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Chapter 1 

Introduction 
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F w  1.1 a) uncontrolled velocity field Uo 

F i  1.1 c) deskxi velocity field ud 

Figun 1.1 e) ~~~contmlledpotcatial field 6 F%gm? 1.1 f )  tlnadroWtcmpenrtnn,WTo 

The second and third control problems are motivated essentially by the same objective, i.e. to 



the third one #:P was1 fu aiirXajl~ a mau"urirntw pt;~.mei;,d cfibqrilmticm in l b ~  f i o ~ ,  *I"ftc* ;tppraqari;xtca 

An aacanlndkrf pcrtcrrtkl distrihuli~m is dcrpicsd irn Fiq* :,I. I el, 

The faur~h and fifth control prohkrna are sirrlritar In tlw last two C X C P ~ I  that u-v rm.; irI~r 1 IIC 

An aacrrrst maZed temperature diarihut ion is given irr Fig. 1.1 f }, 

1% consider these control ~ U J ~ ~ I P L *  far rntst~ady flows as dl. 'Slue first. ,srit.ctld artd 

and ftfth contrw4 pmb'fems iuwdre maiptariniag a unihnu distribution of the pftysicid qn:ttut i t  y 

corPsidaed ait. each time kud. 

are said. The sdatiwl pnocedon? i n V d v a  the f d b i n g  steps: finite d'lmx&o~td disrrrfitim- 

tks d s o s h a b  d a finite d i e a d  noalirmr system. The yrr,blr;rct i s  discret.iml r&g 

a h e d  cog.-fig &krkh finite h t  metbod, The pressure and its ibdjcdrrt ~,rmrE~rj~art 

a m  gppmaSmated by- pkxdse hear pOapmdak wet triangfes- and all t be other varialrtrs i r r~  
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irlloa cX thc: s y s t ~ m  can be ~m113. We thwkm consider a numericd p d u m  to bypa,.s %Iris 

*r Lmrrr 1k mt: amskkmd k a p  mm~oaicall~ in time. Thee intesrrstiug qnedtions are 

mmtfy beisl5, i.r~~)Qgtad. BW aar romprtarhal aperimeats roadacted on tlne pmbhs  

urd oa tk mat& d &vkr~StoPcs eqaatioas; [plot qostsd here, see 
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e x t d o r  problems and high Reydds surnkr fkms are al l  identifid as further r m w t h  topics. 

h Chapter I.  &-c@irve a b&f introduction of ttrio ttrmis, Section 1,1 uf this Chapter iutrotluri*~ 

2 3  we @VC \miat ionat forntalat'crus of t hct coustraiatr and derive the o p t i d i t y  sjstcw risi~rg 

t k bpang;e  mulf ipkkr 14?rba3quc. lo k t b n  2.2, we define ftnitc denretit apprctuiutalioes itlid 

Irs Chapter 3, we again study same stady con~rcrl problems but with hcat flux ro~trrcrls. 'I'lrc* 

plarr od" &his Chapter is &npl_v a copp of the prcvhus ant. 

.h Cr&apter 4, we study control problems; in unsteady flows with eksctric currc~lt costrols. 

Tk plan &Chapter 5 is a- tmpy of the pre\.ious Chapter with beat, flux control, Wc co~rd~rdt! 

damain Q or its boandaryl r- Kwms of fuact ions Magirig to MS{12) and li*t r) arc* clcrmtr:d 

4 /i - Jlss, respectidy. Corrapcurding Subalev spaces of  wxtor valueti fumctic~rrs will 



and 

Wrcr Irrncr products irr L'QQ) and L2(Cl) rire both denoted by (.. -) and those in L2(r) and 



Chapter 2 

Control of Steady Flows I: Electric 

Current Control 

In this chapter we study some optimal cirntrol problems for a steady electrically condactiog 

flnid, The control is the normal electric current on the flow boundary. In Secticm 2.1, wc* give 

the precise statement of the optimal control problems we consider, In Section 2 2 ,  wc clcrive the 

optimality system using the Lagrange multiplier technique. Some soiurioo nrcthocls are prcwwtcd 

in Section 2.3. Some mathematical results for the optimality system are giverr in Sec.tiotr 2.4. 

In Section 2.5, we present some computational results. Fially, in Section 2.6 we ~nakt! scmc 

concluding remarks. 

2.1 Statement of the Optimal Control Problems 

We deaote by R the flow region which is a bounded open container in R* o r  E3 wit 11 a tuurrd- 

a q  I". The dimensionless equations governing the steady incompressible flow of an eiczc,trically 

dacting fluid in the ptesulce of a magnetic field, when Maxwell% ddisplacemcnt currertts are 

neglected, ase given by the fdkoaring; see [TC]: 

) ( r - V ) u = - ~ ~ + ( j x ~ ) + & ~ u + f  in R ,  



and 

V-B=O inn 

wbem u denotes the vdtxity fidd, p the pressure field, j the electric current density* B the 

magnetic: fidd, and 4 the electric yotedal. Also, AV is the interaction number, .w is the Hart~llann 

aamkr, md H, is the magnetic Reyadds number. 

We will deal with a special ca~sr? in which the externally applied magnetic field is undisturbed 

b~s the law; in particular, we assume that B is given- Such an assumption can be met in a 

variety of physical applicatbns. e-g., in the modding of electromagnetic pumps and the flow of 

k u i d  lithium for fusion reattor coding blankets ([dliv], [\Vlq). 

Bde tbat if the flow is tw~.dimcnsbnal. our convention in this thesis is that the applied 

magaelic M d  B is perpendicular to the flow plane, i.e., B = (0,O, B(r.  l ) )T,  and that the cross 

pmdaa o r B is understood as ( u J , w2. OF x (0.0. Blr , O.))T. 

Remark: The more general case in which B is unknown involves essentially a three dimen- 

sbaal system of equations governing the flow. Our computational methods considered in this 

thesis can be extended in a similar manner to the control problems in this three dimensional 

flawlz*Cg 

In the above set of equations. we take divergence of the third equation and use the fourth 

equation lo arrive at the folloariag simplified system: 
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We will replace the last equation with the following slightly ~lrore general one 

In (2.1)-(2-3). B, f and k are given data- 

The system (2.1)-(2.3) k supplemented with boundary conditions 

and 

where g denotes the only control variable, name15 the rm~na l  clwt ric current cm I'. Swlr i1 

control can be effected by attaching electric sources with adjustable resistors to rltc clcctroclc 

h g  the flow boundary Although a normal electric current control is physically stm~rr~lrirt 

artificial (t* could be achieved in practice only by insulating different small parts of arr c4crtrc~clc 

fm each other), it is math ma tic all^ more convenient than a n  electric pots~~tial  culrtrol. Th: 

techniqws to treat normal dectxic carrent controls are applicable to treat other typcs of corrttols 

and the solutions with a normal electric current control do indicate the behavior to ~ ? x p t ~ l  iu 

general. See [HM]. 

Our goal is to try to obtain a desired flow field by appropriately &wing the control the 

normal electric current on I". Specifically we will investigate the following cases: r~mtcltirlg a 

&ired udadt;y field, matching a desired potential field, or mirriiizing the potential gradient. 

Matbematically, these task can be described, respectively, by the following optimal corrtrol 

setting ~~ the cast functional 
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subjecf to the corstrairrts f2.1)-1;2,$). Ifere E. > 0 and 6 > 0 are positive parameters; and @d 

are, nripectively, the desired vcfk~itp field and potential field. 

The nrinintization of the functionat 92.6) or (2.7) or (2.8) subject t o  (2.1)-(2.5) is a special 

cam of  the fdlowing gcncrai optimal control setting 

ruitriu~ize the cost functional 

subject to the constraints (2.1)-(2.5). 

where 3[u, +,p )  is a functional of [u,4,p). 

2.2 A Variational Formulation of the Constraints; An Opti- 

mality System of Equations 

Tlre variational formulation of the ccmstraint equations is given as follows: seek u E H&R), 
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Here the colon notation stands for the scalar product oa R ~ ~ ~ .  

The p& mathematical statement of the  optimal control problem (2.9) can now bc givcu 

as follows: 

seek a (u,p,d.g) E @(a) x L ~ ( G )  x fi1(f2) x ~ ~ ( l . ' )  such that the 

functional (2-9) is minimized subject to the constraints (2.1 )-(2.5). (2.15) 

We will turn the constrained optimization problem (2.15) into an unconstraiad orw by i~sitrg 

Iagrange multiplier principles. (For mathematical theories of Lagrange niulti ylier priaciplcs, 

se, e.g.. [VT].) We set X = H ~ ( Q )  x Li(R) x R1(a) x L2(i') x e(Q) x L$(R) x B ~ R )  ind 

define the Lagrangian functional 

An optimality system of equations that an optimam must satisfy is derived by takiirg variations 

with respect to every variable in the Lagrangian, By taking variations with rc?spec.t to u, p artd 

where Fa, 3+ and FP are the derivatives of the functional with respect to its three arguments, 

repectively. By taking vat&mm 
* * with respect tap ,  r and c, we recover the constraint quatiom 
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f2.1)-[2.3). Ry taking \ariation with respect to g we obtain 

(6 g 2 + r .s)dI. = 0 Vz E ~ ~ ( r )  i.e., 
1 

= - z S -  
I I 1 iris lasf eqtcation cnablm IE to eliminate the control g in (2.13). Thus (2.12)-(2.14) can be 

and 

Equations (2.15)-(2.22) fonns an optimality systan of equations that an optimal solution must 

satisfy- 

2.3 Finite Element Approximations 

A finite dement discretization of the optbality system (2.17)-(2.22) is defined in the usual 

manner. First one chooses families of finite dimensional subspaces xh c H 1 ( Q )  and Sh c L2(Q).  

These families are parameterized by a parameter h that tends to zero: commonly, h is chosen 

to be some measure of the grid size. We set Sh = X h  n Lg(Q), xh = &XhJd, a = xh n Hk(i2) 

and St = S" fi Li(Q). W e  assume that as h -- 0, 

and 

Here we may chome any pair of subspaces xh and Sh such that and can be used ior 

fiading finite elemat approximations of solutions of the Navier-Stokes equations. Thus, we 

- b  

4 / i *  J 



make the following standard assumptions, which are exactly those employed in wvtrll-knu\i-~~ linitc 

elemens met hods for the Navier-Stokes equations. First. we have the a yprosimatior~ projwrl ips: 

there exist an integer k and a constant C, independent. of h, v, 2. aud q. snch that 

Next, we assume the in j-sup condition, or Lady& nshya-Babusln- B m i  contiif ion: tlrcrc cxis t s 

a constant C ,  independent of h, such that 

i d  sup - [a qh v - vhdn 2 C .  
W$ES~ 0#vh~X,"  llvhil khlb 

Rris condition assures the stability of finite element discretizations of the Navicr-S toke% cq tlib- 

tions- It also assures the stability of the approximation of the constraint equations ( 2 2  1 )- (2.22) 

and the optimality system (2.17)-(222). For thorough discussions of the approxin~ation prop- 

erties (2.23)-(2.25) and the stability condition (2.26), see, e-g., [GR] or [MG]. "I'hwc refc!rcsccs 

may also be consulted for a catalogue of finite element subspaces that meet tlte rquircrnen ts of 

(2.23)-(2.26). 

Once the approximating subspaces have been chosen, we seek uh E x;, ph E $2, qih E IL, 

ph E qh, E St and sh E xh such that 

&/n v u h  : vvhdfI - [v# - (uh x B)] - (vh x B)dQ + ft (uh - V)U* - vh& 

-Lphv-v d ~ = J p m  V V ~ E X ~ ,  (2.27) 



I 
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h h h  [ V . ~ ~ - [ ~ ~ X B ) ] - ( F ~ ~ ) ~ R = ( F ~ ( ~  , p  ,d ).rh) vrh € d h  (2.31 ) 

A h h  @ ~ . ~ ~ d d ~ = ( F ~ ( u  , p  .d ):oh) vcheS,h- 

F r m ~  n computational standpoint, this is a forrrlidable system. In thee dimensions, we have 

a rwpled system irrvolving ten unknown discrete scalar fields. Therefore, how one salves tlus 

2.4 Solution Methods for the Discrete Optimality System of 

Equations 

W e  will prexnt two methods for solving the discrete optimality system of equations (2.27)-(2.32). 

The first one is the Newton's method for the entire system; the second one is an iterative method 

which uncauplea the computation of (2.30)-(2,321 and the computation of (2.27)-(2.29) at each 

iteration (the second method is m essence equivalent to  a gradient method in minimization.) 

2.4.1 Newton's method, 

h h h h  h r  n o t a t i o ~ ~ d  convenience, w-e will use ( U , P , @ , M , T , S )  to denote (uh,$,d ,p  C r - ~  ,s ). We 

will only give the Newton's method for the case F[u,p, 4) = F(u). General cases can 

be t e a t e d  similarly. Thus the Xewton's method for solving the discrete optimality system 

(227)-(2.32) is given as follows: 

1" Choose an initial guess (u(*), No). @@)- ~ ( ~ 1 ~  T(O)?  sf0)); 
20 For n = 1,2. - ; compute ( ~ ( " 1 ,  ~ ( " 1 ,  @("),M("), ~ ( ~ 1 ,  st")) from the following discrete system 

01 equations: 



and 

Under suitable assumptions, the Kewton's method converges at a quadratic rate to tlrc firritc 

element solution (U, P, 9, M,T, 5'). 

Quadratic convergence of Sewton's method is valid within a contraction ball* In prac1ic.c 

we normdy first perform a few fixed point iteration and then switch to the Kcwtun's mc-tllotl. 

For flow field matchicg problems, we use the desired field as initial data fc~r thc rorrcujpotrditrg 

unknown field. This choice has proven to produce faster convergence compared with arbitrary 

choice of initial data. 

2-4.2 An iterative method. 
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Formally this method is q u i 4 e n t  to a gradient method with unit stewlength for milri~~lizing 

the kncthnal  of g: 

Unclcr suitabk assumptioas, most notably. for large parameters c and d in the functional, the 

sequence (u("), H"), 8tn), M("), ~ ( ~ 1 ,  S(n)) converges- We may modify this iterative method t 0 

a variable steplength gradient met hod which bave better convergence properties. 

The main adrantage of this method over the Newton% method is that at each iteration 

we are dealing with a smaller size nonhear system which requires leas computer memory in 

computation. In our expetieace, the computing times for the Bewton" method and this iteratbe 

met had are comparabk?, 



2.5 Some Mathematical Results Concerning the Optimnlity 

System of Equations and Finite Element Approximations 

For completeness, we summarize without prod  r~levaut mat henmtical results lor t hi. curtst ritintd 

cm the following w e t l - p x d n w  uf tire mastmint q u a t ' m ;  existetiw of an q ~ & v d  ntlutiatt 

( o , p , + , g ) ;  the existence of Lagrange mrrltipliers [p ,  7. z) such that the optirn;rlif y sj-atcv~r rrf 

qua '  - are satisficxl: conwrgencs and aytimzrl prror mtima tm Tor fildc clc;nc~r~t ;rpptosir~~;t 

of [v, $+I and q. such that 

and 

rhe dipticity condition (2-4.5) a d  tbe inf-sup condition (2.46) are crucial in s h ~ w i n g  the cxih- 

t a c e  of a d o t  ion to f be cowtraint quilt  ions (2.1 P4'2.3). 

Theorem 2.5.1 T h m  e&& e midiam ( o .  p. Q)  E Hi(R) x L$(l)j -r. l?'(~ in Lht r ~ ~ t n & ~ f  



rlihdeuiclc d' ah optirrrd ~dllrtiw caa be pmvd bawl an t b e  a ptiari fildmates f2.47)--[2.44] a d  

,d+d t d ~ i q m .  

tlra twu th constr&nei mini- 

mi%&ha pmMm into rrr a11~tirlll*$niPLcrd we a d  derive am optimality system d eqortims. Wc 



P'glllBcnnorp. the approdma&e c o m h l  gh mnwmp to the a c t  c o n t d  g und the e.&nrrtt* 

2.6 Computational Examples 

In g h h  section, we report, m m  comput;L-Ciarral exmpkrs that serve to illwt rate the effc~kiucuc-ss 

md practicality of o p t i d  mntml techniquc-s in ckpctridy cortducting fluids. k'icst, w twi~t 

t k  prOblem of steering the vesritp W d  to a d & d  one. The s a n d  one deals with tile 
. - .  mnumation af potential gradient thmugbout the domain. Finally, we crrnsidcr the yroblce~ uf 

m&h& ektric potential ta a de;sired one. 

All ampatations are done awit,h the fdkrwing choice of finite element spaces clcfiricd ovw 

t k  same triangulation of the domain Q = UK: cantinuous piecewise quadratic ~wlymniids 

For bath camgoaenta of the vdocity uk and adjuint vekxity ph; continuaus pkewix quadratic 

pdpmhb boa the potential # amd tbe adjoint potential sh; conrinuous pinewise lincar poly- 

aomials .for the pressure $ and adjoint pressure zk. On each triangle, the degrees of frccdotn 

fix quadratic e9emants are the fitncth d u e s  at the vertices and lnidpoiots of each dgc; tlrc 

dqpm d freedom for linear elements are the function values at the vertices. Using standard 

s'l= (r E @O(,F) ; rlK E PJ(li-), on each element K) . 

UP& t h e  &&as of f i t e  elemeut spaces, the ~elocity-pressure pair and the adjrrirrt 

ddty-djaiat pmmwe pair are approximated br the Taybr-Hd &ment pair (fif'll)) which 

Lr bten rbrn to Iuhdj the dir-stdditty d i t b n  (2.26). Approximation properties (2.23)-- 



I 2.tt.1 Velocity field matching 

The first case we: consider is the problem of minimizing (2.6) subject to (2.1)-(2.31, i.e., we 

alwmpt to nratch the velocity field with a desired one by finding an appropriate boundary 

current density g. 

The optirrdity system of equations are given by (2.17)-(2.22) with 

( 3 p C u .  P+ 4)- 0)  = (EAu, P, 4), r) = 0 + 

The corresponding system of partial differential equations for (2.17)-(2.22) is given by (2.1)- 

YV*t JWW p-t some numerical results for the following choice of parameters and data: 

The Hartmaan namber and interaction ntunber: -31 = N = 1; 

tbe domain JL is tbe unit quare. (0.1) x (0,f). 
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applied magnetic field: B = (0, 0, lT; 
desired vehx i t~  field: 

For these data, the exact sdution of the uncontrolled problem, i.c., the mlutiort for (2.1)-(2.5) 

with g = 0, is given by 
fcos(2xa) - 1 J sin(2xy) 

sin (2az) 11 - cos(2a y)] 

= C, where C is a constant 

and 

The proper choice of the constants 6 and 6 in the functional plays an important role irk obt&s ing 

a best velocity matching. For the computational results shown in Figures 2.1 below, orir clroicc 

of tbese two constants were 6 = 0.00001 and & = 0.01. 

We @give a brief description of the figures. Figure 2.1 a) and b) are the uncontrolltu) vel~lcxity 

fidd and potential field Qo, resjmtivdy (under zero electtical current on the boutidary). 

Flgme 2.1 c) is the desired velocity fidd m. Figure 2-1 d), g), b) and i) are the optimal  tor^ t rol 

datioas: v&ty field nh, potential field @, adjoint ve1ocity field Irh and adjoint potential firid 

s'; t l s e  were obtained by sdving (2.17)-(222). The optimal control gh can irc gleanid S r w ~  

F j  2.1 g) md the reMan #=  -)$. The function gh dong the top boundary is shown ilk 

F"tgrue 21 j). AR the computationd resuits shown in figpres 2.1 were obtained with a 1U by 10 

triangnl;rtion of the unit square, A nonuniform grid with corner refinements was uscrl, We see 

6.om the igms that optimal control does a very gaod job in matching the desired vrlr#ity field 



Figure 2.1 a) uncontrolled velocity field F i  2.1 b) uncontrolled potentid fieId &J 

Figure 2.1 d) optimal control velocity uh 

Figure 2.1 e) contours ddaind vdocity 



2.6.2 Potential field matching 

The second case we consider is the problem of matching the electric potential qj to a desircetl 

distribution #,t, i.e, we minimhe functional (2.7) subject ta (2.3)-(2.3)- 

The optimality system of eqnat;Ions are given by (2.17)-(2.22) with 
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The domain is chosen tu  be a curved quadrilateral as shown in Figures 2.2 a) to  f). The 

kagth is 2 and the height is 1.125, 

The Hartmann number MI interaction number N, body force f, electric source k and applied 

rrragnetk Edd B are chuwn to be the same as in Section 2.6.1 

The desired potential field is a uniform one: ($d = 1 .  

The two parameters in the functional are ch- as E = 0.002 and b = 0.1. 

Par t h w  data, the solution (w,po. &) of the uncantrolted problem, i-e., the solution for 

(2.1)-42.5) with g = 0, can only be found through numericd approximations, the reason being 

that  the uncontrolled solution g h m  in Section 2.6.1 no longer satisfies the boundary conditions 

ua the curved domain. 

Sanm numerical results for this example is reported in Figures 2.2 a)-f). We give a brief 

M p t i a n  of the figures. 

B715we 2.2 a) and b) are the uncontrolled velocity field uo and potential field &. respectively 

[under zero electrical current on the boundary.) 

E i r e  2.2 c) ,  d), e)  and f) are the optimal control solations: velocity fidd uh, potential field 

6. adjoint vebcity field ji' and adNnt potential field rh; those were obtained by solving (2.27)- 

(2.52). The optimal control $ can be gleaned from Figure 2.2 1) and the relation gh = - i s h .  

A loaL at F i r e  2.2 d) reveals that the optimal potential matches well with the desired 
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F i  2.2 =) Optimal sxmtn.d SDJUtbm: ssurr 2.2 q optiotd cofattol dutinn: 

adio;mt +ty &Ad adjaint potential M d  

2.6-3 Potential gradient minimization 

The third case we consider is the problem of minimizing the electric potential gradicmt, ix., we 

minimbe functional (2.8) subject to (2.1)-(2.3). 

TBe optimality system of equations are given by (2-17)-(2.22) with 
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Z'he domain is chosen to  be a rectangle with length 3 and height 1. The Hartmann number 

M, interaction number N, body force f, electric source k and applied magnetic field B are chosen 

to be the s a n e  as in Section 2.6.1 

'fhe two parameters in t h e  fimctional are chosen as E = 0.0002 and 6 = 1. For these data, 

the exact solution (m, pol &,) of the  uncontrolled problem, i.e., the solution for (2.1)-(2.5) with 

g s 0, is given by the same uncontrolled solution as in Section 2.6.1. 

Some numericai results for this example is reported in Figures 2.3 a)-f). We give a brief 

dewription of the figures. 

Figure 2.3 a) and b) are the  uncontrolled velocity field and potential field &, respectively 

(under zero electrical current on the boundary.) Figure 2.3 c), d), e) and f )  are the optimal control 

solutions: velocity field uht potential field dh, adjoint velocity field ph and adjoint potential field 

T ~ ;  t h e  were obtained by solving (2.27)-(2.32). The optimal control gh can be gleaned from 

l h  Fignre 2.3 f) and the relation gh = -5s . 
By minimizing functional (2.8) we wish t o  obtain a quasi-uniform potential distribution. The 

numerical results (in particular, Figare 2.3 d))  demonstrate that the optimal control did a very 

goad job in achieving the objective. 



CHiQPTER 2. CONTROL OF STEADY FLOWS k ELECTRIC CLrRXEXl' CONTROI, 27 

~i- 2.3 ,.) optimal control solution: 

velocity fidd ah 

viere 2.3 1) Optimal control solution: 

adjoin& potential &Id ah 

2.7 Concluding Remarks. 

h this Chapter we studied numericd computation of boundary optimal control problerrts for an 

electrically conducting fluid using dectric current control. We summarize the main poirits in 

thks ChapEer as f&ws: 

W e  converted the optimal contd problem into a system of equations (i.e., the optimality 

system d equations) by wing the lagrange multiplier principles; 
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\Np_ proposed some methods for solving the discrete optimality system of equations. Our 

discussions of these nrethods were made for finite element discretizations. Apparently, 

these methods are equally applicable to finite difference, collocation or pseudo-spectral 

discrctizat ions; 

We SUCCI?SS~UII~ perfornled numerical computations for some prototype examples as presented 

in tire Figure. Our work demonstrated the effectiveness of optimal control techniques in 

flow M d  matchings and in the minimization of some physical quantities. 

We finally remark that the Hartman number (Reynolds number in the non magnetic case) 

has to be moderately high or small for the algorithms to  be robust and to  keep the corn- 

y u tatiotd cost cheap. Our ~iunlerical experiments indicate that, with help of simple con- 

tinuation methods, algorithms perform well for Hartman3s number up to 300. 

In principle, other types of boundary controls such as Dirichlet controls of the electrical 

potential or Dirichlet controls of the boundarj- velocity can all be treated by the techniques used 

iit this chapter. 



Chapter 3 

Control of Steady Flows 11: Heat 

Flux Control 

In this chapter we study some control problems for a Boussinesq's model of heat tratrsfer i r ~  ;r 

steady electrically conducting fluid. The control is the heat flux on the flow t)ausdary. As in 

the previous chapter, we study these problems in detail. The structure of this chapter is b i ~ i t t  crf 

the previous one- 

3.1 Statement of the Optimal Control Problems 

We denote by i2 the flow e o n  which is a bounded open container in R2 or R? with a boutd- 

ary r- The dimensionless equations governing the steady Roussinesq"~ mdc1 uf an electrically 

conddcting fluid in the presence of a magnetic field arc given by 
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In (3.1)-.-[3.4), B, f, k ,  and k2 are given data and M ,  N and L are parameters. The system 

(3. l j--13.4) is supplernrmted with boundary conditions 

3-r 
y = g  o n f ,  
cfn 

where g f k ~ ~ o l w  the 01113~ contrd variable, namely, the heating and cooling on I'. 

Our g a l  is to try to obtain a daired flow field by appropriately choosing the control - the 

normal temperature gradient on I". Specifically we will investigate the following cases: matching 

a t h i r d  velocity field, matching a. desired temperature field, or minimizing the temperature 

@St?nt. Mathematically* these tasks tau be described, respectively, by the followiag optimal 

control setting: minimize the cost functional 

s . t~bHt to the ccrnstraints (3-1 ) - (Xi ) -  Mere > O and d > 0 are positive parameters: ud and 

am* ~ ~ 9 p e c : t i v d ~ ~  d e s i  jield and temperature field. 

The rniaimiurtion of fnnct'K#ld (3.8) ar (3.9) or (3.10) sab+t to (3.1)-(3-"r" is is special case 
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3.2 A Vhational Formulation of the Constraints; An Opti- 

mal* System of Equations 

B E C ~ C ~ I -  4 E f i ' ( ~ )  and T E iff kit] such that 

and 





Tbis kt expiation enables us to eliminate the control g in (3.18). Thus (3.15)-(3.18) car1 be 

EqPlatSons (3.21)-(328) forms an opfimality system of equations that an optimal solution must 

3.3 fihite Element Approximations ' 

A h t e  dement d i s c r e t i u t h  of the optimality system (3.21)-(3.28) is defined in tl,a usml 

manner. First one chooses families of finite dimensional su bspaces S" c ~'(32 )  and Sh c /,l(f 2 f . 
Tbme &milks are parameterized by a parameter h that tends to zero; conrmonly, h is cfrosea 

t iar_ - 0 ,  V O E  jTJ[fi) 
&EX" 

asd 

i.r 89 - - 0 .  vq € ~ : (a ) -  
@E* 

Ibe  itqr pair O i ~ ~  SL and S& such that and St can be used for Qrldirlg 

~ t i o a s  d mhitiogli of the Xavier-Stokes quaticHas. We afso assume the 

1 

; - : '- , , " ' " l i"  i .,. I 
, \I - - I <  



p$qf,- PI $ & ,' , L 

7 ? a 
@? : 
i 

L'' I 
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tf 
--. J 

Once the approximating subspaces have bwn chosen, we seek uh E &h, ph E s$, q5h E x', 
T~ E x h ,  pk E g, rh E Sgh, sh E xh ,  th E xh such that 

i ~ j r  vuh : :vh& - [/n+h - (uh x BB)] - (vh x B)dR + k (uh . v)uh - vhd* 

++L[W~-VJU~  - p h d ~ -  rh v - W ~ ~ R  + thwh - v ~ ~ d n  

h h h h  =(FU(u , p  ,+ ,T ).wh) v w h € * ,  (3.33) 

and 

h h h h h  ~ ~ ~ " - V ~ ~ ~ R + ~ ~ ~ - D I ~ P L I R -  t L g - p h l h t i a =  (F~(SI , p  ,O ,T ),I ) wh C P .  

B (3-36) 

From a compntat;ional standpoint, this is a formidable system. In three dimensions, we have 

a mpled system involving tmelue unknown #discrete d a r  fields. Therefore, how one solves this 

3A %lation Methods for the Discrete Optimality System of 
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which uncouples the camputation of (3.29)-(3.32) and the computation of (3 .33) - (33)  at each 

iteration (the second method is in essence eqnivalent to a gradient method in minimization.) 

9.4.1 Newton's method, 

For notational convenience, we will use (U, P, @, T, M, N, S, R)  to denote (un, ph. dh. Th, ph. 

+,&,th). We wiU only give the Sewton's method for the specid case F(u,p. 4, TI = F(u). 

G e n d  cases can be treated similarly. Thus the Newton's method for solving the discrctc 

optimality system (3.29)-(3.36) is given as foIlows: 

Choose an initial guess (u(O), Po. T ( O ) ,  M('). N@), s(*), R(*)); 

20 For n = 1,2, -. -, compote (u("), P('), +In). ~ ( " 1 ,  ~ ( " 1 ,  ~ ( " 1 ,  s ( ~ ) ,  ~ ( ' 1 )  from the following 

discrete system of equations: 



and 

3.4.2 An iterative method. 

We  ow discuss an iterative method that uncoupb the solution of the constraint equations 

I ('3.391-(3.32) from the adjoint equations (3.33)-(3.36)- 
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and compute (u(~), fin) * ~ ( " 1 )  irom 

3.5 Some Mathematical Results Concerning the Optirnality 

System of Equations abd Finite Element Approximations 

For completeness, we summarize withour proof relevant mathematical resulb for $he constrained 

minimization problem and error estimation results for the finite element approximation. Specif- 

id ly  we will summarize results on the following: w&posedness of the constraint equations; 

existence of an optimal solution (n,p, qi,T,g); the existence of Lagrange ~uItipliem (p, T, s, t )  

such that the optimality system of equations are satisfied; coilvergenee and optinla1 error mti- 

mates h r  finite ekmmt appmxhations of optimal solutions. 

It. can be shown in a way similar to [JP] that there are constants a > 0 and p >  0, indcyendcnt 
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dipticjty condition (3.53) and the inf-sup condition (3.34) are crucial in showing the exis- 

h c e  of a solation to the constraint equations (3.1)-(3.4). 

Theorem 3.6.1 Thew ezists s sdntirm (u, p, 4, T) E e ( Q )  x Lg(f2) x B 1 ( q  x @(R) to the 

~onstraint equations (3.1)-(3.4). Furthermoq the following estimates hoM for any solution 

Iblb 5 c (~lfll* + 11411- + 11411- + Ilgll-~,z,r + llulli) -0 (3.56) 
- .  

Remark. Just as in the steady-state Navier-Stokes case, we do not in general have uniqueness 

IbP tbe solutions to (3.1)-(3.4).0 
. - 
i"8 

, $  The pmise mathematical statement of the optimal control problem was given in (3.11). The 
%=r 
Gr* 

6; existence of an optimal sdation can be proved based on the a priori estimates (3.55)-( 3.56) and 
7 

--+ - ataedatd techniques. 
* < 

3 
t I 

Thonm 3.5.2 %re ezists an o p t i d  adution (a, p, T ,  g )  € H$(RJX L ~ R ) X  g1(52) x &'(a) x 
I 4 r )  f h t  d o e s  the constmid rnznimiaztimr +rn (9.11). U 

7 "  

4 - 
I '  

In Seatboa 3-2, formally applied Lagrange multiplier principles to turn the constrained mini- 
k tL - * 
ry  mmbh problem into an nnconstrained one and chive an optimality system of equations. We 
' 2  

did a, witloat BvOrrJIiag about whether or not lagMge multipliers exist. The following theorem 

~ a a r a ~ t s e s  the existence of a solution to the optimality system of eqnations and thereby justifies 

i. 
t B s e a s e o f ~ m u l t i p I i e r  mles. 

If 

T L m m  3.64 A- (u,p, #,T,g) E q R )  x L$(Q) x @(a) x B ~ R )  x L2(r) ia on a p t i d  

+ A m  

@, r, 8, T )  E #(a) x G(R) x @(R) ndr I?& the optimclliitg sysfem (3.21)-(9.28) i~ 
1 . a "  i -  , 
i .  

Y I _ W  * 
J ,  , ii 

I 

L %  ;., 
h - rL 

I * :; 5: 4 < 

, i r 
ii r )  : , " 7 , * . - 4  ," ',. . : f 1 * 



, * L  4 :, , 1 . %  1 

a A P T E R  3. COHTROII OF STEADY FLOWS II: HEAT FLUX CONTROL 39 

Remark. In fact, under suitable assumptions. e-g., fur small Hartmann number ~ r ,  we can show 

that the solution to the optimabity system of equations (3.21)-(3.28) is unique.0 

Concerning the finite element approximations (3.21)-(3.28), we may prove the existence of, 

the convergence of, and optimal error estimates for, finite element solutions. 

Theorem 3.5.4 Assume ( q p ,  4, T, p, r, s, t )  E H ~ ( R )  x Li(Q)  x k l ( R )  x '(Q) x H:(Q) x 

Qn) x @($I) x $(a) is a nonsingulnr solution to the optirnality system of equatiorw (3.21)- 

(3.28). Then fw each s u . e n t l y  small h > 0, thew exists a unique finite element solution 

h h h h  ( u h , $ , & 7 ~ h y p  , r  ,s ,t ) E ~ X S ~ X X * X ~ ~ X ~ X X ~ X X ~ X % ~  jor(3.29,,-/3.35,l such 

As - shll* + - thll*} = 0 

tmdifMcsolUtMIismooth, te., ( a , p , ~ , T , p , r , s , t ) E  H"+' X ~ ~ X H " + '  x H'+' xHrn+' x 

3.6 Computational Examples 

In this section, we report some computati~nai examples that serve te illustrate the effectiveness 

a d  pnrticality of optima contml techniqnes for the control problems we studied in this chapter. 

Fi, we treat the problem d 5tmriag the v ~ M t y  field to a desired one. The second one deals 

w-ith tk priMcm sf ~~ the tempemtnm &Id to a desired one. finally, we consider the 

prdEaem ofminimipjng the temperature gradient thrmgbout t h ~  domain. 

All cjompakrtians are done with the f- choice af fmik element spaces defined ovei 

the same tzWqyMh d thc #mi& Gt = UK: cantinuow pieamhe qodratc pdynomials 
1 

2 * 

/ 
u \ , . 

/ / 4 ,  

.i' - 2  " * r 6 i ic r r  1 r 



. - - ' 2 " 
r _I 

T * 
'i I 

t 
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for botb components of the velocity uh and adjoint velocity I.Lh; continuous piecewise quadratic 

pdynomials for the potential q5hhl the temperature T ~ ,  the adjoint potential sh and the adjoint 

temperature th; continuous piecewise linear polynomials for the pressure $ and adjoint pressure 

T&. On each triangle, the degrees of freedom for quadratic elements are the function Mlues at the 

vertices and midpoints of each edge; the degrees of freedom for linear elements are the function 

Mciues at the vertices. Using standard finite element notations and those introduced in Section 

3.3, we have that 

xh = (v E e(a) : F ( K  E & ( K ) .  on each element PI, 

0 - xh = {v = ( v 1 , q p ~  C (R):q;- xh, i =  1,2) 

3-6.1 Velocity field matching 

The first rase we consider is the problem of miniding (3.8) subject to (3.1)-(3.7), ].em, ' we 

attempt to match the velocity field with a desired one by 5ndiag an appropriate boundary heat 

flax g. 

Tbe optirnality system of equations are given by (3.21)-(3.28) with 



and 

CONTROL OF STEADY FLOWS 11: RE.4T FLZW CONTROL 

We now present some numerical results for the following choice of paramnelers and data: 

The Hartmann number and interaction number: ,%I = N = 1; 

the domain $2 is the unit square (0,l) x (0.1); 

M y  force f = ( fi , j2lT. electric source kl and heat source k2: 

applied magnetic 6eld: B = (0, O, j f ;  
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h r  t t e  data, theexact solution of the ultcantrolled problem, i-e.. the solution for (3.1)-(3.7) 

with y = 0, is given by 
fcos(2m) - 11 sin/2ny) 

w =  ( 
sin(2xz) [I - cos(2xy)l 

= C,  where C is a constant, 

To = cos(az) cos(~y)  

and 

The proper choice of t h e  constants c and & in t h e  functional plays an importa~lt role in 

uhtaining a best velocity matching. f i r  the computational results shows in Figures 3.1 below, 

our  czboice of these two constants were r = 0.00001 and 6 = 0.001. 

We give a brief description of the figures. Figure 3.1 a) and c) are the  uncontrolled velocity 

$4 and temperature fieid Ta, respectively (under zero temperature flux on the boundary). 

Figure 3.1 c) i s  the d s i r d  r-ek#ity field ud- Figure 3.1 c] optimal control solution: adjoint 

tenrperature field th;  those were obtained by solving (3.29')--(3.36). The optimal control gh can 

be gleaned frmn Figure 3.1 c) and the relation gb --)th. AlI the compotationd results shown 

in figure 3-1 were obtained with a 10 by 10 triangulation of the unit square. A nonuniform grid 

witb comer refinements was used. W e  see from the figures that ooptimal control does a very good 

which has double circulations. 
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Figure 3.1 c) adjoint temperature field th  

Figure 3.1 e) contours of desired velocity field 

L 

: 3.6.2 Temperature field matching 

pigure 3.1 d) optimal umtd solution: 

velocititp. field uh 

Figum 3.1 f) contolus of optimal docity field 

, The second case we consider is the problem of matching the temperature field T to a desirea 

8 distribution Ta, i.e., we minimize funotiond (3.9) subject to (3.1)-(3.7). 
; 

The opfimality system of equations are given by (3.213-(3.28) with 



CHAPTER 3. CONTROL OF STEADY F L O W  11: HEAT FLUX CONTROL 

Tba &main is chma to be a rectangle as shown in Figures 3.2 a) to c),  The length is 2 and 

the height is 1. Control is applied partially on the boundary r as foflows: 

... 
The desired temperature field is a uniform one: Td = 1 .  

The two parameters in the functional are chosen as = 0.001 and 6 = 1 .  

F& these data, the sdutioa (*,plo,&,T') of tbe uncontrolled problem, Lee, the solution for 

(3.3 k43.7) with g = 0, a m  tbe same as in Section 3.6.1. Some nnmerieal results for this example 

is repotted in Figares 3.2 a)-c), We give a brief description of the figures. Figurn 3.2 aa) is the 

uneonttolled temperature field (under zero heat flux on the boundary). Figure 3.2 b) and c) 

are tBe optimal cantd  solutions: temperatare fidd T~ and adjoint temperature field tha thase 

were abtained by sdving (3.29)--(3.36). Tbe optimal control gh can be gkaned from Figure 3.2 

r )  and tk relation # = -ff". A look at Figure 3.2 b) reveals that the optimal temperature 

matches well with the desired temperature fidd Td = 1. 



3-83 Temperature gradient minimiaatbm 





3.7 Concluding Remarks. 

b Wi ckapter arestudied numerical computation of boundary contd  pmbkrus fix an ~ k t t t i ~ i t t l ~  

cas<trocting hid with heat flax coat&. W e  summarite the main paints in this chapter aq follows: 

e We coaverted the optimal d r d  problem into a system of equations (i-e., tho qtimality 

system of eqaations) by ndag the Lagrange multiplier principles; 

e We pmpwd some metbods for d v h g  the dkrete optimality system of equations, Our 

dii#ns9ioas of these methods were made Tor finite element discretitaliuns. Appartw~ly, 

thee methods are qually applicable to finite difference, colkmtion or ywurlo-qwtr;d 

h i  iaations; 

e We aacCQBBfally performed numerid computations for some protatypc e x m ~  ylcs as y r w w  tcd 

in tbe F'igures. Oar w d  demonstrated the effectiveness of optimal control techniqutv in  

6eld matchings a d  in €be minimization of some physical quantit*~. Our mulark i l l  

Chapter 2 regarding the Hartman number [Reynolds number) restriction hdds hero ;is 



Chapter 4 

Control of Unsteady Flows I: 

Current Control 

18 this chapter we study same control problems for an unsteady dectrically conducting flow 
t 

, , d. The control is the normal electric current on the flow boundary- In Section 4.1, we present 

some optimal control problems and describe the computational methods used in this chapter. 

In Section 4.2, we derive the optimality system using the Lagrange multiplier technjques. In 

Section 4.3, we present some computational results and in Section 4.4 we make some concluding 

remarks. 

4.1 Statement of the Optimal Control Problems 

We degde by R the flow region which is a bounded container in R2 or R~ wjgh the boundary 

I" asd by 10, I] the time intenal. The dimensionless equations governing the unsteady incom- 

prtdblec h u  Of a.a elearicallyr tondading fluid in the presence of a magnetic field, when the 

M d s  dkphemmt currents are n e g k t d ,  are given by the foIiow'i; see [TC]: 
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where n denotes the velocity field? p the pressure field. j the electric current dcnsity, B klto 

magnetic field, and E the electric field- Also. x is the interaction number, br is the Ilartn~astk 

mumber, and R, is the magnetic Reynolds number. 

We will deal with a special case in which the externally applied rnagnctic Iield is stcadp ;trtrl 

undistnrbed by the flow; in particular, we assume that B is given. Than V x E = U ar~d t tw 

electric fieM can be expressed as E = -PO, where 4 is the electric poteh'cial. We now atrivc at 

tbe hiking simplified system by eliminating j as d d b e d  in Chapter 2: 

and 

la ($-1)-t4,3), B, f and k are given data and M and n are parameters. 

The system (4.1)-( 4.3) is  supplememted with the Zcaktwiag: initial condition 
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w k r e  g deaot* $he only con t r d  variable, namel_v, the normal electric current on r. 6 the hitial 

A cast function for this unsteady flow can be written as 

~ l f & l t , ~  3(n, $,p) is a functional of (n, 4,p). The optirnality system, when (Fiu, P, v)- 4) = 

& (a - qjt2v&, is given by 

and 

& = 0 on LOF I] X I' 

aQO,x) = qx )  in R . 

T$Ssia~rfdyawlranlipearm~thaMin timeandpbzdcwardinlime. This 
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lo Sdect a sequence of time instances O = to < t l  < tZ ..., &. < fJv = 1. 

20 At each ti we study the following optha1  control problem: 

minimize the a t  fuactiod 

snbject to the constraints 

30 The time derivative ul(ii, -) kt replaced with ~ [ f , * * ) - ~ [ t , - ~ . - ~  
At so that we can 

4* Each mia;m-n;rtioe probiem dffun'bed in Step 2 is salved by the steady statp m~thod .  

We $'Be fanctional. at a number d time instances. If the time step length is small, 

this sapenm aI miaimiuLnr at (t;& will @we us a qnasimmimk over the entire time interval 

(is kWfO$f') aonn). There axe f a r t h  m;atfiemati and namerid qrteatioxw to be investigaid. 

~ i a c o r J l o a t t y ~ y *  
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+ 
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- 

&mark: Efficient solution methods for the forward-backward problem are currently being 

developed and will be reported i~ a forthcoming artic1e.a 

This computaibnab procedure is applied to the system (4.1) - (4.3) with the backward Euler 

method to ditfitretize the time derjvatjve. Let uf t , ,x)  = un, ~ ( t , - ~  ,x) = un-I, ~ t n ,  x) = qP 

asrd At,, xj  = pn. Let At = i, - t,-r. Then the system (4.1) - (4.3) takes the form 

- A @ * + V - ( u n x B ) = k f l  i n R .  (4-9) 

In (4.7)-(4.9), B, jn and k" are given data. The system (4.7)-(4.9) is supplemented with the 

initial t o n d i t b ~ ~ s  

nO[O,x) = G(x) in 1R (4.10) 

aad the bouudary conditions 

w h  g der.&ea the only cootrol variable, n d y .  the normal ekctric current on I?. We like 

to r e m d  bere that one coald also use other implicit time discretization procedures such as 

Craik-WkBoSsoa method in the above discretizatimn- 

0.r goal is to try to obtain a dcsirPd ilm field by appropriately chcmsing the control - the 

w m d  drrtrir c l u ~ n t  on I'. Speci6caUy we will investigate the k,llaoPing cases: matching a 

M * ~ W Y ~  these tasks be described, mpectively, by the W m g  optimal control 

m w  mhbim the cast fimthml ad; time h& b l , f i , f 3 ,  .- . .-,t~ 
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subject to the constraints (4.3)-(4.12). Here t > 0 and S > 0 are positive parameters; ud and & 

are, respectively? desired velocity field and potential field. 

The minimization of functional (4.13) CJT (4.14) or (4.15) subject to (4.7)-(4.12) is a special 

case of the fdowing general optimal control setting: 

minimize the cost functional 

at 5, = t l ,  22, ....., tx subject to the constraints (4.7)-(4.12), 

where 3(nn. @, 9) is a functiortal of (nu, 4n7fl). 

4.2 A Variational Formulation of the Constraints; An Opti- 

mality System of Equations 

The variational formulation of ghe constraint equations is then given as fdlows: seek un E HA(Qj, 
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The precise mathematical statement of the optimal control problem (4.16) can now be given 

seek a (un,p".P,g") E @[P) x L ~ ( Q )  x &(n) x ~ ~ ( r j  such that the 

functional (4.16) is minimized subject to the constraints (4.8)-(4.10). (4.20) 

We will furn the constrained optimization probhm (4.20) into an unconstrained one by using 

Lagrange multiplier principles. We set X = @(R) x L&?) x @(R) x L2(l?) x #(a) x L$(R) x 

gt(n) and define the Lagrangian functional 

[V~" - (un x B)] . (pn x B)dR - (un V)un - pndR 

An optimality system of equations that an optimum must satisfy is derived by taking variations 

witb respect to every variable in the Lagrangian. By taldng variations with respect to un, pn 

+Ben, Fa*, Fur d rcj, a $he derii7atives csf ttte fgtnctional tRitb respect to i& three arguments, 

1~wgectWp By t;rldarg v a r W f c ~ b s  with respect to pa, rn and r,  we T8oover the constraint 
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equaions (4.17')-(4.19)- By taking variation with respect to gn we obtain 

This last equation enables us to eliminate the control fl in (4.20). Thus (4.17)-(4.19) can bc 

replaced by 

and 

q G - undQ = 0 Vq E L:(Q!) 

Equations (4.22)-(4.27) forms an optimality system of equations that an optimal d u t i o n  iriunt 

satisfy- Finite element approximations and the computational methods, Newton's and ikrativc, 

presented in Chapter 2 for the steady state case can be extended here in a natural fashim. 

4.3 Computational Examples 

In this section, we report some ampntational examples that serve to illustrate the sffwtivenwri 

and practicality of optimal contd techniques in electricdy conducting fluids. First, we treat 

tbe problem dl steering the veZodty field to a desired one. The second one deala with ttw 

mhbhation of potentid gradient thronghout the domain. Finally, we consider t he probkm of 

nfatching eleetrie potential to a dffired one. 

All conkputatiorur are done with the same choice: of finite element spaces as in Cbapkr 2. 

4.3-1 Velocity field matching 

attempt td makh the velocity BeEd wit& a desired oae by tinding an appmp* bolladary 



a 
2"' , 
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i The optmdity system of quatbrm are given by (4.22)-(4.27) with 

and 

We haar presen~ some namerieal results for the fdlowing choice of parameters and data: 

The Hartmana number and interaction number: M = 1, M = 1; 
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With these data, the body force f = fi, j2)* and electric source k are seiected such that exact 

solution of the uncontrolled problem, i-e., the solution Erlr (4.1)-(4.6) with g = 0, is given by 

pb = C, where C is a constant 

and 

The proper choice of the constants r and 5 in the functional plays an important role in  obtaining 

a best u a t y  matching. For the computational results shown in Figures 4.1 below, our cltcticr! 

of these two constants were r = 0.00001 and 6 = 0.01. The time step At = 0.2. Wc give a bricf 

description of the figures. Figures 4.1 a'), gl, m), s), and x) are the uncontrdled vekwity field uo 

at t=0.2,0.4,0.6,0.8,1.0, respectivelyY Figures 4.1 b) h), a), t )  and y) are the desired velocity 

H d  nh a& t=0.2,0.4,0.6,0.8,1-0, respectively. Figures 4.1 c), g), k), o) and a) arc the optimal 

velocity fields at t=0.2,0.4,0.6,0.8, 1.0, respectively. Figures 4.1 d), h), I), p) and t) arc the 

adpint potential 2 at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Those were obtained by salving 

f4.22)-(4.27). The qptimal contd # can be gleaned from Figures 4.1 d), h), I), p) and t), awl 

the relation @ = -id'. All the computational results shown in figares 4.1 were obtained with 

a 10 by fO triangnlation af the nnit square. A nonuniform grid with corner refiaemeuts was 

d. We see from the figures that optimal control does a very good job in matching the dmircd 

velocity fidd at t=l. 
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Figure 4.1 c) o p t h d  velocity uh at t = 0.2 Figme 4.1 d) adjoint potential field sh at t = 0.2 

Figure 4.1 e) contours of desired vdocity at t = 0.2 Figure 4.1 f) contours of optimal velocity field at t = 0.2 

Figure 4.1 g) uncontrolled velocity uo et t = 0.4 Figure 4.1 h) desired velocity ud st d = 0.4 



&paw 4.1 i) opt- velocity uh at t = 0.4 FigUIP: 4.1 j) adjoint potential sh at t = 0.4 

I 

E 
Figure 4.1 k) contours of desk4 velocity at t = OA Figure 4.1 1) contozlls of opt- vaodty fidd at t = 0.4 



CX4I'Z'ER 4. CONTROL OF UNSTEADY FLOWS I: CURRENT CONTROL 
a 

Figure 4.1 p) adjoint potential sh at t = 0.6 

Figure 4.1 q] contours of de&d velocity at t = 0.6 4.1 r) con~ours of optimal docity field ai 
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Figtrre 4.1 n) optimal velocity uh at t = 0-8 Figure 4.1 v) djoint potential sh at i = 0.8 

w) contoam of desired vddty  at i = 0.8 4.1 x) cantours of optimal velocity field at t = 0.8 



. . I., \ , . - ---I- 4 

Figme 4.1 el) adjoint potential sh at t = 1.0 

r- - I 

Figure 4.1 52) contows of desh.ed velocity Bt 8 r 1.0 

4.3.2 Potential field matching 

The second case we consider i~ the problem of matching the electric potential 4 to a desired 

distribution q5d, i.e., we minimbe fnnetbnsl (4.14) subject to (4.7)-(4.12). 

The optimality system of eqnaths we given by (4.24)-(4.29) with 

and 
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st ' - 
qL1+ 
t - - 

seance k and *plied magwtic field B are chosen ba be tfre same irs in Section 4.3.1. The 
T Ibrhnad~ m m h  A4 = 10- 

The desired potential fiedd is a function of time aud space which is a uaiform one at t = 1: 

fbr a h  darts, the aolatioa Qllotfi.h) of Qe uncontrolled problem, Le., the d u t b n  for 

(h1)-(4.6) with g = 0, h the same as in Section 4.3.1. The time step At = 0.2. 

daoiptiol d the f@m. F i  4.2 a). c), i). m), and q) are the unoolltml*d pokntial fiddli 

(b a& t=0.2,0.4,0.6,0.8,1.0, rpgpectidy- rim 4.2 b) I), j), n) and I) are the desired potential 

W d s  @ at t=0.2,0.4,0.6,0J3.1.0, nrpectiudy. Figares 4.2 c). g), k), o) md r) u. the optimal 

pateatialMds at t=0.2,0.4,0.6,0$, 1.0,rrspectiveiy. F i  4.2 d), b). I), p) and I) arc the 

dioht ~~ & at tilt 0-4,0.6, 0.8, 1.0, respectively. Time wem obtain& by solving 

(4.22)(427). m opt- - td  J' be ~rom ~ m =  4-2 d), h), I), p) lad t), ~ n d  
the * # = -$a% 

A look at F- 4.2 c), g).lr),o) and 9) r e d  that the optimal potential makhta well with 

the c b k d  potemtialt. In datt we also 3mve &ood matching at t = 0.2,0;6,0.6, a d  0.8. 
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4.3.3 Potential gradient minimization 

The third case we consider is the problem of minimizieg the electric potential gradient. it., r r  

minimize functional (4.15) subject to (4.7)-(4.12). 

The optimdity system of equations are given by (4.22)-(1.27) with 

(Fl.(um. p", dm). t) = 1 V@ - FrdR 
c 0 

aad 

(3;r4~~,p~.#"',w) = (3-,~(~~,p~,#~).u) = 0 -  

The domain is chosen t o  be a unit square. The Hartmann number d l  = 10. The intwacticm 

number Ai, body force f, dedric source C and applied magnetic field B are rhosen to t ~ ?  tltc! 

same as in Section 4.3.1. 

The two parameters in the functional are. cbasen as 6 = 0.0002 and b = 1.  I."or t h w  data, 

the exact solution (m,%h) of tbe uncontrolled problem, i.e,, the d u t h  rolr (4.1)-(4.6) with 

9 = 0, is given by the same uncontrolled d u t i o n  as in Section 4.3.1. The time step AI = 0.2. 

Saw nmmerical d t s  for thh example is reported in Figures 4.3 a)-0). We give a brief 

description of the figures. F i t  4 3  a), d), g), j), and m) are the uocootrolled potmtial field 

&t at t=0.2, 0.4, 0.6, 0.8, 1.0, respectively. Figures 4.3 b), e), h), k) and a) are t hc. optitad 

pocmW 6dd d at t=03, 0.4, 0.6, 0.8, 1.0. reapectiwly. Figures 4.3 c), f), i), I )  and r) are 

t h  Ld-f potential C at t=0.2,0-4,0-6.0.8,I.O. respectidy. T b u  were obtained by d v i n g  

f4.22)(4-27). The optimal ar t rd  @ can be gbmd ha, Figurn 4 3  c), 9. i). I )  and a), md 

$be rrltb $ = -f.'. 
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F y ~ l n r 4 3 g ) n n c o n t ~ p a c ~ t i a 1 ( b  d t = 0 . 6  Fin 4 3  h) optimal potcntia 4" at f = 0.6 
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In tbb cbapter we studied nunmkd mmputatim d unsteady boundary contml pmbkrns for 

a. dcc(ric& maducting I d  idlajog dectric current controls. W e  sammuiEc t h  main points 

in EU ewer as f&ws: 

ITk rarr.tnl tLe a @ d  c~ntml problem into a of equtias (ic., the opthdity 

ok.eq--l bg 

b t  

Y ,  -- 
+ I  

" 1  L _ 
i 7 L v  * + r  - * r - b 

_ .  r 
s - "  I L ,  



a We pro+ some methods for sdving the discrete optimalily system of quatiuss. Oar 

discnssions of these methods were made for finite element h t i z a t i o n r ; .  Apparently, 

these methods are equally applicable to finite diffaence, collocation or pseudo-sp~tral 

We conducted numerical experiments for some prototype exa~ples  to show the perli)rniancc 

of our computational procedure. Our w d  demonstrated the effcdtivcness af our coal- 

putationid techniques in flow field matchings and in the minimization of mule physicid 

~l lmtit i~ .  

In principle, other types af boundary controls such as DiricMct controls of the clcctrieal 

potential ar Dirichlet controls of the boundary velocity can all be treated by the Lrchaiquta uwd 

in tbis chapter. Optimal contd  problems with distributed controls and Dirichleb can alw hc 

studied in a similar mannet. See [HR2] for details and computational exanrpb. 



Chapter 5 

Control of Unsteady Flows 11: Heat 

Flux Control 

~II this chapter we study some rontml probkms for a Boussinesq's model in m unsteady elm- 

tricdy conducting flow. The c m t d  i the heat flux on the flow boundary. The format of this 

chapter is tbe same as that of the previoas one. 

5.1 Statement of the Optimal Control Problems 

We denote by R t h  %ow xegb whicb is a baunded ope. contpiner in 8' or XL3 with boundary 

I' ud by [a, I] the t i w  intanl. Tho the dime* Boussinesq's modd utes the berm: 



In (5.1)-(5A)I B, f, kl and IQ are given data and u, N and t are ptuarncten. Tbc systcr~t 

(5.1)-(5.4) is supplemented with the fallowing; initial con& tions 

and the burtndary condition% 

n = O  on[O,I]xf, 

where g denotes the only control wwkble, namely, the heat flux an l', ii the initial vekKity arrd 

on this model. For compBeteness we present the procedure here: 

d t ~  q- 

4' At each time level optimality sygtems am d v e d  &g tbe computatiooal techaiques we 
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~i- 1 

+ -  
& - 

- 

B-an=0 iun* (5.11) 
t 



5.2 A Variatioml Formulation of the Constraiats; An Opti- 

Wty System of Equations 



T k  prmk mrttr*maticd statement of the opt,imal control probkxu (5.22) can now be given 
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5.3 Computational Examples 

lo this ~ c t i u o ,  we report some computational examp& that serve to illustrate the effectiveness 

and practicaJity of optimal mntrol techniques in electrically conducting fluids with heat flux 

contds .  First, we treat the problem of steering the velocity field to a desired one. The second 

m e  deals with the matching tbe temperature field to  a desired one. Finally* we consider the 

problem af minimizing the temperature gradient throughout the domain. 

All computations are dane with the same choke of finite eiement spaces as in Chapter 2. 

5.3,l Velocity field makching 

Tk fimt .t we consider is the pmblw of minimizing (5.19) subject to (5.23)-(5.26), i.e., 

we attempt to match the vdocity held with a desired one by finding an appropriate boundary 

catreat density g. 

The optimality system of equations are given by (5.31)-(5.38) with 

( 3 & " . ~ ~ , 4 ~ * T " ) , 4  = (3*(u",~",O*.P).r) = f F ~ + l ' y . 4 ~ , P ) . t )  = 0. 

Tbe comspondiog system of partial differential eguations for ($.29)-(5.36) ia given by (5.1)- 
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and 

W e  now psesent some numerical results for the foUowing choice of parameters and data: 

The H;utma~  number and interaction number: SV = 1, M = fOO; 

tbe domain R is the unit square (0, I )  x {O,1): 

applied magnetic field: B = (0~0,  sin(^^))^; 
desired vdmity field: 

[I - COS(~KX~}]  C O S ( ~ A Y ~ )  

sin(2rzt) sin(2rgf) 

initial conditions: 

and 

sdected such that exact solution of the uncontrolled problem, i s . .  the mlotion for (5.1)-(5.9) 

with 9 = 0, L given by 

= Ca where C is a constant, 
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Wegive a bricbf description of rhefigurcs. Figures 5.1 a), g), m), s),  and y) are theuncontrolled 

whiliy field u(l at t=0.2,0.4,0.6,0-5.1.0, respectivel~. Figures 5.1 b). h). n), t )  and z) are the 

desired vclwiiy field ud at t=0.2,0.4,0.6,0.8, 1.0, respectively. Figures 5.1 c), i) ,  o). u) and z l )  

m the optinld vclmity field r* at t=0.2, 0.4, 0.6, 0.8. 1.0, repectively. Figures 5.1 d), j), p), 

u) and 22) arc? ihc adjoint temperature sh at t=0.2,0.4, 0.6, 0.8, 1.0, respectively: those were 

st~taincd by solving (5.81H.S.38). The optiraal control gk can be gleaned from Figure 5.1 d), j), 

p&, U) a d  22) and the relalion $ = -$lh. 

NI the contputational results s h w n  in Figures 5.1 were obtained with a 10 by 10 triangulation 

hf the unit q u a r e .  A nonunifmt grid with corner refinements was used. We see from the figures 

that optimal control d m  a very good job in matching tlre desired velocity field at t = 1. 
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t 

Figure 4.1 e) m n t o ~  of desired vdoeity at t = 0.2 Figum 4,l f) eontouts of optimal velocity field at t t 02 

Figure 5.1 6) uncontrolled vddty uo at t = 0.4 Figure 5.1 h) d d  velocity nd at t = 0.4 

Figure 5.1 j) sdjoint temper&- th at t = 0-4 



CHAPTEE 5. CONTROL OF UNSTEADY FLOWS E: LMr P$UX CONTROL 

I 

Figure 4.1 k) contouls of desired velocitp at t = 0.4 

Figure 5.1 m) uncontrolled velocity uo at t = 0.6 

F i p  4.1 1) contours d optimal velo~ty &Id at d = 0.4 

Figure 5.1 o) optimd voladty ub at t = 0.6 



Figure. 4.1 q) contourn of desired velocity at t = 0.6 F i e  4.1 r) contoure of velocity field at t = 0.6 

Figure 6.1 s) nncontrolled velocity uo at t = 0.8 

Figme 5.1 a) optimal velocity uh at t = 0.8 

Figure 5.1 t) desired velocity ud at t = 0.8 
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Figure 4.1 w) contotxm of desired velocity at d = 0.8 F i m  4.1 x) contours of optimal velocity field at t = 03 

Figure 5.1 y) uncontro11ed velocity at t = 1.0 

Figme 5.1 el) aptimal velocity ub d t = 1.0 Figure 5.1 22) sdjoint tempe~ure tb at i = 1.0 
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Figure 4.1 83) contours of dedred velocity at t = 1.0 Figure 4.1 24) cant- of optimal velocity field at t =: 1.0 

5.3.2 Temperature field matching 

The second case we consider is the problem of matching the temperature T to a desired distri- 

bution Td, i.e., we minimize functional (5.20) subject to (5.23)-(5.26). 

The optimality system of equations are given by (5.29)-(5.36) with 

( 3 u 4 ~ n , p n ,  bn, T"), W) = (FPn(un,pn, @,Tn), 6 )  = (3p(un,pn, @, Tn), a) = 0. 

The domain is chosen to be a unit square. The Hartmann number M, interaction number 

N, body force f, electric source kl, heat source k2 and applied magnetic field B are chosen to 

be the same as in Section 5.3.1. 

The desired temperature field is taken as a functian in space and time which approaches a 

uniform value one in unit time : 

The two parameters in the functional are chosen as E = 0.002 and 6 s 0.1. The time step 

At = 0.2 For these data, the solution (m,po, &,To) of the uncontrolled problem, i-e., the 

solution for (5.1)-(5.9) with g = 0, is the same as in Section 5.3.1. 
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Sw~ls aunerid results for this example is reported in Figures 5.2 a)-t). We give a brief 

J~~ripkiun of tbe figures. Figures 5.2 a). el, i). m). and q) are the uncontrdled velocity field 

at 1=0.2. 0.4,0.6.O.W, 1.0. respectively. Figurn 5.2 b) f), j), n) md r) are the desired velocity 

held u%1( €=0.2,0.4,0-6, OH. 1.0. reqwctively. figures 5.2 c). g). k), o) a d  s) are the  optimal 

u.&ily fields at t=0.2, 0.4, 0.6.0.8, 1.0. respectjvelely. Figures 5.2 d), h). I), p) and t )  are the 

rdj*nt tunpntwe n" at ts0.2 0.4,0.6,O.R. 1.0. respectively. Tbase were obtained by solving 

[.429) (6.36). Tbc optimal comVd J' ua be gkilDey1 from 6gwes 5.2 d), h), 1). p) and t) and 

tb refatinn gh = - -f lk. A loot at Figure $3 r) and s) reveals that tbe optimal temperature 

malcbcrs well with the desmd temperature Tdp, 







5.3.9 Temperature gradient rniaimizsa&ion 

The third raw R consider is the pmbkm of minimizing the tempentore gadient, i.e., w 

ntinimk funrtbnd (-5.21) sobjm to (5.-23)-(-5.X). 

T k  daui. b c b a r  to be a an& qmre. Tbe Hartmamu m b e r  M, interactbn number .!. 
I 









5.4 Concluding Remarks. 

b t b k  chaptrr we studied n u n n i c d  rumpotation ul houndmy control pmbkms for an unsteady 

r*nrinUy rmducting fluid using beat flux controls. We summarize the main points in this 

t'haplw as, lu2Lms: 

sptrot of equations) by using the L y r n g e  multiplier principles; 

We prupad v l o ~  nwthods for sdvimg the discrete optimality system of equations. Our 

&iuur*Lm of thew methods were made for finite element discretizations. Appareotls 

tLrJe metbah up equally appplicabk to finite diKerrence, cdlocation or pseudo-spectral 
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