
GUIDING DESIGN DECISIONS
IN

RT-LEVEL LOGIC SY NTHESlS

Shiv Prakash

B.Tech., Indian Institute of Technology Kanpur, 1982

A TlYESlS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Shiv Prakash 1987

SIMON FRASER UNIVERSITY

April 1987

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Name : Shiv Prakash

Degree : Mas te r o f Science

T i t l e o f Thes is : Guid ing Design Decisions in RT-level Logic Synthesis

Examin ing Commit tee:
Chairman: Dr. Binay Bhattacharya

D r . Pavol Hell

School o f Comput ing Science

Simon Fraser Universi ty

PARTIAL COPYRIGHT LICENSE

1 hereby g r a n t t o Simon Fraser University the r i g h t t o lend

my t h e s i s , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown b e l o w)

t o users o f t he Simon Fraser U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r

s i n g l e cop ies o n l y f o r such Users O r i n response t o a r eques t f ram t h e

I i b r a r y o f any o t h e r u n i v e r s i t y , o r o t h e r educa t iona l i n s t i t u t i o n , on

i t s own beha l f o r f o r one o f i t s use rs * I f u r t h e r agree t h a t pe rm iss i on

f o r m u l t i p l e copy ing o f t h i s work f o r s c h o l a r l y purposes may be g ran ted

by me o r t h e Dean o f Graduate S tud ies . I t i s understood t h a t copy ing

o r o f t h i s work f o r f i n a n c i a l g a i n s h a l l no t be a l towed

w i t h o u t my w r i t t e n permiss ion.

T i t l e o f Thes is /Pro ject /Extended Essay

Author: I

/'

(s i g n a t u r e)

(name

(d a t e)

Abstract

This thesis addresses an efficiency problem in a mixed-integer linear programming

(MILP) approach to automated synthesis of RT-level digital logic. The approach

to the problem is to use simplified design paradigms practiced by human designers

to guide the progress of a branch-and-bound MlLP algorithm.

Three simplified human design strategies have been considered: storage elements

first (SEF), operators first (OPF). and critical path first (CPF). In addition. a

few artificial strategies, not directly derivable from human paradigms. have been

investigated. The strategies have been incorporated into the branch-and-bound MlLP

program to guide the solution process. Three examples are examined to investigate

the effectiveness of the strategies Results indicate the approach to be promising in

improving the speed of the solution process. Broadly speaking, the simpler

strategies SEF and OPF seem to be more effective than the more sophisticated

idea of CPF.

Acknowledgements

On the academic side. I owe a great debt of gratitude to my Senior Supervisor.

Prof. Lou Hafer. It was he who hooked me on design automation to, couple of

years ago, and since then has alternately inspired and dragged me to the point

where I can write this page. His support, patience, and invaluable insights have

enabled me to complete an endeavor which I thought would never finish. I would

also like to thank Prof. Pavol Hell for his constructive comments and suggestions

while this thesis was still forming. I am very grateful to Prof. Joe Peters for

being my external examiner and for helping with the revision of the thesis. Finally.

thanks are also due to Wuyi Wu for her help with some of the examples used in

the thesis.

There IS life outside academia, however, and I owe thanks to my friend Hafeez

who kept me going. Thanks to faculty. staff, and graduate students of the School

of Computing Science and al l other friends for making my stay in SFU both

motivating and enjoyable.

T o my parents

Table of Contents

Approval

Abstract

Acknowledgements

Table of Contents

List of Tables

List of Figures

1. Introduction
1.1. Motivation
1.2. The RT-Level Logic Synthesis System
1.3. The Problem and The Approach

2. Prior Work
2.1. CAD/DA Work

2.1.1. The CMU-DA Project
2.1.2. RT-Level Logic Synthesis System

2.2. M lLP Work

3. The Approach and The Design Strategies
3.1. The Approach
3.2. Discussion of the Design Strategies

3.2.1. Generalized Design Strategy Used by People
3.2.2. Simplified Design Strategies

3.2.2.1. Storage Elements First
3.2.2.2. Operators First
3.2.2.3. Critical Path First

3.2.3. Some Artificial Strategies

4. Experiments and Results
4.1. The BANDBX Program
4.2. Measure of Effectiveness of a Strategy
4.3. Synthesis Examples

4.3.1. Criss.Cross Example
4.3.2. Logic Example
4.3.3. Critical Path (CPath) Example

viii

5. 0 bservations and Conclusions
5.1. Observations

5.1.1 General Observations
5.1.2. More Specific Observations

5.2. Discussion and Some Explanations
5.2.1. Simple Ordering Strategies
5.2.2. Crit ical Path Strategies
5.2.3 Comparison

5.3. Suggestions for Further Research
5.3.1. Stat ic Guidance Strategies
5.3.2. Dynamic Guidance Strategies

Appendix A. B A N DBX Statistics
References

List of Tables

Tab le 2-1:
Tab le 2-2:
Tab le 2-3:
Tab le 3-1:
Table 4-1:
Tab le 4-2:
Table 4-3:
Tab le 5-1:
Tab le 5-1:
Tab le A-1:
Tab le A-2:
Tab le A-3:
Tab le A-4:
Tab le A-5:
Tab le A-6:
Tab le A-7:
Tab le A-8:

Timing Variables for the Synthesis Model

Hardware Timing Values

Binary Variables for the Synthesis Model
Strategies to Guide the Branch-and-Bound

Hardware Elements for Criss.Cross lmplementation
Hardware Elements for Logic lmplementation

Hardware Elements for CPath lmplementation
Normalized Number of Subproblems Solved (1 of 2)
Normalized Number of Subproblems Solved (2 of 2)
BANDBX Statistics for Criss.Cross Cost Optimization
BANDBX Statistics for Criss.Cross Time Optimization

BANDBX Statistics for Criss.Cross Cost-Time Tradeoff

BANDBX Statistics for Logic Cost Optimization
BANDBX Statistics for Logic Time Optimization
BANDBX Statistics for CPath Cost Optimization

BANDBX Statistics for CPath Time Optimization
BAN DBX Statistics for CPath Cost-Time Tradeoff

viii

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 5-1:

CMU-DA System Overview
Example ISPS behavioural description: calc

VT representation of calc
Timing relations for operation execution

Timing relations for storing a value

Criss.Cross ISPS Behavioral Description

Criss.Cross VT representation
Restrictions on Implementation of Criss.Cross

Logic ISPS Behavioral Description

Logic VT representation
Restrictions on Implementation of Logic
CPath ISPS Behavioral Description

CPath V T representation
Restrictions on Inlplementation of CPath

Comparison of Strategies

Chapter 1

Introduction

The research reported in this thesis is directed at improving the efficiency of a

mixed-integer linear programming (MILP) approach to automated synthesis of the

data path for a piece of digital hardware, given a description of the behaviour the

hardware is to implement. The approach is to use design paradigms practiced by

human designers to guide the progress of a branch-and-bound MILP algorithm.

1.1. Mot ivat ion

With the advent of VLSl technology, the functional complexity of a chip has

increased drastically. Accordingly, the complexity of the process of VLSl design

has increased so that a designer must keep track of vast amounts of information

during the design process. It is well known that humans are not very good at

handling lots of information a t the same time. Therefore, we need to develop

systems which will automate the process of hardware design.

The problem faced by digital designers is to come up with a hardware

implementation of a digital system which is optimal with respect to some set of

design objectives. More often than not the design objectives are in conflict with

each other. Therefore, instead of an absolute optimal design we have a set of

1

noninferior designs, where a noninferior design is defined as an implementation

which can be improved with respect to any one objective only a t the expense of

other objectives. The noninferior designs reflect the tradeoffs among the design

goals. The designer has to get to the best solution by generating the whole set of

noninferior designs and then selecting the element of the set which embodies the

most acceptable tradeoff among the various objectives. The number of noninferior

designs is usually large enough to make it almost impossible for an unaided

designer to explore all of them because of the design cycle time that has to be

met. Therefore, for a CAD/DA system to be really useful, it is imperative that it

be able to generate the set of noninferior designs as quickly as possible. In other

words, an automated synthesis system must have the ability to produce different

implementations quickly.

1.2. The RT-Leve l Logic Synthesis System

The register- transfer (RT) level logic synthesis system described in [Hafer

811 can be used for the automated synthesis of RT-level data parts for digital

systems Given an RT--level behavioural specification of the digital logic. it develops

algebraic relations which express the timing relations that must be satisfied by any

correct implementation. The system introduces binary variables into the model to

allow the inclusion of implementation decisions. The model. viewed as a system

of constraints, is first linearized and then solved as an MlLP problem to optimize

the objective function supplied by the designer for evaluating candidate

3

implementations. The MlLP solution is found with the BANDBX program [Martin

781, which uses a branch-and-bound technique to solve the problem.

The system is certainly a step towards automating the data part design.

however, it is not very successful in terms of producing an implementation quickly.

Unspecialized MlLP programs like BANDBX require an infeasible amount of

computational time for any reasonable size design. The ineffectiveness of

unspecialized MILP, in particular the BANDBX program, is mainly due to the fact

that it is based on a generic branch-and-bound algorithm. To make the MlLP

approach practical for large design problems. we have to devise a more specialized

branch- and-bound algorithm.

1.3. T h e Problem and The Approach

The problem is that the RT-level logic synthesis system requires an infeasible

amount of computational time, especially if: the designer wishes to explore

alternative implementations. This thesis will focus on this problem and investigate

how to devise a faster branch-and-bound algorithm in order to improve the

performance of the system.

One way to improve the efficiency of a branch-and-bound algorithm is to use

 problem^-specific knowledge to guide the progress of the algorithm. This is the

approach adopted in this thesis.

Chapter 2

Prior Work

2.1. CAD/DA Work

The RT-level logic synthesis system of [Hafer 811 was developed as part of the

CMU-DA (Carnegie-Mellon University - Design Automation) project.

2.1.1. The C M U - D A Project

The CMU-DA project is a major research effort directed at developing a

technology-relative structured design aid to help designers explore a large number

of alternative implementations for a given digital system. The overall structure

proposed for the CMU-DA system is shown in Figure 2-1. The behavioural

description of a design, is written in the ISPS hardware description language and

translated into a parse tree which is then converted into a data flow description

called the value trace (VT) . The nodes of the V T correspond to operations on

data values. and the edges represent the flow of these values between operations.

After the design style selector chooses the most suitable design style, the

partitioner grcups operations from the abstract design representation into control

steps. Tradeoffs between the data and control parts are made at this level. A

datalmemory allocator decides the number and type of functional modules

ISPS

BOUND DATA PAART I

CONTROL GR.4PH I
1IODULE BINDER

1
BOUND CONTROL PART I

PHYSICAL LAYOCT L
t

COMPLETED DESIGN

Figure 2-1: CMU-DA System Overview

(operators, registers, data paths and switching functions) needed to implement the

data part of the design. A control allocator generates a sequential state machine to

control the data part produced by the DM allocator. The module binder then

selects the physical modules from the module set library to implement the data

and control parts. Finally, a physical DA subsystem handles the physical layout for

the proposed implementation and prepares engineering documentation. The

interested reader is referred to [Thomas 831 or [Thomas 861 for additional material

and references.

2.1.2. RT-Leve l Logic Synthesis System

In the context of Figure 2-1, the system of [Hafer 811 performs the function of

datalmemory allocation and control step part~tioning simultaneously. The system

formalizes the design problem using a set of algebraic relations expressing the

constraints on the design and uses constrained optimization techniques to solve the

problem. It expresses the data path synthes~s problem as a set of algebraic-

relation constraints and solves it as an MILP problem. The algebraic relations that

make up the constraint set encompass the behaviour the design must support and

the performance constraints it must satisfy. The relations are derived from the

V T data flow representation.

The V T representation expresses the original RT-level behavioural specification in

terms of operators and values. For example. Figure 2-2 is a simple two line ISPS

behavioural description specifying two data transfers and Figure 2-3 is the

calc :=

(A - (A I + 1) next

Figure 2-2: Example ISPS behavioura l descr ipt ion: calc

Figure 2-3: VT representat ion o f calc

8

corresponding V T representation. Figure 2-3 also illustrates the naming convention

for components of the V T representation. Operation nodes are labeled xl, x2, etc.,

and xa indicates an operation in general. The inputs to operation x, are labeled

' a . b v and the outputs o,,, where the subscripts b and c distinguish individual

values. By convention, a 0 (zero) operation subscript indicates the external

environment, so iO,, is an input from the external environment, and o ~ , ~ is an

output to the external environment.

To write algebraic relations describing the proper timing and sequencing

properties required for correct behaviour. the system defines variables to represent

certain critical times. These are associated with the operations and values of the

V T , and are defined in Table 2-1.

To construct an implementation. the available hardware elements must be known.

Two types of hardware elements are considered:

1. Operators labeled fd (e .g . . fl. f2) .

2. Storage elements labeled s, (e.g.. sl. s2).

Hardware elements having both operation and storage capabilities are not allowed.

The system needs to know certain timing values associated with the hardware

elements available. Table 2-2 shows the set of time delays that are assoc~ated

with hardware elements. For any specific element, these values are assumed to

be available from data sheets or similar sources. For each V T operation x,, the

Table 2-1: Timing Variables for the Synthesis Model

T ~ ~ (i a . b) Time when the value required by input i,.b of operation x, is

available for use in the computation.

'XS ('a) Time when the computation of operation x a actually begins.

ToA(O,) Time when the output values 0, computed by operation x, are

available at the outputs of the operator performing the operation.

T ~ ~ (x ,) Time when the output values 0, of operation X, are no longer

required as input values for another operation, and thus the time

that execution of the operation can cease.

Time when the input values for operation x, are no longer

required.

Time when output value o,,, is no longer required as an input

value for another operation.

Time when the storage element assigned to store output value

O A c is clocked.

Time when the value o,,, is available at the output of the

storage element assigned to store it.

Time when the stored copy of value oa,, is no longer required as

an input value for an operation.

Table 2-2: Hardware Timing Values

D ~ ~ (f d) Propagation delay time of operator fd from the appearance of the

input value(s) at the operator input(s) to the appearance of the

output vaiue(s) at the operator output(s)

Setup time at the data input of storage element s,; data at the

input to storage element s, must be valid for at least this long

prior to a transition at the clock input of the storage element.

Hold time at the data input of storage element s,: data at the

input of storage element s, must remain valid for at least t h~s

long after the transition at the clock input of the storage

element.

Propagation delay time of storage element s, from the transition

a t the clock input to the appearance of the value at the storage

element output.

designer has to specify F,, the set of operators available to implement the

operation, and for each output value o,,,. (s)he has to specify S,,c, the set of

storage elements available to store the value.

The system introduces three types of binary variables (a . p , 8) into the model

relations to allow the inclusion of implementation decisions. These variables are

used to represent the mapping of the operations and values of the VT onto the

operators and storage elements which compose the implementation. and to specify

how operation inputs are accessed, as shown in Table 2-3.

Table 2-3: Binary Variables for the Synthesis Model

Od.a Specifies the operation to operator mapping. o d d = 1 indicates
that operator fd will implement operation x,.

Specifies the output value to storage element mapping,
pe,a,c = 1

indicates that storage element s, will be used to store output

value o,,,.

Specifies how the value required by input i a b is accessed.

1 indicates the stored copy of the value is accessed.

The model consists of three types of algebraic relations:

1. Relations which model the execution of an operation by an operator:

Some relations in this category express necessary conditions for a
correct implementation. e.g.. one and only one operator should be
selected to implement an operation:

o d a = l .
d f d € F a

Other relations express the relationships between various timing variables

based on Figure 2-4. e.g.. the outputs of an operator are valid after a

propagation delay:

2. Relations which model storing a value in a storage element:

These relations express the relationships between various t im~ng

variables based on Figure 2-5. e.g.. the outputs of a storage element

are valid after a propagation delay:

Figure 2-4: Timing relations for operation execution

Figure 2-5: Timing relations for storing a value

3. Relations which ensure that hardware resources are shared correctly:

These relations are necessary to prevent overlaps in the scheduling of

events on hardware elements.

Thus, the system formally models digital systems by algebraic relations. The

system finds a simultaneous solution of the algebraic relations as a constrained

optimization problem and produces a globally optimal design with respect to the

objective function. The set of relations is first linearized and then solved as an

MlLP ~rob lem, yielding both a design for the data part and a timing specification

which details how the behavioural actions are to be executed on the data part.

2.2. MlLP Work

There has been a lot of research effort aimed at improving the effectiveness of

branch-and-bound algorithms. As we know. the branch-and-bound technique involves

searching through a tree whose leaves are the candidate solutions to the problem.

The algorithm reaches the optimal solution faster if it searches through the

appropriate branches first. So, the criteria used for 'branching in the algorithm

plays a very important role in the success of the algorithm. A survey of integer

programming computer codes [Land 791 shows that a wide variety of heuristic

ideas and rules has been used to select the variable to branch upon in various

commercial codes. One of the rules which is fairly common is based on the idea

of priorities.

14

It has been observed [Mitra 731 that branching upon variables in order of their

importance, in some sense, can accelerate the progress of the algorithm. For

example, some large scale hierarchical planning models involving binary variables.

which could not be solved with any standard techniques, were solved when the

variables were ordered by importance. 1.e.. advantage was taken of the hierarchical

structure of variables [Johnson 851. As is obvious, to organize variables in the

order of importance we require problem-specific knowledge. So, it seems that using

knowledge about the problem to guide the branching process can enhance the

speed of the algorithm.

Chapter 3

T h e Approach and T h e Design Strategies

The synthesis model requires many relations and variables to formally specify the

constraints and objectives for a design. As a matter of fact, if n is a composite

estimate of the number of operators and values in the VT, and h is a composite

estimate of the number of hardware elements available for the implementation. then

the number of algebraic relations grows as 0(hn2), the number of continuous

variables grows as O(n) and the number of binary variables grows as 0(hn2)

[Hafer 811. The BANDBX program is able to produce optimal results for small

designs, but with very large solution times. The growth rate of the constraint

system makes unspecialized MILP impractical for non-trivial designs.

To reduce the computational time required by the synthesis system. it is

mandatory to devise an efficient branch-and-bound technique which, when

incorporated into BAN DBX, will make it faster.

3.1. The Approach

Before we outline the approach to be taken. let us have a quick discussion of

the branch-and-.bound technique. I t involves the following four major steps:

STEP 1: Solve the LP relaxation for a bound.

STEP 2: Try to fathom the current subproblem due to the bound or
penalties.

STEP 3: ' Pick a fractional-valued binary variable and force ~t to 0 and 1.
creating two subproblems.

STEP 4: Solve each subproblem in turn.

The phrase 'fractional--valued binary variable' means a variable that assumes a

non-integer value between 0 and 1 in the solution to the current subproblem, but

must assume a binary value in a feasible solution to the given MlLP problem.

Steps 1. 2, and 4 are fairly straightforward and there is not much one could do

about them. Step 3 seems to be crucial as far as efficiency of the technique goes

because i t involves a choice. At a point in time, there will usually be more than

one fractional-valued binary variable. and which one to pick for forcing is a

decision to be made based on certain criteria. Of course. the more effective the

criteria used, the better the performance of the algorithm will be. As discussec;

earlier, one type of criterion used is based on the idea of organizing the binary

variables in the order of importance. This is the approach undertaken in this

research.

Now, the question is how one goes about ordering the variables by importance.

The answer is that one has to know about the roles of the various variables in

the problem being considered. If we look at the synthesis model, the binary

variables were introduced into the model to represent implementation decisions.

Forcing a binary variable either way implies that a design decision is being made.

one way or the other. Thus, ordering binary variables by importance is equivalent

to ordering design decisions by importance. This is where the design knowledge

has to be used. A human designer makes various design decisions in certain

order, 1.e.. (s)he makes what (s)he considers more important decisions first. The

designer usually follows an order of decisions dictated by a dynamic design

strategy. The exact design strategy used by a human designer is not very well

understood and is certainly complex. I t is therefore worthwhile to investigate first

the performance gains which can be obtained from simplified design strategies. The

following are some simplified design strateg~es worth considering:

1. Storage elements first.

2. Operators first.

3. Critical path first.

The research investigates the effectiveness of each of these strategies in guiding

step 3 of the general branch-and-bound algorithm discussed on page 16. A few

more artificial strategies are investigated for the sake of completeness.

18

3.2. Discussion o f the Design Strategies

3.2.1. Generalized Design S t ra tegy U s e d by People

The question of how people do designs is not very well answered. The design

strategy used by a human designer is certainly complex and dynamic. The process

of design is not a formalized one; it involves a heuristic approach. The

implementation is constructed using a collection of independent rules and

procedures which are applied on a case-by-case basis until the designer is satisfied

that the design constrarnts have been met. The rules and procedures are applied in

different orders for different examples. For a given design example, the order is

not predetermined. It is determined dynamically in the design process. The next

rule to be applied is dependent on how the design has progressed so far.

Eventually, the designer stops when (s)he feels that all the design constraints have

been met

The point made by the above discussion is that the process of design is really

complex and it is hard to exactly outline the way people do designs. One basic

idea which is very relevant in this context is the idea of "focusing attention" The

whole process of design seems to be revolving around this idea. In any reasonable

size design, there are so many details involved that it is almost impossible for a

human designer to keep track of the overall global view of the design at all times.

Therefore, people try to break a bigger design into smaller designs. At a given

time, they focus attention on a certain part of the design. When it is done, the

designer moves on to another part. The order in which various parts of the design

are considered is decided by the designer based on his idea of the importance of

various parts. The fact that the designer's idea of the importance of various parts

is dynamic contributes to the complexity of the design strategy. The next part to

be considered is dependent on how the design has progressed so far.

Some of the considerations in deciding the importance of various parts are visible

architectural values, functionality. and performance of the design. In many design

situations, there are certain architectural values visible to the outside world and i t

might be a good idea to work on these first, e.g.. in a processor design. the

designer might decide first on the storage elements representing the architectural

registers of the processor. In some other situations, the correct functionality of

certain parts might be more important. or the performance of the overall system.

say, in terms of the execution time. The important point is that none of the

considerations are used in isolation in a given situation. All the considerations are

entangled in the decision function of a human designer and so (s)he ends up

doing a bit of this and a bit of that. E.g.. one scenario could be where a human

designer picks up a part of the data path which (s)he thinks is crucial to the

performance of the overall system. then decides on some operators and storage

elements to be used in this part, then realizes that the rest of the decisions

regarding this part could be made more efficiently if the design of another part of

the data path were known because of the interactions between the two parts. So

(s)he shifts focus, designs that part, comes back to finish the design of t h ~ s part.

then picks up some other less important part, and so on. So. the whole process

or the strategy is very entangled in terms of the order of decisions. The general

design strategy used by people being so complex. let us consider some of its

simplifications. They are discussed in the next subsection.

3.2.2. Sirn~lifiod Design Strategies

The various design strategies investigated for the guidance of the MlLP solution

process are:

1. Storage elements first

2. Operators first.

3. Critical path first.

These are, in some sense, simphfications of the more general strategy discussed

in the previous subsection.

3.2.2.1. Storage Elements First

O This strategy is based on the idea that the decisions regarding visible

architectural values are more important. The strategy says that the decisions

regarding storage elements should be made first. The decisions as to whether or

not a given value in the VT description is to be stored and, if yes, what storage

element is to be used to store i t , are made first and only then are the decisions

regarding operators considered. This is a very simplified approach, however, it IS

used in practice sometimes. The effectiveness of this simplified approach in guiding

the branch-and-bound procedure is investigated.

In the context of the synthesis model, the strategy implies that the binary

variables related to storage decisions should be given higher priority compared to

those related to operator decisions. In other words, the variables of type p and

type 6 are considered more important than the variables of type a in the branch-

variable selection process. The strategy by itself does not dictate the order of

importance between type p and type 8. So. two strategies corresponding to the

following permutations are investigated:

1. p. 8, a

2 . 8. p. 0

3.2.2.2. Operators First

This strategy tries to get the correct functionality first. In this strategy.

decisions regarding operators are made first. 1.e.. decisions as to what operators

are to be used and what operators are to be shared. Only after operators are

decided are storage elements considered. This strategy is less commonly used in

practice However, it represents an exact counterpoint to the first strategy and

thus is of interest in this research.

In the context of the synthesis model, the variables of type (I are considered

more important than the variables of type 8 and type p. Again, two strategies

corresponding to the following permutations are investigated:

1. a . 6. p

2. a . p. 6

3.2.2.3. Crit ical P a t h First

This strategy says that first the attention should be focussed on the path which

is crucial to the performance of the overall design in terms of the execution time.

A critical path in a V T description is the one which has the longest timing.

Clearly this path determines the minimum total execution time and thus is critical

to the performance of the data part. Hence, the decisions regarding the allocation

of hardware to perform operations on the critical path of the data part are more

important. In the critical path first strategy, these decisions are made first and

then the decisions about other paths are considered. This is a fairly commonly

used strategy in practice and therefore is investigated.

In the context of the synthesis model, of course, the binary variables related to

the critical path would be considered more important than the others. We can

incorporate some more ideas within the general idea of critical path strategy. The

variables related to the critical path can be ordered within themselves based on a

certain strategy, e.g.. Storage Elements First or Operators First. The following

seven different orderings of variables within the critical path are investigated (the

variables related to the non-critical part are not ordered within themselves):

I . Simple Critical Path Strategy: In this case, there is no ordering within

the critical path. All the binary variables are divided into two groups.

The critical path group has higher priority than the other one.

2 . p6o Critical Path Strategy: Here, the variables within the critical path

are divided into three groups, each group representing a type (a , p, or

6) . Priorities are dictated by the p, 6 , o order.

3 . 6po Critical Path Strategy: Again. the variables within the critical path
are divided into three groups and priorities are dictated by the 6. p, a

order.

4 . asp Critical Path Strategy: Here, the priorities within the critical path

are dictated by the a , 6, p order.

5. up6 Critical Path Strategy: Here, the priorities within the critical path

are in the a . p, 6 order.

6. Forward Propagation Critical Path Strategy: Any particular data path in
the V T representation has a direction associated with it. the direction in

which the data (or value) propagates along the path. The binary
variables related to a path can be associated with different points on
the path. So, we can order the variables associated with the critical

path by traversing the path in the direction of data propagation. The

order thus generated dictates the priorities in this strategy.

7 . Reverse Propagation Critical Path Strategy: The order within the critical
path here is exactly the reverse of that in forward propagat~on, 1.e.. we

traverse the path in the direction opposite to that of data propagation.

3.2.3. S o m e Artif icial Strategies

As we saw in the previous subsection. we are going to investigate different

permutations and combinations based on certain simplified ideas. We are

considering four different permutations for the 6. p. a ordering. We did not

consider the following two permutations:

They do not exactly correspond to any of the strategies discussed in the previous

subsection and so we call them artificial strategies. For the sake of completeness.

we investigate these too.

Again, for the sake of completeness, we combine these two permutations with

the critical path idea and investigate the following two strategies (with obvious

definitions) :

1. p(r6 Critical Path Strategy.

2. 6 a p Critical Path Strategy.

So, overall we are investigating sixteen different strategies to guide the b r a n ~ h - ~ ~ d -

bound process. For a quick reference. they are listed in Table 3-1, containing an

abbreviated as well as an explanatory name for each strategy.

2 5

Table 3-1: Strategies to Guide the Branch-and-Bound

NG

pso S

Gpo S

a6pS

a pGS

p a GS

Saps

SCP

pGuCP

Gpo CP

cr GpC P

a pGC P

paGCP

SapCP

FPCP

RPCP

No guidance (original BANDBX program).

Simple p. 8, a ordering.

Simple 6. p. a ordering.

Simple a . 6, p ordering.

Simple a , p. 6 ordering.

Simple p. a . 6 ordering.

Simple 6. a. p ordering.

Simple Critical Path strategy.

p. 6, a ordering within the Critical Path.

8. p . n ordering within the Critical Path.

a . 6, p ordering within the Critical Path.

a . p. 6 ordering within the Critical Path.

p, a . 6 ordering within the Critical Path.

6, a , p ordering within the Critical Path.

Forward Propagation Critical Path Strategy.

Reverse Propagation Critical Path Strategy.

Chapter 4

Experiments and Results

To investigate the effectiveness of the strategies discussed in the previous

chapter in guiding the branch-and-bound. we solved a few synthesis examples using

each strategy. The BANDBX program did not have the flexibility to allow these

strategies to be incorporated into the branch-variable selection process. To

implement the strategies, some rnodificatjons were made to the BANDBX program.

A few words about the BANDBX program and the n~odifications are in order.

4.1. T h e BANDBX Program

The BANDBX program is an enumeration code for pure and mixed zero-one

linear programming problems. It is based upon a branch-and-bound algorithm. After

the linear program defined at a given subproblem has been solved, the solution is

checked for possible fathoming by infeasibility. bounds. integrality, and penalties. If

the subproblem cannot be fathomed, the code then proceeds to either fix all

monotone variables (fractional-valued binary variables that can assume only one

value in successor subproblems due to feasibility or penalties) or, if no monotone

variables are present, to branch on a fractional-valued binary variable.

Two penalties are calculated for each fractional-valued binary variable. one by

26

forcing it t o 0 and the other by forcing it to 1. The choice of branching variable

and direction IS made by selecting the largest among all penalties and branch~ng on

the corresponding variable in the direction opposite to that yielding the maximurn

penalty. As is obvious. there is no consideration, whatsoever, of the importance of

variables in the BANDBX code. Appropriate modifications were made and a few

subroutines were written to allow the inclusion of importance of variables in the

branch-variable selection process. Then each of the .strategies in Table 3-1 was

incorporated into the program to dictate importance of the variables.

4.2. Measure of Effectiveness of a Strategy

Now, the question is how to evaluate the effectiveness of different strategies.

The BANDBX program compiles and reports an extensive set of statistics detailing

the solution process. The following pieces of information are particularly relevant to

our experiments:

1. Number of the subproblem at which the optimal solution was found

(SPOPT#).

2. Total number of subproblems solved (TOTSP#)

3. Total number of simplex pivots performed to solve the linear relaxations

(TSIMP#).

The three numbers give a good indication of how much time the branch-and-

bound process took. The magnitude of the numbers certainly reflects upon how

effective the strategy was in pruning the branch-and-bound tree. We will use these

numbers in evaluating the effectiveness of strategies.

4.3. Synthesis Examples

T h e fo l low ing three examples were solved:

1. Cr iss.Cross Example

2. Logic Example

3. Cr i t ica l Pa th Example

Resul ts regarding t he t i m e taken by BANDBX t o solve t he problems, when guided

by var ious strategies, are given here. Detai led analysis and discussion of t he

resul ts fo l lows i n t he nex t chapter

4.3.1. Criss.Cross Example

T h e ISPS behavioural descr ipt ion and VT representat ion fo r t he example are

s h o w n i n Figure 4-1 and Figure 4-2 respect ively.

Criss.Cross : =

BEGIN

* * Carriers * *
t1<0:15) .
t2<0:15) .
ac0:15) .
b<0:15) .

* * Activity * *
action :=

(tl -a+b next
t2 -a-b next
a -tl+t2 next
b -tl-t2

END

Figure 4-1: Criss.Cross ISPS Behaviora l Descr ip t ion

Figure 4-2: Criss.Cross VT representation

The form of the implementation has been somewhat arbitrarily restricted. as shown

in Figure 4-3.

Figure 4-3: Restrictions on Implementation of Criss.Cross

The details of the hardware set available for implementation are given in Table

4-1. The period during which the inputs lo are valid is restricted to the ~nterval 0

to 100 ns., and we have assumed a single control signal to latch the inputs. As

shown in Figure 4-3, we have required the output values OO to be accessed from

register outputs, and forced the values 0 3 , ~ and 04,1 to be stored, by setting the

variables fiRl. 60,2. P , , ~ , ~ , and ~ 2 . 4 , ~ to 1.

The synthesis model incorporating the restrictions mentioned was developed.

The model consists of 112 equations involving 72 variables of which 35 are binary

variables. The model was solved for the following three implementations:

1. Implementation optimizing the cost: Here. it was assumed that the

performance requirements were that the outputs had to be valid at the

time t=800 ns. and remain valid until the time t=900 ns. The model

was solved, with cost as the objective function, using each of the

Table 4-1: Hardware Elements for Criss.Cross Implementation

storage bits "SS D s ~ %P cost

1 <16> 20 ns. 0 ns. 27 ns. $8.10

s2 <16> 20 ns. 0 ns. 27 ns. $8.10

3 < 16> 20 ns. 0 ns. 27 ns. $8.10

operator bits function

fl <16> +
2 <16> +
3 <16>

f4 < l 6 > -

5 < 16> ALU

f6 <16> ALU-

DFP cost

70 ns. $14.20

70 ns. $14.20

85 ns. $24.18

85 ns. $24.18

107 ns. $19.00

107 ns. $19.00

strategies listed in Table 3-1. Statistics regarding the time taken by

BANDBX for different strategies are listed in Table A-1.

2. Implementation optimizing the performance: The model was solved, with
'

output availability time as the objective function. using each of the
strategies. Statistics regarding the time taken by BANDBX are listed

in Table A-2.

3. implementation optimizing the cost, with stringent performance

requirements: Here, the performance requirements were that both
outputs be available in under 500 ns.. and remain valid until 600 ns,
The model was modified to include the requirements and then solved
with cost as the objective function. Statistics about the solution time

are given in Table A-3.

Criss.Cross, having such a symmetric VT representation, does not contain a real

critical path which can be considered crucial to the performance of the design.

. .
However, usually a - operation takes a little longer than a ' + ' operation (also

indicated by DFp values in Table 4-1) and therefore we have considered the path

including i O Z . ~ 2 , ~ 4 , 0 0 , 2 to be the critical path in the guidance strategies,

4.3.2. Logic Example

The ISPS behavioural description and V T representation for this example are

shown in Figure 4-4 and Figure 4-5 respectively.

Logic :=

BEGIN

* * Carriers * *
A<O:63) ,
B<O:15) ,
C < 0 : 1 5) .
* * Activity * *
action :=

(B -(C AND (B OR A(48:63))) XOR (B AND (C OR A(8:23,)))

END

Figure 4-4: Logic ISPS Behavioral Description

In Figure 4-5, operations xl and x4 are field extraction operations which produce

as outputs a subfield of the value given as the input. Here. operation xl produces

A<48:63> and operation x4 produces A<8:23>

The restrictions we will place on the implementation are shown in Figure 4-6

and the details of the hardware set are shown in Table 4-2. Again, we assume

that the inputs lo are available only during the interval 0 to 100 ns, and that only

one is available to latch the inputs into storage elements. T o ensure

L o . 1

Figure 4-6: Restrictions on Implementation of Logic

Table 4-2: Hardware Elements for Logic lmplementation

storage bits D~~ D~~ D~~ cost

1 < 16> 20 ns. 0 ns. 27 ns. $8.10

2 < 16> 20 ns. 0 ns. 27 ns. $8.10

3 <64> 20 ns. 0 ns. 27 ns. $32.40

operator bits function D~ P cost

ALU
1 <16> 48 ns. $19.00

2 <16> ALU 48 ns. $19.00

satisfactory performance. we require that the period during which the output oO1 is

valid is not less that 100 ns. No operations are required to implement operations

xl and x4. since these operations are performed by simply connecting a data path

to the proper bits of the value i0,3.

The synthesis model incorporating the restrictions was developed. It consists of

150 equations involving 85 variables of which 38 are binary variables. The model

was solved for the following two implementations:

1. Implementation optimizing the cost: The model was solved with cost as
the objective function and the BANDBX statistics are given in Table

A-4.

2. Implementation optimizing the performance: Here output availability time

was the objective function. The statist~cs are listed in Table A-5.

Logic too, having such a symmetric V T representation. does not contain a real

critical path. For the lack of better choice. we have considered the path including

io,l.x5.x6.x7,00,1 to be the critical path.

4.3.3. Critical P a t h (CPath) Example

we saw, the previous two examples (Criss.Cross and Logic) did not have real

critical paths. Intuitively, one would expect any strategy related to the idea of

crltlcal path to be more effective if there were a real critical path in the design.

To investigate this intuition, we solved an example whose V T representation is not

0

symmetric and has a critical path embedded in it.

The ISPS behavioural description and V T representation for this example are

shown in Figure 4-7 and Figure 4-8 respectively. The restrictions we will place on

the implementation are shown in Figure 4-9 and the details of the hardware set

are shown in Table 4-3. Again the period during which the Inputs lo are valid is

CPath :=

BEGIN

* * Carriers * *
t1<0:15) .
t2~0:15) ,
t3~0:15) .
a~0:15) ,
b<0:15) ,

* * Activity * *
action :=

(tl -a+a next
t2 -b+b next
t3 -t2+b next
a -tl+t3)

END

Figure 4-7: CPath ISPS Behavioral Description

restricted to the interval 0 to 100 ns.. and we have assumed a single control

signal to latch the inputs. To ensure satisfactory performance, we require that the

period during which the output 0 0 , ~ is valid is not less that 100 ns.

The synthesis model incorporating the restrictions consists of 152 equations

involving 94 variables of which 53 are binary. The model was solved for the

following three implementations:

1. Implementation optimizing the cost: The model was solved with cost as

the objective function and the statistics are given in Table A-6.

2. Implementation optimizing the performance: The model was solved with
output availability time as the objective function. The statistrcs are

listed in Table A-7.

3. Implementation optimizing the cost, with stringent performance

Figure 4 - 8 : CPath VT representation

Figure 4-9: Restrictions on Implementation of CPath

requirements: Here, the performance requirement was that the output

be available in under 480 ns. The model was modified to include the

requirement and then solved with cost as the objectrve function.

Statistics about the solution time are given in Table A-8.

Obviously, the critical path used for guidance in this example was the path

including i0,2.x2.x3.x4.00,1.

Table 4-3: Hardware Elements for CPath Implementation

storage

operator

bits

bits

20 ns.

20 ns.

20 ns.

function

0 ns. 27 ns.

0 ns. 27 ns.

0 ns. 27 ns.

50 ns.

50 ns.

50 ns.

50 ns.

100 ns.

100 ns.

100 ns.

100 ns.

cost

cost

Chapter 5

Observations and Conclusions

Of the numbers recorded for the synthesis examples, the total number of

subproblems solved (TOTSP#) is a good representative of the time taken by

BANDBX to solve the problem. It reflects the effectiveness of the strategy used

quite well (the smaller the number of subproblems solved. the better the strategy

for pruning the branch-and-bound tree). TO get a better idea of the performance of

the strategies with respect to the unguided BANDBX program. TOTSP# for each

implementation solution is normalized with respect to the TOTSP# for the NG

strategy. The normalized TOTSP#'s are listed in Table 5-1. The 'NOSF' entries

(No Optimal Solution Found) in the table indicate the failure of BANDBX to find

an optimal solution when guided by the strategy. The normalized TOTSP#'s are

averaged over the various implementation examples for each strategy. Of course,

'NOSF' entries are ignored in the averaging process. The average normalized

number of subproblems solved is thus calculated for each strategy and then plotted

in a bar chart shown in Figure 5-1.

Table 5-1: Normalized Number o f Subproblems Solved (1 of 2)

Strategy Criss.Cross Criss.Cross Criss Cross Logic
Cost Cost-Time T i m e Cost

NG 1 .OO 1 .OO 1 .OO 1 .OO
oGpS 0.67 0.47 0.42 1.15
Gaps 0.92 0.80 0.25 1.17
spa S 0.99 0.98 0.26 1. 16
a pSS 2.58 1.39 N O S F 2.30
pa% 2.57 1.72 N O S F 2.38
p S a S 4.54 2.90 N O S F 2.44
SCP 0.67 0.64 0.80 1 .09
oGpCP 0.66 0.59 0.73 1.27
8 a p C P 1.16 0.70 0.73 1.29
SpaCP 1.32 0.80 0.73 1.33
op6CP 1.31 1.03 1.12 1.78
paSCP 1.23 0.78 1.12 1.80
pGaCP 1.78 0.97 1.12 1.79
FPCP 1.48 0.96 1.12 N O S F

RPCP 0.56 0.59 0.73 1.58

Table 5 -1 : Normalized Number of Subproblems Solved (2 of 2)

Logic CPath CPath CPath Average
Time Cost Cost-Time Time

Strategy

8 d d h, h)

VI 8 V1 8 VI
8 8 8 8 8

Average Normalized No. of Subproblems

Figure 5-1: Comparison of Strategies

5.1. 0 bservations

5.1.1. General Observations

We can make the following observations from Figure 5-1:

The simple ordering strategies can be divided into two classes:

1. Strategies assigning higher importance to variables of type 8 than

to those of type p (8. p order): aGpS. Gaps and GpcrS strategies

tend to improve the performance of BANDBX by a factor of two

on an average.

2. Strategies assigning higher importance to variables of type p than

to those of type S (p. 6 order): apGS, paGS and pGaS strategies

tend to degrade the performance of BANDBX by a factor of more

than two on an average.

Among the critical path strategies. SCP, aGpCP. GapCP. GpaCP and

RPCP lead to an improvement in the performance of BANDBX.

whereas apGCP, paGCP, p6aCP and FPCP deteriorate the performance.

So, here also. 8.p ordering gives an improvement while p.6 leads to a

degradation.

r The strategies that use type information (0 , p or 6) of the variables in

deciding their importance, can be divided into four classes based on

their performance:

1. oGpS. Gaps and GpaS

2. apSS. PUGS and pGaS

3 . a8pCP. GapCP and GpaCP

4. ap8CP. paGCP and p8aCP

The interesting observation is that within each class, the performance

deteriorates as the importance of the variables of type a is reduced.

e.g., the performance of ap8CP is better than that of pa8CP. which in

turn performs better than p6aCP.

5.1.2. More Specific Observations

The observations in the previous subsection are based on the average

performance shown in Figure 5-1. However, some of the strategies failed to find

an opt~mal solution in certain cases which does not show up at all in the figure.

To get a more detailed idea. let us look into Table 5-1. We can make the

following observations:

Among the simple ordering strategies. the strategies following 8 .p order

have always been able to find an optimal solution and have always

~mproved the performance of BANDBX, except in the case of Logic

Cost Optjmization. Even in that case, the performance degradation is

very little and the three 8.p order strategies certainly do much better

than the three p.8 order strategies. So, overall oGpS. GapS, and 8paS

strategies seem to be very effective and reliable.

. The p.8 order simple ordering strategies fail to find an optimal solution

in many cases. In the cases where they do find an optimal solution. the

performance of BANDBX is fairly consistently degraded, except that

p8aS has improved the performance in the case of Logic Time

Optimization. Even in that case the improvement is not high enough to

be taken seriously. Overal l , up%, PUGS and pGaS strategies seem t o

be neither effective nor reliable.

0 T h e SCP st rategy has a lways been able t o f ind an op t ima l so lut ion and

has a lways led t o an improvement in t h e performance, except i n t he

case of Logic Cos t Opt im iza t ion . Even i n t ha t case, the per formance

degradat ion is l ow enough t o be ignored. Overal l , t h e S C P st rategy

seems t o be fairly e f fect ive and reliable.

T h e aGpCP. GapCP and GpuCP strategies seem t o pe r f o rm acceptably

o n an average basis. However . they fai led t o f i nd an op t ima l so lut ion i n

a f e w cases and also deter iorated per formance i n a f e w cases. Overal l .

they don ' t seem t o be reliable.

T h e ap&CP, p a G C P and p 8 a C P strategies have fai led t o f i nd an

op t ima l so lut ion i n many cases and have generally led t o a degradat ion

i n t he per formance of BANDBX. They have improved the per formance

in a f ew cases wh i ch can be d ismissed as except ions. Overal l , t he

strategies seem t o be neither effect ive nor reliable.

T h e F P C P st rategy has failed t o f i n d an op t ima l so lut ion i n m a n y

cases and has generally led t o a degradat ion i n per formance, except i n

t he case o f Criss.Cross Cos t -T ime t radeof f , where the per formance gain

is t o o l i t t le t o be taken seriously. Overal l . F P C P seems t o be neither

effect ive nor reliable.

R P C P seems t o be qui te ef fect ive o n an average basis. It does very

wel l i n all b u t t w o cases. It fails complete ly i n t he case of CPa th Cos t

Opt im iza t ion and it leads t o a s ign i f icant deter iorat ion i n per formance i n

t he case o f Logic Cos t Opt im iza t ion . It wou ld seem t h a t R P C P is very

ef fect ive b u t n o t fu l ly reliable. Par t icu lar ly , it seems t h a t it is very

effect ive and reliable in so lv ing t he s y n t h e s ~ s mode l fo r t i m e

(per formance) opt imizat ion.

. T h e t rend t ha t t he per formance of BANDBX deter iorates as t he

impor tance at tached t o the variables o f t ype a is reduced seems to be

more closely fo l lowed i n the cases where cos t op t im iza t ion is invo lved.

Overal l . the strategies a6pS. Saps. and 6paS seem t o be m o s t e f fect ive and

reliable. SCP is also qui te reliable. b u t it is n o t as ef fect ive i n t e rms o f t he

per formance gain. it seems t ha t UGPS w o u l d d o bes t f o r cos t opt imizat ion.

However , when t ime opt imizat ion is invo lved, it seems t h a t R P C P also can be

used very effect ively and reliably.

5.2. Discussion and Some Explanations

5.2.1. Simple Ordering Strategies

F r o m the observat ions, it is qu i te conclus ive t h a t assigning a higher p r io r i t y t o S

variables than t ha t assigned t o p variables leads t o very signi f icant per formance

gains. Le t us t r y t o understand w h y . I t does make sense af ter a l i t t le t hough t . 6

variables specify h o w the values required by the var ious operator inpu ts are

accessed, e.g.. F a b indicates whether t he value required by i npu t ia,b is accessed

direct ly f r o m the o u t p u t o f the operator p roducmg the value o r f r o m the s tored

copy of the value. p variables specify the output value to storage element

mapping, e.g.. p,,,,, indicates if storage element s, is used to store output value

o,,,. So. 6 variables dictate if an output value will have a stored copy (if there is

no operator input accessing the stored copy of a particular output value. then

there is no reason to keep a stored copy of the value), whereas p variables decide

which storage element, if any, will be used to store the output value. It makes

sense to decide first if a stored copy is required, and then decide the actual

storage element to be used. In other words, giving higher importance to 8 variables

than that of p variables is an intuitively sound approach and will tend to cut

down on backtracking in the branch-and-bound process.

As far as the effect of the importance attached to a variables is concerned. the

results are not conclusive. However, giving more importance to n variables seems

to have a positive effect on the performance of BANDBX, especially when cost

optimization is involved. There are two possible explanations for this behaviour:

0 variables represent operator usage decisions, as opposed to p

variables which represqt storage usage decisions. As the average cost

of the operators is usually higher than that of the storage elements

(certainly so in our synthesis examples). the decisions about operator

usage have a larger impact on the cost of the implementation. If

storage decisions are made first, the tendency will be to avoid using

storage elements at all because that will lead to a cheaper partial

implementation. However, this implies that more operators will have to

be used when operator decisions are being made later (not much

sharing of operators will be possible due to unavailability of stored

copies of the values). So, the overall cost of the implementation goes

up. Instead, if we make operator decisions first. we will tend to use a

minimum number of operators (maximum sharing) as that will lead to a

cheaper partial implementation. Of course, later we will have to add

more storage elements to the implementation in order to make sharing

of operators possible, but since the average cost of the storage

elements is less. the overall cost of the implementation will still be less.

Hence, it seems that making operator decisions more important will tend

to produce cheaper implementations early in the branch-and-bound

exploration and thus will produce better bounds. Therefore, making o

variables more important should certainly be helpful, especially when

cost optimization is involved.

. We have already concluded and justified that 6 decisions should be

considered before p decisions. Now, the question is how to make 6

decisions, i .e . . how to decide the access mechanism for the operator

inputs. Before we try to decide how to access a particular operator

input. it might be helpful to decide what operator to use to do the

particular operation. In general. the knowledge about operation to

operator mapping should be useful in the process of 8 decisions.

Particularly, the knowledge about sharing of operators could be helpful

in deciding if a particular operator input should be accessed from the

stored copy of the value. So, it seems that a. 6, p is the most

intuitive order and will lead to minimum amount of backtracking.

50

5.2.2. Critical Path Strategies

The more sophisticated idea of critical path does show some promise as

indicated by the consistency and reliability of the SCP strategy. There is more

flexibility in terms of the choices available for implementation of the non-critical

part. Critical path implementation, being crucial to the overall performance of the

design, does not have that much flexibility. The fact that the decisions related to

the more crucial part of the design are being made first does tend to reduce

backtracking so as to improve the BANDBX performance. However, the data

gathered for this thesis indicates the improvement may not be as much as one

would intuitively expect.

The most interesting observation about the critical path strategies is the contrast

between the performances of RPCP and FPCP. More than anything else, i t has to

do with the fact that in RPCP a pseudo 6.p ordering within the critical path is

followed whereas in FPCP there is a pseudo p.S ordering. Pseudo 6.p ordering

means that the 6 variables that dictate whether or not a stored copy of the

output value related to a particular p variable is needed, are considered before the

p variable. E.g.. in CPath synthesis example (Figure 4-8). RPCP considers how

the inputs for x, should be accessed before i t considers if and where o2 should

be stored: FPCP follows exactly the opposite order of decisions. As is obvious.

the only reason why a stored copy of 02,1 might be required is that x3 wants to

access it. I t seems that RPCP is particularly effective in time optimization because

t he decisions wh i ch direct ly affect t he o u t p u t avai labi l i ty t i m e are made f i r s t (a long

t he cr i t ica l pa th . R P C P s ta r ts a t the o u t p u t and w o r k s i t s w a y u p t o t h e inpu t) .

5.2.3. Comparison

Overal l , the simple order ing strategies seem t o have done bet ter t han t h e cr i t ica l

p a t h strategies i n the examples considered. T h e idea of cr i t ica l p a t h being more

intel l igent, one wou ld expect o therwise. T h e synthes is examples w e have considered

are no t large and complex i n t he sense o f hav ing a real cr i t ica l path. Logic and

Criss.Cross do n o t have a cr i t ical pa th a t all, and a l though CPa th has a cr i t ica l

pa th , it does no t have m u c h of a non-cr i t ical par t . It is plausible t h a t these

examples w i l l no t exhib i t t he real power of cr i t ica l p a t h strategies. O u r conjecture

is t ha t t he idea o f cr i t ica l pa th w i l l prove more and more ef fect ive as w e solve

larger and more complex examples hav ing dist inguishable cr i t ical pa ths and non-

cr i t ica l par ts . T h e absence of an au tomated synthes is mode l generator l im i ted us

t o the examples considered. T h e equat ions for t he examples were hand-wr i t ten .

Manua l generat ion o f the model for any th ing larger becomes infeasible.

5.3. Suggestions for Further Research

The re are t w o ma jo r direct ions for fur ther research:

1. Development o f s ta t ic guidance strategies.

2. Development o f dynamic guidance strategies

5.3.1. Static Guidance Strategies

The approach adopted in this thesis is static in the sense that the importance of

the variables is fixed throughout the branch-and-bound process. We never evaluate

the effect of the previous design decision before considering the next decision, i .e..

we do not look at the partially constructed implementation before deciding the next

variable to branch upon. Along this approach. the following ideas can be

investigated (some of the ideas can be investigated very easily if we have an

automated synthesis model generator):

Construct a few large and complex examples having real critical paths

and solve them using the strategies considered in this thesis to resolve

the conjecture that the critical path strategies will be more effective for

larger examples.

Construct a few examples where the average cost of the storage

elements is more than that of the operators and solve them to

investigate if assigning higher priority to o variables is effective just

because of the higher cost of the operators.

Order the three types of- variables based on the number of variables in

each type group. The smallest group gets the highest priority.

Investigate the strategy particularly for time optimization. Some of the

results in our examples give a very weak indication that this might be

effective.

Investigate some combinations of the strategies considered in this thesis.

e.g.. in a simple ordering strategy. divide each category of variables into

two groups, one belonging to the critical path and the other to the

non-critical part, and thus have six priority levels instead of just three.

Investigate critical path strategies that also order variables within the

non-critical part.

5.3.2. Dynamic Guidance Strategies

As opposed to the static approach, this approach can change the importance of

the variables at an intermediate stage. The approach will actually simulate the

generalized design strategy discussed in Section 3.2.1. This approach may evaluate

the effect of the design decision just made and redefine the importance of the rest

of the variables depending on the partial implementation constructed so far. In its

extreme form, i t will look at the partial implementation at each branch-variable

selection step and then decide the next variable to branch upon. Eventually it

takes the form of an expert system having design knowledge built into it, which

guides the branch-and-bound solution process for the synthesis model. This

approach is worth investigating. The knowledge about the effectiveness of the

various static strategies can be used in the dynamic approach decision process.

Appendix A

BANDBX Statistics

Table A-1: BANDBX Statistics for Criss.Cross Cost Optimization

Strategy S P O P T # T O T S P # TSIMP#

NG
pGa S
spas
a GpS

a pGS

paSS

S a p s

SCP

p s a c p

GPO CP

cr GpC P
a pSC P

paGCP

GapCP

FPCP

RPCP

Table A-2: BANDBX Statist ics for Criss.Cross T ime Optimization

Strategy S P O P T # T O T S P # T S I M P #

NG

p 6 a S
GpaS

aGpS

a pGS
paGS

saps
SCP

p 6 o C P
GpaCP
aGpCP
0 pGC P

paGCP
GapCP
FPCP
RPCP

45
Failed. Numerical Inaccuracy.

24
34

Failed. Numerical Inaccuracy.
Failed. Numerical Inaccuracy.

2 3
57
69
32
3 2
69
69
3 2
69
3 2

Table A-3: BAN DBX Statistics for Criss.Cross Cost- Time Tradeoff

Strategy SPOPT# TOTSP# TSIMP#

NG 152 230 5862
p8a S 64 668 18233
spa S 222 226 5936
a SpS 8 3 107 2855
a pGS 302 320 81 11
po6S 3 54 395 101 93
Ga pS 181 185 5000
SCP 111 147 4096
pGaCP 49 223 5861
GpaCP 142 184 4900
aGpCP 103 136 3797
a psC P 208 236 5816
pn6CP 168 180 4621
GapCP 133 161 4375
FPCP 195 221 5527
RPCP 126 136 3625

Table A-4: BANDBX Statistics for Logic Cost Optimization

Strategy SPOPT# TOTSP# TSIMP#

NG 2774 3144 93118
pGa S 7390 7661 216803
Gpa S 2048 3650 1 14639
a SpS 2019 3628 114588
a p6S 6945 7216 203556
pa6S 7213 7484 213178
Gaps 2051 3680 1'15971
SCP 3101 3423 98239
pGa C P 4616 5632 160979
GpaCP 2899 4190 124213
aGpCP 2722 4000 11 7480
a pGC P 4459 5610 160745
p(r6CP 4430 5658 161726
GupCP 2767 4042 1 18630
FPCP Failed. Numerical Inaccuracy.
RPCP 3699 4953 145538

Table A-5: B A N D B X Statist ics for Logic T ime Optimization

Strategy SPOPT# TOTSP# TSIMP#

NG

psa S
GpaS
aGpS
a pGS
paGS
Gaps
SCP
psacp
GpaCP
aGpCP
apGCP
pcrscp
GapCP
FPCP
RPCP

2787 2787
490 2475
919 919
569 569

Failed, Storage Limit Exceeded.
Failed, Storage Limit Exceeded.

632 632
1607 1607

Failed. Numerical Inaccuracy.
Failed. Numerical Inaccuracy.

Failed. Numerical Inaccuracy.

Failed. Numerical Inaccuracy.

Failed. Numerical Inaccuracy.
1033 1033

Failed. Numerical Inaccuracy.
142 142

Table A-6: B A N D B X Statistics for CPath Cost Optimization

Strategy S P O P T # T O T S P # T S I M P #

NG

pSa S
Gp cr S
a SpS

a pGS
paGS

Gaps
SCP

pSaCP
SpaCP
aGpCP
a psc P

puSCP
SapCP
FPCP
RPCP

Failed, Numerical Inaccuracy.

130
135

Failed. Numerical Inaccuracy.

Failed. Numerical Inaccuracy.

132
586

Failed. Numerical Inaccuracy.

264
261

1098
Failed. Numerical Inaccuracy.

253
368

Failed. Numerical Inaccuracy.

Table A-7: BANDBX Statist ics for CPath T ime Optimization

Strategy S P O P T # T O T S P # T S I M P *

N G 315 2252 68276
pGa S Failed. Numerical Inaccuracy.
Gpa S 56 60 1862
a GpS 4 1 192 6268
a p8S Failed. Numerical Inaccuracy.
p06S Failed. Numerical Inaccuracy.

s a p s 8 8 93 2552
SCP 217 754 22921
pGoCP Failed. Numerical Inaccuracy.
GpoCP 118 123 3334
aGpCP 34 182 6073
apGCP Failed. Numerical Inaccuracy.
paGCP Failed. Numerical Inaccuracy.
GapCP 112 117 3028
FPCP Failed. Numerical Inaccuracy.
RPCP 170 257 8177

Table A-8: B A N D B X Statist ics for CPath Cost-Time Tradeoff

Strategy S P O P T # T O T S P # T S I M P #

NG
pscr S
Gpo S

aGpS

a pGS
pa GS

Go pS
SCP

pSoCP
GpoCP

a GpC P
a p X P
poSCP
GapCP
FPCP
RPCP

1305 3475 106655
Failed. Numerical Inaccuracy.

1074 1550 45503
767 1241 38358

Failed. Numerical Inaccuracy.

Failed. Numerical Inaccuracy.

1015 1440 44686
856 1778 57231

Failed. Numerical Inaccuracy.

Failed. Numerical Inaccuracy.
Failed. Numerical Inaccuracy.

5 2 2222 77060
Failed. Numerical Inaccuracy.
Failed. Numerical Inaccuracy.
Failed, Numerical Inaccuracy.

7 80 1796 58662

References

[Hafer 811 Hafer. L.
Automated Data-Memory Synthesis : A Formal Method f o r

the Speci f icat ion, Analysis, and Design of Register-
Transfer Level D ig i ta l Logic.

PhD thesis. Dept. of Electrical Engineering. Carnegie-Mellon
University. Pittsburgh. Pa.. May, 1981.

Also available from the Design Research Center. Carnegie-Mellon
University, as Technical Report DRC-02-05-81.

[Johnson 851 Johnson. E., Kostreva. M.. Suhl. U.
Solving 0-1 lnteger Programming Problems Arising from Large

Scale Planning Models.
Operations Research 33(4):803-819. July-August. 1985.

[Land 791 Land. A.. Powell, S.
Computer Codes for Problems of lnteger Programming.
Annals o f Discrete Mathematics 5:221-269. 1979.

[Martin 78) Martin. C.
BANDBX: An Enumeration Code f o r Pure and M ixed Zero-

One Programming Problems

Industrial and Systems Engineering Dept.. Ohio State University.
1978.

[Mitra 731 Mitra. G.
Investigation of Some Branch and Bound Strategies for the

Solution of Mixed Integer Linear Programs.
Mathematical Programming 4(2):155-170, April. 1973.

[Thomas 831 Thomas. D., Hitchcock. C.. Kowalski. T.. Rajan. J.. Walker. R.
Automatic Data Path Synthesis.
Computer 16(12):59-70. December. 1983.

[Thomas 861 Thomas. D.
Automatic Data Path Synthesis.

Advances in CAD for V LSI. Volume 6. Design Methodologies.
North-Holland. Amsterdam. 1986. Chapter 13.

