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Abstract 

The Oberwolfach Problem asks whether it is possible to decompose the 

complete graph on 2n+l vertices (or the complete graph on 2n vertices with a 

spanning set of independent edges removed) into isomorphic factors each comprising a 

set of cycles whose combined length is 2n+l (or 2n, respectively). We trace the 

history of the investigation of this problem, giving results that are known and noting 

questions that remain open. Solutions (or reasons why no solution exists) are given 

for all variations of the problem for small n. Some of the solutions are new and others 

have not been published previously. A new computer-assisted proof is given for the 

nonexistence of a decomposition of the complete graph on eleven vertices into factors 

comprising a 5-cycle and two 3-cycles. In the final section we consider each of the 

cases of the problem that are known to have no solution, and ask whether multiple 

copies of the complete graph can be 2-factored in the desired way. 
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The Oberwolfach Problem: 
A History and Some New Results 

The Oberwolfach Problem 

Is it possible to partition the edge-set of the complete graph on n vertices (K,) 

into isomorphic 2-factors (a 2-factor is set of disjoint cycles whose vertex set spans 

the graph being factored)? Such a partitioning is also often referred to as a 

factorization or decomposition of the graph. It is immediately apparent that each 

vertex of K, is of degree n-1 and that since each cycle removed from the graph 

decreases the degree of each vertex used by 2, n-1 must be even if a cycle 

decomposition is to exist. Thus the question makes sense only if n is odd and this is 

the original Oberwolfach Problem (OP) mentioned in 1967 by Ringel at a graph theory 

meeting at the Oberwolfach conference center in Germany (hence the name), and first 

seen in the literature as part of a list of unsolved problems presented by Guy [6]. 

If we let n be even and consider the graph K,-F where F is a 1-factor (a set of 

disjoint edges whose vertices span the vertex set of the graph), we have a graph that 

is regular of even degree which allows us to consider the question above for these 

graphs as well. This variation on the OP was originally worked on as a separate 

problem under the rubric 'NOP' (for 'Nearly Oberwolfach Problem'), but is now 

accepted as part of the OP. The notation for the Oberwolfach Problem used in this 

thesis is as follows: OP(n; al ,  a2, ... , a,)) represents the problem of decomposing K,  

into isomorphic 2-factors where each of the 2-factors comprises one cycle of each 

length ai, for i = 1, 2, ..., t and a,+ a2 + ... + a, = n. When there are cycles of the same 

length in a 2-factor, the above notation may be abbreviated by including each length 

only once in the list with an exponent that indicates the number of cycles of that 

particular length to be included. 

We will review the history of this problem; indicating the techniques used to 

approach it. Then, for each K, on fewer than 19 vertices and for each K,,, on fewer 

than 16 vertices, we will consider all possible cycle combinations into which it might 

be isomorphically 2-factored and give such a decomposition if one has been found or a 



reason for its non-existence if that has been established. The discussion will include 

several new factorizations and a proof of the non-existence of a decomposition of K,, 

into five isomorphic 2-factors each comprising a 5-cycle and two 3-cycles (i.e., no 

solution for OP(11; 32, 5) exists). 

We will conclude by considering the possibility that the cases of the 

Oberwolfach Problem for which no solution exists in K, might have a solution in hK, - 
a complete multigraph on n vertices where every edge has multiplicity h > 1. 

1.1 Kirkman's Schoolgirl Problem 

The quest for 2-factorizations of complete graphs is not new. In the Lady's and 

Gentleman's Diary of 1850, T.P. Kirkman asked whether it was possible for fifteen 

schoolgirls to be arranged in five lines of three girls on each of seven days in such a 

way that each girl was in a line with each of the other girls exactly once during those 

seven days. This problem is equivalent to asking if K,, can be decomposed into seven 

2-factors, each comprising five 3-cycles. Current notation for the problem would be 

OP(15; 3'). According to Ball [4], solutions for this problem and the analogous 

problems where there are 9 and 27 girls in lines of three were found in the same year 

by unnamed authors through largely empirical methods. 

The literature of the years following Kirkman's query contains solutions for 

various examples of what have now become known as Kirkman Triple Systems. In 

1892 Ball [4] collected work done by several separate authors to give a listing of all 

known solutions for cases of the problem from K9 to K9,, inclusive. Since we are 

considering rows of three children, the total number of children must be a multiple of 

three and since each child is in line with two other children in each arrangement, the 

total number of children must be odd. Thus the only numbers for which the problem 

has exact solutions are those that are odd multiples of three (i.e., those of the form 

6m+3). 

Ball reports that solutions were found by different investigators in cases where 

the number of children is 12m+3 when 6m+l is prime, 18m+3,18m+9, 18m+15,24m+3, 

and 24m+9 where m is a positive integer. In all, solutions collected in [4] settle the 

question for every number of children from 9 to 99, inclusive, that is of the form 6m+3. 



Solutions were arrived at by methods ranging from trial and error to constructing a 

"base factor" (i.e., an arrangement of the children for the first day) which can be used 

to generate a full set of 2-factors by applying a permutation to the vertices of that 

original 2-factor and to those of each successive 2-factor until a complete set of 

factors is obtained. 

It was not until 1971 that a general solution was found for the Kirkman 

problem. Any number n = 6m+3 of children can be arranged in rows of three on 3m+l 

days in such a way that each child is in the same row with each other child exactly 

once. The proof was done from the point of view of the theory of balanced incomplete 

block designs (BIBD's). This gives us our first theorem on solutions to the 

Oberwolfach Problem. 

Theorem 1.1.1: (Ray-Chaudhuri and Wilson [17]) A solution exists for 

OP(6m+3; 32m+1) for all positive integers m. 

The best we could do with an even number of children is to find arrangements 

where each child is in a line with each other child except one exactly once during the 

sequence of walks. Solutions for this variation of the problem have became known as 

Nearly Kirkrnan Triple Systems (NKTS). 

Kotzig and Rosa [14] showed the non-existence of NKTS(6) and NKTS(12), 

the existence of NKTS(fv) given NKTS(v) for any t = 3 (mod 6), and the existence of 

NKTS(6t) when 6t is the product of two integers r and s where r = 1 (mod 3), r 2 4 and 

s = 1 (mod 2). Baker and Wilson [3] showed NKTS(6t) exists for t > 2 , except 

possibly for t = 14, 17 or 29. Brouwer [5] constructed solutions for two of these three 

unsolved cases leaving only t = 14 in question. The final case was reported solved in 

[12], but the solution was incorrect. The description of a correct construction is given 

by Rees and Stinson [19]. Throughout these papers the tools, notation and 

terminology of design theory were employed to obtain the given results. In OP 

notation we have 

Theorem 1.1.2: A solution for OP(6t; 32') exists for all t 23. 



1.2 Hamilton Cycle Decompositions 

Another variation on the Kirkman problem might be to have n children sit 

around a circular table on L(n-l)/2] consecutive days arranged in such a way that each 

child sits next to each other child (except one, if n is even) exactly once. In other 

words, can K, (or K,-F for even n) can be partitioned into L(n- 1)/2] Hamilton cycles 

(i.e., each 2-factor is a single cycle containing all vertices of the original graph). 

Letter arrangements and a diagram appear (attributed to Walecki) in Lucas' 

Re'cre'ations Mathe'matiques [15] in 1884 showing base factors for the Hamilton 

decomposition of K,, and KI2-F which are easily generalizable into base factors for 

decomposing any K,,,, or K2,-F into Hamilton cycles. Figure 1.2.1 and Figure 1.2.2 

below show the generalized base factors for these two infinite classes of OP cases. 

The base factor (notated as R below) will become a powerful tool as we 

proceed. We will use a to stand for a permutation and will write a(R) to indicate the 

application of a to the vertices of R to obtain another factor. By writing a i ( ~ )  we 

indicate the result of applying the permutation a to the vertices of R and to each 

resultant factor until a has been applied i different times. 

Figure 1.2.1 

Figure 1.2.1 shows the first 2-factor of the Hamilton decomposition of K2,-F. 

We have 2n-2 vertices on the circumference of a circle labled consecutively from 0 to 



2n-3 . We join vertex 0 to vertex 1, vertex 1 to vertex 2n-3, vertex 2n-3 to vertex 2, 

vertex 2 to vertex 2n-4, and so on until we reach vertex n-1 which is then joined to 

vertex 0. Place a vertex labeled -3, on the edge between vertex 0 and vertex n-1, and 

a vertex labeled -3, on the edge joining vertex r(n-1)/21 with vertex r3(n-1)/21. 

Let this Hamilton cycle be R, and let a = (=3,)(=32)(0 1 2 ... 2n-3) be a 

permutation of the vertices of R. It is easy to check that the set of cycles generated by 

a, (ai ( R )  I i = 0 ,  1 ,2 ,  .... n-2) ,  is a complete Hamilton decomposition of K,-F where 

F = {[Ool, m2], [i, i+n-1] : i = 0 ,  1, 2, ..., n-1 }. This construction gives us 

Theorem 1.2.1: A solution for OP(2n; 2n) exists for all n 7 1. 

Figure 1.2.2 shows a base factor for the Hamilton decomposition of K2,,+, by a 

very similar construction to the one above. We start with 2n vertices labeled from 0 to 

2n-1 consecutively around the circumference of a circle. Vertex 0 is joined to vertex 1, 

vertex 1 to vertex 2n-1, vertex 2n-1 to vertex 2 and so on until we join vertex n+l to 

vertex n. Vertex n is then joined to vertex 0 and a vertex labeled 00 is placed on this 

last edge. Let this Hamilton cycle be R and let a = (-)(O, 1, 2, ..., 2n-1). Checking 

shows that (ai (R )  : i = 0 ,  1 ,  2, ..., n-1 ] gives a Hamilton decomposition of K2,,+,. 

n 
Figure 1.2.2 

This construction yields 

Theorem 1.2.2: A solution for OP(2n+l; 2n+l) exists for all n > 0. 

5 



1.3 Uniform Cycle Decompositions 

The two parts of the Oberwolfach problem mentioned above are extremes 

between which lie a number of solved and a large number of unsolved cases. The 

Kirkman problem asks for a decomposition into the smallest cycle lengths possible 

and the Hamilton decompositions are decompositions into the longest possible cycle 

length. In both of these situations we were looking for what are now referred to as 

decompositions into uniform 2-factors (i.e., all cycles are the same length). 

Several authors from the middle 1970's to the middle 1980's obtained results on 

uniform 2-factorizations. Hell, Kotzig and Rosa [8] introduced some notation that has 

become standard in these questions. D(s) is defined as the set of all integers v such 

that K,can be decomposed into uniform 2-factors of s-cycles. That paper included 

several results. If k is odd and k 2 3 and there exists a resolvable (v, k, 1)-BIBD 

then v E D(k). This theorem immediately yields two corollaries. Since for any prime p 
2a a and positive integer a, there exists a resolvable ( p  , p , 1)-BIBD, it follows that if p 

is an odd prime and the integer a 2 1, then p2a E D(pa). It is established in [18] that 

for any integer k 2 2, there exists a constant c(k) such that for every v > c(k) where v 

= k (mod k(k-1) there exists a resolvable (v, k, 1)-BIBD. Thus if k is odd and k 2 3, 
there exists a constant c(k) such that for all v 2 c(k) where v = k (mod k(k-1)), v E 

Wk). 

Hell, Kotzig and Rosa also show that "3s E D(s) if and only if s is odd, s > 1," 

by way of a construction. This theorem seems to contradict a theorm in [lo] where 

Horton, Roy, Schellenberg and Stinson note that "For v a positive integer, v E D(4) if 

and only i fv  is a multiple of 4," which implies that 12 E D(4). This confusion is easily 

resolved by realizing that in the ten years between these papers, the two parts of the 

Oberwolfach Problem had become one and thus the meaning of the D(s) notation had 

changed to accommodate that newly modified understanding of the problem. Thus, in 

the current literature it is understood that v E D(s) means that K, (if v is odd) or K, -F 

(if v is even) can be uniformly 2-factored into s-cycles. The same problem occurs 

when earlier authors state results in terms of 'NOP'. Modern notation would be 'OP' 

and the restrictions on the parity of v would be either modified or dropped. Throughout 

this thesis we will use the more modem notation and phrasing, which will occasionally 



appear to be slightly different from the original statements of the results being 

reported. 

Back to the results. Hell, Kotzig and Rosa also show in [8] that if m E D(s) 

and n E D(s), then mn E D(s) by observing that Kmn = Km x Kn u K ,  €3 Kn and 

showing that K ,  x K ,  and K ,  €3 K ,  can be 2-factored into s-cycles whenever Km and 

Kn can be. Given two graphs G and H, the graph G x H has vertex set V(G) x V(H) 

and an edge [(g, h), (g', h')] if and only if [g, g") E E(G) and h =h', or [h, hl] E E(H) 

and g = g'. G O H also has vertex set V(G) x V(H), but has an edge [(g, h), (g', h')] if 

and only if [g, g") E E(G) and [h, hl] E E(H). This latest theorem yields the corollary: 

sn E D(s) for odd s and every integer n 2 1. The final theorem in this paper states that 

rs E D(s) when r = 3k sn-l ,  s is odd, s Z 3, k Z 0 and n 2 1, but the arguments only 

support the claim when 0 5 k I n- 1. 

Five years later, Huang, Kotzig and Rosa [ l l ]  focused on the even cases 

(decomposition of K, into uniform isomorphic 2-factors) showing that v E D(4) 

whenever v = 0 (mod 4), 2k E D(k) for k 2 4, and 6k E D(2k) for k > 1. These proofs 

were done by direct construction of a base factor and the results were reported in NOP 
notation. They also give a specific solution for OP(10; 5). 

In 1985, Horton, Roy, Schellenberg and Stinson [lo] collected known results 

and added a few more of their own. For any positive integers s and t, 8ts E D(4t). If m 

= 2 (mod 4) then 4m E D(m). If n is a multiple of 3 other than 6 and 12, then we have 

mn E D(m). For positive s and t, 20,ts E D(l0t) and 28ts E D(14t). For m > 2 and t 

any positive integer except 2 or 4, 3tm E D(m). Most of these results are derived 

from known results about BIBD's, abelian groups and complete bipartite and tripartite 

graphs. 

Alspach and Haggkvist [I] settled all cases of uniform 2-factorizations into 

even length cycles in the same year. For m 2 2 ,2mn E D(2m) for all positive integers 

n. The proof of this theorem rests on visualizing K2mn as various wreath products of 

appropriate size graphs so that the decomposition into 2m-cycles follows directly from 

previously known results. The wreath product GwrH is obtained by replacing each 

vertex of G with a copy of H, joining two vertices in different copies of H only if the 

vertices of G corresponding to those copies of H are adjacent. See the solution given 



for OP(9; 33) in Section 2 of this thesis to see an application of the wreath product 

idea. So we have, in OP notation, 

Theorem 1.3.1: If m is even and m 2 2, a solution for OP(mn; m) exists for 

every natural number n. 

The remaining cases of uniform 2-factorizations into odd length cycles for all 

complete graphs (except those of the form K4, where m is the cycle length) were 

settled by Alspach, Schellenberg, Stinson and Wagner [2] four years later. The proof 

of this theorem also relies on visualizing complete graphs as wreath products and 

showing that decompositions must exist for the various pieces and therefore also for 

the complete graph. 

The last remaining question regarding uniform 2-factorizations has been 

answered by Hoffman and Schellenberg [9]. It is now established that 4m E D(m) and 

we have 

Theorem 1.3.2: For m odd and m 2 5, a solution for OP(mn; m) exists for 

every positive integer n. For m = 3, a solution for OP(mn; m) exists for every positive 

integer n except 2 and 4. 

Taken together, Theorem 1.3.1 and Theorem 1.3.2 settle all cases of 

decomposition into uniform 2-factors. 

1.4 Non-uniform Decompositions 

What remains largely an open question in the Oberwolfach Problem is the 

existence of decompositions of K, into non-uniform 2-factors. What follows is a 

collection of results that represent the progress to date. 

Kohler [13] has shown that solutions for both OP(8k+3; 3, 4k, 4k) and 

OP(8k+l; 3, 8k-2) exist. Huang, Kotzig and Rosa [I 11 constructed solutions for 

OP(k+3; 3, k) whenever k is odd and k 2 5, and for OP(k+4; 4, k) whenever k is even 

and k 2 4. They also show that a solution exists for OP(6k+4; 2k+2, 2k+l, 2k+l) 

when k 2 1 and that a solution for OP(2k+2 rk/21+2c; k, k, 2 rk/21+2c) exists for all 

positive integers c except 1. 



This is the extent of the general cases that are solved and, though there are 

solutions to other specific cases, this leaves the Oberwolfach Problem whenever each 

2-factor is to comprise several cycles of different length pretty much wide open. 



O P ( n ;  a,, a,, ... 9 a,) Solutions for Small n 

In this section we will give a 2-factorization (if it is known) or reason for the 

non-existence of one for each possible combination of cycles into which each K2, on 

fewer than 19 vertices and each K,,, on fewer than 16 vertices might be decomposed. 

As we go along we will use different solution techniques so the reader can get a feel 

for them. Unless otherwise noted, these are decompositions generated by the author, 

but only the existence of most of the decompositions of K,, is new. 

The graphs K1 and K2 contain no cycles, so K, is the first complete graph where 

the Oberwolfach Problem makes sense. Since K, is a single cycle, it is in itself the 

solution for OP(3; 3) 

OP(4; 4) is the only possible case involving K4. Removing any 1-factor from K4 
yields a 4-cycle and thereby a solution. 

OP(5; 5) and OP(6; 6) are solved using the Walecki constructions used earlier 

to obtain Theorems 1.2.1 and 1.2.2. All Hamilton decompositions in this section will 

be accomplished by use of this construction. 

For writing the solutions in base factor situations we will adopt the notation 

used by Huang, Kotzig and Rosa in [ l l] .  V is the vertex-set , R, as above, is the 

base 2-factor in cycle notation, F is the 1-factor to be deleted (if appropriate), and a, 
as in the previous chapter, is the permutation on the vertex-set that is used to 

generate successive 2-factors to complete the decomposition. In addition we will 

denote by Fi a 2-factor of the decomposition which is usually the result of a' (R). The 

symbol '00' will be used to identify vertices that are fixed points of the permutation a. 
The solutions for OP(5; 5) and OP(6; 6) in this notation are as follows: 



The first possibility of a 2-factorization that is not into Hamilton cycles is 

OP(6; 32), the decomposition of K6into 3-cycles, but no solution is possible. As soon 

as the first 2-factor is selected, the edge set remaining is isomorphic to K,,, (the 

complete bipartite graph with three vertices in each part) which contains no triangles 

from which to fashion further 2-factors. 

The decomposition of K, can be done in two ways. The solution for OP(7; 7) is 

a Hamilton decomposition and OP(7; 3, 4) is accomplished with a permutation that 

adds 2 to each vertex number to get successive 2-factors, unlike the permutation for 

the Hamilton decomposition which adds 1. The solutions are listed below, but notice 

that when the same V is used or when the Fi 's have the same designation for more 

than one case, we will show them only once at the beginning of the list of base factors. 

As we go on, the same will be true for a, F and the Fi 's. 

In addition to the Hamilton decomposition of K,, there are two other 

possibilities. Their base factors are shown schematically below because they 

represent another way of thinking about the vertex-set that is helpful in many 

upcoming cases. The labeling system is that used in [I 11. The factorizations follow 

Figure 2.1. (Note that when V includes a copy of 2, any addition done in specifying F 

is done modulo n.) 



Figure 2.1 

Kohler [13] has shown that there is no solution for OP(9; 4, 5). He finds that 

there are only four non-isomorphic ways to choose the first two 2-factors. He then 

considers the complements of these graphs. Since none of the complements is 

isomorphic to any of the original four graphs, they cannot contain two disjoint 2-factors 

and the result follows. 

A solution for OP(9; 33) is our first opportunity to visualize a solution in a 

wreath product. Visualize Kg as K,wrK, (i.e., think of a copy of K, being inserted into 

each of the three vertices of another K, and then join all vertices that are from different 

copies of K,). The three inserted K,'s form the first 2-factor and the other three are 

shown in Figure 5. Following the figure, a solution is given for each OP situation of Kg 



decomposition that exists. Note that since this solution to OP(9; 33) does not use a 

base factor, the 2-factors Fi are listed rather than R and a permutation a .  

Figure 2.2 

V=Z& (00) 
a = ( m ) ( O 1 2 3 4 5 6 7 )  
Fi +I = a i ( ~ ) ,  i = 0, 1, 2, 3 

OP(9; 3,6) R = {(m, 0 ,4)  (1 ,2 ,7 ,5 ,  6,311 
OP(9; 4,5) Not Possible [12] 
OP(9; 9) R = {(my 0, 1 ,7 ,2 ,6 ,3 ,5 ,4 ) )  

Solutions for decomposing K,, are similar to those above. The solution for 

OP(10; 52) is due to Huang, Kotzig and Rosa [l l] .  As with OP(9; 33), it does not use 

a base factor with a permutation, but rather stipulates each 2-factor. 



With decomposing Kll there is only one problematic case, that of OP(11; 32, 5). 

This case has defied all attempts at a proof of non-existence short of an exhaustive 

computer search for solutions. This case is dealt with in Section 3 of this thesis. The 

other decompositions of Kll are possible and examples of solutions follow. 

v = z , x  (1,2 } u {-) 

a = ( - ) (pi  11 21 31 41)(02 1222 32 42) 
Fi +I = aL(R) ,  i = 0 ,  1 ,  2, 3 , 4  
R = ((-9 31,42), (01, 02, 21, 1 1 ,  41, 32, 1 2 ,  22)) 
R = ((02, 1 1 ,  31, 21), (w, 41, 42,329 1 2 3  01~22)  I 
R = ((0•‹, 42, 22, 32, 411, (01, 1 2 ,  11, 21, 02731) 
Not Possible [15] 
R = ((-9 02,4i), (01, 21, 31, 221, (11, 12,32, 42)) 

Once again with K12 there is one exceptional case. As mentioned once before, 

OP(12; 34) has no solution. Kotzig and Rosa claim in [14] that there are only three 

non-isomorphic sets of four 2-factors, but in none of these cases do the remaining 

edges form a fifth 2-factor of 3-cycles. The solutions in the following list that are 

marked with I * '  are also presented in [ l l ] .  



All possible cycle combinations for decomposing K13 have been accomplished 

and an example of each follows. Though the notation has been adjusted to match the 

rest of this section, the solution given for OP(13; 6, 7) is due to Kohler [13], and the 

five solutions marked with '+' are due to Piotrowski [16]. Notice that the Piotrowski 

solutions have two base factors and a more complicated permutation. 



There being nothing particularly special about the decompositions of K14, we 

simply list them. Again, solutions marked with I*' also appear in [ll] .  It is perhaps 

worth noting that the solution for OP(14; 42, 6) in [ l l ]  is incorrect. 
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The decompositions of K17 are not all known and, like those of K,,, appear to be 

more difficult to produce. Piotrowski [16] gives solutions for OP(17; 34, 5). OP(17; 32, 

5, 6), OP(17; 3, 5,9), OP(17; 4, 5, 8), OP(17; 52, 7), OP(17; 5, 62), and OP(17; 5, 12). 

Of course, the Hamilton decomposition is also known. 

Specific decompositions for some K18 cases have been given elsewhere, but 

this is the first complete set of solutions documented. The solution to OP(18; 36) is 



the solution for NKTS(18), the smallest Nearly Kirkman Triple System to have a 

solution. The solution we present for this case is from Kotzig and Rosa [14]. 



So with the exception of K17 we know whether or not solutions exist for all 

possible Oberwolfach questions for complete graphs on fewer than 19 vertices. Of all 

these cases, the only questions that are known to have no solution are OP(6; 32), 

OP(9; 4, 5), OP(11; 32, 5) and OP(12; 34). In Section 4 we will consider whether 

decompositions that are not possible in K, might be possible in hK,,. 



This is the smallest case of the Oberwolfach Problem that has defied all 

manual attempts at a solution. We will confirm the non-existence of a solution 

established by Piotrowski [16] and go on to show that even though a single copy of 

Kll cannot be decomposed into isomorphic 2-factors each comprising a 5-cycle and a 

3-cycle, any other number of copies can be decomposed in this manner. 

Given one copy of K1,, the first 2-factor (F,) can be 

chosen arbitrarily without loss of generality. We 

1 5 call its pentagon P,  and its triangles Tl and D, with 

vertices labeled as shown in Figure 3.1. 

As implied above, the notation F, (n = 1, 2 , 3 , 4  or 

5) will represent the nth 2-factor of a decomposition 
which comprises P, , Tn and D,. 

X C 

Figure 3.1 

Proposition 3.1: Each 2-factor (except F,) must contain a diagonal of PI.  

Proof: Suppose there exists a factor that does not contain a diagonal of PI .  

Each triangle in this factor must have exactly one vertex from each of PI ,  T1 and Dl. 

Two vertices from P1 in a triangle would mean use of a diagonal of P1 (not allowed by 

assumption) or use of an edge already used in F ,  (not allowed by definition of 

partition). Two vertices from either F, triangle would mean using the same edge in 

two different factors which is not allowed in partitioning. Thus, having used two P1 

vertices and four triangle vertices, the pentagon for this factor uses three vertices from 

P, and two triangle vertices. Of the three P, vertices used in this new pentagon, two 

of them must be adjacent. But this is impossible since adjacent P, vertices in the 

cycle means either a second use of an edge of P1 or a diagonal of P,. Therefore, no 

such factor can exist and we know all factors (except F,) include a diagonal of P1. 

Proposition 3.2 : There exists exactly one factor in {F , ,  F3, Fq, Fs) which 

contains two diagonals of P,. 



Proof: By Proposition 3.1, each of the Fi's contains a diagonal of P, which 

accounts for four of the five diagonals. The fifth P, diagonal must appear in one of the 
Fits making that factor the only one containing two P1 diagonals.. 

Notation 3.3: Let F2 be the name of the factor with exactly two P, diagonals. 

Theorem 3.4: The only three non-isomorphic possibilities for F2 are those 

shown in Figure 3.2. 

Proof: We assume that F1 has been removed from an unlabeled Kll and show 

that the vertex set of any F2can be labeled in such a way that the structure and 

labeling of F1 is identical to Figure 3.1 and the structure and labeling of F2is identical 

to one of the drawings in Figure 3.2. The reason that many F2's with different 

labelings can be isomorphic stems from the rotations and reflections of the dihedral 

groups for the triangles and pentagon of F1. 

Case 1 Case 3 

Figure 3.2 : Possible F, structures 
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Clearly the two P ,  diagonals in F ,  either share a common vertex (call this 

Case 1) or they are disjoint. If they are disjoint, they cannot both be in the same 

triangle and they cannot both be edges of P,. Thus we are left with the fact that the 

two P 1  diagonals in F2 must occur in different cycles - one in each triangle (call this 

Case 2) or one in P ,  and the other in a triangle (call this Case 3). 

Figure 3.2 establishes that at least one example of each case exists. In each 

of the three cases we will begin with F ,  and an arbitrary F ,  of the type in question and 

show that the eleven vertices can be labeled in such a way that the structure is 

identical with the corresponding drawing in Figure 3.2. 

CASE 1: The P 1  diagonals in F2 share a common vertex. 

Choose an arbitrary F2 whose P 1  diagonals share a common vertex. That 

common vertex must lie in P2 and we label it as vertex 1. 

The two P ,  diagonals account for three of the five vertices of P,. The remaining 

two vertices of P2 must be one each from T I  and D l  and they must be adjacent. Label 

the vertex from T ,  as vertex C and the vertex from D l  as vertex Z .  

Note that starting at vertex 1 and traversing the cycle P2, the shortest path to 

vertex C has exactly one vertex between vertex 1 and vertex C. Label it as vertex 3. 

Continuing around the cycle there is exactly one vertex between vertex Z and vertex 

1. Label it as vertex 4. 

The remaining unlabeled P 1  vertices are adjacent to vertex 1 on the cycle P , .  

Label them as vertex 2 and vertex 5 such that the vertices of P ,  are labeled in 

numerical order around the cycle. 

Now vertex 2 lies in a triangle of F2 whose other two vertices come one each 

from T 1  and D l  (since any other possibility requires the use of another diagonal of P 1  

or the re-use of an edge of F , ) .  Label the T 1  vertex in this triangle as vertex A and 

the D l  vertex as vertex Y. There are now only two unlabeled vertices remaining. 

They are part of the F2 triangle that includes vertex 5. Label the unlabeled vertex in 

T 1  as vertex B and the one in D l  as vertex X .  



Thus any F2 containing adjacent P, diagonals has the same structure as the 

Case 1 diagram in Figure 3.2. 

CASE 2: F2 has one P, diagonal in each of its triangles. 

Choose an arbitrary F2 whose P ,  diagonals lie one each in its two triangles. 

The two diagonals contain four P, vertices. Label the fifth P, vertex as vertex 3. This 

vertex is in P2. The other four vertices of P2 are from T, and Dl. It is clear that as we 

traverse the cycle P2, the vertices are alternately from T, and Dl. Thus vertex 3 is 

adjacent to one vertex of T, and one of Dl. Label the former as vertex C and the latter 

as vertex X. Label the remaining two P2vertices as vertex Y and vertex B such that Y 

is adjacent to C, B is adjacent to X and, of course, B is adjacent to Y. 

Label the remaining T, vertex as vertex A and the remaining Dl  vertex as 

vertex 2. Vertex A is adjacent to two P1 vertices in an F2 triangle (the ends of one of 

the P, diagonals). One of these vertices is adjacent to vertex 3 in P,. Label it as 

vertex 2 and the other as vertex 5. Similarly, vertex Z is adjacent to two P, vertices. 

Again, one of these two vertices is adjacent to vertex 3 in P,. Label it as vertex 4 and 

the other as vertex 1. 

We have now labeled the vertices of an arbitrary F2 from Case 2 in such a way 

that it has the same structure as the Case 2 diagram in Figure 3.2. 

CASE 3: F, has one P, diagonal in P2 and one in a triangle. 

Choose an arbitrary F2 containing one P, diagonal in its pentagon and the other 

in a triangle. As in Case 2, the two P, diagonals contain four of the five vertices of P , .  

Label the fifth vertex as vertex 3. 

Consider the triangle in F2 which contains a P, diagonal. One vertex of that 

diagonal must be adjacent to vertex 3 in P,. Label that vertex as vertex 4 and the 

other as vertex 1. Clearly the third vertex of the triangle was a vertex in T, or Dl. 

Since the naming of T, and Dl was arbitrary, we can assume without loss of generality 

that this third triangle vertex in F, is contained in Dl and label it as vertex 2. 

The F2 triangle containing vertex 3 must also contain one vertex from T, and 

one vertex from Dl. Label the former as vertex C and the latter as vertex X. The 



vertices on the ends of the P 1  diagonal in P2 can be labeled as vertex 2 and vertex 5 so 

that the five vertices of P ,  are labeled with consecutive integers as the cycle is 

traversed. 

Three vertices remain unlabeled - two from T 1  and one from D l  - all three of 

which are contained in P2 along with vertex 2 and vertex 5. Label the remaining D l  

vertex as vertex Y. The two vertices from T 1  cannot be adjacent in P2 and thus one 

must be adjacent to vertex 2 while the other is adjacent to vertex 5, and they must 

both be adjacent to vertex Y. Label the T 1  vertex adjacent to vertex 2 as vertex A and 

the last remaining unlabeled vertex as vertex B. 

We have now labeled the vertices of an arbitrary F2 from Case 3 in such a way 

that it clearly has the same structure as the Case 3 diagram in Figure 3.2. 

Thus we have shown that there are only three non-isomorphic ways to choose 

the first two factors. Figure 3.3 shows the set of edges in Kl,- (Fl+F2) for each of the 

three cases. W 



Case 3 

Figure 3.3 



3.1 The Problem 

How to proceed from here is not clear. In 1979 Wolf Piotrowski [16] reached 

this point and decided to write a computer program to find whether there existed three 

compatible 2-factors in the edge-set left by each of the three cases discussed above. 

The strategy he chose was to construct a list of all possible 2-factors from the edges 

of Kll-(Fl+F2) and then to try to find three edge-disjoint factors from that list. His 

program (in FORTRAN run on a TR 440 computer) found roughly 200 possible factors 

and 200 edge-disjoint pairs of those factors, but no edge-disjoint triad of factors in any 

of the three cases. This proved (assuming no logical or mechanical problems) that the 

partition we seek does not exist. Other than establishing the answer to the basic 

question, the program provided no insight as to why there is no such partition, how 

close one could actually get to completing the final factor, or how one might establish 

the result without using a machine. 

The strategy in the program included in this paper (0BRWLFCH.PRG) 

searches for a solution in a significantly different way from Piotrowski's. Where his 

approach was to generate complete factors and check their compatibility, the one here 

builds up all three factors simultaneously keeping track of how close the process gets 

to a complete set of factors. 

The purpose of 0BRWLFCH.PRG is twofold: (1) to check Piotrowski's result 

using a different strategy so as to minimize the possibility of repeating any errors that 

might exist in h'is program and (2) to keep track of what happens as the program tries 

to build factors in the hope that further light might be shed on exactly what makes this 

factorization impossible and how the result might be arrived at without computer 

assistance. 

In each of the three cases we are dealing with between 233 and 272 pentagon 

possibilities and 25 or 26 triangle possibilities which yield approximately 1016 possible 

factor combinations for each of the three cases. This is an improvement over the 

roughly lo3' possible sets of five 2-factors of K,, that we started with, but the problem 

is still clearly too large to expect a microcomputer to resolve it in any reasonable 

amount of time. 



We can further reduce the number of possibilities to be checked by being 

careful to keep track of the fact that each of the last three factors contains exactly one 

P, diagonal. This is not quite as easy as it seems since the P,  diagonals can just as 

easily show up in a triangle as in a pentagon, but doing so reduces the number of 

possible 2-factor triads to about 10'. 

Though the problem is still clearly too large to do by hand it is small enough for 

a microcomputer to do an exhaustive search for the three final factors while keeping 

track of how close we get to a solution. 

3.2 The Computing 

Given the above argument, we have three sets of edges (see Figure 3.3) each 

left by the removal of F1 and an F, from Kll. In each case we will attempt to extract 

three edge-disjoint 2-factors, each comprising a pentagon and two triangles. The 

labeling of the vertices will be as in Figure 3.3 where the vertices of P, are numbered 

1 through 5 and the vertices of the triangles T1 and Dl are labeled A, B, C and X, Y, Z, 

respectively. 

In each case we will construct databases containing all possible pentagons and 

triangles from the set of edges remaining. Since we know that each 2-factor must 

contain exactly one of the remaining P1 diagonals we distinguish (by placing in 

separate databases) cycles that contain a P1 diagonal (Class 1) and those that do not 

(Class 2). 

Observing that the P1 diagonals 24 and 35 are never used in F, or F,, we can 

arbitrarily name the factors containing them as F, and F5, respectively. This means 

that F, will be the factor that contains the P1 diagonal 25 in Case 1, and the P1 

diagonal 13 in Cases 2 and 3. 

Databases containing pentagons and triangles are named as follows: The first 

two characters (Cl, C2 or C3 ) indicate Case 1, Case 2, or Case 3 depending on which 

Fzis assumed. The second two characters (C1 or C2) indicate Class 1 if the cycles 

include a P1 diagonal or Class 2 if they do not. The next character is either a P (for 

pentagon) or a T (for triangle). If the cycles in the database are class 1, there is one 

more character (3, 4 or 5) that indicates to which factor it must belong. The extension 



is always "DBF" (for DataBase File). Thus C3ClP5.DBF is the database file 

containing Case 3, Class 1 pentagons that are possible for F5 (i.e., that contain the P, 

diagonal 35). 

The possible triangles in each case are few and easily identified without using 

the machine. Therefore all databases containing possible triangles were constructed 

by hand. Possible pentagons, however, are many and were therefore generated by the 

program. 

The dBase I11 Plus programming language is used because of its suitability, its 

availability and the author's familiarity with it. 

3.3 The Setup Programs 

GENC1P.PRG and GENC2P.PRG are the PRoGrams used to GENerate Class 

1 and Class 2 Pentagons, respectively. In order that the main program can more 

quickly determine whether a particular edge is already in use when checking possible 

combinations, the databases are modified by PENTEDGE.PRG and TRIEDGE.PRG 

so that the database includes not only the vertices (in cycle notation) of the pentagons 

and triangles, but also the list of edges used in each. So that each edge has a unique 

label we adopt the convention that an edge is named by listing the two vertices with 

which it is incident in ascending order (note that the computer sees digits as "smaller" 

than letters so that the edge joining vertex Y with vertex 3 will be referred to as edge 

3Y). 

GENC1P.PRG and GENC2P.PRG can be found in the appendix beginning on 

pages 52 and 54, respectively. PENTEDGE.PRG AND TRIEDGE.PRG are on page 

56 of the appendix. The complete set of databases generated by these programs and 

used in the computing for Cases 1, 2 and 3 is provided beginning on pages 57, 64 and 

7 1 of the appendix, respectively. 

The main program that searches for three edge-disjoint 2-factors (each 

comprising a pentagon and two triangles) in Kl,-(Fl+F,) is 0BRWLFCH.PRG. Since 



there are three distinct choices for F,, the program was run three different times. The 

programs used on the three runs were identical except for the names of the databases 

called into use. The following description assumes that we are running Case 1. 

We have nine cycles to find (three pentagons and six triangles, though not 

necessarily in that order) so the program is written in nine levels. 

In levels 1, 2 and 3 we are choosing the class 1 cycles (pentagon or triangle) to 

be used in factors 3, 4 and 5, respectively. In level n, 3 I n 5 5, we are searching for 
D, (a class 2 triangle for Fn.). In level n, 7 S n 5 9, we are choosing (for factors 3, 4 

and 5, respectively), a Class 2 triangle if a Class 1 pentagon has already been chosen 

at level n-6, or a Class 2 pentagon if a Class 1 triangle has already been chosen at 

level n-6. 

On reaching level 8 (having found 7 of the 9 required cycles) it prints out the 

set of cycles found so far so that we can see how close we get to complete solutions. 

The program starts in level 1 with the first record of ClClP3.DBF (the first 

possible Case 1, Class 1 pentagon for F,) and records its edge-set as used for P,. In 

level 2 we then search sequentially through the records of ClClP4.DBF to find a 

Class 1 pentagon (edge-disjoint from P,) to be used as P4. If found, its edge-set is 

recorded as used and we proceed to level 3 to search ClClP5.DBF for a P5 candidate. 

If we find three compatible Class 1 pentagons for F,, F4 and F5, we go 

sequentially to levels 4 through 9 looking through ClC2T.DBF (the set of Class 2 

triangles) to find an edge-disjoint set of six triangles among the remaining available 

edges to complete the three factors. The factors are filled in the following order: D3, 

0 4 ,  Ds, T3, T4, Ts. 

Whenever we reach the end of a database at level n > 3 (meaning that there 

are no more options left at that level with the choices made so far) we back up to level 

n-1 to look at the next record (next possibility) at that level. 

If we reach the end of a pentagon database at level n < 4 we stay at that level 

and begin choosing Class 1 triangles from C1ClTn.DBF. If found, a compatible 

triangle is stored as T ,  and we proceed to the next level (always starting at the top of 

the appropriate database regardless of whether we have been at that level before). 



Since there can only be one Class 1 cycle in any given factor and the T ,  chosen at level 

n is Class 1, if we get as far as level n+6 we open ClC2P.DBF to look for a 

compatible Class 2 pentagon rather than looking for a triangle as described above. 

The entire search can be shown as a digraph (Figure 3.4.1) whose vertices are 

databases and whose edges represent moving between databases. Movement to the 

right represents moving to the next level when a compatible cycle has been found in 

the current database. Movement to the left represents backing up to the previous 

level when the end of a database is reached without finding a compatible cycle. 

Movement down represents staying within the same level (n < 4) when the end of a 

Class 1 pentagon database is encountered without finding a compatible cycle and we 

move to the corresponding Class 1 triangle database. Paths to the possible end 

results of the program are also shown. 

Level 1 Level 2 Level 3 Level4 Level 5 Level 6 Level 7 Level 8 Level 9 
P30rT3 P40rT4 PSorTS D3 D4 DS T3 or P3 T4 or P4 T5 or Ps 

SOLUTION. 

Figure 3.4.1 

JI 
SOLUTIONB 



PROCFILE.PRG is the set of procedures that is invoked at appropriate times 

by 0BRWLFCH.PRG. The FINDP and FINDT procedures do the search through the 

database in use to find a compatible pentagon or mangle, respectively. CPYRCRDS 

is the procedure that copies current node, edge and factor information to the next 

record so that another cycle can be added to the current information while still allowing 

us to return to the current situation if we need to back up. The BACKUP procedure is 

invoked when the end of a database is reached and we need to return to the previous 

level. 

The first version of 0BRWLFCH.PRG took about 9.5 days to do Case 1 on a 

Heathkit HlOO with dBase 111. This was a little too long due to the possibility of 

lightning or people accidentally turning the machine off during the run, so a switch was 

made to dBase IV on an Epson Equity 11+ where it took about 2.5 days to run each of 

the three cases. 

The final versions of 0BRWLFCH.PRG and PROCFIL.PRG can be found in 

the appendix beginning with pages 41 and 47, respectively. The information generated 

by the programs for Cases 1 , 2  and 3can be found beginning on pages 78, 83 and 88 

respectively. 

3.5 Data Anaysis 

The running of 0BRWLFCH.PRG confirmed the findings reached by 

Piotrowski. There do not exist three edge-disjoint, isomorphic 2-factors, each 

comprising a pentagon and two triangles, in any of the three possible cases. 

Consequently, OP(11; 32, 5) has no solution. 

In addition to confuming earlier work, there is further information from this 

program. One might have wondered whether it is possible to argue that one cannot 

find six edge-disjoint triangles or three edge-disjoint pentagons under the constraints 

of the three cases. It is clear from the output data that in each of the three cases there 

are several sets of six appropriate triangles. The program also found sets of three 

appropriate pentagons in each of the cases. Thus no machine-free argument could be 

made on that basis. 



It is also interesting that in all three cases, there were many instances where 

seven of the nine requisite cycles could be found, but never more than seven. In fact it 

is easy to show that it is impossible to find an eighth without also finding the ninth. 

All eleven vertices are degree 10 to begin with and are of even degree 

throughout the entire process. If we ever found an eighth appropriate cycle, we would 

have either three or five edges remaining. The only way of having either three or five 

edges in a graph where all vertices are of even degree is if they form a cycle. Indeed, 

since the vertices would be exactly the vertices as yet not used in the final factor, the 

cycle would be the one we need to complete the factorization. 

Though it is frustrating to be so close, it is worth knowing that in each case we 

miss a complete factorization by the smallest margin possible. 

The output data shows that among the partial factorizations when we are two 

triangles short of a complete factorization three possibilities occur: 1) the edges 

remaining form a 6-cycle, 2) they form two 3-cycles with one common vertex and 3) 

they form two disjoint 3-cycles. This last instance leads to a new result which is 

reported in Section 4. 



4. Solutions in hKn 

Clearly, given any h > 1, any 2-factorization of Kn can be used to 2-factor ?X, 

by simply decomposing each of the h copies separately. However, for the cases of the 

Obenvolfach Problem where no 2-factorization of a particular type is possible we will 

now consider whether that type of decomposition is possible in hKn. The first case 

with no solution is OP(6, 32). We address below only the case where h is even. 

Theorem 4.1: Given an even integer h, XK6 can be partitioned into 2-factors 

each comprising two 3-cycles if and only if h = 0 (mod 4). 

Proof: Given hK6 we label the vertices 1, 2, 3, X, Y, and Z and designate the 

first 2-factor as ((1, 2, 3), (X, Y, Z ) )  without loss of generality. We call an edge Type 

1 if the vertices with which it is incident are either both labeled with numbers or both 

labeled with letters. Type 2 edges are incident with one numbered vertex and one 

vertex labeled with a letter. We call a 3-cycle Class 1 if all its edges are Type 1 and 

Class 2 otherwise. Any 3-cycle that is Class 2 comprises two Type 2 edges and one 

Type 1 edge. Note that no 3-cycle is possible using only Type 2 edges. Also note 

that any 2-factor always comprises two 3-cycles of the same type. 

Consider h = 4t+2 for any positive integer t. The number of Type 2 edges in 

hK6 is 9(4t+2). Since all of these edges must be used in the 2-factorization and since 

they must be used 2 at a time in 3-cycles that are Class 2, we will need 9(4t+2)/2 

Type 1 edges to complete these 3-cycles. Note that this number is always odd. The 

number of Type 1 edges after the first 2-factor is removed is 6(4t+l). This number is 

even. Since it is always six of these edges that would be removed with any 2-factors 

containing 3-cycles that are Class 1, the number of remaining edges will always be 

even. Thus it is not possible to fashion a set of 2-factors comprising 3-cycles that will 

use the entire edge-set of hK6. 

Consider h = 4t. It suffices to show that 4K6 can be 2-factored into 3-cycles. 

The following 2-factors accomplish the decomposition: 



This yields the stated result.. 

The next two cases with no solution are OP(9; 4, 5) and OP(11; 32, 5). To 

preface the next two theorems we note that if 2Kn and 3Kn can be decomposed into 

any particular type of 2-factor, then for any h > 1, so can ?X,, since h = 2s+3t for some 

pair of non-negative integers s and t. It is therefore sufficient to give 2-factorizations 

for 2Kn and 3Kn to establish the result for hKn. 

Theorem 4.2: For any integer h > 1, hK9 can be partitioned into 2-factors, 

where each 2-factor comprises a 4-cycle and a 5-cycle. 

This decomposes 2K9 as required 

This decomposes 3K9 as required and the result follows.. 



Theorem 4.3: For any integer h > 1 ,  hKll  can be partitioned into 2-factors, 

where each 2-factor comprises a 5-cycle and two 3-cycles. 

Proof: The column headed " I S t  Kll" below is a Case 2 partial solution 

generated by 0BRWLFCH.PRG. The unused edges for this partial solution form two 

disjoint triangles; 3AZ and 1CX. Unfortunately, the triangles that are needed to 

complete F4and F5 are 3CZ and lAX, respectively. The column headed " 2 n d ~ l l "  was 

generated from the first in such a way that it is a partial solution whose "extra" 

triangles complete the fourth and fifth factors of the first partial factorization and it can 

use the two "extra" triangles from the first to complete its fourth and fifth factors. 

Thus we have the desired decomposition of 2K1,. 

lSt  Kl l  

12345 
ABC 
XYZ 

3CYBX 
142 
25A 

c z 5 n  
13B 
4AX 

24B5X 

1AY 

35C4Y 

2BZ 

2nd Kll 

12345 
CBA 
XYZ 

3AYBX 
142 
25C 

AZ5Y2 
13B 
4AX 

24B5X 

ICY 

35A4Y 

2BZ 

4T4 needs: 
has: 

+T5 needs: 
has: 



Similarly, the following are modifications of three partial solutions generated by 

0BRWLFCH.PRG which with their "extra" edges exchanged constitute the required 

decomposition of 3Kll. 

4T4 needs: 
has: 

+T5 needs: 
has: 

lSt K~~ 

12345 
ABC 
XYZ 

3CYBX 
142 
25A 

CZ5Y2 
13B 
4AX 

24B5X 

1A Y 

35C4Y 

2BZ 

2nd Kll 

12345 
CBA 
XYZ 

3A YBX 
1 4Z 
25C 

AZ5Y2 
13B 
4 c x  

24B 5X 

3CZ 

35A4Y 

2BZ 

3rd Kll 

42315 
CBA 
YXZ 

3AXBY 
412 
25C 

AZ5Y2 
43B 
I cx 

21B5X 

4CY 

35A4X 

2BZ 

The desired result follows.. 

The fourth and final case with no solution is OP(12; 34). Hanani [7] 

establishes that there is a resolvable (v, 3, 2)-BIBD which is equivalent to the 

decomposition we seek for 2K12. This obviously settles the question for hK12 

whenever h is even. The case where h is odd has not been studied. 



We conclude with a note that may be of some interest. Even though 2K6 

cannot be 2-factored into 3-cycles, it is possible for 2(K,-F) to be decomposed in this 

way. The following is such a 2-factorization: 
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Appendix 

*OBRWLFCH.PRG* 
* * 
* This is the main program for the Oberwolfach problem - case K1, * 
* looking for five disjoint 2-factors each comprising a pentagon * 
* and two triangles. The first factor can be chosen arbitrarily * 
* and the second can be chosen in only three essentially different ways. * 
* This program looks for the third, fourth and fifth factors given the * 
* first and a second factor. Thus the program was run three times on * 
* three sets of data - one for each of the three possibilities for the * 
* second factor. The program here is the one run for Case 1, but the * 
* changes necessary for the last two cases are included in brackets * 
* to the right of the statement that was changed. Variables of the * 
* form CnCmPo stand for Case n, Class m, Pentagon (or T for Triangle) * 
* from factor o. Class 1 Pentagons and Triangles include a diagonal * 
* of the factor 1 pentagon while Class 2 Pentagons and Triangles do not * * * 

CLEAR ALL 
SET TALK OFF 
SET ALTERNATE TO G:OBRUN 
SET ALTERNATE ON 
? "OPENING PROCEDURES FTLE AND BOOKKEEPING DATABASES" 
SET PROCEDURE TO 1:PROCFILE 

* Opening databases for keeping track of edges and nodes that have been * 
* used and remembering which factor pieces have been filled in * 

SELECT 7 
USE 1:USEDNODE ALIAS NODES * This database keeps track of which nodes * 
GO TOP * are already used (in the current factor) * 

SELECT 8 
USE 1:USEDEDGE ALIAS EDGES * This database keeps track of which edges * 
GO TOP * are already used (in any factor) * 

SELECT 6 
USE 1:FACTOR ALIAS FACTORS * This database keeps track of which pieces * 
GO TOP * of which factors have been found already * 

STORE 0 TO COUNT1 
STORE 0 TO COUNT2 
STORE 0 TO COUNT3 
STORE 0 TO COUNT4 
STORE 0 TO COUNTS 
STORE 0 TO COUNT6 
STORE 0 TO COUNT7 
STORE 0 TO COUNT8 
STORE 0 TO COUNT9 
PUBLIC FOUND, PENT, TRI, FACTOR, TRITYPE, STIME, FTIME 
PUBLIC P3, P4, P5, T3, T4, T5, D3, D4, DS 
* The first three levels step through all possible class 1 pentagons and tri- 
* angles (for factors 3, 4 and 5 respectively) which contain a diagonal of the 
* pentagon in the first factor (since each of these factors must contain exactly 
* one such diagonal). The fourth through seventh levels step through all 
* possible class 2 pentagons and triangles trying to fill in the rest of the 
* remaining pieces for each factor. 
? " *LEVEL 1 *" 
SELECT 1 



USE I:ClClP3 ALIAS C1P3 
GO TOP 
STORE '3' TO FACTOR 
STORE 'ClP3' TO PENT 
STORE 1 TO P3CHOSEN 
DO WHILE .NOT. EOFO 

STORE COUNTl+l TO COUNT1 
? COUNT1 
IF P3CHOSEN = 1 

DO FINDP 
IF .NOT. FOUND 
SELECT 1 
USE I:ClClT3 ALIAS C1T3 *[ C2ClT3, C3ClT3 I* 
STORE 'cinl TO TRI 
STORE 'T TO TRITYPE 
STORE 0 TO P3CHOSEN 
GO TOP 
LOOP 

ENDIF 
ELSE 

DO FINDT 
IF .NOT. FOUND 

? "NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR THIS 
CASE." 

DISPLAY MEMORY 
WAIT 
CLOSE DATABASES 
SET ALTERNATE OFF 
RETURN 

ENDIF 
ENDIF 

* LEVEL 2 * 
SELECT 2 
USE I:ClClP4 ALIAS C1P4 
GO TOP 
STORE '4' TO FACTOR 
STORE 'C lP4' TO PENT 
STORE 1 TO P4CHOSEN 
DO WHILE .NOT. €OF() 

STORE COUNT2+1 TO COUNT2 
LF P4CHOSEN = 1 

DO FINDP 
IF .NOT. FOUND 
SELECT 2 
USE I:ClClT4 ALIAS C1T4 *[ C2ClT4, C3ClT4 I* 
STORE 'ClT4' TO TRI 
STORE 'T TO TRITYPE 
STORE 0 TO P4CHOSEN 
GO TOP 
LOOP 

ENDIF 
ELSE 

DO FINDT 
IF .NOT. FOUND 
DO BACKUP 
EXIT 

ENDIF 



ENDIF 
* LEVEL 3 * 

SELECT 3 
USE 1:ClClPS ALIAS C1P5 
GO TOP 
STORE '5' TO FACTOR 
STORE 'C IPS' TO PENT 
STORE 1 TO PSCHOSEN 
DO WHILE .NOT. EOFO 

STORE COUNT3+ 1 TO COUNT3 
IF PSCHOSEN = 1 

DO FINDP 
IF .NOT. FOUND 
SELECT 3 
USE 1:ClClTS ALIAS ClT5 *[ C2ClT5, C3ClTS I* 
STORE 'C ITS' TO TRI 
STORE 'T TO TRITYPE 
STORE 0 TO PSCHOSEN 
GO TOP 
LOOP 

ENDIF 
ELSE 

DO FINDT 
IF NOT. FOUND 
DO BACKUP 
EXIT 

ENDIF 
ENDIF 

* LEVEL 4 * 
SELECT 4 
USE I:ClC2T ALIAS C2T * [ C2C2T, C3C2T I* 
GO TOP 
STORE '3' TO FACTOR 
STORE 'C2T TO TRI 
STORE 'D' TO TRITYPE 
DO WHILE .NOT. EOFO 

STORE COUNT4+1 TO COUNT4 
DO FINDT 
IF FOUND 

STORE RECNO() TO D3RECNO 
ELSE 

DO BACKUP 
EXIT 

ENDIF 
* LEVEL 5 * 

GO TOP 
STORE '4' TO FACTOR 
DO WHILE .NOT. EOFO 
STORE COUNTS+ 1 TO COUNTS 
DO FINDT 
IF FOUND 
STORE RECNOO TO D4RECNO 

ELSE 
DO BACKUP 
EXIT 

ENDIF 
* LEVEL 6 * 



GO TOP 
STORE '5' TO FACTOR 
DO WHILE .NOT. EOFO 
STORE COUNT6+1 TO COUNT6 
DO FINDT 
IF FOUND 
STORE RECNOO TO DSRECNO 

ELSE 
DO BACKUP 
EXIT 
ENDIF 

* LEVEL 7 * 
STORE '3' TO FACTOR 
SELECT C2T 
GO TOP 
STORE 'T TO TRITYPE 
SELECT 5 
USE I:ClC2P ALIAS C2P *[ C2C2P. C3C2P I* 
STORE 'C2P' TO PENT 
GO TOP 
Do WHILE .NOT. EOFO 
STORE COUNT7+ 1 TO COUNT7 
IF P3CHOSEN = 1 
SELECT C2T 
DO FINDT 

ELSE 
SELECT C2P 
DO FINDP 
ENDIF 
IF FOUND 
?FACTORS->P3,FACTORS->n,FACTORS->D3,FACTORS->P4, ; 
FACTORS->T4,FACTORS->D4,FACTORS->P5,FACTORS ->T5, ; 
FACTORS->DS,TIME() 

STORE RECNOO TO F3RECNO 
ELSE 
DO BACKUP 
EXIT 
ENDIF 

* LEVEL 8 * 
STORE '4' TO FACT OR 
SELECT C2T 
GO TOP 
SELECT C2P 
GO TOP 
DO WHILE .NOT. EOFO 
STORE COUNT8+1 TO COUNT8 
IF P4CHOSEN = 1 
SELECT C2T 
DO FINDT 
ELSE 
SELECT C2P 
DO FINDP 
ENDIF 
IF FOUND 
?FACTORS->P3,FACTORS->T3,FACTORS ->D3,FACTORS->P4, ; 
FACTORS->T4,FACTORS->D4,FACTORS->P5,FACTORS->T5, ; 
FACTORS->DS,TIMEO 



STORE RECNOO TO F4RECNO 
ELSE 

DO BACKUP 
EXIT 

ENDIF 
* LEVEL 9 * 

STORE '5' TO FACTOR 
SELECT C2T 
GO TOP 
SELECT C2P 
GO TOP 
DO WHILE .NOT. EOFO 
STORE COUNT9+1 TO COUNT9 
IF PSCHOSEN = 1 
SELECT C2T 
DO FINDT 

ELSE 
SELECT C2P 
DO FINDP 

ENDIF 
IF FOUND 

? "SOLUTION FOUND DESPITE PIOTROWSKI" 
? 
?FACTORS->P3,FACTORS->T3 FACTORS->D3,FACTORS->P4, ; 

FACTORS ->T4,FACTORS->D4,FACTORS->P5,FACTORS ->T5, ; 
FACTORS->DS,TIMEO 

WAIT 
CLOSE DATABASES 
SET ALTERNATE OFF 
RETURN 

ELSE 
DO BACKUP 
EXIT 

ENDIF 
ENDDO 

* BACK TO LEVEL 8 * 
STORE '4' TO FACTOR 
IF P4CHOSEN = 1 
SELECT C2T 
STORE 'C2T TO TRI 

ELSE 
SELECT C2P 
STORE 'C2P' TO PENT 

ENDIF 
GO F4RECNO 

ENDDO 
* BACK TO LEVEL 7 * 
STORE '3' TO FACTOR 
IF P3CHOSEN = 1 
SELECT C2T 
STORE 'C2T TO TRI 

ELSE 
SELECT C2P 
STORE 'C2P' TO PENT 

ENDIF 
GO F3RECNO 

ENDDO 



* BACK TO LEVEL 6 * 
STORE '5' TO FACTOR 
STORE 'D' TO TRITYPE 
STORE 'C2T TO TRI 
SELECT C2T 
GO D5RECNO 

ENDDO 
* BACK TO LEVEL 5 * 
STORE '4' TO FACTOR 
SELECT C2T 
GO D4RECNO 

ENDDO 
* BACK TO LEVEL 4 * 
STORE '3' TO FACTOR 
SELECT C2T 
GO D3RECNO 
STORE 'C2T TO TRI 
STORE 'D' TO TRITYPE 

ENDDO 
* BACK TO LEVEL 3 * 
STORE '5' TO FACTOR 
SELECT 3 
IF PSCHOSEN = 1 
STORE 'ClP5' TO PENT 

ELSE 
STORE 'ClT5' TO TRI 
STORE 'T TO TRITYPE 

ENDIF 
ENDDO 
* BACK TO LEVEL 2 * 
STORE '4' TO FACTOR 
SELECT 2 
IF P4CHOSEN = 1 
STORE 'ClP4' TO PENT 

ELSE 
STORE 'ClT4' TO TRI 

ENDIF 
ENDDO 

* BACK TO LEVEL 1 * 
STORE '3' TO FACTOR 
SELECT 1 
IF P3CHOSEN = 1 

STORE 'C lP3' TO PENT 
ELSE 

STORE 'ClT3' TO TRI 
ENDIF 

ENDDO 
RETURN 



*PROCEDURE FILE FOR OBRWLFCH.PRG* 

PROCEDURE FINDP 

* This procedure finds a pentagon (if it exists) in the current pentagon 
* database that is compatible with the pieces of factors already selected 

STORE .F. TO FOUND 
SKIP 
DO WHILE .NOT. EOFO 

STORE "NW+FACTOR+Vl TO NODE1 
STORE "NW+FACTOR+V2 TO NODE2 
STORE "NU+FACTOR+V3 TO NODE3 
STORE "N"+FACTOR+V4 TO NODE4 
STORE "N"+FACTOR+VS TO NODES 
IF NODES->&NODEl=O .AND. NODES->&NODE2=O .AND. NODES->&NODE3=0; 

.AND. NODES->&NODE4=O .AND. NODES->&NODES=O 
STORE "Ew+El TO EDGE1 
STORE "EW+E2 TO EDGE2 
STORE "EW+E3 TO EDGE3 
STORE "EW+E4 TO EDGE4 
STORE "EW+E5 TO EDGES 
IF EDGES->&EDGE14 .AND. EDGES->&EDGE2=0 .AND. EDGES->&EDGE3=O ; 

.AND. EDGES->&EDGE4=O .AND. EDGES->&EDGE5=O 
STORE Vl+V2+V3+V4+V5 TO MP 
DO CPYRCRDS 
SELECT NODES 

REPLACE &NODE1 WITH 1 
REPLACE &NODE2 WITH 1 
REPLACE &NODE3 WITH 1 
REPLACE &NODE4 WITH 1 
REPLACE &NODES WITH 1 

SELECT EDGES 
REPLACE &EDGE1 WITH 1 
REPLACE &EDGE2 WITH 1 
REPLACE &EDGE3 WITH 1 
REPLACE &EDGE4 WITH 1 
REPLACE &EDGES WITH 1 

SELECT FACTORS 
STORE "P"+FACTOR TO SLOT 
REPLACE &SLOT WITH MP 

SELECT &PENT 
STORE .T. TO FOUND 
EXIT 

ENDIF 
ENDIF 
SKIP 

ENDDO 
IF EOFO 
SKIP -1 

ENDIF 
STORE TIME0 TO FTIME 

RETURN 



PROCEDURE FINDT 

* This procedure finds a triangle (if it exists) in the current triangle 
* database that is compatible with the pieces of factors already selected 

STORE .F. TO FOUND 
SKIP 
DO WHILE .NOT. EOFO 

STORE "NW+FACTOR+V 1 TO NODE1 
STORE "N"+FACTOR+V2 TO NODE2 
STORE "N"+FACTOR+V3 TO NODE3 
IF NODES->&NODEl=O .AND. NODES->&NODE2=O .AND. NODES->&NODE3=O 
STORE "En+E1 TO EDGE1 
STORE "EW+E2 TO EDGE2 
STORE "EW+E3 TO EDGE3 
IF EDGES->&EDGEl=O .AND. EDGES->&EDGE2=0 .AND. EDGES->&EDGE3=O 

STORE Vl+V2+V3 TO MT 
DO CPYRCRDS 
SELECT NODES 

REPLACE &NODE1 WITH 1 
REPLACE &NODE2 WITH 1 
REPLACE &NODE3 WITH 1 

SELECT EDGES 
REPLACE &EDGE1 WITH 1 
REPLACE &EDGE2 WITH 1 
REPLACE &EDGE3 WITH 1 

SELECT FACTORS 
STORE TRITYPE+FACTOR TO SLOT 
REPLACE &SLOT WITH MT 

SELECT &TRI 
STORE .T. TO FOUND 
EXIT 

ENDIF 
ENDIF 
SKIP 

ENDDO 
IF EOFO 

SKIP -1 
ENDIF 
STORE TIME0 TO FTIME 
RETURN 



PROCEDURECPYRCRDS 

* This procedure copies to the next record information about nodes and 
* edges that are currently in use so that nodes and edges from a newly 
* found pentagon or triangle can be added while still preserving the 
* current state in the event that we have to backtrack if the new 
* choice proves to be unworkable 

SELECT NODES 
STORE N31 TO MN31 
STORE N32 TO MN32 
STORE N33 TO MN33 
STORE N34 TO MN34 
STORE N35 TO MN35 
STORE N3A TO MN3A 
STORE N3B TO MN3B 
STORE N3C TO MN3C 
STORE N3X TO MN3X 
STORE N3Y TO MN3Y 
STORE N3Z TO MN3Z 
STORE N4 1 TO MN4 1 
STORE N42 TO MN42 
STORE N43 TO MN43 
STORE N44 TO MN44 
STORE N45 TO MN45 
STORE N4A TO MN4A 
STORE N4B TO MN4B 
STORE N4C TO MN4C 
STORE N4X TO MN4X 
STORE N4Y TO MN4Y 
STORE N4Z TO MN4Z 
STORE N51 TO MN51 
STORE N52 TO MN52 
STORE N53 TO MN53 
STORE N54 TO MN54 
STORE N55 TO MN55 
STORE N5A TO MN5A 
STORE N5B TO MN5B 
STORE N5C TO MN5C 
STORE N5X TO MN5X 
STORE N5Y TO MN5Y 
STORE N5Z TO MN5Z 

APPEND BLANK 
REPLACE N31 WITH MN31, N32 WITH MN32, N33 WITH MN33, ; 

N34 WITH MN34, N35 WITH MN35, N3A WITH MN3A. N3B WITH MN3B, ; 
N3C WITH MN3C, N3X WITH MN3X, N3Y WITH MN3Y, N3Z WITH MN3Z 

REPLACE N41 WITH MN41, N42 WITH MN42, N43 WITH MN43, ; 
N44 WITH MN44, N45 WITH MN45, N4A WITH MN4A, N4B WITH MN4B, ; 
N4C WITH MMC, N4X WITH MN4X, N4Y WITH MN4Y, N4Z WITH MN4Z 

REPLACE N51 WITH MN51, N52 WITH MN52, N53 WITH MN53, ; 
N54 WITH MN54, N55 WITH MN55, N5A WITH MNSA, N5B WITH MNSB, ; 
N5C WITH MNSC, N5X WITH MNSX, N5Y WITH MNSY, N5Z WITH MNSZ 

SELECT EDGES 
STORE E1A TO MElA 
STORE ElB TO MElB 
STORE ElC TO MElC 
STORE E1X TO MElX 



STORE ElY TO MElY 
STORE E1Z TO ME1Z 
STORE E24 TO ME24 
STORE E25 TO ME25 
STORE E2B TO ME2B 
STORE E2C TO ME2C 
STORE E2X TO ME2X 
STORE E2Z TO ME2Z 
STORE E35 TO ME35 
STORE E3A TO ME3A 
STORE E3B TO ME3B 
STORE E3X TO ME3X 
STORE E3Y TO ME3Y 
STORE E3Z TO ME3Z 
STORE E4A TO ME4A 
STORE E4B TO ME4B 
STORE E4C TO ME4C 
STORE E4X TO ME4X 
STORE E4Y TO ME4Y 
STORE E5A TO MESA 
STORE E5C TO ME5C 
STORE E5Y TO ME5Y 
STORE E5Z TO ME5Z 
STORE EAX TO MEAX 
STORE EAZ TO MEAZ 
STORE EBY TO MEBY 
STORE EBZ TO MEBZ 
STORE ECX TO MECX 
STORE ECY TO MECY 

APPEND BLANK 
REPLACE ElA WITH MElA, E1B WITH MElB, E1C WITH MElC, ; 

E1X WITH MEIX, E1Y WITH MElY, E1Z WITH MElZ, E24 WITH ME24, ; 
E25 WITH ME25, E2B WITH ME2B, E2C WITH ME2C, E2X WITH ME2X, ; 
E2Z WITH ME22 

REPLACE E35 WITH ME35, E3A WITH ME3A, E3B WITH ME3B, ; 
E3X WITH ME3X. E3Y WITH ME3Y, E3Z WITH ME3Z. E4A WITH ME4A, ; 
E4B WITH ME4B. E4C WITH ME4C, E4X WITH ME4X, E4Y WITH ME4Y, ; 
E5A WITH MESA 

REPLACE E5C WITH MESC, E5Y WITH MESY, E5Z WITH MESZ, ; 
EAX WITH MEAX. EAZ WITH MEAZ, EBY WITH MEBY. EBZ WITH MEBZ, ; 
ECX WITH MECX, ECY WITH MECY 

SELECT FACTORS 
STORE P3 TO MP3 
STORE T3 TO MT3 
STORE D3 TO MD3 
STORE P4 TO MP4 
STORE T4 TO MT4 
STORE D4 TO MD4 
STORE P5 TO MP5 
STORE T5 TO MT5 
STORE D5 TO MD5 

APPEND BLANK 
REPLACE P3 WITH MP3 
REPLACE T3 WITH MT3 
REPLACE D3 WITH MD3 
REPLACE P4 WITH MP4 
REPLACE T4 WITH MT4 



REPLACE D4 WITH MD4 
REPLACE P5 WITH MP5 
REPLACE T5 WITH MT5 
REPLACE D5 WITH MD5 

RETURN 

PROCEDUREBACKUP 

* This procedure backs us up to the previous working level whenever there 
* are no more possibilities to try with the current configuration. 

SELECT NODES 
STORE RECNOO-1 TO POINTNOD 
DELETE 
PACK 
GO POINTNOD 

SELECT EDGES 
STORE RECN00-1 TO POLNTEDG 
DELETE 
PACK 
GO POINTEDG 

SELECT FACTORS 
STORE RECNOO- 1 TO POINTFAC 

DELETE 
PACK 
GO POINTFAC 

RETURN 



DATA-GENERATING PROGRAMS FOR 
0BRWLFCH.PRG 

* THIS IS A PROGRAM TO GENERATE CLASS 1 PENTAGONS FROM AVAILABLE 
* EDGES FOR THE OBRWLFCH PROBLEM OP(11;3,3,5) 

CLEAR 
CLEAR ALL 
SET TALK OFF 
SELECT 1 

USE C:ClPPEDGE ALIAS PPEDGE [ C:C2PPEDGE and C:C3PPEDGE, resp. ] 
GO TOP 

SELECT 2 
USE C:TDVERTl ALIAS TD1 
GO TOP 

SELECT 3 
USE C:PVERTl ALIAS P 
GO TOP 

SELECT 4 
USE C:TDVERT2 ALIAS TD2 
GO TOP 

SELECT 5 
USE C:EDGEUSED ALIAS USED 
GO TOP 

SELECT 6 
USE C:ClClP ALIAS PENTS 
GO TOP 

SELECT PPEDGE 
DO WHILE .NOT. EOFO 

STORE V 1 TO MV1 
STORE V2 TO MV2 
SELECT TD 1 
Do WHILE .NOT. EOFO 

STORE V TO MV3 
SELECT P 
Do WHILE .NOT. EOFO 

IF V = MV1 .OR. V = MV2 
SKIP 
LOOP 

ELSE 
STORE V TO MV4 

ENDIF 
SELECT TD2 
DO WHILE .NOT. EOFO 

I F v = M V 3  
SKIP 
LOOP 

ELSE 
STORE V TO MV5 

ENDIF 
STORE "EW+MV2+MV3 TO EDGE2 
STORE "EV+MV4+MV3 TO EDGE3 
STORE "EV+MV4+MV5 TO EDGE4 

[ C:C2ClP and C:C3ClP, resp. 1 



STORE "EU+MV1+MVS TO EDGES 
IF USED->&EDGE2=1 .OR. USED->&EDGE3=1 .OR. USED->&EDGE4=1 .OR. ; 

USED->&EDGES= 1 
SKIP 
LOOP 

ELSE 
SELECT PENTS 
APPEND BLANK 

REPLACE V1 WITH MV1 
REPLACE V2 WITH MV2 
REPLACE V3 WITH MV3 
REPLACE V4 WITH MV4 
REPLACE V5 WITH MV5 
REPLACE E l  WITH MVl+MV2 
REPLACE E2 WITH MV2+MV3 
REPLACE E3 WITH MV4+MV3 
REPLACE E4 WITH MV4+MV5 
REPLACE E5 WITH MVl+MVS 

SELECT TD2 
SKIP 

ENDIF 
ENDDO 
GO TOP 
SELECT P 
SKIP 

ENDDO 
GO TOP 
SELECT TD1 
SKIP 

ENDDO 
GO TOP 
SELECT PPEDGE 
SKIP 

ENDDO 
CLOSE DATABASES 
RETURN 



* THIS IS A PROGRAM TO GENERATE CLASS 2 PENTAGONS FROM AVAILABLE 
* EDGES FOR THE OBRWLFCH PROBLEM OP(11;3,3,5) 

CLEAR 
CLEAR ALL 
SET TALK OFF 
SELECT 1 

USE C:ClTDEDGE ALIAS TDEDGE [ C2TDEDGE and C3TDEDGE, resp.] 
GO TOP 

SELECT 2 
USE C:PVERTl ALIAS P1 
GO TOP 

SELECT 3 
USE C:TDVERTl ALIAS TD 
GO TOP 

SELECT 4 
USE C:PVERT2 ALIAS P2 
GO TOP 

SELECT 5 
USE C:EDGEUSED ALIAS USED 
GO TOP 

SELECT 6 
USE C:ClC2P ALIAS PENTS 
GO TOP 

SELECT TDEDGE 
DO WHILE .NOT. EOFO 

STORE V 1 TO MV1 
STORE V2 TO MV2 
SELECT P1 
Do WHILE .NOT. EOFO 

STORE V TO MV3 

[ C2C2P and C3C2P, resp.] 

SELECT TD 
DO WHILE .NOT. EOFO 

IF V = MV1 .OR. V =.'Mv~ 
SKIP 
LOOP 

ELSE 
STORE V TO MV4 

ENDIF 
SELECT P2 
DO WHILE .NOT. EOFO 

I F v = M V 3  
SKIP 
LOOP 

ELSE 
STORE V TO MV5 

ENDIF 
STORE "En+MV3+MV2 TO EDGE2 
STORE "EW+MV3+MV4 TO EDGE3 
STORE "EW+MV5+MV4 TO EDGE4 
STORE "EW+MV5+MVl TO EDGES 
IF USED->&EDGE2=1 .OR. USED->&EDGE3=1 .OR. USED->&EDGE4=1 .OR. ; 

USED->&EDGES= 1 
SKIP 



LOOP 
ELSE 

SELECT PENTS 
APPEND BLANK 

REPLACE V1 WITH MVl 
REPLACE V2 WITH MV2 
REPLACE V3 WITH MV3 
REPLACE V4 WITH MV4 
REPLACE V5 WITH MV5 
REPLACE E l  WITH MVl+MV2 
REPLACE E2 WITH MV3+MV2 
REPLACE E3 WITH MV3+MV4 
REPLACE €4 WITH MV5+MV4 
REPLACE E5 WITH MV5+MV1 

SELECT P2 
SKIP 

ENDIF 
ENDDO 
GO TOP 
SELECT TD 
SKIP 

ENDDO 
GO TOP 
SELECT P1 
SKIP 

ENDDO 
GO TOP 
SELECT TDEDGE 
SKIP 

ENDDO 
CLOSE DATABASES 
RETURN 



* THIS PROGRAM FILLS IN THE EDGES (SMALLEST VALUE NODE FIRST) IN THE* 
* PENTAGON DATABASES WHEN THE VERTICES ARE ALREADY ENTERED. * 
GO TOP 
DO WHILE .NOT. EOFO 

IFV1 c V2 
REPLACE E l  WITH Vl+V2 

ELSE 
REPLACE E l  WITH V2+V1 

ENDIF 
IF v 2  < v 3  

REPLACE E2 WITH V2+V3 
ELSE 

REPLACE E2 WITH V3+V2 
ENDIF 
IF v 3  < v 4  

REPLACE E3 WITH V3+V4 
ELSE 

REPLACE E3 WITH V4+V3 
ENDIF 
IF v 4  < v 5  

REPLACE E4 WITH V4+V5 
ELSE 

REPLACE E4 WITH V5+V4 
ENDIF 
I F V l c V 5  

REPLACE E5 WITH Vl+V5 
ELSE 

REPLACE E5 WITH V5+V1 
ENDIF 
SKIP 

ENDDO 

TRIEDGE.PRG 
*THIS PROGRAM FILLS IN THE EDGES (SMALLEST VALUE NODE FIRST) IN THE* 
*TRIANGLE DATABASES WHEN VERTICES HAVE ALREADY BEEN ENTERED* 
GO TOP 
DO WHILE .NOT. EOFO 

I F V l < V 2  
REPLACE E l  WITH Vl+V2 

ELSE 
REPLACE E 1 WITH V2+V1 

ENDrF 
F V 2 <  v 3  

REPLACE E2 WITH V2+V3 
ELSE 

REPLACE E2 WITH V3+V2 
ENDIF 
I F V l c  v 3  

REPLACE E3 WITH Vl+V3 
ELSE 

REPLACE E3 WITH V3+V1 
ENDIF 
SKIP 

ENDDO 



DATABASES FOR 0BRWLFCH.PRG - CASE 1 













USEDEDGE.DBF (for Case 1) 

Record# E1A E1B E1C E1X E l Y  EIZ E24 E25 E2B E2C E2X E2Z E35 E3A E3B E3X 
1 0 0 0 0 0 0 0 0 0 0 0 0  0 0  0 0  

E3Y E3Z E4A E4B E4C E4X E4Y E5A E5C E5Y E5Z EAX EAZ EBY EBZ ECX ECY 
0 0 0  0 0 0  0 0 0 0 0 0  0 0 0 0  0 



DATABASES FOR 0BRWLFCH.PRG - CASE 2 













Record# El3  E1A E1B E1C E l l  
1 0 0 0 0 0  

E4A E4B E4C E4X E4Y E5B E5C E5X E5Y E5Z EAX EAY EAZ EBZ ECX ECZ 
0 0 0 0  0 0  0 0  0 0  0 0 0 0 0  0 



DATABASES FOR 0BRWLFCH.PRG - CASE 3 











E4A E4B E4C E4X E4Y E5A E5C E5X E5Y E5Z EAX EAZ EBX EBZ ECY ECZ 
0  0 0 0 0 0 0 0 0 0 0 0 0 0  0 0  



USEDNODE.DBF (used in all three cases) 



OUTPUT FROM 0BRWLFCH.PRG - CASE 1 

4CY 1BZ 
1BZ 4CY 
4CY 1BZ 
1BZ 4CY 
4CY 1BZ 
1BZ 4CY 
4CY 1BZ 
1BZ 4CY 

1CX 4BY 
4BY 1CX 
1CX 4BY 
1CX 4BY 
4BY 1CX 
4BY 1CX 

ICY 3BZ 
3BZ 1CY 
ICY 3BZ 
3BZ ICY 
ICY 3BZ 
3BZ 1CY 
ICY 3BZ 
3BZ ICY 

4BY 3AZ 
3AZ 4BY 
4BY 3AZ 
3AZ 4BY 

3BY 1AZ 
1AZ 3BY 
3BY 1AZ 
3BY 1AZ 
1AZ 3BY 
1AZ 3BY 

3BZ 4AX 
4AX 3BZ 

4CX 1AZ 
1AZ 4CX 
4CX 1AZ 
1AZ 4CX 
4CX 1AZ 
1AZ 4CX 
4CX 1AZ 
1AZ 4CX 

1CX 3AZ 

1CX 
1CX 
1CX 
1CX 
1 CX 
1CX 
1CX 
1 CX 

1 AZ 
1 AZ 
1 AZ 
1BZ 
1 AZ 
1BZ 

3AX 
3AX 
3AX 
3AX 
3AX 
3AX 
3AX 
3AX 

1BZ 
1BZ 
1BZ 
1BZ 

3AX 
3AX 
3AX 
3AX 
3AX 
3AX 

1 AZ 
1 AZ 

ICY 
ICY 
1 CY 
ICY 
1 CY 
ICY 
1 CY 
1 CY 

3BY 



352 ICY 
352 ICY 
352 1CX 
352 1CY 
352 1CX 
352 ICY 

3BY 
ICY 
IBY 
ICY 
ICY 
ICY 
ICY 
ICY 
1 CY 
5AZ 
5AZ 
1 AZ 
1 AZ 
ICY 
ICY 
ICY 
5AZ 
5AZ 
5AZ 

24B 3AZ 
24B 5AZ 
24B 1CX 



252 3AX 
252 3AX 
252 3AX 
252 ICY 
252 3AX 
252 1BY 
252 1AX 
252 1AX 
252 1AX 
252 3BY 
252 1CY 
252 ICY 
252 3AX 
252 3AX 
252 3BY 
252 4CX 
252 3BY 
252 3BY 
252 3BY 
252 3BY 

24B 1CX 
24B 1AZ 
24B 1AZ 
24B 1CX 
24B 1CX 
24B 1CX 
24B 1CX 
24B IAX 
24B 1CX 
24B ICY 
24B 1AZ 
24B 5AZ 
24B 1AZ 
24B 5AZ 
24B 5AZ 
24B 1CX 
24B ICY 
24B 3AX 
24B 3AX 
24X 3AZ 
24X 3AZ 
24X 1BZ 
24X 1BZ 
24X 1CY 
24X ICY 
24X ICY 
24X 5AZ 
24X 5AZ 
24X 5AZ 
24X 5AZ 
24X 1CY 
24X 1CY 
24X 1CY 
24X 1CY 
24X 1CY 
24X 3BY 

4CY 
35A 1CX 
35A 4CY 
35A 4CY 
35A 4CY 
35A 4CY 
35A 4CY 
35A 4CY 
35A 4CY 
35A 4CX 
35A 4CX 
35Y 1 c x  
35Y 4CX 
35Y 1CX 
35Y 4CX 
352 4CY 
352 4CX 
352 ICY 
352 4CY 

1CX 
ICY 
1CY 

35A ICY 
35A 1BZ 
35A 2 8 2  
35A 2BZ 
35Y 1CX 
35Y 2BZ 
35Y 2BZ 
35Y 1 c x  
35Y 1BZ 
35Y 2BZ 
35Y 2BZ 
35Y 2BZ 
35Y 2BZ 
352 1 c x  



NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR CASE 1. 

. DISPLAY MEMORY 
STIME priv C "09:33:3lW 
COUNT1 priv N 18 ( 
COUNT2 priv N 233 ( 
COUNT3 priv N 1758 ( 
COUNT4 priv N 4734 ( 
COUNT5 priv N 7865 ( 
COUNT6 priv N 8424 ( 
COUNT7 priv N 4125 ( 
COUNT8 priv N 188 ( 
COUNT9 priv N 0 ( 
FOUND pub L .F. 
PENT pub C "C2P" 
TRI pub C "ClT3" 
FACTOR pub C "3" 
TRITYPE pub C " T  



P3 pub L .F. 
P4 pub L .F. 
P5 pub L .F. 
T3 pub L .F. 
T4 pub L .F. 
T5 pub L .F. 
D3 pub L .F. 
D4 pub L .F. 
D5 pub L 1. 
P3CHOSEN priv N 
P4CHOSEN priv N 
PSCHOSEN pnv N 
D3RECNO priv N 
D4RECNO priv N 
DSRECNO priv N 
F3RECNO priv N 

3 1 variables defined, 
225 variables available, 

0 ( 0.00000000) A:obrwlfch.prg 
0 ( 0.00000000) A:obrwlfch.prg 
0 ( 0.00000000) A:obrwlfch.prg 

18 ( 18.00000000) A:obrwlfch.prg 
12 ( 12.00000000) A:obrwlfch.prg 
14 ( 14.00000000) A:obrwlfch.prg 
20 ( 20.00000000) A:obrwlfch.prg 

191 bytes used 
5809 bytes available 



OUTPUT FROM 0BRWLFCH.PRG - CASE 2 





3AZ 
1AY 
3AY 
1AX 
3 AZ 
1 AX 
3AZ 
3AZ 
3AZ 
3AZ 
3AZ 
3AZ 
5BZ 
3AZ 
3AZ 
3AZ 
1AY 
3AY 
IAY 
3AY 
1AY 
3AZ 
3AZ 
3AZ 
3AZ 
1 AY 
3AZ 
3AZ 
3AZ 

24B 3AZ 
24B 1CX 
24B 1AX 
24B 1AX 
24B 1AX 
24B 3AZ 
24B 3AZ 
24B 3AZ 
24B 3AZ 
24B 3AZ 
24B 3AZ 
24B 3AZ 
24B 3AZ 
24B 1AY 
24B 1AY 
24B 3AZ 
24B 3AZ 
24B 3AZ 
24B 3AZ 
24B IAY 
24B IAY 
24B 3AY 
24B 3AY 
24B 1CX 
24B 1AX 
24B 3AY 
24B 1AY 
24B IAY 





. DISPLAY MEMORY 
STIME pub C "07:47:22" 
COUNT1 priv N 37 ( 
COUNT2 priv N 866 ( 
COUNT3 priv N 8520 ( 
COUNT4 p r i v N  16531(  
COUNT5 priv N 16895 ( 
COUNT6 priv N 11792 ( 
COUNT7 priv N 4687 ( 
COUNT8 priv N 187 ( 
COUNT9 priv N 0 ( 
FOUND pub L .F. 
PENT pub C "C2P" 
TRI pub C "ClT3" 
FACTOR pub C "3" 
TRITYPE pub C " T  
FTIME pub C "13:13:08" 
P3 pub L .F. 
Press any key to continue ... 
P4 pub L .F. 
P5 pub L .F. 
T3 pub L .F. 
T4 pub L .F. 
T5 pub L .F. 
D3 pub L 1. 
D4 pub L .F. 
D5 pub L .F. 
P3CHOSEN priv N 
P4CHOSEN priv N 
PSCHOSEN priv N 
D3RECNO priv N 
D4RECNO priv N 
DSRECNO priv N 
F3RECNO priv N 

32 variables defined, 
224 variables available. 

201 bites used 
5799 bytes available 



OUTPUT FROM OBRWLFCH-PRG - CASE 3 

35A ICY 
35A ICY 
35A ICY 
35A ICY 

35A 1CY 
35A ICY 

ICY 
ICY 

35A ICY 
35A ICY 

2BX 
2BX 
2BX 
2BX 

352 4BX 
352 4BX 

2CY 
2CY 

352 1BX 
352 1BX 



24Y 3AZ 35X2B ICY 
24Y 3AZ 35X2B 1CY 

ICY 
ICY 
5AZ 
5AX 
5AX 
5AX 
5AX 

24C 5AZ 
24C 5AZ 
24C 5AX 
24C 3BZ 
24C 5AX 
24C 5AX 
24Y 5AX 

5CY 
5 c z  
3AZ 
3AZ 
3AZ 
3AZ 
3AZ 
3AZ 
5AZ 
3AZ 
1AX 

24B 5AZ 
24B 1AX 
24B 1AX 
24B 5CZ 
24B 5CZ 
24C 3AZ 
24C 3AZ 
24C 3AZ 

2BZ 
4AX 

35Y 1BX 
352 1BX 
352 1BX 
352 1CY 
352 1BX 

ICY 
35Y 1BX 
35Y 2BZ 
35Y 4AX 
352 ICY 
352 1BX 
352 1BX 

352 4BX 
35Y 4BX 

2BZ 
4BX 
2BZ 
2BZ 

35Y 2BX 
35Y 2BZ 

2BX 
35Y 2BX 
35A 2BX 

4CY 
2CZ 

35Y 2CZ 
35Y 1AX 
35Y 4AX 

2B X 
2BX 
4BX 



NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR CASE 3. 

. DISPLAY MEMORY 
STIME pub C "16:42:2lW 
COUNT1 priv N 37 ( 
COUNT2 priv N 819 ( 
COUNT3 priv N 7651 ( 
COUNT4 priv N 15994 ( 
COUNTS priv N 17709 ( 
COUNT6 priv N 12448 ( 
COUNT7 priv N 4685 ( 
COUNT8 priv N 105 ( 
COUNT9 priv N 0 ( 
FOUND pub L .F. 
PENT pub C "C2P" 
TRI pub C "ClT3" 
FACTOR pub C "3" 
TRITYPE pub C " T  
FTIME pub C "00:17:20m 
P3 pub L .F. 
Press any key to continue ... 
P4 pub L .F. 
P5 pub L .F. 
T3 pub L .F. 
T4 pub L .F. 



T5 pub L .F. 
D3 pub L .F. 
D4 pub L .F. 
D5 pub L .F. 
P3CHOSEN priv N 
P4CHOSEN priv N 
PSCHOSEN priv N 
D3RECNO priv N 
D4RECNO priv N 
DSRECNO priv N 
F3RECNO priv N 

32 variables defined, 
224 variables available, 

0 ( 0.00000000) C:OBRWLC3.prg 
0 ( 0.00000000) C:OBRWLC3.prg 
0 ( 0.00000000) C:OBRWLC3.prg 

16 ( 16.00000000) C:OBRWLC3.prg 
7 ( 7.00000000) C:OBRWLC3.prg 
3 ( 3.00000000) C:OBRWLC3.prg 

1 1 ( 11.00000000) C:OBRWLC3.prg 
201 bytes used 
5799 bytes available 


