
OPTIMIZING HARDWARE UTILIZATION OF

PARALLEL-PROCESSING BIT-MAP GRAPHICS DISPLAYS

Anson Yiu Cho Lee

B.Sc. (Hon.), Simon Fraser University, 1983

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Anson Yiu Cho Lee 1987

SIMON FRASER UNIVERSITY

August 1987

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Anson Y. C. Lee

Degree: Master of Science

Title of thesis: optimizing Hardware utilization of

Parallel-Processing Bit-Map Graphics Displays

Examining Committee:

Chairman: Dr. ~ i n a y Bhattacharya

Prof. H.K. Reghbati
Senior Supervisor

Br. Rick Hobson

-
Dr. Tom Calvert

Dr. Rob Cameron
External Examiner

Date Approved:

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Unlvers i ty the r i g h t t o lend

my thesis, p ro jec t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Unlvers l ty Library, and t o make p a r t i a l o r

s ing le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r other educational i n s t i t u t i o n , on

i t s own behalf o r f o r one of I t s users. I f u r t he r agree t h a t permission

f o r mu l t i p l e copying o f t h l s work f o r scholar ly purposes may be granted

by me o r the Dean of Graduate Studies. I t i s understood t h a t copying

o r pub l l ca t lon o f t h l s work f o r f i nanc ia l gain sha l l not be allowed

without my wr i t t en permlssion.

T i t l e o f Thes f s/Project/Extended Essay

Author:
.a- /

(s ignature)

ABSTRACT

Among all the operations in the scene rendering process,

scan-converting an image is perhaps the most computationally

intensive task. For conventional graphics displays, the

utilization of the image memory bandwidth is a key factor in

determining their image rasterization performance. The symmetric

memory-to-screen mapping scheme is evaluated for its

effectiveness to cope with the problem.

Owing to the drop of hardware cost, parallel-processing

architectures have been proposed for many advanced

high-performance graphics displays. Optimizing their hardware

utilization is the main theme of this thesis. To evaluate these

systems, a study of their architectural structures is done. This

study leads to a general model for graphics display

architectures. Based on this model, a new concept called

Regional-Rasterization is proposed. With this technique, a more

cost-effective parallel-processing solution to the image

rasterization problem can be obtained.

iii

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Professor

Hassan K. Reghbati for his guidance and supervision throughout

my graduate work.

I would also like to thank Dr. Thomas W. Calvert, Dr.

Richard F. Hobson, Dr. Robert D. Cameron, Dr.

Binay K. Bhattacharya, and Dr. Thomas K. ~oiker for their

assistance.

Finally, the help of Miss. Venus Law in typing some chapters

of the thesis is sincerely appreciated.

This research was supported by the ~atural Sciences and

Engineering Research Council of Canada under Grant No. A0743.

DEDICATION

To my parents

TABLE OF CONTENTS

.. Approval ii

... Abstract iii

.. Acknowledgements iv

... ~edication v

List of Figures .. viii
... ~ i s t of ~ables x

.. List of Graphs xi

.. . 1 Introduction 1

....................... 1.1 Description of the Problem 1

................................... 1.2 Thesis Outline 6

2 . Memory-to-screen Mapping Schemes and Image .. ~asterization 10

...................... 2.1 Video Refresh Requirements 1 1

................ 2.2 Memory-To-Screen Mapping Schemes 13

................. 2.3 Mathematical Model for Analysis 21

................................. 2.4 Benchmark Cases 2 6

....................... 2.5 Choosing a Mapping Scheme 3 5

3 . Parallel-Processing ~rchitectures' for Graphics
Displays ... 41

........................ 3.1 Architectural Structures 42

........... 3.2 Partitioned Object-Space Architecture 44

............ 3.3 partitioned Image-Space Architecture 45

3.4 A Generalization of the Two Architectures 46

3.5 Hardware Complexity of an a-0-7-A-System 48

3.6 Processing-time Complexity of an a-0-7-A-System . 49

3.7 Classification of Image Rasterizer
Architectures 50

4 . Regional-Rasterization 54

4.1 Concepts Behind the ~egional-Rasterization
Scheme .. 55

4.2 A Functional ~ o d e l 60

5 . Performance Analysis for the ~egional-Rasterization
Technique .. 66

5.1 Performance Measures 67

............................ 5.2 Performance Modeling 70

5.3 Bomosaic Image Model 77
5.4 C-Bomosaic image Model 81

5.5 Generation of Work-Load 83

5.6 Estimation of Performance Measures 94

Implementing the Regional-Rasterization Technique 105

6.1 Modular Approach to Image Rasterization 105

6.2 IP-Scheme for the Optimal Implementation 108

............... 6.3 Local Graphics Object ~dentifier 110

6.4 Applying ~e~ional-~asterizntibn to the Pixel-
Planes System 119

6.5 Applying Regional-Rasterization to Fussel's
Real-Time Scan-Conversion Engine 132

7 . Conclusion .. 142

References ... 146

vii

LIST OF FIGURES

Figure Page

1.1 Polygon mesh model of an object (from [SUTH~~]). 3
1.2 Scene rendering process pipeline 5
1.3 thesis Outline .. 7
2.1 Timing partition of a video frame. 12
2.2 Scan-line mapping scheme for a system implemented with

16 64Kx1 RAM chips (from MA TI^^]). 15 .

2.3 Address transformation and data alignment mechanism in
the scan-line mapping scheme in a 16-chip
system. ... 17

2.4 Symmetric mapping scheme for a system with 16 64Kx1
RAM chips (from EMATI841). 19

2.5 Address transformation and data alignment needed to
update an arbitrary 4-by-4 grid in a 16-chip
system. ... 20

4.1 A sample IP-scheme employed by Regional-Rasterization .. 62
4.2 The Corresponding OP-scheme for the sample IP-Scheme

from Figure 4.: 63
5.1 (a) Poisson Line andom om ~ i n e) Model. (b) Voronoi

Model. (c) Delaunay Model. 75
5.2 Coverage (~ombing) Model. 76
5.3 Projection of a Floating-Solid ~nvironment . . , 80
5.4 A C-Bomosaic Image. 83
5.5 Projection of a Surface Point from a Sphere to a Plane . 86
5.6 A Set of Vertices Generated with the Algorithm 89
5.7 The Biggest and Smallest bomb circle 90
5.1 (a) Number of graphics objects in each partition is

almost equal.
(b) When there are more partitions, most
objects are local to only a few partitions. 104

viii

6.1 Conceptual View of the Image Space by the INEXACT Algorithm 113

6.2 Various Classes of Objects that are Handled Properlyby
the INEXACT Algorithm 114

... 6.3 Labeling Scheme for an Image Space of 16 Partitions 115

6.4 Internal Structure of the INEXACT-Identifier 117
6.5 The Conceptual Structure of the Pixel-Planes System

(from [FUCH811) 122
6.6 X-Multiplier Tree of the Pixel-Planes (from [FuCH~~]) . 123

6.7 Internal Structure of a Pixel-Planes Memory Cell (from
[FUCH81]) 124

6.8 ~pplication I: Hardware Cut-down 126
.............. 6.9 ~pplication 11: Scene Rendering Speed-Up 130

6.10 The Overall Structure of Fussel's System (from
[FUSS821) 133

6.11 Internal Organization of a System Slice (from
[FUSS82]) 135

6.12 Block Diagram of a Triangle Processor (from FUCH~~]) .. 136
......................... 6.13 ~ssignments of Triangle Edges 137

......................... 6.14 A Modified Triangle Processor 139

6.15 Application of the Regional-Rasterization technique to Fussel's system 141

................. 7.1 Various Image Space partition Schemes 144

LIST OF TABLES

Table Page

2.1 Expected performance for b ~ t h mapping schemes (case ... 1). 27

2.2 Expected performance for both mapping schemes (case ... 2) . 30

2.3 Expected performance for both mapping schemes (case
3). .. 35

3.1 Classification of image rasterizers with a - 0 - y - X
notation*.. 51

4.1 ~nvironment Statistics (from [suTH~~]) 59
4.2 Statistics for Three Environments (from [suTH~~]) 59
5.1 Estimate of expected N. 's for various scene

complexities. ~k)%er of image-space partitions varies for 1 to 100 95

5.2 Estimate of expected SDo 's for various scene
complexities. ~umger of imige-space partitions varies from 1 to 100 95

5.3 Expected number of pel-processes required to rasterize
an object, for various scene complexities.
Number of image-space partitions varies from 1 ... to 100. 99

6.1 Hardware and Processing-time Complexities for
Sequential and Parallel Implementations of ~egional-Rasterization. 107

Graph

LIST OF GRAPHS

Page

Plot of improvement functions vs dn2 (from
Table 2.1) 29

Plot of improvement functions vs dn2 (from
Table 2.2)g...g 32

Plots of chi-square p.d.f1s of various v's.............. 32

A plot of the chi-square distribution on x/100 with
v=3 .. 34

Plot of improvement functions vs in, (from
Table 2.3) . ~ e . ~ o o . 36

Plot of (E, ./EScan)*100% vs k=dn for the 3
caseE 37

Plot of AE/A~ vs n2 for ESym (from
Table 2.2) 39

Estimate of NipaVs Plotted against partition number 97
Expected numbers of pel-processes plotted against

partition number 100
Estimate of S D ~ ~ / ~ D ~ ~ plotted against partition

number ... 102

CHAPTER 1

INTRODUCTION

1.1 Description of the Problem

"Computer graphics" had its starts with X-Y plotters. The

technology was soon extended to include calligraphic

(line-drawing) CRT systems based on refresh-vector hardware and,

at a later date, direct-view storage tubes followed by higher

performance refresh-vector systems.

Meanwhile, a separate "image processing" technology had been

following its own evolutionary path. Instead of dealing with

lines and points, randomly positioned anywhere on the display

surface, image processing was based on a rectangular array of

picture elements or p i x e l s . Digital information defining the

state of each pixel was stored in a random-access memory and

used to generate a television-type, raster-scan CRT display - in

monochrome or full color.

The division between vectorgraphic (also known as

calligraphic) "computer graphics" and raster-scan "image

processing" has now been bridged by the new raster display

technology. Low-cost memories have made it economically feasible

to assemble high-resolution, fine-detail raster images that all

but eliminate the objectionable stairstepping of vectorgraphic

lines when displayed on a raster-CRT screen. The ability to fill

areas with solid color (and shading) makes it useful in more

applications of different nature. The result is r a s t e r s c a n

g r a p h i c s combining the full-color, pixel-by-pixel control

potentials of image processing and the line-drawing capabilities

of vectorgraphics in a single display system.

Unfortunately, the move from calligraphic to raster displays

has brought new problems. For calligraphies, only the endpoint

coordinates of lines needed to be stored, so memory requirements

were held to a minimum. Refresh-vector writing speed made it

possible to "animatef1 the display and to create interactive

systems 'which allowed the operator to control the display in

"real time" through such input devices as lightpens, joysticks,

and digitizer tablets. Again, however, only the endpoints needed

to be recalculated with each refresh cycle, minimizing the need

for high-speed computational capabilities.

The proper value at each pixel is a function of the data

base (the simulated environment), the viewing position and

orientation of the simulated viewer, and the location(s) of the

light source(s) in the simulated environment. The environment is

most often described as a set of solids in the environment

(~uclidian three-space) coordinate systems. Each object is

usually described by a set of planar tiles ("polygons") which

form its various surfaces. Figure 1.1, from [SUTH~~], shows the

boundaries of a set of polygons defining the surface of a 3-D

object. Other methods of object description are sometimes used

-- e.g., as collections of geometric solids or curved surfaces

[FUCH791. We assume hereon that the common planar-polygon

Figure 1.1 Polygon mesh model of an object (from [S U T H ~ ~]) .

descriptions are used.

Each polygon is described as a list of vertex coordinates

(x, y, z in 'world' coordinates) and colors (values of Red,

Green, Blue that specify the intrinsic color of the vertex). A

transformation engine operates on the coordinates of the vertex

list for each polygon, transforming the polygon to 'eye'

coordinates in response to user input from joystick, trackball,

or some similar device. Next, polygons (or portions of polygons)

that are outside the viewing pyramid are clipped and perspective

division is performed to transform 'eye' coordinates to 'screen'

coordinates. Finally, a lighting model calculator modifies each

vertex's intrinsic color according to the position and intensity

of light sources. The output of the "front-end" pipeline is

still a list of polygon vertices, but with vertex coordinates

and colors transformed to the proper value for display (see

Figure 1.2).

In advanced color graphics systems, the rasterizer performs

a series of steps needed to translate a list of polygon vertices

into a smooth-shaded, rendered, digital image, with hidden

surfaces properly removed, and perhaps anti-aliased to reduce

pixelization artifacts. In order to compute the Red, Green and

Blue color (shade) values for a particular pixel, the system has

to determine:

(a) which, if any, polygons map onto this pixel's area,

(b) the details about the precise part of this closest polygon

which maps onto the pixel -- its assigned color (R,G,B), its

angle and distance from the light sources(s), and its angle

and distance to the viewer, and

(c) which one from this set is closest to the viewer (and thus

is the one visible obscuring all the other polygons).

The problem to transform a scene defined in high level polygon

descriptions into a raster image is called the i m a g e r a s t e r i z a -

t i o n p r o b l e m .

A long-standing goal of researchers in computer graphics

systems has been the development of real-time three-dimensional

modeling systems. These systems, which produce a realistic image

Sources

Figure 1.2 Scene rendering process pipeline

of a simulated three-dimensional environment, have a wide

variety of potential uses -- from flight simulators for pilot
training to interactive Computer Aided Design (CAD) systems. The

most sophisticated of these systems produces, in real-time,

images of startling reality. The only limitation to widespread

use of these systems has been their prohibitive costs, ($500,000

and up). Thus, virtually the only uses today are those for which

there is no real alternative -- e.g., simulating maneuvers in

gravity-free space or training-simulators for pilots of

sophisticated airplanes. If such modeling systems could be

provided at significantly lower costs, it is safe to presume

that their use would become dramatically more widespread.

A short examination of the computational expense of the

problem suffices to justify the complexity and expense of

current systems which solve it. A video image normally consists

of a matrix of pixels between 512 to 1024 rows (scan-lines) with

512 to 1024 pixels in each scan line. The image is then simply a

set of some 250,000 to 1,000,000 pixels, each of which is

computed by a pel-process. The problem at hand is simply

executing these up to 1 million .pel-processes each time the

image is scanned out, usually not less than 30 times per second.

In this thesis, the impacts of various architectural

characteristics of image rasterizers on their efficiency in

performing image rasterization are investigated. he goal is to
search for a more cost-effective alternative to the current

solutions for the image rasterization problem.

1.2 Thesis Outline

In Figure 1.3, the thesis outline is schematically

illustrated; and various chapters of the thesis are conceptually

mapped to different issues of the image rasterization problem.

In Chapter 2, memory-to-screen mapping schemes for frame

buffer based image rasterizers are investigated. A mapping

scheme defines the memory access geometry of a frame buffer.

owing to the limited bandwidth and the memory contention between

the image update and video refresh activities, the frame buffer

updating efficiency becomes critical to the performance of image

rasterization. Although the access bandwidth is unaltered by a

change in the memory-to-screen mapping scheme, the efficiency of

drawing/reading image patterns into the frame buffer is

affected. Therefore, with a more appropriate mapping scheme, the

image rasterization process can be sped up. In Chapter 2, two

dominant types of mapping schemes, the scan-line mapping scheme

and the symmetric mapping scheme, are discussed. A mathematical

model is built to evaluate these schemes. Three benchmark tests

are conducted to compare the two schemes.

A general representation for graphics systems is described

in Chapter 3. The representation identifies an image rasterizer

according to the characteristics and nature of its architecture,

and thus provides a means to compare different image

rasterizers. With this representation, the hardware complexity

and computational power of a parallel-processing graphics

display can also be formulated. These two factors are crucial to

the evaluation of the rasterizer's cost-effectiveness.

A novel concept for image rasterization called

R e g i o n a l - R a s t e r i z a t i o n is proposed in Chapter 4. (In the thesis,

Regional-Rasterization is sometimes called "the

Regional-Rasterization technique".) Motivations, functions, and

overhead of this new technique are discussed in that chapter.

With this novel concept, the cost-effectiveness of

parallel-processing architectures for image rasterization can be

improved substantially.

Chapter 5 focuses mainly on the performance of the

~egional-Rasterization technique. To evaluate the technique, a

performance model is created. This model is a logical

representation of the Regional-~asterization technique. A set of

simulated work loads is applied to the model. These work-loads

are generated based on a new image model. Estimates of two

important performance measures for the ~egional-Rasterization

technique are then obtained. According to these measures a gross

prediction of the technique's effectiveness is obtained.

In Chapter 6, a discussion on the feasibility of

implementing the Regional-Rasterization technique is given. A

design of a key component, the local objects identifier, is

presented. The feasibility is further verified by applying the

technique to two typical parallel-processing graphics display

architectures. The conclusion of the thesis can be found in

Chapter 7.

CHAPTER 2

MEMORY-TO-SCREEN MAPPING SCHEMES AND IMAGE RASTERIZATION

In raster-scan graphics displays, each pixel of the raster

is assigned a fixed memory location in the frame buffer and can

be addressed randomly. The allocation strategy of the memory

cells in the frame buffer to the raster pixels is known as the

m e m o r y - t o - s c r e e n m a p p i n g s c h e m e .

The contents of the frame buffer are updated by a device

called the d i s p l a y p r o c e s s o r . Another device, the v i d e o s i gnu1

g e n e r a t o r , also needs to read data from the frame buffer in a

regular and predictable fashion in order to refresh the screen

of the display. Owing to the limited access bandwidth of the

frame buffer, an efficient way to draw patterns becomes crucial

to the overall performance of a frame buffer based image

rasterizer. Because of the differences in their pixel-to-memory

assignment geometry, unequal number of frame buffer accesses may

be required to draw a similar pattern for various mapping

schemes [c H O R ~ ~ , GUPT81, MATI84, SPR0831. The two most popular

mapping schemes are the s c a n - 1 i n e m a p p i n g s c h e m e and the

s y m m e t r i c m a p p i n g s c h e m e . The major objective of this chapter is

to carry out a quantitative investigation into the impacts of

these mapping schemes on the frame buffer update efficiency.

2.1 Video Refresh Requirements

The r e f r e s h r a t e of a display is the number of complete

images, or frames, drawn on the screen in one second. A typical

refresh rate for CRT displays is 60Hz. As the electron beam

sweeps from the left to the right, some finite amount of time is

required to return from the right extreme back to the left. This

activity is called h o r i z o n t a l r e t r a c e , and the time taken is

termed as horizontal retrace time. Similarly, after a raster is

completely scanned, the electron beam needs to return to the top

margin. It is called the v e r t i c a l r e t r a c e and the time required

is the vertical retrace time. During retraces, the electron beam

is turned off such that no new image data is displayed. The

video signal is said to be blanked, and the respective times are

called horizontal and vertical b l a n k i ng i nt e r v a l s . When not

b l a n k e d , the signal is said to be a c t i v e .

Figure 2.1 shows how total frame time is composed of

vertical retrace time, horizontal retrace time, and active time.

Total line time is equal to frame time minus vertical retrace

time divided by the number of visible lines per frame. Active

line time is the value obtained by subtracting the horizontal

retrace time from the total line time. As described earlier, a

scan line consists of a certain number of pixels. The active

line time is the total amount of time required to display the

pixels of a scan-line. Hence, each pixel in a scan line is

displayed for a period called the p i x e l c y c l e t i m e which is the

VERTICAL RETRACE TIME

A C T I V E

T I M E

H R T
O E I
R T M
I R E
Z A
0 C
N E
T
A
L

ACTIVE LINE TIME r-1 k TOTAL LINE TIME --A
I
I Pixel cycle time =

((l/refresh rate)-vertical retrace) - horizontal retrace ,
visible lines per frame

pixels per line

Figure 2.1 Timing partition of a video frame.

active line time divided by the number of pixels per scan line.

In order to satisfy the video refresh requirements, the

video generator must access the frame buffer regularly. To

change the contents of the frame buffer, the display processor

must compete with the video generator for memory cycles. Hence

the availability of e f f e c t i v e b a n d w i d t h to the display processor

is always a critical factor which determines the performance of

an image rasterizer. Parallel memory I/O, achieved by using

multiple memory chips to implement the frame buffer, can always

increase the effective bandwidth. By implementing the frame

buffer with display RAMS', the overall memory bandwidth can

almost be doubled. Although differences in memory-to-screen

mapping strategies do not change the total memory bandwidth,

they may alter the average image updating efficiency. In the

following section, the two most popular memory-to-screen mapping

schemes will be introduced.

2.2 Memory-To-Screen Mappinq Schemes

In most cases, the frame buffer is implemented with RAM

chips. Words in RAM chips are usually arranged in a two

dimensicnal array. Each word in a chip has a unique address

(r , c) , where r and c are the row and column address of the word

in the array respectively, For brevity, in this chapter it is

assumed that the word 1ength.i~ one bit. In order to store the

large amount of pixel values, n memory chips are assumed to be

used. In the rest of the chapter, we assume n to be a perfect

square such that n = k 2 where k = l ,2, - * .

I A display RAM is a quasi-two-ported RAM such that its primary
port is always available for image updating while data for video
refresh can be read from its secondary serial port MA TI^^].

2.2.1 The Scan-Line Mappinq Scheme

Since all the chips can be addressed independently, it is

possible to access n pixels simultaneously (n is the number of

chips used). In the scan-line mapping scheme, memory cells from

each chip with the same address are assigned to a string of

adjacent pixels along a scan line (see Figure 2.2). This scheme

is motivated by the high output rate required by the video

signal generator. Theoretically, the video refresh controller

should have a new pixel value ready for every pixel cycle which

has a very short period. For example, the actual required pixel

rate for a 1024x1024 60Hz non-interlaced display is

approximately 1 pixel per 11.5 ns. With a typical memory cycle

of 150 ns for single bit reads (e.g. the 4164 64Kx1 DRAM), more

than 13 pixels must be read simultaneously in a single memory

cycle to achieve the desired pixel rate. Scan-line mapping is

particularly good for high output parallelism. In the example

shown in Figure 2.2, an effective pixel rate of 1 pixel per

9.375 ns, is potentially achievable.

Writing an h-by-w rectangular pattern onto the screen is

done by updating an appropriate h-by-w grid of pixels in the

frame buffer. A 1-by-n grid of pixels in the frame buffer can be

updated extremely fast in the scan-line mapping scheme provided

that the grid is well matched with the word boundary. Assuming

the pattern is already available in a buffer or a latch, which

is called the pattern buffer, a single frame buffer access given

an appropriate word address to all the chips is adequate.

16-bit boundary = Memory

Figure 2 . 2 Scan-line mapping scheme for a system
implemented with 16 64Kx1 RAM chips (from
 MA TI^^]).

However, it becomes more complicated when the 1-by-n grid spans

across a word boundary (see Figure 2.3). Addresses sent to chips

which contain pixels on the right side of the word boundary must

be adjusted. In order to be able to update a random 1-by-n grid

in one memory cycle, address adjusting circuitry must be

included in the frame buffer. Moreover, data alignment hardware

is also required to match the data with the word boundary before

it can be correctly written into the destination grid.

Figure 2.3 describes the procedure to write a 1-by-16

pattern into an arbitrary 1-by-16 grid. The leftmost pixel of

the pattern is to be written to the location (r',cl) of chip 5.

Similarly, the next 1 1 pixels are to be stored into the cells

(r',c') of chips 6, 7, ..., and 16 respectively. Starting from
the 13th pixel, the remaining 4 pixel values are to be stored at

location (r',c'+l) for chips 1 , 2, 3, and 4. The data in the

pattern buffer must firstly be aligned with the word boundary.

This can be done by shifting the pattern data around until the

leftmost cell holds the pixel to be written into chip 1. The

next step is to give appropriate addresses to all the chips. In

the example, chip 1,2,3 and 4 are given the address (rl,c'+l)

and the others the address (r',cl).

The major drawback of the scan-line mapping scheme is its

poor performance in dealing with vertical objects such as a.

vertical vector. (In this chapter, a rectangular pattern whose

width is larger than its height is classified as a horizontal

object, otherwise it is a vertical object.) Because of the

mapping strategy, all the pixels along a vertical vector are

stored in the same chip [G U P T ~ ~ , MATI84, ~ ~ ~ 0 8 3 1 . Therefore,

pixels along the vector must be written sequentially.

pattern to be written
into a 1 -by- 16 grid
which crosses a word I

I 1 boundary.

I 1r'.c3 I (r0,ca+ 1) I
2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 2 3 4 5 6 7 8

pattern buffed H 1 N I 0 1 PI AI 81 CI 01 EI F I 61 H I I I J I K I L I data is aligned to match
- with the word biundary.

appropiate addresses are
given to each chip.

6 7 8 9 10 1 1 12 13 14 15 16

Figure 2.3 Address transformation and data alignment
mechanism in the scan-line mapping scheme in a
16-chip system.

2.2.2 The Symmetric Mappinq Scheme

In the scan-line mapping scheme, a 1024x1024 display may

require at most 1024 memory cycles to draw a vertical vector.

This rate is too slow for some real-time applications. In order

to lessen the required memory cycles for writing a vertical

object, the symmetric mapping scheme arranges memory chips in a

symmetric square [G U P T ~ ~ ~ S P R O ~ ~] . For example, in Figure 2.4 the

memory cells with the same address are mapped to a 4-by-4 square

grid on the display [MATI84]. This design gives rise to a system

of more consistent performance.

An obvious drawback of symmetric mapping is a slower update

rate for horizontal objects. For applications which generate

more horizontal objects, the scan-line mapping scheme is

definitely better than the symmetric mapping scheme. Another

disadvantage is that the number of pixels which can be provided

to the video signal generator in parallel is decreased

considerably. If n=k2 chips are used in the scan-line mapping

scheme, the n pixels read from location (r l , c ') of all the chips

lie along a scan line. A single read from the frame buffer by

the video signal generator supplies the next n pixel values of

the same scan-line. In the symmetric mapping scheme, the n

pixels are read as k rows of k pixels. Among them only one row

of pixels belongs to the current scan-line and is immediately

needed by the video signal generator. The remaining (k-1) rows

of pixels are either discarded or saved up in a r e f r e s h b u f f e r

[sPRo~~].

The refresh buffer must be capable of holding 2k complete

scan-lines [sPRO~~]. It is used as two k-line sections that

alternately supply data to refresh the display and are

replenished from the frame buffer. During the display of one set

of k lines, information for the next set of k lines is

transferred from the image memory to the refresh buffer. Shift

registers or FIFO memories are commonly used to build the

refresh buffer, for their speed to shift out data.

Figure 2 .4 Symmetric mapping scheme for a system with 16
64Kx1 RAM chips (from MA TI^^]).

With a refresh buffer, the average achievable pixel rate

remains the same as that of the scan-line mapping scheme. But

the extra cost involved to implement the buffer is considerable,

since thousands of pixels have to be stored in expensive high

speed memories.

Furthermore, a k-by-k square pattern may now mismatch to a

horizontal as well as a vertical word boundary. Hence more

complicated address transformation and data aligning mechanism

must also be employed (see Figure 2.5). This adds even more to

the cost of the system.

Figure 2.5 Address transformation and data alignment needed
to update an arbitrary 4-by-4 grid in a 16-chip
system.

To justify the cost effectiveness of a mapping scheme, a

quantitative comparison is conducted. In the following section,

a mathematical model is created to evaluate the expected number

of accesses needed to update an arbitrary rectangular grid of

pixels.

2.3 Mathematical Model for Analysis

One of the most important objectives of this chapter is to

explore the average case performance of the scan-line mapping

scheme and the symmetric mapping scheme. The measurement of

their performance is made in terms of the number of memory

cycles required to update an arbitrarty h-by-w grid of pixels.

The analysis is performed for an MxM non-interlace whose

frame buffer is implemented with n=k2 memory chips. There are

also proper data alignment and address adjustment facilities

provided. Thus, an arbitrary I-by-n grid can be updated in a

single memory cycle for the scan-line mapping scheme, and an

arbitrary k-by-k grid of pixels for the symmetric mapping

scheme.

In our model, o n l y r e c t i l i n e a r r e c t a n g u i a r p a t t erns2 are

considered. ~rawing an h-by-w rectilinear rectangular pattern

always requires an update to the corresponding h-by-w grid of

pixels in the frame buffer. Let G{x,~,~,w) be the event that the

h-by-w rectangular grid of pixels, whose top leftmost corner is

at (x,y), is to be updated. Let ~(G{x,~,h,w)), the probability

of the event G(x,y,h,w), be P(x,y,h,w). With the given screen

format, h and w may vary from 1 to M. since (x+w) and (y+h) do

not exceed M+1, x and y may vary from 1 to (M+I-w) and (~ + 1 - h)

respectively. Assume graphical objects are distributed fairly

A rectilinear rectangle is a rectangle whose edges are

parallel to the x and y axes.

uniformly over the display, and thus there are no preferred

positions. This means any two grids are equally likely as long

as they have the same h and w measurements. In this case

Glx, y,h,wIts are independent of x and y. In the rest of the

chapter, G{h,wl will denote the event that an h-by-w. grid at an

arbitrary location is to be updated, and its probability will be

denoted by P{~,w). Notice that the event ~{h,w) is equivalent to

the event U (G{x,~,h,w))~, and P{h,w) is equal to

C (PEx,y,h,~l). Also let N{x,y,h,w) be the number of frame

buffer accesses required to update an h-by-w grid at (x,y). With

proper data alignment and address adjustment facilities (see

Figures 2.3 and 2.51, it takes the same amount of memory cycles

to update an h-by-w grid of pixels at any arbitrary (x,y).

Therefore, ~{x,y,h,w) can be represented by ~{h,w) for all

(x,y).

Since h and w may vary from 1 to M, there are M2 different

G ~ h , w l ' ~ , M2 different P{h,w)'s, and ~2 different N{h,w)'s. The

expected number of frame buffer accesses required to update an

arbitrary grid is:

The union of a number of discrete events means the OR of all

these events.

2.3.1 Memory Accesses Requirement

For scan-line mapping, any 1-by-n grid can be updated with a

single frame buffer access (see Figure 2.3). When an h-by-w

rectangular pattern is written into the frame buffer, the number

of accesses required is equal to the number of 1-by-n grids

needed to be updated. Obviously, the h-by-w grid spans over h

scan-lines and invloves rw/nl words. This implies that at least

h*rw/nl 1-by-n grids have to be updated in order to write the

larger h-by-w grid. Hence, N(h,w) for scan-line mapping is:

h * rw/nl

For symmetric mapping, k-by-k (k=dn) pixels can be updated

in parallel. The number of accesses required to update an h-by-w

grid is the minimal number of k-by-k grids that it covers, which

for symmetric mapping is:

rh/kl * rw/kl

2.3.2 Probability Distribution of P{h,w)

P{~,w) defines the probability of updating an arbitrary

rectilinear h-by-w grid. In the random sample space, there are

M*M possible events because both h and w can take any integer

from 1 to M. Hence, there are M*M different possible ordered

pairs (h,w).

There are two major considerations affecting the

distribution of P{h,w). They are (1) the statistical behavior of

the shape of the graphics objects, and (2) the statistical

behavior of the size of the graphics objects. Unfortunately,

there does not exist a general statistical structure to describe

a graphics environment. For simplicity, let us assume that h and

w are two identical and independent random variables whose

distribution are defined by the probability density function 6.

Then P{~,w) will be equal to 6(h)*6(w). By denoting the E's for

scan-line and symmetric mapping schemes with Escan and ESym, the

following expressions are obtained:

= 2 6(h)*6(w)*h*rw/nl E~can , (2.1)

= e 9 6(h)*6(w)*rh/kl*rw/kl E s ~ m h.1 N=\ (2.2)

2.3.3 Validity of the Mathematical Model

In general, an image may be composed of any number of

arbitrary patterns. Let the set of displayable geometric

patterns of an application be s={G,,G ,,..., G,). Assume the

probability of occurrence of Gi is P(Gi)=~i, and the number of

frame buffer accesses required to draw Gi is Nli for the scan-

line mapping scheme, and N2i for the symmetric mapping scheme,

respectively. By elementary statistics, the expected number of

frame buffer accesses required to draw an image for the scan-

line and symmetric mapping schemes are EsCan=Z PifNIi and

Esym=Z Pi*NZi, respectively. The immediate concern of the

analysis is to determine the P's, N l l s , and NZ1s. Unfortunately,

it is infeasible to obtain the exact P's. The probability of

occurrence of a certain geometric pattern is highly dependent on

the nature of the application. For example, when a graphics

system is used to display business data, alphanumeric characters

might be the dominant geometric objects. In a CAD system,

rectilinear rectangles are quite common. Therefore, it is

difficult to obtain the underlying probability distributions of

the geometric patterns without prior knowledge about the

application. For simplicity, in our mathematical model, only

rectilinear rectangles are considered.

Let the set of rectangles be R=(R~ I i=1,2, ...j 1 and N(R;)

be the number of memory cycles required to draw the Ri, Ri R. If

the relative frequency of Ri (which can be expressed as the

probability P(Ri)) can be obtained, then the expression

~P(R~)N(R~) will be the expected number of memory cycles
I

required to draw an image. Therefore, if the p(Ri) and N(Ri) for

all Ri R can be obtained, the model should be valid.

Unfortunately, the relative frequencies of the Ri's are

unknown. Hopefully, better estimations can be obtained by using

statistical inferences, such as statistical regression [KLEN~~].

Nevertheless, to conduct statistical estimation may require a

large volume of sample data. In addition, there is still no

guarantee on the accuracy of the estimates derived from such a

large amount bf sample data. Therefore, no attempt was made to

carry out.these kinds of estimation processes.

In the following section, the mathematical model is applied

to three benchmark cases. The p.d.f. for R used in the three

benchmark cases are created on a purely intuitive basis. They

are chosen because of their simplicity, reasonableness, and

understandability. Although none of them is applicable to the

general case, they are believed to be good approximations to

many real-life situations.

2.4 Benchmark Cases

In this section three benchmark cases are presented. In

these cases, the resolution of the display is assumed to be

1024x1024.

2.4.1 Uniform Distribution

The first probability density function (p.d.f.1 being

considered is very simple.

means:

6(l) = 6(2) = 6 (3) =
6(1)+6(2)+6(3)+........+6(

Hence 6(h) = 1/1024.

P(h,wl = G(h)S(w)

Here 6 is assumed to be uniform. That

... = 6(1024) and

1024) = 1.

Notice that here P(h,w) is independent of h and w. For

example, updating a 10-by-10 grid is as probable as updating any

100-by-100 grid, or any 19-by-157 grid. When there is a lack of

26

prior knowledge about the height and the width of patterns that

a system will deal with, this uniform p.d.f. for P is very

appropriate. Consequently, from (2.1) and (2.2) the expected

performance for the scan-line mapping scheme and the symmetric

mapping scheme are

Escan = 1/1048576 hzl 'rkotAh* 1 ~ - \ rw/nl and
(014 024.

Esym = 1/1048576 h--l Z b rh/kl* rw/kl respectively.

Table 2.1 shows the ESCan1s and ESymVs evaluated for

different k's (see (2.1) and (2.2)). Note that for consecutive

rows the total number of chips used is quadrupled.

Table 2.1; Expected performance for both mapping
schemes (case 1).

From this table, it can be observed that an increase in the

number of chips used for the frame buffer, n, reduces the

expected number of frame buffer accesses, E. This can easily be

explained by the fact that when more chips are being used, more

pixels can be read in parallel, hence fewer accesses are

required to update a grid of pixels. Ideally, if n is doubled,

27

any updates to the frame buffer which required 2 frame buffer

accesses should now require only 2/2 accesses. In order to

investigate the relation between the increase in the number of

chips and the enhancement in performance, the improvement

function, O is introduced.

When n is increased from n1 to n,, the corresponding E

decreases from El to E,. The improvement function at n=n2 is

expressed as:

W E 2
@(nl,n2) = .

n,/n,

We will assume that n2=4nl (see Table 2 . 1) . The O's for the

scan-line and the symmetric mapping schemes, with uniformly

distributed PI are plotted against dn, in Graph 2.1. Notice that

k is equal to in. As shown in the graph, the symmetric mapping

scheme is quite close to the ideal case.

2.4.2 Non-Uniform Linear Distribution

In the previous case, G{h,w) was assumed to be independent

of h and w , and thus P{h,w) is the same for all h and w. This

implies the events U G{x,y,h,w) for various h's and w's are

equally likely. Since there are fewer G{x,y,h,w) for large h and

w, the probability of G{X,~,~,W) will be larger if h and w are

larger. However, in many cases, a larger grid of pixels is not

updated as often as a smaller one. Intuitively, a screen can

hold more small patterns than larger ones. This encourages the

Legend
scan-line

s mmetric _Y--

Graph 2 .1 Plot of improvement functions vs i n , (from
Table 2.1).

use of little objects to construct an image. In addition, if the

scene is modelled with smaller rectangles (see Figure 2.61, more

details are preserved and hence a better approximation can be

obtained. In this section, event G{x,~,~,w) for any x, y, h, and

w are assumed to be equally probable. That is, P{x,y,h,w) are

the same for any combination of x, y, h, and w.

For a particular h and w, there are (1024-h+ 1)

distinct h-by-w grids. Therefore P{h,w) will be large if h and w

- are small. The total number of distinct events is
10x4 low

Z Z (1024-i+l)*(1024-j+1). Hence, the probability of each event
::I jz\

024 039
is 1/(~k (1024-i+l)*(1024-j+1)) and thus P{h,w) can be

f ~ l j t I

expressed as :

with the ~{h,w) given in (2.3), the expected number of

accesses are evaluated (see (2.1) and (2.2)) and shown in Table

2.2. The improvement function obtained from this table is

plotted against dn, in Graph 2.2.

Table 2.2 Expected performance for both mapping
schemes (case 2).

Similar to the uniform p.d.f. case, the O for symmetric

mapping scheme is shown to be closer to the ideal . However the
O's for both mapping schemes drop even more rapidly. his

suggests that O is somewhat correlated to P{~,w).

2.4.3 Chi-square Distribution

Graphics systems which approximate three dimensional

surfaces with polygons or fractal faces use many polygons or

triangles to compose an image. Moreover, these polygons or

triangles are of moderate size. Relatively bigger or smaller

geometric objects are less populated, and patterns with extreme

sizes are almost non-existent.

The p.d.f, of h and w for this kind of systems can best be

described by the following characteristics:

1. There exists an optimal xo such that 6(xo)>6(x) for all x

such that 11x11024 and x#xo.

2. The farther x is away from x,, the more is 6(x) less than

S(x0).

3. S(x) approaches 0 as x approaches 1 or 1024.

This statistical structure can appropriately be approximated

by the well known c h i - s q u a r e p.d.f. The shape of a particular

chi-square p.d.f. depends on its degree of freedom, denoted by

v. Graph 2.3 shows the shape of different chi-square

distributions with various v's [SPIE~I].

Let Sx and Sy be the width and the height of the screen

respectively. For a square screen, such as the one used in our

model, Sx and Sy are identical and denoted by S. Assume the

optimal xo of 6 is about S/10. Also assume it is about 75%

confident that x falls in the range between S/20 and S/2, that

is, J' 6(x)dx~0.75. The chi-square p.d.f. of 3 degrees of

Legend
scan-line -

Graph 2.2 Plot of improvement functions vs 4 n 2 (from
Table 2.2).

Graph 2.3 Plots of chi-square p.d.ffs of various v's.

freedom, denoted by x$(y), has the global maximum at y = l , and

its integral from 0.5 to 5 is approximately equal to 0.75. Hence

it is very suitable for approximating 6. However, there are two

problems prohibiting direct substitution of 6 by x$:

(a) The 75% confidence interval is intended to be (51,512).

However, x$'s 75% confidence interval is (0.5,5).

(b) The function 6 is discrete, whereas X$ is continuous.

Fortunately, these two problems can be solved easily.

Firstly, in order to use x$(y) on the domain (1, ..., lO24), y is

substituted by x/100=0.01x. Therefore the global maximum of

x$(O.Olx) occurs at x=100, and (50,500) is an a758 confident

interval. The x$(O.Olx) is

The shape of this p.d.f. is displayed in Graph 2.4.

Secondly, &(a) is approximated by ,f,'x:(O..Olx)dx, where

P=(a-0.5)/100 and r=(a+0.5)/100. Quantitatively, this integral

is equal to the area under the curve x$(O.Olx) between x=a-0.5

and x=a+0.5. This integral is further approximated by the area

l*x$(O.Ol(a-0.5+a+O.5)/2) = x$(O.Ola). Note that this is the

area of the bar with unit width and height equal to xg(O.Ola).

Hence S(x) can be represented by x$(O.Olx). To ensure
4fhvJ

x$(O,Olh)x$(0.01~) is equal to 1, an adjustment factor < h , a ~ c ; k ~
V,? l'%*

J = ~ / (C / ~~(0.01h)~~(O.O1w)) is multiplied to ~~(0.01h)~~(0.01~).
lSh,d$ \ o w

Graph 2.4 A plot of the chi-square distribution on x/100
with v=3.

Therefore, PE~,w) can be formulated as:

J*x$(0.01 h)*x$(O.Olw)

- J - (0.01h) ~'~(0.01~) '1' EXP(-0.01 (h+w)/2) .
23(1'(3/2))2

The evaluated E's (see (2.1) and (2.2)) for various values

of n are tabulated in Table 2.3. The behavior of O for both

mapping schemes are shown in the plot (Graph 2.5) of O against

dn2.

Table 2.3 Expected performance for both mapping
schemes (case 3) .

2.5 Choosinq a Mappinq Scheme

In the previous section we noticed that the expected number

of accesses for the symmetric mapping scheme is always less than

that of the scan-line mapping scheme. As illustrated in

Graph 2.61 Esym/EScan always gives a value less than 1. In

addition to this, as n increases, symmetric mapping tends to be

more and more effective than the scan-line mapping scheme. This

is caused by the early degradation of the improvement function

for scan-line mapping. Consequently, when more chips are

required to implement the frame buffer, the design tends to

favor symmetric mapping. The overhead for implementing symmetric

mapping, which includes hardware for output buffering, address

transformation, and two dimensional data alignment, becomes less

significant in the sense of performance per unit cost.

Legend
scan-line

symmetric --

Graph 2.5 Plot of improvement functions vs d n , (from
Table 2.3).

Graph 2 . 6 Plot of (Esym/Escan) * l o o % vs k = d n for the 3
cases.

However, since the performance of the symmetric scheme is

not much superior to the scan-line mapping scheme when n is

small, it is natural to question whether the extra cost spent in

building an image memory system using the symmetric mapping

scheme is worthwhile. As illustrated in Table 2.1, the scan-line

mapping scheme 'is compatible with the symmetric mapping scheme

when k is 54 (i.e., n116). Consequently, if 16 or less chips are

used, the scan-line mapping scheme is superior because of its

simpler implementation and compatible performance.

There are two factors which favor the use of 16 or less

chips for the frame buffer. With today's memory technology, 64K,

128K and even 256K memory chips (4164, 41128, and 41256) are

very popular in the market. With these high density memory

chips, a frame buffer can easily be built with less than 16

chips. These high density memory chips ease the implementation

of frame buffer and supporting circuit+. In addition, the

typical memory cycle time of these chips is 1150 ns (especially

for those having fast access modes such as page mode, extended

page mode, or ripple mode FALL^^, FINK83, ~ ~ 1 ~ 8 4 1) . With this

speed an effective pixel access rate of 21 pixel for every 10(37

ns) can easily be achieved if 16(4) chips are used.

Consequently, it is feasible to implement an 1024x1024 (512x512)

display with 16(4) RAM chips.

Another factor which prevents the designer from using too

many chips is the consideration of the actual achievable

reduction in the number of frame buffer accesses per chip added.

The best way to look at the problem is to study AE/An. Assume

when n is increased from n, to n2, E decreases from El to E2.

Then AE/An is expressed as:

I The AE/An for ESymls from Table 2.2 is plotted against n2 in

1 Graph 2.7. The AE/An for other cases are very similar to the one

shown in Graph 2.7.

This graph shows that AE/An converges to zero quickly as n

increases. Thus, a significant improvement can only occur at

Graph 2 . 7 Plot of AE/An vs n, for ESym (from Table 2.2).

small n , This suggests that using too many chips to improve the

overall system performance is not cost effective, Upgrading the

system by using faster memories, dual-port RAMS, or display

RAMS, would be more appropriate.

Differences in memory-to-screen mapping strategies may

result in deviations on the effectiveness of scan conversion

algorithms. The underlying memory organization of the k-by-k

symmetric mapping scheme provides a model of computation where

updates to the frame buffer can take place on any k-by-k square

of the display. This two dimensional model of computation should

be able to exploit the two dimensional nature of almost all

graphics applications, and hence provides efficient algorithms

for them. However, faster scan conversion algorithms cannot

improve the frame buffer updating efficiency. Therefore, the

effectiveness of scan conversion algorithms is not a major

deciding factor in choosing a mapping scheme unless more than

enough frame buffer bandwidth is available. This becomes less

probable as scenes become more complex. However, variations in

scan conversion algorithms may favor different implementations

(for example, different microcode for the display processor),

and thus could potentially affect the overall cost of the

implementation.

CHAPTER 3

PARALLEL-PROCESSING ARCMITECTURES FOR GRAPHICS DISPLAYS

In a conventional single processor frame buffer raster-scan

graphics system, the frame buffer is a very important component.

Its versatility provides an extremely flexible medium for image

manipulation. In fact, many image processing systems rely on the

frame buffer in which many image processing activities become

feasible. However, the frame buffer does not offer the most

efficient way of representing an image. The large amount of

memory it uses makes it expensive. Its limited effective

bandwidth creates a bottleneck for image updating. In most

cases, the performance of a raster scan graphics system is

bounded by the effective bandwidth of its frame buffer. Although

many attempts have been made to increase the memory bandwidth

 FINK^^, MATI84, GSTA84, SPR0631, conventional frame buffer

architecture is still too slow for high quality real-time

graphics.

Real-time raster image generation requires a new frame to be

generated for every screen refresh in order to give the illusion

of motion and dynamic behavior. The problem with the basic frame

buffer system is that generating a typical frame containing a

few thousand polygons will take several seconds which is much

longer than one frame refresh period, even if the symmetric

mapping scheme is employed (see Chapter 2). Given present

circuit speeds, massively parallel processing and pipelining

techniques are mandatory so as to generate a new frame during

every refresh cycle. Researchers have proposed several high

performance system architectures for achieving the high

computation rate [CLAR80, DEME85, FUCH79, FUSS82, GdAR85,

LOCA79, WEIN81, ~ ~ ~ 8 2 1 . These systems demonstrate promising

results in handling today's sophisticated graphics applications.

3.1 Architectural Structures

Two major architectural structures have affected the design

of most multi-processor graphics systems. These architectural

types are :

(a) partitioned object-space structure, and

(b) partitioned image-space structure.

These two structures are closely related to two important

domains of graphics representations, namely the o b j e c t s p a c e and

the i m a g e s p a c e . They are defined as follows:

Object Space :

The object space of an image is the set of graphics

primitives, such as lines, polygons, circles, ... etc.,
which compose the scene to be depicted. (1n this thesis,

"graphics objects" is always used in place of "graphics

primitives".) In many applications, the graphics objects are

constrained to be of a single type, such as triangles, and

the number of objects is bounded above by a constant (n). If

this is the case, the object space may be considered as a

set of n triangles.

Imaqe Space:

The image space of a scene is the set of raster elements

(pixels) of the display. It contains a fixed number (m) of

elements which equals to the resolution of the display.

Notice that a.graphics object in the object space is defined

by a high level parametric description which is usually a

mathematical expression of its shape, shade, and

orientation. The graphics objects must be rendered into

their corresponding raster images in the image space, and

then drawn on a CRT.

To render a scene, all graphics objects in the object space

must be processed; and for each object, all elements of the

image space must be considered (if no coherence property is

assumed). "> Recall that a pixel evaluation process is called a

pel-process. To render a graphics object, it may be required to

execute more than one million pel-processes for a 1024x1024

display. If a scene contains thousands of graphics objects, the

rendering activity may require the execution of a tremendous

number of pel-processes per each frame of image generated. In

addition, a pel-process can be broken down into up to three

sub-tasks. The first sub-task is a containment test (con-test)

which determines whether the pixel in question is inside the

graphics object or not. The second sub-task is the computation

of the shade and depth of the pixel according to the description

of the object (pel-evaluation). The third one is a visibility

test (vis-test). Although the first two sub-tasks can be carried

out simultaneously, the third one requires the depth value of

the pixel and thus must be performed after the completion of the

pel-evaluation task.

3.2 Partitioned Object-Space Architecture

In a partitioned object space architecture, the graphics

objects in the object space are divided into a number of g r o u p s

such that the union of these groups forms the object space

itself. In addition, these groups are not necessarily mutually

exclusive. Objects from the same group are handled concurrently.

In most cases, an individual processor is assigned to each of

the objects. Different groups of objects share the same

processors and hence must be processed sequentially. This

definition of "group" will be used throughout the rest of the

thesis.

Examples of partitioned object space systems include

Fussel's F FUSS^^], Locanthi's [L O C A ~ ~] and ~einberg's[~E~NBi]

systems. In their systems, the entire object space is treated as

a single group. Each object in the object space is assigned to

an individual object processor and rendered simultaneously. A

sequence of pixel values is generated by each object processor

to synthesize the image of its associated object. The pixel

generation activities of the o b j e c t p r o c e s s o r s are synchronized

such that they are all working on the same raster pixel at any

instance. When a particular raster pixel is being considered,

each object processor will perform a con-test and pel-evaluation

to determine the depth and the shade value of the pixel

according to the object it is associated with. The values from

all the processors are then passed down to a comparator which

conducts the vis-tests.

3.3 Partitioned Image-Space Architecture

In this type of architecture, the image space (raster) is

divided into a number of partitions of pixels. Pixels from the

same partition are independent of each other and hence can be

processed simultaneously. Nevertheless, manipulations of

different partitions are carried out sequentially. Except in a

few image processing applications, all of the pixels in the

image space are mutually independent of each other. Therefore in

most cases, there is only one partition which contains all the

pixels in the raster considered. This architecture can be

exemplified by the Pixel-Planes system [FUCH~I, FUCH82, ~ 0 ~ ~ 8 5 1 .

Whelan's rectangle area filling system is also of this type

[wHEL~~].

A Pixel-Plane is a special smart-memory chip for raster-scan

graphics. The frame buffer is built with one or more Pixel-

Planes. In the Pixel-Planes system, the entire image space is

grouped into a single partition. Since all pixels of the

partition are to be processed simultaneously, there is an

individual processor associated with each image memory cell

which holds a pixel. In this way all the pixels in the raster

(image space) can be processed in parallel. The objects in the

object space are rendered sequentially. According to the

high-level descriptions of the geometric objects, each

pixel-processor executes a pel-process to determine the value of

its corresponding pixel.

Since graphics objects are processed sequentially, the total

time required to synthesize a scene is proportional to the total

number of objects in the scene. Therefore, it will take a

relatively long time to process a scene with many objects.

3.4 A Generalization of the Two Architectures

Almost all raster graphics displays employ either one or

both partitioning structures. In this section, a general

architectural representation for image rasterizers is presented.

The representation is very useful in characterizing an architec-

ture with its strategy to distribute processing tasks among the

processors. To discuss this representation, two definitions are

needed:

Object-Space ~artitioninq Scheme (OP-Scheme):

In a parallel processing architecture, the object space can

be divided into a certain number of groups such that the

objects in a subset can be processed in parallel. The

object-space partitioning scheme defines the way graphics

objects are grouped. An a-P-OP s c h e m e is an object-space

partitioning scheme which groups the graphics objects in the

object space into a groups and the maximum cardinality of

the a groups is P .

Image-Space Partitioninq Scheme (IP-Scheme):

The image-space partitioning scheme determines the way that

the image of a display is partitioned. A y - X - I P scheme is an

image-space partitioning scheme which divides the image

space into y partitions. The maximum cardinality of the

partitions is X. To rasterize a graphics object, the system

will consider the -y partitions, each having at most X

pixels. ~otice that the IP-scheme defines the way that a

.graphics object is rasterized. Therefore, it is

theoretically possible to have different IP-schemes for

different graphics objects. However, this is not a common

practice in raster graphics displays and thus is not

considered in this t h e s i s .

From now on, let us assume that the maximum number of

graphics objects in the object space is n and the number of

raster pixels in the image space is m. In general, any image

rasterizer can be identified by the way that its object space

and image space are partitioned. For example, the Pixel-Planes

system [P O U L ~ ~] is constructed based on an n-1-OP scheme and an

1-m-IP scheme. In this system, the object space which contains

at most n graphics objects is partitioned into n subsets, each

of which contains at most 1 object. However, the raster image of

each object, which is made up of m pixels, is formed by a single

image space partition with exactly m pixels. Assume the total

time required to execute a pel-process is T pel units, then the

pixel-Planes system is able to obtain the entire raster image of

an object in T pel units of time. However, the objects in the

object space must be processed sequentially.

At the other extreme, the Fussel's real-time scan conversion

engine FUSS^^] utilizes a 1-n-OP scheme and an m-1-IP scheme.

That means it is capable of handling all the graphics objects

simultaneously. However, only one pixel can be computed per T pe 1

units of time.

We call a system which employs an a-0-OP scheme and a y-A-IP

scheme to be an a-0-7-A-s yst em. *The hardware complexity and the

computational power of an a-0-7-X-system will be discussed in

the following sections.

3.5 Hardware Complexity of an a-P-y-A-System

The amount of hardware required to implement an

a-0-7-A-system can be determined by the way that the

object-space and the image-space are partitioned. For a system

which uses an a-0-OP scheme, its object-space is divided into a

groups graphics objects, The maximum number of objects in the

groups is 0. Therefore, in order to process all the objects of a

group simultaneously, at least 0 processing units are required.

For each object processor, a y-X-IP scheme is implemented,

The image of an object is composed by y partitions of pixels,

All the pixels from the same partition are determined

simultaneously. This costs the system X individual pixel

processors to be associated with each object processor. The

total number of pixel-processors required to implement a

rasterizer employing an a-0-OP scheme and a y-X-IP scheme is OX.

In the rest of the thesis, the value OX is regarded as an

indicator for the h a r d w a r e complexity of an a-P-y-X-system.

Processing-time Complexity of an a-P-y-X-System

In the process of rasterizing a scene each graphics object

must be redefined with its corresponding raster image in the

image space. This process involves the translation of the

high-level description of the object into a set of relevant

pixel values. The image size of an object can be as large as the

entire raster. Therefore, in the worst case, every pixel in the

raster must be processed in order to obtain the corresponding

raster image of a graphics object. For an a-0-y-X-system, the

task of finding the raster image of a single object will take

yTpel units of time since the raster is divided into y

part it ions which are processed sequentially . Furthermore,
objects in the scene are grouped into a groups and the

processing of these groups are carried out sequentially. The

total time needed to handle all objects will be proportional to

a. Consequently, the total time required to render a scene into

its corresponding raster image, defined in the image space, will

be ayTpel units. That is, the throughput of the system will be n

objects per ayT pel units of time. In the rest of the thesis, the

value cry is defined as the processing-time complexity of the

rasterizer which can be used to indicate the computational power

of an a-0-y-h-system. Notice that a small ay indicates that the

system can rasterize a scene of upto a0 objects in a short

period.

3.7 Classification of Image Rasterizer Architectures

In Table 3.1, various recently proposed architectures for

image rasterizers are classified according to the a-P-y-X

notation. In a conventional single processor sequential system,

the grapfiics objects are rasterized sequentially, and the raster

pixels are generated sequentially as well. That is, the system

is employing an n-1-OP scheme and an m-1-IP scheme. Therefore,

its hardware complexity is 1 and its processing-time complexity

is nm. However, in most cases, some kind of graphics coherence

properties are utilized in these systems. As a result, the

actual number of pixels required to be considered per object is

less than m. Consequently, the processing-time complexity of the

system is probably less than nm.

Clark's system has 64 (as described in [c L A R ~ ~ ~]) IMP

processors running in parallel. Each processor is responsible

for a set of m/64 pixels. Thus, it is classified as an

a,
E .?
C >.
I CI
D .-
C X .- a, ?-
m - u
m n
a, E
0 0
0 0
L
a

n-1-(m/64)-64-system. Although the processing-time complexity of

this system is nm/64, it may require less time to render a

scene; since, again, graphics coherence can be employed in this

system.

Fuchs' [FuCH~~] and Whelan's [w H ~ L ~ ~] system are two typical

n-1-1-m-systems. ~ussel's[F~~~82], Lochanthi's [LOCA79], and

Weinberg's W WE IN^^] systems are typical 1-n-m-1-systems. Their

characteristics have been described in the previous sections.

Gharachorloo's system employs a systolic array of 512

processor cells (in [GHAR~~], a 512x512 display is considered).

Each processor cell handles one column of raster pixels.

Graphics objects in the object space form 512 groups each

associated with a scan-line. An object belongs to a group if and

only if its raster image intersects with the scan-line that the

grcup is associated with. (In [G H A R ~ ~] , Gkarachorioo assumes

that at most 512 objects are in a group.) The image rasteriza-

tion process is completed by evaluating the 512 scan-lines

sequentially. To generate a scan-line, the group of objects

associating with that scan-line is "pumped" through the systolic

array. As the objects propagate through the processor array,

each processor cell will execute a pel-process for each object

passing through. Since this activity is carried out in a

pipelined fashion, the rasterization of up to 512 objects can be

overlapped. This group-wise rasterization of objects makes a

group of objects look like a single graphics object to the

system. Therefore, we can consider the objects space of

Gharachorloo's system as 512 groups of objects each of which

contains only a single (combined) object. The a-0-y-A notation

for this system is thus dm-1-dm-dm (in [G H A R ~ ~] dm is 512).

Demetrescu's system employs a number of SLAM modules

[DEME~~]. A SLAM module is in fact a smart image memory module

which contains a matrix of 64 rows by 256 columns of storage

cells. There is also processing logic built inside the SLAM

modules such that a row (256) of pixels can be generated in

parallel. Therefore, we can consider that there are 256

pixel-processors in a SLAM. To build a rasterizer for a dmxdm

diplay, a dm/64 by dm/256 array of SLAM'S must be used. In this

case, (dm/64)* (dm/256)*256=m/64 pixels can be updated

simultaneously. With this configuration, the image space can be

regarded as being partitioned with a 64-(m/64)-IP scheme.

Therefore, Demetresculs system can be classified as an

CHAPTER 4

REGIONAL-RASTERIZATION

To make real-time image generation possible, many high

performance raster scan graphics displays employ parallel-

processing techniques. Owing to the nature of the scan

conversion problem, the low-cost "loosely-coupled" processor

network structure is very appropriate for graphics displays.

Unfortunately, because of the poor inter-processor communication

ability of loosely-coupled parallel processor, most of the

inherent graphics coherence properties are lost [KAPL~~]. As a

consequence, many efficient scan conversion algorithms commonly

used in sequential systems, which make use of various forms of

graphics coherence properties, cannot be applied in parallel-

processing graphics displays.

Regional-Rasterization is an architectural enhancement to

parallel-processing raster-scan graphics displays. Conceptually

the technique makes use of the "face" coherence property of

graphics objects1 complemented with the "even distribution of

graphics objects" argument2. With Regional-Rasterization the

entire image space is partitioned into a number of (equal)

partitions. The generation of the entire scene image is

accomplished by processing these image space partitions

' Face coherence : The faces are generally small compared to the
size of the screen [SUTH~~].

Graphical objects are distributed fairly uniformly over the
display and thus there are no "preferred positions" for objects
[SPRO~I 1.

sequentially, or simultaneously. For each image partition, only

those graphics objects whose projection is contained entirely or

partially by the partition are rendered.

4.1 Concepts Behind the Reqional-Rasterization Scheme

Most n-1-1-m and 1-n-m-1 systems, including the Pixel-Planes

and Fussel's systems, are not cost-effective in terms of

processor utilization. Consider the scene displayed in

Figure 1.1. The average size of the planar tiles (polygons)

which are used to model the various surfaces of the 'beetle' is

very small compared to the area of the entire screen. By

observation, the mean size of the polygons is only about

one-hundredth of the area of the entire display. Thus, the

average number of pixels that are covered by a graphics object

is 0.01m. Therefore, theoretically, a graphics object can be

rendered with an average of 0.01m pel-processes. As a result,

the optimal number of pel-processes required to render the scene

is 0.Olnm.

Based on the above observation, the total number of

pel-processes required to render a scene, can be optimized by

ignoring irrelevant pixels. The technique employed to achieve

this goal is called R e g i onal-Rast e r i tat i on. By using the

Regional-Rasterization technique, the cost-effectiveness of an

image rasterizer can be improved by either: (1) boosting the

system throughput and hence overall performance with acceptably

small hardware overhead; or (2) cut down a large amount of

hardware, required to implement a system, with little penalty in

system throughput. ~otice that a substantial improvement in

hardware utilization can be achieved through either one of these

architectural enhancements. The term "~egional-~asterization"

denotes the idea of maximizing processor utilization by

considering only relevant pixels as a graphics object is

rasterized.

4.1.1 Utilization of Coherence Information

When rendering an object, if all raster pixels are

considered, we say that the object is r u s t e r i z e d e x h a u s t i v e l y .

In contrast, if only relevant pixels are considered, we say that

the object is r a s t e r i z e d n o n - e x h a u s t i v e l y . The basic idea of

b.. r;" : .. Regional-Rasterizath is, 31119 a coherence property, t o

avoid rasterizing graphics objects exhaustively. A similar

approach has long been adopted in sequential systems. Although

the idea is straightforward, no

Regional-Rasterization have yet

processing systems. This may be

(a) To reduce the work involved

various forms of coherence,

attempts similar to

been applied to parallel

due to the following reasons:

in the scene rendering process,

such as object, area, or scan-

line, can be incorporated. In fact, the use of a priori

knowledge in the form of image or object coherence has been

crucial to the efficiency of most sequential systems. In the

case of parallel processor implementations, much of this

coherence information will be lost when independent parallel

calculation tasks are distributed across a network of

processors unless a sufficiently large amount of data can be

exchanged among processors [K A P L ~ ~] . Nevertheless, in order

to reduce the high cost of interconnection and the problems

associated with high data transfer among processors,

processing units in most multi-processor graphics displays

are "loosely-coupled". This type of configuration makes

employment of coherence in rendering very difficult, or even

impossible.

(b) Employment of coherence properties in scene rendering

activity is advantageous only in optimistic cases. In worst

case situations, the overhead introduced will degrade the

performance of the system. Therefore, most designs avoid the

employment of any coherence. They are usually designed to

allow cornputationa? redundancy and provide "room" for worst

cases. Although this may result in a less cost-effective

design, it guarantees uniformity and reliability. This is

particularly true in the case of multi-processor VLSI

systems where the cost of individual processors is almost

negligible.

Therefore, unless the approach is very simple, easy to

implement, and requires very little overhead, using coherence to

achieve better average performance is not of much value to these

systems. In the following sections, we will examine the

possibility of incorporating face-coherence property of graphics

objects into the scene rasterization process.

4.1.2 Average Size of Graphics Objects

In the classic paper of Sutherland, Sproull and Schumacker

[suTH~~], a set of statistical measures of the complexity of

rendering were presented. These environment statistics are

listed in Table 4.1 and Table 4.2. In the same paper, a useful

relationship was also given :

From the above expression, one can see that for constant De, Fr

is inversely proportional to Hf. They also stated that most

environments of any great degree of complexity appear to be

nearly isotropic3. The only possible explanation for this

characteristic is that graphics objects are distributed fairly

uniformly in the environment. Consequently, it is reasonable to

assume that De <<. Fr. That is, the average number of objects

overlapping at a pixel is much smaller than the total number of

objects in the environment. In fact, an estimate of 3 is used

for De in [SUTH741. Therefore, by expression (4.11, Hf/n and

Hf/b are relatively small. Since Hf/a and Hf/b represent the

average size of faces expressed as a fraction of the displayed

height and width respectively, an average graphics object

occupies only a small fraction of the display area when Fr is

large and is much larger than De.

An environment is said to be isotropic if the depth complexity

is independent of the viewing direction. That is, the expected
number of faces penetrated by any randomly chosen line is
independent of the direction of the line.

From the above discussion, a graphics object in a complex

scene should occupy only a small fraction of the entire display

area on the average. Therefore, a substantial amount of

computation effort can be saved by a non-exhaustive rasteriza-

tion algorithm. Consequently, ~egional-Rasterization technique

will be beneficial in most cases.

A Functional Model

Following the arguments given in the previous section, it is

clear that it' is unnecessary to consider all the raster pixels

while rendering a graphics object. If one can divide the object

space and the image space into object sub-spaces CO,, O,, ...,
Opl and image sub-spaces II,, 12, ..., I 3 respectively, such P
that objects in Oi cover only the pixels in Ii (12i>p), then we

need to consider only the pixels of Ii for rendering the objects

of Oi. In this case, objects in Oi are said to be l o c a l to the

partition Ii; or the objects are local objects of Ii4.

Consider an IP-scheme which divides the raster into several

mutually exclusive equal partitions. By the evenly distributed

argument (mentioned in the previous section), there will be

roughly the same number of objects occupying each partition.

When a graphics object is rendered, the only pixels to be

considered are those in the partition(s1 that the object is

- -em---- - - - - - - - - - -

Note that an object can be local to more than one partition.

local to. If the partitions are large enough, most graphics

objects will be enclosed entirely by a single partition (i.e.,

very few objects will span over more than one partition).

Therefore, the average number of pel-processes required to

execute in order to rasterize an object will be approximately

equal to the number of pixels in each partition. This behavior

is depicted in Figure 4.1 which shows that the scene from

Figure 1.1 when divided into four quarters. The unshaded

polygons are enclosed entirely in a quarter. As demonstrated,

the unshaded polygons represent a majority of the entire object

space. In addition, most of the shaded polygons are local to

only two partitions. For these polygons, only pixels in two

adjacent partitions should be considered.-Therefore, the number

of relevant pixels is only 1/2 of the total number of raster

pixels in the image space.

The way to form the object groups is determined based on the

IP-scheme. Firstly, the object space is divided into p groups

where p equals the number of raster partitions as described by

the IP-scheme. Secondly, a one-to-one correspondence is

constructed between the object space groups and the image space

partitions such that an object space group contains those and

only those graphics objects which are local to the partition.

This process is called the 1 o c a l o b j e c t i d e n t i f i c a t i on process.

For example, the four object space groups as defined by the

IP-scheme in Figure 4.1 will look like those shown in

Figure 4.2. Notice that the total number of objects in the four

Figure 4.1 A sample IP-scheme employed by
Regional-Rasterization.

groups may be larger than the actual number of objects in the

object space.

4.2.1 Effectiveness of Regional-Rasterization

As mentioned, Ii is the sole image partition associated with

Oi. We can regard the rasterization of objects in Oi into image

sub-space Ii as an independent image rasterization problem Pi.

Figure 4 . 2 The Corresponding OP-Scheme for the sample
IP-scheme from Figure 4.1.

Therefore, the original scene rasterization problem, which can

be considered as the parent problem, can be broken down into p

independent sub-problems (P,,P, ,..., Pp). These sub-problems can
be regarded as the child problems. A solution for the parent

problem can then be obtained by resolving the p child problems

individually. Let Ho and To be the number of processors and the

processing time required to solve the parent problem

respectively. Since all Pi's are independent, they can be

carried out sequentially or in parallel. An implementation of

the Regional-Rasterization technique to an image rasterizer,

which tackles a parent problem by sequentially resolving all the

child problems is called a sequent i a1 imp1 ement at i on. Similarly,

if an implementation solves all the child problems in parallel,

it is called a para1 lel imp1 ementation.

Since all the Ii's are of the same size and mutually

exclusive, the cardinality of Ii is m/p. By the evenly

distributed argument, it can be assumed that the cardinalities

of all Oi's are close to n/p. Hence, in comparison with the

parent problem, each child problem Pi can be completed in about

To/p units of time (since only m/p pixels are concerned) withc

only H,/P processors (since there are only n/p objects to worry

about). If the p Pi's are to be performed sequentially, the

total processing time will be close to To while the number of

processors required remains H ~ / ~ . If the p Pi's are carried out

in parallel, the required number of processing units will be HO

and the processing time will be approximately T~/P. his rough

estimate shows that substantial improvement in

cost-effectiveness can be achieved by using the

Regional-Rasterization technique.

In Section 6.1, more discussion on this issue is presented.

4.2.2 Required Overhead

The major overhead of Regional-~asterization comes from the

extra local object identification process which must be

performed for every graphics object. When the image space is

partitioned into more sub-units, the process becomes more

complex in the sense that more partitions must be considered per

graphics object. The overhead required to implement the local

object identification process will be discussed in Chapter 6.

Another major computation overhead, in an implementation of

t h e Regional-Rasterization scheme, is the repeated processing

for a certain number of graphics objects. As discussed earlier,

a graphics object must be rendered once for every image space

partition that it is local to. Therefore, the average number of

times that an object must be processed is very likely to be more

than 1. In the worst case, each graphics object spans over all

the image space partitions and hence must be rasterized once for

all partitions. If this happens, the Regional-Rasterization

technique looses all of its advantages. Fortunately, the chance

of this occurring is very small (see Chapter 5).

PERFORMANCE

CHAPTER 5

ANALYSIS FOR THE REGIONAL-RASTERIZATION TECHNIQUE

The ~egional-Rasterization technique hypothesizes that (1)

the number of graphics objects projected onto each partition are

almost the same, and (2) most graphics objects are local to only

one partition. The first hypothesis is true if the projections

of graphics objects are uniformly distributed in the image

space. Furthermore, if the probability of an object projection

spanning more than one partition is low, the second hypothesis

is also true.

Assume the image space is divided into four quarters. It is

easy to recognize that the total number of graphics objects to

be rasterized will remain (almost) unchanged, but the number of

pixels required to be considered for each graphics object will

be quartered. As a result, an optimistic estimate of up to

seventy five percent reduction in computational effort is

reasonably acceptable. This computational saving can be utilized

in the design of a more cost-effective graphics displays.

(Similar approaches have long been utilized in sequential

systems for improving average case performance).

Although its potential and applicability are unclouded, a

more detailed quantitative analysis on the performance of

Regional-Rasterization technique is a definite necessity for its

refinement and/or further development. In this chapter, an

investigation on the expected performance of the

~egional-Rasterization technique, when applied to various

graphics environments, is conducted.

5.1 Performance Measures

One of the key problems in both the evaluation and design of

graphics systems is the definition of performance. A commonly

used definition is the throughput of the system. However, we

consider the effectiveness of the technique as a measure of the

performance. Here "effectiveness" means the achievable saving in

computation effort for rasterizing a scene as a result of

applying the Regional-Rasterization technique to a graphics

display. Two parameters Nips, the average number of partitions

that a graphics object is local to, and SDop, the standard

deviation of the object groups1 cardinalities, are crucial to

the effectiveness of the Regional-Rasterizatisn technique. In

this section, characteristics of these two parameters are

discussed.

In implementing Regional-Rasterization, the image space is

partitioned into p regions (I,, I,, o = o , Ip). According to the

definition of the Regional-Rasterization technique, the object

space is also divided into p groups (O,, O,, o o o , Op). Notice

that the image space I is the union of all the Ii's and the

object space 0 is the union of all the Oi's. That is, I=U Ii apd

O=U Oi. The cardinality of a set S is the number of elements in

S, which is denoted by (SI. Therefore, (I 1 , (01 , 1 1 ~ 1, and (Oi (

simplicity, we assume that all the image space partitions are

equal and mutually exclusive. Hence 1 1 I=plIl I .

To render a scene with the object space 0, the display with

the above implementation of the Regional-Rasterization technique

will need to execute ?loil lIil pel-processes. Since all the
I

IIills are the same, the above summation can be reduced to

I1~14lO~l. Let the value (ZIOil)/lO1 be Nips. The computation
I

complexity of the above graphics display for the given object

space 0 and image space I becomes:

N ~ ~ ~ * I O I * I I ~ I

Notice that Nip, can be defined as the a v e r a g e number o f

i m a g e s p a c e p a r t i t i o n s t h a t a g r a p h i c s o b j e c t i s 1 o c a l t o . Since

a graphics object covers at least 1 and at most p image space

partitions, Nip, may vary from 1 to p. Thus, the following

inequality is obtained:

1 I Nips I p (5.2)

The Nip, is equal to 1 when all the graphics objects fall

entirely in a unique image space partition; and it is equal to p

if all the objects span over all the p image space partitions.

1 - --
Denote 7Z loi 1 , the mean of the loi 1 ' s, by loi 1 . Nipa can be
expressed as:

To study the effectiveness of ~egional-~asterization, Nip,

is a very important parameter to estimate. With Nipat the

computation overhead due to the repeated processing of graphics

objects that are local to more than one partitions can be

calculated. This overhead is directly proportional to

(Nips-1)*J01 pel processes.

If a parallel implementation is employed, object groups are

processed simultaneously. To rasterize the group with more

objects will require to execute more pel-processes. As a

it will take more time or need more processors to rasteri

group. Thus, the scene rasterization speed is determined

maximium of all the object space cardinalities, (MAX(lOil

all i, 1~ilp). Therefore, another major factor affecting

result,

ze the

by the

I) , for

the

performance of the Regional-Rasterization technique is the

evenness of graphics objects distribution among the image space

partitions. This can be estimated from the s t a n d a r d d e v i a t i o n of

t h e object g r o u p s c a r d i n a l i t i e s .

By elementary statistics, the sample variance of a set of p

samples (x,, x,, * * - , xp) of a random variable X is

The standard deviation of the Oils, SDop, can be obtained by
F

substituting xi with 10il and x with]Oil in (5 . 4) . However, the

value SD / is more meaningful for performance estimation
OP

purposes (see Section 5.6.2).

In the rest of this chapter, estimates of Nips and SDop are

found. In order to obtain reliable estimates, real-life data

should be used in the process of estimation. However, obtaining

a large set of real-life samples is very difficult. Furthermore,

the reliability of the derived estimates of Nips and SDop is

highly dependent on the sampling techniques used to collect data

[SCHE~~]. To avoid unnecessary complication, we borrow the

concepts of performance m o d e l i n g . In the following sections, a

performance model is created on which the ~egional-Rasterization

technique is evaluated.

5.2 Performance Modelinq

The performance m o d e l i n g techniques are used to define some

quantitative performance measures. In this particular case, the

measures are the two parameters Nipa and SDop mentioned in the

previous section. Performance modeling forms a basis for the

solution to many system design and evaluation problems.

Performance models can be used to develop some comparison

criteria for the Regional-Rasterization technique that

illustrate quantitatively the differences in performance between

various implementations. Basically, the perfornance modeling

techniques consist of three parts CARL^^]:

(a) The characterization of an application or class of

applications, that is, the characterization of a work-load.

(Performance can be discussed only in the context of a

particular application or, perhaps a class of applications,)

(b) The definition of the parameters that characterize the

operation of the evaluated system; in this thesis, the

Regional-Rasterization technique.

(c) Procedures for calculating performance measures.

The application of performance modeling techniques result in a

performance model for the Regional-Rasterization scheme.

The second and third parts are readily available. In Chapter

4, a functional model for Regional-Rasterization is given. This

functional model describes operation of the technique and thus

can satisfy the requirements of (b). For (c), the two

expressions, (5.3) and (5.4), described in the previous section,

define the procedures for calculating the performance measures.

However, the requirements of (a) are not easy to fulfill. The

major problem the lack of a general characterization of graphics

environments. Therefore, it is very difficult to obtain an exact

work-load definition for graphics displays. To get a reasonably

close approximation for the work-load, image modeling techniques

are considered. Through the use of an image model, a class of

images is defined. The rasterization of these images play the

role of work-loads for a graphics display to which the

Regional-Rasterization technique is applied. Therefore, the

image model must exhibit most major characteristics of images

from real-life applications.

5.2.1 Imaqe Modelinq

The conceptual validity of the Regional-Rasterization

technique is critically tied to the characteristics of the

graphics environments that it deals with. For example, an

environment in which the graphics objects are so large that most

of them cover more than half of the area of the display, the

Regional-Rasterization is totally fruitless. Therefore, the two

major hypotheses assumed by Regional-~asterization must be true

in order to make it worthwhile to be considered. In this

section, we will look into the area of image modeling in order

to reveal the general characteristics (if any) of real-life

graphics environments.

The role of an image model is to provide a precise

description of the image characteristics necessary for an

efficient design of image operations. In [AHU;81] image models

are divided into two groups:

(a) Pixel-based models :

These models view individual pixels as the primitives of an

image. Specification of the characteristics of the spatial

distribution of pixel properties [HAWK~O, MUER~O]

constitutes the image description.

(b) Region-based models :

These models view an image as a set of subpatterns placed

according to a given set of rules. Both the subpatterns and

their arrangements may be defined statistically, and these

subpatterns themselves may be hierarchically composed of

smaller patterns.

In our analysis, the region-based models are more crucial since

they can be used to characterize polygon networks, the major

geometrical structures in the three dimensional graphics

environments. In fact, two dimensional polygon networks are

perhaps the most important geometrical structure for

representing the projections of visible surface-areas of three

dimensional solids.

5.2.2 Region-Based Model

Region-based models are defined using regions, instead of

pixels, as primitives. A given model specifies the shapes of the

regions and gives the rules for their placements in the plane,

thereby allowing increased control over some pattern

characteristics. Both the shapes and the distribution rules may

be specified statistically.

Over the years, regionLbased models have received far less

attention than pixel-based models in computer graphics and image

processing. But recently these models have been investigated for

texture analysis and synthesis. In the paper by Tamminen

[TAMM~I], two dimensional polygon networks generated by the

Dirichlet and Poisson-line tessellation models (two important

types of region-based models) have been used to model a computer

graphics environment in which his EXCELL technique is tested.

One important class of study in region-based modeling is

that of mosaic models. These models view an image as a mosaic,

constructed by t essell at i ng the plane into cells. Each cell

corresponds to an individual graphics object. tessellations

commonly used include regular triangular, square, and hexagonal

tessellations, and random tessellations such as the following:

(a) Poisson-line (Random-line) :

A Poisson process chooses pairs (p,9), Os9l~, -W<P<~- The

lines x cos9 + y sin9 = p, define a tessellation of the

plane (see Figure 5.1 (a)). A Poisson line model is also

known as a random line model.

(b) voronoi : A Poisson process chooses points (nuclei) in the

plane. Each nucleus defines a "Dirichlet cell" consisting

all the points in the plane nearer to it than to any other

nucleus (see Figure 5.l(b)).

(c) Delaunay : All pairs of nuclei whose Dirichlet cells are

adjacent are joined by straight line segments to define the

tesseiiation. Figure 5.lic) displays an example of DehunaY

models.

Another major class of region-based models consists of the

coverage (or "bombing") models. These models view an image as a

random arrangement of a given set of shapes over a uniform

background. Once again, the choice of shapes and placement

specifies a particular model. Circles have often been used for

the shapes, placed at Locations chosen by a Poisson process*

Figure 5.2 shows an image generated by a bombing model using

circles as the coverage patterns. In [F R A N ~ O , ~ ~ 1, ~ranklin used

bombing model images to represent projections of a three

Figure 5 . 1 (a) Poisson Line (Random Line) Model. (b)
Voronoi Model. (c) Delaunay Model.

Figure 5.2 Coverage (Bombing) Model.

dimensional graphics environment in which thousands of

non-penetrated spheres were packed. His linear-time hidden line

removal algorithm is evaluated on these bombing model images.

Region-based models of the above types, mosaic and coverage,

have been popular in many disciplines, including geology,

forestry, biology, ecology, astronomy, crystallography, and

statistics. Several properties of mosaics and coverage patterns

have been investigated by researchers in related fields [CRAI76,

MILE69,71,80, SWIT65,67,69, SANT~~]. Unfortunately, these models

are not very useful for polygon network environments. In the

next section, we will discuss the incompatibilities of these

models with the polygon network environments. A "customizedw

image model will then be defined. The performance of

Regional-~asterization on this image model will be investigated

later in this chapter.

5.3 Bomosaic Imaqe Model

There exists no concrete standard data generation models for

polygon networks, nor is there any standard definition for

graphics environments. To estimate the performance of the

Regional-~asterization technique in three dimensional graphics

environments, a suitable image model must be defined first. In

fact, only for images of a specified type can an evaluation and

comparison of algorithms be carried out [AHUJ~~].

Basically, an image model for three-dimensional graphics

environments is a general way to represent the two-dimensional

projection of the environment on a plane (usually the screen).

Therefore, an image model must demonstrate some important

characteristics of the graphics environments under

consideration. However, the chosen model must also be trivial

enough to be constructed and studied. In this section, a search

of some general characteristics of the graphics environments is

carried out. Also, a new image model will be proposed.

5.3.1 Floatinq-Solid Environments

The types of applications that we are interested in are

those which require a large number of polygons for scene

modeling and have the ability to generate the image at real-time

rate. Just to name some, interactive computer-aided design,

movie-quality real-time animation and flight simulation are

graphics applications of these types. These types of

environments are classified as f l o a t i n g - s o l i d environments.

A floating-solid environment can be portrayed by the

following characteristics :

(a) The environment contains only three dimensional solids.

Since a concave solid can easily be represented by a group

of closely related convex solids, we assume that all the

solids in the environment are convex.

!b! Statistical attributes of t h e solids, such as their sizes,

shapes, surface curvatures, and placements in the 3-D space,

are specific to an application.

(c) The surface of a solid is represented by a polygon mesh.

(dl The number of polygons used to construct the surfaces of the

solids is determined by the area and curvature of the

surf aces.

(el The surfaces of the solids in the environment projected onto

the screen form networks of 2-D polygons.

(f) The statistical attributes of the 2-D polygons are

influenced by the viewing parameters. Even if the 3-D scene

was highly correlated, its projection could be much less

correlated [F R A N ~ ~] .

Notice that the above mentioned statistical characteristics

are not only related to the nature of the application but are

also time varying. To obtain a precise model for these

environments, sufficient a priori knowledge must be available.

Unfortunately, this is obviously impossible. In order to

simplify the problem and make further analysis feasible, a more

restricted form of floating-solid environment will be considered

later in this thesis. ~eanwhile, let us investigate some

important properties of a 2-D projection of a floating-solid

environment.

5.3.2 Projection of a Floatinq-Solid Environment

When a floating-solid environment is projected onto a 2-D

plane, such as the screen of the display, few properties of the

projection are observed.

(a) The projections of the polygon meshes representing the

surfaces of the solids in a floating-solid environment form

c l u s t e r s of 2-D polygon networks on the screen. (1n this

thesis, the screen is considered as the only relevant 2-D

projection plane).

(b) A cluster may overlap others.

(c) The interior of a cluster is formed by a two dimensional

tessellation. Each tessellation cell can be considered as a

polygon.

(d) Polygons tend to be smaller as they get closer to the edge

of the cluster.

These properties are depicted in Figure 5.3.

Notice that neither the mosaic model nor the coverage model

can precisely define the projection of a floating-solid

environment which possesses the above properties. However, a

hybrid type of image model, which is a combination of the mosaic

and the coverage model, is very appropriate for the current

purpose. The new model is given the name bombing mosaic, or

PROPERTIES OF THE IMAGE:
Pro jec t ions form cius ter's

of graphics objects.
Notice that the interior of the
projections ere made up of
small polygons.

Clusters may overtap.

Figure 5.3 Projection of a Floating-Solid Environment.

bomosaic model.

5.3.3 Bomosaic Model

Bomosaic models portray the two-dimensional projection of

three-dimensional floating-solid scenes. These models view an

image as a random arrangement of patterns. Each pattern is

tessellated into a network of polygons. Clearly, this model is a

good representation of clusters of polygon network found in the

projection of a floating-solid environment.

One weakness of the bomosaic model is its incapability of

showing the polygon mesh on the "backw face of solids. However,

in most cases, these "back" polygons are eliminated in an early

stage of the scene rendering process pipeline, and hence never

have to be considered by an image rasterizer.

5.4 C-Bomosaic Image Model

The performance of the Regional-Rasterization technique is

to be evaluated based on the bomosaic model, However, the

bomosaic model is still too arduous to work with.

The major difficulty in using a general bomosaic image model

comes from the unpredictability of the bombing pattern shapes.

This novelty of the pattern shapes is a consequence of the

uncontrolled solid shapes of the floating-solid environments. TO

obtain a workable image model, we must restrict ourselves to a

more constrained floating-solid environment, namely the

f l o a t i n g - s p h e r e e n v i r o n m e n t . Since it is also a type of
floating-solids environment, it retains many of its important

characteristics.

A floating-sphere environment is in fact a floating-solid

environment which accommodates only spheres. By the symmetry

argument of 2-D graphics objects: graphical objects are no more

likely to be short and wide than to be tall and thin [sPRo~~],

circle is perhaps the most appropriate "bomb" pattern to be used

in the new bomosaic model. If the symmetry argument is extended

to the 3-D case, sphere is the most-rational type of solid to be

assumed. Furthermore, projections of spheres always form

circles, the geometric type which is consistent with the

symmetric argument in the 2-D case,

5.4.1 Definiton of the C-Bomosaic Model

Based on the floating-sphere environment and the bomosaic

concept for image modeling, a new type of image model, called

the C - b o m o s a i c m o d e l is defined. The C-bomosaic model can be

defined by the following characteristics :

(a) The model consists of randomly arranged circles which are

called the b o m b c i r c l e s . Overlapping of bomb circles is

permitted.

(b) The radius of the bomb circles are random within a range.

(c) The interior of a bomb circle is defined by the Delaunay

tessellation mechanism.

(d) The number of tessellation cells in a bomb circle is random.

(el The total number of tessellation cells is limited by a

constant.

Figure 5.4 shows an image defined by the C-bomosaic model.

5.5 Generation of Work-Load

The principal overhead of Regional-Rasterization comes from

the repeated processing of graphics objects which fall in more

than one image space partition (see Chapter 4). ~ntuitively, if

the graphics objects are small, and distributed uniformly, the

Figure 5.4 A C-Bomosaic Image.

chance of re-processing is low. In this case, we may expect

Regional-Rasterization to perform reasonably well. However,

owing t o the clustering behavior of the graphics objects,

performance analysis of Regional-Rasterization is non-trivial.

In this section, behavior the of ~egional-Rasterization

technique on images defined by the C-bomosaic model is studied.

5.5.1 Number of Graphics Objects

The number of polygons that can be used to "tile" the solids

is limited. h his number is especially important to many

parallel-processing systems such as Fussel's real-time scan

conversion system FUSS^^] in which an upper bound on the number

of objects is set when-the system is built.) This number must be

reasonably large for most scenes and should be consistent with

the physical limitation of most systems. "> In this thesis, the

maximum n u m b e r of g r a p h t c s o b j e c t s to be considered is denoted

by Np. Since our major interest is in graphics environments

which consist of a large number of graphics objects, we will

consider cases where N is equal to 500, 5,000, or 50,000. P

5.5.2 Tessellation of the Bomb Circles

There are two questions associated with the tessellation of

bomb circles: 1) What kind of tessellation is to be used

(Poisson line, Voronoi, or Delaunay)? and 2) How many

tessellation cells should there be in a bomb circle?

r

TO answer the first question, we present the following

arguments: 1) Both the Voronoi and Delaunay models give a

similar tessellation pattern. However, the Delaunay tessellation

method is more similar to networks produced by many surface

modeling algorithms BARN^^]. 2) A Poisson line (random line)

tessellation exhibits extreme variation of polygon size. The

polygon network formed is also unrealistic for a projection of a

3-D polygon mesh. By these two arguments, the Delaunay

tessellation appears to be more appropriate for tessellating

bomb circles.

There are two major factors affecting the size of polygon

tiles on the surface of a solid : 1) its surface area, and 2)

the rate of change of the surface curvature. When performing the

perspective transformation, solids at farther distances give

smaller projected images on the screen. Therefore, even a small

projected image may contain a large number of polygons. Thus,

the number of tessellation cells to be found in a bomb pattern

should be independent of the pattern's area. However, it is more

realistic to impose a lower and an upper bound on the number of

tessellation cells per bomb circle. Hence, this number is

allowed to vary only within a certain range. In order to avoid

the situations in which a very small bomb pattern contains a

very large number of tessellation cells, the range is also

partially determined by the area of the bomb circle. If the area

of a bomb circle is small, it has a smaller bound for the

tessellation cell number.

5.5.3 Vertices for the Delaunay Triangle Network

The first step in the tessellation process is to obtain a

set of vertices. These vertices correspond to the nodes

(Delaunay vertices) of a polygon network which represents the

surface of a sphere whose projection forms a bomb circle. In

Figure 5.5, the surface of a sphere of radius R is defined by a

function f which maps (~ , 8 , $) to a unique point on the surface.

Figure 5 . 5 Projection of a Surface Point from a Sphere to a
Plane.

By varying 8 and # from 0 to 27r (exclusively), the function f

defines all the points on the surface of the sphere. As shown in

Figure 5.5, the point f(~,8,#) projects onto the point

(Rcos#cosf3, ~cos#sinb) on a two dimensional Cartesian plane.

Since the nodes of the polygon network are actually points on

the surface of the sphere, each of them can be denoted by the

(~,8,$) notation and its projection is expressed as (Rcos@cosf3,

~cos#sine). Since the "back1' polygons in the polygon network are

ignored, the angle @J is allowed to vary uniformly between -7r/2

and 7r/2 only. However, 8 can vary uniformly between -r and 7r.

The algorithm GenVL is used to generate the Delaunay

vertices of a bomb circle given its location (x,y), radius R,

and number of vertices n:

C~mment : RANDOM(type,lower,upper) is a random
value generator which returns a value
of data type <type> within the range
(<lower>, <upper>),

Comment : VL is a list of ordered pairs which is
initially empty.

Comment : Vx, Vy are local variables.

Routine GenVL (x,y,R,n) return (VL);

1 Repeat n times;

1.4 vy := y + R*cos4*sine;

1.5 Append (vx,v~) to VL;

2 Return VL;

Figure 5.6 displays a set of vertices generated by the GenVL

routine. The VL can be fed into any Delaunay triangulation

algorithm. In this thesis, the divide-and-conquer algorithm

Proposed in [LEED~O] is used.

5.5.4 Generation of a tessellated Bomb Circle

earance of There are three main parameters .governing the aPP

a tessellated bomb circle: (1) its location (x,~) I (2) its
an the bomb radius R, and (3) the number of tessellation cells

circle Ntc. The location of a bomb circle (x,y) is a S5umed to be

random on a 1024x1024 Cartesian plane with integral and

Figure 5 . 6 A Set of Vertices Generated with the Algorithm
GenVL

coordinates. The radius R of a bomb circle is also random.

However, R is only allowed to vary from 36 to 365. In Figure

5.7, the size of the largest and smallest bomb circle are

depicted. In determining the number of tessellation cells, we

set a rule which prevents too many cells to be formed in a small

circle. The rule states that the maximum number of tessellation

cells in a circle is directly proportional to the radius of the

bomb circle. Also, to constrain the number of bomb circles in an

image to be within a reasonable range, the number of

tessellation cells in a bomb circle cannot be too small nor too

Figure 5 . 7 The Biggest and Smallest bomb circle.

large. In this thesis, the number of tessellation cells is

allowed to vary from Np/lOO to ((~~/2)/(~/365)) = R*Np/730. With

this upper bound, even the largest allowable bomb circle

contains at most one half of the maximum number of graphics

objects in the scene. Consequently, there may be at least 2 and

at most 100 bomb circles in the image.

The objective of using Delaunay triangulation is to obtain a

polygon network such that the spatial characteristics of the

polygons can be studied. Any Delaunay tessellation algorithm can

be used to generate the desired triangle network. The

measurement of the spatial characteristics of the Delaunay

triangles can be performed after the tessellation has been

completed. However, we found it more effective if the spatial

statistics of the triangles can be collected at the same time as

triangles are generated. With this in mind, Lee and Schachter's

divide-and-conquer algorithm is used [LEED~O].

The basic idea of Lee and Schachter's algorithm is to merge

two sub-Delaunay triangle networks into a larger one [LEED~~].

In the process of merging two sub-networks, new edges are

inserted and a new Delaunay triangle is formed for each edge

added. At this moment, it is very easy to identify the three

vertices of the newly formed triangle; and hence identify the

image space partition(s) that it is local to. With a minor

modification, the triangulation algorithm can only be used to

reveal the amount of local triangles of a given set of

partitions.

The modified algorithm (MDT) is given an array (CNT) of p

entries where p is the number of image space partitions. Each

element of the array serves as a counter for local triangles of

an image space partition when a new triangle is generated. MDT

will test it against all the partitions. Then, the counters in

CNT will be updated accordingly, This array of counts, along

with the actual number of triangles generated (Nt), are returned

after the tessellation is completed.

5.5.5 Spatial Statistics Samplinq

A C-bomosaic image is composed of a number of circles each

of which is tessellated by the MDT algorithm. The total number

of Delaunay triangles found in a C-bomosaic image is limited by

a pre-determined upper bound N To keep track of the total P'
number of Delaunay triangles in a generated C-bomosaic image,

the number of the tessellation cells in each bomb circle must be

known. Unfortunately, the exact number of cells generated by the

MDT algorithm is very difficult to control (we can only limit

the number of vertices). Therefore, generating a C-bomosaic

image with exactly Np triangles is laborious. To overcome this

problem, we make use of the observation that the number of

Delaunay triangles generated on a set of vertices is

approximately equal to the number of vertices in the set.

In the C-bomosaic routine given below, statement 3.4

restricts the sum of the number of Delaunay triangles already

generated (<total> in 3.7) and the number of vertices in the new

bomb circle (v, in 3.4, 3.5) to be not greater than Np. Since

the number of tessellation cells in the new bomb circle will

approximately equal to the vertex number, the value (<total> +

<Tn> (in 3.7, 3.8)) will be close to (<total> + <Vn>).

The spatial statistics Nip, and SDop are obtained in

statements 5 and 6 according to expressions (5.2) and (5 . 3)

Comment :

Comment :

IP is an array of structures
of p elements. Each structure holds the
boundary of an image Space partition.

RANDO~(type,lower,upper) is a random
value generator which returns a value
of data type <type> within the range
C<lower>,<upper>).

Comment : VL is a list of ordered pairs which is
initially empty.

MaxT is the maximum number of remaining
cells.

Vn is the number of tessellation
vertices for the next bomb circle.

Tn is the total number of tessellation
cells just generated in the bomb circle.

CNT is an array of p elements which holds
the objects count for each image space
partition.

Routine C-Bomosaic (~ ~ ~ 1 P . p) :

1 MaxT := Np;

2 CNT(i) := 0 for all i, lsilp;

3 Repeat;

3.1 x := ~~~~0M(int,0,1023);

3.2 y := R~~~O~(int,O,1023);

3.3 R := ~~~~0M(int,36,365);

3.4 Vn := MIN(M~XT.RANDOM(~~~, (Np/lOO). (RXNp/730) 1;

3.5 VL := GenVL(x,y,R,Vn);

3.6 (CNT,T,) := MDT(VL,IP);

3.7 total := total+Tn;

3.8 MaxT := MaxT-Tn;

3.9 if ~ a x ~ < (~ ~ / 1 0 0) , then exit Loop 3:

4 mean := C CNT(i)/p;

5 Nips := p*mean/total;

6 SDop := d((Z (C~~(i)-mean)~)/(~-l));

7 Return (Nip,, S~op/mean):

5.6 Estimation of Performance Measures

To understand the effectiveness of the

Regional-Rasterization technique in graphics environments of

various complexities, the Nip, and SDop are estimated with

various Npls. Three values of Npls are considered: 500, 5000 and

50,000. These Npls correspond to the complexity of a low, medium

and high quality image. For each Np the Nip, and SDop are

estimated for 9 different implementations of the

Regional-Rasterization technique. These implementations have

image space partitions of equal size which are formed by slicing

the image space into an equal number of columns and rows.

Therefore, the image space partitions are all squares and have

the same area. For each particular scene complexity and

implementation, 50 C-bomosaic images are generated. For each

image, the Nip, and SDop corresponding to the

Regional-Rasterization implementation are computed. As a result,

27 sets of 50 Nip, samples and 27 sets of 50 SDop samples are

generated. The entries found in Table 5.1 and Table 5.2 are the

means of the 50 Nip, and SDop samples in these sets.

Partitions Low Ned i um High
(Np=500) (Np=5.000) (Np=50,000)

Table 5.1. Estimate of expected NipaTs for various scene

complexities. Number of image-space partitions

varies from 1 to 100.

Partitions Low Medium High
(Np=500) (Np=5.000) (~~=50,000)

Table 5.2. Estimate of expected (S D ~ ~ / ~ O ~ ~) ' S for various

scene complexities. Number of image-space

partitions varies from 1 to 100.

5.6.1 Analysis of the N a Estimates

From the estimates displayed in Tables 5.1 and 5.2,. we

conclude that the Regional-Rasterization technique is very

effective in improving the performance of graphics displays. ~n

Table 5.1 there are three columns and nine rows of entries. The

three columns correspond to three preset scene complexities. The

first one is for graphics environments which contain

approximately 500 objects, the second one is for environments

with 5000 objects and the third is for very complex scenes which

have 50,000 graphics objects. The leftmost number of each row is

the number of image space partitions used in a

Regional-Rasterization implementation. To analyze the results,

Graph 5.1 is plotted based on the information from the table.

In Graph 5.1, three curves are plotted in a plane whose x

and y represent the number of image space partitions and the

estimated Nipat respectively. As illustrated in the graph, the

estimated Nip, increases as the number of image space partitions

increases. This.can be explained by the fact that the chance for

a graphics object to cross a partition boundary increases as the

area of a partition decreases. his can also be shown more

rigorously, using the concepts of geometric probability

[SANT~~].) Nevertheless, if the number of graphics objects in

the environment is larger, the Nip, is closer to its lower

bound, namely one. To justify this result, we provide the

following arguments:

(a) The average area of graphics objects tends to be smaller as

Legend

Graph 5 . 1 Estimate of Nipals plotted vs number of
partition.

the total number of graphics objects increases. In the

C-bomosaic model defined in this thesis, this has been

assumed implicitly.

(b) The expected number of graphics objects required to

constitute a polygon network of a fixed area increases

linearly with the average object size.

(c) The average breadth1 of a graphics object decreases at a

rate much slower than that of the area of the object. For

example, the diameter of a circle can be expressed as

~(A/R).

(dl The graphics objects in a polygon network are

non-overlapping. Therefore, the expected number of objects

in a network that a.line of fixed length may intersect is

inversely proportional to the average breadth of the

objects. By argument (c) the rate of increase in the number

of graphics objects intersecting a partition boundary is

much slower than the decrease rate of the average object

area. By arguments (a) and (b), the number of objects in a

graphics environment increases more rapidly than the

resulting increase in the number of graphics objects

intersecting a partition boundary.

The first conclusion that is derived from Graph 5.1 is that

Regional-Rasterization is most effective in complex graphics

environments. Also, the computation overhead resulting from

repeated rendering of a graphics object is small if the number

of partitions is small. However, although more overhead is

required for larger number of image space partitions (up to a

certain number), Regional-~asterization may still be favorable.

'The breadth of a convex set in a direction d is the distance
between the two support lines (tangents), which are

perpendicular to d and are on opposite sides of the set
[SANT~~].

In Table 5.3, the expected numbers of pel-processes required

to render an object for a low, medium and high quality scene

with different ~egional-Rasterization implementations are

tabulated. As shown, the expected number drops as the number of

image space partitions rises. Nevertheless, when the data from

Table 5.3 is plotted out, it is more obvious that the rate of

improvement (the amount of pel-processes reduced per image space

partition increased) drops as the partition number increases. A

tremendous saving can only be achieved by using more partitions

when the partition number is small, say from 1 to 9.

Partitions Low Medium High
(Np=500) (Np=5.000) (~~=50,000)

Table 5 . 3 . Expected number of pel-processes required to

rasterize an object, for various scene

complexities. Number of image-space partitions

varies from 1 to 100.

In Graph 5.2, the corresponding expected numbers of

pel-processes required to render an object in a low, medium, and

high quality scenes are plotted for various number of image

space partitions. From all the three graphs, the expected number

Legend
low

Graph 5.2 Expected numbers of pel-processes plotted vs
number of partitions.

of pel-processes needed for each environment approaches

asymptotically to a lower bound. This implies that improvement

will stop when a certain lower bound is hit. Theoretically, this

lower bound is the average area of the graphics objects in the

graphics environment. Therefore, the second conclusion is: it is

not rcommended to divide the image space into a large number of

partitions.

5.6.2 Analysis of the SD Estimates 9

Expression (5.4) in Section 5.1 and statement 6 of the

C-Bomosaic routine (see Section 5.5) is the standard deviation

of the number of graphics objects that fall in various image

space partitions. The major objective of studying the behavior

of the SDop is to analyze the distribution of graphics objects

in the image space. However, the SDop alone is meaningless since

it cannot display the variation of graphics object population

density in the image space partitions. For example, the standard

deviation of 4 for a set of samples whose mean is 4 indicates a

great fluctuation among the sample values. Whereas, if the same

standard deviation is found in a sample set whose mean is 400,

it can be concluded that all the sample data cluster around the

sample mean. Therefore, in Table 5.2, the value of standard

deviation divided by the sample mean is used.'

In Table 5.2, the spatial distribution of the graphics

objects in a scene seems to be correlated with both the

complexity of the scene and the number of image space

partitions. The entries in Table 5.2 are plotted against the
-

number of SDop/lOil image space partitions in Graph 5.3. AS

-
illustrated, smaller SD /loi 1 is found for higher quality

OP

images. However, the influence of the number of graphics objects

---. -

Graph 5 . 3 Estimate of SDOp/lOil plotted vs partition
number.

in a scene is not very serious. As a result, all the three

curves are close to each other. This is due to the argument

spatial characteristics of bomb circles in an image are not

that

altered by the number of tessellation cells found in each bomb

circle, Since the spatial characteristics of bomb circle are

similar in low, medium and high quality cases, the evenness of

graphic object distribution is almost the same in the three

kinds of images. Nevertheless, owing to the MDT algorithm used

to generate the C-bomosaic images, images with larger Np will,

in general, have more bomb circles. Since these circles will -
distribute uniformly in the image space, smaller SDop/lOil in

images with larger Np is sensible.

-
In Graph 5.3, it is also illustrated that larger SDop/lOil

is resulted when an implementation incorporates a larger number

of image space partitions. To explain this phenomenon, we must

consider the clustering property of the graphics objects. Since

they form networks, the graphics objects localize at few certain

positions in the image space. This implies that graphics objects

in the cluster should fall in few abutted partitions only (see

Figure 5.8(a)). The effect of this characteristics on the

evenness of object distribution is depicted in Figure 5.8(b). As

shown, the chance that a partition is mostly filled or mostly

empty is higher if there are more partitions. Consequently, the

numbers of objects in the partitions has a greater fluctuation.

The most important concept to be gathered from our studies

in this chapter is that Regional-Rasterization is most effective

Figure 5 . 8 (a) Number of graphics objects in each partition
is almost equal.
(b) When there are more partitions, most objects
are local to only a few partitiens.

when the number of partitions is small (eg. four).

CHAPTER 6

IMPLEMENTING THE REGIONAL-RASTERIZATION TECHNIQUE

The Regional-Rasterization technique is based on two major

elements: (1) a scheme to partition the image-space, and (2) a

process to identify graphics objects local to a certain

partition. In this chapter, various design considerations in

implementing Regional-Rasterization are discussed. In sections

6.1, 6.2, and 6.3 we will concentrate on finding a suitable

image space partitioning scheme and on the hardware design of a

high speed local graphics object identifier.

Through the discussions in this chapter, the feasibility of

Regional-Rasterization is confirmed. In sections 6.4 and 6.5,

the applicability of the technique to parallel-processing image

rasterizers is demonstrated. Two examples are given: one

describes the application of Regional-Rasterization to Pixel-

Planes system [FUCHSI]; and the other describes how the

technique can be applied to Fussel's system F FUSS^^]. These two

systems represent two extreme architectural structures for image

rasterization: the image-space partitioned structures and the

object-space partitioned structures.

6.1 Modular Approach to Imaqe Rasterization

Let a m o d u l e be a "black-box" which is specially made to

attack the child problems (see Section 4.2.1). Obviously, a

sequential implementation requires only one module. However, in

the case of parallel implementations, at least p modules are

needed (p is the number of partitions employed). A module is

basically a device for image rasterization. There are many ways

to build a module.

I! > tt > "> "> By the generalized notation for graphics display

architectures (see Chapter 3 1 , a module can be defined with the

a-0-7-1 notation. With that notation, its hardware and

processing-time complexities can be defined by 01 and ay

respectively.

Recall the definition of a, 0, 7, and 1: the product a0 must

be greater than or equal to the number of graphics objects to be

scan-converted; and the product yh must be greater than or equal

to the number of pixels in the image space. For the module

associated with the image space ii, t he corresponding value a0

must be greater than the number of objects in Oi, and the value

yX must be greater than the pixels in Ii. Assume the object

space of the parent problem contain n objects and its image

space has m pixels. "> "> Then, the number of pixels in Ii is
*

m =m/p. Since all the partitions are of the same size, the

11~1's are all equal for all i=1,2, ...,p. Owing to the spatial

characteristics of the graphics objects, the total number of

objects to be considered by all the modules is n*=~~~,(n/~)

where Nips is the average number of partition(s1 to which a

graphics object is local (see Section 5.1) .

* *
~f a I-n -m - 1 architecture is employed by a module, it will

* require n processors and its computational rate is m*.

* *
Therefore, a sequential implementation with a 1-n -m -1 module

architecture will need n * = ~ ~ ~ ~ (processors and its
*

computation rate becomes pm , which is equal to m. For a

parallel implementation, the hardware complexity will be
*

pn =Nipa(n) and the computational rate will be m*=(m/p).

If a n*-1-1-m* architecture is employed by the modules, a

sequential implementation will have a hardware complexity
* *

m =(m/p) and a computational rate pn =Nipa(n). Similarly, for a

parallel-implementation, the hardware complexity is of order
* *

p(m)=m and the computational rate n =Nipa(n/p). These measures

are tabulated in Table 6.1.

Sequential Implementation

Hardware Complexity Nipa("/p) m / ~
Processing-Time Complexity m Nipa(n)

Parallel Implementation

Hardware Complexity Nipa(n) m
Processing-Time Complexity m / ~ Nipa("/p)

Table 6.1. Hardware and Processing-time Complexities for
Sequential and Parallel Implementations of
Regional-Rasterization.

Ff

The choice of a sequential or a parallel implementation all

depends on what is the objective for incorporating the

Regional-Rasterization technique. Obviously, sequential

implementation is particularly suitable for cases in which the

hardware quantity is to be cut down. As illustrated in

Table 6.1, a sequential implementation can achieve a factor of
* *

(N ~ ~ ~ / ~) and (1/p) cut down in hardware for the 1-n -m - 1 and
* *

n -1-1-m cases, respectively. However, parallel implementations

are good in improving the system's processing-time. Again, from

Table 6.1, the potential of a parallel implementation can be

shown by the improvement factor of (1/p) and in
* * * *

processing-time respectively for the I-n -m - 1 and n -1-1-m

cases. As is shown, the performance of an implementation is

closely related to the value of Nipa and p.

6.2 I?-Scheme for the Optimai Implementation

In Table 6.1, performance measures for various

implementations of the Regional-Rasterization technique are

posted. A general characteristic of these measures, due to p, is

that the effectiveness of the technique increases as the number

of partitions increase. Intuitively, the image space

partitioning scheme employed in Regional-Rasterization should

have a large number of partitions for better performance.

However, a factor, Nip,, causes a considerable degree of

degradation to an implementation's effectiveness if p is large.

From the performance study in Chapter 5, we know that Nip, is a

monotonic increasing function of p. That is, Nip, increases as

increases. In addition, the rate of increase of Nips is faster

than the growth of p. Consequently, as p increases, the

effectiveness improvement will eventually be compensated by the

degradation in effectiveness induced by Nipas This suggests that

there is an optimal value for p at which the effectiveness of

the Regional-Rasterization technique is maximal. This behavior

has been depicted in Graph 5.2.

In the graph, the expected number of pel-processes required

to execute in order to rasterize an object is plotted against p.

For the case Np=500 (N ~ is the maximum number of objects in the

graphics environment), a local minimum is found at p=81.

Furthermore, it has demonstrated that when Np=5,000 or 50,000,

the expected pel-processes number approaches their minimum

asymptotically. However, the theoretical optimal IP-scheme may

not be the most suitable one to be used mainly because of its

cost-effectiveness.

Upon implementation of optimal IP-scheme, there is usually a

large number of image space partitions formed. This amplifies

the difficulty in performing the local object identification. In

addition, the number of partitions becomes less significant to

the system performance as p grows large. This characteristic is

as well depicted in Graph 5.2. As is shown, the pel-processes

number drops rapidly as p shrinks. Nevertheless, the rate of

decrease slows down as p increases. Therefore, it is advisable

to adopt an IP-scheme thereby forming a small number of image

space partitions, such as 4, 9 or 16.

Based on the above arguments, we can reasonably assume that

the IP-scheme for the optimal implementation of

Regional-Rasterization will employ a smaller number of image

space partitions than the theoretical optimal IP-Scheme. (~ o t ~

that it is not necessary for the optimal implement to employ the

theoretical optimal IP-scheme.) This number may be much smaller

than the one corresponding to the theoretical optimal IP-scheme.

Supported by this idea, the local object identifier presented in

the next section is designed aiming at a small number of

partitions.

6 . 3 Local Graphics Object Identifier

One of the key components of the Regional-Rasterization

technique is the local graphics object identifier. The major

function of this component is to identify the partition(s1 that

a graphics object is local to. This component is conceptually an

algorithm which can be implemented in software or hardware. In

this section, the design of a low-cost high-speed local graphics

object identifier is discussed.

6 . 3 . 1 Input and Output

The local object identifier is a device which tests each

graphics object against all the image space partitions and

I
identifies the partitions that the object is local to. The input

to the device must contain information about the boundary of an

object. The borders of the partitions must also be known to the

identifier. However, since partition borders are static and will

never change, they are assumed to have been "burnt-in".

~nformation regarding the objects is obtained from the output of

a series ~f geometric transformation processes, which are

usually done by special hardware.

The identifier can be fitted in the scene rendering process

pipeline preceding the image rasterizer, where

Regional-Rasterization is implemented. At this stage, the

boundary of an object is described by the vertices of the object

expressed in screen coordinates. After an object is fed to the

identifier, an identification procedure is executed immediately.

The output of the device is a set of labeled objects. The labels

are used to identify a set of partition(s1 that a graphics

object is local to. The output can be in any format. However, a

string of p bits, where p is the number of partitions to be

considered, is sufficient. If p is too large, the output can be

in a more compact encoded form.

6.3.2 Speed Requirement

If the local graphics object identifier is fitted in the

scene rendering process, it must be capable of identifying an

- object at a rate not slower than any other device in the

pipeline. Otherwise, the identifier will slow down the

throughput of the entire system. with the current technology,

other devices in the scene rendering pipeline such as the

geometric transformers, clippers, ..., etc., may have a very
high throughput rate. Therefore, the primary design criterion

for the identifier is speed.

However, the identification process is not a simple task. To

check for overlaps of an object and a partition, all the edges

of the object must be tested against all the borders of the

partition. This involves many multiplications and additions. If

any intersection occurs, the object must overlap with the

partition and hence be local to it. Direct implementation of

this approach will require very complex circuitry.

6.3.3 Algorithm "INEXACT"

The algorithm used in our design is not exactly the one

described in the previous section. This algorithm is given the

name INEXACT in the sense that it is not solving the mentioned

identification problem exactly. However, the result produced by

INEXACT is so close to the optimal solution that it is very

useful for our application.

INEXACT views the image space as a matrix of partitions and

an object as a set of vertices (see Figure 6.1). It considers

all the partitions in the m i n i m a l r e c t a n g u l a r sub-matrix of

partitions, that enclose the object entirely, as the partitions

that the object is local to. This approach sometimes mistakenly

identifies an object and forces it to be unnecessarily rendered

in partitions that it is not local to; and hence wastes

--

Figure 6 . 1 Conceptual View of the Image Space by the
INEXACT Algorithm.

computational effort. For example, in the case of Figure 6.1,

- the actual number of partitions that the object local to is 33.

But the INEXACT algorithm identifies 72=49 partitions for the

object. That is, 16 mistaken partitions are identified. However,

we have found out that, on the average, the waste of computation

effort introduced by INEXACT is actually extremely small. In

fact, we found that 99.54 percent of graphics objects generated

in Chapter 5 can correctly be labeled by INEXACT. In many cases,

INEXACT makes no error in identifying objects. Figure 6.2

depicts some of the cases in which INEXACT produces "exact1'

results,

Figure 6 . 2 Various Classes of Objects that are Handled
Properly by the INEXACT Algorithm.

INEXACT-identifier is the device which is designed based on

the INEXACT algorithm for a matrix of 4-by-4 partitions (see

Figure 6.3). In Figure 6.3, the address of a partition is

determined by the column and row number of the partition. The

row number is counted from the lower row upward. The lowest row

has a number OOb and the highest row has a number l l b .

Similarly, the columns are numbered from left to right. The

leftmost column is column OOb and the rightmost colmun has an

address

lmcge Smce

Figure 6.3 Labeling Scheme for an Image Space of 16
Partitions.

be A partition address is the concatenation of a row address and

a column address. For example, the partition on row lob and in

column 1 1 has an address 101 1 b.

Assume the resolution of the display is 1024x1024.

Therefore, the screen coordinates are 10 bits long. For a point

(x,y), the two most significant bits, x9 and x,, of the x

coordinate and the two most significant bits, yg and y,, of the

y coordinate can be used to identify the partition enclosing the

point. The partition that the point (x,y) is local to has an

address ygy,x9x,. For example the point

(O 1 l O 1 l l O 1 O b , l O 1 O 1 O O O O b) , which is the point (442,687), is in

the partition 100lb.

In Figure 6.4, an overview of the INEXACT-identifier
. +

hardware is shown. When the vertices of an object are given, the

identifier will determine the bounding box of partitions that

the object is local to. The major input to the device are sets

of 4-bit strings. Each 4-bit string is a concatenation of the

two most significant bits of the X and Y coordinate of a vertex

"y9y8xgx8". Recall that this is the partition address that the

vertex is local to. Upon the entry of a new object (a new set of

4-bit strings), the RESET signal will be sent to the identifier

to notify the start of a new identification process. Then, for

each CLK cycle, a vertex ($-bit string) in the set is read and

processed.

The INEXACT-identifier consists mainly of a h o r i z o n t a l b a n d

d e c o d e r , a c o l u m n b a n d d e c o d e r , and a number of AND gates. The

116

main function of the horizontal band decoder is to identify a

band of rows which bound the object from the top and the bottom.

While the column band decoder finds the band of columns which

bound the object from the left and the right. Then the

horizontal band and vertical band are ANDed in order to obtain

the desired minimal rectangular sub-matrix of partitions (see

Figure 6.4).

The horizontal band decoder takes the sub-string "y,y8" as

input. This input is decoded by a 2-to-4 decoder. Then the

decoded row address (dl1d2,d3,d4) is passed down to a b a n d

r e g i s t e r , which consists mainly of 4 D-type flip-flops

(D 1 , ~ 2 , ~ 3 , ~ 4 where Di represents a flag for the ith row of

partitions). These flip-flops are hooked up in such a way that

Bi, for i=0,1,2,3, takes the "OR" of di and itself, that is

"Bi OR di", as its D input. With this arrangement, Di will

always memorize a 1 after a 1 is read from di (until the

identifier is reset). That means the band register is able to

keep a record of rows that have been addressed. This record is

then read by a 1 ow b a n d g e n e r a t o r (L) and a h i g h b a n d g e n e r a t o r

The L network evaluates the logic function "equal or below

the highest addressed row", for Dl, D2, D3, and D4. In contrast,

the H network identifies all the rows which are above or equal

to the lowest addressed row. Therefore, when the results from L

and H are ANDed, a band of rows between the highest and lowest

addressed rows is obtained.

The column band decoder works in a similar manner as the row

band decoder. These two devices operate simultaneously and hence

a horizontal (row) and vertical (column) band can be obtained at

the same time. ~otice that the horizontal band bounds the object

from the top and bottom, while the column band bounds the object

from left to right. When the bands are AND^^, the minimal

rectangle that encloses the object entirely is obtained. As

shown in Figure 6.4, the AND gate network has an output signal

for each of the 16 partitions. If a partition is within the

horizontal band and the column band, the corresponding AND gate

output will be 1.

The INEXACT-identifier is very fast. As illustrated, it just

takes one clock cycle for each vertex of the object. Although

the design given was for the 4-by-4 IP-scheme, it can easily be

generalized to the k-by-k case. Also, the device can easily be

modified to accommodate parallel-processing capability for

object vertices. For example, if the objects are triangles, then

the replacement of the 2-to-4 decoder and the band register,

with the structure shown at the bottom of Figure 6.4, allows the

INEXACT-identifier to process 3 vertices simultaneously.

6.4 Applyinq Reqional-Rasterization to the Pixel-Planes System

In order to get a better feeling for the

Regional-Rasterization technique, two examples are given to show

how it can be installed into a multi-processor graphics display

to "cut-down" 1) the required number of processing units, or 2)

the time required to render a scene. The system being considered

is the Pixel-Planes, which is an n-1-1-m-system. That is, there

is one (logical) pixel-processor for each pixel of the raster.

Assume the resolution of the display is 1024-by-1024. Therefore

it requires a matrix of (10241, pixel-processors to implement

the Pixel-Planes.

In the examples, the image space is to be divided into four

quarters, namely I,, I,, I,, and I, (see Section 3.3).

Conceptually, each of the partitions can be viewed as an

independent 256-by-256 sub-raster and thus can be handled by a

256-by-256 Pixel-Planes system. From now on, we will call such

256-by-256 matrices of Pixel-Planes structure used for the I,,

I,, 13, and I, as I/,-Pi xel-Pl anes. The notion of the

I/,-Pixel-Planes is depicted in Figure 6.5.

Again, the object space is divided into four groups: 0 1 , O,,

03, and 0,. The Oi, where i=l, 2, 3, or 4, contains only the

graphics objects that are local to Ii. Since the Oi's are

(logically) independent sets, they can be rendered either

sequentially or simultaneously. If the object groups are

rendered sequentially, only one I/,-Pixel-planes module is

required. If the four object groups are processed in parallel,

the total rendering time will be (almost) quartered.

After a brief overview of the Pixel-Planes concept, two

examples are given to demonstrate how Regional-Rasterization can

be used to enhance the ordinary Pixel-Planes system to achieve

improvement on hardware utilization or rendering-time.

6.4.1 Architecture and Operation Theory of Pixel-Planes

The fundamental operation of the Pixel-Planes system is the

calculation, simultaneously at each pixel, of the function

F(x,y)=Ax+By+C, where x and y are the coordinates of the pixel

in the display space. Figure 6.5 is a (conceptual) diagram of

the Pixel-Planes system. The system consists of an array of

identical memory cells connected to a grid which carries data to

the cells. Two serial multiplier trees appear at the top and

left-hand side of the array. These multipliers accept data from

the pre-processor and calculate, simultaneously for all values

of x and y, values for the functions Ax+C' and By+CW. Each

memory cell contains an adder which calculates the sum of these

two functions in order to generate ~(x,yj=~x+~y+~'+C", where

C'+CW=C. A block diagram for the X-multiplier is shown in

Figure 6.6. (The Y-multiplier is identical.) Data for the

coefficients A and C' is input to the multiplier in bit-serial

form. As shown, the multiplier calculates the expression Ax+C1

for all values of x in the range of the display. The

Y-multiplier accepts bit-serial data for coefficients B and C"

and generates the expression By+CW (for all y) synchronously

with the X-multiplier's Ax+C'.

Owing to the limited area of each integrated circuit, only a

small fraction of the pixels in the display can be put on a

- - --- - - - - -

, Figure 6 .5 The C o n c e p t u a l S t r u c t u r e of t h e P i x e l - P l a n e s
S y s t e m (f r o m [F u C H ~ ~]) .

Figure 6.6 X-Multiplier Tree of the Pixel-Planes
(from[FUCH81]).

single chip. Therefore it is necessary to break the multiplier

trees into multiple chips. In the actual design of the Pixel-

Planes circuit, a small subtree is implemented on each chip to

cover the pixels on the chip. A 'supertree' structure is built

on top of the subtrees to implement the tree levels above the

subtrees EPOu~851. As shown in Figure 6.6, a supertree contains

one multiply/accumulate stage for each level above the subtree.

Registers in the supertree can be programmed to map a path

through the full tree to the local subtree. With this

arrangement, any Pixel-Planes chip can be easily relocated by

simply re-programming the registers of its supertree.

Figure 6.5 also shows a conceptual scheme for

raster-scanning the memory cells. A row-select decoder driven by

the display refresh controller selects a row of pixel memory

cells, whose data is output in parallel to a shift-register.

This shift register then allows the video data to be shifted out

to the refresh controller.

Figure 6.7 shows the structure of an individual pixel memory

cell. The memory cell contains four registers: Z, which contains

AXtC'

Column Conlrol
Data

Figure 6 . 7 Internal Structure of a Pixel-Planes Memory Cell
(from [FUCH81]).

the smallest z-value so far received at the pixel (portion of

displayed object closest, and therefore most visible, to the

viewer); F, which provides temporary storage for the function

(F(x,y) output by the adder); I, the image register in which the

results of the current polygon 'painting' operation are stored;

and PI in which the intensity values for the previously

constructed complete image are stored. The image stored in the P

registers is the one currently being displayed. The P registers

can be accessed by the display refresh circuitry independently

of any processing operations in the pixel cells. In [POUL~~],

the processing circuitry and storage circuitry of a pixel are

seperated. The processing circuitry (called the ALU) provides.

all the local processing power of the pixel cell.

6.4.2 Application I : Hardware Cut-down

Figure 5.8 depicts the Pixel-Planes system with

Regional-Rasterization implemented. Few minor modifications to .
the system architecture can be found. Firstly, the pixel memory

cell in the 1/4-Pixel-~lanes module is modified to accommodate 4

pixels. The modified pixel memory cell now has a P register file

and a Z register file. The P and Z register files contain 4

registers each. The pixels stored in Pi make up the image

displayed in Ii. Two output paths are used to output the pixels

to the shift register for video refreshing. The left path is

used by the Pl's and P,'s, while the right one is for P,'s and

polygon data

4

part i tion id. ---u
1 /4-Pixel-Planes

t o video refresh unit. - -
1st half 2nd ha1 f

Remark:
The x and y super-trees are programmed
(according to the partition id) such that the
1/4-Pixel-Planes can cover any quadrant of
the image space.

I

- -- - --

Figure 6.8 Application I: Hardware Cut-down.

Before a polygon (PI is passed down to the system, it is

examined by an INEXACT-identifier which determines the image

space partition(s) that the polygon is local to (see Section

3.3). The result of the local object identification procedure

will be the tuple P:i where i is the object space that P is

local to. If P is local to more than one object space partition,

copies of PI each t a g g e d with a different i, are generated. For

example, if a polygon P belongs to both 0, and 02, then P:l and

P:2 are produced.

The tagged polygon, P:i, is then passed down to a FIFO

buffer which is the entrance to the I/,-pixel-planes. This FIFO

is used to synchronize the polygon data input rate with the

computation speed of the I/,-pixel-planes. When a P:i leaves the

FIFO, it enters into the ith "supertrees". The i tag will

determine which supertree should feed the I/,-Pixel-Planes.

In the 1/4-~ixel-Planes, the P is rendered as described

earlier. The resulting image of the P:i is stored in the Pi of

the pixel memory cells.

For video refreshing, each scan-line is a concatenation of

two sub-lines. The first half is made up of the pixels from the

P I (P,) registers of a row in the I/,-pixel-Planes module. The

second half is formed by the P2 (P,) pixels of the same row.

Since pixels of the two halves of the scan line are output via

two separate data paths (see Figure 11), the entire scan-line

can be obtained with a single access to the P register file of

each pixel memory cell. With this arrangement, the video

refreshing activity can be carried out with no unnecessary

delay.

With the Pixel-Planes implemented in this way, the amount of

hardware required for processing (not storing) pixel information

is reduced. Theoretically, this implementation can save up to

75% of the amount of silicon area which was used previously for

the multiplier trees and ALU of the pixel cells. This 'cut-down1

of hardware is significant not only because it reduces the cost,

but also because it may provides an alternative way to the

Pixel-Planes design.

The major disadvantage of this implementation is the

degradation in throughput. Notice that each object must be

processed once for every partition that it is local to.

Therefcre, t h e mcdified Pixel-Planes is expected to be slower.

However, if the average size of the graphics objects is small

and the partition size is large, the chance of "multi-rendering"

is very small. We expect the degradation in speed will be less

than 10 percent. Moreover, there is also hardware overhead. It

includes the extra facilities such as the local object

identifier and the FIFO buffer, and extra supertree must be

included. Therefore, this implementation of

Regional-Rasterization might not be appropriate when the

required resolution of the display is low. However, for high

resolution applications this approach becomes more cost

effective.

6.4.3 Application 11: Scene Renderinq Speed-up

A major weakness of the P-ixel-Planes system is its

limitation on the number of graphics objects that it can render

in a fixed time interval. By enhancing the pixel-Planes with

Regional-Rasterization the scene rendering .speed of the system

can be quadrupled. An example of such an implementation is shown

in Figure 6.9. In this implementation of Regional-Rasterization,

all of the four I/,-pixel-planes modules are able to work on

different (labeled) polygons simultaneously.

The sequential stream of polygon data can now be fed into

the modified system at four times the previous rate. Each

polygon (PI will be examined by the local object identifier

which determines which FIFO it should be put in. The four FIFO's

in Figure 6.9 correspond to the I,, I,, I,, and I, regions.

Similar to the previous case, duplicated P ' s may be produced if

a polygon spans over more than one partition. Here duplicated

P's are fed into more than one FIFO. The '/,-pixel-planes

modules read data from their associated FIFO buffers and render

polygons independently. Note that in this example, the internal

architecture of a I/,-pixel-planes module is identical to an

ordinary Pixel-Planes. The video refreshing activity can be

carried out as usual.

With this implementation, the scene rendering speed can be

potentially quadrupled. The actual speed improvement is

determined by the evenness of the spatial distribution of the

partition :I id .

FIFO 1

..

polygon data

Trans1 a tor

k
FlFO 2

I /4-Plxel-Planes
module

Y
FlFO 3

'1
FlFO 4

2nd
1 /4-Pixel-Planes

module

4th
1 /4-Pixel-Planes

module module

#'
A

\ f

scan-) i ne buffer
1st half 2nd half

Figure 6 . 9 ~pplication 11: Scene ~endering Speed-Up.

graphics objects in the image space. Since all the 4

I/,-pixel-Planes are working simultaneously, the time required

to render all the objects is equal to the maximum time required

by the l/,-Pixel-planes to process their objects. If the

distribution is very even, then there are approximately 1/4 of

the total number of graphics objects local to each partition. In

this case, the system is speeded up about 4 times.

In the worst case, all the objects are local to a single

partition. There will not be any improvement in the processing

time. However, it is guaranteed that the worst case performance

of this implementation is the same as an ordinary Pixel-Planes

system.

Owing to the limited area of each integrated circuit, only a

small fraction of the pixels in the display can be put on a

single chip. Therefore it is necessary to break the muitiplier

trees into multiple chips. In the actual design of the Pixel-

Planes circuit, a small sub-tree is implemented on each chip to

cover that pixels on the chip [POUL~~]. A supertree structure is

built on top of the subtrees to implement the tree levels above

the subtrees. With this system, separate X and Y multiplier

trees for each individual I/,-pixel-planes module are already

implemented implicitly.

The major overhead of this implementation comes from the

extra hardware for the local object identifier, and the 4 FIFO

buffers. However, we estimate that this overhead is negligible

compared with the cost of the entire display. Therefore,

advantages of ~egional-~asterization are even more amplified in

this case.

6.5 Applyinq Reqional-~asterization to Fussel's Real-Time

Scan-Conversion Engine

In the previous section, an implementation of the

Regional-Rasterization technique into an n-I-1-m system was

exemplified. In this section, the applicability of the technique

to a I-n-m-1 system is investigated. The system being considered

is Fussel's real-time scan-conversion engine. An example is used

to demonstrate how the Regional-Rasterization technique helps in

reducing the hardware quantity for the engine. Speeding up

Fussel's system is not of interest since it is already powerful

enough to rasterize a scene in a single frame time. Therefore,

the discussion of imglementing Regional-Rasterization to improve

system throughput is skipped.

In this section, the number of image space partitions is

. still assumed to be four. Thus, the object space is divided into

four groups: O,, 02, O3 and 04.

6.5.1 Architecture and Operation Theory of Fussel's System

The overall organization of the system is depicted in

Figure 6.10. In this system, the "frame buffer1' consists of a

collection of triangles rather than points. These triangles are

Computer . 0 - .

1 Model memory r - - - - - - - - - - -fL -- - - - - - 7

Triangle ,;
buffer I

Controller

Figure 6 . 1 0 The O v e r a l l S t r u c t u r e of F u s s e l ' s Sys t em (from[
 FUSS^^ 1 1.

stored in the so-called model memory. Segments of the model

memory are hooked up to a number of individual preprocessing

pipelines through which the triangles in the segments are

transformed and clipped. The actual image rasterization task is

performed in the so-called triangle buffer which contains a

large number of triangle processors. Each triangle processor

performs a scanout of the triangle it received from its

preceding preprocessing pipeline, incrementally determining the

color and z coordinate value for each pixel. The output of the

triangle processors is then fed through the arbitration logic

that determines which pixel is closest to the observer and uses

the color of that pixel for video refreshing.

According to Fussel's terminology, a system slice consists

of the following pipeline: a model memory slice, a model memory

interface, a transformation and clipping unit, a triangle

initialization unit, and a triangle buffer slice (see

Figure 6 . 1 1) . As shown in Figure 6.11, a triangle buffer slice

is in fact an integration of an array of triangle processors and

a comparator tree. Each triangle processor consists of 20

registers, with associated addition, comparison, and control

logic, as shown in Figure 6 . 1 2 . Each processor performs a simple

scanout of the triangle, based on an identification of the

initial left and right boundary edges and the third "alternate"

edge by the triangle initialization module (see Figure 6 . 1 3) .

The triangle processor monitors the address bus until a Y

address which is equal to the value stored in the Y register is

I Nodcl mcmor y
intcrfacc I

Hodvl memory s l i c e

t o
oL11cr r - - -- -

connecting other s l i c e s

Address bus
control l er

Data bus-
from root o f conparator t r e e

r'

Triangle
Jescr IpC ions

Figure 6.11 Internal Organization of a System Slice (from
[FUSS82]).

1

Transfornation
specj f ic'nt ion!.

Add;e ss
bus

A

Data
bus

I t

From refresh From tr iangle
cont io l l er inft ia l !zat ion unit .

Z coordinate Color a

Figure 6.12 Block Diagram of a Triangle Processor (from
[F U C H ~ ~]) .

right

l e f t

Direct ion
01 smn

alternate

Figure 6 . 1 3 Assignments of Triangle Edges.

sent. It then monitors the X address until it reaches a value

equal to X-left, at which time it outputs the initial color and

Z coordinate. (~otice that the (X,Y) address is generated by the

video refresh logic for sweeping out pixels in a raster from top

to bottom and from left to right.) For each subsequent pixel,

the color is incremented by dc/dx and the Z coordinate value by

dz/dx and the new values are output. When the X address reaches

X-right, the output is halted and the next scanline is prepared

by adding dx/dy-left, dx/dy-right, dz/dy, and dc/dy to X-left,

X-right, Z-left, and C-left respectively. The values of Z and C

are then set equal to Z-left and C-left and the value of delta y

137

is decremented by 1. This process continues scan-line by scan-

line until delta y reches 0. At this point, X-alt is compared t~

X-left and X-right to determine whether the left or the right

edge should be replaced by the alternate edge. The value of

dx/dy-alt, is then copied into dx/dy-left or dx/dy-right as

appropriate. In the former case, the values of dz/dy-alt and

dc/dy-alt are copied into dz/dy and dc/dy respectively. Delta y

is set to the value of delta y-alt, and the processing continues

until deltay once again reaches zero. At this point output is

disabled, and the triangle processor enables itself for input of

a new triangle.

6.5.2 Application I: Hardware Cut-down

In order to make use of the Regional-Rasterization

technique, a simple architectural modification to the triangle

processors is required. The modified architecture is depicted in

Figure 6.14. In a modified triangle processor, there are 4

(i.e., the number of image space partitions) register files

instead of 1 . The internal structure of the register files is

unaltered. That is, each of them still has 20 registers for the

Y, X-left, dx/dy-left, ... etc. However, each of the four
register files is now bound to a distinct partition in such a

way that it is allowed to handle only those objects local to its

corresponding partition. With this configuration, a triangle

processor can hold up to 4 triangles, each from a distinct image

space partition. The computational logic is shared among the 4

objects defined in the 4 register files. A set of multiplexing

Assume the image space is
mntaining these 4 objects.

Part i t ion i d of triangles
I

I
I

Decoder

circuitry and the register

Figure 6 . 1 4 A Modified Triangle Processor.

L

logic which reads the X,Y address is employed to multiplex the

The c i rcui t i n
here i s shared
by the 4
register f i les.

I

computational logic among the register files.

Enable

Register
f i l e
for

The local object identification process is carried out

Enable

Register
f i l e

preceding the triangle initialization step. Each triangle is

Enable

Register
f i l e

D ' C ; v L

Enable

Register
f i l e

labeled by the local object identifier. These labeled triangles

will then be handed down to the array of modified triangle

processors (see Figure 6 .15) . As a triangle with label i is

received by the processor array, the first processor with a free

i register-file will be assigned to the triangle.

It should be obvious by now that the modified triangle

processor is functionally equivalent to four ordinary triangle

processors. As the scene is scanned-out, a triangle processor

switches among 4 different triangles which are local to 4

different image space partitions. Therefore, in a video refresh

cycle, a single modified triangle processor is able to rasterize

up to 4 objects. Assuming that t slices are required in the

original Fusselfs system, with the modified triangle processors,

approximately t / 4 slices are needed. Hence, a cut down of up to

75% of the original amount of hardware is potentially

achievable. The schematic of the Fussel's system with the

Regional-Rasterization implemented is shown in Figure 6.15.

The overhead for this implementation includes the extra

silicon area required to implement extra register files in the

triangle processors. In addition, there must be a local object

identifier for each system slice.

From host computer
I

Model
memory

Transform-
ation and

l NEXACT
ident i f ier

Triangle
initializer

A magnified slice.

Slice t/4

1 I

External comparator
pixel t ree

Modif ied controller CRT
t r iang le
processors.

Figure 6.15 Application of the Regional-Rasterization
technique to Fussel's system.

CHAPTER 7

CONCLUSION

A mathematical model was created to measure the expected

number of memory cycles required to update a pattern for the

scan-line mapping scheme and the symmetric mapping scheme for

conventional frame buffered system. Three benchmark cases were

used to demonstrate the applicability of this model. In the

three benchmark cases it was shown that on the average the

symmetric mapping scheme is faster than the scan-line mapping

scheme. However, when the frame buffer consists of a small

number of memory chips (e.g. 116), the speed advantage of the

symmetric mapping scheme is so small that scan-line mapping

scheme may be more cost effective mainly because of its simpler

implementation. This discourages the use of conventional frame

buffer architecture for applications requiring real-time image

rasterization capability; because, even with symmetric mapping

scheme implemented, performance will never be much superior to a

conventional system.

Multi-processor architectures provide a promising solution

to the real-time image rasterization problem. To achieve the

desired computational power, the number of processing units is

usually tremendous. These identical processing units are

commonly structured in a loosely-coupled manner. Furthermore,

perhaps more important, data separability is inherent in the

scan-conversion problem, which means that littel or no

inter-processor communication is necessary [KAPL~~].

However, when independent parallel computation tasks are

distributed across a network of loosely-coupled processors, much

of the coherence information about the graphics objects to be

rendered will be lost. The performance of a scan-conversion

algorithm can be improved substantially by taking advantage of

some kind of coherence [NEWM~~]. The regional-rasterization

technique basically does this in a parallel-processing

environment.

An important argument was given to support the idea of

regional-rasterization: if the number of graphics objects is

large, the average size of the graphics objects will be small.

As a consequence, regional-rasterization is most effective in

systems where the scene consists of many small objects. A major

advantage of the regional-rasterization technique is its

applicability to a variety of multi-processor architectures for

graphics displays. ~egional-rasterization requires only a small

amount of extra hardware and introduces some processing

overhead. However, comparatively speaking, these overheads are

usually negligible.

In this thesis, only symmetrical partitioning of the image

space has been considered. However, it is possible to have

different forms of partition geometry and they might be valuable

to some specific architectures (see Figure 7.1 for some).

horizontal vertical

symmetric

tbre I P - ~ ~
is dynamically
adJusted for each
frame o f image.

dynamic

Figure 7.1 Various Image Space Partition Schemes.

Currently, we have only considered the case where image

space is partitioned into static regions. However, the dynamic

nature of computer graphics suggests that d y n a m i c p a r t i t i o n i n g

of the image space is an interesting refinement for the

regional-rasterization technique. Some common ideas related to

the dynamic partitioning can be found in the paper by Tamminen

[TAMM~I] and Dippk [DIPP84j. With the ability to partition the

image space dynamically, the regional-rasterization technique

can self-adjust in such a way that each image space partition

shares (almost) equal number of graphics objects. If this can be

done, performance is optimized for each frame of image. However,

we predict that adjusting the partition size dynamically is not

easy to achieve due to the static configuration of the processor

network commonly used in the image rasterizer.

REFERENCES

[AHUJ~I] Ahuja, N., and B. J. Schachter, "Image Models,"
C o m p u t i n g S u r v e y s , Vol. 13, NO. 4, DEC. 1981,.pp.
373-397.

[A B R A ~ ~] Abram, G. D., and H. Fuchs, "VLSI Architectures for
Computer Graphics", P r o c . o f NATO A d v . S t u d y I n s t . o n
Mi c r o a r c h i t e c t u r e o f V L S I Comput e r , Sogesta-Urbino,
Italy, July 9-20, 1984.

 BARN^^] Barnhill, R. E., and W. Boehm, Surfaces in Computer
Aided Geometric Design, North-Holland Publishing
Company, 1983.

 CARL^^] Carlbom, I. B., High-Performance Graphics System
Architecture: A Methodology for Design and Evaluation,
UMI Reasearch Press, Ann Arbor, Michigan, 1984.

[C H O R ~ ~] Chor, Benny, C. E. Leiserson, and R. L. Rivest, "An
Application of Number Theory to the Organization of
Raster-Graphics Memory," M. I . T . V L S I Memo N o . 8 2 - 1 0 6 ,
JUN. 1982.

[CLAR~O~] Clark, J. H., "A VLSI Geometry Processor for
Graphics," COMPUTER, Vol. 13,-NO. 7, JUL. 1980, pp.
59-68.

[CLAR~O~] Clark, J. H:, and M. R. Hannah, "Distributed
Processing in a High-Performance Smart Image Memory,"
LAMBDA, 4TH QUARTER 1980, pp. 40-45.

[C L A R ~ ~] Clark, J. H., "The Geometry Engine: A VLSI Geometry
System for Graphics," C o m p u t e r G r a p h i c s , Vol. 16, No.
3, JUL. 1982, pp. 127-133.

[COHE~~] Cohen, C. L., "Full Wafer Memory for Color Displays
has 1.5-MB Capacity," E l e c t r o n i c s , JAN. 26, 1984, pp.
77-78.

[C R A I ~ ~] Crain, I. K.! and R. E. Miles, "Monte Carlo Estimates
of the Distributions of the Random Polygons Determined
by Random Lines in a PLane, " J o u r n a l of S t a t i s t i c s ,
Comput i n g , a n d S i m u l a t i o n , Vo1. 4, 1976, pp. 293-325.

 DARK^^] Darke, F. I., "Simulation and Expected Performance
Analysis of Multiple Processor Z-Buffer Systems,"
P r o c e e d i n g o f SIGGRAPH 8 0 , 1980.

[D E M E ~ ~ ~] Demetrescu, S., "High Speed Image ~asterization using
Scan Line Access Memories," C h a p e l Hill C o n f e r e n c e o n
V L S I , 1985, pp. 95-1020

[DIBP~~] Dippb, M., and J. Swensen, "An ~daptive Subdivision
Algorithm and Parallel Architecture for Realistic
Image ~ynthesis," C o m p u t e r G r a p h i c s , Vol. 18, No. 3,
JUL.1984, pp. 149-158.

[ENGL~~] England, N., "A Graphics System ~rchitecture for
Interactive-Specific Display ~unctions," I E E E C o m p u t e r
G r a p h i c s a n d A p p l i c a t i o n s , Vol. 6, NO. 1, JAN. 1986,
pp. 60-70.

 FALL^^] Fallin, J., "CHMOS DRAMS in Graphics ~pplications,"
S o l u t i o n s , INTEL CO., MAY/JUNE 1984, pp. 20-27.

 FINK^^] Finke, D. I,., "Dynamic RAM Architectures for Graphics
Applications," A F I P S NCC C o n f e r e n c e P r o c e e d i n g s , 1983,
pp. 479-485.

[F O L E ~ ~] Foley, J. D., and A. Van Dam, Fundamentals of
Interactive Computer Graphics, Addison-Wesley, 1982.

[F R A N ~ ~] Frankiln, W. R., "A Linear Time Exact Hidden Surface
Algorithm," C o m p u t e r G r a p h i c s , Vol. 12, No. 3, MAR.
1980, pp. 117-123.

[FRAN~I] Franklin, W. R:, "An Exact Hidden Sphere Algorithm
That Operates in Linear Time," C o m p u t e r G r a p h i cs a n d
I m a g e P r o c e s s i n g , Vol. 15, No. 2, APR. 1981, pp.
364-379.

[F U C H ~ ~] Fuchs, H., and B. W. Johnson, "An Expandable
Multiprocessor Architecture for Video Graphics
(preliminary ~eport) ," P r o c . of T h e 6t h A n n u a l
S y m p o s i urn o n C o m p u t er A r c h i t ect u r e , 1979, pp. 58-67.

[FUCH~I] Fuchs, H., and J. Poulton, "PIXEL-PLANES : A
VLSI-Oriented Design for a Raster Graphics Engine,"
V L S I D E S I G N , Vol. 2, No. 3, THIRD QUARTER, 1981, pp.
20-28.

[F U C H ~ ~ ~] Fuchs, H., J. Poulton, A. Paeth, and A. Bell,
"Developing PIXEL-PLANES, A Smart Memory-Based Raster
Graphics System," P r o c . of 1982 Conf. o n A d v a n c e d
R e s e a r c h i n V L S I , M . I . T . , 1982, pp. 137-146,

~uchs, H., J. Goldfeather, J. Hultquist, S. Spach, J.
Austin, F. Brooks, Jr., J. Eyles, and J. Poulton,
"Fast Sphere, Shadows, Textures, Transparencies, and
Image Enhancements in PIXEL-PLANES,'' A C M S I G G R A P H ,
Vol. 19, No. 3, 1985, pp. 111-120.

Fujimoto, A., C. G. Perrott, and K. Iwata, "A 3-D
Graphics Display System with Depth Buffer and Pipline
Processor ," I E E E C o m p u t er G r a p h i cs a n d Appl i cat i o n s ,
Vol. 4, No. 6, JUN. 1984, pp. 11-23.

Fussel, D., and B. D. Rathi, "A VLSI-Oriented
Architecture for Real-TIme Raster Display of Shaded
Polygons (preliminary ~eport) , " Pr oc. of Gr ap h i cs
I n t e r f a c e ' 8 2 , 1982, pp. 373-380.

Gharachorloo, N., and C. Pottle, "SUPER BUFFER: A
Syst~lic VLSI Graphics Engine for Real Time Raster
Image Generation," C h a p e l Hill C o n f e r e n c e o n V L S I ,
1985, pp. 285-305.

Goldfeather J., and H. Fuchs, "Quardratic Surface
Rendering on A Logic-Enchanced Frame-Buffer Memory,"
I E E E C o m p u t er G r a p h i cs a n d Appl i cat i o n s , Vol. 6, No.
1 , JAN. 1986, pp. 48-56.

Griffiths, J. G., "~liminating Hidden Edges in Line
Drawings," C o m p u t e r A i d e d D e s i g n , Vol. 1 1 , No. 2,
1979, pp. 71-78.

[G U P T ~ ~ ~] Gupta, S.! R. F. Sproull, and I. E. Sutherland, " A
VLSI Architecture for updating Raster-Scan Displays,"
C o m p u t e r G r a p h i c s , Vol. 15, No. 3, MAR. 1981, pp.
333-340.

[I K E D ~ ~] Ikedo, T., "High-speed ~echniques for 3-D Color
Graphics Terminal," I E E E C o m p u t e r G r a p h i cs a n d
A p p l i c a t i o n s , Vol. 4, No. 5, MAY 1984, pp. 46-58.

[J O N G ~ ~] Jong, W. P., "An Efficient Memory System for Image
Processing," I E E E T r a n s . o n C o m p u t e r s , Vol. C-35, No.
7, JUL. 1986, pp. 669-674.

[K A P L ~ ~] Kaplan, M., and D. Greenberg, "Parallel Processing
Techniques for Hidden Surface Removal," C o m p u t e r
G r a p h i c s , Vol. 13, 1979, pp. 300-307.

[K E D E ~ ~] Kedem, G., and J. L. Ellis, "The Raycasting System,"
P r o c . of 1984 I E E E Int 1. C o n f . o n C o m p u t e r D e s i g n ,
OCT. 1984, pp. 533-538.

Kedem, G., and S. W. Hammond, "THE POINT CLASSIFIER: A
VLSI Processor for Displaying Complex Two Dimensional
Objects," Chapel Hill Conference on VLSI, 1985, pp.
377-393.

Klenbaum, D. G., and L. L. Kupper, Applied Regression
Analysis and Other Multivariable Methods, Duxbury
Press, North Scituate, Massachusetts, 1981.

Lee, D. T:, and B. J. Schachter, "Two ~lgorithms for
Constructing a Delaunay Triangulation, " Int ernat i onal
Journal of Computer and Information Science, Vol. 9,
No. 3, 1980, pp. 219-242.

Locanthi, B., "Object Oriented Raster Displays,"
CALTECH Conference o n VLSI, JAN. 1979, pp. 215-225.

Matern, B., "Spatial Variation," Medd Statens
Skogs forskni ngs Inst i t ut, St ockholm, Sweden, 1960, pp.
1-144.

Matick, R., D. T. ~ i n g , S. Gupta, and F, Dill, "All
Point Addressable Raster Display Memory, " IBM Jour nal
of Research and Development, Vol. 28, No. 4, JUL.
1984, pp. 379-392.

McClure, D. E., "Image Model in Pattern Theory," i n
Image Model i ng (edi t ed by A. ~ o s e n f i el d), ACADEMIC
PRESS, 1981, pp. 259-275.

Mead, C., and L. Conway, Introduction to VLSI Systems,
Addison-Wesley, 1980.

Miles, R. E., "Poisson Flats in Euclidean Spaces Part
I: A Finite Number of Random Uniform Flats," Advanced
Applied Probability, Vol. 1, 1969, pp. 211-237.

Miles, R. E., "Poisson Flats in Euclidean Spaces Part
11: Homogeneous Poisson Flats and the Complementary
Theorem," Advanced Appl i ed Probabi 1 i t Y , Vol. 3, 1971,
pp. 1-43.

Miles, R. E.! "A Survey of Geometrical Probability in
the Plane, with Emphasis on Stochastic Image
Modeling," Comput er Graphi cs and Image Processi ng,
Vol. 12, NO. 1, JAN, 1980, pp. 1-24.

Modestino, J. W., R. W. Fries, and A. L. Vickers,
"Stochastic Image Models Generated by Random
~essellations of the Plane," i n Image Model i ng (edi t ed
by A. Rosenfeld), ACADEMIC PRESS, 1981, pp. 301-326.

[M O R A ~ ~] Moran, P. A. P., "The Random Volume of
~nterpenetrating Spheres in Space," Journal of A p p l i e d
P r o b a b i l i t y , Vol. 10, 1973, pp. 483-490.

[N E W M ~ ~] Newman, W. M., and R. F. Sproull, principles of
Interactive Computer Graphics, 2nd ed., Mc~raw- ill,
New York, 1979.

 NICK^^] Nickel, R., "The IRIS Workstation," I E E E C o m p u t e r .
G r a p h i c s a n d A p p l i c a t i o n s , Vol. 4, No. 8, AUB. 1984,
pp. 30-34.

[N I I M ~ ~] Niimi, H., Y.Imai, and M. ~urakami, "A Parallel
Processor System for Three-Dimensional Color
Graphics," C o m p u t e r G r a p h i c s , Vol. 18, No. 3, JUL.
1984, pp. 67-76.

[O S T A ~ ~] Ostapko, D. L., "A Mapping And Memory Chip Hardware
Which Provides Symmetric ~eading/~riting of ~orizontal
And Vertical Lines," I B M Journal of R e a s e a r c h a n d
D e v e l o p m e n t , Vol. 28, No. 4, JUL. 1984, pp. 393-398.

 PARK^^] Parke, F. I., "Simulation And Expected Performance
~nalysis of Multiple Processor Z-buffer Memory," P r o c .
of A C M S I G G R A P H ' 8 0 , pub1 i s h e d as C o m p u t er G r a p h i cs,
Vol. 14, No. 3, JUL. 1980, pp. 48-56.

[POUL~~] Poulton, J., H. Fuchs, J. Austin, J. Eyles, J.
Heinecke, C. Hsieh, J. Goldfeather, J. ~ultquist, and
S. Spach, "PIXEL PLANE: Building a VLSI-Based Graphic
System," C h a p e l Hi1 1 C o n f e r e n c e o n V L S I , 1985, pp.
35-61.

[R E E V ~ ~] Reeves, A. P., "SURVEY: Parallel Computer Architecture
for Image Processing," C o m p u t er Vi si on, G r a p h i cs, a n d
I m a g e ~ r o c e s s i n ~ , Vol. 25,-NO. 1, JAN. 1984; pp.
68-88.

[SANT~I] Santalo', L. A., and I. Yanez, "Averages for Polygons
Formed by Random Lines in Euclidean and Hyerbolic '
Planes," Journal of A p p l i e d P r o b a b i l i t y , Vol. 9, 1972,
pp. 140-157.

[S ANT~~] Santalo', L. A., Encyclopedia of Mathematics and its
Applications Vol. 1 : Integral Geometry and Geometric
Probability, Addison-Wesley Publishing Company,
Reading, Massachusetts, 1976.

Sato, H., M. Ishii, K. Sato, M. Ikesaka, H. Ishihata,
M. Kakimoto, K. Hirota, and K. Inoue, "Fast Image
Generation of Constructive Solid Geometry Using A
Cellular Array Processor," ACM SIGGRAPH, Val. 19, No.
3, JUL. 1985, pp. 95-102.

Scheaffer, R. L., W. Hendenhall, and L. Ott,
"Elementary Survey Sampling," D u x b u r y P r e s s , N o r t h
S c i t u a t e , M a s s , , 1979.

Schmidt, D. G., "Color Graphics Display for An
Engineering ~orkstation," Hew1 e t t - P a c k a r d J o u r n a l ,
Vol. 35, No. 5, MAY 1984, pp. 12-15.

Spiegel, M. R., Theory and Problems of Statistics,
McGraw-Hill Book Company, 1961.

Sproull, R. F., I. E. Sutherland, A. Thompson, S.
Gupta, and C. Minter, "The 8 By 8 is play," ACM T r a n s .
o n G r a p h i c s , Vol. 2, No. 1, JAN. 1983, pp. 381-411.

Stepoway, S. L., D. L. Wells, and G. R. Kane, "A
Multiprocessor Architecture for Generating Fractial
Surfaces," IEEE T r a n s . o n C o m p u t e r s , Vol. C-33, No.
11, NOV. 1984, pp. 1041-1045. ,

Strothotte, T., and B. Funt, "Raster Display of a
Rotating Object using Parallel Processing," C o m p u t e r
F o r u m , Vol. 2, 1983, pp. 209-217.

Sutherland, I. E., R. F. Sproull, and R. A.
Schumacker, "A Characterization of Ten Hidden-Surface
Algorithms," C o m p u t i n g S u r v e y s , Vol. 6, No. 1, MAR,
1974, pp. 1-55.

Switser, P., "A Random Set Process in the Plane with a
Markovian Property," Ann. M a t h . S t a t . , Vol. 36, No. 6,
DEC. 1965, pp. 1859-1863.

Switzer, P., "Reconstructing Patterns from Sample
Data," Ann. M a t h . S t a t . , Vo1. 38, 1967, pp. 138-154.

Switzer, P., "~apping a ~oeographically Correlated
Environment, '' T e e h. R e p . 1 4 5 , D e p . S t a t i s t i c s ,
S t a n d f o r d U n i v . , STANDFORD, CALIF., 1969.

Tamminen, M., "The EXCELL Method for Efficient
Geometric Access to Data," ACTA P o l y t e c h n i c a
S c a n d i n a v i c a , Vol. MA34, 1981.

[TENE~~] Tenenbaum, J. M., M. A. Fischler, and H. G. Barrow,
"Scene odel ling: A Structural as is for Image
Description," i n I m a g e M o d e l i n g (e d i t e d b y A.
Rosenfeld), ACADEMIC PRESS, 1981, pp. 371-390.

[WALP~~] Walpole, R. E., Mathematical Statistics, Prentice-Hall
Inc., ~nglewood Cliffs, New Jersey, 1980.

[WEIN~I] Weinberg, R., "Parallel Processing Image Sythesis And
Anti-aliasing," C o m p u t e r G r a p h i c s , Vol. 15, No. 3,
AUG. 1981, pp. 325-332.

[WEIT~~I WEITEK Co.! WTE6000 Tiling Engine, System
Specification, WEITEK Corporation, 1984.

 WHIT^^] Whitted, T., "Hardware Enhanced 3-D Raster Display
System," P r o c . of T h e 7t h Man-Cornput er C o m m u n i cat i o n
C o n f e r e n c e , 1981, pp. 349-356.

 WHIT^^] Whitton, M. C., "Memory Design for Raster Graphics
Displays," IEEE C o m p u t e r G r a p h i c s & A p p l i c a t i o n s , Vol.
4, No. 3, MAR. 1984, pp, 48-65.

