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Abstract 

This thesis addresses an efficiency problem in a mixed-integer linear programming 

(MILP) approach to automated synthesis of RT-level digital logic. The approach 

to the problem is to use simplified design paradigms practiced by human designers 

to guide the progress of a branch-and-bound MlLP algorithm. 

Three simplified human design strategies have been considered: storage elements 

first (SEF),  operators first (OPF). and critical path first (CPF). In addition. a 

few artificial strategies, not directly derivable from human paradigms. have been 

investigated. The strategies have been incorporated into the branch-and-bound MlLP 

program to guide the solution process. Three examples are examined to investigate 

the effectiveness of the strategies Results indicate the approach to be promising in 

improving the speed of the solution process. Broadly speaking, the simpler 

strategies SEF and OPF seem to be more effective than the more sophisticated 

idea of CPF. 
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Chapter 1 

Introduction 

The research reported in this thesis is directed at improving the efficiency of a 

mixed-integer linear programming (MILP) approach to automated synthesis of the 

data path for a piece of digital hardware, given a description of the behaviour the 

hardware is to implement. The approach is to use design paradigms practiced by 

human designers to guide the progress of a branch-and-bound MILP algorithm. 

1.1. Mot ivat ion 

With the advent of VLSl technology, the functional complexity of a chip has 

increased drastically. Accordingly, the complexity of the process of VLSl design 

has increased so that a designer must keep track of vast amounts of information 

during the design process. It is well known that humans are not very good at 

handling lots of information a t  the same time. Therefore, we need to develop 

systems which will automate the process of hardware design. 

The problem faced by digital designers is to come up with a hardware 

implementation of a digital system which is optimal with respect to some set of 

design objectives. More often than not the design objectives are in conflict with 

each other. Therefore, instead of an absolute optimal design we have a set of 

1 



noninferior designs, where a noninferior design is defined as an implementation 

which can be improved with respect to any one objective only a t  the expense of 

other objectives. The noninferior designs reflect the tradeoffs among the design 

goals. The designer has to get to the best solution by generating the whole set of 

noninferior designs and then selecting the element of the set which embodies the 

most acceptable tradeoff among the various objectives. The number of noninferior 

designs is usually large enough to make it almost impossible for an unaided 

designer to explore all of them because of the design cycle time that has to be 

met. Therefore, for a CAD/DA system to be really useful, it is imperative that it 

be able to generate the set of noninferior designs as quickly as possible. In other 

words, an automated synthesis system must have the ability to produce different 

implementations quickly. 

1.2.  The RT-Leve l  Logic Synthesis System 

The register- transfer ( RT) level logic synthesis system described in [Hafer 

811 can be used for the automated synthesis of RT-level data parts for digital 

systems Given an RT--level behavioural specification of the digital logic. it develops 

algebraic relations which express the timing relations that must be satisfied by any 

correct implementation. The system introduces binary variables into the model to 

allow the inclusion of implementation decisions. The model. viewed as a system 

of constraints, is first linearized and then solved as an MlLP problem to optimize 

the objective function supplied by the designer for evaluating candidate 
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implementations. The MlLP solution is found with the BANDBX program [Martin 

781, which uses a branch-and-bound technique to solve the problem. 

The system is certainly a step towards automating the data part design. 

however, it is not very successful in terms of producing an implementation quickly. 

Unspecialized MlLP programs like BANDBX require an infeasible amount of 

computational time for any reasonable size design. The ineffectiveness of 

unspecialized MILP, in particular the BANDBX program, is mainly due to the fact 

that it is based on a generic branch-and-bound algorithm. To make the MlLP 

approach practical for large design problems. we have to devise a more specialized 

branch- and-bound algorithm. 

1.3. T h e  Problem and The Approach 

The problem is that the RT-level logic synthesis system requires an infeasible 

amount of computational time, especially if: the designer wishes to explore 

alternative implementations. This thesis will focus on this problem and investigate 

how to devise a faster branch-and-bound algorithm in order to improve the 

performance of the system. 

One way to improve the efficiency of a branch-and-bound algorithm is to use 

 problem^-specific knowledge to guide the progress of the algorithm. This is the 

approach adopted in this thesis. 



Chapter 2 

Prior Work 

2.1. CAD/DA Work  

The RT-level logic synthesis system of [Hafer 811 was developed as part of the 

CMU-DA (Carnegie-Mellon University - Design Automation) project. 

2.1.1.  The C M U - D A  Project 

The CMU-DA project is a major research effort directed at developing a 

technology-relative structured design aid to help designers explore a large number 

of alternative implementations for a given digital system. The overall structure 

proposed for the CMU-DA system is shown in Figure 2-1. The behavioural 

description of a design, is written in the ISPS hardware description language and 

translated into a parse tree which is then converted into a data flow description 

called the value trace (VT) .  The nodes of the V T  correspond to operations on 

data values. and the edges represent the flow of these values between operations. 

After the design style selector chooses the most suitable design style, the 

partitioner grcups operations from the abstract design representation into control 

steps. Tradeoffs between the data and control parts are made at this level. A 

datalmemory allocator decides the number and type of functional modules 
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Figure 2-1: CMU-DA System Overview 



(operators, registers, data paths and switching functions) needed to implement the 

data part of the design. A control allocator generates a sequential state machine to 

control the data part produced by the DM allocator. The module binder then 

selects the physical modules from the module set library to implement the data 

and control parts. Finally, a physical DA subsystem handles the physical layout for 

the proposed implementation and prepares engineering documentation. The 

interested reader is referred to [Thomas 831 or [Thomas 861 for additional material 

and references. 

2.1.2. RT-Leve l  Logic Synthesis System 

In the context of Figure 2-1, the system of [Hafer 811 performs the function of 

datalmemory allocation and control step part~tioning simultaneously. The system 

formalizes the design problem using a set of algebraic relations expressing the 

constraints on the design and uses constrained optimization techniques to solve the 

problem. It expresses the data path synthes~s problem as a set of algebraic- 

relation constraints and solves it as an MILP problem. The algebraic relations that 

make up the constraint set encompass the behaviour the design must support and 

the performance constraints it must satisfy. The relations are derived from the 

V T  data flow representation. 

The V T  representation expresses the original RT-level behavioural specification in 

terms of operators and values. For example. Figure 2-2 is a simple two line ISPS 

behavioural description specifying two data transfers and Figure 2-3 is the 



calc := 

( A - ( A I +  1) next 

Figure 2-2: Example ISPS behavioura l  descr ipt ion: calc 

Figure 2-3: VT representat ion o f  calc 
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corresponding V T  representation. Figure 2-3 also illustrates the naming convention 

for components of the V T  representation. Operation nodes are labeled xl, x2, etc., 

and xa indicates an operation in general. The inputs to operation x, are labeled 

' a . b v  and the outputs o,,, where the subscripts b and c distinguish individual 

values. By convention, a 0 (zero) operation subscript indicates the external 

environment, so iO,, is an input from the external environment, and o ~ , ~  is an 

output to  the external environment. 

To  write algebraic relations describing the proper timing and sequencing 

properties required for correct behaviour. the system defines variables to represent 

certain critical times. These are associated with the operations and values of the 

V T ,  and are defined in Table 2-1. 

To  construct an implementation. the available hardware elements must be known. 

Two types of hardware elements are considered: 

1. Operators labeled fd (e .g . .  fl. f2 ) .  

2. Storage elements labeled s, (e.g.. sl. s2). 

Hardware elements having both operation and storage capabilities are not allowed. 

The system needs to know certain timing values associated with the hardware 

elements available. Table 2-2 shows the set of time delays that are assoc~ated 

with hardware elements. For any specific element, these values are assumed to 

be available from data sheets or similar sources. For each V T  operation x,, the 



Table 2-1: Timing Variables for the Synthesis Model 

T ~ ~ ( i a . b )  Time when the value required by input i,.b of operation x, is 

available for use in the computation. 

'XS ('a) Time when the computation of operation x a  actually begins. 

ToA(O,) Time when the output values 0, computed by operation x, are 

available at the outputs of the operator performing the operation. 

T ~ ~ ( x , )  Time when the output values 0, of operation X, are no longer 

required as input values for another operation, and thus the time 

that execution of the operation can cease. 

Time when the input values for operation x, are no longer 

required. 

Time when output value o,,, is no longer required as an input 

value for another operation. 

Time when the storage element assigned to store output value 

O A  c is clocked. 

Time when the value o,,, is available at the output of the 

storage element assigned to store it. 

Time when the stored copy of value oa,, is no longer required as 

an input value for an operation. 



Table 2-2: Hardware Timing Values 

D ~ ~ ( f d )  Propagation delay time of operator fd from the appearance of the 

input value(s) at the operator input(s) to the appearance of the 

output vaiue(s) at the operator output(s) 

Setup time at the data input of storage element s,; data at the 

input to storage element s, must be valid for at least this long 

prior to a transition at the clock input of the storage element. 

Hold time at the data input of storage element s,: data at the 

input of storage element s, must remain valid for at least t h~s  

long after the transition at the clock input of the storage 

element. 

Propagation delay time of storage element s, from the transition 

a t  the clock input to the appearance of the value at the storage 

element output. 

designer has to specify F,, the set of operators available to implement the 

operation, and for each output value o,,,. (s)he has to specify S,,c, the set of 

storage elements available to store the value. 

The system introduces three types of binary variables ( a .  p ,  8) into the model 

relations to allow the inclusion of implementation decisions. These variables are 

used to represent the mapping of the operations and values of the VT onto the 

operators and storage elements which compose the implementation. and to specify 

how operation inputs are accessed, as shown in Table 2-3. 



Table 2-3: Binary Variables for the Synthesis Model 

Od.a Specifies the operation to operator mapping. o d d  = 1 indicates 
that operator fd will implement operation x,. 

Specifies the output value to storage element mapping, 
pe,a,c  = 1 

indicates that storage element s, will be used to store output 

value o,,,. 

Specifies how the value required by input i a b  is accessed. 

1 indicates the stored copy of the value is accessed. 

The model consists of three types of algebraic relations: 

1. Relations which model the execution of an operation by an operator: 

Some relations in this category express necessary conditions for a 
correct implementation. e.g.. one and only one operator should be 
selected to implement an operation: 

o d a = l .  
d f d € F a  

Other relations express the relationships between various timing variables 

based on Figure 2-4. e.g.. the outputs of an operator are valid after a 

propagation delay: 

2. Relations which model storing a value in a storage element: 

These relations express the relationships between various t im~ng 

variables based on Figure 2-5. e.g.. the outputs of a storage element 

are valid after a propagation delay: 



Figure 2-4: Timing relations for operation execution 

Figure 2-5: Timing relations for storing a value 



3. Relations which ensure that hardware resources are shared correctly: 

These relations are necessary to prevent overlaps in the scheduling of 

events on hardware elements. 

Thus, the system formally models digital systems by algebraic relations. The 

system finds a simultaneous solution of the algebraic relations as a constrained 

optimization problem and produces a globally optimal design with respect to the 

objective function. The set of relations is first linearized and then solved as an 

MlLP ~rob lem,  yielding both a design for the data part and a timing specification 

which details how the behavioural actions are to be executed on the data part. 

2.2. MlLP Work 

There has been a lot of research effort aimed at improving the effectiveness of 

branch-and-bound algorithms. As we know. the branch-and-bound technique involves 

searching through a tree whose leaves are the candidate solutions to the problem. 

The algorithm reaches the optimal solution faster if it searches through the 

appropriate branches first. So, the criteria used for 'branching in the algorithm 

plays a very important role in the success of the algorithm. A survey of integer 

programming computer codes [Land 791 shows that a wide variety of heuristic 

ideas and rules has been used to select the variable to branch upon in various 

commercial codes. One of the rules which is fairly common is based on the idea 

of priorities. 
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It has been observed [Mitra 731 that branching upon variables in order of their 

importance, in some sense, can accelerate the progress of the algorithm. For 

example, some large scale hierarchical planning models involving binary variables. 

which could not be solved with any standard techniques, were solved when the 

variables were ordered by importance. 1.e.. advantage was taken of the hierarchical 

structure of variables [Johnson 851. As is obvious, to organize variables in the 

order of importance we require problem-specific knowledge. So, it seems that using 

knowledge about the problem to guide the branching process can enhance the 

speed of the algorithm. 



Chapter 3 

T h e  Approach and T h e  Design Strategies 

The synthesis model requires many relations and variables to formally specify the 

constraints and objectives for a design. As a matter of fact, if n is a composite 

estimate of the number of operators and values in the VT, and h is a composite 

estimate of the number of hardware elements available for the implementation. then 

the number of algebraic relations grows as 0(hn2),  the number of continuous 

variables grows as O(n) and the number of binary variables grows as 0(hn2) 

[Hafer 811. The BANDBX program is able to produce optimal results for small 

designs, but with very large solution times. The growth rate of the constraint 

system makes unspecialized MILP impractical for non-trivial designs. 

To reduce the computational time required by the synthesis system. it is 

mandatory to devise an efficient branch-and-bound technique which, when 

incorporated into BAN DBX, will make it faster. 



3.1. The Approach 

Before we outline the approach to be taken. let us have a quick discussion of 

the branch-and-.bound technique. I t  involves the following four major steps: 

STEP 1: Solve the LP relaxation for a bound. 

STEP 2: Try to fathom the current subproblem due to the bound or 
penalties. 

STEP 3: ' Pick a fractional-valued binary variable and force ~t to 0 and 1. 
creating two subproblems. 

STEP 4: Solve each subproblem in turn. 

The phrase 'fractional--valued binary variable' means a variable that assumes a 

non-integer value between 0 and 1 in the solution to the current subproblem, but 

must assume a binary value in a feasible solution to the given MlLP problem. 

Steps 1. 2, and 4 are fairly straightforward and there is not much one could do 

about them. Step 3 seems to be crucial as far as efficiency of the technique goes 

because i t  involves a choice. At  a point in time, there will usually be more than 

one fractional-valued binary variable. and which one to pick for forcing is a 

decision to be made based on certain criteria. Of course. the more effective the 

criteria used, the better the performance of the algorithm will be. As discussec; 

earlier, one type of criterion used is based on the idea of organizing the binary 

variables in the order of importance. This is the approach undertaken in this 

research. 



Now, the question is how one goes about ordering the variables by importance. 

The answer is that one has to know about the roles of the various variables in 

the problem being considered. If we look at the synthesis model, the binary 

variables were introduced into the model to represent implementation decisions. 

Forcing a binary variable either way implies that a design decision is being made. 

one way or the other. Thus, ordering binary variables by importance is equivalent 

to ordering design decisions by importance. This is where the design knowledge 

has to be used. A human designer makes various design decisions in certain 

order, 1.e.. (s)he makes what (s)he considers more important decisions first. The 

designer usually follows an order of decisions dictated by a dynamic design 

strategy. The exact design strategy used by a human designer is not very well 

understood and is certainly complex. I t  is therefore worthwhile to investigate first 

the performance gains which can be obtained from simplified design strategies. The 

following are some simplified design strateg~es worth considering: 

1. Storage elements first. 

2. Operators first. 

3. Critical path first. 

The research investigates the effectiveness of each of these strategies in guiding 

step 3 of the general branch-and-bound algorithm discussed on page 16. A few 

more artificial strategies are investigated for the sake of completeness. 
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3.2. Discussion o f  the  Design Strategies 

3.2.1. Generalized Design S t ra tegy  U s e d  by People 

The question of how people do designs is not very well answered. The design 

strategy used by a human designer is certainly complex and dynamic. The process 

of design is not a formalized one; it involves a heuristic approach. The 

implementation is constructed using a collection of independent rules and 

procedures which are applied on a case-by-case basis until the designer is satisfied 

that the design constrarnts have been met. The rules and procedures are applied in 

different orders for different examples. For a given design example, the order is 

not predetermined. It is determined dynamically in the design process. The next 

rule to be applied is dependent on how the design has progressed so far. 

Eventually, the designer stops when (s)he feels that all the design constraints have 

been met 

The point made by the above discussion is that the process of design is really 

complex and it is hard to exactly outline the way people do designs. One basic 

idea which is very relevant in this context is the idea of "focusing attention" The 

whole process of design seems to be revolving around this idea. In any reasonable 

size design, there are so many details involved that it is almost impossible for a 

human designer to keep track of the overall global view of the design at all times. 

Therefore, people try to break a bigger design into smaller designs. At a given 

time, they focus attention on a certain part of the design. When it is done, the 



designer moves on to another part. The order in which various parts of the design 

are considered is decided by the designer based on his idea of the importance of 

various parts. The fact that the designer's idea of the importance of various parts 

is dynamic contributes to the complexity of the design strategy. The next part to  

be considered is dependent on how the design has progressed so far. 

Some of the considerations in deciding the importance of various parts are visible 

architectural values, functionality. and performance of the design. In many design 

situations, there are certain architectural values visible to the outside world and i t  

might be a good idea to work on these first, e.g.. in a processor design. the 

designer might decide first on the storage elements representing the architectural 

registers of the processor. In some other situations, the correct functionality of 

certain parts might be more important. or the performance of the overall system. 

say, in terms of the execution time. The important point is that none of the 

considerations are used in isolation in a given situation. All the considerations are 

entangled in the decision function of a human designer and so (s)he ends up 

doing a bit of this and a bit of that. E.g.. one scenario could be where a human 

designer picks up a part of the data path which (s)he thinks is crucial to  the 

performance of the overall system. then decides on some operators and storage 

elements to be used in this part, then realizes that the rest of the decisions 

regarding this part could be made more efficiently if the design of another part of 

the data path were known because of the interactions between the two parts. So 



(s)he shifts focus, designs that part, comes back to finish the design of t h ~ s  part. 

then picks up some other less important part, and so on. So. the whole process 

or the strategy is very entangled in terms of the order of decisions. The general 

design strategy used by people being so complex. let us consider some of its 

simplifications. They are discussed in the next subsection. 

3.2.2. Sirn~lifiod Design Strategies 

The various design strategies investigated for the guidance of the MlLP solution 

process are: 

1. Storage elements first 

2. Operators first. 

3. Critical path first. 

These are, in some sense, simphfications of the more general strategy discussed 

in the previous subsection. 

3.2.2.1.  Storage Elements First 

O This strategy is based on the idea that the decisions regarding visible 

architectural values are more important. The strategy says that the decisions 

regarding storage elements should be made first. The decisions as to whether or 

not a given value in the VT description is to be stored and, if yes, what storage 

element is to be used to store i t ,  are made first and only then are the decisions 

regarding operators considered. This is a very simplified approach, however, it IS 



used in practice sometimes. The effectiveness of this simplified approach in guiding 

the branch-and-bound procedure is investigated. 

In the context of the synthesis model, the strategy implies that the binary 

variables related to storage decisions should be given higher priority compared to 

those related to operator decisions. In other words, the variables of type p and 

type 6 are considered more important than the variables of type a in the branch- 

variable selection process. The strategy by itself does not dictate the order of 

importance between type p and type 8. So. two strategies corresponding to the 

following permutations are investigated: 

1. p. 8, a 

2 .  8. p.  0 

3.2.2.2. Operators First 

This strategy tries to get the correct functionality first. In this strategy. 

decisions regarding operators are made first. 1.e.. decisions as to  what operators 

are to be used and what operators are to be shared. Only after operators are 

decided are storage elements considered. This strategy is less commonly used in 

practice However, it represents an exact counterpoint to the first strategy and 

thus is of interest in this research. 

In the context of the synthesis model, the variables of type (I are considered 

more important than the variables of type 8 and type p. Again, two strategies 

corresponding to the following permutations are investigated: 



1. a .  6. p 

2. a .  p.  6 

3.2.2.3. Crit ical P a t h  First  

This strategy says that first the attention should be focussed on the path which 

is crucial to the performance of the overall design in terms of the execution time. 

A critical path in a V T  description is the one which has the longest timing. 

Clearly this path determines the minimum total execution time and thus is critical 

to the performance of the data part. Hence, the decisions regarding the allocation 

of hardware to perform operations on the critical path of the data part are more 

important. In the critical path first strategy, these decisions are made first and 

then the decisions about other paths are considered. This is a fairly commonly 

used strategy in practice and therefore is investigated. 

In the context of the synthesis model, of course, the binary variables related to 

the critical path would be considered more important than the others. We can 

incorporate some more ideas within the general idea of critical path strategy. The 

variables related to the critical path can be ordered within themselves based on a 

certain strategy, e.g.. Storage Elements First or Operators First. The following 

seven different orderings of variables within the critical path are investigated (the 

variables related to the non-critical part are not ordered within themselves): 

I .  Simple Critical Path Strategy: In this case, there is no ordering within 

the critical path. All the binary variables are divided into two groups. 

The critical path group has higher priority than the other one. 



2 .  p6o Critical Path Strategy: Here, the variables within the critical path 

are divided into three groups, each group representing a type ( a ,  p, or 

6 ) .  Priorities are dictated by the p, 6 ,  o order. 

3 .  6po Critical Path Strategy: Again. the variables within the critical path 
are divided into three groups and priorities are dictated by the 6. p, a 

order. 

4 .  asp Critical Path Strategy: Here, the priorities within the critical path 

are dictated by the a ,  6, p order. 

5. up6 Critical Path Strategy: Here, the priorities within the critical path 

are in the a .  p,  6 order. 

6. Forward Propagation Critical Path Strategy: Any particular data path in 
the V T  representation has a direction associated with it. the direction in 

which the data (or value) propagates along the path. The binary 
variables related to a path can be associated with different points on 
the path. So, we can order the variables associated with the critical 

path by traversing the path in the direction of data propagation. The 

order thus generated dictates the priorities in this strategy. 

7 .  Reverse Propagation Critical Path Strategy: The order within the critical 
path here is exactly the reverse of that in forward propagat~on, 1.e.. we 

traverse the path in the direction opposite to that of data propagation. 

3.2.3. S o m e  Artif icial  Strategies 

As we saw in the previous subsection. we are going to investigate different 

permutations and combinations based on certain simplified ideas. We are 

considering four different permutations for the 6. p.  a ordering. We did not 

consider the following two permutations: 



They do not exactly correspond to any of the strategies discussed in the previous 

subsection and so we call them artificial strategies. For the sake of completeness. 

we investigate these too. 

Again, for the sake of completeness, we combine these two permutations with 

the critical path idea and investigate the following two strategies (with obvious 

definitions) : 

1. p(r6 Critical Path Strategy. 

2. 6 a p  Critical Path Strategy. 

So, overall we are investigating sixteen different strategies to guide the b r a n ~ h - ~ ~ d -  

bound process. For a quick reference. they are listed in Table 3-1, containing an 

abbreviated as well as an explanatory name for each strategy. 
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Table 3-1: Strategies to Guide the Branch-and-Bound 

NG 

pso S 

Gpo S 

a6pS 

a pGS 

p a  GS 

Saps 

SCP 

pGuCP 

Gpo CP 

cr GpC P 

a pGC P 

paGCP 

SapCP 

FPCP 

RPCP 

No guidance (original BANDBX program). 

Simple p.  8, a ordering. 

Simple 6. p. a ordering. 

Simple a .  6, p ordering. 

Simple a ,  p. 6 ordering. 

Simple p. a .  6 ordering. 

Simple 6. a.  p ordering. 

Simple Critical Path strategy. 

p. 6, a ordering within the Critical Path. 

8. p .  n ordering within the Critical Path. 

a .  6, p ordering within the Critical Path. 

a .  p.  6 ordering within the Critical Path. 

p, a .  6 ordering within the Critical Path. 

6, a ,  p ordering within the Critical Path. 

Forward Propagation Critical Path Strategy. 

Reverse Propagation Critical Path Strategy. 



Chapter 4 

Experiments and Results 

To investigate the effectiveness of the strategies discussed in the previous 

chapter in guiding the branch-and-bound. we solved a few synthesis examples using 

each strategy. The BANDBX program did not have the flexibility to allow these 

strategies to be incorporated into the branch-variable selection process. To 

implement the strategies, some rnodificatjons were made to the BANDBX program. 

A few words about the BANDBX program and the n~odifications are in order. 

4.1. T h e  BANDBX Program 

The BANDBX program is an enumeration code for pure and mixed zero-one 

linear programming problems. It is based upon a branch-and-bound algorithm. After 

the linear program defined at a given subproblem has been solved, the solution is 

checked for possible fathoming by infeasibility. bounds. integrality, and penalties. If 

the subproblem cannot be fathomed, the code then proceeds to either fix all 

monotone variables (fractional-valued binary variables that can assume only one 

value in successor subproblems due to feasibility or penalties) or, if no monotone 

variables are present, to branch on a fractional-valued binary variable. 

Two penalties are calculated for each fractional-valued binary variable. one by 
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forcing it t o  0 and the other by forcing it to 1. The choice of branching variable 

and direction IS made by selecting the largest among all penalties and branch~ng on 

the corresponding variable in the direction opposite to that yielding the maximurn 

penalty. As is obvious. there is no consideration, whatsoever, of the importance of 

variables in the BANDBX code. Appropriate modifications were made and a few 

subroutines were written to allow the inclusion of importance of variables in the 

branch-variable selection process. Then each of the .strategies in Table 3-1 was 

incorporated into the program to dictate importance of the variables. 

4.2. Measure of  Effectiveness of  a Strategy 

Now, the question is how to evaluate the effectiveness of different strategies. 

The BANDBX program compiles and reports an extensive set of statistics detailing 

the solution process. The following pieces of information are particularly relevant to 

our experiments: 

1. Number of the subproblem at which the optimal solution was found 

(SPOPT#).  

2. Total number of subproblems solved (TOTSP#)  

3.  Total number of simplex pivots performed to solve the linear relaxations 

(TSIMP#).  

The three numbers give a good indication of how much time the branch-and- 

bound process took. The magnitude of the numbers certainly reflects upon how 

effective the strategy was in pruning the branch-and-bound tree. We will use these 

numbers in evaluating the effectiveness of strategies. 



4.3. Synthesis Examples 

T h e  fo l low ing  three examples were solved: 

1. Cr iss.Cross Example 

2. Logic Example  

3. Cr i t ica l  Pa th  Example 

Resul ts  regarding t he  t i m e  taken  by BANDBX t o  solve t he  problems,  when  guided 

by  var ious strategies, are given here. Detai led analysis and  discussion of t he  

resul ts  fo l lows  i n  t he  nex t  chapter 

4.3.1. Criss.Cross Example 

T h e  ISPS behavioural  descr ipt ion and  VT representat ion fo r  t he  example are 

s h o w n  i n  Figure 4-1 and  Figure 4-2 respect ively.  

Criss.Cross : =  

BEGIN 

* *  Carriers * *  
t1<0:15) . 
t2<0:15) . 
ac0:15) . 
b<0:15) . 

* *  Activity * *  
action := 

( tl -a+b next 
t2 -a-b next 
a -tl+t2 next 
b -tl-t2 

END 

Figure 4-1: Criss.Cross ISPS Behaviora l  Descr ip t ion 



Figure 4-2: Criss.Cross VT representation 



The form of the implementation has been somewhat arbitrarily restricted. as shown 

in Figure 4-3. 

Figure 4-3: Restrictions on Implementation of Criss.Cross 

The details of the hardware set available for implementation are given in Table 

4-1. The period during which the inputs lo are valid is restricted to the ~nterval 0 

to 100 ns., and we have assumed a single control signal to latch the inputs. As 

shown in Figure 4-3, we have required the output values OO to be accessed from 

register outputs, and forced the values 0 3 , ~  and 04,1 to be stored, by setting the 

variables fiRl. 60,2. P , , ~ , ~ ,  and ~ 2 . 4 , ~  to 1. 

The synthesis model incorporating the restrictions mentioned was developed. 

The model consists of 112 equations involving 72 variables of which 35 are binary 

variables. The model was solved for the following three implementations: 

1. Implementation optimizing the cost: Here. it was assumed that the 

performance requirements were that the outputs had to be valid at the 

time t=800 ns. and remain valid until the time t=900 ns. The model 

was solved, with cost as the objective function, using each of the 



Table 4-1: Hardware Elements for Criss.Cross Implementation 

storage bits "SS D s ~  %P cost 

1 <16> 20 ns. 0 ns. 27 ns. $8.10 

s2 <16> 20 ns. 0 ns. 27 ns. $8.10 

3 < 16> 20 ns. 0 ns. 27 ns. $8.10 

operator bits function 

fl <16> + 
2 <16> + 
3 <16> 

f4 < l 6 >  - 

5 < 16> ALU 

f6 <16> ALU- 

DFP cost 

70 ns. $14.20 

70 ns. $14.20 

85 ns. $24.18 

85 ns. $24.18 

107 ns. $19.00 

107 ns. $19.00 

strategies listed in Table 3-1. Statistics regarding the time taken by 

BANDBX for different strategies are listed in Table A-1. 

2. Implementation optimizing the performance: The model was solved, with 
' 

output availability time as the objective function. using each of the 
strategies. Statistics regarding the time taken by BANDBX are listed 

in Table A-2. 

3. implementation optimizing the cost, with stringent performance 

requirements: Here, the performance requirements were that both 
outputs be available in under 500 ns.. and remain valid until 600 ns, 
The model was modified to include the requirements and then solved 
with cost as the objective function. Statistics about the solution time 

are given in Table A-3. 

Criss.Cross, having such a symmetric VT representation, does not contain a real 

critical path which can be considered crucial to the performance of the design. 



. . 
However, usually a - operation takes a little longer than a ' + '  operation (also 

indicated by DFp values in Table 4-1) and therefore we have considered the path 

including i O Z . ~ 2 , ~ 4 , 0 0 , 2  to be the critical path in the guidance strategies, 

4.3.2. Logic Example 

The ISPS behavioural description and V T  representation for this example are 

shown in Figure 4-4 and Figure 4-5 respectively. 

Logic := 

BEGIN 

* *  Carriers * *  
A<O:63) , 
B<O:15) , 
C < 0 : 1 5 )  . 
* *  Activity * *  
action :=  

( B -(C AND (B OR A(48:63))) XOR (B AND (C OR A(8:23,)) ) 

END 

Figure 4-4: Logic ISPS Behavioral Description 

In Figure 4-5, operations xl and x4 are field extraction operations which produce 

as outputs a subfield of the value given as the input. Here. operation xl produces 

A<48:63> and operation x4 produces A<8:23> 

The restrictions we will place on the implementation are shown in Figure 4-6 

and the details of the hardware set are shown in Table 4-2. Again, we assume 

that the inputs lo are available only during the interval 0 to 100 ns, and that only 

one is available to latch the inputs into storage elements. T o  ensure 



L o .  1 



Figure 4-6: Restrictions on Implementation of Logic 

Table 4-2: Hardware Elements for Logic lmplementation 

storage bits D~~ D~~ D~~ cost 

1 < 16> 20 ns. 0 ns. 27 ns. $8.10 

2 < 16> 20 ns. 0 ns. 27 ns. $8.10 

3 <64> 20 ns. 0 ns. 27 ns. $32.40 

operator bits function D~ P cost 

ALU 
1 <16> 48 ns. $19.00 

2 <16> ALU 48 ns. $19.00 

satisfactory performance. we require that the period during which the output oO1 is 

valid is not less that 100 ns. No operations are required to implement operations 

xl and x4. since these operations are performed by simply connecting a data path 

to the proper bits of the value i0,3. 



The synthesis model incorporating the restrictions was developed. It consists of 

150 equations involving 85 variables of which 38 are binary variables. The model 

was solved for the following two implementations: 

1. Implementation optimizing the cost: The model was solved with cost as 
the objective function and the BANDBX statistics are given in Table 

A-4. 

2. Implementation optimizing the performance: Here output availability time 

was the objective function. The statist~cs are listed in Table A-5. 

Logic too, having such a symmetric V T  representation. does not contain a real 

critical path. For the lack of better choice. we have considered the path including 

io,l.x5.x6.x7,00,1 to be the critical path. 

4.3.3. Critical P a t h  (CPath)  Example 

we saw, the previous two examples (Criss.Cross and Logic) did not have real 

critical paths. Intuitively, one would expect any strategy related to the idea of 

crltlcal path to be more effective if there were a real critical path in the design. 

To investigate this intuition, we solved an example whose V T  representation is not 

0 

symmetric and has a critical path embedded in it. 

The ISPS behavioural description and V T  representation for this example are 

shown in Figure 4-7 and Figure 4-8 respectively. The restrictions we will place on 

the implementation are shown in Figure 4-9 and the details of the hardware set 

are shown in Table 4-3. Again the period during which the Inputs lo are valid is 



CPath := 

BEGIN 

* *  Carriers * *  
t1<0:15) . 
t2~0:15) , 
t3~0:15) . 
a~0:15) , 
b<0:15) , 

* *  Activity * *  
action := 

( tl -a+a next 
t2 -b+b next 
t3 -t2+b next 
a -tl+t3 ) 

END 

Figure 4-7: CPath ISPS Behavioral Description 

restricted to the interval 0 to 100 ns.. and we have assumed a single control 

signal to latch the inputs. To ensure satisfactory performance, we require that the 

period during which the output 0 0 , ~  is valid is not less that 100 ns. 

The synthesis model incorporating the restrictions consists of 152 equations 

involving 94 variables of which 53 are binary. The model was solved for the 

following three implementations: 

1. Implementation optimizing the cost: The model was solved with cost as 

the objective function and the statistics are given in Table A-6. 

2. Implementation optimizing the performance: The model was solved with 
output availability time as the objective function. The statistrcs are 

listed in Table A-7. 

3. Implementation optimizing the cost, with stringent performance 



Figure 4 - 8 :  CPath VT representation 



Figure 4-9: Restrictions on Implementation of CPath 

requirements: Here, the performance requirement was that the output 

be available in under 480 ns. The model was modified to include the 

requirement and then solved with cost as the objectrve function. 

Statistics about the solution time are given in Table A-8. 

Obviously, the critical path used for guidance in this example was the path 

including i0,2.x2.x3.x4.00,1. 



Table 4-3: Hardware Elements for CPath Implementation 

storage 

operator 

bits 

bits 

20 ns. 

20 ns. 

20 ns. 

function 

0 ns. 27 ns. 

0 ns. 27 ns. 

0 ns. 27 ns. 

50 ns. 

50 ns. 

50 ns. 

50 ns. 

100 ns. 

100 ns. 

100 ns. 

100 ns. 

cost 

cost 



Chapter 5 

Observations and Conclusions 

Of the numbers recorded for the synthesis examples, the total number of 

subproblems solved (TOTSP#) is a good representative of the time taken by 

BANDBX to solve the problem. It reflects the effectiveness of the strategy used 

quite well (the smaller the number of subproblems solved. the better the strategy 

for pruning the branch-and-bound tree). TO get a better idea of the performance of 

the strategies with respect to the unguided BANDBX program. TOTSP# for each 

implementation solution is normalized with respect to the TOTSP# for the NG 

strategy. The normalized TOTSP#'s are listed in Table 5-1. The 'NOSF' entries 

(No Optimal Solution Found) in the table indicate the failure of BANDBX to find 

an optimal solution when guided by the strategy. The normalized TOTSP#'s are 

averaged over the various implementation examples for each strategy. Of course, 

'NOSF' entries are ignored in the averaging process. The average normalized 

number of subproblems solved is thus calculated for each strategy and then plotted 

in a bar chart shown in Figure 5-1. 



Table 5-1: Normalized Number o f  Subproblems Solved (1 of 2) 

Strategy Criss.Cross Criss.Cross Criss Cross Logic 
Cost Cost-Time T i m e  Cost  

NG 1 .OO 1 .OO 1 .OO 1 .OO 
oGpS 0.67 0.47 0.42 1.15 
Gaps 0.92 0.80 0.25 1.17 
spa S 0.99 0.98 0.26 1. 16 
a pSS 2.58 1.39 N O S F  2.30 
pa% 2.57 1.72 N O S F  2.38 
p S a  S 4.54 2.90 N O S F  2.44 
SCP 0.67 0.64 0.80 1 .09 
oGpCP 0.66 0.59 0.73 1.27 
8 a p C P  1.16 0.70 0.73 1.29 
SpaCP 1.32 0.80 0.73 1.33 
op6CP 1.31 1.03 1.12 1.78 
paSCP 1.23 0.78 1.12 1.80 
pGaCP 1.78 0.97 1.12 1.79 
FPCP 1.48 0.96 1.12 N O S F  

RPCP 0.56 0.59 0.73 1.58 



Table 5 -1 :  Normalized Number of Subproblems Solved (2 of 2) 

Logic CPath CPath CPath Average 
Time Cost Cost-Time Time 



Strategy 

8 d d h, h) 

VI 8 V1 8 VI 
8 8 8 8 8 

Average Normalized No. of Subproblems 

Figure 5-1: Comparison of Strategies 



5.1. 0 bservations 

5.1.1. General Observations 

We can make the following observations from Figure 5-1: 

The simple ordering strategies can be divided into two classes: 

1. Strategies assigning higher importance to variables of type 8 than 

to those of type p (8. p order): aGpS. Gaps and GpcrS strategies 

tend to improve the performance of BANDBX by a factor of two 

on an average. 

2. Strategies assigning higher importance to variables of type p than 

to those of type S (p. 6 order): apGS, paGS and pGaS strategies 

tend to degrade the performance of BANDBX by a factor of more 

than two on an average. 

Among the critical path strategies. SCP, aGpCP. GapCP. GpaCP and 

RPCP lead to an improvement in the performance of BANDBX. 

whereas apGCP, paGCP, p6aCP and FPCP deteriorate the performance. 

So, here also. 8.p ordering gives an improvement while p.6 leads to a 

degradation. 

r The strategies that use type information ( 0 ,  p or 6) of the variables in 

deciding their importance, can be divided into four classes based on 

their performance: 

1. oGpS. Gaps and GpaS 

2. apSS. PUGS and pGaS 



3 .  a8pCP.  GapCP and GpaCP 

4. ap8CP.  paGCP and p8aCP 

The interesting observation is that within each class, the performance 

deteriorates as the importance of the variables of type a is reduced. 

e.g., the performance of ap8CP is better than that of pa8CP.  which in 

turn performs better than p6aCP.  

5.1.2. More  Specific Observations 

The observations in the previous subsection are based on the average 

performance shown in Figure 5-1. However, some of the strategies failed to find 

an opt~mal solution in certain cases which does not show up at all in the figure. 

To get a more detailed idea. let us look into Table 5-1. We can make the 

following observations: 

Among the simple ordering strategies. the strategies following 8 .p  order 

have always been able to find an optimal solution and have always 

~mproved the performance of BANDBX, except in the case of Logic 

Cost Optjmization. Even in that case, the performance degradation is 

very little and the three 8.p order strategies certainly do much better 

than the three p.8 order strategies. So, overall oGpS. GapS, and 8paS 

strategies seem to be very effective and reliable. 

. The p.8 order simple ordering strategies fail to find an optimal solution 

in many cases. In the cases where they do find an optimal solution. the 

performance of BANDBX is fairly consistently degraded, except that 

p8aS has improved the performance in the case of Logic Time 

Optimization. Even in that case the improvement is not high enough to 



be taken  seriously.  Overal l ,  up%, PUGS and pGaS strategies seem t o  

be  neither effective nor  reliable. 

0 T h e  SCP st rategy has a lways been able t o  f ind an  op t ima l  so lut ion and 

has a lways led t o  an  improvement  in t h e  performance, except  i n  t he  

case of Logic Cos t  Opt im iza t ion .  Even i n  t ha t  case, the  per formance 

degradat ion is l ow  enough t o  be ignored. Overal l ,  t h e  S C P  st rategy 

seems t o  be  fairly e f fect ive and  reliable. 

T h e  aGpCP. GapCP and GpuCP strategies seem t o  pe r f o rm  acceptably 

o n  an  average basis.  However .  they fai led t o  f i nd  an  op t ima l  so lut ion i n  

a f e w  cases and  also deter iorated per formance i n  a f e w  cases. Overal l .  

they don ' t  seem t o  be reliable. 

T h e  ap&CP,  p a G C P  and p 8 a C P  strategies have fai led t o  f i nd  an  

op t ima l  so lut ion i n  many  cases and  have generally led t o  a degradat ion 

i n  t he  per formance of BANDBX. They  have improved  the  per formance 

in a f ew  cases wh i ch  can  be  d ismissed as except ions. Overal l ,  t he  

strategies seem t o  be neither effect ive nor  reliable. 

T h e  F P C P  st rategy has failed t o  f i n d  an  op t ima l  so lut ion i n  m a n y  

cases and has generally led t o  a degradat ion i n  per formance,  except  i n  

t he  case o f  Criss.Cross Cos t -T ime  t radeof f ,  where  the  per formance gain 

is t o o  l i t t le  t o  be taken  seriously.  Overal l .  F P C P  seems t o  be neither 

effect ive nor  reliable. 

R P C P  seems t o  be qui te  ef fect ive o n  an  average basis. It does very 

wel l  i n  all b u t  t w o  cases. It fails complete ly  i n  t he  case of CPa th  Cos t  



Opt im iza t ion  and it leads t o  a s ign i f icant  deter iorat ion i n  per formance i n  

t he  case o f  Logic Cos t  Opt im iza t ion .  It wou ld  seem t h a t  R P C P  is very 

ef fect ive b u t  n o t  fu l ly  reliable. Par t icu lar ly ,  it seems t h a t  it is very 

effect ive and reliable in  so lv ing t he  s y n t h e s ~ s  mode l  fo r  t i m e  

(per formance)  opt imizat ion.  

. T h e  t rend  t ha t  t he  per formance of BANDBX deter iorates as t he  

impor tance  at tached t o  the  variables o f  t ype  a is reduced seems to be  

more  closely fo l lowed i n  the  cases where  cos t  op t im iza t ion  is invo lved.  

Overal l .  the  strategies a6pS. Saps. and  6paS seem t o  be m o s t  e f fect ive and  

reliable. SCP is also qui te  reliable. b u t  it is n o t  as ef fect ive i n  t e rms  o f  t he  

per formance gain. it seems t ha t  UGPS w o u l d  d o  bes t  f o r  cos t  opt imizat ion.  

However ,  when t ime  opt imizat ion is invo lved,  it seems t h a t  R P C P  also can  be  

used  very effect ively and  reliably. 

5.2. Discussion and Some Explanations 

5.2.1. Simple Ordering Strategies 

F r o m  the  observat ions,  it is qu i te  conclus ive t h a t  assigning a higher p r io r i t y  t o  S 

variables than  t ha t  assigned t o  p variables leads t o  very signi f icant per formance 

gains. Le t  us t r y  t o  understand w h y .  I t  does make  sense af ter  a l i t t le  t hough t .  6 

variables specify h o w  the  values required by  the  var ious operator  inpu ts  are 

accessed, e.g.. F a b  indicates whether  t he  value required by  i npu t  ia,b is accessed 

direct ly f r o m  the  o u t p u t  o f  the  operator  p roducmg the  value o r  f r o m  the  s tored 



copy of the value. p variables specify the output value to storage element 

mapping, e.g.. p,,,,, indicates if storage element s, is used to store output value 

o,,,. So. 6 variables dictate if an output value will have a stored copy (if there is 

no operator input accessing the stored copy of a particular output value. then 

there is no reason to keep a stored copy of the value), whereas p variables decide 

which storage element, if any, will be used to store the output value. It makes 

sense to decide first if a stored copy is required, and then decide the actual 

storage element to be used. In other words, giving higher importance to 8 variables 

than that of p variables is an intuitively sound approach and will tend to cut 

down on backtracking in the branch-and-bound process. 

As far as the effect of the importance attached to a variables is concerned. the 

results are not conclusive. However, giving more importance to n variables seems 

to have a positive effect on the performance of BANDBX, especially when cost 

optimization is involved. There are two possible explanations for this behaviour: 

0 variables represent operator usage decisions, as opposed to p 

variables which represqt storage usage decisions. As the average cost 

of the operators is usually higher than that of the storage elements 

(certainly so in our synthesis examples). the decisions about operator 

usage have a larger impact on the cost of the implementation. If 

storage decisions are made first, the tendency will be to avoid using 

storage elements at all because that will lead to a cheaper partial 

implementation. However, this implies that more operators will have to 

be used when operator decisions are being made later (not much 



sharing of operators will be possible due to unavailability of stored 

copies of the values). So, the overall cost of the implementation goes 

up. Instead, if we make operator decisions first. we will tend to use a 

minimum number of operators (maximum sharing) as that will lead to a 

cheaper partial implementation. Of course, later we will have to add 

more storage elements to the implementation in order to make sharing 

of operators possible, but since the average cost of the storage 

elements is less. the overall cost of the implementation will still be less. 

Hence, it seems that making operator decisions more important will tend 

to produce cheaper implementations early in the branch-and-bound 

exploration and thus will produce better bounds. Therefore, making o 

variables more important should certainly be helpful, especially when 

cost optimization is involved. 

. We have already concluded and justified that 6 decisions should be 

considered before p decisions. Now, the question is how to make 6 

decisions, i .e . .  how to decide the access mechanism for the operator 

inputs. Before we try to decide how to access a particular operator 

input. it might be helpful to decide what operator to use to do the 

particular operation. In general. the knowledge about operation to 

operator mapping should be useful in the process of 8 decisions. 

Particularly, the knowledge about sharing of operators could be helpful 

in deciding if a particular operator input should be accessed from the 

stored copy of the value. So, it seems that a. 6, p is the most 

intuitive order and will lead to minimum amount of backtracking. 
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5.2.2. Critical Path Strategies 

The more sophisticated idea of critical path does show some promise as 

indicated by the consistency and reliability of the SCP strategy. There is more 

flexibility in terms of the choices available for implementation of the non-critical 

part. Critical path implementation, being crucial to  the overall performance of the 

design, does not have that much flexibility. The fact that the decisions related to 

the more crucial part of the design are being made first does tend to reduce 

backtracking so as to improve the BANDBX performance. However, the data 

gathered for this thesis indicates the improvement may not be as much as one 

would intuitively expect. 

The most interesting observation about the critical path strategies is the contrast 

between the performances of RPCP and FPCP. More than anything else, i t  has to 

do with the fact that in RPCP a pseudo 6.p ordering within the critical path is 

followed whereas in FPCP there is a pseudo p.S ordering. Pseudo 6.p ordering 

means that the 6 variables that dictate whether or not a stored copy of the 

output value related to a particular p variable is needed, are considered before the 

p variable. E.g.. in CPath synthesis example (Figure 4-8). RPCP considers how 

the inputs for x, should be accessed before i t  considers if and where o2 should 

be stored: FPCP follows exactly the opposite order of decisions. As is obvious. 

the only reason why a stored copy of 02,1 might be required is that x3 wants to 

access it. I t  seems that RPCP is particularly effective in time optimization because 



t he  decisions wh i ch  direct ly affect t he  o u t p u t  avai labi l i ty t i m e  are made f i r s t  (a long 

t he  cr i t ica l  pa th .  R P C P  s ta r ts  a t  the  o u t p u t  and  w o r k s  i t s  w a y  u p  t o  t h e  inpu t ) .  

5.2.3. Comparison 

Overal l ,  the simple order ing strategies seem t o  have done bet ter  t han  t h e  cr i t ica l  

p a t h  strategies i n  the  examples considered. T h e  idea of cr i t ica l  p a t h  being more  

intel l igent,  one wou ld  expect  o therwise.  T h e  synthes is  examples w e  have considered 

are no t  large and complex i n  t he  sense o f  hav ing  a real cr i t ica l  path.  Logic  and  

Criss.Cross do n o t  have a cr i t ical  pa th  a t  all, and a l though CPa th  has a cr i t ica l  

pa th ,  it does no t  have m u c h  of a non-cr i t ical  par t .  It is plausible t h a t  these 

examples w i l l  no t  exhib i t  t he  real power of cr i t ica l  p a t h  strategies. O u r  conjecture 

is t ha t  t he  idea o f  cr i t ica l  pa th  w i l l  prove more  and  more  ef fect ive as w e  solve 

larger and more  complex examples hav ing  dist inguishable cr i t ical  pa ths  and  non- 

cr i t ica l  par ts .  T h e  absence of an  au tomated  synthes is  mode l  generator l im i ted  us  

t o  the  examples considered. T h e  equat ions for  t he  examples were hand-wr i t ten .  

Manua l  generat ion o f  the  model  for any th ing  larger becomes infeasible. 

5.3. Suggestions for Further Research 

The re  are t w o  ma jo r  direct ions for fur ther  research: 

1. Development  o f  s ta t ic  guidance strategies. 

2. Development  o f  dynamic guidance strategies 



5.3.1. Static Guidance Strategies 

The approach adopted in this thesis is static in the sense that the importance of 

the variables is fixed throughout the branch-and-bound process. We never evaluate 

the effect of the previous design decision before considering the next decision, i .e.. 

we do not look at the partially constructed implementation before deciding the next 

variable to branch upon. Along this approach. the following ideas can be 

investigated (some of the ideas can be investigated very easily if we have an 

automated synthesis model generator): 

Construct a few large and complex examples having real critical paths 

and solve them using the strategies considered in this thesis to resolve 

the conjecture that the critical path strategies will be more effective for 

larger examples. 

Construct a few examples where the average cost of the storage 

elements is more than that of the operators and solve them to 

investigate if assigning higher priority to o variables is effective just 

because of the higher cost of the operators. 

Order the three types of- variables based on the number of variables in 

each type group. The smallest group gets the highest priority. 

Investigate the strategy particularly for time optimization. Some of the 

results in our examples give a very weak indication that this might be 

effective. 

Investigate some combinations of the strategies considered in this thesis. 



e.g.. in a simple ordering strategy. divide each category of variables into 

two groups, one belonging to the critical path and the other to  the 

non-critical part, and thus have six priority levels instead of just three. 

Investigate critical path strategies that also order variables within the 

non-critical part. 

5.3.2. Dynamic Guidance Strategies 

As opposed to the static approach, this approach can change the importance of 

the variables at an intermediate stage. The approach will actually simulate the 

generalized design strategy discussed in Section 3.2.1. This approach may evaluate 

the effect of the design decision just made and redefine the importance of the rest 

of the variables depending on the partial implementation constructed so far. In its 

extreme form, i t  will look at the partial implementation at each branch-variable 

selection step and then decide the next variable to branch upon. Eventually it 

takes the form of an expert system having design knowledge built into it, which 

guides the branch-and-bound solution process for the synthesis model. This 

approach is worth investigating. The knowledge about the effectiveness of the 

various static strategies can be used in the dynamic approach decision process. 



Appendix A 

BANDBX Statistics 

Table A-1: BANDBX Statistics for Criss.Cross Cost Optimization 

Strategy S P O P T #  T O T S P #  TSIMP# 

NG 
pGa S 
spas 
a GpS 

a pGS 

paSS 

S a p s  

SCP 

p s a c p  

GPO CP 

cr GpC P 
a pSC P 

paGCP 

GapCP 

FPCP 

RPCP 



Table A-2:  BANDBX Statist ics for Criss.Cross T ime  Optimization 

Strategy S P O P T #  T O T S P #  T S I M P #  

NG 

p 6 a  S 
GpaS 

aGpS 

a pGS 
paGS 

saps 
SCP 

p 6 o C P  
GpaCP 
aGpCP 
0 pGC P 

paGCP 
GapCP 
FPCP 
RPCP 

45 
Failed. Numerical Inaccuracy. 

24 
34 

Failed. Numerical Inaccuracy. 
Failed. Numerical Inaccuracy. 

2 3 
57 
69 
32 
3 2 
69 
69 
3 2 
69 
3 2 



Table A-3: BAN DBX Statistics for Criss.Cross Cost- Time Tradeoff 

Strategy SPOPT# TOTSP#  TSIMP# 

NG 152 230 5862 
p8a S 64 668 18233 
spa S 222 226 5936 
a SpS 8 3 107 2855 
a pGS 302 320 81 11 
po6S 3 54 395 101 93 
Ga pS 181 185 5000 
SCP 111 147 4096 
pGaCP 49 223 5861 
GpaCP 142 184 4900 
aGpCP 103 136 3797 
a psC P 208 236 5816 
pn6CP 168 180 4621 
GapCP 133 161 4375 
FPCP 195 221 5527 
RPCP 126 136 3625 



Table A-4: BANDBX Statistics for Logic Cost Optimization 

Strategy SPOPT# TOTSP#  TSIMP# 

NG 2774 3144 93118 
pGa S 7390 7661 216803 
Gpa S 2048 3650 1 14639 
a SpS 2019 3628 114588 
a p6S 6945 7216 203556 
pa6S 7213 7484 213178 
Gaps 2051 3680 1'15971 
SCP 3101 3423 98239 
pGa C P 4616 5632 160979 
GpaCP 2899 4190 124213 
aGpCP 2722 4000 11 7480 
a pGC P 4459 5610 160745 
p(r6CP 4430 5658 161726 
GupCP 2767 4042 1 18630 
FPCP Failed. Numerical Inaccuracy. 
RPCP 3699 4953 145538 



Table A-5: B A N D B X  Statist ics for Logic T ime Optimization 

Strategy SPOPT# TOTSP# TSIMP# 

NG 

psa S 
GpaS 
aGpS 
a pGS 
paGS 
Gaps 
SCP 
psacp 
GpaCP 
aGpCP 
apGCP 
pcrscp 
GapCP 
FPCP 
RPCP 

2787 2787 
490 2475 
919 919 
569 569 

Failed, Storage Limit Exceeded. 
Failed, Storage Limit Exceeded. 

632 632 
1607 1607 

Failed. Numerical Inaccuracy. 
Failed. Numerical Inaccuracy. 

Failed. Numerical Inaccuracy. 

Failed. Numerical Inaccuracy. 

Failed. Numerical Inaccuracy. 
1033 1033 

Failed. Numerical Inaccuracy. 
142 142 



Table A-6: B A N D B X  Statistics for  CPath Cost Optimization 

Strategy S P O P T #  T O T S P #  T S I M P #  

NG 

pSa S 
Gp cr S 
a SpS 

a pGS 
paGS 

Gaps 
SCP 

pSaCP 
SpaCP 
aGpCP 
a psc P 

puSCP 
SapCP 
FPCP 
RPCP 

Failed, Numerical Inaccuracy. 

130 
135 

Failed. Numerical Inaccuracy. 

Failed. Numerical Inaccuracy. 

132 
586 

Failed. Numerical Inaccuracy. 

264 
261 

1098 
Failed. Numerical Inaccuracy. 

253 
368 

Failed. Numerical Inaccuracy. 



Table A-7: BANDBX Statist ics for CPath T ime Optimization 

Strategy S P O P T #  T O T S P #  T S I M P *  

N G  315 2252 68276 
pGa S Failed. Numerical Inaccuracy. 
Gpa S 56 60 1862 
a GpS 4 1 192 6268 
a p8S Failed. Numerical Inaccuracy. 
p06S Failed. Numerical Inaccuracy. 

s a p s  8 8 93 2552 
SCP 217 754 22921 
pGoCP Failed. Numerical Inaccuracy. 
GpoCP 118 123 3334 
aGpCP 34 182 6073 
apGCP Failed. Numerical Inaccuracy. 
paGCP Failed. Numerical Inaccuracy. 
GapCP 112 117 3028 
FPCP Failed. Numerical Inaccuracy. 
RPCP 170 257 8177 



Table A-8: B A N D B X  Statist ics for CPath Cost-Time Tradeoff 

Strategy S P O P T #  T O T S P #  T S I M P #  

NG 
pscr S 
Gpo S 

aGpS 

a pGS 
pa GS 

Go pS 
SCP 

pSoCP 
GpoCP 

a GpC P 
a p X P  
poSCP 
GapCP 
FPCP 
RPCP 

1305 3475 106655 
Failed. Numerical Inaccuracy. 

1074 1550 45503 
767 1241 38358 

Failed. Numerical Inaccuracy. 

Failed. Numerical Inaccuracy. 

1015 1440 44686 
856 1778 57231 

Failed. Numerical Inaccuracy. 

Failed. Numerical Inaccuracy. 
Failed. Numerical Inaccuracy. 

5 2 2222 77060 
Failed. Numerical Inaccuracy. 
Failed. Numerical Inaccuracy. 
Failed, Numerical Inaccuracy. 

7 80 1796 58662 
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