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Abstract

Functional languages often neglect the array construct because it is hard

to implement nicely in a functional language. When it is considered,

it is usually from the context of converting imperative algorithms into

functional programs, rather than from a truly functional perspective.

In an imperative language, changes to an array are done by modifying

array elements, destroying their original values. Unless special measures

are taken to support destructive update, an array update in a function-

al language must produce a new array, without destroying the old one.

Since most other functional data structures do not support destructive

update, it would be desirable not to have to make a special case of arrays,

especially since many kinds of algorithms (backtracking algorithms being

a simple example) may find having multiple versions of a data-structure

useful. Our goal is to be able to provide a functional array interface where

array operations are reasonably cheap.

We will look existing techniques that have been used in the past to

address this problem area, and then present a new runtime technique

that offers very good all-round performance, and can be used where other

array mechanisms fail.
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Chapter 1

Introduction

Functional languages are often weak when it comes to supporting arrays,

even though they are one of the most widely used data structures out-

side of the functional language community. Neglect of arrays shows up in

both Miranda[27] and Standard ML[19], which have no support for arrays

at all1, and even the more recent language of Haskell[10] only provides

functions for updating a whole array en masse, rather than allowing the

update to be performed on a single array element. There are some func-

tional programming advocates who would claim that functional languages

have little need of arrays, as they have other data structuring mechan-

isms that are more useful, so this sort of weakness does not matter, but

that sort of justification is poor at best.

This neglect of arrays is not because functional languages don’t need

them, but because they present some awkward problems. In this thesis

we look at these problems, and at some of the partial solutions proposed

in prior works, and we then go on to develop an array representation

technique that provides a better solution when truly functional arrays

are required.

1The Definition of Standard ML does not include any special features for arrays and
does not include any array functions in the standard environment, but most popular
implementations do provide support for non-functional array use. If one wishes to write
purely functional algorithms in ML, these extensions are of little direct help.

1



CHAPTER 1. INTRODUCTION 2

1.1 Functional vs. Imperative Languages

Imperative languages have named storage locations, into which values

can be placed, destroying any previously existing value that was held in

that location. This act of assignment can be performed more than once

on each storage location, with different values each time. Thus, different

values may be read from a storage location at different points during a

program’s execution. For these languages, an array is an indexed col-

lection of storage locations, usually occupying a contiguous area of com-

puter memory. Although the collection of locations can be considered as

a whole, the process of array subscripting singles out one array element

to be read or destructively updated like any other storage location.

Functional languages, on the other hand, disallow assignment. Val-

ues are manipulated directly and their storage is handled implicitly. Vari-

ables in a functional language differ from their counterparts in imperative

languages in that their role is purely denotational; lambda-bound or let-

bound variables of functional languages simply denote a particular value,

albeit one whose value may be unknown until runtime. Thus, functional

languages do not make explicit use of storage locations, and so a func-

tional array cannot be quite the same as an imperative one. It cannot be

a collection of storage locations, it can only be an indexed collection of

values, and must itself be a value.

Traditional imperative programming languages often blur the distinc-

tion between storage locations and values, especially when it comes to

aggregate structures, so we’ll clarify the difference here. Values are im-

mutable, whereas storage locations tend to be seen as a chunk of com-

puter memory that can be modified as required. In almost all languages,

functional and non-functional alike, it is unreasonable to destructively

change values themselves; an assignment such as ‘1 := 2’ is disallowed,

since its semantics are unclear2. Similarly, since the variables of func-

tional languages do not represent storage locations, but actual values,

2If it were allowed, it would presumably have a deleterious effect on arithmetic, since
after such an assignment it would presumably be the case that 1× 1 = 4, but it is unclear
what the result of 1÷ 2 would be.
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procedure insert(item, headptr) =
var itemptr : list-pointer;
while not( isnull(headptr^.next) or headptr^.next^.item > item) do

headptr := headptr^.next;
allocate(itemptr);
itemptr^.item := item;
itemptr^.next := headptr^.next;
headptr^.next := itemptr

(a) An imperative implementation of insert.

insert(item, list) = cons (item, list), if isempty list ∨ first list > item
= cons (first list, insert(item,rest list)), otherwise

(b) A functional implementation of insert.

Table 1.1: Comparing Functional and Imperative Code.

they cannot have their values altered. Functional languages would not al-

low a definition such as ‘f(x) = (x := 2)’ because evaluating ‘f(3)’ would be

identical to evaluating ‘(3 := 2)’. Likewise, because functional languages

do not have aggregates of storage locations, only aggregates of values, one

cannot redefine or modify the components of a compound value. One can

only create new values, possibly derived from existing ones.

The differing styles of imperative and functional languages not only

cause different coding styles to be adopted (see Table 1.1), but also result

in differing data structure usage. Typically in an imperative language,

we’ll perform destructive updates on a data structure, modifying it as ne-

cessary. Figure 1.1 shows what this means for imperative languages in

practice — namely that updates destroy prior versions of a data struc-

ture, causing us to describe such data structures as ephemeral[8]. In

imperative languages, this isn’t seen as a problem since typically a pro-

gramming style is used where we never do try to refer to refer to a pre-

vious version of a data structure. We describe such algorithms as being

single threaded[22]. The lack of storage locations and destructive update

in functional languages means that previous versions of a data structure
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Item Next3 Item Next5 Item Next8 Item Next9
List1 :

(a) A linked list in an imperative language. The list is made up of
storage locations, that can have their values destructively modified.

Item Next3 Item Next5 Item Next8 Item Next9
List2 :

First Rest7

List1 : ?????

(b) Typically, insertions into a list will be done destructively. Having
performed the update, we can no longer reference the old version of
the list. Because updates destroy prior versions of the list, we call this
kind of data structure ephemeral.

Figure 1.1: A linked list in an Imperative Language.

First Rest3 First Rest5 First Rest8 First Rest9
List1 :

(a) A linked list in a functional language. The list is a value that can
be decomposed into two components, the first element and the rest of
the list, both of which are themselves values.

First Rest3 First Rest5 First Rest8 First Rest9
List1 :

First Rest3 First Rest5
List2 : First Rest7

(b) Insertions cannot be performed destructively, thus in order to per-
form the update we must copy elements of the list until we reach the
point where the element is to be inserted. Notice that the old version
of the list can still be accessed, for this reason we call it persistent.

Figure 1.2: A linked list in an Functional Language.
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cannot be destroyed by a program’s execution3 (see Figure 1.2) causing

us to describe them as persistent[8].

1.2 Arrays in Functional Languages

Since functional programming languages do not make use of explicit stor-

age locations, and imperative arrays are a vector of storage locations,

something needs to be changed to allow arrays to be used in functional

languages. The most obvious approach, if we wish to provide a fairly tra-

ditional interface, is to present arrays to the programmer as just another

kind of value. If arrays are presented as values, which cannot be de-

structively updated, the array update operation must become a function

that returns an entirely new array with the relevant change made. This

leaves the original array on which we were performing the update both

accessible and unchanged.

Such a scheme, however, while fitting semantics of functional lan-

guages, does seem rather inefficient, since copying the whole array for

every update would be very costly for any array of reasonable size.

Functional language designers and implementors have come up with

a variety of techniques that attempt to implement array operations effi-

ciently, without violating the constraints for functional behaviour. Their

motivations often lean towards providing good performance for some of

the ‘classic’ array-based algorithms (such as Quicksort, various text pro-

cessing algorithms, graph algorithms that use adjacency matrices and so

forth[23]). Thus, a major concern is being able to run array algorithms

originally written for imperative languages in a functional context without

an increase in space and time complexity.

The arrays of imperative languages are, like other data structures in

such languages, ephemeral. As we learned earlier, the original content-

s of locations that have been updated do not persist and thus cannot

be accessed afterwards, which restricts data structure use to a single

threaded pattern. When a non-functional algorithm that uses its data

3They can however cease to be referenced, and thereby be forgotten about.
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structures single threadedly is re-written in a functional language, the

single threaded property can be preserved. Much effort has therefore

been directed towards providing good support for arrays when they are

used single threadedly.

Concentrating on the ‘classic’ mode of use of arrays, and working to

provide adequate performance for that case, may have helped rebut the

sneers of those who scoff at the efficiency of functional languages, and al-

low us to re-implement some popular algorithms in a functional context,

but is the price we pay for this too high? In functional languages we can

write single threaded algorithms, but we are have not been required to

do so, until now. Focusing only on single-threaded array access means

that non-single-threaded array algorithms will be either prohibited, or

incur strong runtime penalties. In cases where the semantics suggest

that the original array persists after an update, we may be encouraged

or even required to ignore that, and treat arrays as ephemeral structures

just as we would in an imperative language. Some might argue that this

doesn’t matter, and point to the paucity of array algorithms that require

persistence. However, this isn’t a particularly valid argument, since few

algorithm designers have had the option of efficient arrays that have effi-

cient persistence as an option.

A truly functional array would allow us to use arrays non single threadedly

and treat them as a persistent data structure, without huge penalties, if

we so desired, or employ them as we would an ephemeral structure, ac-

cessing them single threadedly. The choice would be ours. One would

hope that in such a scheme, we could still use ‘classic’ array algorithms

without their having a considerably worse time or space complexity, and

yet have reasonable time and space complexity for persistent usages.

1.3 Thesis Outline

In this thesis we develop and present an array representation and asso-

ciated access methods that can be used to achieve the goal of providing
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truly functional arrays effectively. Chapter 2 reviews many of the method-

s currently used to provide support for arrays in functional languages. As

we have already alluded, these existing methods are far from perfect, and

in this chapter, we cover some of their problems. In subsequent chapters

we develop data structures and associated access methods that can be

used to implement truly functional arrays effectively.

Chapter 3 presents the basic details of our method, developing par-

tially persistent arrays. In Chapter 4, we extend that to provide fully

persistent functional arrays, looking at two different schemes that can

provide full persistence. We go on to examine performance issues in

Chapter 5, comparing our method to some of the techniques covered in

Chapter 2. Our final conclusions are presented in Chapter 7.

1.4 A Word on Notation

When describing the interfaces to functions, we will use a notation sim-

ilar to the type specifications of current functional languages, such as

Standard ML, Miranda and Haskell. An example function specification is

shown below:

allocate : (int, int→ α)→ array(α)

The use of α indicates a type variable, array is a parametric type, ‘:’ is read

as ‘has type’, brackets are used to indicate a tuple and ‘→’ indicates the

type of the value returned by the function. Thus, in this case, the allocate

function receives as parameters an integer and a function which given

an integer returns an item of some unspecified but consistent type, and

returns an array filled with elements of that type. In Miranda, we would

have written:

allocate :: (num, num -> *) -> array *

in Standard ML, we would write:

allocate : int * (int -> ’a) -> ’a array
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and in Haskell, we would write:

allocate : Num a => (a, a -> b) -> Array b

Finally, note that when we say log n, we are referring to log2 n, not

log10 n.



Chapter 2

Review of Earlier Work on

Functional Arrays

Many others have proposed solutions to the problem of providing a suit-

able interface for arrays in a functional languages. In this chapter, we

shall present an overview of some of the more foundational work in this

area, and discuss the advantages and shortcomings of their approaches.

The approaches can be roughly divided into two categories, single threaded

and non-single threaded[22].

2.1 Single Threaded Approaches

When an algorithm always accesses only the most recently updated ver-

sion of an array, the algorithm is said to access the array Single Threadedly.

In imperative languages, because updates are done in place, only the

most recent version exists, so that is the only version that can be ac-

cessed. Thus traditional array algorithms created for imperative algorithms

always access arrays single threadedly.

Since most array-based algorithms originated in imperative languages

and use arrays single threadedly, an implementation technique that is

optimised for, and perhaps only allows, single threaded array access will

almost certainly offer good performance for the vast majority of current

9
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array algorithms. There are, however, two general problems with the

single threaded approach. The most obvious drawback is that it requires

restrictions on the ways we can use arrays, as we are now preferred or

required to only use arrays single threadedly. Since functional languages

do not require that any other data structures be used single threadedly,

it is a little restrictive to constrain our use of arrays1. A second problem

is that by forcing our algorithms into a single threaded mold, we can

impose an execution order that is not strictly necessary, and thus deny

opportunities for parallelism.

2.1.1 Trailers

Trailers[1, 14, 15] are a runtime technique developed to provide reason-

ably efficient support for the single threaded use of arrays. The technique

also allows non-single threaded use of arrays, but such use incurs a per-

formance penalty; the size of the penalty depends on the pattern of use,

but could easily be O(u) time to access an array, where u is the number

of updates that have been performed (which may typically be larger than

the size of the array), instead of O(1) time.

Figure 2.1 shows how the data-structures used in the Trailers tech-

nique work. The method represents multiple versions of an array in-

ternally using a single ‘current’ array, and difference lists that trail from

that array to indicate how a particular version differs from the ‘current’

version. Whenever a particular array version is accessed, the usual first

step is to rearrange things so that the the version in question becomes

the one that uses the internal array, adjusting and creating trailers for

the other versions as necessary2. Figure 2.1(c) shows how a subsequent

read access to Array1 would make it the current array.

1Although arrays are the only widely used data structure that tends to be viewed
as requiring single threaded access, IO operations also tend to be viewed from a single
threaded perspective, and so share many of the same issues as arrays.

2Not all implementations of trailers always rearrange things so the array being ac-
cessed becomes the ‘current’ array for every access. In general, knowing whether to make
an array version ‘current’ for a particular access requires knowledge of the future access
patterns the array will have, information which is rarely available or determinable.
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421Array1 : 3 1515 37 29Array

(a) An initial array, Array1.

421Array2 : 3 1215 37 29

Cell To3 15 Next

Array

Array1 :
Change

(b) The same array after up-
dating Array1[3] to hold value
‘12’; Array2 becomes the cur-
rent array but we can still ac-
cess Array1 since a chain of
changes is maintained from it
to the current array.

Change
Array2 : Cell To3 12 Next

421 3 1515 37 29Array
Array1 :

(c) If Array1 is subsequently
accessed, it is made the cur-
rent array and the change l-
ist is inverted so that now the
changes required to create Ar-
ray2 from Array1 are recor-
ded.

Change
Array2 : Cell To3 12 Next

Array1 :

Array2’ : 421 3 1515 84 29Array

Cell To2 37 NextChange

(d) Finally, we see what would
happen if we created other ar-
ray, Array2′ by modifying Ar-
ray1 again. This time we have
altered Array[2] to hold ‘84’.
Array2′ is now current.

Figure 2.1: Understanding Trailers.



CHAPTER 2. REVIEW OF EARLIER WORK ON FUNCTIONAL ARRAYS 12

2.1.2 Monads

Monads[28, 30] are a very general mechanism, coming originally from

the branch of mathematics known as category theory[17, 18], that can

be used to incorporate non-functional features safely into a functional

context. In the case of arrays, a monad can be used to bring traditional

imperative arrays into a functional language, setting things up in such

a way as to enforce single threaded access to arrays and thereby not

violate the properties of functional programming languages. The monadic

approach hides the array from the programmer (it is referenced implicitly)

and severely restricts operations that can be performed on it and the way

those operations can be used. One way to view an array monad is to

say that it does not actually encapsulate an array in an abstract data

type, it encapsulates an operation on an array. An array operation3 has

a parametric type, that being the type of the result that the operation will

return when executed.

Table 2.1 shows an interface for a monadic implementation of an ar-

ray. The array operations are shown in Table 2.1(a). Notice that each

operation will be applied to an array (via the execute function which we

will cover shortly), but that array reference is implicit; they do not take

an array as an argument. An array operation is applied to an array by the

execute function. Execute does not take an array as an argument, rather

it creates a transient array to which a supplied array operation is applied.

This transient array exists only during the execution of the execute func-

tion; the array itself cannot be captured by the operation being executed

and returned since none of the supplied array operations provide such a

feature.

To be worthwhile, the array operation passed to execute should em-

body a particular array algorithm. The array operations provided in the

array interface only perform simple actions, but more complex opera-

tions may be created using the function compose, which allows one to

create a composite array operation which will perform the one array op-

eration, then a second. The second operation is generated by a function

3The term array operation is used here as a synonym for array monad. The former
term is used because it is likely to create a more familiar picture for most readers.
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size : array-op (α, int)

read : int → array-op (α,α)

update : (int , α)→ array-op (α, ε)

return : β → array-op (α, β)

(a) The functions above provide monadic operations for arrays. An
array-op (α, β) is an operation that can be performed on an array whose
elements are of type α, with the result of the operation being of type β.
When no result is returned, we use the null type ε.

compose : (array-op (α, β), β → array-op (α, γ))→ array-op (α, γ)

execute : (int , int → α, array-op (α, β))→ β

(b) These functions allow monadic operations to be combined and ex-
ecuted. Composing array operations is vital to creating array based al-
gorithms, because the execute function takes a single array operation,
creates an array, applies the operation, and returns the result of the op-
eration while discarding the array that was used.

Table 2.1: An example monadic interface for arrays.

which is called with the result of the first array operation. This allows in-

formation to be passed along a chain of operations and thus allows use-

ful algorithms to be specified. Those familiar with continuation-passing

style[21, 6] may see some broad parallels here between that area and the

way we use monadic arrays. Table 2.2 shows how a simple monad based

algorithm might be written.

Monads do cleverly allow pure functional languages to make avaliable

features that are usually found only in impure languages but they are

not without their problems. Creating a composite array operation to

perform a particular algorithm often results in complicated looking an-

d unintuitive expressions, and algorithms that involve more than one

array (such as, say, merging the contents of two arrays) cannot be im-

plemented without specific support from the array data type (such as a

two-array monad). Also, because the array is always handled implicitly,



CHAPTER 2. REVIEW OF EARLIER WORK ON FUNCTIONAL ARRAYS 14

max = compose size init
where

init arraysize = compose (read last) (loop1 last)
where

last = arraysize - 1
loop1 posn best = return best, if pos = 0

= compose (read prev) (loop2 prev best), otherwise
where

prev = posn - 1
loop2 posn best this = loop1 posn this, if this > best

= loop1 posn best, otherwise

(a) A monad based implementation of max.

max array = loop last (read array last)
where

last = (size array) - 1
loop posn best = best, if posn = 0

= loop prev this, if this > best
= loop prev best, otherwise

where
this = read array pos
prev = pos - 1

(b) A more traditional implementation of max.

Table 2.2: Two implementations of max. The first implementation uses
monadic array operations, the latter uses a more traditional array inter-
face. Both implementations follow the same algorithm, finding the size
of the array, and then working from back to front, keeping track of the
largest value found so far. The implementations are a little more wordy
than is perhaps necessary; this has been done to facilitate the comparison
of the two approaches.
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it may not be embedded within any other data structures; this also pre-

vents multi-dimensional arrays, since arrays of arrays are not possible

without explicit support. Similar problems occur when monads are used

to support other language features such as monadic IO or continuations,

as the programmer may be forced into having to make a choice between

using arrays or IO, but not both at once.

With careful design, many of these problems are not insurmountable.

Language syntax can make the construction of monadic expressions more

palatable, and if the various kinds of monads available are well designed

and properly integrated, we can eliminate the need to make a choice

between using different monads and also allow ourselves to use more

than one array4.

Monads are an excellent tool in any programmer’s toolbox, having

a much wider applicability than just the problem of supporting arrays.

However, the problem of how to proceed when more than one monad is

needed is still an open research area. Given this drawback, it seems that,

current monadic approaches would appear to be less elegant than they

first appear, despite their mathematical foundations.

2.1.3 Linear Types

Linear Types[29] (and also Unique Types[2]) seem to be a very promising

solution to the problem of values that must be used in a single threaded

way. To quote from the Philip Wadler’s paper on Linear types[29]:

Values belonging to a linear type must be used exactly once:

like the world, they cannot be duplicated or destroyed. Such

values require no reference counting or garbage collection, an-

d safely admit destructive array update. Linear types extend

Schmidt’s notion of single threading; provide an alternative to

4Combining monads is an active research area[16, 13], and we have developed a tech-
nique which can enable the use of multiple monads which has not been described else-
where. Our work in will probably appear along with our further research into functional
arrays[20], or in a separate paper.
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Hudak and Bloss’ update analysis; and offer a practical com-

plement to Lafont and Holmström’s elegant linear languages.

By using the type system to enforce the single use property, this ap-

proach allows algorithms to be coded in a straightforward functional style

(c.f. Monads above). Linear types seem like a good solution for single-

threaded array operations (as well as being a fairly general solution other

interesting problems, such as file I/O), but there are some areas related

to linear types where more work is needed. Specifically, some work re-

mains to be done with regard to integrating linear types Hindley-Milner-

Damas[9, 5] style polymorphism and type inference used in most popular

functional languages. Also, current functional languages would require

wide-ranging changes to their type systems to support linear types, and

at the time of writing, with the exception of Clean[12], none of the major

functional languages have been retrofitted to support them. Finally, while

linear types provide a good solution to those who require an ephemeral

data structure and do not restrict their applicability to arrays, it is of little

use to those who are interested in persistent data structures.

2.1.4 Compile Time Analysis

An alternative to forcing the programmer to code their algorithms fol-

lowing some alternative style that enforces single threadedness, is for a

compiler to spot single threaded use of objects, such as arrays, and thus

determine when update in place can be used. This technique is usu-

ally called Update Analysis[3, 11], and relies on Abstract Interpretation to

determine when update in place can safely be used.

The key problem with this approach is that for an arbitrary function-

al program, the task of statically determining whether it will use arrays

single-threadedly is undecidable. The best any technique can do is de-

termine whether a program appears to be single-threaded, erring on the

side of caution and flagging some programs that would execute single

threadedly as non single threaded. Since the programmer would no doubt
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wish his single threaded code to be understood by the programming lan-

guage as being single threaded, she has to know something of the tests

applied and their limitations. If the programmer isn’t concerned with how

things work inside the compiler, we enter a new realm of unpredictabilty

where a simple change to program can dramatically alter it’s execution

behaviour if that change happens to upset update in place optimizations

being applied.

2.2 Non Single Threaded Approaches

As was alluded to earlier, single threaded approaches, while useful when

converting ‘classic’ array algorithms into functional languages, have their

limitations. Techniques have been devised that are suitable for applying

to algorithms that do not fit neatly into the single threaded mold, but it is

an area that appears to have received less study.

2.2.1 Monolithic Approaches

The monolithic approach to array operations does not try to find ways of

performing small operations on arrays efficiently, rather it looks at ways

of operating on the array as a whole. Rather than operating at the level of

the array elements, the monolithic approach operates at the level of the

whole array; obviously there is a need to work at the element level, but

the array operation is considered to operate ‘all in one go’, across all the

elements. A very simple monolithic array operation would be

arraymap : (α→ β, array(α))→ array(β)

Usually, people want to perform more complex operations on the entire

array, and thus most monolithic approaches use a special syntax to de-

note the monolithic array operations.

Having a separate syntax obviously adds complexity, not only for the

user, but also for the language, which may have to perform some checks
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on the correctness of the operation specified; however, monolithic spe-

cification does have some useful properties, being better suited to sup-

porting parallelism in array access.

An intriguing thought is the combination of monadic and monolithic

approaches, since one could use a monad as a means to specify the array

operation to be performed.

2.2.2 Faking it, with Trees

Height balanced binary trees are perhaps the most basic5, and often used,

methods for ‘faking’ arrays in functional languages. A reason for the pop-

ularity of this approach is that tree-based arrays can be implemented in

almost any functional language. In some languages, such as Miranda[27],

the programmer has little other option but to use them.

A simple tree based method would be to allocate a binary tree, and

use the leaves of the tree to hold the array contents. The correct leaf of

the tree for a particular integer index can be found by using the binary

representation of the number to choose between taking the left or right

branch. Figure 2.2(a) shows a small array represented using a binary

tree6. Figure 2.2(b) shows how the data structure is affected by an array

update operation. While it is possible to use n-ary trees; for an n-ary tree,

of size k, the tree will have branch nodes of size n and height, logn k. These

properties mean that having large values of n isn’t usually sensible, since

logn k branch nodes of size nmust be replaced for every update operation7.

The only advantage of large n is that it speeds read access, in the limit

providing O(1) read access for n = k.

5A more basic approach than binary trees is to use an association list (or just a plain
list) to simulate arrays. Using lists is horribly inefficient for an array of non-trivial size;
the only redeeming feature of the approach being that it is incredibly simple to implement,
which may explain why it is seen more often than it deserves.

6The representation could be optimized to eliminate an unnecessary level of indirec-
tion, by storing the contents of the leaves directly in the final branch node. This is possible
because the tree has constant height, for a particular array size. This optimization isn’t
shown because it would unnecessarily complicate the picture.

7Curiously, at least to those who haven’t made a study of trees, n logn k has a minim-
um, independent of k, when n = 3 not when n = 2, thus using ternary trees to support
arrays is slightly more efficient than using binary trees.
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10 15 37

Array1 :

0 1

0 1

32 15 29

0 1

(a) An initial array, Array1.

10 15 37

0 1

0 1

32 15 29

0 1

Array2 : 0 1

Array1 : 0 1

2 47

(b) The same array after updating Array1[2]
to hold value ‘47’; notice how Array2 shares
much of the tree structure of Array1.

Figure 2.2: Understanding the Tree based Array representation.



CHAPTER 2. REVIEW OF EARLIER WORK ON FUNCTIONAL ARRAYS 20

The obvious problem with using trees as an array representation is

that both read and update operations take a time of O(logn k), in contrast

with the O(1) behaviour of the arrays found in non-functional languages.

For many applications, especially those that, at least potentially, use ar-

rays of non-trivial size this is unacceptable. Trees do, however, have the

advantage of being a simple data structure, that can be used non-single-

threadedly without additional complications.

2.3 Non-Functional Approaches

A final possibility is for the language to abandon the requirements for

arrays to be functional, and support arrays that allow assignment. If

the language is already an impure functional language and already sup-

ports assignable polymorphic references, the is no reason not to support

traditional ephemeral arrays. However, functions that use such arrays

could violate referential transparency, making programs that used such

functions hard to reason about. While this may be acceptable in some

cases, directly supported ephemeral arrays are of no use to those who

need persistence.

2.4 Conclusion

None of the methods we have covered have provided good support for

persistent arrays, and many are far from perfect for implementing ‘clas-

sic’ array algorithms, sometimes requiring cumbersome code sequences,

or disallowing simple and useful operations. Some methods work suc-

cessfully for some cases, but minor code changes can cause a drop to a

terrible worst case performance. Finally, if the technique demands that

program code access arrays in a single threaded[22] manner, that can

impose an unnecessary serialisation of access that denies the potential

for parallel execution.

In subsequent chapters, we shall present techniques that can provide

persistent and thus truly functional arrays without increased space or
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time complexity for ‘classic’ array algorithms.



Chapter 3

The Essence of Our Method

In the preceeding chapter, we looked at previously available options for

those who wish to use arrays in functional languages. In this chapter we

begin the presentation of our alternative to these techniques, laying down

the foundations for our method. Here we will develop partially persistent

functional arrays, which we will extend in subsequent chapters to provide

fully persistent arrays. In other words, we will describe our technique,

while imposing the restriction that only the most recent version of an

array may be updated, but all array versions may be read. Later we will

remove this restriction.

3.1 Basic Operations for Arrays

As we mentioned in the Chapters 1 and 2, there is more than one way

of integrating arrays into functional languages. Our goal is not provide

a special mechanism to support them, but rather to make them just an-

other data type to be used as the programmer sees fit. Our interface

is therefore based around an abstract array data type with a few simple

access functions, shown below:

create : (int , int → α)→ array(α)

subscript : (array(α), int) → α

update : (array(α), int , α) → array(α)

22
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subscript (create (s, f), i) = f(i), if 0 ≤ i < s
= ⊥, otherwise

subscript (update (a, j, v), i) = v, if (i = j) ∧ ok
= subscript (a, i), if (i �= j) ∧ ok
= ⊥, otherwise

where
ok = inrange (a,i)
inrange (create(s, f), i) = 0 ≤ i < s
inrange (update (a, j, v), i) = inrange (a, i)

Table 3.1: Semantics for array operations.

These functions for the most part mirror the array operations present

in imperative languages, the only exception being array update. As men-

tioned in Chapter 1, the semantics of a functional update operation re-

quire that the result of an update be a new array value, while the original

array value supplied to the update function remains unchanged and ac-

cessible.

The interface shown above there is no fundamental problem in ap-

plying all the techniques developed in this thesis to dynamically sized

arrays.

Axioms for functional arrays are shown in Table 3.1.

3.2 Origins of Our Method

Our approach to the functional array problem came originally from an un-

related programming effort in which functional arrays were a prerequisite

(a functional implementation of a unification based algorithm). Having

written an implementation, we then realized that our approach had not

been presented elsewhere, and so began looking into the subject more

closely. In researching the matter, we found parallels between our work

and pre-existing work by Driscoll et al.[8], and incorporated a few refine-

ments based on their work. Given that, it is worth noting how our work

differs from and builds upon that of Driscoll et al.[8].

Driscoll et al.’s work[8] is based on providing support for persistent
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data structures in imperative languages, not functional languages. While

this may seem like a trivial difference, we will discover in Chapter 6,

when we examine heaps, that one cannot automatically assume that it

is possible to transport these features into a functional language. On a

similar note, in the imperative context of Driscoll et al.’s work, timestamps

are a visible part of the system, whereas in a functional context it is

necessary to keep their existence hidden.

Another issue with Driscoll et al.’s work on persistent data structures[8]

is that their techniques relate specifically to linked data structures (or to

be more precise, linked data structures of bounded in-degree). This has

two ramifications, the first is that their work has been largely ignored by

the functional language community, since as we learned in Chapter 1,

linked data structures are already persistent in functional languages and

so Driscoll et al.’s techniques for providing persistence aren’t seen as be-

ing applicable. The second ramification is that arrays are not discussed

by Driscoll et al., since arrays are not linked data structures. It is per-

haps not surprising, then, that much of their work cannot be applied to

arrays.

In examining the problem, we have developed techniques that can be

applied to arrays, albeit with worse time complexity than Driscoll et al.

manage for linked data structures of bounded in-degree[8]. We should

also make it clear that we have not just applied a subset of Driscoll et

al. to the area of functional arrays, but we have rather gone beyond what

they present making refinements — for example, our technique guaran-

tees O(1) performance for single threaded array use, while their tech-

niques that most closely approximate ours do not.

Finally, we also take a broader look at the issue of generating time-

stamps (see Chapter 4), and cover the merits and demerits of partially

ordered timestamping, presenting an algorithm for generating such time-

stamps.
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3.3 Data Structure Overview

Our technique uses timestamps along with ‘element histories’ to store

multiple arrays, which we shall call array values, in a single data struc-

ture. Several array values are represented internally using a single mas-

ter array, each element of which is a ‘history’ that holds all values that

are associated with that array element. Every array value has its own

unique timestamp, which is used to retrieve the values of its particular

elements from the shared master array.

3.4 Element Histories

As we outlined above, each element of the array may contain more than

one value. Specifically, each element of the array is a data structure

which maps array timestamps to values. Figure 3.1(a) and Figure 3.1(b)

show two different structures that could be used to store such informa-

tion, portraying a stack and a tree respectively. Factors influencing our

choice of data structure are covered later, and for much of our discussion,

the exact data structure used is irrelevant. In such cases, we will use the

abstract diagrammatic representation shown in Figure 3.1(c).

A key feature of the representation of element histories is that they

will not, in all likelihood, contain values for every timestamp in exist-

ence. They only hold a history of changes. The only time a new time-

stamp/value pair is added to the element history is at a ‘cusp’, when that

particular element is changed. Values for timestamps not held explicitly

in the element history can be determined implicitly.

If we consider the element history to be a set of timestamp/value pairs,

H, and suppose that there is some ordering relation on timestamps, then

the value corresponding to some desired timestamp, td, can by found by

finding the closest timestamp in the set, tc, where

tc = max{t | (t, v) ∈ H ∧ t ≤ td}

and retrieving the value corresponding to that timestamp. In other words,



CHAPTER 3. THE ESSENCE OF OUR METHOD 26

t0 12< >

t3 192< >

t1 160< >

t2 135< >

(a) A tree-based element history, containing four different values, one for
each of four possible times. Initially, at time t0 the element held the value
12, and even though it has been accessed and updated since then to hold
first 160, then 135, and then to 192, it is still possible to retrieve the value
it had at time t0.

t1 160

t2 135

t0 12

t3 192

(b) Here we have the same his-
tory entries as above, but stored
in a stack. The factors to con-
sider when choosing a particular
representation are dealt with in
Chapter 4.

t1 160

t2 135

t0 12

t3 192

(c) Because there is more than
one way to represent element his-
tories, and because often the ex-
act representation is less inter-
esting than what is actually be-
ing stored, we will usually rep-
resent them as shown here. In
this way, we convey what is be-
ing stored, without actually spe-
cifying the representation used.

Figure 3.1: How Element Histories are Represented.
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t0 12

t4 23

t3 47

(a) In this element history, cusps
exist at times t0, t3 and t4.
Entries are omitted for time-
stamps t1, t2 and t5, because no
changes were made to this partic-
ular element at those times.

t1 12

t2 12

t5 23

t0 12

t4 23

t3 47

(b) Here we show not only the ac-
tual values stored in the element
history, but also the values that
are inferred (shown in grey).

Figure 3.2: Element Histories don’t contain entries for every Timestamp.

tc is the greatest timestamp less than or equal to td. This is expressed

more clearly in Figure 3.2.

3.5 Array Values and the Master Array

As we outlined earlier, the master array, which is used to store multiple

array versions, is simply an array of element histories. Each individual

array value represents a particular version of the array, and consists of a

reference to the shared master array, and a unique timestamp.

Subscripting a particular array value is done by simply retrieving the

element history for the desired array element, and then retrieving the

value corresponding to the array value’s timestamp. Array update is

achieved by creating a new array value, with a timestamp obtained by

incrementing the timestamp of the array we are updating1, and adding

new entries corresponding to the new timestamp to the element history(s)

of the element(s) being updated.

Figure 3.3 shows how multiple array versions are supported, showing

1Remember that we are assuming, for the time being, that only the most recent version
of the array will be updated.
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a sequence of four updates on an array, leading to the creation of five dif-

ferent array values. Each element history is shown with both the values it

contains, and the values that are inferred (distinguished by being shown

in grey).

3.6 Conclusion

The techniques we have presented so far can only provide partial persist-

ence, since we have assumed that, while every array value can be read,

only the most recently changed version of the array will be updated. This

would be sufficient for many applications, but this restriction means that

our arrays so far could not be described as functional. In the following

chapter, we will examine the ways in which this scheme can be extended

to provide full persistence.

Before moving on however, we should take a final look at what we

have accomplished so far. In our current scheme, update operations and

read accesses on the most recently created array value take O(1) time, if

a stack or splay tree[24] is used to store element history entries. Reads

of array elements that have been updated u times since the time of the

current array take O(log u) time, if the element history is arranged as a

search tree (such as a splay tree). Thus, single threaded access takes

constant time, and while partially persistent access doesn’t take constant

time, it is still faster than the other techniques available. Users of im-

perative languages should not be able to sneer at this kind of functional

arrays because the only access that does not take constant time is an

access not usually available to them. There is, however, a larger constant

factor in the access time, but as the author’s subsequent work shows,

even this can be minimised by certain optimizations [20].
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1 2 3 4

t0

t0 12 56 27 48t0 t0 t0

Array1 :

(a) An array data structure supporting a single array value.

1
t1 12

2 3 4
48t1 t1

t0 t1Array2 :

t0 12 56

135

48t0

t1

t0 t0

Array1 :

27

27

(b) The array data structure after an update has been performed on
the second element of the array. Thus, the master array now holds
two array values.

1

t1 12

t2 12
2

27

3
27

4

48

48

t1

t2

t1

t2

t0 t1Array2 :

t0 12

40

56

135

27 48

t2

t0

t1

t0 t0

Array1 : t2Array3 :

(c) Another update has been performed on the second element array,
so it now holds three array values.

1

t1 12

t2 12

2

27

3

27

4

48

48

t4 12

40

40 29

27

t1

t3

t4

t2

t4

t1

t2

t3

t3 t4Array5 :

t0 12

40

56

135

27 48

29

96

t2

t0

t1

t0

t3

t0

t4

t3 12

t0Array1 : t2Array2 :

Array4 :

t2Array3 :

(d) The array after two more updates, this time on the fourth element
of the array and then the third element.

Figure 3.3: The array update process.



Chapter 4

Providing Full Persistence

The methods we have developed so far provide us with Partial Persist-

ence[8], whereby the original array values persist after an update, but

those values cannot be updated again. In this chapter we shall look at

how to extend our array algorithms and data structures to provide the

capacity for Full Persistence[8].

4.1 The Problem

The reason the array implementation we presented in Chapter 3 cannot

provide full persistence is that the simple timestamping method we used

isn’t up to the job. Figure 4.1(a) shows what would happen if we did

try to update an array that had already been updated once. Our time-

stamping scheme generates the timestamp for the new array by simply

incrementing the timestamp of the original array value. Thus, if we per-

form multiple updates, each new array will receive the same timestamp.

This is clearly a problem. Possible solutions to this problem are shown in

Figures 4.1(b) and 4.1(c), and discussed below.

4.2 Partially and Totally Ordered Timestamping

There are two methods we could use to provide fully persistent arrays,

and so we shall briefly described both, before covering each in more detail.

30
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1

t1 12

2

27

3 4

48t1 t1

t0 t1Array2 :

t0 12

40

56

135

27 48

t1

t0

t1

t0 t0

Array1 : t1Array2’ :

(a) The approach that worked for the partially persistent case is not
sufficient when full persistence is required. Array2 and Array2’ have
both been given the same timestamp, resulting in the wrong value
being returned if the updated element of Array2 is accessed.

1

t1 12

t1’ 12
2

27

3
27

4

48

48

t1

t1’

t1

t1’

t0 t1Array2 :

t0 12

40

56

135

27 48

t1’

t0

t1

t0 t0

Array1 : t1’Array2’ :

(b) Giving time-stamps a partial order allows fully persistent updates
to work correctly. Under this scheme, t1 and t1′ are distinct, and both
‘after’ t0 but are incomparable with each other.

1

t0.5 12

t1 12
2

27

3
27

4

48

48

t0.5

t1

t0.5

t1

t0 t1Array2 :

t0 12

135

56

40

27 48

t1

t0

t0.5

t0 t0

Array1 : t0.5Array2’ :

(c) Totally ordered timestamps can also support fully persistent up-
dates, provided sufficient care is taken. In this case, Array2’ gets al-
located a timestamp that is after the timestamp of Array1 and before
the timestamp of Array2.

Figure 4.1: Handling full persistence. In the situation shown above,
Array1 has been updated twice; Array2 is the first array derived from an
update on Array1 and Array2’ is the second.
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Start 1.0 1.1 1.2 1.3

2.0 2.1 2.2

2.0.1.0 2.0.1.1 2.0.1.2 2.0.1.3

2.0.2.0 2.0.2.1

2.0.2.0.1.0

1.0.1.11.0.1.0

(a) The partially ordered timestamping scheme used by RCS.

Start 1.0 1.1 1.2 1.3

2.0 2.1 2.2

2.0.1.0 2.0.1.1 2.0.1.2 2.0.1.3

2.0.2.0 2.0.2.1

2.0.2.0.1.0

1.0.1.11.0.1.0

(b) It is quite straightforward lay a total order over the partial order of
RCS. In integrating different and incomparable branches into a single
time line, we are seeing things somewhat differently, however, for ex-
ample previously we saw no timestamps between 1.0 and 1.1 whereas
in the totally ordered view, several timestamps lie between them.

Figure 4.2: Partially Ordered vs. Totally Ordered Timestamps.

4.2.1 Partially Ordered Timestamping

The first option shown in Figure 4.1(b) gives timestamps a Partial Or-

der, whereby the timestamp for an array resulting from an update still

comes from a kind of ‘increment’ operation, in that the resulting time-

stamp comes after that of the original array, but where multiple updates

to the same array value generate different and incomparable timestamps.

In other words, we allow time to branch, forming ‘alternate timelines’

when necessary.
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Some readers will have already encountered partially ordered time-

stamping schemes, since they typically appear in systems for source code

control (such as RCS[25]). Looking at the timestamping scheme used by

RCS is helpful since we can look at it and gain a general understanding of

this kind of timestamping without worrying too much about implementa-

tion details (which we present later).

Figure 4.1(b) shows a situation where we initially had an array value

with timestamp t0, which was updated once, with the resulting array

value receiving timestamp t1. Then, another update was performed on

the original array requiring another timestamp after t0 — the timestamp

t1′. Under RCS we would allocate timestamps as follows: t0 would be 1.0,

t1 would be 1.1, and t1′ would start a new branch and thus be 1.0.1.0.

The first timestamp generated after t0 is done via a simple increment, but

subsequent timestamps need to form a ‘branch’. A more complex example

how of branching occurs, which includes the above example, is shown in

Figure 4.2(a).

4.2.2 Totally Ordered Timestamping

In totally ordered timestamping, shown in Figure 4.1(c), we recognize that

while updates can generate arrays which are unrelated to each other, a-

part from a common ancestor, we do not need necessarily to transport this

relationship into our timestamping scheme. Instead we impose a total

order on top of this partial order, to gain a single timeline. Figure 4.2(b)

gives an example of how we could take branched time, characterized by

the example from RCS we used earlier, and impose a total order on it.

In this flattened model, we do not need to form branches, we only need

to be able to allocate a new timestamp ‘just after’ an existing one (i.e.,

after that timestamp, but before any others that are after it). One way to

envision such a scheme would be to imaging timestamps represented by

real numbers. If an array value had a timestamp with value 17, a derived

array value might have value 18. If another on the original array was

performed, the resulting array would get a timestamp between 17 and 18,
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say 17.5.

Having introduced both techniques, we shall now cover each in more

detail, presenting implementation techniques, discussing their properties

and covering problems that arise in the use of each scheme.

4.3 Algorithms for Partially Ordered Timestamps

In this section, we develop a straightforward mechanism for generation

partially ordered timestamps. We shall begin by specifying the interface

for such a timestamping scheme:

create : ε→ timestamp

increment : timestamp → timestamp

order : (timestamp, timestamp) → {before, equal, after, incomparable}

In this scheme, create creates an initial timestamp (create takes a null

argument, represented by ε), with further timestamps being created by

insert, which creates a new timestamp that lies after the one passed. Fi-

nally, the order function exists to compare two timestamps. If two time-

stamps lie on different time lines, an order comparison will say that they

are incomparable.

We shall begin by introducing a very simple partially ordered time-

stamping scheme, which we will later refine.

4.3.1 A Simple Timestamping Algorithm

Our simple partially ordered timestamping scheme is based around object

identity and a simple ‘cons’ing operation (see Figure 4.3). The ‘increment’

operation just adds a cell to the front of the chain and returns the new top

of the chain. The ‘order’ function compares two timestamps by searching

down each timestamp chain to find whether both lie on the same time line

and if so, where they lie in relation to each other. Thus t2 in our example

is before both t3 and t3′ but t3 nor t3′ are both incomparable with each other.

This scheme is certainly simple and does provide fast allocation of new

timestamps. But the length of the timestamp chains grows with every new
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t1 :t2 : AfterAfterAfter

After

ID: 1329ID: 1481ID: 1526

ID: 1681

t3 :

t3’ :

Figure 4.3: A simple timestamping scheme.
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(a) A timestamp chain,
without compression.
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(b) A timestamp chain,
with compression.

Figure 4.4: The principles of compressing timestamp chains.

timestamp, which seems something of a problem. Worse perhaps is the

fact that the ‘order’ function cannot be implemented efficiently, since the

timestamp chains can grow quite long.

4.3.2 Improving the Algorithm

If we assume that long unbranched chains of timestamps will be fairly

common, we can improve our timestamping algorithm to take account of

this and offer improved performance. Figure 4.4 shows a slightly simpli-

fied branching chain of timestamps and how we can reduce the chains

into single cells that record how long the chain is. In expressing the basic

idea, we have omitted a few details, but in essence, this method is the

basis of our timestamping scheme.

Having presented the basic ideas underlying this refinement, we shall

now proceed to fill in the details. Timestamps have two components, one

which is unique to each timestamp, and another that is shared by all
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timestamps in a chain. The shared component keeps track of where this

chain fits onto other timestamp chains, and also contains a chain length

counter that is used to spot branching. The unshared part contains an

integer indicating where the timestamp is in the chain, if this integer is

equal to the chain length, then we know that no other timestamps exist

after this one this chain.

If we are asked to generate a new timestamp that lies after the last

entry in a chain, all we need to do is increment the chain length counter

for the chain, and return a new timestamp whose position field is equal

to the chain length. If, however, we are asked to generate a timestamp

after a timestamp that is not at the end of a chain, we know that at least

one timestamp lies after it, and so we must form a new branch. So in this

case need to create a new chain, and link it to that timestamp. Figure 4.5

gives an example of an update sequence involving both simple additions

to a timestamp chain and the creation of new branches.

The chief advantage to this more complex scheme is that we reduce the

length of the chains we have to search. For example, in the Figure 4.5

we can determine very quickly that both t1 and t2 are earlier than t3,

because they all lie on the same chain and differ only by their position.

However, to see that t′2 is after t1, we need to go to a little more work,

and we need to trace back along its branch in an analogous way to the

very basic scheme we began with. This unfortunately does give partially

ordered timestamping a rather poor worse case time complexity, even

though practical applications may rarely cause branching to occur.

4.3.3 Conclusions

The poor worst case performance of the partially ordered approach is a

clear drawback, and it is not the only problem that arises with this tech-

nique. In the context of functional arrays, we run across another problem

that comes from the very nature of having partially ordered timestamps.

If timestamps have a partial order we cannot use them in an order based

data structure. This means that we cannot be able to use a tree to store
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ID: 1083
Length

3Posn 1
t1 : After

(a) A single (initial) timestamp, t1. Notice that there are two
parts to the structure, a ‘Position’ field which is unique to this
timestamp, and a common part which will be shared by all
timestamps in this chain. This latter part consists of ‘Chain
Length’ counter and an (empty) ‘After’ pointer.

ID: 1083
Length

3

Posn 2
t2 :

Posn 1
t1 :

After

(b) Two timestamps; t2 is the result of incrementing t1. Notice
that while t1 and t2 both reference the same common data
structure, they do not explicitly reference each other. (Note
that we use a pointer to link the unshared part of a timestamp
to the shared part.)

ID: 1193

ID: 1083
Length

3

Posn 2
t2 :

Posn 1
Length After

Posn 2
t2’ : 3

t1 :

After

(c) Three timestamps; both t2 and t2′ result from asking for a
timestamp after t1. Notice that the ‘After’ field in t2′ references
t1. While t2 was the result of a simple increment, t2′ was the
result of a branching increment.

ID: 1193

ID: 1083

Posn
Length

3

3

Aftert3 :

Posn 2
t2 :

Posn 1

Posn
Length

3
Aftert3’ :

Posn 2
t2’ : 3

t1 :

(d) Five timestamps; t3 is after t2 and t3′ is after t2′ .

ID: 1193

ID: 1083

Posn
Length

3

3

Aftert3 :

Posn 1

Posn
Length

3
Aftert3’ :

3

(e) Three timestamps; t1, t2 and t2′ have ceased to be refer-
enced by the program.

Figure 4.5: The lurid details of efficient partially ordered timestamping.
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element histories, instead we must to use some other data structure,

such as a stack. Not being able to use order to speed the search for an

entry in an element history reduces further the worst case time complex-

ity of methods based on partially ordered timestamps.

Things aren’t completely bleak, however. Despite it poor worst case

performance, this may be a viable technique for algorithms that mostly

perform single threaded accesses, since single threaded accesses will al-

ways create timestamps that lie on a single chain and the most recently

version of an element will always be on the top of the stack of element

histories.

So, while noting that applications that are mostly single threaded

there may find work efficiently with partially ordered timestamps, we will

turn our attention to totally ordered timestamping and see what advant-

ages it holds.

4.4 Algorithms for Totally Ordered Timestamps

The problem of generating timestamps that follow a total order can also be

viewed as the problem of ‘maintaining order in a list’. This latter problem

is one of maintaining a list through a sequence of insert and delete oper-

ations, while answering order queries (to determine which of two entries

comes first in the list). An interface for ordered list maintenance functions

is shown below:

create : α→ ordered(α)

insert : (ordered(α), α) → ordered(α)

order : (ordered(α), ordered(α)) → {before, equal, after}

succ : ordered(α) → ordered(α)

value : ordered(α) → α

Note that the parametric type ordered(α) refers to the point in an ordered

list where a particular element (of type α) is stored.

The order maintenance problem presumes that we will be storing something

in this ordered list, but if we don’t actually store any data in it, the prob-

lem can be viewed as a timestamp generation problem. We can therefore
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apply some simplifications and produce and interface for timestamping

operations, shown below1:

timestamp = ordered(ε)

create : ε→ timestamp

insert : timestamp → timestamp

order : (timestamp, timestamp) → {before, equal, after}

succ : timestamp → timestamp

Although the techniques for addressing the order maintenance prob-

lem with O(1) time taken for insert, delete, order have been published

elsewhere[7, 26], it is sensible for us to outline the algorithm here, since

the generation and comparison of timestamps is a fundamental part of

our method.

Our particular implementation follows the first algorithm presented

by Dietz and Sleator[7], which is a relatively straightforward algorithm.

This algorithm, which we will describe below, takes O(1) amortized time

for insert and O(1) real time for order, succ and delete. Dietz and Sleator’s

other algorithm provides O(1) real time for all operations, but at the cost

of some algorithmic complexity. There is no fundamental problem with

the use of this second algorithm, however, we have merely chosen to use

the first one for the sake of simplicity.

Although the algorithm is presented elsewhere, our presentation of it

may prove of some interest, since we present it from a slightly different

perspective, and reveal some properties that aren’t obvious in the original

presentation2.

4.4.1 A Simple Timestamping Algorithm

The algorithm we used maintains a circularly linked list. Each node in

the list has an integer label, which is occasionally revised. We also impose
1Note that ε represents a null type.
2In particular, we show that it is not necessary to refer to the ‘base’ when performing

insertions; it is only necessary for comparisons. Also, some of the formulas given by Dietz
and Sleator would, if implemented as presented, cause problems with overflow (in effect
causing ‘ mod M ’ to be prematurely applied) if M is chosen, as suggested, to exactly fit
the machine word size.
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a fixed but arbitrary upper limit, N , on the number of elements that will

be stored in the list. Typically, N might be chosen to fit the size of a

machine word, or a machine half-word (see below).

The integers used to label the nodes range from 0 to M − 1, where

M > N2. In practice, this means that if we wished N to be 232 − 1, we

would need to have to set M to 264. If it is known that a large value

for N is not required, it may be useful for an implementation to set M

to be the machine word size, since much of the arithmetic needs to be

performed modulo M , and when M is the machine word size this will

happen automatically.

Initially, the list holds a single element, which is never deleted. This

node is special in that its label (which can be assigned an arbitrary value)

is used when performing order comparisons. We shall call this element

the base.

In the discussion that follows, we shall use l(e) to denote the label of

an element e, and s(e) to denote its successor in the list (corresponding

to succ function we specified in the timestamping interface). We shall

also use the term sn(e) to refer to the nth successor of e, for example,

s3(e) refers to s(s(s(e))). Finally, we define two ‘gap’ calculation functions,

g(e, f) and g∗(e, f), that find the gap between the labels of two elements:

g(e, f) = (l(f)− l(e)) modM

g∗(e, f) =

⎧⎪⎨
⎪⎩
g(e, f) modM if e �= f

M if e = f

To compare two elements of the list for order, we require the base, as

well as the elements which are to be compared. If we are comparing two

elements, x and y, we perform a simple integer comparison of g(base, x )

with g(base, y), where base is the first element in the list.

Comparison of elements is trivial then, as is deletion, which is done

just by removing the element from the list. The only issue that remains

is that of insertion. We will suppose that we wish to place a new element,

n, so that it comes directly after some element, e. For most insertions, all
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that needs to be done is to select a new label that lies between l(e) and

l(s(e)). The label for this new node can be derived as follows:

l(n) = l(e) +

⌊
g∗(e, s(e))

2

⌋
modM

This approach is only successful, however, if the gap between the la-

bels of e and its successor is greater than 1 (i.e. g(e, s(e)) > 1), since there

needs to be room for the new label. If this is not the case, it is necessary

to relabel some of the elements in the list to make room. Thus we relabel

a stretch of j nodes, starting at e, where j is chosen to be the least integer

such that g(e, sj(e)) > j2. (The appropriate value of j can be found by

simply stepping through the list until this condition is met). In fact, the

label for e is left as is, and so only the j − 1 nodes that succeed e need

have their labels updated. The new labels for the nodes s1(e), . . . , sj−1(e)

are assigned using the formula below:

l(sk(e)) =

(
l(e) +

⌊
k × g∗(e, sj(e))

j

⌋)
modM.

Having relabeled the nodes to create sufficient gap, we can then insert a

new node following the procedure outlined earlier.

4.4.2 Refining the Algorithm

The algorithm, as presented so far, takes O(log n) amortized time to per-

form an insertion[7], but there is a simple extension of the algorithm

which allows it to take O(1) amortized time per insertion[26, 7]. To do

this, we use a two-level hierarchy that uses an ordered list of ordered

sublists.

The top level of the hierarchy is represented using the techniques out-

lined earlier, but each node in the list contains an ordered sublist which

forms the lower part of the hierarchy. An order list element, e, is now

represented by a node in the lower list, c(e), and a node in the upper list,

p(e). Nodes that belong to the same sublist will share the same node in

the upper list. In other words

p(e) = p(f), ∀e, f s.t. c(e) = sc(c(f))
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where sc(ec) is the successor of sublist element ec. We also define sp(ep),

lc(ec) and lp(ep) analogously.

The sublists have their order maintained using a simpler algorithm.

Each sublist initially contains 
log n0� elements, where n0 is the total num-

ber of items in the ordered list we are representing. This means that the

parent order list contains n/log n entries.

Each sublist element receives an integer label, such that the labels

of the elements are, initially, k, 2k, . . . , 
log n0� k, where k = 2�logn0�. When

a new element, nc, is inserted into a sublist, after some element ec, we

choose a label in between ec and sc(ec). More formally,

lc(nc) =

⌈
lc(ec) + lc(sc(ec))

2

⌉

Under this arrangement, the sublist can receive at least 
log n0� insertions

before there is any risk of there not being an integer label available that

lies between ec and sc(ec).

To insert an element n, after e in the overall order list, if the sublist

that contains c(e) has sufficient space, all that needs to be done is to

insert a new sublist element nc after c(e), and perform the assignments

c(n)← nc and p(n)← p(e). If sublist contains 2 
log n0� elements, it may not

be possible to make insertions after some of its elements, however. In this

case, we split the sublist into two sublists of equal length, relabeling both

sets of 
log n0� nodes following the initial labeling scheme. The nodes of

the first sublist are left with the same parent, ep, but nodes of the second

sublist is given a new parent, np that is inserted in the upper order list

immediately after ep.

These techniques are used for insertions until the number of nodes

in the overall order list, n, is greater than 2�logn0�, since at that point


log n� > 
log n0�. When this happens (every time n doubles), we must

reorganize the list so that we now have n/
log n� sublists each containing


log n� nodes, rather than having n/
log n0� sublists of 
log n0� nodes.

Since this new scheme only creates n/
log n� entries in the upper order

list, the arena size, M , can be slightly lower. Recall that previously we

imposed the condition M > N2. Now have a slightly smaller M, since it
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need only satisfy the condition:

M > (N/
logN�)2

In practice, this would mean that if we required up to 232 list entries, we

would need an arena size of 254 (instead of 264). Similarly, if we wish all

labels to fit in a machine word, and so wished M to be 232, we would be

able to have a little over 220 items in an order list at one time (instead of

216 items)3.

4.4.3 Conclusions

Following this scheme then, we can implement efficient ordered lists an-

d by simple derivation, a quick and effective scheme for totally ordered

timestamps. Their O(1) performance makes them a very attractive meth-

od, and for this reason we shall adopt them over partially ordered time-

stamps. The rather artificial flattened timeline they provide does itself

raise some issues that we need to deal with — we address those issues in

the next section.

4.5 Correctly Implementing Element Histories

To properly understand what we need from our timestamping scheme we

need to briefly recap some of the things we learned in Chapter 3. We

implement arrays through the use of timestamps and multiple Element

Histories. An interface for element histories is shown below:

create : ε→ (α→ ordered(α), timestamp)

record : (ordered(α), timestamp, α) → (ordered(α), timestamp)

locate : (ordered(α), timestamp) → α

3The exact number of items allowed in this case is 1376234. Our ML implementation
sets M to 229, and allows more than 218 items in the list (440239 to be precise). If this
limit is exceeded, the algorithms will continue to work, but insert is no longer guaranteed
to take O(1) amortized time. For functional arrays, we believe this limit to be entirely
reasonable, since this only places a largish limit on the number of array versions that
may exist concurrently and not the size of the arrays used.
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t0 36

t1 36

t2 36

t4 94

t5 94

t3 36

(a) An element his-
tory with gaps. The
entry for t0 is used to
provide values for t1, t2
and t3 which are not p-
resent in the history.

t0 36

t1 36

t2 ?

t4 94

t5 94

t3 ?

t1.5 14

(b) Naively inserting a
value for t1.5 inside a
gap, upsets the values
of t2 and t3. Note that
t1 is unaffected.

t0 36

t1 36

t2 36

t4 94

t5 94

t3 36

t1.5 14

(c) To ensure correct
behaviour, we need to
also insert an entry
corresponding to t2
(which was previously
just inferred using the
t0 entry, before insert-
ing t1.5.

Figure 4.6: Potential difficulties in using linear timestamps.

In the totally ordered timestamping scheme, all timestamps belong to a

single linear ‘time-line’, which serves all element histories and thus all the

instances of a particular array. Since the same timestamps span all the

element histories of a persistent array data structure, we need to consider

how this affects things. So far we have only ever looked at one element

history of the array at a time when considering updates. When we move

out to look at the bigger picture, it becomes clear that there is a problem

with the linear timestamping method.

When updates take place over more than one element history there

will be ‘gaps’ in the element histories. The gaps occur because an update

adds a new entry with a new timestamp to an element history, but no

entries for that timestamp are added to any of the other element histor-

ies. When reading an element history to retrieve the entry corresponding

to a particular timestamp, if that timestamp is missing, we retrieve the

nearest one, that being the latest timestamp that is earlier than the one



CHAPTER 4. PROVIDING FULL PERSISTENCE 45

we were looking for. No problems occur with this method when all we re-

quire is partial persistence, and this is exactly the method we presented

in the previous chapter.

But these missing timestamps do present a problem when implement-

ing full persistence using linear time. The problem occurs when the ele-

ment history lacks a value for the timestamp we are looking up, and we

return the nearest one (i.e., the one corresponding to the most recent

timestamp earlier than the one we are seeking). In this case, the wrong

value can be returned. This can happen because entries can be inserted

in the element history in such a way that they reside inside a preexisting

gap. Figure 4.6 shows how such an error can occur, and how it can be

prevented.

We cannot prevent new element history entries from being added in

the places they are. But we can take steps to prevent the addition of new

entries from affecting the values returned for timestamps that lie after

the one we’ve added. If we will be adding an entry to an element history

for timestamp t, we need to check whether the entry for the nearest time-

stamp after t, succ(t), exists and if so, whether it is represented in the

element history. If succ(t) does exist and is not represented in the history,

we need to add an entry for succ(t), giving it the value that would pre-

viously have been inferred by retrieving the value for the entry with the

latest timestamp earlier than t. (If succ(t) does not exist, no timestamps lie

beyond the one we’re adding and so we do not need to take any additional

steps.)

Figure 4.7 also describes this same issue, but with the added context

of the complete array data structure. A useful exercise for the reader

might be to examine Figure 4.7(b) and investigate what happens for the

same sequence of updates when using partially ordered time stamps, to

see why the same problem does not occur in that case.
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t0 12
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Array1 : t2Array3 :

(a) This figure shows two of the element histories of a persistent array
data structure after two single threaded updates, both of which have
taken place on the second element of the array. The first update, on Ar-
ray1, created Array2 which has timestamp t1 and the second, on Array2,
created Array3 with timestamp t2.
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t1 12

t2 12
2

27

3
27
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t1

t2

t1

t2

t0 t1Array2 :

40t2

t2Array3 :

t0.5 12 2756 t0.5t0.5 130t0.5

t0 12 56 27 48t0 t0 t0

t0.5Array2’ :

Array1 :

135t1

(b) A naively applied fully persistent update causes problems however.
A second update on Array1, this time on the fourth element, may look
innocuous, but in fact it has had an unwanted effect on the values
of Array2[4] and Array3[4] which should not have been affected. Their
value should be the one associated with t0, 48, but now 130 will be
erroneously returned.
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t2 12
2

27

3
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4
48

t1

t2 t240t2

t0.5 12 2756 t0.5t0.5 130t0.5

t0 12 56 27 48t0 t0 t0

48t1

t0 t1Array2 : t2Array3 :

t0.5Array2’ :

Array1 :

135t1

(c) The problems that occurred in (b) can be resolved by also adding a
history entry for t1 when adding the entry for t0.5.

Figure 4.7: (continued over...)
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t2 t240t2

t0.5 12 2756 t0.5t0.5 130t0.5

t0 12 56 27 48t0 t0 t0

48t1

t0 t1Array2 : t2Array3 :

t0.5Array2’ :

Array1 :

t0.6Array3’ :

t0.6 12 2756 t0.6t0.6 16t0.6

135t1

(d) We do not need to add any additional entries when adding an entry
for t0.6 in element four’s history because there is already an entry for
t1. Also, we don’t have to do any extra work if we then add an entry for
t3.

Figure 4.7: The gap problem shown in the context of the array data struc-
ture.

4.6 Conclusion

In this chapter we have seen how to extend the partially persistent data

structure we developed in Chapter 3. The extensions are, in fact, reas-

onably straightforward. The largest changes have occurred in the way

we generate timestamps, since we have gone from performing a simple

increment, to a more complex scheme. We have presented two time-

stamping schemes, both of which can address the issue. The first is

reasonably straightforward to implement, but with poor worst case per-

formance, while the second is a little more complex, but offers better time

and space complexity, and is therefore more suitable for general use.

In the following chapter we look beyond complexity measures and ex-

amine the actually performance of functional arrays using totally ordered

time.



Chapter 5

Performance Issues

In Chapter 4, we developed fully persistent arrays where the accesses to

the most recently read or written value of an array element takes constant

time, and where access to an array element which has been updated ue

times takes O(log ue) time. In this chapter we show what this means in

practice, by examining the performance of our techniques and comparing

them to the performance of the other popular techniques that can be used

to support functional arrays.

5.1 The Issue of Performance

While computational complexity measures are useful, in practice other

issues come into play. Knowing that an array update or access can be

preformed in constant time is useful, but it’s also useful to know the

approximate size of the constant. For example, one might assume that

an O(n) algorithm is obviously better than an O(n log n) one but in practice

it may not be — if it the first algorithm was thirty times slower for n = 1, it

would only surpass the second algorithm for n over one billion. Thus we

need to measure the actual performance of our method, and compare it to

the performance of other techniques, comparing not only computational

complexity, but actual execution times.

Measuring performance is, however, a thorny subject and a research

field in its own right. Measures of performance are vulnerable to be
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attacked as either being too simplistic, too contrived, or not being rep-

resentative. Often performance is measured using some traditional and

recognized benchmark, but for functional arrays, no such benchmark

exists. This isn’t surprising, since the vast majority of array algorithms

have been developed for imperative languages and ephemeral arrays, but

it does mean that we have to develop our own performance measures.

We have designed our performance tests to highlight the strengths

and weaknesses of each array implementation technique. One of the key

issues we examine is performance for both conventional single-threaded

array access and also for simple and complex non-single-threaded access.

We consider performance for three implementation techniques besides

our technique of Element Histories, namely, Trailers[1, 14, 15], Binary

Trees and Naive Copying (in the latter technique, we just copy the whole

array for every update). The actual tests used and the results obtained

are described below.

5.2 A Simple Test, Reversing an Array

We use array reversal as a performance measure both because it is a

readily understandable concept, and because it has a good deal in com-

mon with a variety of other operations on arrays. It is also interesting

because there is more than one ‘obvious’ algorithm — we consider three

algorithms, each with slightly different properties. The three implement-

ations are shown in Table 5.1.

The first way of implementing reverse, shown in Table 5.1(a) is the

one which probably occurs most readily to users of imperative languages.

It works from the outside in, swapping leftmost and rightmost element-

s, stopping when we reach the middle of the array. This approach would

work equally well in an imperative language, in which we would be updat-

ing the array in-place. As one would expect for an algorithm originating

in the realm of imperative programming, this first reverse algorithm is

single-threaded.

A programmer who has experience with functional languages and less
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reverse array =
let

arraysize = size array
halfway = size / 2
rev (array, index) =

if index < halfway then
let

left = subscript (array, index)
right = subscript (array, arraysize - index - 1)
tmparray = update(current, index, right)
newarray = update(tmparray, size - index - 1, left)

in
rev (newarray, index + 1)

else
array

in
rev (array, 0)

(a) A traditional single-threaded implementation of reverse.

reverse array =
let

arraysize = size array
rev (array, index) =

if index < arraysize then
let

element = subscript (array, arraysize - index - 1)
newarray = update(array, index, element)

in
rev (newarray, index + 1)

else
array

in
rev (array, 0)

(b) A simpler non-single-threaded implementation of reverse.

Table 5.1: (continued over...)
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reverse array =
let

arraysize = size array
reverse-subscript index = subscript (array, arraysize - index - 1)

in
create (size, reverse-subscript)

(c) A quick, monolithic, implementation of reverse.

Table 5.1: Specification of three implementations of array reversal.

imperative language indoctrination, may realize that we can reverse the

array just by working left to right (see Table 5.1(b)). This algorithm relies

on the fact that we can still access the original array, and not worry that

it will have been overwritten. It performs the same number of read and

update accesses and eliminates a little algorithmic complexity. These

differences do mean that unlike the first algorithm, this second one is not

single-threaded, but this should not be considered a problem or failing.

The third and final algorithm is one that comes from looking at the

problem a little more deeply. Array reversal changes every single element

of the array, and so the reversed array has little in common with the

original one. Since array update does not perform update-in-place but,

semantically speaking, copies the array making a single change, the oth-

er techniques generate n − 2 intermediate arrays, each being a partially

reversed array. We can skip these intermediate arrays and the creation

costs associated with them creating a brand new array and filling it with

the contents of the original array, reversed. This ‘monolithic’ approach

provides the fastest and simplest implementation for reverse, and is also

applicable to other algorithms which significantly reorganize an array;

monolithic array use is no panacea however, and may not be suited to

complicated algorithms or algorithms which may only change a few ele-

ments of the array.

Having seen the three different implementations of reverse, we now
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(a) For the very traditional reverse algorithm, both Element Histories
and Trailers turn in O(n) performance, while Binary Trees achieve
O(n log n) performance. Naively copying the array at each update is
O(n2).
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(b) For the simpler reverse algorithm, the Element Histories again
provides O(n) performance, but Trailers is O(n2). Naive copying is
also O(n2), but Trailers is actually three times slower. As before, Bin-
ary Trees are O(n log n).

Figure 5.1: (continued over...)
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(c) For the monolithic approach, where instead of updating the original
array, we create an entirely new one, all methods except Binary Trees
turn in O(n) performance. As in the previous examples, Binary Trees
are O(n log n)

Figure 5.1: Performance for the three implementations of array reversal.

need to examine their performance for each of the functional array meth-

ods. Since each of the implementations is, in its own way, reasonable, we

would hope that they would take a similar amount of time, only differing

by some constant factor. Figure 5.1 shows the actual results of timing

each reverse algorithm for each of four array methods1 (it also shows tim-

ings for mutable (non-functional) arrays).

Timings for the first version of reverse, Figure 5.1(a), show that for

single threaded access, both Trailers and Element histories offer O(n)

performance. The graph also shows that Element Histories are nearly

four times slower than Trailers. This isn’t such a surprise, since Ele-

ment Histories is a more complex technique2. Binary Trees offer O(n log n)

1The timings come from executing an implementation of the algorithms described,
written in Standard ML. Testing was done using Standard ML of New Jersey, running
on a NeXTstation Turbo (Mach 2.5/BSD variant Unix, Motorola MC68040 processor at
33MHz, 48MB of RAM).

2In addition, it is worth noting that our implementation of Element Histories was done
in a modular and layered way. An implementation oriented around execution speed could
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performance3, but despite that, when it comes to actual execution times

the method comes very close to matching the times for Element Histories4,

particularly for small n. Binary Trees do, however, require O(log n) space

for each array update, unlike Trailers and Element Histories, which only

need O(1) space. Moving on to Naive Copying, as one might expect, this

technique turns in O(n2) performance.

Things become interesting when we examine the performance of the

second implementation of reverse, see Figure 5.1(b). For the most part,

the graphs are very similar, with the exception of the line for Trailers.

Trailers has gone from a speedy O(n) to a dreadful O(n2), and in terms

of actual performance times, it is three times slower than Naive Copying,

which is also O(n2). This highlights the fundamental weakness of Trailers

(which we mention in Chapter 2): for single-threaded algorithms, Trailers

is fine, turning in O(1) performance for array subscript and update, but

when the array is used non-single-threadedly, it is a lottery as to what

kind of performance will result. In some cases, it may still manage to give

O(1) amortized time for these accesses, but in many others it will not.

Finally, we can move on to the last implementation of reverse, shown

in Figure 5.1(c). What we are really looking at in this case is how long it

takes to create a new array and traverse an old one. All techniques except

Binary Trees turn in O(n) performance. Binary Trees takes O(n log n).

We have seen here that in for some techniques, especially Trailers,

subtly different algorithms that intuitively seem equivalent can produce

vastly different execution times. Element Histories however, achieves

consistent results, turning in O(n) performance in all three cases. Binary

Trees also give consistent results, always taking O(n log n) time. We’ve

also seen that for small n, Binary Trees may be a viable and somewhat

simpler approach to use.

almost certainly do better.
3In fact, while we have drawn an n log n curve through the points, an n �log n� curve

would be more appropriate for our particular implementation.
4The Binary Tree based array implementation was fairly well optimized. Thus improve-

ments to the implementation of Element Histories would widen the gap and also make
the comparison a slightly fairer one.
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5.3 The Multiple Versions Test

In this test, we make v versions of an array, all subtly different. We do this

by repeatedly choosing an array version at random from those that exist,

choosing an element, at random, and updating it, to make a new array

version. We start with just one array and end when we have generated v

versions.

The primary purpose of this test is to reveal the worst case behaviour

of Element Histories. Recall that with Element Histories, the time taken

to retrieve the most recently read or written value of an array element is

O(1), but otherwise it may be O(log ve), where ve is the number of different

versions stored in that element. In our performance test, ve ≈ v/n. Look-

ing at Figure 5.2(a), we can see that when as v exceeds n, the graph takes

on a log v component — since n is constant we cannot be sure whether it

is log v or, as we asserted earlier log(v/n). Trailers also seems to be follow-

ing some sort of curve, perhaps a gentle O(n2) curve — it’s hard to be sure

exactly what kind of curve to draw given the unpredictable behaviour of

Trailers. Certainly with sufficient analysis we could probably find out,

but this itself makes a point about Trailers, that we need to go to some

trouble to know exactly how it will perform.

In the second graph, Figure 5.2(b), we keep v constant and vary the

size of the array, n. For Trailers, this results in constant time, but for

Element Histories, we see that as we increase array size, we decrease

access time, until we reach the point where n > v. Binary Trees reveal

their O(log n) component here also.

5.4 Conclusion

Although our technique is more complex than the other approaches, and

is therefore slower by a small factor in simple cases, it lacks the terrible

worst case performance of Trailers, and does better than Binary Trees in

almost all cases (see below). In many situations our technique turns in
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(a) Using a test that creates v versions of an array, performing v reads
and v updates to do so, we see Element Histories’ worst case perform-
ance. Instead of taking O(v) time, it takes O(v log(v/n)), where n is
the size of the array. Trailers, on the other hand, manages to turn in
O(v) performance. The algorithm takes O(v) time under Binary Trees
because we are not varying the size of the array, only the number of
versions.
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(b) For Element Histories, the test takes less time as we increase the
size of the array, n, (the number of concurrent array versions, v, is
kept constant). The shape of the graph demonstrates that the log-
arithmic component is indeed O(log(v/n)) and not just O(log v). The
graph also reveals the O(log n) component present in Binary Trees.

Figure 5.2: Worst case performance for Element Histories.
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O(1) time for array subscript and update, and it’s worst case perform-

ance is only O(log ve), where ve is the number of different versions of that

element that exist, making its worst case performance better than the

worst case performance of the other techniques we’ve looked at, for most

applications.

We have also observed that binary trees may sometimes be a viable

approach, especially when the size of the array, n, is small and v/n is

large (v is the number of array versions), since in this case O(log n) <

O(log v/n) (since typically ve ≈ v/n). In this one case, Binary Trees does

better than our approach.

Finally, we have seen that the techniques do best when array versions

are similar; if we are making wholesale changes to an array, we probably

do better to just create a new array than to use repeated updates to create

an array which is a descendent of an original one. However, if we do need

to do the latter, Element Histories will turn in respectable performance.



Chapter 6

Case Study, Implementing

Heaps

In this chapter we take a look at one use to which functional arrays can

be put, that of implementing a functional heap. This is of interest for sev-

eral reasons, one being that there is an equivalence between functional

arrays and functional heaps, and another being that heaps themselves

raise some interesting issues about the axioms of functional program-

ming. Finally, functional heap implementation has a particular signific-

ance to the author, since it was a need for an efficient functional heap

that originally motivated her work in this area.

6.1 Introduction

The heap data structure, a structure which is very useful for support-

ing multi-linked data structures[4] and unification based algorithms, is

an ideal candidate for implementation using functional arrays. A heap

abstract data type supports the following operations:

empty : heap(α)

allocate : (α, heap(α)) → (location(α), heap(α))

read : (location(α), heap(α)) → α

update : (location(α), heap(α), α) → heap(α)
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A heap is like an extensible piece of RAM, we can place an object in the

heap, and then refer to it using a pointer, referencing a heap location. We

can not only read the location; we can also update it. However, the update

operation remains fully functional, as it returns a new heap with the

change made. If a read operation is made on the updated location using

the old heap, the old value is returned, thus referential transparency is

preserved.

Our goal, as with the functional array construct, is to have an heap

data structure whose locations can be updated or read in constant time,

and where the same locations in older versions of the heap retain their

old values, which are still accessible in a reasonable time.

6.2 A Straightforward Heap Implementation

If one assumes a functional array construct already exists, we can im-

mediately see a simple implementation method for this construct (see

Figure 6.1). The heap can be a functional array1, with heap locations just

being indexes into that array. Usually heap locations tend to be very in-

dependent of each other, so we desire a functional array where updates to

one element, or a group of elements, has little or no effect on other array

elements. This is a feature of the functional array mechanism we have

presented, but is lacking in most other functional array approaches (see

Chapter 2).

There is only one potential problem with an array based heap imple-

mentation, and that is one of garbage collection for unreferenced heap

locations. A heap location created by allocate may exist forever after its

creation, even if all references to that location get forgotten. Whether or

not this happens depends on exactly how allocation of heap pointers is

managed and how garbage collection is performed on functional arrays,

the later issue being one we address in our later work[20]. An obvious

solution to this problem would be to add the following operation to our

1We might perhaps add some housekeeping information, to make allocation of new
heap locations faster.
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(a) A heap data structure using an element-history based functional
array. One heap location, Location1, has been allocated in the heap,
and points to the integer value 135.
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(b) The heap data structure after the allocation of another heap loca-
tion. Note that the newly allocated location only exists in Heap3.
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(c) The heap data structure after Location1 has been updated.

Figure 6.1: Implementing heaps using Functional Arrays.
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heap specification:

deallocate : (location(α), heap(α)) → heap(α)

Since the location could be deallocated in one heap, but not in others, this

is not necessarily such a bad approach, since at least the possibility of the

‘resource freed while references to it still exist’ bug is reduced. In some

applications however, explicit deallocation is something the programmer

would rather avoid if possible.

We can avoid having explicit deallocation if we implement heaps at a

system level, and thereby allow the garbage collector to understand the

structure of heaps. In fact, if heaps are primitive to the system, we can

write functional array support in user level code, since an array could be

seen as the combination of a heap and an immutable array (or vector) of

heap locations. However, when we look into the issue of implementing

heaps at a primitive level, and simplifying the data structures involved,

we actually encounter some intriguing issues.

6.3 Problems over Referential Transparency

When we examine heaps, we uncover some curious and slightly counter-

intuitive facts about referential transparency, which is a basic tenet of

functional programming. The issues we raise here are interesting and

probably worthy of further study, but given the issue is only very weakly

related to functional arrays, we shall only touch on it briefly.

Referential transparency makes it easier for us to reason about the

behaviour of functional programs, making it a very useful property, and

one we should be reluctant to break. However, there are cases where it

is actually more of a hindrance than a help because the rules a function

must obey to be referentially transparent may actually prevent it from

operating in the most useful and natural way. The heap abstract data

type is an example of this. There is a very close relationship between

heaps and heap locations; normally one would only expect to use a heap

location with the heap to which it belongs (i.e the heap in which it was
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first created or in a descendant of that heap). Referential Transparency,

however, states that we can use a location with heaps other than the one

it was actually created for. This additional flexibility provides nothing

useful for most normal programs, but instead allows code sequences that

are almost certainly erroneous to be executed without any error being

raised, and prevents some optimizations.

It would be nice if we could both have our cake and eat it; retain ref-

erential transparency and yet somehow be able to express the fact that

there is a connection between a particular heap and its locations, and

thereby still be able to apply some useful optimizations, and catch pro-

gramming errors. The closely coupled relationship we desire would not

so much break referential transparency as approximate it. Heaps them-

selves need not admit equality, making the issue of whether two of them

are equal academic, and locations should only be used with heaps to

which they belong or their descendants. We could say that failure to do

so results in ⊥2 (i.e. it is an untrapable error). Finally, we could require

that locations may be tested for equality, but only if there exists a heap

in which both are valid; testing locations which come from completely

different heaps for equality could, once again, cause ⊥ to be the result.

Ideally, we could statically enforce restrictions only allowing code that

uses locations and heaps sensibly, thus preventing ⊥ from ever being

generated by the heap access functions. If this were the case, the heap

interface could appear referentially transparent while still allowing useful

optimizations and preventing erroneous code sequences. Unfortunately,

how such restrictions could be applied statically is unknown at this time.

At present detection of such erroneous use can be done at runtime (rais-

ing an error if the access is an invalid one — such checking can be done

with only a very minor runtime penalty, and those who feel the ‘the need

for speed’ could disable runtime checking if they were convinced their

2Or ‘may result in ⊥’, it may also return a normal result depending on the optimizations
performed by the compiler. If a result is returned, it could still be a correct answer, in
that it will be the value that a fully referentially transparent implementation would return.
Returning ⊥ can be viewed as electing not to give an answer at all, rather than being an
answer in itself.
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code had no faults, in the same way as they might be able to disable

runtime array bounds checking).

In languages such as Standard ML[19], preserving true referential

transparency is often considered not quite so important, and so the op-

timisation we will present would probably not be considered a problem,

especially since it can catch programming errors. However, purer lan-

guages are probably better off with the simple scheme, unless the re-

quirements can be enforced at compile time (or unless they support lin-

ear/unique types, since they could be used to make all heaps distinct).

6.4 Optimising the Implementation of Heaps

Earlier we informally described how one could implement heaps given

the existence of functional arrays. In fact, if the functional arrays are

implemented using element histories, we can simplify the data structure

used by eliminating some parts of the functional array scheme that prove

unnecessary.

Figure 6.2 shows a typical data structure arrangement for implement-

ing heaps using history stack based functional arrays. We can simplify

this scheme by removing an unnecessary indirection; instead of making

the heap location hold an index into an array of element histories, we

make the location itself be an element history. Eliminating this indir-

ection adds a minor access time speedup, but more importantly, sim-

plifies heap maintenance, since we do not have to allocate an array or

worry about dynamically re-sizing the array, nor do we need to worry as

much about garbage collection - if a heap location ceases to be referenced

anywhere, the element history associated with that heap location will be

removed.

The only downside to this approach is that it is only weakly referen-

tially transparent. Since the data is actually stored inside the location,

rather than the location being a pointer into the heap, the ‘heap’ becomes

solely a timestamp. The problem with this refinement is that while in
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(b) We can simplify the data structure for heaps, by using element
histories directly. This simplification may be problematic, however
(see text).

Figure 6.2: Optimization for heaps.
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many respects it is more logical, code which relied on referentially trans-

parent semantics could fail. As has been pointed out earlier, usually only

very bizarre and probably erroneous code would be affected.

6.5 Conclusion

We’ve shown here how the element history data structure can be used

in other situations besides the management of functional arrays. We’ve

also seen how current type systems and the conditions for referential

transparency make the efficient implementation of heap data structures

awkward. This latter point is probably worthy of further study.



Chapter 7

Conclusion

We have examined the problem of providing functional arrays, looked at

previous approaches to the problem, and then developed our own general

solution, which offers better performance than prior methods.

We began with a scheme that offered partial persistence, and de-

veloped that to provide full persistence, presenting and comparing t-

wo timestamping models that each provide full persistence. Having de-

veloped a technique for implementing truly functional arrays, we’ve ex-

amined its performance when compared to prior methods. We’ve also

examined one use of functional arrays, namely their use to implement

heaps, and have explored some special issues that relate to heaps.

Our technique is both effective in theory and practice, providing con-

stant time performance for single threaded array access, and fast ac-

cess to old array versions — a significant improvement over previous ap-

proaches. As well as allowing favourite imperative array algorithms to be

used with little penalty in a functional context, it also allows the practical

use of arrays as a persistent data structure. It is probably the first kind

of array where the programmer is free to to use arrays in whatever way

they like without risking huge penalties.

Finally, our work here also reveals fertile ground on which to conduct

further research. Two important issues we’ve not covered here are special

garbage collection techniques for our functional arrays, and optimisations

that can impact access times for our structures (including techniques to
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reduce storage and access overheads, and ways to break up a large array

when it holds many dissimilar versions). Also, our array structure is very

amenable to being used in parallel access situations, and has impressive

potential in this regard. These issues, among others, are covered by our

later work[20].



Appendix A

Source Listings

In this section we list all some sample source code for the techniques

covered by this thesis. The source code is written in Standard ML. The

reader should also note that on occasion the functions are named slightly

differently from the names used in the main text — however, the correla-

tion between function names used in the source code and names used in

the text should be clear enough.

A.1 Functional Arrays using totally ordered time-

stamps

A.1.1 Structure Signatures

array.sig

signature ARRAY =
sig

type ’a array
exception Size
exception Subscript
val tabulate : int * (int -> ’1a) -> ’1a array
val sub : ’1a array * int -> ’1a
val size : ’1a array -> int
val update : ’1a array * int * ’1a -> ’1a array
val method : string

end

history.sig
signature HISTORY =
sig
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type ’a history
type timestamp
exception Unbound
val create : unit -> (’a -> ’a history) * timestamp
val locate : ’a history * timestamp -> ’a history * ’a
val record : (’a history * timestamp) * ’a -> ’a history * timestamp
val history_string : (’a -> string) -> ’a history -> string
val time_string : timestamp -> string

end

rewriting-splaytree.sig
signature REWRITING_SPLAYTREE =
sig

datatype ’a splay =
SplayObj of {
value : ’a,
right : ’a splay,
left : ’a splay

}
| SplayNil
datatype ’a position =

Before | After | Identical | Delete | Rewrite of ’a splay -> ’a splay
val splay : (’a -> ’a position) * ’a splay -> LibBase.relation * ’a splay
val join : ’a splay * ’a splay -> ’a splay

end

rewriting-splayaccess.sig
signature REWRITING_SPLAYACCESS =
sig

eqtype ’a splay
datatype ’a position =

Before | After | Identical | Delete | Rewrite of ’a splay -> ’a splay
exception NotFound
val empty : ’a splay
val insert : ’a splay * (’a -> ’a position) * ’a -> ’a splay
val find : ’a splay * (’a -> ’a position) -> ’a splay * ’a option
val remove : ’a splay * (’a -> ’a position) -> ’a splay * ’a option

val findafter : ’a splay * (’a -> ’a position) -> ’a splay * ’a option
val afteronly : (’a -> ’a position) -> (’a -> ’a position)
val findbefore : ’a splay * (’a -> ’a position) -> ’a splay * ’a option
val beforeonly : (’a -> ’a position) -> (’a -> ’a position)

val root : ’a splay -> ’a option

val listItems : ’a splay -> ’a list
val app : (’a -> ’b) -> ’a splay -> unit
val revapp : (’a -> ’b) -> ’a splay -> unit
val fold : (’a * ’b -> ’b) -> ’a splay * ’b -> ’b
val revfold : (’a * ’b -> ’b) -> ’a splay * ’b -> ’b

val string : (’a -> string) -> ’a splay -> string
end
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timestamps.sig
signature TIMESTAMPS =
sig

eqtype timestamp

val create : unit -> timestamp
val insertAfter : timestamp -> timestamp
val insertBefore : timestamp -> timestamp

val delete : timestamp -> unit

val equal : timestamp * timestamp -> bool
val compare : timestamp * timestamp -> LibBase.relation

(* Functions to tranverse and examine the data structure *)

val pred : timestamp -> timestamp option
val succ : timestamp -> timestamp option
val string : timestamp -> string
val label : timestamp -> string

end

order-list.sig
signature ORDERLIST =

sig
eqtype ’a olist

val create : ’1a -> ’1a olist
val insertAfter : ’1a olist * ’1a -> ’1a olist
val insertBefore : ’1a olist * ’1a -> ’1a olist
val insertManyAfter : ’1a olist * ’1a list -> ’1a olist list
val insertManyBefore : ’1a olist * ’1a list -> ’1a olist list

val delete : ’a olist -> ’a

val contents : ’a olist -> ’a
val setContents : ’a olist * ’a -> unit
val applyContents : ’a olist * (’a -> (’a * ’b)) -> ’b

(* Comparison functions *)

val equal : ’a olist * ’a olist -> bool
val compare : ’a olist * ’a olist -> LibBase.relation

(* Functions to tranverse and examine the data structure *)

val pred : ’a olist -> ’a olist option
val succ : ’a olist -> ’a olist option
val string : (’a -> string) -> ’a olist -> string
val label : ’a olist -> string

end

circular-list.sig
signature CIRCULARLIST =

sig
eqtype ’a clist
val create : ’1a -> ’1a clist
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val insert : ’1a clist * ’1a -> ’1a clist
val delete : ’a clist -> ’a
val equal : ’a clist * ’a clist -> bool
val splice : ’a clist * ’a clist -> unit
val chop : ’a clist * ’a clist -> unit
val move : ’a clist * ’a clist * ’a clist -> unit

val contents : ’a clist -> ’a
val setContents : ’a clist * ’a -> unit
val applyContents : ’a clist * (’a -> (’a * ’b)) -> ’b

val succ : ’a clist -> ’a clist
val pred : ’a clist -> ’a clist

val string : (’a -> string) -> ’a clist -> string
val revstring : (’a -> string) -> ’a clist -> string

end

double-list.sig
signature DOUBLELIST =

sig
eqtype ’a dlist
val create : ’1a -> ’1a dlist
val insertAfter : ’1a dlist * ’1a -> ’1a dlist
val insertBefore : ’1a dlist * ’1a -> ’1a dlist
val delete : ’a dlist -> ’a

val chop : ’a dlist * ’a dlist -> unit
val moveAfter : ’a dlist * ’a dlist * ’a dlist -> unit
val moveBefore : ’a dlist * ’a dlist * ’a dlist -> unit

val contents : ’a dlist -> ’a
val setContents : ’a dlist * ’a -> unit
val applyContents : ’a dlist * (’a -> (’a * ’b)) -> ’b

val equal : ’a dlist * ’a dlist -> bool

val pred : ’a dlist -> ’a dlist option
val succ : ’a dlist -> ’a dlist option
val string : (’a -> string) -> ’a dlist -> string

end

A.1.2 Structure Implementations

double-list.sml
abstraction DoubleList : DOUBLELIST =

struct
datatype ’a dlist =

Cell of { pred:’a dlist option ref,
succ:’a dlist option ref,
contents:’a ref}

val pred = fn Cell {pred=ref pred,...} => pred
val succ = fn Cell {succ=ref succ,...} => succ
val contents = fn Cell {contents=ref contents,...} => contents
val setContents =

fn (Cell {contents,...}, newContents) => contents := newContents
val applyContents =
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fn (Cell {contents=contents as ref value,...}, applyFn) =>
let

val (newContents, result) = applyFn value
in

(contents := newContents; result)
end

fun create contents : ’1a dlist =
Cell {succ=ref NONE,pred=ref NONE,contents=ref contents}

val insertAfter =
fn (left as Cell {succ=leftsucc as ref leftsucc_val, ...},

contents) =>
case leftsucc_val of

SOME (right as Cell {pred=rightpred, ...}) =>
let

val newCell =
Cell {pred=ref (SOME left),

succ=ref (SOME right),
contents=ref contents}

in
leftsucc := SOME newCell ;
rightpred := SOME newCell ;
newCell

end
| NONE =>

let
val newCell =

Cell {pred=ref (SOME left),
succ=ref NONE,
contents=ref contents}

in
leftsucc := SOME newCell ;
newCell

end

val insertBefore =
fn (right as Cell {pred=rightpred as ref rightpred_val, ...},

contents) =>
case rightpred_val of

SOME (left as Cell {succ=leftsucc, ...}) =>
let

val newCell =
Cell {pred=ref (SOME left),

succ=ref (SOME right),
contents=ref contents}

in
leftsucc := SOME newCell ;
rightpred := SOME newCell ;
newCell

end
| NONE =>

let
val newCell =

Cell {pred=ref NONE,
succ=ref (SOME right),
contents=ref contents}

in
rightpred := SOME newCell ;
newCell

end
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val delete =
fn it as Cell {pred=itspred as ref left_opt,

succ=itssucc as ref right_opt,
contents=ref contents} =>

( case left_opt of
SOME (Cell {succ=leftsucc, ...}) =>
leftsucc := right_opt

| NONE => () ;
case right_opt of

SOME (Cell {pred=rightpred, ...}) =>
rightpred := left_opt

| NONE => () ;
itssucc := NONE;
itspred := NONE;
contents )

val chop =
fn (rangeleft as Cell {pred=rangepred as ref left_opt, ...},

rangeright as Cell {succ=rangesucc as ref right_opt,...}) =>
( case left_opt of

SOME (Cell {succ=leftsucc, ...}) =>
leftsucc := right_opt

| NONE => () ;
case right_opt of

SOME (Cell {pred=rightpred, ...}) =>
rightpred := left_opt

| NONE => () ;
rangepred := NONE;
rangesucc := NONE )

val moveAfter =
fn (rangeleft as Cell {pred=rangepred as ref left_opt, ...},

rangeright as Cell {succ=rangesucc as ref right_opt,...},
left as Cell {succ=leftsucc as ref leftsucc_val, ...}) =>

( case left_opt of
SOME (Cell {succ=leftsucc, ...}) =>
leftsucc := right_opt

| NONE => () ;
case right_opt of

SOME (Cell {pred=rightpred, ...}) =>
rightpred := left_opt

| NONE => () ;
case leftsucc_val of

SOME (right as Cell {pred=rightpred, ...}) =>
( rangepred := SOME left ;

rangesucc := SOME right ;
leftsucc := SOME rangeleft ;
rightpred := SOME rangeright )

| NONE =>
( rangepred := SOME left ;

rangesucc := NONE ;
leftsucc := SOME rangeleft ) )

val moveBefore =
fn (rangeleft as Cell {pred=rangepred as ref left_opt, ...},

rangeright as Cell {succ=rangesucc as ref right_opt,...},
right as Cell {pred=rightpred as ref rightpred_val, ...}) =>

( case left_opt of
SOME (Cell {succ=leftsucc, ...}) =>



APPENDIX A. SOURCE LISTINGS 74

leftsucc := right_opt
| NONE => () ;

case right_opt of
SOME (Cell {pred=rightpred, ...}) =>
rightpred := left_opt

| NONE => () ;
case rightpred_val of

SOME (left as Cell {succ=leftsucc, ...}) =>
( rangepred := SOME left ;

rangesucc := SOME right ;
leftsucc := SOME rangeleft ;
rightpred := SOME rangeright )

| NONE =>
( rangepred := NONE ;

rangesucc := SOME right ;
rightpred := SOME rangeright ) )

val equal = fn (Cell {pred=left1,...},Cell {pred=left2,...})
=> (left1 = left2)

fun string doContents startCell =
let

fun doPrev NONE = "$["
| doPrev (SOME cell) =

( doPrev (pred cell) ^
doContents (contents cell) ^ ",")

fun doRest NONE = "]$"
| doRest (SOME cell) =

( "," ^ doContents (contents cell) ^ doRest (succ cell) )
in

doPrev (pred startCell)
^ "*" ^ doContents (contents startCell) ^ "*"
^ doRest (succ startCell)

end
end

circular-list.sml
abstraction CircularList : CIRCULARLIST =

struct
datatype ’a clist =

Cell of {pred:’a clist ref, succ:’a clist ref, contents:’a ref}

fun create contents : ’1a clist =
let

val left = ref (System.Unsafe.cast 0 : ’1a clist)
val right = ref (System.Unsafe.cast 0 : ’1a clist)
val base = Cell {succ=right,pred=left,contents=ref contents}

in
left := base;
right := base;
base

end

val pred = fn Cell {pred=ref pred,...} => pred
val succ = fn Cell {succ=ref succ,...} => succ
val contents = fn Cell {contents=ref contents,...} => contents
val setContents =

fn (Cell {contents,...}, newContents) => contents := newContents
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val applyContents =
fn (Cell {contents=contents as ref value,...}, applyFn) =>

let
val (newContents, result) = applyFn value

in
(contents := newContents; result)

end

val insert =
fn (left as

Cell {succ=leftsucc as
ref (right as

Cell {pred=rightpred, ...}), ...},
contents) =>
let

val newCell =
Cell{pred=ref left,

succ=ref right,
contents=ref contents}

in
leftsucc := newCell ;
rightpred := newCell ;
newCell

end

val delete =
fn it as Cell {pred=itspred as

ref (left as Cell {succ=leftsucc, ...}),
succ=itssucc as

ref (right as Cell {pred=rightpred, ...}),
contents=ref contents} =>

( leftsucc := right;
rightpred := left;
itssucc := it;
itspred := it;
contents )

val equal = fn (Cell {contents=x,...},Cell {contents=y,...})
=> (x = y)

val splice =
fn (first as Cell {pred=firstPredptr as

ref (prefirst as Cell {succ=prefirstSuccptr,...}), ...},
second as Cell {pred=secondPredptr as

ref (presecond as Cell {succ=presecondSuccptr,...}), ...}) =>
( prefirstSuccptr := second ;
presecondSuccptr := first ;
firstPredptr := presecond ;
secondPredptr := prefirst )

val chop = fn (left, right) => splice (left, succ right)

val move = fn (left, right, after) =>
( splice (left, succ right) ; splice (succ after, left) )

fun string doContents startCell =
let

fun doRest cell =
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if equal(cell,startCell) then
"]%"

else
( "," ^ doContents (contents cell) ^ doRest (succ cell) )

in
"%[" ^ doContents (contents startCell) ^

doRest (succ startCell)
end

fun revstring doContents startCell =
let

fun doRest cell =
if equal(cell,startCell) then

"]%"
else
( "," ^ doContents (contents cell) ^

doRest (pred cell) )
in

"%[" ^ doContents (contents startCell) ^
doRest (pred startCell)

end

end

order-list.sml
structure OrderList : ORDERLIST =
(* structure OrderList = *)
let

open LibBase
in
struct

structure CList = CircularList

type ’a olist = {contents:’a, label:int, first:int ref} CList.clist
exception EmptyList

val firstref = #first o CList.contents : ’a olist -> int ref
val label = #label o CList.contents : ’a olist -> int
val contents = #contents o CList.contents : ’a olist -> ’a
val isfirst = fn (entry : ’a olist) =>

let val {first=ref firstlabel, label, ...} = CList.contents entry
in firstlabel = label end

val equal = CList.equal : ’a olist * ’a olist -> bool
val delete = fn (entry : ’a olist) =>

let
val {first=firstref as ref firstlabel, label=itslabel, contents} =

CList.contents entry
in

if firstlabel = itslabel then
let val successor = CList.succ entry in

if equal (entry,successor) then
raise EmptyList

else
firstref := label successor

end
else

() ;
CList.delete entry ;
contents
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end

val succ = fn entry =>
let val successor = CList.succ entry in

if isfirst successor then NONE else SOME successor
end

val pred = fn entry =>
if isfirst entry then NONE else SOME (CList.pred entry)

val setLabel = fn (entry, newLabel) =>
CList.applyContents

(entry,
fn {contents, label, first=first as ref firstlabel} =>

({contents=contents, label=newLabel, first=first},
if label = firstlabel then first := newLabel else ()) )

val setContents = fn (entry, newContents) =>
CList.applyContents

(entry,
fn {contents, label, first} =>

({contents=newContents, label=label, first=first}, ()) )

val applyContents = fn (entry,applyFn) =>
let

val revisedApplyFn =
fn {contents, label, first} =>

let val (newContents, value) = applyFn contents in
({contents=newContents, label=label, first=first}, value)

end
in

CList.applyContents (entry,revisedApplyFn)
end

val arena = 536870912

fun investigateGap (startEntry, n) =
let

val v0 = label startEntry
fun walker (j, theEntry) =

let
val theGap = (label theEntry - v0) mod arena

in
case theGap of

0 => (j+1,arena) (* used to be (j,arena-1) *)
| _ =>

if theGap <= j * j then
walker(j+1, CList.succ theEntry)

else
(j+1,theGap)

end
in

walker(n, CList.succ startEntry)
end

fun newLabels (startEntry, n) =
let

val firstLabel = label startEntry
val (lastEntry,nodeGap) = investigateGap (startEntry, n)
fun makeLabel nodeNo =
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( nodeGap div lastEntry * nodeNo
+ (nodeGap mod lastEntry) * nodeNo div lastEntry
+ firstLabel ) mod arena

fun fixEntry (nodeNo,thisEntry) =
if nodeNo < lastEntry then
( setLabel (thisEntry, makeLabel nodeNo) ;

fixEntry (nodeNo + 1, CList.succ thisEntry) )
else ()

in
fixEntry(n+1, CList.succ startEntry) ;
makeLabel

end

(* fun newLabel thisEntry = (** OBSOLETE **)
let

val thisLabel = label thisEntry
and nextLabel = label (CList.succ thisEntry)

in
if thisLabel < nextLabel then

(thisLabel + nextLabel) div 2
else

((thisLabel + nextLabel) div 2 + arena div 2) mod arena
end *)

fun create contents =
CList.create {contents=contents, label=0, first=ref 0}

fun insertAfter (thisEntry,contents) =
CList.insert
( thisEntry,

{ contents = contents,
label = newLabels (thisEntry,1) 1,
first = firstref thisEntry } )

fun insertManyAfter (thisEntry,contentsList) =
let

val firstRef = firstref thisEntry
val makeLabel = newLabels (thisEntry, length contentsList)
fun doInsert (nil, _, _) = nil

| doInsert (value :: rest, nodeNo, afterNode) =
let val insertedNode =

CList.insert
( afterNode,
{ contents = value,

label = makeLabel nodeNo,
first = firstRef } )

in
insertedNode :: doInsert(rest, nodeNo + 1, insertedNode)

end
in

doInsert (contentsList, 1, thisEntry)
end

fun insertBefore (thisEntry,newContents) =
let val predEntry = CList.pred thisEntry

val newEntry = insertAfter (predEntry,newContents)
in if isfirst thisEntry then

let val {label, first=firstref, ...} = CList.contents newEntry
in firstref := label end

else () ;
newEntry
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end

fun insertManyBefore (thisEntry,newContentsList) =
let val predEntry = CList.pred thisEntry

val newEntries = insertManyAfter (predEntry,rev newContentsList)
in

if isfirst thisEntry then
case newEntries of

nil => ()
| leftEntry :: _ =>
let val {label, first=firstref, ...} = CList.contents leftEntry
in firstref := label end

else () ;
rev newEntries

end

fun compare (leftEntry,rightEntry) =
if equal (leftEntry,rightEntry) then

Equal
else

let
val startLabel = !(firstref leftEntry)
and leftLabel = label leftEntry
and rightLabel = label rightEntry

in
if ((leftLabel - startLabel) mod arena)

< ((rightLabel - startLabel) mod arena) then
Less

else
Greater

end

fun string doContents =
let

fun doEntry ({contents,label,first=ref firstlabel}) =
( "(" ^ (if firstlabel = label then "*" else "") ^
makestring (label:int) ^ "," ^ doContents contents ^ ")" )

in
CList.string doEntry

end

val label = fn entry : ’a olist =>
let val {label,first=ref firstlabel, ...} = CList.contents entry
in (if firstlabel = label then "*" else "") ^ makestring label end

end
end

order-list-2.sml
structure OrderList2 : ORDERLIST =
let

open LibBase
in
struct

structure DList = DoubleList
structure OList = OrderList
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type majorlist = unit OList.olist
type minorlist = {label : int, major : majorlist} DList.dlist

type ’a olist = {contents:’a, minor : minorlist} DList.dlist

val contents = #contents o DList.contents : ’a olist -> ’a
val setContents : ’a olist * ’a -> unit = fn (entry, newContents) =>

DList.applyContents
(entry,

fn {contents, minor} => ({contents=newContents, minor=minor}, ()) )
val applyContents : ’a olist * (’a -> (’a * ’b)) -> ’b = fn (entry,applyFn)

=>
let

val revisedApplyFn =
fn {contents, minor} =>

let val (newContents, value) = applyFn contents in
({contents=newContents, minor=minor}, value)

end
in

DList.applyContents (entry,revisedApplyFn)
end

val minor = #minor o DList.contents : ’a olist -> minorlist
val setMinor : ’a olist * minorlist -> unit = fn (entry, newMinor) =>

DList.applyContents
(entry,

fn {contents, minor} => ({contents=contents, minor=newMinor}, ()) )

val major : ’a olist -> majorlist =
#major o DList.contents o #minor o DList.contents

val setMajor = fn (entry, newMajor) =>
DList.applyContents

(minor entry,
fn {label, major} => ({label=label, major=newMajor}, ()) )

val majorAndLabel = fn (entry : ’a olist) =>
let val contents = DList.contents (#minor (DList.contents entry))
in (#major contents, #label contents) end

val equal = DList.equal : ’a olist * ’a olist -> bool
val succ = DList.succ : ’a olist -> ’a olist option
val pred = DList.pred : ’a olist -> ’a olist option

fun create contents : ’1a olist =
let

val major = OList.create ()
val minor = DList.create {label=0, major=major}

in
DList.create {contents=contents, minor=minor}

end

exception NotImplemented

(* fun newLabel thisEntry = (** OBSOLETE **)
let

val thisLabel = label thisEntry
and nextLabel = label (CList.succ thisEntry)

in
if thisLabel < nextLabel then

(thisLabel + nextLabel) div 2
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else
((thisLabel + nextLabel) div 2 + arena div 2) mod arena

end *)

val standardGap = 262144
val standardSize = 18

fun take (_,nil) = (nil,nil)
| take (0,x) = (nil,x)
| take (n,h :: t) = let val (taken, rest) = take (n-1,t)

in (h :: taken, rest) end

fun group list =
case take (standardSize,list) of

(nil,nil) => nil
| (taken, nil) => [taken]
| (taken, rest) => taken :: group rest

fun deleteToStart startEntry =
let

fun deleter (n,thisEntry) =
case DList.pred thisEntry of
SOME predEntry => deleter (n+1,predEntry)

| NONE => (DList.chop (thisEntry, startEntry) ; n)
in

deleter (1,startEntry)
end

fun deleteToEnd startEntry =
let

fun deleter (n,thisEntry) =
case DList.succ thisEntry of
SOME succEntry => deleter (n+1,succEntry)

| NONE => (DList.chop (startEntry, thisEntry) ; n)
in

deleter (1,startEntry)
end

fun tabulateList (n,f) =
let

fun tabulate (0,acc) = acc
| tabulate (n,acc) = tabulate (n-1,f (n-1) :: acc)

in
tabulate (n,nil)

end

fun regroupAfter (startEntry : ’1a olist) =
let

val minorEntry = minor startEntry
val majorEntry = #major (DList.contents minorEntry)
val minorCount = deleteToEnd minorEntry
val majorCount = (minorCount + standardSize - 1) div standardSize
val majorEntries = majorEntry ::

OList.insertManyAfter
(majorEntry, tabulateList (majorCount, fn n => ()))

fun engroup (0,_,_,_,_) = ()
| engroup (toDo, 0, _, SOME thisEntry,

_ :: (majorEntries as newMajor :: _)) =
let
val newMinor = DList.create {label=0, major=newMajor}
val succEntry = DList.succ thisEntry
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in
setMinor (thisEntry, newMinor);
engroup (toDo-1, 1, newMinor, succEntry, majorEntries)

end
| engroup (toDo, inGroup, prevMinor, SOME thisEntry,

majorEntries as thisMajor :: _) =
let
val newMinor =

DList.insertAfter (prevMinor,
{label=standardGap * inGroup,
major=thisMajor})

val succEntry = DList.succ thisEntry
in
setMinor (thisEntry, newMinor);
engroup (toDo-1, (inGroup+1) mod standardSize, newMinor, succEnt

ry, majorEntries)
end

in
engroup (minorCount, 0, minorEntry, SOME startEntry, majorEntries)

end

fun insertAfter (thisEntry : ’1a olist,newContents) =
let

val thisMinor = #minor (DList.contents thisEntry)
val {label=thisMinorLabel,major=thisMajor} = DList.contents thisMinor

in let
val newMinorLabel =

case DList.succ thisMinor of
SOME succMinor =>

let
val {label=succMinorLabel,...} = DList.contents succMinor
val newMinorLabel =

thisMinorLabel
+ (succMinorLabel - thisMinorLabel) div 2

in
if newMinorLabel > thisMinorLabel then

newMinorLabel
else

let
val SOME succEntry = DList.succ thisEntry

in
regroupAfter succEntry;
thisMinorLabel + standardGap

end
end

| NONE => thisMinorLabel + standardGap
in

DList.insertAfter
(thisEntry,
{contents=newContents,
minor=
DList.insertAfter

(thisMinor, {label=newMinorLabel, major=thisMajor})})
end
handle Overflow =>

DList.insertAfter
(thisEntry,
{contents=newContents,
minor=
DList.create{label=0, major=OList.insertAfter (thisMajor,())}})

end
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fun create contents : ’1a olist =
let

val major = OList.create ()
val minor = DList.create {label=0, major=major}

in
DList.create {contents=contents, minor=minor}

end

fun regroupBefore (startEntry : ’1a olist) =
let

val minorEntry = minor startEntry
val majorEntry = #major (DList.contents minorEntry)
val minorCount = deleteToStart minorEntry
val majorCount = (minorCount + standardSize - 1) div standardSize
val majorEntries = majorEntry ::

OList.insertManyBefore
(majorEntry, tabulateList (majorCount, fn n => ()))

fun engroup (0,_,_,_,_) = ()
| engroup (toDo, 0, _, SOME thisEntry,

_ :: (majorEntries as newMajor :: _)) =
let
val newMinor =

DList.create {label=0, major=newMajor}
val predEntry = DList.pred thisEntry

in
setMinor (thisEntry, newMinor);
engroup (toDo-1, 1, newMinor, predEntry, majorEntries)

end
| engroup (toDo, inGroup, prevMinor, SOME thisEntry,

majorEntries as thisMajor :: _) =
let
val newMinor =

DList.insertBefore (prevMinor,
{label=standardGap * ~inGroup,
major=thisMajor})

val predEntry = DList.pred thisEntry
in
setMinor (thisEntry, newMinor);
engroup (toDo-1, (inGroup+1) mod standardSize, newMinor, predEnt

ry, majorEntries)
end

in
engroup (minorCount, 0, minorEntry, SOME startEntry, majorEntries)

end

fun insertBefore (thisEntry : ’1a olist,newContents) =
let

val thisMinor = #minor (DList.contents thisEntry)
val {label=thisMinorLabel,major=thisMajor} = DList.contents thisMinor
val newMinorLabel =

case DList.pred thisMinor of
SOME predMinor =>

let
val {label=predMinorLabel,...} = DList.contents predMinor
val newMinorLabel =

predMinorLabel
+ (thisMinorLabel - predMinorLabel) div 2

in
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if newMinorLabel > predMinorLabel then
newMinorLabel

else
let

val SOME predEntry = DList.pred thisEntry
in

regroupBefore predEntry;
thisMinorLabel - standardGap

end
end

| NONE => thisMinorLabel - standardGap
in

DList.insertBefore
(thisEntry,
{contents=newContents,
minor=
DList.insertBefore

(thisMinor, {label=newMinorLabel, major=thisMajor})})
end

fun insertManyAfter (entry, nil) = nil
| insertManyAfter (entry, h :: t) =
let val newEntry = insertAfter (entry, h)
in newEntry :: insertManyAfter (newEntry, t) end

fun insertManyBefore (entry, nil) = nil
| insertManyBefore (entry, h :: t) =
let val newEntry = insertBefore (entry, h)
in newEntry :: insertManyBefore (newEntry, t) end

fun delete entry =
let

val minorEntry = minor entry
in

case (DList.pred minorEntry, DList.succ minorEntry) of
(NONE,NONE) =>

OList.delete (#major (DList.contents minorEntry))
| _ =>

(DList.delete minorEntry ; ()) ;
#contents (DList.delete entry)

end

fun compare (leftEntry,rightEntry) =
let

val (leftMajor,leftLabel) = majorAndLabel leftEntry
val (rightMajor,rightLabel) = majorAndLabel rightEntry

in
case OList.compare (leftMajor, rightMajor) of

Equal =>
if equal (leftEntry,rightEntry) then

Equal
else (if leftLabel < rightLabel then Less else Greater)

| notequal => notequal
end

fun label entry =
let val (major, label) = majorAndLabel entry
in "<" ^ OList.label major ^ "," ^ makestring label ^ ">" end

fun string doContents =
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let
fun doEntry {contents,minor} =

let
val {label,major} = DList.contents minor

in
"(<" ^ OList.label major ^ "," ^ makestring (label:int)
^ ">," ^ doContents contents ^ ")"

end
in

DList.string doEntry
end

end
end

timestamps.sml
structure TimeStamps =
struct

structure OList = OrderList2

type timestamp = unit OList.olist

val create : unit -> timestamp = OList.create
val insertAfter : timestamp -> timestamp =

fn x => OList.insertAfter (x,())
val insertBefore : timestamp -> timestamp =

fn x => OList.insertBefore (x,())

val delete : timestamp -> unit = OList.delete

val equal : timestamp * timestamp -> bool = OList.equal
val compare : timestamp * timestamp -> LibBase.relation = OList.compare

(* Functions to tranverse and examine the data structure *)

val pred : timestamp -> timestamp option = OList.pred
val succ : timestamp -> timestamp option = OList.succ
val string : timestamp -> string = OList.string (fn () => "")
val label : timestamp -> string = OList.label

end

rewriting-splaytree.sml
(* splaytree.sml
*
* COPYRIGHT (c) 1993 by AT&T Bell Laboratories. See COPYRIGHT file for details
.
*
* Splay tree structure.
*
*)

structure RewritingSplayTree : REWRITING_SPLAYTREE =
struct

local open LibBase in
datatype ’a splay =
SplayObj of {

value : ’a,
right : ’a splay,
left : ’a splay
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}
| SplayNil

datatype ’a position =
Before | After | Identical | Delete | Rewrite of ’a splay -> ’a splay

datatype ’a ans_t =
No | Eq of ’a | Lt of ’a | Gt of ’a | Rw of (’a splay -> ’a splay) * ’a

fun lrotate SplayNil = SplayNil
| lrotate (arg as SplayObj{value,left,right=SplayNil}) = arg
| lrotate (SplayObj{value,left,right=SplayObj{value=v,left=l,right=r}})

=
lrotate (SplayObj{value=v,left=SplayObj{value=value,left=left,right=

l},right=r})

fun join (SplayNil,SplayNil) = SplayNil
| join (SplayNil,t) = t
| join (t,SplayNil) = t
| join (l,r) =

case lrotate l of
SplayNil => r (* impossible as l is not SplayNil *)

| SplayObj{value,left,right} => SplayObj{value=value,left=left,right
=r}

fun splay (compf, root) = let
fun adj SplayNil = (No,SplayNil,SplayNil)

| adj (arg as SplayObj{value,left,right}) =
(case compf value of

Delete => adj (join (left,right))
| Identical => (Eq value, left, right)
| Rewrite rewrite => (Rw (rewrite,value), left, right)
| After =>

let val rec adjleft = fn
SplayNil => (Gt value,SplayNil,right)

| SplayObj{value=value’,left=left’,right=right’} =>
(case compf value’ of

Delete => adjleft (join (left’,right’))
| Identical => (Eq value’,left’,

SplayObj{value=value,left=right’,right=rig
ht})

| Rewrite rewrite => (Rw (rewrite,value’), left’,
SplayObj{value=value,left=right’,right=rig

ht})
| After =>

(case left’ of
SplayNil => (Gt value’,left’,SplayObj{value=value,

left=right’,right=right})
| _ =>

let val (V,L,R) = adj left’
val rchild = SplayObj{value=value,left=right’,

right=right}
in

(V,L,SplayObj{value=value’,left=R,right=rchild})
end

) (* end case *)
| Before =>

(case right’ of
SplayNil => (Lt value’,left’,SplayObj{value=value,

left=right’,right=right})
| _ =>
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let val (V,L,R) = adj right’
val rchild = SplayObj{value=value,left=R,rig

ht=right}
val lchild = SplayObj{value=value’,left=left

’,right=L}
in

(V,lchild,rchild)
end

) (* end case *)
) (* end case *)

in
adjleft left

end
| Before =>

let val rec adjright = fn
SplayNil => (Lt value,left,SplayNil)

| SplayObj{value=value’,left=left’,right=right’} =>
(case compf value’ of

Delete => adjright (join (left’,right’))
| Identical =>

(Eq value’,SplayObj{value=value,left=left,right=left
’},right’)

| Rewrite rewrite =>
(Rw (rewrite,value’),SplayObj{value=value,left=left,

right=left’},right’)
| Before =>

(case right’ of
SplayNil => (Lt value’,SplayObj{value=value,left=l

eft,right=left’},right’)
| _ =>

let val (V,L,R) = adj right’
val lchild = SplayObj{value=value,left=left,ri

ght=left’}
in

(V,SplayObj{value=value’,left=lchild,right=L},R)
end

) (* end case *)
| After =>

(case left’ of
SplayNil => (Gt value’,SplayObj{value=value,left=l

eft,right=left’},right’)
| _ =>

let val (V,L,R) = adj left’
val rchild = SplayObj{value=value’,left=R,righ

t=right’}
val lchild = SplayObj{value=value,left=left,ri

ght=L}
in

(V,lchild,rchild)
end

) (* end case *)
) (* end case *)

in
adjright right

end
) (* end case *)

fun rewrite root =
case adj root of

(No,_,_) => (Greater,SplayNil)
| (Eq v,l,r) => (Equal,SplayObj{value=v,left=l,right=r})
| (Lt v,l,r) => (Less,SplayObj{value=v,left=l,right=r})
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| (Gt v,l,r) => (Greater,SplayObj{value=v,left=l,right=r})
| (Rw (f,v),l,r) => rewrite (f (SplayObj{value=v,left=l,right=r}

))
in

rewrite root
end

end
end (* SplayTree *)

rewriting-splayaccess.sml
(* splaydict.sml
*
* Based on splay-dict.sml from the SML/NJ Library.
*
* COPYRIGHT (c) 1993 by AT&T Bell Laboratories.
* See COPYRIGHT file for details.
*
* Functor implementing a lookup table using splay trees.
*
*)

structure RewritingSplayAccess : REWRITING_SPLAYACCESS =
struct

structure RSTree = RewritingSplayTree
open RSTree LibBase

exception NotFound

val empty = SplayNil

(* Insert an item.
*)
fun insert (root,cmp,v) =

case splay (cmp, root) of
(_,SplayNil) =>

SplayObj {value=v, left=SplayNil, right=SplayNil}
| (Equal, SplayObj {value,left,right}) =>

SplayObj {value=v,left=left,right=right}
| (Less, SplayObj {value,left,right}) =>

SplayObj {value=v,
left=SplayObj {value=value,

left=left,
right=SplayNil},

right=right}
| (Greater,SplayObj{value,left,right}) =>

SplayObj {value=v,
left=left,
right=SplayObj {value=value,

left=SplayNil,
right=right}}

(* Find an item, raising NotFound if not found
*)

fun find (root, cmp) =
case splay (cmp, root) of

(_,r as SplayNil) => (r, NONE)
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| (Equal, r as SplayObj{value,...}) => (r, SOME value)
| (_, r) => (r, NONE)

fun findbefore (root, cmp) =
case splay (cmp, root) of

(_, r as SplayNil) => (r,NONE)
| (Greater, root’) =>

(case splay (cmp, root’) of
(_, r as SplayNil) => (r,NONE)

| (Greater, r) => (r,NONE)
| (_ ,r as SplayObj{value,...}) => (r, SOME value))

| (_, r as SplayObj{value,...}) => (r, SOME value)

fun findafter (root, cmp) =
case splay (cmp, root) of

(_, r as SplayNil) => (r,NONE)
| (Less, root’) =>

(case splay (cmp, root’) of
(_, r as SplayNil) => (r,NONE)

| (Less, r) => (r,NONE)
| (_ ,r as SplayObj{value,...}) => (r, SOME value))

| (_ ,r as SplayObj{value,...}) => (r, SOME value)

fun afteronly cmp arg =
case (cmp arg) of

Identical => Before
| it => it

fun beforeonly cmp arg =
case (cmp arg) of

Identical => After
| it => it

(* Remove an item.
* Raise NotFound if not found
*)
fun remove (root, cmp) =

case (splay (cmp, root)) of
(Equal,SplayObj{value,left,right}) =>

(join (left,right), SOME value)
| (_,r) => (r, NONE)

fun root SplayNil = NONE
| root (SplayObj {value, ...}) = SOME value

(* Return a list of the items (and their keys) in the dictionary *)
fun listItems root =

let fun apply (SplayNil,l) = l
| apply (SplayObj{value,left,right},l) =

apply(left, value::(apply (right,l)))
in

apply (root,[])
end

(* Apply a function to the entries of the dictionary *)
fun app af root =

let fun apply SplayNil = ()
| apply (SplayObj{value,left,right}) =

(apply left; af value; apply right)
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in
apply (root)

end

fun revapp af root =
let fun apply SplayNil = ()

| apply (SplayObj{value,left,right}) =
(apply right; af value; apply left)

in
apply (root)

end

(* Fold function *)
fun fold abf (root,b) =

let fun apply (SplayNil, b) = b
| apply (SplayObj{value,left,right},b) =

apply(left,abf(value,apply(right,b)))
in

apply (root,b)
end

fun revfold abf (root,b) =
let fun apply (SplayNil, b) = b

| apply (SplayObj{value,left,right},b) =
apply(right,abf(value,apply(left,b)))

in
apply (root,b)

end

fun string doContents root =
let

fun whiz SplayNil = ""
| whiz (SplayObj{value,left,right}) =

( "[" ^
whiz left ^

"(" ^ doContents value ^ ")" ^
whiz right ^

"]" )
in

"!" ^ whiz root ^ "!"
end

end

history.sml
(*
functor History ( structure TimeStamps : TimeStamps

structure RewritingSplayAccess : REWRITING_SPLAYACCESS
) : HISTORY =

*)
structure ElementHistory : HISTORY =
struct

structure Time = TimeStamps
structure Splay = RewritingSplayAccess
local

open Splay LibBase
in

type timestamp = Time.timestamp
type ’a entry = {tag:timestamp, value:’a}
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type ’a history = ’a entry Splay.splay

exception Unbound

fun entry_string doValue ({tag,value} : ’a entry) =
Time.label tag ^ ": " ^ doValue value

fun history_string doValue =
Splay.string (entry_string doValue)

val time_string = Time.string

fun cmp this ({tag,...} : ’a entry) : ’a entry position =
case Time.compare (tag, this) of

Less => Before
| Greater => After
| Equal => Identical

fun create () =
let

val time = Time.create ()
val position = cmp time

in
(fn value =>

Splay.insert(empty,position,{tag=time,value=value} : ’a entry),
time)

end

fun locate (instances,time) =
case Splay.findbefore (instances, cmp time) of

(instances’, SOME it) => (instances’, #value it)
| (_,NONE) => raise Impossible "Nodes missing in history (read)"

fun record ((entries,thisTime),value) =
let

val succTimeOpt = Time.succ thisTime (* Order matters here *)
val newTime = Time.insertAfter thisTime
val instances’’ =

case succTimeOpt
of NONE => entries
| SOME succTime =>

let
val findSucc = cmp succTime

(* val _ = print (time_string time ^ "\n"); *)
in

case Splay.findbefore (entries, findSucc)
of (_,NONE) =>

raise Impossible "Nodes missing in history (write)"
| (instances’, SOME {value=priorValue,tag=priorTime}) =>

( case Time.compare (priorTime, succTime)
of Equal => instances’
| Less =>

Splay.insert
( instances’,

findSucc,
{tag=succTime,value=priorValue} )

| Greater =>
raise Impossible "Earlier time is later!" )

end
in

(insert (instances’’, cmp newTime, {tag=newTime,value=value}),
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newTime)
end

end
end

impure-array.sml
structure ImpureArray : ARRAY =

struct
structure Array = Array

open Array
fun update(a,i,v) = (Array.update(a,i,v) ; a)
val size = length
val method = "Mutable Arrays"

end

func-array.sml
(* functor FunctionalArray ( ElementHistory : HISTORY ) : ARRAY = *)
structure FunctionalArray : ARRAY =
struct

structure History = ElementHistory
structure IArray = ImpureArray

local
open History

in
exception Size = IArray.Size;
exception Subscript = IArray.Subscript;

type ’a array = {iarray:’a history IArray.array, ctime:timestamp}

fun tabulate (size,init) =
let

val (make_history, ctime) = create ()
in

{ iarray =
IArray.tabulate (size, fn index => make_history (init index)),

ctime = ctime }
end

fun sub ({iarray,ctime},index) =
let

val history = IArray.sub (iarray,index)
val (history’, value) = locate (history,ctime);

in
IArray.update (iarray,index,history’);
value

end

fun update ({iarray,ctime},index,value) =
let

val history = IArray.sub (iarray,index)
val (history’, ctime’) = record ((history,ctime),value);

in
IArray.update (iarray,index,history’);
{iarray=iarray, ctime=ctime’}

end
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fun size ({iarray, ...} : ’1a array) = IArray.size iarray

val method = "Element Histories"
end

end

A.1.3 Implementations of Other Array Techniques

tree-array.sml
structure TreeArray (* : ARRAY *) =

struct
exception Size = ImpureArray.Size;
exception Subscript = ImpureArray.Subscript;

open Bits
fun odd x = System.Unsafe.cast (andb (x,1)) : bool;

datatype ’a tree =
Branch of ’a tree * ’a tree

| Leaf of ’a
| Bud

and ’a array = Array of ’a tree * int

fun update (Array (tree, size), index, value) =
let

fun update’ (Leaf _, 0) = Leaf value
| update’ (Branch (left,right), index) =

if odd index then
Branch (left,update’(right,rshift(index,1)))

else
Branch (update’(left,rshift(index,1)),right)

| update’ _ = raise Subscript
in

Array(update’(tree,index),size)
end

fun sub (Array(tree, size), index) =
let

fun sub’ (Leaf value, 0) = value
| sub’ (Branch (left,right), index) =

if odd index then
sub’(right,rshift(index,1))

else
sub’(left,rshift(index,1))

| sub’ _ = raise Subscript
in

sub’ (tree, index)
end

fun tabulate (size,init) =
let

fun tabulate’ (n, level) =
if n >= size then Bud
else

let
val level’ = lshift(level,1)

in
if level < size then
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Branch (tabulate’(n,level’),
tabulate’(n+level,level’))

else
Leaf (init n)

end
in

Array(tabulate’ (0,1),size)
end

fun size (Array(tree,size)) = size

val method = "Trees"
end

trailer-array.sml
(*
* Trailer (and rerooting) Based Arrays
*)

structure TrailerArray (* : ARRAY *) =
struct

structure ImpureArray = ImpureArray

exception Size = ImpureArray.Size;
exception Subscript = ImpureArray.Subscript;

datatype ’a array =
Array of ’a array_node ref

and ’a array_node =
Root of ’a ImpureArray.array

| Modification of int * ’a * ’a array

fun tabulate (size, init) =
Array (ref (Root (ImpureArray.tabulate (size,init))))

fun reroot (root as ref (Root array)) = array
| reroot (child as ref (Modification (index,value,Array parent))) =

let
(* val _ = print "." *)
val array = reroot parent
val value’ = ImpureArray.sub(array,index)

in
child := Root (ImpureArray.update(array,index,value));
parent := Modification (index, value’, Array child);
array

end

fun update (Array parent,index,value) =
let

val array = reroot parent;
val value’ = ImpureArray.sub(array,index)
val result =

Array (ref (Root (ImpureArray.update(array,index,value))))
in

parent := Modification (index, value’, result);
result

end

fun sub (Array array,index) =
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ImpureArray.sub(reroot array,index)

fun size (Array array) =
ImpureArray.size(reroot array)

val method = "Trailers"
end

copying-array.sml
(*
* Naive copying implementation.
*)

structure NaiveArray (* : ARRAY *) =
struct

structure Vector = Vector

type ’a array = ’a Vector.vector
open Vector
fun update(array,index,value) =

let
fun copy i =

if i = index then value
else sub(array,i)

val size = length array
in

if index < size then
tabulate (size,copy)

else
raise Vector.Subscript

end
val size = length
val method = "Naive Copying"

end

A.1.4 Functions used for Performance Timing

timer.sml
(*
* Comparison of array implementation methods.
*)

(*
* SML/NJ specific tweaks.
*)

val gc = System.Unsafe.CInterface.gc
val _ = System.Control.Runtime.softmax := 8 * 1024 * 1024
val _ = System.Control.Runtime.ratio := 32
val _ = System.Control.Print.printDepth := 64
local

open System.Timer

in
val ticks_per_second = 1.0 / 50.0
fun round accuracy x = real (floor (x / accuracy + 0.5)) * accuracy
fun sci_round acc 0.0 = 0.0

| sci_round acc x = let val pow = exp (real (floor (ln (abs x) / ln 10.0 +
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1.0)) * ln 10.0)
in (round acc (x / pow)) * pow end

fun seconds (TIME {sec:int,usec:int}) =
round ticks_per_second (real sec + (real usec / 1000000.0))

fun time1 action =
let

val timer = start_timer ()
val result = action ()
val utime = check_timer timer
val stime = check_timer_sys timer
val gctime = check_timer_gc timer

in
(result, seconds utime, seconds stime, seconds gctime)

end
fun timeN (n,action) =

let
fun worker 1 = action ()

| worker n = (action () ; worker (n-1))
fun newAction () = worker n
val (result,usecs, ssecs, gcsecs) = time1 newAction
val rn = real n
fun scale x = round 2.5E~7 (x / rn)

in
(result, scale usecs, scale ssecs, scale gcsecs)

end
val overhead = #2 (timeN (100000, fn () => 1))

fun time action =
let
val _ = outputc std_out "% Timing... ("
fun timing n =

let
val _ = outputc std_out (Integer.makestring n);
val _ = flush_out std_out;
val results as (result,usecs, ssecs, gcsecs) = timeN (n,action)
val rn = real n
val _ = (print "["; print usecs; print "]"; flush_out std_out)
val tsecs = (usecs * rn) - (ticks_per_second / 2.0)

in
if tsecs <= 0.0 then (outputc std_out ","; timing (n * 500))
else (
if tsecs < 4.0 then

(outputc std_out ",";
timing (ceiling (rn * 5.0 / tsecs)))

else
let val clip =

sci_round (sci_round 0.1 (ticks_per_second / tsecs))
in (result, clip (usecs - (round ticks_per_second (rn * overhead)

/ rn)), clip ssecs, clip gcsecs)
end )

end
val (result,usecs, ssecs, gcsecs) = timing 1
val _ = outputc std_out ")\n"

in
outputc std_out

("% User Time: "
^ (Real.makestring usecs)
^ "\n% System time "
^ (Real.makestring ssecs)
^ "\n% Time Collecting: "
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^ (Real.makestring gcsecs)
^ "\n") ;

(result, usecs)
end

end

A.1.5 Array Test Code
Note that test1, test2 and test3 correspond to the three implementations of reverse.
The function test5 corresponds to the multi-version test.

tests.sml
functor ArrayTestsFun ( Array : ARRAY ) =
struct

structure Array = Array

local
open Array

in
fun tolist array =

let
val size = size array
fun worker x =

if x = size then nil
else

sub(array,x) :: worker (x+1)
in

worker 0
end

fun sum array =
let

val size = size array
fun worker x =

if x = size then 0
else

sub(array,x) + worker (x+1)
in

worker 0
end

fun zero array =
let

val size = size array
fun worker (x,array) =

if x = size then ()
else

worker (x+1,update(array,x,0))
in

worker (0,array)
end

fun max (array1, array2) =
let

val size = size array1
fun worker (array,index) =

if index = size then array
else

let
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val x = sub(array1, index)
and y = sub(array2, index)

in
worker

( if Integer.< (x,y) then
update(array, index, y)

else
array

, index + 1 )
end

in
worker (array1,0)

end

fun print_array printer array =
let

val size = size array
fun worker x =
( print "{";

if x = size then print "}"
else

( printer (sub(array,x));
worker’ (x+1) ) )

and worker’ x =
( if x = size then print "}"

else
( print ", ";
printer (sub(array,x));
worker’ (x+1) ) )

in
worker 0

end

fun create n = Array.tabulate (n, fn x => x)

(*
* A functional implementation of an imperative reverse algorithm,
* array techniques optimized for single threaded access should
* have no problem providing O(n) operation.
*)

fun reverse1 original =
let

val size = size original
val half = size div 2
fun rev (current,count) =

if count < half then
let

val count’ = count + 1
val left = sub(current, count)
val right = sub(current, size - count’)
val current’ = update(current, count, right)
val current’’ = update(current’, size - count’, left)

in
rev (current’’, count’)

end
else current

in
rev (original,0)

end
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(*
* A more functional reverse algorithm.
*)

fun reverse2 original =
let

val size = size original
fun rev (current,count) =

if count < size then
let

val count’ = count + 1
val current’ =

update(current, count, sub(original, size - count’))
in

rev (current’, count’)
end

else current
in

rev (original,0)
end

(*
* The monolithic approach.
*)

fun reverse3 original =
let

val size = size original
fun reverse_read index =

sub(original,size - (index+1))
in

tabulate (size, reverse_read)
end

fun test4 n =
let

val _ = gc 1
val _ = app print ["\nTesting ",method,", n=",makestring n,"\ncrea

te(n) :\n"]
val (x,xt) = time (fn _ => create n);
val _ = print "reverse1 (create(n)) :\n"
val (y,yt) = time (fn _ => reverse1 (create(n)));
val _ = print "let val x = create n in max (x, reverse1(x)) end :\

n"
val (z,zt) = time (fn _ => let val x = create n in max (x, reverse

1(x)) end)
in

(n,(xt,yt - xt,zt - yt))
end

fun test_rev reverse n =
let

val _ = gc 1
val _ = app print ["\nTesting ",method,", n=",makestring n,"\nReve

rse:\n"]
val (_,t0) = time (fn _ => create n)
val (_,t) = time (fn _ => reverse (create n));

in
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(n,t - t0)
end

val test1 = test_rev reverse1

val test2 = test_rev reverse2

val test3 = test_rev reverse3

fun random seed =
let

val randomGenerator = Random.mkRandom seed
in

fn (x,y) => Random.range (x,y) (randomGenerator ())
end

fun versions (n,m) =
let

val initial = create n
val versions = ImpureArray.tabulate (m,fn x => initial)
val rnd = random 1.0
fun versionize x =

if x >= (m-1) then () else
let

val v = rnd (0,x)
val e = rnd (0,n-1)

(* val _ = outputc std_out ("v" ^ Integer.makestring (x+1) ^ "
<- increment v" ^ Integer.makestring v ^ "[" ^ Integer.makestring e ^ "]\n")
*) val version = ImpureArray.sub (versions,v)

val newVersion = Array.update (version, e, Array.sub (versio
n, e) + 1)

in
ImpureArray.update(versions, x+1, newVersion);
versionize (x+1)

end
in

versionize 0 ; initial
end

fun bredth_prep (n,mv) =
let

val initial = create n
val versions = ImpureArray.tabulate (mv,fn x => initial)
val rnd = random 1.0
val mv_last = mv - 1
fun breed x =

if x < mv_last then
let

val v = rnd (0,x)
val e = rnd (0,n-1)

(* val _ = outputc std_out ("\^Mv" ^ Integer.makestring (x+1) ^
" <- increment v" ^ Integer.makestring v ^ "[" ^ Integer.makestring e ^ "]")
*) val _ = flush_out std_out;

val version = ImpureArray.sub (versions,v)
val newVersion = version

in
ImpureArray.update(versions, x+1, newVersion);
breed (x+1)

end
else ()

in
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breed 0 ; versions
end

fun bredth (n,mv) =
let

val initial = create n
val versions = ImpureArray.tabulate (mv,fn x => initial)
val rnd = random 1.0
val mv_last = mv - 1
fun breed x =

if x < mv_last then
let

val v = rnd (0,x)
val e = rnd (0,n-1)

(* val _ = outputc std_out ("\^Mv" ^ Integer.makestring (x+1) ^
" <- increment v" ^ Integer.makestring v ^ "[" ^ Integer.makestring e ^ "]")
*) val _ = flush_out std_out;

val version = ImpureArray.sub (versions,v)
val newVersion = Array.update (version, e, Array.sub (versio

n, e) + 1)
in

ImpureArray.update(versions, x+1, newVersion);
breed (x+1)

end
else ()

in
breed 0 ; versions

end

fun test5 n mv =
let

val _ = gc 1
val _ = app print ["\nTesting Bredth, under ",method,", n=",makest

ring n, ", v=",makestring mv,"... \n"]
val (_,secs0) = time (fn _ => bredth_prep (n,mv));
val (_,secs) = time (fn _ => bredth (n,mv));

in
(mv,secs - secs0)

end

end
end

structure TAT = ArrayTestsFun ( TrailerArray )
structure FAT = ArrayTestsFun ( FunctionalArray )
structure BAT = ArrayTestsFun ( TreeArray )
structure CAT = ArrayTestsFun ( NaiveArray )
structure IAT = ArrayTestsFun ( ImpureArray )
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