The Oberwolfach Problem: A History and Some New Results

by

Peder A. Bolstad
B.A. cum laude, St. Olaf College, 1974

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

in the Department
of
MATHEMATICS
(C) Peder A. Bolstad 1990

SIMON FRASER UNIVERSITY

August 1990

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

Approval

Name: Peder Allan Bolstad

Degree: Master of Science
Title of thesis: The Oberwolfach Problem: A History and Some New Results

Examining Committee:

Chair: Dr. A. Lachlan

> Dr. Brian Alspach
> Senior Supervisor

> Dr. Katherine Heinrich

> Dr. Pavol Hell

> Dr. Luis Goddyn

External Examiner

Date Approved: August 7, 1990

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay
The Oberwolfach Problem: A History and Some New Results
\qquad
\qquad

Author:

Abstract

The Oberwolfach Problem asks whether it is possible to decompose the complete graph on $2 n+1$ vertices (or the complete graph on $2 n$ vertices with a spanning set of independent edges removed) into isomorphic factors each comprising a set of cycles whose combined length is $2 n+1$ (or $2 n$, respectively). We trace the history of the investigation of this problem, giving results that are known and noting questions that remain open. Solutions (or reasons why no solution exists) are given for all variations of the problem for small n. Some of the solutions are new and others have not been published previously. A new computer-assisted proof is given for the nonexistence of a decomposition of the complete graph on eleven vertices into factors comprising a 5-cycle and two 3 -cycles. In the final section we consider each of the cases of the problem that are known to have no solution, and ask whether multiple copies of the complete graph can be 2-factored in the desired way.

This work is dedicated to Dennis and Marie Bolstad, my parents, who started my thinking processes and who have always been loving, supportive and encouraging in whatever serious or silly projects I have decided to undertake, and to the memory of Otis and Dora Trodahl, my maternal grandparents, who led lives driven by caring, and sharing, and who would have been tickled to see this.

Nobody is smarter than all of us.

Acknowlegements

Thanks is due to Brian Alspach for suggesting the topic for this thesis, for being an advocate and guide through various difficulties over the past five years, and for allowing the use of his office and computer during the final writing process. Thanks also to Kathy Heinrich for her exceptionally careful reading of the manuscript drafts. In addition I am also indebted to Patty Johann for helping to make my first year at S.F.U. survivable and to Sylvia Holmes for her tireless and often thankless efforts at keeping things running smoothly.

In addition, I wish to acknowledge Arthur Seebach who has been my most consistent source of intellectual stimulation and irritation since the early 1970's., Ted Vessey who first asked me to solve a case of the Oberwolfach Problem and Loren Larson who first got me interested in discrete mathematics.

Finally, I want to thank Linda Hunter for her encouragement and flexibility, without which the probability of completing this project would have been $\approx \varepsilon$.

Table of Contents

1. The Oberwolfach Problem 1
1.1 Kirkman's Schoolgirl Problem 2
1.2 Hamilton Cycle Decompositions 4
1.3 Uniform Cycle Decompositions 6
1.4 Non-uniform Decompositions 8
2. $O P\left(K_{n} ; a_{1}, a_{2}, \ldots, a_{1}\right)$ Solutions for Small n 10
3. $O P\left(11 ; 3^{2}, 5\right)$ 21
3.1 The Problem 27
3.2 The Computing 28
3.3 The Setup Programs 29
3.4 OBRWLFCH.PRG 29
3.5 Data Analysis 32
4. Solutions in λK_{n} 34
References 39
Appendix
OBRWLFCH.PRG 41
Procedure File for OBRWLFCH.PRG 47
Data-Generating Programs for OBRWLFCH.PRG 52
Databases for OBRWLFCH.PRG - Case 1 57
Databases for OBRWLFCH.PRG - Case 2 64
Databases for OBRWLFCH.PRG - Case 3 71
Output from OBRWLFCH.PRG - Case 1 78
Output from OBRWLFCH.PRG - Case 2 83
Output from OBRWLFCH.PRG - Case 3 88

List of Figures

1.2.1 Walecki construction for solving $O P(2 n, 2 n)$ 4
1.2.2 Walecki construction for solving $O P(2 n+1,2 n+1)$ 5
2.1 Base factors for $O P(8 ; 3,5)$ and $O P\left(8 ; 4^{2}\right)$ solutions 12
2.2 Last three 2 -factors of $O P\left(9 ; 3^{2}\right)$ solution 13
3.1 First 2-factor for $O P\left(11 ; 3^{2}, 5\right)$ decomposition 21
3.2 Possible F_{2} structures 22
3.3 $K_{11}-\left(F_{1}+F_{2}\right)$ 26
3.4.1 OBRWLFCH.PRG flow chart 31

The Oberwolfach Problem: A History and Some New Results

1. The Oberwolfach Problem

Is it possible to partition the edge-set of the complete graph on n vertices (K_{n}) into isomorphic 2 -factors (a 2 -factor is set of disjoint cycles whose vertex set spans the graph being factored)? Such a partitioning is also often referred to as a factorization or decomposition of the graph. It is immediately apparent that each vertex of K_{n} is of degree $n-1$ and that since each cycle removed from the graph decreases the degree of each vertex used by $2, n-1$ must be even if a cycle decomposition is to exist. Thus the question makes sense only if n is odd and this is the original Oberwolfach Problem ($O P$) mentioned in 1967 by Ringel at a graph theory meeting at the Oberwolfach conference center in Germany (hence the name), and first seen in the literature as part of a list of unsolved problems presented by Guy [6].

If we let n be even and consider the graph $K_{n}-F$ where F is a 1 -factor (a set of disjoint edges whose vertices span the vertex set of the graph), we have a graph that is regular of even degree which allows us to consider the question above for these graphs as well. This variation on the $O P$ was originally worked on as a separate problem under the rubric 'NOP' (for 'Nearly Oberwolfach Problem'), but is now accepted as part of the $O P$. The notation for the Oberwolfach Problem used in this thesis is as follows: $\left.O P\left(n ; a_{1}, a_{2}, \ldots, a_{1}\right)\right)$ represents the problem of decomposing K_{n} into isomorphic 2 -factors where each of the 2 -factors comprises one cycle of each length a_{i}, for $i=1,2, \ldots, t$ and $a_{1}+a_{2}+\ldots+a_{t}=n$. When there are cycles of the same length in a 2 -factor, the above notation may be abbreviated by including each length only once in the list with an exponent that indicates the number of cycles of that particular length to be included.

We will review the history of this problem; indicating the techniques used to approach it. Then, for each $K_{2 n}$ on fewer than 19 vertices and for each $K_{2 n+1}$ on fewer than 16 vertices, we will consider all possible cycle combinations into which it might be isomorphically 2 -factored and give such a decomposition if one has been found or a
reason for its non-existence if that has been established. The discussion will include several new factorizations and a proof of the non-existence of a decomposition of K_{11} into five isomorphic 2 -factors each comprising a 5 -cycle and two 3 -cycles (i.e., no solution for $O P\left(11 ; 3^{2}, 5\right)$ exists).

We will conclude by considering the possibility that the cases of the Oberwolfach Problem for which no solution exists in K_{n} might have a solution in λK_{n} a complete multigraph on n vertices where every edge has multiplicity $\lambda>1$.

1.1 Kirkman's Schoolgirl Problem

The quest for 2-factorizations of complete graphs is not new. In the Lady's and Gentleman's Diary of 1850, T.P. Kirkman asked whether it was possible for fifteen schoolgirls to be arranged in five lines of three girls on each of seven days in such a way that each girl was in a line with each of the other girls exactly once during those seven days. This problem is equivalent to asking if K_{15} can be decomposed into seven 2 -factors, each comprising five 3 -cycles. Current notation for the problem would be $O P\left(15 ; 3^{5}\right)$. According to Ball [4], solutions for this problem and the analogous problems where there are 9 and 27 girls in lines of three were found in the same year by unnamed authors through largely empirical methods.

The literature of the years following Kirkman's query contains solutions for various examples of what have now become known as Kirkman Triple Systems. In 1892 Ball [4] collected work done by several separate authors to give a listing of all known solutions for cases of the problem from K_{9} to K_{99}, inclusive. Since we are considering rows of three children, the total number of children must be a multiple of three and since each child is in line with two other children in each arrangement, the total number of children must be odd. Thus the only numbers for which the problem has exact solutions are those that are odd multiples of three (i.e., those of the form $6 m+3$).

Ball reports that solutions were found by different investigators in cases where the number of children is $12 m+3$ when $6 m+1$ is prime, $18 m+3,18 m+9,18 m+15,24 m+3$, and $24 m+9$ where m is a positive integer. In all, solutions collected in [4] settle the question for every number of children from 9 to 99 , inclusive, that is of the form $6 m+3$.

Solutions were arrived at by methods ranging from trial and error to constructing a "base factor" (i.e., an arrangement of the children for the first day) which can be used to generate a full set of 2 -factors by applying a permutation to the vertices of that original 2 -factor and to those of each successive 2 -factor until a complete set of factors is obtained.

It was not until 1971 that a general solution was found for the Kirkman problem. Any number $n=6 m+3$ of children can be arranged in rows of three on $3 m+1$ days in such a way that each child is in the same row with each other child exactly once. The proof was done from the point of view of the theory of balanced incomplete block designs (BIBD's). This gives us our first theorem on solutions to the Oberwolfach Problem.

Theorem 1.1.1: (Ray-Chaudhuri and Wilson [17]) A solution exists for $O P\left(6 m+3 ; 3^{2 m+1}\right)$ for all positive integers m.

The best we could do with an even number of children is to find arrangements where each child is in a line with each other child except one exactly once during the sequence of walks. Solutions for this variation of the problem have became known as Nearly Kirkman Triple Systems (NKTS).

Kotzig and Rosa [14] showed the non-existence of $N K T S(6)$ and $N K T S(12)$, the existence of $N K T S(t v)$ given $N K T S(v)$ for any $t \equiv 3(\bmod 6)$, and the existence of $N K T S(6 t)$ when $6 t$ is the product of two integers r and s where $r \equiv 1(\bmod 3), r \geq 4$ and $s \equiv 1(\bmod 2)$. Baker and Wilson [3] showed $N K T S(6 t)$ exists for $t>2$, except possibly for $t=14,17$ or 29 . Brouwer [5] constructed solutions for two of these three unsolved cases leaving only $t=14$ in question. The final case was reported solved in [12], but the solution was incorrect. The description of a correct construction is given by Rees and Stinson [19]. Throughout these papers the tools, notation and terminology of design theory were employed to obtain the given results. In $O P$ notation we have

Theorem 1.1.2: A solution for $\operatorname{OP}\left(6 t ; 3^{2 t}\right)$ exists for all $t \geq 3$.

1.2 Hamilton Cycle Decompositions

Another variation on the Kirkman problem might be to have n children sit around a circular table on $\lfloor(n-1) / 2\rfloor$ consecutive days arranged in such a way that each child sits next to each other child (except one, if n is even) exactly once. In other words, can K_{n} (or $K_{n}-F$ for even n) can be partitioned into $\lfloor(n-1) / 2\rfloor$ Hamilton cycles (i.e., each 2 -factor is a single cycle containing all vertices of the original graph).

Letter arrangements and a diagram appear (attributed to Walecki) in Lucas' Récréations Mathématiques [15] in 1884 showing base factors for the Hamilton decomposition of K_{11} and $K_{12}-F$ which are easily generalizable into base factors for decomposing any $K_{2 n+1}$ or $K_{2 n}-F$ into Hamilton cycles. Figure 1.2.1 and Figure 1.2.2 below show the generalized base factors for these two infinite classes of $O P$ cases.

The base factor (notated as R below) will become a powerful tool as we proceed. We will use α to stand for a permutation and will write $\alpha(R)$ to indicate the application of α to the vertices of R to obtain another factor. By writing $\alpha^{i}(R)$ we indicate the result of applying the permutation α to the vertices of R and to each resultant factor until α has been applied i different times.

Figure 1.2.1
Figure 1.2 .1 shows the first 2 -factor of the Hamilton decomposition of $K_{2 n}-F$. We have $2 n-2$ vertices on the circumference of a circle labled consecutively from 0 to
$2 n-3$. We join vertex 0 to vertex 1 , vertex 1 to vertex $2 n-3$, vertex $2 n-3$ to vertex 2 , vertex 2 to vertex $2 n-4$, and so on until we reach vertex $n-1$ which is then joined to vertex 0 . Place a vertex labeled ∞_{1} on the edge between vertex 0 and vertex $n-1$, and a vertex labeled ∞_{2} on the edge joining vertex $\lceil(n-1) / 2\rceil$ with vertex $\lceil 3(n-1) / 2\rceil$.

Let this Hamilton cycle be R, and let $\alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right.$.. $\left.2 n-3\right)$ be a permutation of the vertices of R. It is easy to check that the set of cycles generated by $\alpha,\left\{\alpha^{i}(R) \mid i=0,1,2, \ldots, n-2\right\}$, is a complete Hamilton decomposition of $K_{2 n}-F$ where $F=\left\{\left[\infty_{1}, \infty_{2}\right],[i, i+n-1]: i=0,1,2, \ldots, n-1\right\}$. This construction gives us

Theorem 1.2.1: A solution for $O P(2 n ; 2 n)$ exists for all $n>1$.
Figure 1.2.2 shows a base factor for the Hamilton decomposition of $K_{2 n+1}$ by a very similar construction to the one above. We start with $2 n$ vertices labeled from 0 to $2 n-1$ consecutively around the circumference of a circle. Vertex 0 is joined to vertex 1 , vertex 1 to vertex $2 n-1$, vertex $2 n-1$ to vertex 2 and so on until we join vertex $n+1$ to vertex n. Vertex n is then joined to vertex 0 and a vertex labeled ∞ is placed on this last edge. Let this Hamilton cycle be R and let $\alpha=(\infty)(0,1,2, \ldots, 2 n-1)$. Checking shows that $\left\{\alpha^{i}(R): i=0,1,2, \ldots, n-1\right\}$ gives a Hamilton decomposition of $K_{2_{n+1}}$.

Figure 1.2.2

This construction yields
Theorem 1.2.2: A solution for $\operatorname{OP}(2 n+1 ; 2 n+1)$ exists for all $n>0$.

1.3 Uniform Cycle Decompositions

The two parts of the Oberwolfach problem mentioned above are extremes between which lie a number of solved and a large number of unsolved cases. The Kirkman problem asks for a decomposition into the smallest cycle lengths possible and the Hamilton decompositions are decompositions into the longest possible cycle length. In both of these situations we were looking for what are now referred to as decompositions into uniform 2 -factors (i.e., all cycles are the same length).

Several authors from the middle 1970's to the middle 1980's obtained results on uniform 2-factorizations. Hell, Kotzig and Rosa [8] introduced some notation that has become standard in these questions. $D(s)$ is defined as the set of all integers v such that K_{ν} can be decomposed into uniform 2 -factors of s-cycles. That paper included several results. If k is odd and $k \geq 3$ and there exists a resolvable $(v, k, 1)-B I B D$ then $v \in D(k)$. This theorem immediately yields two corollaries. Since for any prime p and positive integer α, there exists a resolvable ($p^{2 \alpha}, p^{\alpha}, 1$)-BIBD, it follows that if p is an odd prime and the integer $\alpha \geq 1$, then $p^{2 \alpha} \in D\left(p^{\alpha}\right)$. It is established in [18] that for any integer $k \geq 2$, there exists a constant $c(k)$ such that for every $v>c(k)$ where v $\equiv k(\bmod k(k-1)$ there exists a resolvable $(v, k, 1)-B I B D$. Thus if k is odd and $k \geq 3$, there exists a constant $c(k)$ such that for all $v \geq c(k)$ where $v \equiv k(\bmod k(k-1)), v \in$ $D(k)$.

Hell, Kotzig and Rosa also show that " $3 s \in D(s)$ if and only if s is odd, $s>1$," by way of a construction. This theorem seems to contradict a theorm in [10] where Horton, Roy, Schellenberg and Stinson note that "For v a positive integer, $\mathrm{v} \in \mathrm{D}(4)$ if and only if v is a multiple of 4 ," which implies that $12 \in D(4)$. This confusion is easily resolved by realizing that in the ten years between these papers, the two parts of the Oberwolfach Problem had become one and thus the meaning of the $D(s)$ notation had changed to accommodate that newly modified understanding of the problem. Thus, in the current literature it is understood that $v \in D(s)$ means that K_{v} (if v is odd) or $K_{v}-F$ (if v is even) can be uniformly 2 -factored into s-cycles. The same problem occurs when earlier authors state results in terms of ' $N O P^{\prime}$. Modern notation would be 'OP' and the restrictions on the parity of v would be either modified or dropped. Throughout this thesis we will use the more modern notation and phrasing, which will occasionally
appear to be slightly different from the original statements of the results being reported.

Back to the results. Hell, Kotzig and Rosa also show in [8] that if $m \in D(s)$ and $n \in D(s)$, then $m n \in D(s)$ by observing that $K_{m n}=K_{m} \times K_{n} \cup K_{m} \otimes K_{n}$ and showing that $K_{m} \times K_{n}$ and $K_{m} \otimes K_{n}$ can be 2 -factored into s-cycles whenever K_{m} and K_{n} can be. Given two graphs G and H, the graph $G \times H$ has vertex set $V(G) \times V(H)$ and an edge $\left[(g, h),\left(g^{\prime}, h^{\prime}\right)\right]$ if and only if $\left[g, g^{\prime}\right] \in E(G)$ and $h=h^{\prime}$, or $\left[h, h^{\prime}\right] \in E(H)$ and $g=g^{\prime} . G \otimes H$ also has vertex set $V(G) \times V(H)$, but has an edge $\left[(g, h),\left(g^{\prime}, h^{\prime}\right)\right]$ if and only if $\left[g, g^{\prime}\right] \in E(G)$ and $\left[h, h^{\prime}\right] \in E(H)$. This latest theorem yields the corollary: $s^{n} \in D(s)$ for odd s and every integer $n \geq 1$. The final theorem in this paper states that $r s \in D(s)$ when $r=3^{k} s^{n-1}, s$ is odd, $s \geq 3, k \geq 0$ and $n \geq 1$, but the arguments only support the claim when $0 \leq k \leq n-1$.

Five years later, Huang, Kotzig and Rosa [11] focused on the even cases (decomposition of $K_{2 n}$ into uniform isomorphic 2-factors) showing that $v \in D(4)$ whenever $v \equiv 0(\bmod 4), 2 k \in D(k)$ for $k \geq 4$, and $6 k \in D(2 k)$ for $k>1$. These proofs were done by direct construction of a base factor and the results were reported in NOP notation. They also give a specific solution for $O P(10 ; 5)$.

In 1985, Horton, Roy, Schellenberg and Stinson [10] collected known results and added a few more of their own. For any positive integers s and $t, 8 t s \in D(4 t)$. If m $\equiv 2(\bmod 4)$ then $4 m \in D(m)$. If n is a multiple of 3 other than 6 and 12 , then we have $m n \in D(m)$. For positive s and $t, 20 t s \in D(10 t)$ and $28 t s \in D(14 t)$. For $m>2$ and t any positive integer except 2 or $4,3 \mathrm{tm} \in D(\mathrm{~m})$. Most of these results are derived from known results about $B I B D$'s, abelian groups and complete bipartite and tripartite graphs.

Alspach and Häggkvist [1] settled all cases of uniform 2-factorizations into even length cycles in the same year. For $m \geq 2,2 m n \in D(2 m)$ for all positive integers n. The proof of this theorem rests on visualizing $K_{2 m n}$ as various wreath products of appropriate size graphs so that the decomposition into $2 m$-cycles follows directly from previously known results. The wreath product $G w r H$ is obtained by replacing each vertex of G with a copy of H, joining two vertices in different copies of H only if the vertices of G corresponding to those copies of H are adjacent. See the solution given
for $O P\left(9 ; 3^{3}\right)$ in Section 2 of this thesis to see an application of the wreath product idea. So we have, in $O P$ notation,

Theorem 1.3.1: If m is even and $m \geq 2$, a solution for $O P(m n ; m)$ exists for every natural number n.

The remaining cases of uniform 2 -factorizations into odd length cycles for all complete graphs (except those of the form $K_{4 m}$ where m is the cycle length) were settled by Alspach, Schellenberg, Stinson and Wagner [2] four years later. The proof of this theorem also relies on visualizing complete graphs as wreath products and showing that decompositions must exist for the various pieces and therefore also for the complete graph.

The last remaining question regarding uniform 2 -factorizations has been answered by Hoffman and Schellenberg [9]. It is now established that $4 m \in D(m)$ and we have

Theorem 1.3.2: For m odd and $m \geq 5$, a solution for $O P(m n ; m)$ exists for every positive integer n. For $m=3$, a solution for $O P(m n ; m)$ exists for every positive integer n except 2 and 4 .

Taken together, Theorem 1.3.1 and Theorem 1.3.2 settle all cases of decomposition into uniform 2 -factors.

1.4 Non-uniform Decompositions

What remains largely an open question in the Oberwolfach Problem is the existence of decompositions of K_{n} into non-uniform 2 -factors. What follows is a collection of results that represent the progress to date.

Köhler [13] has shown that solutions for both $O P(8 k+3 ; 3,4 k, 4 k)$ and $O P(8 k+1 ; 3,8 k-2)$ exist. Huang, Kotzig and Rosa [11] constructed solutions for $O P(k+3 ; 3, k)$ whenever k is odd and $k \geq 5$, and for $O P(k+4 ; 4, k)$ whenever k is even and $k \geq 4$. They also show that a solution exists for $O P(6 k+4 ; 2 k+2,2 k+1,2 k+1)$ when $k \geq 1$ and that a solution for $O P(2 k+2\lceil k / 2\rceil+2 c ; k, k, 2\lceil k / 2\rceil+2 c)$ exists for all positive integers c except 1 .

This is the extent of the general cases that are solved and, though there are solutions to other specific cases, this leaves the Oberwolfach Problem whenever each 2 -factor is to comprise several cycles of different length pretty much wide open.

2. $O P\left(n ; a_{1}, a_{2}, \ldots, a_{t}\right)$ Solutions for Small n

In this section we will give a 2 -factorization (if it is known) or reason for the non-existence of one for each possible combination of cycles into which each $K_{2 n}$ on fewer than 19 vertices and each $K_{2 n+1}$ on fewer than 16 vertices might be decomposed. As we go along we will use different solution techniques so the reader can get a feel for them. Unless otherwise noted, these are decompositions generated by the author, but only the existence of most of the decompositions of K_{18} is new.

The graphs K_{1} and K_{2} contain no cycles, so K_{3} is the first complete graph where the Oberwolfach Problem makes sense. Since K_{3} is a single cycle, it is in itself the solution for $O P(3 ; 3)$
$O P(4 ; 4)$ is the only possible case involving K_{4}. Removing any 1 -factor from K_{4} yields a 4-cycle and thereby a solution.
$O P(5 ; 5)$ and $O P(6 ; 6)$ are solved using the Walecki constructions used earlier to obtain Theorems 1.2.1 and 1.2.2. All Hamilton decompositions in this section will be accomplished by use of this construction.

For writing the solutions in base factor situations we will adopt the notation used by Huang, Kotzig and Rosa in [11]. V is the vertex-set, R, as above, is the base 2 -factor in cycle notation, F is the 1 -factor to be deleted (if appropriate), and α, as in the previous chapter, is the permutation on the vertex-set that is used to generate successive 2 -factors to complete the decomposition. In addition we will denote by F_{i} a 2 -factor of the decomposition which is usually the result of $\alpha^{i}(R)$. The symbol ' ∞ ' will be used to identify vertices that are fixed points of the permutation α. The solutions for $O P(5 ; 5)$ and $O P(6 ; 6)$ in this notation are as follows:
$O P(5 ; 5)$

$$
\begin{aligned}
& V=Z_{4} \cup\{\infty\} \\
& \alpha=(\infty)(0123) \\
& F_{i+1}=\alpha^{i}(R), i=0,1 \\
& R=\{(\infty, 0,1,3,2)\}
\end{aligned}
$$

$$
\begin{array}{ll}
O P(6 ; 6) \quad & V=\mathbf{Z}_{4} \cup\left\{\infty_{1}, \infty_{2}\right\} \\
& \alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)(0123) \\
& F_{i+1}=\alpha^{i}(R), i=0,1 \\
& F=\left\{\left[\infty_{1}, \infty_{2}\right],[0,2],[1,3]\right\} \\
& R=\left\{\left(\infty_{1}, 0,1, \infty_{2}, 3,2\right)\right\}
\end{array}
$$

The first possibility of a 2 -factorization that is not into Hamilton cycles is $O P\left(6 ; 3^{2}\right)$, the decomposition of K_{6} into 3 -cycles, but no solution is possible. As soon as the first 2-factor is selected, the edge set remaining is isomorphic to $K_{3,3}$ (the complete bipartite graph with three vertices in each part) which contains no triangles from which to fashion further 2 -factors.

The decomposition of K_{7} can be done in two ways. The solution for $O P(7 ; 7)$ is a Hamilton decomposition and $O P(7 ; 3,4)$ is accomplished with a permutation that adds 2 to each vertex number to get successive 2 -factors, unlike the permutation for the Hamilton decomposition which adds 1. The solutions are listed below, but notice that when the same V is used or when the F_{i} 's have the same designation for more than one case, we will show them only once at the beginning of the list of base factors. As we go on, the same will be true for α, F and the F_{i} 's.

$$
\begin{array}{ll}
& V=\mathbf{Z}_{6} \cup\{\infty\} \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2 \\
O P(7 ; 7) & \alpha=(\infty)(012345) \\
& R=\{(\infty, 0,1,6,2,5,3,4)\} \\
& \\
O P(7 ; 3,4) \quad & \alpha=(\infty)(024)(135) \\
& R=\{(\infty, 0,1)(2,4,3,5)\}
\end{array}
$$

In addition to the Hamilton decomposition of K_{8}, there are two other possibilities. Their base factors are shown schematically below because they represent another way of thinking about the vertex-set that is helpful in many upcoming cases. The labeling system is that used in [11]. The factorizations follow Figure 2.1. (Note that when V includes a copy of \mathbf{Z}_{n} any addition done in specifying F is done modulo n.)

Figure 2.1

$$
\begin{array}{ll}
& V=\mathbf{Z}_{3} \times\{1,2\} \cup\left\{\infty_{1}, \infty_{2}\right\} \\
& \alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)\left(0_{1} 1_{1} 2_{1}\right)\left(0_{2} 1_{2} 2_{2}\right) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2 \\
& F=\left\{\left[\infty_{1}, \infty_{2}\right],\left[i_{1},(i+1)_{2}\right]: i=0,1,2\right\} \\
O P(8 ; 3,5) & R=\left\{\left(\infty_{2}, 0_{1}, 0_{2}\right),\left(\infty_{1}, 1_{1}, 2_{1}, 1_{2}, 2_{2}\right)\right\} \\
O P\left(8 ; 4^{2}\right) & R=\left\{\left(\infty_{1}, 2_{1}, 1_{2}, 2_{2}\right),\left(\infty_{2}, 0_{2}, 0_{1}, 1_{1}\right)\right\} \\
& V=\mathbf{Z}_{6} \cup\left\{\infty_{1}, \infty_{2}\right\} \\
& \alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)(012345) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2 \\
& F=\left\{\left[\infty_{1}, \infty_{2}\right],[0,3],[1,4],[3,5]\right\} \\
O P(8 ; 8) \quad & R=\left\{\left(\infty_{1}, 0,1,5, \infty_{2}, 2,4,3\right)\right\}
\end{array}
$$

Köhler [13] has shown that there is no solution for $O P(9 ; 4,5)$. He finds that there are only four non-isomorphic ways to choose the first two 2 -factors. He then considers the complements of these graphs. Since none of the complements is isomorphic to any of the original four graphs, they cannot contain two disjoint 2 -factors and the result follows.

A solution for $O P\left(9 ; 3^{3}\right)$ is our first opportunity to visualize a solution in a wreath product. Visualize K_{9} as $K_{3} w r K_{3}$ (i.e., think of a copy of K_{3} being inserted into each of the three vertices of another K_{3} and then join all vertices that are from different copies of K_{3}). The three inserted K_{3} 's form the first 2 -factor and the other three are shown in Figure 5. Following the figure, a solution is given for each $O P$ situation of K_{9}
decomposition that exists. Note that since this solution to $O P\left(9 ; 3^{3}\right)$ does not use a base factor, the 2 -factors F_{i} are listed rather than R and a permutation α.

Figure 2.2

	$V=\mathbf{Z}_{3} \times\{1,2,3\}$
$O P\left(9 ; 3^{3}\right)$	$F_{1}=\left\{\left(0_{i}, 1_{i}, 2_{i}\right): i=1,2,3\right\}$
	$\left.F_{2}=\left\{j_{1}, j_{2}, j_{3}\right): j=0,1,2\right\}$
	$F_{3}=\left\{\left(j_{1},(j+1)_{2},(j+2)_{3}\right): j=0,1,2\right\}$
	$F_{4}=\left\{\left(j_{1},(j+2)_{2},(j+4)_{3}\right): j=0,1,2\right\}$
	$V=\mathbf{Z}_{8} \cup\{\infty\}$
	$\alpha=(\infty)(0,1234567)$
	$F_{i+1}=\alpha^{i}(R), i=0,1,2,3$
$O P(9 ; 3,6)$	$R=\{(\infty, 0,4)(1,2,7,5,6,3)\}$
$O P(9 ; 4,5)$	Not Possible $[12]$
$O P(9 ; 9)$	$R=\{(\infty, 0,1,7,2,6,3,5,4)\}$

Solutions for decomposing K_{10} are similar to those above. The solution for $O P\left(10 ; 5^{2}\right)$ is due to Huang, Kotzig and Rosa [11]. As with $O P\left(9 ; 3^{3}\right)$, it does not use a base factor with a permutation, but rather stipulates each 2 -factor.

$$
O P(10 ; 10)
$$

$$
\begin{aligned}
& V=\mathbf{Z}_{8} \cup\left\{\infty_{1}, \infty_{2}\right\} \\
& \alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)(01234567) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2,3 \\
& F=\left\{\left[\infty_{1}, \infty_{2}\right],[0,4],[1,5],[2,6],[3,7]\right\} \\
& R=\left\{\left(\infty_{1}, 0,1,7,2, \infty_{2}, 6,3,5,4\right)\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
& V=\mathbf{Z}_{4} \times\{1,2\} \cup\left\{\infty_{1}, \infty_{2}\right\} \\
& \alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)\left(0_{1} 1_{1} 2_{1} 3_{1}\right)\left(0_{2} 1_{2} 2_{2} 3_{2}\right) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2,3 \\
& F=\left\{\left[\infty_{1}, \infty_{2}\right],\left[i_{j},(i+2)_{j}\right]: i=0,1 ; j=1,2\right\} \\
O P(10 ; 3,7) & R=\left\{\left(\infty_{2}, 1_{1}, 0_{2}\right),\left(\infty_{1}, 3_{2}, 2_{2}, 2_{1}, 3_{1}, 1_{2}, 0_{1}\right)\right\} \\
O P(10 ; 4,6) & R=\left\{\left(\infty_{1}, 3_{1}, 2_{2}, 3_{2}\right),\left(\infty_{2}, 0_{1}, 1_{2}, 1_{1}, 2_{1}, 0_{2}\right)\right\} \\
O P\left(10 ; 3^{2}, 4\right) & R=\left\{\left(1_{2}, 2_{1}, 3_{1}\right),\left(\infty_{2}, 0_{1}, 0_{2}\right),\left(\infty_{1}, 1_{1}, 2_{2}, 3_{2}\right)\right\} \\
& V=\mathbf{Z}_{5} \times\{1,2\} \\
& F=\left\{\left[i_{1}, i_{2}\right]: i=0,1,2,3,4\right\} \\
O P\left(10 ; 5^{2}\right) & F_{1}=\left\{\left(0_{1}, 1_{1}, 2_{1}, 3_{1}, 4_{1}\right),\left(0_{2}, 1_{2}, 2_{2}, 3_{2}, 4_{2}\right)\right\} \\
& F_{2}=\left\{\left(0_{1}, 2_{1}, 4_{1}, 3_{2}, 1_{2}\right),\left(0_{2}, 2_{2}, 4_{2}, 3_{1}, 1_{1}\right)\right\} \\
& F_{3}=\left\{\left(0_{1}, 3_{1}, 0_{2}, 4_{1}, 2_{2}\right),\left(1_{1}, 3_{2}, 2_{1}, 1_{2}, 4_{2}\right)\right\} \\
& F_{4}=\left\{\left(0_{1}, 3_{2}, 0_{2}, 2_{1}, 4_{2}\right),\left(1_{1}, 4_{1}, 1_{2}, 3_{1}, 2_{2}\right)\right\}
\end{array}
$$

With decomposing K_{11} there is only one problematic case, that of $\operatorname{OP}\left(11 ; 3^{2}, 5\right)$. This case has defied all attempts at a proof of non-existence short of an exhaustive computer search for solutions. This case is dealt with in Section 3 of this thesis. The other decompositions of K_{11} are possible and examples of solutions follow.

$$
\begin{array}{ll}
& V=\mathbf{Z}_{10} \cup\{\infty\} \\
& \alpha=(\infty)(0123456789) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2,3,4 \\
O P(11 ; 11) & R=\{(\infty, 0,1,9,2,8,3,7,4,6,5)\} \\
& V=\mathbf{Z}_{5} \times\{1,2\} \cup\{\infty\} \\
& \alpha=(\infty)\left(0_{1} 1_{1} 2_{1} 3_{1} 4_{1}\right)\left(0_{2} 1_{2} 2_{2} 3_{2} 4_{2}\right) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2,3,4 \\
O P(11 ; 3,8) & R=\left\{\left(\infty, 3_{1}, 4_{2}\right),\left(0_{1}, 0_{2}, 2_{1}, 1_{1}, 4_{1}, 3_{2}, 1_{2}, 2_{2}\right)\right\} \\
O P(11 ; 4,7) & R=\left\{\left(0_{2}, 1_{1}, 3_{1}, 2_{1}\right),\left(\infty, 4_{1}, 4_{2}, 3_{2}, 1_{2}, 0_{1}, 2_{2}\right)\right\} \\
O P(11 ; 5,6) & R=\left\{\left(\infty, 4_{2}, 2_{2}, 3_{2}, 4_{1}\right),\left(0_{1}, 1_{2}, 1_{1}, 2_{1}, 0_{2}, 3_{1}\right)\right\} \\
O P\left(11 ; 3^{2}, 5\right) & \text { Not Possible }[15] \\
O P\left(11 ; 3,4^{2}\right) & R=\left\{\left(\infty, 0_{2}, 4_{1}\right),\left(0_{1}, 2_{1}, 3_{1}, 2_{2}\right),\left(1_{1}, 1_{2}, 3_{2}, 4_{2}\right)\right\}
\end{array}
$$

Once again with K_{12} there is one exceptional case. As mentioned once before, $O P\left(12 ; 3^{4}\right)$ has no solution. Kotzig and Rosa claim in [14] that there are only three non-isomorphic sets of four 2 -factors, but in none of these cases do the remaining edges form a fifth 2 -factor of 3 -cycles. The solutions in the following list that are marked with '*' are also presented in [11].

$$
\begin{aligned}
& V=\mathbf{Z}_{10} \cup\left\{\infty_{1}, \infty_{2}\right\} \\
& \alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)(0123456789) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2,3,4 \\
& F=\left\{\left[\infty_{1}, \infty_{2}\right],[0,5],[1,6],[2,7],[3,8],[4,9]\right\} \\
& O P(12 ; 12) \quad R=\left\{\left(\infty_{1}, 0,1,9,2,8, \infty_{2}, 3,7,4,6,5\right)\right\} \\
& V=\mathbf{Z}_{5} \times\{1,2\} \cup\left\{\infty_{1}, \infty_{2}\right\} \\
& \alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)\left(0_{1} 1_{1} 2_{1} 3_{1} 4_{1}\right)\left(0_{2} 1_{2} 2_{2} 3_{2} 4_{2}\right) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2,3,4 \\
& F=\left\{\left[\infty_{1}, \infty_{2}\right],\left[i_{1},(i+1)_{2}\right]: i=0,1,2,3,4\right\} \\
& O P(12 ; 3,9) \quad R=\left\{\left(\infty_{1}, 4_{1}, 2_{2}\right),\left(\infty_{2}, 0_{1}, 0_{2}, 1_{1}, 3_{1}, 2_{1}, 4_{2}, 3_{2}, 1_{2}\right)\right\} \\
& O P(12 ; 4,8) \quad R=\left\{\left(\infty_{1}, 4_{1}, 3_{2}, 4_{2}\right),\left(\infty_{2}, 0_{1}, 2_{2}, 0_{2}, 2_{1}, 3_{1}, 1_{1}, 1_{2}\right)\right\} \\
& O P\left(12 ; 6^{2}\right) \quad R=\left\{\left(\infty_{1}, 4_{1}, 3_{2}, 0_{1}, 2_{2}, 4_{2}\right),\left(\infty_{2}, 0_{2}, 1_{2}, 1_{1}, 3_{1}, 2_{1}\right)\right\} \\
& O P\left(12 ; 4^{3}\right) \quad R=\left\{\left(\infty_{1}, 1_{1}, \infty_{2}, 1_{2}\right),\left(4_{1}, 2_{2}, 4_{2}, 3_{2}\right),\left(0_{1}, 0_{2}, 3_{1}, 2_{1}\right)\right. \\
& O P\left(12 ; 3^{4}\right) \quad \text { Not Possible [13] } \\
& \alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)\left(0_{1} 1_{1} 2_{1} 3_{1} 4_{1}\right)\left(0_{2} 1_{2} 2_{2} 3_{2} 4_{2}\right) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2,3,4 \\
& F=\left\{\left[\infty_{1}, \infty_{2}\right],\left[i_{1},(i+3)_{2}\right]: i=0,1,2,3,4\right\} \\
& \text { *OP(12; 5, 7) } \quad R=\left\{\left(\infty_{1}, 4_{1}, 3_{2}, 2_{1}, 4_{2}\right),\left(\infty_{2}, 3_{1}, 1_{1}, 0_{1}, 0_{2}, 2_{2}, 1_{2}\right)\right\} \\
& \text { *OP(12; } \left.3^{2}, 6\right) \quad R=\left\{\left(\infty_{1}, 0_{1}, 1_{2}\right),\left(\infty_{2}, 1_{1}, 0_{2}\right),\left(2_{1}, 4_{1}, 3_{1}, 3_{2}, 2_{2}, 4_{2}\right)\right\} \\
& \text { *OP(12, 3, 4, 5) } R=\left\{\left(\infty_{1}, 3_{1}, 0_{2}\right),\left(4_{1}, 3_{2}, 2_{2}, 4_{2}\right),\left(\infty_{2}, 1_{1}, 2_{1}, 0_{1}, 1_{2}\right)\right\}
\end{aligned}
$$

All possible cycle combinations for decomposing K_{13} have been accomplished and an example of each follows. Though the notation has been adjusted to match the rest of this section, the solution given for $O P(13 ; 6,7)$ is due to Köhler [13], and the five solutions marked with ' + ' are due to Piotrowski [16]. Notice that the Piotrowski solutions have two base factors and a more complicated permutation.

	$V=\mathbf{Z}_{12} \cup\{\infty\}$
	$\alpha=(\infty)(01234567891011)$
	$F_{i+1}=\alpha^{i}(R), i=0,1,2,3,4,5$
$O P(13 ; 13)$	$R=\{(\infty, 0,1,11,2,10,3,9,4,8,5,7,6)\}$
$O P(13 ; 5,8)$	$R=\{(\infty, 0,11,5,6),(1,3,8,4,7,9,2,10)\}$
$O P(13 ; 6,7)$	$R=\{(0,1,3,6,7,9),(\infty, 5,10,2,8,4,11)\}$
$O P\left(13 ; 3^{2}, 7\right)$	$R=\{(1,2,10),(4,8,7),(\infty, 0,5,3,9,11,6)\}$
$O P\left(13 ; 4^{2}, 5\right)$	$R=\{(2,4,9,5),(8,10,3,11)(\infty, 0,1,7,6)\}$

$$
\begin{array}{ll}
& V=\mathbf{Z}_{3} \times\{1,2,3,4\} \cup\{\infty\} \\
& \alpha=(\infty)\left(0_{1} 1_{1} 2_{1}\right)\left(0_{2} 1_{2} 2_{2}\right)\left(0_{3} 1_{3} 2_{3}\right)\left(0_{4} 1_{4} 2_{4}\right) \\
& F_{i+1}=\alpha^{i}\left(R_{1}\right), i=0,1,2 \\
& F_{i+1}=\alpha^{i}\left(R_{2}\right), i=3,4,5 \\
+O P(13 ; 3,10) & R_{1}=\left\{\left(1_{4}, 2_{2}, 2_{3}\right),\left(\infty, 0_{3}, 0_{4}, 1_{1}, 1_{3}, 0_{1}, 2_{1}, 2_{4}, 1_{2}, 0_{2}\right)\right\} \\
& R_{2}=\left\{\left(1_{1}, 2_{2}, 2_{4}\right),\left(\infty, 0_{4}, 1_{4}, 0_{3}, 1_{3}, 2_{1}, 1_{2}, 2_{3}, 0_{2}, 0_{1}\right)\right\} \\
+O P(13 ; 4,9) & R_{1}=\left\{\left(1_{1}, 0_{4}, 0_{3}, 1_{3}\right),\left(\infty, 0_{1}, 2_{1}, 1_{2}, 2_{4}, 2_{2}, 1_{4}, 2_{3}, 0_{2}\right)\right\} \\
& R_{2}=\left\{\left(\infty, 0_{3}, 1_{4}, 0_{4}\right),\left(0_{1}, 0_{2}, 1_{2}, 2_{3}, 2_{2}, 1_{1}, 2_{4}, 2_{1}, 1_{3}\right)\right\} \\
+O P\left(13 ; 3,5^{2}\right) & R_{1}=\left\{\left(0_{4}, 2_{1}, 2_{3}\right),\left(\infty, 0_{1}, 1_{3}, 0_{3}, 0_{2}\right),\left(1_{1}, 1_{2}, 2_{4}, 1_{4}, 2_{2}\right)\right\} \\
& R_{2}=\left\{\left(0_{1}, 2_{1}, 2_{4}\right),\left(\infty, 0_{3}, 1_{1}, 0_{2}, 0_{4}\right),\left(1_{2}, 2_{2}, 1_{3}, 1_{4}, 2_{3}\right)\right\} \\
+O P(13 ; 3,4,6) & R_{1}=\left\{\left(1_{4}, 2_{2}, 2_{3}\right),\left(0_{3}, 0_{4}, 1_{1}, 1_{3}\right),\left(\infty, 0_{1}, 2_{1}, 2_{4}, 1_{2}, 0_{2}\right)\right\} \\
& R_{2}=\left\{\left(1_{1}, 2_{2}, 2_{4}\right),\left(\infty, 0_{3}, 1_{4}, 0_{4}\right),\left(0_{1}, 0_{2}, 2_{3}, 1_{2}, 2_{1}, 1_{3}\right)\right\} \\
+O P\left(13 ; 3^{3}, 4\right) & R_{1}=\left\{\left(\infty, 0_{1}, 0_{2}\right),\left(1_{2}, 2_{1}, 2_{4}\right),\left(1_{4}, 2_{2}, 2_{3}\right),\left(0_{3}, 0_{4}, 1_{1}, 1_{3}\right)\right\} \\
& R_{2}=\left\{\left(0_{1}, 2_{1}, 1_{3}\right),\left(0_{2}, 1_{2}, 2_{3}\right),\left(1_{1}, 2_{2}, 2_{4}\right),\left(\infty, 0_{3}, 1_{4}, 0_{4}\right)\right\}
\end{array}
$$

There being nothing particularly special about the decompositions of K_{14}, we simply list them. Again, solutions marked with '*' also appear in [11]. It is perhaps worth noting that the solution for $O P\left(14 ; 4^{2}, 6\right)$ in $[11]$ is incorrect.
$O P(14 ; 14)$

$$
\begin{aligned}
& V=\mathbf{Z}_{12} \cup\left\{\infty_{1}, \infty_{2}\right\} \\
& \alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)(01234567891011) \\
& F_{i+1}=\alpha^{(}(R), i=0,1,2,3,4,5 \\
& F=\left\{\left[\infty_{1}, \infty_{2}\right],[0,6],[1,7],[2,8],[3,9],[4,10],[5,11]\right\} \\
& R=\left\{\left(\infty_{1}, 0,1,11,2,10,3, \infty_{2}, 9,4,8,5,7,6\right)\right\}
\end{aligned}
$$

$$
V=\mathbf{Z}_{6} \times\{1,2\} \cup\left\{\infty_{1}, \infty_{2}\right\}
$$

$$
\alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)\left(0_{1} 1_{1} 2_{1} 3_{1} 4_{1} 5_{1}\right)\left(0_{2} 1_{2} 2_{2} 3_{2} 4_{2} 5_{2}\right)
$$

$$
F_{i+1}=\alpha^{i}(R), i=0,1,2,3,4,5
$$

$$
F=\left\{\left[\infty_{1}, \infty_{2}\right],\left[i_{j},(i+3)_{j}\right]: i=0,1,2 ; j=1,2\right\}
$$

$O P(14 ; 3,11) \quad R=\left\{\left(\infty_{1}, 5_{1}, 4_{2}\right),\left(\infty_{2}, 2_{1}, 3_{1}, 1_{1}, 5_{2}, 4_{1}, 0_{2}, 0_{1}, 3_{2}, 1_{2}, 2_{2}\right)\right\}$
$O P(14,4,10) \quad R=\left\{\left(\infty_{1}, 5_{1}, 3_{2}, 5_{2}\right),\left(\infty_{2}, 3_{1}, 0_{2}, 1_{2}, 2_{1}, 4_{2}, 4_{1}, 0_{1}, 1_{1}, 2_{2}\right)\right\}$
*OP(14, 5, 9) $\quad R=\left\{\left(\infty_{1}, 5_{1}, 5_{2}, 4_{2}, 2_{2}\right),\left(\infty_{2}, 0_{1}, 4_{1}, 1_{2}, 3_{1}, 2_{1}, 3_{2}, 1_{1}, 0_{2}\right)\right\}$
*OP $(14 ; 6,8) \quad R=\left\{\left(\infty_{1}, 0_{1}, 5_{1}, 5_{2}, 4_{2}, 2_{2}\right),\left(\infty_{2}, 0_{2}, 1_{1}, 3_{2}, 2_{1}, 4_{1}, 1_{2}, 3_{1}\right)\right\}$
$O P\left(14 ; 7^{2}\right) \quad R=\left\{\left(\infty_{1}, 5_{1}, 4_{2}, 1_{1}, 2_{2}, 3_{2}, 5_{2}\right),\left(\infty_{2}, 4_{1}, 0_{2}, 0_{1}, 2_{1}, 3_{1}, 1_{2}\right)\right\}$
*OP(14; $\left.3^{2}, 8\right) \quad R=\left\{\left(\infty_{1}, 2_{1}, 0_{2}\right),\left(\infty_{2}, 3_{1}, 2_{2}\right),\left(0_{1}, 1_{2}, 5_{2}, 4_{2}, 4_{1}, 5_{1}, 1_{1}, 3_{2}\right)\right\}$
*OP(14; 3, 4, 7) $\quad R=\left\{\left(3_{1}, 4_{1}, 1_{2}\right),\left(\infty_{1}, 5_{1}, 5_{2}, 4_{2}\right),\left(\infty_{2}, 0_{1}, 2_{1}, 3_{2}, 1_{1}, 0_{2}, 2_{2}\right)\right\}$
*OP $(14 ; 3,5,6) \quad R=\left\{\left(3_{1}, 4_{1}, 1_{2}\right),\left(\infty_{1}, 5_{1}, 5_{2}, 4_{2}, 2_{2}\right),\left(\infty_{2}, 0_{1}, 2_{1}, 3_{2}, 1_{1}, 0_{2}\right)\right\}$
$O P\left(14 ; 4^{2}, 6\right) \quad R=\left\{\left(\infty_{2}, 0_{2}, 2_{2}, 3_{1}\right),\left(0_{1}, 1_{1}, 1_{2}, 4_{1}\right),\left(\infty_{1}, 5_{1}, 3_{2}, 2_{1}, 4_{2}, 5_{2}\right)\right\}$
*OP(14; 4, 5 $\left.{ }^{2}\right) \quad R=\left\{\left(\infty_{1}, 3_{1}, 1_{1}, 4_{2}\right),\left(\infty_{2}, 4_{1}, 5_{1}, 1_{2}, 2_{2}\right),\left(0_{1}, 0_{2}, 2_{1}, 3_{2}, 5_{2}\right)\right\}$
*OP $\left(14 ; 3^{3}, 5\right) \quad R=\left\{\left(\infty_{1}, 5_{1}, 3_{2}\right),\left(\infty_{2}, 4_{1}, 1_{2}\right),\left(3_{1}, 4_{2}, 5_{2}\right),\left(0_{1}, 1_{1}, 0_{2}, 2_{2}, 2_{1}\right)\right\}$
$* O P\left(14 ; 3^{2}, 4^{2},\right) \quad R=\left\{\left(\infty_{1}, 5_{1}, 3_{2}\right),\left(\infty_{2}, 4_{1}, 5_{2}\right),\left(0_{1}, 1_{1}, 3_{1}, 0_{2}\right),\left(2_{1}, 1_{2}, 2_{2}, 4_{2}\right)\right\}$

The decompositions of K_{15} are also routine, but for $\operatorname{OP}\left(15 ; 3^{5}\right)$, the original Kirkman problem, we give "an explicit solution of Kirkman's Problem in its original form" from Ball [4].
$O P(15 ; 15)$

$$
\begin{aligned}
& V=\mathbf{Z}_{14} \cup\{\infty\} \\
& \alpha=(\infty)(012345678910111213) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2,3,4,5,6 \\
& R=\{(\infty, 0,1,13,2,12,3,11,4,10,5,9,6,8,7)\}
\end{aligned}
$$

$\mathrm{V}=\mathbf{Z}_{7} \times\{1,2\} \cup\{\infty\}$
$\alpha=(\infty)\left(0_{1} 1_{1} 2_{1} 3_{1} 4_{1} 5_{1} 6_{1}\right)\left(0_{2} 1_{2} 2_{2} 3_{2} 4_{2} 5_{2} 6_{2}\right)$
$F_{i+1}=\alpha^{i}(R), i=0,1,2,3,4,5,6$
$O P(15 ; 3,12)$
$R=\left\{\left(0_{2}, 1_{2}, 3_{2}\right),\left(\infty, 6_{2}, 3_{1}, 2_{1}, 5_{1}, 0_{1}, 2_{2}, 1_{1}, 5_{2}, 6_{1}, 4_{2}, 4_{1}\right)\right\}$
$O P(15 ; 4,11) \quad R=\left\{\left(\infty, 6_{1}, 5_{2}, 6_{2}\right),\left(0_{1}, 2_{2}, 4_{2}, 3_{1}, 3_{2}, 0_{2}, 2_{1}, 4_{1}, 1_{2}, 5_{1}, 1_{1}\right)\right\}$
$O P(15 ; 5,10) \quad R=\left\{\left(\infty, 6_{1}, 5_{2}, 3_{2}, 6_{2}\right),\left(0_{1}, 0_{2}, 2_{1}, 4_{2}, 1_{1}, 4_{1}, 3_{1}, 5_{1}, 2_{2}, 1_{2}\right)\right\}$
$O P(15 ; 6,9) \quad R=\left\{\left(\infty, 6_{1}, 4_{2}, 5_{2}, 3_{2}, 6_{2}\right),\left(0_{1}, 1_{2}, 4_{1}, 0_{2}, 5_{1}, 2_{1}, 2_{2}, 3_{1}, 1_{1}\right)\right\}$
$O P(15 ; 7,8) \quad R=\left\{\left(\infty, 6_{1}, 6_{2}, 3_{2}, 2_{2}, 4_{2}, 5_{1}, 1_{2}\right),\left(0_{1}, 1_{1}, 4_{1}, 5_{2}, 3_{1}, 0_{2}, 2_{1}\right)\right\}$
$O P\left(15 ; 3^{2}, 9\right) \quad R=\left\{\left(0_{1}, 3_{1}, 4_{2}\right),\left(0_{2}, 2_{2}, 3_{2}\right),\left(\infty, 5_{1}, 6_{1}, 4_{1}, 6_{2}, 1_{1}, 1_{2}, 2_{1}, 5_{2}\right)\right\}$
$O P(15 ; 3,4,8) \quad R=\left\{\left(0_{2}, 1_{2}, 3_{2}\right),\left(\infty, 6_{2}, 3_{1}, 4_{1}\right),\left(0_{1}, 2_{2}, 1_{1}, 5_{2}, 5_{1}, 4_{2}, 6_{1}, 2_{1}\right)\right\}$
$O P(15 ; 3,5,7) \quad R=\left\{\left(0_{2}, 4_{1}, 5_{1}\right),\left(\infty, 6_{1}, 5_{2}, 3_{2}, 4_{2}\right),\left(1_{1}, 1_{2}, 3_{1}, 0_{1}, 2_{1}, 6_{2}, 2_{2}\right)\right\}$
$O P\left(15 ; 3,6^{2}\right) \quad R=\left\{\left(2_{1}, 3_{1}, 3_{2}\right),\left(\infty, 6_{2}, 1_{2}, 4_{2}, 5_{2}, 0_{1}\right),\left(0_{2}, 1_{1}, 4_{1}, 6_{1}, 2_{2}, 5_{1}\right)\right\}$
$O P\left(15 ; 4^{2}, 7\right) \quad R=\left\{\left(\infty, 5_{2}, 3_{1}, 1_{1}\right),\left(0_{2}, 4_{1}, 2_{2}, 3_{2}\right),\left(6_{1}, 6_{2}, 4_{2}, 0_{1}, 1_{2}, 2_{1}, 5_{1}\right)\right\}$
$O P(15 ; 4,5 ; 6) \quad R=\left\{\left(5_{1}, 2_{1}, 5_{2}, 3_{1}\right),\left(\infty, 6_{1}, 6_{2}, 3_{2}, 4_{2}\right),\left(0_{1}, 1_{1}, 0_{2}, 2_{2}, 4_{1}, 1_{2}\right)\right\}$
$O P\left(15 ; 5^{3}\right) \quad R=\left\{\left(\infty, 5_{2}, 3_{1}, 3_{2}, 4_{1}\right),\left(0_{1}, 1_{1}, 6_{2}, 2_{1}, 5_{1}\right),\left(0_{2}, 1_{2}, 4_{2}, 2_{2}, 6_{1}\right)\right\}$
$O P\left(15 ; 3^{3}, 6\right) \quad R=\left\{\left(0_{1}, 1_{1}, 1_{2}\right),\left(2_{1}, 4_{1}, 0_{2}\right),\left(3_{1}, 6_{1}, 5_{2}\right),\left(\infty, 5_{1}, 2_{2}, 3_{2}, 6_{2}, 4_{2}\right)\right\}$
$O P\left(15 ; 3,4^{3}\right) \quad R=\left\{\left(0_{1}, 5_{1}, 4_{1}\right),\left(\infty, 6_{1}, 3_{2}, 4_{2}\right),\left(0_{2}, 1_{1}, 2_{2}, 2_{1}\right),\left(1_{2}, 6_{2}, 3_{1}, 5_{2}\right)\right\}$
$O P\left(15 ; 3^{2}, 4,5\right) R=\left\{\left(0_{1}, 1_{1}, 0_{2}\right),\left(6_{1}, 1_{2}, 4_{2}\right),\left(2_{1}, 5_{1}, 3_{1}, 6_{2}\right),\left(\infty, 4_{1}, 5_{2}, 3_{2}, 2_{2}\right)\right\}$
$O P\left(15 ; 3^{5}\right) \quad F_{1}=\{(1,2,3),(4,8,12),(5,10,15),(6,11,13),(7,9,14)\}$

$$
V=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}
$$

$F_{2}=\{(1,4,5),(2,8,10),(3,13,14),(6,9,15),(7,11,12)\}$
$F_{3}=\{(1,6,7),(2,9,11),(3,12,15),(4,10,14),(5,8,13)\}$
$F_{4}=\{(1,8,9),(2,12,14),(3,5,6),(4,11,15),(7,10,13)\}$
$F_{5}=\{(1,10,11),(2,13,15),(3,4,7),(5,9,12),(6,8,14)\}$
$F_{6}=\{(1,12,13),(2,4,6),(3,9,10),(5,11,14),(7,8,15)\}$
$F_{7}=\{(1,14,15),(2,5,7),(3,8,11),(4,9,13),(6,10,12)\}$

The decompositions of K_{16} are routine and once again solutions from [11] are marked with an asterisk.

The decompositions of K_{17} are not all known and, like those of K_{13}, appear to be more difficult to produce. Piotrowski [16] gives solutions for $O P\left(17 ; 3^{4}, 5\right), O P\left(17 ; 3^{2}\right.$, $5,6), O P(17 ; 3,5,9), O P(17 ; 4,5,8), O P\left(17 ; 5^{2}, 7\right), O P\left(17 ; 5,6^{2}\right)$, and $O P(17 ; 5,12)$. Of course, the Hamilton decomposition is also known.

Specific decompositions for some K_{18} cases have been given elsewhere, but this is the first complete set of solutions documented. The solution to $O P\left(18 ; 3^{6}\right)$ is
the solution for NKTS(18), the smallest Nearly Kirkman Triple System to have a solution. The solution we present for this case is from Kotzig and Rosa [14].
$O P(18 ; 18) \quad R=\left\{\left(\infty_{1}, 0,1,15,2,14,3,13,4, \infty_{2}, 12,5,11,6,10,7,9,8\right)\right\}$

$$
\begin{aligned}
& V=\mathbf{Z}_{16} \cup\left\{\infty_{1}, \infty_{2}\right\} \\
& \alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)(0123456789101112131415) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2,3,4,5,6,7 \\
& F=\left\{\left[\infty_{1}, \infty_{2}\right],[0,8],[1,9],[2,10],[3,11],[4,12],[5,13]\right. \\
& \quad[6,14],[7,15]\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}=\mathrm{Z}_{8} \times\{1,2\} \cup\left\{\infty_{1}, \infty_{2}\right\} \\
& \alpha=\left(\infty_{1}\right)\left(\infty_{2}\right)\left(0_{1} 1_{1} 2_{1} 3_{1} 4_{1} 5_{1} 6_{1} 7_{1}\right)\left(0_{2} 1_{2} 2_{2} 3_{2} 4_{2} 5_{2} 6_{2} 7_{2}\right) \\
& F_{i+1}=\alpha^{i}(R), i=0,1,2,3,4,5,6,7 \\
& F=\left\{\left[\infty_{1}, \infty_{2}\right],\left[i_{j},(i+4)_{j}\right]: i=0,1,2,3 ; j=1,2\right\}
\end{aligned}
$$

$O P(18 ; 3,15) \quad R=\left\{\left(\infty_{1}, 7_{1}, 6_{2}\right),\left(\infty_{2}, 2_{1}, 1_{1}, 3_{1}, 6_{1}, 7_{2}, 5_{1}, 0_{2}, 3_{2}, 1_{2}, 2_{2}, 4_{1}, 4_{2}, 0_{1}, 5_{2}\right)\right\}$
$O P(18 ; 4,14) \quad R=\left\{\left(\infty_{1}, 7_{1}, 6_{2}, 7_{2}\right),\left(\infty_{2}, 4_{1}, 1_{1}, 0_{1}, 2_{1}, 0_{2}, 3_{2}, 1_{2}, 6_{1}, 2_{2}, 5_{1}, 5_{2}, 3_{1}, 4_{2}\right)\right\}$
$O P(18 ; 5,13) \quad R=\left\{\left(\infty_{1}, 7_{1}, 7_{2}, 6_{2}, 4_{2}\right),\left(\infty_{2}, 3_{1}, 1_{2}, 6_{1}, 2_{2}, 5_{2}, 0_{1}, 5_{1}, 4_{1}, 2_{1}, 3_{2}, 1_{1}, 0_{2}\right)\right\}$
$O P(18 ; 6,12) \quad R=\left\{\left(\infty_{1}, 7_{1}, 7_{2}, 6_{2}, 3_{2}, 5_{2}\right),\left(\infty_{2}, 0_{1}, 1_{1}, 4_{1}, 6_{1}, 1_{2}, 5_{1}, 2_{2}, 3_{1}, 4_{2}, 2_{1}, 0_{2}\right)\right\}$
$O P(18 ; 7,11) \quad R=\left\{\left(\infty_{1}, 7_{1}, 7_{2}, 6_{2}, 4_{2}, 1_{1}, 5_{2}\right),\left(\infty_{2}, 0_{2}, 3_{2}, 5_{1}, 2_{2}, 0_{1}, 1_{2}, 2_{1}, 3_{1}, 6_{1}, 4_{1}\right)\right\}$
$O P(18 ; 8,10) \quad R=\left\{\left(\infty_{1}, 7_{1}, 7_{2}, 6_{2}, 3_{2}, 5_{2}, 1_{1}, 4_{2}\right),\left(\infty_{2}, 0_{2}, 2_{1}, 1_{2}, 0_{1}, 2_{2}, 5_{1}, 4_{1}, 6_{1}, 3_{1}\right)\right\}$
$O P\left(18 ; 9^{2}\right) \quad R=\left\{\left(\infty_{1}, 4_{1}, 1_{1}, 0_{2}, 6_{1}, 1_{2}, 4_{2}, 5_{2}, 7_{2}\right),\left(\infty_{2}, 7_{1}, 3_{2}, 3_{1}, 2_{1}, 0_{1}, 6_{2}, 5_{1}, 2_{2}\right)\right\}$
$O P\left(18 ; 3^{2}, 12\right) R=\left\{\left(0_{1}, 5_{2}, 6_{2}\right),\left(0_{2}, 7_{1}, 2_{2}\right),\left(\infty_{1}, 6_{1}, 1_{1}, 3_{2}, 4_{1}, 4_{2}, 1_{2}, 5_{1}, 3_{1}, 2_{1}, \infty_{2}, 7_{2}\right)\right\}$
$O P(18 ; 3,4,11) R=\left\{\left(0_{2}, 4_{1}, 5_{1}\right),\left(7_{1}, 4_{2}, 6_{2}, 7_{2}\right),\left(\infty_{1}, 5_{2}, 2_{2}, 1_{1}, 3_{2}, \infty_{2}, 0_{1}, 2_{1}, 1_{2}, 3_{1}, 6_{1}\right)\right\}$
$O P(18 ; 3,5,10) R=\left\{\left(0_{2}, 4_{1}, 5_{1}\right),\left(\infty_{1}, 7_{2}, 6_{2}, 4_{2}, 7_{1}\right),\left(\infty_{2}, 0_{1}, 2_{1}, 3_{2}, 1_{1}, 1_{2}, 3_{1}, 6_{1}, 5_{2}, 2_{2}\right)\right\}$
$O P(18 ; 3,6,9) R=\left\{\left(0_{2}, 5_{1}, 6_{1}\right),\left(\infty_{1}, 7_{2}, 5_{2}, 2_{2}, 3_{2}, 7_{1}\right),\left(\infty_{2}, 0_{1}, 2_{1}, 1_{2}, 3_{1}, 4_{2}, 4_{1}, 1_{1}, 6_{2}\right)\right\}$
$O P(18 ; 3,7,8) R=\left\{\left(2_{2}, 6_{1}, 7_{1}\right),\left(\infty_{1}, 7_{2}, 6_{2}, 3_{2}, 5_{2}, 5_{1}, 3_{1}\right),\left(\infty_{2}, 0_{1}, 1_{2}, 4_{1}, 1_{1}, 0_{2}, 2_{1}, 4_{2}\right)\right\}$
$O P(18 ; 4,6,8) R=\left\{\left(\infty_{2}, 4_{1}, 3_{1}, 6_{2}\right),\left(\infty_{1}, 7_{2}, 5_{2}, 4_{2}, 1_{2}, 7_{1}\right),\left(0_{1}, 0_{2}, 1_{1}, 2_{2}, 6_{1}, 3_{2}, 5_{1}, 2_{1}\right)\right\}$
$O P\left(18 ; 4,7^{2}\right) \quad R=\left\{\left(\infty_{2}, 5_{1}, 7_{1}, 2_{2}\right),\left(\infty_{1}, 7_{2}, 5_{2}, 4_{2}, 0_{1}, 0_{2}, 6_{1}\right),\left(1_{1}, 4_{1}, 3_{1}, 1_{2}, 2_{1}, 3_{2}, 6_{2}\right)\right\}$
$O P\left(18 ; 4^{2}, 10\right) R=\left\{\left(\infty_{1}, 7_{2}, 5_{2}, 3_{1}\right),\left(0_{1}, 1_{1}, 0_{2}, 3_{2}\right),\left(\infty_{2}, 6_{1}, 4_{2}, 7_{1}, 4_{1}, 2_{1}, 2_{2}, 1_{2}, 5_{1}, 6_{2}\right)\right\}$
$O P(18 ; 4,5,9) R=\left\{\left(\infty_{2}, 0_{2}, 3_{2}, 0_{1}\right),\left(\infty_{1}, 7_{2}, 6_{2}, 4_{2}, 7_{1}\right),\left(1_{1}, 1_{2}, 5_{1}, 2_{1}, 3_{1}, 5_{2}, 6_{1}, 4_{1}, 2_{2}\right)\right\}$
$O P\left(18 ; 5^{2}, 8\right) \quad R=\left\{\left(\infty_{1}, 7_{2}, 5_{2}, 4_{2}, 6_{1}\right),\left(0_{2}, 3_{2}, 1_{1}, 1_{2}, 4_{1}\right),\left(\infty_{2}, 2_{2}, 7_{1}, 6_{2}, 5_{1}, 0_{1}, 2_{1}, 3_{1}\right)\right\}$
$O P(18 ; 5,6,7) \quad R=\left\{\left(\infty_{1}, 7_{2}, 5_{2}, 4_{2}, 7_{1}\right),\left(\infty_{2}, 6_{1}, 4_{1}, 3_{1}, 0_{1}, 6_{2}\right),\left(0_{2}, 3_{2}, 1_{1}, 2_{2}, 2_{1}, 1_{2}, 5_{1}\right)\right\}$
$O P\left(18 ; 6^{3}\right) \quad R=\left\{\left(\infty_{1}, 6_{1}, 3_{2}, 2_{2}, 4_{2}, 7_{2}\right),\left(\infty_{2}, 2_{1}, 1_{1}, 3_{1}, 0_{1}, 1_{2}\right),\left(0_{2}, 4_{1}, 6_{2}, 7_{1}, 5_{2}, 5_{1}\right)\right\}$
$O P\left(18 ; 3^{3}, 9\right)$

$$
R=\left\{\left(7_{1}, 5_{2}, 6_{2}\right),\left(\infty_{2}, 0_{2}, 5_{1}\right),\left(0_{1}, 3_{1}, 2_{1}\right),\left(\infty_{1}, 2_{2}, 6_{1}, 7_{2}, 4_{2}, 4_{1}, 1_{2}, 3_{2}, 1_{1}\right)\right\}
$$

$O P\left(18 ; 3^{2}, 4,8\right)$

$$
R=\left\{\left(0_{1}, 1_{1}, 3_{1}\right),\left(5_{1}, 4_{2}, 7_{2}\right),\left(4_{1}, 0_{2}, 2_{2}, 1_{2}\right),\left(\infty_{1}, 6_{2}, 6_{1}, \infty_{2}, 3_{2}, 2_{1}, 5_{2}, 7_{1}\right)\right\}
$$

$O P\left(18 ; 3^{2}, 5,7\right)$

$$
R=\left\{\left(3_{1}, 4_{1}, 6_{1}\right),\left(\infty_{2}, 0_{1}, 6_{2}\right),\left(\infty_{1}, 7_{2}, 5_{2}, 4_{2}, 7_{1}\right),\left(0_{2}, 3_{2}, 1_{1}, 2_{2}, 2_{1}, 1_{2}, 5_{1}\right)\right\}
$$

$O P\left(18 ; 3^{2}, 6^{2}\right)$

$$
R=\left\{\left(1_{1}, 4_{1}, 2_{1}\right),\left(\infty_{2}, 6_{1}, 4_{2}\right),\left(\infty_{1}, 7_{1}, 7_{2}, 6_{2}, 3_{2}, 5_{2}\right),\left(0_{1}, 1_{2}, 5_{1}, 0_{2}, 3_{1}, 2_{2}\right)\right\}
$$

$O P\left(18 ; 3,4^{2}, 7\right)$

$$
R=\left\{\left(\infty_{2}, 2_{1}, 1_{2}\right),\left(0_{2}, 4_{1}, 5_{1}, 3_{2}\right),\left(0_{1}, 6_{1}, 3_{1}, 5_{2}\right),\left(\infty_{1}, 7_{1}, 7_{2}, 6_{2}, 4_{2}, 1_{1}, 2_{2},\right)\right\}
$$

$O P(18 ; 3,4,5,6)$

$$
R=\left\{\left(\infty_{2}, 0_{1}, 0_{2}\right),\left(\infty_{1}, 7_{2}, 6_{2}, 5_{1}\right),\left(1_{1}, 3_{1}, 1_{2}, 3_{2}, 4_{1}\right),\left(2_{2}, 5_{2}, 2_{1}, 4_{2}, 7_{1}, 6_{1}\right)\right\}
$$ $O P\left(18 ; 3,5^{3}\right)$

$$
R=\left\{\left(\infty_{2}, 1_{2}, 4_{1}\right),\left(\infty_{1}, 7_{2}, 5_{1}, 5_{2}, 2_{1}\right),\left(0_{2}, 7_{1}, 6_{2}, 3_{2}, 2_{2}\right),\left(0_{1}, 1_{1}, 3_{1}, 6_{1}, 4_{2}\right)\right\}
$$

$O P\left(18 ; 4^{3}, 6\right)$

$$
R=\left\{\left(2_{2}, 5_{1}, 6_{1}, 5_{2}\right),\left(0_{1}, 2_{1}, 0_{2}, 1_{2}\right),\left(1_{1}, 4_{1}, 6_{2}, 4_{2}\right),\left(\infty_{1}, 7_{1}, 3_{2}, 3_{1}, \infty_{2}, 7_{2}\right)\right\}
$$

$O P\left(18 ; 4^{2}, 5^{2}\right)$

$$
R=\left\{\left(0_{1}, 3_{1}, 5_{2}, 6_{2}\right),\left(1_{2}, 3_{2}, 7_{1}, 6_{1}\right),\left(\infty_{1}, 7_{2}, 4_{2}, 4_{1}, 2_{1}\right),\left(\infty_{2}, 0_{2}, 1_{1}, 2_{2}, 5_{1}\right)\right\}
$$

$O P\left(18 ; 3^{4}, 6\right)$

$$
R=\left\{\left(\infty_{1}, 2_{1}, 7_{2}\right),\left(\infty_{2}, 1_{1}, 2_{2}\right),\left(6_{1}, 7_{1}, 5_{2}\right),\left(4_{1}, 4_{2}, 6_{2}\right),\left(0_{2}, 1_{2}, 5_{1}, 3_{1}, 0_{1}, 3_{2}\right)\right\}
$$

$O P\left(18 ; 3^{3}, 4,5\right)$

$$
R=\left\{\left(1_{1}, 2_{1}, 3_{2}\right),\left(5_{1}, 5_{2}, 7_{1}\right),\left(4_{2}, 7_{2}, 6_{2}\right),\left(\infty_{1}, 0_{1}, 3_{1}, 2_{2}\right),\left(\infty_{2}, 6_{1}, 1_{2}, 4_{1}, 0_{2},\right)\right\}
$$

$O P\left(18 ; 3^{2}, 4^{3}\right)$

$$
R=\left\{\left(\infty_{1}, 7_{2}, 1_{1}\right),\left(\infty_{2}, 2_{1}, 2_{2}\right),\left(6_{2}, 4_{1}, 6_{1}, 7_{1}\right),\left(0_{1}, 3_{1}, 4_{2}, 5_{2}\right),\left(5_{1}, 0_{2}, 3_{2}, 1_{2}\right)\right\}
$$

$O P\left(18 ; 3^{6}\right)$

$$
V=\left\{1_{1}, 2_{1}, 3_{1}, 4_{1}, 5_{1}, 6_{1}, 7_{1}, 8_{1}, 9_{1}, 1_{2}, 2_{2}, 3_{2}, 4_{2}, 5_{2}, 6_{2}, 7_{2}, 8_{2}, 9_{2}\right\}
$$

$F_{1}=\left\{\left(1_{1}, 4_{1}, 7_{1}\right),\left(2_{1}, 5_{1}, 8_{1}\right),\left(3_{1}, 6_{1}, 9_{1}\right),\left(1_{2}, 4_{2}, 7_{2}\right),\left(2_{2}, 5_{2}, 8_{2}\right),\left(3_{2}, 6_{2}, 9_{2}\right)\right\}$
$F_{2}=\left\{\left(1_{1}, 5_{1}, 9_{1}\right),\left(2_{1}, 6_{1}, 7_{1}\right),\left(3_{1}, 4_{1}, 8_{1}\right),\left(1_{2}, 5_{2}, 9_{2}\right),\left(2_{2}, 6_{2}, 7_{2}\right),\left(3_{2}, 4_{2}, 8_{2}\right)\right\}$
$F_{3}=\left\{\left(1_{1}, 2_{1}, 6_{2}\right),\left(4_{1}, 5_{1}, 9_{2}\right),\left(7_{1}, 8_{1}, 3_{2}\right),\left(1_{2}, 2_{2}, 6_{1}\right),\left(4_{2}, 5_{2}, 9_{1}\right),\left(7_{2}, 8_{2}, 3_{1}\right)\right\}$
$F_{4}=\left\{\left(1_{1}, 3_{1}, 5_{2}\right),\left(4_{1}, 6_{1}, 8_{2}\right),\left(7_{1}, 9_{1}, 2_{2}\right),\left(1_{2}, 3_{2}, 5_{1}\right),\left(4_{2}, 6_{2}, 8_{1}\right),\left(7_{2}, 9_{2}, 2_{1}\right)\right\}$
$F_{5}=\left\{\left(1_{1}, 6_{1}, 3_{2}\right),\left(2_{1}, 9_{1}, 8_{2}\right),\left(5_{1}, 7_{1}, 4_{2}\right),\left(1_{2}, 6_{2}, 3_{1}\right),\left(2_{2}, 9_{2}, 8_{1}\right),\left(5_{2}, 7_{2}, 4_{1}\right)\right\}$
$F_{6}=\left\{\left(1_{1}, 8_{1}, 7_{2}\right),\left(3_{1}, 5_{1}, 2_{2}\right),\left(4_{1}, 9_{1}, 6_{2}\right),\left(1_{2}, 8_{2}, 7_{1}\right),\left(3_{2}, 5_{2}, 2_{1}\right),\left(4_{2}, 9_{2}, 6_{1}\right)\right\}$
$F_{7}=\left\{\left(8_{1}, 9_{1}, 1_{2}\right),\left(2_{1}, 3_{1}, 4_{2}\right),\left(5_{1}, 6_{1}, 7_{2}\right),\left(8_{2}, 9_{2}, 1_{1}\right),\left(2_{2}, 3_{2}, 4_{1}\right),\left(5_{2}, 6_{2}, 7_{1}\right)\right\}$
$F_{8}=\left\{\left(2_{1}, 4_{1}, 1_{2}\right),\left(6_{1}, 8_{1}, 5_{2}\right),\left(3_{1}, 7_{1}, 9_{2}\right),\left(2_{2}, 4_{2}, 1_{1}\right),\left(6_{2}, 8_{2}, 5_{1}\right),\left(3_{2}, 7_{2}, 9_{1}\right)\right\}$
So with the exception of K_{17} we know whether or not solutions exist for all possible Oberwolfach questions for complete graphs on fewer than 19 vertices. Of all these cases, the only questions that are known to have no solution are $O P\left(6 ; 3^{2}\right)$, $O P(9 ; 4,5), O P\left(11 ; 3^{2}, 5\right)$ and $O P\left(12 ; 3^{4}\right)$. In Section 4 we will consider whether decompositions that are not possible in K_{n} might be possible in λK_{n}.

3. $O P\left(11 ; 3^{2}, 5\right)$

This is the smallest case of the Oberwolfach Problem that has defied all manual attempts at a solution. We will confirm the non-existence of a solution established by Piotrowski [16] and go on to show that even though a single copy of K_{11} cannot be decomposed into isomorphic 2 -factors each comprising a 5 -cycle and a 3-cycle, any other number of copies can be decomposed in this manner.

Figure 3.1

Given one copy of K_{11}, the first 2 -factor $\left(F_{1}\right)$ can be chosen arbitrarily without loss of generality. We call its pentagon P_{1} and its triangles T_{1} and D_{1} with vertices labeled as shown in Figure 3.1.

As implied above, the notation $F_{n}(n=1,2,3,4$ or 5) will represent the nth 2 -factor of a decomposition which comprises P_{n}, T_{n} and D_{n}.

Proposition 3.1: Each 2-factor (except F_{1}) must contain a diagonal of P_{1}.
Proof: Suppose there exists a factor that does not contain a diagonal of P_{1}. Each triangle in this factor must have exactly one vertex from each of P_{1}, T_{1} and D_{1}. Two vertices from P_{1} in a triangle would mean use of a diagonal of P_{1} (not allowed by assumption) or use of an edge already used in F_{1} (not allowed by definition of partition). Two vertices from either F_{1} triangle would mean using the same edge in two different factors which is not allowed in partitioning. Thus, having used two P_{1} vertices and four triangle vertices, the pentagon for this factor uses three vertices from P_{1} and two triangle vertices. Of the three P_{1} vertices used in this new pentagon, two of them must be adjacent. But this is impossible since adjacent P_{1} vertices in the cycle means either a second use of an edge of P_{1} or a diagonal of P_{1}. Therefore, no such factor can exist and we know all factors (except F_{1}) include a diagonal of P_{1}.

Proposition 3.2 : There exists exactly one factor in $\left\{F_{2}, F_{3}, F_{4}, F_{5}\right\}$ which contains two diagonals of P_{1}.

Proof: By Proposition 3.1, each of the F_{i} 's contains a diagonal of P_{1} which accounts for four of the five diagonals. The fifth P_{1} diagonal must appear in one of the F_{i} 's making that factor the only one containing two P_{1} diagonals.

Notation 3.3: Let F_{2} be the name of the factor with exactly two P_{1} diagonals.

Theorem 3.4: The only three non-isomorphic possibilities for F_{2} are those shown in Figure 3.2.

Proof: We assume that F_{1} has been removed from an unlabeled K_{11} and show that the vertex set of any F_{2} can be labeled in such a way that the structure and labeling of F_{1} is identical to Figure 3.1 and the structure and labeling of F_{2} is identical to one of the drawings in Figure 3.2. The reason that many F_{2} 's with different labelings can be isomorphic stems from the rotations and reflections of the dihedral groups for the triangles and pentagon of F_{1}.

Figure 3.2 : Possible F_{2} structures

Clearly the two P_{1} diagonals in F_{2} either share a common vertex (call this Case 1) or they are disjoint. If they are disjoint, they cannot both be in the same triangle and they cannot both be edges of P_{2}. Thus we are left with the fact that the two P_{1} diagonals in F_{2} must occur in different cycles - one in each triangle (call this Case 2) or one in P_{2} and the other in a triangle (call this Case 3).

Figure 3.2 establishes that at least one example of each case exists. In each of the three cases we will begin with F_{1} and an arbitrary F_{2} of the type in question and show that the eleven vertices can be labeled in such a way that the structure is identical with the corresponding drawing in Figure 3.2.

CASE 1: The P_{1} diagonals in F_{2} share a common vertex.
Choose an arbitrary F_{2} whose P_{1} diagonals share a common vertex. That common vertex must lie in P_{2} and we label it as vertex 1.

The two P_{1} diagonals account for three of the five vertices of P_{2}. The remaining two vertices of P_{2} must be one each from T_{1} and D_{1} and they must be adjacent. Label the vertex from T_{1} as vertex C and the vertex from D_{1} as vertex Z.

Note that starting at vertex 1 and traversing the cycle P_{2}, the shortest path to vertex C has exactly one vertex between vertex 1 and vertex C. Label it as vertex 3 . Continuing around the cycle there is exactly one vertex between vertex Z and vertex 1. Label it as vertex 4.

The remaining unlabeled P_{1} vertices are adjacent to vertex 1 on the cycle P_{1}. Label them as vertex 2 and vertex 5 such that the vertices of P_{1} are labeled in numerical order around the cycle.

Now vertex 2 lies in a triangle of F_{2} whose other two vertices come one each from T_{1} and D_{1} (since any other possibility requires the use of another diagonal of P_{1} or the re-use of an edge of F_{1}). Label the T_{1} vertex in this triangle as vertex A and the D_{1} vertex as vertex Y. There are now only two unlabeled vertices remaining. They are part of the F_{2} triangle that includes vertex 5 . Label the unlabeled vertex in T_{1} as vertex B and the one in D_{1} as vertex X.

Thus any F_{2} containing adjacent P_{1} diagonals has the same structure as the Case 1 diagram in Figure 3.2.

CASE 2: F_{2} has one P_{1} diagonal in each of its triangles.
Choose an arbitrary F_{2} whose P_{1} diagonals lie one each in its two triangles. The two diagonals contain four P_{1} vertices. Label the fifth P_{1} vertex as vertex 3. This vertex is in P_{2}. The other four vertices of P_{2} are from T_{1} and D_{1}. It is clear that as we traverse the cycle P_{2}, the vertices are alternately from T_{1} and D_{1}. Thus vertex 3 is adjacent to one vertex of T_{1} and one of D_{1}. Label the former as vertex C and the latter as vertex X. Label the remaining two P_{2} vertices as vertex Y and vertex B such that Y is adjacent to C, B is adjacent to X and, of course, B is adjacent to Y.

Label the remaining T_{1} vertex as vertex A and the remaining D_{1} vertex as vertex Z. Vertex A is adjacent to two P_{1} vertices in an F_{2} triangle (the ends of one of the P_{1} diagonals). One of these vertices is adjacent to vertex 3 in P_{1}. Label it as vertex 2 and the other as vertex 5. Similarly, vertex Z is adjacent to two P_{1} vertices. Again, one of these two vertices is adjacent to vertex 3 in P_{1}. Label it as vertex 4 and the other as vertex 1 .

We have now labeled the vertices of an arbitrary F_{2} from Case 2 in such a way that it has the same structure as the Case 2 diagram in Figure 3.2.

CASE 3: F_{2} has one P_{1} diagonal in P_{2} and one in a triangle.
Choose an arbitrary F_{2} containing one P_{1} diagonal in its pentagon and the other in a triangle. As in Case 2, the two P_{1} diagonals contain four of the five vertices of P_{1}. Label the fifth vertex as vertex 3 .

Consider the triangle in F_{2} which contains a P_{1} diagonal. One vertex of that diagonal must be adjacent to vertex 3 in P_{1}. Label that vertex as vertex 4 and the other as vertex 1. Clearly the third vertex of the triangle was a vertex in T_{1} or D_{1}. Since the naming of T_{1} and D_{1} was arbitrary, we can assume without loss of generality that this third triangle vertex in F_{2} is contained in D_{1} and label it as vertex Z.

The F_{2} triangle containing vertex 3 must also contain one vertex from T_{1} and one vertex from D_{1}. Label the former as vertex C and the latter as vertex X. The
vertices on the ends of the P_{1} diagonal in P_{2} can be labeled as vertex 2 and vertex 5 so that the five vertices of P_{1} are labeled with consecutive integers as the cycle is traversed.

Three vertices remain unlabeled - two from T_{1} and one from D_{1} - all three of which are contained in P_{2} along with vertex 2 and vertex 5. Label the remaining D_{1} vertex as vertex Y. The two vertices from T_{1} cannot be adjacent in P_{2} and thus one must be adjacent to vertex 2 while the other is adjacent to vertex 5 , and they must both be adjacent to vertex Y. Label the T_{1} vertex adjacent to vertex 2 as vertex A and the last remaining unlabeled vertex as vertex B.

We have now labeled the vertices of an arbitrary F_{2} from Case 3 in such a way that it clearly has the same structure as the Case 3 diagram in Figure 3.2.

Thus we have shown that there are only three non-isomorphic ways to choose the first two factors. Figure 3.3 shows the set of edges in $K_{11}-\left(F_{1}+F_{2}\right)$ for each of the three cases.

Figure 3.3

3.1 The Problem

How to proceed from here is not clear. In 1979 Wolf Piotrowski [16] reached this point and decided to write a computer program to find whether there existed three compatible 2 -factors in the edge-set left by each of the three cases discussed above. The strategy he chose was to construct a list of all possible 2 -factors from the edges of $K_{11}-\left(F_{1}+F_{2}\right)$ and then to try to find three edge-disjoint factors from that list. His program (in FORTRAN run on a TR 440 computer) found roughly 200 possible factors and 200 edge-disjoint pairs of those factors, but no edge-disjoint triad of factors in any of the three cases. This proved (assuming no logical or mechanical problems) that the partition we seek does not exist. Other than establishing the answer to the basic question, the program provided no insight as to why there is no such partition, how close one could actually get to completing the final factor, or how one might establish the result without using a machine.

The strategy in the program included in this paper (OBRWLFCH.PRG) searches for a solution in a significantly different way from Piotrowski's. Where his approach was to generate complete factors and check their compatibility, the one here builds up all three factors simultaneously keeping track of how close the process gets to a complete set of factors.

The purpose of OBRWLFCH.PRG is twofold: (1) to check Piotrowski's result using a different strategy so as to minimize the possibility of repeating any errors that might exist in his program and (2) to keep track of what happens as the program tries to build factors in the hope that further light might be shed on exactly what makes this factorization impossible and how the result might be arrived at without computer assistance.

In each of the three cases we are dealing with between 233 and 272 pentagon possibilities and 25 or 26 triangle possibilities which yield approximately 10^{16} possible factor combinations for each of the three cases. This is an improvement over the roughly 10^{38} possible sets of five 2 -factors of K_{11} that we started with, but the problem is still clearly too large to expect a microcomputer to resolve it in any reasonable amount of time.

We can further reduce the number of possibilities to be checked by being careful to keep track of the fact that each of the last three factors contains exactly one P_{1} diagonal. This is not quite as easy as it seems since the P_{1} diagonals can just as easily show up in a triangle as in a pentagon, but doing so reduces the number of possible 2 -factor triads to about 10^{5}.

Though the problem is still clearly too large to do by hand it is small enough for a microcomputer to do an exhaustive search for the three final factors while keeping track of how close we get to a solution.

3.2 The Computing

Given the above argument, we have three sets of edges (see Figure 3.3) each left by the removal of F_{1} and an F_{2} from K_{11}. In each case we will attempt to extract three edge-disjoint 2 -factors, each comprising a pentagon and two triangles. The labeling of the vertices will be as in Figure 3.3 where the vertices of P_{1} are numbered 1 through 5 and the vertices of the triangles T_{1} and D_{1} are labeled A, B, C and X, Y, Z, respectively.

In each case we will construct databases containing all possible pentagons and triangles from the set of edges remaining. Since we know that each 2 -factor must contain exactly one of the remaining P_{1} diagonals we distinguish (by placing in separate databases) cycles that contain a P_{1} diagonal (Class 1) and those that do not (Class 2).

Observing that the P_{1} diagonals 24 and 35 are never used in F_{1} or F_{2}, we can arbitrarily name the factors containing them as F_{4} and F_{5}, respectively. This means that F_{3} will be the factor that contains the P_{1} diagonal 25 in Case 1, and the P_{1} diagonal 13 in Cases 2 and 3.

Databases containing pentagons and triangles are named as follows: The first two characters ($\mathrm{C} 1, \mathrm{C} 2$ or C 3) indicate Case 1 , Case 2, or Case 3 depending on which F_{2} is assumed. The second two characters (C 1 or C 2) indicate Class 1 if the cycles include a P_{1} diagonal or Class 2 if they do not. The next character is either a P (for pentagon) or a T (for triangle). If the cycles in the database are class 1 , there is one more character (3,4 or 5) that indicates to which factor it must belong. The extension
is always "DBF" (for DataBase File). Thus C3ClP5.DBF is the database file containing Case 3 , Class 1 pentagons that are possible for F_{5} (i.e., that contain the P_{1} diagonal 35).

The possible triangles in each case are few and easily identified without using the machine. Therefore all databases containing possible triangles were constructed by hand. Possible pentagons, however, are many and were therefore generated by the program.

The dBase III Plus programming language is used because of its suitability, its availability and the author's familiarity with it.

3.3 The Setup Programs

GENC1P.PRG and GENC2P.PRG are the PRoGrams used to GENerate Class 1 and Class 2 Pentagons, respectively. In order that the main program can more quickly determine whether a particular edge is already in use when checking possible combinations, the databases are modified by PENTEDGE.PRG and TRIEDGE.PRG so that the database includes not only the vertices (in cycle notation) of the pentagons and triangles, but also the list of edges used in each. So that each edge has a unique label we adopt the convention that an edge is named by listing the two vertices with which it is incident in ascending order (note that the computer sees digits as "smaller" than letters so that the edge joining vertex Y with vertex 3 will be referred to as edge $3 Y$).

GENC1P.PRG and GENC2P.PRG can be found in the appendix beginning on pages 52 and 54, respectively. PENTEDGE.PRG AND TRIEDGE.PRG are on page 56 of the appendix. The complete set of databases generated by these programs and used in the computing for Cases 1,2 and 3 is provided beginning on pages 57, 64 and 71 of the appendix, respectively.

3.4 OBRWLFCH.PRG

The main program that searches for three edge-disjoint 2-factors (each comprising a pentagon and two triangles) in $K_{11}-\left(F_{1}+F_{2}\right)$ is OBRWLFCH.PRG. Since
there are three distinct choices for F_{2}, the program was run three different times. The programs used on the three runs were identical except for the names of the databases called into use. The following description assumes that we are running Case 1 .

We have nine cycles to find (three pentagons and six triangles, though not necessarily in that order) so the program is written in nine levels.

In levels 1,2 and 3 we are choosing the class 1 cycles (pentagon or triangle) to be used in factors 3,4 and 5 , respectively. In level $n, 3 \leq n \leq 5$, we are searching for D_{n} (a class 2 triangle for F_{n}.). In level $n, 7 \leq n \leq 9$, we are choosing (for factors 3,4 and 5 , respectively), a Class 2 triangle if a Class 1 pentagon has already been chosen at level $n-6$, or a Class 2 pentagon if a Class 1 triangle has already been chosen at level $n-6$.

On reaching level 8 (having found 7 of the 9 required cycles) it prints out the set of cycles found so far so that we can see how close we get to complete solutions.

The program starts in level 1 with the first record of C1C1P3.DBF (the first possible Case 1, Class 1 pentagon for F_{3}) and records its edge-set as used for P_{3}. In level 2 we then search sequentially through the records of C1C1P4.DBF to find a Class 1 pentagon (edge-disjoint from P_{3}) to be used as P_{4}. If found, its edge-set is recorded as used and we proceed to level 3 to search C1C1P5.DBF for a P_{5} candidate.

If we find three compatible Class 1 pentagons for F_{3}, F_{4} and F_{5}, we go sequentially to levels 4 through 9 looking through C1C2T.DBF (the set of Class 2 triangles) to find an edge-disjoint set of six triangles among the remaining available edges to complete the three factors. The factors are filled in the following order: D_{3}, $D_{4}, D_{5}, T_{3}, T_{4}, T_{5}$.

Whenever we reach the end of a database at level $n>3$ (meaning that there are no more options left at that level with the choices made so far) we back up to level $\mathrm{n}-1$ to look at the next record (next possibility) at that level.

If we reach the end of a pentagon database at level $n<4$ we stay at that level and begin choosing Class 1 triangles from C1C1Tn.DBF. If found, a compatible triangle is stored as T_{n} and we proceed to the next level (always starting at the top of the appropriate database regardless of whether we have been at that level before).

Since there can only be one Class 1 cycle in any given factor and the T_{n} chosen at level n is Class 1 , if we get as far as level $n+6$ we open C1C2P.DBF to look for a compatible Class 2 pentagon rather than looking for a triangle as described above.

The entire search can be shown as a digraph (Figure 3.4.1) whose vertices are databases and whose edges represent moving between databases. Movement to the right represents moving to the next level when a compatible cycle has been found in the current database. Movement to the left represents backing up to the previous level when the end of a database is reached without finding a compatible cycle. Movement down represents staying within the same level ($n<4$) when the end of a Class 1 pentagon database is encountered without finding a compatible cycle and we move to the corresponding Class 1 triangle database. Paths to the possible end results of the program are also shown.

Figure 3.4.1

PROCFILE.PRG is the set of procedures that is invoked at appropriate times by OBRWLFCH.PRG. The FINDP and FINDT procedures do the search through the database in use to find a compatible pentagon or triangle, respectively. CPYRCRDS is the procedure that copies current node, edge and factor information to the next record so that another cycle can be added to the current information while still allowing us to return to the current situation if we need to back up. The BACKUP procedure is invoked when the end of a database is reached and we need to return to the previous level.

The first version of OBRWLFCH.PRG took about 9.5 days to do Case 1 on a Heathkit H 100 with dBase III. This was a little too long due to the possibility of lightning or people accidentally turning the machine off during the run, so a switch was made to dBase IV on an Epson Equity II+ where it took about 2.5 days to run each of the three cases.

The final versions of OBRWLFCH.PRG and PROCFIL.PRG can be found in the appendix beginning with pages 41 and 47 , respectively. The information generated by the programs for Cases 1,2 and 3can be found beginning on pages 78, 83 and 88 respectively.

3.5 Data Anaysis

The running of OBRWLFCH.PRG confirmed the findings reached by Piotrowski. There do not exist three edge-disjoint, isomorphic 2 -factors, each comprising a pentagon and two triangles, in any of the three possible cases. Consequently, $O P\left(11 ; 3^{2}, 5\right)$ has no solution.

In addition to confirming earlier work, there is further information from this program. One might have wondered whether it is possible to argue that one cannot find six edge-disjoint triangles or three edge-disjoint pentagons under the constraints of the three cases. It is clear from the output data that in each of the three cases there are several sets of six appropriate triangles. The program also found sets of three appropriate pentagons in each of the cases. Thus no machine-free argument could be made on that basis.

It is also interesting that in all three cases, there were many instances where seven of the nine requisite cycles could be found, but never more than seven. In fact it is easy to show that it is impossible to find an eighth without also finding the ninth.

All eleven vertices are degree 10 to begin with and are of even degree throughout the entire process. If we ever found an eighth appropriate cycle, we would have either three or five edges remaining. The only way of having either three or five edges in a graph where all vertices are of even degree is if they form a cycle. Indeed, since the vertices would be exactly the vertices as yet not used in the final factor, the cycle would be the one we need to complete the factorization.

Though it is frustrating to be so close, it is worth knowing that in each case we miss a complete factorization by the smallest margin possible.

The output data shows that among the partial factorizations when we are two triangles short of a complete factorization three possibilities occur: 1) the edges remaining form a 6 -cycle, 2) they form two 3 -cycles with one common vertex and 3) they form two disjoint 3 -cycles. This last instance leads to a new result which is reported in Section 4.

4. Solutions in λK_{n}

Clearly, given any $\lambda>1$, any 2 -factorization of K_{n} can be used to 2 -factor λK_{n} by simply decomposing each of the λ copies separately. However, for the cases of the Oberwolfach Problem where no 2-factorization of a particular type is possible we will now consider whether that type of decomposition is possible in λK_{n}. The first case with no solution is $O P\left(6,3^{2}\right)$. We address below only the case where λ is even.

Theorem 4.1: Given an even integer $\lambda, \lambda K_{6}$ can be partitioned into 2-factors each comprising two 3-cycles if and only if $\lambda \equiv 0(\bmod 4)$.

Proof: Given λK_{6} we label the vertices $1,2,3, X, Y$, and Z and designate the first 2 -factor as $\{(1,2,3),(X, Y, Z)\}$ without loss of generality. We call an edge Type 1 if the vertices with which it is incident are either both labeled with numbers or both labeled with letters. Type 2 edges are incident with one numbered vertex and one vertex labeled with a letter. We call a 3-cycle Class 1 if all its edges are Type 1 and Class 2 otherwise. Any 3-cycle that is Class 2 comprises two Type 2 edges and one Type 1 edge. Note that no 3 -cycle is possible using only Type 2 edges. Also note that any 2 -factor always comprises two 3-cycles of the same type.

Consider $\lambda=4 t+2$ for any positive integer t. The number of Type 2 edges in λK_{6} is $9(4 t+2)$. Since all of these edges must be used in the 2 -factorization and since they must be used 2 at a time in 3 -cycles that are Class 2 , we will need $9(4 t+2) / 2$ Type 1 edges to complete these 3 -cycles. Note that this number is always odd. The number of Type 1 edges after the first 2 -factor is removed is $6(4 t+1)$. This number is even. Since it is always six of these edges that would be removed with any 2 -factors containing 3 -cycles that are Class 1 , the number of remaining edges will always be even. Thus it is not possible to fashion a set of 2 -factors comprising 3-cycles that will use the entire edge-set of λK_{6}.

Consider $\lambda=4 t$. It suffices to show that $4 K_{6}$ can be 2 -factored into 3 -cycles. The following 2 -factors accomplish the decomposition:

$$
\begin{array}{ll}
F_{1}=\{(1,2,3),(X, Y, Z)\} & F_{6}=\{(2,3, Y),(1, X, Z)\} \\
F_{2}=\{(1,2, X),(3, Y, Z)\} & F_{7}=\{(2,3, Z),(1, X, Y)\} \\
F_{3}=\{(1,2, Y),(3, X, Z)\} & F_{8}=\{(1,3, X),(2, Y, Z)\} \\
F_{4}=\{(1,2, Z),(3, X, Y)\} & F_{9}=\{(1,3, Y),(2, X, Z)\} \\
F_{5}=\{(2,3, X),(1, Y, Z)\} & F_{10}=\{(1,3, Z),(2, X, Y)\}
\end{array}
$$

This yields the stated result.

The next two cases with no solution are $O P(9 ; 4,5)$ and $O P\left(11 ; 3^{2}, 5\right)$. To preface the next two theorems we note that if $2 K_{n}$ and $3 K_{n}$ can be decomposed into any particular type of 2 -factor, then for any $\lambda>1$, so can λK_{n} since $\lambda=2 s+3 t$ for some pair of non-negative integers s and t. It is therefore sufficient to give 2 -factorizations for $2 K_{n}$ and $3 K_{n}$ to establish the result for λK_{n}.

Theorem 4.2: For any integer $\lambda>1, \lambda K$, can be partitioned into 2-factors, where each 2-factor comprises a 4-cycle and a 5-cycle.

Proof: Let

$$
\begin{aligned}
& V=Z_{4} \times\{1,2\} \cup\{\infty\} \\
& \alpha=(\infty)\left(0_{1} 1_{1} 2_{1} 3_{1}\right)\left(0_{2} 1_{2} 2_{2} 3_{2}\right) \\
& F_{i+1}=\alpha^{i}\left(R_{1}\right), i=0,1,2,3 \\
& F_{i+1}=\alpha^{i}\left(R_{2}\right), i=4,5,6,7 \\
& R_{1}=\left\{\left(0_{1}, 2_{1}, 1_{1}, 1_{2}\right),\left(\infty, 3_{1}, 0_{2}, 2_{2}, 3_{2}\right)\right\} \\
& R_{2}=\left\{\left(\infty, 3_{1}, 2_{2}, 1_{2}\right),\left(0_{1}, 3_{2}, 1_{1}, 2_{1}, 0_{2}\right)\right\}
\end{aligned}
$$

This decomposes $2 K$, as required

$$
\text { Now let } \quad \begin{array}{ll}
& V=Z_{3} \times\{1,2,3\} \\
& \alpha=\left(0_{1} 1_{1} 2_{1}\right)\left(0_{2} 1_{2} 2_{2}\right)\left(0_{3} 1_{3} 2_{3}\right) \\
& F_{i+1}=\alpha^{i}\left(R_{1}\right), i=0,1,2 \\
& F_{i+1}=\alpha^{i}\left(R_{2}\right), i=3,4,5 \\
& F_{i+1}=\alpha^{i}\left(R_{3}\right), i=6,7,8 \\
& F_{i+1}=\alpha^{i}\left(R_{4}\right), i=9,10,11 \\
& R_{1}=\left\{\left(0_{2}, 0_{3}, 2_{1}, 1_{2}\right),\left(0_{1}, 1_{3}, 2_{3}, 2_{2}, 1_{1}\right)\right\} \\
& R_{2}=\left\{\left(0_{1}, 0_{3}, 1_{1}, 0_{2}\right),\left(1_{2}, 2_{3}, 2_{1}, 1_{3}, 2_{2}\right)\right\} \\
& R_{3}=\left\{\left(1_{1}, 2_{1}, 2_{2}, 2_{3}\right),\left(0_{1}, 0_{2}, 1_{3}, 0_{3}, 1_{2}\right)\right\} \\
& R_{4}=\left\{\left(0_{1}, 1_{2}, 0_{2}, 1_{1}\right),\left(0_{3}, 2_{2}, 1_{3}, 2_{1}, 2_{3}\right)\right\}
\end{array}
$$

This decomposes $3 K_{9}$ as required and the result follows.

Theorem 4.3: For any integer $\lambda>1, \lambda K_{11}$ can be partitioned into 2 -factors, where each 2 -factor comprises a 5-cycle and two 3-cycles.

Proof: The column headed " $1^{\text {st }} K_{11}$ " below is a Case 2 partial solution generated by OBRWLFCH.PRG. The unused edges for this partial solution form two disjoint triangles; $3 A Z$ and $1 C X$. Unfortunately, the triangles that are needed to complete F_{4} and F_{5} are $3 C Z$ and $1 A X$, respectively. The column headed " $2{ }^{\text {nd }} K_{11}$ " was generated from the first in such a way that it is a partial solution whose "extra" triangles complete the fourth and fifth factors of the first partial factorization and it can use the two "extra" triangles from the first to complete its fourth and fifth factors. Thus we have the desired decomposition of $2 K_{11}$.

		$1^{\text {st }} K_{11}$	$2^{\text {nd }} K_{11}$
F_{1}	P_{1}	12345	12345
	T_{1}	$A B C$	CBA
	D_{1}	$X Y Z$	$X Y Z$
F_{2}	P_{2}	3 CYBX	$3 A Y B X$
	T_{2}	$14 Z$	$14 Z$
	D_{2}	25A	25C
F_{3}	P_{3}	CZ5Y2	AZ5Y2
	T_{3}	$13 B$	13B
	D_{3}	$4 A X$	4AX
F_{4}	P_{4}	24B5X	24B5X
	${ }^{\wedge} T_{4}$		
	D_{4}	$1 A^{\prime}$	$1{ }^{\text {CY }}$
F_{5}	P_{5}	$35 C 4 Y$	35A4Y
	- T_{5}		
	D_{5}	$2 B Z$	$2 B Z$
${ }_{*} T_{4}$	needs: has:	$3 C Z$ $3 A Z$	$3 \begin{aligned} & 3 A Z \\ & 3 C Z\end{aligned}$
- T_{5}	needs: has:	$\begin{aligned} & 1 A X \\ & 1 C X \end{aligned}$	$\rightarrow \begin{aligned} & 1 C X \\ & 1 A X \end{aligned}$

Similarly, the following are modifications of three partial solutions generated by OBRWLFCH.PRG which with their "extra" edges exchanged constitute the required decomposition of $3 K_{11}$.

		$1^{\text {st }} K_{11}$	$2^{\text {nd }} K_{11}$	$3^{\text {rd }} K_{11}$	
F_{1}	P_{1}	12345	12345	42315	
		ABC	CBA	CBA	
	D_{1}	$X Y Z$	XYZ	YXZ	
F_{2}	P_{2}	3 CYBX	3AYBX	$3 A X B Y$	
	T_{2}	$14 Z$	$14 Z$	$41 Z$	
	D_{2}	25A	$25 C$	$25 C$	
F_{3}	P_{3}	CZ5Y2	AZ5Y2	AZ5Y2	
	T_{3}	$13 B$	13B	43B	
	D_{3}	$4 A^{\prime}$	$4 C X$	$1 C X$	
F_{4}	P_{4}	24B5X	24B5X	21B5X	
	$\\| T_{4}$	$1 A Y$	$3 C Z$	$4 C Y$	
F_{5}	P_{5}	35C4Y	35A4Y	35A4X	
		$2 B Z$	$2 B Z$	$2 B Z$	
${ }^{\wedge} T_{4}$ needs: has:		$3 C Z$ $3 A Z$	$1 A Y$ $1 C Y$	$3 A Z$ $3 C Z$	
- T_{5} needs: has:		$\begin{aligned} & 1 A X \\ & 1 C X \end{aligned}$	$\rightarrow \begin{aligned} & 1 C X \\ & 1 A X \end{aligned}$	$\begin{aligned} & 1 C Y \\ & 1 A Y \end{aligned}$	

The desired result follows.
The fourth and final case with no solution is $O P\left(12 ; 3^{4}\right)$. Hanani [7] establishes that there is a resolvable ($v, 3,2$)-BIBD which is equivalent to the decomposition we seek for $2 K_{12}$. This obviously settles the question for λK_{12} whenever λ is even. The case where λ is odd has not been studied.

We conclude with a note that may be of some interest. Even though $2 K_{6}$ cannot be 2 -factored into 3 -cycles, it is possible for $2\left(K_{6}-F\right)$ to be decomposed in this way. The following is such a 2 -factorization:

$$
\begin{aligned}
& F_{1}=\{(1,2,3),(X, Y, Z)\} \\
& F_{2}=\{(1,2, X),(3, Y, Z)\} \\
& F_{3}=\{(1,3, Y),(2, X, Z)\} \\
& F_{4}=\{(1, X, Y),(2,3, Z)\}
\end{aligned}
$$

References

[1] B. ALSPACH AND R. HÄGGKVIST, Some observations on the Oberwolfach problem, J. Graph Theory 9 (1985), 177-187.
[2] B. Alspach, P. J. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A 52 (1989), 20-43.
[3] R. D. BaKER and R. M. WIlson, Nearly Kirkman triple systems, Utilitas Math. Vol. 11 (1977), 315-317.
[4] W. W. R. Ball, Mathematical Recreations and Essays, (revised by H. S. M. Coxeter), Macmillan, New York (1962), 267-298.
[5] A. E. BROUWER, Two new nearly Kirkman triple systems, Utilitas Math. Vol. 13 (1978), 311-314.
[6] R. K. GUY, Unsolved Combinatorial Problems, in "Combinatorial Mathematics and Its Applications, Proceedings Conf. Oxford 1967" (D. J. A. Welsh, Ed.), p. 121, Academic Press, New York, (1971).
[7] H. HANANI, On resolvable balanced incomplete block designs, J. Combin. Theory Ser A 17 (1974), 275-289.
[8] P. HELL, A. KOTZIG AND A. ROSA, Some results on the Oberwolfach problem, Aequationes Math. 12 (1975), 1-5.
[9] D. G. Hoffman and P. J. SChELLENBERG, The existence of C_{k}-factorizations of $K_{2 n}-F$, Discrete Math., to appear.
[10] J. D. Horton, B. K. Roy, P. J. Schellenberg and D. R. Stinson, On decomposing graphs into isomorphic uniform 2-factors, Ann. Discrete Math. 27 (1985), 297-319.
[11] C. HUANG, A. KOTZIG AND A. ROSA, On a variation of the Oberwolfach problem, Discrete Math. 27 (1979), 261-277.
[12] C. HUANG, E. MENDELSOHN AND A. ROSA, On partially resolvable t partitions, Ann. Discrete Math 12 (1982), 169-183
[13] E. KÖHLER, Über der Oberwolfacher Problem, Beiträge Geom. Algebra Basel (1977), 189-201.
[14] A. Kotzig and A. RoSa, Nearly Kirkman systems, in "Proc. 5th S-E Conf. Combinatorics, Graph Theory, and Computing, Boca Raton. Florida, 1974" Utilitas Math., Winnipeg, (1974), 607-614.
[15] É. LUCAS, Récréations Mathématiques, Vol. 2, Gauthier-Villars, Paris, (1884), 161-164
[16] W. Piotrowski, Untersuchungen über das Oberwolfacher Problem, working papers, Hamburg, (1979).
[17] D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman's schoolgirl problem, in Proc. Symp. Pure Math. Vol 19, pp.187-204, Amer. Math. Soc., Providence, RI, (1971).
[18] D. K. Ray-Chaudhuri and R. M. Wilson, The existence of resolvable block designs, in A Survey of Combinatorial Theory (edited by J. N Srivastava et al), North Holland, Amsterdam, (1973), 361-375.
[19] R. ReES and D. R. Stinson, On resolvable group-divisible designs with block size 3, Ars Comb. XXIII, (1987), 107-120.

Appendix

-OBRWLFCH.PRG*

* This is the main program for the Oberwolfach problem - case K_{11}
* looking for five disjoint 2 -factors each comprising a pentagon
* and two triangles. The first factor can be chosen arbitrarily
* and the second can be chosen in only three essentially different ways. *
* This program looks for the third, fourth and fifth factors given the
* first and a second factor. Thus the program was run three times on
* three sets of data - one for each of the three possibilities for the
* second factor. The program here is the one run for Case 1, but the
* changes necessary for the last two cases are included in brackets
* to the right of the statement that was changed. Variables of the
* form CnCmPo stand for Case n , Class m, Pentagon (or T for Triangle)
* from factor o. Class 1 Pentagons and Triangles include a diagonal
* of the factor 1 pentagon while Class 2 Pentagons and Triangles do not *
*

CLEAR ALL

SET TALK OFF

SET ALTERNATE TO G:OBRUN
SET ALTERNATE ON
? "OPENING PROCEDURES FILE AND BOOKKEEPING DATABASES"
SET PROCEDURE TO I:PROCFILE

* Opening databases for keeping track of edges and nodes that have been *
* used and remembering which factor pieces have been filled in

SELECT 7
USE I:USEDNODE ALIAS NODES * This database keeps track of which nodes *
GO TOP * are already used (in the current factor) *
SELECT 8
USE I:USEDEDGE ALIAS EDGES * This database keeps track of which edges *
GO TOP * are already used (in any factor)
SELECT 6
USE I:FACTOR ALIAS FACTORS * This database keeps track of which pieces *
GO TOP

* of which factors have been found already

STORE 0 TO COUNT1
STORE 0 TO COUNT2
STORE 0 TO COUNT3
STORE 0 TO COUNT4
STORE 0 TO COUNT5
STORE 0 TO COUNT6
STORE 0 TO COUNT7
STORE 0 TO COUNT8
STORE 0 TO COUNT9
PUBLIC FOUND, PENT, TRI, FACTOR, TRITYPE, STIME, FTIME
PUBLIC P3, P4, P5, T3, T4, T5, D3, D4, D5

* The first three levels step through all possible class 1 pentagons and tri-
* angles (for factors 3, 4 and 5 respectively) which contain a diagonal of the
* pentagon in the first factor (since each of these factors must contain exactly
* one such diagonal). The fourth through seventh levels step through all
* possible class 2 pentagons and triangles trying to fill in the rest of the
* remaining pieces for each factor.
? " * LEVEL 1 *"
SELECT 1

```
USE I:C1C1P3 ALIAS C1P3
                                    *[ C2C1P3, C3C1P3 ]*
GO TOP
STORE '3' TO FACTOR
STORE 'C1P3' TO PENT
STORE }1\mathrm{ TO P3CHOSEN
DO WHILE .NOT. EOF()
    STORE COUNT1+1 TO COUNT1
    ? COUNT1
    IF P3CHOSEN = 1
        DO FINDP
        IF .NOT. FOUND
        SELECT 1
        USE I:C1C1T3 ALIAS C1T3 *[ C2C1T3, C3C1T3 ]*
        STORE 'ClT3' TO TRI
        STORE 'T TO TRITYPE
        STORE 0 TO P3CHOSEN
        GO TOP
        LOOP
        ENDIF
    ELSE
        DO FINDT
        IF .NOT. FOUND
        ? "NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR THIS
            CASE."
        DISPLAY MEMORY
        WAIT
        CLOSE DATABASES
        SET ALTERNATE OFF
        RETURN
    ENDIF
    ENDIF
        * LEVEL 2 *
    SELECT 2
    USE I:C1C1P4 ALIAS C1P4 *[ C2C1P4, C3C1P4 ]*
    GO TOP
    STORE '4' TO FACTOR
    STORE 'C1P4' TO PENT
    STORE }1\mathrm{ TO P4CHOSEN
    DO WHILE .NOT. EOF()
        STORE COUNT2+1 TO COUNT2
        IF P4CHOSEN = 1
        DO FINDP
        IF .NOT. FOUND
        SELECT 2
        USE I:C1C1T4 ALIAS C1T4 *[ C2C1T4, C3C1T4 ]*
        STORE 'C1T4' TO TRI
        STORE 'T TO TRITYPE
        STORE 0 TO P4CHOSEN
        GO TOP
        LOOP
        ENDIF
    ELSE
        DO FINDT
        IF .NOT. FOUND
        DO BACKUP
        EXIT
    ENDIF
```


ENDIF

* LEVEL 3 *

SELECT 3
USE I:C1C1P5 ALIAS CIPS
[C2C1P5, C3C1P5]
GO TOP
STORE '5' TO FACTOR
STORE 'CIP5' TO PENT
STORE 1 TO P5CHOSEN
DO WHILE .NOT. EOF()
STORE COUNT3+1 TO COUNT3
IF P5CHOSEN = 1
DO FINDP
IF .NOT. FOUND
SELECT 3
USE ICICITS ALIAS C1T5
STORE 'CIT5' TO TRI
STORE 'T' TO TRITYPE
STORE 0 TO P5CHOSEN
GO TOP
LOOP
ENDIF
ELSE
DO FINDT
IF .NOT. FOUND
DO BACKUP
EXIT
ENDIF
ENDIF

* LEVEL 4 *

SELECT 4
USE I:C1C2T ALIAS C2T *[C2C2T, C3C2T]*
GO TOP
STORE '3' TO FACTOR
STORE 'C2T' TO TRI
STORE 'D' TO TRITYPE
DO WHILE .NOT. EOFO
STORE COUNT4+1 TO COUNT4
DO FINDT
IF FOUND
STORE RECNO() TO D3RECNO
ELSE
DO BACKUP
EXIT
ENDIF

* LEVEL 5 *

GO TOP
STORE '4' TO FACTOR
DO WHILE .NOT. EOFO STORE COUNT5+1 TO COUNT5 DO FINDT
IF FOUND
STORE RECNO() TO D4RECNO
ELSE
DO BACKUP
EXIT
ENDIF

* LEVEL 6 *

```
GO TOP
STORE '5' TO FACTOR
DO WHILE .NOT. EOF()
STORE COUNT6+1 TO COUNT6
DO FINDT
IF FOUND
    STORE RECNO() TO DSRECNO
ELSE
    DO BACKUP
    EXIT
ENDIF
    * LEVEL 7 *
STORE '3' TO FACTOR
SELECT C2T
GO TOP
STORE 'T TO TRITYPE
SELECT 5
USE I:C1C2P ALIAS C2P *[ C2C2P, C3C2P ]*
STORE 'C2P' TO PENT
GO TOP
DO WHILE .NOT. EOF()
STORE COUNT7+1 TO COUNT7
IF P3CHOSEN = 1
    SELECT C2T
    DO FINDT
ELSE
        SELECT C2P
        DO FINDP
    ENDIF
    IF FOUND
        ?FACTORS->P3,FACTORS->T3,FACTORS->D3,FACTORS->P4, ;
            FACTORS->T4,FACTORS->D4,FACTORS->P5,FACTORS->T5, ;
            FACTORS->D5,TIME()
        STORE RECNO() TO F3RECNO
ELSE
        DO BACKUP
        EXIT
    ENDIF
                                    * LEVEL 8 *
STORE '4' TO FACTOR
SELECT C2T
GO TOP
SELECT C2P
GO TOP
DO WHILE .NOT. EOF0
    STORE COUNT8+1 TO COUNT8
    IF P4CHOSEN = 1
        SELECT C2T
        DO FINDT
    ELSE
        SELECT C2P
        DO FINDP
    ENDIF
    IF FOUND
        ?FACTORS->P3,FACTORS->T3,FACTORS->D3,FACTORS->P4, ;
            FACTORS->T4,FACTORS->D4,FACTORS->P5,FACTORS->T5, ;
            FACTORS->D5,TIME()
```

```
        STORE RECNO() TO F4RECNO
    ELSE
        DO BACKUP
        EXIT
    ENDIF
        * LEVEL 9 *
    STORE '5' TO FACTOR
    SELECT C2T
    GO TOP
    SELECT C2P
    GO TOP
    DO WHILE .NOT. EOF()
        STORE COUNT9+1 TO COUNT9
        IF P5CHOSEN = 1
        SELECT C2T
        DO FINDT
    ELSE
        SELECT C2P
        DO FINDP
    ENDIF
    IF FOUND
        ? "SOLUTION FOUND DESPITE PIOTROWSKI"
    ?
    ?FACTORS->P3,FACTORS->T3,FACTORS->D3,FACTORS->P4,;
            FACTORS->T4,FACTORS->D4,FACTORS->P5,FACTORS->T5,;
            FACTORS->D5,TIME0
        WAIT
        CLOSE DATABASES
        SET ALTERNATE OFF
        RETURN
    ELSE
        DO BACKUP
        EXIT
    ENDIF
    ENDDO
    * BACK TO LEVEL 8*
    STORE '4' TO FACTOR
    IF P4CHOSEN = 1
        SELECT C2T
        STORE 'C2T'TO TRI
    ELSE
        SELECT C2P
        STORE 'C2P' TO PENT
    ENDIF
    GO F4RECNO
ENDDO
    * BACK TO LEVEL 7 *
    STORE '3' TO FACTOR
    IF P3CHOSEN = 1
    SELECT C2T
    STORE 'C2T TO TRI
    ELSE
    SELECT C2P
    STORE 'C2P' TO PENT
    ENDIF
    GO F3RECNO
ENDDO
```

* BACK TO LEVEL 6* STORE '5' TO FACTOR STORE 'D' TO TRITYPE STORE 'C2T' TO TRI SELECT C2T GO D5RECNO ENDDO
* BACK TO LEVEL 5 * STORE '4' TO FACTOR SELECT C2T GO D4RECNO ENDDO
* BACK TO LEVEL 4* STORE '3' TO FACTOR SELECT C2T GO D3RECNO STORE 'C2T TO TRI STORE 'D' TO TRITYPE ENDDO
* BACK TO LEVEL 3* STORE '5' TO FACTOR SELECT 3 IF P5CHOSEN $=1$ STORE 'C1P5' TO PENT ELSE
STORE 'C1T5' TO TRI STORE 'T TO TRITYPE ENDIF
ENDDO
* BACK TO LEVEL 2* STORE '4' TO FACTOR
SELECT 2
IF P4CHOSEN $=1$ STORE 'C1P4' TO PENT ELSE
STORE 'C1T4' TO TRI ENDIF
ENDDO
* BACK TO LEVEL 1^{*} STORE '3' TO FACTOR SELECT 1
IF P3CHOSEN $=1$ STORE 'C1P3' TO PENT ELSE
STORE 'C1T3' TO TRI
ENDIF
ENDDO
RETURN

PROCEDURE FILE FOR OBRWLFCH.PRG

PROCEDURE FINDP

* This procedure finds a pentagon (if it exists) in the current pentagon
* database that is compatible with the pieces of factors already selected

```
STORE .F. TO FOUND
SKIP
DO WHILE .NOT. EOF()
    STORE "N"+FACTOR+V1 TO NODE1
    STORE "N"+FACTOR+V2 TO NODE2
    STORE "N"+FACTOR+V3 TO NODE3
    STORE "N"+FACTOR+V4 TO NODE4
    STORE "N"+FACTOR+V5 TO NODE5
    IF NODES->&NODE1=0 .AND. NODES->&NODE2=0 .AND. NODES->&NODE3=0;
            .AND. NODES->&NODE4=0 .AND. NODES->&NODE5=0
    STORE "E"+E1 TO EDGE1
    STORE "E"+E2 TO EDGE2
    STORE "E"+E3 TO EDGE3
    STORE "E"+E4 TO EDGE4
    STORE "E"+E5 TO EDGE5
    IF EDGES->&EDGE1=0 .AND. EDGES->&EDGE2=0 .AND. EDGES->&EDGE3=0 ;
                .AND. EDGES->&EDGE4=0 .AND. EDGES->&EDGE5=0
        STORE V1+V2+V3+V4+V5 TO MP
        DO CPYRCRDS
        SELECT NODES
            REPLACE &NODE1 WITH 1
            REPLACE &NODE2 WITH 1
            REPLACE &NODE3 WITH 1
            REPLACE &NODE4 WITH 1
            REPLACE &NODE5 WITH 1
            SELECT EDGES
                REPLACE &EDGE1 WITH 1
                REPLACE &EDGE2 WITH 1
                REPLACE &EDGE3 WITH 1
                REPLACE &EDGE4 WITH 1
                REPLACE &EDGE5 WITH 1
            SELECT FACTORS
                STORE "P"+FACTOR TO SLOT
                REPLACE &SLOT WITH MP
            SELECT &PENT
            STORE .T. TO FOUND
            EXIT
            ENDIF
    ENDIF
    SKIP
ENDDO
    IF EOFO
            SKIP -1
    ENDIF
    STORE TIME0 TO FTIME
RETURN
```


PROCEDURE FINDT

* This procedure finds a triangle (if it exists) in the current triangle
* database that is compatible with the pieces of factors already selected

```
STORE .F. TO FOUND
SKIP
DO WHILE .NOT. EOF()
    STORE "N"+FACTOR+V1 TO NODE1
    STORE "N"+FACTOR+V2 TO NODE2
    STORE "N"+FACTOR+V3 TO NODE3
    IF NODES->&NODE1=0 .AND. NODES->&NODE2=0 .AND. NODES->&NODE3=0
    STORE "E"+E1 TO EDGE1
    STORE "E"+E2 TO EDGE2
    STORE "E"+E3 TO EDGE3
    IF EDGES->&EDGE1=0 .AND. EDGES->&EDGE2=0 .AND. EDGES->&EDGE3=0
        STORE V1+V2+V3 TO MT
        DO CPYRCRDS
        SELECT NODES
            REPLACE &NODE1 WITH 1
            REPLACE &NODE2 WITH 1
            REPLACE &NODE3 WITH 1
            SELECT EDGES
                REPLACE &EDGE1 WITH 1
                REPLACE &EDGE2 WITH 1
                REPLACE &EDGE3 WITH 1
            SELECT FACTORS
                STORE TRITYPE+FACTOR TO SLOT
                REPLACE &SLOT WITH MT
            SELECT &TRI
            STORE .T. TO FOUND
            EXIT
            ENDIF
    ENDIF
    SKIP
ENDDO
IF EOF0
    SKIP -1
ENDIF
STORE TIMEO TO FTIME
RETURN
```


PROCEDURE CPYRCRDS

* This procedure copies to the next record information about nodes and
* edges that are currently in use so that nodes and edges from a newly
* found pentagon or triangle can be added while still preserving the
* current state in the event that we have to backtrack if the new
* choice proves to be unworkable

```
SELECT NODES
    STORE N31 TO MN31
    STORE N32 TO MN32
    STORE N33 TO MN33
    STORE N34 TO MN34
    STORE N35 TO MN35
    STORE N3A TO MN3A
    STORE N3B TO MN3B
    STORE N3C TO MN3C
    STORE N3X TO MN3X
    STORE N3Y TO MN3Y
    STORE N3Z TO MN3Z
    STORE N41 TO MN41
    STORE N42 TO MN42
    STORE N43 TO MN43
    STORE N44 TO MN44
    STORE N45 TO MN45
    STORE N4A TO MN4A
    STORE N4B TO MN4B
    STORE N4C TO MN4C
    STORE N4X TO MN4X
    STORE N4Y TO MN4Y
    STORE N4Z TO MN4Z
    STORE N51 TO MN51
    STORE N52 TO MN52
    STORE N53 TO MN53
    STORE N54 TO MN54
    STORE N55 TO MN55
    STORE N5A TO MN5A
    STORE N5B TO MN5B
    STORE N5C TO MN5C
    STORE N5X TO MN5X
    STORE N5Y TO MN5Y
    STORE N5Z TO MN5Z
APPEND BLANK
    REPLACE N31 WITH MN31, N32 WITH MN32, N33 WITH MN33,;
        N34 WITH MN34, N35 WITH MN35, N3A WITH MN3A, N3B WITH MN3B,;
        N3C WITH MN3C, N3X WITH MN3X, N3Y WITH MN3Y, N3Z WITH MN3Z
    REPLACE N41 WITH MN41, N42 WITH MN42, N43 WITH MN43,;
        N44 WITH MN44, N45 WITH MN45, N4A WITH MN4A, N4B WITH MN4B,;
        N4C WITH MN4C, N4X WITH MN4X, N4Y WITH MN4Y, N4Z WITH MN4Z
    REPLACE N51 WITH MN51, N52 WITH MN52, N53 WITH MN53,;
        N54 WITH MN54, N55 WITH MN55, N5A WITH MN5A, N5B WITH MN5B,;
        N5C WITH MN5C, N5X WITH MN5X, N5Y WITH MN5Y, N5Z WITH MN5Z
SELECT EDGES
    STORE E1A TO ME1A
    STORE E1B TO ME1B
    STORE E1C TO ME1C
    STORE E1X TO MEIX
```

STORE E1Y TO ME1Y
STORE EIZ TO ME1Z
STORE E24 TO ME24
STORE E25 TO ME25
STORE E2B TO ME2B
STORE E2C TO ME2C
STORE E2X TO ME2X
STORE E2Z TO ME2Z
STORE E35 TO ME35
STORE E3A TO ME3A
STORE E3B TO ME3B
STORE E3X TO ME3X
STORE E3Y TO ME3Y
STORE E3Z TO ME3Z
STORE E4A TO ME4A
STORE E4B TO ME4B
STORE E4C TO ME4C
STORE E4X TO ME4X
STORE E4Y TO ME4Y
STORE E5A TO ME5A
STORE E5C TO ME5C
STORE E5Y TO ME5Y
STORE E5Z TO ME5Z
STORE EAX TO MEAX
STORE EAZ TO MEAZ
STORE EBY TO MEBY
STORE EBZ TO MEBZ
STORE ECX TO MECX
STORE ECY TO MECY
APPEND BLANK
REPLACE E1A WITH ME1A, E1B WITH ME1B, E1C WITH ME1C, ; E1X WITH ME1X, E1Y WITH ME1Y, E1Z WITH ME1Z, E24 WITH ME24, ; E25 WITH ME25, E2B WITH ME2B, E2C WITH ME2C, E2X WITH ME2X, ; E2Z WITH ME2Z
REPLACE E35 WITH ME35, E3A WITH ME3A, E3B WITH ME3B, ;
E3X WITH ME3X, E3Y WITH ME3Y, E3Z WITH ME3Z, E4A WITH ME4A, ;
E4B WITH ME4B, E4C WITH ME4C, E4X WITH ME4X, E4Y WITH ME4Y, ; E5A WITH ME5A
REPLACE E5C WITH ME5C, E5Y WITH ME5Y, E5Z WITH ME5Z, ;
EAX WITH MEAX, EAZ WITH MEAZ, EBY WITH MEBY, EBZ WITH MEBZ, ;
ECX WITH MECX, ECY WITH MECY
SELECT FACTORS
STORE P3 TO MP3
STORE T3 TO MT3
STORE D3 TO MD3
STORE P4 TO MP4
STORE T4 TO MT4 STORE D4 TO MD4 STORE P5 TO MPS STORE T5 TO MT5 STORE D5 TO MD5 APPEND BLANK
REPLACE P3 WITH MP3
REPLACE T3 WITH MT3
REPLACE D3 WITH MD3
REPLACE P4 WITH MP4
REPLACE T4 WITH MT4

```
        REPLACE D4 WITH MD4
        REPLACE P5 WITH MP5
        REPLACE T5 WITH MT5
    REPLACE D5 WITH MD5
RETURN
```


PROCEDURE BACKUP

* This procedure backs us up to the previous working level whenever there
* are no more possibilities to try with the current configuration.

SELECT NODES
STORE RECNO(0-1 TO POINTNOD
DELETE
PACK
GO POINTNOD
SELECT EDGES
STORE RECNO(-1 TO POINTEDG
DELETE
PACK
GO POINTEDG
SELECT FACTORS
STORE RECNOO-1 TO POINTFAC
DELETE
PACK
GO POINTFAC
RETURN

DATA-GENERATING PROGRAMS FOR OBRWLFCH.PRG

*GENC1P.PRG

* THIS IS A PROGRAM TO GENERATE CLASS 1 PENTAGONS FROM AVAILABLE
* EDGES FOR THE OBRWLFCH PROBLEM OP(11;3,3,5)

CLEAR
CLEAR ALL
SET TALK OFF
SELECT 1
USE C:C1PPEDGE ALIAS PPEDGE [C:C2PPEDGE and C:C3PPEDGE, resp.] GO TOP
SELECT 2
USE C:TDVERT1 ALIAS TD1
GO TOP
SELECT 3
USE C:PVERT1 ALIAS P GO TOP
SELECT 4
USE C:TDVERT2 ALIAS TD2
GO TOP
SELECT 5
USE C:EDGEUSED ALIAS USED
GO TOP
SELECT 6 USE C:C1C1P ALIAS PENTS [C:C2C1P and C:C3C1P, resp.] GO TOP
SELECT PPEDGE
DO WHILE .NOT. EOF()
STORE V1 TO MV1
STORE V2 TO MV2
SELECT TDI
DO WHILE .NOT. EOF()
STORE V TO MV3
SELECT P
DO WHILE .NOT. EOF()
IF V = MV1 . OR. $\mathrm{V}=\mathrm{MV} 2$
SKIP
LOOP
ELSE
STORE V TO MV4

ENDIF

SELECT TD2
DO WHILE .NOT. EOFO
IF V = MV3
SKIP
LOOP
ELSE
STORE V TO MV5
ENDIF
STORE "E"+MV2+MV3 TO EDGE2
STORE "E"+MV4+MV3 TO EDGE3
STORE "E"+MV4+MV5 TO EDGE4

```
        STORE "E"+MV1+MV5 TO EDGE5
        IF USED->&EDGE2=1 .OR. USED->&EDGE3=1 .OR. USED->&EDGE4=1 .OR.;
            USED->&EDGE5=1
            SKIP
            LOOP
        ELSE
            SELECT PENTS
            APPEND BLANK
            REPLACE V1 WITH MV1
            REPLACE V2 WITH MV2
            REPLACE V3 WITH MV3
            REPLACE V4 WITH MV4
            REPLACE V5 WITH MV5
            REPLACE E1 WITH MV1+MV2
            REPLACE E2 WITH MV2+MV3
            REPLACE E3 WITH MV4+MV3
            REPLACE E4 WITH MV4+MV5
            REPLACE E5 WITH MV1+MV5
        SELECT TD2
        SKIP
        ENDIF
        ENDDO
        GO TOP
        SELECT P
        SKIP
        ENDDO
        GO TOP
        SELECT TD1
        SKIP
    ENDDO
    GO TOP
    SELECT PPEDGE
    SKIP
ENDDO
CLOSE DATABASES
RETURN
```


*GENC2P.PRG

* THIS IS A PROGRAM TO GENERATE CLASS 2 PENTAGONS FROM AVAILABLE
* EDGES FOR THE OBRWLFCH PROBLEM OP(11;3,3,5)

CLEAR
CLEAR ALL
SET TALK OFF
SELECT 1
USE C:C1TDEDGE ALIAS TDEDGE [C2TDEDGE and C3TDEDGE, resp.] GO TOP
SELECT 2
USE C:PVERT1 ALIAS P1
GO TOP
SELECT 3
USE C:TDVERT1 ALIAS TD
GO TOP
SELECT 4
USE C:PVERT2 ALIAS P2
GO TOP
SELECT 5
USE C:EDGEUSED ALIAS USED
GO TOP
SELECT 6
USE C:C1C2P ALIAS PENTS [C2C2P and C3C2P, resp.]
GO TOP
SELECT TDEDGE
DO WHILE .NOT. EOF()
STORE V1 TO MV1
STORE V2 TO MV2
SELECT P1
DO WHILE .NOT. EOF()
STORE V TO MV3
SELECT TD
DO WHILE .NOT. EOF()
IF V = MV1 .OR. $\mathrm{V}=\mathrm{MV} 2$
SKIP
LOOP
ELSE
STORE V TO MV4
ENDIF
SELECT P2
DO WHILE .NOT. EOFO
IF V = MV3
SKIP
LOOP
ELSE
STORE V TO MV5
ENDIF
STORE "E"+MV3+MV2 TO EDGE2
STORE "E"+MV3+MV4 TO EDGE3
STORE "E"+MV5+MV4 TO EDGE4
STORE "E"+MV5+MV1 TO EDGE5
IF USED->\&EDGE2=1.OR. USED->\&EDGE3=1 OR. USED->\&EDGE4=1 .OR.;
USED $->\& E D G E 5=1$
SKIP

```
        LOOP
    ELSE
        SELECT PENTS
        APPEND BLANK
        REPLACE V1 WITH MV1
        REPLACE V2 WITH MV2
        REPLACE V3 WITH MV3
        REPLACE V4 WITH MV4
        REPLACE V5 WITH MV5
        REPLACE E1 WITH MV1+MV2
        REPLACE E2 WITH MV3+MV2
        REPLACE E3 WITH MV3+MV4
        REPLACE E4 WITH MV5+MV4
        REPLACE E5 WITH MV5+MV1
        SELECT P2
        SKIP
        ENDIF
        ENDDO
        GO TOP
        SELECT TD
        SKIP
        ENDDO
        GO TOP
        SELECT P1
        SKIP
    ENDDO
    GO TOP
    SELECT TDEDGE
    SKIP
ENDDO
CLOSE DATABASES
RETURN
```


PENTEDGE.PRG

* THIS PROGRAM FILLS IN THE EDGES (SMALLEST VALUE NODE FIRST) IN THE*
* PENTAGON DATABASES WHEN THE VERTICES ARE ALREADY ENTERED.*

GO TOP
DO WHILE .NOT. EOF()
IF V1 < V2
REPLACE E1 WITH V1+V2
ELSE
REPLACE E1 WITH V2+V1
ENDIF
IF V2 < V3
REPLACE E2 WITH V2+V3
ELSE
REPLACE E2 WITH V3+V2
ENDIF
IF V3 < V4
REPLACE E3 WITH V3+V4
ELSE
REPLACE E3 WITH V4+V3
ENDIF
IF V4 < V5
REPLACE E4 WITH V4+V5
ELSE
REPLACE E4 WITH V5+V4
ENDIF
IF V1 < V5
REPLACE E5 WITH V1+V5
ELSE
REPLACE E5 WITH V5+V1
ENDIF
SKIP
ENDDO

TRIEDGE.PRG

THIS PROGRAM FILLS IN THE EDGES (SMALLEST VALUE NODE FIRST) IN THE
TRIANGLE DATABASES WHEN VERTICES HAVE ALREADY BEEN ENTERED
GO TOP
DO WHILE .NOT. EOF()
IF V1 < V2
REPLACE E1 WITH V1+V2
ELSE
REPLACE E1 WITH V2+V1
ENDIF
IF V2 < V3
REPLACE E2 WITH V2+V3
ELSE
REPLACE E2 WITH V3+V2
ENDIF
IF V1 < V3
REPLACE E3 WITH V1+V3
ELSE
REPLACE E3 WITH V3+V1
ENDIF
SKIP
ENDDO

DATABASES FOR OBRWLFCH.PRG - CASE 1

C1C1T3.DBF

Record\#	V1	V2	V3	E1	E2	E3
1						
2	2	5	C	25	$5 C$	$2 C$
3	2	5	Z	25	$5 Z$	$2 Z$

C1C1T4.DBF

Record\#	V1	V2	V3	E1	E2	E3
1						
2	2	4	B	24	$4 B$	$2 B$
3	2	4	C	24	$4 C$	$2 C$
4	2	4	X	24	$4 X$	$2 X$

C1C1T5.DBF

Record\#	V1	V2	V3	E1	E2	E3
1						
2	3	5	A	35	$5 A$	$3 A$
3	3	5	Y	35	$5 Y$	$3 Y$
4	3	5	Z	35	$5 Z$	$3 Z$

C1C2T.DBF Record\#	V1	V2	V3	E1	E2	E3
1						
2	1	A	X	1 A	AX	1 X
3	1	A	Z	1 A	AZ	1 Z
4	3	A	X	3 A	AX	3 X
5	3	A	Z	3 A	AZ	3 Z
6	4	A	X	4 A	AX	4 X
7	5	A	Z	5 A	AZ	5 Z
8	1	B	Y	1 B	BY	1 Y
9	1	B	Z	1 B	BZ	1 Z
10	2	B	Z	2 B	BZ	2 Z
11	3	B	Y	3 B	BY	3 Y
12	3	B	Z	3 B	BZ	3 Z
13	4	B	Y	4 B	BY	4 Y
14	1	C	X	1 C	CX	1 X
15	1	C	Y	1 C	CY	1 Y
16	2	C	X	2 C	CX	2 X
17	4	C	X	4 C	CX	4 X
18	4	C	Y	4 C	CY	4 Y
19	5	C	Y	5 C	CY	5 Y

C1C1P3.DBF

Record\# 1	V1	V2	V3	V4	V5	E1	E2	E3	E4	E5
2	2	5	A	1	X	25	$5 A$	1 A	1 X	2 X
3	2	5	A	3	X	25	5 A	3 A	3 X	2 X
4	2	5	A	3	Z	25	5 A	3 A	3 Z	2 Z
5	2	5	A	4	X	25	5 A	4 A	4 X	2 X
5	2	5	C	1	X	25	5 C	1 C	1 X	2 X
6	2	5	C	4	X	25	5 C	4 C	4 X	2 X
7	2	5	Y	1	B	25	5 Y	1 Y	1 B	2 B
8	2	5	Y	1	C	25	5 Y	1 Y	1 C	2 C
9	2	5	Y	3	B	25	5 Y	3 Y	3 B	2 B
10	2	5	Y	4	B	25	5 Y	4 Y	4 B	2 B
11	2	5	Y	4	C	25	5 Y	4 Y	4 C	2 C
12	2	5	Z	1	B	25	5 Z	1 Z	1 B	2 B
13	2	5	Z	1	C	25	5 Z	1 Z	1 C	2 C
14	2	5	Z	3	B	25	5 Z	$3 Z$	3 B	2 B
15	2									

C1C1P4.DBF										
Record\#	V1	V2	V3	V4	V5	E1	E2	E3	E4	E5
1										
2	2	4	A	1	X	24	4A	1A	1 X	2X
3	2	4	A	1	Z	24	4A	1 A	12	27
4	2	4	A	3	X	24	4A	3A	3 X	2X
5	2	4	A	3	Z	24	4A	3A	32	27
6	2	4	A	5	Z	24	4A	5A	5 Z	27
7	2	4	B	1	X	24	4B	1B	1 X	2 X
8	2	4	B	1	Z	24	4B	1B	12	27
9	2	4	B	3	X	24	4B	3B	3X	2 X
10	2	4	B	3	Z	24	4B	3B	32	27
11	2	4	C	1	X	24	4 C	1 C	1 X	2 X
12	2	4	C	1	Z	24	4 C	1 C	12	27
13	2	4	C	5	2	24	4 C	5 C	5 Z	27
14	2	4	X	1	B	24	4X	1 X	1 B	2B
15	2	4	X	1	C	24	4X	1 X	1 C	2 C
16	2	4	X	3	B	24	4X	3 X	3B	2 B
17	2	4	Y	1	B	24	4 Y	1 Y	1 B	2 B
18	2	4	Y	1	C	24	4Y	1 Y	1 C	2 C
19	2	4	Y	3	B	24	4 Y	3 Y	3B	2 B
20	2	4	Y	5	C	24	4Y	5Y	5 C	2 C

C1C1P5.DBF										
Record\#	V1	V2	V3	V4	V5	E1	E2	E3	E4	E5
Recod V1 V2 V3 V4 VS E3 E4 ES										
2	3	5	A	1	X	35	5A	1 A	1 X	3 X
3	3	5	A	1	Y	35	5A	1 A	1 Y	3 Y
4	3	5	A	1	Z	35	5A	1 A	12	3 Z
5	3	5	A	4	X	35	5A	4 A	4 X	3 X
6	3	5	A	4	Y	35	5A	4A	4 Y	3 Y
7	3	5	C	1	X	35	5C	1 C	1 X	3 X
8	3	5	C	1	Y	35	5 C	1 C	1 Y	3 Y
9	3	5	C	1	Z	35	5 C	1 C	1Z	3 Z
10	3	5	C	2	X	35	5 C	2 C	2 X	X
11	3	5	C	2	Z	35	5 C	2 C	2 Z	3 Z
12	3	5	C	4	X	35	5 C	4 C	4X	3 X
13	3	5	C	4	Y	35	5 C	4 C	4 Y	3 Y
14	3	5	Y	1	A	35	5 Y	1 Y	1 A	3A
15	3	5	Y	1	B	35	5Y	1 Y	1B	3B
16	3	5	Y	4	B	35	5 Y	4 Y	4B	3B
17	3	5	Z	1	A	35	5 Z	1 Z	1 A	3A
18	3	5	Z	1	B	35	5 Z	1 Z	1B	3B
19	3	5	Z	2	B	35	$5 Z$	27	2 B	3B

C1C2P.DBF										
Record\# 1	V1	V2	V3	V4	V5	E1	E2	E3	E4	E5
2	1	A	3	B	Y	1A	3A	3B	BY	1 Y
3	1	A	3	B	Z	1 A	3 A	3B	BZ	12
4	1	A	3	X	C	1 A	3A	3 X	CX	1 C
5	1	A	3	Y	B	1 A	3A	3Y	BY	1B
6	1	A	3	Y	C	1 A	3 A	3 Y	CY	1 C
7	1	A	3	Z	B	1 A	3A	3 Z	BZ	1 B
8	1	A	4	B	Y	1 A	4A	4B	BY	1 Y
9	1	A	4	B	Z	1 A	4A	4B	BZ	12
10	1	A	4	C	X	1A	4 A	4C	CX	1 X
11	1	A	4	C	Y	1 A	4 A	4 C	CY	1 Y
12	1	A	4	X	C	1 A	4 A	4X	CX	1 C
13	1	A	4	Y	B	1 A	4 A	4 Y	BY	1B
14	1	A	5	C	X	1 A	5 A	5C	CX	1 X
15	1	A	5	C	Y	1 A	5 A	5C	CY	1 Y
16		A	5	Y	B	1 A	5 A	5 Y	BY	1B
17	1	A	5	Y	C	1 A	5 A	5 Y	CY	1 C
18	1	A	5	Z	B	1 A	5A	5 Z	BZ	1B
19	1	B	2	C	X	1B	2 B	2C	CX	1 X
20	1	B	2	C	Y	1B	2 B	2C	CY	1 Y
21	1	B	2	X	A	1B	2 B	2X	AX	1 A
22	1	B	2	X	C	1B	2 B	2X	CX	1 C
23	1	B	2	Z	A	1B	2 B	2 Z	AZ	1 A
24		B	3	A	X	1B	3B	3A	AX	1 X
25	1	B	3	A	Z	1B	3B	3A	AZ	1Z
26	1	B	3	X	A	1B	3B	3X	AX	1 A
27	1	B	3	X	C	1B	3B	3X	CX	1 C
28	1	B	3	Y	C	1B	3B	3 Y	CY	1 C
29	1	B	3	Z	A	1B	3B	3 Z	AZ	1 A
30	1	B	4	A	X	1B	4B	4A	AX	1 X
31	1	B	4	A	Z	1B	4B	4A	AZ	12
32	1	B	4	C	X	1B	4B	4 C	CX	1 X
33	1	B	4	C	Y	1B	4B	4 C	CY	1 Y
34	1	B	4	X	C	1B	4B	4X	CX	1 C
35	1	B	4	X	A	1B	4B	4X	AX	1 A
36	1	B	4	Y	C	1B	4B	4 Y	CY	1 C
37	1	C	2	B	Y	1 C	2 C	2B	BY	1 Y
38	1	C	2	B	Z	1 C	2 C	2B	BZ	1 Z
39	1	C	2	X	A	1 C	2 C	2 X	AX	1 A
40	1	C	2	Z	A	1 C	2 C	2 Z	AZ	1 A
41		C	2	Z	B	1 C	2 C	2 Z	BZ	1B
42	1	C	4	A	X	1 C	4 C	4A	AX	1 X
43	1	C	4	A	Z	1 C	4 C	4A	AZ	1Z
44	,	C	4	B	Y	1 C	4 C	4B	BY	1 Y
45	1	C	4	B	Z	1 C	4 C	4B	BZ	1Z
46	1	C	4	X	A	1 C	4C	4X	AX	1A
47	1	C	4	Y	B	1 C	4 C	4 Y	BY	1B
48	1	C	5	A	X	1 C	5 C	5 A	AX	1 X
49	1	C	5	A	Z	1 C	5 C	5 A	AZ	12
50	1	C	5	Y	B	1 C	5 C	5 Y	BY	1B
51	1	C	5	Z	B	1 C	5 C	5 Z	BZ	1B
52	1	C	5	Z	A	1C	5C	5 Z	AZ	1 A
53	1	X	2	B	Y	1 X	2X	2 B	BY	1 Y

گَ
O＞＞＜x＞＞＜＜
$X N X \cap \cap N X$ Oصく
¢
X我 保

111	2	B	4	X	C	2B	4B	4X	CX	2C
112	2	B	4	Y	C	2B	4B	4Y	CY	2C
113	2	C	4	A	X	2 C	4 C	4A	AX	2X
114	2	C	4	A	Z	2 C	4 C	4A	AZ	2 Z
115	2	C	4	B	Z	2C	4 C	4B	BZ	2 Z
116	2	C	4	Y	B	2 C	4 C	4 Y	BY	2B
117	2	C	5	A	X	2C	5 C	5A	AX	2 X
118	2	C	5	A	Z	2 C	5C	5A	AZ	2 Z
119	2	C	5	Y	B	2 C	5C	5Y	BY	2B
120	2	C	5	Z	B	2 C	5C	5 Z	BZ	2B
121	2	X	3	A	Z	2X	3X	3A	AZ	2 Z
122	2	X	3	B	Z	2X	3X	3B	BZ	2 Z
123	2	X	3	Y	C	2X	3X	3 Y	CY	2C
124	2	X	3	Y	B	2X	3X	3Y	BY	2 B
125	2	X	3	Z	B	2X	3 X	3Z	BZ	2 B
126	2	X	4	A	Z	2X	4X	4A	AZ	2 Z
127	2	X	4	B	Z	2X	4X	4B	BZ	27
128	2	X	4	Y	C	2 X	4X	4 Y	CY	2 C
129	2	X	4	Y	B	2 X	4X	4Y	BY	2B
130	2	Z	3	A	X	2 Z	3 Z	3A	AX	2X
131	2	Z	3	X	C	27	3 Z	3X	CX	2 C
132	2	Z	3	Y	C	2 Z	3 Z	3 Y	CY	2 C
133	2	Z	3	Y	B	2 Z	3 Z	3Y	BY	2B
134	2	Z	5	A	X	2 Z	5Z	5A	AX	2X
135	2	Z	5	C	X	27	5 Z	5 C	CX	2X
136	2	Z	5	Y	C	27	5 Z	5 Y	CY	2 C
137	2	Z	5	Y	B	2 Z	5 Z	5Y	BY	2B
138	3	A	4	B	Z	3A	4A	4B	BZ	3 Z
139	3	A	4	B	Y	3 A	4A	4B	BY	3Y
140	3	A	4	C	X	3A	4A	4 C	CX	3X
141	3	A	4	C	Y	3A	4A	4 C	CY	3 Y
142	3	A	4	Y	B	3A	4A	4 Y	BY	3B
143	3	A	5	C	X	3A	5A	5C	CX	3X
144	3	A	5	C	Y	3A	5A	5C	CY	3 Y
145	3	A	5	Y	B	3A	5A	5 Y	BY	3B
146	3	A	5	Z	B	3A	5A	5 Z	BZ	3B
147	3	B	4	A	X	3B	4B	4A	AX	3X
148	3	B	4	A	Z	3B	4B	4A	AZ	3 Z
149	3	B	4	C	X	3B	4B	4 C	CX	3X
150	3	B	4	C	Y	3B	4B	4 C	CY	3Y
151	3	B	4	X	A	3B	4B	4X	AX	3A
152	3	X	4	A	Z	3X	4X	4A	AZ	3 Z
153	3	X	4	B	Y	3X	4X	4B	BY	3 Y
154	3	X	4	B	Z	3 X	4X	4B	BZ	3Z
155	3	X	4	C	Y	3X	4X	4 C	CY	3 Y
156	3	X	4	Y	B	3 X	4X	4Y	BY	3B
157	3	Y	4	A	X	3 Y	4 Y	4A	AX	3X
158	3	Y	4	A	Z	3Y	4Y	4A	AZ	3Z
159	3	Y	4	B	Z	3 Y	4Y	4B	BZ	3 Z
160	3	Y	4	C	X	3 Y	4Y	4 C	CX	3X
161	3	Y	4	X	A	3 Y	4Y	4 X	AX	3A
162	3	Y	5	A	X	3Y	5 Y	5A	AX	3X
163	3	Y	5	A	Z	3 Y	5Y	5A	AZ	3 Z
164	3	Y	5	C	X	3 Y	5Y	5C	CX	3X
165	3	Y	5	Z	A	3 Y	5 Y	5 Z	AZ	3A
166	3	Y	5	Z	B	3 Y	5 Y	5 Z	BZ	3B
167	3	Z	5	A	X	32	5 Z	5A	AX	3X

168	3	Z	5	C	X	3 Z	5 Z	5 C	CX	3 X
169	3	Z	5	C	Y	3 Z	5 Z	5 C	CY	3 Y
170	3	Z	5	Y	B	3 Z	5 Z	5 Y	BY	3B
171	4	A	5	C	X	4A	5A	5 C	CX	4X
172	4	A	5	C	Y	4A	5A	5 C	CY	4 Y
173	4	A	5	Y	B	4A	5A	5 Y	BY	4B
174	4	A	5	Y	C	4A	5A	5Y	CY	4 C
175	4	A	5	Z	B	4A	5A	5 Z	BZ	4B
176	4	C	5	A	X	4 C	5C	5A	AX	4X
177	4	C	5	Y	B	4 C	5 C	5 Y	BY	4B
178	4	C	5	Z	A	4 C	5 C	5 Z	AZ	4A
179	4	C	5	Z	B	4C	5 C	5 Z	BZ	4B
180	4	Y	5	A	X	4 Y	5 Y	5A	AX	4X
181	4	Y	5	C	X	4 Y	5 Y	5 C	CX	4X
182	4	Y	5	Z	A	4Y	5 Y	5 Z	AZ	4A
183	4	Y	5	Z	B	4Y	5 Y	5Z	BZ	4B

USEDEDGE.DBF (for Case 1)

Record\# E1A E1B E1C E1X E1Y E1Z E24 E25 E2B E2C E2X E2Z E35 E3A E3B E3X $\left.10 \begin{array}{llllllllllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$ $\left.\begin{array}{ccccccccccccccccc}\text { E3Y } & \text { E3Z } & \text { E4A } & \text { E4B } & \text { E4C } & \text { E4X } & \text { E4Y } & \text { E5A } & \text { E5C } & \text { E5Y } & \text { E5Z } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

DATABASES FOR OBRWLFCH.PRG - CASE 2

C2C1T3.DBF						
Record\#	V1	V2	V3	E1	E2	E3
1						
2	1	3	A	13	$1 A$	$3 A$
3	1	3	B	13	$1 B$	$3 B$
4	1	3	Y	13	$1 Y$	$3 Y$

C2C1T4.DBF

Record\#	V1	V2	V3	E1	E2	E3
1						
2	2	4	B	24	$2 B$	$4 B$
3	2	4	C	24	$2 C$	$4 C$
4	2	4	X	24	$2 X$	$4 X$
5	2	4	Y	24	$2 Y$	$4 Y$

C12C1T5.DBF						
Record\#	V1	V2	V3	E1	E2	E3
1						
2	3	5	B	35	$3 B$	$5 B$
3	3	5	Y	35	$3 Y$	$5 Y$
4	3	5	Z	35	$3 Z$	$5 Z$

C2C2T.DBF

Record\#	V1	V2	V3	E1	E2	E3
1						
2	1	A	X	1 A	1 X	AX
3	4	A	X	4A	4X	AX
4	1	A	Y	1 A	1 Y	A Y
5	3	A	Y	3A	3 Y	A Y
6	4	A	Y	4A	4Y	A Y
7	3	A	Z	3A	3 Z	AZ
8	2	B	Z	2B	$2 Z$	BZ
9	3	B	Z	3B	3 Z	BZ
10	5	B	Z	5B	5 Z	BZ
11	1	C	X	1 C	1 X	CX
12	2	C	X	2 C	2 X	CX
13	4	C	X	4 C	4X	CX
14	5	C	X	5 C	5 X	CX
15	2	C	Z	2 C	2 Z	CZ
16	5	C	Z	5C	5 Z	CZ

C2C1P3.DBF										
Record\#	V1	V2	V3	V4	V 5	E1	E2	E3	E4	E5
. 1										
. 2	1	3	A	4	B	13	3 A	4A	4B	1B
. 3	1	3	A	4	C	13	3 A	4A	4 C	1 C
. 4	1	3	A	4	X	13	3 A	4A	4X	1X
. 5	1	3	A	4	Y	13	3 A	4A	4 Y	1 Y
. 6	1	3	B	2	C	13	3B	2B	2C	1C
. 7	1	3	B	2	X	13	3B	2B	2 X	1 X
. 8	1	3	B	2	Y	13	3B	2B	2 Y	1 Y
. 9	1	3	B	4	A	13	3B	4B	4A	1A
10	1	3	B	4	C	13	3B	4B	4 C	1 C
11	1	3	B	4	X	13	3B	4B	4X	1 X
12	1	3	B	4	Y	13	3B	4B	4 Y	1 Y
13	1	3	B	5	C	13	3B	5B	5C	1 C
14	1	3	B	5	X	13	3B	5B	5 X	1 X
15	1	3	B	5	Y	13	3B	5B	5 Y	1 Y
16	1	3	Y	2	B	13	3 Y	$2 Y$	2B	1B
17	1	3	Y	2	C	13	3 Y	2 Y	2 C	1 C
18	1	3	Y	2	X	13	3 Y	2 Y	2 X	1 X
19	1	3	Y	4	A	13	3Y	4 Y	4A	1A
20	1	3	Y	4	B	13	3 Y	4 Y	4B	1B
21	1	3	Y	4	C	13	3 Y	4 Y	4 C	1 C
22	1	3	Y	4	X	13	3 Y	4 Y	4X	1 X
23	1	3	Y	5	B	13	3 Y	5 Y	5B	1B
24	1	3	Y	5	C	13	3 Y	5 Y	5C	1 C
25	1	3	Y	5	X	13	3 Y	5 Y	5X	1 X
26	1	3	Z	2	B	13	3 Z	2 Z	2B	1B
27	1	3	Z	2	C	13	3 Z	2 Z	2 C	1 C
28	1	3	Z	2	X	13	32	2 Z	2 X	1 X
29	1	3	Z	2	Y	13	32	2 Z	2 Y	1 Y
30	1	3	Z	5	B	13	32	5 L	5B	1B
31	,	3	2	5	C	13	32	5 L	5C	1 C
32	1	3	Z	5	X	13	32	5Z	5X	1 X
33	1	3	Z	5	Y	13	32	5 Z	5Y	1 Y

C2C1P4.DBF

Record\#	V1	V2	V3	V4	V5	E1	E2	E3	E4	E5
. 1										
2	2	4	A	1	B	24	4A	1 A	1B	2 B
3	2	4	A	1	C	24	4A	1 A	1 C	2 C
4	2	4	A	1	X	24	4A	1 A	1 X	2
5	2	4	A	1	Y	24	4A	1 A	1 Y	Y
6	2	4	A	3	B	24	4A	3A	3B	2B
7	2	4	A	3	Y	24	4A	3 A	3 Y	Y
8	2	4	A	3	Z	24	4A	3 A	3 Z	22
9	2	4	B	1	C	24	4B	1B	1C	2 C
10	2	4	B	1	X	24	4B	1B	1 X	2 X
11	2	4	B	1	Y	24	4B	1B	1 Y	Y
12	2	4	B	3	Y	24	4B	3B	3Y	Y
13	2	4	B	3	Z	24	4B	3B	3Z	2 Z
14	2	4	B	5	C	24	4B	5B	5 C	2 C
15	2	4	B	5	X	24	4B	5B	5X	2 X
16	2	4	B	5	Y	24	4B	5B	5 Y	2
17	2	4	B	5	Z	24	4B	5B	5 Z	27
18	2	4	C	1	B	24	4 C	1 C	1B	2B
19	2	4	C	1	X	24	4 C	1 C	1 X	2X
20	2	4	C	1	Y	24	4 C	1 C	1 Y	2
21	2	4	C	5	B	24	4 C	5 C	5B	2B
22	2	4	C	5	X	24	4 C	5 C	5X	2 X
23	2	4	C	5	Y	24	4 C	5 C	5 Y	2
24	2	4	C	5	Z	24	4 C	5 C	5 Z	27
25	2	4	X	1	B	24	4X	1 X	1B	2B
26	2	4	X	1	C	24	4X	1 X	1 C	2 C
27	2	4	X	1	Y	24	4X	1 X	1 Y	Y
28	2	4	X	5	B	24	4X	5 X	5B	2B
29	2	4	X	5	C	24	4X	5X	5 C	2 C
30	2	4	X	5	Y	24	4X	5X	5 Y	2 Y
31	2	4	X	5	Z	24	4X	5X	5 Z	22
32	2	4	Y	1	B	24	4 Y	1 Y	1B	2 B
33	2	4	Y	1	C	24	4Y	1 Y	1 C	2 C
34	2	4	Y	1	X	24	4 Y	1 Y	1 X	2X
35	2	4	Y	3	B	24	4 Y	3 Y	3B	2 B
36	2	4	Y	3	Z	24	4 Y	3 Y	3 Z	22
37	2	4	Y	5	B	24	4 Y	5 Y	5B	2B
38	2	4	Y	5	C	24	4 Y	5 Y	5 C	2 C
39	2	4	Y	5	X	24	4 Y	5 Y	5 X	2 X
40	2	4	Y	5	Z	24	4 Y	5Y	5 Z	2 Z

C2C1P5.DBF

Record\#	V1	V2	V3	V4	V5	E1	E2	E3	E4	E5
. 1										
2	3	5	B	1	A	35	5B	1B	1 A	3A
3	3	5	B	1	Y	35	5B	1B	1 Y	3 Y
4	3	5	B	2	Y	35	5B	2B	2 Y	3 Y
5	3	5	B	2	Z	35	5B	2B	2 Z	3 Z
6	3	5	B	4	A	35	5B	4B	4 A	3A
7	3	5	B	4	Y	35	5B	4B	4 Y	3 Y
8	3	5	C	1	A	35	5C	1 C	1A	3A
9	3	5	C	1	B	35	5C	1 C	1B	3B
10	3	5	C	1	Y	35	5C	1 C	1 Y	3 Y
11	3	5	C	2	B	35	5C	2 C	2B	3B
12	3	5	C	2	Y	35	5C	2 C	2 Y	3Y
13	3	5	C	2	Z	35	5C	2 C	2 Z	3 Z
14	3	5	C	4	A	35	5C	4 C	4A	3A
15	3	5	C	4	B	35	5C	4 C	4B	3B
16	3	5	C	4	Y	35	5C	4 C	4 Y	3Y
17	3	5	X	1	A	35	5X	1 X	1A	3A
18	3	5	X	1	B	35	5 X	1 X	1B	3B
19	3	5	X	1	Y	35	5X	1 X	1 Y	3Y
20	3	5	X	2	B	35	5X	2 X	2B	3B
21	3	5	X	2	Y	35	5 X	2 X	2 Y	3 Y
22	3	5	X	2	Z	35	5X	2 X	2Z	3Z
23	3	5	X	4	A	35	5X	4X	4A	3A
24	3	5	X	4	B	35	5X	4 X	4B	3B
25	3	5	X	4	Y	35	5X	4X	4 Y	3 Y
26	3	5	Y	1	A	35	5Y	1 Y	1A	3A
27	,	5	Y	1	B	35	5Y	1 Y	1B	3B
28	3	5	Y	2	B	35	5Y	2Y	2B	3B
29	3	5	Y	2	Z	35	5Y	2 Y	2Z	3 Z
30	3	5	Y	4	A	35	5Y	4 Y	4 A	3A
31	3	5	Y	4	B	35	5Y	4 Y	4B	3B
32	3	5	Z	2	B	35	5 Z	2 Z	2B	3B
33	3	5	Z	2	Y	35	5 Z	2 Z	2 Y	3 Y

Record\#	V1	V2	V3	V4	V5	E1	E2	E3	E4	E5
2	A	X	1	B	3	AX	1 X	1B	3B	3A
3	A	X	1	B	4	AX	1 X	1B	4B	4A
4	A	X	1	C	4	AX	1 X	1 C	4 C	4A
5	A	X		Y	3	AX	1 X	1 Y	3 Y	3A
6	A	X	1	Y	4	AX	1 X	1 Y	4 Y	4A
7	A	X	2	B	1	AX	2X	2B	1B	1 A
8	A	X	2	B	3	AX	2X	2B	3B	3A
9	A	X	2	B	4	AX	2X	2B	4B	4A
10	A	X	2	C	1	AX	2X	2C	1 C	1 A
11	A	X	2	C	4	AX	2X	2C	4 C	4A
12	A	X	2	Y	1	AX	2X	2 Y	1 Y	1 A
13	A	X	2	Y	3	AX	2X	2 Y	3Y	3A
14	A	X	2	Y	4	AX	2X	2 Y	4 Y	4A
15	A	X	2	Z	3	AX	2 X	2 Z	3Z	3A
16	A	X	4	B	1	AX	4X	4B	1B	1 A
17	A	X	4	B	3	AX	4X	4B	3B	3A
18	A	X	4	C	1	AX	4X	4C	1 C	1 A
19	A	X	4	Y	1	AX	4X	4 Y	1 Y	1 A
20	A	X	4	Y	3	AX	4X	4 Y	3 Y	3A
21	A	X	5	B	1	AX	5X	5B	1B	1A
22	A	X	5	B	3	AX	5X	5B	3B	3A
23	A	X	5	B	4	AX	5X	5B	4B	4A
24	A	X	5	C	1	AX	5X	5C	1 C	1A
25	A	X	5	C	4	AX	5X	5C	4 C	4A
26	A	X	5	Y	1	AX	5X	5 Y	1 Y	1A
27	A	X	5	Y	3	AX	5X	5Y	3Y	3A
28	A	X	5	Y	4	AX	5 X	5Y	4 Y	4A
29	A	X	5	Z	3	AX	5X	5 Z	3 Z	3A
30	A	Y	1	B	3	AY	1 Y	1B	3B	3A
31	A	Y	1	B	4	AY	1 Y	1B	4B	4A
32	A	Y	1	C	4	AY	1 Y	1 C	4 C	4A
33	A	Y	1	X	4	AY	1 Y	1 X	4 X	4A
34	A	Y	2	B	1	AY	2 Y	2B	1B	1 A
35	A	Y	2	B	3	AY	2 Y	2B	3B	3A
36	A	Y	2	B	4	AY	2 Y	2B	4B	4A
37	A	Y	2	C	1	AY	2 Y	2 C	1 C	1A
38	A	Y	2	C	4	AY	2 Y	2 C	4 C	4A
39	A	Y	2	X	1	AY	2 Y	2X	1X	1 A
40	A	Y	2	X	4	AY	2Y	2X	4X	4A
41	A	Y	2	Z	3	AY	2 Y	2 Z	3 Z	3A
42	A	Y	3	B	1	AY	3 Y	3B	1B	1 A
43	A	Y	3	B	4	AY	3 Y	3B	4B	4A
44	A	Y	4	B	1	AY	4 Y	4B	1B	1 A
45	A	Y	4	B	3	AY	4 Y	4B	3B	3A
46	A	Y	4	C	1	AY	4 Y	4C	1 C	1 A
47	A	Y	4	X	1	AY	4 Y	4X	1 X	1A
48	A	Y	5	B	1	AY	5 Y	5 B	1B	1 A
49	A	Y	5	B	3	AY	5Y	5B	3B	3A
50	A	Y	5	B	4	AY	5 Y	5B	4B	4A
51	A	Y	5	C	1	AY	5Y	5 C	1 C	1 A
52	A	Y	5	C	4	AY	5Y	5C	4 C	4A
53	A	Y	5	X	1	AY	5Y	5X	1 X	1 A
54	A	Y	5	X	4	AY	5 Y	5X	4X	4A
55	A	Y	5	Z	3	AY	5 Y	5 Z	32	3A

56	A	Z	2	B	1	AZ	2 Z	2B	1B	1A
57	A	Z	2	B	3	AZ	2 Z	2B	3B	3A
58	A	Z	2	B	4	AZ	2 Z	2B	4B	4A
59	A	Z	2	C	1	AZ	2 Z	2 C	1 C	1A
60	A	Z	2	C	4	AZ	2 Z	2 C	4 C	4A
61	A	Z	2	X	1	AZ	2 Z	2X	1 X	1A
62	A	Z	2	X	4	AZ	2 Z	2 X	4X	4A
63	A	Z	2	Y	1	AZ	2 Z	2Y	1 Y	1A
64	A	Z	2	Y	3	AZ	2Z	2 Y	3 Y	3A
65	A	Z	2	Y	4	AZ	2 Z	2 Y	4Y	4A
66	A	Z	3	B	1	AZ	32	3B	1B	1A
67	A	Z	3	B	4	AZ	3 Z	3B	4B	4A
68	A	Z	3	Y	1	AZ	32	3 Y	1 Y	1A
69	A	Z	3	Y	4	AZ	32	3 Y	4 Y	4A
70	A	Z	5	B	1	AZ	5 Z	5B	1B	1A
71	A	Z	5	B	3	AZ	5 Z	5B	3B	3A
72	A	Z	5	B	4	AZ	5 Z	5B	4B	4A
73	A	Z	5	C	1	AZ	5Z	5C	1 C	1 A
74	A	Z	5	C	4	AZ	5 Z	5C	4 C	4A
75	A	Z	5	X	1	AZ	5Z	5X	1 X	1 A
76	A	Z	5	X	4	AZ	5Z	5 X	4X	4A
77	A	Z	5	Y	1	AZ	5Z	5Y	1 Y	1 A
78	A	Z	5	Y	3	AZ	5Z	5Y	3 Y	3A
79	A	Z	5	Y	4	AZ	5Z	5Y	4 Y	4A
80	B	Z	2	C	1	BZ	2Z	2C	1 C	1 B
81	B	Z	2	C	4	BZ	2 Z	2 C	4C	4B
82	B	Z	2	C	5	BZ	2 Z	2C	5C	5B
83	B	Z	2	X	1	BZ	2Z	2 X	1X	1B
84	B	Z	2	X	4	B2	2 Z	2X	4X	4B
85	B	Z	2	X	5	BZ	2 Z	2X	5X	5B
86	B	Z	2	Y	1	BZ	2 Z	2 Y	1 Y	1B
87	B	Z	2	Y	3	BZ	2 Z	2Y	3Y	3B
88	B	Z	2	Y	4	BZ	2 Z	2 Y	4Y	4B
89	B	Z	2	Y	5	BZ	2 Z	2 Y	5Y	5B
90	B	Z	3	A	1	BZ	3Z	3A	1A	1B
91	B	Z	3	A	4	BZ	3 Z	3A	4A	4B
92	B	Z	3	Y	1	BZ	3 Z	3 Y	1 Y	1B
93	B	Z	3	Y	2	BZ	32	3 Y	2 Y	2B
94	B	Z	3	Y	4	BZ	32	3 Y	4Y	4B
95	B	Z	3	Y	5	BZ	32	3 Y	5Y	5 B
96	B	Z	5	C	1	BZ	5 Z	5C	1C	1B
97	B	Z	5	C	2	BZ	5 Z	5 C	2 C	2B
98	B	Z	5	C	4	BZ	$5 Z$	5 C	4C	4B
99	B	Z	5	X	1	BZ	5 Z	5X	1X	1B
100	B	Z	5	X	2	BZ	52	5X	2X	2B
101	B	Z	5	X	4	BZ	52	5X	4X	4B
102	B	Z	5	Y	1	BZ	5 Z	5Y	1 Y	1B
103	B	Z	5	Y	2	BZ	5Z	5Y	2 Y	2B
104	B	Z	5	Y	3	BZ	5 Z	5 Y	3Y	3B
105	B	Z	5	Y	4	BZ	5 Z	5 Y	4Y	4B
106	C	X	1	A	4	CX	1 X	1 A	4A	4 C
107	C	X	1	B	2	CX	1 X	1B	2B	2 C
108	C	X	1	B	4	CX	1 X	1B	4B	4 C
109	C	X	1	B	5	CX	1 X	1B	5B	5 C
110	C	X	,	Y	2	CX	1 X	1 Y	2Y	2 C
111	C	X	,	Y	4	CX	1 X	1 Y	4 Y	4 C
112	C	X	1	Y	5	CX	1 X	1Y	5 Y	5 C

113	C	X	2	B	1	CX	2X	2B	1B	1 C
114	C	X	2	B	4	CX	2X	2B	4B	4 C
115	C	X	2	B	5	CX	2X	2B	5B	5 C
116	C	X	2	Y	1	CX	2X	2Y	1 Y	1 C
117	C	X	2	Y	4	CX	2 X	2Y	4Y	4 C
118	C	X	2	Y	5	CX	2 X	2Y	5Y	5 C
119	C	X	2	Z	5	CX	2 X	2 Z	5Z	5 C
120	C	X	4	A	1	CX	4 X	4A	1 A	1 C
121	C	X	4	B	1	CX	4X	4B	1B	1 C
122	C	X	4	B	2	CX	4X	4B	2B	2 C
123	C	X	4	B	5	CX	4 X	4B	5B	5 C
124	C	X	4	Y	1	CX	4X	4 Y	1 Y	1 C
125	C	X	4	Y	2	CX	4X	4Y	2Y	2 C
126	C	X	4	Y	5	CX	4 X	4Y	5Y	5C
127	C	X	5	B	1	CX	5 X	5B	1B	1 C
128	C	X	5	B	2	CX	5 X	5 B	2B	2 C
129	C	X	5	B	4	CX	5X	5B	4B	4 C
130	C	X	5	Y	1	CX	5 X	5Y	1 Y	1 C
131	C	X	5	Y	2	CX	5 X	5Y	2 Y	2 C
132	C	X	5	Y	4	CX	5 X	5Y	4Y	4 C
133	C	X	5	Z	2	CX	5X	5 Z	2 Z	2 C
134	C	Z	2	B	1	CZ	2Z	2B	1B	1 C
135	C	Z	2	B	4	CZ	2 Z	2B	4B	4 C
136	C	Z	2	B	5	CZ	2 Z	2B	5B	5 C
137	C	Z	2	X	1	CZ	2 Z	2X	1 X	1 C
138	C	Z	2	X	4	CZ	2 Z	2X	4X	4 C
139	C	Z	2	X	5	CZ	2 Z	2X	5X	5 C
140	C	Z	2	Y	1	CZ	2Z	2Y	1 Y	1 C
141	C	Z	2	Y	4	CZ	2 Z	2Y	4 Y	4 C
142	C	Z	2	Y	5	CZ	2 Z	2Y	5Y	5 C
143	C	Z	3	A	1	CZ	3Z	3A	1A	1 C
144	C	Z	3	A	4	CZ	3 Z	3A	4A	4 C
145	C	Z	3	B	1	CZ	3Z	3B	1B	1 C
146	C	Z	3	B	2	CZ	3Z	3B	2B	2 C
147	C	Z	3	B	4	CZ	3Z	3B	4B	4 C
148	C	Z	3	B	5	CZ	3Z	3B	5B	5 C
149	C	Z	3	Y	1	CZ	3Z	3Y	1 Y	1 C
150	C	Z	3	Y	2	CZ	3Z	3Y	2Y	2 C
151	C	Z	3	Y	4	CZ	3Z	3Y	4 Y	4 C
152	C	Z	3	Y	5	CZ	32	3Y	5 Y	5 C
153	C	Z	5	B	1	CZ	5Z	5B	1B	1 C
154	C	Z	5	B	2	CZ	5Z	5B	2B	2 C
155	C	Z	5	B	4	CZ	5Z	5B	4B	4C
156	C	Z	5	X	1	CZ	5 L	5X	1X	1 C
157	C	Z	5	X	2	CZ	5Z	5X	2 X	2 C
158	C	Z	5	X	4	CZ	5 L	5X	4X	4 C
159	C	Z	5	Y	1	CZ	5 Z	5Y	1 Y	1 C
160	C	Z	5	Y	2	CZ	5Z	5Y	2 Y	2 C
161	C	Z	5	Y	4	CZ	5 Z	5Y	4 Y	4 C

C2USDEDG.DBF

Record\# E13 E1A E1B E1C E1X E1Y E24 E2B E2C E2X E2Y E2Z E35 E3A E3B E3Y E3Z $1 \begin{array}{llllllllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

E4A E4B E4C E4X E4Y E5B E5C E5X E5Y E5Z EAX EAY EAZ EBZ ECX ECZ $0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0\end{array}$

DATABASES FOR OBRWLFCH.PRG - CASE 3

C3C1T3.DBF						
Record\#	V1	V2	V3	E1	E2	E3
1						
2	1	3	A	13	$1 A$	$3 A$
3	1	3	B	13	$1 B$	$3 B$
4	1	3	Y	13	$1 Y$	$3 Y$

C3C1T4.DBF

Record\#	V1	V2	V3	E1	E2	E3
1						
2	2	4	B	24	$2 B$	$4 B$
3	2	4	C	24	$2 C$	$4 C$
4	2	4	X	24	$2 X$	$4 X$
5	2	4	Y	24	$2 Y$	$4 Y$

C3C1T5.DBF

Record\#	V1	V2	V3	E1	E2	E3
1						
2	3	5	A	35	$3 A$	$5 A$
3	3	5	Y	35	3 Y	5 Y
4	3	5	Z	35	$3 Z$	$5 Z$

C3C2T.DBF

Record\#	V1	V2	V3	E1	E2	E3
1						
2	1	A	X	1 A	1 X	AX
3	4	A	X	4A	4X	AX
4	5	A	X	5A	5X	AX
5	3	A	Z	3A	3 Z	AZ
6	5	A	Z	5A	5 Z	AZ
7	1	B	X	1B	1 X	BX
8	2	B	X	2B	2 X	BX
9	4	B	X	4B	4X	BX
10	2	B	Z	2B	27	BZ
11	3	B	Z	3B	3 Z	BZ
12	1	C	Y	1 C	1 Y	CY
13	2	C	Y	2 C	2Y	CY
14	4	C	Y	4 C	4Y	CY
15	5	C	Y	5 C	5 Y	CY
16	2	C	Z	2C	2 Z	CZ
17	5	C	Z	5 C	5 Z	CZ

C3C1P3.DBF

Record\#	V1	V2	V3	V4	V5	E1	E2	E3	E4	E5
1										
2	1	3	A	4	B	13	3A	4A	4B	1B
3	1	3	A	4	C	13	3A	4A	4 C	1 C
4	1	3	A	4	X	13	3 A	4A	4X	1 X
5	1	3	A	4	Y	13	3 A	4A	4 Y	1 Y
6	1	3	A	5	C	13	3A	5A	5C	1 C
7		3	A	5	X	13	3A	5A	5X	1 X
8	1	3	A	5	Y	13	3 A	5 A	5 Y	1 Y

9	1	3	B	2	C	13	3B	2B	2 C	1 C
10	1	3	B	2	X	13	3B	2B	2 X	1
11	1	3	B	2	Y	13	3B	2B	2 Y	Y
12	1	3	B	4	A	13	3B	4B	4A	1 A
13	1	3	B	4	C	13	3B	4B	4C	1 C
14	1	3	B	4	X	13	3B	4B	4X	1 X
15	1	3	B	4	Y	13	3B	4B	4 Y	1 Y
16	1	3	Y	2	B	13	3 Y	2 Y	2B	1B
17	1	3	Y	2	C	13	3 Y	2 Y	2 C	1 C
18	1	3	Y	2	X	13	3 Y	2Y	2 X	1 X
19	1	3	Y	4	A	13	3Y	4 Y	4A	1 A
20	1	3	Y	4	B	13	3 Y	4 Y	4B	1B
21	1	3	Y	4	C	13	3 Y	4 Y	4 C	1 C
22	1	3	Y	4	X	13	3 Y	4 Y	4X	1 X
23	1	3	Y	5	A	13	3 Y	5Y	5A	1 A
24	1	3	Y	5	C	13	3 Y	5Y	5C	1 C
25	1	3	Y	5	X	13	3Y	5Y	5 X	1 X
26	1	3	Z	2	B	13	3 Z	2 Z	2B	1B
27	1	3	Z	2	C	13	32	2 Z	2 C	1 C
28	1	3	Z	2	X	13	32	2 Z	2 X	1 X
29	1	3	Z	2	Y	13	32	2 Z	2Y	1 Y
30	1	3	Z	5	A	13	32	5 Z	5A	1 A
31	1	3	Z	5	C	13	32	5 L	5C	1 C
32	1	3	Z	5	X	13	32	5 Z	5X	1 X
33	1	3	Z	5	Y	13	32	5 Z	5Y	1Y

C3C1P4.DBF										
Record\#	V1	V2	V3	V4	V5	E1	E2	E3	E4	E5
1										
2	2	4	A	1	B	24	4A	1 A	1 B	2B
3	2	4	A	1	C	24	4A	1 A	1 C	2C
4	2	4	A	1	X	24	4A	1 A	1 X	2 X
5	2	4	A	1	Y	24	4A	1A	1 Y	2 Y
6	2	4	A	3	B	24	4A	3A	3B	2 B
7	2	4	A	3	Y	24	4A	3A	3 Y	2 Y
8	2	4	A	3	Z	24	4A	3A	32	2 Z
9	2	4	A	5	C	24	4A	5A	5C	2C
10	2	4	A	5	X	24	4A	5A	5X	2 X
11	2	4	A	5	Y	24	4A	5A	5 Y	2 Y
12	2	4	A	5	Z	24	4A	5A	5 Z	2 Z
13	2	4	B	1	C	24	4B	1B	1 C	2 C
14	2	4	B	1	X	24	4B	1B	1 X	2 X
15	2	4	B	1	Y	24	4B	1B	1 Y	2 Y
16	2	4	B	3	Y	24	4B	3B	3 Y	2 Y
17	2	4	B	3	Z	24	4B	3B	3 Z	2 Z
18	2	4	C	1	B	24	4 C	1 C	1B	2B
19	2	4	C	1	X	24	4 C	1 C	1 X	2 X
20	2	4	C	1	Y	24	4 C	1 C	1 Y	2 Y
21	2	4	C	5	X	24	4 C	5C	5 X	2 X
22	2	4	C	5	Y	24	4 C	5C	5 Y	2Y
23	2	4	C	5	Z	24	4 C	5C	52	2 Z
24	2	4	X	1	B	24	4X	1 X	1B	2B
25	2	4	X	1	C	24	4X	1 X	1 C	2 C
26	2	4	X	1	Y	24	4X	1 X	1 Y	2Y
27	2	4	X	5	C	24	4X	5 X	5C	2C
28	2	4	X	5	Y	24	4X	5X	5 Y	2Y
29	2	4	X	5	Z	24	4X	5X	5 Z	2Z

30	2	4	Y	1	B	24	4 Y	1 Y	1B	2B
31	2	4	Y	1	C	24	4 Y	1 Y	1 C	2 C
32	2	4	Y	1	X	24	4 Y	1 Y	1 X	2 X
33	2	4	Y	3	B	24	4 Y	3 Y	3B	2 B
34	2	4	Y	3	Z	24	4 Y	3 Y	3 Z	2 Z
35	2	4	Y	5	C	24	4 Y	5 Y	5 C	2 C
36	2	4	Y	5	X	24	4 Y	5 Y	5X	2 X
37	2	4	Y	5	Z	24	4 Y	5 Y	5 Z	2 Z
C3C1P5.DBF										
Record\#	V1	V2	V3	V4	V5	E1	E2	E3	E4	E5
1										
2	3	5	A	1	B	35	5A	1 A	1B	3B
3	3	5	A	1	Y	35	5A	1 A	1 Y	3 Y
4	3	5	A	4	B	35	5A	4A	4B	3B
5	3	5	A	4	Y	35	5A	4A	4 Y	3Y
6	3	5	C	1	A	35	5C	1 C	1 A	3A
7	3	5	C	1	B	35	5C	1 C	1B	3B
8	3	5	C	1	Y	35	5C	1 C	1 Y	3Y
9	3	5	C	2	B	35	5C	2 C	2B	3B
10	3	5	C	2	Y	35	5C	2 C	2 Y	3Y
11	3	5	C	2	Z	35	5C	2 C	2 Z	3Z
12	3	5	C	4	A	35	5C	4 C	4A	3A
13	3	5	C	4	B	35	5C	4 C	4B	3B
14	3	5	C	4	Y	35	5C	4 C	4 Y	3Y
15	3	5	X	1	A	35	5X	1X	1A	3A
16	3	5	X	1	B	35	5 X	1 X	1B	3B
17	3	5	X	1	Y	35	5X	1 X	1 Y	3 Y
18	3	5	X	2	B	35	5X	2X	2B	3B
19	3	5	X	2	Y	35	5X	2X	2Y	3Y
20	3	5	X	2	Z	35	5X	2X	2Z	3 Z
21	3	5	X	4	A	35	5X	4X	4A	3A
22	3	5	X	4	B	35	5X	4X	4B	3B
23	3	5	X	4	Y	35	5X	4X	4 Y	3Y
24	3	5	Y	1	A	35	5Y	1 Y	1 A	3A
25	3	5	Y	1	B	35	5Y	1 Y	1B	3B
26	3	5	Y	2	B	35	5Y	2 Y	2B	3B
27	3	5	Y	2	Z	35	5Y	2Y	27	3Z
28	3	5	Y	4	A	35	5Y	4 Y	4A	3A
29	3	5	Y	4	B	35	5Y	4 Y	4B	3B
30	3	5	Z	2	B	35	5Z	2Z	2B	3B
31	3	5	Z	2	Y	35	5Z	2 Z	2Y	3Y
C3C2P.DBF										
Record\#	V1	V2	V3	V4	V5	E1	E2	E3	E4	E5
1										
2	A	X	1	B	3	AX	1 X	1B	3B	3A
3	A	X	1	B	4	AX	1 X	1B	4B	4A
4	A	X	1	C	4	AX	1 X	1 C	4C	4A
5	A	X	1	C	5	AX	1 X	1 C	5 C	5A
6	A	X	1	Y	3	AX	1 X	1 Y	3Y	3A
7	A	X	1	Y	4	AX	1X	1 Y	4 Y	4A
8	A	X	1	Y	5	AX	1 X	1 Y	5Y	5A
9	A	X	2	B	1	AX	2 X	2B	1B	1 A
10	A	X	2	B	3	AX	2X	2B	3B	3A
11	A	X	2	B	4	AX	2 X	2B	4B	4A

12	A	X	2	C	1	AX	2X	2C	1 C	1A
13	A	X	2	C	4	AX	2 X	2C	4C	4A
14	A	X	2	C	5	AX	2X	2 C	5 C	5A
15	A	X	2	Y	1	AX	2 X	2 Y	1 Y	1A
16	A	X	2	Y	3	AX	2 X	2 Y	3Y	3A
17	A	X	2	Y	4	AX	2 X	2 Y	4 Y	4A
18	A	X	2	Y	5	AX	2 X	2 Y	5 Y	5A
19	A	X	2	Z	3	AX	2 X	2 Z	3Z	3A
20	A	X	2	Z	5	AX	2 X	2 Z	5 Z	5A
21	A	X	4	B	1	AX	4X	4B	1B	1A
22	A	X	4	B	3	AX	4 X	4B	3B	3A
23	A	X	4	C	1	AX	4X	4C	1 C	1A
24	A	X	4	C	5	AX	4 X	4 C	5C	5A
25	A	X	4	Y	1	AX	4X	4 Y	1 Y	1A
26	A	X	4	Y	3	AX	4 X	4Y	3 Y	3A
27	A	X	4	Y	5	AX	4X	4 Y	5 Y	5 A
28	A	X	5	C	1	AX	5 X	5C	1 C	1A
29	A	X	5	C	4	AX	5 X	5C	4C	4A
30	A	X	5	Y	1	AX	5 X	5 Y	1 Y	1A
31	A	X	5	Y	3	AX	5X	5 Y	3 Y	3A
32	A	X	5	Y	4	AX	5X	5Y	4 Y	4A
33	A	X	5	Z	3	AX	5X	5Z	3Z	3A
34	A	Z	2	B	1	AZ	2Z	2B	1B	1A
35	A	Z	2	B	3	AZ	2Z	2B	3B	3A
36	A	Z	2	B	4	AZ	2 Z	2B	4B	4A
37	A	Z	2	C	1	AZ	$2 Z$	2 C	1 C	1A
38	A	Z	2	C	4	AZ	2 Z	2 C	4 C	4A
39	A	Z	2	C	5	AZ	27	2C	5C	5A
40	A	Z	2	X	1	AZ	2Z	2 X	1 X	1A
41	A	Z	2	X	4	AZ	2 Z	2X	4X	4A
42	A	Z	2	X	5	AZ	2 Z	2X	5 X	5A
43	A	Z	2	Y	1	AZ	2 Z	2 Y	1 Y	1A
44	A	Z	2	Y	3	AZ	2 Z	$2 Y$	3Y	3A
45	A	Z	2	Y	4	AZ	2 Z	2 Y	4Y	4A
46	A	Z	2	Y	5	AZ	2Z	2 Y	5 Y	5A
47	A	Z	3	B	1	AZ	3Z	3B	1B	1A
48	A	Z	3	B	4	AZ	3 Z	3B	4B	4A
49	A	Z	3	Y	1	AZ	3Z	3Y	1 Y	1A
50	A	Z	3	Y	4	AZ	3Z	3 Y	4 Y	4A
51	A	Z	3	Y	5	AZ	3Z	3 Y	5Y	5A
52	A	Z	5	C	1	AZ	5Z	5 C	1C	1A
53	A	Z	5	C	4	AZ	5Z	5 C	4C	4A
54	A	Z	5	X	1	AZ	5Z	5X	1 X	1A
55	A	Z	5	X	4	AZ	5Z	5X	4 X	4A
56	A	Z	5	Y	1	AZ	5Z	5Y	1 Y	1A
57	A	Z	5	Y	3	AZ	5Z	5Y	3Y	3A
58	A	Z	5	Y	4	AZ	5Z	5 Y	4Y	4A
59	B	X	1	A	3	BX	1 X	1A	3A	3B
60	B	X	1	A	4	BX	1 X	1A	4A	4B
61	B	X	1	C	2	BX	1 X	1 C	2 C	2B
62	B	X	1	C	4	BX	1 X	1 C	4C	4B
63	B	X	1	Y	2	BX	1 X	1 Y	2 Y	2B
64	B	X	1	Y	3	BX	1 X	1 Y	3 Y	3B
65	B	X	1	Y	4	BX	1 X	1 Y	4 Y	4B
66	B	X	2	C	1	BX	2X	2 C	1 C	1B
67	B	X	2	C	4	BX	2X	2 C	4 C	4B
68	B	X	2	Y	1	BX	2X	2 Y	1 Y	1B

69	B	X	2	Y	3	BX	2X	2Y	3Y	3B
70	B	X	2	Y	4	BX	2 X	2 Y	4 Y	4B
71	B	X	2	Z	3	BX	2 X	2 Z	3 Z	3B
72	B	X	4	A	1	BX	4X	4A	1 A	1B
73	B	X	4	A	3	BX	4X	4A	3A	3B
74	B	X	4	C	1	BX	4X	4 C	1 C	1B
75	B	X	4	C	2	BX	4X	4C	2C	2B
76	B	X	4	Y	1	BX	4X	4Y	1 Y	1B
77	B	X	4	Y	2	BX	4X	4 Y	2 Y	2B
78	B	X	4	Y	3	BX	4X	4 Y	3 Y	3B
79	B	X	5	A	1	BX	5X	5A	1 A	1B
80	B	X	5	A	3	BX	5X	5A	3A	3B
81	B	X	5	A	4	BX	5X	5A	4A	4B
82	B	X	5	C	1	BX	5X	5C	1 C	1B
83	B	X	5	C	2	BX	5X	5C	2 C	2B
84	B	X	5	C	4	BX	5X	5C	4 C	4B
85	B	X	5	Y	1	BX	5X	5 Y	1 Y	1B
86	B	X	5	Y	2	BX	5X	5 Y	2 Y	2B
87	B	X	5	Y	3	BX	5X	5 Y	3Y	3B
88	B	X	5	Y	4	BX	5X	5Y	4Y	4B
89	B	X	5	Z	2	BX	5X	5Z	2Z	2B
90	B	X	5	Z	3	BX	5X	5Z	32	3B
91	B	Z	2	C	1	BZ	2 Z	2C	1 C	1B
92	B	Z	2	C	4	BZ	27	2C	4C	4B
93	B	Z	2	X	1	BZ	2 Z	2 X	1 X	1B
94	B	Z	2	X	4	BZ	27	2X	4X	4B
95	B	Z	2	Y	1	BZ	2 Z	2 Y	1 Y	1B
96	B	Z	2	Y	3	BZ	2 Z	2Y	3 Y	3B
97	B	Z	2	Y	4	B2	2Z	2 Y	4 Y	4B
98	B	Z	3	A	1	BZ	3 Z	3A	1 A	1B
99	B	Z	3	A	4	BZ	3 Z	3A	4A	4B
100	B	Z	3	Y	1	BZ	32	3 Y	1 Y	1B
101	B	Z	3	Y	2	BZ	32	3 Y	2Y	2B
102	B	Z	3	Y	4	BZ	32	3 Y	4 Y	4B
103	B	Z	5	A	1	BZ	5 Z	5A	1A	1B
104	B	Z	5	A	3	BZ	5 Z	5A	3A	3B
105	B	Z	5	A	4	BZ	5 L	5A	4A	4B
106	B	Z	5	C	1	BZ	5Z	5C	1C	1B
107	B	Z	5	C	2	BZ	5Z	5 C	2 C	2B
108	B	Z	5	C	4	BZ	5 Z	5 C	4C	4B
109	B	Z	5	X	1	BZ	5Z	5X	1 X	1B
110	B	Z	5	X	2	BZ	5Z	5X	2X	2B
111	B	Z	5	X	4	BZ	5Z	5X	4X	4B
112	B	Z	5	Y	1	BZ	5Z	5Y	1 Y	1B
113	B	Z	5	Y	2	BZ	5 L	5Y	2 Y	2B
114	B	Z	5	Y	3	BZ	5Z	5Y	3 Y	3B
115	B	Z	5	Y	4	BZ	5Z	5Y	4 Y	4B
116	C	Y	1	A	4	CY	1 Y	1A	4A	4 C
117	C	Y	1	A	5	CY	1 Y	1 A	5A	5 C
118	C	Y	1	B	2	CY	1 Y	1B	2B	2C
119	C	Y	1	B	4	CY	1 Y	1B	4B	4C
120	C	Y	1	X	2	CY	1 Y	1 X	2X	2 C
121	C	Y	1	X	4	CY	1 Y	1 X	4X	4C
122	C	Y	1	X	5	CY	1 Y	1 X	5 X	5C
123	C	Y	2	B	1	CY	2 Y	2B	1 B	1 C
124	C	Y	2	B	4	CY	2 Y	2B	4B	4C
125	C	Y	2	X	1	CY	2Y	2X	1 X	1 C

126	C	Y	2	X	4	CY	2 Y	2X	4X	4 C
127	C	Y	2	X	5	CY	2 Y	2X	5X	5 C
128	C	Y	2	Z	5	CY	2 Y	2 Z	5Z	5C
129	C	Y	3	A	1	CY	3 Y	3A	1 A	1 C
130	C	Y	3	A	4	CY	3 Y	3A	4A	4 C
131	C	Y	3	A	5	CY	3 Y	3A	5 A	5 C
132	C	Y	3	B	1	CY	3 Y	3B	1B	1 C
133	C	Y	3	B	2	CY	3 Y	3B	2B	2 C
134	C	Y	3	B	4	CY	3 Y	3B	4B	4 C
135	C	Y	3	Z	2	CY	3 Y	3 Z	2 Z	2 C
136	C	Y	3	Z	5	CY	3 Y	3 Z	5 Z	5 C
137	C	Y	4	A	1	CY	4 Y	4A	1 A	1 C
138	C	Y	4	A	5	CY	4 Y	4A	5A	5 C
139	C	Y	4	B	1	CY	4 Y	4B	1B	1 C
140	C	Y	4	B	2	CY	4 Y	4B	2B	2 C
141	C	Y	4	X	1	CY	4 Y	4X	1X	1 C
142	C	Y	4	X	2	CY	4 Y	4X	2X	2 C
143	C	Y	4	X	5	CY	4 Y	4X	5X	5 C
144	C	Y	5	A	1	CY	5 Y	5A	1 A	1 C
145	C	Y	5	A	4	CY	5 Y	5A	4A	4 C
146	C	Y	5	X	1	CY	5 Y	5X	1 X	1 C
147	C	Y	5	X	2	CY	5 Y	5X	2X	2 C
148	C	Y	5	X	4	CY	5 Y	5X	4X	4 C
149	C	Y	5	Z	2	CY	5 Y	5Z	2 Z	2 C
150	C	Z	2	B	1	CZ	2 Z	2B	1B	1 C
151	C	Z	2	B	4	CZ	2 Z	2B	4B	4 C
152	C	Z	2	X	1	CZ	2 Z	2X	1 X	1 C
153	C	Z	2	X	4	CZ	2 Z	2X	4X	4 C
154	C	Z	2	X	5	CZ	$2 Z$	2X	5X	5 C
155	C	Z	2	Y	1	CZ	2 Z	2Y	1 Y	1 C
156	C	Z	2	Y	4	CZ	2 Z	2Y	4Y	4 C
157	C	Z	2	Y	5	CZ	2 Z	2Y	5Y	5 C
158	C	Z	3	A	1	CZ	3Z	3A	1 A	1 C
159	C	Z	3	A	4	CZ	32	3A	4A	4 C
160	C	Z	3	A	5	CZ	3 Z	3A	5A	5 C
161	C	Z	3	B	1	CZ	32	3B	1B	1 C
162	C	Z	3	B	2	CZ	32	3B	2B	2 C
163	C	Z	3	B	4	CZ	3Z	3B	4B	4 C
164	C	Z	3	Y	1	CZ	3 Z	3 Y	1 Y	1 C
165	C	Z	3	Y	2	CZ	32	3Y	2Y	2 C
166	C	Z	3	Y	4	CZ	32	3 Y	4Y	4 C
167	C	Z	3	Y	5	CZ	3 Z	3Y	5Y	5C
168	C	Z	5	A	1	CZ	5 Z	5A	1 A	1 C
169	C	Z	5	A	4	CZ	5 Z	5A	4A	4 C
170	C	Z	5	X	1	CZ	5 Z	5X	1 X	1 C
171	C	Z	5	X	2	CZ	5 Z	5X	2X	2 C
172	C	Z	5	X	4	CZ	5 Z	5X	4X	4 C
173	C	Z	5	Y	1	CZ	5 Z	5 Y	1Y	1 C
174	C	Z	5	Y	2	CZ	5 Z	5 Y	2Y	2 C
175	C	Z	5	Y	4	CZ	5 Z	5 Y	4Y	4 C

C3USDEDG.DBF

Record\# E13 E1A E1B E1C E1X E1Y E24 E2B E2C E2X E2Y E2Z E35 E3A E3B E3Y E3Z $\left.10 \begin{array}{lllllllllllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

USEDNODE.DBF (used in all three cases)
Record\# N31 N32 N33 N34 N35 N3A N3B N3C N3X N3Y N3Z N41 N42 N43 N44 N45 $10 \begin{array}{llllllllllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ N4A N4B N4C N4X N4Y N4Z N51 N52 N53 N54 N55 N5A N5B N5C N5X N5Y N5Z $\begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

OUTPUT FROM OBRWLFCH.PRG - CASE 1

25A3X	4CY	1BZ	24B3Z		1CX		35Y	4AX	10:20:01
25A3X	1BZ	4CY	24B3Z		1CX		35 Y	4 AX	10:21:43
25A3X	4CY	1BZ		24B	1CX	35 C 2 Z		4 AX	10:48:44
25A3X	1BZ	4CY		24B	1CX	35C2Z		4AX	10:51:02
25A3X	4CY	1BZ		24B	1CX		35Y	4AX	10:57:06
25A3X	1BZ	4CY		24B	1CX		35 Y	4AX	10:59:58
25A3X	4CY	1BZ		24B	1CX		35Z	4AX	11:03:32
25A3X	1BZ	4CY		24B	1CX		35Z	4AX	11:06:59
3									
25A3Z	1CX	4BY		24C	1AZ	35Y1B		4AX	12:12:41
25A3Z	4BY	1CX		24 C	$1 A Z$	35 Y 1 B		4 AX	12:13:50
25A3Z	1CX	4BY		24 C	1 AZ		35 Y	4AX	12:18:25
25A3Z	1CX	4BY		24 C	1BZ		35Y	4 AX	12:19:41
25A3Z	4BY	1CX		24 C	1 AZ		35 Y	4AX	12:20:41
$\begin{gathered} 25 \mathrm{~A} 3 \mathrm{Z} \\ 4 \end{gathered}$	4BY	1 CX		24 C	1BZ		35 Y	4AX	12:22:04
25A4X	1CY	3BZ	24C5Z		3 AX		35Y	1 AZ	12:49:43
25A4X	3BZ	1CY	24C5Z		3 AX		35Y	1AZ	12:50:57
25A4X	1CY	3BZ		24B	3 AX	35C4Y		1 AZ	13:18:41
25A4X	3BZ	1 CY		24B	3AX	35C4Y		1 AZ	13:20:43
25A4X	1CY	3BZ		24B	3AX		35Y	1 AZ	13:28:48
25A4X	3BZ	1 CY		24B	3 AX		35Y	1 AZ	13:30:57
25A4X	1CY	3BZ		24C	3AX		35Y	1 AZ	13:55:23
$25 \mathrm{~A} 4 \mathrm{X}$	3BZ	1 CY		24C	3AX		35Y	1 AZ	13:57:31
25C1X	4BY	3 AZ		24C	1BZ	35Z2B		4AX	14:42:42
25C1X	3AZ	4BY		24C	1BZ	35Z2B		4AX	14:44:10
25C1X	4BY	3AZ		24C	1BZ		35Y	4AX	14:47:23
$\begin{gathered} 25 \mathrm{C} 1 \mathrm{X} \\ 6 \end{gathered}$	3AZ	4BY		24C	1BZ		35Y	4AX	14:51:06
25C4X	3BY	1 AZ	24Y1B		3 AX		35Z	1CX	15:22:04
25C4X	1 AZ	3BY	24Y1B		3AX		35Z	1CX	15:22:32
25C4X	3BY	1 AZ		24B	3AX		35Z	1CX	15:57:45
25C4X	3BY	1 AZ		24B	3AX		35Z	1CY	15:58:38
25C4X	1 AZ	3BY		24B	3AX		35Z	1CX	16:02:31
$\begin{gathered} 25 \mathrm{C} 4 \mathrm{X} \\ 7 \\ 8 \end{gathered}$	1 AZ	3BY		24B	3AX		35Z	1CY	16:03:25
25Y1C	3BZ	4AX		24B	1 AZ		35A	4CY	17:36:28
$\begin{gathered} 25 \mathrm{Y} 1 \mathrm{C} \\ 9 \end{gathered}$	4AX	3BZ		24B	1 AZ		35A	4CY	17:38:00
25Y3B	4CX	1 AZ	24A3X		1 CY	35 C 2 Z		4BY	17:54:07
25Y3B	1 AZ	4CX	24A3X		1 CY	35C2Z		4BY	17:55:43
25Y3B	4CX	1 AZ	24A3X		1 CY		35Z	4BY	17:58:09
25Y3B	1 AZ	4CX	24A3X		1CY		35Z	4BY	18:00:11
25Y3B	4CX	1 AZ	24A3Z		1CY	35C2X		4BY	18:03:06
25Y3B	1 AZ	4CX	24A3Z		1 CY	35C2X		4BY	18:04:21
25Y3B	4CX	1 AZ	24A5Z		1 CY	35C2X		4BY	18:08:48
$\begin{gathered} 25 \mathrm{Y} 3 \mathrm{~B} \\ 10 \end{gathered}$	1 AZ	4CX	24A5Z		1 CY	35C2X		4BY	18:10:03
25Y4B	1CX	3AZ	24A5Z		3BY	35C2X		1BZ	19:20:25

25Y4B	3AZ	1CX	24A5Z		3BY	35C2X		1BZ	19:21:46
25 Y 4 B	1CX	3AZ	24A5Z		3BY	35C4X		1BZ	19:23:51
25Y4B	3AZ	1CX	24A5Z		3BY	35C4X		1BZ	19:25:13
25 Y 4 B	1CX	3AZ	24C5Z		3BY	35A4X		1BZ	19:37:52
25Y4B	3AZ	1CX	24C5Z		3BY	35A4X		1BZ	19:38:33
25Y4B	1CX	3AZ		24C	3BY	35A4X		1BZ	19:50:27
$\begin{gathered} 25 \mathrm{Y} 4 \mathrm{~B} \\ 11 \end{gathered}$	3AZ	1CX		24 C	3BY	35A4X		1BZ	19:52:13
25Y4C	1BZ	3AX	24A1X		3BY		35Z	1CY	20:31:05
25Y4C	3AX	1BZ	24A1X		3BY		35Z	1CY	20:31:33
25Y4C	1BZ	3AX		24X	3BY		35Z	1CX	21:53:26
25Y4C	1BZ	3AX		24X	3BY		35Z	1CY	21:54:08
25Y4C	3 AX	1BZ		24X	3BY		35Z	1CX	21:55:16
25Y4C	3AX	1BZ		24X	3BY		35Z	1 CY	21:55:56
12									
25Z1B	4CY	3AX		24X	3BZ		35Y	1CX	22:56:48
25Z1B	3AX	4CY		24X	3BZ		35Y	1CX	22:58:28
13									
25Z1C	4BY	3AX	24A1X		3BZ		35Y	4CX	23:02:44
25Z1C	3AX	4BY	24A1X		3BZ		35Y	4CX	23:03:12
25Z1C	3BY	4AX	24B1X		5CY		35A	2BZ	23:11:32
25Z1C	4AX	3BY	24B1X		5CY		35A	2BZ	23:12:00
25Z1C	3BY	4AX		24B	3AZ	35A1X		4 CY	23:27:07
25Z1C	4AX	3BY		24B	3AZ	35A1X		4 CY	23:28:18
25Z1C	4BY	3AX		24X	5CY	35A1Y		2BZ	23:36:37
25Z1C	3AX	4BY		24X	5CY	35A1Y		2BZ	23:37:53
14									
25Z3B	1CY	4AX		24C	1BZ	35A1X		4BY	00:31:04
25Z3B	4AX	1CY		24 C	1BZ	35A1X		4BY	00:31:58
25Z3B	1CY	4AX		24 C	1AZ		35A	4BY	00:40:17
25Z3B	1CY	4AX		24 C	1BZ		35A	4BY	00:41:47
25Z3B	4AX	1CY		24 C	1AZ		35A	4BY	00:44:03
25Z3B	4 AX	1CY		24 C	1BZ		35A	4BY	00:45:06
15									
BZ1Y4	25C	3AX	24A1X		3BY		35Z	4CX	01:16:27
BZ3Y4	25C	1 AX	24A3X		1CY	35Z1B		4CX	01:32:22
BZ3Y4	25C	1 AX	24A3X		1BY	35Z2B		4CX	01:34:21
BZ3Y4	25C	1 AX	24A3X		1CY	35Z2B		4CX	01:38:10
AZ3X1	25C	4BY	24A5Z		1CY		35Y	1BZ	03:16:51
AX1Z3	25 C	4BY	24A5Z		1 CY		35Y	4CX	03:17:36
AX3Z1	25C	4BY	24A5Z		1 CY		35Y	4CX	03:17:46
AZ1X3	25C	4BY	24A5Z		1 CY		35Y	4CX	03:17:56
AZ3X1	25C	4BY	24A5Z		1CY		35Y	4CX	03:18:06
BY1Z3	25C	4AX	24B1X		5AZ		35Y	2BZ	03:32:19
BY3Z1	25C	4AX	24B3X		5AZ	35Y1A		2BZ	03:51:30
BZ3Y1	25C	4AX	24B3X		1AZ		35A	1 CX	03:58:51
BZ3Y1	25C	4AX	24B3X		1 AZ		35A	4 CY	04:00:18
BY3Z1	25 C	4AX	24B3X		1CY		35A	2BZ	04:01:46
BY4X1	25C	3AZ	24B3X		1CY		35Y	2BZ	04:14:25
AX3Y4	25C	1BZ	24B3Z		1CY		35A	4CX	05:02:46
BY3Z1	25C	4AX	24C1X		5AZ	35Y1A		2BZ	05:32:18
BY1Z3	25C	4AX	24C1X		5AZ		35Y	2BZ	05:57:58
AX3Z1	25C	4BY	24C1X		5AZ		35Y	2BZ	06:08:05
BZ1Y3	25C	4AX		24B	3AZ	35A1X		4 CY	07:48:34
AX3Y4	25 C	1BZ		24B	5AZ	35Y1A		4 CX	08:35:32
BZ3Y1	25C	4AX		24B	1CX	35Z1A		4 CY	08:46:37

AZ3X4	25C	1BY		24B	1CX	35Z1A		4CY	08:48:10
BZ3Y1	25C	4AX		24B	1AZ		35A	1 CX	09:07:04
BZ3Y1	25 C	4AX		24B	1AZ		35A	4CY	09:09:09
BY1Z3	25C	4AX		24B	1CX		35A	4 CY	09:11:53
BY3Z1	25 C	4AX		24B	1CX		35A	4 CY	09:12:30
BZ1Y3	25C	4AX		24B	1CX		35A	4CY	09:13:11
BZ3Y1	25C	4AX		24B	1CX		35A	4CY	09:13:50
AZ3X4	25C	1BY		24B	1 AX		35A	4 CY	09:16:31
AZ3X4	25C	1BY		24B	1CX		35A	4 CY	09:20:05
AX3Y4	25C	1BZ		24B	1CY		35A	4CX	09:23:55
AX1Y4	25C	3BZ		24B	1AZ		35A	4CX	09:35:50
BY1Z3	25C	4AX		24B	5AZ		35Y	1CX	10:03:00
AX1Y4	25C	3BZ		24B	1AZ		35Y	4CX	10:27:41
AX4Y1	25C	3BZ		24B	5AZ		35Y	1CX	10:31:41
AXIY4	25C	3BZ		24B	5AZ		35Y	4CX	10:33:08
BZ1Y3	25C	4AX		24B	1CX		35Z	4CY	10:54:35
AX3Y4	25C	1BZ		24B	1CY		35Z	4CX	11:08:49
AZ1X4	25C	3BY		24B	3AX		35Z	1CY	11:15:19
AZ1X4	25C	3BY		24B	3AX		35Z	4CY	11:17:24
AX3Y4	25C	1BZ		24X	3AZ	35Z2B		1CX	12:50:56
AX3Y4	25C	1BZ		24X	3AZ	35Z2B		1CY	12:52:06
AZ3X1	25C	4BY		24X	1BZ	35Z2B		1CY	12:58:27
AZ3X1	25C	4BY		24 X	1BZ		35A	1 CY	13:39:06
AZ3X1	25C	4BY		24X	1CY		35A	1BZ	13:41:50
AX3Z1	25C	4BY		24X	1CY		35A	2BZ	13:43:11
AZ3X1	25C	4BY		24X	1 CY		35A	2BZ	13:43:58
BZ1Y4	25C	3AX		24X	5AZ		35Y	1CX	13:57:10
AX1Z3	25C	4BY		24X	5AZ		35Y	2BZ	14:28:52
AX3Z1	25C	4BY		24X	5AZ		35Y	2BZ	14:29:43
AX3Z1	25C	4BY		24X	5AZ		35Y	1CX	14:31:02
AZ3X1	25C	4BY		24X	1CY		35Y	1BZ	14:36:12
AX1Z3	25C	4BY		24X	1CY		35Y	2BZ	14:37:31
AX3Z1	25C	4BY		24X	1 CY		35Y	2BZ	14:38:17
AZ1X3	25C	4BY		24X	1CY		35Y	2BZ	14:39:01
AZ3X1	25C	4BY		24X	1 CY		35Y	2BZ	14:39:46
$\mathrm{BZ1Y}_{17}$	25C	3AX		24X	3BY		35Z	1CX	14:58:46
CY4B1	25Z	3AX	24A1X		3BZ		35Y	4CX	15:37:56
BY1C4	25Z	3AX	24X1B		SCY	35A1Z		2CX	17:53:32
BY1C4	25Z	3AX	24X1B		5CY	35A4Y		2CX	17:56:29
AX3B4	25Z	1CY	24X1B		3AZ		35Y	2CX	18:06:09
CY1B4	25Z	3AX	24X1C		3BZ		35Y	1 AZ	18:18:32
CX3A4	25Z	1BY	24X1C		3BZ		35Y	1 AZ	18:19:43
CY3B4	$25 Z$	1AX	24Y1C		3AZ	35A4X		1BZ	19:32:36
CY3B4	25Z	1AX	24Y5C		3AZ	35A4X		1BY	20:32:18
CY3B4	25Z	1AX	24Y5C		3AZ	35A4X		1BZ	20:33:13
CX1A4	$25 Z$	3BY	24Y5C		1BZ		35A	1CY	21:04:47
AX3B4	25Z	1CY	24Y5C		1 AZ		35A	4 CX	21:08:47
AX3B4	25Z	1 CY	24Y5C		1BZ		35A	4 CX	21:09:33
BY4C1	25Z	3AX		24B	5CY	35A1Y		2 CX	21:21:16
BY4C1	25Z	3AX		24B	5CY	35A1Z		2CX	21:29:52
AX1C4	25Z	3BY		24B	5CY	35A1Z		2CX	21:42:29
BY1A3	25Z	4CX		24B	5CY	35A4Y		1BZ	22:34:51
AX1C4	25Z	3BY		24B	3AZ	35C2X		1BZ	22:54:14
AX4C1	25Z	3BY		24B	3AZ	35C2X		1BZ	22:55:03
CX1A4	25Z	3BY		24B	3AZ	35C2X		1BZ	22:56:08
CX4A1	25Z	3BY		24B	3AZ	35C2X		1BZ	22:56:56

CX1A4	25Z	3BY	24B	1CY	35C2X		1BZ	22:59:53
CY3B1	25Z	4AX	24B	1AZ		35A	2CX	00:04:06
AX1C4	25Z	3BY	24B	1AZ		35A	2CX	00:25:07
CXIA4	$25 Z$	3BY	24B	1CY		35A	1BZ	00:28:50
AX1C4	25Z	3BY	24B	5CY		35A	1BZ	00:30:45
AX4C1	25Z	3BY	24B	5CY		35A	1BZ	00:31:22
CX1A4	25Z	3BY	24B	5CY		35A	1BZ	00:32:14
CX4A1	$25 Z$	3BY	24B	5CY		35A	1BZ	00:32:50
AX1C4	25Z	3BY	24B	5CY		35A	2CX	00:34:05
AX4C1	25Z	3BY	24B	5CY		35A	2CX	00:34:42
BY4Cl	25Z	3AX	24B	IAZ		35Y	2CX	00:57:46
AX1B3	25Z	4CY	24B	1AZ		35Y	2CX	01:43:46
AX3B1	25Z	4CY	24B	3AZ		35Y	1CX	01:48:40
AX3B1	$25 Z$	4CY	24B	3AZ		35Y	2CX	01:50:09
CY3B1	25Z	4AX	24 C	3AZ	35A1X		4BY	01:54:12
CY3B1	$25 Z$	4AX	24 C	1AZ		35A	4BY	03:24:38
CY4B1	25Z	3AX	24 C	3BZ		35Y	1 AZ	04:00:39
CX3A1	$25 Z$	4BY	24 C	1BZ		35Y	4AX	04:26:12
CX3A1	25Z	4BY	24 C	3BZ		35Y	4AX	04:29:47
AX3B4	25Z	1CY	24 C	3AZ		35Y	1BZ	04:41:55
CY1B4	25Z	3AX	24X	1AZ	35A4Y		1CX	05:06:21
CY1B4	$25 Z$	3AX	24X	3BZ	35A4Y		1CX	05:09:22
BY1C4	$25 Z$	3AX	24 X	5CY	35A4Y		1BZ	05:11:23
AX3B4	25Z	1CY	24X	3AZ	35C4Y		1BZ	05:37:13
CX1A4	$25 Z$	3BY	24X	1BZ		35A	1CY	06:12:38
CX1A4	25Z	3BY	24X	1CY		35A	1BZ	06:14:31
AX1C4	$25 Z$	3BY	24X	5CY		35A	$1 B Z$	06:15:38
CX1A4	25Z	3BY	24X	5CY		35A	1BZ	06:16:30
CY1B4	25Z	3AX	24X	1AZ		35 Y	1CX	06:44:25
BY1C4	$25 Z$	3AX	24X	3BZ		35Y	1 AZ	06:47:49
BY4C1	25Z	3AX	24X	3BZ		35Y	1 AZ	06:48:38
CY1B4	25Z	3AX	24X	3BZ		35Y	1 AZ	06:49:41
CY4B1	25Z	3AX	24X	3BZ		35Y	1AZ	06:50:31
CY1B4	25Z	3AX	24X	3BZ		35Y	1CX	06:51:51
CX3A4	25Z	1BY	24X	3BZ		35Y	1 AX	06:57:13
CX3A4	25Z	1BY	24X	3BZ		35Y	1 AZ	06:58:46
AX3B4	25Z	1CY	24X	3AZ		35Y	1BZ	07:13:12
AX3B1	25Z	4CY	24X	3AZ		35Y	1CX	07:17:54

NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR CASE 1.
. DISPLAY MEMORY

STIME	priv C "09:33:31"			A:obrwlfch.prg	
COUNT1	priv N		18 (18.00000000)	A:obrwlfch.prg
COUNT2	priv N		233 ($233.00000000)$	A:obrwlfch.prg
COUNT3	priv N		1758 (1758.00000000)	A:obrwlfch.prg
COUNT4	priv N		4734 (4734.00000000)	A:obrwlfch.prg
COUNT5	priv N		7865 (7865.00000000)	A:obrwlfch.prg
COUNT6	priv N		8424 (8424.00000000)	A:obrwlfch.prg
COUNT7	priv N		4125 (4125.00000000)	A:obrwlfch.prg
COUNT8	priv N		188 (188.00000000)	A:obrwlfch.prg
COUNT9	priv N	N	0 (0.00000000)	A:obrwlfch.prg
FOUND pub L .F.					
PENT pub C "C2P"					
TRI pub C "C1T3"					
FACTOR	pub C	C			
TRITYPE	pub C	C			

P3 p	pub L .F.			
P4 p	pub L .F.			
P5 pub	pub L .F.			
T3 pub	pub L .F.			
T4 pub	pub L .F.			
T5 pub	pub L .F.			
D3 p	pub L.F.			
D4 pub	pub L .F.			
D5 pub	pub L F.			
P3CHOSEN	EN priv N	0	$0.00000000)$	A:obrwlfch.prg
P4CHOSEN	N priv N	0 ($0.00000000)$	A:obrwlfch.prg
P5CHOSEN	N priv N	0 ($0.00000000)$	A:obrwlfch.prg
D3RECNO	priv N	18 (18.00000000)	A:obrwlfch.prg
D4RECNO	priv N	12 (12.00000000)	A:obrwlfch.prg
D5RECNO	priv N	14 (14.00000000)	A:obrwlfch.prg
F3RECNO	priv N	20 (20.00000000	A:obrwlfch.prg
31 variables defined, 225 variables available,		191 bytes used		
		5809 bytes available		

OUTPUT FROM OBRWLFCH.PRG - CASE 2

CZ5Y2	13B	4AX	24B5X		3AZ	35C4Y		2BZ	15:11:16
CZ2Y5	13B	4AX	24B5X		1 AY		35Z	1CX	15:43:30
CZ2Y5	13B	4AX	24B5X		3AY		$35 Z$	1 CX	15:44:17
CZ5X2	13B	4AY	24B5Y		1 AX	35 Cl 1 Y		2BZ	15:50:37
CZ5X2	13B	4AY	24B5Y		3AZ	35 ClY		2BZ	15:51:21
CZ2X5	13B	4AY	24B5Y		1 AX		$35 Z$	4CX	16:18:29
AY5X4	13B	2 CZ	24 Cl Y		3AZ	35B4Y		1 AX	17:02:31
CX2Z5	13B	4AY	24 ClY		3AZ		$35 Y$	1AX	17:14:17
CX5Z2	13B	4AY	24C1Y		3AZ		$35 Y$	1AX	17:14:24
CZ2X5	13B	4AY	24 Cl Y		3 AZ		$35 Y$	1 AX	17:14:30
CZ5X2	13B	4AY	24C1Y		3AZ		$35 Y$	1AX	17:14:38
CZ5X2	13B	4AY	24C1Y		3AZ		$35 Y$	2BZ	17:15:18
CZ2X5	13B	4AY	24C1Y		5BZ		35Y	1 AX	17:17:10
CX5Z2	13B	4AY	24C5B		3AZ		35 Y	1 AX	17:49:00
CZ5X2	13B	4AY	24C5B		3AZ		$35 Y$	1 AX	17:49:08
CZ5X2	13B	4AY	24C5B		3AZ		35Y	1CX	17:49:48
AX5Y4	13B	2 CZ	24C5B		1AY		35Z	1CX	18:02:22
AX5Y4	13B	2 CZ	24 C 5 B		3AY		35Z	1CX	18:03:49
CZ5Y2	13B	4AX	24C5X		1AY	35B2Z		1CX	18:10:16
CZ5Y2	13B	4AX	24C5X		3AY	35B2Z		1 CX	18:11:02
CZ5Y2	13B	4AX	24C5X		1AY	35B4Y		1CX	18:12:38
CZ5Y2	13B	4AX	24C5X		3AZ	35B4Y		1CX	18:14:01
AX2Y4	13B	5CZ	24X1C		3AZ		35Y	2BZ	19:02:44
CZ5X2	13B	4AY	24X1Y		3AZ		35 Y	2BZ	19:11:24
CX2Z5	13B	4AY	24X5B		3AZ		35Y	1 AX	19:30:21
AX2Y4	13B	5CZ	24X5B		1AY		35Y	1CX	19:34:47
AX2Y4	13B	5CZ	24X5B		3AZ		35Y	1CX	19:36:11
AY2X4	13B	5CZ	24Y1C		3AZ		35Y	1 AX	20:11:44
AY2X4	13B	5CZ	24Y1C		3AZ		35Y	2BZ	20:12:49
AY5X4	13B	2 CZ		24B	3AZ	35C4Y		1 AX	21:25:58
CZ5Y2	13B	4AX		24B	1CX	35X2Z		1AY	21:33:39
CZ5X2	13B	4AY		24B	1 AX	35Y2Z		4CX	21:49:33
CZ2X5	13B	4AY		24B	1 AX		35Y	4CX	22:25:43
CZ5X2	13B	4AY		24B	1AX		35Y	4CX	22:26:26
CX2Z5	13B	4AY		24 B	3AZ		35Y	1 AX	22:28:15
CX5Z2	13B	4AY		24B	3AZ		35Y	1 AX	22:28:54
CZ2X5	13B	4AY		24B	3AZ		35Y	1 AX	22:29:31
CZ5X2	13B	4AY		24B	3AZ		35Y	1 AX	22:30:10
CZ2X5	13B	4AY		24B	3AZ		35Y	1CX	22:31:18
CZ5X2	13B	4AY		24B	3AZ		35Y	1CX	22:31:58
CZ2X5	13B	4AY		24B	3AZ		35 Y	4CX	22:33:41
CZ5X2	13B	4AY		24B	3 AZ		35Y	4CX	22:34:21
AX2Y4	13B	5CZ		24B	1AY		35Y	1CX	22:56:16
AX2Y4	13B	5CZ		24 B	1AY		35 Y	4CX	22:57:46
AY2X4	13B	5CZ		24B	3AZ		35Y	1 AX	22:58:59
AX2Y4	13B	5CZ		24B	3AZ		35Y	1CX	23:00:33
AY2X4	13B	5CZ		24B	3AZ		35Y	1CX	23:01:15
AX2Y4	13B	5CZ		24B	3AZ		35Y	4CX	23:02:47
CZ2Y5	13B	4AX		24B	1AY		35Z	1CX	23:04:56
CZ2Y5	13B	4AX		24B	1 AY		$35 Z$	2CX	23:06:15
CZ2Y5	13B	4 AX		24 B	3AY		$35 Z$	1CX	23:07:39
CZ2Y5	13B	4AX		24B	3AY		$35 Z$	2CX	23:08:57
CZ2Y5	13B	4AX		24B	1CX		$35 Z$	1AY	23:10:21
CZ2X5	13B	4AY		24B	1 AX		$35 Z$	4CX	23:12:51
AZ2Y4	13B	5CX		24B	3AY		35Z	1 AX	23:19:48
AX5Y4	13B	2 CZ		24 B	1 AY		$35 Z$	1CX	23:22:58
AX5Y4	13B	2CZ		24B	1AY		$35 Z$	4CX	23:24:07

AX5Y4	13B	2 CZ		24B	3AY		$35 Z$	1CX	23:26:11
AX5Y4	13B	2 CZ		24B	3AY		35Z	4CX	23:27:19
AX5Y4	13B	2 CZ		24B	1CX		$35 Z$	1AY	23:28:57
CX2Z5	13B	4AY		24 C	3AZ	35B2Y		1 AX	23:34:16
CZ2X5	13B	4AY		24 C	3 AZ	35B2Y		1 AX	23:35:00
CZ2X5	13B	4AY		24 C	3 AZ	35B2Y		1CX	23:36:19
AX2Y4	13B	5CZ		24 C	1AY	35B2Z		1CX	23:46:08
AX2Y4	13B	5CZ		24 C	3AY	35B2Z		1CX	23:48:06
CZ2Y5	13B	4AX		24 C	1AY	35B4Y		1CX	23:50:43
CZ2Y5	13B	4AX		24 C	$3 A Z$	35B4Y		1CX	23:52:07
AY2X4	13B	5CZ		24C	3AZ	35B4Y		1 AX	23:54:29
AY2X4	13B	5CZ		24 C	3AZ	35B4Y		1CX	23:55:47
AX2Y4	13B	5CZ		24 C	3 AZ	35X1Y		2BZ	00:02:00
AY2X4	13B	5CZ		24C	3 AZ	35X1Y		2BZ	00:02:46
CX2Z5	13B	4AY		24 C	3 AZ		35Y	1 AX	00:30:39
CZ2X5	13B	4AY		24C	3 AZ		35Y	1AX	00:31:25
CZ2X5	13B	4AY		24C	3AZ		35Y	1CX	00:33:18
CZ2X5	13B	4AY		24 C	5BZ		35Y	1 AX	00:34:38
CZ2X5	13B	4AY		24 C	5BZ		35 Y	1CX	00:35:39
AZ2Y4	13B	5CX		24C	5BZ		35Y	1 AX	00:39:45
AY2X4	13B	5CZ		24 C	1 AX		35Y	2BZ	00:41:18
AX2Y4	13B	5CZ		24 C	1AY		35Y	2BZ	00:42:54
AX2Y4	13B	5CZ		24C	1AY		35Y	1CX	00:44:02
AY2X4	13B	5CZ		24 C	3 AZ		35Y	1AX	00:45:16
AX2Y4	13B	5CZ		24 C	3 AZ		35Y	2BZ	00:46:56
AY2X4	13B	5 CZ		24 C	3 AZ		35 Y	2BZ	00:47:42
AX2Y4	13B	5CZ		24 C	3AZ		35Y	1CX	00:48:55
AY2X4	13B	5 CZ		24 C	3 AZ		35Y	1CX	00:49:41
CZ2Y5	13B	4AX		24 C	1AY		35Z	1CX	00:51:35
CZ2Y5	13B	4AX		24 C	3AY		35Z	1CX	00:52:59
AZ2Y4	13B	5CX		24 C	3AY		35Z	1 AX	00:55:17
CX5Z2	13B	4AY		24 X	3AZ	35B2Y		1AX	00:57:29
AX5Y4	13B	2 CZ		24 X	1AY	35B2Y		1CX	01:01:02
AX5Y4	13B	2 CZ		24X	3AZ	35B2Y		1CX	01:02:38
CX5Z2	13B	4AY		24 X	3AZ		35Y	1 AX	01:39:22
AZ2Y4	13B	5CX		24 X	5BZ		35Y	1 AX	01:48:33
AZ2Y4	13B	5CX		24 X	3AY		35Z	1AX	01:55:20
AX5Y4	13B	2 CZ		24 X	1AY		$35 Z$	1CX	01:56:33
$\begin{gathered} \text { AX5Y4 } \\ 36 \end{gathered}$	13B	2CZ		24X	3AY		35Z	1CX	01:58:08
CZ5B2	13Y	4AX	24C5X		3AZ	35Y4B		1CX	06:47:51
AX2B4	13Y	5CZ	24X5Y		3AZ		35B	1CX	08:16:22
BZ5C2	13Y	4AX	24Y5X		3AZ		35B	1CX	08:54:39
CZ2B5	13Y	4AX		24 C	3AZ	35Y4B		1CX	10:38:46
AX2B4	13Y	5CZ		24 C	3AZ		35B	1CX	10:54:18
AX5B4	13Y	2CZ		24 X	3AZ	35Y2B		1 CX	11:14:11
AX5C4	13Y	2BZ		24X	3AZ	35Y4B		1CX	11:22:12
AX5C4	13Y	2BZ		24X	3AZ		35B	1CX	11:32:57
AX2B4	13Y	5CZ		24 Y	3 BZ	35B1A		4CX	11:47:15
BZ5C2	13Y	4AX		24 Y	3AZ		35B	1CX	12:39:30
AX5C4	13Y	2BZ		24 Y	$3 A Z$		35B	1CX	12:45:38
AX5C4	13Y	2BZ		24 Y	3AZ		35B	2CX	12:46:52
AX2B4	13Y	5CZ		24Y	3AZ		35B	1CX	13:04:50
AX2B4	13Y	$5 C Z$		24Y	3AZ		35B	4CX	13:06:28

NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR CASE 2.

DISPLAY MEMORY				
STIME	pub C	pub C 07:47.22		C:OBRWLC2.prg C:OBRWLC2.pg
COUNT1	priv N	37 (37.00000000)	
COUNT2	priv N	866 (866.00000000)	
COUNT3	priv N	8520 (8520.00000000)	C:OBRWLC2.prg
COUNT4	priv N	16531 (16531.00000000)	C:OBRWLC2.prg
COUNT5	priv N	16895 (16895.00000000)	C:OBRWLC2.prg
COUNT6	priv N	11792 (11792.00000000)	C:OBRWLC2.prg
COUNT7	priv N	4687 (4687.00000000)	C:OBRWLC2.prg
COUNT8	priv N	187 (187.00000000)	C:OBRWLC2.prg
COUNT9	priv N	0 (0.00000000)	C:OBRWLC2.prg
FOUND pub L				
PENT pub C				
TRI pub C "ClT3"				
FACTOR pub C "3"				
TRITYPE pub C "T"				
FTIME pub C "13:13:08"				
P3 pub	pub L .F.			
Press any key to continue...				
P4 pub L.F.				
P5 pub L .F.				
T3 pub L .F.				
T4 pub L .F.				
T5 pub L .F.				
D3 pub L F.				
D4 pub L.F.				
D5 pub L .F.				
P3CHOSEN priv N 0 (0.00000000) C:OBRWLC2.prg				
P4CHOSEN	N priv N	0 ($0.00000000)$	C:OBRWLC2.prg
PSCHOSEN priv N 0 (0.00000000) C:OBRWLC2.prg				
D3RECNO priv N 15 (15.00000000) C:OBRWLC2.prg				
D4RECNO priv N 14 (14.00000000) C:OBRWLC2.prg				
D5RECNO	priv N	3 (3.00000000)	C:OBRWLC2.prg
F3RECNO priv N 9 (9.00000000) C:OBRWLC2.prg	priv N	9 (9.00000000)	C:OBRWLC2.prg
32 variables defined, 201 bytes used				
224 variab	bles availab	5799 by	available	

OUTPUT FROM OBRWLFCH.PRG - CASE 3

22									
13Y5A	2CZ	4BX		24Y	3AZ	35X2B		1CY	09:27:50
13Y5A	4BX	2CZ		24Y	3AZ	35X2B		1CY	09:28:46
23									
13Y5C	2BZ	4AX	24B1Y		5AZ	35X1A		4CY	09:41:35
13Y5C	4AX	2BZ	24B1Y		5AZ	35X1A		4CY	09:42:14
13Y5C	2BZ	4AX	24Y1X		3AZ	35A1B		2CY	09:50:58
13Y5C	4AX	2BZ	24Y1X		3AZ	35A1B		2CY	09:51:37
24									
25									
13Z2B	4CY	5AX	24A1X		5CZ		35Y	4BX	10:49:59
13Z2B	5AX	4CY	24A1X		5CZ		35Y	4BX	10:50:16
13Z2B	4CY	5AX	24A1Y		5CZ		35Y	4BX	10:52:03
13Z2B	5AX	4CY	24A1Y		5CZ		$35 Y$	4BX	10:52:20
26									
27									
28									
29									
30									
31									
32									
33									
34									
CZSY2	13A	4BX	24A5X		1CY	35C4Y		2BZ	16:22:56
CZ5Y4	13A	2BX	24B3Z		1CY	35C2Y		4AX	18:47:42
CY4X5	13A	2BZ	24 C 1 Y		5 AZ		35Y	1BX	20:14:29
BZ2X4	13A	5CY	24 Cl Y		5AX		35Z	1BX	20:28:26
BZ2X4	13A	SCY	24Y1C		5AX		$35 Z$	1BX	22:34:29
CZ2Y5	13A	4BX	24Y3B		5AX		$35 Z$	1CY	23:07:53
BZ2X4	13A	5CY	24Y3B		5AX		$35 Z$	1BX	23:10:31
CZ2Y5	13A	4BX		24C	5AZ	35X2B		1CY	00:47:13
CY4X5	13A	2BZ		24C	5AZ		$35 Y$	1BX	01:16:57
BX2Y4	13A	5CZ		24 C	5AX		35Y	2BZ	01:20:56
BX2Y4	13A	5 CZ		24 C	3BZ		35Y	4 AX	01:23:17
CZ2Y5	13A	4BX		24 C	5AX		35Z	1CY	01:27:09
BZ2X4	13A	5CY		24 C	SAX		$35 Z$	1BX	01:31:48
BZ2X4	13A	5CY		24Y	5AX		$35 Z$	1BX	04:02:29
35									
CZ2Y4	13B	5AX	24A1X		5 CY		35Z	4BX	04:26:26
AZ2X5	13B	4CY	24A1Y		5 CZ		35Y	4BX	04:33:44
CZ5Y2	13B	4AX	24 ClX		3AZ	35A1Y		2BZ	05:02:54
AX5Y4	13B	2 CZ	24 ClX		3AZ	35A1Y		4BX	05:06:38
CZ5Y2	13B	4AX	24C5X		3AZ	35A1Y		2BZ	06:11:15
AX2Y4	13B	5CZ	24X1C		3AZ	35A1Y		2BZ	06:45:03
CZ2Y4	13B	5AX	24X1C		3 AZ		35Y	2BX	06:54:37
AX2Y4	13B	5CZ	24X1C		3AZ		35Y	2BZ	06:58:11
AX5Y4	13B	2 CZ	24X1Y		5AZ	35C1A		2BX	07:03:59
CY2Z5	13B	4AX	24Y1C		3AZ		35Y	2BX	07:47:41
AZ5X4	13B	2CY	24 Y 3 Z		1 AX		35A	2BX	08:36:51
CZ2Y5	13B	4AX		24B	SAZ	35X1A		4CY	09:27:53
CY2X4	13B	5AZ		24B	1AX	35Y4A		2CZ	10:13:44
CY2X4	13B	5AZ		24B	1 AX		35Y	2CZ	10:31:34
AZ2X5	13B	4CY		24B	5CZ		35Y	1 AX	10:41:51
AZ2X5	13B	4CY		24B	5CZ		35Y	4 AX	10:42:57
CY2Z5	13B	4AX		24 C	3AZ	35A1Y		2BX	10:55:01
CZ2Y5	13B	4AX		24 C	3AZ	35A1Y		2BX	10:55:41
AX2Y4	13B	5 CZ		24C	3AZ	35A1Y		4BX	10:59:14

AX2Y4	13B	5 CZ		24C	3AZ	35A1Y		2BZ	11:00:30
AX2Y4	13B	5 CZ		24 C	3AZ	35X1Y		2BZ	11:19:01
CY2Z5	13B	4AX		24 C	3 AZ		35Y	2BX	11:47:28
AX2Y4	13B	5CZ		24 C	3 AZ		35Y	4BX	11:58:34
AX2Y4	13B	5CZ		24C	3 AZ		35Y	2BZ	11:59:50
CY5Z2	13B	4AX		24 Y	3 AZ	35A1Y		2BX	13:21:42
$\begin{gathered} \text { CY5Z2 } \\ 36 \end{gathered}$	13B	4AX		24 Y	3AZ	35ClY		2BX	13:33:53
BZ2C4	13Y	5AX	24A3B		5CY		35Z	1BX	15:31:17
AZ5C4	13Y	2BX	24B3Z		1 AX		35A	2CY	16:42:44
AX2B4	13Y	5CZ	24X1C		3AZ	35A1B		4CY	18:31:08
AX2B4	13Y	5CZ	24X1C		3BZ		35A	4CY	18:42:04
CZ5A4	13Y	2BX	24X5C		3 AZ	35Y4B		1 AX	18:47:23
AX2B4	13Y	5CZ	24X5Y		3AZ	35A1B		4CY	18:51:55
AZ5C4	13Y	2BX	24X5Y		3BZ		35A	2 CZ	19:02:09
AX2B4	13Y	5CZ	24X5Y		3BZ		35A	1BX	19:04:45
AX2B4	13Y	5CZ	24X5Y		3BZ		35A	4CY	19:05:59
AX2B4	13Y	5CZ		24C	3BZ		35A	1BX	21:34:58
AX5C4	13Y	2BZ		24 X	3AZ	35A1B		2CY	21:40:09
BX5A4	13Y	2 CZ		24 X	3AZ	35Y2B		1 AX	22:08:58
CZ2B4	13Y	5AX		24X	3BZ	35Y4A		1BX	22:12:52
BZ2C4	13Y	5AX		24X	5CZ	35Y4A		1BX	22:14:37
BZ2C4	13Y	5AX		24X	5CY		35Z	1BX	22:31:33
CZ2B4	13Y	5AX		24X	5CY		$35 Z$	1BX	22:32:18
BX5A4	13Y	2 CZ		24X	5CY		35Z	1AX	22:34:26
AZ5C4	13Y	2BX		24Y	3BZ	35X1A		2CZ	23:27:11
BX2C4	13Y	5AZ		24 Y	1 AX	35X4A		2BZ	23:38:51
AZ5C4	13Y	2BX		24Y	1AX	35X4B		2CZ	23:47:29
AZ5C4	13Y	2BX		24 Y	1AX		35A	2CZ	23:57:39
AZ5C4	13Y	$2 B X$		24Y	3BZ		35A	2 CZ	23:59:09
AX2B4	13Y	5CZ		24Y	3BZ		35A	1BX	00:08:58

NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR CASE 3.

T5	pub	L	F.			
D3	pub	L	F.			
D4	pub	L	F.			
D5	pub	L	F.			
P3CHOSEN	priv	N	$0($	$0.00000000)$	C:OBRWLC3.prg	
P4CHOSEN	priv	N	$0($	$0.00000000)$	C:OBRWLCC3.prg	
P5CHOSEN	priv	N	$0($	$0.00000000)$	C:OBRWLCC3.prg	
D3RECNO	priv	N	$16($	$16.00000000)$	C:OBRWLC3.prg	
D4RECNO	priv	N	$7($	$7.00000000)$	C:OBRWLC3.prg	
D5RECNO	priv	N	$3($	$3.00000000)$	C:OBRWLC3.prg	
F3RECNO	priv	N	$11($	$11.0000000)$	C:OBRWLC3.prg	

224 variables available, 5799 bytes available

