The Oberwolfach Problem:
A History and Some New Results

by

Peder A. Bolstad
B.A. cum laude, St. Olaf College, 1974

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

in the Department
of
MATHEMATICS

© Peder A. Bolstad 1990

SIMON FRASER UNIVERSITY
August 1990
All rights reserved. This work may not be

reproduced in whole or in part, by photocopy or
other means, without permission of the author.



Approval

Name: Peder Allan Bolstad
Degree: Master of Science

Title of thesis: The Oberwolfach Problem: A History and Some New Results

Examining Committee:

Chair: Dr. A. Lachlan

Dr. Brian Alsﬁéch
Senior Supervisor

Dr. Kathering Heinrich

Dr. Pavol Hell

Dr. Luis Goddyn
External Examiner

Date Approved: August 7, 1990

ii



PARTIAL COPYRIGHT LICENSE

| hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on
its own behalf or for one of its users. | further agree that permission
for multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. |t is understood that copying
or publication of this work for financial gain shall not be a!llowed

without my written permission.

Tnfle of Thesis/Project/Extended Essay

7116 Oberws| S;q(’/}\ prob/em 14 h[/sv‘org ay d

Some New Kesu[ts

Author:

= - o
(signature)

'ch,/er ﬂ EO /57[CZC/

(name)

Tul, ;z(‘g/, /780

(ézfe)




Abstract

The Oberwolfach Problem asks whether it is possible to decompose the
complete graph on 2n+1 vertices (or the complete graph on 2n vertices with a
spanning set of independent edges removed) into isomorphic factors each comprising a
set of cycles whose combined length is 2n+1 (or 2n, respectively). We trace thé
history of the investigation of this problem, giving results that are known and noting
questions that remain open. Solutions (or reasons why no solution exists) are given
for all variations of the problem for small n. Some of the solutions are new and others
have not been published previously. A new computer-assisted proof is given for the
nonexistence of a decomposition of the complete graph on eleven vertices into factors
comprising a 5-cycle and two 3-cycles. In the final section we consider each of the
cases of the problem that are known to have no solution, and ask whether multiple

copies of the complete graph can be 2-factored in the desired way.
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The Oberwolfach Problem:
A History and Some New Results

1. The Oberwolfach Problem

Is it possible to partition the edge-set of the complete graph on n vertices (K,)
into isomorphic 2-factors (a 2-factor is set of disjoint cycles whose vertex set spans
the graph being factored)? Such a partitioning is also often referred to as a
factorization or decomposition of the graph. It is immediately apparent that each
vertex of K, is of degree n-1 and that since each cycle removed from the graph
decreases the degree of each vertex used by 2, n-1 must be even if a cycle
decomposition is to exist. Thus the question makes sense only if n is odd and this is
the original Oberwolfach Problem (OP) mentioned in 1967 by Ringel at a graph theory
meeting at the Oberwolfach conference center in Germany (hence the name), and first
seen in the literature as part of a list of unsolved problems presented by Guy [6].

If we let n be even and consider the graph K,-F where F is a 1-factor (a set of
disjoint edges whose vertices span the vertex set of the graph), we have a graph that
is regular of even degree which allows us to consider the question above for these
graphs as well. This variation on the OP was originally worked on as a separate
problem under the rubric 'NOP' (for 'Nearly Oberwolfach Problem'), but is now
accepted as part of the OP. The notation for the Oberwolfach Problem used in this
thesis is as follows: OP(n; a,, a,, ..., a;)) represents the problem of decomposing K,
into isomorphic 2-factors where each of the 2-factors comprises one cycle of each
length a;, fori=1, 2, ..., rand a,+ a, + ... + a,=n. When there are cycles of the same
length in a 2-factor, the above notation may be abbreviated by including each length
only once in the list with an exponent that indicates the number of cycles of that
particular length to be included.

We will review the history of this problem,; indicating the techniques used to
approach it. Then, for each K,, on fewer than 19 vertices and for each X,,,, on fewer
than 16 vertices, we will consider all possible cycle combinations into which it might
be isomorphically 2-factored and give such a decomposition if one has been found or a



reason for its non-existence if that has been established. The discussion will include
several new factorizations and a proof of the non-existence of a decomposition of K,
into five isomorphic 2-factors each comprising a 5-cycle and two 3-cycles (i.e., no
solution for OP(11; 32, 5) exists).

We will conclude by considering the possibility that the cases of the
Oberwolfach Problem for which no solution exists in K, might have a solution in AK, -
a complete multigraph on n vertices where every edge has multiplicity A > 1.

1.1 Kirkman's Schoolgirl Problem

The quest for 2-factorizations of complete graphs is not new. In the Lady’s and
Gentleman’s Diary of 1850, T.P. Kirkman asked whether it was possible for fifteen
schoolgirls to be arranged in five lines of three girls on each of seven days in such a
way that each girl was in a line with each of the other girls exactly once during those
seven days. This problem is equivalent to asking if K;s can be decomposed into seven
2-factors, each comprising five 3-cycles. Current notation for the problem would be
OP(15; 3°). According to Ball [4], solutions for this problem and the analogous
problems where there are 9 and 27 girls in lines of three were found in the same year
by unnamed authors through largely empirical methods.

The literature of the years following Kirkman's query contains solutions for
various examples of what have now become known as Kirkman Triple Systems. In
1892 Ball [4] collected work done by several separate authors to give a listing of all
known solutions for cases of the problem from K, to Ky, inclusive. Since we are
considering rows of three children, the total number of children must be a multiple of
three and since each child is in line with two other children in each arrangement, the
total number of children must be odd. Thus the only numbers for which the problem
has exact solutions are those that are odd multiples of three (i.e., those of the form
6m+3).

Ball reports that solutions were found by different investigators in cases where
the number of children is 12m+3 when 6m+1 is prime, 18m+3, 18m+9, 18m+15, 24m+3,
and 24m+9 where m is a positive integer. In all, solutions collected in [4] settle the
question for every number of children from 9 to 99, inclusive, that is of the form 6m+3.

2



Solutions were arrived at by methods ranging from trial and error to constructing a
"base factor" (i.e., an arrangement of the children for the first day) which can be used
to generate a full set of 2-factors by applying a permutation to the vertices of that
original 2-factor and to those of each successive 2-factor until a complete set of

factors is obtained.

It was not until 1971 that a general solution was found for the Kirkman
problem. Any number n = 6m+3 of children can be arranged in rows of three on 3m+1
days in such a way that each child is in the same row with each other child exactly
once. The proof was done from the point of view of the theory of balanced incomplete
block designs (BIBD's). This gives us our first theorem on solutions to the
Oberwolfach Problem.

Theorem 1.1.1: (Ray-Chaudhuri and Wilson [17]) A solution exists for
OP(6m+3; 3*™") for all positive integers m.

The best we could do with an even number of children is to find arrangements
where each child is in a line with each other child except one exactly once during the
sequence of walks. Solutions for this variation of the problem have became known as
Nearly Kirkman Triple Systems (NKTS).

Kotzig and Rosa [14] showed the non-existence of NKTS(6) and NKTS(12),
the existence of NKTS(¢v) given NKTS(v) for any r = 3 (mod 6), and the existence of
NKTS(61) when 6t is the product of two integers r and s where r = 1 (mod 3), r 2 4 and
s =1 (mod 2). Baker and Wilson [3] showed NKTS(6¢) exists for 1> 2 , except
possibly for ¢t = 14, 17 or 29. Brouwer [5] constructed solutions for two of these three
unsolved cases leaving only ¢t = 14 in question. The final case was reported solved in
[12], but the solution was incorrect. The description of a correct construction is given
by Rees and Stinson [19]. Throughout these papers the tools, notation and
terminology of design theory were employed to obtain the given results. In OP
notation we have

Theorem 1.1.2: A solution for OP(6t; 3*) exists for all t 23.



1.2 Hamilton Cycle Decompositions

Another variation on the Kirkman problem might be to have n children sit
around a circular table on L (n-1)/2] consecutive days arranged in such a way that each
child sits next to each other child (except one, if n is even) exactly once. In other
words, can K, (or K,-F for even n) can be partitioned into |_(n-1)/2J Hamilton cycles
(i.e., each 2-factor is a single cycle containing all vertices of the original graph).

Letter arrangements and a diagram appear (attributed to Walecki) in Lucas'
Récréations Mathématiques [15] in 1884 showing base factors for the Hamilton
decomposition of K, and K,-F which are easily generalizable into base factors for
decomposing any K,,,, or K,,-F into Hamilton cycles. Figure 1.2.1 and Figure 1.2.2
below show the generalized base factors for these two infinite classes of OP cases.

The base factor (notated as R below) will become a powerful tool as we
proceed. We will use « to stand for a permutation and will write a(R) to indicate the
application of a to the vertices of R to obtain another factor. By writing o‘(R) we
indicate the result of applying the permutation o to the vertices of R and to each
resultant factor until o has been applied i different times.

(e}
an-3 > I1
:Qﬂ“f: \.a
N >03
. 9y il
peEl—= CF4
. =
or—=— ______f__ﬁ—
"‘Ta“.<>o -3
SCTES Saa
n-1
Figure 1.2.1

Figure 1.2.1 shows the first 2-factor of the Hamilton decomposition of X,,-F.
We have 2n-2 vertices on the circumference of a circle labled consecutively from 0 to



2n-3 . We join vertex O to vertex 1, vertex 1 to vertex 2n-3, vertex 2n-3 to vertex 2,
vertex 2 to vertex 2n-4, and so on until we reach vertex n-1 which is then joined to
vertex 0. Place a vertex labeled oo, on the edge between vertex 0 and vertex n-1, and
a vertex labeled oo, on the edge joining vertex r(n-l)/2-| with vertex r3(n-1)/2-|.

Let this Hamilton cycle be R, and let a0 = (00,)(00,)(0 12 ... 2n-3) be a
permutation of the vertices of R. It is easy to check that the set of cycles generated by
a, {ai (R) l i=0,1,2,.. n-2},is a complete Hamilton decomposition of K,,-F where
F = ([0}, 00,], [i, i+n-11:i=0, 1,2, ..., n-1}. This construction gives us

Theorem 1.2.1: A solution for OP(2n; 2n) exists for all n > 1.

Figure 1.2.2 shows a base factor for the Hamilton decomposition of K,,,; by a
very similar construction to the one above. We start with 2n vertices labeled from O to
2n-1 consecutively around the circumference of a circle. Vertex 0 is joined to vertex 1,
vertex 1 to vertex 2n-1, vertex 2n-1 to vertex 2 and so on until we join vertex n+1 to
vertex n. Vertex n is then joined to vertex 0 and a vertex labeled oo is placed on this
last edge. Let this Hamilton cycle be R and let o = (00)(0, 1, 2, ..., 2n-1). Checking
shows that {0/ (R):i=0, 1,2, ..., n-1} gives a Hamilton decomposition of K,,,;.

an-1 1
'\

An-3d e

~—

_ X'r1—1
h+1 '\
n

Figure 1.2.2

This construction yields

Theorem 1.2.2: A solution for OP(2n+1; 2n+1) exists for all n > 0.



1.3 Uniform Cycle Decompositions

The two parts of the Oberwolfach problem mentioned above are extremes
between which lie a number of solved and a large number of unsolved cases. The
Kirkman problem asks for a decomposition into the smallest cycle lengths possible
and the Hamilton decompositions are decompositions into the longest possible cycle
length. In both of these situations we were looking for what are now referred to as

decompositions into uniform 2-factors (i.e., all cycles are the same length).

Several authors from the middle 1970's to the middle 1980's obtained results on
uniform 2-factorizations. Hell, Kotzig and Rosa [8] introduced some notation that has
become standard in these questions. D(s) is defined as the set of all integers v such
that K, can be decomposed into uniform 2-factors of s-cycles. That paper included
several results. If k is odd and k£ 2 3 and there exists a resolvable (v, k, 1)-BIBD
then v € D(k). This theorem immediately yields two corollaries. Since for any prime p
and positive integer o, there exists a resolvable (p?%, p*, 1)-BIBD, it follows that if p
is an odd prime and the integer & > 1, then p2® € D(p®). It is established in [18] that
for any integer k 2 2, there exists a constant c(k) such that for every v > c(k) where v
= k (mod k(k-1) there exists a resolvable (v, k, 1)-BIBD. Thus if k is odd and £ > 3,
there exists a constant c(k) such that for all v 2 ¢(k) where v = k (mod k(k-1)), v €
D(k).

Hell, Kotzig and Rosa also show that "3s € D(s) if and only if s is odd, s > 1,"
by way of a construction. This theorem seems to contradict a theorm in [10] where
Horton, Roy, Schellenberg and Stinson note that "For v a positive integer, v e D(4) if
and only if v is a multiple of 4," which implies that 12 € D(4). This confusion is easily
resolved by realizing that in the ten years between these papers, the two parts of the
Oberwolfach Problem had become one and thus the meaning of the D(s) notation had
changed to accommodate that newly modified understanding of the problem. Thus, in
the current literature it is understood that v € D(s) means that K, (if v is odd) or K, -F
(if v is even) can be uniformly 2-factored into s-cycles. The same problem occurs
when earlier authors state results in terms of 'NOP'. Modern notation would be 'OP'
and the restrictions on the parity of v would be either modified or dropped. Throughout
this thesis we will use the more modern notation and phrasing, which will occasionally



appear to be slightly different from the original statements of the results being
reported.

Back to the results. Hell, Kotzig and Rosa also show in [8] that if m € D(s)
and n € D(s), then mn € D(s) by observing that K,,, =K,, XK, UK,, ® K, and
showing that K, X K, and K,, ® K, can be 2-factored into s-cycles whenever K, and
K, can be. Given two graphs G and H, the graph G X H has vertex set V(G) x V(H)
and an edge [(g, h), (g’, h")] if and only if [g, g'l € E(G) and h =h’, or [h, k') € E(H)
and g = g". G ® H also has vertex set V(G) x V(H), but has an edge [(g, h), (g’, )] if
and only if [g, g'l € E(G) and [h, h'] € E(H). This latest theorem yields the corollary:
s" € D(s) for odd s and every integer n 2 1. The final theorem in this paper states that
3k Sn-l

rs € D(s) whenr = ,sisodd, s 23, k20 and n 2 1, but the arguments only

support the claim when 0 < k < n-1.

Five years later, Huang, Kotzig and Rosa [11] focused on the even cases
(decomposition of K,, into uniform isomorphic 2-factors) showing that v € D(4)
whenever v = 0 (mod 4), 2k € D(k) for k 2 4, and 6k € D(2k) for k > 1. These proofs
were done by direct construction of a base factor and the results were reported in NOP
notation. They also give a specific solution for OP(10; 5).

In 1985, Horton, Roy, Schellenberg and Stinson [10] collected known results
and added a few more of their own. For any positive integers s and ¢, 8ts € D(4t). If m
=2 (mod 4) then 4m € D(m). If nis a multiple of 3 other than 6 and 12, then we have
mn € D(m). For positive s and ¢, 20 ¢s € D(10¢) and 28ts € D(14t). Form>2 and¢
any positive integer except 2 or 4, 3tm € D(m). Most of these results are derived
from known results about B/BD's, abelian groups and complete bipartite and tripartite
graphs.

Alspach and Haggkvist [1] settled all cases of uniform 2-factorizations into
even length cycles in the same year. Form 22, 2mn € D(2m) for all positive integers
n. The proof of this theorem rests on visualizing K3,,, as various wreath products of
appropriate size graphs so that the decomposition into 2m-cycles follows directly from
previously known results. The wreath product GwrH is obtained by replacing each
vertex of G with a copy of H, joining two vertices in different copies of H only if the
vertices of G corresponding to those copies of H are adjacent. See the solution given



for OP(9; 33) in Section 2 of this thesis to see an application of the wreath product
idea. So we have, in OP notation, ‘

Theorem 1.3.1: Ifm is even and m 2 2, a solution for OP(mn; m) exists for
every natural number n.

The remaining cases of uniform 2-factorizations into odd length cycles for all
complete graphs (except those of the form K4, where m is the cycle length) were
settled by Alspach, Schellenberg, Stinson and Wagner [2] four years later. The proof
of this theorem also relies on visualizing complete graphs as wreath products and
showing that decompositions must exist for the various pieces and therefore also for
the complete graph.

The last remaining question regarding uniform 2-factorizations has been
answered by Hoffman and Schellenberg [9]. It is now established that 4m € D(m) and
we have

Theorem 1.3.2: For m odd and m 2 5, a solution for OP(mn,; m) exists for
every positive integer n. For m = 3, a solution for OP(mn; m) exists for every positive
integer n except 2 and 4.

Taken together, Theorem 1.3.1 and Theorem 1.3.2 settle all cases of

decomposition into uniform 2-factors.

1.4 Non-uniform Decompositions

What remains largely an open question in the Oberwolfach Problem is the
existence of decompositions of K, into non-uniform 2-factors. What follows is a
collection of results that represent the progress to date.

Kohler [13] has shown that solutions for both OP(8k+3; 3, 4k, 4k) and
OP(8k+1; 3, 8k-2) exist. Huang, Kotzig and Rosa [11] constructed solutions for
OP(k+3; 3, k) whenever k is odd and &k 2 5, and for OP(k+4; 4, k) whenever k is even
and k£ 2 4. They also show that a solution exists for OP(6k+4; 2k+2, 2k+1, 2k+1)
when k > 1 and that a solution for OP(2k+2 [ k/21+2c; k, k, 2 [k/21+2¢) exists for all
positive integers ¢ except 1.



This is the extent of the general cases that are solved and, though there are
solutions to other specific cases, this leaves the Oberwolfach Problem whenever each

2-factor is to comprise several cycles of different length pretty much wide open.



2. OP(n;a,, a,, ..., a,) Solutions for Small n

In this section we will give a 2-factorization (if it is known) or reason for the
non-existence of one for each possible combination of cycles into which each K,, on
fewer than 19 vertices and each K,,,; on fewer than 16 vertices might be decomposed.
As we go along we will use different solution techniques so the reader can get a feel
for them. Unless otherwise noted, these are decompositions generated by the author,
but only the existence of most of the decompositions of K3 is new.

The graphs K, and K, contain no cycles, so K} is the first complete graph where
the Oberwolfach Problem makes sense. Since K is a single cycle, it is in itself the
solution for OP(3; 3)

OP(4; 4) is the only possible case involving K,. Removing any 1-factor from K,
yields a 4-cycle and thereby a solution.

OP(5; 5) and OP(6; 6) are solved using the Walecki constructions used earlier
to obtain Theorems 1.2.1 and 1.2.2. All Hamilton decompositions in this section will
be accomplished by use of this construction.

For writing the solutions in base factor situations we will adopt the notation
used by Huang, Kotzig and Rosa in [11]. V is the vertex-set , R, as above, is the
base 2-factor in cycle notation, F is the 1-factor to be deleted (if appropriate), and «,
as in the previous chapter, is the permutation on the vertex-set that is used to
generate successive 2-factors to complete the decomposition. In addition we will
denote by F; a 2-factor of the decomposition which is usually the result of o' (R). The
symbol 'eo’ will be used to identify vertices that are fixed points of the permutation c.
The solutions for OP(5; 5) and OP(6; 6) in this notation are as follows:

OP(5; 5) V=2Z,0U {0}
o =(0)(0123)
Fi=a'R),i=0,1
R={(c°,0,1,3,2)

10



OP(6; 6) V=2Z,U {00, 00,}
o = (00,) (22) (0123)
Fiaq=0®),i=01
F = {[o0), 09,],10, 2], [1, 3]}
R = {(00,, 0, 1, 00,, 3, 2)}

The first possibility of a 2-factorization that is not into Hamilton cycles is
OP(6; 3%), the decomposition of Kginto 3-cycles, but no solution is possible. As soon
as the first 2-factor is selected, the edge set remaining is isomorphic to K, (the
complete bipartite graph with three vertices in each part) which contains no triangles
from which to fashion further 2-factors.

The decomposition of K; can be done in two ways. The solution for OP(7; 7) 1s
a Hamilton decomposition and OP(7; 3, 4) is accomplished with a permutation that
adds 2 to each vertex number to get successive 2-factors, unlike the permutation for
the Hamilton decomposition which adds 1. The solutions are listed below, but notice
that when the same V is used or when the F;'s have the same designation for more
than one case, we will show them only once at the beginning of the list of base factors.
As we go on, the same will be true for o, F and the F;'s.

V=2 U.{°°}
Fiaqa=ad'R),i=0,1,2
OP(1; 7 a=(0)(012345)

R={(,0,1,6,2,5,3,4)}

OP(7; 3,4) a=()(024)(35)
R={(>0,0,1)(24,3,5)}

In addition to the Hamilton decomposition of Kj, there are two other
possibilities. Their base factors are shown schematically below because they
represent another way of thinking about the vertex-set that is helpful in many
upcoming cases. The labeling system is that used in [11]. The factorizations follow
Figure 2.1. (Note that when V includes a copy of Z, any addition done in specifying F
is done modulo n.)

11



OP(8; 3, 5)
00,

0, /\ 0,

1, 1,

2, 2,
oo

Figure 2.1

OP(8; 4%

09,
1, V 1,
2, 2,
oo

V=2Z,%x (1,2} U {00, 00,}
o= (°°1)(°°2)(01 1,21)(021,2,)

Fi.=0R),i=0,1,2

F = {[00,,90,], [i1,(i+1),] : i = 0,1,2}
OP(8; 3, 5) R = {(90, 01,0,), (o0, 11, 24, 15, 2)}
OP(8; 4%) R = {(004, 24, 13, 2,), (003, 05, 01, 1,)}

V=2ZsU (00, 00,}

o =(00)(00)(012345)

Fio=0/R),i=0,1,2

F = {[o0, 00,], [0, 31, [1, 4], [3, 5]}
OP(8; 8) R ={(c0,,0, 1, 5, 00,2, 4, 3)}

Kohler [13] has shown that there is no solution for OP(9; 4, 5). He finds that
there are only four non-isomorphic ways to choose the first two 2-factors. He then

considers the complements of these graphs. Since none of the complements is

isomorphic to any of the original four graphs, they cannot contain two disjoint 2-factors

and the result follows.

A solution for OP(9; 3°) is our first opportunity to visualize a solution in a

wreath product. Visualize K, as K;wrK, (i.e., think of a copy of K, being inserted into

each of the three vertices of another K, and then join all vertices that are from different

copies of K;). The three inserted K,'s form the first 2-factor and the other three are

shown in Figure 5. Following the figure, a solution is given for each OP situation of K,
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decomposition that exists. Note that since this solution to OP(9; 3%) does not use a
base factor, the 2-factors F; are listed rather than R and a permutation a.

0, 1, 2 0, 1, 2, 0, 1, 24
02 12 22 03 13 23 02 12 22 03 13 23 02 12 22 03 13 23
F, F, F,
Figure 2.2

V=2,x{1,2,3)

OP(9; 3%) Fo={(0:,1;2):i=1,2,3)
F2 {(jl’ij.jS):j=O’ 1’ 2}
Fy={(i, G+1),, (+2)3) 1 j =0, 1, 2}
Fi=((i, (+2)5, (+4)3) : j =0, 1, 2}

I

V=Zgu{°°}
a=(2)(01234567)
Fl'+1=al(R)$i=O’ 172$3

OP(9; 3, 6) R=1{(»,0,4)(1,2,7,5,6,3)}
OP(9; 4, 5) Not Possible [12]
OP(9; 9) R=1{(,0,1,7,2,6,3,5,4)}

Solutions for decomposing K, are similar to those above. The solution for
OP(10; 52) is due to Huang, Kotzig and Rosa [11]. As with OP(9; 33), it does not use
a base factor with a permutation, but rather stipulates each 2-factor.

V=2ZgU (o0, 00,}

o= (00,)(0,)01234567)

Fiq=0(®R),i=0,1,2,3

F = {[e0,, 00,], [0, 4], [1, 5], [2, 6], [3, 71}
OP(10; 10) R={(c0,0,1,7,2,00,6,3,5,4))
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OP(10; 3, 7)
OP(10; 4, 6)
OP(10; 32, 4)

OP(10; 5%)

V=Z4>< {1,2 } U {00, 00,}

(°°1)(°°2)(0 1,2,3,)(021,2,3,)
OL(R) i=0,1,2,3
{[°° 1 %), [i(i+2),]1:i=0,1;j =1, 2}
{(003, 1,,0,), (004, 35, 25, 24, 34, 1,0}
{(e01, 31, 23, 3)), (002, 04, 15,14, 24, 0,))
{(13,24, 31), (003, 04, 0), (°°y, 1,,2,, 3,))

|l+

x{1,2}
[11,12] i=0,1,2,3,4)
{(Ol’ 11v2b 3lv 4 )’ (02’ 12a22v 32’ 42)}
{(Olv 21’41) 32v 12)’ (02’ 22’42’ 31v 11)}
E(Olv 31v02v 41’ 22)’ (11’ 32v21v 12’ 42)}

TN M ™I T MR
nn
'-N

S N S

(01’ 32’ 02’ 21’ 42)’ (11’ 41’ 12’ 31’ 22)}

With decomposing K, there is only one problematic case, that of OP(11; 32, 5).

This case has defied all attempts at a proof of non-existence short of an exhaustive

computer search for solutions. This case is dealt with in Section 3 of this thesis. The

other decompositions of K, are possible and examples of solutions follow.

OP(11;11)

OP(11:3,8)

OP(11;4,7)
OP(11; 5, 6)
OP(11; 32, 5)
OP(11; 3, 4%)

V=20 (o0}

a=(0)(0123456789)

Fio =0R),i=0,1,2,3,4
=((0,0,1,9,2,8,3,7,4,6,5))

V=2Zsx (1,2 } U (o0}
a =(20)(0,1,2,3, 4,)(0,1,2,3, 4))
Fiaya=0'®R),i=0,1,2,3,4
R = [(OO’ 31’42)’ (Ob 02’ 217 11’ 413 32, 12, 22)}
R = ((0y 1, 31, 2)), (00, 44, 4,35, 15, 0,,2,)}
R = {(009 42’ 229 32’ 41)9 (017 12’ 117 21’ 02’ 31)}
Not Possible [15]

= {(007 02941)’ (Olv 21’ 31’ 22)v (11’ 12v 32’ 42)}

Once again with K, there is one exceptional case. As mentioned once before,

OP(12; 34) has no solution. Kotzig and Rosa claim in [14] that there are only three

non-isomorphic sets of four 2-factors, but in none of these cases do the remaining

edges form a fifth 2-factor of 3-cycles. The solutions in the following list that are

marked with '*' are also presented in [11].
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V=20 {0, o,)}

0 =(0,)(0)(01234567809)

Fin =(X.'(R),i=0, 1,2,3,4

F = {[o0}, o0,], [0, 5], [1, 6], [2, 7], [3, 8], [4, 9]}
OP(12; 12) R={(00,0,1,9,2,8,00,3,7,4,6,5))

V=2Zsx{1,2 } U {00, 00,}

o = (00,)(22,)(0,1,2,3, 4)(0,1,2,3, 4;)

Fiqa=0'®R),i=0,1,2,3,4

F = {[00,,99,], [i,,(i+1),] : i=0, 1, 2, 3, 4}
OP(12;3,9) R = {(00y, 41,2,), (002, 0y, 02, 13, 34, 24, 42,35, 12)}
OP(12; 4, 8) R = {(00}, 41,3,,4,), (92,, 01, 25, 05, 2y, 3,, 11, 1)}

OP(12; 62) R = {(°°17 41’ 32701’ 22’ 42)’ (°°2’ 021 12’ 111 31’ 21)}
OP(12; 43) R = {(o0}, 1},00,, 1,), (44, 25, 45, 35), (01, 0,, 31,2)
OP(12; 3% Not Possible [13]

o = (00)(00,)(0, 1,2, 3, 4,)(0,1,2,3, 4,)

Fiaqa=d'R),i=0,1,2,3,4

F = {[o0, 0,], [i},(i+3),] : i=0, 1, 2, 3, 4}
*OP(12;5,7) R = {(°°4, 41,32, 21, 4), (903, 31, 11, 04, 03, 25, 15)}
*OP(12;3%,6) R = {(20,, 0y, 1), (903, 11,0), (21, 41,31, 32,20, 4))
*OP(12; 3,4,5) R = {(o0, 31, 05), (41,32,25, 4;), (003, 1;, 24, 04, 1)}

All possible cycle combinations for decomposing K, have been accomplished
and an example of each follows. Though the notation has been adjusted to match the
rest of this section, the solution given for OP(13; 6, 7) is due to Kohler [13], and the
five solutions marked with '+' are due to Piotrowski [16]. Notice that the Piotrowski

solutions have two base factors and a more complicated permutation.

V=2,0 (]}
a=(2)01234567891011)
Fl+1=a‘(R)’i=O9 1’2’374’5

OP(13; 13) R ={(0,0,1,11,2,10,3,9,4,8,5,7,6)}
OP(13; 5, 8) R={(e=,0,11,5,6),(1,3,8,4,7,9, 2, 10)}
OP(13;6,7) R={(0,1,3,6,7,9), (%, 5, 10, 2, 8,4, 11)}

OP(13;3%,7)  R={(1,2,10),4,8,7),(,0,5,3,9,11, 6)}
OP(13;4%5)  R={(2,4,9,5),(8,10,3,11)(, 0, 1,7, 6)}
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V=2Z,x{1,2,3,4} U {eo}
o = (00)(0;1,2,)(021,2,)(051524)(041,2,)
Fiaq=0(®R),i=0,1,2
Fig=0'(R),i=3,4,5
+OP(13;3,10) R, = {(14, 25, 2y), (00, 03, 04, 11, 15, Oy, 21,24, 13, 02))
Ry= ((1y, 25, 2,), (o0, 04, 14, 03, 15, 2, 15, 23,0,, 0)) )
+OP(13; 4,9) R, = {(1}, 04, 03, 13), (o0, 0y, 2y, 15, 24, 25,14, 25, 0,)}
Ry= {(00, 0, 14, 04), (0, 0y, 15, 25, 25, 1y, 24,2y, 15)}
+OP(13;3,5% Ry = {04 21, 25), (22, 0y, 13, 05, 02), (11, 12, 24, 1, 29))
Ry= {(0y, 21, 24), (00, 05, 11, 03, 04), (13, 25, 15, 14, 25)}
+0P(13;3,4,6) R, = {(14, 25, 25), (03, 04, 11, 13), (02, 0y, 2, 24, 15, 02)}
R2= {(1y, 23, 24), (00, 03, 14, 04), (01, 0z, 23, 15,2, 13)}
+OP(13;3%,4) R, = {(e0, 0,,05), (13, 2, 24), (14, 25, 25), (03, 04, 11, 13)}
R2= {(01, 21, 13), 0y, 13, 23), (14, 25, 2,), (20, 03, 14, 0)}

There being nothing particularly special about the decompositions of K4, we
simply list them. Again, solutions marked with "*' also appear in [11]. It is perhaps
worth noting that the solution for OP(14; 42, 6) in [11] is incorrect.

V=20 {00, 00,}

0 =(0)(0)(01234567891011)

Fi+1=al(R)’i=01 1721 314,5

F = ([0, 00], [0, 6], [1, 7], [2, 8], [3, 9], [4, 10}, [5, 11]}
OP(14; 14) R =1{(00,0,1,11,2,10,3,,,9,4,8,5,7,6)}

V=2Zsx {1,2 } U {00, 00,}
o = (001)(29,)(0, 1,2, 3, 4 510021, 2, 3,4, 5,)
Fiaqg=0®),i=0,1,2,3,4,5
F = ([o0), 00,], [i;,(i+3)]] : i=0,1,2; j=1, 2}
OP(14;3,11) R = {(°04, 5,,45), (003, 21, 31, 11, 52, 41,02, 0y, 33, 15,25) }
OP(14;4,10) R = {(°0}, 5,, 35, 52), (903, 3,,0,, 1, 2,45, 4,04, 1,,2,)}
*OP(14,; 5, 9) R = {(o04, 51, 53,42, 2), (93, 01, 41,15, 31,24, 32, 1,, 0)) }
*OP(14; 6, 8) R = {(o0,, 0y, 5, 55,42, 23), (05, 05, 1,,35,2,,44, 15, 3D}
OP(14,7)  R={(°}, 5, 45 11, 22, 35, 50, (%03, 41,0, 0,2y, 3, 1))
*OP(14;3%,8) R = ((00y, 2y, 0p), (023, 31, 2y), (0, 13, 55,45, 41, 51, 13,3)))
*OP(14;3,4,7) R = {(31, 41, 13), (004, 51, 52,43), (903, 01,24, 35, 1}, 0y, 25)}
*OP(14;3,5,6) R = {3}, 4, 1y), (001, 51, 52,43, 25), (003, 01,24, 35, 13, 05)}
OP(14; 42, 6) R = {(00,, 05, 25, 3)), (01, 14, 15,4)), (001, 51, 32, 24, 45, 52))
*OP(14;4,5%) R ={(o0y, 3,11, 4,), (005, 4;, 5, 13, 2,), (0,05, 2, 35, 5,)}
*OP(14, 33, 5) R = {(004, 5,,32), (00,, 4y, 13), (34, 42, 5), (01,14, 03, 25, 2)}
*OP(14; 3%,4%) R = {(%0}, 5,,30), (903, 41, 5), (01, 15, 31, 0), (24, 15, 25, 4)))
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The decompositions of K5 are also routine, but for OP(15; 35), the original
Kirkman problem, we give "an explicit solution of Kirkman's Problem in its original
form" from Ball [4].

V=2Z,,0 {o0}
a=(0)(012345678910111213)
Fiv=0®),i=0,1,273,4,56

OP(15; 15) R={(s,0,1,13,2,12,3,11,4,10,5,9, 6, 8, 7))

V=2Z,%x{1,2} U {oo}

a =(20)(0,1,2,3,4,5,61)(0,1,2,3, 4, 5,6,)

Fiqi=a'R),i=0,1,2,3,4,5,6
OP(15;3,12) R ={(0z 15,3,), (00, 62, 31, 2, 51, 01, 25, 1, 55, 6y, 45, 4))}
OP(15; 4, 11) R = {(0, 6,, 5,, 65), (0y, 25, 45,3}, 3, 05,21, 4,, 1,,5,, 1))}
OP(15; 5, 10) R = {(00, 6, 55,33, 62), (01, 0y, 24,45, 1,,44, 3, 5,,2,5, 1,)}
OP(15; 6, 9) R = {(o0, 61, 45, 5,, 3, 65), (01, 15,4,,0,,5,, 24, 25, 3, 1))}

. OP(15; 7, 8) R = {(00, 6, 6,,32, 25, 45, 51, 1), (01, 1, 41,55, 3;,0,, 2))}
OP(15;3%,9)  R={(0), 3;, 42, (05, 25, 31, (2, 5,,6,, 41,65, 1, 13, 2,,5,))
OP(15;3,4,8) R = {(0y 15, 33), (0, 63, 31,41), (01,2, 1,, 55, 5,, 42, 61, 2)) )
OP(15;3,5,7) R ={(0y, 4y, 5)), (00, 6, 52,35, 45), (1}, 1,,3,, 0, 2,, 6,,2,)}
OP(15,3,6%) R ={(2,31,3,), (0, 65, 15, 4y, 55, 0)), (0, 1, 4, 6, 2,,5))
OP(15;4%,7) R ={(o°, 5, 31, 1)), (05,41, 25,31, (6, 62, 45, 01, 15, 2,, 5,))
OP(15;4,5,6) R= {(51,2), 52, 31), (o0, 64, 62, 32, 42, (0, 1,, 05, 22, 41, 1)}
OP(15; 5°) R = {(9, 55,34, 32, 4), (04, 1), 65,21, 5)), (03, 15, 45, 2,, 6,)}
OP(15;3%,6) R = ((0}, 1,,1,), (21, 41, 05), 31, 61,52), (22, 51,22, 31, 62, 43)}
OP(15;3,4%) R ={(0,,5,,4), (0, 6, 35, 45), (0, 1, 25, 2)), (1,65, 31, 55))
OP(15; 3%,4,5) R = ((0}, 1,,0,), (61, 15, 45), (21,5,,31, 65), (o0, 4,5, 32, 2,))

- V={1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15}
OP(15; 3%) Fiy=1{(1,2,3), 4, 8, 12), (5, 10, 15), (6, 11, 13), (7, 9, 14)}
F,=1{(1,4,5), 2, 8,10), (3, 13, 14), (6, 9, 15), (7, 11, 12)}
Fy={(1,6,7), (2,9, 11), (3, 12, 15), (4, 10, 14), (5, 8, 13)}
F.=1{(1,8,9), (2, 12, 14), 3, 5, 6), (4, 11, 15), (7, 10, 13)}
Fs={(1,10, 11), (2, 13, 15), (3,4, 7), (5, 9, 12), (6, 8, 14)}
Fe={(1, 12, 13), (2, 4, 6), (3, 9, 10), (5, 11, 14), (7, 8, 15)}
F;=1{(1, 14, 15), 2,5, 7), (3, 8, 11), (4, 9, 13), (6, 10, 12)}

The decompositions of K¢ are routine and once again solutions from [11] are
marked with an asterisk.
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V=2, {00, 00,}

o=(00,)(e0,)(012345678910111213)

Fiq=0'(R),i=0,1,2,34756 _

F = {[oo,, 09,], [0, 71, (1, 8], [2, 9], [3, 101, [4, 11], [5, 12], [6, 13]}
OP(16;16) R ={(00,,0,1,13,2,12,3,11,00,,4,10,5,9,6, 8,7))

V=Z7x{1,2 } L (o0, 00,)

= (°°1)K°°2)(01 1,2,3,4,56(0,1,2,3, 4,5, 6,)
1=0R),i=0,1,273,4,56

= {[00,, 00,], [i,(i-1);]:i=0,1,2,3,4,5,6)
OP(16; 3, 13)
OP(16; 4, 12)
OP(16; 8%
OP(16; 4%, 8)
OP(16; 52, 6)
OP(16; 4%

{

= {(00, 6,,4,), (903, 21, 31, 11, 41,65, 55, 33, 0,04, 13, 54, 2,))

= {(o04, 6,, 4, 67), (003, 2,51, 15, 4,55, 3, 11, 0,05, 35, 25))

= {(00,, 4, 05,64, 43, 53, 32, 6), (003, 04, 25,51, 24, 3y, 11, 1))

= {(o0}, 5, 32,62), (01, 0y, 13, 4y), (93, 24, 11,61,2,, 45, 31, 52}
= {(%04, 51, 52, 32, 62), (03, 12, 01, 45,2,), (093, 31, 41,14, 61,25) )
= {(o0y, 6, 4;, 62), (004, 2y, 51, 1,), (0,04, 3,,25), (1}, 34, 41,50}

:o:o:u:u:a:o*njn

{[00y, 00,1, [i1,in] :i=0,1,2,3,4,5, 6}

{(o0}, 65, 31,12, 63), (003, 51,2, 35, 0y, 1, 05, 45, 24, 44, 5,))
{(o0y, 1}, 05, 13, 31, 4y), (903, 5y, 64, 35, 52, 21,44, 04, 25, 67))
{(o04, 5,, 25, 45, 21, 4., 5,), (005, 61,3}, 1,,0,,1,, 0, 35, 6,)}
{(901, 51,22), (01, 13, 3)), (992, 21, 4y, 61, 55, 41,05, 15, 35, 67}
{(01, 1}, 3)), (024, 51,65, 25), (903, 4y, 0y, 13, 24, 45, 64, 35, 5))
{(0,,1,, 3), (41,13, 45, 5,,6,), (22}, 6,, 003, 25, 33, 52, 2, 0) }
{(15 32, 4,), (004, 01,5, 61, 24, 5,), (99,, 31, 0y, 14, 25, 44, 6))
{
{
{
{
{
{
(

n

F=
*OP(16;5,11) R
*OP(16;,6,10) R =
*OP(16:7,9) R
*OP(16; 3%,10) R
*OP(16;3,4,9) R
*OP(16;3,5,8) R
R=
R =
R
R=
R=
R=

1]

Hn

*0OP(16; 3,6, 7)
*0OP(16; 4,5, 7)
*OP(16; 4, 6%)
*OP(16; 3%, 7)
*OP(16; 3%, 4, 6) }
*OP(16; 32, 5%) (591, 41, 5,), (005, 13, 0y), (34, 64, 51, 25, 1), (01,24, 45, 65, 32))
*OP(16; 3, 42,5) R = {(c0y, 41,5, (01,1}, 0y, 35), (31, 51 23, 1), (205, 64, 2,, 4, 6,))
*QOP(16; 34, 4) R = {(o0y, 61,5,), (04, 14, 3)), (41, 03, 15), (51, 35, 6,), (002, 24, 4, 2y}

(21, 02’ 41’ 2) (001’ 617 319 51; 62) (°°2, Olv 11’ 32’ 42; 22’ 52)}
(21’ 02’ 41: 2) ( 1s 01, 61’ 31’ 51’ 62) (°°2a 11’ 32: 42’ 22’ 52)}
(oola 41a 2) (°°2a Sla 32) (Ola 11’ 3 ) (21a 52a 61’02a 62’ 22a 42)}

(OOI’ 41’ 2) (°°2’ 51’ 22) (lls 31, 12’ 02) (01’ 61’ 21, 423 62’ 2)

The decompositions of K;;are not all known and, like those of K,, appear to be
more difficult to produce. Piotrowski [16] gives solutions for OP(17, 34 5), OP(17; 32,
5,6), OP(17; 3,5,9), OP(17; 4, 5, 8), OP(17; 5%, 7), OP(17; 5, 6%), and OP(17; 5, 12).
Of course, the Hamilton decomposition is also known.

Specific decompositions for some K¢ cases have been given elsewhere, but
this is the first complete set of solutions documented. The solution to OP(18; 36) is
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the solution for NKTS(18), the smallest Nearly Kirkman Triple System to have a

solution. The solution we present for this case is from Kotzig and Rosa [14].

OP(18; 18)

OP(18; 3, 15)
OP(18; 4, 14)
OP(18; 5, 13)
OP(18; 6, 12)
OP(18;7,11)
OP(18; 8, 10)
OP(18; 9%)
OP(18; 32, 12)

0P(18’ 3’ 4’ 11) R = {(02’ 41’ 5l)s (71’42’ 62’ 72)’ (0019 52’ 22, 119 32’ °°2’ 01’ 21’ 12’ 31’ 61)
OP(18’ 3, 5, 10) R = {(02’ 41, 51)’ (ool’ 72’ 629 42’ 71)’ (°°2’ 019 21’ 32, 119 12’ 31s 61a 52’ 22)

OP(18; 3, 6, 9)
OP(18; 3,7, 8)
OP(18; 4, 6, 8)
OP(18; 4, 7%
OP(18; 42, 10)
OP(18; 4, 5, 9)
OP(18; 5%, 8)
OP(18;5,6,7)
OP(18; 6%
OP(18; 33, 9)

V=2ZU {00, 00,]}

o =(00)(,)(01234567891011 1213 14 15)

Fiiaa=0'(R),i=0,1,2,3,4,5,6,7

F = {[e0}, ®2,], [0, 8], [1, 9], [2, 10], [3, 11], [4, 12], [5, 13],
(6, 14], [7, 15]})

R ={(e0,,0,1, 15,2, 14, 3,13,4, 00,, 12,5, 11, 6, 10,7, 9, 8)}

V=2Zsx (1,2} U {00,00,}

o = (00,)(02,)(0;112,3; 4, 5:6,71)(0,1,2,3, 4, 5, 6, 75)
Fiqa=0(R),i=0,1,2,3,4,5,6,7

F = {[004,00,], [i;,(i+4)] : i =0, 1, 2,3;,j=1,2}

R = {(00}, 71,62), (°°2, 21, 11, 31, 61,72 51 03, 32, 15, 25, 44, 42, 01, 5,)
R = {(001, 7}, 63, T2), (03, 41,14, 01, 21,04, 35,15, 61,22, 51, 52, 31, 40)
R = {(001, 71, 72,62, 42), (902, 31, 13, 61, 23, 52, 01, 51, 44, 21, 32,11, 0,)
R = {(001, 71, 75,62, 32, 53), (925, 01, 11, 44, 64, 15,51, 25, 31, 45,21, 0y)
R = {(00y, 7}, 72,62, 45,11, 55), (902, 05,32, 51, 25, 04, 15, 24, 34, 61, 41)
R = {(00,, 71, 75,6, 32, 55, 11, 4y), (905, 05,24, 15, 04, 25, 51, 44, 64, 31)
R = {(00, 4;, 1,,0,,6,, 15, 45, 5;, T2), (903, 71, 33,31,21, 04, 63, 51, 22)}
R = {(0,,5,, 67), (05,71, 25), (004, 61, 11, 32, 44, 4, 15, 51, 31,21, 90,5, 7))}

}
}
}
}
}
}

R = {(04, 51, 61), (001, 73,55, 23, 35, 71), (002, 04, 24, 15, 34,45, 44, 14, 69)
R = {(2;,61, 7)), (°°1, 72,65, 33, 52, 51, 31, (92,5, 04, 15, 44, 11,04, 24, 4y)
R = {(004, 4y, 31,6,), (001, T2, 52, 42, 15, 71), (04, 0y, 14, 25, 64, 35, 51, 2))
R = {(00,, 51, 71,22), (001, 72, 53, 42,01, 05, 6)), (11, 44, 31, 15, 2, 35, 6,)
R = {(01, 73, 52,31), (04, 15, 0y, 32), (004, 64, 45,71, 41,24, 25, 15, 51, 67) }
R = {(003, 03,3,, 0), (001, 72,63, 42, T1), (L4, 13, 51, 24, 31, 52, 64, 41, 29) )
R = {(001, 73, 55, 42,61), (02, 35, 13, 15, 4y), (0, 2,71, 63,51, 01, 24, 31D}
R = {(00y, 72,53, 42, T1), (902, 61, 41,31, 01, 67), (02, 32, 14, 25, 24, 13, 5y)}
R = {(004, 61, 33, 25, 45, T2), (203, 21, 14, 31, Oy, 13), (02,44, 62,7), 52, 51) )

}
}
}
}
}
}

R = {(717529 62), (°°21 02’ 51)’ (019 31’21)’ (°°19 22’ 6ls 72’ 42, 41’ 12’ 32’ ll)}

OP(18; 32,4, 8)

R = {(Oh 117 31)’ (Sh 42’ 72)a (41’02, 22» 12)v (OO" 62s 61, °°21 32’ 21’ 52, 71)}

OP(18;3%,5,7)

R = {(31’41’ 61)’ (°°2, 019 62)9 (ooh 727 521 42, 71), (02’ 32’ 111 22’21’ 12’ 51)}

OP(18; 3%, 62)

R = {(11’41’ 21)9 (°°29 61, 42)’ (ool’ 719 72’ 629 329 52), (019 129 51y 029 31, 22)}
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OP(18; 3, 42,7)
R = {(0029 21’ 12)’ (02’ 419 51’ 32)9 (01961’ 31v 52)’ (001, 71’ 72’ 62’ 42, 11’ 22!)}
OP(18; 3,4, 5, 6)
R = {(002, 01’ 02)’ (OOI, 72’ 62’ 51)’ (11’ 319 12’ 32’ 41)’ (22’ 52’ 21’ 42’ 71’ 61)}
OP(18; 3, 5%
R = {(002, 12’ 4'1)’ (°°l9 72’ 51, 52’ 21), (02’ 71’ 62’ 32, 22), (01’ 11’ 31’ 61) 42)}
OP(18; 4°, 6)
{(22’ 51’ 61’ 2) (Ol, 21’ O?,a 2) (11’ 41) 62’ 2) (OOI, 71) 3?,’ 1’ 2)}
OP(18; 42, 52)
{(01’31’ 52’ 62) (12’ 32’ 71, 6 ) (OOI, 72) 42a 41’ 2 ) (°°21 O2a 11’227 5 )}
OP(18; 34, 6)
{(001, 21’ 72)’ (°°2) 11, 22)) (61’ 71’ 52)a (41’ 42a 62)’ (02’ 12a 51, 31’ Ola 32)}
OP(18; 3°, 4, 5)
R = {(11)21) 32)’ (51) 527 71)’ (42’72) 62), (001’ Ol’ 3la 22)’ (°°2)61’ 12) 41’ 02’)}
OP(18; 3%, 4%
R = {(00, T3, 1)), (04, 24, 2,),(6,, 41, 6,, 7)), (04, 31,45, 52), (51, 0, 3,5, 1)}

V= {llv 21, 31’ 41’ 51’ 61’ 71: 81’ 91’ 12v 22’ 32’ 42, 52’ 62, 72’ 82’ 92}

OP(18; 3 )

{(11’ 41v 71)’ (21v 51’ 81), (3lv 61’ 91): (12’ 42’ 72)’ (22’ 52) 82)’ (32v 62’ 92)}

2 {(11’ 51; 91)’ (21’ 61’ 71)’ (3lv 41’ 81)v (12a 52v 92)’ (22’ 62’ 72)’ (32a 42v 82)}

3 {(11’ 21’ 62)’ (41’ Slv 92); (71v 81’ 32)v (12a 22’ 61), (42a 52’ 9l)a (72, 82’ 31)}

4 {(11’ 31’ 52)’ (41, 61) 82)a (719 91’ 22)’ (129 32’ 51)’ (42’ 62a 81)’ (72, 92, 21)}

5 {(lla 61’ 32)a (21’ 919 82)’ (51$ 71’ 42)$ (12a 62) 31)) (22’ 92) 81)’ (52a 725 gl;i

71))

9))

wn o n II

F6 - {(11, 81’ 72)’ (31) 51, 22)a (41’ 91’ 62)9 (12a 82) 71)’ (32’ 52’ 21)’ (42’ 92a
F7 = {(81, 91) 12)’ (21’ 317 42)’ (51$ 61) 72)9 (82’ 92’ 11)’ (22$ 32a 41)$ (52) 62a
= {(21’ 413 12)a (61’ 81a 52)9 (31a 71) 92)’ (22, 42’ 11)9 (62s 82’ 51)’ (329 723

So with the exception of K, we know whether or not solutions exist for all
possible Oberwolfach questions for complete graphs on fewer than 19 vertices. Of all
these cases, the only questions that are known to have no solution are OP(6; 32),
OP(9; 4, 5), OP(11; 32, 5) and OP(12; 34). In Section 4 we will consider whether
decompositions that are not possible in K, might be possible in AK,,
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3. OP(11; 32,5)

This is the smallest case of the Oberwolfach Problem that has defied all
manual attempts at a solution. We will confirm the non-existence of a solution
established by Piotrowski [16] and go on to show that even though a single copy of
K, cannot be decomposed into isomorphic 2-factors each comprising a 5-cycle and a
3-cycle, any other number of copies can be decomposed in this manner.

a 3 Y Given one copy of K, the first 2-factor (F,) can be

chosen arbitrarily without loss of generality. We

N

1 5 call its pentagon P,and its triangles T, and D; with

vertices labeled as shown in Figure 3.1.

z D T As implied above, the notation F, (n=1,2, 3,4 or
* 1 8 5) will represent the nth 2-factor of a decomposition

Y which comprises P, , T, and D,
X o

Figure 3.1
Proposition 3.1: Each 2-factor (except F,) must contain a diagonal of P,.

Proof: Suppose there exists a factor that does not contain a diagonal of P;.
Each triangle in this factor must have exactly one vertex from each of P, T, and D,.
Two vertices from P, in a triangle would mean use of a diagonal of P, (not allowed by
assumption) or use of an edge already used in F, (not allowed by definition of
partition). Two vertices from either F, triangle would mean using the same edge in
two different factors which is not allowed in partitioning. Thus, having used two P,
vertices and four triangle vertices, the pentagon for this factor uses three vertices from
P, and two triangle vertices. Of the three P, vertices used in this new pentagon, two
of them must be adjacent. But this is impossible since adjacent P, vertices in the
cycle means either a second use of an edge of P, or a diagonal of P,. Therefore, no
such factor can exist and we know all factors (except F,) include a diagonal of P,. H

Proposition 3.2 : There exists exactly one factor in {F,, F3,F,, Fs} which

contains two diagonals of P,.
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Proof: By Proposition 3.1, each of the F;'s contains a diagonal of P, which

accounts for four of the five diagonals. The fifth P, diagonal must appear in one of the
F;'s making that factor the only one containing two P, diagonals.l

Notation 3.3: Let F, be the name of the factor with exactly two P, diagonals.

Theorem 3.4: The only three non-isomorphic possibilities for F, are those
shown inFigure 3.2.

Proof: We assume that F, has been removed from an unlabeled K, and show
that the vertex set of any F,can be labeled in such a way that the structure and
labeling of F, is identical to Figure 3.1 and the structure and labeling of F,is identical
to one of the drawings in Figure 3.2. The reason that many F,'s with different
labelings can be isomorphic stems from the rotations and reflections of the dihedral
groups for the triangles and pentagon of F;.

Case 1

Figure 3.2 : Possible F, structures
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Clearly the two P, diagonals in F, either share a common vertex (call this
Case 1) or they are disjoint. If they are disjoint, they cannot both be in the same
triangle and they cannot both be edges of P,. Thus we are left with the fact that the
two P, diagonals in F, must occur in different cycles - one in each triangle (call this
Case 2) or one in P, and the other in a triangle (call this Case 3).

Figure 3.2 establishes that at least one example of each case exists. In each
of the three cases we will begin with F, and an arbitrary F, of the type in question and
show that the eleven vertices can be labeled in such a way that the structure is
identical with the corresponding drawing in Figure 3.2.

CASE 1: The P, diagonals in F, share a common vertex.

Choose an arbitrary F, whose P, diagonals share a common vertex. That

common vertex must lie in P, and we label it as vertex 1.

The two P, diagonals account for three of the five vertices of P,. The remaining
two vertices of P, must be one each from T and D, and they must be adjacent. Label
the vertex from T, as vertex C and the vertex from D, as vertex Z.

Note that starting at vertex 1 and traversing the cycle P,, the shortest path to
vertex C has exactly one vertex between vertex 1 and vertex C. Label it as vertex 3.
Continuing around the cycle there is exactly one vertex between vertex Z and vertex
1. Label it as vertex 4.

The remaining unlabeled P, vertices are adjacent to vertex 1 on the cycle P,.
Label them as vertex 2 and vertex S such that the vertices of P, are labeled in
numerical order around the cycle.

Now vertex 2 lies in a triangle of F, whose other two vertices come one each
from T, and D, (since any other possibility requires the use of another diagonal of P,
or the re-use of an edge of F,). Label the T, vertex in this triangle as vertex A and
the D, vertex as vertex Y. There are now only two unlabeled vertices remaining.
They are part of the F, triangle that includes vertex 5. Label the unlabeled vertex in
T, as vertex B and the one in D, as vertex X.
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Thus any F, containing adjacent P, diagonals has the same structure as the
Case 1 diagram in Figure 3.2.

CASE 2: F, has one P, diagonal in each of its triangles.

Choose an arbitrary F, whose P, diagonals lie one each in its two triangles.
The two diagonals contain four P, vertices. Label the fifth P, vertex as vertex 3. This
vertex is in P,. The other four vertices of P, are from T, and D,. It is clear that as we
traverse the cycle P,,the vertices are alternately from T, and D,. Thus vertex 3 is
adjacent to one vertex of T, and one of D,. Label the former as vertex C and the latter
as vertex X. Label the remaining two P, vertices as vertex Y and vertex B such thatY
is adjacent to C, B is adjacent to X and, of course, B is adjacent to Y.

Label the remaining T, vertex as vertex A and the remaining D, vertex as
vertex Z. Vertex A is adjacent to two P; vertices in an F, triangle (the ends of one of
the P, diagonals). One of these vertices is adjacent to vertex 3 in P,. Label it as
vertex 2 and the other as vertex 5. Similarly, vertex Z is adjacent to two P, vertices.
Again, one of these two vertices is adjacent to vertex 3 in P,. Label it as vertex 4 and
the other as vertex 1.

We have now labeled the vertices of an arbitrary F, from Case 2 in such a way
that it has the same structure as the Case 2 diagram in Figure 3.2.

CASE 3: F, has one P, diagonal in P, and one in a triangle.

Choose an arbitrary F, containing one P, diagonal in its pentagon and the other
in a triangle. As in Case 2, the two P, diagonals contain four of the five vertices of P,.
Label the fifth vertex as vertex 3.

Consider the triangle in F, which contains a P, diagonal. One vertex of that
diagonal must be adjacent to vertex 3 in P,. Label that vertex as vertex 4 and the
other as vertex 1. Clearly the third vertex of the triangle was a vertex in T, or D,.
Since the naming of T, and D, was arbitrary, we can assume without loss of generality
that this third triangle vertex in F, is contained in D, and label it as vertex Z.

The F, triangle containing vertex 3 must also contain one vertex from T, and
one vertex from D,. Label the former as vertex C and the latter as vertex X. The
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vertices on the ends of the P, diagonal in P, can be labeled as vertex 2 and vertex 5 so
that the five vertices of P, are labeled with consecutive integers as the cycle is
traversed.

Three vertices remain unlabeled - two from T, and one from D, - all three of
which are contained in P, along with vertex 2 and vertex 5. Label the remaining D,
vertex as vertex Y. The two vertices from T, cannot be adjacent in P, and thus one
must be adjacent to vertex 2 while the other is adjacent to vertex S5, and they must
both be adjacent to vertex Y. Label the T, vertex adjacent to vertex 2 as vertex A and
the last remaining unlabeled vertex as vertex B.

We have now labeled the vertices of an arbitrary F; from Case 3 in such a way
that it clearly has the same structure as the Case 3 diagram in Figure 3.2.

Thus we have shown that there are only three non-isomorphic ways to choose
the first two factors. Figure 3.3 shows the set of edges in K,,-(F,+F,) for each of the
three cases. W

25






3.1 The Problem

How to proceed from here is not clear. In 1979 Wolf Piotrowski [16] reached
this point and decided to write a computer program to find whether there existed three
compatible 2-factors in the edge-set left by each of the three cases discussed above.
The strategy he chose was to construct a list of all possible 2-factors from the edges
of K,,-(F,+F,) and then to try to find three edge-disjoint factors from that list. His
program (in FORTRAN run on a TR 440 computer) found roughly 200 possible factors
and 200 edge-disjoint pairs of those factors, but no edge-disjoint triad of factors in any
of the three cases. This proved (assuming no logical or mechanical problems) that the
partition we seek does not exist. Other than establishing the answer to the basic
question, the program provided no insight as to why there is no such partition, how
close one could actually get to completing the final factor, or how one might establish
the result without using a machine.

The strategy in the program included in this paper (OBRWLFCH.PRG)
searches for a solution in a significantly different way from Piotrowski's. Where his
approach was to generate complete factors and check their compatibility, the one here
builds up all three factors simultaneously keeping track of how close the process gets
to a complete set of factors.

The purpose of OBRWLFCH.PRG is twofold: (1) to check Piotrowski's result
using a different strategy so as to minimize the possibility of repeating any errors that
might exist in his program and (2) to keep track of what happens as the program tries
to build factors in the hope that further light might be shed on exactly what makes this
factorization impossible and how the result might be arrived at without computer
assistance.

In each of the three cases we are dealing with between 233 and 272 pentagon
possibilities and 25 or 26 triangle possibilities which yield approximately 10'® possible
factor combinations for each of the three cases. This is an improvement over the
roughly 10® possible sets of five 2-factors of K, that we started with, but the problem
is still clearly too large to expect a microcomputer to resolve it in any reasonable
amount of time.
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We can further reduce the number of possibilities to be checked by being
careful to keep track of the fact that each of the last three factors contains exactly one
P, diagonal. This is not quite as easy as it seems since the P, diagonals can just as
easily show up in a triangle as in a pentagon, but doing so reduces the number of
possible 2-factor triads to about 10°.

Though the problem is still clearly too large to do by hand it is small enough for
a microcomputer to do an exhaustive search for the three final factors while keeping
track of how close we get to a solution.

3.2 The Computing

Given the above argument, we have three sets of edges (see Figure 3.3) each
left by the removal of F, and an F, from K;,. In each case we will attempt to extract
three edge-disjoint 2-factors, each comprising a pentagon and two triangles. The
labeling of the vertices will be as in Figure 3.3 where the vertices of P, are numbered
1 through 5 and the vertices of the triangles T, and D, are labeled A, B, C and X, Y, Z,
respectively.

In each case we will construct databases containing all possible pentagons and
triangles from the set of edges remaining. Since we know that each 2-factor must
contain exactly one of the remaining P, diagonals we distinguish (by placing in
separate databases) cycles that contain a P, diagonal (Class 1) and those that do not
(Class 2).

Observing that the P, diagonals 24 and 35 are never used in F, or F,, we can
arbitrarily name the factors containing them as F, and F, respectively. This means
that F, will be the factor that contains the P, diagonal 25 in Case 1, and the P,
diagonal 13 in Cases 2 and 3.

Databases containing pentagons and triangles are named as follows: The first
two characters (C1, C2 or C3 ) indicate Case 1, Case 2, or Case 3 depending on which
F,is assumed. The second two characters (C1 or C2) indicate Class 1 if the cycles
include a P, diagonal or Class 2 if they do not. The next character is either a P (for
pentagon) or a T (for triangle). If the cycles in the database are class 1, there is one
more character (3, 4 or 5) that indicates to which factor it must belong. The extension
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is always "DBF" (for DataBase File). Thus C3CI1P5.DBF is the database file
containing Case 3, Class | pentagons that are possible for Fs(i.e., that contain the P,
diagonal 35).

The possible triangles in each case are few and easily identified without using
the machine. Therefore all databases containing possible triangles were constructed
by hand. Possible pentagons, however, are many and were therefore generated by the
program.

The dBase III Plus programming language is used because of its suitability, its

availability and the author's familiarity with it.

3.3 The Setup Programs

GENCI1P.PRG and GENC2P.PRG are the PRoGrams used to GENerate Class
1 and Class 2 Pentagons, respectively. In order that the main program can more
quickly determine whether a particular edge is already in use when checking possible
combinations, the databases are modified by PENTEDGE.PRG and TRIEDGE.PRG
so that the database includes not only the vertices (in cycle notation) of the pentagons
and triangles, but also the list of edges used in each. So that each edge has a unique
label we adopt the convention that an edge is named by listing the two vertices with
which it is incident in ascending order (note that the computer sees digits as "smaller"
than letters so that the edge joining vertex Y with vertex 3 will be referred to as edge

3n).

GENCI1P.PRG and GENC2P.PRG can be found in the appendix beginning on
pages 52 and 54, respectively. PENTEDGE.PRG AND TRIEDGE.PRG are on page
56 of the appendix. The complete set of databases generated by these programs and
used in the computing for Cases 1, 2 and 3 is provided beginning on pages 57, 64 and
71 of the appendix, respectively.

3.4 OBRWLFCH.PRG

The main program that searches for three edge-disjoint 2-factors (each
comprising a pentagon and two triangles) in K;;-(F,+F;) is OBRWLFCH.PRG. Since
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there are three distinct choices for F,, the program was run three different times. The
programs used on the three runs were identical except for the names of the databases
called into use. The following description assumes that we are running Case 1.

We have nine cycles to find (three pentagons and six triangles, though not
necessarily in that order) so the program is written in nine levels.

In levels 1, 2 and 3 we are choosing the class 1 cycles (pentagon or triangle) to
be used in factors 3, 4 and 5, respectively. In level n,3 <n <5, we are searching for
D, (a class 2 triangle for Fj.). Inlevel n,7 <n <9, we are choosing (for factors 3 4
and 5, respectively), a Class 2 triangle if a Class 1 pentagon has already been chosen
at level n-6, or a Class 2 pentagon if a Class 1 triangle has already been chosen at
level n-6.

On reaching level 8 (having found 7 of the 9 required cycles) it prints out the

set of cycles found so far so that we can see how close we get to complete solutions.

The program starts in level 1 with the first record of C1C1P3.DBF (the first
possible Case 1, Class 1 pentagon for F,) and records its edge-set as used for P,. In
level 2 we then search sequentially through the records of C1C1P4.DBF to find a
Class 1 pentagon (edge-disjoint from P,) to be used as P,. If found, its edge-set is
recorded as used and we proceed to level 3 to search C1C1P5.DBF for a P candidate.

If we find three compatible Class 1 pentagons for F,, F,and Fs, we go
sequentially to levels 4 through 9 looking through C1C2T.DBF (the set of Class 2
triangles) to find an edge-disjoint set of six triangles among the remaining available
edges to complete the three factors. The factors are filled in the following order: Ds,
D, Ds, Ty, Ty, Ts.

Whenever we reach the end of a database at level » > 3 (meaning that there
are no more options left at that level with the choices made so far) we back up to level
n-1 to look at the next record (next possibility) at that level.

If we reach the end of a pentagon database at level n < 4 we stay at that level
and begin choosing Class 1 triangles from C1C1Tn.DBF. If found, a compatible
triangle is stored as T, and we proceed to the next level (always starting at the top of

the appropriate database regardless of whether we have been at that level before).
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Since there can only be one Class 1 cycle in any given factor and the T, chosen at level
n is Class 1, if we get as far as level n+6 we open C1C2P.DBF to look for a
compatible Class 2 pentagon rather than looking for a triangle as described above.

The entire search can be shown as a digraph (Figure 3.4.1) whose vertices are
databases and whose edges represent moving between databases. Movement to the
right represents moving to the next level when a compatible cycle has been found in
the current database. Movement to the left represents backing up to the previous
level when the end of a database is reached without finding a compatible cycle.
Movement down represents staying within the same level (n < 4) when the end of a
Class 1 pentagon database is encountered without finding a compatible cycle and we
move to the corresponding Class 1 triangle database. Paths to the possible end
results of the program are also shown.

Level 2
P 4 OF T4

Level 3 Leveld Level 5 Level 6 Level7 Level8 Level 9
PS or T5 D3 D4 D5 T3 or P3 T4 or P4 T5 or PS

Level 1
P3 or T3
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PROCFILE.PRG is the set of procedures that is invoked at appropriate times
by OBRWLFCH.PRG. The FINDP and FINDT procedures do the search through the
database in use to find a compatible pentagon or triangle, respectively. CPYRCRDS
is the procedure that copies current node, edge and factor information to the next
record so that another cycle can be added to the current information while still allowing
us to return to the current situation if we need to back up. The BACKUP procedure is
invoked when the end of a database is reached and we need to return to the previous
level.

The first version of OBRWLFCH.PRG took about 9.5 days to do Case 1 on a
Heathkit H100 with dBase III. This was a little too long due to the possibility of
lightning or people accidentally turning the machine off during the run, so a switch was
made to dBase IV on an Epson Equity II+ where it took about 2.5 days to run each of
the three cases.

The final versions of OBRWLFCH.PRG and PROCFIL.PRG can be found in
the appendix beginning with pages 41 and 47, respectively. The information generated
by the programs for Cases 1, 2 and 3can be found beginning on pages 78, 83 and 88
respectively.

3.5 Data Anaysis

The running of OBRWLFCH.PRG confirmed the findings reached by
Piotrowski. There do not exist three edge-disjoint, isomorphic 2-factors, each
comprising a pentagon and two triangles, in any of the three possible cases.
Consequently, OP(11; 32, 5) has no solution.

In addition to confirming earlier work, there is further information from this
program. One might have wondered whether it is possible to argue that one cannot
find six edge-disjoint triangles or three edge-disjoint pentagons under the constraints
of the three cases. It is clear from the output data that in each of the three cases there
are several sets of six appropriate triangles. The program also found sets of three
appropriate pentagons in each of the cases. Thus no machine-free argument could be
made on that basis.
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It is also interesting that in all three cases, there were many instances where
seven of the nine requisite cycles could be found, but never more than seven. In fact it
is easy to show that it is impossible to find an eighth without also finding the ninth.

All eleven vertices are degree 10 to begin with and are of even degree
throughout the entire process. If we ever found an eighth appropriate cycle, we would
have either three or five edges remaining. The only way of having either three or five
edges in a graph where all vertices are of even degree is if they form a cycle. Indeed,
since the vertices would be exactly the vertices as yet not used in the final factor, the
cycle would be the one we need to complete the factorization.

Though it is frustrating to be so close, it is worth knowing that in each case we
miss a complete factorization by the smallest margin possible.

The output data shows that among the partial factorizations when we are two
triangles short of a complete factorization three possibilities occur: 1) the edges
remaining form a 6-cycle, 2) they form two 3-cycles with one common vertex and 3)
they form two disjoint 3-cycles. This last instance leads to a new result which is
reported in Section 4.
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4. Solutions in AK,

Clearly, given any A > 1, any 2-factorization of K, can be used to 2-factor AK,
by simply decomposing each of the A copies separately. However, for the cases of the
Oberwolfach Problem where no 2-factorization of a particular type is possible we will
now consider whether that type of decomposition is possible in AK,. The first case
with no solution is OP(6, 3%). We address below only the case where A is even.

Theorem 4.1: Given an even integer A, AK can be partitioned into 2-factors
each comprising two 3-cycles if and only if A =0 (mod 4).

Proof: Given AK¢ we label the vertices 1, 2, 3, X, Y, and Z and designate the
first 2-factor as {(1, 2, 3), (X, Y, Z)} without loss of generality. We call an edge Type
1 if the vertices with which it is incident are either both labeled with numbers or both
labeled with letters. Type 2 edges are incident with one numbered vertex and one
vertex labeled with a letter. We call a 3-cycle Class 1 if all its edges are Type 1 and
Class 2 otherwise. Any 3-cycle that is Class 2 comprises two Type 2 edges and one
Type 1 edge. Note that no 3-cycle is possible using only Type 2 edges. Also note
that any 2-factor always comprises two 3-cycles of the same type.

Consider A = 4¢+2 for any positive integer r. The number of Type 2 edges in
AK is 9(4r+2). Since all of these edges must be used in the 2-factorization and since
they must be used 2 at a time in 3-cycles that are Class 2, we will need 9(41+2)/2
Type 1 edges to complete these 3-cycles. Note that this number is always odd. The
number of Type 1 edges after the first 2-factor is removed is 6(4¢t+1). This number is
even. Since it is always six of these edges that would be removed with any 2-factors
containing 3-cycles that are Class 1, the number of remaining edges will always be
even. Thus it is not possible to fashion a set of 2-factors comprising 3-cycles that will
use the entire edge-set of AKq.

Consider A = 4r. It suffices to show that 4K, can be 2-factored into 3-cycles.
The following 2-factors accomplish the decomposition:
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Fi={(1,23),X,Y,2)} Fe={(2,3,N,(1,X,2)}
F,={(1,2,X),3,7Y,2)) F,={Q2,3,2),(1,X, ]}
Fi={(1,2,7),(3,X,2)} Fs=1{(1,3,X),,7,2)}
F4={(1’2’ Z)’ (3’X’ Y)} F9_{(1’3’ Y)’ (2aX7Z)}
Fs={(2,3,X,(1,Y,2))} F,={(1,3,2),2,X,1)}

This yields the stated result.ll

The next two cases with no solution are OP(9; 4, 5) and OP(11; 32, 5). To
preface the next two theorems we note that if 2K, and 3K, can be decomposed into
any particular type of 2-factor, then for any A > 1, so can AK, since A = 2s5+3¢ for some
pair of non-negative integers s and . It is therefore sufficient to give 2-factorizations
for 2K, and 3K, to establish the result for AK,.

Theorem 4.2: For any integer A > 1, AK, can be partitioned into 2-factors,
where each 2-factor comprises a 4-cycle and a 5-cycle.

Proof: Let V=2Z,x{1,2} U {oo}
a = () (0,1,2, 3,)(0;1,2, 3,)
Fiaq= a‘_(Rl), i=0,1,273
Fis1=0'(R),i=4,56,7
R, = {0}, 21, 1}, 1), (00, 31, 02,2,, 32)}
R, = {(o°, 31, 25, 1), (0y, 32, 1,,2,,0,)}

This decomposes 2K, as required

Now let V=2Z;x{1,2,3)}
o = (0, 1} 21)(0,1,2,)(051525)
Fia=o/R),i=0,1,2
Fia=0'Ry),i=3,4,5
Fia=0Ry),i=6,7,8
Fia1=da(R,),i=9,10,11
Rl = {(021 03’ 211 12)’ (Ol’ 13’ 231 22’ 11)}
R, = {(0y, 05, 1,, 0y), (12, 25, 2;, 15, 25)}
Ry= {(1y, 2y, 23, 29), (0, 0y, 15, 0s, 1)}
R, = {(0y, 15, 0y, 1)), (03, 25, 15, 21, 23)}

This decomposes 3K, as required and the result follows.l
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Theorem 4.3: For any integer . > 1, AK,, can be partitioned into 2-factors,
where each 2-factor comprises a 5-cycle and two 3-cycles.

Proof: The column headed "1% K,," below is a Case 2 partial solution
generated by OBRWLFCH.PRG. The unused edges for this partial solution form two
disjoint triangles; 3AZ and 1CX. Unfortunately, the triangles that are needed to
complete Fyand Fs are 3CZ and 1AX, respectively. The column headed nynd g 1 was
generated from the first in such a way that it is a partial solution whose "extra"
triangles complete the fourth and fifth factors of the first partial factorization and it can
use the two "extra" triangles from the first to complete its fourth and fifth factors.
Thus we have the desired decomposition of 2K,;.

1S[ K” 2nd K”
P, 12345 12345
F, T, ABC CBA
D, XYZ XYZ
P, 3CYBX 3AYBX
F, T, 14Z 14Z
D, 25A 25C
P, CZ5Y2 AZ5Y2
F, T, 13B 13B
D, 4AX 4AX
P, 24B5X 24B5SX
D, 1AY 1CY
P 35C4Y 35A44Y
Fq oT
Dq 2BZ 2BZ
aT, needs: 3CZ 3AZ
has: 3AZ 3CZ
o7 needs: 1AX 1CX
has: 1CX 1AX

36



Similarly, the following are modifications of three partial solutions generated by
OBRWLFCH.PRG which with their "extra" edges exchanged constitute the required

decomposition of 3K|;.

151 K“ 2nd K“ 3rd K”
P, 12345 12345 42315
F, T, ABC CBA CBA
D, XYZ XYZ YXZ
P, 3CYBX 3AYBX 3AXBY
F, T, 147 147 417
D, 254 25C 25C
P, CZ5Y2 AZS5Y2 AZ5Y2
F, T, 13B 13B 43B
D, 4AX 4CX ICX
P, 24B5X 24B5X 21B5X
F, aT,
D, 1AY 3CZ 4CY
Ps 35C4Y 35A4Y 35A4X
Fys  oT;
D 2BZ 2BZ 2BZ

3AZ
3CZ

aT, needs: 3CZ
has: 3AZ
¢T; needs: 1AX
has: 1CX

The desired result follows.ll

The fourth and final case with no solution is OP(12; 34). Hanani [7]
establishes that there is a resolvable (v, 3, 2)-BIBD which is equivalent to the
decomposition we seek for 2K;,. This obviously settles the question for AK,,
whenever A is even. The case where A is odd has not been studied.
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We conclude with a note that may be of some interest. Even though 2K
cannot be 2-factored into 3-cycles, it is possible for 2(K¢-F) to be decomposed in this
way. The following is such a 2-factorization:

F,=((1,2,3),X,Y, 2)}
F,={(1,2,X),(3,Y, 2)}
F,={(1,3,7), (2,X, 2)}
F,={(1,X,Y), 2,3, 2)}
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Appendix

‘OBRWLFCH.PRG-

* This is the main program for the Oberwolfach problem - case Ky, *

* looking for five disjoint 2-factors each comprising a pentagon *

* and two triangles. The first factor can be chosen arbitrarily *

* and the second can be chosen in only three essentially different ways. *

* This program looks for the third, fourth and fifth factors given the *

* first and a second factor. Thus the program was run three times on  *

* three sets of data - one for each of the three possibilities for the *

* second factor. The program here is the one run for Case 1, but the *

* changes necessary for the last two cases are included in brackets *

* to the right of the statement that was changed. Variables of the *

* form CnCmPo stand for Case n, Class m, Pentagon (or T for Triangle) *
* from factor o. Class | Pentagons and Triangles include a diagonal  *

* of the factor 1 pentagon while Class 2 Pentagons and Triangles do not *

* *
CLEAR ALL
SET TALK OFF
SET ALTERNATE TO G:OBRUN
SET ALTERNATE ON
? "OPENING PROCEDURES FILE AND BOOKKEEPING DATABASES"
SET PROCEDURE TO I:PROCFILE

* Opening databases for keeping track of edges and nodes that have been *

* used and remembering which factor pieces have been filled in *

SELECT 7

USE I:USEDNODE ALIAS NODES * This database keeps track of which nodes *

GO TOP * are already used (in the current factor) *
SELECT 8

USE .USEDEDGE ALIAS EDGES * This database keeps track of which edges *

GO TOP * are already used (in any factor) *
SELECT 6

USE ILFACTOR ALIAS FACTORS * This database keeps track of which pieces *

GO TOP * of which factors have been found already *
STORE 0 TO COUNTI
STORE 0 TO COUNT2
STORE 0 TO COUNT3
STORE 0 TO COUNT4
STORE 0 TO COUNTS
STORE 0 TO COUNT6
STORE 0 TO COUNT7
STORE 0 TO COUNTS
STORE 0 TO COUNT9
PUBLIC FOUND, PENT, TRI, FACTOR, TRITYPE, STIME, FTIME
PUBLIC P3, P4, PS5, T3, T4, TS, D3, D4, D5
* The first three levels step through all possible class 1 pentagons and tri-
* angles (for factors 3, 4 and 5 respectively) which contain a diagonal of the
* pentagon in the first factor (since each of these factors must contain exactly
* one such diagonal). The fourth through seventh levels step through all
* possible class 2 pentagons and triangles trying to fill in the rest of the
* remaining pieces for each factor.
? " *LEVEL1*"
SELECT 1
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USE I:.C1C1P3 ALIAS C1P3 *[ C2C1P3, C3C1P3 J*
GO TOP
STORE '3' TO FACTOR
STORE 'C1P3' TO PENT
STORE 1 TO P3CHOSEN
DO WHILE .NOT. EOF()
STORE COUNT1+1 TO COUNTI1

7 COUNT1
IF P3CHOSEN =1
DO FINDP
IF NOT. FOUND
SELECT 1
USE I:C1C1T3 ALIAS CIT3 *[C2C1T3, C3CIT3 |*

STORE 'C1T3' TO TRI
STORE 'T TO TRITYPE
STORE 0 TO P3CHOSEN
GO TOP
LOOP
ENDIF
ELSE
DO FINDT
IF NOT. FOUND
? "NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR THIS
CASE."
DISPLAY MEMORY
WAIT
CLOSE DATABASES
SET ALTERNATE OFF
RETURN
ENDIF
ENDIF
* LEVEL 2 *
SELECT 2
USE I:C1C1P4 ALIAS C1P4 *[ C2C1P4, C3C1P4 }*
GO TOP
STORE '4' TO FACTOR
STORE 'C1P4' TO PENT
STORE } TO PACHOSEN
DO WHILE .NOT. EOF()
STORE COUNT2+1 TO COUNT2
IF PACHOSEN =1
DO FINDP
IF .NOT. FOUND
SELECT 2
USE I:C1C1T4 ALIAS C1T4 *[ C2C1T4, C3C1T4 |*
STORE 'C1T4' TO TRI
STORE 'T" TO TRITYPE
STORE 0 TO P4ACHOSEN
GO TOP
LOOP
ENDIF
ELSE
DO FINDT
IF NOT. FOUND
DO BACKUP
EXIT
ENDIF
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ENDIF
*LEVEL3*
SELECT 3
USE I:C1C1P5 ALIAS CI1P5
GO TOP
STORE 'S' TO FACTOR
STORE 'C1PS' TO PENT
STORE 1 TO PSCHOSEN
DO WHILE .NOT. EOF()
STORE COUNT3+1 TO COUNT3
IF PSCHOSEN =1
DO FINDP
IF NOT. FOUND
SELECT 3
USE I:C1C1T5 ALIAS C1T5
STORE 'C1T5' TO TRI
STORE 'T TO TRITYPE
STORE 0 TO PSCHOSEN
GO TOP
LOOP
ENDIF
ELSE
DO FINDT
IF NOT. FOUND
DO BACKUP
EXIT
ENDIF
ENDIF
*LEVEL 4 *
SELECT 4
USE L.C1C2T ALIAS C2T
GO TOP
STORE '3' TO FACTOR
STORE 'C2T TO TRI
STORE 'D' TO TRITYPE
DO WHILE .NOT. EOF()
STORE COUNT4+1 TO COUNT4
DO FINDT
IF FOUND
STORE RECNO() TO D3RECNO
ELSE
DO BACKUP
EXIT
ENDIF
*LEVEL S5 *
GO TOP
STORE '4' TO FACTOR
DO WHILE .NOT. EOF()
STORE COUNTS+1 TO COUNTS
DO FINDT
IF FOUND
STORE RECNO() TO D4RECNO
ELSE
DO BACKUP
EXIT
ENDIF
*LEVEL 6 *
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GO TOP
STORE 'S’ TO FACTOR
DO WHILE .NOT. EOF()
STORE COUNT6+1 TO COUNT6
DO FINDT
IF FOUND
STORE RECNO() TO DSRECNO
ELSE
DO BACKUP
EXIT
ENDIF
* LEVEL 7 *
STORE '3' TO FACTOR
SELECT C2T
GO TOP
STORE 'T' TO TRITYPE
SELECT 5
USE I:C1C2P ALIAS C2P *[ C2C2P, C3C2P 1*
STORE 'C2P' TO PENT
GO TOP
DO WHILE .NOT. EOF()
STORE COUNT7+1 TO COUNT7
IF P3CHOSEN = 1
SELECT C2T
DO FINDT
ELSE
SELECT C2P
DO FINDP
ENDIF
IF FOUND
7FACTORS->P3 FACTORS->T3, FACTORS->D3,FACTORS->P4, ;
FACTORS->T4 FACTORS->D4 FACTORS->P5 FACTORS->T5S, ;
FACTORS->DS,TIME()
STORE RECNO() TO F3RECNO
ELSE
DO BACKUP
EXIT
ENDIF
* LEVEL 8 *
STORE '4' TO FACTOR
SELECT C2T
GO TOP
SELECT C2P
GO TOP
DO WHILE .NOT. EOF()
STORE COUNT8+1 TO COUNTS
IF PACHOSEN =1
SELECT C2T
DO FINDT
ELSE
SELECT C2P
DO FINDP
ENDIF
IF FOUND
7FACTORS->P3,FACTORS->T3,FACTORS->D3,FACTORS->P4, ;
FACTORS->T4, FACTORS->D4 FACTORS->P5 FACTORS->TS, ;
FACTORS->D5,TIME()
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STORE RECNO( TO FARECNO
ELSE
DO BACKUP
EXIT
ENDIF
*LEVEL 9 *
STORE 'S' TO FACTOR
SELECT C2T
GO TOP
SELECT C2P
GO TOP
DO WHILE .NOT. EOF()
STORE COUNT9+1 TO COUNT9
IF PSCHOSEN =1
SELECT C2T
DO FINDT
ELSE
SELECT C2P
DO FINDP
ENDIF
IF FOUND
? "SOLUTION FOUND DESPITE PIOTROW SKI"
0
FACTORS->P3,FACTORS->T3, FACTORS->D3,FACTORS->P4, ;
FACTORS->T4,FACTORS->D4 FACTORS->P5 FACTORS->TS, ;
FACTORS->D5,TIME()
WAIT
CLOSE DATABASES
SET ALTERNATE OFF
RETURN
ELSE
DO BACKUP
EXIT
ENDIF
ENDDO
* BACK TOLEVEL 8 *
STORE '4' TO FACTOR
IF PACHOSEN = 1
SELECT C2T
STORE 'C2T TO TRI
ELSE
SELECT C2P
STORE 'C2P' TO PENT
ENDIF
GO F4ARECNO
ENDDO
*BACKTOLEVEL 7*
STORE '3’ TO FACTOR
IF P3CHOSEN = 1
SELECT C2T
STORE 'C2T TO TRI
ELSE
SELECT C2P
STORE 'C2P' TO PENT
ENDIF
GO F3RECNO
ENDDO
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* BACK TOLEVEL 6 *
STORE '5' TO FACTOR
STORE D' TO TRITYPE
STORE 'C2T TO TRI
SELECT C2T
GO D5SRECNO
ENDDO
* BACK TOLEVEL 5 *
STORE '4' TO FACTOR
SELECT C2T
GO D4RECNO
ENDDO
* BACK TOLEVEL 4 *
STORE '3' TO FACTOR
SELECT C2T
GO D3RECNO
STORE 'C2T TO TRI
STORE D' TO TRITYPE
ENDDO
* BACK TOLEVEL 3 *
STORE '5' TO FACTOR
SELECT 3
IF PSCHOSEN =1
STORE 'C1P5' TO PENT
ELSE
STORE 'C1TS' TO TRI
STORE 'T TO TRITYPE
ENDIF
ENDDO
* BACK TOLEVEL 2 *
STORE '4' TO FACTOR
SELECT 2
IF PACHOSEN =1
STORE 'C1P4' TO PENT
ELSE
STORE 'C1T4' TO TRI
ENDIF
ENDDO
*BACK TOLEVEL1*
STORE '3’ TO FACTOR
SELECT 1
IF P3CHOSEN = 1
STORE 'C1P3' TO PENT
ELSE
STORE 'C1T3' TO TRI
ENDIF
ENDDO
RETURN
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*PROCEDURE FILE FOR OBRWLFCH.PRG*

PROCEDURE FINDP

* This procedure finds a pentagon (if it exists) in the current pentagon
* database that is compatible with the pieces of factors already selected

STORE .F. TO FOUND
SKIP
DO WHILE .NOT. EOF()
STORE "N"+FACTOR+V1 TO NODE1
STORE "N"+FACTOR+V2 TO NODE2
STORE "N"+FACTOR+V3 TO NODE3
STORE "N"+FACTOR+V4 TO NODE4
STORE "N"+FACTOR+V5 TO NODE35
IF NODES->&NODE1=0 .AND. NODES->&NODE2=0 .AND. NODES->&NODE3=0;
.AND. NODES->&NODE4=0 .AND. NODES->&NODES5=0
STORE "E"+E1 TO EDGEI1
STORE "E"+E2 TO EDGE2
STORE "E"+E3 TO EDGE3
STORE "E"+E4 TO EDGE4
STORE "E"+E5 TO EDGES
IF EDGES->&EDGE1=0 .AND. EDGES->&EDGE2=0 .AND. EDGES->&EDGE3=0 ;
.AND., EDGES->&EDGE4=0 .AND. EDGES->&EDGE5=0
STORE V1+V2+V3+V4+V5 TO MP
DO CPYRCRDS
SELECT NODES
REPLACE &NODE1 WITH 1
REPLACE &NODE2 WITH 1
REPLACE &NODE3 WITH 1
REPLACE &NODE4 WITH 1
REPLACE &NODES WITH 1
SELECT EDGES
REPLACE &EDGE1 WITH 1
REPLACE &EDGE?2 WITH 1
REPLACE &EDGE3 WITH 1
REPLACE &EDGE4 WITH 1
REPLACE &EDGES WITH 1
SELECT FACTORS
STORE "P"+FACTOR TO SLOT
REPLACE &SLOT WITH MP
SELECT &PENT
STORE .T. TO FOUND
EXIT
ENDIF
ENDIF
SKIP
ENDDO
IF EOF(Q
SKIP -1
ENDIF
STORE TIME(Q TO FTIME
RETURN
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PROCEDURE FINDT

* This procedure finds a triangle (if it exists) in the current triangle
* database that is compatible with the pieces of factors already selected

STORE .F. TO FOUND
SKIP
DO WHILE .NOT. EOF()
STORE "N"+FACTOR+V1 TO NODEI1
STORE "N"+FACTOR+V2 TO NODE2
STORE "N"+FACTOR+V3 TO NODE3
IF NODES->&NODE1=0 .AND. NODES->&NODE2=0 .AND. NODES->&NODE3=0
STORE "E"+E1 TO EDGEI
STORE "E"+E2 TO EDGE2
STORE "E"+E3 TO EDGE3
IF EDGES->&EDGE1=0 .AND. EDGES->&EDGE2=0 .AND. EDGES->&EDGE3=0
STORE V1+V2+V3 TO MT
DO CPYRCRDS
SELECT NODES
REPLACE &NODE1 WITH 1
REPLACE &NODE2 WITH 1
REPLACE &NODE3 WITH 1
SELECT EDGES
REPLACE &EDGE! WITH 1
REPLACE &EDGE2 WITH 1
REPLACE &EDGE3 WITH 1
SELECT FACTORS
STORE TRITYPE+FACTOR TO SLOT
REPLACE &SLOT WITH MT
SELECT &TRI
STORE .T. TO FOUND
EXIT
ENDIF
ENDIF
SKIP
ENDDO
IF EOF()
SKIP -1
ENDIF
STORE TIME() TO FTIME
RETURN
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PROCEDURE CPYRCRDS

* This procedure copies to the next record information about nodes and
* edges that are currently in use so that nodes and edges from a newly
* found pentagon or triangle can be added while still preserving the

* current state in the event that we have to backtrack if the new

* choice proves to be unworkable

SELECT NODES
STORE N31 TO MN31
STORE N32 TO MN32
STORE N33 TO MN33
STORE N34 TO MN34
STORE N35 TO MN35
STORE N3A TO MN3A
STORE N3B TO MN3B
STORE N3C TO MN3C
STORE N3X TO MN3X
STORE N3Y TO MN3Y
STORE N3Z TO MN3Z
STORE N41 TO MN41
STORE N42 TO MN42
STORE N43 TO MN43
STORE N44 TO MN44
STORE N45 TO MN45
STORE N4A TO MN4A
STORE N4B TO MN4B
STORE N4C TO MN4C
STORE N4X TO MN4X
STORE N4Y TO MN4Y
STORE N4Z TO MN4Z
STORE N51 TO MNS51
STORE N52 TO MNS52
STORE N53 TO MNS53
STORE N54 TO MN54
STORE N55 TO MNS5
STORE N5SA TO MNSA
STORE N5B TO MN5B
STORE N5C TO MNSC
STORE N5X TO MNS5X
STORE NSY TO MNSY
STORE N5Z TO MNS5Z
APPEND BLANK
REPLACE N31 WITH MN31, N32 WITH MN32, N33 WITH MN33, ;
N34 WITH MN34, N35 WITH MN35, N3A WITH MN3A, N3B WITH MN3B, ;
N3C WITH MN3C, N3X WITH MN3X, N3Y WITH MN3Y, N3Z WITH MN3Z
REPLACE N41 WITH MN41, N42 WITH MN42, N43 WITH MN43, ;
N44 WITH MN44, N45 WITH MN4S, NAA WITH MN4A, N4B WITH MN4B, ;
N4C WITH MN4C, N4X WITH MN4X, N4Y WITH MN4Y, N4Z WITH MN4Z
REPLACE NS1 WITH MNS51, N52 WITH MNS2, N53 WITH MNS53, ;
N54 WITH MNS54, N55 WITH MN55, NSA WITH MNSA, N5B WITH MNSB, ;
N5C WITH MNSC, N5X WITH MNS5SX, NSY WITH MNSY, N5Z WITH MNSZ
SELECT EDGES
STORE E1A TO ME1A
STORE E1B TO ME1B
STORE E1C TO MEIC
STORE E1X TO ME1X

49



STORE E1Y TO ME1Y
STORE E1Z TO ME1Z
STORE E24 TO ME24
STORE E25 TO ME2S5
STORE E2B TO ME2B
STORE E2C TO ME2C
STORE E2X TO ME2X
STORE E2Z TO ME2Z
STORE E35 TO ME35
STORE E3A TO ME3A
STORE E3B TO ME3B
STORE E3X TO ME3X
STORE E3Y TO ME3Y
STORE E3Z TO ME3Z
STORE E4A TO ME4A
STORE E4B TO ME4B
STORE E4C TO ME4C
STORE E4X TO ME4X
STORE E4Y TO ME4Y
STORE ESA TO MESA
STORE ESC TO MESC
STORE E5Y TO MESY
STORE ESZ TO MESZ
STORE EAX TO MEAX
STORE EAZ TO MEAZ
STORE EBY TO MEBY
STORE EBZ TO MEBZ
STORE ECX TO MECX
STORE ECY TO MECY
APPEND BLANK
REPLACE E1A WITH MEIA, E1B WITH MEIB, E1C WITH MEIC, ;
E1X WITH MEI1X, E1Y WITH ME1Y, E1Z WITH ME1Z, E24 WITH ME24, ;
E25 WITH ME25, E2B WITH ME2B, E2C WITH ME2C, E2X WITH ME2X, ;
E2Z WITH ME2Z
REPLACE E35 WITH ME35, E3A WITH ME3A, E3B WITH ME3B, ;
E3X WITH ME3X, E3Y WITH ME3Y, E3Z WITH ME3Z, E4A WITH ME4A, ;
E4B WITH ME4B, E4C WITH ME4C, E4X WITH ME4X, E4Y WITH MEA4Y, ;
ESA WITH MESA
REPLACE E5SC WITH MESC, ESY WITH MESY, E5Z WITH MESZ, ;
EAX WITH MEAX, EAZ WITH MEAZ, EBY WITH MEBY, EBZ WITH MEBZ, ;
ECX WITH MECX, ECY WITH MECY
SELECT FACTORS
STORE P3 TO MP3
STORE T3 TO MT3
STORE D3 TO MD3
STORE P4 TO MP4
STORE T4 TO MT4
STORE D4 TO MD4
STORE PS5 TO MP5
STORE T5 TO MTS
STORE DS TO MDS
APPEND BLANK
REPLACE P3 WITH MP3
REPLACE T3 WITH MT3
REPLACE D3 WITH MD3
REPLACE P4 WITH MP4
REPLACE T4 WITH MT4
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REPLACE D4 WITH MD4

REPLACE P5 WITH MP5

REPLACE T5 WITH MTS5

REPLACE D5 WITH MDS35
RETURN

PROCEDURE BACKUP

* This procedure backs us up to the previous working level whenever there
* are no more possibilities to try with the current configuration.

SELECT NODES
STORE RECNO(Q)-1 TO POINTNOD
DELETE
PACK
GO POINTNOD
SELECT EDGES
STORE RECNO()-1 TO POINTEDG
DELETE
PACK
GO POINTEDG
SELECT FACTORS
STORE RECNO()-1 TO POINTFAC
DELETE
PACK
GO POINTFAC
RETURN
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DATA-GENERATING PROGRAMS FOR
OBRWLFCH.PRG

*GENC1P.PRG

* THIS IS A PROGRAM TO GENERATE CLASS 1 PENTAGONS FROM AVAILABLE
* EDGES FOR THE OBRWLFCH PROBLEM OP(11;3,3,5)

CLEAR
CLEAR ALL
SET TALK OFF
SELECT 1
USE C:CIPPEDGE ALIAS PPEDGE [ C:C2PPEDGE and C:C3PPEDGE, resp. ]
GO TOP
SELECT 2
USE C:TDVERTI1 ALIAS TD1
GO TOP
SELECT 3
USE C:PVERTI1 ALIAS P
GO TOP
SELECT 4
USE C:TDVERT2 ALIAS TD2
GO TOP
SELECT §
USE C:EDGEUSED ALIAS USED
GO TOP
SELECT 6
USE C:C1C1P ALIAS PENTS [ C:C2C1P and C:C3C1P, resp. ]
GO TOP
SELECT PPEDGE
DO WHILE .NOT. EOF()
STORE V1 TO MV1
STORE V2 TO MV2
SELECT TD1
DO WHILE NOT. EOF()
STORE V TO MV3
SELECTP
DO WHILE .NOT. EOF()
IF V=MV]1 .OR. V=MV2
SKIP
LOOP
ELSE
STORE V TO MV4
ENDIF
SELECT TD2
DO WHILE .NOT. EOF(
IF V=MV3
SKIP
LOOP
ELSE
STORE V TO MVS
ENDIF
STORE "E"+MV2+MV3 TO EDGE2
STORE "E"+MV44+MV3 TO EDGE3
STORE "E"+MV4+MVS5 TO EDGE4
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STORE "E"+MV1+MVS5 TO EDGES
IF USED->&EDGE2=1 .OR. USED->&EDGE3=1 .OR. USED->&EDGE4=1 .OR. ;
USED->&EDGES=1
SKIP
LOOP
ELSE
SELECT PENTS
APPEND BLANK
REPLACE V1 WITH MV1
REPLACE V2 WITH MV2
REPLACE V3 WITH MV3
REPLACE V4 WITH MV4
REPLACE V5 WITH MV35
REPLACE E1 WITH MV1+MV2
REPLACE E2 WITH MV2+MV3
REPLACE E3 WITH MV4+MV3
REPLACE E4 WITH MV4+MV5
REPLACE ES WITH MV1+MV5
SELECT TD2
SKIP
ENDIF
ENDDO
GO TOP
SELECTP
SKIP
ENDDO
GO TOP
SELECT TD1
SKIP
ENDDO
GO TOP
SELECT PPEDGE
SKIP
ENDDO
CLOSE DATABASES
RETURN
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*GENC2P.PRG

* THIS IS A PROGRAM TO GENERATE CLASS 2 PENTAGONS FROM AVAILABLE
* EDGES FOR THE OBRWLFCH PROBLEM OP(11;3,3,5)

CLEAR
CLEAR ALL
SET TALK OFF
SELECT 1
USE C:CITDEDGE ALIAS TDEDGE [ C2TDEDGE and C3TDEDGE, resp.]
GO TOP
SELECT 2
USE C:PVERTI1 ALIAS P1
GO TOP
SELECT 3
USE C:TDVERT! ALIAS TD
GO TOP
SELECT 4
USE C:PVERT2 ALIAS P2
GO TOP
SELECT 5
USE C:EDGEUSED ALIAS USED
GO TOP
SELECT 6
USE C:C1C2P ALIAS PENTS [ C2C2P and C3C2P, resp.]
GO TOP
SELECT TDEDGE
DO WHILE .NOT. EOF()
STORE V1 TO MV1
STORE V2 TO MV2
SELECT P1
DO WHILE .NOT. EOF()
STORE V TO MV3
SELECT TD
DO WHILE .NOT. EOF()
IFV = MV1 .OR. V = MV2
SKIP
LOOP
ELSE
STORE V TO MV4
ENDIF
SELECT P2
DO WHILE .NOT. EOF()
[FV = MV3
SKIP
LOOP
ELSE
STORE V TO MV5
ENDIF
STORE "E"+MV3+MV2 TO EDGE2
STORE "E"+MV3+MV4 TO EDGE3
STORE "E"+MV5+MV4 TO EDGE4
STORE "E"+MV5+MV1 TO EDGE5
IF USED->&EDGE2=1 .OR. USED->&EDGE3=1 .OR. USED->&EDGE4=1 .OR. ;
USED->&EDGES5=1
SKIP
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LOOP
ELSE
SELECT PENTS
APPEND BLANK
REPLACE V1 WITH MV1
REPLACE V2 WITH MV2
REPLACE V3 WITH MV3
REPLACE V4 WITH MV4
REPLACE V5 WITH MVS5
REPLACE E1 WITH MV1+MV2
REPLACE E2 WITH MV3+MV2
REPLACE E3 WITH MV3+MV4
REPLACE E4 WITH MV5+MV4
REPLACE ES WITH MV5+MV1
SELECT P2
SKIP
ENDIF
ENDDO
GO TOP
SELECT TD
SKIP
ENDDO
GO TOP
SELECT P1
SKIP
ENDDO
GO TOP
SELECT TDEDGE
SKIP
ENDDO
CLOSE DATABASES
RETURN
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PENTEDGE.PRG

* THIS PROGRAM FILLS IN THE EDGES (SMALLEST VALUE NODE FIRST) IN THE*
* PENTAGON DATABASES WHEN THE VERTICES ARE ALREADY ENTERED. *
GO TOP
DO WHILE .NOT. EOF()
IF V1l <V2
REPLACE E1 WITH V1+V2
ELSE
REPLACE E1 WITH V2+V1
ENDIF
IF V2 < V3
REPLACE E2 WITH V2+V3
ELSE
REPLACE E2 WITH V3+V2
ENDIF
IF V3 < V4
REPLACE E3 WITH V3+V4
ELSE
REPLACE E3 WITH V4+V3
ENDIF
IF V4 < V5
REPLACE E4 WITH V4+VS5
ELSE
REPLACE E4 WITH V5+V4
ENDIF
IF Vi< VS
REPLACE ES WITH V1+V5
ELSE
REPLACE ES WITH V5+V1
ENDIF
SKIP
ENDDO

TRIEDGE.PRG
*THIS PROGRAM FILLS IN THE EDGES (SMALLEST VALUE NODE FIRST) IN THE*
*TRIANGLE DATABASES WHEN VERTICES HAVE ALREADY BEEN ENTERED*
GO TOP
DO WHILE .NOT. EOF()
IFV1<V2
REPLACE E1 WITH V1+V2
ELSE
REPLACE E1 WITH V2+V1
ENDIF
IF V2 < V3
REPLACE E2 WITH V2+V3
ELSE
REPLACE E2 WITH V3+V2
ENDIF
IFV1I<V3
REPLACE E3 WITH V1+V3
ELSE
REPLACE E3 WITH V3+V1
ENDIF
SKIP
ENDDO
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DATABASES FOR OBRWLFCH.PRG - CASE 1

C1C1T3.DBF
Record# vVl V2 V3 El E2 E3
1
2 2 5 C 25 5C 2C
3 2 5 Z 25 5Z 2Z
C1C1T4.DBF
Record# Vi V2 V3 El E2 E3
1
2 2 4 B 24 4B 2B
3 2 4 C 24 4C 2C
4 2 4 X 24 4X 2X
C1C1T5.DBF
Record# Vi V2 V3 El E2 E3
1
2 3 5 A 35 SA 3A
3 3 5 Y 35 5Y 3Y
4 3 5 Z 35 5Z 3Z
C1C2T.DBF
Record# Vi V2 V3 El E2 E3
1
2 1 A X 1A AX 1X
3 1 A Z 1A AZ 1Z
4 3 A X 3A AX 3X
5 3 A zZ 3A AZ 3Z
6 4 A X 4A AX 4X
7 5 A Z SA AZ 5Z
8 1 B Y 1B BY 1Y
9 1 B Z 1B BZ 1Z
10 2 B Z 2B BZ 2Z
11 3 B Y 3B BY 3Y
12 3 B Z 3B BZ 3Z
13 4 B Y 4B BY 4Y
14 1 C X 1C CX 1X
15 1 C Y 1C Cy 1Y
16 2 C X 2C CX 2X
17 4 C X 4C CX 4X
18 4 C Y 4C Cy 4Y
19 5 C Y 5C Cy 5Y
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C1C1P3.DBF
Record#

OO0 W —

10

12
13
14
15

C1C1P4.DBF
Record#

OO ~-JA N B WN -

10

12
13
14
15
16
17
18
19
20

PR <

[SESE SRR SE SN SN SN RSN SEN SN SESN SN SN SN S <

1

1

V2 V3
5 A
5 A
5 A
5 A
5 C
5 C
5 Y
5 Y
5 Y
5 Y
5 Y
5 Z
5 Z
5 Z

V2 V3
4 A
4 A
4 A
4 A
4 A
4 B
4 B
4 B
4 B
4 C
4 C
4 C
4 X
4 X
4 X
4 Y
4 Y
4 Y
4 Y
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V4

[FSRESS T S - SVS J R QR SO S Y I
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LA LD e et D b bt LN b et 0D LD et bt LA D () b b
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s WOWOWW O WX XXN
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24
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24
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24

24
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E3
1A

3A
4A
1C
4C
1Y
1Y
3Y
4Y
4Y
1Z
1Z
3Z
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2X
2X
2X
2X

2C

2C
2C



C1C1P5.DBF
Record#

Vi
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C1C2P.DBF
Record#
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168
169
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USEDEDGE.DBF

E NI N NI S S N S S S A S S S PSR PV )
<X <OO0OOP PP > P> NNN
MUULLULULLLUUB UK WUBWUBKn

3z 52 5C CX 3X

3Z SZ SY BY 3B
4A SA 5C CX 4X
4A SA 5C CY 4Y
4A SA SY BY 4B
4A SA SY CYy 4C
Bz 4B
4C 5C SA AX 4X
4C 5C 5Y BY 4B
4C 5C SZ AZ 4A

4Y 5Y SA AX 4X

4Y SY SZ AZ 4A

NNOPNNXPNX~<OOQO<ONO
WP XX PwHwOw < Xm <X
H
>
w
>
w
N

(for Case 1)

Record# E1A E1B E1IC E1X E1Y E1Z E24 E25 E2B E2C E2X E2Z E35 E3A E3B E3X

1

o 0 0 0o o0 O

0 0o 0 0 0 0 00 0 O

E3Y E3Z E4A E4B E4C E4X E4Y ESA ESC E5Y ESZ EAX EAZ EBY EBZ ECX ECY

0

0 0 0 0 0 O
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DATABASES FOR OBRWLFCH.PRG - CASE 2

C2CIT3.DBF
Record# V1 V2 V3 El E2 E3
1
2 1 3 A 13 1A 3A
3 1 3 B 13 1B 3B
4 1 3 Y 13 1Y 3Y
C2CIT4.DBF
Record# V1 V2 V3 El E2 E3
1
2 2 4 B 24 2B 4B
3 2 4 C 24 2C 4C
4 2 4 X 24 2X 4X
5 2 4 Y 24 2Y 4Y
CI12CITS5.DBF
Record# V1 V2 V3 El E2 E3
1
2 3 5 B 35 3B 5B
3 3 5 Y 35 3Y 5Y
4 3 5 Z 35 3z 5Z
C2C2T.DBF
Record# V1 V2 V3 El E2 E3
1
2 1 A X 1A 1X AX
3 4 A X 4A 4X AX
4 1 A Y 1A 19'¢ AY
5 3 A Y 3A 3Y AY
6 4 A Y 4A 4Y AY
7 3 A 4 3A 3z AZ
8 2 B z 2B 2Z BZ
9 3 B 4 3B 3Z BZ
10 5 B Z 5B 5Z BZ
11 1 C X 1C 1X CX
12 2 C X 2C 2X CX
13 4 C X 4C 4X CX
14 5 C X 5C 5X CX
15 2 C Z 2C 2Z Cz
16 5 C Z 5C 5Z Cz
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C2C1P3.DBF
Record#
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C2C1P4.DBF
Record#
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C2C1P5.DBF
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C2C2P.DBF
Record# Vi
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Record# E13 E1A E1B EIC E1X E1Y E24 E2B E2C E2X E2Y E2Z E35 E3A E3B E3Y E3Z

1
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DATABASES FOR OBRWLFCH.PRG - CASE 3

C3CI1T3.DBF
Record# \"A!
1
2 1
3 1
4 1
C3C1T4.DBF
Record# Vi
1
2 2
3 2
4 2
5 2
C3C1T5.DBF
Record# Vi
1
2 3
3 3
4 3
C3C2T.DBF
Record# \"A
1
2 1
3 4
4 5
5 3
6 5
7 1
8 2
9 4
10 2
11 3
12 1
13 2
14 4
15 5
16 2
17 5
C3C1P3.DBF
Record# \"A!
1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
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BX
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Record# E13 E1A E1B EIC E1X E1Y E24 E2B E2C E2X E2Y E2Z E3S E3A E3B E3Y E3Z

1

E4A E4B E4C E4X E4Y ESA ESC ESX ESY ESZ EAX EAZ EBX EBZ ECY ECZ
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USEDNODE.DBF (used in all three cases)

Record# N31 N32 N33 N34 N35 N3A N3B N3C N3X N3Y N3Z N41 N42 N43 N44 N45
1 0o 0 0o 0O O 0 O o0 o0 O 0 o 0 0 0 O

N4A N4B N4C N4X N4Y N4Z N51 NS2 N53 N54 NS5 N5A NSB NSC NSX N5Y N5Z
0 0o O 0 O 0o o o 0 0 0 0o o0 o0 0 O 0
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OUTPUT FROM OBRWLFCH.PRG - CASE 1

25A3X
25A3X
25A3X
25A3X
25A3X
25A3X
25A3X
25A3X

25A3Z
25A3Z
25A3Z
25A3Z
25A3Z
25A3Z

25A4X
25A4X
25A4X
25A4X
25A4X
25A4X
25A4X
25A4X

25C1X
25C1X
25C1X
25C1X

25C4X
25C4X
25C4X
25C4X
25C4X
25C4X

25Y1C
25Y1C

25Y3B
25Y3B
25Y3B
25Y3B
25Y3B
25Y3B
25Y3B
25Y3B
10
25Y4B

4CY
1BZ
4CY
1BZ
4CY
1BZ
4CY
1BZ

1CX
4BY
1CX
1CX
4BY
4BY

1CY
3BZ
1CY
3BZ
1CY
3BZ
1CY
3BZ

4BY
3AZ
4BY
3AZ

3BY
1AZ
3BY
3BY
1AZ
1AZ

3BZ
4AX

4CX
1AZ
4CX
1AZ
4CX
1AZ
4CX
1AZ

1CX

1BZ
4CY
1BZ
4CY
1BZ
4CY
1BZ
4CY

4BY
1CX
4BY
4BY
1CX
1CX

3BZ
1CY
3BZ
1CY
3BZ
1CY
3BZ
1CY

3AZ
4BY
3AZ
4BY

1AZ
3BY
1AZ
1AZ
3BY
3BY

4AX
3BZ

1AZ
4CX
1AZ
4CX
1AZ
4CX
1AZ
4CX

3AZ

24B3Z
24B3Z

24Cs5Z
24C5Z

24Y1B
24Y1B

24A3X
24A3X
24A3X
24A3X
24A3Z
24A3Z
24A5Z
24A5Z

24A5Z

24C

24C

24C

24B
24B
24B
24B

24B
24B
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1CX
1CX
1CX
1CX
1CX
1CX
1CX
1CX

1AZ
1AZ
1AZ
1BZ
1AZ
1BZ

3AX
3AX
3AX
3AX
3AX
3AX
3AX
3AX

1BZ
1BZ
1BZ
1BZ

3AX
3AX
3AX
3AX
3AX
3AX

1AZ
1AZ

1CY
1CY
1CY
1CY
1CY
1CY
1CY
1CY

3BY

35C2z
35C2Z

35Y1B
35Y1B

35C4Y
35C4Y

35Z2B
35Z2B

35C2z
35C2Z

35C2X
35C2X
35C2X
35C2X

35C2X

35Y
35Y

35Y
35Y
35Z
35Z

35Y
35Y
35Y
35Y

35Y
35Y

35Y
35Y
35Y
35Y

35Y
35Y

35Z
35Z
35Z
35Z
35Z
352

35A
35A

35Z
352

4AX
4AX
4AX
4AX
4AX
4AX
4AX
4AX

4AX
4AX
4AX
4AX
4AX
4AX

1AZ
1AZ
1AZ
1AZ

1AZ
1AZ
1AZ

4AX
4AX
4AX
4AX

1CX
1CX
1CX
1CY
1CX
1CY

4CY
4CY

4BY
4BY
4BY
4BY
4BY
4BY
4BY
4BY

1BZ

10:20:01
10:21:43
10:48:44
10:51:02
10:57:06
10:59:58
11:03:32
11:06:59

12:12:41
12:13:50
12:18:25
12:19:41
12:20:41
12:22:04

12:49:43
12:50:57
13:18:41
13:20:43
13:28:48
13:30:57
13:55:23
13:57:31

14:42:42
14:44:10
14:47:23
14:51:06

15:22:04
15:22:32
15:57:45
15:58:38
16:02:31
16:03:25

17:36:28
17:38:00

17:54:07
17:55:43
17:58:09
18:00:11
18:03:06
18:04:21
18:08:48
18:10:03

19:20:25



25Y4B
25Y4B
25Y4B
25Y4B
25Y4B
25Y4B
25Y4B

25Y4C
25Y4C
25Y4C
25Y4C
25Y4C
25Y4C

25Z1B
25Z1B

25Z21C
25Z1C
25Z21C
2521C
2521C
25Z21C
25Z1C
2521C

25Z3B
25Z3B
25Z3B
25Z3B
25Z3B
25Z3B
15

BZ1Y4
BZ3Y4
BZ3Y4
BZ3Y4
AZ3X1
AX1Z3
AX3z1
AZ1X3
AZ3X1
BY1Z3
BY3Z1
BZ3Y1
BZ3Y1
BY3Z1
BY4X1
AX3Y4
BY3Z1
BY1Z3
AX3Z1
BZ1Y3
AX3Y4
BZ3Y1

3JAZ
1CX
3AZ
1CX
3AZ
1CX
3AZ

1BZ
3AX
1BZ
1BZ
3AX
3AX

4CY
3AX

4BY
3AX
3BY
4AX
3BY
4AX
4BY
3AX

1CY
4AX
1CY
1CY
4AX
4AX

25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C

3BY
4AX
3BY
3AX
4BY

4AX
1CY
4AX
4AX
1CY
1ICY

3AX
1AX

1AX

1AX
4BY
4BY
4BY
4BY
4BY
4AX
4AX
4AX
4AX
4AX
3AZ
1BZ
4AX
4AX
4BY
4AX
1BZ
4AX

24A5Z
24A5Z
24A5Z
24C5Z2
24CS5Z

24A1X
24A1X

24A1X
24A1X
24B1X
24B1X

24A1X
24A3X
24A3X
24A3X
24A5Z
24A5Z
24A5Z
24A5Z
24A5Z
24B1X
24B3X
24B3X
24B3X
24B3X
24B3X
24B3Z
24C1X
24C1X
24C1X

24C
24C

24X
24X
24X
24X

24X
24X

24B

24X
24X

24C
24C
24C
24C
24C
24C

24B
24B
24B
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3BY
3BY
3BY
3BY
3BY
3BY
3BY

3BY
3BY
3BY
3BY
3BY
3BY

3BZ
3BZ

3BZ
3BZ
5CY
5CY
3AZ
3AZ
5CY
5CY

1BZ
1BZ
1AZ
1BZ
1AZ
1BZ

3BY
1CY
1BY
1CY
1CY
1CY
1CY
1CY
1CY
SAZ
SAZ
1AZ
1AZ
1CY
1CY
1CY
SAZ
SAZ
5AZ
3AZ
S5AZ
1CX

35C2X
35C4X
35C4X
35A4X
35A4X
35A4X
35A4X

35A1X
35A1X
35A1Y
35A1Y

35A1X
35A1X

35Z1B
35Z2B
35Z2B

35Y1A

35Y1A

35A1X
35Y1A
35Z1A

35Z
352
35Z
352
35Z
35Z

35Y
35Y

35Y
35Y
35A
35A

35A
35A
35A
35A

35Z

35Y
35Y
35Y
35Y
35Y
35Y

35A
35A
35A
35Y
35A

35Y
35Y

1BZ
1BZ
1BZ
1BZ
1BZ
1BZ
1BZ

1CY
1CY
1CX
1CY
1CX
1CY

1CX
1CX

4CX
4CX
2BZ
2BZ
4CY
4CY
2BZ
2BZ

4BY
4BY
4BY
4BY
4BY
4BY

4CX
4CX
4CX
4CX
1BZ
4CX
4CX
4CX
4CX
2BZ
2BZ
1CX
4CY
2BZ
2BZ
4CX
2BZ
2BZ
2BZ
4CY
4CX
4CY

19:21:46
19:23:51
19:25:13
19:37:52
19:38:33
19:50:27
19:52:13

20:31:05
20:31:33
21:53:26
21:54:08
21:55:16
21:55:56

22:56:48
22:58:28

23:02:44
23:03:12
23:11:32
23:12:00
23:27:07
23:28:18
23:36:37
23:37:53

00:31:04
00:31:58
00:40:17
00:41:47
00:44:03
00:45:06

01:16:27
01:32:22
01:34:21
01:38:10
03:16:51
03:17:36
03:17:46
03:17:56
03:18:06
03:32:19
03:51:30
03:58:51
04:00:18
04:01:46
04:14:25
05:02:46
05:32:18
05:57:58
06:08:05
07:48:34
08:35:32
08:46:37



AZ3X4
BZ3Y1
BZ3Y1
BY1Z3
BY3Z1
BZ1Y3
BZ3Y1
AZ3X4
AZ3X4
AX3Y4
AX1Y4
BY1Z3
AX1Y4
AX4Y1
AX1Y4
BZ1Y3
AX3Y4
AZ1X4
AZ1X4
AX3Y4
AX3Y4
AZ3X1
AZ3X1
AZ3X1
AX3Z1
AZ3X1
BZ1Y4
AX1Z3
AX3Z1
AX3Z1
AZ3X1
AX1Z3
AX3Z1
AZ1X3
AZ3X1
BZ1Y4
17
CY4B1
BY1C4
BY1C4
AX3B4
CY1B4
CX3A4
CY3B4
CY3B4
CY3B4
CX1A4
AX3B4
AX3B4
BY4C1
BY4C1
AX1C4
BY1A3
AX1C4
AX4C1
CX1A4
CX4A1

25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C
25C

25Z
25Z
25Z
252
252
252
25Z
252
252
25Z
25Z
25Z
252
252
25Z
25Z
25Z
252
252
252

1BY
4AX
4AX
4AX
4AX
4AX
4AX
1BY
1BY
1BZ
3BZ
4AX
3BZ
3BZ
3BZ
4AX
1BZ
3BY
3BY
1BZ
1BZ
4BY
4BY
4BY
4BY
4BY
3AX
4BY
4BY
4BY
4BY
4BY
4BY
4BY
4BY
3AX

3AX
3AX
3AX
1CY
3AX
1BY
1AX
1AX
1AX
3BY
1CY
1CY
3AX
3AX
3BY
4CX
3BY
3BY
3BY
3BY

24A1X
24X1B
24X1B
24X1B
24X1C
24X1C
24Y1C
24Y5C
24Y5C
24Y5C
24Y5C
24YS5C

24X
24X
24X
24X
24X
24X

1CX
1AZ
1AZ
1CX
1CX
1CX
1CX
1AX
1CX
1CY
1AZ
SAZ
1AZ
SAZ
S5AZ
1CX
1CY
3AX
3AX
3AZ
3AZ
1BZ
1BZ
1CY
1CY
1CY
5AZ
S5AZ
SAZ
SAZ
1CY
1CY
1CY
1CY
1CY
3BY

3BZ
5CY
5CY
3AZ
3BZ
3BZ
3AZ
3AZ
3AZ
1BZ
1AZ
1BZ
5CY
5CY
5CY
5CY
3AZ
3AZ
3AZ
3AZ

35Z1A

35Z2B
35Z2B
35Z2B

35A1Z
35A4Y

35A4X
35A4X
35A4X

35A1Y
35A1Z
35A1Z
35A4Y
35C2X
35C2X
35C2X
35C2X

35A
35A
35A
35A
35A
35A
35A
35A
35A
35A
35Y
35Y
35Y
35Y
35Z
35Z
352
35Z

35A
35A
35A
35A
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Z

35Y

35Y
35Y
35Y

35A
35A
35A

4CY
1CX
4CY
4CY
4CY
4CY
4CY
4CY
4CY
4CX
4CX
1CX
4CX
1CX
4CX
4CY
4CX
1CY
4CY
1CX
1CY
1CY
1CY
1BZ
2BZ
2BZ
1CX
2BZ
2BZ
1CX
1BZ
2BZ
2BZ
2BZ
2BZ
1CX

4CX
2CX
2CX
2CX
1AZ

1BZ
1BY
1BZ
1CY
4CX
4CX
2CX
2CX
2CX
1BZ
1BZ
1BZ
1BZ
1BZ

08:48:10
09:07:04
09:09:09
09:11:53
09:12:30
09:13:11
09:13:50
09:16:31
09:20:05
09:23:55
09:35:50
10:03:00
10:27:41
10:31:41 .
10:33:08
10:54:35
11:08:49
11:15:19
11:17:24
12:50:56
12:52:06
12:58:27
13:39:06
13:41:50
13:43:11
13:43:58
13:57:10
14:28:52
14:29:43
14:31:02
14:36:12
14:37:31
14:38:17
14:39:01
14:39:46
14:58:46

15:37:56
17:53:32
17:56:29
18:06:09
18:18:32
18:19:43
19:32:36
20:32:18
20:33:13
21:04:47
21:08:47
21:09:33
21:21:16
21:29:52
21:42:29
22:34:51
22:54:14
22:55.03
22:56:08
22:56:56



CX1A4 25Z 3BY 24B 1CY 35C2X 1BZ 22:59:53

CY3B1 25Z 4AX 24B 1AZ 35A 2CX 00:04:06
AX1C4 25Z 3BY 24B 1AZ 35A 2CX 00:25:07
CX1A4 252 3BY 24B 1CY 35A 1BZ 00:28:50
AX1C4 25Z 3BY 24B 5CY 35A 1BZ 00:30:45
AX4Cl1 25Z 3BY 24B 5CY 35A 1BZ 00:31:22
CX1A4 25Z 3BY 24B 5CY 35A 1BZ 00:32:14
CX4A1 25Z 3BY 24B 5CY 35A 1BZ 00:32:50
AX1C4 25Z 3BY 24B 5CY 35A 2CX 00:34:05
AX4Cl1 25Z 3BY 24B 5CY 35A 2CX 00:34:42
BY4Cl1 25Z 3AX 4B 1AZ 35Y 2CX 00:57:46
AX1B3 25Z 4CY 4B 1AZ 35Y 2CX 01:43:46
AX3B1 25Z 4CY 24B 3AZ 35Y 1CX 01:48:40
AX3B1 25Z 4CY 4B 3AZ 35Y 2CX 01:50:09
CY3B1 25Z 4AX 24C 3AZ 35A1X 4BY 01:54:12
CY3B1 25Z 4AX 24C 1AZ 35A 4BY 03:24:38
CY4B1 25Z 3AX 24C 3BZ 35Y 1AZ 04:00:39
CX3Al1 25Z 4BY 24C 1BZ 35Y 4AX 04:26:12
CX3A1 25Z 4BY 24C 3BZ 35Y 4AX 04:29:47
AX3B4 25Z 1CY 24C 3AZ 35Y 1BZ 04:41:55
CY1B4 25Z 3AX 24X 1AZ 35A4Y 1CX 05:06:21
CY1B4 25Z 3AX 24X 3BZ 35A4Y 1CX 05:09:22
BY1C4 25Z 3AX 24X 5CY 35A4Y 1BZ 05:11:23
AX3B4 252 1CY 24X 3AZ 35C4Y 1BZ 05:37:13
CX1A4 25Z 3BY 24X 1BZ 35A 1CY 06:12:38
CX1A4 25Z 3BY 24X 1CY 35A 1BZ 06:14:31
AX1C4 25Z 3BY 24X 5CY 35A 1BZ 06:15:38
CX1A4 25Z 3BY 24X 5CY 35A 1BZ 06:16:30
CY1B4 25Z 3AX 24X 1AZ 35Y 1CX 06:44:25
BY1C4 25Z 3AX 24X 3BZ 35Y 1AZ 06:47:49
BY4C1 25Z 3AX 24X 3BZ 35Y 1AZ 06:48:38
CY1B4 25Z 3AX 24X 3BZ 35Y 1AZ 06:49:41
CY4B1 25Z 3AX 24X 3BZ 35Y 1AZ 06:50:31
CY1B4 25Z 3AX 24X 3BZ 35Y 1CX 06:51:51
CX3A4 25Z 1BY 24X 3BZ 35Y 1AX 06:57:13
CX3A4 25Z 1BY 24X 3BZ 35Y 1AZ 06:58:46
AX3B4 252 1CY 24X 3AZ 35Y 1BZ 07:13:12
AX3B1 25Z 4CY 24X 3AZ 35Y 1CX 07:17:54
18

NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR CASE 1.

. DISPLAY MEMORY

STIME priv C "09:33:31" A:obrwlifch.prg
COUNT1 priv 18 ( 18.00000000) A:obrwlfch.prg
COUNT?2 priv 233 ( 233.00000000) A:obrwlfch.prg
COUNT3 priv 1758 ( 1758.00000000) A:obrwlfch.prg
COUNT4 priv 4734 ( 4734.00000000) A:obrwlfch.prg
COUNTS5 priv 7865 ( 7865.00000000) A:obrwlfch.prg
COUNT6 priv 8424 ( 8424.00000000) A:obrwlfch.prg
COUNT?7 priv 4125 ( 4125.00000000) A:obrwlfch.prg
COUNTS priv 188 ( 188.00000000) A:obrwifch.prg
COUNT9 priv 0 ( 0.00000000) A:obrwlfch.prg
FOUND pub L F.

PENT pub C "C2p"

TRI pub C "CIT3"

FACTOR pub C "3"

TRITYPE pub C "T"

ZZ2ZZ2ZZZ22Z2Z7Z
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P3 pub L .F
P4 pub L .F
PS5 pub L F
T3 pub L F
T4 pub L F
TS pub L F
D3 pub L F
D4 pub L F
DS pub L F.
P3CHOSEN priv N
P4CHOSEN priv N
PSCHOSEN priv N
D3RECNO  priv N
D4RECNO  priv N
DSRECNO  priv N
F3RECNO priv N

31 variables defined,
225 variables available,

20 (

0.00000000)
18.00000000)
12.00000000)
14.00000000)
20.00000000)

191 bytes used
5809 bytes available
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A:obrwlfch.prg
A:obrwlfch.prg
A:obrwlfch.prg
A:obrwlfch.prg
A:obrwlfch.prg
A:obrwlfch.prg
A:obrwlfch.prg



OUTPUT FROM OBRWLFCH.PRG - CASE 2

AW WN -

13B2X
13B2X
13B2X
13B2X

13B2Y
13B2Y
13B2Y
13B2Y
13B2Y
13B2Y

10
11
12

13B5X
13B5X
13B5X
13B5X

13B5Y
13B5SY
13B5Y
13B5Y

13Y2B
13Y2B
13Y2B
13Y2B
13Y2B
13Y2B
13Y2B
13Y2B
13Y2B
13Y2B
13Y2B
13Y2B
13Y2B
13Y2B
13Y2B
13Y2B

13Y2C

13Y2C
17
18

5CZ
4AY
5CZ
4AY

5CZ
4AX
5Cz
4AX
5CZ
4AX

2CZ
4AY
2CZ
4AY

2CZ
4AX
2CZ
4AX

5Cz
4AX
5CZ
5Cz
4AX
4AX
5CZ
5Cz
4AX
4AX
5CZ
5CZ
5CZ
4AX
4AX
4AX

SBZ
4AX

4AY
5CZ
4AY
5Cz

4AX
5CZ
4AX
5CZ
4AX
5CZ

4AY
2CZ
4AY
2CZ

4AX
2CZ
4AX
2CZ

4AX
5CZ
4AX
4AX
5CZ
5CZ
4AX
4AX
5Cz
5CZ
4AX
4AX
4AX
5CZ
5Cz
5Cz

4AX
SBZ

24B1C
24B1C
24B1Y
24B1Y

24B5X
24BSX

24B1Y
24B1Y

24CsX
24CsX

24C1X
24C1X
24Y5X
24Y5X
24Y5X
24Y5X

24Y5X
24Y5X

24C
24C
24C
24C

24B
24B

24B
24B

24C
24C
24C
24C
24C
24C
24C
24C
24C
24C
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3AZ
3AZ
3AZ
3AZ

3AZ
3AZ
3AZ
3AZ
3AZ
3AZ

3AZ
3AZ
3AZ
3AZ

3AY
3AY
3AY
3AY

3AZ
3AZ
3AZ
3AZ
3AZ
3AZ
1AY
3AZ
1AY
3AZ
1AY
3AZ
3AZ
1AY
3AZ
3AZ

3AZ
3AZ

35B4Y
35B4Y

35Y4B
35Y4B
35Y4B
35Y4B

35C4B
35C4B

35Y
35Y
35Y
35Y

35Y
35Y

35Y
35Y

35Y

35B
35B
35B
35B
35B
35B

4CX
4CX
4CX
4CX

1CX
1CX
1CX
1CX
1CX
1CX

4CX
4CX
4CX
4CX

1CX
1CX
1CX
1CX

1AY
1AY
1AY
1CX
1AY
1CX
1CX
1CX
1CX
1CX
1CX
1AY
1CX
1CX
1AY
1CX

1AY
1AY

12:43:44
12:44:05
12:45:38
12:46:20

13:24:20
13:25:05
13:44:28
13:45:47
13:48:48
13:50:35

17:07:46
17:08:28
17:19:01
17:20:21

17:44:44
17:45:08
17:58:24
18:00:37

18:25:44
18:26:34
18:46:07
18:46:16
18:47:04
18:47:13
18:54:16
18:55:06
18:56:42
18:57:34
18:58:31
18:59:20
19:00:05
19:01:52
19:02:47
19:03:36

19:36:09
19:36:30



2CZ
4AX
2CZ
2CZ
2CZ
4AX
4AX
4AX
2CZ
2CZ
4AX
4AX
2CZ
2CZ
4AX
4AX
2CZ
2CZ
4AX
4AX
2BZ
4AX
2BZ
4AX
2BZ
4AX
2BZ
2BZ
4AX
4AX

5CX
4AY
5CX
4AY
5CX
4AY

13A
13A
13A

13B
13B

4AX
2CZ
4AX
4AX
4AX
2CZ
2CZ
2CZ
4AX
4AX
2CZ
2CZ
4AX
4AX
2CZ
2CZ
4AX
4AX
2CZ
2CZ
4AX
2BZ
4AX
2BZ
4AX
2BZ
4AX
4AX
2BZ
2BZ

4AY

5CX.

4AY
5CX
4AY
5CX

2BZ
2BZ
4CX

4AX
4AX

24C5X
24C5X

24B1X
24B1X
24B1Y
24B1Y

24C1Y
24C1Y

24B1X
24B1Y

24BSX
24BSX

24Y
24Y
24Y
24Y
24Y

24C
24C
24Y
24Y
24Y
24Y

24C
24C
24X
24X

24B
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1AY
1AY
1AY
1CX
5CX
1AY
1CX
5CX
3AZ
1CX
3AZ
1CX
3AZ
1CX
3AZ
1CX
1CX
5CX
1CX
5CX
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ

5CZ
5CZ
5CZ

3AZ 35C1Y
1AY 35C4Y

35C4B
35C4B
35C4B
35C4B
35X2B
35X2B
35X2B
35X2B

35X1B

352
352
352
352
35Z
35Z
352
35Z

35Y
35Y
35Y
35Y
35Y
35Y

35B
35B

1CX
1CX
1CX
1AY
1AY
1CX
1AY
1AY
1AY
1AY
1AY
1AY
1AY
1AY
1AY
1AY
1AY
1AY
1AY
1AY
1AY
1AY
2CX
2CX
1AY
1AY
1AY
2CX
1AY
2CX

1AX
1AX
1AX
1AX
1AX
1AX

4AX
4AX
4AY

2BZ
2BZ

00:02:58
00:03:18
00:17:20
00:18:13
00:18:50
00:20:29
00:21:26
00:22:17
00:29:26
00:30:10
00:31:21
00:32:05
00:34:06
00:34:50
00:36:13
00:36:56
00:41:32
00:42:13
00:43:26
00:44:13
00:48:37
00:49:02
00:50:55
00:51:28
01:05:39
01:06:56
01:13:51
01:14:32
01:15:43
01:16:22

02:09:16
02:09:37
02:34:45
02:35:39
02:40:29
02:41:42

07:26:25
07:39:35
11:42:41

15:04:12
15:10:30



CZ5Y2
CZ2Y5
CZ2Y5
CZ5X2
CZsX2
CZ2X5
AYS5X4
CX2Z5
CX5Z22
CZ2X5
CZ5X2
CZs5X2
CZ2X5
CX5Z2
CZ5X2
CZsX2
AXS5Y4
AXS5Y4
Cz5Y2
CZs5Y2
CZs5Y2
CzZ5Y2
AX2Y4
CZ5X2
CX225
AX2Y4
AX2Y4
AY2X4
AY2X4
AYS5X4
CZ5Y2
CZsX2
CZ2X5
CZ5X2
CX2Zs
CX5Z2
CZ2X5
CZsX2
CZ2X5
CZ5X2
CZ2X5
CZ5X2
AX2Y4
AX2Y4
AY2X4
AX2Y4
AY2X4
AX2Y4
CZ2YS
CZ2YS
CZ2YS
CZ2Y5
Cz2Y5
CZ2XS5
AZ2Y4
AX5Y4
AXS5Y4

13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B

4AX
4AX
4AX
4AY
4AY
4AY
2CZ
4AY
4AY
4AY
4AY
4AY
4AY
4AY
4AY
4AY
2CZ
2CZ
4AX
4AX
4AX
4AX
5CZ
4AY
4AY
5CZ
5CZ
5CZ
5CZ
2CZ
4AX
4AY
4AY
4AY

24B5X
24B5X
24B5X
24BSY
24B5Y
24B5Y
24C1Y
24C1Y
24C1Y
24C1Y
24C1Y
24C1Y
24C1Y
24C5SB
24CSB
24CSB
24CSB
24C5SB
24C5X
24C5X
24C5X
24C5X
24X1C
24X1Y
24X5B
24X5B
24X5B
24Y1C
24Y1C

3AZ
1AY
3AY
1AX
3AZ
1AX
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ

3AZ
3AZ
3AZ
1AY
3AY
1AY
3AY
1AY
3AZ
3AZ
3AZ
3AZ
1AY
3AZ
3AZ
3AZ
3AZ
1CX
1AX
1AX
1AX
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ
1AY
1AY
3AZ
3AZ
3AZ
3AZ
1AY
1AY
3AY
3AY
1CX
1AX
3AY
1AY
1AY

35C4Y

35C1Y
35C1Y

35B4Y

35B2Z
35B2Z
35B4Y
35B4Y

35C4Y
35X2Z
35Y2Z

352
35Z

35Z

35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Z
352

35Y
35Y
35Y
35Y
35Y
35Y
35Y

35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Y
35Z
35Z
35Z
35Z
352
35Z
352
352
35z

2BZ

1CX
1CX
2BZ

2BZ

4CX
1AX
1AX
1AX
1AX
1AX
2BZ

1AX
1AX
1AX
ICX
1CX
ICX
1CX
1CX
ICX
1CX
2BZ

2BZ

1AX
1CX
ICX
1AX
2BZ

1AX
1AY
4CX
4CX
4CX
1AX
1AX
1AX
1AX
1CX
1CX
4CX
4CX
1CX
4CX
1AX
1CX
1CX
4CX
1CX
2CX
1CX
2CX
1AY
4CX
1AX
1CX
4CX

15:11:16
15:43:30
15:44:17
15:50:37
15:51:21
16:18:29
17:02:31
17:14:17
17:14:24
17:14:30
17:14:38
17:15:18
17:17:10
17:49:00
17:49:08
17:49:48
18:02:22
18:03:49
18:10:16
18:11:02
18:12:38
18:14:01
19:02:44
19:11:24
19:30:21
19:34:47
19:36:11
20:11:44
20:12:49
21:25:58
21:33:39
21:49:33
22:25:43
22:26:26
22:28:15
22:28:54
22:29:31
22:30:10
22:31:18
22:31:58
22:33:41
22:34:21
22:56:16
22:57:46
22:58:59
23:00:33
23:01:15
23:02:47
23:04:56
23:06:15
23:07:39
23:08:57
23:10:21
23:12:51
23:19:48
23:22:58
23:24:07



AX5Y4 13B 2CZ 4B 3AY 352 1CX 23:26:11

AX5Y4 13B 2CZ 24B 3AY 352 4CX 23:27:19
AX5Y4 13B 2CZ 24B 1CX 352 1AY 23:28:57
CX2Z5 13B 4AY 24C 3AZ 35B2Y 1AX 23:34:16
CZ2X5 13B 4AY 24C 3AZ 35B2Y 1AX 23:35:00
CZ2X5 13B 4AY 24C 3AZ 35B2Y 1CX 23:36:19
AX2Y4 13B 5CZ 24C 1AY 35B2Z 1CX 23:46:08
AX2Y4 13B 5CZ 24C 3AY 35B2Z 1CX 23:48:06
CZ2YS 13B 4AX 24C 1AY 35B4Y 1CX 23:50:43
CZ2YS 13B 4AX 24C 3AZ 35B4Y 1CX 23:52:07
AY2X4 13B 5CZ 24C 3AZ 35B4Y 1AX 23:54:29
AY2X4 13B 5CZ 24C 3AZ 35B4Y 1CX 23:55:47
AX2Y4 13B 5CZ 24C 3AZ 35X1Y 2BZ 00:02:00
AY2X4 13B 5CZ 24C 3AZ 35X1Y 2BZ 00:02:46
CX2Z5 13B 4AY 24C 3AZ 35Y 1AX 00:30:39
CZ2X5 13B 4AY 24C 3AZ 35Y 1AX 00:31:25
CZ2X5 13B 4AY 24C 3AZ 35Y 1CX 00:33:18
CZ2X5 13B 4AY 24C 5BZ 35Y 1AX 00:34:38
CZ2X5 13B 4AY 24C SBZ 35Y 1CX 00:35:39
AZ2Y4 13B 5CX 24C 5BZ 35Y 1AX 00:39:45
AY2X4 13B 5CZ 24C 1AX 35Y 2BZ 00:41:18
AX2Y4 13B 5CZ 24C 1AY 35Y 2BZ 00:42:54
AX2Y4 13B 5CZ 24C 1AY 35Y 1CX 00:44:02
AY2X4 13B 5CZ 24C 3AZ 35Y 1AX 00:45:16
AX2Y4 13B 5CZ 24C 3AZ 35Y 2BZ 00:46:56
AY2X4 13B 5CZ 24C 3AZ 35Y 2BZ 00:47:42
AX2Y4 13B 5CZ 24C 3AZ 35Y 1CX 00:48:55
AY2X4 13B 5CZ 24C 3AZ 35Y 1CX 00:49:41
CZ2Y5 13B 4AX 24C 1AY 352 1CX 00:51:35
CZ2Y5 13B 4AX 24C 3AY 352 1CX 00:52:59
AZ2Y4 13B 5CX 24C 3AY 352 1AX 00:55:17
CX5Z2 13B 4AY 24X 3AZ 35B2Y 1AX 00:57:29
AX5Y4 13B 2CZ 24X 1AY 35B2Y 1CX 01:01:02
AXS5Y4 13B 2CZ 24X 3AZ 35B2Y 1ICX 01:02:38
CX5Z2 13B 4AY 24X 3AZ 35Y 1AX 01:39:22
AZ2Y4 13B 5CX 24X 5BZ 35Y 1AX 01:48:33
AZ2Y4 13B 5CX 24X 3AY 352 1AX 01:55:20
AX5Y4 13B 2CZ 24X 1AY 352 1CX 01:56:33
AX5Y4 13B 2CZ 24X 3AY 352 1CX 01:58:08
36
CZ5B2 13Y 4AX 24C5X 3AZ 35Y4B 1CX 06:47:51
AX2B4 13Y 5CZ 24XS5Y 3AZ 35B 1CX 08:16:22
BZ5C2 13Y 4AX 24Y5X 3AZ 35B 1CX 08:54:39
CZ2B5 13Y 4AX 24C 3AZ 35Y4B 1CX 10:38:46
AX2B4 13Y 5Cz 24C 3AZ 35B 1CX 10:54:18
AX5B4 13Y 2CZ 24X 3AZ 35Y2B 1CX 11:14:11
AX5C4 13Y 2BZ 24X 3AZ 35Y4B 1CX 11:22:12
AX5C4 13Y 2BZ 24X 3AZ 35B 1CX 11:32:57
AX2B4 13Y 5CZ 24Y 3BZ 35B1A 4CX 11:47:15
BZ5C2 13Y 4AX 24Y 3AZ 35B 1CX 12:39:30
AX5C4 13Y 2BZ 24Y 3AZ 35B 1CX 12:45:38
AX5C4 13Y 2BZ 24Y 3AZ 35B 2CX 12:46:52
AX2B4 13Y 5CZ 24Y 3AZ 35B 1CX 13:04:50
AX2B4 13Y 5CZ 24Y 3AZ 35B 4CX 13:06:28
37

NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR CASE 2.
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. DISPLAY MEMORY

STIME pub C "07:47:22"

COUNT1 priv N 37 ( 37.00000000) C:OBRWLC2.prg
COUNT2 priv N 866 ( 866.00000000) C:OBRWLC2.prg
COUNT3  priv 8520 (  8520.00000000) C:OBRWLC2.prg
COUNT4  priv 16531 (  16531.00000000) C:OBRWLC2.prg
COUNTS  priv 16895 (  16895.00000000) C:OBRWLC2.prg
COUNT6 priv 11792 (  11792.00000000) C:OBRWLC2.prg
COUNT7  priv 4687 (  4687.00000000) C:OBRWLC2.prg
COUNT8  priv 187 ( 187.00000000) C:OBRWLC2.prg
COUNT9  priv 0 ( 0.00000000) C:OBRWLC2.prg
FOUND pub L F.

PENT pub C "C2P"

TRI pub C "C1T3"

FACTOR pub C "3"

TRITYPE pub C "T"

FTIME pub C "13:13:08"

2222222

P3 pub L F.

Press any key to continue...

P4 pub L F.

PS pub L F.

T3 pub L .F.

T4 pub L F.

TS pub L .F.

D3 pub L F.

D4 pub L F.

DS pub L F.

P3CHOSEN priv N 0 ( 0.00000000) C:OBRWLC2.prg
PACHOSEN priv N 0 ( 0.00000000) C:OBRWLC2.prg
PSCHOSEN priv N 0 ( 0.00000000) C:OBRWLC2.prg
D3RECNO priv N 15 ( 15.00000000) C:OBRWLC2.prg
D4RECNO priv N 14 ( 14.00000000) C:OBRWLC2.prg
DSRECNO  priv N ( 3.00000000) C:OBRWLC2.prg

(

3
F3RECNO priv N 9 9.00000000) C:OBRWLC2.prg
32 variables defined, 201 bytes used
224 variables available, 5799 bytes available
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OUTPUT FROM OBRWLFCH.PRG - CASE 3

1

2

3

4
13A4Y
13A4Y

5

6
13A5X
13A5X
13A5X
13A5X

5CZ
2BX

4CY
2BZ
4CY
2BZ

5Cz
4AX

2CZ
S5AX
2CZ
5AX

5Cz
4AX
5Cz
4AX

5CZ
2BX
5CZ
2BX
5CZ
2BX

2CZ
5AX
2CZ
5AX

2BZ
5AX
2BX
5AZ
2BZ
5AX

2BX
5CZ

2BZ
4CY
2BZ
4CY

4AX
5CZ

5AX
2CZ
5AX
2CZ

4AX
5CZ
4AX
5CZ

2BX
5CZ
2BX
5CZ
2BX
5CZ

5AX

5AX
2CZ

5AX
2BZ

2BX
S5AX
2BZ

24A1Y
24A1Y
24B1Y
24B1Y

24Y5X
24Y5X

24X5Y
24X5Y

24X1Y
24X1Y
24X1Y
24X1Y

24A1X
24A1X
24B3Z
24B3Z

24C
24C

24C
24C

24X
24X
24X
24X

24C
24C

24C
24C
24C
24C

24X
24X

88

3BZ
3BZ

5Cz
5CZ
5CZ
5CZ

3AZ
3AZ

3AZ
3AZ
5CY
5CY

3BZ
3BZ
3BZ
3BZ

3BZ
3BZ
3AZ
3AZ
3BZ
3BZ

3BZ
3BZ
3BZ
3BZ

5CY
5CY
1AX
1AX
5CY
5CY

35X4B
35X4B

35C1A
35C1A
35C4A
35C4A

35X4A
35X4A

35Y
35Y

35Y
35Y
35Y
35Y

35Y
35Y

35Y
35Y
352
352

35A
35A
35A
35A

35A
35A

35A
35A

352
352

352
35Z

1AX
1AX

4BX
4BX
4AX
4AX

1BX
1BX

1BX
1BX
1BX
1BX

1CY
1ICY
1CY
1CY

1CY
1CY
1ICY
1ICY
1ICY
1ICY

2BX
2BX
2BX
2BX

4BX
4BX
2CY
2CY
1BX
1BX

19:49:55
19:52:07

20:39:12
20:39:49
20:42:54
20:43:11

23:45:36
23:47:48

03:08:35
03:10:01
03:11:37
03:12:24

03:48:04
03:48:29
03:56:49
03:57:45

05:54:48
05:55:43
06:03:13
06:04:38
06:07:33
06:08:50

06:49:36
06:50:14
06:51:07
06:51:45

07:17:28
07:17:46
07:38:21
07:38:42
08:00:11
08:00:59



2CZ
4BX

2BZ
4AX
2BZ
4AX

4CY
SAX
4CY
SAX

13A
13A
13A
13A
13A
13A
13A
13A
13A
13A
13A
13A
13A
13A

13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B
13B

4BX
2CZ

4AX
2BZ
4AX
2BZ

SAX
4CY
SAX
4CY

4BX
2BX
2BZ
5CY
5CY
4BX
SCY
4BX
2BZ
5CZ

4BX
5CY
5CY

SAX
4CY
4AX
2CZ
4AX
5CZ
SAX
5CZ
2CZ
4AX
2CY
4AX
SAZ
SAZ
4CY
4CY
4AX
4AX
5CZ

24B1Y
24B1Y
24Y1X
24Y1X

24A1X
24A1X
24A1Y
24A1Y

24A5X
24B3Z
24C1Y
24C1Y
24Y1C
24Y3B
24Y3B

24A1X

24A1Y
24C1X
24C1X
24Cs5X
24X1C
24X1C
24X1C
24X1Y
24Y1C
24Y3Z

24Y
24Y

24C
24C
24C
24C
24C
24C
24Y

4B
24B
4B
4B
24B
24C
24C
24C

89

3AZ
3AZ

SAZ
SAZ
3AZ
3AZ

5CZ
5CZ
5CZ
5CZ

1CY
1CY
SAZ
S5AX
5AX
SAX
SAX
SAZ
SAZ
SAX
3BZ
SAX
SAX
SAX

5CY
5CZ
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ
SAZ
3AZ
1AX
SAZ
1AX
1AX
5CZ
5CZ
3AZ
3AZ
3AZ

35X2B
35X2B

35X1A
35X1A
35A1B
35A1B

35C4Y
35C2Y

35X2B

35A1Y
35A1Y
35A1Y
35A1Y

35C1A

35X1A
35Y4A

35A1Y
35A1Y
35A1Y

35Y
35Y
35Y
35Y

35Y
35Z
35Z
35Z
35Z

35Y
35Y
35Y
35Z
35Z
352

352
35Y

35Y
35Y

35Y
35A

35Y
35Y
35Y

1ICY
1ICY

4CY
4CY
2CY
2CY

4BX
4BX
4BX
4BX

2BZ
4AX
1BX
1BX
1BX
1ICY
1BX
1ICY
1BX
2BZ
4AX
1ICY
1BX
1BX

4BX
4BX
2BZ
4BX
2BZ
2BZ
2BX
2BZ
2BX
2BX
2BX
4CY
2CZ
2CZ
1AX
4AX
2BX
2BX
4BX

09:27:50
09:28:46

09:41:35
09:42:14
09:50:58
09:51:37

10:49:59
10:50:16
10:52:03
10:52:20

16:22:56
18:47:42
20:14:29
20:28:26
22:34:29
23:07:53
23:10:31
00:47:13
01:16:57
01:20:56
01:23:17
01:27:09
01:31:48
04:02:29

04:26:26
04:33:44
05:02:54
05:06:38
06:11:15
06:45:03
06:54:37
06:58:11
07:03:59
07:47:41
08:36:51
09:27:53
10:13:44
10:31:34
10:41:51
10:42:57
10:55:01
10:55:41
10:59:14



AX2Y4 13B 5CZ 24C 3AZ 35A1Y 2BZ 11:00:30

AX2Y4 13B 5CZ 24C 3AZ 35X1Y 2BZ 11:19:01
CY2Z5 13B 4AX 24C 3AZ 35Y 2BX 11:47:28
AX2Y4 13B 5CZ 24C 3AZ 35Y 4BX 11:58:34
AX2Y4 13B 5CZ 24C 3AZ 35Y 2BZ 11:59:50
CY5Z2 13B 4AX 24Y 3AZ 35A1Y 2BX 13:21:42
CY5Z2 13B 4AX 24Y 3AZ 35C1Y 2BX 13:33:53
36
BZ2C4 13Y SAX 24A3B 5CY 35Z 1BX 15:31:17
AZ5C4 13Y 2BX 24B3Z 1AX 35A 2CY 16:42:44
AX2B4 13Y 5CZ 24XI1C 3AZ 35A1B 4CY 18:31:08
AX2B4 13Y SCZ 24X1C 3BZ 35A 4CY 18:42:04
CZ5A4 13Y 2BX 24X5C 3AZ 35Y4B 1AX 18:47:23
AX2B4 13Y S5CZ 24XSY 3AZ 35AI1B 4CY 18:51:55 .
AZ5C4 13Y 2BX 24XS5Y 3BZ 35A 2CZ 19:02:09
AX2B4 13Y 5CZ 24XS5Y 3BZ 35A 1BX 19:04:45
AX2B4 13Y 5CZ 24X5Y 3BZ 35A 4CY 19:05:59
AX2B4 13Y 5CZ 24C 3BZ 35A 1BX 21:34:58
AX5C4 13Y 2BZ 24X 3AZ 35A1B 2CY 21:40:09
BX5A4 13Y 2CZ 24X 3AZ 35Y2B 1AX 22:08:58
Cz2B4 13Y S5AX 24X 3BZ 35Y4A 1BX 22:12:52
BZ2C4 13Y S5AX 24X 5CZ 35Y4A 1BX 22:14:37
BZ2C4 13Y SAX 24X 5CY 352 1BX 22:31:33
CZ2B4 13Y S5AX 24X 5CY 352 1BX 22:32:18
BX5A4 13Y 2CZ 24X 5CY 352 1AX 22:34:26
AZ5C4 13Y 2BX 24Y 3BZ 35X1A 2CZ 23:27:11
BX2C4 13Y S5AZ 24Y 1AX 35X4A 2BZ 23:38:51
AZ5C4 13Y 2BX 24Y 1AX 35X4B 2CZ 23:47:29
AZ5C4 13Y 2BX 24Y 1AX 35A 2CZ 23:57:39
AZ5C4 13Y 2BX 24Y 3BZ 35A 2CZ 23:59:09
AX2B4 13Y 5CZ 24Y 3BZ 35A 1BX 00:08:58
37

NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR CASE 3.

. DISPLAY MEMORY
STIME pub C "16:42:21"

COUNT1  priv N 37 ( 37.00000000)  C:OBRWLC3.prg
COUNT2  priv N 819 (  819.00000000)  C:OBRWLC3.prg

COUNT3 priv N 7651 ( 7651.00000000)  C:OBRWLC3.prg
COUNT4 priv N 15994 (  15994.00000000)  C:OBRWLC3.prg
COUNTS priv N 17709 (  17709.00000000)  C:OBRWLC3.prg
COUNT6 priv N 12448 (  12448.00000000)  C:OBRWLC3.prg
COUNT7 priv N 4685 (  4685.00000000)  C:OBRWLC3.prg
COUNT8  priv N 105 ( 105.00000000)  C:OBRWLC3.prg

COUNT9  priv N 0 ( 0.00000000)  C:OBRWLC3.prg

FOUND pub L .F.
PENT pub C "C2P"
TRI pub C "C1T3"
FACTOR pub C "3"
TRITYPE pub C "T"
FTIME pub C "00:17:20"

P3 pub L F.
Press any key to continue...
P4 pub L F.
PS5 pub L F.
T3 pub L .F.
T4 pub L F.
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T5 pub L .F.

D3 pub L F.
D4 pub L F.

D5 pub L F.

P3CHOSEN priv N 0 ( 0.00000000)  C:OBRWLC3.prg
P4CHOSEN priv N 0 ( 0.00000000)  C:OBRWLC3.prg
PSCHOSEN priv N 0 ( 0.00000000)  C:OBRWLC3.prg
D3RECNO  priv N 16 (16000000000  C:OBRWLC3.prg
D4RECNO  priv N 7 ( 7.00000000)  C:OBRWLC3.prg
DSRECNO  priv N 3 ( 3.00000000)  C:OBRWLC3.prg
F3RECNO  priv N 11 ( 11.00000000)  C:OBRWLC3.prg

32 variables defined, 201 bytes used
224 variables available, 5799 bytes available
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