o
ld

 v
e

rs
io

n

(u
s

e
d

i
n

 G
R

A
F

S
)

i
s

 o
n

th

e

le
f
t
 a

n
d

th

e
 n

e
w

v

e
rs

io
n

(w

h
ic

h
 u

s
e

s

G

R
A

F
S

)
i
s

 o
n

th

e

r
ig

h
t
.

N

o
te

th

a
t

w
e

h
a

v
e

a

tt
e

m
p

te
d

t
o

a
li

g
n

 t
h

e
 c

o
rr

e
s

p
o

n
d

in
g

s

e
c

ti
o

n
s

o

f
c
o

d
e

t
o

 m
a
ke

c

o
m

p
a

ri
s

o
n

e

a
s

ie
r.

IM
P

L
E

M
E

N
T

A
T

IO
N

 M
O

D
U

LE

L
e

x
A

n
a

ly
z

e
r:

FR
O

M

L
e

x
G

e
n

IM

P
O

R
T

D
A

T
a

b
le

.
A

c
ti

o
n

T
a

b
le

.
S

T
A

R
T
-S

T
A

T
E

.
G

e
tN

e
x

tD
A

S
ta

te
.

G
e

tA
c

ti
o

n
.

F
A

IL
.

S
T
O

P
:

*

FR
O

M

G
ra

m
m

a
rS

y
m

b
o

ls

IM
P

O
R

T

E
R

R
O

R
.

E
O

F
.

S
T
A

R
T
-T

O
K

E
N

;
FR

O
M

D

a
ta

T
y
p

e
s

IM
P

O
R

T

S
tr

in
g

T
y

p
e

:
FR

O
M

E

rr
o

rM
o

d
u

le

IM
P

O
R

T

E
rr

o
r:

M
O

D
U

LE

1
e

x
A

n
a

ly
z

e
rP

ro
g

ra
m

:

FR
O

M

E
rr

o
rM

o
d

u
le

IM

P
O

R
T

E
rr

o
r:

FR

O
M

D

a
ta

T
y
p

e
s

IM
P

O
R

T

N
o

d
e

.
S

tr
in

g
T

y
p

e
;

FR
O

M

In
O

u
t

IM
P

O
R

T

W
ri

te
s

tr
in

g
.

W
ri

te
L

n
.

W
ri

te
c

a
rd

:
FR

O
M

U

n
ix

P
a

ra
m

IM

P
O

R
T

U
P

R
e

s
u

lt
.

N
o

O
fA

rg
u

m
e

n
ts

.
G

e
tA

rg
u

m
e

n
t:

FR

O
M

S

tr
in

g
 I

M
P

O
R

T

C
o

m
p

a
re

.
C

o
m

p
a

re
R

e
s
u

lt
,

L
e

n
g

th
.

A
s

s
ig

n
.

C
o

n
c

a
t:

FR

O
M

S

to
ra

g
e

IM

P
O

R
T

A
L
L
O

C
A

T
E

,
D

E
A

L
L
O

C
A

T
E

;
FR

O
M

C

o
n

v
e

rt

IM
P

O
R

T

S
tr

T
o

C
a

rd
.

C
a

rd
T

o
S

tr
;

FR
O

M

S
ta

c
k

M
o

d
u

le

IM
P

O
R

T

S
ta

c
k

.
S

ta
c

k
p

u
s

h
,

S
ta

c
k

p
o

p
,

S
ta

c
k
N

o
tE

m
p

ty
Q

,
M

a
k

e
s

ta
c

k
.

F
re

e
s

ta
c

k
:

FR
O

M

S
e

tM
o

d
u

le

IM
P

O
R

T

S
e

t.

M
a

k
e

S
e

t,

F
re

e
S

e
t.

E

n
te

rK
in

S
e

t.

D
e

le
te

K
fr

o
m

S
e

t,

M
e
m

b
e
rK

Q
.

Id
e

n
ti

c
a

lS
e

ts
Q

.
U

n
io

n
,

C
le

a
rs

e
t.

P

r
in

ts
e

t.

E
m

p
ty

S
e

tQ
,

S
e

tS
ta

te
.

M
a

k
e

S
e

tS
ta

te
.

F
re

e
S

e
tS

ta
te

,
F

ir
s

t.

N
e

x
t
:

F
R

O
M

G

e
n

e
ra

l
IM

P
O

R
T

P
a

rs
e

In
p

u
tF

il
e

.
P

r
e

tt
y

p
r
in

t.

U
n

P
a

rs
e

.
N

th
E

le
m

e
n

t.

L
is

tL
e

n
g

th
.

A
p

p
e

n
d

N
o

d
e

T
o

L
is

t.

E
m

p
ty

N
o

d
e

Q
.

S
a

v
e

P
a

rs
e

T
re

e
.

R
e

c
o

v
e

rP
a

rs
e

T
re

e
:

FR
O

M

F
A

G
ra

m
m

a
r-

G
S

IM

P
O

R
T

M
a
k
e
F

A
.

M
a

k
e

S
ta

te
L

is
t.

M

a
k

e
s

ta
te

,
M

a
k

e
T

ra
n

s
it

io
n

L
is

t.

M
a

k
e

T
ra

n
s

it
io

n
.

M
a

k
e

A
c
c
e

p
t,

M

a
k

e
R

e
je

c
t.

M

a
k

e
e

p
s

il
o

n
.

M
a

k
e

e
o

ln
,

M
a

k
e

e
o

f.

M
a

k
e

C
h

a
ra

c
te

rL
is

t.

M
a

k
e

N
u

m
b

e
r.

M

a
k

e
p

ri
n

ti
n

g
c

h
a

ra
c

te
r.

F
A

Q
.

S
ta

te
L

is
tQ

,
S

ta
te

Q
.

T
ra

n
s

it
io

n
L

is
tQ

.
T

ra
n

s
it

io
n

Q
.

T
y
p

e
Q

.
A

c
c
e

p
tQ

.
R

e
je

c
tQ

.
C

h
a

ra
c

te
rQ

,
N

o
n

P
ri

n
ti

n
g

C
h

a
ra

c
te

rQ
.

e
p

s
il

o
n

Q
.

e
o

ln
Q

.
e

o
fQ

.
N

u
m

b
e

rQ
.

P
ri

n
ti

n
g

C
h

a
ra

c
te

rQ
.

S
ta

te
L

is
tO

f.

N
u

m
b

e
ro

f.

T
ra

n
s

lt
io

n
s

O
f.

T

y
p

e
O

f,

C
h

a
ra

c
te

rL
is

tO
f.

O

u
tp

u
to

f.

N
e

x
tS

ta
te

O
f.

R

e
tr

ie
v
e

N
u

m
b

e
rO

f.

R
e

tr
ie

v
e

p
ri

n
ti

n
g

c
h

a
ra

c
te

ro
f.

M

a
k

e
D

e
fa

u
lt

.
D

e
fa

u
lt

o
f:

FR

O
M

S

im
p

le
1

0

IM
P

O
R

T

R
e

a
d

c
h

a
r.

R

e
a

d
L

n
.

E
O

L,

E
O

T
:

C
O

N
S

T

M
A

X
-B

U
F

F
E

R
-A

D
D

R
E

S
S

=

2
5

5
;

T
Y

P
E

B

u
f

f
e

r
 =

A

R
R

A
Y

[O

..
M

A
X

-B
U

F
F

E
R

-A
D

D
R

E
S

S
]

O
F

C

H
A

R
:

V
A

R
 E
O

F
la

g

:

B
O

O
L

E
A

N
:

b
u

ff
e

r

:
B

u
ff

e
r

:
h

e
a

d
.

t
a

il

:

C
A

R
D

IN
A

L
;

lo
o

k
A

h
e

a
d

:

C
A

R
D

IN
A

L
:

M
e

ta
F

la
g

,
s

to
p

F
la

g

:

B
O

O
LE

A
N

:
to

k
e

n
L

in
e

.
to

k
e

n
c

o
lu

m
n

:

C
A

R
D

IN
A

L
:

la
s

tT
o

k
e

n
L

in
e

,
1

a
s

tT
o

k
e

n
C

o
lu

m
n

:

C
A

R
D

IN
A

L
:

P
R

O
C

E
D

U
R

E

In
it

ia
li

z
e

L
e

x
ic

a
lA

n
a

ly
z

e
r

(
)

:

B
E

G
IN

to

k
e

n
L

in
e

:=

1

:
to

k
e

n
c

o
lu

m
n

:=

1

:
1

a
s

tT
o

k
e

n
L

in
e

 :
=

1

:
1

a
s

tT
o

k
e

n
C

o
lu

m
n

:=

1

:
E

N
D

I
n
i
t
i
a
l
i
z
e
L
e
x
i
c
a
l
A
n
a
l
y
z
e
r
:

P
R

O
C

E
D

U
R

E

G
e

tT
o

k
e

n
L

in
e

(

)

:

C
A

R
D

IN
A

L
:

B
E

G
IN

R

E
T

U
R

N

(
la

s
tT

o
k

e
n

L
 in

e
 1
:

E
N

D

G
e

tT
o

k
e

n
L

in
e

:

C
O

N
S

T

E
R

R
O

R

=
0

:
F

A
IL

 =

1
:

S
T

A
R

T
-S

T
A

T
E

=

2
:

S
T

O
P

=

5
0

0
0

;
E

O
F

=
1

;
S

T
A

R
T

C
H

A
R

S

=
O

R
D

(
'

'
1;

M

A
X

C
H

A
R

S

=
O

R
D

('

')
:

M
A

X
-B

U
F

F
E

R
-A

D
D

R
E

S
S

=

2
5

5
;

T
Y

P
E

R

e
s

u
lt

 =

(o
k

.
e

rr
o

r)
:

M
o

d
e

 =

(S
T

E
P

,
C

O
N

S
T

R
U

C
T

);

B
u

ff
e

r
 =

A

R
R

A
Y

[O

..
M

A
X

-B
U

F
F

E
R

-A
D

D
R

E
S

S
]

O
F

C
H

A
R

;
In

p
u

tP
ro

c
 =

P

R
O

C
E

D
U

R
E

0

:
C

H
A

R
:

V
A

R
 a
rg

c
.

i
.
 t

o
k

e
n

:

C
A

R
D

IN
A

L
:

ta
b

le
N

a
m

e
.

to
k

e
n

s
tr

,
f

a
il

S
t

r
.

s

tr
,

a
rg

.
n

a
m

e
.

fi
le

N
a

m
e

:

S
tr

in
g

T
y

p
e

:
u

p
R

e
s

u
lt

:

U
P

R
e

s
u

lt
:

re
s

u
lt

:

R
e

s
u

lt
:

o
k
a

y

:

B
O

O
LE

A
N

;
d

F
A

:

N
o

d
e

;
E

O
F

la
g

:

B
O

O
LE

A
N

:
b

u
ff

e
r

:
B

u
ff

e
r;

h

e
a

d
.

t
a

il

:

C
A

R
D

IN
A

L
;

lo
o

k
A

h
e

a
d

:

C
A

R
D

IN
A

L
:

M
e

ta
F

la
g

,
s

to
p

F
la

g

:

B
O

O
LE

A
N

;
to

k
e

n
li

n
e

,
to

k
e

n
c

o
lu

m
n

:

C
A

R
D

IN
A

L
;

1
a

s
tT

o
k

e
n

L
in

e
.

1
a

s
tT

o
k

e
n

C
o

lu
m

n

:

C
A

R
D

IN
A

L
:

P
R

O
C

E
D

U
R

E

In
it

ia
li

z
e

L
e

x
ic

a
lA

n
a

ly
z

e
r

(1
;

B
E

G
IN

to

k
e

n
L

in
e

:=

1

;
to

k
e

n
c

o
lu

m
n

:=

1

;
la

s
tT

o
k

e
n

L
in

e

:=

I
;

1

a
s

tT
o

k
e

n
C

o
lu

m
n

:=

1

:
E

N
D

In

it
ia

li
z

e
L

e
x

ic
a

lA
n

a
ly

z
e

r:

P
R

D
C

E
D

U
R

E

G
e

tT
o

k
e

n
L

in
e

 (
1

 :

C
A

R
D

IN
A

L
;

B
E

G
IN

R

E
T

U
R

N

(
1

a
s

tT
o

k
e

n
L

in
e

)
;

E
N

D

G
e

tT
o

k
e

n
L

in
e

;

P
R

O
C

E
D

U
R

E

G
e

tT
o

k
e

n
G

o
lu

m
n

(

)

:

C
A

R
D

IN
A

L
:

P
R

O
C

E
D

U
R

E

G
e

tT
o

k
e

n
C

o
lu

m
n

(

)

:

C
A

R
D

IN
A

L
:

B
E

G
IN

R

E
T

U
R

N

(1
a

s
tT

o
k

e
n

C
o

lu
m

n
):

E

N
D

G

e
tT

o
k

e
n

C
o

lu
m

n
;

B
E

G
IN

R

E
T

U
R

N

(1
a

s
tT

o
k

e
n

C
o

lu
m

n
):

E

N
D

G

e
tT

o
k

e
n

C
o

lu
m

n
:

P
R

O
C

E
D

U
R

E

In
c

re
rn

e
n

tT
o

k
e

n
L

in
e

(1

:
P

R
O

C
E

D
U

R
E

In

c
re

m
e

n
tT

o
k

e
n

L
in

e

(1
:

B
E

G
IN

to

k
e

n
L

in
e

:=

to

k
e

n
L

in
e

 +

1
;

to
k

e
n

c
o

lu
m

n

:=

1
:

E
N

D

In
c

re
m

e
n

tT
o

k
e

n
L

in
e

;

B
E

G
IN

to

k
e

n
L

in
e

:=

to

k
e

n
L

in
e

 +

1
:

to
k

e
n

c
o

lu
m

n

:=

1
;

E
N

D

In
c

re
m

e
n

tT
o

k
e

n
L

in
e

:

P
R

O
C

E
D

U
R

E

E
o

f
Ic

 :

C
H

A
R

)
:

B
D

D
LE

A
N

;
P

R
O

C
E

D
U

R
E

E

o
f

(
c

:

C
H

A
R

)
:

B
O

O
LE

A
N

;

B
E

G
IN

R

E
T

U
R

N

(O
R

D
(c

)
=

E
O

F
)
;

E
N

D

E
o

f;

B
E

G
IN

R

E
T

U
R

N

(O
R

D
(c

)
=

€
O

F
)
;

E
N

D

E
o

f:

P
R

O
C

E
D

U
R

E

D
e

li
m

it
e

r

P
R

O
C

E
D

U
R

E

D
e

li
m

it
e

r

I

(V
A

R

c

:
C

H
A

R
:

V
A

R

M
e

ta
F

la
y

:

B
O

O
L

E
A

N
)

:
(V

A
R

c

:
C

H
A

R
;

V
A

R

M
e

ta
F

la
g

:

B
O

O
L

E
A

N
)

:
B

O
O

LE
A

N
;

B
O

O
LE

A
N

:

B
E

G
IN

B

E
G

IN

I
F

 M
e

ta
F

la
g

 T
H

E
N

M

e
ta

F
la

g

:=

F
A

L
S

E
:

R
E

T
U

R
N

(F

A
L

S
E

):

E
N

D
:

I
F

 M
e

ta
F

la
g

 T
H

E
N

M

e
ta

F
la

g

:=

F
A

L
S

E
;

R
E

T
U

R
N

(F

A
L

S
E

):

E
N

D
;

I
F

(
c

<
=

"

)
O

R
(

c
>

C
H

R
(

1
2

7
)

)
T

H
E

N
R

E
T

U
R

N
(

T
R

U
E

)
:

E
N

D
;

I

F
(

c
<

=
'

')

O
R

(
C

>
C

H
R

(
I~

~
)

)
T

H
E

N
R

E
T

U
R

N
(

T
R

U
E

)
:

E
N

D
;

R

E
T

U
R

N

(F
A

L
S

E

:

R
E

T
U

R
N

(F

A
L

S
E

)
:

E
N

D

D
e

l i
m

i.
te

r:

E
N

D

D
e

li
m

it
e

r
:

P
R

O
C

E
D

U
R

E

E
n

d
D

e
li

m
it

e
r

(V
A

R

c

:
C

H
A

R
:

V
A

R

M
e

ta
F

la
g

:

B
O

O
L

E
A

N
)

:
B

O
O

LE
A

N
:

B
E

G
IN

I

F
 (

c
 <

'

'
)

O

R

(
c

 >

C
H

R
(1

2
7

)l

T
H

E
N

I

F
 M

e
ta

F
la

g
 T

H
E

N

M
e

ta
F

la
g

:=

F

A
L

S
E

:
R

E
T

U
R

N

(F
A

L
S

E
):

E

L
S

E

R
E

T
U

R
N

(T

R
U

E
);

E

N
D

 ;

E
N

D
 ;

R
E

T
U

R
N

(

F
A

L
S

E

:

E
N

D

E
n

d
D

e
li

m
it

e
r;

P
R

O
C

E
D

U
R

E

N
e

x
tT

o
k

e
n

(G

e
tc

h
a

r
:

In
p

u
tP

ro
c

:
t

:
D

A
T

a
b

le
;

a
c

t
io

n
 :

A

c
ti

o
n

T
a

b
le

:

P
R

O
C

E
D

U
R

E

E
n

d
D

e
li

m
it

e
r

(V
A

R

c

:
C

H
A

R
:

V
A

R

M
e

ta
F

la
g

:

B
O

O
L

E
A

N
)

:
B

O
O

LE
A

N
;

B
E

G
IN

I

F
 (

C
 <

'

'
)

O

R

(C

>

C
H

R
(1

2
7

))

T
H

E
N

I

F
 M

e
ta

F
la

g
 T

H
E

N
 M

e
ta

F
la

g

:=

F
A

L
S

E
:

R
E

T
U

R
N

(F

A
L

S
E

);

E
L

S
E

R

E
T

U
R

N

(T
R

U
E

);

E
N

D
 :

E
N

D
 :

R
E

T
U

R
N

(

F
A

L
S

E
)
:

E
N

D

E
n

d
D

e
li

m
it

e
r:

P
R

O
C

E
D

U
R

E

N
e

x
tT

o
k

e
n

(G

e
tc

h
a

r
:

In
p

u
tP

ro
c

:
d

F
A

:

N
o

d
e

:
V

A
R

to

k
e

n
s

tr
in

g

:

S
tr

in
g

T
y

p
e

)
:

C
A

R
D

IN
A

L
;

V
A

R

to
k

e
n

s
tr

in
g

:

S
tr

in
g

T
y

p
e

)

:
C

A
R

D
IN

A
L

:

V
A

R

C
,
C

I

:
C

H
A

R
:

c
h

a
rc

o
u

n
t

:
C

A
R

D
IN

A
L

;
c

u
rr

e
n

ts
ta

te

:

C
A

R
D

IN
A

L
:

n
o

tD
o

n
e

:

B
O

O
L

E
A

N
;

a

:

C
A

R
D

IN
A

L
:

i

:

C
A

R
D

IN
A

L
;

to
k

e
n

s
tr

in
g

c
o

u
n

t
:

C
A

R
O

IN
A

L
:

1
a

s
tA

c
ti

o
n

 :

C
A

R
D

IN
A

L
:

P
R

O
C

E
D

U
R

E

B
u

ff
e

rE
m

p
ty

Q
 (

1
 :

B

O
O

L
E

A
N

:

B
E

G
IN

R

E
T

U
R

N

((
h

e
a

d

=
(

t
a

i
l

 +

1
))

O

R

(
(

h
e

a
d

 =

0
)

 A
N

D

(
t

a
i

l
 =

M

A
X

-B
U

F
F

E
R

-A
D

D
R

E
S

S
))

):

E
N

D
 B

u
ff

e
rE

m
p

ty
Q

:

P
R

O
C

E
D

U
R

E

R
e

S
e

tB
u

ff
e

rL
o

o
k

A
h

e
a

d
 (

)
:

B
E

G
IN

I

F
 t

a
il

=

M
A

X
-B

U
F

F
E

R
-A

D
D

R
E

S
S

T

H
E

N

lo
o

k
A

h
e

a
d

:=

 0
:

E
L

S
E

lo

o
k

A
h

e
a

d

:=

t
a

il

+

1
:

E
N

D
:

E
N

D

R
e

S
e

tB
u

ff
e

rL
o

o
k

A
h

e
a

d
:

V
A

R

c
.

c
l

:

C
H

A
R

;
c
h

a
rc

o
u

n
t

:
C

A
R

O
IN

A
L

:
c

u
rr

e
n

ts
ta

te

:

C
A

R
D

IN
A

L
;

n
o

to
o

n
e

:

B
O

O
L

E
A

N
:

a

:
C

A
R

D
IN

A
L

:
i

:

C
A

R
D

IN
A

L
:

to
k

e
n

s
tr

in
g

c
o

u
n

t
:

C
A

R
D

IN
A

L
:

la
s

t
A

c
t

io
n

:

C
A

R
D

IN
A

L
:

P
R

O
C

E
D

U
R

E

B
u

ff
e

rE
m

p
ty

Q
 0

:

B
O

O
L

E
A

N
:

-.
B

E
G

IN

.
R

E
T

U
R

N

((
h

e
a

d
 =

(

t
a

il
 +

1

))
 O

R

(
(

h
e

a
d

 =

0

)
A

N
D

(

t
a

il

=
M

A
X

-B
U

F
F

E
R

-A
D

D
R

E
S

S
))

):

E
N

D
 B

u
ff

e
rE

m
p

ty
Q

;

P
R

O
C

E
D

U
R

E

R
e

S
e

tB
u

ff
e

rL
o

o
k

A
h

e
a

d

0

;

B
E

G
IN

I

F
 t

a
il

=

M
A

X
-B

U
F

F
E

R
-A

D
D

R
E

S
S

T

H
E

N

lo
o

k
A

h
e

a
d

:=

0
:

E
L

S
E

lo

o
k

A
h

e
a

d

:=

t
a

il
 +

1

;
E

N
D

 ;

E
N

D

R
e

S
e

tB
u

ff
e

rL
o

o
k

A
h

e
a

d
:

P
R

O
C

E
D

U
R

E

S
c

a
n

B
u

ff
e

rC
h

a
r
0

:

C
H

A
R

;
P

R
O

C
E

D
U

R
E

S

c
a

n
B

u
ff

e
rC

h
a

r
0

:
C

H
A

R
:

V
A

R

c

:
C

H
A

R
:

V
A

R

c

:
C

H
A

R
:

B
E

G
IN

I

F
 l

o
o

k
A

h
e

a
d

 =

h
e

a
d

T

H
E

N

I
F

 h
e

a
d

=

t
a

il
 T

H
E

N

E
rr

o
r(

"
S

c
a

n
B

u
ff

e
rC

h
a

r:

b
u

ff
e

r

f
u

l
l
.
"

)
:

E
N

D
 :

b
u

ff
e

rr
h

e
a

d
]

:=

G
e

tc
h

a
rt

 1
:

I
F

 h
e

a
d

=

M
A

X
-B

U
F

F
E

R
-A

D
D

R
E

S
S

T

H
E

N

h

e
a

d

:=
 0

:
E

L
S

E

h

e
a

d

:=

h

e
a

d
 +

1

:
E

N
D

 ;
c

:=

b
u

ff
e

r
(

lo
o

k
A

h
e

a
d

1
:

lo
o

k
A

h
e

a
d

:=

h

e
a

d
:

E
L

S
E

c

:=

b
u

ff
e

r[
lo

o
k

A
h

e
a

d
]:

I

F
 1

o
o

k
A

h
e

a
d

 =

M
A

X
-B

U
F

F
E

R
-A

D
D

R
E

S
S

T

H
E

N

lo
o

k
a

h
e

a
d

:=

 0
:

B
E

G
IN

I

F
 l

o
o

k
A

h
e

a
d

 =

h
e

a
d

T

H
E

N

I
F

 h
e
a
d

=
t
a

i
l

T
H

E
N

E

rr
o

r(
"

S
c

a
n

B
u

ff
e

rC
h

a
r:

b

u
ff

e
r

f
u

ll
.
"
)
;

E
N

0
 :

b
u

ff
e

r[
h

e
a

d
]

:=

G
e

tc
h

a
r(

);

I
F

 h
e

a
d

=

M
A

X
-B

U
F

F
E

R
-A

D
D

R
E

S
S

T

H
E

N
 h

e
a

d

:=

0
;

E
L

S
E

h

e
a

d

:=

h

e
a

d
 +

1

;
E

N
D

:
c

:=

b
u

ff
e

r
[l

o
o

k
A

h
e

a
d

];

lo
o

k
A

h
e

a
d

:=

h

e
a

d
;

E
L

S
E

c

:=
 b

u
ff

e
r[

lo
o

k
A

h
e

a
d

]:

I
F

 1
o

o
k

A
h

e
a

d
 =

M

A
X

-B
U

F
F

E
R

-A
D

D
R

E
S

S

T
H

E
N

lo

o
k

A
h

e
a

d

:=

0
:

E
L

S
E

Io

o
k

A
h

e
a

d

:=

lo
o

k
A

h
e

a
d

 +

1
;

E
L
S

E

lo
o

k
A

h
e

a
d

E
N

D
 :

E
N

D
 :

R
E

T
U

R
N

I
c

)
:

E
N

D

S
c

a
n

B
u

ff
e

rC
h

a
r;

:=

lo
o

k
A

h
e

a
d

+

1

:

P
R

O
C

E
D

U
R

E

P
u

tB
u

ff
e

rC
h

a
r

(
c

:

C
H

A
R

);

B
E

G
IN

b

u
ff

e
r[

h
e

a
d

]
:=

 c
:

I
F

 h
e

a
d

=

M
A

X
-B

U
F
F
E

R
-A

D
D

R
E

S
S

T
H

E
N

h

e
a

d

:=

0
:

E
L
S

E

h
e

a
d

:=

h

e
a

d
 +

1

:
E
N
D
 ;

E
N
D

P
u

tB
u

ff
e

rC
h

a
r:

P
R

O
C

E
D

U
R

E

G
e

tB
u

ff
e

rC
h

a
r

0

:
C

H
A

R
:

V
A

R

c

:
C

H
A

R
:

B
E

G
IN

IF

 B
u

ff
e

rE
m

p
ty

Q
(

T
H

E
N

to

k
e

n
c

o
lu

m
n

:=

to

k
e

n
c

o
lu

m
n

+

1

:
R

E
T
U

R
N

(G

e
tc

h
a

r(
)

)
:

E
N

D
 :

IF

t

a
i
l

=
M

A
X

-B
U

F
F
E

R
-A

D
D

R
E

S
S

T
H

E
N

t

a
i
l

:=

0
:

E
L
S

E

t
a

i
l

:=

t
a

i
l

+

I
:

E
N

D
 :

IF

t

a
i
l

=
lo

o
k

A
h

e
a

d
 T

H
E
N

I

F
 1

,o
o
k
A

h
e
a
d
 '

=
M

A
X

-B
U

F
F
E

R
-A

D
D

R
E

S
S

T
H

E
N

lo

o
k

A
h

e
a

d

:=

0
;

E
LS

E

lo
o

k
A

h
e

a
d

:=

Io

o
k
A

h
e

a
d

 +

1
:

E
N
D
 :

E
N
D
 :

c

:=
 b

u
f
f
e

r
[
t
a

il
]
:

to
k

e
n

c
o

lu
m

n

:=

to
k
e

n
C

o
lu

m
n

 +

1
:

R
E

T
U

R
N

(

c
)

:

E
N
D

G
e

tB
u

ff
e

rC
h

a
r:

EN
D
 :

E
N

D
;

R
E
T
U

R
N

(
c

)
 ;

EN
D

S
c

a
n

B
u

ff
e

rC
h

a
r:

P
R

O
C

E
D

U
R

E

P
u

tB
u

ff
e

rC
h

a
r

(
c

:

C
H

A
R

):

B
E

G
IN

'I

b
u

ff
e

rl
h

e
a

d
]

:=

c

;
IF

 h
e

a
d

=

M
A

X
-B

U
F
F
E

R
-A

D
D

R
E

S
S

T
H

E
N

h

e
a

d

:=

0
:

E
LS

E

h
e

a
d

:=

h

e
a

d
 +

1

:
EN

D
 ;

E
N
D

P
u

tB
u

ff
e

rC
h

a
r:

P
R

O
C

E
D

U
R

E

G
e

tB
u

ff
e

rC
h

a
r

(
)

:

C
H

A
R

;

V
A

R

c

:
C

H
A

R
:

B
E

G
IN

IF

 B
u

ff
e

rE
m

p
ty

Q
()

T
H

E
N

to

k
e

n
c

o
lu

m
n

:=

to

k
e

n
c

o
lu

m
n

 +

1
;

R
E
T
U

R
N

(G

e
tC

h
a

ro
):

EN

D
 :

IF
 t

a
i
l

=
M

A
X

-B
U

F
F
E

R
-A

D
D

R
E

S
S

T
H

E
N

t
a

i
l

:=
 0
;

E
LS

E

t
a

i
l

:=

t
a

i
l
 +

1
:

E
N

D
:

I
F

 t
a

i
l

=
lo

o
k

A
h

e
a

d

T
H

E
N

IF

lo

o
k

A
h

e
a

d

=
M

A
X

-B
U

F
F
E

R
-A

D
D

R
E

S
S

T
H

E
N

lo

o
k
A

h
e

a
d

:=

0

:
E

LS
E

lo

o
k

A
h

e
a

d

:=

lo
o

k
A

h
e

a
d

+

1

;
E
N
D
 :

E
N
D
 :

c

:=

b
u

f
f
e

r
[
t
a

il
]
:

to
k

e
n

c
o

lu
m

n

:=

to
k

e
n

c
o

lu
m

n
 +

I:

R

E
T
U

R
N

(
c

)
:

E
N
D

G
e

tB
u

ff
e

rC
h

a
r:

P
R

O
C

E
D

U
R

E

G
e

tN
e

x
tD

F
A

S
ta

te

(d
F

A

:
N

o
d

e
:

c

:
C

H
A

R
:

s
ta

te

:

C
A

R
D

IN
A

L
)

:
C

A
R

D
IN

A
L
:

V
A

R
 tr
a

n
s

it
io

n
s

.
tr

a
n

s
it

io
n

.
c

h
L

is
t.

c

h

:

N
o

d
e

;
i
.
 j
.

c
a

rd
in

a
l

:
C

A
R

D
IN

A
L
;

o
k

:
B

O
O

LE
A

N
:

s
t
r

:

S
tr

in
g

T
y

p
e

:

B
E

G
IN

tr
a

n
s

it
io

n
s

:=

T
r
a
n
s
i
t
i
o
n
s
O
f
(
N
t
h
E
l
e
m
e
n
t
(
s
t
a
t
e
.

S
ta

te
L

is
tO

f(
d

F
A

1
))

;
F

O
R

i

:=

1
T

O

L
iS

tL
e

n
g

th
(t

ra
n

s
it

i0
n

s
)

DO

tr
a

n
s

it
io

n

:=

N

th
E

le
m

e
n

t(
i,

tr

a
n

s
it

io
n

s
)
;

c
h

L
is

t
:=

C
h
a
r
a
c
t
e
r
L
i
s
t
O
f
(
t
r
a
n
s
i
t
4
o
n
)
;

F
O

R

j

:=

1

T
O

L

is
tL

e
n

g
th

(c
h

L
is

t1
 D

O
c

h

:=

N

th
E

le
m

e
n

tt
j.

c

h
L

is
t)

;
IF

 P
ri

n
ti

n
g

C
h

a
ra

c
te

rQ
(c

h
)

T
H

E
N

R
e
t
r
i
e
v
e
P
r
i
n
t
i
n
g
C
h
a
r
a
c
t
e
r
O
f
(
c
h
.

s
t
r
)
;

I
F

 c

=
s

t
r

[
l
]

T
H

E
N

R

e
tr

ie
v
e

N
u

m
b

e
rO

f
(
N
e
x
t
S
t
a
t
e
O
f
(
t
r
a
n
s
i
t
i
o
n
)
.

s
t
r
)
;

S
tr

T
o

C
a

rd
fs

tr
.

c
a

rd
in

a
l.

o

k
):

I

F
 N

O
T

o
k

T
H

E
N

E

rr
o

r(
"G

e
t0

u
tp

u
t

:
C

o
n

v
e

rs
io

n

e

r
r
o

r
."

)
:

EN
D
 :

R
E
T
U

R
N

(
c

a
r
d

in
a

l)
;

E
N

D
:

E
L
S

IF

e

o
ln

Q
(c

h
)

T
H

E
N

E

L
S

IF

e
o

fQ
(c

h
)

T
H

E
N

E

L
S

IF

e
p

s
il

o
n

O
(c

h
)

TH
E
N

E

r
r
o

r
(
 "
N

e
x
tT

o
k
e

n

:

B
a
d

T

a
b

le
."

):

EN
D
 ;

EN
D
 :

EN
D
 :

R
e

tr
ie

v
e

N
u

m
b

e
rO

f
(N

e
x

tS
ta

te
O

f
(
D
e
f
a
u
l
t
O
f
(
N
t
h
E
l
e
m
e
n
t
(
s
t
a
t
e
.

S
ta

te
L

is
tO

ff
d

F
A

)
s

t
r
l:

S

tr
T

o
C

a
rd

(s
tr

.
c

a
rd

in
a

l.

o
k

):

I
F

 N
O

T
o
k

TH
E
N

E

rr
o

r(
"G

e
t0

u
tp

u
t

:
C

o
n

v
e

rs
io

n

e

r
r
o

r

EN
D
 ;

R
E
T
U

R
N

(
c

a
r
d

in
a

l)
:

E
N
D

G
e

tN
e

x
tD

F
A

S
ta

te
:

P
R
O

C
E
D
U
R
E

G
e

to
u

tp
u

t
(d

F
A

:

N
o
d
e
:

s
ta

te

:
C

A
R

D
IN

A
L
)

:
C

A
R

D
IN

A
L
:

V
A

R

s

:
N

o
d
e
:

o
k

:
B
O

O
LE

A
N

;
s

t
r

:
S

tr
in

g
T

y
p

e
;

c
a

rd
in

a
l

:
C

A
R

D
IN

A
L

B
E

G
IN

s

:=

 N
th

E
le

m
e

n
t(

s
ta

te

I
F

 A
c

c
e

p
tQ

(T
y

p
e

O
f(

s
))

R

e
tr

ie
v
e

N
u

m
b

e
rO

f(
0

u

S
tr

T
o

C
a

rd
l s

t
r
,

c
a

rd

~
t
a

t
e

~
is

t
O

f
(
d

F
A

)
)
;

T
H

E
N

p

u
tO

f(
T

y
p

e
O

f(
s

))
.

s
t
r
)
;

n
a

l,

o
k

);

B
E

G
IN

1

a
s

tT
o

k
e

n
C

o
lu

m
n

:=

to

k
e

n
c

o
lu

m
n

:
1

a
s

tT
o

k
e

n
L

in
e

:=

to

k
e

n
li

n
e

;
R

e
S

e
tB

u
ff

e
rL

o
o

k
A

h
e

a
d

(
1:

I

F
 E

O
F

la
g

 T
H

E
N

R

E
T

U
R

N

(E
O

F
):

E

N
D

;
I

F
 N

O
T

E

o
f(

c
1

 T
H

E
N

c

:=

G
e

tB
u

ff
e

rC
h

a
r(

 1
:

E
N

D
;

I
F

 c

=
'
-
'
 T

H
E

N

M
e

ta
F

la
g

:=

T

R
U

E
:

c

:=
 G

e
tB

u
ff

e
rC

h
a

r(
)

;

E
N

0
 ;

W
H

IL
E

N

O
T

E

o
f(

c
)

 A
N

D

D
e

li
m

it
e

r
(

c
.

M
e

ta
F

la
g

)
D

O

c

: =

G
e

tB
u

f
f

e
rC

h
a

r(

:

E
N

D
 ;

I
F

 N
O

T

E
o

f(
c

)

T
H

E
N

P

u
tB

u
f f

 e
rC

h
a

r
(
c
)

 :

c

:
=

S
c

a
n

B
u

f f
 e

rC
h

a
r

(
)
;

E
N

D
:

c
h

a
rc

o
u

n
t

:
=

0
;

to
k

e
n

S
tr

in
g

C
o

u
n

t
:=

0

:
c

u
r

r
e

n
ts

ta
te

:=

S

T
A

R
T

-S
T

A
T

E
:

n
o

tD
o

n
e

:=

T

R
U

E
:

la
s

tA
c

ti
o

n
 :

=

E
R

R
O

R
:

I
F

 c

=
'
-

'
 T

H
E

N

M
e

ta
F

la
g

:=

T

R
U

E
:

c

:=

S
c

a
n

B
u

ff
e

rC
h

a
r(

E

N
D

 ;

W
H

IL
E

N

O
T

E

o
f(

c
)

A

N
D

N

O
T

E

n
d

O
e

li
m

it
e

r(
c

.
M

e
ta

F
la

g
)

A
N

0

n
o

't
D

o
n

e

D
O

c

u
rr

e
n

ts
ta

te

:=

G
e

tN
e

x
tD

A
S

ta
te

(.
t,

c

.
c

u
r

r
e

n
ts

ta
te

)
;

I
F

 c
u

r
r

e
n

ts
ta

te
 a

F

A
IL

T

H
E

N

c
h

a
rc

o
u

n
t

:=

c
h

a
rc

o
u

n
t

+

I
:

a

:=

G
e

tA
c

ti
o

n
ta

c
ti

o
n

.
c

.
c

u
r

r
e

n
ts

ta
te

)
:

I
F

 a

>

S
T

O
P

T

H
E

N

a

:=

a

-

S
T

O
P

:
I

F
 M

e
ta

F
la

g
 T

H
E

N

M
e

ta
F

la
g

:=

F

A
L

S
E

:
E

L
S

E

n
o

tD
o

n
e

:=

F

A
L

S
E

;
E

N
D

 :

E
N

D
 ;

I
F

 a

>

E
R

R
O

R

T
H

E
N

F

O
R

i

:=

1

T
O

c

h
a

rc
o

u
n

t
D

O

to
k

e
n

s
tr

in
g

c
o

u
n

t
:=

to

k
e

n
s

tr
in

g
c

o
u

n
t

+

1
:

c
l

:=
 G

e
tB

u
ff

e
rC

h
a

r(
 1

;
I

F
 c

l
 =

'
-

'
 T

H
E

N

c

l

:=

G
e

tB
u

ff
e

rC
h

a
rt

 1
:

E
N

D
;

t
o
k
e
n
S
t
r
i
n
g
[
t
o
k
e
n
S
t
r
i
n
g
C
o
u
n
t
]

:=

c
l:

E

N
D

 ;

1
a

s
tA

c
ti

o
n

:=

a

:
c

h
a

rc
o

u
n

t
.:

=
0

:

I
F

 N
O

T

o
k

T

H
E

N

E
rr

o
r(

"
G

e
t0

u
tp

u
t

:
C

o
n

v
e

rs
io

n
 e

r
r

o
r

."
)

;
E

N
D

 :

R
E

T
U

R
N

(

c
a

r
d

in
a

l)
 ;

E
L

S
E

R

E
T

U
R

N

(E
R

R
O

R
);

E

N
D

 :

E
N

D

G
e

to
u

tp
u

t:

B
E

G
IN

1

a
s

tT
o

k
e

n
C

o
lu

m
n

:=

to

k
e

n
c

o
lu

m
n

;
1

a
s

tT
o

k
e

n
L

in
e

:=

to

k
e

n
li

n
e

;
R

e
S

e
tB

u
ff

e
rL

o
o

k
A

h
e

a
d

(
)
;

I
F

 E
O

F
la

g
 T

H
E

N

R
E

T
U

R
N

(€

O
F

):

E
N

D
:

I
F

 N
O

T

E
o

f(
c

)

T
H

E
N

 c

:=

G
e

tB
u

ff
e

rC
h

a
rO

;
E

N
D

;
I

F
 c

=

I
-

'

T
H

E
N

 M
e

ta
F

la
g

:=

T

R
U

E
:

c
:=

 G
e

tB
u

ff
e

rC
h

a
rO

;
E

N
D

 ;

W
H

IL
E

N

O
T

E

o
f(

c
)

A

N
0

D

e
li

m
it

e
r

(
c

.
M

e
ta

F
la

g
)

D
O

c

: =

G
e

tB
u

f f
e

r
C

h
a

r
l
)
;

E
N

D
 :

I
F

 N
O

T

E
o

f(
c

)
T

H
E

N

P
u

tB
u

ff
e

rC
h

a
r(

c
);

c

:=

S
c

a
n

B
u

ff
e

rC
h

a
r(

);

E
N

D
 ;

c
h

a
rc

o
u

n
t

:=
 0

;
to

k
e

n
s

tr
in

g
c

o
u

n
t

:=

0
:

c
u

r
r

e
n

ts
ta

te

:=

S
T

A
R

T
-S

T
A

T
E

;
n

o
tD

o
n

e

:=

T
R

U
E

:
la

s
tA

c
ti

o
n

:=

E

R
R

O
R

;
I

F
 c

=

I
-

'

T
H

E
N

M

e
ta

F
la

g

:=

T
R

U
E

;
c

:=

S
c

a
n

B
u

f
E

N
0

 :
W

H
IL

E

N
O

T

E
o

f(
c

)

A
N

0

N
O

T

E
n

d
D

e
li

m
it

e
r(

c
,

M
e

ta
F

n

o
tD

o
n

e
 D

O

la
g

)

A
N

0

c
u

r
r

e
n

ts
ta

te

:=

G
e

tN
e

x
tD

F
A

S
ta

te
(d

F
A

.
c
.

c
u

r
r

e
n

ts
ta

te
)

;
I

F
 c

u
r

r
e

n
ts

ta
te

 k

F
A

IL
 T

H
E

N

c
h

a
rc

o
u

n
t

:=

c
h

a
rc

o
u

n
t

+

1
;

a

:=

G
e

tO
u

tp
u

t(
d

F
A

.
c

u
r

r
e

n
ts

ta
te

)
:

I
F

 a

>

S
T

O
P

T

H
E

N

a

:
=

a

-

S
T

O
P

;
I

F
 M

e
ta

F
la

g
 T

H
E

N

M
e

ta
F

la
g

:=

F

A
L

S
E

;
E

L
S

E

n
o

tD
o

n
e

:=

F

A
L

S
E

:
E

N
D

 :

E
N

D
 ;

I
F

 a

>
E

R
R

O
R

T

H
E

N

FO
R

i

:=

1
 T

O

c
h

a
rc

o
u

n
t

D
O

to

k
e

n
s

tr
in

g
c

o
u

n
t

:=

to

k
e

n
s

tr
in

g
c

o
u

n
t

+

1
:

c
l

:=

G
e

tB
u

ff
e

rC
h

a
r(

 1
:

I
F

 c
l
 =

'
-
I
 T

H
E

N

c

l
:=

 G
e

tB
u

ff
e

r
C

h
a

r
O

;
E

N
D

;
t
o
k
e
n
S
t
r
i
n
g
[
t
o
k
e
n
S
t
r
i
n
g
C
o
u
n
t
]

:=

c

l;

E
N

D
 :

1
a

s
tA

c
ti

o
n

 :
=

 a
;

c
h

a
rc

o
u

n
t

:=

0
;

E
N

D
 :

c

: =

S
c

a
n

B
u

f f
 e

rC
h

a
r (

)
:

I
F

 c

=
I

-
'

T

H
E

N

M
e

ta
F

la
g

:=

 T
R

U
E

:
c

:=

S
c

a
n

B
u

ff
e

rC
h

a
rO

:
E

N
D

 :

E
L

S
E

n

o
tD

o
n

e

:=

F
A

L
S

E
:

E
N

D
 :

E
N

D
 ;

I
F

 t
o

k
e

n
s

tr
in

g
c

o
u

n
t

>

0

T
H

E
N

s

to
p

F
la

g

:=

F
A

L
S

E
:

W
H

IL
E

(
t
o
k
e
n
S
t
r
i
n
g
[
t
o
k
e
n
S
t
r
i
n
g
C
o
u
n
t
]

=
'

'1
 A

N
D

(N

O
T

s

to
p

F
la

g
)

D
O

I

F
 t

o
k

e
n

s
tr

in
g

c
o

u
n

t
>

1

T
H

E
N

to

k
e

n
s

tr
in

g
c

o
u

n
t

:=
 t

o
k

e
n

s
tr

in
g

c
o

u
n

t
-

1
:

E
L

S
E

s

to
p

F
la

g

:=

T
R

U
E

;
E

N
D

 :

E
N

D
 :

E
N

D
 ;

t
o
k
e
n
S
t
r
i
n
g
[
t
o
k
e
n
S
t
r
i
n
g
C
o
u
n
t

+

I
]

.=

 C
H

R
(0

):

I
F

 E
o

f(
c

)

A
N

D

B
u

ff
e

rE
m

p
ty

Q
(1

 T
H

E
N

I

F
 1

a
s

tA
c

ti
o

n
 =

E

R
R

O
R

T

H
E

N

R
E

T
U

R
N

IE

O
F

):

E
L

S
E

:
E

O
F

la
g

:=

T

R
U

E
:

E
N

D
 :

E
N

D
 ;

R
E

T
U

R
N

(1

a
s

tA
c

ti
o

n
):

E

N
D

N

e
x

tT
o

k
e

n
;

B
E

G
IN

h

e
a

d

:=

1
:

ta
il

:=

 0
;

1
0

0
k

A
h

e
a

d

':
=

1

;

E
O

F
la

g

:=

F
A

L
S

E
;

M
e

ta
F

la
g

:=

F

A
L

S
E

:
E

N
D

L

e
x

A
n

a
ly

z
e

r.

-
E

N
D

:
-4

c

:
=

S
c

a
n

B
u

f f
 e

rC
h

a
r(

 1
 :

IF

c

=

1
-

1

T
H

E
N

M
e

ta
F

la
g

:=

T

R
U

E
:

c

:=

S
c

a
n

B
u

ff
e

rC
h

a
ro

;
E

N
D

 ;

E
L

S
E

n

o
tD

o
n

e

:=

F
A

L
S

E
:

E
N

D
 :

E
N

D
 ;

I
F

 t
o

k
e

n
S

tr
in

g
C

o
u

n
t

>

0

T
H

E
N

s

to
p

F
la

g

:=

F
A

L
S

E
:

W
H

IL
E

(
t
o
k
e
n
S
t
r
i
n
g
[
t
o
k
e
n
S
t
r
i
n
g
C
o
u
n
t
]

=
'

')

A
N

D

(N
O

T

s
to

p
fl

a
g

)
D

O

I
F

 t
o

k
e

n
s

tr
in

g
c

o
u

n
t

>

1
T

H
E

N

to
k

e
n

S
tr

in
g

C
o

u
n

t
:=

to

k
e

n
s

tr
in

g
c

o
u

n
t

-
1

:
E

L
S

E

s
to

p
F

la
g

:=

T

R
U

E
;

E
N

D
 :

E
N

D
 :

E
N

D
 ;

t
o
k
e
n
S
t
r
i
n
g
(
t
o
k
e
n
S
t
r
i
n
g
C
0
u
n
t

+

I
]

:=

 C
H

R
(0

);

I
F

 E
o

f(
c

)
A

N
D

B

u
ff

e
rE

m
p

ty
Q

()

T
H

E
N

I

F
 l

a
s

tA
c

ti
o

n
 =

E

R
R

O
R

T

H
E

N

R
E

T
U

R
N

(E

O
F

):

E
L

S
E

;
E

O
F

la
g

:=

T

R
U

E
;

E
N

D
 :

E
N

D
 ;

R
E

T
U

R
N

(1

a
s

tA
c

ti
o

n
);

E

N
D

N

e
x

tT
o

k
e

n
;

P
R

O
C

E
D

U
R

E

G
e

tC
h

a
r

:
C

H
A

R
:

V
A

R

c

:
C

H
A

R
;

B
E

G
IN

R

e
a

d
C

h
a

r(
c

);

I
F

 E
O

L
(

J
A

N
0

N

O
T

E

O
T

(
)

T
H

E
N

In

c
re

m
e

n
tT

o
k

e
n

L
in

e
(

1
:

R
e

a
d

L
n

f
:

c

:=

C
H

R
(0

):

I
F

 E
D

T
O

 T
H

E
N

R

E
T

U
R

N

(C
H

R
(E

0
F

))
;

E
L

S
E

R

E
T

U
R

N

(
c

)
;

E
N

D
;

E
L

S
IF

E

O
T

1
)

T
H

E
N

R

E
T

U
R

N

(C
H

R
(E

0
F

))
;

E
L

S
E

R

E
T

U
R

N

(
c

)
:

E
N

D
 :

E
N

D

G
e

tC
h

a
r:

B
E

G
IN

W
r
i
t
e
S
t
r
i
n
g
(
"
1
n
i
t
i
a
l
i
z
a
t
i
o
n
.
"
)
:

W
r

 i
te

L
n

l
)
:

h
e

a
d

: =

1

:
t

a
i

l

:=
 0

:
lo

o
k

A
h

e
a

d

:=

1
:

E
O
F
l
a
g

:=

F
A
L
S
E
;

M
e
t
a
F
l
a
g

:=

F
A
L
S
E
;

a
r
g
c

:=

N
o
O
f
A
r
g
u
m
e
n
t
s
(
 1

:
IF

 a
r
g
c

<
2

T
H
E
N

W
r
i
t
e
s
t
r
i
n
g

(
"
U
s
a
g
e
:
 l
e
x

T
a
b
l
e
F
i
l
e

~
I
n
p
u
t
F
i
l
e
 >
O
u
t
p
u
t
F
i
l
e
.
"
)
:

W
r
 i

 t
e
L
n
(

;

E
L
S
E

F
O
R

i
:=

1
T
O

a
r
g
c

-

1
D
O

G
e
t
A
r
g
u
m
e
n
t
(
i
,

a
r
g
.

u
p
R
e
s
u
l
t
)
:

IF

(
u
p
R
e
s
u
l
t

=
u
p
N
o
t
F
o
u
n
d
)

T
H
E
N

W
r
i
t
e
S
t
r
i
n
g
(
"
1
e
x
:

C
o
m
m
a
n
d

L
i
n
e

A
r
g
u
m
e
n
t

P
r
o
b
l
e
m
s
.
"
)
;

Wr
 i

 t
e
L
n
(
)

 ;

H
A
L
T
(
 1

 :
E
N
D
 :

A
s
s
i
g
n
(
a
r
g
.

t
a
b
l
e
N
a
m
e
.

o
k
a
y
)
:

IF

N
O
T

o
k
a
y

T
H
E
N

W
r
i
t
e
S
t
r
i
n
g
(
"
1
e
x
:

a
s
s
i
g
n
m
e
n
t

e
r
r
o
r
.
"
)
;

W
r
 i

 t
e
L
n
(
)

 :

H
A
L
T
(
)

 :

E
N
0
 ;

E
N
D
 :

I
n
i
t
i
a
l
i
z
e
L
e
x
i
c
a
l
A
n
a
l
y
z
e
r
~
)
;

W
r
i
t
e
S
t
r
i
n
g
(
"
R
e
c
o
v
e
r
i
n
g

T
a
b
l
e
s
.
"
)
:

W
r
 i

 t
e
L
n
(
 1

 :
d
F
A

:=

R
e

c
o

v
e

rP
a

rs
e

T
re

e
(t

a
b

1
e

N
a

m
e

):

W
r
i
t
e
s
t
r
i
n
g
(
 "
A
n
a
l
y
s
i
s
.
"
)
;

W
r
 i
 t
e
L
n
(
 1

 :
t
o
k
e
n

:=

N
e
x
t
T
o
k
e
n
(
G
e
t
C
h
a
r
,

d
F
A
,

t
o
k
e
n
s
t
r
)
;

W
H
I
L
E

t
o
k
e
n

c
E
R
R
O
R

D
O

W
r
i
t
e
S
t
r
i
n
g
(
"
t
o
k
e
n
:

"1
:

W
r
i
t
e
C
a
r
d
(
t
0
k
e
n
.

0

)
:

Wr
it
eS
tr
in
g(
"t
ok
en
St
ri
ng
:'
);

W
r
i
t
e
S
t
r
i
n
g
(
t
o
k
e
n
S
t
r
)
:

W
r
i
t
e
S
t
r
i
n
g
l
"
.
"
 1:

Wr
 i

 t
e
L
n
(
 1

 ;
t
o
k
e
n

:=

N
e
x
t
T
o
k
e
n
(
G
e
t
C
h
a
r
.

d
F
A
.

t
o
k
e
n
s
t
r
)
;

E
N
D
 :

E
N
0
 :

E
N
D

1
e
x
A
n
a
l
y
z
e
r
P
r
o
g
r
a
m
.

REFERENCES

[AhoUll79l
Aho, A. V., Ullman, J. D., Principles of Compiler Design, Addison-Wesley, (1977).

[BaShSa841
Barstow, Shrobe, and Sandewall, editors, Interactive Progrumming Environments,
McGraw Hill, (1984).

[Cam861
Cameron, Robert D., "Source Encoding using Syntactic Information Source Models",
LCCR Technical Report 86-9, School of Computing Science, Simon Fraser
University, (Sept. 1986), 24 pages.

[Cam87al
Cameron, Robert D., "Prettyprinter Abstraction Using Procedural Parameters",
LCCR Technical Report 87-4, School of Computing Science, Simon Fraser
University, (Feb. 1987), 1 0 pages.

[Cam87bl
Cameron, Robert D., "Pascal MPS Manual", School of Computing Science, drafi
Simon Fraser University, (1987).

[CamIto84]
Cameron, Robert D. and Ito, M. R., "Grammar-Based Definition of
Metaprogramming Systems", ACM Transactions on Programming Languuges and
Systems, 6-1, (Jan. 1984) pp. 20-54.

[Don831
Donzeau-Gouge, V., Kahn, G., Lang, B., Meiese, B., Morcos, E., "Outiine of a
Tool for Document Manipulation", IFZP, Paris, (Sept. 1983).

[Don 8 4al
Donzeau-Gouge, V., Kahn, G., Lang, B., Melese, B., "Document Structure and
Modularity in Mentor", SigPlan Notices, 19-5, (May 1984) pp. 141-148.

[Don84b]
Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B., "Programming Environments
Based on Structured Editors: The Mentor Experience", Interactive Progrc~mming
Environments, ed. Barstow, Shrobe, and Sandewall, McGraw Hill, (1984).

[EhMa85]
Ehrig, H., Mahr, B., Fr~ndnmentuls of Algebraic Specifications I , Springer-Verlag,
(1985).

[GheJaz82]
Ghezzi. C., Jazayeri, M., PI-ogrumming Languctgc Concepts, John Wiley and Sons.
Inc., (1982).

[Go841
Gorman, Michael M., Mt~n(~ging Dutu Base: Four Criticr~l F(zctors, QED Information
Sciences Inc., (1984).

[HeeKli85]
Heering, J . , and Klint, P., "Towards Monolingual Programming Environments",
ACM Transactions on Programming Languages and Systems, 7-2, (April 1985), pp.
183-213.

[HerLis82]
Herlihy, M. and Liskov, B., "A Value Transmission Method for Abstract Data
Types", ACM Transactions on Programming Languages and Systems, 4-1, (Oct.
1982), pp. 527-551.

[He861
Heuring, V. P., "The Automatic Generation of Fast Lexical Analysers", Software
Practice and Experience, 16-9, (Sept. 1986), pp. 801-808.

[Lamb871
Lamb, David A., "IDL: Sharing Intermediate Representations", ACM Transactions
on Programming Languages and Systems, 9-3, (July 1987), pp. 297-3 18.

[Lin 8 41
Linton, Mark A., "Implementing Relational Views of Programs", SigPlan Notices,
19-5, (May 1984), pp. 132-140.

[Moss861
MossenBock, H., "Alex - A Simple and Efficient Scanner Generator", SigPlan
Notices, 21-12, (December 1986), pp. 139-148.

[Opp801
Oppen, Derek C., "Prettyprinting", ACM Transactions on Progrczmming Languages
and S.ystems, 2-4, (Oct. 1980), pp. 465-483.

[Pag8 11
Pagan, F. G., Formal Specificcztion of Programming Languages, Prentice-Hall, (1981).

[PeSiEG]
Peterson J. and Silberschatz A., Operating System Concepts, Addison-Wesley,
(1983).

[PolSte80]
Pollack, S. V. and Sterling, T. D., A Guide to Strrrctured Programming tznd PLII,
3rd edition, Holt, Rinehart and Winston, (1980).

[PurBro8 11
Purdom, P. W., Brown, C. A., "Parsing Extended LR(k) Grammars", Acta
Inforrnatica, 15-2, (19811, pp. 115-127.

[Rub831
Rubin, Lisa F.. "Syntax-Directed Pretty Printing". IEEE Trc~nsuctions on Softumre
Engineering, 9-2 (March 1983). pp. 119-127.

[Sun851
External Data Representation Protocol Specification, Release 2.0, Sun Microsystems
Inc., Ca., (1985).

[TeiRepss 11
Teitelbaum, T., Reps, T., "The Cornell Program Synthesizer: A Syntax-Directed
Programming Environment", Communications of the ACM, 24-9, (Sept. 1981),
pp.563-573.

[Wir85]
Wirth, N., Programming in Modula-2, Third, Corrected Edition, Springer-Verlag,
(1985).

[Wood861
Woodman, M., "Formatted Syntaxes and Modula-2", Softu~are - Practice and
Experience, 16-7, (July 19861, pp. 605-626.

INDEX

A Discussion of Related Work, 9
Abstract, iii
Abstract Data Types, 1, 12
Access Routines, 47
Acknowledgements, iv
An Overview of the Field, 9
Appendix A: The GRAFS User Interface, 76
Appendix B: Example Lexical Analyzer Grammars and Grammar Interfaces, 84
Bootstrapping, 4 2
Conclusions, 73
Conclusions and Further Research, 73
Databases and Data Dictionaries, I)

Dedication, v
Description of the Research, 7
Designing a MetaGrammar, 27
Direction of Research, 24
Evaluation, 67
Expressive Power, 23
File Data Types, 2
Finite Automaton Grammar, 87
Finite Automaton Support Routines. 89
Further Research, 74
Generation of Grammar Routines, 76
GRAFS Formalism, 27
GRAFS Formalism and Implementation, 27
GRAFS Implementation, 42
GRAFS Prototype Evaluation, 62
GRAFS Rules: Syntax, Semantics and Raison d'Etre., 30
Historical, 13
Introduction, 1
Lexical Analysis, 43
Lexical Analyzer Comparison, 11 1
Lexical Generator Comparison, 91
Metaprogramming. 12
Motivation for this Research, 5
Observations, 64
Parsing, 44
Prettyprinting, 54
Programming Envirbnments, 11
Prototyping a Lexical Analyzer Generator, 62
Recent Work, 14
References, 120
Regular Expression Grammar, 84
Regular Expression Support Routines, 86
Related Work, 13
Results, 7 1
Structured File Input and Output, 57
The Complete Address Book Example Grammar, 59
The GRAFS Conceptual Model, 18

The GRAFS Metagrammar, 80
The ParserILexical Analyzer Interface, 45
Thesis Structure, 7
Type Checking, 56
User Interface, 56
Using the GRAFS Subroutine Interface, 78

