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ABSTRACT 

The theories governing finite, small but finite, and infinitesimal deformations in elastic 

dielectrics are reviewed. The exact solutions for homogeneous, isotropic elastic 

dielectrics are listed. The completeness of the exact solutions when the dielectric is either 

compressible or incompressible is demonstrated for the finite deformations as well as for 

infinitesimal deformations. A set of new exact solutions in the small finite deformation 

theory, previously unknown, are obtained. 
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1. INTRODUCTION 

CHAPTER 1 

The elastic behaviour of dielectric materials in the presence of electrostatic forces 

has been a subject matter of study for the last three decades. In 1956, R.A.Toupin [I] 

formulated a unified theory governing deformations of elastic dielectrics. In this theory, 

the interaction between the mechanical forces and the electrostatic forces was postulated 

from the continuum view point for the first time. Toupin assumed the existence of a stored 

energy function and derived its form through the principle of virtual work. The constitutive 

equations obtained from such a form then stipulate local and Maxwell stresses as well as 

polarisation fields distributed continuously throughout the continuum. A few years later, 

Eringen [2] presented another formulation with almost the same basic features. 

The interactions between electrostatic and mechanical forces have also been 

described by some other expressions based on different hypotheses. Unfortunately, none 

of these hypotheses answered some of the important questions with regard to the inter- 

relationships among the electric field, the dielectric displacement field and the mechanical 

stresses unambiguously. Keeping this in view, Singh and Pipkin [3j formulated a theory 

of elastic dielectrics based on a single stress hypothesis encompassing both the electrostatic 

and mechanical forces. We have reproduced that theory in Section 3 of this presentation. 

In the finite theory of elastic dielectrics Singh and Pipkin [3j formulated what is 

known as a controllable state. The defo~mation and either the electric field or the dielectric 

displacement field are prescribed initially and it is then verified that such a state can be 

supported without any body force or distributed charge in every homogenous, isotropic, 



elastic dielectric. The knowledge of the stored energy function as to how it depends on the 

six invariants of the strain and the electrical field is not required in a controllable state. 

Such states can therefore be employed experimentally to determine the form of the stored 

energy function for various dielectric solids. Having thus known the stored energy 

function, other boundw value problems which are not controllable can then be solved in 

finite elastic dielectrics. 

There is a moderately large class of controllable states in incompressible elastic 

dielectrics. These are listed in Section 3. Singh and Pipkin [3] proved the completeness of 

the set of these states. However, when the dielectric is compressible, Singh [4] 

demonstrated that only homogeneous deformations accompanied with homogenous 

electrostatic forces can constitute a controllable state. 

The controllable states ase usually difficult to experiment with because the most 

general form of the stored energy function is quite cumbersome. Certain polynomial 

approximations of the stored energy fimcrion have been consid.ercd by T ~ u p i n  [I! and 

Eringen [2], where the polarisation was taken as the independent variable. Singh [5] 

formulated the various polynomial approximations of the stored energy by assuming the 

total electric field as the independent variable. We have presented this theory of small but 

finite deformations in Section 4. When the electrical effects are not present it is shown that 

the approximate forms of the stored energy function reduce to the well known strain energy 

forms of Mooney - Rivlin matesials [6] and Neo - Hookean solids [7] in finite elasticity. 

Considerable analytical simplification can be gained by using suitable 

approximations to the stored energy function. The first order finite approximation, which 

reduces to Mooney - Rivlin form 161 in the absence of electrical effects, can be applied to 

solve problems in which the principal stretches are small and the electrical field strength 

sufficiently weL&. It is to be expected that with approximate forms of the stored energy 



function, the set of controllable states would be considerably larger as compared to when 

the stored energy function is purely asbitrary. Sirlgh and Trehan 181 proved that when the 

dielectric is compresible, the only controllable state within the first approximation is still the 

combination of the homogeneous deformation with the ~ ~ n i f o n n  electrostatic field. It then 

simply follows that only homogenous controllable states are possible for all higher order 

approximations of the stored energy function. However, when the dielectric is 

incompressible, there are controllable states which are controllable in approximate theories 

but not controllable in the general theory. 

In this presentation we have attempted to find the controllable states within the 

formulation of the first order and the second order approximations for incompressible, 

homogeneous, isotropic, elastic dielectrics. These states, which can not be solved on the 

basis of a completely arbitrary stored energy function, are presented in Sections 7 and 8. 

These sections form the original work done for this thesis. 



CHAPTER 2 

2. CONTINUUM ELECTROSTATICS 

We consider a deformable elastic dielectric continuum that occupies volume V and 

bounded by surface S. If we apply mechanical forces and an applied electric field, the 

body will be deformed and polarised. The deformation of the body is quasi-static which 

means that the deformation is so slow that at any instant of time the external forces are in 

equilibrium with the mechanical and electrical forces inside the &electric. We take into 

account only the electro -mechanical effects and exclude all gravitational and inertial body 

forces. It is also to be noted that the assumptions and the equations of continuum 

electrostatics and mechanics that we write in this section are not dependent on the nature 

and composition of the material of the dielectric and the media surrounding it. 

2.1 ELECTROSTATICS 

We shall assume the existence of ,an electric field E, with the dimensions of force 

per unit charge, in the continuum as well as in the medium surrounding it. The electric 

field being conservative, we have 

where C is any arbitrary closed curve, and dx is the vector arc element along C. 



Corresponding to the electric field, we shall assume there exists a dielectric 

displacement field or flux, with the dimensions of charge per unit area, such that 

where S is an arbitrary closed surface, n the unit outward normal to S, an( 

charge enclosed by S. 

1 Q the total 

We consider an arbitrary volume V enclosed by a surface S. We shall assume that 

the total effect of mechanical and electrical forces due to deformation of the continuum 

occupying the volume V is statically equivalent to a resultant force F; and a resultant 

moment Gi about the origin, both of which can be expressed in terms of a stress 

distribution ti in the forms 

where. xi are Cartesian coordinates. We have excluded the gravitational and inertial body 

forces. Also, excluded are surface couples and body couples. 

From (2.1), two results follow. Firstly, there exists an electrostatic potential @ such that 

and secondly, the tangential component of the field E_ is continuous across S : 



where E ~ +  is evaluated on the side of outward normal ni and Ej- being evaluated on the 

other side of the surface S. 

From (2.2), we obtain 

where q is the charge density per unit volume. 

where w denotes the charge per unit area of S. 

In the formulation of theory and problems in this presentation, we shall set q = 0 

inside the dielectric and w = 0 on the dielectric surface. 

2.2 EQUILLBRTUM EQUATIONS 

Equations of static equilibrium of an arbitrary region with volume V enclosed by a 

surface S demands 



where p fi represents the body force, other than electrical effects, per unit volume. We 

have neglected the surface or body couples. 

In particular, if V is chosen as an elementary tetraheclron whose three surfaces are parallel 

to the coordinate axes, then equations (2.8) and (2.9) yield 

where CFji denotes the stress matrix. With the use of the Divergence Theorem, and equation 

(2.10), equations (2.8) and (2.9) give 

and 

It also follows from (2.8) and (2.9) that if a mechanical force Ti per unit area is applied to 

the surface of the dielectric 

where Oij jf denotes the stress outside the surface S and ~ i j -  denotes the stress inside the 

surface S of the dielectric. In the absence of electrical effects, at the surface of the body, 

one takes Oij+ to be zero. In the present theory, shall be the Maxwell stress present 
1J 

everywhere in the medium surrounding the dielectric. 

7 



2.3 CONSTITUTIVE EQUATIONS 

The flux Di is directly proportional to the electric field Ei in free space surrounding 

the dielectric : 

where E is the physical constant for the frce space. 

Maxwell stress Mij is the stress oijijf in the free space given by the expression 

These two constitutive ecpatims describe the c h q e  free surroufi&ngs around :he &e!ec:ric 

bodies. 

Let us consider a generic particle situated at XA in the undeformed state (A = 1,2, 3). 

Its position in the deformed state will be given by the relation 

where Xi and XA refer to a fixed Cartesian System. 

The deformation gradients 



give the measure of deformation the particle has been subjected to. We will assume that Di 

and Gij at a point are functions of Ei and Xi,* at that point. That is, 

These relations show that corresponding to one value of deformations gradients and the 

electric field we will have a unique state of flux and stress. 

Now the principle of material indifference requires that when the deformed body is 

subjected to a rigid rotation along with the field Ei into a new orientation with respect to the 

coordinate frame X, then the force system which includes stress and flux should also 

undergo the same rotation so as to remain fixed with respect to the body. This restriction 

demands that the equations (2.17) should be of the form 

For an isotropic medium which is in its undeformed, field free state, equation (2.18) 

becomes 

and 

where 



and gij is the finger strain tensor 

Here, the functions A and Q are dependent on the following six invariants 

For incompressible dielectrics, the invariant I6 is unity for all deformations. In that case, A 

and Q are functions of five invariants given by (2.23) and pressuse p will be generated as a 

reaction to the condition of no volume change. Hence, for incompressible materials we 

will have to write the following equation in place of (2.20) 

where p is arbitrary and Sij is given by (2.21) 

There are certain problems which are easier to solve with Di as the independent variable 

rather than Ei. Interchanging the roles of Ei with Di in equations (2.17), equations (2.19), 

(2.20) and (2.21) take the form 

where 



Dj (W3 6ik + W4 gik + W5 gin gnk) Dk . (2.28) 

For incompressible mdterials, functions !2 and y~ will be dependent on the invariants 



CHAPTER 3 

3. THEORY OF FINITE EXACT DEFORMATIONS IN ELASTIC DIELECTRICS 

For solving some of the problems of finite deformations in elastic dielectrics, we 

make use of the inverse method. The deformation and the electrostatic forces are 

prescribed at the outset and then it is proved that this combination of deformation and the 

electrostatic forces will result in a controllable state of the material. A controllable state is 

that state which can be supported without mechanical body force or distributed charge in 

every homogeneous, isotropic, incompressible, elastic dielectric. Deformations which 

produce controllable states are called exact deformations. 

The solutions of the problems of exact deformations are useful in the experimental 

determination of the strain - energy function as mentioned earlier in the introduction 

section. Singh [4] proved thct when the d.ie!ectric is cc\mpressib!e, m y  hemo-nnll~ bV"VUU 

deformation combined with a uniform electric field or a unifo~m flux shall form a 

controllable state and that a homogenous controllable state is the only one possible. 

However, for incompressible dielectrics, Singh and Pipkin [3] found a large number of 

controllable states, besides a homogenous state. The ;luthors also proved in [3] that such a 

set of controllable states forms a complete set. We shall now reproduce all the controllable 

states for an incompressible, homogeneous, isotropic dielectric. 

3.1 BASIC EQUATIONS OF A CONTROLLABLE STATE WITH ELECTRIC 

FIELD AS THE INDEPENDENT VARIABLE 

The deformation mapping is: 



Xi = Xi  (x*) 

The electric field is conservative, 

Eij = Ej ,i every where. 

The flux is solenoidal 

Di,i = 0 everywhere. 

In the absence of a mechanical body force, equilibrium condition yields 

P,i = Si j j  inside the dielectric, (3.4) 

where Sij is given by (2.21) and (2.28) depending upon whether the electric field E or the 

dielectric disp!acernent field - D is comidered as ?he independent vzriable. 

In the medium surrounding the dielectric, 

where it is clear that equilibriom equation Oijj  = 0 is identically satisfied by Mij. 

At the charge free surface of the dielectric, the bound;lry conditions are 



where E~''), D~'') and CT.(" are evaluated in the medium surro~mding the dielectric and Ei, 
1J 

D i  Oij are evaluated inside the dielectric. 

3.2 HOMOGENOUS DEFORMATION IN A UNIFORM FIELD 

Consider the deformation of an infinite slab, bounded by the surfaces X3 = + h in 

the undeformed state. Let hl, h2, h3 be the extention ratios in the coordinate directions xl, 

~ 2 ,  ~ 3 ,  respectively and kl, k2 be the shear amounts in the X I  and x2 directions. Let us 

also assume that the particle is at point X, in the undeformed state and then moves to the 

point xi The deformation mapping will be 

where for incompressibility hlh2h3 = 1. 

3.3 EXPANSION AND EVERSION OF A SPHERICAL SHELL IN A RADIAL 

FIELD 

The deformation mapping considered here is 

r (R) = + (R3 - Ra3 + r,3)'I3 , €I=&@ , $ = @  , (3.9) 

where a material particle initially at (R,O,@) in spherical polar coordinates has moved to 

(r,8,$) after the deformation. Here, Ra and ra are the internal radii of the shell in the initial 

and the deformed states, respectively. Expmsion or contraction of the shell is indicated by 

the positive sign, whereas the negative iign in (3.9) indicates eversion of the shell. 
The physical components of the strain g are - 



This defo~mation which is volume preserving, can be combined with the prescribed 

dielectric displacement field 

and it shall form a controllable state. The field equations (3.2) to (3.5) as well as the 

boundary conditions (3.6) to (3.8) are all satisfied. 

3.4 CYLINDRICALLY SYMMETRIC DEFORMATIONS OF A TUBE IN A RADIAL 

FIELD O F  FLUX 

We consider the defo~mation of a cylindrical t ~ ~ b e  described by the mapping 

where the particle initially at (R,O,Z) in cylindrical coordinates moves to the position 

(r,O,z). The incompressibility condition requires A (CF - DE) = 1. The physical 
components of the strain tensor g are - 

This deformation can be combined with the prescribed dielectsic displacement field 

15 



to form a controllable state. All the field equations and the boundary conditions governing 

a controllable state, as outlined in the beginning of Section 3, are properly met. 

3.5 CYLINDRICALLY SYMMETRIC DEFORMATIONS OF A TUBE SECTOR IN 

A HELICAL ELECTRIC FIELD 

The deformation (3.12) can also be considered for controllability when it is 

combined with an initially prescribed helical electric field 

Es=O , 
H 

, EZ = constant . 

The field equations as well as the boundary conditions governing a controllable state are all 

satisfied. 

3.6 DEFORMATIONS OF A CUBOID IN A UNIFORM FIELD OF FLUX 

Consider the deformations of a tube wall section, initially bounded by the surfaces 

R = R, , R = Rb 0 = f O0 and z = f ZO in cylindsical polar coordinates. For this 

deformation the particle initially at the point (R,O,Z) moves to the position (x,Y,z) in a 

cartesian system according to the following relations: 



The components of the finger strain g are - 

This mapping is volume preserving. With this deformation, we shall prescribe a uniform 

dielectric displacement field in the x - direction given by 

DX = constant , D y = D z = O  

a 
both inside as well as outside the dielectric. It is shown in [3] that such a state is 

controllable. 

3.7 DEFORMATIONS OF A CUBOID IN A ELECTRIC FIELD 

The defornlations given by (3.15) when combined with the prescribed uniform 

electric field 

Ey = constant , Ez = constant 

also forms a controllable state [3]. 

. 3.8 FLEXURAL DEFORMATIONS OF A BLOCK IN A RADIAL FIELD OF FLUX 



For this class of deformations, the particle occupies the final position (r,O,z) in 

cylindrical polar coordinates from its original position (X,Y,Z) in a cartesian system 

according to the mapping 

We assume that the block is infinitely long in the Z - direction and is bounded by two plane 

surfaces X = constant and two plane surfaces Y = constant before the deformation. Two 

plane surfaces X = constant become the internal and external cylindrical boundaries of the 
7[; 

tube whereas the planes Y = + - are mapped into 0 = If: n: as a result of the B 

deformation. 
The physical components of strain g in the cylindrical system (r,0,z) are found to be - 

It can be verified that the deformation (3.16) is volume preserving. If the dielectric 

displacement field 

is prescribed, then such a field combined with the deformation (3.16) generates a 

controllable state. 



3.9 FLEXURAL DEFORMATIONS OF A  BLOCK IN A  HELICAL ELECTRIC 

FIELD 

If with the deformation (3.16), an electric field of the form 

Es=O,  
H 

Ee=- ,  E, = constant (3.18) 
r 

is prescribed, then such a state of deformation and the field also forms a controllable state. 

3.10 AZIMUTHAL SHEAR OF A CUBOID IN A UNIFORM AXIAL FIELD 

In this deformation, the particle originally at the position (R,O,Z) takes up the 

position (r,O,z) such that 

The components of strain g are - 

2  g , , = ~ ~ ,  g s y = A  B ,  grz = 0 > 

The incompressibility condition is identically satisfied. 

With the strains (3.20), we prescribe the electric field 

E s = E e = O ,  EZ = constant , 



The deformation (3.19) and the electric field (3.21) yield a controllable state. 



CHAPTER 4 

4. SMALL FINITE DEFORMATION THEORIES 

The easly development in the area of small finite deformations in finite elasticity 

theory was initiated by Murnaghan and Rivlin. Singh [ 5 ]  formulated a similar theory of 

small finite deformations for elastic dielectrics. He ass~imed the stored energy to be a 

function of deformation gradients and the applied electric field. Basic equations which 

relate stress, strain, electric field and dielectric displacement field were obtained. Special 

polynomial forms of the stored energy function were derived. Two other researchers, 

Toupin [I] and Eringen [2 ] ,  have also worked on elastic dielectric problems by considering 

certain polynomial approximations of the strain energy function. Their treatment of the 

problems is different from that of Singh's. 

4.1 CONSTITUTIVE EQUATIONS 

Once again, the constitutive equations applicable to the chasge free medium 

surrounding the dielectric are the following: 

Here, E is the physical constant for free space and oij+ is the Maxwell's stress tensor. It is 

obvious that Mij identically satisfies the equilibrium equations withotit body forces. 



As we are only concerned with the homogenous and perfectly elastic dielectric bodies, we 

shall assume there exists a stored energy function W in the dielectric. This stored energy 

function is assumed to depend on the electric field Ei and the deformation gradients 

Following the procedure outlined in [5], we obtain the following constitutive equations 

and 

where p is the mass density measured in the defor-nlecl configuration. 

The principle of material indifference places some restriction on the form of W. According 

to this principie if a dieiecrric body experiences a rigid rotation together with the fieid Ei, 

then the force system will undergo the same rotation. This restriction requires stored 

energy to be of the form 

If we take a dielectric which is isotropic in its undeformed, field free state, then the stored 

energy function W has to be a function of the six scalar invariants 

where 



Substitution of W given by (4.7) into the constitutive equations (4.4) and (4.5) and the use 

of Cayley -Hamilton theorem reduces the constitutive equations for an isotropic, 

homogenous, elastic dielectric to the form 

and 

where 

gij2 = gik gkj 
Po and p =r . 

3 

Here, po is the mass density of the undeformed dielectric. 

4.1 APPROXMATE THEORIES 

Assuming that the stored energy function W (11~2,13,14,15,16) can be expressed as a 

polynomial in the invariants Ik, we may write 



Here, A a m k p  represent material constants. 

Different approximate forms of W are obtained depending on the number of terms we retain 

in (4.1 I), furnishing us with various approximate deformation theories for the 

homogeneous, isotropic, elastic dielectric. 

Let el, e2, e3, denote the principal extentions at a point P of the dielectric body and El, E2, 

E3 the components of the electric field referred to the principal directions of strain at P. 

Then the invariants (4.8) can be written as 

The series (4.11) can be written in a better form by defining a new set of invariants Jk 

Like invariants Ik, the invariants Jk also form a complete set for an isotropic dielectric. 

In terms of the new invariants Jk, 



where Bap@hP represent material constants. 

From (4.12) and (4.13), we observe that the invariants Jk have the property 

The polynomial (4.14) can give us different approximate forms of W depending on the 

order of the principal extentions and powers of the electric field we choose to retain in the 

expression. These approximate forms of W shall be satisfying the principle of mate~ial 

indifference and thus give a complete theory. Such forms will be invariant under all rigid 

rotations of the dielectric and the electric field. They can be compared to the approximate 

theories of finite elasticity like Mooney - Rivlin materials and the Neo - Hookean 

materials. 

4.2 FIRST APPROXIMATION 

For small principle extentions and weak electric fields, the first approximation is defined by 

retaining in W only terms involving principle extentions ei  up to second powers, terms 

involving the electric field to second powers in components Ei and product terms of the 



type e i  E ~ ~ .  With this definition (4.14) and (4.15) give the following form of the energy 

function : 

where ao, a l  , . . ., a6 are material constants. 

Since we want the stored energy W as well as stresses to vanish when in the field free 

undeformed state, we shall take no = a l  = 0. 

Hence (4.16) reduces to 

In the absence of an electric field, equation (4.17) reduces to Mooney - Rivlin form in 

finite elasticity 

aui 
If we further neglect terms higher than second in the displacement gradients -, the field 

axj  

2 aui components Ek and also product terms of order higher than Ek 6, then (4.17) takes the 
xj 

form 

where eij is the infinitesimal strain tensor 



The W given by (4.18) is the stored energy function of the classical coupled theory of 

electrostriction. 

It will not be out of place to mention here that the classical theory of electrostriction is not a 

complete theory because unlike W in (4.17), the W given by (4.1 8) does not allow 

arbitrary rigid rotations of the dielectric together with the electric field. 

Substituting (4.17) in (4.9) and (4.10), we obtain the constitutive equations of the first 

order finite deformation theory of isotropic, homogenous, elastic dielectrics : 

and 

4.3 SECOND APPROXIMATION 

Second approximation to W is defined by retaining terms in series (4.14) of power 

less than or equal to three in the principal extensions and electric, field components and 

2 2 product terms of order lower than or equal to ek Ei . The corresponding expression for 

W is 



As before, the a,'s are material constants. 

It is to be noted that in the absence of an electric field, equation (4.19) will yield the 

Murnagharn stored energy form for finite elasticity theory. 

4.4 INCOMPRESSIBLE DIELECTRIC 

So far our analysis is based on the fact that the elastic dielectrics are homogeneous and 

isotropic. But if, in addition, the dielectric is also incompressible, then the invariant I3 = 1 

and the stored energy W is a function only of the five invariants : 

w = w (11,12,I4,15,16) 

The condition of incompressibility I3 = 1 in terms of principal extensions ei is 

Introducing a new scalar invariant J2' 

the polynomial expansion (4.14) for W can be written as 

Hence, for first approximation of small finite deformations, W of (4.17) is replaced by 



Here, the b's are physical constants of the material. 

For the second approximation the form of W, instead of (4.19), is 

In dealing with conservative systems, condition of incompressibility produces a pressure p 

as a reaction. With the form of W as in (4.23), the constitutive equations (4.9) and (4.10) 

for the first approximation for an incompressible, homogeneous, isotropic, elastic dielectric 

are : 

Here, p is an arbitrary pressure and the constants C's are the material constants. 



CHAPTER 5 

5 .  DEFORMATIONS NON-CONTROLLABLE IN FINITE THEORY BUT 

CONTROLLABLE IN APPROXIMATE THEORIES 

The constitutive equations (4.9) and (4.10) with the most general form of strain energy are 

much more restrictive than the ones when the approximate forms of the strain energy function are 

used. The controllable states with the most general form of W for compressible dielectric are only 

homogeneous states [4]. When the dielectric is incompressible, the complete set of controllable 

states are listed in Section 3. It is quite obvious that such states shall be automatically controllable 

when approximate forms of the stored energy function are employed. However, there could be 

states which are controllable in the approximate theories but not controllable in the general theory. 

Singh [5] found one such deformation - simultaneous extension and shear of a cylindrical annulus 

for an incomgressib!e, homoger?eous, isozopic, elastic &e!ec~ic which is co: concd!ab!e with thz 

general form of W but is controllable when the first approximation for W (4.17) is used. In this 

presentation, our aim is to find more controllable states in this category. 



CHAPTER 6 

6. COMFRESSIBLE DIELECTRICS 

Singh and Trehan [8] proved that when the dielectric is compressible, only homogeneous 

states are controllable for all possible polynomial approximations of the stored energy function. 



CHAPTER 7 

7.  INCOMPRESSIBLE DIELECTRICS 

We shall employ here the first approximation for W given by (4.17) leading to the 

corresponding constitutive relations (4.25) and (4.26). The field equations (3.2), (3.3) and 

(3.4), as well as the boundary conditions (3.6), (3.7) and (3.8) remain the same. 

7.1 SIMULTANEOUS EXTENSION AND TORSION OF A CYLINDER 

We consider a tube of homogeneous, incompressible, elastic, dielectric with internal 

radius Ra and external radius Rb. The pasticle originally located at the point (R,O,Z) in 

cylindrical polar coordinates moves to the position (r,0,z) according to the relation : 

where A, D, F are constants. 

Incompressibility condition requires A F = 1. 

The mapping (7.1) is a special case of the mapping (3.12). However, we aim to combine 

this deformation with the electric field different from the one given by (3.15). 

We assume that a radial electric field is imposed by placing the tube between the plates of a 

coaxial cylindrical condenser. The form of this electric field inside the dielectric is 



The physical components of strain for (7.1) are 

g,, = F2 , 

(7.3) 

From (4.26), we get 

The boundary condition (3.7) demands 

or 

Hence, 

and the continuity condition @' - &).t = 0 at the boundary of the dielectric demands that 

and 

For the surrounding medium outside the dielectric, 



which means 

From (7.4), 

We can summarise the various components of the electric field and the electric flux as 

where 
K L=-(C2+AC3) . 
E 

It can be easily verified that the electric flux given by (7.6) is solenoidal and the electric 

field given by (7.5) is conservative. 

Using (7.2) and (7.3) in (4.25), we get 



Equilibrium equations without body forces in cylindrical coordinate system are given by 

Use of (7.7) in the above equations will satisfy the last two equations (7.8). The first 

equation will yield the pressure p : 

where Y is a constant of integration. 

In the medium surrounding the dielectric we can find the Maxwell stresses from the 

equation (2.15) 

. Therefore, in order to support the defamation (7.1) in the presence of field given by (7.5), 

we will have to apply the tractions to the curved surfaces r = JA Ra and r = 4~ Rb 

according to the formula : 



Using (7.7), (7.9) and (7.10) in the above relation, we obtain 

By setting the radial component Tr in (7.1 1) of the applied traction to zero, constant Y2 can 

be evaluated. Similar expressions like (7.11) and (7.12) can be obtained for surface 

tractions at the cwved surface r = d~ Rb 

7.2 CYLINDRICALLY SYMAETRICAL DEFORMATIONS OF A TUBE LT A 

UNIFORM ELECTRIC FIELD ALONG THE AXIS 

Consider an exactly similar tube as in section 7.1. Let this tube obey the following 

deformation relations 

where the constants A, B, . . ., F satisfy the incompressibility condition ACF = 1. 

Components of strain for (7.13) are : 



Let us superimpose an electric field 

on the deformation (7.13) inside the dielectric. 

The &electric Qsplacement field corresponding to the above mentioned prescribed electric 

field from (4.26) is 

Dr=O , Do=O , DZ = C2K + C ~ F ~ K  . 

From the boundary condition 

The boundary condition 

will be fulfilled if 

Using the relation 



for the medium surrounding the dielectric, we get, 

Summarising, the fields are 

Er=O , E 6 = 0  , E z = K  , 

E:=O , Eo 0 =O , Ez 0 = K  , (7.18) 

and 

Dr=O , DO=O , Dz = C2K + C ~ F ~ K  , 

D;=O , Do o = 0  , D, o =EK . (7.19) 

The fields given by (7.18) and (7.19) satisfy V x E = 0 and V.D = 0, respectively. 

As usual, we use (4.25) in combination with (7.18) and (7.19) for the calculation of 

stresses. We obtain 

Equilibrium equations without body forces in cylindrical coordinate system are : 



The stresses (7.20) satisfy the last two equations. Substituting, stress components from 

(7.20) into the first equilibrium equation, we obtain the pressure p as 

where Y3 is a constant of integration. 

From equation (2.15), the Maxwell stress components are 

The deformation (7.13) can be supported by the surface tractions at the curved surfaces 

r = ( A R ~ +  B)'I2 and r = (ARb2 + B)'I2. These surface tractions can be 

evaluated from the relation : 



Constant Yq can be found by setting Tr equal to zero. Similar expressions for surface 

tractions can be obtained at the surface r = ( A R ~ ~  c B ) ' ~  

7.3 CYLINDRICALLY SYMMETRICAL DEFORMATIONS OF A TUBE IN A 

UNIFORM AXIAL ELECTRIC FLUX 

Let us now superimpose a uniform axial dielectric displacement field 

inside the dielectric on the deformation (7.13) of section (7.2) 

From the relation 

Er=O , Ee=O , Ez = P2L + P~F'L . (7.24) 

Equation (7.14) gives us 

and (7.15) gives us 

E ~ O  = O  , 

From (7.24), 



From (7.25), 

In other words, 

It can be verified that the fields (7.29) and (7.30) satisfy V.D = 0 and V x E = 0, 

rsspecfive!p. 

For the calculation of stress components we make use of the relation : 

Using (7.14) and (7.29) in (7.31) we get : 



It is found that the stresses (7.32) satisfy the equilibrium equations and the first of them 

furnishes the pressure p : 

The relation for finding Maxwell stress components is 

This will yield 

From (7.22) we get the desired surface tractions 

Constant Y5 can be fo~md by setting Tr equal to zero. Same way surface tractions can be 

evaluated on the surface r = ( A R ~ ~  + B ) " ~  

7.4 DEFORMATIONS OF A CUBOID IN A UNIFORM ELECTRIC FlELD 

Let us consider a tube wall section bounded by the surfaces R = Ra, R = Rb, O = + OO and 

Z = 4 ZO in cylindrical polar coordinates. The particle originally at the point (R, @, Z) 



moves to the location (x, y, Z) in a cartesian system as follows : 

X = A R ~  , Y = B O  , z Z=-+CO , 2AB 

The strain components corresponding to this deformation are found to be 

Let the prescribed electric field inside the dielectric be 

From equation (4.26), the components of dielectric displacement field are 

BC 
D x = ( C 2 t 4 ~ 3 ~ 2 ~ 2 ) H  , D y = O  , Dz=C33H . (7.36) 

It is further assumed that the x - axis is perpendicular to the top and bottom faces of the 

cube. Then the boundary conditions 

and 

furnish 



and 
0 Ey = O  , E , O = O  . 

Equatioin (7.40) gives, 
0 Dy = O  , 0 Dz = O  

Rewriting equations (7.35), (7.36), (7.39), (7.40), (7.41), and (7.42) 

The fields (7.43) and (7.44) satisfy the field equations V x E = 0 and V.D = 0, 

respectively. 

Using equations (4.25), (7.34) and (7.35) for the calculation of components of stress, we 

get 

Equilibrium equations without body forces in cmesian coordinates are 



We note that stress components (7.45) are only functions of x. Using equation (7.45) in 

(7.46) we find that (b) and (c) are identically satisfied. Condition (a) gives pressure p 

which is assumed to be a function of variable x : 

where Y6 is a constant of integration. 

Using equation (2.15) we obtain the following components of Maxwell's stress 

Equation (7.22) will give the surfise tractions on fxes  xa = A R? and xb = A R$ : 

where Y7 is a constant of integration and can be found by equating Tx equal to zero. 

Similarly we can find the surface tractions on the other face xb = A R~~ 



7.5 DEFORMATIONS OF A CUBOID IN A UNIFORM FIELD OF FLUX : 

We now consider the deformation (7.33) and superimpose on it the dielectric displacement 

field 

inside the dielectric. 

The electric field components are calculated from 

They are 
B BC 

Ex=O , E y = P 2 M + P 3 ( i i ) 2 ~  , Ez=P3sM . (7.48) 

It is assumed that the x-axis is perpendicular to the top and bottom faces of the cube. 

Using equations (7.37) and (7.38), we get 

and therefore 

Also, then 
B D ~ O  = E M [p2 + P3 

and 



In summary, the electrostatic fields are 

The fields given by (7.5 1) and (7.52) satisfy the field equations V.D = 0 and V x E = 0, 

respectively. 

Using equations (7.31), (7.34) and (7.47), the stresses are given by 

Stress components (7.53) are functions of x only. Using equation (7.53) in (7.46) , the 

last two equilibrium equations are identically satisfied. Equation (7.46) (a) gives pressure 

p which we can assume to be a function of variable x only : 

where Y8 is a constant of integration. 

With (2.15), Maxwell stress components are 



Equation (7.22) gives the surface tractions on faces xa = A R:, xb  = A Rb 2 

Y9 is a constant of integration and can be found by setting Tx equal to zero. 

Surface tractions on the other face xb = A R~~ can be found in a similar way. 

7.6 FLEXURAL DEFORMATIONS OF A ULOCK IN A RADIAL ELECTRIC FIELD 

In this deformation, the particle moves from its original position (X, Y, 2) in cartesian 

system to (r, 8, Z) in cylindrical polar coordinates as follows : 

It is assumed that before the deformation, the block is infinitely long in the z - direction 

and is bounded by two plane surfaces x2 = constant and two plane surfaces y2 = constant. 

Two plane surfaces x2 = constant become the internal and external cylindrical boundaries 
n 

of the tube and the planes Y = k become 0 = k n as a result of deformation. 

The strain components corresponding to the mapping (7.54) are 



Let us superimpose a radial field of the form 

K E,=- , Eo=O , Ez=O . (7.56) 
r 

From equation (4.25), the components of dielectric displacement field are 

From equation (7.16), 

Therefore, 

From equation (7.17), 
0 EQ = O  , 0 Ez =O . 

Therefore, 

D e 0 = 0  Dz o = O  . 

Rewriting equations (7.56), (7.57), (7.58) and (7.59) 

K 
Er=-  , E Q = O  , Ez=O , 

f 



The electric field found above is conservative and the electric flux is solenoidal. 

Using equations (4.25), (7.55) and (7.56), the stress components are 

If we substutute (7.62) in (7.21) we will find that (b) and (c) are satisfied, where as (a) will 

give us the pressure p : 

2 lC2 1 p (r) = C ~ A  i n r + T ( Z ~ 2 + ~ 3 )  + y 1 0  , 
r 

where' Y is a constant of integration. 

Using (4.2) and (7.60) (b), Maxwell stress components are: 

The surface tractions required on the surface r = A X, to support this state are found to be 



Similar expressions for surface traction can be found for the s~lrface (r = A Xb) 



CHAPTER 8 

8. SECOND APPROXIMATION OF SMALL FINITE THEORY OF 

HOMOGENEOUS, ISOTROPIC, ELASTIC DIELECTRIC 

The field equations are, as before, 

and the boundary conditions on the surface of the dielectric are 

The surface tractions on the boundary of the dielectric can be determined by the relation 

8.1 CONSTITUTIVE EQUATIONS 

For second approximation, the stored energy function W has the form 



In terms of the invariants 11, 12, 13, we use equations (4.13) and (4.21) to get 

Simplifying equation (8.1) and rearranging terms, 

This means, 

The stress strain relations given earlier, are given by 



Substituting from (8.2) nnd (4.8) into (4.9) we obtain 



Here, p represents an arbitrary pressure and C's are the material constants. 

The dielectric displacement field Di from (4.10) is 

Using equations (8.2) and (4.8) 

Outside the dielectric, however, 

and 

D i = € E i  (2,14) 

8.2 CYLINDRICALLY SYMW3RICAL DEFORMATJQNS UP A TUBE IN A 

UNIFORM ELECTRIC 1'1 ELD ALONG THE AXIS - -- 

We shall consider the deformation given by the mapping 

r = ( m 2 + ~ ) l J 2  , 9 = co , Z=FZ (8.5) 
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in cylindrical polar coordinates. 
Components of the finger strain tensor g are - 

We combine with the defom~ation (8.6) the electric field 

The dielectric displacement field corresponding to the above prescribed electric field can be 

obtained from the relation (8.4) 

For satisfying the boundary condition 

@ O - u . n = ~  , 

0 Dr =Dr=O. 

we need 

The second boiindary condition 



will be fulfilled if we choose 

0 0 E0 =EC)=O and Ez =E,=K 

From the relation 

we get, 

In summary, 

D i = & E ;  

0 0 0 Do = O  , D, = E E ,  = E K  and E;=O 

The fields given by (8.10) and (8.11) satisfy the field equations V x E = 0 and V.D = 0, 

respectively. 

The components of stress from (8.3) are : 



The strsses (8.12) satisfy the last two equilibrium equations (7.21) (b) and (7.21) (c). 

Substituting (8.12) into the first equilibrium equation, we obtain the pressure p as 

Here, Y1 1 is a constant of integration 

Using equation (2.15), the Maxwell stress components are 

The deformation (8.5) can be supportaed by the surface tractions at the curved surfaces 

r = (A R? + B)ln and r = (A Rb2 + B ) ' ~ .  These surface tractions can be 

evaluated from the relation (7.22) 

The constant Y12 can be found by setting Tr equal to zero. Similar expressions for surface 

tractions can be obtained at the surface r = (A R~~ + B ) ' ~  



8 .3  CYLINDRICALLY SYMMETRICAL DEFORMATIONS OF A TUBE IN A 

UNIFORM DIELECTRIC DISPLACEMENT FIELD 

Here, we combine with the deformation (8.6), the dielectric displacement field 

The electric field corresponding to (8.13) dielectric displacement field can be obtained from 

the relation 

which is, 

Equation (8.9) will be satisfied if 

0 E8 = E e = O  , EZ = Ez = K ( P ~ F ~  + P4 + p5F2 + P$?) . 

Equation (8.8) will be satisfied if 

0 D, =D,=O . 

From the relation 



we get, 

and 

In summary, 

The fields given by (8.14) and (8.15) satisfy the field equations V x E = 0 and V.D = 0: 

respectively. 

The components of stress can be obtained from the equation 

Here, p and the constants P's have the usual meaning. 



The stresses (8.16) satisfy the last two equilibrium equations (7.21) (b) and (7.21) (c). 

The first equilibrium equation yield the pressure p as : 

Here, Y13 is aconstant of integsation. 

Using equation (2.15), the Maxwell stress components are 

The deformation (8.5) can be supported by the surface tractions at the curved surfaces 

r = ( A R ~  + B)'I2 and r = (ARb2 + B)lD. These surface tractions can be evaluated from 

the relation (7.22) 

The constant Y 14 can be found by setting Ts equal to zero. Similar expressions for surface 

tractions can be obtained at the sufixe r = (A Rb2 + B)lD 
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