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Abstract 

We are interested in determining the vertex-connectivity and the edge-connectivity 

of vertex-transitive graphs. We show easily that the edge-connectivity is simply the 

degree of the graph. Hence, the vertex-connectivity of vertex-transitive graphs is our 

main interest. In 1968, M. Watkins characterized vertex-transitive graphs by means of 

atomic parts which play a crucial role in determining the vertex-connectivity of these 

graphs. We study the structure of vertex-transitive graphs, in particular, Cayley 

graphs. The vertex-connectivity of Cayley graphs with minimal generating sets was 

easily characterized in a paper written by C. Godsil. Later, B. Alspach generalized 

Godsil's result to Cayley graphs with quasi-minimal generating set. Finally, we look 

at an application of atomic parts for an algorithm to determine the vertex-transitivity 

of circulant graphs - a special subfamily of Cayley graphs. F. Boesch and R. Tindell 

in 1984, and independently Watkins in 1985, gave algorithms for finding the vertex- 

connectivity of circulant graphs. 
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Chapter 1 

Introduction 

Let G be a graph. The vertex-connectivity s(G) is the minimum number of vertices 

whose deletion will disconnect G or leave a single vertex, and the edge-connectivity 

nl(G) is the minimum number of edges whose deletion will disconnect G. One can 

easily see that K(G) 5 sl(G) 5 6(G), where 6(G) is the minimum degree in G. 

However, the difference between s(G) and nl(G) can be made arbitrarily large. To 

show this, consider the graph G which is formed by taking two copies of K, and 

identifying one vertex from each copy. The identified vertex is a cut-vertex which 

implies that n(G) = 1. However, it is obvious that sl(G) = n - 1. 
Given any graph, a natural question to ask is how well connected it is. Connectivity 

is an extensively studied topic in graph theory, and many important results in graph 

theory are related to it. One well-known result about connectivity is Menger's Theo- 

rem which relates connectivity with vertex-disjoint or edge-disjoint paths. Many other 

people also proved a lot of theorems about vertex-connectivity and edge-connectivity. 

However, it is still not easy to determine them for an arbitrary graph. This problem 

has been widely studied because of its many applications. 

The notion of connectivity plays a major role in the reliability of networks modeled 

by graphs. A concept related to networks is the notion of the fault tolerance of a 

network. The fault tolerance of a network is the maximum number k such that if 

any k stations (or nodes) fail simultaneously, the transmission of information between 

the remaining stations would not be interrupted. Hence, in graph theoretic terms, 



the fault tolerance of a graph is the maximum number of vertices whose deletion will 

not disconnect the graph. It is obvious that in any graph, k must be less than the 

vertex-connectivity unless the graph is complete, in which case they are the same. We 

say that a network is more reliable the larger its fault tolerance. So to find reliable 

networks means we want to find graphs with large n or nl. One family of graphs 

which deserves special attention is the family of regular graphs. 

A graph is regular if the degrees of its vertices are all the same. We hope that 

this family of graphs will yield large vertex-connectivity and large edge-connectivity 

compared to the degrees of the graphs. The following example will show that the 

difference between the two connectivities can also be made arbitrarily large. Take 

two copies of K,, where n is even. Let u and v be two new vertices. We form a new 

graph G by connecting u to half of the vertices in each copy of K,, and connecting 

v to the other vertices in the two copies of K,. It is easy to see that n(G) = 2 and 

nl(G) = n. Hence we consider a smaller set of regular graphs - vertex-transitive 

graphs. 

Vertex- transitive graphs (sometimes called point-symmetric graphs) are often con- 

sidered in designing networks because of their symmetry. When designing networks, 

one area of the design can be readily translated to another area if the network is 

modeled by vertex-transitive graphs. In addition, as shown in the next section, the 

edge-connectivity of any vertex-transitive graph is nothing but the degree of the graph. 

As for the vertex-connectivity of any vertex-transitive graph G, M. Watkins (71 showed 

that n(G)/G(G) > 213 which means that the vertex-connectivity of any given vertex- 

transitive graph will not be too small. All of these theorems reaffirm the idea of using 

vertex- transitive graphs when designing networks. Furthermore, Watkins introduced 

the notion of atomic parts. He showed that we can partition a vertex-transitive graph 

into isomorphic subgraphs, called atomic parts, such that the vertex-transitivity is 

preserved in each subgraph and in the quotient graph obtained by contracting each 

subgraph to a vertex. However, it is not easy to determine an atomic part of an ar- 

bitrary vertex-transitive graph. Therefore, the subfamily of vertex-transitive graphs 

was being investigated with respect to this problem. 

A special family of vertex-transitive graphs of particular interest is Cayley graphs. 



Because there are some interactions between groups and graphs, some problems con- 

cerning groups are best attacked by using graphs. Cayley graphs can be viewed as 

pictorial representations of groups. 

Several authors have proposed using Cayly graphs as possible candidates for net- 

works. One reason is that the fault tolerances of some Cayley graphs are easier to 

calculate. C.D. Godsil [3] showed that for any Cayley graph X(G; H),  n(X) is easy 

to find if H is a minimal Cayley generating sets. B. Alspach [I] generalized Godsil's 

result to quasiminimal Cayley generating set. Furthermore, Alspach showed in the 

same paper that the atomic parts of any Cayley graph with quasiminimal generating 

set will be isomorphic to a single vertex unless the Cayley graph is in a special family, 

in which case the atomic parts are all isomorphic to K2. 
However, in general it is still not easy to determine an atomic part for an arbitrary 

Cayley graph. Several authors began to study how the idea of atomic parts can be 

applied in determining the vertex-connectivity of any vertex-transitive graph. In 1984, 

F. Boesch and R. Tindell [2] found a way to determine the vertex-connectivity of 

any circulant graph using the idea of atomic parts. Independently in 1985, Watkins 

developed an algorithm which can determine the vertex-connectivity of any finite 

or infinite, but locally finite, circulant graph G. Furthermore, this algorithm also 

generates the atomic part in G which contains the identity. 



Chapter 2 

Preliminaries 

Let G(V, E )  be a graph with the vertex set V and the edge set E. Let Aut(G) denote 

the group of automorphisms of the graph G. 

Definition 2.1 A graph G is vertez-transitive if Vu,v E V(G), 34 E Aut(G) such 

that 4(u) = v. 

Definition 2.2 A graph G is edge-transitive if V(u, v), (x, y) E E(G), 34 E Aut(G) 

such that ( 4 W ,  4 ( 4 )  = (2, Y) or ( 4 ( 4 ,  4 ( 4 )  = (Y,  4. 

Throughout the thesis, we are interested only in connected graphs because otherwise, 

the vertex connectivity and the edge connectivity are simply zero. Furthermore, in 

vertex-transitive graphs, we are interested only in the vertex-connectivity because of 

the following theorem which shows that the edge-connectivity is simply the degree 

of the graph. However, before proving the theorem, some notations need to be in- 

troduced. Suppose X is a subset of V(G) and G[X] is a connected subgraph of G, 

then V(X)  is the minimum edge-cut which will disconnect X from the rest of G. In 

this case, X is called a shore with respect to V(X). In addition, n(G) denotes the 

vertex-connectivity of the graph G, and nl(G) denotes the edge-connectivity of G. 

Also 6(G) and 6(x) represent the minimum degree of the graph G and the degree of 

the vertex x, respectively. 



Theorem 2.3 In any vertez-transitive graph G, the edge-connectivity always equals 

W ) .  

PROOF: Let G be a vertex-transitive graph, and let X be a connected subgraph of 

G so that I V ( X )  I = n l ( G ) .  Without loss of generality, assume X is a minimum shore 

among all the shores admitted by minimum edge cuts. We will show that V ( X )  is a 

star-cut, that is, 1x1 = 1. Suppose 1x1 2 2. Then 3u, v E X such that u # v .  Since 

G is vertex-transitive, 34 E Aut(G) such that d ( u )  = v .  There are two cases that an 

automorphism will do to the shore X .  

Case I : Assume + ( X )  # X .  The partition of the vertex sets is as shown in Figure 

2.1. 

w 4 (X)) 
Figure 2.1: Different shores 

Since 4 ( X )  # X ,  

Since V ( X )  is a minimum edge cut, 



Hence, 41V(X)I I IV(X1)I + IV(X2)I + IV(X3)l+ IV(&)I I 21V(X)I+ 21V(4(X))I = 

4lV(X)l. Therefore, IV(X n d(X))j = (V(X)I. But this is a contradiction because 

we chose X to be a minimum shore and now we have a smaller shore with a minimum 

edge cutset. 

Case I1 : Suppose 4(X) = X. By case I, we may assume that if 4 E Aut(G) and 

+(X) n X # 0, then $(X) = X. Hence, we know that the image of the shore X is 

preserved under automorphisms of this kind. Assume there are t 2 1 edges of V(X) 

incident with u. Since 4(X) = X and G is vertex-transitive, every vertex in X will 

contribute t edges to V(X). Assume 1x1 = n, 6(G) = d, and IV(X)I = m. Then 

n 2 d - t + 1 and nt = m. Furthermore, n > 2 implies that t < d and m < d. Hence, 

by substitution, we get d > t(t - d + 1). After a little algebraic simplification, we get 

(t - l)(t - d) > 0 which is equivalent to t < 1 or t > d. This is again a contradiction. 

Therefore 1x1 = 1 which implies that q (G)  = d = 6(G). 

Definition 2.4 Given two graphs HI and Hz, the lezicographic product HI 1 Hz of HI 

and H2 is defined as follows : V(Hl 1 Hz) = V(Hl) x V(H2) and ((x1,x2), (y1,y2)) E 

E(Hl 1 Hz) if and only if either (xl, yl) E E(Hl) or = yl and (x2, y2) E E(H2) 

Notice that the lexicographic product of HI and H2 is obtained by taking IV(Hl)I 

vertex-disjoint copies of Hz corresponding to the vertices of Hl and then taking all 

the edges between two copies of H2 if and only if there is a corresponding edge in HI. 

Definition 2.5 Let S be a subset of the vertex set of G. Then G[S] denotes the 

subgraph induced by the vertices in S. 

Definition 2.6 Given a connected graph G and C V(G), Cis a cutset if G[V(G) \ 
C] is disconnected or a trivial graph. 



Let C(G) = { C(C is a cutset of G and IC( = s(G) ), that is, C(G) is the set of 

all minimum cutsets of G. 

Definition 2.7 P is a part of G with respect to C E C(G) if P is a component in 

G[V(G) \ CIS 

Example 2.8 Let G be the graph shown in Figure 2.3. Then P, Q and R are parts 

with respect to the cutset C. 

Figure 2.2: Cutset and parts 

Proposit ion 2.9 For every part P ,  there is a unique cutset in C(G) corresponding 

to i t .  

PROOF: By the definition of part, 3C E C(G) such that P is a component of the 

disconnected graph G[V(G) \C]. Assume 3C1, C2 E C(G) such that P is a component 

associated with both cutsets and C1 # C2. Since lCll = IC21, 3u E C1 \ C2 and 

3v E C2 \ Cl. The vertex u must be adjacent to some vertices in P, otherwise Cl \ u 

is a smaller cutset which is a contradiction. Now we know that u is not in C2, and 

so u is still adjacent to some vertices in P in G[V(G) \ C2] This implies that P is 

not a component of G[V(G) \ C2] which is a contradiction. Hence, the cutset must be 

unique. . 
We use the notation x - y to denote that x and y are adjacent. If C be a minimum 

cutset in G and P is a part of G with respect to C, then Vx E C, x - w for some 



w E P and x - v for some v E V(G) \ (C U P). Let p(G) = min{min {IV(P)) : P is 
a part with respect to C):C E C(G)). In another word, p(G) is the cardinality of a 

minimum component over all the minimum cutsets. 

Definition 2.10 P is an atomic part if P is a part and IV(P)I = p(G) 

Lemma 2.11 Given a connected graph G, the following statements are equivalent : 

(i) P(G) 2 2, 
(ii) n(G) < 6(G), and 

(iii) Vx E V(G) , {vlv - x) 4 C(G). 

PROOF: ( i )  =+ (iii). 

Assume 32 E V(G) such that C = {vlv - x) E C(G). Hence G[V(G) \ C] will 

have a component consisting of the vertex x which implies that p(G) 5 1. This is a 

contradiction. 

(iii) + (ii). 
If n(G) = 6(G), then 3C E C(G) such that C consists of all the neighbours of 

some vertex x E V(G). This is a contradiction. 

(ii) =+ (i). 
If p(G) = 1, then n(G) = 6(x) for some x E V(G) . Again this is a contradiction. 

Let PI and P2 denote two distinct atomic parts. Let Ul = V(Pl) and U2 = 

V(P2). Let C1 and C2 be the cutsets with respect to PI and P2, respectively, and 

let R1 = V(G) \ (Ul U C1) and R2 = V(G) \ (U2 U C2). Hence IUl 1 = lU21 = p(G), 

lCll = IC21 = @), and lRll = IR2l. 

Let G be partitioned as in Figure 2.4, that is, let 



Figure 2.3: Partition of the vertex set 

Lemma 2.12 If Sl U S2 U S4 # 0, then either S3 = 0 or S7 = 0. 

PROOF: Suppose S3 # 0 and S7 # 0. Let Dl = S2 u S5 u S6 and D2 = S4 U S5 u S8. 

Notice that Vv E S3, v can only be adjacent to vertices in S2 U S3US5 US6. Otherwise, 

either C1 or C2 is not a cutset. Similarily, Vv E ST, v can only be adjacent to vertices 

in S4 U S5 U S7 U S8. Therefore, Dl and D2 are cutsets which implies that I Dl 1 2 K(G) 
and lD21 > n(G). However, lDll + ID2[ = lCll + IC21 = ~ K ( G ) .  Hence, lDll = lD21 = 

n(G). Therefore, Dl, Dz E C(G). But 0 < IS31 < p(G) or 0 < IS7I < p(G) since 



Sl U S2 U S 4  # 0. This implies that either S3 or S7 contains a part with respect to Dl 
or D2 having fewer than p(G) vertices, a contradiction. Hence S3 = 0 or S7 = 0. 

Corollary 2.13 If Ul n U2 # 0, then S3 = 0 or  S7 = 0. 

Lemma 2.14 If U2 n Cl # 0 and U2 n R1 = 0, then U2 c C1. 

PROOF: Suppose U2 < Ci. By the hypothesis, S 4  # 0 and S7 = 0. Therefore, Sl # 0. 
Let 91 = Sl and 9 2  = S~US~US~US~US,. Let Dl = S2US4uS5 and D2 = S5US6US8. 
Notice that any vertex in Q1 or Q2 can only be adjacent to vertices in either Q1 U Dl 

or Q2U D2, respectively. Hence Di is a cutset for Qi if Di UQi # V(G), i = 1,2. First, 

Dl is a cutset since R1 # 0 which implies Dl UQ1 # V(G). We need that Rl n R2 # 0 
in order to conclude D2 is a cutset. 

If R1nR2 = 0, that is, Sg= 0, then IS81 = JR1) and )R21 = IS3US61 since S7 = 0. 
Hence )Sd = IS3 U Sel implying that 2)Rll = IS81 + IS3 U S61 = 1381 4- (S31 + lSsl = 

Is3l+(ssI+ls,(+ ls8(-lsS( = IS3l+lD2l-JSs). However, since ID11+)D21 = 21c(G) and 

loll 1 d G ) ,  ID21 < u(G) I ]Dl). Therefore, IS31 + ID21 - IS51 L ID11 + IS31 - = 

IS21 + IS31 + IS41 < 2p(G). That is, 2(R1( < 2p(G). This is a contradiction because 

p(G) < 1 R1J. Hence, R1 n R2 # 0. So D2 is also a cutset. 

Since ID11 2 n(G) and 1 0 2 1  2 u(G), and loll+ 1 0 2 1  = 2s(G), ID11 = ID21 = n(G) 

which implies that Dl, D2 E C(G). Hence Q1 contains a part whose size is smaller 

than p(G). Again, this gives a contradiction. Hence, U2 C Cl. H 

Notice that the above lemma still holds if the indices 1 and 2 are interchanged. 

Lemma 2.15 If Ul n U2 # 0, then U2 n R1 = 0. 

PROOF: Suppose U2 n R1 # 0. By Corollary 2.14 we have that S3 = 0 or S7 = 0. 
Since Ul n U2 # 0, we have that Ul is not a subset of C2. Hence, by Lemma 2.15, 

Ul n C2 = 0 must hold. Therefore, Ul C U2 implying Ul = U2. This contradicts the 

choice of two distinct atomic parts. H 



Theorem 2.16 In any connected graph, two distinct atomic parts are disjoint. 

PROOF: Let G be a connected graph, and let PI and P2 be two distinct atomic parts. 

Let Ul = V(P1) and U2 = V(P2) .  Let Cl and C2 be the cutsets with respect to PI and 

P2, respectively, and let Rl = V(G)\(Ul UCl) and R2 = V(G)\(U2uC2). Hence IUl 1 = 

lu2l = p(G), ICiI = lC2l = n(G), and lRll = I & ! .  Let Sl, S2, S3, S4, Ss, Ss, ST, Ss, and 
S9 be defined as before. Suppose Ul n U2 # 0. Then U2 n R1 = 0 by the preceding 

lemma. Since PI and P2 are distinct atomic parts, U2 ft Cl # 0 and U2 C Cl by 

Lemma 2.15. This implies that Ul n U2 = 0 contradicting Ul n U2 # 0. Therefore, 

v ( p 1 )  n v ( p 2 )  = 0. w 

Lemma 2.17 Let G be a graph. If P is an atomic part of G and 4 E Aut(G), then 

4 (P )  is an atomic part of G. 

PROOF: Let C be the minimum cutset corresponding to the atomic part P. Then 

any vertex u E V ( P )  can only be adjacent to vertices in V ( P )  U C.  Since 4 E Aut(G), 

4(u)  can only be adjacent to vertices in V ( d ( P ) )  U d(C).  As a result, the deletion 

of 4(C)  will disconnect 4 ( P )  from the rest of the graph. Hence 4(C)  is a minimum 

cutset because (4 (C)J  = lCI. Since IV($(P))I = IV(P)I, 4 (P )  is an atomic part of G. 

Now, we can easily characterize the vertex-connectivity of edge-transitive graphs. 

Corollary 2.18 If a connected graph G is edge-transitive, then 

n(G) = 6(G). 

PROOF: Assume n(G) c b(G). By Lemma 2.12(ii), p(G) 2 2. Let P be an atomic 

part. Since G is connected, 3z E V ( G )  \ V ( P )  such that z is adjacent to some vertex 

in P. Without loss of generality, assume x, y E V ( P ) ,  x - y and z - x. Since G is 

edge-transitive, 34 E Aut(G) such that either 4 (x )  = x and + ( y )  = z or 4(x )  = z and 

$(y) = x. Hence 4 (V(P) )  n V ( P )  # 0 and 4 (V(P) )  \ V ( P )  # 0 which contradicts 

Theorem 2.17 and Lemma 2.18. Therefore, n(G) = 6(G). W 



Lemma 2.19 Let Pl and P2 be two distinct atomic parts with respect to cutsets C1 
and C2, respectively. Then either S4 = 0 or S7 = 0 .  

PROOF: Assume Pl # P2. Then we have S1 = 0 by Theorem 2.17. Suppose S4 # 0 
and S7 # 0. S4 # 0 implies S3 = 0 or S7 = 0 by Lemma 2.13. Since S7 # 0, S3 = 0. 
Let x E S7. The vertex x can only be adjacent to vertices in S4 u Ss U S7 U Ss, and 

therefore, b ( x )  < p(G) - 1 + n ( G )  - p(G) = n ( G )  - 1. This is a contradiction. Hence 

S4 = 0 or S7 = 0. I 

The above lemma actually states that given an atomic part and a minimum cutset, 

they are either disjoint or the atomic part is contained in the cutset. 



Chapter 3 

Connectivity of vertex-transitive 

graphs 

Atomic parts will give us a way to look at the structure of vertex-transitive graphs as 

developed in this section. Before we begin to study the structure of vertex-transitive 

graphs, some definitions and terminology about automorphism groups of graphs must 

be given. 

Definition 3.1 Let B C V ( G ) .  We say B is a block of a graph G with respect to 

Aut(G) if V4 E Aut ( G )  either 4 ( B )  = B or 4 ( B )  n B = 0 .  

Note that 0, V ( G ) ,  and all singleton subsets of the vertex set are blocks. We call 

them trivial blocks. 

Example 3.2 Let G be as in Figure 3.1. Then, in addition to the trivial blocks, 

{P, Q, R )  is a block. 

Definition 3.3 A transitive permutation group is primitive if it has only trivial 

blocks. Otherwise, it is called imprimitive. 

Definition 3.4 If B1 and B2 are blocks and 34 E Aut(G) such that ~ ( B I )  = B2, 

then B1 and B2 are said to be conjugate. 



Figure 3.1: Blocks 

Definition 3.5 The set of all blocks of G which are conjugate to some block B is 

called a complete block system. 

Lemma 3.6 The vertez sets of atomic parts of a vertez-transitive graph G form a 

complete block system of Aut(G). 

PROOF: Let P be an atomic part of G. Let x E V ( P )  and let y E V ( G  \ P). Since 

G is vertex-transitive, 34 E Aut(G) such that #(z) = y. By Lemma 2.18, 4(P)  is 

also an atomic part, and by Theorem 2.17, V ( P )  n V ( # ( P ) )  = 0. Hence, V ( 4 ( P ) )  is 

conjugate to V ( P ) .  By repeating the process, the vertex set of G is partitioned into 

blocks which are all conjugate to V(P) .  

Corollary 3.7 If p(G) > 1, then Aut(G) is imprimitive. 

PROOF: If p(G) > 1, then the vertex sets of the atomic parts will be a complete block 

system of non-trivial blocks of Aut(G). Hence, Aut(G) is imprimitive. 

For any graph G, we know that n(G) < nI(G) < S(G). Consider the case when 

n(G) < S(G). 

Corollary 3.8 Let G be vertez-transitive and suppose 0 < K(G) < 6(G). Let P be 

an atomic part of G. Then 



(i) P is a vertez-transitive graph; 

(ii) G is isomorphic to a disjoint union of two or more copies of P together with 

some edges joining them. 

PROOF: Since n(G) < b(G), we know IV(P) I > 2 by Lemma 2.12. Hence by Corollary 

3.7, Aut(G) is imprimitive. Since V(P) is a block of Aut(G), the automorphisms of 

G fixing V(P) setwise act transitively on V(P). Therefore, P is vertex-transitive. 

Furthermore, the blocks of Aut(G) are conjugate since Aut(G) is imprimitive. Hence, 

(ii) holds. 

Lemma 3.9 Let G be vertez-transitive and suppose 0 < K(G) < 6(G). Then n(G) = 

np(G) for some integer n 3 2. 

PROOF: Let P be an atomic part of G. Let C be the cutset determined by P. By (ii) 

of the previous theorem, V(G) can be partitioned into copies of P, and by Lemma 

2.20, every atomic part must be either contained in C or disjoint from C. Hence, 

K(G) = np(G) for some integer n. Assume n = 1. Since G is vertex-transitive, V(P) 

is a minimum cutset and G[C] is an atomic part. Since V(P) is a minimum cutset, 

G \ V(P) has at least two parts. Let L1 and L2 be two parts of G \ V(P). Since G 

is connected and C is the cutset for P, Ll r l  C # 0 and L2 n C # 0. Because there 

is no path between L1 and L2 without using vertices in P, there is no path between 

L1 n C and L2 n C without using vertices in P. This implies G[C] is not connected 

which is a contradiction. Hence, n 2 2. 

Theorem 3.10 Let Hl and H2 be graphs which are connected and vertez-transitive. 

If HI is not complete and JV(H2)J 2 2, then G = HI 1 H2 is vertez-transitive, 0 < 
K(G) < 6(G), and K(G) = K ~ ( G ) I V ( H ~ ) ~ .  

PROOF: Let ((21, x2), (yl, y2)) E E(G). Since xl and yl are in V(Hl) and HI is vertex- 

transitive, 3p E Aut(Hl) such that p(xl) = yl. Since 2 2  and y2 are in V(H2) and Hz 



is vertex-transitive, 31C, E Aut(H2) such that $(x2) = y2. Define 4 : E(G) E(G) as 
$(x, y) = (p(x), +(y)). We first show that 4 is one-to-one: 

It remains to show (d(x1, xz), 4(yl, y2)) is an edge in G. Because of the definition of 

lexicographic product, either (xl, yl) E E(Hl) or xl = yl and (x2, y2) E E(H2). 

If (XI,  yl) E E(Hl),  then since p E Aut(Hl), (p(xl),p(yl)) E E(H1). Now, if 

the second case holds, then p(xl) = p(yl) and (+(x2), +(y2)) E E(H2) implying 

 XI, x2), (yl, y2)) is still an edge in G. Therefore, 4 E Aut(G). 

Now we want to show that n(G) = n(Hl)IV(H2)1. Since Hl is connected, %(HI) > 
0. Let Cl be a minimum cutset of HI. There are precisely n(Hl)IV(H2)1 vertices 

of G of the form (xl,x2) where xl E Cl and x2 E V(H2) and they form a cutset. 

So n(G) 5 n(H1)IV(H2)I. Now let Z = (xl,x2) and g = (yl, y2) be two vertices 

from distinct parts of G. It is sufficient to show that there are at least n(Hl)IV(H2)1 

internally disjoint paths between the two vertices. 

Case 1: If x1 = yl. Then Z and 5 are in the same copy of Hz. Since 6(x1) = 

6(H1) 2 n(H1), is adjacent to at least n(Hl)IV(H2)1 vertices outside of this copy 

of Hz. However, these vertices are all adjacent to g, and so, there are at least 

n(Hl)IV(H2)I internally disjoint zy paths in G. 

Case 2: If x1 # yl. Then by Menger's theorem, there are n(Hl) internally disjoint 

paths A; in Hl joining xl and yl. Let A; = 21, w;l, w;2, ..., wini, y1 for i = 1,2, ... n(Hl). 

Now for every a E V(H2), we can determine A;,, in G by (xl , x2), (wa, a), (wi2, a), ..., 
(wini, a), (yl, 92). Hence, there are n(Hl)IV(H2)I internally disjoint paths in G. 

Therefore, n(G) 2 n(Hl)IV(H2)I. So, n(G) = n(Hl)IV(H2)I. 

When H1 is complete, it is easy to verify that n(Hl {Hz) = n(H2) + n(Hl)IV(Hl)(, 

and the atomic parts of Hl 1 Hz are all isomorphic to atomic parts of Hz. 



The above theorem gives a characterization to the structure of the lexicographic 

product of two vertex- transitive graphs. The connectivity of a vertex- transitive graph 

obtained from the lexicographic product of two vertex-transitive graphs is related to 

the connectivities and the orders of the smaller vertex-transitive graphs. Furthermore, 

the structure of an atomic part of the new graph is obtainable from the smaller graphs. 

For any graph G, we know that n(G) < nl(G) 5 6(G) and by choosing an appro- 

priate graph G the ratio 6(G)/n(G) can be made as large as desired. However, for 

the case when the graph is vertex-transitive, the ratio cannot be too big as is shown 

by the next result. 

Theorem 3.11 Let G be a vertez-transitive graph and assume that 6(G) # n(G). 

Then 1.u.b.I G(G)/rc(G) I G is uertez-transitive and connected ) = 312 and the bound 

is never met. 

PROOF: Let P be an atomic part of G and let N = {QIQ # P is an atomic part such 

that 3y E V(Q) and 32 E V(P), so that (x,y) E E(G)). Let C = u{V(Q)IQ E N). 

Then C is the minimum cutset determined by P. Hence n(G) = JNlp(G) 2 2p(G). 

But considering the degree of a vertex in P will yield the following : 6(G) 5 ICI + 
S(P) 5 n(G) + p(G) - 1. Hence 6(G)/n(G) < 1 + (p(G) - l)/n(G) I 1 + (p(G) - 
1)/(2p(G)) = 312 - 1/(2p(G)), and 312 is an upper bound. Now we need to present a 

graph such that G(G)/n(G) = 312 - 1/(2p(G)). Let G = H I K where H is a cycle of 

length at  least 4 and K is the complete graph with m = p(G) vertices. By Theorem 

3.10 we have b(G) = 3m - 1 and n(G) = 2m. Hence S(G)/rc(G) = 312 - l/m. W 

Corollary 3.12 Any vertez-transitive graph G having n(G) = 2 is a cycle. 

PROOF: From the previous result we know that 6(G)/n(G) = S(G)/2 < 312 implying 

that 6(G) < 3. Hence 6(G) = 1 or 2. But the only connected vertex-transitive graph 

with S(G) = 1 is an edge which doesn't have vertex-connectivity 2. So G is a cycle. 



Corollary 3.13 If G is vertez-transitive with 6(G) = 2, 6(G) = 3, 6(G) = 4, or 

6(G) = 6, then n(G) = 6(G). 

PROOF: When 6(G) = 2, the graph is a cycle, and therefore, n(G) = 2. 

When 6(G) = 3, 6(G)/n(G) = 3/n(G) < 312 implies that n(G) > 2. Hence 

n(G) = 3 because n(G) 5 S(G) = 3. 

When 6(G) = 4,6(G)/n(G) = 4/n(G) < 312 implies that n(G) = 3, or n(G) = 4. 

Consider the case when n(G) = 3. By Lemma 2.12 we know that p(G) > 2. However, 

s(G) > 2p(G) 2 4 by Lemma 3.9. Therefore, K(G) can only be 4. 

When 6(G) = 6, G(G)/K(G) = 6/n(G) < 312 implies that K(G) = 5 or K(G) = 6. 

In the case when n(G) = 5, p(G) 2 2 by Lemma 2.12. By Lemma 3.9, p(G) is a factor 

of n(G), and so, p(G) = 5. However, n(G) 2 2p(G) 2 10 is impossible. Therefore, 

n(G) = 6. 



Chapter 4 

A Generalization 

The atomic parts give us a way to look at the structure of vertex-transitive graphs. 

A.C. Green [4] generalized the idea of atomic parts to the blocks obtained from the 

atomic parts with respect to a cutset. 

The next lemma is a generalization of Lemma 3.6. 

Lemma 4.1 Let G be a graph and suppose S E C(G). Assume there are ezactly k 2 1 

atomic parts PI, Pz, ... Pk with respect to S. Let B = u{V(P;)li = 1,2, ... k ) .  Then B 

is a block of Aut(G). 

PROOF: Suppose 34 E Aut(G) such that +(Pi) n Pj # 0 for some i ,  j E {1,2,3, ... k ) .  

Since atomic parts are blocks with respect to Aut(G), 4(P;) = Pi. Since 4 (R)  is 

uniquely determined by 4(S) and Pj is uniquely determined by S ,  the atomic parts 

determined by S are exactly the atomic parts determined by d(S). Hence 4(S) = S 
and +(B) = B. 

Given a set S of vertices, we say that S is independent if there is no edge between 

any two vertices in S. 

Theorem 4.2 Let G be vertez-transitive. Suppose S E C(G) admits ezactly k > 1 

atomic parts. Let B denote the union of the vertices of these atomic parts. Then 

(i) G is isomorphic to a disjoint union of n 2 2 copies of G[B] together with some 

edges joining them; 



(ii) n(G) = tkp(G) for some integer t 2 1; and 

(iii) every minimum cutset contains an independent k-subset of vertices. 

PROOF: 
(i) Since B is a block of Aut(G), d(B) = B or +(B) n B = 0 for every q5 E Aut(G). 

Hence, G is a disjoint union of at least 2 copies of G[B] together with some edges 

joining them because G is connected. 

(ii) We want to show that the size of a minimum cutset is just some multiple of 

the size of B. Suppose S E C(G) admits atomic parts PI, P2, ... Pk. Let C E C(G) 

be another minimum cutset which admits parts Ql, Q2, ...Q,. First, we want to show 

that either d(B) C C or d(B) n C = 0 for all 4 E Aut(G). Assume 4(B) n C # 0 and 

d(B) $ C. Hence, 3P E {PI, P2, ... Pk) such that P n C # 0. Since P is an atomic 

part, P c C. Since C E C(G) and by vertex-transitivity of the graph, every vertex 

in P is adjacent to some vertex in Qi for i = 1,2, . . . j .  Since the vertices in 4(P) can 

only be adjacent to vertices in 4(P) U 4(S), +(S) n Qi # 0 for all i .  Since PI, P2, ... P k  

are atomic parts with respect to S, then #(PI), 4(P2), ...4( Pk) are atomic parts with 

respect to q5(S), and every vertex in d(S) is adjacent to some vertex in d(Pi) for all 

i. Choose Pm E {PI, P2, .. . , Pk). If d(Pm) n Qt # 0 for some t E {1,2, ... j), then 

$(Pm) C Qt. So if xi E $(S) n V(Qi), then xi is adjacent to some vertex in +(Pm) 

and hence in Qt. But this is impossible since Q1, Q2, ...Q, are parts with respect to 

C. Hence d(V(Pm)) c C for m = 1,2, ..., k. This shows that B is either contained in 

a minimum cutset or is totally disjoint from it. Now, if there is another vertex z in 

C, then since G is vertex-transitive, there is a block B, containing z .  Hence, B z  is 

again a subset of C. Therefore, ICI = n(G) = tkp(G) for some t > 1. 

(iii) From (ii) we know q5(V(Pm)) c C,Vm = 1,2, ..., k. Hence, C contains these 

k copies of the atomic parts, and we can choose one vertex from each atomic part to 

form an independent set of cardinality k. 

It is natural to ask whether or not the n and the t in the previous theorem can be 

improved. Let's consider the graph G = K,,, 1 Kt, where t > 1 and q 2 2. It is easy to 

see that K(G) = qt and a minimum cutset admits q atomic parts which are isomorphic 

to Kt. In this case, n = 2 and m = 1. Hence the numbers are best possible. 



Here is a theorem which gives some characteristics of atomic parts of a vertex- 

transitive graph. 

Theorem 4.3 Let G be vertez-transitive and suppose S E C(G) admits ezactly k 2 1 

atomic parts. Then 

(i) every C E C(G) admits ezactly 0 or k atomic parts, and 

(ii) S admits at most one non-atomic part together with the k atomic parts. 

PROOF: Let Co E C(G) be a minimum cutset. Either G \ Co has an atomic part Po 
or not. If Po is an atomic part with respect to Co, then 34 E Aut(G) such that 4 will 

map an atomic part of S to Po. Because of the vertex-transitivity and the proposition 

2.10, the cutset Co must also produce exactly k atomic parts. Hence (i) is proven. 

Suppose P is an atomic part with respect to S and suppose S admits t 2 0 

non-atomic parts Q1, 92, ..., Qt. Without loss of generality we may assume Q1 is 

chosen such that IV(Q1)l is maximum over all the parts admitted by all the minimum 

cutsets that admit atomic parts. Assume t 2 2. Let y E V(Q2). Then y belongs to 

a unique atomic part P* with respect to a unique minimum cutset 9. Furthermore, 

V(Po) c V(Q2). So So c (S U V(Q2)). Since IS1 = ISoJ = K(G) and S # S*, 
32 E S \ So and 2 is adjacent to some vertex in Q1 because k > 1 and S is a minimum 

cutset. Hence V(Q1) u {z) is contained in some non-atomic part with respect to S*. 
This is a contradiction. Hence t 5 1. W 

Now we know that the structure of a vertex-transitive graph is heavily dependent 

on the number of atomic parts admitted by a minimum cutset. We do not expect that 

any minimum cutset always generates an atomic part for any given graph. Instead 

of considering the atomic parts as Watkins did in [7], Green [4] considered a minimal 

non-atomic part together with some other non-atomic parts admitted by a minimum 

cutset which admits no atomic part. If three or more non-atomic parts occur together, 

some results similar to the results about atomic parts can be proved. However the 

results are not true for only two non-atomic parts. Before showing Green's results, 

we need the following definition. 



Definition 4.4 Suppose S E C(G) and P is a part with respect t o  S. The part P 
is said to be S-minimal if IV(P)I 5 IV(Q)I for every part Q admitted by S. 

Example 4.5 Consider the graph in Figure 4.1. The parts P and R are S-minimal. 

Figure 4.1: P and R are S-minimal parts of G 

Theorem 4.6 Let G be a vertex-transitive graph such that S E C(G) admits k 1 3 

non-atomic parts Q1, Q2, ..., Qk. Let P be S-minimal and q5 E Aut(G). Then either 

d(V(Q)) c s or d(v(Q)) n s = 0. 

PROOF: Without loss of generality, we may assume that P = Qj for some j E 

{1,2, ... k). Suppose the result fails for some 4 E Aut(G). Hence there is an i E 

{1,2, ... k) such that q5(Qj) n # 0. Let q5(Qj) n Qi = Q" and G[S n q5(V(Qj))] = Qi. 
Note that both V(Qi) and V(Q") are non-empty. 

Let 4(S) = K. Since G is vertex-transitive, K is in C(G) and K admits k non- 

atomic parts which are pairwise isomorphic to the parts admitted by S. Let Dt = 

V(Qt) n d(S), e = 1,2, ... k. Let DS = S n d(S) and S' = S \ (Ds u V(Qi)). Notice 

that these sets are all mutually disjoint from each other. Let x E Q'. Since S E C(G), 

x is adjacent to some vertex yt in Qt for all C = 1,2, ... k. Since yt is adjacent to 

x E V(Qi) C 4(V(Qj)) and both Qj and q5(Qj) are connected, either yt E d(S) or 



Y[ E 4(V(Qj)). Since Qj is S-minimal, 19((V(Qj))l = IV(Qj)l 5 IV(Qr)l. Since 
Q' # 0, there is at least one vertex in V(Qf) which is not in d(V(Qj)). Hence there 

exists a z E V(Qf) \ 4(V(Qj)) such that t is adjacent to some x E 4(V(Qj)) or Pf is 

not a part. Since Qr is connected, z E 4(S). Therefore, Dl # 0 for all t = 1,2, ... k. 

For notational simplicity, we let i = 1 for the remainder of the proof. Since Q" is a 

part with respect to the cutset C = Dl U Ds U V(Qi), ID1 1 + lDsl + JV(Qf)J 2 s(G) = 

ld(s)) = lDsl+ 1011 + ID21 + ... + IDkl. Therefore, IV(Q')I 2 ID21 + ID31 + ... + IDk]. 

Suppose 3t E ('43, ...k) such that Q = V(Q:) \ ~ ( S U  V(Qj)) # 0. Then elements of Q 
may only be adjacent to vertices in QU Dt u DsuSf.  Hence G[Q] is a part admitted by 

DtuDsuSf. Hence, lDtl+lDsl+lSfl 2 K(G) = IS1 = lDsl+lSfl+lV(Q')l. So, lDtl 2 
Iv(Qf)l. Hence 1 0 2 1  + 1031 + ... + lDkl > IDtl 2 IV(Q')I 1 1 0 2 1  + 1031 + ... + IDkl. This 
is a contradiction. Therefore for all t in {2,3, ..., k), V(Qt) c 4(S U V(Q,)). Because 

Qj is S-minimal, IV(Q2) u V(Qs)l 2 21V(Qj)(. Since Q' # 0, IV(4(Qj) n (Q2uQs))l < 
Iv(Qj)l I 1/2(lv(Q2) U v(Q3)I. Since V(Qt) c 4(S U V(Q,)) for all t = 2,3, ..., k 

and Qj is S-minimal, I4(S) n (V(Q2) U V(Q3))I > 1/21V(Q2) u V(Q3)1. Therefore 

ID2 I + ID31 = Id(s> n (v(Q2) u v(Q3))I > 1/2lv(Q2) u v(Q3)I 2 Iv(Qj)l. since &I 
is a proper subgraph of 4(Qj), I4(V(Qj))l > Iv(Q')I 2 ID21 + ID31 + ..- + lDkl > - 
ID21 + 1031 > IV(Qj)l. This is a contradiction implying our assumption is wrong. 
Therefore the result is true. 

Corollary 4.7 Let G be vertez-transitive. Let S be in C(G) such that S admits 

k 2 3 non-atomic parts. Let P be an S-minimal part and Q be any other part with 

respect to S. Suppose there is a 4 E Aut(G) such that 4(V(P)) n V(Q) # 0. Then 

d(V(P)) c V(Q). 

PROOF: Since d(V(P)) n V(Q) # 0, then by the previous theorem and since d(P)  is 

connected, 4(P)  c Q. 

Corollary 4.8 Let G be vertez-transitive. Let S be in C(G) such that S admits k 2 3 

non-atomic parts. Suppose P is an S-minimal part of G. Then P is vertez-transitive. 

PROOF: For any two vertices x and y in P, there is an automorphism 4 in Aut(G) 

such that 4(x) = y. However b(P) = P by the previous corollary. By restricting such 



automorphisms of G to the vertices of P, we obtain automorphisms of P. Hence P is 
vertex- transitive. 

Corollary 4.9 Let G be vertez-transitive. Let S be in C(G) such that S admits k 2 3 

non-atomic parts. Let PI and P2 be S-minimal. Then PI and P2 are isomorphic. 

PROOF: Let x E V(Pl) and y E V(P2). Since G is vertex-transitive, 34 E Aut(G) 

such that )(x) = y. Therefore, )(PI) n P2 # 0. Hence +(PI) C P2. Because 

IV(+(Pl))I = IV(Pl)I = IV(P2)I and by applying corollary 4.7, we can conclude that 

PI and P2 are isomorphic. 

Corollary 4.10 Let G be vertez-transitive. Let S be in C(G) such that S admits 

k > 3 non-atomic parts. Suppose S admits ezactly d > 2 isomorphic S-minimal parts 

PI, Pz, ... Pd. Let B = u{V(Pi)li = 1,2, ..., d).  Then B is a block of Aut(G). 

PROOF: Suppose there is a 4 E Aut(G) such that +(Pi) n Pj # 0 for some i ,  j E 

{1,2, ..., d). From the proof of the previous corollary we know 4 ( 8 )  = Pj. Hence 

4(S) = S. Since S admits only these d isomorphic S-minimal parts, for all m = 

1,2, ..., d, +(P,) must be P,, for some n E {1,2, ..., d).  As a result, $(B) = B. 

Therefore, B is a block of G with respect to Aut(G). 

Now based on these theorems and corollaries, we can characterize the vertex- 

transitive graphs which have some minimum cutset admitting at least three non- 

atomic parts. 

Theorem 4.11 Let G be vertez-transitive. Let S be in C(G) such that S admits 

k 2 3 non-atomic parts. Suppose S admits ezactly d 2 2 isomorphic S-minimal parts 

PI, P2, ... Pd. Let B = ~{V(Pi) l i  = 1,2, ..., d).  Then 

(i) G is isomorphic to a disjoint union of n > 2 copies of G[B] together with some 

additional edges joining them; 

(ii) K(G) = mlBI, for some m 2 1. 



The proof is an exact analogue of the proof of Theorem 4.2. 

By considering the following example, we will be able to see that m = 1 and n = 2 

are best possible. 

Example 4.12 Let G be the graph in Figure 4.2. It is easy to see that the graph G 

is vertex-transitive and the degree of the graph is 6. The vertex-connectivity is 6 and 

an atomic part is a single vertex. However, if we remove the cutset S, the resulting 

graph will consist of three S-minimal parts which are all isomorphic to K2. 

Figure 4.2: A graph which shows Theorem 4.11 is best possible 

However, in the case when k = 2 and d = 1 or 2, the following example shows that 

the theorem is false. 

Example 4.13 Let V(Cs) = {ao, al,  ..., a,) and V(C4) = (50, XI,  2 2 ,  x3). Let H be 

the vertex-transitive graph Cs[C4. We know that IV(H)I = 32. Consider the subgraph 

H' of H, with all the edges {(a;, xk), (aj, xp)) in H except the edges satisfying the 

following condition: 

j ~ i + l  ( m o d 8 ) a n d p ~ k + 2  ( m o d 4 ) f o r i , j = 1 , 2  ,..., 7andk,p=0,1,2 ,3 .  

Since the deletion of the edges is symmetric and these edges form four disjoint 

isomorphic cycles, the new graph H' is also vertex-transitive. An atomic part is a 

single vertex and /c(H1) = 8. However, S = {(ai, xk)li = 1,5 and k = 0,1,2,3) is a 

minimum cutset of H' which admits two non-atomic isomorphic parts which contain 

12 vertices in each part. But 12 divide neither 32 nor 8. Hence the theorem fails for the 

case when k = 2 and d = 2. For the other case, consider the graph G = Cll 1 C4 with 

similar edges being deleted. We can see that IV(G)I = 44, n(G) = 8 and for the same 

choice of indices for S, we obtain a minimum cutset which admits two non-atomic 

parts with 12 and 24 vertices, respectively. Hence the theorem still fails. 



Here is another result similar to Theorem 4.3 part (ii) which gives a characteristic 

of S-minimal parts. 

Theorem 4.14 Let G be vertez-transitive, and let S E C(G) admit k 2 3 non-atomic 

parts. Suppose P is an S-minimal part. Then S admits at most one part PI which is 

not isomorphic to P. 

PROOF: Suppose S admits k > 3 non-atomic parts. Without lost of generality, we 

may number them such that IV(Pl)I 2 IV(P3)I 2 ... > (V(Pk)I. Notice that Pk is an 

S-minimal part. 

If IV(Pi)l = IV(Pk)l for all i E {1,2, ..., k - 1), then 8 and Pk are isomorphic, 

and therefore, S admits only parts isomorphic to Pk. Hence assume that there is 

an i E {1,2, ..., k - 1) such that IV(R)l > IV(Pk)I. Then IV(Pl)I > IV(Pk)(. By 

vertex-transitivity, there exists a 4 E Aut(G) such that d(Pk) c PI. As a result, 

d(S) C ( S  U PI). Since Pl is connected, d(S) n V(Pl) # 0. Therefore, there is 

a vertex z E S that is not in $(S), and G[{z) U V(P2) U V(P3) U ... u V(Pk-1)] is 

connected and it is a subgraph of a part Q with respect to the cutset d(S). Since 

IV(Q)I > IV(d(Pi))l for all i E {2,3, ..., k - 1), Q must be 4(P1). Hence IV(Pl)I > 
IV(P;)l for all i E {2,3, ..., k). But if IV(P2)1 > V(Pk)(, then the same arguments hold 

which imply that IV(P2)I > IV(Pl)(. This is impossible. Therefore, IV(P2)1 = IV(Pk)l 

which implies that S admits at most two non-isomorphic parts. H 



Chapter 5 

Connectivity of Cayley Graphs 

Now we are interested in a specific type of vertex-transitive graph, namely, a Cayley 

graph. First, we have to introduce some definitions. 

Definition 5.1 Let G be a finite group and let H be a subset of G. H is said to be 

a Cay ley  set  if 1 4 H,  where 1 denotes the identity element of G, and h E H implies 

h-' E H. 

Definition 5.2 The Cayley  graph X = X(G; H)  is the graph with V(X) = G and 

E ( X )  = {(gl, gz)lg2 = gl h where h E H )  where H is a Cayley set. 

Example 5.3 Let G be Z6 and let H = {2,4). Then, the Cayley graph X = X(G; H) 

is as in Figure 5.1. 

The Cayley set is so defined because loops in a graph will not change its vertex- 

connectivity, and hence we exclude the identity from the Cayley set. Furthermore, 

we are interested in undirected graphs, and that is the reason why h E H implies 

h-' E H is in the conditions for a Cayley set. In the previous example, the Cayley 

graph is not connected which means that the vertex-connectivity is equal to zero. 

Definition 5.4 Let G be a finite group, and let H c G. Then, (H) denotes the 

subgroup generated by H.  



Figure 5.1: The Cayley graph X = X(G;H) 

Definition 5.5 Let G be a finite group, and let H c G be a Cayley set. H is said 

to be a generating set of G if (H) = G. In addition, H is said to be minimal if 

(H \ {h, h-I}) is a proper subset of G for all h E H. In the case when H is minimal, 

the Cayley graph is said to be a minimal Cayley graph. 

The condition (H) = G will guarantee that X(G; H) is connected because other- 

wise, (H) is a proper subgroup of G and there is no path from the identity 0 which is 

in H to any vertex in G \ (H). 
Cayley graphs are vertex-transitive. To show this, consider a connected Cayley 

graph X with a Cayley set H. Let u and v be two vertices in V(X). Since X 

is connected, there is a path from u to v .  Hence, there is a sequence to elements 

{hl, h2, ..., h,} from H such that u, hlu, h2hl,, ..., h ,... h2hlu = v is the path. Hence 

h, ... h2hl is the automorphism in Aut(G) which maps u to v.  

Example 5.6 Let G be Z12, the additive group of integers modulo 12, and let H = 

{2,3,9,10). The Cayley graph X = X(G; H) is as in Figure 5.2. It is obvious that 

H is a minimal generating set for ZI2. 

In 1981, C.D. Godsil [3] proved that the connectivity of a minimal Cayley graph is 

always equal to the degree of the graph which is the cardinality of the minimal Cayley 

set. In 1992, a paper by B. Alspach [I] generalized Godsil's result to Cayley graphs 



Figure 5.2: The minimal Cayley graph X = X(G;H) 

with quasiminimal generating Cayley sets. Here is the definition of a quasiminimal 

generating Cayley set. 

Definition 5.7 A Cayley set H  is said to be quasiminimal if the elements of H  can 

be arranged in the order hl ,  h2, ..., h, such that 

( i )  if the order of hi is greater than 2, then hf * is either hi-1 or hi+l, and 

( i i )  if Hi denotes ( { h l ,  h2, ... h i ) ) ,  then 

( 1 )  for each i  such that hi has order 2,  (Hi)  is a strict supergroup of (Hi - l ) ,  

and 

( 2 )  for each i such that hi has order greater than 2  and h i 1  = hi-1, (Hi)  is a 

strict supergroup of (Hi-2).  

Notice that any minimal generating Cayley set is a quasiminimal generating Cayley 

set because the conditions hold trivially. However the converse is not true. 

Example 5.8 Let G = Z12, HI = {2 ,3 ,4 ,8 ,9 ,10 )  and Hz = { 3 , 4 , 8 , 9 ) .  We know 

that ( H I )  = (Hz) = Z12. Hz is obviously a minimal generating set which implies that 

HI is not a minimal generating set. However, if we rearrange the elements of HI in 

the order 4 , 8 , 2 , 1 0 , 3 , 9 ,  then we see that HI is a quasiminimal generating Cayley set. 

In the rest of this section, we will assume that G is a finite group and H  is a 

quasiminimal generating Cayley set. Let H' = H  \ { h ,  h - l )  for some h  E H and 



G' = (H'). Let X = (G; H )  and X' = (G'; H') be two Cayley graphs. Since G is the 

union of the left cosets of G' in G, X consists of vertex-disjoint copies of X', called 

the X'-constituents of X, together with some edges joining them which are caused by 

the elements h and h-'. 

Before showing the main result from the paper by B. Alspach, we need the following 

definition and lemmas. 

Definition 5.9 The quotient graph XIX' for a Cayley graph X is the graph obtained 

from X by replacing each X'-constituent of X with a single vertex, and letting two 

such vertices be adjacent if and only if the corresponding XI-constituents have an 

edge joining them. 

Lemma 5.10 Let C C V(X). If C lies in a single X'-consitituent, then X \ C is 

connected. 

PROOF: Let X/Xt denote the quotient graph. It is clear that the quotient graph 

is vertex-transitive since each X'-constituent can be mapped to another by left- 

multiplication. As a result, X/Xt cannot have a cut-vertex. Let Y be the Xt- 

constituent which contains C. Then, the removal of the vertex corresponding to 

Y will not disconnect XIX'. Hence, X \ Y is still connected. Let v be a vertex in 

Y \ C. Then, v is connected to at least one vertex in X \ Y by an h edge. Therefore, 

X' \  C is still connected. 

Lemma 5.11 If s = IHI 2 4, then [GI 2 3 .  2a, where a = l(s - 2)/2J and s = IH(. 
If (HI = 3, then either X = K4 or IG( 2 6. 

PROOF: When IHI = 3, one possibility is that one of the elements in H has order 2 

and the other two are the inverses of one other, that is, H = {hl, h2, hzl). Hence the 

order of G must be even. One possibility is that H = {hl = hi, h2, hl '  = h;). In this 

case, G has order 4, and X is K4. Otherwise, G 2 6 since h2 will have to generate at 

least six elements. The other possibility is that all three of them are of order 2. In 

this case, G has 8 > 6 elements. Thus, assume JHI 2 4 and let H = {hl, h2, ..., h,) 



be in quasiminimal order. If hl has order larger than 2, then h," = h2 and {hl, h2) 

generates a group of at  least 3 elements. Now we add elements one or two at a time 

and check the order of the group generated by the new elements. If the next element 

has order greater than 2, we add the next two elements, and the order of the group is 

at  least double the size of the preceding group. If the next element is of order 2, then 

we only add that element, and the order of the new group is twice the order of the 

preceding one. In this case, we must repeat this process at least [(s - 2)/2J times and 

the result follows. If hl has order 2, then we start with it and continue the preceding 

process. We notice that the process must be repeated at least b = [(s - 1)/2] times 

which means that the order of the group generated by H is at least 2 .  2b which is 

greater than or equal to 3 -2" where a = [(s - 2)/2J. 1 

One simple observation of the previous lemma is that the number of the vertices 

in a Cayley graph is always greater than IHI. 

Lemma 5.12 Let IHI > 5. Let C be a minimum cutset of X = X(G; H )  which 

admits an atomic part and ICI < IHI. If Y \ C is connected for every XI-constituent 

Y of X, then some Y \ C is an isolated component in X \ C. 

PROOF: If for every XI-constituent Y, Y \ C is connected and joined by an edge to 

some other Z \ C in X \ C, then every component of X \ C has at  least 21X11 - (CI 

vertices. Hence, p(X) > 21XfI - ICI. By the previous lemma, IXII > IHfI. Since 

ICl 5 I H'I + 1 5 IXf 1 ,  p(G) 2 lXf 1 2 ICl which contradicts Lemma 3.9. Hence, some 

Y \ C must be a part in X \ C. W 

Lemma 5.13 A subset of r vertices, 0 5 r 5 IXII, of any XI-constituent Y has at 

least r neighbors amongst the other XI-constituents. 

PROOF: Let U be a subset of r vertices in some Xf-constituent Y. In the case when h 

has order 2, each u E U has a neighbor uh in another XI-constituent. The neighbors 

must be distinct otherwise there are two distinct vertices, x and y, in U such that 

xh = y h  which is a nonsense. If h bas order greater than 2, then every u E U has two 



neighbors in mot  her XI-constituent. Hence, U should have 2r neighbors. However, 

some of them might be the same. We see that U must have at least r neighbors 

because otherwise, there are x and y in U and hl and h2 in H such that xhl = yh2 

which means that H is not minimal. H 

We intend to show that for any Cayley graph with quasiminimal generating Cayley 

set, the vertex-connectivity is always equal to the cardinality of the quasiminimal 

generating Cayley set unless it belongs to a special family. Let 3 denote the special 

family of Cayley graphs. An arbitrary member of 3 is a Cayley graph X = (G; H )  on 

a group G with quasiminimal generating Cayley set H = {hl, h2, ..., h2k, h2k+l) (with 

the order in which the elements appear in H being the order satisfying the definition 

of quasiminimality), where hl has order 2, and all others have order 4, commute with 

hl, and have their squares equal to hl. 

Theorem 5.14 Let H be a quasiminimal generating Cayley set of the finite group GI 
and let X = (G; H )  be the Cayley graph. Then n(X) = IHI unless X is a member of 

3 in which case n(X) = IHI - 1, p(X) = 2 and edges of the form (y, yhl) are atoms. 

PROOF: We will use induction on I H I .  For I H I = 2,3, and 4, n(X) = I H I by Corollary 

3.13. Consider the case when (HI = 5. Suppose the vertex connectivity of the Cayley 

graph X(G, H )  is not 5. By Theorem 3.11 we know that its vertex connectivity is 

4. Hence, the atomic parts of X are all isomorphic to two vertices connected by an 

edge. Let A = {u, v )  be an atomic part of X and let C be the minimum cutset 

of X whose deletion isolates A. By Lemma 3.9 we know that a minimum cutset 

consists of the atomic parts. As a result, we may assume that C = {w,x,y,z) and 

x - y and w - z. Therefore, the local subgraph of the atomic part is as described 

in Figure 5.3. Now it is easy to see that the Cayley graph is the lexicographical 

product ( the wreath product) Cn 1 K2 of Cn and K2 where n 2 4. Since IHI = 5 

and H is quasiminimal, we can see that n must be even. This graph is in 3 because 
4 it is the Cayley graph on the group G = (hl, h2, h3), where 1 = h12 = h2' = hs , 

hl = hz2 = hS2, hlh2 = h2hl, hlh3 = h3hl, and (h2h3)"I2 = 1, with the quasiminimal 

generating set {hl, h2, h;', h3, h ~ l ) .  Hence, the base case is established. Let H be a 



Figure 5.3: The local subgraph of the atomic part A 

quasiminimal Cayley generating set and assume IHI > 5. Let h be the last element 

in a quasiminimal ordering of H. First suppose that h has order 2. By induction, 

each X'-constituent has vertex-connectivity I H'I or IH'I - 1, and if it has vertex- 

connectivity I H'I - 1, its atomic parts are isomorphic to an edge. Assume n(X) < I H I 
and let C be a minimum cutset which produces an atomic part. Since h has order 2, 

I H'I = I HI - 1. Hence, n(X) = ICJ 5 I H'J < IX'I by Lemma 5.1 1. By Lemma 5.10, 

C cannot belong to a single X'-constituent. Suppose C has non-empty intersections 

with at  least 3 X'-constituents. Then Y \ C is connected for any X'-constituent Y 

because IY fl CI 5 ICI- 2 5 IH'I - 2. By Lemma 5.13, Y \ C has at least IY \ CI 

neighbors in each of the other XI-constituents. Not all these neighbors can belong 

to C otherwise ICI 2 IYI = IX'I which is a contradiction. Hence there is an edge 

joining Y \ C to a vertex in Z \ C for some other X'-constituent 2. This contradicts 

Lemma 5.12. Hence, there are exactly two X'-constituents, say Y and Z, which have 

nonempty intersection with C. However, the above arguments still work as long as 

Y \ C and Z \ C are connected. It can fail only if one of them is disconnected, say 

Y \ C. But in this case, we can conclude, by induction, that IC f l  YI = IH'I - 1 

and X' E 3. Hence, every component of Y \ C has at  least two vertices, one of 

which must be adjacent to a vertex in K \ C where K is another X'-constituent. This 

contradicts Lemma 3.9 for the same reason as in Lemma 5.12. Now consider the case 



when the order of h is greater than 2. By induction, the XI-constituent has vertex- 

connectivity I HII = I HI - 2 or I HI1 - 1 = I HI - 3. First, let's assume that X' g! 3, 
that is , rc(X') = IH1(. Let C be a minimum cutset which produces an atomic part 

of X. Suppose that K(X) < I H I. By Lemma 5.10, C has non-empty intersections 

with at least two XI-constituents. The same arguments as before will lead to the 

conclusion that C has non-empty intersections with exactly two XI-constituents, say 

Y and Z, and the removal of C will disconnect one of them, say Y. But then C 
intersects Y in IHII vertices, and C intersects Z at one vertex. However, Y \ C has at 

least two vertices, and by Lemma 5.13, they must be adjacent to at  least two other 

vertices in another XI-constituent. This again contradicts Lemma 3.9. Hence, we 

may assume that X' E 3 and C is a minimum cutset which produces an atomic part 

of X. Suppose that x(X) < IHI which implies that x(X) 5 IH'I + 1. Again, by 

Lemma 5.10, C intersects at least two Xi-constituents. If C intersects at least three 

X'-constituents, say Y, Z, and W, then the same arguments as before will lead to the 

same contradiction unless C intersects one of them, say Y, in IH'I - 1 vertices and 

the other two, W and Z, at one vertex each and there are no others. Furthermore, 

since XI E 3, Y \ C is disconnected. By induction, every part in Y \ C has at 

least two vertices. For any part of Y \ C with more than two vertices, there must 

be an edge joining this part to another XI-constituent which means that it cannot 

be an atomic part of X. Therefore, the only possible atomic part of X is a part of 

Y \ C with exactly two vertices and all the neighbors of these two vertices have been 

deleted. Let D = { x ,  y) be an atomic part of X. However, the only vertices that 

have been deleted are one vertex u from W and one vertex v from Z. By induction 

we know that y = xhl .  Furthermore, we may assume that u = x h and u = xh-'. As 

a result, uh = y = xhl which implies that h2 = hl .  This shows that h has order 4 

and hhl = hl h. Therefore, X E 3. W 

Now, the main theorem in [3] is an immediate consequence of the previous theorem 

which is stated in the next corollary. 

Corollary 5.15 Let H = H-I be a minimal generating set of G .  Then, x(X(G; H)) = 

IHI. 



PROOF: Clearly, X is not in 3. Therefore, by Theorem 5.14 we have the result. . 
Definition 5.16 A vertex-transitivegraph G is called hypoconnected if K(G) < 6(G). 

The graphs in the family 3 are all hypoconnected. A natural question to ask is 

whether or not there are any other graphs which are also hypoconnected. A result 

from M.E. Watkins [8] presented in the following theorem shows another class of 

hypoconnected grapohs. 

Theorem 5.17 Let 31 denote the set of graphs of the form G1 1 G2, where Gl and G2 

are vertez-transitive graphs, and G1 is not complete and V(G2) > 2. Then the graphs 

in 31 are all hypoconnected. 

PROOF: Let G E 31. By the proof of Theorem 3.10 we know that K(G) = rc(G1)IV(G2)l. 

Furthermore, 6(G) = 6(G2) + n(Gl)IV(G2)I. Since 6(G2) 2 1, K(G) < 6(G). . 
It is obvious that 'H is non-empty. As for the set 3, the following example will 

show it is not empty. 

Example 5.18 Let G be the group Z4 x Z2 x Z2 x ... x Z2 with k - 2 Z2 factors. Then 

(GI = 2k. Let H contain the following elements: hl = (2,0, ..., O), h2 = (1,0, ..., O), 

h4 = (1,1,O, ..., 0), h2i = (1,0, ..., 0,1,0, ... 0), where the second 1 is in the i th coor- 

dinate for i = 2,3, ..., k - 1. Then X(G; H) has degree 26 + 1, but the deletion of 

vertices {h2, h;', h4, hi1, ..., hlk, h;:} will disconnect the vertices {I, hl} from the rest 

of the graph. Therefore, X(G; H )  is in 3. 

Note that in the proof of Theorem 5.14, the only subgraphs of degree 5 in 3 are of 

the form CZk 2 K2. A generalized result regarding odd degree graphs in 3 was obtained 

by J. Morris [6] and is stated in the following theorem. 

Theorem 5.19 If X E 3 has degree 2n + 1, n 2 2, then X is isomorphic to Y 1 K2 

where Y is vertez-transitive and has degree n. 

PROOF: Since X E 3, p(X) = 2. Let {u, v} be an atomic part of X. Since the degree 

of X is 2n + 1, S(u) = 6(v) = 2n + 1. Because X E 3, rc(X) = 2n implying that u and 



v must be adjacent to the same 2n vertices. Furthermore, a minimum cutset consists 

of copies of the atomic part. Hence G = Y K2. Since atomic parts are disjoint and 

X is vertex-transitive, Y must be vertex-transitive. H 

By the previous theorem we know that any graph X in 3 is of the form Y I K2, 

where Y is some vertex-transitive graph. Then by definition 5.9, Y is the quotient 

graph X/K2. J. Morris [6] gave the following theorem showing that there are some 

restrictions on a vertex-transitive graph G such that G 1 K2 is in F. 

Theorem 5.20 Given a Cayley graph Y = X(G1, H') of degree d, where H' is a 

minimal or quasiminimal generating set for GI, and h2 = 1 for all h E H', Y is the 

quotient graph for some graph X(G, H) E 3. That is, Y 1 K2 E 3. 

PROOF: Let H' = {hz, h3, ..., hd+1). Take hl @ G', and define h12 = 1. Let H = 

{hl, h2, hl h2, h3, hl h3, ..., hd+1, hl hd+1), where hq = hl for all i = 2,3, ..., d + 1. Let 

G = (H). We can see that G is just the union of G' and hlG1. Since hl has order 2, 

hi must have order 4 in G, and since h? = hl, h,' = hlhi. Therefore, H is already in 

quasiminimal order. Since H is of the form required, X(G, H )  E 3. Because (1, hl) 

is normal in G, G/{1, hl) is isomorphic to G'. Hence, Y is the quotient graph of 

X(G, H). H 

Note that the conditions in Theorem 5.20 are both necessary and sufficient to 

find a graph in 3. Similarily, the conditions in Theorem 5.17 are both necessary 

and sufficient to find a graph is %. Furthermore, Theorem 5.20 allows us to generate 

Cayley graphs in 3. But Theorem 5.17 can be used to generate vertex-transitive 

graphs with 6(G) = K(G) + k for all positive integers k. However in the case of vertex- 

transitive graphs, it is still no easy task in determining the vertex-connectivity. The 

reason is mainly due to the difficulty of finding an atomic part of a vertex-transitive 

graph. In 1984, F. Boesch and R. Tindell [2] gave an algorithm to determine the 

vertex-connectivity of any finite circulant graph. Independently in 1985, M.E. Watkins 

191 gave an algorithm to determine the vertex-connectivity of any finite or infinite but 

locally finite, circulant graph together with an atomic part. We are going to present 

a simplified version of the algorithm done by Watkins in the next section. 



Chapter 6 

Algorithm for Circulant Graphs 

Watkins applied knowledge on atomic parts of vertex-transitive graphs to a spe- 

cial family, circulant graphs, and got an easy algorithm for determining the vertex- 

connectivity of circulant graphs. It can be shown that the complexity of his algorithm 

is of order 0(n3f2) where n is the number of vertices in the graph. Before we get into 

the details of his algorithm, let's become familiar with some terminology and develop 

the theorems upon which the algorithm is based. 

Definition 6.1 Let n 2 2 be any finite integer, and let S = {il, i2, ..., i,) be a finite 

subset of ZLn121 where 1 j il < i2 < ... < ir j n/2. Then a finite circulant graph 

is defined to be G = G(n, S)  where V(G) = Zn and (x., y) E E(G) iff there exists a 

j E {1,2 ,..., r )  such that x + i j  y (mod n) or y + i j  x (mod n). 

Example 6.2 For n = 8 and S = {1,3,4), the circulant graph G(8, S)  is as in Figure 

6.1. 

It is obvious that G(n,S) is just X(Zn,S  U S"), where S-' consists the additive 

inverse elements of the elements in S. As a result, circulant graphs are also vertex- 

transitive. Since we are interested in vertex-connectivity, it is natural to consider 

only connected circulant graphs. The following theorem gives necessary and sufficient 

conditions for circulant graphs to be connected. 

Theorem 6.3 The circulant graph G(n, S), where S = {il, i2, ..., i,), is connected if 

gcd(il, i2, ..., i,, n) = 1. 



Figure 6.1: The circulant graph G(8,{1,3,4)) 

PROOF: Let G(n, S) be a connected circulant graph where S = {ill i2, ..., i,). Since 

G is connected, there is a path from the vertex 0 to any other vertex x. Therefore, 

x f amim (mod n) where the am's are integers for m = 1,2, ..., r. Especially, 

1 a (mod n). Hence there is an integer k 5 1 such that kn + 1 = 
alil +a2i2+...+a,i,, or 1 = alil +a2i2+... +a,i,+(- k)n. This means that the greatest 

common divisor of the elements in S U {n) is 1. Assume that gcd(il, i2, . . . , i,, n) = 

1. Therefore, 3al, a2, ..., a,, a, E Z such that 1 = alil + a2iz + ... + a,i, + ann or 

1 G alil + a2i2 + ... + a,i, (mod n). Hence we can use the last equation to express 

any integer x between 0 and n - 1 as an integral linear combination of i l l  i2, ..., in 

which means that we have a walk from the vertex 0 to any vertex x .  Therefore, G is 

connected. . 
Definition 6.4 Let G and H be finite circulant graphs with nl and n2 vertices re- 

spectively. Let Y be a connected spanning subgraph of G ) H. For each x E V(G), 

define Hz to be the subgraph of Y with vertex-set V(Hz) = {(x, y)Jy E V(H)). We 

call Y a circulant product or c-product of G by H, denoted by G o H, if Aut(Y) 

contains an automorphism a satisfying the following: (a) the sets V(Hz) for x E V(G) 

are orbits of an', and (b) Aut(G) contains an nl-cycle T such that a[H,J = H,(,). 



Example 6.5 Let G be C4 and H be K5. Then the graph in Figure 6.2 is a circulant 

product of G by H. 

.................... 
*. ..... 

-0. ...... 
...*M* .... means all edges .* 

k: ............. 2%. 

Figure 6.2: A circulant product of C4 by Kg 

Recall that if A is an atomic part of a vertex-transitive graph G, then by Definition 

5.9 and Lemma 3.6, the quotient graph H = GIA is vertex-transitive. It is clear 

that if G is not complete, then neither is H, and G is just a spanning subgraph of 

H 1 A. Furthermore, if G and H are vertex-transitive graphs, then G 2 H is also vertex- 

transitive. We would like to conclude that the circulant product of two circulant 

graphs is still circulant. The following lemma will enable us to conclude that. 

Lemma 6.6 Let G and H be circulant graphs. Then G o  H is also a circulant graph. 

PROOF: Let (u, v), (x, y) E V(G o H). First get o. By the second condition of the 

c-product definition, we know there exists an n-cycle T E Aut(G) so that rr(u) = x for 

some r E Znl where nl = IV(G)I. Hence, ur(Hu) = H,. As a result, or((u, v)) = (x, z )  

for some z E V(H). Since the vertices in H, are in the same orbit of an', 3q E Z 

such that o9"l((x, I)) = (x, y). Hence, o(qn1+')((u, v ) )  = (x, y). Hence Aut(G o H) is 

transitive implying that G o H is circulant. 



We also want to conclude that any circulant graph is a circulant product of some 

circulant graphs. For this case, we first need a theorem from Y.O. Hamidoune [S] 

about Cayley generating sets. 

Theorem 6.7 Let G be a finite abelian group and let A be an atomic part of X(G; H )  

containing the identity element e of G .  Then V(A) is the subgroup of G generated by 

V(A) n H. 

PROOF: Let x E V(A). Because A is an atomic part, xV(A) = V(A) which implies 

that V(A) is closed. Hence, V(A) is a subgroup. We now only have to show that 

V(A) is generated by V(A) n H. Let x E V(A). Since e and z are both in V(A), there 

is a path, say e = XO, 21, x2, ..., xk = x, from e to x contained in V(A). Since there is 

an edge from X, to ~ i + l ,  3hi+i E H such that xi+l = Therefore, x = hi 
and hi = xf Therefore, x is the product of some elements in V(A) n H. 

Lemma 6.8 Let Y be a circulant graph and let H be an atomic part of Y. Then 

there ezists a unique circulant graph G (up to isomorphism) such that Y = G o  H. 

PROOF: Without loss of generality, choose an arbitrary vertex v. Since Y is circulant, 

30 E Aut(Y) such that a is an n-cycle where n = IV(Y)I. Now relabel a vertex with i 

if it is ai(v). Let H be the atomic part which contains 0. By the previous theorem we 

know that the vertices of H form a subgroup of 2,. Hence, V(H) = (0, m, 2m, ..., ( a  - 
l)m), where am = n. Let U; denote the atomic parts of Y, where Ui = oi(H), 
i = 1,2, ..., m - 1. Let G be the quotient graph YIH. Define T : V(G) + V(G) 

by r(Ui) = U,(;) = Ui+l where the indices are all taken modulo m. Therefore, G is 
circulant and G is unique. 

The following corollary is an immediate consequence of the previous two lemmas. 

Corollary 6.9 Let G be a vertez-transitive graph, and let A be an atomic part of G. 

Then G is circulant i f  G = H o A for some circulant graph H .  

The basic idea of Watkins' algorithm is to run through all possible c-products H o A 

of a given circulant graph G(n, S) seeking a c-product in which A is isomorphic to an 



atomic part of G. Since p(G) must divide n, for any divisor d of n, an nld-element 

subgroup A(d) = (0, d, 2d, ..., n - d) is a good candidate to be an atomic part. For 

each candidate, there are five tests to ensure that it can be a non-trivial atomic part. 

If no candidate can pass all five tests, then G has only trivial atomic parts which 

means that n(G) = 6(G). By Theorem 6.7 and the fact that 0 4 S, we can see that if 

G has a non-trivial atomic part, then a candidate which has empty intersection with 

S cannot be an atomic part. This is Test 1. Since a candidate A(d) has n ld  elements 

and is a subgroup of Z,,, the greatest common divisor of (A(d) n S)  U {n) must be d. 

This consistutes Test 2. Furthermore, if A(d) is an atomic part, then by the previous 

corollary we know that G = H(d) o A(d) for some circulant graph H(d). Since A(d) is 

an atomic part, H(d) can not be complete. Hence we know that d > 4. This is Test 

3. If G is complete, then n(G) = 6(G). Hence we may assume that G is not complete. 

As a result, H(d) is not complete. Since H(d) is not complete, 6(H(d)) 5 d - 2. 

This is Test 4. Now all candidates which pass all four tests can be used in producing 

c-products of G. Since K(G) 5 6(G), we can eliminate those candidates A(d) whose 

neighborhoods N(A(d)) have cardinality greater than 6(G). This is Test 5. After 

the last test, we have a collection of candidates which have I N(A(d))I < b(G). The 

minimum of all such IN(A(d))l's is the vertex-connectivity of the circulant graph G. 

Now eliminate all the candidates for which IN(A(d))l is not minimum. At this stage, 

we are left with a collection of candidates which can be either an atomic part of G 

or a non-atomic part of G and all we have to do is choose d such that IA(d)l will be 

minimum. Therefore, the vertex-connectivity of the circulant graph G is IN( A(d)) 1 
and the atomic part of G containing 0 is A(d). An immediate consequence of the first 

three tests is the following: 

Proposition 6.10 Let G(n, S )  be a circulant graph where S = {al, al, ..., a&). If a j  

is relatively prime to n whenever a, > 4, then n(G) = 6(G). 

PROOF: If a j  E A(d) n S,  where a j  > 4, then gcd((A(d) n S)  U {n)) = 1. Hence a j  

cannot be in A(d) n S whenever a, 2 4. Therefore, A(d) n S can only have elements 

which are less than 4. However, none of the elements in A(d) fl S can be less than 4 

by Test 3. Hence, the intersection must be empty. Therefore, the atomic parts of G 



are all trivial, and u(G) = 6(G). 

Here is a pseudo-version of simplified Watkins' algorithm. Comments in this al- 
gorithm will have a leading #. 



THE ALGORITHM 

Step I Input circulant graph G ( n ,  S )  where S = { a l ,  a2, ..., a k ) .  

Step I1 Initialization 

Let S-I = { n  - ak,n - ak-1, ..., n - a l l .  

. Delta= 2k if a,  # n/2 ,  otherwise Delta = 2k - 1 .  

Let kappa = Delta. 

Let NFadors  be the set of all proper divisor of n. 

i = O .  

Dset = 0. 

Step I11 a = i  + 1. 

If i > NFadors,  then go to Step X. 

Let d be the ith elements in NFactors. 

Step IV If d < 4 ,  then go to Step 111. 

# This is Test 3. 

Step V Let Sd = { s  E Sls = m d  for somem E Z+}. 

# Sd is A(d) n S. 

If Sd = 0, then go to Step 111. 

# This is Test 1. 

Step VI If gcd(Sd u { n ) )  # dl then go to Step 111. 

# This is Test 2. 

Step VII Let NBHD = fs(modd)ls E S U S-*,  s $ 0  (mod d)}. 



If I NBHDI > d - 2, then go to Step 111. 

# This is Test 4. 

Step VIII Let New = INBHDl .  (n ld ) .  

If New > Delta, then go to Step 111. 

# This is Test 5. 

Step IX If New < Kappa, then kappa = New and Dset = {d) .  

0 If New = Kappa, then Dset = Dset ~ { d ) .  

Go to Step 111. 

Step X Output: Kappa is the vertex-connectivity of G and the atomic 

parts of G are all isomorphic to A(d). 

0 Terminate. 

Now let's apply the algorithm to an example. 

Example  6.11 Let S = {1,4,8,9,12,15,16,20,23, 24,25,28,32,33). Consider the 

circulant graph G(72, S). We observe that 6(G) = 28. The proper divisors of 72 

are {1,2,3,4,6,8,9,12,18,24,36). Test 3 eliminates 1, 2, and 3 as choices of dl and 

Test 1 eliminates 18. Furthermore, Test 2 eliminates 6 since A(d)  n S = (12,241 and 

the greatest common divisor of {12,24,72) is 12 # 6. Now for d = 9, 6 (H(d ) )  = 
~{114 ,8 ,3 ,6 ,7 ,2 ,5 ,6 ,7 ,1 ,5 ,6 )~  = ~{1,2,3,4,5,6,7,8)~ = 8 > 9 - 2. Hence 9 is 

eliminated. Similarily we can calculate the following: b(H(4) )  = 2, b (H(8) )  = 3, 

b(H(12))  = 6,  b(H(24))  = 9, and b(H(36))  = 14. Furthermore, IN(A(d))I < 6(G) 

only holds for d = 8 or 24 and I N ( A ( 8 ) )  1 = I N(A(24))  1 = 27. Therefore, n(G)  = 27. 

Since we are left with only two candidates d = 8 and d = 24. However, IA(8)I = 9 

and IA(24)I = 3. Hence A(24) is the graph which is isomorphic to the atomic parts 

of G. 
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