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ABSTRACT 

Among all the operations in the scene rendering process, 

scan-converting an image is perhaps the most computationally 

intensive task. For conventional graphics displays, the 

utilization of the image memory bandwidth is a key factor in 

determining their image rasterization performance. The symmetric 

memory-to-screen mapping scheme is evaluated for its 

effectiveness to cope with the problem. 

Owing to the drop of hardware cost, parallel-processing 

architectures have been proposed for many advanced 

high-performance graphics displays. Optimizing their hardware 

utilization is the main theme of this thesis. To evaluate these 

systems, a study of their architectural structures is done. This 

study leads to a general model for graphics display 

architectures. Based on this model, a new concept called 

Regional-Rasterization is proposed. With this technique, a more 

cost-effective parallel-processing solution to the image 

rasterization problem can be obtained. 
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CHAPTER 1 

INTRODUCTION 

1.1 Description of the Problem 

"Computer graphics" had its starts with X-Y plotters. The 

technology was soon extended to include calligraphic 

(line-drawing) CRT systems based on refresh-vector hardware and, 

at a later date, direct-view storage tubes followed by higher 

performance refresh-vector systems. 

Meanwhile, a separate "image processing" technology had been 

following its own evolutionary path. Instead of dealing with 

lines and points, randomly positioned anywhere on the display 

surface, image processing was based on a rectangular array of 

picture elements or p i x e l s .  Digital information defining the 

state of each pixel was stored in a random-access memory and 

used to generate a television-type, raster-scan CRT display - in 

monochrome or full color. 

The division between vectorgraphic (also known as 

calligraphic) "computer graphics" and raster-scan "image 

processing" has now been bridged by the new raster display 

technology. Low-cost memories have made it economically feasible 

to assemble high-resolution, fine-detail raster images that all 

but eliminate the objectionable stairstepping of vectorgraphic 

lines when displayed on a raster-CRT screen. The ability to fill 

areas with solid color (and shading) makes it useful in more 



applications of different nature. The result is r a s t e r  s c a n  

g r a p h i c s  combining the full-color, pixel-by-pixel control 

potentials of image processing and the line-drawing capabilities 

of vectorgraphics in a single display system. 

Unfortunately, the move from calligraphic to raster displays 

has brought new problems. For calligraphies, only the endpoint 

coordinates of lines needed to be stored, so memory requirements 

were held to a minimum. Refresh-vector writing speed made it 

possible to "animatef1 the display and to create interactive 

systems 'which allowed the operator to control the display in 

"real time" through such input devices as lightpens, joysticks, 

and digitizer tablets. Again, however, only the endpoints needed 

to be recalculated with each refresh cycle, minimizing the need 

for high-speed computational capabilities. 

The proper value at each pixel is a function of the data 

base (the simulated environment), the viewing position and 

orientation of the simulated viewer, and the location(s) of the 

light source(s) in the simulated environment. The environment is 

most often described as a set of solids in the environment 

(~uclidian three-space) coordinate systems. Each object is 

usually described by a set of planar tiles ("polygons") which 

form its various surfaces. Figure 1.1, from [SUTH~~], shows the 

boundaries of a set of polygons defining the surface of a 3-D 

object. Other methods of object description are sometimes used 

-- e.g., as collections of geometric solids or curved surfaces 

[FUCH791. We assume hereon that the common planar-polygon 



Figure 1.1 Polygon mesh model of an object (from [ S U T H ~ ~ ] ) .  

descriptions are used. 

Each polygon is described as a list of vertex coordinates 

(x, y, z in 'world' coordinates) and colors (values of Red, 

Green, Blue that specify the intrinsic color of the vertex). A 

transformation engine operates on the coordinates of the vertex 

list for each polygon, transforming the polygon to 'eye' 

coordinates in response to user input from joystick, trackball, 

or some similar device. Next, polygons (or portions of polygons) 

that are outside the viewing pyramid are clipped and perspective 

division is performed to transform 'eye' coordinates to 'screen' 



coordinates. Finally, a lighting model calculator modifies each 

vertex's intrinsic color according to the position and intensity 

of light sources. The output of the "front-end" pipeline is 

still a list of polygon vertices, but with vertex coordinates 

and colors transformed to the proper value for display (see 

Figure 1.2). 

In advanced color graphics systems, the rasterizer performs 

a series of steps needed to translate a list of polygon vertices 

into a smooth-shaded, rendered, digital image, with hidden 

surfaces properly removed, and perhaps anti-aliased to reduce 

pixelization artifacts. In order to compute the Red, Green and 

Blue color (shade) values for a particular pixel, the system has 

to determine: 

(a) which, if any, polygons map onto this pixel's area, 

(b) the details about the precise part of this closest polygon 

which maps onto the pixel -- its assigned color (R,G,B), its 

angle and distance from the light sources(s), and its angle 

and distance to the viewer, and 

(c) which one from this set is closest to the viewer (and thus 

is the one visible obscuring all the other polygons). 

The problem to transform a scene defined in high level polygon 

descriptions into a raster image is called the i m a g e  r a s t e r i z a -  

t i o n  p r o b l e m .  

A long-standing goal of researchers in computer graphics 

systems has been the development of real-time three-dimensional 

modeling systems. These systems, which produce a realistic image 



Sources 

Figure 1.2 Scene rendering process pipeline 

of a simulated three-dimensional environment, have a wide 

variety of potential uses -- from flight simulators for pilot 
training to interactive Computer Aided Design (CAD) systems. The 

most sophisticated of these systems produces, in real-time, 

images of startling reality. The only limitation to widespread 

use of these systems has been their prohibitive costs, ($500,000 

and up). Thus, virtually the only uses today are those for which 

there is no real alternative -- e.g., simulating maneuvers in 

gravity-free space or training-simulators for pilots of 

sophisticated airplanes. If such modeling systems could be 



provided at significantly lower costs, it is safe to presume 

that their use would become dramatically more widespread. 

A short examination of the computational expense of the 

problem suffices to justify the complexity and expense of 

current systems which solve it. A video image normally consists 

of a matrix of pixels between 512 to 1024 rows (scan-lines) with 

512 to 1024 pixels in each scan line. The image is then simply a 

set of some 250,000 to 1,000,000 pixels, each of which is 

computed by a pel-process. The problem at hand is simply 

executing these up to 1 million .pel-processes each time the 

image is scanned out, usually not less than 30 times per second. 

In this thesis, the impacts of various architectural 

characteristics of image rasterizers on their efficiency in 

performing image rasterization are investigated.   he goal is to 
search for a more cost-effective alternative to the current 

solutions for the image rasterization problem. 

1.2 Thesis Outline 

In Figure 1.3, the thesis outline is schematically 

illustrated; and various chapters of the thesis are conceptually 

mapped to different issues of the image rasterization problem. 

In Chapter 2, memory-to-screen mapping schemes for frame 

buffer based image rasterizers are investigated. A mapping 

scheme defines the memory access geometry of a frame buffer. 





owing to the limited bandwidth and the memory contention between 

the image update and video refresh activities, the frame buffer 

updating efficiency becomes critical to the performance of image 

rasterization. Although the access bandwidth is unaltered by a 

change in the memory-to-screen mapping scheme, the efficiency of 

drawing/reading image patterns into the frame buffer is 

affected. Therefore, with a more appropriate mapping scheme, the 

image rasterization process can be sped up. In Chapter 2, two 

dominant types of mapping schemes, the scan-line mapping scheme 

and the symmetric mapping scheme, are discussed. A mathematical 

model is built to evaluate these schemes. Three benchmark tests 

are conducted to compare the two schemes. 

A general representation for graphics systems is described 

in Chapter 3. The representation identifies an image rasterizer 

according to the characteristics and nature of its architecture, 

and thus provides a means to compare different image 

rasterizers. With this representation, the hardware complexity 

and computational power of a parallel-processing graphics 

display can also be formulated. These two factors are crucial to 

the evaluation of the rasterizer's cost-effectiveness. 

A novel concept for image rasterization called 

R e g i  o n a l  - R a s  t  e r i  z a t  i o n  is proposed in Chapter 4. (In the thesis, 

Regional-Rasterization is sometimes called "the 

Regional-Rasterization technique".) Motivations, functions, and 

overhead of this new technique are discussed in that chapter. 

With this novel concept, the cost-effectiveness of 



parallel-processing architectures for image rasterization can be 

improved substantially. 

Chapter 5 focuses mainly on the performance of the 

~egional-Rasterization technique. To evaluate the technique, a 

performance model is created. This model is a logical 

representation of the Regional-~asterization technique. A set of 

simulated work loads is applied to the model. These work-loads 

are generated based on a new image model. Estimates of two 

important performance measures for the ~egional-Rasterization 

technique are then obtained. According to these measures a gross 

prediction of the technique's effectiveness is obtained. 

In Chapter 6, a discussion on the feasibility of 

implementing the Regional-Rasterization technique is given. A 

design of a key component, the local objects identifier, is 

presented. The feasibility is further verified by applying the 

technique to two typical parallel-processing graphics display 

architectures. The conclusion of the thesis can be found in 

Chapter 7. 



CHAPTER 2 

MEMORY-TO-SCREEN MAPPING SCHEMES AND IMAGE RASTERIZATION 

In raster-scan graphics displays, each pixel of the raster 

is assigned a fixed memory location in the frame buffer and can 

be addressed randomly. The allocation strategy of the memory 

cells in the frame buffer to the raster pixels is known as the 

m e m o r y - t  o - s c r e e n  m a p p i  n g  s c h e m e .  

The contents of the frame buffer are updated by a device 

called the d i s p l a y  p r o c e s s o r .  Another device, the v i d e o  s i  gnu1 

g e n e r a t o r ,  also needs to read data from the frame buffer in a 

regular and predictable fashion in order to refresh the screen 

of the display. Owing to the limited access bandwidth of the 

frame buffer, an efficient way to draw patterns becomes crucial 

to the overall performance of a frame buffer based image 

rasterizer. Because of the differences in their pixel-to-memory 

assignment geometry, unequal number of frame buffer accesses may 

be required to draw a similar pattern for various mapping 

schemes [ c H O R ~ ~ ,  GUPT81, MATI84, SPR0831. The two most popular 

mapping schemes are the s c a n - 1  i  n e  m a p p i n g  s c h e m e  and the 

s y m m e t r i c  m a p p i n g  s c h e m e .  The major objective of this chapter is 

to carry out a quantitative investigation into the impacts of 

these mapping schemes on the frame buffer update efficiency. 



2.1 Video Refresh Requirements 

The r e f r e s h  r a t e  of a display is the number of complete 

images, or frames, drawn on the screen in one second. A typical 

refresh rate for CRT displays is 60Hz. As the electron beam 

sweeps from the left to the right, some finite amount of time is 

required to return from the right extreme back to the left. This 

activity is called h o r i z o n t a l  r e t r a c e ,  and the time taken is 

termed as horizontal retrace time. Similarly, after a raster is 

completely scanned, the electron beam needs to return to the top 

margin. It is called the v e r t i c a l  r e t r a c e  and the time required 

is the vertical retrace time. During retraces, the electron beam 

is turned off such that no new image data is displayed. The 

video signal is said to be blanked, and the respective times are 

called horizontal and vertical b l  a n k i  ng i  nt e r  v a l  s .  When not 

b l a n k e d ,  the signal is said to be a c t i v e .  

Figure 2.1 shows how total frame time is composed of 

vertical retrace time, horizontal retrace time, and active time. 

Total line time is equal to frame time minus vertical retrace 

time divided by the number of visible lines per frame. Active 

line time is the value obtained by subtracting the horizontal 

retrace time from the total line time. As described earlier, a 

scan line consists of a certain number of pixels. The active 

line time is the total amount of time required to display the 

pixels of a scan-line. Hence, each pixel in a scan line is 

displayed for a period called the p i x e l  c y c l e  t i m e  which is the 



VERTICAL RETRACE TIME 

A C T I V E  

T I M E  

H R T  
O E I  
R T M 
I R E  
Z A 
0 C 
N E 
T 
A 
L 

ACTIVE LINE TIME r-1 k TOTAL LINE TIME --A 
I 
I Pixel cycle time = 

((l/refresh rate)-vertical retrace) - horizontal retrace , 
visible lines per frame 

pixels per line 

Figure 2.1 Timing partition of a video frame. 

active line time divided by the number of pixels per scan line. 

In order to satisfy the video refresh requirements, the 

video generator must access the frame buffer regularly. To 

change the contents of the frame buffer, the display processor 

must compete with the video generator for memory cycles. Hence 

the availability of e f f e c t  i  v e  b a n d w i d t  h to the display processor 



is always a critical factor which determines the performance of 

an image rasterizer. Parallel memory I/O, achieved by using 

multiple memory chips to implement the frame buffer, can always 

increase the effective bandwidth. By implementing the frame 

buffer with display RAMS', the overall memory bandwidth can 

almost be doubled. Although differences in memory-to-screen 

mapping strategies do not change the total memory bandwidth, 

they may alter the average image updating efficiency. In the 

following section, the two most popular memory-to-screen mapping 

schemes will be introduced. 

2.2 Memory-To-Screen Mappinq Schemes 

In most cases, the frame buffer is implemented with RAM 

chips. Words in RAM chips are usually arranged in a two 

dimensicnal array. Each word in a chip has a unique address 

( r , c ) ,  where r and c are the row and column address of the word 

in the array respectively, For brevity, in this chapter it is 

assumed that the word 1ength.i~ one bit. In order to store the 

large amount of pixel values, n memory chips are assumed to be 

used. In the rest of the chapter, we assume n  to be a perfect 

square such that n = k 2  where k = l  ,2, - * .  

------------------ 
I A display RAM is a quasi-two-ported RAM such that its primary 
port is always available for image updating while data for video 
refresh can be read from its secondary serial port   MA TI^^]. 



2.2.1 The Scan-Line Mappinq Scheme 

Since all the chips can be addressed independently, it is 

possible to access n pixels simultaneously (n is the number of 

chips used). In the scan-line mapping scheme, memory cells from 

each chip with the same address are assigned to a string of 

adjacent pixels along a scan line (see Figure 2.2). This scheme 

is motivated by the high output rate required by the video 

signal generator. Theoretically, the video refresh controller 

should have a new pixel value ready for every pixel cycle which 

has a very short period. For example, the actual required pixel 

rate for a 1024x1024 60Hz non-interlaced display is 

approximately 1 pixel per 11.5 ns. With a typical memory cycle 

of 150 ns for single bit reads (e.g. the 4164 64Kx1 DRAM), more 

than 13 pixels must be read simultaneously in a single memory 

cycle to achieve the desired pixel rate. Scan-line mapping is 

particularly good for high output parallelism. In the example 

shown in Figure 2.2, an effective pixel rate of 1 pixel per 

9.375 ns, is potentially achievable. 

Writing an h-by-w rectangular pattern onto the screen is 

done by updating an appropriate h-by-w grid of pixels in the 

frame buffer. A 1-by-n grid of pixels in the frame buffer can be 

updated extremely fast in the scan-line mapping scheme provided 

that the grid is well matched with the word boundary. Assuming 

the pattern is already available in a buffer or a latch, which 

is called the pattern buffer, a single frame buffer access given 

an appropriate word address to all the chips is adequate. 



16-bit boundary = Memory 

Figure 2 . 2  Scan-line mapping scheme for a system 
implemented with 16 64Kx1 RAM chips (from 
  MA TI^^]). 

However, it becomes more complicated when the 1-by-n grid spans 

across a word boundary (see Figure 2.3). Addresses sent to chips 

which contain pixels on the right side of the word boundary must 

be adjusted. In order to be able to update a random 1-by-n grid 

in one memory cycle, address adjusting circuitry must be 

included in the frame buffer. Moreover, data alignment hardware 

is also required to match the data with the word boundary before 



it can be correctly written into the destination grid. 

Figure 2.3 describes the procedure to write a 1-by-16 

pattern into an arbitrary 1-by-16 grid. The leftmost pixel of 

the pattern is to be written to the location (r',cl) of chip 5. 

Similarly, the next 1 1  pixels are to be stored into the cells 

(r',c') of chips 6, 7, ..., and 16 respectively. Starting from 
the 13th pixel, the remaining 4 pixel values are to be stored at 

location (r',c'+l) for chips 1 ,  2, 3, and 4. The data in the 

pattern buffer must firstly be aligned with the word boundary. 

This can be done by shifting the pattern data around until the 

leftmost cell holds the pixel to be written into chip 1. The 

next step is to give appropriate addresses to all the chips. In 

the example, chip 1,2,3 and 4 are given the address (rl,c'+l) 

and the others the address (r',cl). 

The major drawback of the scan-line mapping scheme is its 

poor performance in dealing with vertical objects such as a. 

vertical vector. (In this chapter, a rectangular pattern whose 

width is larger than its height is classified as a horizontal 

object, otherwise it is a vertical object. ) Because of the 

mapping strategy, all the pixels along a vertical vector are 

stored in the same chip [ G U P T ~ ~ ,  MATI84, ~ ~ ~ 0 8 3 1 .  Therefore, 

pixels along the vector must be written sequentially. 
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Figure 2.3 Address transformation and data alignment 
mechanism in the scan-line mapping scheme in a 
16-chip system. 

2.2.2 The Symmetric Mappinq Scheme 

In the scan-line mapping scheme, a 1024x1024 display may 

require at most 1024 memory cycles to draw a vertical vector. 

This rate is too slow for some real-time applications. In order 

to lessen the required memory cycles for writing a vertical 

object, the symmetric mapping scheme arranges memory chips in a 

symmetric square [ G U P T ~ ~ ~ S P R O ~ ~ ] .  For example, in Figure 2.4 the 

memory cells with the same address are mapped to a 4-by-4 square 

grid on the display [MATI84]. This design gives rise to a system 



of more consistent performance. 

An obvious drawback of symmetric mapping is a slower update 

rate for horizontal objects. For applications which generate 

more horizontal objects, the scan-line mapping scheme is 

definitely better than the symmetric mapping scheme. Another 

disadvantage is that the number of pixels which can be provided 

to the video signal generator in parallel is decreased 

considerably. If n=k2 chips are used in the scan-line mapping 

scheme, the n pixels read from location ( r l , c ' )  of all the chips 

lie along a scan line. A single read from the frame buffer by 

the video signal generator supplies the next n pixel values of 

the same scan-line. In the symmetric mapping scheme, the n 

pixels are read as k rows of k pixels. Among them only one row 

of pixels belongs to the current scan-line and is immediately 

needed by the video signal generator. The remaining (k-1) rows 

of pixels are either discarded or saved up in a r e f r e s h  b u f f e r  

[sPRo~~]. 

The refresh buffer must be capable of holding 2k complete 

scan-lines [sPRO~~]. It is used as two k-line sections that 

alternately supply data to refresh the display and are 

replenished from the frame buffer. During the display of one set 

of k lines, information for the next set of k lines is 

transferred from the image memory to the refresh buffer. Shift 

registers or FIFO memories are commonly used to build the 

refresh buffer, for their speed to shift out data. 



Figure 2 .4  Symmetric mapping scheme for a system with 16 
64Kx1 RAM chips (from   MA TI^^]). 

With a refresh buffer, the average achievable pixel rate 

remains the same as that of the scan-line mapping scheme. But 

the extra cost involved to implement the buffer is considerable, 

since thousands of pixels have to be stored in expensive high 

speed memories. 

Furthermore, a k-by-k square pattern may now mismatch to a 

horizontal as well as a vertical word boundary. Hence more 

complicated address transformation and data aligning mechanism 

must also be employed (see Figure 2.5). This adds even more to 

the cost of the system. 



Figure 2.5 Address transformation and data alignment needed 
to update an arbitrary 4-by-4 grid in a 16-chip 
system. 

To justify the cost effectiveness of a mapping scheme, a 

quantitative comparison is conducted. In the following section, 

a mathematical model is created to evaluate the expected number 

of accesses needed to update an arbitrary rectangular grid of 

pixels. 



2.3 Mathematical Model for Analysis 

One of the most important objectives of this chapter is to 

explore the average case performance of the scan-line mapping 

scheme and the symmetric mapping scheme. The measurement of 

their performance is made in terms of the number of memory 

cycles required to update an arbitrarty h-by-w grid of pixels. 

The analysis is performed for an MxM non-interlace whose 

frame buffer is implemented with n=k2 memory chips. There are 

also proper data alignment and address adjustment facilities 

provided. Thus, an arbitrary I-by-n grid can be updated in a 

single memory cycle for the scan-line mapping scheme, and an 

arbitrary k-by-k grid of pixels for the symmetric mapping 

scheme. 

In our model, o n l y  r e c t i l i n e a r  r e c t  a n g u i a r  p a t  t erns2 are 

considered. ~rawing an h-by-w rectilinear rectangular pattern 

always requires an update to the corresponding h-by-w grid of 

pixels in the frame buffer. Let G{x,~,~,w) be the event that the 

h-by-w rectangular grid of pixels, whose top leftmost corner is 

at (x,y), is to be updated. Let ~(G{x,~,h,w)), the probability 

of the event G(x,y,h,w), be P(x,y,h,w). With the given screen 

format, h and w may vary from 1 to M. since (x+w) and (y+h) do 

not exceed M+1, x and y may vary from 1 to (M+I-w) and ( ~ + 1 - h )  

respectively. Assume graphical objects are distributed fairly 

------------------ 
A rectilinear rectangle is a rectangle whose edges are 

parallel to the x and y axes. 



uniformly over the display, and thus there are no preferred 

positions. This means any two grids are equally likely as long 

as they have the same h and w measurements. In this case 

Glx, y,h,wIts are independent of x and y. In the rest of the 

chapter, G{h,wl will denote the event that an h-by-w. grid at an 

arbitrary location is to be updated, and its probability will be 

denoted by P{~,w). Notice that the event ~{h,w) is equivalent to 

the event U (G{x,~,h,w))~, and P{h,w) is equal to 

C (PEx,y,h,~l). Also let N{x,y,h,w) be the number of frame 

buffer accesses required to update an h-by-w grid at (x,y). With 

proper data alignment and address adjustment facilities (see 

Figures 2.3 and 2.51, it takes the same amount of memory cycles 

to update an h-by-w grid of pixels at any arbitrary (x,y). 

Therefore, ~{x,y,h,w) can be represented by ~{h,w) for all 

(x,y). 

Since h and w may vary from 1 to M, there are M2 different 

G ~ h , w l ' ~ ,  M2 different P{h,w)'s, and ~2 different N{h,w)'s. The 

expected number of frame buffer accesses required to update an 

arbitrary grid is: 

------------------ 
The union of a number of discrete events means the OR of all 

these events. 



2.3.1 Memory Accesses Requirement 

For scan-line mapping, any 1-by-n grid can be updated with a 

single frame buffer access (see Figure 2.3). When an h-by-w 

rectangular pattern is written into the frame buffer, the number 

of accesses required is equal to the number of 1-by-n grids 

needed to be updated. Obviously, the h-by-w grid spans over h 

scan-lines and invloves rw/nl words. This implies that at least 

h*rw/nl 1-by-n grids have to be updated in order to write the 

larger h-by-w grid. Hence, N(h,w) for scan-line mapping is: 

h * rw/nl 

For symmetric mapping, k-by-k (k=dn) pixels can be updated 

in parallel. The number of accesses required to update an h-by-w 

grid is the minimal number of k-by-k grids that it covers, which 

for symmetric mapping is: 

rh/kl * rw/kl 

2.3.2 Probability Distribution of P{h,w) 

P{~,w) defines the probability of updating an arbitrary 

rectilinear h-by-w grid. In the random sample space, there are 

M*M possible events because both h and w can take any integer 

from 1 to M. Hence, there are M*M different possible ordered 

pairs (h,w). 

There are two major considerations affecting the 

distribution of P{h,w). They are ( 1 )  the statistical behavior of 



the shape of the graphics objects, and (2) the statistical 

behavior of the size of the graphics objects. Unfortunately, 

there does not exist a general statistical structure to describe 

a graphics environment. For simplicity, let us assume that h and 

w are two identical and independent random variables whose 

distribution are defined by the probability density function 6. 

Then P{~,w) will be equal to 6(h)*6(w). By denoting the E's for 

scan-line and symmetric mapping schemes with Escan and ESym, the 

following expressions are obtained: 

= 2 6(h)*6(w)*h*rw/nl E~can , (2.1) 

= e 9 6(h)*6(w)*rh/kl*rw/kl E s ~ m  h.1 N=\ (2.2) 

2.3.3 Validity of the Mathematical Model 

In general, an image may be composed of any number of 

arbitrary patterns. Let the set of displayable geometric 

patterns of an application be s={G,,G ,,..., G,). Assume the 

probability of occurrence of Gi is P(Gi)=~i, and the number of 

frame buffer accesses required to draw Gi is Nli for the scan- 

line mapping scheme, and N2i for the symmetric mapping scheme, 

respectively. By elementary statistics, the expected number of 

frame buffer accesses required to draw an image for the scan- 

line and symmetric mapping schemes are EsCan=Z PifNIi and 

Esym=Z Pi*NZi, respectively. The immediate concern of the 

analysis is to determine the P's, N l l s ,  and NZ1s. Unfortunately, 

it is infeasible to obtain the exact P's. The probability of 

occurrence of a certain geometric pattern is highly dependent on 



the nature of the application. For example, when a graphics 

system is used to display business data, alphanumeric characters 

might be the dominant geometric objects. In a CAD system, 

rectilinear rectangles are quite common. Therefore, it is 

difficult to obtain the underlying probability distributions of 

the geometric patterns without prior knowledge about the 

application. For simplicity, in our mathematical model, only 

rectilinear rectangles are considered. 

Let the set of rectangles be R=(R~ I i=1,2, ...j 1 and N(R;) 

be the number of memory cycles required to draw the Ri, Ri R. If 

the relative frequency of Ri (which can be expressed as the 

probability P(Ri)) can be obtained, then the expression 

~P(R~)N(R~) will be the expected number of memory cycles 
I 

required to draw an image. Therefore, if the p(Ri) and N(Ri) for 

all Ri R can be obtained, the model should be valid. 

Unfortunately, the relative frequencies of the Ri's are 

unknown. Hopefully, better estimations can be obtained by using 

statistical inferences, such as statistical regression [KLEN~~]. 

Nevertheless, to conduct statistical estimation may require a 

large volume of sample data. In addition, there is still no 

guarantee on the accuracy of the estimates derived from such a 

large amount bf sample data. Therefore, no attempt was made to 

carry out.these kinds of estimation processes. 

In the following section, the mathematical model is applied 

to three benchmark cases. The p.d.f. for R used in the three 



benchmark cases are created on a purely intuitive basis. They 

are chosen because of their simplicity, reasonableness, and 

understandability. Although none of them is applicable to the 

general case, they are believed to be good approximations to 

many real-life situations. 

2.4 Benchmark Cases 

In this section three benchmark cases are presented. In 

these cases, the resolution of the display is assumed to be 

1024x1024. 

2.4.1 Uniform Distribution 

The first probability density function (p.d.f.1 being 

considered is very simple. 

means: 

6(l) = 6(2) = 6 ( 3 )  = ..... 
6(1)+6(2)+6(3)+........+6( 

Hence 6(h) = 1/1024. 

P(h,wl = G(h)S(w) 

Here 6 is assumed to be uniform. That 

... = 6(1024) and 

1024) = 1. 

Notice that here P(h,w) is independent of h and w. For 

example, updating a 10-by-10 grid is as probable as updating any 

100-by-100 grid, or any 19-by-157 grid. When there is a lack of 

26 



prior knowledge about the height and the width of patterns that 

a system will deal with, this uniform p.d.f. for P is very 

appropriate. Consequently, from (2.1) and (2.2) the expected 

performance for the scan-line mapping scheme and the symmetric 

mapping scheme are 

Escan = 1/1048576 hzl 'rkotAh* 1 ~ - \  rw/nl and 
(014 024. 

Esym = 1/1048576 h--l Z b rh/kl* rw/kl respectively. 

Table 2.1 shows the ESCan1s and ESymVs evaluated for 

different k's (see (2.1) and (2.2)). Note that for consecutive 

rows the total number of chips used is quadrupled. 

Table 2.1;  Expected performance for both mapping 
schemes (case 1). 

From this table, it can be observed that an increase in the 

number of chips used for the frame buffer, n, reduces the 

expected number of frame buffer accesses, E. This can easily be 

explained by the fact that when more chips are being used, more 

pixels can be read in parallel, hence fewer accesses are 

required to update a grid of pixels. Ideally, if n is doubled, 
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any updates to the frame buffer which required 2 frame buffer 

accesses should now require only 2/2 accesses. In order to 

investigate the relation between the increase in the number of 

chips and the enhancement in performance, the improvement 

function, O is introduced. 

When n is increased from n1 to n,, the corresponding E 

decreases from El to E,. The improvement function at n=n2 is 

expressed as: 

W E 2  
@(nl,n2) = . 

n,/n, 

We will assume that n2=4nl (see Table 2 . 1 ) .  The O's for the 

scan-line and the symmetric mapping schemes, with uniformly 

distributed PI are plotted against dn, in Graph 2.1. Notice that 

k is equal to in. As shown in the graph, the symmetric mapping 

scheme is quite close to the ideal case. 

2.4.2 Non-Uniform Linear Distribution 

In the previous case, G{h,w) was assumed to be independent 

of h and w ,  and thus P{h,w) is the same for all h and w. This 

implies the events U G{x,y,h,w) for various h's and w's are 

equally likely. Since there are fewer G{x,y,h,w) for large h and 

w, the probability of G{X,~,~,W) will be larger if h and w are 

larger. However, in many cases, a larger grid of pixels is not 

updated as often as a smaller one. Intuitively, a screen can 

hold more small patterns than larger ones. This encourages the 
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Graph 2 .1  Plot of improvement functions vs i n ,  (from 
Table 2.1). 

use of little objects to construct an image. In addition, if the 

scene is modelled with smaller rectangles (see Figure 2.61, more 

details are preserved and hence a better approximation can be 

obtained. In this section, event G{x,~,~,w) for any x, y, h, and 

w are assumed to be equally probable. That is, P{x,y,h,w) are 

the same for any combination of x, y, h, and w. 

For a particular h and w, there are (1024-h+ 1 )  

distinct h-by-w grids. Therefore P{h,w) will be large if h and w 

- are small. The total number of distinct events is 
10x4 low 

Z Z (1024-i+l)*(1024-j+1). Hence, the probability of each event 
::I jz\ 

024 039 
is 1/(~k (1024-i+l)*(1024-j+1)) and thus P{h,w) can be 

f ~ l  j t I  



expressed as : 

with the ~{h,w) given in (2.3), the expected number of 

accesses are evaluated (see (2.1) and (2.2)) and shown in Table 

2.2. The improvement function obtained from this table is 

plotted against dn, in Graph 2.2. 

Table 2.2 Expected performance for both mapping 
schemes (case 2). 

Similar to the uniform p.d.f. case, the O for symmetric 

mapping scheme is shown to be closer to the ideal . However the 
O's for both mapping schemes drop even more rapidly.   his 

suggests that O is somewhat correlated to P{~,w). 



2.4.3 Chi-square Distribution 

Graphics systems which approximate three dimensional 

surfaces with polygons or fractal faces use many polygons or 

triangles to compose an image. Moreover, these polygons or 

triangles are of moderate size. Relatively bigger or smaller 

geometric objects are less populated, and patterns with extreme 

sizes are almost non-existent. 

The p.d.f, of h and w for this kind of systems can best be 

described by the following characteristics: 

1. There exists an optimal xo such that 6(xo)>6(x) for all x 

such that 11x11024 and x#xo. 

2. The farther x is away from x,, the more is 6(x) less than 

S(x0). 

3. S(x) approaches 0 as x approaches 1 or 1024. 

This statistical structure can appropriately be approximated 

by the well known c h i - s q u a r e  p.d.f. The shape of a particular 

chi-square p.d.f. depends on its degree of freedom, denoted by 

v. Graph 2.3 shows the shape of different chi-square 

distributions with various v's [SPIE~I]. 

Let Sx and Sy be the width and the height of the screen 

respectively. For a square screen, such as the one used in our 

model, Sx and Sy are identical and denoted by S. Assume the 

optimal xo of 6 is about S/10. Also assume it is about 75% 

confident that x falls in the range between S/20 and S/2, that 

is, J' 6(x)dx~0.75. The chi-square p.d.f. of 3 degrees of 
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Graph 2.2 Plot of improvement functions vs 4 n 2  (from 
Table 2.2). 

Graph 2.3 Plots of chi-square p.d.ffs of various v's. 



freedom, denoted by x$(y), has the global maximum at y = l ,  and 

its integral from 0.5 to 5 is approximately equal to 0.75. Hence 

it is very suitable for approximating 6. However, there are two 

problems prohibiting direct substitution of 6 by x$: 

(a) The 75% confidence interval is intended to be (51,512). 

However, x$'s 75% confidence interval is (0.5,5). 

(b) The function 6 is discrete, whereas X$ is continuous. 

Fortunately, these two problems can be solved easily. 

Firstly, in order to use x$(y) on the domain (1, ..., lO24), y is 

substituted by x/100=0.01x. Therefore the global maximum of 

x$(O.Olx) occurs at x=100, and (50,500) is an a758 confident 

interval. The x$(O.Olx) is 

The shape of this p.d.f. is displayed in Graph 2.4. 

Secondly, &(a) is approximated by ,f,'x:(O..Olx)dx, where 

P=(a-0.5)/100 and r=(a+0.5)/100. Quantitatively, this integral 

is equal to the area under the curve x$(O.Olx) between x=a-0.5 

and x=a+0.5. This integral is further approximated by the area 

l*x$(O.Ol(a-0.5+a+O.5)/2) = x$(O.Ola). Note that this is the 

area of the bar with unit width and height equal to xg(O.Ola). 

Hence S(x) can be represented by x$(O.Olx). To ensure 
4fhvJ 

x$(O,Olh)x$(0.01~) is equal to 1, an adjustment factor < h , a ~ c ; k ~  
V,? l'%* 

J = ~ / ( C /  ~~(0.01h)~~(O.O1w)) is multiplied to ~~(0.01h)~~(0.01~). 
lSh,d$ \ o w  



Graph 2.4 A plot of the chi-square distribution on x/100 
with v=3. 

Therefore, PE~,w) can be formulated as: 

J*x$(0.01 h)*x$(O.Olw) 

- J - (0.01h) ~'~(0.01~) '1' EXP(-0.01 (h+w)/2) . 
23(1'(3/2))2 

The evaluated E's (see (2.1) and (2.2)) for various values 

of n are tabulated in Table 2.3. The behavior of O for both 

mapping schemes are shown in the plot (Graph 2.5) of O against 

dn2. 



Table 2.3 Expected performance for both mapping 
schemes (case 3 ) .  

2.5 Choosinq a Mappinq Scheme 

In the previous section we noticed that the expected number 

of accesses for the symmetric mapping scheme is always less than 

that of the scan-line mapping scheme. As illustrated in 

Graph 2.61 Esym/EScan always gives a value less than 1. In 

addition to this, as n increases, symmetric mapping tends to be 

more and more effective than the scan-line mapping scheme. This 

is caused by the early degradation of the improvement function 

for scan-line mapping. Consequently, when more chips are 

required to implement the frame buffer, the design tends to 

favor symmetric mapping. The overhead for implementing symmetric 

mapping, which includes hardware for output buffering, address 

transformation, and two dimensional data alignment, becomes less 

significant in the sense of performance per unit cost. 
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Graph 2.5 Plot of improvement functions vs d n ,  (from 
Table 2.3). 



Graph 2 . 6  Plot of (Esym/Escan ) * l o o %  vs k = d n  for the 3 
cases. 

However, since the performance of the symmetric scheme is 

not much superior to the scan-line mapping scheme when n is 

small, it is natural to question whether the extra cost spent in 

building an image memory system using the symmetric mapping 

scheme is worthwhile. As illustrated in Table 2.1, the scan-line 

mapping scheme 'is compatible with the symmetric mapping scheme 

when k is 54 (i.e., n116). Consequently, if 16 or less chips are 

used, the scan-line mapping scheme is superior because of its 

simpler implementation and compatible performance. 

There are two factors which favor the use of 16 or less 

chips for the frame buffer. With today's memory technology, 64K, 



128K and even 256K memory chips (4164, 41128, and 41256) are 

very popular in the market. With these high density memory 

chips, a frame buffer can easily be built with less than 16 

chips. These high density memory chips ease the implementation 

of frame buffer and supporting circuit+. In addition, the 

typical memory cycle time of these chips is 1150 ns (especially 

for those having fast access modes such as page mode, extended 

page mode, or ripple mode  FALL^^, FINK83, ~ ~ 1 ~ 8 4 1 ) .  With this 

speed an effective pixel access rate of 21 pixel for every 10(37 

ns) can easily be achieved if 16(4) chips are used. 

Consequently, it is feasible to implement an 1024x1024 (512x512) 

display with 16(4) RAM chips. 

Another factor which prevents the designer from using too 

many chips is the consideration of the actual achievable 

reduction in the number of frame buffer accesses per chip added. 

The best way to look at the problem is to study AE/An. Assume 

when n is increased from n, to n2, E decreases from El to E2. 

Then AE/An is expressed as: 

I The AE/An for ESymls from Table 2.2 is plotted against n2 in 

1 Graph 2.7. The AE/An for other cases are very similar to the one 

shown in Graph 2.7. 

This graph shows that AE/An converges to zero quickly as n 

increases. Thus, a significant improvement can only occur at 



Graph 2 . 7  Plot of AE/An vs n, for ESym (from Table 2.2). 

small n ,  This suggests that using too many chips to improve the 

overall system performance is not cost effective, Upgrading the 

system by using faster memories, dual-port RAMS, or display 

RAMS, would be more appropriate. 

Differences in memory-to-screen mapping strategies may 

result in deviations on the effectiveness of scan conversion 

algorithms. The underlying memory organization of the k-by-k 

symmetric mapping scheme provides a model of computation where 

updates to the frame buffer can take place on any k-by-k square 

of the display. This two dimensional model of computation should 

be able to exploit the two dimensional nature of almost all 

graphics applications, and hence provides efficient algorithms 



for them. However, faster scan conversion algorithms cannot 

improve the frame buffer updating efficiency. Therefore, the 

effectiveness of scan conversion algorithms is not a major 

deciding factor in choosing a mapping scheme unless more than 

enough frame buffer bandwidth is available. This becomes less 

probable as scenes become more complex. However, variations in 

scan conversion algorithms may favor different implementations 

(for example, different microcode for the display processor), 

and thus could potentially affect the overall cost of the 

implementation. 



CHAPTER 3 

PARALLEL-PROCESSING ARCMITECTURES FOR GRAPHICS DISPLAYS 

In a conventional single processor frame buffer raster-scan 

graphics system, the frame buffer is a very important component. 

Its versatility provides an extremely flexible medium for image 

manipulation. In fact, many image processing systems rely on the 

frame buffer in which many image processing activities become 

feasible. However, the frame buffer does not offer the most 

efficient way of representing an image. The large amount of 

memory it uses makes it expensive. Its limited effective 

bandwidth creates a bottleneck for image updating. In most 

cases, the performance of a raster scan graphics system is 

bounded by the effective bandwidth of its frame buffer. Although 

many attempts have been made to increase the memory bandwidth 

 FINK^^, MATI84, GSTA84, SPR0631, conventional frame buffer 

architecture is still too slow for high quality real-time 

graphics. 

Real-time raster image generation requires a new frame to be 

generated for every screen refresh in order to give the illusion 

of motion and dynamic behavior. The problem with the basic frame 

buffer system is that generating a typical frame containing a 

few thousand polygons will take several seconds which is much 

longer than one frame refresh period, even if the symmetric 

mapping scheme is employed (see Chapter 2). Given present 

circuit speeds, massively parallel processing and pipelining 



techniques are mandatory so as to generate a new frame during 

every refresh cycle. Researchers have proposed several high 

performance system architectures for achieving the high 

computation rate [CLAR80, DEME85, FUCH79, FUSS82, GdAR85, 

LOCA79, WEIN81, ~ ~ ~ 8 2 1 .  These systems demonstrate promising 

results in handling today's sophisticated graphics applications. 

3.1 Architectural Structures 

Two major architectural structures have affected the design 

of most multi-processor graphics systems. These architectural 

types are : 

(a) partitioned object-space structure, and 

(b) partitioned image-space structure. 

These two structures are closely related to two important 

domains of graphics representations, namely the o b j e c t  s p a c e  and 

the i m a g e  s p a c e .  They are defined as follows: 

Object Space : 

The object space of an image is the set of graphics 

primitives, such as lines, polygons, circles, ... etc., 
which compose the scene to be depicted. (1n this thesis, 

"graphics objects" is always used in place of "graphics 

primitives".) In many applications, the graphics objects are 

constrained to be of a single type, such as triangles, and 

the number of objects is bounded above by a constant (n). If 

this is the case, the object space may be considered as a 

set of n triangles. 



Imaqe Space: 

The image space of a scene is the set of raster elements 

(pixels) of the display. It contains a fixed number (m) of 

elements which equals to the resolution of the display. 

Notice that a.graphics object in the object space is defined 

by a high level parametric description which is usually a 

mathematical expression of its shape, shade, and 

orientation. The graphics objects must be rendered into 

their corresponding raster images in the image space, and 

then drawn on a CRT. 

To render a scene, all graphics objects in the object space 

must be processed; and for each object, all elements of the 

image space must be considered (if no coherence property is 

assumed). "> Recall that a pixel evaluation process is called a 

pel-process. To render a graphics object, it may be required to 

execute more than one million pel-processes for a 1024x1024 

display. If a scene contains thousands of graphics objects, the 

rendering activity may require the execution of a tremendous 

number of pel-processes per each frame of image generated. In 

addition, a pel-process can be broken down into up to three 

sub-tasks. The first sub-task is a containment test (con-test) 

which determines whether the pixel in question is inside the 

graphics object or not. The second sub-task is the computation 

of the shade and depth of the pixel according to the description 

of the object (pel-evaluation). The third one is a visibility 

test (vis-test). Although the first two sub-tasks can be carried 



out simultaneously, the third one requires the depth value of 

the pixel and thus must be performed after the completion of the 

pel-evaluation task. 

3.2 Partitioned Object-Space Architecture 

In a partitioned object space architecture, the graphics 

objects in the object space are divided into a number of g r o u p s  

such that the union of these groups forms the object space 

itself. In addition, these groups are not necessarily mutually 

exclusive. Objects from the same group are handled concurrently. 

In most cases, an individual processor is assigned to each of 

the objects. Different groups of objects share the same 

processors and hence must be processed sequentially. This 

definition of "group" will be used throughout the rest of the 

thesis. 

Examples of partitioned object space systems include 

Fussel's F FUSS^^], Locanthi's [ L O C A ~ ~ ]  and ~einberg's[~E~NBi] 

systems. In their systems, the entire object space is treated as 

a single group. Each object in the object space is assigned to 

an individual object processor and rendered simultaneously. A 

sequence of pixel values is generated by each object processor 

to synthesize the image of its associated object. The pixel 

generation activities of the o b j e c t  p r o c e s s o r s  are synchronized 

such that they are all working on the same raster pixel at any 

instance. When a particular raster pixel is being considered, 



each object processor will perform a con-test and pel-evaluation 

to determine the depth and the shade value of the pixel 

according to the object it is associated with. The values from 

all the processors are then passed down to a comparator which 

conducts the vis-tests. 

3.3 Partitioned Image-Space Architecture 

In this type of architecture, the image space (raster) is 

divided into a number of partitions of pixels. Pixels from the 

same partition are independent of each other and hence can be 

processed simultaneously. Nevertheless, manipulations of 

different partitions are carried out sequentially. Except in a 

few image processing applications, all of the pixels in the 

image space are mutually independent of each other. Therefore in 

most cases, there is only one partition which contains all the 

pixels in the raster considered. This architecture can be 

exemplified by the Pixel-Planes system [FUCH~I, FUCH82, ~ 0 ~ ~ 8 5 1 .  

Whelan's rectangle area filling system is also of this type 

[wHEL~~]. 

A Pixel-Plane is a special smart-memory chip for raster-scan 

graphics. The frame buffer is built with one or more Pixel- 

Planes. In the Pixel-Planes system, the entire image space is 

grouped into a single partition. Since all pixels of the 

partition are to be processed simultaneously, there is an 

individual processor associated with each image memory cell 



which holds a pixel. In this way all the pixels in the raster 

(image space) can be processed in parallel. The objects in the 

object space are rendered sequentially. According to the 

high-level descriptions of the geometric objects, each 

pixel-processor executes a pel-process to determine the value of 

its corresponding pixel. 

Since graphics objects are processed sequentially, the total 

time required to synthesize a scene is proportional to the total 

number of objects in the scene. Therefore, it will take a 

relatively long time to process a scene with many objects. 

3.4 A Generalization of the Two Architectures 

Almost all raster graphics displays employ either one or 

both partitioning structures. In this section, a general 

architectural representation for image rasterizers is presented. 

The representation is very useful in characterizing an architec- 

ture with its strategy to distribute processing tasks among the 

processors. To discuss this representation, two definitions are 

needed: 

Object-Space ~artitioninq Scheme (OP-Scheme): 

In a parallel processing architecture, the object space can 

be divided into a certain number of groups such that the 

objects in a subset can be processed in parallel. The 

object-space partitioning scheme defines the way graphics 

objects are grouped. An a-P-OP s c h e m e  is an object-space 



partitioning scheme which groups the graphics objects in the 

object space into a groups and the maximum cardinality of 

the a groups is P .  

Image-Space Partitioninq Scheme (IP-Scheme): 

The image-space partitioning scheme determines the way that 

the image of a display is partitioned. A y - X - I P  scheme is an 

image-space partitioning scheme which divides the image 

space into y partitions. The maximum cardinality of the 

partitions is X. To rasterize a graphics object, the system 

will consider the -y partitions, each having at most X 

pixels. ~otice that the IP-scheme defines the way that a 

.graphics object is rasterized. Therefore, it is 

theoretically possible to have different IP-schemes for 

different graphics objects. However, this is not a common 

practice in raster graphics displays and thus is not 

considered in this t h e s i s .  

From now on, let us assume that the maximum number of 

graphics objects in the object space is n and the number of 

raster pixels in the image space is m. In general, any image 

rasterizer can be identified by the way that its object space 

and image space are partitioned. For example, the Pixel-Planes 

system [ P O U L ~ ~ ]  is constructed based on an n-1-OP scheme and an 

1-m-IP scheme. In this system, the object space which contains 

at most n graphics objects is partitioned into n subsets, each 

of which contains at most 1 object. However, the raster image of 

each object, which is made up of m pixels, is formed by a single 



image space partition with exactly m pixels. Assume the total 

time required to execute a pel-process is T pel units, then the 

pixel-Planes system is able to obtain the entire raster image of 

an object in T pel units of time. However, the objects in the 

object space must be processed sequentially. 

At the other extreme, the Fussel's real-time scan conversion 

engine  FUSS^^] utilizes a 1-n-OP scheme and an m-1-IP scheme. 

That means it is capable of handling all the graphics objects 

simultaneously. However, only one pixel can be computed per T pe 1 

units of time. 

We call a system which employs an a-0-OP scheme and a y-A-IP 

scheme to be an a-0-7-A-s yst em. *The hardware complexity and the 

computational power of an a-0-7-X-system will be discussed in 

the following sections. 

3.5 Hardware Complexity of an a-P-y-A-System 

The amount of hardware required to implement an 

a-0-7-A-system can be determined by the way that the 

object-space and the image-space are partitioned. For a system 

which uses an a-0-OP scheme, its object-space is divided into a 

groups graphics objects, The maximum number of objects in the 

groups is 0. Therefore, in order to process all the objects of a 

group simultaneously, at least 0 processing units are required. 



For each object processor, a y-X-IP scheme is implemented, 

The image of an object is composed by y partitions of pixels, 

All the pixels from the same partition are determined 

simultaneously. This costs the system X individual pixel 

processors to be associated with each object processor. The 

total number of pixel-processors required to implement a 

rasterizer employing an a-0-OP scheme and a y-X-IP scheme is OX. 

In the rest of the thesis, the value OX is regarded as an 

indicator for the h a r d w a r e  complexity of an a-P-y-X-system. 

Processing-time Complexity of an a-P-y-X-System 

In the process of rasterizing a scene each graphics object 

must be redefined with its corresponding raster image in the 

image space. This process involves the translation of the 

high-level description of the object into a set of relevant 

pixel values. The image size of an object can be as large as the 

entire raster. Therefore, in the worst case, every pixel in the 

raster must be processed in order to obtain the corresponding 

raster image of a graphics object. For an a-0-y-X-system, the 

task of finding the raster image of a single object will take 

yTpel units of time since the raster is divided into y 

part it ions which are processed sequentially . Furthermore, 
objects in the scene are grouped into a groups and the 

processing of these groups are carried out sequentially. The 

total time needed to handle all objects will be proportional to 

a. Consequently, the total time required to render a scene into 



its corresponding raster image, defined in the image space, will 

be ayTpel units. That is, the throughput of the system will be n 

objects per ayT pel units of time. In the rest of the thesis, the 

value cry is defined as the processing-time complexity of the 

rasterizer which can be used to indicate the computational power 

of an a-0-y-h-system. Notice that a small ay indicates that the 

system can rasterize a scene of upto a0 objects in a short 

period. 

3.7 Classification of Image Rasterizer Architectures 

In Table 3.1, various recently proposed architectures for 

image rasterizers are classified according to the a-P-y-X 

notation. In a conventional single processor sequential system, 

the grapfiics objects are rasterized sequentially, and the raster 

pixels are generated sequentially as well. That is, the system 

is employing an n-1-OP scheme and an m-1-IP scheme. Therefore, 

its hardware complexity is 1 and its processing-time complexity 

is nm. However, in most cases, some kind of graphics coherence 

properties are utilized in these systems. As a result, the 

actual number of pixels required to be considered per object is 

less than m. Consequently, the processing-time complexity of the 

system is probably less than nm. 

Clark's system has 64 (as described in [ c L A R ~ ~ ~ ] )  IMP 

processors running in parallel. Each processor is responsible 

for a set of m/64 pixels. Thus, it is classified as an 
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n-1-(m/64)-64-system. Although the processing-time complexity of 

this system is nm/64, it may require less time to render a 

scene; since, again, graphics coherence can be employed in this 

system. 

Fuchs' [FuCH~~] and Whelan's [ w H ~ L ~ ~ ]  system are two typical 

n-1-1-m-systems. ~ussel's[F~~~82], Lochanthi's [LOCA79], and 

Weinberg's W WE IN^^] systems are typical 1-n-m-1-systems. Their 

characteristics have been described in the previous sections. 

Gharachorloo's system employs a systolic array of 512 

processor cells (in [GHAR~~], a 512x512 display is considered). 

Each processor cell handles one column of raster pixels. 

Graphics objects in the object space form 512 groups each 

associated with a scan-line. An object belongs to a group if and 

only if its raster image intersects with the scan-line that the 

grcup is associated with. (In [ G H A R ~ ~ ] ,  Gkarachorioo assumes 

that at most 512 objects are in a group.) The image rasteriza- 

tion process is completed by evaluating the 512 scan-lines 

sequentially. To generate a scan-line, the group of objects 

associating with that scan-line is "pumped" through the systolic 

array. As the objects propagate through the processor array, 

each processor cell will execute a pel-process for each object 

passing through. Since this activity is carried out in a 

pipelined fashion, the rasterization of up to 512 objects can be 

overlapped. This group-wise rasterization of objects makes a 

group of objects look like a single graphics object to the 

system. Therefore, we can consider the objects space of 



Gharachorloo's system as 512 groups of objects each of which 

contains only a single (combined) object. The a-0-y-A notation 

for this system is thus dm-1-dm-dm (in [ G H A R ~ ~ ]  dm is 512). 

Demetrescu's system employs a number of SLAM modules 

[DEME~~]. A SLAM module is in fact a smart image memory module 

which contains a matrix of 64 rows by 256 columns of storage 

cells. There is also processing logic built inside the SLAM 

modules such that a row (256) of pixels can be generated in 

parallel. Therefore, we can consider that there are 256 

pixel-processors in a SLAM. To build a rasterizer for a dmxdm 

diplay, a dm/64 by dm/256 array of SLAM'S must be used. In this 

case, (dm/64)* (dm/256)*256=m/64 pixels can be updated 

simultaneously. With this configuration, the image space can be 

regarded as being partitioned with a 64-(m/64)-IP scheme. 

Therefore, Demetresculs system can be classified as an 



CHAPTER 4 

REGIONAL-RASTERIZATION 

To make real-time image generation possible, many high 

performance raster scan graphics displays employ parallel- 

processing techniques. Owing to the nature of the scan 

conversion problem, the low-cost "loosely-coupled" processor 

network structure is very appropriate for graphics displays. 

Unfortunately, because of the poor inter-processor communication 

ability of loosely-coupled parallel processor, most of the 

inherent graphics coherence properties are lost [KAPL~~]. As a 

consequence, many efficient scan conversion algorithms commonly 

used in sequential systems, which make use of various forms of 

graphics coherence properties, cannot be applied in parallel- 

processing graphics displays. 

Regional-Rasterization is an architectural enhancement to 

parallel-processing raster-scan graphics displays. Conceptually 

the technique makes use of the "face" coherence property of 

graphics objects1 complemented with the "even distribution of 

graphics objects" argument2. With Regional-Rasterization the 

entire image space is partitioned into a number of (equal) 

partitions. The generation of the entire scene image is 

accomplished by processing these image space partitions 

' Face coherence : The faces are generally small compared to the 
size of the screen [SUTH~~]. 

Graphical objects are distributed fairly uniformly over the 
display and thus there are no "preferred positions" for objects 
[SPRO~I 1. 



sequentially, or simultaneously. For each image partition, only 

those graphics objects whose projection is contained entirely or 

partially by the partition are rendered. 

4.1 Concepts Behind the Reqional-Rasterization Scheme 

Most n-1-1-m and 1-n-m-1 systems, including the Pixel-Planes 

and Fussel's systems, are not cost-effective in terms of 

processor utilization. Consider the scene displayed in 

Figure 1.1. The average size of the planar tiles (polygons) 

which are used to model the various surfaces of the 'beetle' is 

very small compared to the area of the entire screen. By 

observation, the mean size of the polygons is only about 

one-hundredth of the area of the entire display. Thus, the 

average number of pixels that are covered by a graphics object 

is 0.01m. Therefore, theoretically, a graphics object can be 

rendered with an average of 0.01m pel-processes. As a result, 

the optimal number of pel-processes required to render the scene 

is 0.Olnm. 

Based on the above observation, the total number of 

pel-processes required to render a scene, can be optimized by 

ignoring irrelevant pixels. The technique employed to achieve 

this goal is called R e g i  onal-Rast e r i  tat i  on. By using the 

Regional-Rasterization technique, the cost-effectiveness of an 

image rasterizer can be improved by either: ( 1 )  boosting the 



system throughput and hence overall performance with acceptably 

small hardware overhead; or ( 2 )  cut down a large amount of 

hardware, required to implement a system, with little penalty in 

system throughput. ~otice that a substantial improvement in 

hardware utilization can be achieved through either one of these 

architectural enhancements. The term "~egional-~asterization" 

denotes the idea of maximizing processor utilization by 

considering only relevant pixels as a graphics object is 

rasterized. 

4.1.1 Utilization of Coherence Information 

When rendering an object, if all raster pixels are 

considered, we say that the object is r u s t  e r i z e d  e x h a u s t  i v e l  y .  

In contrast, if only relevant pixels are considered, we say that 

the object is r a s t e r i z e d  n o n - e x h a u s t i v e l y .  The basic idea of 

b.. r;" : .. Regional-Rasterizath is, 31119 a coherence property, t o  

avoid rasterizing graphics objects exhaustively. A similar 

approach has long been adopted in sequential systems. Although 

the idea is straightforward, no 

Regional-Rasterization have yet 

processing systems. This may be 

(a) To reduce the work involved 

various forms of coherence, 

attempts similar to 

been applied to parallel 

due to the following reasons: 

in the scene rendering process, 

such as object, area, or scan- 

line, can be incorporated. In fact, the use of a priori 

knowledge in the form of image or object coherence has been 

crucial to the efficiency of most sequential systems. In the 

case of parallel processor implementations, much of this 



coherence information will be lost when independent parallel 

calculation tasks are distributed across a network of 

processors unless a sufficiently large amount of data can be 

exchanged among processors [ K A P L ~ ~ ] .  Nevertheless, in order 

to reduce the high cost of interconnection and the problems 

associated with high data transfer among processors, 

processing units in most multi-processor graphics displays 

are "loosely-coupled". This type of configuration makes 

employment of coherence in rendering very difficult, or even 

impossible. 

(b) Employment of coherence properties in scene rendering 

activity is advantageous only in optimistic cases. In worst 

case situations, the overhead introduced will degrade the 

performance of the system. Therefore, most designs avoid the 

employment of any coherence. They are usually designed to 

allow cornputationa? redundancy and provide "room" for worst 

cases. Although this may result in a less cost-effective 

design, it guarantees uniformity and reliability. This is 

particularly true in the case of multi-processor VLSI 

systems where the cost of individual processors is almost 

negligible. 

Therefore, unless the approach is very simple, easy to 

implement, and requires very little overhead, using coherence to 

achieve better average performance is not of much value to these 

systems. In the following sections, we will examine the 

possibility of incorporating face-coherence property of graphics 

objects into the scene rasterization process. 



4.1.2 Average Size of Graphics Objects 

In the classic paper of Sutherland, Sproull and Schumacker 

[suTH~~], a set of statistical measures of the complexity of 

rendering were presented. These environment statistics are 

listed in Table 4.1 and Table 4.2. In the same paper, a useful 

relationship was also given : 

From the above expression, one can see that for constant De, Fr 

is inversely proportional to Hf. They also stated that most 

environments of any great degree of complexity appear to be 

nearly isotropic3. The only possible explanation for this 

characteristic is that graphics objects are distributed fairly 

uniformly in the environment. Consequently, it is reasonable to 

assume that De <<. Fr. That is, the average number of objects 

overlapping at a pixel is much smaller than the total number of 

objects in the environment. In fact, an estimate of 3 is used 

for De in [SUTH741. Therefore, by expression (4.11, Hf/n and 

Hf/b are relatively small. Since Hf/a and Hf/b represent the 

average size of faces expressed as a fraction of the displayed 

height and width respectively, an average graphics object 

occupies only a small fraction of the display area when Fr is 

large and is much larger than De. 
------------------ 
An environment is said to be isotropic if the depth complexity 

is independent of the viewing direction. That is, the expected 
number of faces penetrated by any randomly chosen line is 
independent of the direction of the line. 





From the above discussion, a graphics object in a complex 

scene should occupy only a small fraction of the entire display 

area on the average. Therefore, a substantial amount of 

computation effort can be saved by a non-exhaustive rasteriza- 

tion algorithm. Consequently, ~egional-Rasterization technique 

will be beneficial in most cases. 

A Functional Model 

Following the arguments given in the previous section, it is 

clear that it' is unnecessary to consider all the raster pixels 

while rendering a graphics object. If one can divide the object 

space and the image space into object sub-spaces CO,, O,, ..., 
Opl and image sub-spaces II,, 12, ..., I 3 respectively, such P 
that objects in Oi cover only the pixels in Ii (12i>p), then we 

need to consider only the pixels of Ii for rendering the objects 

of Oi. In this case, objects in Oi are said to be l o c a l  to the 

partition Ii; or the objects are local objects of Ii4. 

Consider an IP-scheme which divides the raster into several 

mutually exclusive equal partitions. By the evenly distributed 

argument (mentioned in the previous section), there will be 

roughly the same number of objects occupying each partition. 

When a graphics object is rendered, the only pixels to be 

considered are those in the partition(s1 that the object is 

- -em---- - - - - - - - - - -  

Note that an object can be local to more than one partition. 



local to. If the partitions are large enough, most graphics 

objects will be enclosed entirely by a single partition (i.e., 

very few objects will span over more than one partition). 

Therefore, the average number of pel-processes required to 

execute in order to rasterize an object will be approximately 

equal to the number of pixels in each partition. This behavior 

is depicted in Figure 4.1 which shows that the scene from 

Figure 1.1 when divided into four quarters. The unshaded 

polygons are enclosed entirely in a quarter. As demonstrated, 

the unshaded polygons represent a majority of the entire object 

space. In addition, most of the shaded polygons are local to 

only two partitions. For these polygons, only pixels in two 

adjacent partitions should be considered.-Therefore, the number 

of relevant pixels is only 1/2 of the total number of raster 

pixels in the image space. 

The way to form the object groups is determined based on the 

IP-scheme. Firstly, the object space is divided into p groups 

where p equals the number of raster partitions as described by 

the IP-scheme. Secondly, a one-to-one correspondence is 

constructed between the object space groups and the image space 

partitions such that an object space group contains those and 

only those graphics objects which are local to the partition. 

This process is called the 1 o c a l  o b j e c t  i d e n t  i f i  c a t  i on  process. 

For example, the four object space groups as defined by the 

IP-scheme in Figure 4.1 will look like those shown in 

Figure 4.2. Notice that the total number of objects in the four 



Figure 4.1 A sample IP-scheme employed by 
Regional-Rasterization. 

groups may be larger than the actual number of objects in the 

object space. 

4.2.1 Effectiveness of Regional-Rasterization 

As mentioned, Ii is the sole image partition associated with 

Oi. We can regard the rasterization of objects in Oi into image 

sub-space Ii as an independent image rasterization problem Pi. 



Figure 4 . 2  The Corresponding OP-Scheme for the sample 
IP-scheme from Figure 4.1.  



Therefore, the original scene rasterization problem, which can 

be considered as the parent problem, can be broken down into p 

independent sub-problems (P,,P, ,..., Pp). These sub-problems can 
be regarded as the child problems. A solution for the parent 

problem can then be obtained by resolving the p child problems 

individually. Let Ho and To be the number of processors and the 

processing time required to solve the parent problem 

respectively. Since all Pi's are independent, they can be 

carried out sequentially or in parallel. An implementation of 

the Regional-Rasterization technique to an image rasterizer, 

which tackles a parent problem by sequentially resolving all the 

child problems is called a sequent i a1 imp1 ement at i on. Similarly, 

if an implementation solves all the child problems in parallel, 

it is called a para1 lel imp1 ementation. 

Since all the Ii's are of the same size and mutually 

exclusive, the cardinality of Ii is m/p. By the evenly 

distributed argument, it can be assumed that the cardinalities 

of all Oi's are close to n/p. Hence, in comparison with the 

parent problem, each child problem Pi can be completed in about 

To/p units of time (since only m/p pixels are concerned) withc 

only H,/P processors (since there are only n/p objects to worry 

about). If the p Pi's are to be performed sequentially, the 

total processing time will be close to To while the number of 

processors required remains H ~ / ~ .  If the p Pi's are carried out 

in parallel, the required number of processing units will be HO 

and the processing time will be approximately T~/P.  his rough 



estimate shows that substantial improvement in 

cost-effectiveness can be achieved by using the 

Regional-Rasterization technique. 

In Section 6.1, more discussion on this issue is presented. 

4.2.2 Required Overhead 

The major overhead of Regional-~asterization comes from the 

extra local object identification process which must be 

performed for every graphics object. When the image space is 

partitioned into more sub-units, the process becomes more 

complex in the sense that more partitions must be considered per 

graphics object. The overhead required to implement the local 

object identification process will be discussed in Chapter 6. 

Another major computation overhead, in an implementation of 

t h e  Regional-Rasterization scheme, is the repeated processing 

for a certain number of graphics objects. As discussed earlier, 

a graphics object must be rendered once for every image space 

partition that it is local to. Therefore, the average number of 

times that an object must be processed is very likely to be more 

than 1. In the worst case, each graphics object spans over all 

the image space partitions and hence must be rasterized once for 

all partitions. If this happens, the Regional-Rasterization 

technique looses all of its advantages. Fortunately, the chance 

of this occurring is very small (see Chapter 5). 



PERFORMANCE 

CHAPTER 5 

ANALYSIS FOR THE REGIONAL-RASTERIZATION TECHNIQUE 

The ~egional-Rasterization technique hypothesizes that ( 1 )  

the number of graphics objects projected onto each partition are 

almost the same, and ( 2 )  most graphics objects are local to only 

one partition. The first hypothesis is true if the projections 

of graphics objects are uniformly distributed in the image 

space. Furthermore, if the probability of an object projection 

spanning more than one partition is low, the second hypothesis 

is also true. 

Assume the image space is divided into four quarters. It is 

easy to recognize that the total number of graphics objects to 

be rasterized will remain (almost) unchanged, but the number of 

pixels required to be considered for each graphics object will 

be quartered. As a result, an optimistic estimate of up to 

seventy five percent reduction in computational effort is 

reasonably acceptable. This computational saving can be utilized 

in the design of a more cost-effective graphics displays. 

(Similar approaches have long been utilized in sequential 

systems for improving average case performance). 

Although its potential and applicability are unclouded, a 

more detailed quantitative analysis on the performance of 

Regional-Rasterization technique is a definite necessity for its 

refinement and/or further development. In this chapter, an 

investigation on the expected performance of the 



~egional-Rasterization technique, when applied to various 

graphics environments, is conducted. 

5.1 Performance Measures 

One of the key problems in both the evaluation and design of 

graphics systems is the definition of performance. A commonly 

used definition is the throughput of the system. However, we 

consider the effectiveness of the technique as a measure of the 

performance. Here "effectiveness" means the achievable saving in 

computation effort for rasterizing a scene as a result of 

applying the Regional-Rasterization technique to a graphics 

display. Two parameters Nips, the average number of partitions 

that a graphics object is local to, and SDop, the standard 

deviation of the object groups1 cardinalities, are crucial to 

the effectiveness of the Regional-Rasterizatisn technique. In 

this section, characteristics of these two parameters are 

discussed. 

In implementing Regional-Rasterization, the image space is 

partitioned into p regions (I,, I,, o = o ,  Ip). According to the 

definition of the Regional-Rasterization technique, the object 

space is also divided into p groups (O,, O,, o o o ,  Op). Notice 

that the image space I is the union of all the Ii's and the 

object space 0 is the union of all the Oi's. That is, I=U Ii apd 

O=U Oi. The cardinality of a set S is the number of elements in 

S, which is denoted by (SI. Therefore, (I 1 ,  (01 , 1 1 ~  1, and (Oi ( 



simplicity, we assume that all the image space partitions are 

equal and mutually exclusive. Hence 1 1  I=plIl I .  

To render a scene with the object space 0, the display with 

the above implementation of the Regional-Rasterization technique 

will need to execute ?loil lIil pel-processes. Since all the 
I 

IIills are the same, the above summation can be reduced to 

I1~14lO~l. Let the value (ZIOil)/lO1 be Nips. The computation 
I 

complexity of the above graphics display for the given object 

space 0 and image space I becomes: 

N ~ ~ ~ * I O I * I I ~  I 

Notice that Nip, can be defined as the a v e r a g e  number  o f  

i m a g e  s p a c e  p a r t i t i o n s  t h a t  a  g r a p h i c s  o b j e c t  i s  1 o c a l  t o .  Since 

a graphics object covers at least 1 and at most p image space 

partitions, Nip, may vary from 1 to p. Thus, the following 

inequality is obtained: 

1 I Nips I p  (5.2) 

The Nip, is equal to 1 when all the graphics objects fall 

entirely in a unique image space partition; and it is equal to p 

if all the objects span over all the p image space partitions. 

1 - -- 
Denote 7Z loi 1 , the mean of the loi 1 ' s, by loi 1 . Nipa can be 
expressed as: 



To study the effectiveness of ~egional-~asterization, Nip, 

is a very important parameter to estimate. With Nipat the 

computation overhead due to the repeated processing of graphics 

objects that are local to more than one partitions can be 

calculated. This overhead is directly proportional to 

(Nips-1)*J01 pel processes. 

If a parallel implementation is employed, object groups are 

processed simultaneously. To rasterize the group with more 

objects will require to execute more pel-processes. As a 

it will take more time or need more processors to rasteri 

group. Thus, the scene rasterization speed is determined 

maximium of all the object space cardinalities, (MAX(lOil 

all i, 1~ilp). Therefore, another major factor affecting 

result, 

ze the 

by the 

I ) ,  for 

the 

performance of the Regional-Rasterization technique is the 

evenness of graphics objects distribution among the image space 

partitions. This can be estimated from the s t a n d a r d  d e v i a t i o n  of 

t h e  object g r o u p s  c a r d i n a l i t i e s .  

By elementary statistics, the sample variance of a set of p 

samples (x,, x,, * * - ,  xp) of a random variable X is 

The standard deviation of the Oils, SDop, can be obtained by 
F 

substituting xi with 10il and x with ]Oil in ( 5 . 4 ) .  However, the 

value SD / is more meaningful for performance estimation 
OP 



purposes (see Section 5.6.2). 

In the rest of this chapter, estimates of Nips and SDop are 

found. In order to obtain reliable estimates, real-life data 

should be used in the process of estimation. However, obtaining 

a large set of real-life samples is very difficult. Furthermore, 

the reliability of the derived estimates of Nips and SDop is 

highly dependent on the sampling techniques used to collect data 

[SCHE~~]. To avoid unnecessary complication, we borrow the 

concepts of performance m o d e l i n g .  In the following sections, a 

performance model is created on which the ~egional-Rasterization 

technique is evaluated. 

5.2 Performance Modelinq 

The performance m o d e l i n g  techniques are used to define some 

quantitative performance measures. In this particular case, the 

measures are the two parameters Nipa and SDop mentioned in the 

previous section. Performance modeling forms a basis for the 

solution to many system design and evaluation problems. 

Performance models can be used to develop some comparison 

criteria for the Regional-Rasterization technique that 

illustrate quantitatively the differences in performance between 

various implementations. Basically, the perfornance modeling 

techniques consist of three parts   CARL^^]: 

(a) The characterization of an application or class of 

applications, that is, the characterization of a work-load. 



(Performance can be discussed only in the context of a 

particular application or, perhaps a class of applications,) 

(b) The definition of the parameters that characterize the 

operation of the evaluated system; in this thesis, the 

Regional-Rasterization technique. 

(c) Procedures for calculating performance measures. 

The application of performance modeling techniques result in a 

performance model for the Regional-Rasterization scheme. 

The second and third parts are readily available. In Chapter 

4, a functional model for Regional-Rasterization is given. This 

functional model describes operation of the technique and thus 

can satisfy the requirements of (b). For (c), the two 

expressions, (5.3) and (5.4), described in the previous section, 

define the procedures for calculating the performance measures. 

However, the requirements of (a) are not easy to fulfill. The 

major problem the lack of a general characterization of graphics 

environments. Therefore, it is very difficult to obtain an exact 

work-load definition for graphics displays. To get a reasonably 

close approximation for the work-load, image modeling techniques 

are considered. Through the use of an image model, a class of 

images is defined. The rasterization of these images play the 

role of work-loads for a graphics display to which the 

Regional-Rasterization technique is applied. Therefore, the 

image model must exhibit most major characteristics of images 

from real-life applications. 



5.2.1 Imaqe Modelinq 

The conceptual validity of the Regional-Rasterization 

technique is critically tied to the characteristics of the 

graphics environments that it deals with. For example, an 

environment in which the graphics objects are so large that most 

of them cover more than half of the area of the display, the 

Regional-Rasterization is totally fruitless. Therefore, the two 

major hypotheses assumed by Regional-~asterization must be true 

in order to make it worthwhile to be considered. In this 

section, we will look into the area of image modeling in order 

to reveal the general characteristics (if any) of real-life 

graphics environments. 

The role of an image model is to provide a precise 

description of the image characteristics necessary for an 

efficient design of image operations. In [AHU;81] image models 

are divided into two groups: 

(a) Pixel-based models : 

These models view individual pixels as the primitives of an 

image. Specification of the characteristics of the spatial 

distribution of pixel properties [HAWK~O, MUER~O] 

constitutes the image description. 

(b) Region-based models : 

These models view an image as a set of subpatterns placed 

according to a given set of rules. Both the subpatterns and 

their arrangements may be defined statistically, and these 

subpatterns themselves may be hierarchically composed of 



smaller patterns. 

In our analysis, the region-based models are more crucial since 

they can be used to characterize polygon networks, the major 

geometrical structures in the three dimensional graphics 

environments. In fact, two dimensional polygon networks are 

perhaps the most important geometrical structure for 

representing the projections of visible surface-areas of three 

dimensional solids. 

5.2.2 Region-Based Model 

Region-based models are defined using regions, instead of 

pixels, as primitives. A given model specifies the shapes of the 

regions and gives the rules for their placements in the plane, 

thereby allowing increased control over some pattern 

characteristics. Both the shapes and the distribution rules may 

be specified statistically. 

Over the years, regionLbased models have received far less 

attention than pixel-based models in computer graphics and image 

processing. But recently these models have been investigated for 

texture analysis and synthesis. In the paper by Tamminen 

[TAMM~I], two dimensional polygon networks generated by the 

Dirichlet and Poisson-line tessellation models (two important 

types of region-based models) have been used to model a computer 

graphics environment in which his EXCELL technique is tested. 

One important class of study in region-based modeling is 

that of mosaic models. These models view an image as a mosaic, 



constructed by t essell at i ng the plane into cells. Each cell 

corresponds to an individual graphics object. tessellations 

commonly used include regular triangular, square, and hexagonal 

tessellations, and random tessellations such as the following: 

(a) Poisson-line (Random-line) : 

A Poisson process chooses pairs (p,9), Os9l~, -W<P<~- The 

lines x cos9 + y sin9 = p, define a tessellation of the 

plane (see Figure 5.1 (a)). A Poisson line model is also 

known as a random line model. 

(b) voronoi : A Poisson process chooses points (nuclei) in the 

plane. Each nucleus defines a "Dirichlet cell" consisting 

all the points in the plane nearer to it than to any other 

nucleus (see Figure 5.l(b)). 

(c) Delaunay : All pairs of nuclei whose Dirichlet cells are 

adjacent are joined by straight line segments to define the 

tesseiiation. Figure 5.lic) displays an example of DehunaY 

models. 

Another major class of region-based models consists of the 

coverage (or "bombing") models. These models view an image as a 

random arrangement of a given set of shapes over a uniform 

background. Once again, the choice of shapes and placement 

specifies a particular model. Circles have often been used for 

the shapes, placed at Locations chosen by a Poisson process* 

Figure 5.2 shows an image generated by a bombing model using 

circles as the coverage patterns. In [ F R A N ~ O , ~ ~  1, ~ranklin used 

bombing model images to represent projections of a three 



Figure 5 . 1  (a) Poisson Line (Random Line) Model. (b) 
Voronoi Model. ( c )  Delaunay Model. 



Figure 5.2 Coverage (Bombing) Model. 

dimensional graphics environment in which thousands of 

non-penetrated spheres were packed. His linear-time hidden line 

removal algorithm is evaluated on these bombing model images. 

Region-based models of the above types, mosaic and coverage, 

have been popular in many disciplines, including geology, 

forestry, biology, ecology, astronomy, crystallography, and 

statistics. Several properties of mosaics and coverage patterns 

have been investigated by researchers in related fields [CRAI76, 

MILE69,71,80, SWIT65,67,69, SANT~~]. Unfortunately, these models 

are not very useful for polygon network environments. In the 



next section, we will discuss the incompatibilities of these 

models with the polygon network environments. A "customizedw 

image model will then be defined. The performance of 

Regional-~asterization on this image model will be investigated 

later in this chapter. 

5.3 Bomosaic Imaqe Model 

There exists no concrete standard data generation models for 

polygon networks, nor is there any standard definition for 

graphics environments. To estimate the performance of the 

Regional-~asterization technique in three dimensional graphics 

environments, a suitable image model must be defined first. In 

fact, only for images of a specified type can an evaluation and 

comparison of algorithms be carried out [AHUJ~~]. 

Basically, an image model for three-dimensional graphics 

environments is a general way to represent the two-dimensional 

projection of the environment on a plane (usually the screen). 

Therefore, an image model must demonstrate some important 

characteristics of the graphics environments under 

consideration. However, the chosen model must also be trivial 

enough to be constructed and studied. In this section, a search 

of some general characteristics of the graphics environments is 

carried out. Also, a new image model will be proposed. 



5.3.1 Floatinq-Solid Environments 

The types of applications that we are interested in are 

those which require a large number of polygons for scene 

modeling and have the ability to generate the image at real-time 

rate. Just to name some, interactive computer-aided design, 

movie-quality real-time animation and flight simulation are 

graphics applications of these types. These types of 

environments are classified as f l o a t i n g - s o l i d  environments. 

A floating-solid environment can be portrayed by the 

following characteristics : 

(a) The environment contains only three dimensional solids. 

Since a concave solid can easily be represented by a group 

of closely related convex solids, we assume that all the 

solids in the environment are convex. 

!b! Statistical attributes of t h e  solids, such as their sizes, 

shapes, surface curvatures, and placements in the 3-D space, 

are specific to an application. 

(c) The surface of a solid is represented by a polygon mesh. 

(dl The number of polygons used to construct the surfaces of the 

solids is determined by the area and curvature of the 

surf aces. 

(el The surfaces of the solids in the environment projected onto 

the screen form networks of 2-D polygons. 

( f )  The statistical attributes of the 2-D polygons are 

influenced by the viewing parameters. Even if the 3-D scene 

was highly correlated, its projection could be much less 



correlated [ F R A N ~ ~ ] .  

Notice that the above mentioned statistical characteristics 

are not only related to the nature of the application but are 

also time varying. To obtain a precise model for these 

environments, sufficient a priori knowledge must be available. 

Unfortunately, this is obviously impossible. In order to 

simplify the problem and make further analysis feasible, a more 

restricted form of floating-solid environment will be considered 

later in this thesis. ~eanwhile, let us investigate some 

important properties of a 2-D projection of a floating-solid 

environment. 

5.3.2 Projection of a Floatinq-Solid Environment 

When a floating-solid environment is projected onto a 2-D 

plane, such as the screen of the display, few properties of the 

projection are observed. 

(a) The projections of the polygon meshes representing the 

surfaces of the solids in a floating-solid environment form 

c l u s t e r s  of 2-D polygon networks on the screen. (1n this 

thesis, the screen is considered as the only relevant 2-D 

projection plane). 

(b) A cluster may overlap others. 

(c) The interior of a cluster is formed by a two dimensional 

tessellation. Each tessellation cell can be considered as a 

polygon. 

(d) Polygons tend to be smaller as they get closer to the edge 



of the cluster. 

These properties are depicted in Figure 5.3. 

Notice that neither the mosaic model nor the coverage model 

can precisely define the projection of a floating-solid 

environment which possesses the above properties. However, a 

hybrid type of image model, which is a combination of the mosaic 

and the coverage model, is very appropriate for the current 

purpose. The new model is given the name bombing mosaic, or 

PROPERTIES OF THE IMAGE: 
Pro jec t  ions form cius ter's 

of graphics objects. 
Notice that the interior of the 
projections ere made up of 
small polygons. 

Clusters may overtap. 

Figure 5.3 Projection of a Floating-Solid Environment. 



bomosaic model. 

5.3.3 Bomosaic Model 

Bomosaic models portray the two-dimensional projection of 

three-dimensional floating-solid scenes. These models view an 

image as a random arrangement of patterns. Each pattern is 

tessellated into a network of polygons. Clearly, this model is a 

good representation of clusters of polygon network found in the 

projection of a floating-solid environment. 

One weakness of the bomosaic model is its incapability of 

showing the polygon mesh on the "backw face of solids. However, 

in most cases, these "back" polygons are eliminated in an early 

stage of the scene rendering process pipeline, and hence never 

have to be considered by an image rasterizer. 

5.4 C-Bomosaic Image Model 

The performance of the Regional-Rasterization technique is 

to be evaluated based on the bomosaic model, However, the 

bomosaic model is still too arduous to work with. 

The major difficulty in using a general bomosaic image model 

comes from the unpredictability of the bombing pattern shapes. 

This novelty of the pattern shapes is a consequence of the 

uncontrolled solid shapes of the floating-solid environments. TO 

obtain a workable image model, we must restrict ourselves to a 

more constrained floating-solid environment, namely the 



f l  o a t i n g - s p h e r e  e n v i r o n m e n t  . Since it is also a type of 
floating-solids environment, it retains many of its important 

characteristics. 

A floating-sphere environment is in fact a floating-solid 

environment which accommodates only spheres. By the symmetry 

argument of 2-D graphics objects: graphical objects are no more 

likely to be short and wide than to be tall and thin [sPRo~~], 

circle is perhaps the most appropriate "bomb" pattern to be used 

in the new bomosaic model. If the symmetry argument is extended 

to the 3-D case, sphere is the most-rational type of solid to be 

assumed. Furthermore, projections of spheres always form 

circles, the geometric type which is consistent with the 

symmetric argument in the 2-D case, 

5.4.1 Definiton of the C-Bomosaic Model 

Based on the floating-sphere environment and the bomosaic 

concept for image modeling, a new type of image model, called 

the C - b o m o s a i c  m o d e l  is defined. The C-bomosaic model can be 

defined by the following characteristics : 

(a) The model consists of randomly arranged circles which are 

called the b o m b  c i r c l e s .  Overlapping of bomb circles is 

permitted. 

(b) The radius of the bomb circles are random within a range. 

(c) The interior of a bomb circle is defined by the Delaunay 

tessellation mechanism. 

(d) The number of tessellation cells in a bomb circle is random. 



(el The total number of tessellation cells is limited by a 

constant. 

Figure 5.4 shows an image defined by the C-bomosaic model. 

5.5 Generation of Work-Load 

The principal overhead of Regional-Rasterization comes from 

the repeated processing of graphics objects which fall in more 

than one image space partition (see Chapter 4). ~ntuitively, if 

the graphics objects are small, and distributed uniformly, the 

Figure 5.4 A C-Bomosaic Image. 



chance of re-processing is low. In this case, we may expect 

Regional-Rasterization to perform reasonably well. However, 

owing t o  the clustering behavior of the graphics objects, 

performance analysis of Regional-Rasterization is non-trivial. 

In this section, behavior the of ~egional-Rasterization 

technique on images defined by the C-bomosaic model is studied. 

5.5.1 Number of Graphics Objects 

The number of polygons that can be used to "tile" the solids 

is limited.  h his number is especially important to many 

parallel-processing systems such as Fussel's real-time scan 

conversion system  FUSS^^] in which an upper bound on the number 

of objects is set when-the system is built.) This number must be 

reasonably large for most scenes and should be consistent with 

the physical limitation of most systems. "> In this thesis, the 

maximum n u m b e r  of g r a p h t c s  o b j e c t s  to be considered is denoted 

by Np. Since our major interest is in graphics environments 

which consist of a large number of graphics objects, we will 

consider cases where N is equal to 500, 5,000, or 50,000. P 

5.5.2 Tessellation of the Bomb Circles 

There are two questions associated with the tessellation of 

bomb circles: 1 )  What kind of tessellation is to be used 

(Poisson line, Voronoi, or Delaunay)? and 2) How many 

tessellation cells should there be in a bomb circle? 



r 

TO answer the first question, we present the following 

arguments: 1 )  Both the Voronoi and Delaunay models give a 

similar tessellation pattern. However, the Delaunay tessellation 

method is more similar to networks produced by many surface 

modeling algorithms  BARN^^]. 2 )  A Poisson line (random line) 

tessellation exhibits extreme variation of polygon size. The 

polygon network formed is also unrealistic for a projection of a 

3-D polygon mesh. By these two arguments, the Delaunay 

tessellation appears to be more appropriate for tessellating 

bomb circles. 

There are two major factors affecting the size of polygon 

tiles on the surface of a solid : 1 )  its surface area, and 2 )  

the rate of change of the surface curvature. When performing the 

perspective transformation, solids at farther distances give 

smaller projected images on the screen. Therefore, even a small 

projected image may contain a large number of polygons. Thus, 

the number of tessellation cells to be found in a bomb pattern 

should be independent of the pattern's area. However, it is more 

realistic to impose a lower and an upper bound on the number of 

tessellation cells per bomb circle. Hence, this number is 

allowed to vary only within a certain range. In order to avoid 

the situations in which a very small bomb pattern contains a 

very large number of tessellation cells, the range is also 

partially determined by the area of the bomb circle. If the area 

of a bomb circle is small, it has a smaller bound for the 

tessellation cell number. 



5.5.3 Vertices for the Delaunay Triangle Network 

The first step in the tessellation process is to obtain a 

set of vertices. These vertices correspond to the nodes 

(Delaunay vertices) of a polygon network which represents the 

surface of a sphere whose projection forms a bomb circle. In 

Figure 5.5, the surface of a sphere of radius R is defined by a 

function f which maps ( ~ , 8 , $ )  to a unique point on the surface. 

Figure 5 . 5  Projection of a Surface Point from a Sphere to a 
Plane. 



By varying 8 and # from 0 to 27r (exclusively), the function f 

defines all the points on the surface of the sphere. As shown in 

Figure 5.5, the point f(~,8,#) projects onto the point 

(Rcos#cosf3, ~cos#sinb) on a two dimensional Cartesian plane. 

Since the nodes of the polygon network are actually points on 

the surface of the sphere, each of them can be denoted by the 

(~,8,$) notation and its projection is expressed as (Rcos@cosf3, 

~cos#sine). Since the "back1' polygons in the polygon network are 

ignored, the angle @J is allowed to vary uniformly between -7r/2 

and 7r/2 only. However, 8 can vary uniformly between -r and 7r. 

The algorithm GenVL is used to generate the Delaunay 

vertices of a bomb circle given its location (x,y), radius R, 



and number of vertices n: 

C~mment : RANDOM(type,lower,upper) is a random 
value generator which returns a value 
of data type <type> within the range 
(<lower>, <upper>), 

Comment : VL is a list of ordered pairs which is 
initially empty. 

Comment : Vx, Vy are local variables. 

Routine GenVL (x,y,R,n) return (VL); 

1 Repeat n times; 

1.4 vy := y + R*cos4*sine; 

1.5 Append (vx,v~) to VL; 

2 Return VL; 

Figure 5.6 displays a set of vertices generated by the GenVL 

routine. The VL can be fed into any Delaunay triangulation 

algorithm. In this thesis, the divide-and-conquer algorithm 

Proposed in [LEED~O] is used. 

5.5.4 Generation of a tessellated Bomb Circle 

earance of There are three main parameters .governing the aPP 

a tessellated bomb circle: ( 1 )  its location (x,~) I (2) its 
an the bomb radius R, and ( 3 )  the number of tessellation cells 

circle Ntc. The location of a bomb circle (x,y) is a S5umed to be 

random on a 1024x1024 Cartesian plane with integral and 



Figure 5 . 6  A Set of Vertices Generated with the Algorithm 
GenVL 

coordinates. The radius R of a bomb circle is also random. 

However, R is only allowed to vary from 36 to 365. In Figure 

5.7, the size of the largest and smallest bomb circle are 

depicted. In determining the number of tessellation cells, we 

set a rule which prevents too many cells to be formed in a small 

circle. The rule states that the maximum number of tessellation 

cells in a circle is directly proportional to the radius of the 

bomb circle. Also, to constrain the number of bomb circles in an 

image to be within a reasonable range, the number of 

tessellation cells in a bomb circle cannot be too small nor too 



Figure 5 . 7  The Biggest and Smallest bomb circle. 

large. In this thesis, the number of tessellation cells is 

allowed to vary from Np/lOO to ((~~/2)/(~/365)) = R*Np/730. With 

this upper bound, even the largest allowable bomb circle 

contains at most one half of the maximum number of graphics 

objects in the scene. Consequently, there may be at least 2 and 

at most 100 bomb circles in the image. 



The objective of using Delaunay triangulation is to obtain a 

polygon network such that the spatial characteristics of the 

polygons can be studied. Any Delaunay tessellation algorithm can 

be used to generate the desired triangle network. The 

measurement of the spatial characteristics of the Delaunay 

triangles can be performed after the tessellation has been 

completed. However, we found it more effective if the spatial 

statistics of the triangles can be collected at the same time as 

triangles are generated. With this in mind, Lee and Schachter's 

divide-and-conquer algorithm is used [LEED~O]. 

The basic idea of Lee and Schachter's algorithm is to merge 

two sub-Delaunay triangle networks into a larger one [LEED~~]. 

In the process of merging two sub-networks, new edges are 

inserted and a new Delaunay triangle is formed for each edge 

added. At this moment, it is very easy to identify the three 

vertices of the newly formed triangle; and hence identify the 

image space partition(s) that it is local to. With a minor 

modification, the triangulation algorithm can only be used to 

reveal the amount of local triangles of a given set of 

partitions. 

The modified algorithm (MDT) is given an array (CNT) of p 

entries where p is the number of image space partitions. Each 

element of the array serves as a counter for local triangles of 

an image space partition when a new triangle is generated. MDT 

will test it against all the partitions. Then, the counters in 

CNT will be updated accordingly, This array of counts, along 



with the actual number of triangles generated (Nt), are returned 

after the tessellation is completed. 

5.5.5 Spatial Statistics Samplinq 

A C-bomosaic image is composed of a number of circles each 

of which is tessellated by the MDT algorithm. The total number 

of Delaunay triangles found in a C-bomosaic image is limited by 

a pre-determined upper bound N To keep track of the total P' 
number of Delaunay triangles in a generated C-bomosaic image, 

the number of the tessellation cells in each bomb circle must be 

known. Unfortunately, the exact number of cells generated by the 

MDT algorithm is very difficult to control (we can only limit 

the number of vertices). Therefore, generating a C-bomosaic 

image with exactly Np triangles is laborious. To overcome this 

problem, we make use of the observation that the number of 

Delaunay triangles generated on a set of vertices is 

approximately equal to the number of vertices in the set. 

In the C-bomosaic routine given below, statement 3.4 

restricts the sum of the number of Delaunay triangles already 

generated (<total> in 3.7) and the number of vertices in the new 

bomb circle (v, in 3.4, 3.5) to be not greater than Np. Since 

the number of tessellation cells in the new bomb circle will 

approximately equal to the vertex number, the value (<total> + 

<Tn> (in 3.7, 3.8)) will be close to (<total> + <Vn>). 

The spatial statistics Nip, and SDop are obtained in 

statements 5 and 6 according to expressions (5.2) and ( 5 . 3 )  



Comment : 

Comment : 

IP is an array of structures 
of p elements. Each structure holds the 
boundary of an image Space partition. 

RANDO~(type,lower,upper) is a random 
value generator which returns a value 
of data type <type> within the range 
C<lower>,<upper>). 

Comment : VL is a list of ordered pairs which is 
initially empty. 

MaxT is the maximum number of remaining 
cells. 

Vn is the number of tessellation 
vertices for the next bomb circle. 

Tn is the total number of tessellation 
cells just generated in the bomb circle. 

CNT is an array of p elements which holds 
the objects count for each image space 
partition. 

Routine C-Bomosaic ( ~ ~ ~ 1 P . p ) :  

1 MaxT := Np; 

2 CNT(i) := 0 for all i, lsilp; 

3 Repeat; 

3.1 x := ~~~~0M(int,0,1023); 

3.2 y := R~~~O~(int,O,1023); 

3.3 R := ~~~~0M(int,36,365); 

3.4 Vn := MIN(M~XT.RANDOM(~~~, (Np/lOO). (RXNp/730) 1; 

3.5 VL := GenVL(x,y,R,Vn); 

3.6 (CNT,T,) := MDT(VL,IP); 

3.7 total := total+Tn; 

3.8 MaxT := MaxT-Tn; 

3.9 if ~ a x ~ < ( ~ ~ / 1 0 0 ) ,  then exit Loop 3: 



4 mean := C CNT(i)/p; 

5 Nips := p*mean/total; 

6 SDop := d((Z (C~~(i)-mean)~)/(~-l)); 

7 Return (Nip,, S~op/mean): 

5.6 Estimation of Performance Measures 

To understand the effectiveness of the 

Regional-Rasterization technique in graphics environments of 

various complexities, the Nip, and SDop are estimated with 

various Npls. Three values of Npls are considered: 500, 5000 and 

50,000. These Npls correspond to the complexity of a low, medium 

and high quality image. For each Np the Nip, and SDop are 

estimated for 9 different implementations of the 

Regional-Rasterization technique. These implementations have 

image space partitions of equal size which are formed by slicing 

the image space into an equal number of columns and rows. 

Therefore, the image space partitions are all squares and have 

the same area. For each particular scene complexity and 

implementation, 50 C-bomosaic images are generated. For each 

image, the Nip, and SDop corresponding to the 

Regional-Rasterization implementation are computed. As a result, 

27 sets of 50 Nip, samples and 27 sets of 50 SDop samples are 

generated. The entries found in Table 5.1 and Table 5.2 are the 

means of the 50 Nip, and SDop samples in these sets. 



# Partitions Low Ned i um High 
(Np=500) (Np=5.000) (Np=50,000) 

Table 5.1. Estimate of expected NipaTs for various scene 

complexities. Number of image-space partitions 

varies from 1 to 100. 

# Partitions Low Medium High 
(Np=500) (Np=5.000) (~~=50,000) 

Table 5.2. Estimate of expected ( S D ~ ~ / ~ O ~ ~ ) ' S  for various 

scene complexities. Number of image-space 

partitions varies from 1 to 100. 



5.6.1 Analysis of the N a  Estimates 

From the estimates displayed in Tables 5.1 and 5.2,. we 

conclude that the Regional-Rasterization technique is very 

effective in improving the performance of graphics displays. ~n 

Table 5.1 there are three columns and nine rows of entries. The 

three columns correspond to three preset scene complexities. The 

first one is for graphics environments which contain 

approximately 500 objects, the second one is for environments 

with 5000 objects and the third is for very complex scenes which 

have 50,000 graphics objects. The leftmost number of each row is 

the number of image space partitions used in a 

Regional-Rasterization implementation. To analyze the results, 

Graph 5.1 is plotted based on the information from the table. 

In Graph 5.1, three curves are plotted in a plane whose x 

and y represent the number of image space partitions and the 

estimated Nipat respectively. As illustrated in the graph, the 

estimated Nip, increases as the number of image space partitions 

increases. This.can be explained by the fact that the chance for 

a graphics object to cross a partition boundary increases as the 

area of a partition decreases.  his can also be shown more 

rigorously, using the concepts of geometric probability 

[SANT~~].) Nevertheless, if the number of graphics objects in 

the environment is larger, the Nip, is closer to its lower 

bound, namely one. To justify this result, we provide the 

following arguments: 

(a) The average area of graphics objects tends to be smaller as 



Legend 

Graph 5 . 1  Estimate of Nipals plotted vs number of 
partition. 

the total number of graphics objects increases. In the 

C-bomosaic model defined in this thesis, this has been 

assumed implicitly. 

(b) The expected number of graphics objects required to 



constitute a polygon network of a fixed area increases 

linearly with the average object size. 

(c) The average breadth1 of a graphics object decreases at a 

rate much slower than that of the area of the object. For 

example, the diameter of a circle can be expressed as 

~(A/R). 

(dl The graphics objects in a polygon network are 

non-overlapping. Therefore, the expected number of objects 

in a network that a.line of fixed length may intersect is 

inversely proportional to the average breadth of the 

objects. By argument (c) the rate of increase in the number 

of graphics objects intersecting a partition boundary is 

much slower than the decrease rate of the average object 

area. By arguments (a) and (b), the number of objects in a 

graphics environment increases more rapidly than the 

resulting increase in the number of graphics objects 

intersecting a partition boundary. 

The first conclusion that is derived from Graph 5.1 is that 

Regional-Rasterization is most effective in complex graphics 

environments. Also, the computation overhead resulting from 

repeated rendering of a graphics object is small if the number 

of partitions is small. However, although more overhead is 

required for larger number of image space partitions (up to a 

certain number), Regional-~asterization may still be favorable. 

------------------ 
'The breadth of a convex set in a direction d is the distance 
between the two support lines (tangents), which are 

perpendicular to d and are on opposite sides of the set 
[SANT~~]. 



In Table 5.3, the expected numbers of pel-processes required 

to render an object for a low, medium and high quality scene 

with different ~egional-Rasterization implementations are 

tabulated. As shown, the expected number drops as the number of 

image space partitions rises. Nevertheless, when the data from 

Table 5.3 is plotted out, it is more obvious that the rate of 

improvement (the amount of pel-processes reduced per image space 

partition increased) drops as the partition number increases. A 

tremendous saving can only be achieved by using more partitions 

when the partition number is small, say from 1 to 9. 

# Partitions Low Medium High 
(Np=500) (Np=5.000) (~~=50,000) 

Table 5 . 3 .  Expected number of pel-processes required to 

rasterize an object, for various scene 

complexities. Number of image-space partitions 

varies from 1 to 100. 



In Graph 5.2, the corresponding expected numbers of 

pel-processes required to render an object in a low, medium, and 

high quality scenes are plotted for various number of image 

space partitions. From all the three graphs, the expected number 

Legend 
low 

Graph 5.2 Expected numbers of pel-processes plotted vs 
number of partitions. 



of pel-processes needed for each environment approaches 

asymptotically to a lower bound. This implies that improvement 

will stop when a certain lower bound is hit. Theoretically, this 

lower bound is the average area of the graphics objects in the 

graphics environment. Therefore, the second conclusion is: it is 

not rcommended to divide the image space into a large number of 

partitions. 

5.6.2 Analysis of the SD Estimates 9 

Expression (5.4) in Section 5.1 and statement 6 of the 

C-Bomosaic routine (see Section 5.5) is the standard deviation 

of the number of graphics objects that fall in various image 

space partitions. The major objective of studying the behavior 

of the SDop is to analyze the distribution of graphics objects 

in the image space. However, the SDop alone is meaningless since 

it cannot display the variation of graphics object population 

density in the image space partitions. For example, the standard 

deviation of 4 for a set of samples whose mean is 4 indicates a 

great fluctuation among the sample values. Whereas, if the same 

standard deviation is found in a sample set whose mean is 400, 

it can be concluded that all the sample data cluster around the 

sample mean. Therefore, in Table 5.2, the value of standard 

deviation divided by the sample mean is used.' 

In Table 5.2, the spatial distribution of the graphics 

objects in a scene seems to be correlated with both the 

complexity of the scene and the number of image space 



partitions. The entries in Table 5.2 are plotted against the 
- 

number of SDop/lOil image space partitions in Graph 5.3. AS 

- 
illustrated, smaller SD /loi 1 is found for higher quality 

OP 

images. However, the influence of the number of graphics objects 

---. - 

Graph 5 . 3  Estimate of SDOp/lOil plotted vs partition 
number. 



in a scene is not very serious. As a result, all the three 

curves are close to each other. This is due to the argument 

spatial characteristics of bomb circles in an image are not 

that 

altered by the number of tessellation cells found in each bomb 

circle, Since the spatial characteristics of bomb circle are 

similar in low, medium and high quality cases, the evenness of 

graphic object distribution is almost the same in the three 

kinds of images. Nevertheless, owing to the MDT algorithm used 

to generate the C-bomosaic images, images with larger Np will, 

in general, have more bomb circles. Since these circles will - 
distribute uniformly in the image space, smaller SDop/lOil in 

images with larger Np is sensible. 

- 
In Graph 5.3, it is also illustrated that larger SDop/lOil 

is resulted when an implementation incorporates a larger number 

of image space partitions. To explain this phenomenon, we must 

consider the clustering property of the graphics objects. Since 

they form networks, the graphics objects localize at few certain 

positions in the image space. This implies that graphics objects 

in the cluster should fall in few abutted partitions only (see 

Figure 5.8(a)). The effect of this characteristics on the 

evenness of object distribution is depicted in Figure 5.8(b). As 

shown, the chance that a partition is mostly filled or mostly 

empty is higher if there are more partitions. Consequently, the 

numbers of objects in the partitions has a greater fluctuation. 

The most important concept to be gathered from our studies 

in this chapter is that Regional-Rasterization is most effective 



Figure 5 . 8  (a) Number of graphics objects in each partition 
is almost equal. 
(b) When there are more partitions, most objects 
are local to only a few partitiens. 

when the number of partitions is small (eg. four). 



CHAPTER 6 

IMPLEMENTING THE REGIONAL-RASTERIZATION TECHNIQUE 

The Regional-Rasterization technique is based on two major 

elements: ( 1 )  a scheme to partition the image-space, and (2) a 

process to identify graphics objects local to a certain 

partition. In this chapter, various design considerations in 

implementing Regional-Rasterization are discussed. In sections 

6.1, 6.2, and 6.3 we will concentrate on finding a suitable 

image space partitioning scheme and on the hardware design of a 

high speed local graphics object identifier. 

Through the discussions in this chapter, the feasibility of 

Regional-Rasterization is confirmed. In sections 6.4 and 6.5, 

the applicability of the technique to parallel-processing image 

rasterizers is demonstrated. Two examples are given: one 

describes the application of Regional-Rasterization to Pixel- 

Planes system [FUCHSI]; and the other describes how the 

technique can be applied to Fussel's system F FUSS^^]. These two 

systems represent two extreme architectural structures for image 

rasterization: the image-space partitioned structures and the 

object-space partitioned structures. 

6.1 Modular Approach to Imaqe Rasterization 

Let a m o d u l e  be a "black-box" which is specially made to 

attack the child problems (see Section 4.2.1). Obviously, a 



sequential implementation requires only one module. However, in 

the case of parallel implementations, at least p modules are 

needed (p is the number of partitions employed). A module is 

basically a device for image rasterization. There are many ways 

to build a module. 

I! > tt > "> "> By the generalized notation for graphics display 

architectures (see Chapter 3 1 ,  a module can be defined with the 

a-0-7-1 notation. With that notation, its hardware and 

processing-time complexities can be defined by 01 and ay 

respectively. 

Recall the definition of a, 0, 7, and 1: the product a0 must 

be greater than or equal to the number of graphics objects to be 

scan-converted; and the product yh must be greater than or equal 

to the number of pixels in the image space. For the module 

associated with the image space ii, t he  corresponding value a0 

must be greater than the number of objects in Oi, and the value 

yX must be greater than the pixels in Ii. Assume the object 

space of the parent problem contain n objects and its image 

space has m pixels. "> "> Then, the number of pixels in Ii is 
* 

m =m/p. Since all the partitions are of the same size, the 

11~1's are all equal for all i=1,2, ...,p. Owing to the spatial 

characteristics of the graphics objects, the total number of 

objects to be considered by all the modules is n*=~~~,(n/~) 

where Nips is the average number of partition(s1 to which a 

graphics object is local (see Section 5.1 ) .  



* * 
~f a I-n -m - 1  architecture is employed by a module, it will 

* require n processors and its computational rate is m*. 

* * 
Therefore, a sequential implementation with a 1-n -m -1 module 

architecture will need n * = ~ ~ ~ ~  ( processors and its 
* 

computation rate becomes pm , which is equal to m. For a 

parallel implementation, the hardware complexity will be 
* 

pn =Nipa(n) and the computational rate will be m*=(m/p). 

If a n*-1-1-m* architecture is employed by the modules, a 

sequential implementation will have a hardware complexity 
* * 

m =(m/p) and a computational rate pn =Nipa(n). Similarly, for a 

parallel-implementation, the hardware complexity is of order 
* * 

p(m )=m and the computational rate n =Nipa(n/p). These measures 

are tabulated in Table 6.1. 

Sequential Implementation 

Hardware Complexity Nipa("/p) m / ~  
Processing-Time Complexity m Nipa(n) 

Parallel Implementation 

Hardware Complexity Nipa(n) m 
Processing-Time Complexity m / ~  Nipa("/p) 

Table 6.1. Hardware and Processing-time Complexities for 
Sequential and Parallel Implementations of 
Regional-Rasterization. 



Ff 

The choice of a sequential or a parallel implementation all 

depends on what is the objective for incorporating the 

Regional-Rasterization technique. Obviously, sequential 

implementation is particularly suitable for cases in which the 

hardware quantity is to be cut down. As illustrated in 

Table 6.1, a sequential implementation can achieve a factor of 
* * 

( N ~ ~ ~ / ~ )  and (1/p) cut down in hardware for the 1-n -m - 1  and 
* * 

n -1-1-m cases, respectively. However, parallel implementations 

are good in improving the system's processing-time. Again, from 

Table 6.1, the potential of a parallel implementation can be 

shown by the improvement factor of (1/p) and in 
* * * * 

processing-time respectively for the I-n -m - 1  and n -1-1-m 

cases. As is shown, the performance of an implementation is 

closely related to the value of Nipa and p. 

6.2 I?-Scheme for the Optimai Implementation 

In Table 6.1, performance measures for various 

implementations of the Regional-Rasterization technique are 

posted. A general characteristic of these measures, due to p, is 

that the effectiveness of the technique increases as the number 

of partitions increase. Intuitively, the image space 

partitioning scheme employed in Regional-Rasterization should 

have a large number of partitions for better performance. 

However, a factor, Nip,, causes a considerable degree of 

degradation to an implementation's effectiveness if p is large. 

From the performance study in Chapter 5, we know that Nip, is a 



monotonic increasing function of p. That is, Nip, increases as 

increases. In addition, the rate of increase of Nips is faster 

than the growth of p. Consequently, as p increases, the 

effectiveness improvement will eventually be compensated by the 

degradation in effectiveness induced by Nipas This suggests that 

there is an optimal value for p at which the effectiveness of 

the Regional-Rasterization technique is maximal. This behavior 

has been depicted in Graph 5.2. 

In the graph, the expected number of pel-processes required 

to execute in order to rasterize an object is plotted against p. 

For the case Np=500 ( N ~  is the maximum number of objects in the 

graphics environment), a local minimum is found at p=81. 

Furthermore, it has demonstrated that when Np=5,000 or 50,000, 

the expected pel-processes number approaches their minimum 

asymptotically. However, the theoretical optimal IP-scheme may 

not be the most suitable one to be used mainly because of its 

cost-effectiveness. 

Upon implementation of optimal IP-scheme, there is usually a 

large number of image space partitions formed. This amplifies 

the difficulty in performing the local object identification. In 

addition, the number of partitions becomes less significant to 

the system performance as p grows large. This characteristic is 

as well depicted in Graph 5.2. As is shown, the pel-processes 

number drops rapidly as p shrinks. Nevertheless, the rate of 

decrease slows down as p increases. Therefore, it is advisable 

to adopt an IP-scheme thereby forming a small number of image 



space partitions, such as 4, 9 or 16. 

Based on the above arguments, we can reasonably assume that 

the IP-scheme for the optimal implementation of 

Regional-Rasterization will employ a smaller number of image 

space partitions than the theoretical optimal IP-Scheme. ( ~ o t ~  

that it is not necessary for the optimal implement to employ the 

theoretical optimal IP-scheme.) This number may be much smaller 

than the one corresponding to the theoretical optimal IP-scheme. 

Supported by this idea, the local object identifier presented in 

the next section is designed aiming at a small number of 

partitions. 

6 . 3  Local Graphics Object Identifier 

One of the key components of the Regional-Rasterization 

technique is the local graphics object identifier. The major 

function of this component is to identify the partition(s1 that 

a graphics object is local to. This component is conceptually an 

algorithm which can be implemented in software or hardware. In 

this section, the design of a low-cost high-speed local graphics 

object identifier is discussed. 

6 . 3 . 1  Input and Output 

The local object identifier is a device which tests each 

graphics object against all the image space partitions and 

I 
identifies the partitions that the object is local to. The input 



to the device must contain information about the boundary of an 

object. The borders of the partitions must also be known to the 

identifier. However, since partition borders are static and will 

never change, they are assumed to have been "burnt-in". 

~nformation regarding the objects is obtained from the output of 

a series ~f geometric transformation processes, which are 

usually done by special hardware. 

The identifier can be fitted in the scene rendering process 

pipeline preceding the image rasterizer, where 

Regional-Rasterization is implemented. At this stage, the 

boundary of an object is described by the vertices of the object 

expressed in screen coordinates. After an object is fed to the 

identifier, an identification procedure is executed immediately. 

The output of the device is a set of labeled objects. The labels 

are used to identify a set of partition(s1 that a graphics 

object is local to. The output can be in any format. However, a 

string of p bits, where p is the number of partitions to be 

considered, is sufficient. If p is too large, the output can be 

in a more compact encoded form. 

6.3.2 Speed Requirement 

If the local graphics object identifier is fitted in the 

scene rendering process, it must be capable of identifying an 

- object at a rate not slower than any other device in the 

pipeline. Otherwise, the identifier will slow down the 

throughput of the entire system. with the current technology, 



other devices in the scene rendering pipeline such as the 

geometric transformers, clippers, ..., etc., may have a very 
high throughput rate. Therefore, the primary design criterion 

for the identifier is speed. 

However, the identification process is not a simple task. To 

check for overlaps of an object and a partition, all the edges 

of the object must be tested against all the borders of the 

partition. This involves many multiplications and additions. If 

any intersection occurs, the object must overlap with the 

partition and hence be local to it. Direct implementation of 

this approach will require very complex circuitry. 

6.3.3 Algorithm "INEXACT" 

The algorithm used in our design is not exactly the one 

described in the previous section. This algorithm is given the 

name INEXACT in the sense that it is not solving the mentioned 

identification problem exactly. However, the result produced by 

INEXACT is so close to the optimal solution that it is very 

useful for our application. 

INEXACT views the image space as a matrix of partitions and 

an object as a set of vertices (see Figure 6.1). It considers 

all the partitions in the m i n i m a l  r e c t a n g u l a r  sub-matrix of 

partitions, that enclose the object entirely, as the partitions 

that the object is local to. This approach sometimes mistakenly 

identifies an object and forces it to be unnecessarily rendered 

in partitions that it is not local to; and hence wastes 



-- 

Figure 6 . 1  Conceptual View of the Image Space by the 
INEXACT Algorithm. 

computational effort. For example, in the case of Figure 6.1, 

- the actual number of partitions that the object local to is 33. 

But the INEXACT algorithm identifies 72=49 partitions for the 

object. That is, 16 mistaken partitions are identified. However, 



we have found out that, on the average, the waste of computation 

effort introduced by INEXACT is actually extremely small. In 

fact, we found that 99.54 percent of graphics objects generated 

in Chapter 5 can correctly be labeled by INEXACT. In many cases, 

INEXACT makes no error in identifying objects. Figure 6.2 

depicts some of the cases in which INEXACT produces "exact1' 

results, 

Figure 6 . 2  Various Classes of Objects that are Handled 
Properly by the INEXACT Algorithm. 



INEXACT-identifier is the device which is designed based on 

the INEXACT algorithm for a matrix of 4-by-4 partitions (see 

Figure 6.3). In Figure 6.3, the address of a partition is 

determined by the column and row number of the partition. The 

row number is counted from the lower row upward. The lowest row 

has a number OOb and the highest row has a number l l b .  

Similarly, the columns are numbered from left to right. The 

leftmost column is column OOb and the rightmost colmun has an 

address 

lmcge Smce 

Figure 6.3 Labeling Scheme for an Image Space of 16 
Partitions. 



be A partition address is the concatenation of a row address and 

a column address. For example, the partition on row lob and in 

column 1 1 has an address 101 1 b. 

Assume the resolution of the display is 1024x1024. 

Therefore, the screen coordinates are 10 bits long. For a point 

(x,y), the two most significant bits, x9 and x,, of the x 

coordinate and the two most significant bits, yg and y,, of the 

y coordinate can be used to identify the partition enclosing the 

point. The partition that the point (x,y) is local to has an 

address ygy,x9x,. For example the point 

( O 1 l O 1 l l O 1 O b , l O 1 O 1 O O O O b ) ,  which is the point (442,687), is in 

the partition 100lb. 

In Figure 6.4, an overview of the INEXACT-identifier 
. + 

hardware is shown. When the vertices of an object are given, the 

identifier will determine the bounding box of partitions that 

the object is local to. The major input to the device are sets 

of 4-bit strings. Each 4-bit string is a concatenation of the 

two most significant bits of the X and Y coordinate of a vertex 

"y9y8xgx8". Recall that this is the partition address that the 

vertex is local to. Upon the entry of a new object (a new set of 

4-bit strings), the RESET signal will be sent to the identifier 

to notify the start of a new identification process. Then, for 

each CLK cycle, a vertex ($-bit string) in the set is read and 

processed. 

The INEXACT-identifier consists mainly of a h o r i z o n t a l  b a n d  

d e c o d e r ,  a c o l u m n  b a n d  d e c o d e r ,  and a number of AND gates. The 
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main function of the horizontal band decoder is to identify a 

band of rows which bound the object from the top and the bottom. 

While the column band decoder finds the band of columns which 

bound the object from the left and the right. Then the 

horizontal band and vertical band are ANDed in order to obtain 

the desired minimal rectangular sub-matrix of partitions (see 

Figure 6.4). 

The horizontal band decoder takes the sub-string "y,y8" as 

input. This input is decoded by a 2-to-4 decoder. Then the 

decoded row address (dl1d2,d3,d4) is passed down to a b a n d  

r e g i s t e r ,  which consists mainly of 4 D-type flip-flops 

( D 1 , ~ 2 , ~ 3 , ~ 4  where Di represents a flag for the ith row of 

partitions). These flip-flops are hooked up in such a way that 

Bi, for i=0,1,2,3, takes the "OR" of di and itself, that is 

"Bi OR di", as its D input. With this arrangement, Di will 

always memorize a 1 after a 1 is read from di (until the 

identifier is reset). That means the band register is able to 

keep a record of rows that have been addressed. This record is 

then read by a 1 ow b a n d  g e n e r a t  o r  (L) and a h i g h  b a n d  g e n e r a t  o r  

The L network evaluates the logic function "equal or below 

the highest addressed row", for Dl, D2, D3, and D4. In contrast, 

the H network identifies all the rows which are above or equal 

to the lowest addressed row. Therefore, when the results from L 

and H are ANDed, a band of rows between the highest and lowest 

addressed rows is obtained. 



The column band decoder works in a similar manner as the row 

band decoder. These two devices operate simultaneously and hence 

a horizontal (row) and vertical (column) band can be obtained at 

the same time. ~otice that the horizontal band bounds the object 

from the top and bottom, while the column band bounds the object 

from left to right. When the bands are  AND^^, the minimal 

rectangle that encloses the object entirely is obtained. As 

shown in Figure 6.4, the AND gate network has an output signal 

for each of the 16 partitions. If a partition is within the 

horizontal band and the column band, the corresponding AND gate 

output will be 1. 

The INEXACT-identifier is very fast. As illustrated, it just 

takes one clock cycle for each vertex of the object. Although 

the design given was for the 4-by-4 IP-scheme, it can easily be 

generalized to the k-by-k case. Also, the device can easily be 

modified to accommodate parallel-processing capability for 

object vertices. For example, if the objects are triangles, then 

the replacement of the 2-to-4 decoder and the band register, 

with the structure shown at the bottom of Figure 6.4, allows the 

INEXACT-identifier to process 3 vertices simultaneously. 

6.4 Applyinq Reqional-Rasterization to the Pixel-Planes System 

In order to get a better feeling for the 

Regional-Rasterization technique, two examples are given to show 

how it can be installed into a multi-processor graphics display 



to "cut-down" 1 )  the required number of processing units, or 2) 

the time required to render a scene. The system being considered 

is the Pixel-Planes, which is an n-1-1-m-system. That is, there 

is one (logical) pixel-processor for each pixel of the raster. 

Assume the resolution of the display is 1024-by-1024. Therefore 

it requires a matrix of (10241, pixel-processors to implement 

the Pixel-Planes. 

In the examples, the image space is to be divided into four 

quarters, namely I,, I,, I,, and I, (see Section 3.3). 

Conceptually, each of the partitions can be viewed as an 

independent 256-by-256 sub-raster and thus can be handled by a 

256-by-256 Pixel-Planes system. From now on, we will call such 

256-by-256 matrices of Pixel-Planes structure used for the I,, 

I,, 13, and I, as I/,-Pi xel-Pl anes. The notion of the 

I/,-Pixel-Planes is depicted in Figure 6.5. 

Again, the object space is divided into four groups: 0 1 ,  O,, 

03, and 0,. The Oi, where i=l, 2, 3, or 4, contains only the 

graphics objects that are local to Ii. Since the Oi's are 

(logically) independent sets, they can be rendered either 

sequentially or simultaneously. If the object groups are 

rendered sequentially, only one I/,-Pixel-planes module is 

required. If the four object groups are processed in parallel, 

the total rendering time will be (almost) quartered. 

After a brief overview of the Pixel-Planes concept, two 

examples are given to demonstrate how Regional-Rasterization can 



be used to enhance the ordinary Pixel-Planes system to achieve 

improvement on hardware utilization or rendering-time. 

6.4.1 Architecture and Operation Theory of Pixel-Planes 

The fundamental operation of the Pixel-Planes system is the 

calculation, simultaneously at each pixel, of the function 

F(x,y)=Ax+By+C, where x and y are the coordinates of the pixel 

in the display space. Figure 6.5 is a (conceptual) diagram of 

the Pixel-Planes system. The system consists of an array of 

identical memory cells connected to a grid which carries data to 

the cells. Two serial multiplier trees appear at the top and 

left-hand side of the array. These multipliers accept data from 

the pre-processor and calculate, simultaneously for all values 

of x and y, values for the functions Ax+C' and By+CW. Each 

memory cell contains an adder which calculates the sum of these 

two functions in order to generate ~(x,yj=~x+~y+~'+C", where 

C'+CW=C. A block diagram for the X-multiplier is shown in 

Figure 6.6. (The Y-multiplier is identical.) Data for the 

coefficients A and C' is input to the multiplier in bit-serial 

form. As shown, the multiplier calculates the expression Ax+C1 

for all values of x in the range of the display. The 

Y-multiplier accepts bit-serial data for coefficients B and C" 

and generates the expression By+CW (for all y) synchronously 

with the X-multiplier's Ax+C'. 

Owing to the limited area of each integrated circuit, only a 

small fraction of the pixels in the display can be put on a 



- - --- - - - - - 

, Figure  6 .5  The  C o n c e p t u a l  S t r u c t u r e  of t h e  P i x e l - P l a n e s  
S y s t e m  ( f r o m  [ F u C H ~ ~ ] ) .  



Figure 6.6 X-Multiplier Tree of the Pixel-Planes 
(from[FUCH81]). 

single chip. Therefore it is necessary to break the multiplier 

trees into multiple chips. In the actual design of the Pixel- 

Planes circuit, a small subtree is implemented on each chip to 

cover the pixels on the chip. A 'supertree' structure is built 

on top of the subtrees to implement the tree levels above the 

subtrees EPOu~851. As shown in Figure 6.6, a supertree contains 

one multiply/accumulate stage for each level above the subtree. 

Registers in the supertree can be programmed to map a path 

through the full tree to the local subtree. With this 

arrangement, any Pixel-Planes chip can be easily relocated by 



simply re-programming the registers of its supertree. 

Figure 6.5 also shows a conceptual scheme for 

raster-scanning the memory cells. A row-select decoder driven by 

the display refresh controller selects a row of pixel memory 

cells, whose data is output in parallel to a shift-register. 

This shift register then allows the video data to be shifted out 

to the refresh controller. 

Figure 6.7 shows the structure of an individual pixel memory 

cell. The memory cell contains four registers: Z, which contains 

AXtC' 

Column Conlrol 
Data 

Figure 6 . 7  Internal Structure of a Pixel-Planes Memory Cell 
(from [FUCH81]). 



the smallest z-value so far received at the pixel (portion of 

displayed object closest, and therefore most visible, to the 

viewer); F, which provides temporary storage for the function 

(F(x,y) output by the adder); I, the image register in which the 

results of the current polygon 'painting' operation are stored; 

and PI in which the intensity values for the previously 

constructed complete image are stored. The image stored in the P 

registers is the one currently being displayed. The P registers 

can be accessed by the display refresh circuitry independently 

of any processing operations in the pixel cells. In [POUL~~], 

the processing circuitry and storage circuitry of a pixel are 

seperated. The processing circuitry (called the ALU) provides. 

all the local processing power of the pixel cell. 

6.4.2 Application I : Hardware Cut-down 

Figure 5.8 depicts the Pixel-Planes system with 

Regional-Rasterization implemented. Few minor modifications to . 
the system architecture can be found. Firstly, the pixel memory 

cell in the 1/4-Pixel-~lanes module is modified to accommodate 4 

pixels. The modified pixel memory cell now has a P register file 

and a Z register file. The P and Z register files contain 4 

registers each. The pixels stored in Pi make up the image 

displayed in Ii. Two output paths are used to output the pixels 

to the shift register for video refreshing. The left path is 

used by the Pl's and P,'s, while the right one is for P,'s and 



polygon data 
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Remark: 
The x and y super-trees are programmed 
(according to the partition id) such that the 
1/4-Pixel-Planes can cover any quadrant of 
the image space. 
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Figure 6.8 Application I: Hardware Cut-down. 



Before a polygon (PI is passed down to the system, it is 

examined by an INEXACT-identifier which determines the image 

space partition(s) that the polygon is local to (see Section 

3.3). The result of the local object identification procedure 

will be the tuple P:i where i is the object space that P is 

local to. If P is local to more than one object space partition, 

copies of PI each t a g g e d  with a different i, are generated. For 

example, if a polygon P belongs to both 0, and 02, then P:l and 

P:2 are produced. 

The tagged polygon, P:i, is then passed down to a FIFO 

buffer which is the entrance to the I/,-pixel-planes. This FIFO 

is used to synchronize the polygon data input rate with the 

computation speed of the I/,-pixel-planes. When a P:i leaves the 

FIFO, it enters into the ith "supertrees". The i tag will 

determine which supertree should feed the I/,-Pixel-Planes. 

In the 1/4-~ixel-Planes, the P is rendered as described 

earlier. The resulting image of the P:i is stored in the Pi of 

the pixel memory cells. 

For video refreshing, each scan-line is a concatenation of 

two sub-lines. The first half is made up of the pixels from the 

P I  (P,) registers of a row in the I/,-pixel-Planes module. The 

second half is formed by the P2 (P,) pixels of the same row. 

Since pixels of the two halves of the scan line are output via 

two separate data paths (see Figure 11), the entire scan-line 

can be obtained with a single access to the P register file of 



each pixel memory cell. With this arrangement, the video 

refreshing activity can be carried out with no unnecessary 

delay. 

With the Pixel-Planes implemented in this way, the amount of 

hardware required for processing (not storing) pixel information 

is reduced. Theoretically, this implementation can save up to 

75% of the amount of silicon area which was used previously for 

the multiplier trees and ALU of the pixel cells. This 'cut-down1 

of hardware is significant not only because it reduces the cost, 

but also because it may provides an alternative way to the 

Pixel-Planes design. 

The major disadvantage of this implementation is the 

degradation in throughput. Notice that each object must be 

processed once for every partition that it is local to. 

Therefcre, t h e  mcdified Pixel-Planes is expected to be slower. 

However, if the average size of the graphics objects is small 

and the partition size is large, the chance of "multi-rendering" 

is very small. We expect the degradation in speed will be less 

than 10 percent. Moreover, there is also hardware overhead. It 

includes the extra facilities such as the local object 

identifier and the FIFO buffer, and extra supertree must be 

included. Therefore, this implementation of 

Regional-Rasterization might not be appropriate when the 

required resolution of the display is low. However, for high 

resolution applications this approach becomes more cost 

effective. 



6.4.3 Application 11: Scene Renderinq Speed-up 

A major weakness of the P-ixel-Planes system is its 

limitation on the number of graphics objects that it can render 

in a fixed time interval. By enhancing the pixel-Planes with 

Regional-Rasterization the scene rendering .speed of the system 

can be quadrupled. An example of such an implementation is shown 

in Figure 6.9. In this implementation of Regional-Rasterization, 

all of the four I/,-pixel-planes modules are able to work on 

different (labeled) polygons simultaneously. 

The sequential stream of polygon data can now be fed into 

the modified system at four times the previous rate. Each 

polygon (PI will be examined by the local object identifier 

which determines which FIFO it should be put in. The four FIFO's 

in Figure 6.9 correspond to the I,, I,, I,, and I, regions. 

Similar to the previous case, duplicated P ' s  may be produced if 

a polygon spans over more than one partition. Here duplicated 

P's are fed into more than one FIFO. The '/,-pixel-planes 

modules read data from their associated FIFO buffers and render 

polygons independently. Note that in this example, the internal 

architecture of a I/,-pixel-planes module is identical to an 

ordinary Pixel-Planes. The video refreshing activity can be 

carried out as usual. 

With this implementation, the scene rendering speed can be 

potentially quadrupled. The actual speed improvement is 

determined by the evenness of the spatial distribution of the 
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graphics objects in the image space. Since all the 4 

I/,-pixel-Planes are working simultaneously, the time required 

to render all the objects is equal to the maximum time required 

by the l/,-Pixel-planes to process their objects. If the 

distribution is very even, then there are approximately 1/4 of 

the total number of graphics objects local to each partition. In 

this case, the system is speeded up about 4 times. 

In the worst case, all the objects are local to a single 

partition. There will not be any improvement in the processing 

time. However, it is guaranteed that the worst case performance 

of this implementation is the same as an ordinary Pixel-Planes 

system. 

Owing to the limited area of each integrated circuit, only a 

small fraction of the pixels in the display can be put on a 

single chip. Therefore it is necessary to break the muitiplier 

trees into multiple chips. In the actual design of the Pixel- 

Planes circuit, a small sub-tree is implemented on each chip to 

cover that pixels on the chip [POUL~~]. A supertree structure is 

built on top of the subtrees to implement the tree levels above 

the subtrees. With this system, separate X and Y multiplier 

trees for each individual I/,-pixel-planes module are already 

implemented implicitly. 

The major overhead of this implementation comes from the 

extra hardware for the local object identifier, and the 4 FIFO 

buffers. However, we estimate that this overhead is negligible 



compared with the cost of the entire display. Therefore, 

advantages of ~egional-~asterization are even more amplified in 

this case. 

6.5 Applyinq Reqional-~asterization to Fussel's Real-Time 

Scan-Conversion Engine 

In the previous section, an implementation of the 

Regional-Rasterization technique into an n-I-1-m system was 

exemplified. In this section, the applicability of the technique 

to a I-n-m-1 system is investigated. The system being considered 

is Fussel's real-time scan-conversion engine. An example is used 

to demonstrate how the Regional-Rasterization technique helps in 

reducing the hardware quantity for the engine. Speeding up 

Fussel's system is not of interest since it is already powerful 

enough to rasterize a scene in a single frame time. Therefore, 

the discussion of imglementing Regional-Rasterization to improve 

system throughput is skipped. 

In this section, the number of image space partitions is 

. still assumed to be four. Thus, the object space is divided into 

four groups: O,, 02, O3 and 04. 

6.5.1 Architecture and Operation Theory of Fussel's System 

The overall organization of the system is depicted in 

Figure 6.10. In this system, the "frame buffer1' consists of a 

collection of triangles rather than points. These triangles are 
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stored in the so-called model memory. Segments of the model 

memory are hooked up to a number of individual preprocessing 

pipelines through which the triangles in the segments are 

transformed and clipped. The actual image rasterization task is 

performed in the so-called triangle buffer which contains a 

large number of triangle processors. Each triangle processor 

performs a scanout of the triangle it received from its 

preceding preprocessing pipeline, incrementally determining the 

color and z coordinate value for each pixel. The output of the 

triangle processors is then fed through the arbitration logic 

that determines which pixel is closest to the observer and uses 

the color of that pixel for video refreshing. 

According to Fussel's terminology, a system slice consists 

of the following pipeline: a model memory slice, a model memory 

interface, a transformation and clipping unit, a triangle 

initialization unit, and a triangle buffer slice (see 

Figure 6 . 1 1 ) .  As shown in Figure 6.11, a triangle buffer slice 

is in fact an integration of an array of triangle processors and 

a comparator tree. Each triangle processor consists of 20 

registers, with associated addition, comparison, and control 

logic, as shown in Figure 6 . 1 2 .  Each processor performs a simple 

scanout of the triangle, based on an identification of the 

initial left and right boundary edges and the third "alternate" 

edge by the triangle initialization module (see Figure 6 . 1 3 ) .  

The triangle processor monitors the address bus until a Y 

address which is equal to the value stored in the Y register is 
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sent. It then monitors the X address until it reaches a value 

equal to X-left, at which time it outputs the initial color and 

Z coordinate. (~otice that the (X,Y) address is generated by the 

video refresh logic for sweeping out pixels in a raster from top 

to bottom and from left to right.) For each subsequent pixel, 

the color is incremented by dc/dx and the Z coordinate value by 

dz/dx and the new values are output. When the X address reaches 

X-right, the output is halted and the next scanline is prepared 

by adding dx/dy-left, dx/dy-right, dz/dy, and dc/dy to X-left, 

X-right, Z-left, and C-left respectively. The values of Z and C 

are then set equal to Z-left and C-left and the value of delta y 
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is decremented by 1. This process continues scan-line by scan- 

line until delta y reches 0. At this point, X-alt is compared t~ 

X-left and X-right to determine whether the left or the right 

edge should be replaced by the alternate edge. The value of 

dx/dy-alt, is then copied into dx/dy-left or dx/dy-right as 

appropriate. In the former case, the values of dz/dy-alt and 

dc/dy-alt are copied into dz/dy and dc/dy respectively. Delta y 

is set to the value of delta y-alt, and the processing continues 

until deltay once again reaches zero. At this point output is 

disabled, and the triangle processor enables itself for input of 

a new triangle. 

6.5.2 Application I: Hardware Cut-down 

In order to make use of the Regional-Rasterization 

technique, a simple architectural modification to the triangle 

processors is required. The modified architecture is depicted in 

Figure 6.14. In a modified triangle processor, there are 4 

(i.e., the number of image space partitions) register files 

instead of 1 .  The internal structure of the register files is 

unaltered. That is, each of them still has 20  registers for the 

Y, X-left, dx/dy-left, ... etc. However, each of the four 
register files is now bound to a distinct partition in such a 

way that it is allowed to handle only those objects local to its 

corresponding partition. With this configuration, a triangle 

processor can hold up to 4 triangles, each from a distinct image 

space partition. The computational logic is shared among the 4 

objects defined in the 4 register files. A set of multiplexing 
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labeled by the local object identifier. These labeled triangles 

will then be handed down to the array of modified triangle 

processors (see Figure 6 .15) .  As a triangle with label i is 

received by the processor array, the first processor with a free 

i register-file will be assigned to the triangle. 

It should be obvious by now that the modified triangle 

processor is functionally equivalent to four ordinary triangle 

processors. As the scene is scanned-out, a triangle processor 

switches among 4 different triangles which are local to 4 

different image space partitions. Therefore, in a video refresh 

cycle, a single modified triangle processor is able to rasterize 

up to 4 objects. Assuming that t slices are required in the 

original Fusselfs system, with the modified triangle processors, 

approximately t / 4  slices are needed. Hence, a cut down of up to 

75% of the original amount of hardware is potentially 

achievable. The schematic of the Fussel's system with the 

Regional-Rasterization implemented is shown in Figure 6.15. 

The overhead for this implementation includes the extra 

silicon area required to implement extra register files in the 

triangle processors. In addition, there must be a local object 

identifier for each system slice. 
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CHAPTER 7 

CONCLUSION 

A mathematical model was created to measure the expected 

number of memory cycles required to update a pattern for the 

scan-line mapping scheme and the symmetric mapping scheme for 

conventional frame buffered system. Three benchmark cases were 

used to demonstrate the applicability of this model. In the 

three benchmark cases it was shown that on the average the 

symmetric mapping scheme is faster than the scan-line mapping 

scheme. However, when the frame buffer consists of a small 

number of memory chips (e.g. 116), the speed advantage of the 

symmetric mapping scheme is so small that scan-line mapping 

scheme may be more cost effective mainly because of its simpler 

implementation. This discourages the use of conventional frame 

buffer architecture for applications requiring real-time image 

rasterization capability; because, even with symmetric mapping 

scheme implemented, performance will never be much superior to a 

conventional system. 

Multi-processor architectures provide a promising solution 

to the real-time image rasterization problem. To achieve the 

desired computational power, the number of processing units is 

usually tremendous. These identical processing units are 

commonly structured in a loosely-coupled manner. Furthermore, 

perhaps more important, data separability is inherent in the 

scan-conversion problem, which means that littel or no 



inter-processor communication is necessary [KAPL~~]. 

However, when independent parallel computation tasks are 

distributed across a network of loosely-coupled processors, much 

of the coherence information about the graphics objects to be 

rendered will be lost. The performance of a scan-conversion 

algorithm can be improved substantially by taking advantage of 

some kind of coherence [NEWM~~]. The regional-rasterization 

technique basically does this in a parallel-processing 

environment. 

An important argument was given to support the idea of 

regional-rasterization: if the number of graphics objects is 

large, the average size of the graphics objects will be small. 

As a consequence, regional-rasterization is most effective in 

systems where the scene consists of many small objects. A major 

advantage of the regional-rasterization technique is its 

applicability to a variety of multi-processor architectures for 

graphics displays. ~egional-rasterization requires only a small 

amount of extra hardware and introduces some processing 

overhead. However, comparatively speaking, these overheads are 

usually negligible. 

In this thesis, only symmetrical partitioning of the image 

space has been considered. However, it is possible to have 

different forms of partition geometry and they might be valuable 

to some specific architectures (see Figure 7.1 for some). 
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Currently, we have only considered the case where image 

space is partitioned into static regions. However, the dynamic 

nature of computer graphics suggests that d y n a m i c  p a r t i t i o n i n g  

of the image space is an interesting refinement for the 

regional-rasterization technique. Some common ideas related to 



the dynamic partitioning can be found in the paper by Tamminen 

[TAMM~I] and Dippk [DIPP84j. With the ability to partition the 

image space dynamically, the regional-rasterization technique 

can self-adjust in such a way that each image space partition 

shares (almost) equal number of graphics objects. If this can be 

done, performance is optimized for each frame of image. However, 

we predict that adjusting the partition size dynamically is not 

easy to achieve due to the static configuration of the processor 

network commonly used in the image rasterizer. 
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