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Abstract

This thesis deals with the computation of seme control problems in an clectrically conduecting
flow govermed by incompressibile Navier Stokes cqguations and Maxwell's equations.  \\e con-
sider twer different controbs. namely electzie current rontrol and heat fux control, to studv the
oprtimal control techpiques for their effectivenvss in flow control problems. The methods and
tnplementations can be extended to other controls such as velocity controls as well.

We mse Lagrange multiplier techuiques 1o derive the optimality systems.  Pinite elemen
approxupations are defined and compuiational methods are developed for both the steady aud
snstene y optimality systems. Computational experiments are conducted in some closed domains.
Qur computational experiments indicate that optimal control technignes seem 1o work very well

for small or even for moderately high Revnolds™ sumbers.
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Chapter 1

Introduction

Theoretical and computational approaches i the control of fluld Beoww: has recentls receivid
constderable artention both from the mathematical and engineering communition, In this thesis

we consider some control problems in electrically conducting flutds. The tope of elerirally

Maxwell’s equation. Proper formulation of control problems, developuent of robast sleorithione
to compute the solntions and the efficient inplementation of these algorithns wierse the abjectives
of this study. We like to bring the readers attention 10 an experimental investization of some
control problems in electrically conducting flows given in [INB] and to o mathematicnd analyvais

of some relevent optimal control problems given in [HAM] and {1TPL
First, we consider the problem of steering the velocity 1o a desired one in the flow dognain
by choosing an appropriate boundary eurrent density. Thiz contral prolidem can be cast as a

miaintzation problem with the . wt fupction
N 2 ey o 1 2
Tilu.g) = ;/ - A0 + 7/ el
2 Io 20y

where wy is the desired velocity and the second term is sssentially the cost of inplementing the
control, and subject to the constraint that the How variables satisfy the governing equations,
namely the incompressible Navier-Stokes equations and Maxwell equations. The usncontrolled
flow, i.e.. the flow with zero curremt density on the boundary, is depicted in Figs. 1.3 a5 and L

and the desired flow we consider is giver in Figs. 1.1 ¢) and d).



Figure 1.1 b) contours of ug

Figure 1.1 d) contours of uy
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obtain a desired potential distribution throughont the flow by choosing au appropriate boundary
carrent densitz. In the second one we i1y to obiain a prescribed poteatial distribution asmd in
‘the third one we want 1o obtain a wniform potensial distribution. in the Bow. The appropriate

T eost functions then are

R i v
Feoua= 5 [ e s g [igiar
2l I

and '
Fiogh= 5 [ worae s 5 [ jgar.
An uncontrolled potential disuribution #s depicted in Fig 1.1 o).

The fourth and fifth control problems are similar (o the last two except that we cousider the
temperature distribution instead of the potential distribution. The cost fanctions ﬁi this setting
are

IT.g)= j T — Ty + & / wl*dl
and
| TAT.g) = %/ﬁ TR0 + % /, lof3dr.
An uncontrolled temperature distribution is given in Fig. 1.1 ).

‘We also consider these control problers for unsteady flows as well. The first, second and
fourth problems involve matching the Row with a desired one at some fixed time levels. The tkird
and fifth control problems involve maintaining a uniform distribution of the physical quantity
considered at each timc level.

In all the control problems we consider we write down the problems, after identifving the
cost 1o be minimized, as minimization problems with equality constraints. Lagrange multiplier
_techﬁiques are employed to convert the constrained minimization problems into unconstraimed
one. This leads us to optimality systems. To find the opl,imal controls, these optimality systems
are solved. The solution procedure involves the following steps: finite dimensional dnxc’rﬂh/ﬂv '
tm and sohmon of a finite dimensional nonlmt-ar system. The problem is discretized nsing
- a mxed ‘conforming Galerkin finite element method. The pressure and its adynut t‘tmntﬁrpdr[
are appmnmated by plecem ]mw polynomrals over tnangles and all the mher variables are
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' 3pprﬁximaitml by piecewise quadratic polvnomials over the same triangles. This particular se-
lection of finite element spaces yields stable approximations to the pressure and its counterpart.
Due 1o the nonlincarity in the state equations. we are Jead to a nonlinear algebraic system to
be solved for the unknown nodal values. Thus in the next step, we linearize this system using a
Newton type lincatization along with a simple linearization (simple linearization is necessary to

find a gnud imitial guess for Newton's method ). Other linearization methods can also be used.

o ﬁnaﬂ_\f’, a bamlc-d Gaussian elimiination or an iterative method is employed to solve the linear

| s;jistfms of equations occutring in the solution process. We have also done some analysis for the
~ mumerical methods. In parlicnlai, convergence is shown and error estimates are derived.

I wnstoady control problems. a solution of the optimality system involve a coupled forward-
backward time evolution system. Due to the nonlinearity of fhe state equations, direct compu-
tation of the system can be costly. \We therefore consider a numerical procedure to bypass this
, forward- backward time marching. We remark here that efficient mellmds to solve this forward-
' backward pmblem in the context of cont rol of fows gp\erned by the Navier-Stokes equations are
nm-tl) nndﬂuray _ | A

Our computational procedure here requires time marching only forward in time. First we
discretize the state equations using an implicit time discretization scheme, then in each time
o mimal the state equation is steady and the Lagrange multiplier techniques are employed to
| dtmre the oplamahlv system. We then solve the opnmahty system using the finite element

* pmculnm M’Ped in the steady state setting.

This computational procedure for the unsteady flows requires both theoretical and numerical
amalysis since we do not know whether a solution obtained by this procedure is optimal nor do
we know the tmtmnsodtm-d decays monotosically in time. These interesting questions are
currently being iimiig;ted. But our computational experiments conducted on the problems
M«l n lhs thesis and on the contml of AaﬂeﬁStokes eqnatlons (not reported here, sce
*fﬂkt})m&tﬂetw the cost indeed decays. -

. Owr compatations gwe ymungmnlt&foritodlmemonal domains at least in the moderate

L lepol-h nunber n-g.ms in both eﬁeady and nmmdy flows. lhgl\er mmmonal problems,
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- exterior problems and high Reynolds number flows are all identified as further research topics.
Finally, we give the plan of this thesis. The first two chapters deal with control problems in
steady flows and the last two with control problems in unsteady flows.
In Chapter 1, we give a brief introduction of this thesis. Section 1.1 of this Chapter introduces
tﬁe functional framework that will be used throughout this thesis.
| In Chapter 2, we study sieady control problems with electric current control. In Section
2.1 we gi\'é variafional formulations of the constraints and derive the optimality system using
the Lagrange multiplier technique. In Section 2.2, we define finite element apprmium.lfous and
derive error estimates. In Section 2.3, some solution methods for the discrete optimality systems
are presented. Section 2.4 summarizes some mathematical results concerning the Optimality
systems and finite element approximations. In Section 2.5, we present some computational
resaits. Finally in Section 2.6, concluding remarks are given. |
In Chapter 3, we again study some steady control problems but with heat flux coutrols. The
plan of this Chapter is simply a copy of the previous one.

In (&aptér 4, we study control problems in unsteady flows with electric current.controls.
Section 4.1 deals with the variational formulation of the constraint equations aud the derivation
of optimality systems. In Section 4.2 we report some computational results. Section 1.3 is the

The plan of Chapter 3 is a copy of the previous Chapter with heat flux control. We conclude
our Introduction Chapter with some notations. Throughout this thesis, H*(D), s € R, denotes
the standard Sobolev space of order s with respect to the set D, where P is either the flow
 domain @ or its boundary I'. Norms of functions belonging to H*(§2) and H*(I') are denoted

by‘ §-Jis and |} - |l,1, respectively. Corresponding Sobolev spaces of vector valued functions will

be denoted by H*(D); eg. HY() = [HY{Q)]. Norms for spaces of vector valued functions
will be denoted by the same notation as that used for their scalar counterparts. For example,

Mg = Z;!: N - agd where v;, j = 1, ..,d denotes the i:omponents‘of v. The following
"fnnditnspamwillbeusédfmquently: 7

L BNR) = v e (D) g—:i‘e 3() for juk=1,...,d},




CHAPTER 1. INTRODUCTION ‘ 6

Hy(Q)= {ve H(Q):v=0 on I},

20()1 — 2001 - —
1) = {pe 1%(9): [ pi0 =0},
and

Q)= H'()n L3(N).

The inner products in L2(€2) and L?(2) are both denoted by (-,-) and those in L?(T) and
LAY by () |




‘Chapter 2

Control of Steady Flows I: Electric

Current Control

In thls chapter we study some optimal control problems for a steady electricali}' conducting
fluid. The control is the normal electric current on the flow boundary. In Section 2.1, we give |
fhe precise statement of the optimal control problems we consider. In Section 2.2, we derive the
optimality system using the Lagrange multiplier technique. Some solution methods are presented
in Section 2.3. Some mathematical results for the optimality system are given in Section 2.4.
- In Section 2.5, we present some computational results. Finally, in Section 2.6 we make some

concludihg remarks.

2.1 Statement of the Optimal Control Problems

We denote by 2 the flow region which is a bounded open container in R? or R? with a bound-
ary I". The dimensionless equations governing the steady incompressible flow of an electrically
condncting‘ﬂuid in the presence of a magnetic‘ﬁeld, when Maxwell’s diﬁplacemcnt currents are
neglected, are given by the following; see [TC}: |

F(u-Vu=-Vp+(x B) + gzAu+f in Q,
. 'V-a=0 inQ, o

7 ;»rk
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1J=-Vo+{uxB) inf,
V-j=0 inQ,
VKB:ij iﬂQ,

and
V-B=0 in{Q

" where u denotes the velocity field. p the pressure field, j the electric current density, B the
‘ magneﬁc fiedd, and ¢ the electric potential. Also, N is the interaction number, 3 is the Hartmann
number, and R is the magnetic Revnolds number.

We will deal with a special case in which the externally applied magnetic field is undisturbed
by the flow; in particular, we assume that B is given. Such an assumption can be met in a
variety of physical applications, e.g., in the modeling of electromagnetic pumps and the flow of
liquid lithium for fusion reactor cooling blankets ([JW], [WH]).

Note t’ha; if the flow is two-dimensional, our convention in this thesis is that the applied
magnétic field B is perpendicular to the flow plane, i.e., B = (0,0, B(z, y))T, and that the cross
product u x B is understood as (uy,u;. 0)T x (0,0.B(r, y))T.

- Remark: The more general case in which B is unknown involves essehtially a three dimen-
sional system of e‘quations‘ governing the flow. Our compntai:ional methods considered in this
thesis can be extended in a similar manner to the control problems in this three dimensional
fow0 |
In the above set of equations, we take divergence of the third equation and use the fourth

equation to arrive at the following simplified system:
- sAu+ F(u-V)u+ Vp-(Bx Vo)— (uxB)xB=1f inQ, (2.1)

V-q:ﬂ in §) ‘ ‘ '(2'2)

and

—A04V-(uxB)=0 mQ
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" 'We will replace the last equation with the following slightly more general one
-~ A+ V-(uxB)=k inf. (2.3)

In (2.1)-(2.3), B, f and k are given data.
The system (2.1)-(2.3) is supplemented with boundary conditions

u=90 onl : (24)
and
do . -
an =g on l * (""),)

where g denotes the only control variable, namely, the normal electric current on I'. Such a
control can be effected by attaching electric sources with adjustable resistors to the clectrode
~ along the flow boundary. Although a normal electric current control is physically somewhat
aﬂxﬁcnal (this could be achieved in practice only by insulating different small parts of an clectrode
from each other), it is mathematically more convenient than an electric potential control. The
téchniques to treat normal electric current controls are applicable to treat other types of controls
and the solutions with a normal electric current control do indicate the behavior to expect in
general. See [HM]. | &

Our goal is to try to obtain a desired flow field by appropriately choosing the control - the
normal electric current on T. Specifically we will investigate the following cases: matching a
desired velocity field, matching a desired potential field, or minimizing the potential gradient.
Mathematically, these tasks can be described, respectively, by the following optimal coulrol

setting: minimize the cost functional

} 1 §
K(u,6.p.9)= 5 [ ln-wiPdn+3 [ lofar, (2.6)
. 1 20 L 2 i | ~
M(u,0.p.9)= 5 [ 16— 6ua2+ 5 fattar. (2.7)

Nw.op0)= 5 [ vepan+ 3 [atar. (28)
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subject to the constraints (2.1 }-(2.5). Here € > 0 and & > 0 are positive parameters; ug and ¢y
are, respectively, the desired velocity field and potential field.
le minimization of the functional (2.6) or (2.7) or (2.8) subject to (2.1)-(2.5) is a special

case of the following general optimal control setting:

minimize the cost Munctional

s
T(0,0.p.9)= Flu.6,p) + 5 [ lglar (2.9)
r

subject to the constraints (2.1)-(2.5), -

where F(u,¢,p) is a functional of (u, 6, p).

2.2 A Variational Formulation of the Constraints; An Opti-
mality System of Equations

The variational formulation of the constraint equations is given as follows: seek u € H}(Q),

pe L3() and 6 € /1'(2) such that
3,1,/0 Vu:VvdQ + /ﬂ [Vo— (uxB)]-[Ve~ (v x B)ld2 + & /ﬂ (u-V)u-vdQ (2.10)

| -/an‘vdﬂ=/ﬂf-vdﬂ+/nktﬁ‘dﬂ+/rg¢’dr V(v, %) € H)(Q) x A'(%)

and
/qv_udsz.-.o Vg € IX(Q). | (2.11)

Or eqmvalently, seek ucHY(N),pe L3(N) and 6 € H 1(Q) such that

ﬂ,/v‘. Vvdf2 - /[w (ux B)]-(vx B)Q + ﬁf(u V)u-vd — /pV -vdQ
/ f-vdl WweH)Q), (212)

/ [Vé - (ux B)]- (wm / ked0 + / gwdl Vo e H\(Q) (2.13)

;L‘qv*am_—;o"we Lﬁ(ﬂ). - @2
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Here the colon notation stands for the scalar product on R4%¢.
The precise mathematical statement of the optimal control problem (2.9) can now be given

_ as follows:

seek a (u,p, d.9) € HY(Q) x L3(Q) x H'(R) x L*(T') such that the

functional (2.9) is minimized subject to the constraints (2.1)-(2.5). (2.15)
We will turn the constrained optimization problem (2.15) into an unconstrained one by using
Lagrange multiplier principles. (For mathematical theories of Lagrange multiplier principles,

see, e.g., [VT].) We set X = H(Q) x L3() x '(2) x L¥(') x HAQ) x L3(Q) x f1(§) and
define the Lagrangian functional

L(u,p,é,9,p,7,5)
= F(u ¢)+£/| |zdr——'-/Vu~vde+/[v¢-(uxB)]-( x B)df2
- 1Py 2 r 9 Az Q - Q . I i
~1 . i ; . ~ —( - (Vs)dS)
| N/Q(n V)u pdﬂ+/an pdﬂ+/nf ud9 /ﬂ[w (u x B)] - (Vis)d2

+/ ksdﬂ+/rgsdl‘+/‘rv-udﬂ V(u,p,¢,9.p,7,3) € X (2.16)
(Y] 1 . '

An optimality system of equations that an optimum must satisfy is derived by taking variations
with respect to every variable in the Lagrangian. By taking variations with respect to u, p and

* ¢, we obtain:

—A%/QV;IindQ+/Q(wxB)-(pr)dﬂ+-}7/(u»V)w-pdﬂ+ %/(W~V)u-pdﬂ
: (9 14}

- /ﬂ TV - wdf) = (Fu(u,p,6),w) Vw ¢ HQ), (2.17)
[ [¥5 = (e x BY| - (Vr)a = (Fy(w.p.d).r) ¥r € () (2.18)

and - ‘
[ oV -ni@=Fupe)o) voe i@, (219)

where Fy, F, and F, are the derivatives of the functional with respect to its three arguments,
. respectively Bytakingvanatms with respect to py, 7and £, we recover the cohstraint‘equations‘
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(2.1)-(2.3}. By taking variation with respect to g we obtain

1
/ (gz+zs)dl'=0 VYze L}(I') e, g=-3s-
-

“This last equation enables ns to eliminate the control g in (2.13). Thus (2.12)-(2.14) can be

tkrpléi:éd by

W/Vu Vvdf — /[V:j)—(an)] (va)dQ+N/(u Viu-vdQ - /pv vdQ

/ f-vdQ Vve HYQ). (2.20)
/[w (ux B))- (V@)dﬂ-l-b,/svdﬂ /wdn Vo e B'(Q), (2.21)
and
/r ¢V -ud =0 Vqe LXQ), (2.22)
)]

Equations (2.17)-(2.22) forms an optimality system of equations that an optimal solution must

satisfy.

2.3 Finite Element Approximations

A finite element discretization of the optimality system {2.17)—(2.22} is defined in the usual
~-manner. First one chooses families of finite dimensional subspaces X* C H(Q) and S* C L*(9).
These families are parameterized by a parameter h that tends to zero; commonly h is chosen
“'to be some measure of the grid size. We set X* = X* 0 I3(Q), X" = [X*}4, Xk = X" n HA(Q)
and S§ = S* 0 L3(N). We assume that as h — 0,

L=V~ 0, v e @),

inf le—o*y =0, Veoec HYQ
,Aex»‘" Ils k ()

and

,nmgn llg—¢*llo— 0, Vge L¥N).

o llere we mav choose any palr of snbspaces X* and S* such that X} and S} can be used for

' - ‘ﬁndmg finite e]ement approxnnanons of sohmons of the Na.v1er-Stokes equatlons Thus, we
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make the following standard assumptions, which are exactly those emploved in well-known finite
element methods for the Navier-Stokes equations. First, we have the approximation properties:

there exist an integer k and a constant (, independent of &, v, © and ¢. such that

ping v - Vil S CHPvllmgr ¥y e HPH N HY(Q), L <m <k (2.23)
nt o - My < CR follmar Vo€ H™' N LD, 1 <m <k (2.24)

and
Jnf , fla—q"llo < Ch™llgllm Yg€ H™ N LED), 1< m < k. (2.25)

Next, we assume the inf-sup condition, or Ladyzhenskaya-Babuska-Bre:zzi condition: there exists

a constant C, independent of h, such that

= her o h
inf  sup f“‘,{ v el @ e (2.26)
ot est ozveexr VPl llg*llo

- This condition assures the stability of finite element discretizatiqns of the Navier-Stokes equa-
tions. It also assures the stability of the approximation of the constraint equations (2.21)-(2.22)
and the optimality system (2.17)-(2.22). For thorough discussions of the approximation prop-

erties (2.23)-(2.25) and the stability condition (2.26), see, e.g., [GR] or [MG]. These references
may also be consulted for a catalogue of finite element subspaces that meet the requirements of
(2.23)-(2.26). ,

Once the approximating subspaces have been chosen, we seek u* € X2 ph € Sk, ¢* ¢ X",
p* € Xk 1 € Sk and s* € X% such that

#/n vu' : vvhdQ - /Q [Vé! — (u” x B)]- (v x B)dQ + N /Q (u* - V)t - vhdQ

—-/np"V-vhJQ:/f-v"dQ vk e Xh (2.27)

Q

/9 [Vé* — (uh x B)] - (V&")dQ + % /r svhdl = /ﬂ Eyptd vyt e X*, (2.28)
/n V- -u*d2=0 Vete sk, (2.29)

i3*5/0%" : VwhdQ +'/n(w" x B) - (1 x B)JQ‘A+ ,—},—/ﬂ (u - Vywh . phd2 (2.30)

th [y Ot [ ATt = (g ) Vo X,
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/r (Vs — (" Bjl- (Vrh )R = (Fy(ub, ph, 6h). 7" vrt e X* (2.31)
, |

and
/ oV - phdQ = (Fo(ub,ph.oh), %) VaP € 55 (2.32)
17

From a computational standpoint, this is a formidable system. In three dimensions, we have

" a conpled system involving fen unknown discrete scalar fields. Therefore, how one solves this

system is a rather important question.

2.4 Solution Methods for the Discrete Optimality System of

Equations

We will present two methods for solving the discrete optimality system of equations (2.27)-(2.32).
The first one is the Newton’s method for the entire system; the second one is an iterative method
which uncouples the computation of (2.30)-(2.32) and the computation of (2.27)-(2.29) at each

~ iteration (the second method is in essence equivalent to a gradient method in minimization.)

- 2.4.1 Newton’s method.

For notational convenience, we will use (U, P.®,M,T, 5) to denote ( u, ph,gb",ph,rh,s"). We
will,onlyi give the Newton’s method for the special case F{u,p,¢) = F(u). General cases can
be treated Similarly. Thus the Newton’s method for solving the discrete optimality system
(2.27)-(2.32) is given as follows: | |

1° Choose an initial guess (U, P{0)_$(®) M(0) T(0) 5(9)),

2° Forn = 1,2, - - -, compute (U, F(n) &(») M) T¢) §(1) from the following discrete system

of equations:
T,, ] VU‘") vvhaQ - / [Va!™) — (U™ x B)]- (v/ x B)df2 - / P V. vhaq
+4 / (U(") VU . vhiq L / LA I v4 ) 1450 DRV o)

- /ﬂ f-vhde+ L / (U("“)-V)U("")-vhdﬂ whe Xk, (2.33)
- Q E ‘ . L
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/ Ve — (U x B)]- (Ve )0 + % / 5t phag = / kyhdQ Vet e XL (2.30)
€ I ¢

/ﬂ ¢ V- UM =0 Vgt e Sk (2.35)

e [ VM vwha 4 [ (whx B)- (MO x B)a + & [ (U Fhwt . M)
M | A ~

+% /Q (U1 vywh - MU0 + /ﬂ (wh - vyut-t. Mt

+ / (wh - vyults . Mi-ag - / TM Y - whdQ — (Fuu( O~ Hu) why

. (1] Q

= (Fa(UP ), whY — (Fuo (U Ul why £ L (U . Tywh - MU0
' N 93

+‘% /0 (wh- VU - MONde Vet e X (2.36)
/ [VS™ — (M™ x B)] - (Vrh)d =0 vr* € X* (2.37)
(9
and
/ GV M0 =0 Vo € St (2.35)
Q

Under suitable assumptions, the Newton’s method converges at a quadratic rate to the finite
element solution (U, P,®,M.T, S). :

Quadratic‘convergence of Newton’s method is valid within a contraction ball. In practice
we normally first perform a few fixed point iteration and then switch to the Newton’s method.
For flow field matchirg problems, we use the desired field as initial data for the corresponding
unknown field. This choice has proven to produce faster convergence compared with arbitrary

choice of initial data.

2.4.2 An iterative method.

We now discuss an iterative method that uncouples the solution of the constraint equations
(2.27)-(2.29) from the adjoint equations (2.30)-{2.32).

1° Choose (U, PI9), $()); |

2° For n.= 0,1,2,---, compute (M®, T, 5®) from

e [ VMO Vwha0 4 [ (whx B)- (M < B2+ & [ we b oyt Mivan
o Q ‘ A T
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+L [ whowptmiomivida - | TV . whdQ
N Ja 2

= (Fulu pe=l gty oty vw® e X§, (2.39)

. / [V — (MP) s B)]- (V)@ = {F,(UD, Pt g1 1%y wrh e K5 (2.40)
¥

ane
/ oh T MUVIQ = (F, (Ul D) g1y oh) yoh ¢ 54 (2.41)
j

and compute (U, I’("‘},Q("}) from

& / YU : Vvhde - / Vo™ — (U™ x Bj]- (v* x B)dQ — fﬂ P v . vhdn
: { (1

+ 3 /ﬂ (U . Tyut) . yhgo = Lf-vhdﬂ WheXh,  (242)

[iwein - ut B (vetan+ 1 [stIchan = [ ketae vete 3P (243)
2 » JrT 2
/ FV-UIQ =0 Vgt e St (2.44)
- S . '

Formally this method is equivalent to a gradient method with unit step-length for minimizing
 the functional of g:
J(g) = T(U(g). P(g), ¥(9).9) -

Under suitable assumptions, most notably, for largé parameters ¢ and é in the functional; the
‘ ssequeﬁce (U, ptn} otm) Min) T() Gy converges. We may modify this iterative method to
a variable step-length gradient method which have better convergence pfoperties.

‘The main advantage of this method over the Newton’s method is that at each iteration
we are dealing with a smaller size nonlinear system which requires less computer memory in
cqmpdlation. In our experience, the computing times for the Newton’s method and this iterative

method are comparable.
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2.5 Some Mathematical Results Concerning the Optimality

System of Equations and Finite Element Approximations

For completeness, we summarize without proof relevant mathel‘naijcal results for the constrained
minimization problem and error estimation results for the finite element approximation. luter-
ested readers are referred to [HR 1] for details and proofs. Specifically we will summanze results
" on the following: well-posedness of the constraint equations; existence of an optinal solution
(u.p.0.9); the existence of Lagrange multipliers {ji.7.s) such that the optimality system of
equa’ ~ are satisfied: convergence and optimal error estimates for finite element approxima.
tious of optimal solutions. 7

It can be shown in a way similar to [JP] that there are constants a > 0and 3 > 0, independent

of (v.¢) and q. such that

i [ Vu:Vvd+ [ [V6 - (uxB)]-[Ve~ (v B
M Q [V E ‘

> a(jiviis + et} Yiv.e)e HY )< Iy (2.45)
and ‘
inf sup ~Jop¥-v > 3. (2.46)

PELZID (v vy HL) < HH{Q) fivils "P"O
The elhpturlt} condition (2.45) and the inf-sup condition (2.46) are rrumal in showing the exis-

tence of a solution to the constraint equations (2.1)-{2.3).

Theorem 2.5.1 There exisls a solution (u,p.6) £ HY$) x L2(82) x () to the constraint
u}naﬁans (2.1}~(2.3). Furthermore, the following estimates hold for any solution (u.p, o) of
(2.0)-(2.3): |

Jalls + lietls < € (AU + 8- + Boil-sjer) 1247)

lello < € (Eﬂfil-Hikil. faliyyer +lull) . O e

‘ ]lemark Just as in the steady-state \auemStokas case, we do not in g«neu] de‘ nHigueness
for the solnnons 10 (2. 1)—(2:.) a
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" The precise mathematical statement of 1he optimal control problem was given in (2.9). The
existence of an optimal solution can be proved based on the a priori estimates (2.47)-(2.4%) and
standard techniques.

. Theorem 2.5.2 Therr exists an optimal solution (u, p,6,g) € HA(S) = L2} x H(S2) x L3I
B lhl solves the constrained minimization problesm (2.9). O

 In Section 2, we formally applied Lagramge multiplier principles to tura the constrained mini-
mization problem inlo an unconstrained one and derive an optimality system of equations. We

“did so without worrying about whether or not Lagrange multipliers exist. The following theorem
~ guarantees the existence of a solution 10 the optimality system of equations and thereby justifies
the wse of Lagrange multiplier rales.

Theorem 2.5.3 Assume (u.p.6.9) € H}(2)x LE(Q) x H'(R) x LY(T) is an optimal solution for
‘(...9) Then [aralmm all ralues of the interaction number N, there cxist a Lagrange multiplier

= g7A rﬁp)e H,(Q) x Lo(ﬁ) * H'(ﬂ) wd that the ophmahty tyslem (2 17)-(2.22) is satisfied. O

Rmark. In fact. under suitable assamptions, e.g., for small Harimann nsmber a7, we can show

e tht the solution 10 1he optimality system of equations (2.17)-(2.22) is wnique. O

(,’mnng the Snite element approximations (2.27)-(2.32). we may prove the existence of.

- th 'muw of. and optimal error estimates for, finite element solutions.

3 Tm 254 Assume (u.p,o,p,r,&)e BYN) L‘.(m x HY() x H(S) x LYN) x H1(Q)

is @ nonsingular solution lo the oplimalily sgstem of equations (’* 17)-{2.22}). Then for cach

uﬁrwﬂlga«nﬂh > 0, there cxists o wnique fimite element solution (u*.o*,.p*, u*. 1%, 5*) €
ﬁ x x‘ x X3 % 8§ x .\* Jor (2.27)-{2.32) such that

Jm {fo- o'l + o~ Plat o '+~ i+l = 7o+ flo ~ st} = 0

| MUWW&M Le., (u.a.p.li.r s)el!’“*' x H™ x =+ xB““ xH"'xII"“

{I-*-“-“Ix*lr-*r‘lﬂlo-dﬁﬁlk- 4 e - r*nous-a*nl}
<t‘b"(l-l;m+lrl-+lo!..ﬂ+mw+lrl.+m.n- 2
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Furthermore, the approzimate control g* converges to the cract control g and the estimate
g - ¢*llox < Ch™ holds. ©

- 2.6 Computational Examples

In this section, we report some computational examples that serve to illustrate the effectiveness
- and practicality of optimal control techniques in ekrctriciily conducting fluids. First, we treat
 the problem of steering the velocity field to a desired one. The second one deals with the
minimizaﬁon of potential gradient throughout the domain. Finally, we consider the problem of
matching electric potential to a desired one.

Al mﬁpu(ations are done with the following choice of finite element spaces defined over

the same triangulation of the domain @ = |JK': continuous piecewise quadratic polynomials

for both components of the velocity u® and adjoint velocity p contmuous piccewise quadratic -

polynmmals for the potenual ¢* and the adjoint potential 3 ; contmuous pu‘cewlse lmoat poly-

nomials for the pressure p* and adjoint pressure r*. On each triangle, the degrees of freedom
for Mntic elements are the function values at the vertices and midpoints of each edge; the
degrees of freedom for linear elements are the function values at the vertices. Using standard
finite clement notations and those introﬂuced in Section 2.3, we have that

b= {r € C°(Q) : rlx € Po(K), on each element K},

X* = {v = (o, v2)T € @) 5 € XE, i = 1,2}

§* = {r € C*N) : r|x € Pi(K). on each element K} .

| Under these choices of finite element spaces, the velocity-pressure péir and the adjoiut
.velonly-admt pressure pair are appmmmated by the Taylor-Hood element pan' ({TH]) whnrh
- bas been shown to sansfy the dw-s(alnlity condition (2.26). Approxrmatmn propertles (‘2 23)-
| @) with k= 1.
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2.6.1 Velocity field matching
“The first case we consider is the problem of minimizing (2.6) subject to (2.1)-(2.3), i.e., we
attempt to match the velocity field with a desired one by finding an appropriate boundary

~current density g.

. The optimality system of equations are given by (2.17)-(2.22) with
(]:ll(uzpv‘j)f W) = -f.-/ﬂ (Il - ud) b WdQ

and
(Fp(u.p.9).0) = (Fs(u,p,$),r) =0.
The corresponding system of partial differential equations for (2.17)-(2.22) is given by (2.1)-
(2.4),
—=—-=3 onl', -

' : L FOUE | 1 .
-ardp+ z-\",-,‘-'(V'u)T- #(a-Vip+Vr—Bx(Vs)-(uxB)xB - -u=--ug in Q,
V-u=0 in
-As+V-(uxB)=0 inQ,
p=20 onl

- and
R s

5;;::0 onl.

‘'We now present some numerical results for the following choice of parameters and data:
The Hartmann number and interaction number: M = N = 1;

~ the domain 9 is the unit square (0,1) x (0.1).

body force £ = (fy, f2)7 and electric source k:

hi = sin(2en) Hr(eos(2ez) — 1) - "X cos(xz) sec(xy)]
C Heos(2ex)— 1) [y sin(2xp) + 2wsin(2rz) (cos(2ry) — 1)];
" o = sin(2xs)Gycos(xy) secxz) - 4x7(2con(2ry) - )]
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+(1 — cos(2xy)) [y? sin(2xz) + 2% sin(2xy) (1 — cos(272))]:
k = sin(2xy)[1 — cos(2xz)] + 252 cos(xx) cos(xy)

+2xy[cos(2xz) — 2 cos(2xy) cos(2xx) + cos(2xy)];

applied magnetic field: B =(0,0,y)";

desired velocity field: '
(cos('liry) [cos(2xz) — 1] )
uy = .

sin(2xx) sin(2xy)
For these data, the exact solution of the uncontrolled problem, i.c., the solution for (2.1)-(2.5)

‘with g =0, is given by
: ([cos(21r;r) - 1] sin(?ry‘))
Ng =

sin(2xz) [1 — cos(2ry)]
po=C, where C is a constant
and
&g = cos(xrz)cos(xy).
The proper choice of the constants € and & in the functional plays ‘an‘ impdrtant role in obtaining
a best ve]ocitiy matching. For the computational results shown in Figures 2.1 below, our choice
of these two constants were ¢ = 0.00001 and é = 0.01.
 We give a brief description of the figures. Figure 2.1 a) and b) are the uncontrolled velocity
ﬁdd»no and potential field ¢y, respectively (under zero electrical current on the boundary).
Fignre 2.1 ¢) is the desired velocity field uy. Figure 2.1 d), g), h) and i) are the optimal control
solutions: velocity field u*, potential field ¢*, adjoint velocity field ;" and adjoint potential ficld
| s*; those were obtainied by solving (2.17)(2.22). The oj)timal control g* can be gleaned from
Figure 2.1 g) and the relation ¢* = —1s*. The function g* along the top boundary is shown in
Figure 2.1 j). All the computational results shown in figures 2.1 were obtained with a 10 by 10
tnangulauon of the unit square. A nonumform gnd with corner refinements was used. We sce
fmm the ﬁgum that opumal control does a very good jOb in matchmg the desired velocity field
| ﬁw]nch ]las double mcnlahons. g




CHAPTER 2.

CONTROL OF STEADY FLOWS I: ELECTRIC CURRENT CONTROL 2

L3

7
i
» .
=
e .
g

« TR A
P e . 7 = o e

Figure 2.1 ¢) desired velocity field uy4

Figure 2.1 f) contours of optimal control velocity
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Figure 2.1 j) optimal control g* along
adjoins potential field s* ‘ the top boundary

2.6.2 POtential field matching

The second case we consider is the problem of matching the electric potential ¢ to a desired
distribution ¢4, i.e., we minimize functional (2.7) subject to (2.1)-(2.3).
The optimality system of equations are given by (2.17)-(2.22) with

e | R = [ (6-d)rdn

Fu(wp,8),m) = (Flmp.8),0) =0,

t
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T he domaun is chosen to be a curved quadrilateral as shown in Figures 2.2 a) to f). The
7 length is 2 and the height is 1.125.

The Hartmann number M. interaction number N, body force f, electric source k£ and applied
magnetic field B are chosen to be the same as in Section 261

The‘desired potential field is a uniform one: Sa=1.

T‘he two parameters in the functional are chosen a.sie =0.002and § =0.1.

- l or these data the solution (ug, pp.dp) of the uncontrolled prohlem, i.e., the solution for
(2 ]) (2. 5) with ¢ = 0, can only be found through numerical approximations, the reason being
that the uncontrolled solution given in Section 2.6.1 no longer satisfies the boundary conditions

~on the curved domain.

Some numerical results for this example is reported in F igures 2.2 a)-f). We give a brief
description of the figures.

Figure 2.2.a) and b) are the uncontrolled velocity field ug a.nd potential field ¢y, respectively
(nnder zero electnca.l current on the boundary.) e

Figure 2.2 c) d), e) and f) are the optimal control solntlons velocnty field u*, potential field
", adj joml. velocity field 4* and adjoint potential field 7*; those were obtained by solving (2.27)~
(2.32). The optimal control ¢* can be gleaned from Figure 2.2 ) and the relation gh = —Lsh.

A look at Figure 2.2 d) reveals that the optlmal potential matches well with the desired

potenual @.,..1 ‘ '

o
I
W
Y
3 "
atdia LF ]
f

f/

r
e
\

L Wby,

. Figare 2.2 a) uncontrolied velocity Sdd ug ~ Figure 2.2 b) uncoutrolled potential field d
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'2.6.3 Potential gradient minimization

The third case we consider is the problem of minimizing the electric potential gradient, i.e., we

minimize functional (2.8) subject to (2.1)-(2.3).

e e et
,uf/,;\‘: MY “3: -
'r, ///,:\\\. - ;ff,z;g..“_\\\“
' IR AN
. gl,:\\ Ei : ég‘ gy‘:\\ By
B LSRR ud*_gii,*aﬂi
WA T I E gy
- p? —
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D S R N g

e e - B e

Figure 2.2 c) optimal control solution:
velocity field u*

B R . .
PR R S S
- r -~ <
- //,/{:;":i‘b NN
AP Yl e TR b
NN g Y s
LA TN B PN oot b ur
2 by ““‘-'-‘E'L‘ ool
!'1\\\\\\-,ll§5}-}x“
MR NATNESA IS B T
3 \\\«._,,Ill;*_
LR Sl SN S i S
L R et E oA A
N T e T -
1T pte
’*‘0&’_—- —_~—'_’\"','4' ~~~~~~~

Figure 2.2 ¢) optimal control solution:

adjoint velocity field u*

Figure 2.2 d) optimal control solution:
" potential field ¢*

Figure 2.2 ) optimal control solution:
adjoint potential Reld s®

The optimality system of equations are given by (2.17)-(2.22) with

o and

: 1 ,
(Fo(w,p,0), 1) = - /ﬂ Vo Vrdd

C L (Falepe) W) = (Fw,p.9)0)=0.

|
o
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~The domain is chosen to be a rectangle with length 3 and height 1. The Hartmann number
- M, interaction number N, body force £, electric source k and applied magnetic field B are chosen
to be the same as in Section 2.6.1

- ’Fhe two parameters in the functional are chosen as € = 0.0002 and 6 = 1. For these data,
{he exact solution (ug, po, do) of the uncontrolled problem, i.e., the solution for (2.1)-(2.5) with
CLg= 0, is given by the same uncontrolled solution as in Section 2.6.1.
- Some numerical results for this example is reported in Figures 2.3 a)-f). We give a brief
description of the figures. |
‘ Figure 2.3 a) and b) are the uncontrolled velocity field ug and potential field ﬁo, respectively
. (under zero electrical current on the boundary.) Figure 2.3 c), d), e} and f) are the optimal control
solutions: rvelocity field u®, potential field ¢", adjoint velocity field 4* and adjoint potential field
~7*; those were obtained by solving (2.27)-(2.32). Thé optimal control g* can be gleaned from
_Figure 2.3 f) and the relation g" = —1s*. |

By m‘inimizing functional (2.8) we wish to obtain a quasi-uniform potential distribution. The

| numéﬁcal results (in pafticu]ar, Figure 2.3 d)) dembnstrate fhat the optimal control did a very

good job in achieving the objective.
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Figure 2.3 a) uncmum&dveloalyﬁelduo Figure 2.3 b} uncontrolled potential field ¢o
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Figure 2.3 c) optimal control solution: Figure 2.3 d) optimal control solution:
velocity field u® potential field &"

Figure 2.3 ¢) optimal control solution: Figure 2.3 ) optimal control solution:
adjoint velocity field u”* ) adjoint potential field s®

2.7 Concluding Remarks.

_ In this Chapter we studied numerical computation of boundary optimal control problems for an
electrically condﬁcting fluid using electric current control. We summarize the main points in
this Chapter as follows:

o We converted the optimal control problem into a system of equations (i.e., the optimality
o system of equations) by usmg‘the Lagrange multiplier principles;
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o We proposed some methods for so]ﬁng the discrete optimality system of equations. Our
discussions of these methods were made for finite element discretizations. Apparently,

these methods are equally applicable to finite difference, collocation or pseudo-spectral

discretizations;

 eWe successfully performed numerical computations for some prototype examples as presented
- in the Figures. Our work demonstrated the effectiveness of optimal control techniques in

flow field matchings and in the minimization of some physical quantities.

@ We finally remark that the Hartman number (Reynolds number in the non magnetic case)
- has to be moderately high or small for the algorithms to be robust and to keep the com-
putational cost cheap. Our numerical experiments indicate that, with help of simple con-

tinuation methods, algorithms perform well for Hartman’s number up to 300.

In principle, other types of boundary controls such as Dirichlet controls of the electrical

potential or Dirichlet controls of the boundary velocity can all be treated by the techniques used

in this chapter. |




Chapter 3

Control of Steady Flows 1I: Heat
Flux Control

In this chapter we study some control problems for a Boussinesq’s model of heat trausfer in a
steady electrically conducting fluid. The control is the heat flux on the flow boundary. Asin
the previous chapter, we study these problems in detail. The structure of this chapter is that of

the previous one.

3.1 Statement of the Optimal Control Problems

We denote by Q the flow region which is a bounded open container in R? or R with a bound-
ary I'. The dimensionless equations governing the steady Boussinesq’s model of an electrically

conducting fluid in the presence of a magnetic field are given by

—sdut FH{u-V)u+Vp- (Bx Vo) - (uxB)xB-1gl'=1 inQ, (3.1)

V-u=0, inQ (3.2)
—AFV(axBj=k inQ, - (3.3)

and » | »
AT +u-VT=k nQ. o ' (3.4]

2
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In (3.1}-(3.4), B, £, k; and k, are given data and Ar, ¥ and L are parameters. The system

(3.1)-(3.4) is supplemented with boundary conditions

u=0 onl, (3.5}
do .
| T = 0 on I' | (3.6)
and
ar : .
=9 on r, (3.7)

‘where g denotes the only control variable, namely, the heating and cooling on‘ TI.

Our goal is to try to obtain a desired flow field by appropriately choosing the control — the
normal tem pcratﬁre gradient on I'. Specifically we will investigate the following cases: matching
a desired velocity field, matching a desired temperature field, or minimizing the temperature
gradient. Mathematically, these tasks can be described, respectively, by the following optimal

control setting: minimize the cdst functional

K(w.6.T-p.g) =5 [ lo—ual?d0+ 3 : 2 [lopar. (38)

or
M(u.6.T.p.g)= 5 [ 1T~ TuPd0+ 5 / lgldT , (3.9)

or
Nu,6.T,p.9)= o / [VTPdR + - [ lgl*dT , (3.10)

, subycl to the c:onstramts (3-1}-(3.7). Here ¢ > 0 and & > 0 are positive parameters; ug and 7y
‘are. respectively, desired velocity field and temperature field.

The minimization of functional {3.8) or (3.9) or (3.10) subject to (3.1)~(3.7)is a specnal case
of the following general optimal control setting:

minimize the cost functional
T(w.0.T.p.0)= Fw.o,T.p)+ 5 [ lal'ar (3.11)
subject to the Constramts (3. l)—(3 7)

: 'irhw F(n.é.’l‘,p}u a func'mal of(n,é.T.p)
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3.2 A Variational Formulation of the Constfaints; An Opti-
mality System of Equations

The variational formulation of the constraint equations is then given as follows: seck u & HQ),

. peLYNY. o€ H'(Q)and T € H'{Q) such that

-;,/ Vau: Vvdﬂ-{/ [Vo— (ux B)j- gn ~ v x B)ld0+ lf(u Ciu-vd?  (112)

-/npv-vdﬂ—i/ag-vfl"dﬂz/f—v«lﬂ#r/x ky v Y(v,¢)e HYQ) = i),
12 1

/ﬂqv'ndﬂ:ﬂ vge LX), (313)

and

jﬂ VT -Vodf + / u- T840 = / k049 + /r 90dr VO € fi'(5i). A1)
{94 ¥4 - : i

o:,‘equ"ivalenuy, seek u € HA(Q). p € L3R}, 6 € J1*(R) and T € F1'($2) such that

.#L‘Vn:Vvdﬂ—-]n[Vé—(ux:B)}-(v:-aB)d!fl«g-&L(u.v)u.\m;“‘/‘;pv,v‘m

—} o8- vTdQ = [ f-vdQ Wve HYR), (343
jnlvé—-(u x Bj} - (Vg pd2 = L kwdt Voe i), (3.16)
/ﬂqV-udﬂ:O g€ L3(9), (3.17)

/vr-wcm+/n.wm:jk,mujﬂar vee i@, (31%)

| Here the colon notiiion stands for the scalar product on R¥*7,
The precise malhemahcal statement of the optimal control problrm (3.11) can now be given
as follow&

 seek a (u,p,0,T.9) € HyfSd) x Lo(ﬂ) x II'(mx () % L3(F) such that the
 fanctional (3-111 s mmmmd subm to th- cmsmums (3.15}43,13) ENCSU
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W’r will turn the constrained optimization problem (3.11) into an unconstrained one by using

l;;gh-gr mnltiplier principhes. ¢ For mathematical theories of Lagrange multiplier principles, see.
-‘g-,EQE ) We st X' = By L2082) < B8y« 'Y= LYT)x HA ()« LE(Q) < HQy= HY{Q)
- and defipe the lagn;n_g,mn fancrional

B AL N - N RN
R = f(u‘,md,i'iﬁ;/ri”dl_#/ F \'yd!H-/{To-(an)} (> B
o M*L"’”VJH"MI*‘/ﬁP‘V*ﬂdﬂT‘/ﬁf'}lm“/g;[‘w”(“x‘B)}'(V's)dﬁ
| ;*»Lhmw]ﬂwemr-./ﬁv'r—vmz-/nu-w:m

+ Lkz“ﬂ*‘ Jsar st [guran  VwpoTeprenex. (320

. An oplimality s”wm of aqnhum that an upt imum must satisfy is dc-med by takiug variations
. mh n-qwﬂ to every vanable in llw Lmnmn By tahng variations with respect tou, p, T
g aﬂd np e nbma |

ﬂ,LYy desu/mam gytnmﬁ{/(,u Vjw- mu{.]w V)u- pd?

Lrv - wdit & Lw T = *“f..t_n,p,o.T),w) Vwen.,m), (3.21)
Lmv (0 x B)}-(Cril = (Fotu.p.0.T)r) ¥re BN, (3.22)
Lav-,ﬂm = (F,iu.p.6.T).a) Va € LX) (3.23)

Lf“‘“““’* L P L;-,mz (Frin.p.o.T).D Ve H'(@). (3M)

 whewFa.F,. 5, and Fy are the derivatives of the functional with respect toits three arguments,
Mu&b B} mhhg varkations -mk respect. to g, 7, 8 and {, we recover the constraint
W (.‘HH&{). By lakng mulm imli respect 1o ¢ wobtam

L(J‘g:&»ﬂ)ﬂf_ﬁ V*EL’{I“) e, g=——t, |
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This last equation enables us to eliminate the control g in (3.18). Thus (3.15)(3.18) can be
replaced by

x,gjnvn:Vvdn-Lgv¢~(uxB)1-(va)dQ+ &/{z('u-vm-wm

—-/ﬂpv-vdﬂ-i-/ng‘v'l’dﬂz/Qf-deVveH(‘,(ﬂ)-, (3.25)

'/‘;[Vga—(uxB)]-(,Vé’r)dQ:/nlel wd Ve e i'9), (3.26)
| /,, gV-udQ =0 Vge LXQ), (3.27)
and
LVT—VMQ-!-/Qn~VTdQ+%/lﬂdﬁ:/kgﬂdQ Voe ANQ). (328
»Jr Q

Equations (3.21)-(3.28) forms an optimality system of equations that an optimal solution must
satisfy.

3.3 Fﬁnte Element Ap[iroximations

“A finite element discretization of the optimality sysfem (‘3.21)—(3.28)}5 defined in the usual
manner. First one chooses families of finite dimensional subspaces X* C H'(f2) and §* C L3(£2).
These families are parameterized by a parameter i that tends to zero; ‘commonly, h is chosen
rto be some measure of the grid size. We set X* = X’ n L%(Q) Xk = [xh, Xb = XEnHYO)
and 5§ = S* N L(R). We assume that as k — 0,

‘12;: fiv — v"[l. —0. VveHN).

inf fle—c*fly —0. Vee HY(Q
thejn.“ Ih A (Q)

fmfs: flg — ¢*llo — 0. Vg€ Lo(ﬂ)

_ llemwmy choweany pair ofsabspm:es X*and S“‘ such tbat Xo and S can be used for finding
o 'ﬁlnte demenl appmmmatmns of solanom of the havxer-Stokes eqnatlons We also assumge the
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- -Once the approximating subspaces have been chosen, we seek ut € X}, p* c Sk, o' € X*,
Th € XA, uh E'Xﬁ, ™ e .S'.’,', sh € X th € X" such that -

ﬁ,/ﬂvuh : Vv"dﬂ—/ﬂ[Vé"—(uh x B)]- (v* x B)dQ + %/ﬂ(u"-V)uh-vth

—-/phV-vhdﬂ-%/g-v"T"dﬂ:ff-v"dQ vk e XA, (3.29)
0 1] Q
/ (V6" — (u* x B)]- (V£ )a0 = /ﬂ k1 ghdQ Vgt € X, (3.30)
2 :
/ﬂq"V ubdR =0 Vgt € Sk, (3.31)

/ VT . VR + / u"-VTM"dQ-;-%— / thptdq = f k0hdQ Vot e Xb. (3.32)

/Vp Vw"dﬂ+/(w < B)- (4" x B)dQ + & f(u . V)wh - b

+1 / (wh - V)uh - phdQ — / AV . whdQ + f thwh . VTR

1~(-7:u(“h»1’h o, Th). wh) vt exo, o (3.33)
/ [Vs (uh xB)] (V) = (Fyiub gh 6 TH), %) vrk € KB, (3.34)
]ﬂ oh V- uhd = (F,(uh, ph, 6", T, o) Voh € SE, (3.35)

 amd

[ v viran+ / u* - Vibthag - 1 / g utdQ = (Fr(ut,p*, ¢*, TH), 1" VIt ¢ X*.
i , Q- Q . ’

| N (3.36)
From a computational standpoint, this is a formidable system. In three dimensions, we have

a coupled system mvolvmg twelve unknown discrete scalar fields. Therefore, how one solves this

o system is a ratber xmporta.nt questnon-

i o 3;4 Solutlon Methods for the Dlscrete OPtlmahtY System of
| Eqnatmns :

: o f We wm present two methods for solmg the dmcrde optimahty system of equa.tlons (3. 29)—(3 36)
8 Tieﬁm onew the Nwton‘smethod for the entnre system the second one is an iterative method
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wh;ithuncouples the computation of (3.29)-(3.32) and the computation of (3.33)-(3.36) at each

' iteration (the second method is in essence equivalent to a gradient method in minimization. )

3.4.1 Newton’s method.

For notational convenience, we will use (U, P,®,T,M, N, S, R) to denote (u". Pt Th, b,
: T’?‘?s]i,th). We will only give the Newton’s method for the special case F(u,p,¢,T) = F(u).

General cases can be treated similarly. Thus the Newton’s method for solving the discrete

optimality system (3.29)-(3.36) is given as follows:
1° Choose an initial guess (U(®, P(9), $19) T(0) M(®) N(9) 5(O) R(0)).
2 Forn = 1,2,---, compute (Uf"),P("),‘I’("),T"‘),M("),N‘("),S(“),R"‘)) from the following

discrete system of eqnations:

/ VU™ : vvha - / [V&®) — (U™ x B))- (v* x B)
+1 f (U"‘") VYU . vhd 4 4 / (Ui, V)U"" vhdQ - ;; j g- VA TdQ

- / PMY. v’*dn_/ £-vhdQ + / (Ut V)U"“‘” ) wheXxh,  (337)

/ [V _ (Ut x B)] - (V5" )dQ = / ky 4740 w.'* x" O (3a8)
/ q"V‘U(")dﬁzo V" € S8, N (3.39)

j v Vlﬂ‘dﬂ+ / gt . w‘"}a"dn+ [ U™ . yri-Dghan 4 1 / RWghar
= / Ut . yT-Nghdq 4 / kzﬂ"dﬂ voh ¢ X+, (3.40)

g j VM® : Vwrtd0 + f (w* x B)- (1\4('*)><13)¢19Jr 1 ] (U Vywh - M-

43 / (U . V)w . MO0 4 L j (wh - V). Man

+h [ -vyue . metdn [ NG whan st [ RVt 9T
AP (U"“‘")U"" w")+ ] Rw? . vTie-an

G U U
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N fn (U1 . vywh . MDd + /ﬂ ROVt . grt-1do

+5 /Q (wh .U . M40 vwh e XA, | , (3.41)
/ [VS™) — (M) x B)]-(Vr*)dQ =0 Vrt e T (3.42)
Q
/ AV - MR =0 Vot e Sh (3.43)
A |

. and
/ VR™ . VR0 + / U1 . v RNIQ 4 j o™ . vt pt-Dgq
Q 2 ' Q

-1 /ﬂ g - MO-kd0 = /n Ut . yPrR-4Q ik ¢ S (3.44)

3.4.2 An iterative method.

“ ""We now discuss an iterative method that uncouples the solutlon of the constraint equations

L - (3.29)-(3.32) from the adjoint equations (3.33)-(3.36).

 1° Choose (U, pl0) $(0) T(0)).
2° For n = 0,1, 2,- .-, compute (M(’",A’"‘), 5, R(")) from
,—,}, / VM ; Vwkde + / (w* x B) - (M™) x B)Q + 4 / (U1 . T)wh . Mg
+]£7 / (wh - VYUt . Mg0 — / N Y. whin
= (Fa(UB=D, pr=1) gn-1) Tin-1)) by yorh ¢ X (3.45)
jn [VS®) — (M) x B)] - (Vr*)d = (Fo(U), pin-1) g1 pln-1)) by yph ¢ XA
| | (3.46)
| La"V M) = (F (UGN, pla-D) gle-), Tt-1)) k) vk ¢ Sh; (3.47)

/ VRO, W"dﬂ+ _[ U1 vk Reag — 1 f g - MMIkdg
= (IT(U“-I’ P(Il—-l) §(n-l] 21(1:—-1)) Ik) Vlk c Xh : ‘ (3.48)
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and compute (U(ﬂ), P(n)’ Q(n),T(n)) from
s [ VU™ rdn [ [vatn (U xB)]-(vh x B~ [ PO T -vhan

+4 /n (U . wyut) . vhao - 1 /n g - VAT = / £-vhdQ wwh e XA (3.49)

/ﬂ (Ve — (U™ x B)]- (V¢*)d + 1 / SO ghaq = / le,"dQ vl e XB,  (3.50)
/ VUM =0 v es’* (3.51)

/ VT . vehdQ + / Ut . vThehdq + - / R(-Dghdr = / k208 dQ V* e X (3.52)

Formally this method is equivalent to a gradient method with unit step-length for minimizing
the functional of g: |

J(9) = T(U(9), P(9).2(9), T(9).9) -

3.5 Some 'Ma”th‘ematical Results antéfning ‘the ‘Optimakli‘ty
| Systélh-of 'Equatidns and Finite Element Approximations

For completeness, we summarize without proof relevant mathematical results for the constrained
minimization problem and error estimation results for the finite element approximation. Specif-
~ ically we will summarize results on the following: well-posedness of the constraint equations;
existence of an optimal solution (u,p,9,T,g); the exi,ste\nce“'of Lagrange multiplieré (st,1,8,t)
such that the optimality system of equations are satisfied; convergence and optiﬁial error esti-
| ‘mates for finite element appm);ima(ions of optimal solutions.

It can be shown in a way similar to [JP] that there are constants @ > 0 and 3 > 0, independent
of (v,%) and ¢, such that

;};LVn:Vvdﬂ-l—L[Vé—»(uxB)]-[ng:-—(vxB)]dg

(vl +lI9lh) vcv,ﬂena(n)x ey O (353)
: nf sq, Mzg, (854

pef-.(ﬂl (v,ﬁ)eﬂ%(ﬂ)xﬂl(ﬂ) M'l lh’“"
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T The ellipticity condition (3.53) and the inf- -sup condition (3 54) are crucial in showing the exs-

tence of a solutmn to the constraint equations (3.1)-(3.4).

o Theorem 3.5.1 There ezists a solution (u,p,$,T) € HO(Q) x L) x BY(Q) x FY(Q) to the
comlmmt equations (3.1)-(3.4). Furthermore, the following estimates hold for any solution

( u,p, ¢,T) of (3.1)+( 34)

ol + s + 11 < € (Il + el ¥ "k2IL +lgllrr) (3.55)

lello < € (UEll + el + 1Eal. + o125 + lufl;) .0 (3.56)

’Remark Just as in the steady«sta.te Navier-Stokes case, we do not in general have uniqueness
]to; the solutions to (3.1)-(3.4).0

_ . The precise mathematical statement of the optimal control problem was given in (3.11). The

o , exmtence of an optuna.l solntmn can be proved based on the a priori estimates (3. 55) (3 56) and

| standaxd techmques '

e Theo:em 3.5.2 There exists an optimal solution (u,p, T, g) € HA(R)x LE(Q)x Q) x 1 (2)x

‘ :‘L’:(‘I‘) !hat solves the constrained minimization problem (3.11). O

7 In Section 3.2 we forma.l]y apphed I.agrange maltiplier prmaples to turn the constrained mini-
o mmtm pmb]em mto an unconstramed one and derive an optnma.hty system of equations. We
~ did so mthout worrymg about whether or not Lagrange multlphers exist. The followmg theorem
gnarantees the existence of a solution to the optlmahty system of equatxons and thereby justifies

themoﬂ.agangemulhphermla

- Theotem 3.5.3 Assume (u,p,4,T,g) € Hy(9) ng(Q) X H‘(Q) X H‘(Q) X L"’(I‘) is an optimal

"rr"r‘ﬂ‘sohhmfor(z.m) T?ienforabnostallwluesofthemtemctwn numberN there e:nstaLagmnge‘ \

hcr. (1, 7,3, T) € no(n) x Lo(m x H’(m such that the optimality system (3.21)~(3.25) is
isfied. O .0
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Remark. In fact, under suitable assumptions, e.g., for small Hartmann number Ar, we can show
that the solution to the optimality system of equations (3.21F(3.28) is unique.D
'Concerning the finite element approximations (3.21)-(3.28), we may prove the existence of,

- the convergence of, and optimal error estimates for, finite element solutions. |

\ "I‘heorem 3.54 Assume (0,9,6, T, p,7,5,1) € Hy(Q) x LO(Q) X H‘(Q) X H‘(Q) x Hi(§2) x
’ I,o(ﬂ) x H 1(Q) x H l(Q) is a nonsingular solution to the optimality system of equations (3.21)-
(3.28). Then for each sufficiently small h > 0, there ezists a unique finite element solution
“(n";‘p",{b",T", ph, 7R, sh tR) € X x 5§ x XM x X x X x Sk x Xt x X" for (5.29)-(8.35) such
 that
Jbm {Ilu ~ M+ llp—pPilo + 16— "l + IT = T+l — Pl + lir = 7Mlo +
e — 1 + It ~t*h} =0

:fthc solutwnwsmooth ie., (u,p,6,T,p,7,5 t)e H"““XH"‘XH'“"'I ><H""‘+l xH’"“

H”' X H”"+1 x H™1 then

{iro = w*ls + o PPllo + 1l — %Ml + T — THly + Il — s + i = 74llo + I — Il
Hlt = 21h} < O (lallm s+ el Il +IT s+ il 47l + sl + el

Furtheﬂnm'e the approrimate control g" converges to the ezact control g and the estimnate
i Ily y“llor < Ch™ holds. O |

3.6 Compuiational Examples

In tlns sectlon, we report some computatlonal examples that serve to 1llustrate the effectiveness

- and prastlcahty of optunal control techniques for the control problems we studred in thls chapter.

. First, we treat the pmblem of steering the velocity field to a desired one. The second one deals

e k'y‘w:th the problan -of matchmg the temperature ﬁdd toa desnred one. Finally, we consider the .

: jpmblem of mnmmzmg the temperature gradient thronghout the domain. »

All computahons are done wrth the foﬂuvnng chmm of ﬁmte element spaces defined over
the same tmmgnlatm oi‘ the dbmm Q UK : oontmuons p:ecewme quadratu: polynomxals :
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- ‘_'for":'bot"h components of the velocity u” and adjoint velocity u*; continuous piecewise quadratic
polynomials for the potential é", the temperature T*, the adjoint potential s* and the adjoint
tempera.tnre t*; continuous piecewise linear polynomials for the pressure p* and adjoint pressure

Th On each triangle, the degrees of freedom for quadratic elements are the functlon values at the
vertices and midpoints of each edge; the degrees of freedom for linear elements are the function

‘values at the vertices. Using standard finite element notations and those introduced in Section

3 3 we have that
X* = {v.€ COR) : vlx € Po(K), on each element K},
X" = {v =(v1,0)T € COQ) : v; € X*, i = 1,2}
and
S* = {r € CO(Q) : r|x € Py(K), on each element K} .
361 Velocity field matching

Thé first case we consider is the problem of minimizing (3.8) subject to (3.1)-(3.7), i.e., we
o attempt to match the velocity field with a desired one by finding an appropriate boundary heat

flux g. .
The optlmahty system of equat]ons are given by (3.21)- (3 28) with

(—Fu(“al’: ¢1 T),W) = Z./(; (ll - ud) -wdf)
and »
‘ (}-p(ux‘ps ¢s T),U) = (}-é(u », ‘ﬁvT)a T) = (-FT(u,P, ¢1 T) l) =0.

The correspondmg system of partial differential equations for (3.21)-(3.28) are glven by

3 l)—(3 6). :
‘ oar 1

“3—1;;#3'1 -onl,

"'*\J%%M+%w:(vv)’f % (u- w+vf—Bx(w) (an)xBHVT-l“——%“J &,

W
Lo

~‘V-y 0 mQ
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~As+V-(uxB)=0 inQ,

—Al-—u-Vt——%g-u:O in £,

p=90 onTl,

ot

'8—1;-—0 OIIF
and

%:0 6111‘.

We now present some numerical results for the following choice of parameters and data:

'1“11@ Ha;tmann number and interaction number: M = N =1;
the domain  is the unit square (0,1) x (0.1);
‘body force £ = (fi. f2)7. electric source k; and heat source kj:

Ji = sin(2xy) l4x*(2cos(2nz) ~ 1) ~ 7 cos(xz) sec(ry)]
|  (eos(2xz) = 1)[y? anizen) 27 sin(2xz) (cos(2r9) ~ D
f2 = sin(2xz) [53'005(13!) sec(xz) — 4x*(2 cos(2ry) - 1)]
" 4(1 — cos(2xy)) [y? sin(2xx) + 27 sin(2xy) (1 — cos(2xz))]
—cos(xz) cos(xy);
sin(2xy) [1 — cos(2xz)] + 2x2 cos(x 1) cosA(ty) |
}219[006(211) ~ 2cos(2xy) cos(2xz) + cés(?r.v)];
k2 = xlsin(2xz)sin(xy)cos(xz)(cos(2xy) — 1)
| +(1 = cos(2xz))sin(2xy) sin(xz) cos(xy)]
+2x2 cos(xx) cos{7y);

ky

I

 applied magnetic field: B = (0,0,5)%;
desired velocity field:
| | (cos(zry) [cos(2e2) - 1] )

. sm(2n:) sm(21y)

41
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For these data, the exact solution of the uncontrolled problem, i:.e.,, the solution for (3.1)-(3.7)

with ¢ = 0, is given by
o ([cos(?m:) -1 sin(?ry))

- sin(2xz) [1 — cos(2ry))
mw=C, where C is a constant ,
T = cos(xz)cos(xy)
: 'a‘md;r
o = cos(xz)cos(xy).

‘The proper choice of the constants ¢ and & in the functional plays an important role in
ébtainiﬁg a best velocity matching. For the computational results shown in Figures 3.1 below,
our choice of these two constants were. ¢ = 0.00001 and § = 0.001. |

We give a brief description of the figures. Figure 3.1 2) and c) are the uncontrolled velocity
field uo and temperature field Ty, respectively (under zero"temperature flux on the boundary).
Figure 3.1 c) is t»h‘c desired velocity field uy. Figure 3.1‘(;‘) optimal control solution: adjoint
temperature field 1*; those were obtained by solving (3.29)~(3.36). The optimal control g* can

‘be gleaned from Figure 3.1 c) and the relation g* = ~3eh, All the computational results shown
in figures 3.1 were obtained with a 10 by 10 triangulation of the unit square. A nonuniform grid
~ . with corner refincments was used. We see from the figures that optimal control does a very good

“job in matching the desired velocity field which has double circulations.
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- 3.6.2

and

Figure 3.1 €) contours of desired velocity field

Temperature field matching

(Fr(u,p, é,T),1) = %/ (T = Ty) 1d9
Q

(Fu(u,p, ¢, T), w) = (Fp(u,p,0,T),0) = (Fy(u,p,0,T),r) = 0.

43
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The domain is chosen to be a feclangle as shown in Figures 3.2 a) to c). The length is 2 and
- the height is 1. Control is applied partially on the boundary T as follows:

—=g on Iy=(0.1]x{0})u([0,1}x {1}

and ‘ *
S B %7’;:0 on I3 = ({0} x [0, 1))u ({1} x [0, 1)),

”\isr-llrerc‘l’. U T, = I The Hartmann namber 3M, interaction number N, body force f, e]ectﬁc
: spnrcé k;, heat source k; and @pﬁd magnetic field B are chosen to be the same as in Section
361 |
| The desired temperature field is a uniform one: Ts=1.
The ﬁm parameters in the functional are chosen as ¢ =0.001 and 6§ = 1.
For these data, the solution (wug, po. dv, To) of the uncontrolled problem; i.e., the solution for
( 3.])%—(3.7) wfth g = 0, are the same as in Section 3.6.1. Some numerical results for this exalhple
s reponed i‘ni Figﬁrw 3.2 a)-c). We give a brief description of the ﬁgures Figure 3.2 a) is the
runcoptr*o*ll‘ed‘tem;')éﬁture field T (under zero heat flux on the Bomida:y). Figure 3.2 b) and c)
are the optimal control solutions: temperature field 7" and adjoint temperature field t*; those
 were obtamed by solving (3.29H3.36i. The optimal control g" can be gleaned from Figure 3.2
~ ¢) and the relation g* = —}t*. A look at Figure 3.2 b) reveals that the optimal temperature -
7 “matches well with the desired temperature field Ty = 1. '

" Figae a2 e ool temperstine Sl Ty, Figure 3.2'h) optimal control solution:
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Figare 1.2 o) #timal comtrod solution:
adjoint tempeyature feld 1*

3.6.3 Temperature gradient minimization

Tlle third case we consider is the problem of mmunmng the (empentum gradu-nl ., we
mmmwefundlonal (3.10) subject to (3.1)-(3.7). '
Tbe opnmzﬂity system of equations are given by (31!) (3 28) wllb

(Fria.p.6.T).0) = _/ VT - Vid0

{Fa(w.p.6.T). w) = (F){u.p.6,T),0) = (Fylu,p,0,T),7} = 0.
. Thec!omamnchmn to be a rectangle mthbnglh 2 and belgbl 1. C'onlmlu applicd pa;uallx
on the boundary T as follows: | ‘

g

9 o n=<{o,nx'{onuuo,nx{m

ar
=

_ where I; UT; = I. The Hartmann number M, interaction namber ¥, body foree f, electric
mk;,butmcebzudappﬁedWﬁdﬂﬂmc&mlobelhemumh«imn
3.& mtwpuamammthﬁndmdmcm ase:ﬂ(l(l(ﬂud&*l,

=0 on [“xz‘{n} W[ﬂ,l])u({l}x[oxlhs
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‘3.7 Concluding Remarks.
In this chapter we studied numerical computation of boundary control problems for an electrically

conducting fluid with heat flux controls. We summarize the main points in this chapter as follows:

o We converted the optimal control problem into a system of equations (i.e., the optimality

system of equations) by usfng the Lagrange multiplier principles;

e We proposed some methods for solving the discrete optimality system of equitions. Qur
discussions of these methods were made for finite element discretizations. Apparently,
these methods are equally applicable to finite difference, collocation or pscudo-spectral
discretizations; |

o We successfully performed numerical computations for some prototype examples as presented
in the Figures. Our work demonstrated the eflectiveness of optimal control techniques in
Bow field matchings and in the minimization of some 'plu‘f_sical,quantit"ie:..ff Our remark in

: C'hapler 2 regarding the Hartman sumber (Reynolds number) restriction holds here as



i Chapter 4

~ Control of Unsteady Flows I:

‘:i. - Current Control

“In this chapter we study some control problems for an unsteady electrically conducting flow

: mode! ‘The control is the normal electric current on the flow boundary. In Section 4.1, we present
some ‘opiimé\l control problems and describe the computational methods used in this chapter.
In Section 4.2, we derive the optimality system using the Lagrange multiplier techniques. In
Section 4.3, we present some computational results and in Section 4.4 we make some concluding

- yemarks.

4.1 Statement of the Optimal Control Problems

We denote by Q2 the flow region which is a bounded container in Ri or R3 with the boundary
T and by [0,1] the time interval. The dimensionless equations governing the unsteady incom-
~ pressible flow of an electrically conducting fluid in the presence of a magnetic field, when the

Maxwell’s displacement. currents are neglected, are given by the following; see [TC]:

;% +4(u-Vyu=-Vp+(ixB)+ ﬂ‘,Aq‘H in[0,1] x 2,
Veou=0 inf0,]x9,

48
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J=E+ (uxB) in [0.1] x @,
V.j=0 in{0.1]xQ,

VxB=~HRaj in[0.1]x9Q,
VxE-= -—%?— in [0,1] x 2,
and |
| V.-B=0 in[0.1]xQ
where u denotes the velocity field. p the pressure field, j the electric current density, B the
magnetic field, and E the electric field. Also. & is the interaction number, s is the Hartmanu
number, and R, is the magnetic Reynolds number. A
‘ We will deal with a special case in which the externally applied magnetic field is steady and
undlsturbed by the flow; in particular, we assume that B is given. Then V x E = 0 auul the
electnc field can be expressed as E = —V¢, where ¢ is the electnc po(en.nal We now arnive at

the following simplified system by eliminating j as described in Chaptef 2:

’%—n-r}yAu+ﬁ(u-V)u+Vp-(BxVé)-—(uxB)xB:f in [0.1] x 2, (1.1)
V-u=0 in[0,1]xQ (4.2)

~and
~Aé¢+V-(uxB)=k in[0,1]x9. (1.3)

In (4.1)-(4.3), B, f and k are given data and &7 and N are parameters.
The system (4.1)-(4.3) is supplemented with the following initial condition

n(o,x)zﬁ(x) in §2, ‘ (4.41)
and the boundary conditions
‘ u=0 on[0,1xT . (4.5)
9 _g omfoyxr, L (46)

™
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where g denotes the only control variable, namely, the normal electric current on I, @ the initial

velocity.

~ A cost function for this unsteady flow can be written as

J == ] Flu,p. oMt + / / lg|2dTdt,

where f(li, é.p) is a functional of (u,6,p). The optimality system, when (F(u,p,v).l) =
k jﬁ [u “ug?vdsl, is given by

%-ﬁ;Au+;';r(u-V)u+Vp-(BxVé)—(uxB)xB:f in [0,1] x @,
V-u=0 in{0,1}]x 9
-A0+ V-(uxB)=k in{0,1]x 0.
%,’f"*fu‘vﬁﬁ Fu- (Vo) & (u-V)u4 Vr—B x (Vs)—(u xB)xB=u-ug in[0,1]x9Q,
| Vp=0 inl0,1)}x9, '
~As+V-(uxB)=0 in[0,1]x R,

and

p(l.x)=0 in {1,

u(0.x) = d(x)  in Q.

Muafullymaplednonﬁnmsﬁwmmlhufomrdmtnmeandpbackwardmume. This
.mmbesolwdhyammpkumemzrchmgscheme Asaresult theso]utmnoftlnssystemxs 7

S L;‘mmpnmmany costly.

Tomtwthwdaﬁmhy,mmstead stndytheﬁ:ﬂowmgpmblem |
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1° Select a sequence of time instances 0 = g < ; < tz;.., tnetstnedn_g < {n = L.
2° At each t; we study the following optimal control problem:

minimize the cost functional »
Fi(ulty ). &8s ) Ut 9005 D) = 3 F (w62 + 5 [ lolts, T
subject to the constraints '
%tg(tia ) - spdu(ti, ) + F(alti,-)- VIu(t, ) + Vp(ti.-) — (B x ¥o(ti,-))
—(u(ti,- ) x By x B=1{t;,-) in 2,
V-u(ti,-)=0 infd
-Ad(t;, )+ V-(u(t;,-)) x By=k in Q.
u(t;,-)=0 onT
i) =oltin) onT,
3° The tﬁne derivative ue(t;,-) is replaced with M%‘&,'-‘:—Ll S0 tha@ we can

minimize 7;, subject to |

Sulti )~ s dults, )+ d(a(ts ) Vhulti, ) + Valh,) - (B x Vot )
~(a(t;, ) x B) x B = ulhi1, )+ {(ti ) in 2,

V-ut;,)=0 inQ

—Ad(t;,)+ V- (ult;,)x B) =k in 9.

n(u, )=0 onT

a,.(‘" )=g(ti) onT.

4° Each minimization pmblem descnbed in Step 2 is solved by the steady state mc-,thod

We a:emmnnmng tbe fnnchonal at a number of time instances. H the tlme step Iengtb is small,

‘ this. sequence of minimizers at {t,}” , will give us a qnasxmmmnzer over ‘the entire time interval
. {in 1>(0,T) norm) There are further mathematical and nnmeru:al quemonsto be mveshgated
| ,Thls s cnnutly nnderway. ‘
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Remark: Efficient solution methods for the forward-backward problem are currently being
developed and will be reported in a forthcoming article.O -

Tbis“computational procedure is applied to the system (4.1)— (4.3) with the backward Euler
“method to discretizé‘trhe time derivative. Let u(t,,x} = u"*, u(tp-1,x) = 01, §(i,,x) =

and p{t,,x) = p*. Let At =1, — 1,_. Then the system (4.1) — (4.3) takes the form

AW — PrAu” + F(u"-V)u + Vp" — (B x V¢") — (u" xB)xB ="

+ Zu! nQ, (4.7)
V-u"=0 inQ (4.8)

and _
~AQ"+V- (0" xB)=k" inQ. (4.9)

In (4 7)-(4.9), B, f“ and. k" are given data. The system (4.7)-(4.9) is supplemented with the

nmual condmons

wO0.x)=d(x) n® | (4.10)
and the boundary conditions - |
w=0 onTl (4.11)
" , S :
I =g" onl (4.12)

where g deroles the oﬁly control variable, namely, the hormal electric current on I'. We like
" to remark here that one could also use other implicit time discretization procedures such as
Crank-Nicholson method in the above discretization.

Our goal is to try to dbtain a desxred flow field by appropriately choosing the control — the
- normal electric current on I'.. Specifically we will invesiigate the following cases: matching a
 desired velocity field, matching a desired potential field, or minimizing the potential gradient.
' Mahemaucally. these tasks can be descnbed respectively, by the following optimal control
| mtmg‘ minimize the cost fasctional at time levels £y, 1,83,

 Keetah= L A ju* — wad + 3 L P, S (a1
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or
M(u™, 6", p",g") / 6" - e3Fdn + 5 / ", (4.14)
or .
N(u",¢",p".g") = L Vo |2d + is-/ lg"2dr » (4.15)
* 9 * 2€ _/0 v 2 r- - LAY
: ‘sqlfject to the constraints (4.7)-(4.12). Here ¢ > 0 and é > 0 are positive parameters; ug and bd.
| ~‘are, respectively, desired velocity field and potential field.
 The minimization of functional (4.13) or (4.14) or (4.15) subject to (4.7)~(4.12) is a special

case of the following general optimal control setting:

minimize the cost functional
J(u*, ¢, p", ¢") = F(u",¢", ")+2/|g"|2dl‘ (4.16)

at 1, = 13,13, .....,1x subject to the constraints (4.7)-(4.12),

whé;e F(u",¢™, p") is a functional of (u®, $",p").

42 A Variational Formulation of the Constraints; An Opti-
mality System of Equations

- The variational formulation of the constraint equations is then given as follows: seek u™ € H}(f),
P" € LY(D) and ¢ € H(R) such that

g,-/u".vm+-g,/ Vo vvag - [ [vor - (u x B)|-(vxB)® ~ [ p"V-vaq
Q Q : Q 4] .

| +%/(n"-V)n"-de=]f“-vdﬂ+ -}5/ Wl vd Vv € Hi(Q), (4.17)
Q Q Q

L [V#‘ —-»(n" x B)}- (Vo) = /0 k™ $dQ + /r vl ¥y e H(R) (4.18)

/ qV-wdR =0 Vge Lg(n) (1.19)

‘gnmthemlonmunonm&nmempmdmmndxd
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The precise mathematical statement of the optimal control problem (4.16) can now be given

as follows:
seek a (u™,p", 6", g") € HY() x L3(Q) x H(Q) x LX(T) such that the
functional (4.16) is minimized subject to the constraints (4.8)-(4.10). (4.20)

We will turn the constrained optimization problem (4.20) into an unconstrained one by using
L Lagrimge multnpher principles. We set X' = H}(Q) x L( ﬂ) x HY(§2) x L) x HL(2) x L3(2) X
H '(ﬁ) and define the Lagrangian functional

L(u",p", ¢", g", 1", 7", 5")
= F(u",p",¢")+ = /Ig"lzdI‘-— nu -utdQ) — W_/ Vu® : Vp™dQ
+/Q[V¢“—(u x B)]- (" XB)dQ—I—V—/n(u -Viu" - pd
, +/ p"V-u"dQ-l-/ f“-u"dQ-l—.ﬁ a1t udQ
S Ja Q -Ja
—L [Vé™ — (u™ x B)] - (Vs")d® + / 5" + / g" s*dl
‘ [ ~Jr
+ /ﬂ PV -utdR (Ut 6%, g, T SN € X (4.21)
Anp optim:xlity system of equations that an optimum must satisfy is derived by taking variations

" with respect to every variable in the Lagrangian. By taking variations with respect to u®, p"
_ Vand ", we obtam

—L/p -wdQ + m/Vy deﬂ—l-/(wa) (£" x B)dQ

+ #/s;(n -V)w-p"dﬂ-{--&:/n(w-V)u -p“dQ-——/ﬂT"V-wdQ

= (}-ﬂ“(,nuspur "), w) Vw € HQI)(Q) 2 (4'22) ‘
L[v‘,“ A (ﬂn X B)] ° (V?m = (]:*‘(nu,pn’ ¢n)’ 1‘) V‘l’ € ﬁl(n) (4'23)
and | - | |
B j oV - y"dQ = (.F,,-(u " ), a) Vo € 9, . (4.24)

o Vf'hetefu- }'yx amd.F,- atethedermmm oftkeftmchonal with respect to its three arguments,
F ; rwpmmrly. By tahng vananons mth respect to p 2 and &, we recover the constraint
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equaﬂbns (4.17)-(4.19). By taking variation with respect to g we obtain

/1;(657"3 + zs")dr =0 Vze€ L2(r) ie., ‘ Qn = -

>‘ ~ This last equation enables us to eliminate the control g™ in (4.20). Thus (4.17)-(4.19) can be

replaced by

| ﬁ;Lu"‘vmiﬁyLVn":Vvdﬂil[Vé" — (u" x B)]- (v x BMdQ + ﬁ,/ﬂ(u".v)uu.wm

-/p"v-vdn=/fﬂ-vdn+g-, wl.vdQ Vv e HY), (4.25)
22 22 - Ja
/ [Vo™ — (u" x B)] - (Ve)d2 + % / S pdS) = / K pd Ve 1), (4.26)
Ja r CJa ~ ‘
and
/a gV -wd =0 Vge LY(9), (4.27)

Equatidns (4.22)—(4.27) forms an optimality system of equations that an optimal solution must

‘satisfy. Finite element approximations and the computational methods, Newton’s and iterative,

presented in Chapter 2 for the steady state case can be extended here in a natural fashion.

4.3 Computational Exajnples

In this section, we report some computational examples that sérve to illustrate the eflectiveness

and practica]ity of optimal control techniques in electrically conducting fluids. First, we treat |
the problem of steering the velocity field to a desired one. The second one deals with the
minimization of potential gradient throughout the domain. Finally, we consider the problem of

matching electric potential to a desired one.

All computations are done with the same choice of finite element spaces as in Chapter 2.

4.3.1 Velocxty ﬁeld matchmg

Theﬁrstcaseweconmdermthepmblem of minimizing (413)snb1ectto(47) 4:12), i.e., we

‘attmlpttdmatdltheveloatyﬁeldthhadmredonebyﬁndmganappropnateboundary '

i
3
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The optimality system of equations are given by (4.22)-(4.27) with
’ ; 1 '
(Fus(u™,p", 0"), w) = ;/{; (u" — ug) - wdf

 and

(For(0",p". 8"), 0} = (Fon(u",p", &™), 7) = 0.
S The corresponding syétem of partial differential equations for (4.22)-(4.27) is given by (4.7)~
S,

%%’iz—bl—s" onTl,
2r - g A+ - (Vun)T — L (ut V)" + VP - B x (VsY)
—(u"xB)xB-—%u":-—%u}‘ in Q,
V-y" =0 in Q,
A+ V- (p" xB)=0 inQ,
=0 onT
and

ds™
‘5—;—-0 onl.

‘We now pmsent some numerical results for the following choicé of parameters and data:
| The H,aftmann number and interaction number: N = 1; M=1;
‘ Vlhve‘domain Q is the m#it square (0,1) x (0,1);
applied magnetic field: B = (0,0,sin(xy))";
~ desired velocity field: |

e

o (ll—ms(zm)l ms(im))
MI\ sin(2est) sin(ry)

. (‘lcos(;m)-‘ll o)
sin(2xz) 1~ cos(2xy)]

initial condmnns
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7 Withrtho@se data, the body force f = (f;, £2)T and electric source k are selected such that exact

“solution of the uncontrolled problem, i.e., the solution fr»r.(4.] )-(4.6) with ¢ = 0, is given by
exp( 3 )[cos(2xz) - 1] sin(?ry)

(exp(-:q‘) sin(2xz) (1 - cos(z‘ry)]) '

po=C, where C is a constant

“and
| ¢y = exp(—t) cos(xzx) cos(ny).

The proper choice of the constants € and § in the functional plays an important role in obtaining
a best velocity matching. For the computational results shown in Figures 4.1 below, our choice
of these two constants were € = 0.00001 and § = 0.01. The time step At = 0.2. We give a bricl
7 description of the figures. Figures 4.1 a), g’, m), s), and x) are the uncontrolled velocity field ug
at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Figures 4.1 b) h),.n), t) and y) are the »desired velocity -
ﬁdﬂ u* at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Figures 41 c), 8), k), 0) and s) are the optimal
velocity fields at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Figures 4.1 d), h), 1), p) and t) are the
 adjoint potential s" at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Those were obtained by solving
{4.22)-(4.27). The optimal control g* can be gleaned from Figurek 4.1d), h); 1), p) and t), and
ﬁhe relation ¢g" = —-;}-s". All the computational results shown in figures 4.1 were obtained with
al0 By 10 triangulation of the unit square. A nonuniform grid with corner refinements was
used. We see from the ﬁgures that optimal control does a very good job in matching the desired
velocity field at t=1.

[t
s
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Figure 4.1 m) uncontrolled velocity ug at ¢ = 0.6

FLOWS I: CURRENT CONTROL

Figure 4.1 n) desired velocity uy at f = 0.6
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¥

Figure 4.1 o) optimal velocity u” at t = 0.6
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Figure 4.1 s) uncontrolled velocity ug at ¢ = 0.8

Figure 4.1 t) desired velocity ug at t = 0.8
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Figure 4.1

Figure 4.1 x) uncontrolled velocity ug at ¢ = 1.0

Figure

Figure 4.1 y) desired velocity ug at ¢ = 1.0
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e s e e s = = = 3 o
Figure 4.1 z) optimal velocity u” at t = 1.0 Figure 4.1 z1) adjoint potential s® at t = 1.0

Figure 4.1 z3) contours of optimal velocity field at t = 1.0

4.3.2 Potential field matching

. 1/
(Fon(u™,p", ¢"), 1) = P / (o™ — @) rdS2
Q

(Fur(u”,p", ¢"), w) = (Fpn(u", p", ¢"),0) = 0.

The domain is chosen to be a unit square. The interaction number N, body force f, electric
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aounce k and applied magnetic field B are chosen to be the same as in Section 4.3.1. The
" Hartman’s number M = 10. '
" The desxred potentlal ﬁeld is a function of time and spa.ce wluch is a uniform one at t = |:

64 = (1 — 1) cos{xz) cos(xy) exp(et) +e.

Thetwopatametersm the functional are chosen as 6-00023nd §= Ol

" For these data, the solution (ug, po, Pv) of the uncontmlled problem, i.e., the solution for
77(4.1H46)thhg 0, is the same as in Section 4.3.1. The time step At =02.

' Some numerical results for this example is reported in F‘gnres 4.2 a)t). We give a briel
desmmum of the figures. Figures 4.2 a), e). i), m), and q) are the uncontrolled potential fiekds
éo at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Piguresd .2b) f),j), n) and r) are the desnred potential

~ fields ¢* at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Figures 4.2 c), g), k), o) and s) are the optimal

potential fields at 1=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Figures 4.2 d), h), 1), p) and 1) are the

~ adjoint potentml s at 1=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Those were obtained by solving
| (4.22).(4.27) The optimal control ¢* can be gleaned from ﬁgum 42 d), b), 1), p) and t), and
\ the relation g* = -3k . _

A look at Figures 4.2 c), g), k), 0) and s) reveal that the optimal potential matches well with

- the desired potential. In fact we also have good matching at ¢ = 0.2,0.4,0.6, and 0.8.

Mquwhdlzu - | rw'ub)&dp«e_ﬂh-t‘z:a.z .




Fignn-d.ﬂr:)up&imalpﬂmill#“dlzﬂly Figure 4.2 d) adjoint potential s* at 1 = 0.2

Figure 4.2 ) desired potential é4 at 1 = 0.4
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Figure 4.2 }) desired potential ¢4 at t = 0.6

Figure 4.2 k) optimal potential ¢* at t = 0.6 Figure 4.2 1) adjoint potential # at 1 = 0.6
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4.3.3 Potential gradient minimization

The third case we consider is the problem of minimizing the electric pétential gradient, i.c., we
minimize functional (4.15) subject to (4.7)-(4.12).
" The optimality system of equations are given by (4.2‘2)~(4.27j with
(For(u",p",0"),7) = «:—-L-V&",- VrdQ

and |

(Far(0",p".9"), W) = (Fpro(u”,p", ¢"),0) = 0.
The tiomain is chosen to be a unit square. The Hartmann number 3 = 10. The interaction
Vnnmberr N, body force f, electric source k and applied magnetic field B are chosen to be the
same as in Section 4.3.1.

The two parameters in the functional are chosen as ¢ =00002 and & = 1. For these data,
the exact solution (ug, po, $o) of the uncontrolled problem, i;e., the solution for (4.1)**«7(4.6) with
g = 0, is given by the same uncontrolled solution as in Secti,bn"i.&l. The time step Al = 0.2.

Some numerical results for this example is reported in Figures 4.3 a)-0). We give a brief
» description of the figures. Figures 4.3 a), d), g), j), and m) are the uncontrolled potential ficld
dv at 1=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Figures 4.3 b), e), h), k) and n) are the optimiil
potential field ¢* At t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. N!-"‘igures 4.3 c), 1), 1), 1) and o) are
the adjoint potential s* at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Those were obtained by solving
(4.22)-(4.27). The optimal control g* can be gleaned from Figures 4.3 c), f), i), 1) and o), and
the relation ¢* = —}s‘.
| By minimizing Itmctionaj (4:15) we wish to obtain a quasi«uniform potential distribution at
each time level. The numerical results (in particular, Figure 4.3 b}, e), h), k) and n)) demonstrate
that the optimal control did a very good job ia achieving the objective.
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- Figare 43 a) uncontrolled potential ¢g at 1 = 0.2 - Figure 4.3 b) optimal potential ¢" at t = 0.2
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Figure 4.3 h) optimal potential ¢* al t = 0.6
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Figure 4.3 m) uncontrolled potential ég at t = 1.0 Figure 4.3 n) optimal potential ¢" at t = 1.0
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,l_l
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Figure 4.3 o) atlioin&potelﬂnl:" att=10

44 Concluding Remarks.

In this chapter we studied numerical computation of unsteady boundary control problems for
an electrically conducting fluid using electric current controls. We summarize the main points

in this chapter as follows:
. “e devdoped a wmpntauonal procedure to solve unsteady optimal control problems.

aw&: converted the optimal control problem isto a system of equations (i.e., the optimality
of equations) by using the Lagrange multiplier principles;
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o We proposed some methods for solving the discrete optimality system of equations. Our
discussions of these methods were made for finite element discretizations. Apparently,

these methods are equally applicable to finite diﬂ‘erehce, collocation or pseudo-spectral
_ discretizations: 7

@ We conducted numerical experiments for some prototype examples to show the performance
of our computational procedure. Qur work demonstrated the effectiveness of our com-
putational techniques in flow field matchings and in the minimization of some physical

tiuantities.

In principle, other types of boundary controls such as Dirichlet controls of the eclectrical
potential or Dirichlet controls of the boundary velocity can all be treated by the techniques used
in this chapter. Optimal control problems with distributéd controls and Dirichlet can also be
studied in a similar manner. See [HR2] for details and computational examples.




Chapter 5

‘Control of Unsteady Flows II: Heat
Flux Control

~ In this chapter we study some control problems for a Boussinesq’s model in an unsteady elec-
trically coﬁdhct,ing flow. The control is the heat flux on the flow boundary. The format of this

chapter is the same as that of the previous one.

5.1 Statement of the Optimal Control Problems

" We demote by 2 the flow region which is a bounded open container in R? or R3 with boundary
- I and by [0, 1] the time interval. Then the dimensionless Boussinesq’s model takes the form:

%ﬁf->ﬂ1£§n‘+ -}(u»V)n-{—V’p-(B X V&)—(u xB)xB-1gT=f in[0,1]xQ, (5.1)

V-u=0 in[0,1]xQ, (5.2)
~A¢+V-(uxB)=k in[0,1]xQ (5.3)
T,— AT +u-VT =k, in[0,1]x Q. . (5.4)
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In (5.1)-(54), B, f, k; and k; are given data and ar, N and L are parameters. The system
(5.1)-(5.4) is supplemented with the following initial conditions

u(0,x) = u(x) in Q, : (5.5)
T(0,x) = T(x) inQ, (5.6)

“and the boundary conditions |
| u=0 on[0,I]xI, (5.7)
% _0 on[0,1]xT, | (5.8)
?)3; g on[Ol]xl‘ (5.9)

where g denotes the only control variable, namely, the heat flux on T, u the uuual velocity and
" 7 the initial temperature. We further test the computanonal procedure described in Chapter 4

on this model. For completenms we present the procednre here:

1° First the state equations are descretized using an unplmt hme ‘descretization scheme in the
' time interval [0,1]. |

2° Then in each time interval the state equation is steady and the cost function is taken
instantaneous (no time averaging).
3 Lagrange Multiplier technique is applied at each tiﬁ;e inw [ta-1,t.] to derive the opti-
- mality system. |
4" At each time level optimality systems are salved usmg the computational techniques we
developed for the steady state control problems.
A fully implicit backward Euler time discretization is used here to discretize the system.
Select 0 = h <ty < Iy .ly y,0a,- "N—l < iy = 1. Let u* Il(lg,X), uwl = “(‘ﬂ-llx)) ;
™= T(t.,x),T"‘ -1 _T(t,..,,x)a.w- m.,x) Let At = t, ~1,_;. Then the time discrete

ﬁn‘ ﬂgAn +Mu V)n +Vp"-(BxV¢‘) —~(u® xB)xB };31“
f“-l—;b -1 mﬂ R (510)
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S V-u*=0 in 2, (5.11)
o —AF+V-("xB)=k @, (5.12)
L AT AT 4w - VT =B + LT* in Q. (513)

Y Tbelsymm (S;IO)M( 5.13) is supplemented with the uuua! condilions

w(0,x)=6(x) in®, (5.14)
| | T(0,x) = T(x) in 2, (5.15)
' and the boundary conitions |
- | w"=0 oal, ) , (5.16)
e
| —5:--0105[‘" ) S . - (5.17)
‘ So=4 wr | (5.18)

— -*{wsmg*m lheoalyma!mlmble namely, the heat flux oa T

| Olrgmlstouytoobtmzdmudlowiddbyappmpnuelydowngﬂecmtml the
fmatmyentmgm{html‘. Spmimﬂynwmmmnguetheﬁﬂowmgm matching
a desired velocity feld, maic’ing a desired temperature field, o minimizing the temperature
gradiest. Mathematically, these tasks can be described, respectively, by the following optimal

| control setling: minimize the cost functional at time levels 1,13, 13, -...., Iy

K(a" 0" T 50" = 5 [ 1o~ wifen+ 3 [ lg°far, (5.19)
M(lfl%dﬁﬂ.fﬂf = % L "I‘fﬂi"mf; Llj‘]’a‘, (5.20)

xtu*,w, .f.r) = L m*n’m Lwa‘ L s
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~ subject to the constraints (5.10)-(5.18). Here ¢ > 0 and § > 0 are positive parameters: ug and
T, are, respectively, desired velocity field and temperatare field.

The mmnmzatm of functional (5.19) or (5.20) or (5.21) subject to (5.10)-(5.18) is a special
 case oftbe following general optimal control setting: ~

minimize the cost functional
T(u*, % T g g%) = Flum o8, T 5" + 5 j wPar e
at ty = 1y,1z,.....,1x subject to the constraints (5.10)-(5.18),

_‘ where F(u®,¢*,T*,p") is a functional of (u*,¢",T*,p").
5.2 A Variational Formulation of the Constraints; An Opti-
mality 'SyStem of Equa'tions ” |

Themﬂbmnhumdthemtmteqaamutm gl\ren as follows: seeku € Ho(SI)

e yw), #* € [i'(0) and T~ € (D) such that

ﬁLn vm+,},Lve Vv.az-L[w'-(n x B)] - (va)dﬂ jp'v vd)
+ﬁ/(n -V)u®-vdid - iLg VT
= L r-vin+ & Lwl«m vv € Hy(9), - (523)

[(99 (o x Bl (vorn= [ 1w vo e i'(R), (5:24)
LT" m+Lw~ vm+]u VT0a

“LW«&-LQ’MI‘*- g;LT“*‘ -0d0 Vo€ HY(®),  (525)

qu n"dﬂ 0 veel¥(Q). 28

ri""immmmmnmmmmm ll"“ |
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I Thc precise mathematical statement of the optimal control problem (5-22) can now be given
as follmlf,s
seek a (0, p, ", T™.g%) € HY(N) = L2(12) x }(Q) x HY(R) x L3(T) such that the
functional (5.22) is minimized subject to the constraints (5.23)-(5.26). (5.27)
* waill turss the constrained optimization problem (5.‘27) into an unconstrained one by ﬁsing
Lagrange niultiplier principles. We set X' = HY(2) x LYQ) x HY() x LY(T) x HY() x LY(R) x
11'(91) and define the Lagrangian functional
. c‘.uwzﬂU’#ﬁzym!gm!‘l*xr‘a“ﬂj ‘
uwﬂnﬁ il v__}_/n,ﬁ f,,n.,n
= f(n,rgag’l")-l—z/rﬁgldl* & [ o wran- g [ v :vunde
+ / [Ve® - (0* x B)]-(u* » B}~ / (0" V)u - pdf2
+/p~v ;i‘d!!+]f‘ ~m+;{;/ u-t. |
l'Vé"—(u « Bj] - (vvm+/k‘rm+/g s*dr' — -L] T™d
¥ [r -v-u-an-/menm-/u'.vmmhb]r--'z'dn
12
+/Pl"’dﬂ+/g l‘df+£/g W
Y(a™ pt " T g% ", T, 8" I')GA’ (5-28)

An oplmlity system of equlm that an optimam mast sahsfy is derived by taking variations
‘vmli mpeﬁ to every variable in the Lagrangian. By taking variations with respect to u*, p”",
™ n«l ", we obtain:

tLp .mm + ;},va *deﬂ«i»/(wa) (" x B)dQ

_ ‘+ ;&L(ﬂ “V,)"u’&+‘£f/(w'V)u . ‘&-Lr‘v-wm
= (Fald, g, 0%). T w) VweH.,{ﬂ), o L (5.29)

Ltw ~(ﬂ~xn)1 m)m (Fola 7). Tr) VreBi®), (530
i Lav w&,(};.cu ,p"‘,ﬁ‘ T"),,a) vaeL,,(n) %)
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) “‘,T5,-3 f Compu;tationalkiExamples ‘

In this section, we report some computational examplés thaf serve to illustrate the effectiveness
and practicality of optimal control techniques in electrically conducting fluids with heat flux
- controls. First, we treat the problem of steering the velocity field to a desired one. The second
one deals with the matching the temperature field to a desired one. Finally, we consider the

pmblem of mlmmnzmg the temperature gradient throughout the domain.
Aﬂ mmputatlons are done with the same choice of finite element spaces as in Chapter 2.

5,3.1 Velocity field matching
- The first case we consider is the problem of minimizing (5.19) subject to (5.23)-(5.26), i.e.,
we attempt to match the velocity field with a desired one by finding an appropriate boundary

current density g.
The optimality system of equations.are given by (5.31 )-(5.38) with

(Far(u, 5%, 6" "), w) = 1 / (u" —ud)»wdﬂ

(fpu(n P87, T7),0) = (Fea(u™,p" . 0" T") ) = (Fra(u™,p",¢",T"),1) = 0.

“The comspondmg system of partial differential equatlons for (5. 29)—(5 36) is given by (5.1)-

(59),; B
o
on

P

onT,

DA
LY

A - A At +wl (Vu") x (u*-V)u® 4 V1t
-Bx(V.s")-—(p xB)xB—-—-u _—%ud in Q,
V" =0 ili!l,
—~As® 4V - ([l XB) 0 inﬂ,

AI'——u e ‘Lgp =0 ‘Ainn,

p“ :0 g f:{on I‘,_ :
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o _ |

an-() og[‘
and

os”

—51-;'—0 OIIF

We now present some numerical results for the following choice of para.meters and data:

o The Hartmann number and interaction number: ¥ =1, M = 100;

N the domain §Q is the unit square (0,1) x (0,1); -

| applied magnetic field: B = (0,0,sin(xy));

- desired velocity field: :
& re ([1 — cos(2xzt)] cos(27ryt))
uy = ’ !

| sin(2xzt) sin(?ﬁryt“)
initial conditions: '

a=

[cos(2xz) — 1] sin(27xy)
( sin(2xz) [1 - cos(2ry)] )
and . P -
' T = cos(2xz) cbs(h'y) .
With these data, the body force £ = (f, jg)T,j electric sourcé k; and (he heat source kg are |
selecte(i sncﬁ that exéu:t solution of the uncontrolled problem, i.e.; the solution for (5.[)-(5.9)'

with g = 0, is given by

——

(exp(ﬁ‘-)[mﬂn) -1 'sin(2ry))
exp(3t) sin(2xz) [1 — cos(2xy)]
po=0C, where C is a constant,
= exp(~1) cos(2xz) cos(2xy)
~and | |
| @0 = exp(—t) cos(xz) cos(xy),
| The proper chonce of the constants ¢ a.nd & in the functional plays an important role in
obtammg a best velocity matchng For the oompntatlonal results shown in Figures 5 i below,

S o "onrdlmneofthesetwoconstantswme-OOOMIandd 001, 'I‘hetunestePA‘ 02
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o We g;;'(r a brief dcscripl,idnof the figures. Figures 5.1a), g), m), s), and y) are the uncontrolled

velocity field ug at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Figures 5.1 b), h), n), t) and z) are the

" desired velocity field uy at‘t‘:().?, 0.4, 0.6, 0.8, 1.0, respectively. Figures 5.1 c), i), 0}, u) and z1)

are the optimal velocity field u* at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Figures 5.1 d), j), p),

¥) .;andrz‘lj are the adjoint temperature s* at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively; those were

obtained by solving (5.31)-{5.35). The optimal control g can be gleaned from Figure 5.1 d), j),
p), v) and z2) and the relation g* = -—%t"’.

All the computational results shovm in Figures 5.1 were obtained with a 10 by 10 triangulation

of the unit square. A nonuniform grid with corner refinements was used. We see from the figures

that optimal control does a very good job in matching the desired velocity field at ¢ = 1.
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Figure 5.1 i) optimal velocity u” at ¢




Figure 5.1 n) desired velocity ug at t = 0.6

Figure 5.1 p) adjoint temperature t"* at ¢t = 0.6




CHAPTER 5.

CONTROL OF UNSTEADY FLOWS 1I: HEAT FLUX CONTROL

Figure 5.1 v) adjoint temperature t" at t = 0.8

83




ug Figure 5.1 z) desired velocity uz at t = 1.0




5.3.2 Temperature field matching

(7"/[1%5\ u [)"\ i //» = — / ( ;B Tl ) [dQY
€JQ

alld

Ty =(1—1)cos(2nz)cos(2ny)exp(—t) + 1.
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Some numerical results for this exaaple is réported in Figures 5.2 a}-t). We give a brief
description of the figures. Figures 5.2 a). e), i}, m). and q) are the uncontrolled velocity field vy
at 1=0.2, 04, 0.6, 0.8, 1.0, respectively. Figurcs 5.2 b) f), j), n) and r) are the desired velocity

-~ field u* at 1=0.2, 0.4, 0.6, 0.8, 1.0, respectively. figures 5.2 c), g), k), o) and s) are the optimal
velocity fields at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Figures 5.2 d}), h), 1), p) and t)} are the
. édjuim[lemperalure s* at 1=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Those were obtained by so]ving‘
- (5.29)-(5.36). The optimal control g* can be gleaned from figures 5.2 d), h), 1), p) and t) and
the relation ¢* = —L¢*. A look at Figure 5.2 r) and s) reveals that the optimal temperature

matches well with the desired temperature Ty.

o qut}wmdwr‘uszuz . . Figure 5.2 d) adjoint temperatuse t* at ¢ = 0.2
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Fignae 5.2 qf umecastsolled vempeystvne T wb & = 40 Figure 5.2 v} desired tempevaturs Ty at =2 LY

Figrar 5.2 3} optimal temperatare T* at £ = 1.0 Figure 5.2 1) adjoint temperature t* at ¢ = 1.0

5.3.3 Temperature gradient minimization

The third case we consider is the problem of minimizing the temperature gradient, i.e., we
minimize functional (5.21) subject to {5.23)~(5.26).
The opiiinality system of equations are given by (5.31)~(5.38) with

(Frtu. 0" 7)1y = ¢ [ v1"-vide
_‘ :‘md‘
(f..-(u".p‘ &, T‘).w) (f,-(n P T0) = 0.

o "I‘lw domam m chosen to be a unit sqnare “The Hartmann number M, mteractmn nnmber N,
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body force f. electric sonrce & and applied maguetic field B are chosen 1o be the smme as i
S:'ctwn 5.3.1.

The two parameters in the functional are chosen as € = 0.0002 and & = | . The time step
A = 0.2. For these data. the exact solmtion {wg. . oy) of the uncontrolled problem, Lo, the
solution for (5.1)-(5.9) with g = 0, is given by the sume uncontrolled solution as in Section 5,3.1,

Some pumerical results for this example is reported in figures 3.3 a}o). We give a brief
description of the fignres. Figures 5.3 a). d}. g), j). and m) are the uncontrolled temperature
field To at 1=0.2, 0.1, 0.6, 0.5. 1.0, respectively. Figures 5.3 b), ), h), k) and 1) are the optimal
temperature field T* at 1=0.2, 0.4, 0.6. 0.8. 1.0. respectively. Figures 5.3 ¢}, £}, i). 1) and o} are
the adjoint temperature field 1* at 1=0.2, 6.4. 0.6, 0.8, 1.0, respectively. Those were obtained by
solving (5.29)-(5.36). The optimal control ¢* can be gleaned from figures 3.3 ), 1).1). !) and o)
and the relation g" = — 1%

By ininimizing functional (5.21) we wish to obtain a quasi-uniform temj-erature distribution.
‘T]ie numerical results (in particular, figures 3.3 by, ej. h), k) énd fn) demonstrate that the optimal

control did a very good job in achieving the objective.

F‘msaa)mﬂdwnatzm Figure 5.3 b) optimal tempesatuge T* at t = 0.2
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Figuae 5.3 e} optimal temperature T% at t = 0.4 Figure 5.3 f) adjoint temperature t* at ¢ = 0.4

| Fige 5.3 g) macontrolied temperature Ty of t = 0.6 Figare 5.3 h) optimal temperature T at ¢ = 0.6
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Figute 5.3 i) sdjoint temperature 1 a8 ¢ = 0.6 Figure 5.3 j} uncontndled temperate 7, a1 { = 0.8

Figure 5.3 k} optimal (emperatare T* a1 ¢ = 0.5 “igure 5.3 1) adjoint temperature * at § = 0%

g,
e
\"‘*\n*:

‘ F@essm)mwfnat‘z 10 Fmssn)mﬁdWT‘ A= Lo
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Figuar 5. o) arffosnd fexnperalure ¥ at ¢t = 1.0

5.4 Concluding Remarks.

~ In this chapter we studied numerical computation of houndary control problems for an unsteady
- electrically conducting fluid wsing heat flux controls. We summarize the main points in this

Chapter as follows:

® \We further tested the computational procedure described in Chapter 4 for unsteady control

problemis considered: here.

e We converted the optimal control problem into a system of equatious (i.e., the optimality

system of equations) by using the Lagrange multiplier principles;

¢ We proposed some methods for solving the discrete optimality system of equations. Our
discussions of these methods were made for finite element discretizations. Apparently,
these methods are equally applicable to finite difference, collocation or pseudo-spectral

discretizations:

“e We wamerical experiments farther confirms the effectiveness of our techniques in flow field
matching; and in the minimization of sohxe physical quantities.
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