
The Oberwolfach Problem:
A History and Some New Results

Peder A. Bolstad
B.A. cum l a d e , St. Olaf College, 1974

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department

d

MATHEMATICS

O Peder A. Bolstad 1990

SIMON FRASER UNIVERSITY

August 1990

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy or

other means, without permission of the author.

Approval

Name: Peder Allan Bolstad

Degree: Master of Science

Title of thesis: The Oberwolfach Problem: A History and Some New Results

Examining Committee:

Chair: Dr. A. Lachlan

Dr. %ian ~ l s f6ch
Senior Supervisor

~ y ~ a t k p j ? Heinrich

Dr. Pavol Hell

Dr. Luis Goddyn
External Examiner

Date Approved: August 7, 1990

PARTIAL COPYRIGHT LICENSE

I hereby g r a n t t o Simon Fraser

my, t hes i s , p r o j e c t o r extended essay (t h e

t o users o f t h e Simon F rase r U n i v e r s i t y L

University the r i g h t t o

t i t l e o f which i s shown

i b r a r y , and t o make p a r t

l end

be low)

i a l o r

s i n g l e cop ies o n l y f o r such users o r i n response t o a r eques t f rom t h e

l i b ra r? 'of any o t h e r u n i v e r s i t y , o r o t h e r educa t iona l i n s t i t u t ion, on

i t s own beha l f o r f o r one o f i t s users . I f u r t h e r agree t h a t pe rm iss i on

f o r m u l t i p l e copy ing o f t h i s work f o r s c h o l a r l y purposes may be g ran ted

by me o r t h e Dean o f Graduate S tud ies . I t i s understood t h a t copy ing

o r publication o f t h i s work ' f o r f i n a n c i a l g a i n s h a l l no t be a l l owed

w i t h o u t my w r i t t e n permiss ion .

T i t l e o f Thes is /Pro ject /Extended Essay

Author: . - . - - - " p

(s i g n a t u r e)

(name 1

Abstract

The Oberwolfach Problem asks whether it is possible to decompose the

complete graph on 2n+l vertices (or the complete graph on 2n vertices with a

spanning set of independent edges removed) into isomorphic factors each comprising a

set of cycles whose combined length is 2n+l (or 2n, respectively). We trace the

history of the investigation of this problem, giving results that are known and noting

questions that remain open. Solutions (or reasons why no solution exists) are given

for all variations of the problem for small n. Some of the solutions are new and others

have not been published previously. A new computer-assisted proof is given for the

nonexistence of a decomposition of the complete graph on eleven vertices into factors

comprising a 5-cycle and two 3-cycles. In the final section we consider each of the

cases of the problem that are known to have no solution, and ask whether multiple

copies of the complete graph can be 2-factored in the desired way.

This work is dedicated to Dennis and Marie Bolstad, my parents, who started

my thinking processes and who have always been loving, supportive and encouraging

in whatever serious or silly projects I have decided to undertake, and to the memory of

Otis and Dora Trodahl, my maternal grandparents, who led lives driven by caring, and

sharing, and who would have been tickled to see this.

Acknowlegements

Thanks is due to Brian Alspach for suggesting the topic for this thesis, for

being an advocate and guide through various difficulties over the past five years, and

for allowing the use of his office and computer during the final writing process. Thanks

also to Kathy Heinrich for her exceptionally careful reading of the manuscript drafts. In

addition I am also indebted to Patty Johann for helping to make my first year at S.F.U.

survivable and to Sylvia Holmes for her tireless and often thankless efforts at keeping

things running smoothly.

In addition, I wish to acknowledge Arthur Seebach who has been my most

consistent source of intellectual stimulation and initation since the early 19701s., Ted

Vessey who first asked me to solve a case of the Oberwolfach Problem and Loren

Larson who first got me interested in discrete mathematics.

Finally, I want to thank Linda Hunter for her encouragement and flexibility,

without which the probability of completing this project would have been = e.

Table of Contents

1 . The Oberwolfach Problem .. 1

.. 1 . 1 Kirkman's Schoolgirl Problem 2
1.2 Hamilton Cycle Decompositions 4

..................................... 1.3 Uniform Cycle Decompositions 6
....................................... 1.4 Non-uniform Decompositions 8

2 . OP(Kn; a,. az, a,) Solutions for Small n 10

3 . OP(11; 3*. 5) .. 21

... 3.1 The Problem 27
... 3.2 The Computing 28

.. 3.3 The Setup Programs 29
.. 3.4 0BRWLFCH.PRG 29

3.5 Data Analysis .. 32
4 . Solutions in hKn ... 34

References .. 39

Appendix
.. 0BRWLFCH.PRG 41

Procedure File for 0BRWLFCH.PRG 47
.......... Data-Generating Programs for 0BRWLFCH.PRG 52

...................... Databases for 0BRWLFCH.PRG - Case 1 57

Databases for 0BRWLFCH.PRG - Case 2 64

...................... . Databases for 0BRWLFCH.PRG - Case 3 7 1

.......................... Output from 0BRWLFCH.PRG - Case 1 7 8

Output from 0BRWLFCH.PRG - Case 2 83
Output from 0BRWLFCH.PRG - Case 3 88

List of Figures

................... Walecki construction for solving OP(2n. 2n) 4

Walecki construction for solving OP(2n+l. 2n+l) 5

Base factors for OP(8; 3. 5) and OP(8; 42) solutions 12

...................... Last three 2-factors of OP(9; 32) solution 13

First 2-factor for OP(11; 32. 5) decomposition 21

.. Possible F2 structures 22

Kll-(F1+F2) .. 23

.. 0BRWLFCH.PRG flow chart 31

The Oberwolfach Problem:
A History and Some New Results

The Oberwolfach Problem

Is it possible to partition the edge-set of the complete graph on n vertices (K,)

into isomorphic 2-factors (a 2-factor is set of disjoint cycles whose vertex set spans

the graph being factored)? Such a partitioning is also often referred to as a

factorization or decomposition of the graph. It is immediately apparent that each

vertex of K, is of degree n-1 and that since each cycle removed from the graph

decreases the degree of each vertex used by 2, n-1 must be even if a cycle

decomposition is to exist. Thus the question makes sense only if n is odd and this is

the original Oberwolfach Problem (OP) mentioned in 1967 by Ringel at a graph theory

meeting at the Oberwolfach conference center in Germany (hence the name), and first

seen in the literature as part of a list of unsolved problems presented by Guy [6].

If we let n be even and consider the graph K,-F where F is a 1-factor (a set of

disjoint edges whose vertices span the vertex set of the graph), we have a graph that

is regular of even degree which allows us to consider the question above for these

graphs as well. This variation on the OP was originally worked on as a separate

problem under the rubric 'NOP' (for 'Nearly Oberwolfach Problem'), but is now

accepted as part of the OP. The notation for the Oberwolfach Problem used in this

thesis is as follows: OP(n; al , a2, ... , a,)) represents the problem of decomposing K,

into isomorphic 2-factors where each of the 2-factors comprises one cycle of each

length ai, for i = 1, 2, ..., t and a,+ a2 + ... + a, = n. When there are cycles of the same

length in a 2-factor, the above notation may be abbreviated by including each length

only once in the list with an exponent that indicates the number of cycles of that

particular length to be included.

We will review the history of this problem; indicating the techniques used to

approach it. Then, for each K, on fewer than 19 vertices and for each K,,, on fewer

than 16 vertices, we will consider all possible cycle combinations into which it might

be isomorphically 2-factored and give such a decomposition if one has been found or a

reason for its non-existence if that has been established. The discussion will include

several new factorizations and a proof of the non-existence of a decomposition of K,,

into five isomorphic 2-factors each comprising a 5-cycle and two 3-cycles (i.e., no

solution for OP(11; 32, 5) exists).

We will conclude by considering the possibility that the cases of the

Oberwolfach Problem for which no solution exists in K, might have a solution in hK, -
a complete multigraph on n vertices where every edge has multiplicity h > 1.

1.1 Kirkman's Schoolgirl Problem

The quest for 2-factorizations of complete graphs is not new. In the Lady's and

Gentleman's Diary of 1850, T.P. Kirkman asked whether it was possible for fifteen

schoolgirls to be arranged in five lines of three girls on each of seven days in such a

way that each girl was in a line with each of the other girls exactly once during those

seven days. This problem is equivalent to asking if K,, can be decomposed into seven

2-factors, each comprising five 3-cycles. Current notation for the problem would be

OP(15; 3'). According to Ball [4], solutions for this problem and the analogous

problems where there are 9 and 27 girls in lines of three were found in the same year

by unnamed authors through largely empirical methods.

The literature of the years following Kirkman's query contains solutions for

various examples of what have now become known as Kirkman Triple Systems. In

1892 Ball [4] collected work done by several separate authors to give a listing of all

known solutions for cases of the problem from K9 to K9,, inclusive. Since we are

considering rows of three children, the total number of children must be a multiple of

three and since each child is in line with two other children in each arrangement, the

total number of children must be odd. Thus the only numbers for which the problem

has exact solutions are those that are odd multiples of three (i.e., those of the form

6m+3).

Ball reports that solutions were found by different investigators in cases where

the number of children is 12m+3 when 6m+l is prime, 18m+3,18m+9, 18m+15,24m+3,

and 24m+9 where m is a positive integer. In all, solutions collected in [4] settle the

question for every number of children from 9 to 99, inclusive, that is of the form 6m+3.

Solutions were arrived at by methods ranging from trial and error to constructing a

"base factor" (i.e., an arrangement of the children for the first day) which can be used

to generate a full set of 2-factors by applying a permutation to the vertices of that

original 2-factor and to those of each successive 2-factor until a complete set of

factors is obtained.

It was not until 1971 that a general solution was found for the Kirkman

problem. Any number n = 6m+3 of children can be arranged in rows of three on 3m+l

days in such a way that each child is in the same row with each other child exactly

once. The proof was done from the point of view of the theory of balanced incomplete

block designs (BIBD's). This gives us our first theorem on solutions to the

Oberwolfach Problem.

Theorem 1.1.1: (Ray-Chaudhuri and Wilson [17]) A solution exists for

OP(6m+3; 32m+1) for all positive integers m.

The best we could do with an even number of children is to find arrangements

where each child is in a line with each other child except one exactly once during the

sequence of walks. Solutions for this variation of the problem have became known as

Nearly Kirkrnan Triple Systems (NKTS).

Kotzig and Rosa [14] showed the non-existence of NKTS(6) and NKTS(12),

the existence of NKTS(fv) given NKTS(v) for any t = 3 (mod 6), and the existence of

NKTS(6t) when 6t is the product of two integers r and s where r = 1 (mod 3), r 2 4 and

s = 1 (mod 2). Baker and Wilson [3] showed NKTS(6t) exists for t > 2 , except

possibly for t = 14, 17 or 29. Brouwer [5] constructed solutions for two of these three

unsolved cases leaving only t = 14 in question. The final case was reported solved in

[12], but the solution was incorrect. The description of a correct construction is given

by Rees and Stinson [19]. Throughout these papers the tools, notation and

terminology of design theory were employed to obtain the given results. In OP

notation we have

Theorem 1.1.2: A solution for OP(6t; 32') exists for all t 23.

1.2 Hamilton Cycle Decompositions

Another variation on the Kirkman problem might be to have n children sit

around a circular table on L(n-l)/2] consecutive days arranged in such a way that each

child sits next to each other child (except one, if n is even) exactly once. In other

words, can K, (or K,-F for even n) can be partitioned into L(n- 1)/2] Hamilton cycles

(i.e., each 2-factor is a single cycle containing all vertices of the original graph).

Letter arrangements and a diagram appear (attributed to Walecki) in Lucas'

Re'cre'ations Mathe'matiques [15] in 1884 showing base factors for the Hamilton

decomposition of K,, and KI2-F which are easily generalizable into base factors for

decomposing any K,,,, or K2,-F into Hamilton cycles. Figure 1.2.1 and Figure 1.2.2

below show the generalized base factors for these two infinite classes of OP cases.

The base factor (notated as R below) will become a powerful tool as we

proceed. We will use a to stand for a permutation and will write a(R) to indicate the

application of a to the vertices of R to obtain another factor. By writing a i (~) we

indicate the result of applying the permutation a to the vertices of R and to each

resultant factor until a has been applied i different times.

Figure 1.2.1

Figure 1.2.1 shows the first 2-factor of the Hamilton decomposition of K2,-F.

We have 2n-2 vertices on the circumference of a circle labled consecutively from 0 to

2n-3 . We join vertex 0 to vertex 1, vertex 1 to vertex 2n-3, vertex 2n-3 to vertex 2,

vertex 2 to vertex 2n-4, and so on until we reach vertex n-1 which is then joined to

vertex 0. Place a vertex labeled -3, on the edge between vertex 0 and vertex n-1, and

a vertex labeled -3, on the edge joining vertex r(n-1)/21 with vertex r3(n-1)/21.

Let this Hamilton cycle be R, and let a = (=3,)(=32)(0 1 2 ... 2n-3) be a

permutation of the vertices of R. It is easy to check that the set of cycles generated by

a, (ai (R) I i = 0 , 1 ,2 , n-2) , is a complete Hamilton decomposition of K,-F where

F = {[Ool, m2], [i, i+n-1] : i = 0 , 1, 2, ..., n-1 }. This construction gives us

Theorem 1.2.1: A solution for OP(2n; 2n) exists for all n 7 1.

Figure 1.2.2 shows a base factor for the Hamilton decomposition of K2,,+, by a

very similar construction to the one above. We start with 2n vertices labeled from 0 to

2n-1 consecutively around the circumference of a circle. Vertex 0 is joined to vertex 1,

vertex 1 to vertex 2n-1, vertex 2n-1 to vertex 2 and so on until we join vertex n+l to

vertex n. Vertex n is then joined to vertex 0 and a vertex labeled 00 is placed on this

last edge. Let this Hamilton cycle be R and let a = (-)(O, 1, 2, ..., 2n-1). Checking

shows that (ai (R) : i = 0 , 1 , 2, ..., n-1] gives a Hamilton decomposition of K2,,+,.

n
Figure 1.2.2

This construction yields

Theorem 1.2.2: A solution for OP(2n+l; 2n+l) exists for all n > 0.

5

1.3 Uniform Cycle Decompositions

The two parts of the Oberwolfach problem mentioned above are extremes

between which lie a number of solved and a large number of unsolved cases. The

Kirkman problem asks for a decomposition into the smallest cycle lengths possible

and the Hamilton decompositions are decompositions into the longest possible cycle

length. In both of these situations we were looking for what are now referred to as

decompositions into uniform 2-factors (i.e., all cycles are the same length).

Several authors from the middle 1970's to the middle 1980's obtained results on

uniform 2-factorizations. Hell, Kotzig and Rosa [8] introduced some notation that has

become standard in these questions. D(s) is defined as the set of all integers v such

that K,can be decomposed into uniform 2-factors of s-cycles. That paper included

several results. If k is odd and k 2 3 and there exists a resolvable (v, k, 1)-BIBD

then v E D(k). This theorem immediately yields two corollaries. Since for any prime p
2a a and positive integer a, there exists a resolvable (p , p , 1)-BIBD, it follows that if p

is an odd prime and the integer a 2 1, then p2a E D(pa). It is established in [18] that

for any integer k 2 2, there exists a constant c(k) such that for every v > c(k) where v

= k (mod k(k-1) there exists a resolvable (v, k, 1)-BIBD. Thus if k is odd and k 2 3,
there exists a constant c(k) such that for all v 2 c(k) where v = k (mod k(k-1)), v E

Wk).

Hell, Kotzig and Rosa also show that "3s E D(s) if and only if s is odd, s > 1,"

by way of a construction. This theorem seems to contradict a theorm in [lo] where

Horton, Roy, Schellenberg and Stinson note that "For v a positive integer, v E D(4) if

and only i fv is a multiple of 4," which implies that 12 E D(4). This confusion is easily

resolved by realizing that in the ten years between these papers, the two parts of the

Oberwolfach Problem had become one and thus the meaning of the D(s) notation had

changed to accommodate that newly modified understanding of the problem. Thus, in

the current literature it is understood that v E D(s) means that K, (if v is odd) or K, -F

(if v is even) can be uniformly 2-factored into s-cycles. The same problem occurs

when earlier authors state results in terms of 'NOP'. Modern notation would be 'OP'

and the restrictions on the parity of v would be either modified or dropped. Throughout

this thesis we will use the more modem notation and phrasing, which will occasionally

appear to be slightly different from the original statements of the results being

reported.

Back to the results. Hell, Kotzig and Rosa also show in [8] that if m E D(s)

and n E D(s), then mn E D(s) by observing that Kmn = Km x Kn u K , €3 Kn and

showing that K , x K , and K , €3 K , can be 2-factored into s-cycles whenever Km and

Kn can be. Given two graphs G and H, the graph G x H has vertex set V(G) x V(H)

and an edge [(g, h), (g', h')] if and only if [g, g") E E(G) and h =h', or [h, hl] E E(H)

and g = g'. G O H also has vertex set V(G) x V(H), but has an edge [(g, h), (g', h')] if

and only if [g, g") E E(G) and [h, hl] E E(H). This latest theorem yields the corollary:

sn E D(s) for odd s and every integer n 2 1. The final theorem in this paper states that

rs E D(s) when r = 3k sn-l , s is odd, s Z 3, k Z 0 and n 2 1, but the arguments only

support the claim when 0 5 k I n- 1.

Five years later, Huang, Kotzig and Rosa [l l] focused on the even cases

(decomposition of K, into uniform isomorphic 2-factors) showing that v E D(4)

whenever v = 0 (mod 4), 2k E D(k) for k 2 4, and 6k E D(2k) for k > 1. These proofs

were done by direct construction of a base factor and the results were reported in NOP
notation. They also give a specific solution for OP(10; 5).

In 1985, Horton, Roy, Schellenberg and Stinson [lo] collected known results

and added a few more of their own. For any positive integers s and t, 8ts E D(4t). If m

= 2 (mod 4) then 4m E D(m). If n is a multiple of 3 other than 6 and 12, then we have

mn E D(m). For positive s and t, 20,ts E D(l0t) and 28ts E D(14t). For m > 2 and t

any positive integer except 2 or 4, 3tm E D(m). Most of these results are derived

from known results about BIBD's, abelian groups and complete bipartite and tripartite

graphs.

Alspach and Haggkvist [I] settled all cases of uniform 2-factorizations into

even length cycles in the same year. For m 2 2 ,2mn E D(2m) for all positive integers

n. The proof of this theorem rests on visualizing K2mn as various wreath products of

appropriate size graphs so that the decomposition into 2m-cycles follows directly from

previously known results. The wreath product GwrH is obtained by replacing each

vertex of G with a copy of H, joining two vertices in different copies of H only if the

vertices of G corresponding to those copies of H are adjacent. See the solution given

for OP(9; 33) in Section 2 of this thesis to see an application of the wreath product

idea. So we have, in OP notation,

Theorem 1.3.1: If m is even and m 2 2, a solution for OP(mn; m) exists for

every natural number n.

The remaining cases of uniform 2-factorizations into odd length cycles for all

complete graphs (except those of the form K4, where m is the cycle length) were

settled by Alspach, Schellenberg, Stinson and Wagner [2] four years later. The proof

of this theorem also relies on visualizing complete graphs as wreath products and

showing that decompositions must exist for the various pieces and therefore also for

the complete graph.

The last remaining question regarding uniform 2-factorizations has been

answered by Hoffman and Schellenberg [9]. It is now established that 4m E D(m) and

we have

Theorem 1.3.2: For m odd and m 2 5, a solution for OP(mn; m) exists for

every positive integer n. For m = 3, a solution for OP(mn; m) exists for every positive

integer n except 2 and 4.

Taken together, Theorem 1.3.1 and Theorem 1.3.2 settle all cases of

decomposition into uniform 2-factors.

1.4 Non-uniform Decompositions

What remains largely an open question in the Oberwolfach Problem is the

existence of decompositions of K, into non-uniform 2-factors. What follows is a

collection of results that represent the progress to date.

Kohler [13] has shown that solutions for both OP(8k+3; 3, 4k, 4k) and

OP(8k+l; 3, 8k-2) exist. Huang, Kotzig and Rosa [I 11 constructed solutions for

OP(k+3; 3, k) whenever k is odd and k 2 5, and for OP(k+4; 4, k) whenever k is even

and k 2 4. They also show that a solution exists for OP(6k+4; 2k+2, 2k+l, 2k+l)

when k 2 1 and that a solution for OP(2k+2 rk/21+2c; k, k, 2 rk/21+2c) exists for all

positive integers c except 1.

This is the extent of the general cases that are solved and, though there are

solutions to other specific cases, this leaves the Oberwolfach Problem whenever each

2-factor is to comprise several cycles of different length pretty much wide open.

O P (n ; a,, a,, ... 9 a,) Solutions for Small n

In this section we will give a 2-factorization (if it is known) or reason for the

non-existence of one for each possible combination of cycles into which each K2, on

fewer than 19 vertices and each K,,, on fewer than 16 vertices might be decomposed.

As we go along we will use different solution techniques so the reader can get a feel

for them. Unless otherwise noted, these are decompositions generated by the author,

but only the existence of most of the decompositions of K,, is new.

The graphs K1 and K2 contain no cycles, so K, is the first complete graph where

the Oberwolfach Problem makes sense. Since K, is a single cycle, it is in itself the

solution for OP(3; 3)

OP(4; 4) is the only possible case involving K4. Removing any 1-factor from K4
yields a 4-cycle and thereby a solution.

OP(5; 5) and OP(6; 6) are solved using the Walecki constructions used earlier

to obtain Theorems 1.2.1 and 1.2.2. All Hamilton decompositions in this section will

be accomplished by use of this construction.

For writing the solutions in base factor situations we will adopt the notation

used by Huang, Kotzig and Rosa in [l l] . V is the vertex-set , R, as above, is the

base 2-factor in cycle notation, F is the 1-factor to be deleted (if appropriate), and a,
as in the previous chapter, is the permutation on the vertex-set that is used to

generate successive 2-factors to complete the decomposition. In addition we will

denote by Fi a 2-factor of the decomposition which is usually the result of a' (R). The

symbol '00' will be used to identify vertices that are fixed points of the permutation a.
The solutions for OP(5; 5) and OP(6; 6) in this notation are as follows:

The first possibility of a 2-factorization that is not into Hamilton cycles is

OP(6; 32), the decomposition of K6into 3-cycles, but no solution is possible. As soon

as the first 2-factor is selected, the edge set remaining is isomorphic to K,,, (the

complete bipartite graph with three vertices in each part) which contains no triangles

from which to fashion further 2-factors.

The decomposition of K, can be done in two ways. The solution for OP(7; 7) is

a Hamilton decomposition and OP(7; 3, 4) is accomplished with a permutation that

adds 2 to each vertex number to get successive 2-factors, unlike the permutation for

the Hamilton decomposition which adds 1. The solutions are listed below, but notice

that when the same V is used or when the Fi 's have the same designation for more

than one case, we will show them only once at the beginning of the list of base factors.

As we go on, the same will be true for a, F and the Fi 's.

In addition to the Hamilton decomposition of K,, there are two other

possibilities. Their base factors are shown schematically below because they

represent another way of thinking about the vertex-set that is helpful in many

upcoming cases. The labeling system is that used in [I 11. The factorizations follow

Figure 2.1. (Note that when V includes a copy of 2, any addition done in specifying F

is done modulo n.)

Figure 2.1

Kohler [13] has shown that there is no solution for OP(9; 4, 5). He finds that

there are only four non-isomorphic ways to choose the first two 2-factors. He then

considers the complements of these graphs. Since none of the complements is

isomorphic to any of the original four graphs, they cannot contain two disjoint 2-factors

and the result follows.

A solution for OP(9; 33) is our first opportunity to visualize a solution in a

wreath product. Visualize Kg as K,wrK, (i.e., think of a copy of K, being inserted into

each of the three vertices of another K, and then join all vertices that are from different

copies of K,). The three inserted K,'s form the first 2-factor and the other three are

shown in Figure 5. Following the figure, a solution is given for each OP situation of Kg

decomposition that exists. Note that since this solution to OP(9; 33) does not use a

base factor, the 2-factors Fi are listed rather than R and a permutation a .

Figure 2.2

V=Z& (00)
a = (m) (O 1 2 3 4 5 6 7)
Fi +I = a i (~) , i = 0, 1, 2, 3

OP(9; 3,6) R = {(m, 0 ,4) (1 ,2 ,7 ,5 , 6,311
OP(9; 4,5) Not Possible [12]
OP(9; 9) R = {(my 0, 1 ,7 ,2 ,6 ,3 ,5 ,4))

Solutions for decomposing K,, are similar to those above. The solution for

OP(10; 52) is due to Huang, Kotzig and Rosa [l l] . As with OP(9; 33), it does not use

a base factor with a permutation, but rather stipulates each 2-factor.

With decomposing Kll there is only one problematic case, that of OP(11; 32, 5).

This case has defied all attempts at a proof of non-existence short of an exhaustive

computer search for solutions. This case is dealt with in Section 3 of this thesis. The

other decompositions of Kll are possible and examples of solutions follow.

v = z , x (1,2 } u {-)

a = (-) (pi 11 21 31 41)(02 1222 32 42)
Fi +I = aL(R) , i = 0 , 1 , 2, 3 , 4
R = ((-9 31,42), (01, 02, 21, 1 1 , 41, 32, 1 2 , 22))
R = ((02, 1 1 , 31, 21), (w, 41, 42,329 1 2 3 01~22) I
R = ((0•‹, 42, 22, 32, 411, (01, 1 2 , 11, 21, 02731)
Not Possible [15]
R = ((-9 02,4i), (01, 21, 31, 221, (11, 12,32, 42))

Once again with K12 there is one exceptional case. As mentioned once before,

OP(12; 34) has no solution. Kotzig and Rosa claim in [14] that there are only three

non-isomorphic sets of four 2-factors, but in none of these cases do the remaining

edges form a fifth 2-factor of 3-cycles. The solutions in the following list that are

marked with I * ' are also presented in [l l] .

All possible cycle combinations for decomposing K13 have been accomplished

and an example of each follows. Though the notation has been adjusted to match the

rest of this section, the solution given for OP(13; 6, 7) is due to Kohler [13], and the

five solutions marked with '+' are due to Piotrowski [16]. Notice that the Piotrowski

solutions have two base factors and a more complicated permutation.

There being nothing particularly special about the decompositions of K14, we

simply list them. Again, solutions marked with I*' also appear in [ll] . It is perhaps

worth noting that the solution for OP(14; 42, 6) in [l l] is incorrect.

-

h
h

"

P
h

h
h

 C
.'

P

"
-
 ,P

,m
"W

The decompositions of K17 are not all known and, like those of K,,, appear to be

more difficult to produce. Piotrowski [16] gives solutions for OP(17; 34, 5). OP(17; 32,

5, 6), OP(17; 3, 5,9), OP(17; 4, 5, 8), OP(17; 52, 7), OP(17; 5, 62), and OP(17; 5, 12).

Of course, the Hamilton decomposition is also known.

Specific decompositions for some K18 cases have been given elsewhere, but

this is the first complete set of solutions documented. The solution to OP(18; 36) is

the solution for NKTS(18), the smallest Nearly Kirkman Triple System to have a

solution. The solution we present for this case is from Kotzig and Rosa [14].

So with the exception of K17 we know whether or not solutions exist for all

possible Oberwolfach questions for complete graphs on fewer than 19 vertices. Of all

these cases, the only questions that are known to have no solution are OP(6; 32),

OP(9; 4, 5), OP(11; 32, 5) and OP(12; 34). In Section 4 we will consider whether

decompositions that are not possible in K, might be possible in hK,,.

This is the smallest case of the Oberwolfach Problem that has defied all

manual attempts at a solution. We will confirm the non-existence of a solution

established by Piotrowski [16] and go on to show that even though a single copy of

Kll cannot be decomposed into isomorphic 2-factors each comprising a 5-cycle and a

3-cycle, any other number of copies can be decomposed in this manner.

Given one copy of K1,, the first 2-factor (F,) can be

chosen arbitrarily without loss of generality. We

1 5 call its pentagon P, and its triangles Tl and D, with

vertices labeled as shown in Figure 3.1.

As implied above, the notation F, (n = 1, 2 , 3 , 4 or

5) will represent the nth 2-factor of a decomposition
which comprises P, , Tn and D,.

X C

Figure 3.1

Proposition 3.1: Each 2-factor (except F,) must contain a diagonal of PI.

Proof: Suppose there exists a factor that does not contain a diagonal of PI .

Each triangle in this factor must have exactly one vertex from each of PI , T1 and Dl.

Two vertices from P1 in a triangle would mean use of a diagonal of P1 (not allowed by

assumption) or use of an edge already used in F , (not allowed by definition of

partition). Two vertices from either F, triangle would mean using the same edge in

two different factors which is not allowed in partitioning. Thus, having used two P1

vertices and four triangle vertices, the pentagon for this factor uses three vertices from

P, and two triangle vertices. Of the three P, vertices used in this new pentagon, two

of them must be adjacent. But this is impossible since adjacent P, vertices in the

cycle means either a second use of an edge of P1 or a diagonal of P,. Therefore, no

such factor can exist and we know all factors (except F,) include a diagonal of P1.

Proposition 3.2 : There exists exactly one factor in {F , , F3, Fq, Fs) which

contains two diagonals of P,.

Proof: By Proposition 3.1, each of the Fi's contains a diagonal of P, which

accounts for four of the five diagonals. The fifth P, diagonal must appear in one of the
Fits making that factor the only one containing two P1 diagonals..

Notation 3.3: Let F2 be the name of the factor with exactly two P, diagonals.

Theorem 3.4: The only three non-isomorphic possibilities for F2 are those

shown in Figure 3.2.

Proof: We assume that F1 has been removed from an unlabeled Kll and show

that the vertex set of any F2can be labeled in such a way that the structure and

labeling of F1 is identical to Figure 3.1 and the structure and labeling of F2is identical

to one of the drawings in Figure 3.2. The reason that many F2's with different

labelings can be isomorphic stems from the rotations and reflections of the dihedral

groups for the triangles and pentagon of F1.

Case 1 Case 3

Figure 3.2 : Possible F, structures

22

Clearly the two P , diagonals in F , either share a common vertex (call this

Case 1) or they are disjoint. If they are disjoint, they cannot both be in the same

triangle and they cannot both be edges of P,. Thus we are left with the fact that the

two P 1 diagonals in F2 must occur in different cycles - one in each triangle (call this

Case 2) or one in P , and the other in a triangle (call this Case 3).

Figure 3.2 establishes that at least one example of each case exists. In each

of the three cases we will begin with F , and an arbitrary F , of the type in question and

show that the eleven vertices can be labeled in such a way that the structure is

identical with the corresponding drawing in Figure 3.2.

CASE 1: The P 1 diagonals in F2 share a common vertex.

Choose an arbitrary F2 whose P 1 diagonals share a common vertex. That

common vertex must lie in P2 and we label it as vertex 1.

The two P , diagonals account for three of the five vertices of P,. The remaining

two vertices of P2 must be one each from T I and D l and they must be adjacent. Label

the vertex from T , as vertex C and the vertex from D l as vertex Z .

Note that starting at vertex 1 and traversing the cycle P2, the shortest path to

vertex C has exactly one vertex between vertex 1 and vertex C. Label it as vertex 3.

Continuing around the cycle there is exactly one vertex between vertex Z and vertex

1. Label it as vertex 4.

The remaining unlabeled P 1 vertices are adjacent to vertex 1 on the cycle P , .

Label them as vertex 2 and vertex 5 such that the vertices of P , are labeled in

numerical order around the cycle.

Now vertex 2 lies in a triangle of F2 whose other two vertices come one each

from T 1 and D l (since any other possibility requires the use of another diagonal of P 1

or the re-use of an edge of F ,) . Label the T 1 vertex in this triangle as vertex A and

the D l vertex as vertex Y. There are now only two unlabeled vertices remaining.

They are part of the F2 triangle that includes vertex 5. Label the unlabeled vertex in

T 1 as vertex B and the one in D l as vertex X .

Thus any F2 containing adjacent P, diagonals has the same structure as the

Case 1 diagram in Figure 3.2.

CASE 2: F2 has one P, diagonal in each of its triangles.

Choose an arbitrary F2 whose P , diagonals lie one each in its two triangles.

The two diagonals contain four P, vertices. Label the fifth P, vertex as vertex 3. This

vertex is in P2. The other four vertices of P2 are from T, and Dl. It is clear that as we

traverse the cycle P2, the vertices are alternately from T, and Dl. Thus vertex 3 is

adjacent to one vertex of T, and one of Dl. Label the former as vertex C and the latter

as vertex X. Label the remaining two P2vertices as vertex Y and vertex B such that Y

is adjacent to C, B is adjacent to X and, of course, B is adjacent to Y.

Label the remaining T, vertex as vertex A and the remaining Dl vertex as

vertex 2. Vertex A is adjacent to two P1 vertices in an F2 triangle (the ends of one of

the P, diagonals). One of these vertices is adjacent to vertex 3 in P,. Label it as

vertex 2 and the other as vertex 5. Similarly, vertex Z is adjacent to two P, vertices.

Again, one of these two vertices is adjacent to vertex 3 in P,. Label it as vertex 4 and

the other as vertex 1.

We have now labeled the vertices of an arbitrary F2 from Case 2 in such a way

that it has the same structure as the Case 2 diagram in Figure 3.2.

CASE 3: F, has one P, diagonal in P2 and one in a triangle.

Choose an arbitrary F2 containing one P, diagonal in its pentagon and the other

in a triangle. As in Case 2, the two P, diagonals contain four of the five vertices of P , .

Label the fifth vertex as vertex 3.

Consider the triangle in F2 which contains a P, diagonal. One vertex of that

diagonal must be adjacent to vertex 3 in P,. Label that vertex as vertex 4 and the

other as vertex 1. Clearly the third vertex of the triangle was a vertex in T, or Dl.

Since the naming of T, and Dl was arbitrary, we can assume without loss of generality

that this third triangle vertex in F, is contained in Dl and label it as vertex 2.

The F2 triangle containing vertex 3 must also contain one vertex from T, and

one vertex from Dl. Label the former as vertex C and the latter as vertex X. The

vertices on the ends of the P 1 diagonal in P2 can be labeled as vertex 2 and vertex 5 so

that the five vertices of P , are labeled with consecutive integers as the cycle is

traversed.

Three vertices remain unlabeled - two from T 1 and one from D l - all three of

which are contained in P2 along with vertex 2 and vertex 5. Label the remaining D l

vertex as vertex Y. The two vertices from T 1 cannot be adjacent in P2 and thus one

must be adjacent to vertex 2 while the other is adjacent to vertex 5, and they must

both be adjacent to vertex Y. Label the T 1 vertex adjacent to vertex 2 as vertex A and

the last remaining unlabeled vertex as vertex B.

We have now labeled the vertices of an arbitrary F2 from Case 3 in such a way

that it clearly has the same structure as the Case 3 diagram in Figure 3.2.

Thus we have shown that there are only three non-isomorphic ways to choose

the first two factors. Figure 3.3 shows the set of edges in Kl,- (Fl+F2) for each of the

three cases. W

Case 3

Figure 3.3

3.1 The Problem

How to proceed from here is not clear. In 1979 Wolf Piotrowski [16] reached

this point and decided to write a computer program to find whether there existed three

compatible 2-factors in the edge-set left by each of the three cases discussed above.

The strategy he chose was to construct a list of all possible 2-factors from the edges

of Kll-(Fl+F2) and then to try to find three edge-disjoint factors from that list. His

program (in FORTRAN run on a TR 440 computer) found roughly 200 possible factors

and 200 edge-disjoint pairs of those factors, but no edge-disjoint triad of factors in any

of the three cases. This proved (assuming no logical or mechanical problems) that the

partition we seek does not exist. Other than establishing the answer to the basic

question, the program provided no insight as to why there is no such partition, how

close one could actually get to completing the final factor, or how one might establish

the result without using a machine.

The strategy in the program included in this paper (0BRWLFCH.PRG)

searches for a solution in a significantly different way from Piotrowski's. Where his

approach was to generate complete factors and check their compatibility, the one here

builds up all three factors simultaneously keeping track of how close the process gets

to a complete set of factors.

The purpose of 0BRWLFCH.PRG is twofold: (1) to check Piotrowski's result

using a different strategy so as to minimize the possibility of repeating any errors that

might exist in h'is program and (2) to keep track of what happens as the program tries

to build factors in the hope that further light might be shed on exactly what makes this

factorization impossible and how the result might be arrived at without computer

assistance.

In each of the three cases we are dealing with between 233 and 272 pentagon

possibilities and 25 or 26 triangle possibilities which yield approximately 1016 possible

factor combinations for each of the three cases. This is an improvement over the

roughly lo3' possible sets of five 2-factors of K,, that we started with, but the problem

is still clearly too large to expect a microcomputer to resolve it in any reasonable

amount of time.

We can further reduce the number of possibilities to be checked by being

careful to keep track of the fact that each of the last three factors contains exactly one

P, diagonal. This is not quite as easy as it seems since the P, diagonals can just as

easily show up in a triangle as in a pentagon, but doing so reduces the number of

possible 2-factor triads to about 10'.

Though the problem is still clearly too large to do by hand it is small enough for

a microcomputer to do an exhaustive search for the three final factors while keeping

track of how close we get to a solution.

3.2 The Computing

Given the above argument, we have three sets of edges (see Figure 3.3) each

left by the removal of F1 and an F, from Kll. In each case we will attempt to extract

three edge-disjoint 2-factors, each comprising a pentagon and two triangles. The

labeling of the vertices will be as in Figure 3.3 where the vertices of P, are numbered

1 through 5 and the vertices of the triangles T1 and Dl are labeled A, B, C and X, Y, Z,

respectively.

In each case we will construct databases containing all possible pentagons and

triangles from the set of edges remaining. Since we know that each 2-factor must

contain exactly one of the remaining P1 diagonals we distinguish (by placing in

separate databases) cycles that contain a P1 diagonal (Class 1) and those that do not

(Class 2).

Observing that the P1 diagonals 24 and 35 are never used in F, or F,, we can

arbitrarily name the factors containing them as F, and F5, respectively. This means

that F, will be the factor that contains the P1 diagonal 25 in Case 1, and the P1

diagonal 13 in Cases 2 and 3.

Databases containing pentagons and triangles are named as follows: The first

two characters (Cl, C2 or C3) indicate Case 1, Case 2, or Case 3 depending on which

Fzis assumed. The second two characters (C1 or C2) indicate Class 1 if the cycles

include a P1 diagonal or Class 2 if they do not. The next character is either a P (for

pentagon) or a T (for triangle). If the cycles in the database are class 1, there is one

more character (3, 4 or 5) that indicates to which factor it must belong. The extension

is always "DBF" (for DataBase File). Thus C3ClP5.DBF is the database file

containing Case 3, Class 1 pentagons that are possible for F5 (i.e., that contain the P,

diagonal 35).

The possible triangles in each case are few and easily identified without using

the machine. Therefore all databases containing possible triangles were constructed

by hand. Possible pentagons, however, are many and were therefore generated by the

program.

The dBase I11 Plus programming language is used because of its suitability, its

availability and the author's familiarity with it.

3.3 The Setup Programs

GENC1P.PRG and GENC2P.PRG are the PRoGrams used to GENerate Class

1 and Class 2 Pentagons, respectively. In order that the main program can more

quickly determine whether a particular edge is already in use when checking possible

combinations, the databases are modified by PENTEDGE.PRG and TRIEDGE.PRG

so that the database includes not only the vertices (in cycle notation) of the pentagons

and triangles, but also the list of edges used in each. So that each edge has a unique

label we adopt the convention that an edge is named by listing the two vertices with

which it is incident in ascending order (note that the computer sees digits as "smaller"

than letters so that the edge joining vertex Y with vertex 3 will be referred to as edge

3Y).

GENC1P.PRG and GENC2P.PRG can be found in the appendix beginning on

pages 52 and 54, respectively. PENTEDGE.PRG AND TRIEDGE.PRG are on page

56 of the appendix. The complete set of databases generated by these programs and

used in the computing for Cases 1, 2 and 3 is provided beginning on pages 57, 64 and

7 1 of the appendix, respectively.

The main program that searches for three edge-disjoint 2-factors (each

comprising a pentagon and two triangles) in Kl,-(Fl+F,) is 0BRWLFCH.PRG. Since

there are three distinct choices for F,, the program was run three different times. The

programs used on the three runs were identical except for the names of the databases

called into use. The following description assumes that we are running Case 1.

We have nine cycles to find (three pentagons and six triangles, though not

necessarily in that order) so the program is written in nine levels.

In levels 1, 2 and 3 we are choosing the class 1 cycles (pentagon or triangle) to

be used in factors 3, 4 and 5, respectively. In level n, 3 I n 5 5, we are searching for
D, (a class 2 triangle for Fn.). In level n, 7 S n 5 9, we are choosing (for factors 3, 4

and 5, respectively), a Class 2 triangle if a Class 1 pentagon has already been chosen

at level n-6, or a Class 2 pentagon if a Class 1 triangle has already been chosen at

level n-6.

On reaching level 8 (having found 7 of the 9 required cycles) it prints out the

set of cycles found so far so that we can see how close we get to complete solutions.

The program starts in level 1 with the first record of ClClP3.DBF (the first

possible Case 1, Class 1 pentagon for F,) and records its edge-set as used for P,. In

level 2 we then search sequentially through the records of ClClP4.DBF to find a

Class 1 pentagon (edge-disjoint from P,) to be used as P4. If found, its edge-set is

recorded as used and we proceed to level 3 to search ClClP5.DBF for a P5 candidate.

If we find three compatible Class 1 pentagons for F,, F4 and F5, we go

sequentially to levels 4 through 9 looking through ClC2T.DBF (the set of Class 2

triangles) to find an edge-disjoint set of six triangles among the remaining available

edges to complete the three factors. The factors are filled in the following order: D3,

0 4 , Ds, T3, T4, Ts.

Whenever we reach the end of a database at level n > 3 (meaning that there

are no more options left at that level with the choices made so far) we back up to level

n-1 to look at the next record (next possibility) at that level.

If we reach the end of a pentagon database at level n < 4 we stay at that level

and begin choosing Class 1 triangles from C1ClTn.DBF. If found, a compatible

triangle is stored as T , and we proceed to the next level (always starting at the top of

the appropriate database regardless of whether we have been at that level before).

Since there can only be one Class 1 cycle in any given factor and the T , chosen at level

n is Class 1, if we get as far as level n+6 we open ClC2P.DBF to look for a

compatible Class 2 pentagon rather than looking for a triangle as described above.

The entire search can be shown as a digraph (Figure 3.4.1) whose vertices are

databases and whose edges represent moving between databases. Movement to the

right represents moving to the next level when a compatible cycle has been found in

the current database. Movement to the left represents backing up to the previous

level when the end of a database is reached without finding a compatible cycle.

Movement down represents staying within the same level (n < 4) when the end of a

Class 1 pentagon database is encountered without finding a compatible cycle and we

move to the corresponding Class 1 triangle database. Paths to the possible end

results of the program are also shown.

Level 1 Level 2 Level 3 Level4 Level 5 Level 6 Level 7 Level 8 Level 9
P30rT3 P40rT4 PSorTS D3 D4 DS T3 or P3 T4 or P4 T5 or Ps

SOLUTION.

Figure 3.4.1

JI
SOLUTIONB

PROCFILE.PRG is the set of procedures that is invoked at appropriate times

by 0BRWLFCH.PRG. The FINDP and FINDT procedures do the search through the

database in use to find a compatible pentagon or mangle, respectively. CPYRCRDS

is the procedure that copies current node, edge and factor information to the next

record so that another cycle can be added to the current information while still allowing

us to return to the current situation if we need to back up. The BACKUP procedure is

invoked when the end of a database is reached and we need to return to the previous

level.

The first version of 0BRWLFCH.PRG took about 9.5 days to do Case 1 on a

Heathkit HlOO with dBase 111. This was a little too long due to the possibility of

lightning or people accidentally turning the machine off during the run, so a switch was

made to dBase IV on an Epson Equity 11+ where it took about 2.5 days to run each of

the three cases.

The final versions of 0BRWLFCH.PRG and PROCFIL.PRG can be found in

the appendix beginning with pages 41 and 47, respectively. The information generated

by the programs for Cases 1 , 2 and 3can be found beginning on pages 78, 83 and 88

respectively.

3.5 Data Anaysis

The running of 0BRWLFCH.PRG confirmed the findings reached by

Piotrowski. There do not exist three edge-disjoint, isomorphic 2-factors, each

comprising a pentagon and two triangles, in any of the three possible cases.

Consequently, OP(11; 32, 5) has no solution.

In addition to confuming earlier work, there is further information from this

program. One might have wondered whether it is possible to argue that one cannot

find six edge-disjoint triangles or three edge-disjoint pentagons under the constraints

of the three cases. It is clear from the output data that in each of the three cases there

are several sets of six appropriate triangles. The program also found sets of three

appropriate pentagons in each of the cases. Thus no machine-free argument could be

made on that basis.

It is also interesting that in all three cases, there were many instances where

seven of the nine requisite cycles could be found, but never more than seven. In fact it

is easy to show that it is impossible to find an eighth without also finding the ninth.

All eleven vertices are degree 10 to begin with and are of even degree

throughout the entire process. If we ever found an eighth appropriate cycle, we would

have either three or five edges remaining. The only way of having either three or five

edges in a graph where all vertices are of even degree is if they form a cycle. Indeed,

since the vertices would be exactly the vertices as yet not used in the final factor, the

cycle would be the one we need to complete the factorization.

Though it is frustrating to be so close, it is worth knowing that in each case we

miss a complete factorization by the smallest margin possible.

The output data shows that among the partial factorizations when we are two

triangles short of a complete factorization three possibilities occur: 1) the edges

remaining form a 6-cycle, 2) they form two 3-cycles with one common vertex and 3)

they form two disjoint 3-cycles. This last instance leads to a new result which is

reported in Section 4.

4. Solutions in hKn

Clearly, given any h > 1, any 2-factorization of Kn can be used to 2-factor ?X,

by simply decomposing each of the h copies separately. However, for the cases of the

Obenvolfach Problem where no 2-factorization of a particular type is possible we will

now consider whether that type of decomposition is possible in hKn. The first case

with no solution is OP(6, 32). We address below only the case where h is even.

Theorem 4.1: Given an even integer h, XK6 can be partitioned into 2-factors

each comprising two 3-cycles if and only if h = 0 (mod 4).

Proof: Given hK6 we label the vertices 1, 2, 3, X, Y, and Z and designate the

first 2-factor as ((1, 2, 3), (X, Y, Z)) without loss of generality. We call an edge Type

1 if the vertices with which it is incident are either both labeled with numbers or both

labeled with letters. Type 2 edges are incident with one numbered vertex and one

vertex labeled with a letter. We call a 3-cycle Class 1 if all its edges are Type 1 and

Class 2 otherwise. Any 3-cycle that is Class 2 comprises two Type 2 edges and one

Type 1 edge. Note that no 3-cycle is possible using only Type 2 edges. Also note

that any 2-factor always comprises two 3-cycles of the same type.

Consider h = 4t+2 for any positive integer t. The number of Type 2 edges in

hK6 is 9(4t+2). Since all of these edges must be used in the 2-factorization and since

they must be used 2 at a time in 3-cycles that are Class 2, we will need 9(4t+2)/2

Type 1 edges to complete these 3-cycles. Note that this number is always odd. The

number of Type 1 edges after the first 2-factor is removed is 6(4t+l). This number is

even. Since it is always six of these edges that would be removed with any 2-factors

containing 3-cycles that are Class 1, the number of remaining edges will always be

even. Thus it is not possible to fashion a set of 2-factors comprising 3-cycles that will

use the entire edge-set of hK6.

Consider h = 4t. It suffices to show that 4K6 can be 2-factored into 3-cycles.

The following 2-factors accomplish the decomposition:

This yields the stated result..

The next two cases with no solution are OP(9; 4, 5) and OP(11; 32, 5). To

preface the next two theorems we note that if 2Kn and 3Kn can be decomposed into

any particular type of 2-factor, then for any h > 1, so can ?X,, since h = 2s+3t for some

pair of non-negative integers s and t. It is therefore sufficient to give 2-factorizations

for 2Kn and 3Kn to establish the result for hKn.

Theorem 4.2: For any integer h > 1, hK9 can be partitioned into 2-factors,

where each 2-factor comprises a 4-cycle and a 5-cycle.

This decomposes 2K9 as required

This decomposes 3K9 as required and the result follows..

Theorem 4.3: For any integer h > 1 , hKll can be partitioned into 2-factors,

where each 2-factor comprises a 5-cycle and two 3-cycles.

Proof: The column headed " I S t Kll" below is a Case 2 partial solution

generated by 0BRWLFCH.PRG. The unused edges for this partial solution form two

disjoint triangles; 3AZ and 1CX. Unfortunately, the triangles that are needed to

complete F4and F5 are 3CZ and lAX, respectively. The column headed " 2 n d ~ l l " was

generated from the first in such a way that it is a partial solution whose "extra"

triangles complete the fourth and fifth factors of the first partial factorization and it can

use the two "extra" triangles from the first to complete its fourth and fifth factors.

Thus we have the desired decomposition of 2K1,.

lSt Kl l

12345
ABC
XYZ

3CYBX
142
25A

c z 5 n
13B
4AX

24B5X

1AY

35C4Y

2BZ

2nd Kll

12345
CBA
XYZ

3AYBX
142
25C

AZ5Y2
13B
4AX

24B5X

ICY

35A4Y

2BZ

4T4 needs:
has:

+T5 needs:
has:

Similarly, the following are modifications of three partial solutions generated by

0BRWLFCH.PRG which with their "extra" edges exchanged constitute the required

decomposition of 3Kll.

4T4 needs:
has:

+T5 needs:
has:

lSt K~~

12345
ABC
XYZ

3CYBX
142
25A

CZ5Y2
13B
4AX

24B5X

1A Y

35C4Y

2BZ

2nd Kll

12345
CBA
XYZ

3A YBX
1 4Z
25C

AZ5Y2
13B
4 c x

24B 5X

3CZ

35A4Y

2BZ

3rd Kll

42315
CBA
YXZ

3AXBY
412
25C

AZ5Y2
43B
I cx

21B5X

4CY

35A4X

2BZ

The desired result follows..

The fourth and final case with no solution is OP(12; 34). Hanani [7]

establishes that there is a resolvable (v, 3, 2)-BIBD which is equivalent to the

decomposition we seek for 2K12. This obviously settles the question for hK12

whenever h is even. The case where h is odd has not been studied.

We conclude with a note that may be of some interest. Even though 2K6

cannot be 2-factored into 3-cycles, it is possible for 2(K,-F) to be decomposed in this

way. The following is such a 2-factorization:

References

[1] B. ALSPACH AND R. HAGGKVIST, Some observations on the Oberwolfach
problem, J. Graph Theory 9 (1985), 177- 187.

[2] B. ALSPACH, P. J. SCHELLENBERG, D. R. STINSON AND D. WAGNER, The
Oberwolfach problem and factors of uniform odd length cycles, J. Combin.
Theory Ser. A 52 (1989), 20-43.

[3] R. D. BAKER AND R. M. WILSON, Nearly Kirkman mple systems, Utilitas
Math. Vol. 11 (1977), 315-317.

[4] W. W. R. BALL, Mathematical Recreations and Essays, (revised by H. S. M.
Coxeter), Macmillan, New York (1962), 267-298.

[5] A. E. BROUWER, Two new nearly Kirkman mple systems, Utilitas Math. Vol.
13 (1978), 311-314.

[6] R. K. GUY, Unsolved Combinatorial Problems, in "Combinatorial Mathematics
and Its Applications, Proceedings Conf. Oxford 1967" (D. J. A, Welsh, Ed.), p.
121, Academic Press, New York, (197 1).

[7] H. HANANI, On resolvable balanced incomplete block designs, J. Combin.
Theory Ser A 17 (1974), 275-289.

[8] P. HELL, A. KOTZIG AND A. ROSA, Some results on the Oberwolfach problem,
Aequationes Math. 12 (1975), 1-5.

[9] D. G. HOFFMAN AND P. J. SCHELLENBERG, The existence of
C,-factorizations of K,, -F, Discrete Math., to appear.

[l o] J. D. HORTON, B. K. ROY, P. J. SCHELLENBERG AND D. R. STINSON, On
decomposing graphs into isomorphic uniform 2-factors, Ann. Discrete Math.
27 (1985), 297-319.

[I 11 C. HUANG, A. KOTZIG AND A. ROSA, On a variation of the Oberwolfach
problem, Discrete Math. 27 (1979), 261 -277.

[12] C. HUANG, E. MENDELSOHN AND A. ROSA, On partially resolvable t-
partitions, Ann. Discrete Math 12 (1982), 169-183

[I 31 E. KOHLER, ~ b e r der Oberwolfacher Problem, Beitrage Geom. Algebra Basel
(1977), 189-201.

[14] A. KOTZIG AND A. ROSA, Nearly Kirkman systems, in "Proc. 5th S-E Conf.
Combinatorics, Graph Theory, and Computing, Boca Raton. Florida, 1974"
Utilitas Math., Winnipeg, (1974), 607-614.

[15] E. LUCAS, Re'cre'ations Mathe'matiques, Vol. 2, Gauthier-Villars, Paris,
(1884), 161-164

[I 61 W. PIOTROWSKI, Untersuchungen iiber das Oberwolfacher Problem, working
papers, Hamburg, (1979).

[17] D. K. RAY-CHAUDHURI AND R. M. WILSON, Solution of Kirkman's schoolgirl
problem, in Proc. Symp. Pure Math. Vol 19, pp. 187-204, Amer. Math. Soc.,
Providence, RI, (1 97 1).

[18] D. K. RAY-CHAUDHURI AND R. M. WILSON, The existence of resolvable
block designs, in A Survey of Combinatorial Theory (edited by J . N Srivastava
et al), North Holland, Amsterdam, (1973), 361-375.

[19] R. REES AND D. R. STINSON, On resolvable group-divisible designs with
block size 3, Ars Comb. XXIII, (1987), 107-120.

Appendix

OBRWLFCH.PRG
* *
* This is the main program for the Oberwolfach problem - case K1, *
* looking for five disjoint 2-factors each comprising a pentagon *
* and two triangles. The first factor can be chosen arbitrarily *
* and the second can be chosen in only three essentially different ways. *
* This program looks for the third, fourth and fifth factors given the *
* first and a second factor. Thus the program was run three times on *
* three sets of data - one for each of the three possibilities for the *
* second factor. The program here is the one run for Case 1, but the *
* changes necessary for the last two cases are included in brackets *
* to the right of the statement that was changed. Variables of the *
* form CnCmPo stand for Case n, Class m, Pentagon (or T for Triangle) *
* from factor o. Class 1 Pentagons and Triangles include a diagonal *
* of the factor 1 pentagon while Class 2 Pentagons and Triangles do not * * *

CLEAR ALL
SET TALK OFF
SET ALTERNATE TO G:OBRUN
SET ALTERNATE ON
? "OPENING PROCEDURES FTLE AND BOOKKEEPING DATABASES"
SET PROCEDURE TO 1:PROCFILE

* Opening databases for keeping track of edges and nodes that have been *
* used and remembering which factor pieces have been filled in *

SELECT 7
USE 1:USEDNODE ALIAS NODES * This database keeps track of which nodes *
GO TOP * are already used (in the current factor) *

SELECT 8
USE 1:USEDEDGE ALIAS EDGES * This database keeps track of which edges *
GO TOP * are already used (in any factor) *

SELECT 6
USE 1:FACTOR ALIAS FACTORS * This database keeps track of which pieces *
GO TOP * of which factors have been found already *

STORE 0 TO COUNT1
STORE 0 TO COUNT2
STORE 0 TO COUNT3
STORE 0 TO COUNT4
STORE 0 TO COUNTS
STORE 0 TO COUNT6
STORE 0 TO COUNT7
STORE 0 TO COUNT8
STORE 0 TO COUNT9
PUBLIC FOUND, PENT, TRI, FACTOR, TRITYPE, STIME, FTIME
PUBLIC P3, P4, P5, T3, T4, T5, D3, D4, DS
* The first three levels step through all possible class 1 pentagons and tri-
* angles (for factors 3, 4 and 5 respectively) which contain a diagonal of the
* pentagon in the first factor (since each of these factors must contain exactly
* one such diagonal). The fourth through seventh levels step through all
* possible class 2 pentagons and triangles trying to fill in the rest of the
* remaining pieces for each factor.
? " *LEVEL 1 *"
SELECT 1

USE I:ClClP3 ALIAS C1P3
GO TOP
STORE '3' TO FACTOR
STORE 'ClP3' TO PENT
STORE 1 TO P3CHOSEN
DO WHILE .NOT. EOFO

STORE COUNTl+l TO COUNT1
? COUNT1
IF P3CHOSEN = 1

DO FINDP
IF .NOT. FOUND
SELECT 1
USE I:ClClT3 ALIAS C1T3 *[C2ClT3, C3ClT3 I*
STORE 'cinl TO TRI
STORE 'T TO TRITYPE
STORE 0 TO P3CHOSEN
GO TOP
LOOP

ENDIF
ELSE

DO FINDT
IF .NOT. FOUND

? "NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR THIS
CASE."

DISPLAY MEMORY
WAIT
CLOSE DATABASES
SET ALTERNATE OFF
RETURN

ENDIF
ENDIF

* LEVEL 2 *
SELECT 2
USE I:ClClP4 ALIAS C1P4
GO TOP
STORE '4' TO FACTOR
STORE 'C lP4' TO PENT
STORE 1 TO P4CHOSEN
DO WHILE .NOT. €OF()

STORE COUNT2+1 TO COUNT2
LF P4CHOSEN = 1

DO FINDP
IF .NOT. FOUND
SELECT 2
USE I:ClClT4 ALIAS C1T4 *[C2ClT4, C3ClT4 I*
STORE 'ClT4' TO TRI
STORE 'T TO TRITYPE
STORE 0 TO P4CHOSEN
GO TOP
LOOP

ENDIF
ELSE

DO FINDT
IF .NOT. FOUND
DO BACKUP
EXIT

ENDIF

ENDIF
* LEVEL 3 *

SELECT 3
USE 1:ClClPS ALIAS C1P5
GO TOP
STORE '5' TO FACTOR
STORE 'C IPS' TO PENT
STORE 1 TO PSCHOSEN
DO WHILE .NOT. EOFO

STORE COUNT3+ 1 TO COUNT3
IF PSCHOSEN = 1

DO FINDP
IF .NOT. FOUND
SELECT 3
USE 1:ClClTS ALIAS ClT5 *[C2ClT5, C3ClTS I*
STORE 'C ITS' TO TRI
STORE 'T TO TRITYPE
STORE 0 TO PSCHOSEN
GO TOP
LOOP

ENDIF
ELSE

DO FINDT
IF NOT. FOUND
DO BACKUP
EXIT

ENDIF
ENDIF

* LEVEL 4 *
SELECT 4
USE I:ClC2T ALIAS C2T * [C2C2T, C3C2T I*
GO TOP
STORE '3' TO FACTOR
STORE 'C2T TO TRI
STORE 'D' TO TRITYPE
DO WHILE .NOT. EOFO

STORE COUNT4+1 TO COUNT4
DO FINDT
IF FOUND

STORE RECNO() TO D3RECNO
ELSE

DO BACKUP
EXIT

ENDIF
* LEVEL 5 *

GO TOP
STORE '4' TO FACTOR
DO WHILE .NOT. EOFO
STORE COUNTS+ 1 TO COUNTS
DO FINDT
IF FOUND
STORE RECNOO TO D4RECNO

ELSE
DO BACKUP
EXIT

ENDIF
* LEVEL 6 *

GO TOP
STORE '5' TO FACTOR
DO WHILE .NOT. EOFO
STORE COUNT6+1 TO COUNT6
DO FINDT
IF FOUND
STORE RECNOO TO DSRECNO

ELSE
DO BACKUP
EXIT
ENDIF

* LEVEL 7 *
STORE '3' TO FACTOR
SELECT C2T
GO TOP
STORE 'T TO TRITYPE
SELECT 5
USE I:ClC2P ALIAS C2P *[C2C2P. C3C2P I*
STORE 'C2P' TO PENT
GO TOP
Do WHILE .NOT. EOFO
STORE COUNT7+ 1 TO COUNT7
IF P3CHOSEN = 1
SELECT C2T
DO FINDT

ELSE
SELECT C2P
DO FINDP
ENDIF
IF FOUND
?FACTORS->P3,FACTORS->n,FACTORS->D3,FACTORS->P4, ;
FACTORS->T4,FACTORS->D4,FACTORS->P5,FACTORS ->T5, ;
FACTORS->DS,TIME()

STORE RECNOO TO F3RECNO
ELSE
DO BACKUP
EXIT
ENDIF

* LEVEL 8 *
STORE '4' TO FACT OR
SELECT C2T
GO TOP
SELECT C2P
GO TOP
DO WHILE .NOT. EOFO
STORE COUNT8+1 TO COUNT8
IF P4CHOSEN = 1
SELECT C2T
DO FINDT
ELSE
SELECT C2P
DO FINDP
ENDIF
IF FOUND
?FACTORS->P3,FACTORS->T3,FACTORS ->D3,FACTORS->P4, ;
FACTORS->T4,FACTORS->D4,FACTORS->P5,FACTORS->T5, ;
FACTORS->DS,TIMEO

STORE RECNOO TO F4RECNO
ELSE

DO BACKUP
EXIT

ENDIF
* LEVEL 9 *

STORE '5' TO FACTOR
SELECT C2T
GO TOP
SELECT C2P
GO TOP
DO WHILE .NOT. EOFO
STORE COUNT9+1 TO COUNT9
IF PSCHOSEN = 1
SELECT C2T
DO FINDT

ELSE
SELECT C2P
DO FINDP

ENDIF
IF FOUND

? "SOLUTION FOUND DESPITE PIOTROWSKI"
?
?FACTORS->P3,FACTORS->T3 FACTORS->D3,FACTORS->P4, ;

FACTORS ->T4,FACTORS->D4,FACTORS->P5,FACTORS ->T5, ;
FACTORS->DS,TIMEO

WAIT
CLOSE DATABASES
SET ALTERNATE OFF
RETURN

ELSE
DO BACKUP
EXIT

ENDIF
ENDDO

* BACK TO LEVEL 8 *
STORE '4' TO FACTOR
IF P4CHOSEN = 1
SELECT C2T
STORE 'C2T TO TRI

ELSE
SELECT C2P
STORE 'C2P' TO PENT

ENDIF
GO F4RECNO

ENDDO
* BACK TO LEVEL 7 *
STORE '3' TO FACTOR
IF P3CHOSEN = 1
SELECT C2T
STORE 'C2T TO TRI

ELSE
SELECT C2P
STORE 'C2P' TO PENT

ENDIF
GO F3RECNO

ENDDO

* BACK TO LEVEL 6 *
STORE '5' TO FACTOR
STORE 'D' TO TRITYPE
STORE 'C2T TO TRI
SELECT C2T
GO D5RECNO

ENDDO
* BACK TO LEVEL 5 *
STORE '4' TO FACTOR
SELECT C2T
GO D4RECNO

ENDDO
* BACK TO LEVEL 4 *
STORE '3' TO FACTOR
SELECT C2T
GO D3RECNO
STORE 'C2T TO TRI
STORE 'D' TO TRITYPE

ENDDO
* BACK TO LEVEL 3 *
STORE '5' TO FACTOR
SELECT 3
IF PSCHOSEN = 1
STORE 'ClP5' TO PENT

ELSE
STORE 'ClT5' TO TRI
STORE 'T TO TRITYPE

ENDIF
ENDDO
* BACK TO LEVEL 2 *
STORE '4' TO FACTOR
SELECT 2
IF P4CHOSEN = 1
STORE 'ClP4' TO PENT

ELSE
STORE 'ClT4' TO TRI

ENDIF
ENDDO

* BACK TO LEVEL 1 *
STORE '3' TO FACTOR
SELECT 1
IF P3CHOSEN = 1

STORE 'C lP3' TO PENT
ELSE

STORE 'ClT3' TO TRI
ENDIF

ENDDO
RETURN

PROCEDURE FILE FOR OBRWLFCH.PRG

PROCEDURE FINDP

* This procedure finds a pentagon (if it exists) in the current pentagon
* database that is compatible with the pieces of factors already selected

STORE .F. TO FOUND
SKIP
DO WHILE .NOT. EOFO

STORE "NW+FACTOR+Vl TO NODE1
STORE "NW+FACTOR+V2 TO NODE2
STORE "NU+FACTOR+V3 TO NODE3
STORE "N"+FACTOR+V4 TO NODE4
STORE "N"+FACTOR+VS TO NODES
IF NODES->&NODEl=O .AND. NODES->&NODE2=O .AND. NODES->&NODE3=0;

.AND. NODES->&NODE4=O .AND. NODES->&NODES=O
STORE "Ew+El TO EDGE1
STORE "EW+E2 TO EDGE2
STORE "EW+E3 TO EDGE3
STORE "EW+E4 TO EDGE4
STORE "EW+E5 TO EDGES
IF EDGES->&EDGE14 .AND. EDGES->&EDGE2=0 .AND. EDGES->&EDGE3=O ;

.AND. EDGES->&EDGE4=O .AND. EDGES->&EDGE5=O
STORE Vl+V2+V3+V4+V5 TO MP
DO CPYRCRDS
SELECT NODES

REPLACE &NODE1 WITH 1
REPLACE &NODE2 WITH 1
REPLACE &NODE3 WITH 1
REPLACE &NODE4 WITH 1
REPLACE &NODES WITH 1

SELECT EDGES
REPLACE &EDGE1 WITH 1
REPLACE &EDGE2 WITH 1
REPLACE &EDGE3 WITH 1
REPLACE &EDGE4 WITH 1
REPLACE &EDGES WITH 1

SELECT FACTORS
STORE "P"+FACTOR TO SLOT
REPLACE &SLOT WITH MP

SELECT &PENT
STORE .T. TO FOUND
EXIT

ENDIF
ENDIF
SKIP

ENDDO
IF EOFO
SKIP -1

ENDIF
STORE TIME0 TO FTIME

RETURN

PROCEDURE FINDT

* This procedure finds a triangle (if it exists) in the current triangle
* database that is compatible with the pieces of factors already selected

STORE .F. TO FOUND
SKIP
DO WHILE .NOT. EOFO

STORE "NW+FACTOR+V 1 TO NODE1
STORE "N"+FACTOR+V2 TO NODE2
STORE "N"+FACTOR+V3 TO NODE3
IF NODES->&NODEl=O .AND. NODES->&NODE2=O .AND. NODES->&NODE3=O
STORE "En+E1 TO EDGE1
STORE "EW+E2 TO EDGE2
STORE "EW+E3 TO EDGE3
IF EDGES->&EDGEl=O .AND. EDGES->&EDGE2=0 .AND. EDGES->&EDGE3=O

STORE Vl+V2+V3 TO MT
DO CPYRCRDS
SELECT NODES

REPLACE &NODE1 WITH 1
REPLACE &NODE2 WITH 1
REPLACE &NODE3 WITH 1

SELECT EDGES
REPLACE &EDGE1 WITH 1
REPLACE &EDGE2 WITH 1
REPLACE &EDGE3 WITH 1

SELECT FACTORS
STORE TRITYPE+FACTOR TO SLOT
REPLACE &SLOT WITH MT

SELECT &TRI
STORE .T. TO FOUND
EXIT

ENDIF
ENDIF
SKIP

ENDDO
IF EOFO

SKIP -1
ENDIF
STORE TIME0 TO FTIME
RETURN

PROCEDURECPYRCRDS

* This procedure copies to the next record information about nodes and
* edges that are currently in use so that nodes and edges from a newly
* found pentagon or triangle can be added while still preserving the
* current state in the event that we have to backtrack if the new
* choice proves to be unworkable

SELECT NODES
STORE N31 TO MN31
STORE N32 TO MN32
STORE N33 TO MN33
STORE N34 TO MN34
STORE N35 TO MN35
STORE N3A TO MN3A
STORE N3B TO MN3B
STORE N3C TO MN3C
STORE N3X TO MN3X
STORE N3Y TO MN3Y
STORE N3Z TO MN3Z
STORE N4 1 TO MN4 1
STORE N42 TO MN42
STORE N43 TO MN43
STORE N44 TO MN44
STORE N45 TO MN45
STORE N4A TO MN4A
STORE N4B TO MN4B
STORE N4C TO MN4C
STORE N4X TO MN4X
STORE N4Y TO MN4Y
STORE N4Z TO MN4Z
STORE N51 TO MN51
STORE N52 TO MN52
STORE N53 TO MN53
STORE N54 TO MN54
STORE N55 TO MN55
STORE N5A TO MN5A
STORE N5B TO MN5B
STORE N5C TO MN5C
STORE N5X TO MN5X
STORE N5Y TO MN5Y
STORE N5Z TO MN5Z

APPEND BLANK
REPLACE N31 WITH MN31, N32 WITH MN32, N33 WITH MN33, ;

N34 WITH MN34, N35 WITH MN35, N3A WITH MN3A. N3B WITH MN3B, ;
N3C WITH MN3C, N3X WITH MN3X, N3Y WITH MN3Y, N3Z WITH MN3Z

REPLACE N41 WITH MN41, N42 WITH MN42, N43 WITH MN43, ;
N44 WITH MN44, N45 WITH MN45, N4A WITH MN4A, N4B WITH MN4B, ;
N4C WITH MMC, N4X WITH MN4X, N4Y WITH MN4Y, N4Z WITH MN4Z

REPLACE N51 WITH MN51, N52 WITH MN52, N53 WITH MN53, ;
N54 WITH MN54, N55 WITH MN55, N5A WITH MNSA, N5B WITH MNSB, ;
N5C WITH MNSC, N5X WITH MNSX, N5Y WITH MNSY, N5Z WITH MNSZ

SELECT EDGES
STORE E1A TO MElA
STORE ElB TO MElB
STORE ElC TO MElC
STORE E1X TO MElX

STORE ElY TO MElY
STORE E1Z TO ME1Z
STORE E24 TO ME24
STORE E25 TO ME25
STORE E2B TO ME2B
STORE E2C TO ME2C
STORE E2X TO ME2X
STORE E2Z TO ME2Z
STORE E35 TO ME35
STORE E3A TO ME3A
STORE E3B TO ME3B
STORE E3X TO ME3X
STORE E3Y TO ME3Y
STORE E3Z TO ME3Z
STORE E4A TO ME4A
STORE E4B TO ME4B
STORE E4C TO ME4C
STORE E4X TO ME4X
STORE E4Y TO ME4Y
STORE E5A TO MESA
STORE E5C TO ME5C
STORE E5Y TO ME5Y
STORE E5Z TO ME5Z
STORE EAX TO MEAX
STORE EAZ TO MEAZ
STORE EBY TO MEBY
STORE EBZ TO MEBZ
STORE ECX TO MECX
STORE ECY TO MECY

APPEND BLANK
REPLACE ElA WITH MElA, E1B WITH MElB, E1C WITH MElC, ;

E1X WITH MEIX, E1Y WITH MElY, E1Z WITH MElZ, E24 WITH ME24, ;
E25 WITH ME25, E2B WITH ME2B, E2C WITH ME2C, E2X WITH ME2X, ;
E2Z WITH ME22

REPLACE E35 WITH ME35, E3A WITH ME3A, E3B WITH ME3B, ;
E3X WITH ME3X. E3Y WITH ME3Y, E3Z WITH ME3Z. E4A WITH ME4A, ;
E4B WITH ME4B. E4C WITH ME4C, E4X WITH ME4X, E4Y WITH ME4Y, ;
E5A WITH MESA

REPLACE E5C WITH MESC, E5Y WITH MESY, E5Z WITH MESZ, ;
EAX WITH MEAX. EAZ WITH MEAZ, EBY WITH MEBY. EBZ WITH MEBZ, ;
ECX WITH MECX, ECY WITH MECY

SELECT FACTORS
STORE P3 TO MP3
STORE T3 TO MT3
STORE D3 TO MD3
STORE P4 TO MP4
STORE T4 TO MT4
STORE D4 TO MD4
STORE P5 TO MP5
STORE T5 TO MT5
STORE D5 TO MD5

APPEND BLANK
REPLACE P3 WITH MP3
REPLACE T3 WITH MT3
REPLACE D3 WITH MD3
REPLACE P4 WITH MP4
REPLACE T4 WITH MT4

REPLACE D4 WITH MD4
REPLACE P5 WITH MP5
REPLACE T5 WITH MT5
REPLACE D5 WITH MD5

RETURN

PROCEDUREBACKUP

* This procedure backs us up to the previous working level whenever there
* are no more possibilities to try with the current configuration.

SELECT NODES
STORE RECNOO-1 TO POINTNOD
DELETE
PACK
GO POINTNOD

SELECT EDGES
STORE RECN00-1 TO POLNTEDG
DELETE
PACK
GO POINTEDG

SELECT FACTORS
STORE RECNOO- 1 TO POINTFAC

DELETE
PACK
GO POINTFAC

RETURN

DATA-GENERATING PROGRAMS FOR
0BRWLFCH.PRG

* THIS IS A PROGRAM TO GENERATE CLASS 1 PENTAGONS FROM AVAILABLE
* EDGES FOR THE OBRWLFCH PROBLEM OP(11;3,3,5)

CLEAR
CLEAR ALL
SET TALK OFF
SELECT 1

USE C:ClPPEDGE ALIAS PPEDGE [C:C2PPEDGE and C:C3PPEDGE, resp.]
GO TOP

SELECT 2
USE C:TDVERTl ALIAS TD1
GO TOP

SELECT 3
USE C:PVERTl ALIAS P
GO TOP

SELECT 4
USE C:TDVERT2 ALIAS TD2
GO TOP

SELECT 5
USE C:EDGEUSED ALIAS USED
GO TOP

SELECT 6
USE C:ClClP ALIAS PENTS
GO TOP

SELECT PPEDGE
DO WHILE .NOT. EOFO

STORE V 1 TO MV1
STORE V2 TO MV2
SELECT TD 1
Do WHILE .NOT. EOFO

STORE V TO MV3
SELECT P
Do WHILE .NOT. EOFO

IF V = MV1 .OR. V = MV2
SKIP
LOOP

ELSE
STORE V TO MV4

ENDIF
SELECT TD2
DO WHILE .NOT. EOFO

I F v = M V 3
SKIP
LOOP

ELSE
STORE V TO MV5

ENDIF
STORE "EW+MV2+MV3 TO EDGE2
STORE "EV+MV4+MV3 TO EDGE3
STORE "EV+MV4+MV5 TO EDGE4

[C:C2ClP and C:C3ClP, resp. 1

STORE "EU+MV1+MVS TO EDGES
IF USED->&EDGE2=1 .OR. USED->&EDGE3=1 .OR. USED->&EDGE4=1 .OR. ;

USED->&EDGES= 1
SKIP
LOOP

ELSE
SELECT PENTS
APPEND BLANK

REPLACE V1 WITH MV1
REPLACE V2 WITH MV2
REPLACE V3 WITH MV3
REPLACE V4 WITH MV4
REPLACE V5 WITH MV5
REPLACE E l WITH MVl+MV2
REPLACE E2 WITH MV2+MV3
REPLACE E3 WITH MV4+MV3
REPLACE E4 WITH MV4+MV5
REPLACE E5 WITH MVl+MVS

SELECT TD2
SKIP

ENDIF
ENDDO
GO TOP
SELECT P
SKIP

ENDDO
GO TOP
SELECT TD1
SKIP

ENDDO
GO TOP
SELECT PPEDGE
SKIP

ENDDO
CLOSE DATABASES
RETURN

* THIS IS A PROGRAM TO GENERATE CLASS 2 PENTAGONS FROM AVAILABLE
* EDGES FOR THE OBRWLFCH PROBLEM OP(11;3,3,5)

CLEAR
CLEAR ALL
SET TALK OFF
SELECT 1

USE C:ClTDEDGE ALIAS TDEDGE [C2TDEDGE and C3TDEDGE, resp.]
GO TOP

SELECT 2
USE C:PVERTl ALIAS P1
GO TOP

SELECT 3
USE C:TDVERTl ALIAS TD
GO TOP

SELECT 4
USE C:PVERT2 ALIAS P2
GO TOP

SELECT 5
USE C:EDGEUSED ALIAS USED
GO TOP

SELECT 6
USE C:ClC2P ALIAS PENTS
GO TOP

SELECT TDEDGE
DO WHILE .NOT. EOFO

STORE V 1 TO MV1
STORE V2 TO MV2
SELECT P1
Do WHILE .NOT. EOFO

STORE V TO MV3

[C2C2P and C3C2P, resp.]

SELECT TD
DO WHILE .NOT. EOFO

IF V = MV1 .OR. V =.'Mv~
SKIP
LOOP

ELSE
STORE V TO MV4

ENDIF
SELECT P2
DO WHILE .NOT. EOFO

I F v = M V 3
SKIP
LOOP

ELSE
STORE V TO MV5

ENDIF
STORE "En+MV3+MV2 TO EDGE2
STORE "EW+MV3+MV4 TO EDGE3
STORE "EW+MV5+MV4 TO EDGE4
STORE "EW+MV5+MVl TO EDGES
IF USED->&EDGE2=1 .OR. USED->&EDGE3=1 .OR. USED->&EDGE4=1 .OR. ;

USED->&EDGES= 1
SKIP

LOOP
ELSE

SELECT PENTS
APPEND BLANK

REPLACE V1 WITH MVl
REPLACE V2 WITH MV2
REPLACE V3 WITH MV3
REPLACE V4 WITH MV4
REPLACE V5 WITH MV5
REPLACE E l WITH MVl+MV2
REPLACE E2 WITH MV3+MV2
REPLACE E3 WITH MV3+MV4
REPLACE €4 WITH MV5+MV4
REPLACE E5 WITH MV5+MV1

SELECT P2
SKIP

ENDIF
ENDDO
GO TOP
SELECT TD
SKIP

ENDDO
GO TOP
SELECT P1
SKIP

ENDDO
GO TOP
SELECT TDEDGE
SKIP

ENDDO
CLOSE DATABASES
RETURN

* THIS PROGRAM FILLS IN THE EDGES (SMALLEST VALUE NODE FIRST) IN THE*
* PENTAGON DATABASES WHEN THE VERTICES ARE ALREADY ENTERED. *
GO TOP
DO WHILE .NOT. EOFO

IFV1 c V2
REPLACE E l WITH Vl+V2

ELSE
REPLACE E l WITH V2+V1

ENDIF
IF v 2 < v 3

REPLACE E2 WITH V2+V3
ELSE

REPLACE E2 WITH V3+V2
ENDIF
IF v 3 < v 4

REPLACE E3 WITH V3+V4
ELSE

REPLACE E3 WITH V4+V3
ENDIF
IF v 4 < v 5

REPLACE E4 WITH V4+V5
ELSE

REPLACE E4 WITH V5+V4
ENDIF
I F V l c V 5

REPLACE E5 WITH Vl+V5
ELSE

REPLACE E5 WITH V5+V1
ENDIF
SKIP

ENDDO

TRIEDGE.PRG
THIS PROGRAM FILLS IN THE EDGES (SMALLEST VALUE NODE FIRST) IN THE
TRIANGLE DATABASES WHEN VERTICES HAVE ALREADY BEEN ENTERED
GO TOP
DO WHILE .NOT. EOFO

I F V l < V 2
REPLACE E l WITH Vl+V2

ELSE
REPLACE E 1 WITH V2+V1

ENDrF
F V 2 < v 3

REPLACE E2 WITH V2+V3
ELSE

REPLACE E2 WITH V3+V2
ENDIF
I F V l c v 3

REPLACE E3 WITH Vl+V3
ELSE

REPLACE E3 WITH V3+V1
ENDIF
SKIP

ENDDO

DATABASES FOR 0BRWLFCH.PRG - CASE 1

USEDEDGE.DBF (for Case 1)

Record# E1A E1B E1C E1X E l Y EIZ E24 E25 E2B E2C E2X E2Z E35 E3A E3B E3X
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3Y E3Z E4A E4B E4C E4X E4Y E5A E5C E5Y E5Z EAX EAZ EBY EBZ ECX ECY
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DATABASES FOR 0BRWLFCH.PRG - CASE 2

Record# El3 E1A E1B E1C E l l
1 0 0 0 0 0

E4A E4B E4C E4X E4Y E5B E5C E5X E5Y E5Z EAX EAY EAZ EBZ ECX ECZ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DATABASES FOR 0BRWLFCH.PRG - CASE 3

E4A E4B E4C E4X E4Y E5A E5C E5X E5Y E5Z EAX EAZ EBX EBZ ECY ECZ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USEDNODE.DBF (used in all three cases)

OUTPUT FROM 0BRWLFCH.PRG - CASE 1

4CY 1BZ
1BZ 4CY
4CY 1BZ
1BZ 4CY
4CY 1BZ
1BZ 4CY
4CY 1BZ
1BZ 4CY

1CX 4BY
4BY 1CX
1CX 4BY
1CX 4BY
4BY 1CX
4BY 1CX

ICY 3BZ
3BZ 1CY
ICY 3BZ
3BZ ICY
ICY 3BZ
3BZ 1CY
ICY 3BZ
3BZ ICY

4BY 3AZ
3AZ 4BY
4BY 3AZ
3AZ 4BY

3BY 1AZ
1AZ 3BY
3BY 1AZ
3BY 1AZ
1AZ 3BY
1AZ 3BY

3BZ 4AX
4AX 3BZ

4CX 1AZ
1AZ 4CX
4CX 1AZ
1AZ 4CX
4CX 1AZ
1AZ 4CX
4CX 1AZ
1AZ 4CX

1CX 3AZ

1CX
1CX
1CX
1CX
1 CX
1CX
1CX
1 CX

1 AZ
1 AZ
1 AZ
1BZ
1 AZ
1BZ

3AX
3AX
3AX
3AX
3AX
3AX
3AX
3AX

1BZ
1BZ
1BZ
1BZ

3AX
3AX
3AX
3AX
3AX
3AX

1 AZ
1 AZ

ICY
ICY
1 CY
ICY
1 CY
ICY
1 CY
1 CY

3BY

352 ICY
352 ICY
352 1CX
352 1CY
352 1CX
352 ICY

3BY
ICY
IBY
ICY
ICY
ICY
ICY
ICY
1 CY
5AZ
5AZ
1 AZ
1 AZ
ICY
ICY
ICY
5AZ
5AZ
5AZ

24B 3AZ
24B 5AZ
24B 1CX

252 3AX
252 3AX
252 3AX
252 ICY
252 3AX
252 1BY
252 1AX
252 1AX
252 1AX
252 3BY
252 1CY
252 ICY
252 3AX
252 3AX
252 3BY
252 4CX
252 3BY
252 3BY
252 3BY
252 3BY

24B 1CX
24B 1AZ
24B 1AZ
24B 1CX
24B 1CX
24B 1CX
24B 1CX
24B IAX
24B 1CX
24B ICY
24B 1AZ
24B 5AZ
24B 1AZ
24B 5AZ
24B 5AZ
24B 1CX
24B ICY
24B 3AX
24B 3AX
24X 3AZ
24X 3AZ
24X 1BZ
24X 1BZ
24X 1CY
24X ICY
24X ICY
24X 5AZ
24X 5AZ
24X 5AZ
24X 5AZ
24X 1CY
24X 1CY
24X 1CY
24X 1CY
24X 1CY
24X 3BY

4CY
35A 1CX
35A 4CY
35A 4CY
35A 4CY
35A 4CY
35A 4CY
35A 4CY
35A 4CY
35A 4CX
35A 4CX
35Y 1 c x
35Y 4CX
35Y 1CX
35Y 4CX
352 4CY
352 4CX
352 ICY
352 4CY

1CX
ICY
1CY

35A ICY
35A 1BZ
35A 2 8 2
35A 2BZ
35Y 1CX
35Y 2BZ
35Y 2BZ
35Y 1 c x
35Y 1BZ
35Y 2BZ
35Y 2BZ
35Y 2BZ
35Y 2BZ
352 1 c x

NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR CASE 1.

. DISPLAY MEMORY
STIME priv C "09:33:3lW
COUNT1 priv N 18 (
COUNT2 priv N 233 (
COUNT3 priv N 1758 (
COUNT4 priv N 4734 (
COUNT5 priv N 7865 (
COUNT6 priv N 8424 (
COUNT7 priv N 4125 (
COUNT8 priv N 188 (
COUNT9 priv N 0 (
FOUND pub L .F.
PENT pub C "C2P"
TRI pub C "ClT3"
FACTOR pub C "3"
TRITYPE pub C " T

P3 pub L .F.
P4 pub L .F.
P5 pub L .F.
T3 pub L .F.
T4 pub L .F.
T5 pub L .F.
D3 pub L .F.
D4 pub L .F.
D5 pub L 1.
P3CHOSEN priv N
P4CHOSEN priv N
PSCHOSEN pnv N
D3RECNO priv N
D4RECNO priv N
DSRECNO priv N
F3RECNO priv N

3 1 variables defined,
225 variables available,

0 (0.00000000) A:obrwlfch.prg
0 (0.00000000) A:obrwlfch.prg
0 (0.00000000) A:obrwlfch.prg

18 (18.00000000) A:obrwlfch.prg
12 (12.00000000) A:obrwlfch.prg
14 (14.00000000) A:obrwlfch.prg
20 (20.00000000) A:obrwlfch.prg

191 bytes used
5809 bytes available

OUTPUT FROM 0BRWLFCH.PRG - CASE 2

3AZ
1AY
3AY
1AX
3 AZ
1 AX
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ
5BZ
3AZ
3AZ
3AZ
1AY
3AY
IAY
3AY
1AY
3AZ
3AZ
3AZ
3AZ
1 AY
3AZ
3AZ
3AZ

24B 3AZ
24B 1CX
24B 1AX
24B 1AX
24B 1AX
24B 3AZ
24B 3AZ
24B 3AZ
24B 3AZ
24B 3AZ
24B 3AZ
24B 3AZ
24B 3AZ
24B 1AY
24B 1AY
24B 3AZ
24B 3AZ
24B 3AZ
24B 3AZ
24B IAY
24B IAY
24B 3AY
24B 3AY
24B 1CX
24B 1AX
24B 3AY
24B 1AY
24B IAY

. DISPLAY MEMORY
STIME pub C "07:47:22"
COUNT1 priv N 37 (
COUNT2 priv N 866 (
COUNT3 priv N 8520 (
COUNT4 p r i v N 16531(
COUNT5 priv N 16895 (
COUNT6 priv N 11792 (
COUNT7 priv N 4687 (
COUNT8 priv N 187 (
COUNT9 priv N 0 (
FOUND pub L .F.
PENT pub C "C2P"
TRI pub C "ClT3"
FACTOR pub C "3"
TRITYPE pub C " T
FTIME pub C "13:13:08"
P3 pub L .F.
Press any key to continue ...
P4 pub L .F.
P5 pub L .F.
T3 pub L .F.
T4 pub L .F.
T5 pub L .F.
D3 pub L 1.
D4 pub L .F.
D5 pub L .F.
P3CHOSEN priv N
P4CHOSEN priv N
PSCHOSEN priv N
D3RECNO priv N
D4RECNO priv N
DSRECNO priv N
F3RECNO priv N

32 variables defined,
224 variables available.

201 bites used
5799 bytes available

OUTPUT FROM OBRWLFCH-PRG - CASE 3

35A ICY
35A ICY
35A ICY
35A ICY

35A 1CY
35A ICY

ICY
ICY

35A ICY
35A ICY

2BX
2BX
2BX
2BX

352 4BX
352 4BX

2CY
2CY

352 1BX
352 1BX

24Y 3AZ 35X2B ICY
24Y 3AZ 35X2B 1CY

ICY
ICY
5AZ
5AX
5AX
5AX
5AX

24C 5AZ
24C 5AZ
24C 5AX
24C 3BZ
24C 5AX
24C 5AX
24Y 5AX

5CY
5 c z
3AZ
3AZ
3AZ
3AZ
3AZ
3AZ
5AZ
3AZ
1AX

24B 5AZ
24B 1AX
24B 1AX
24B 5CZ
24B 5CZ
24C 3AZ
24C 3AZ
24C 3AZ

2BZ
4AX

35Y 1BX
352 1BX
352 1BX
352 1CY
352 1BX

ICY
35Y 1BX
35Y 2BZ
35Y 4AX
352 ICY
352 1BX
352 1BX

352 4BX
35Y 4BX

2BZ
4BX
2BZ
2BZ

35Y 2BX
35Y 2BZ

2BX
35Y 2BX
35A 2BX

4CY
2CZ

35Y 2CZ
35Y 1AX
35Y 4AX

2B X
2BX
4BX

NO SOLUTION FOUND - RESULTS OF PIOTROWSKI CONFIRMED FOR CASE 3.

. DISPLAY MEMORY
STIME pub C "16:42:2lW
COUNT1 priv N 37 (
COUNT2 priv N 819 (
COUNT3 priv N 7651 (
COUNT4 priv N 15994 (
COUNTS priv N 17709 (
COUNT6 priv N 12448 (
COUNT7 priv N 4685 (
COUNT8 priv N 105 (
COUNT9 priv N 0 (
FOUND pub L .F.
PENT pub C "C2P"
TRI pub C "ClT3"
FACTOR pub C "3"
TRITYPE pub C " T
FTIME pub C "00:17:20m
P3 pub L .F.
Press any key to continue ...
P4 pub L .F.
P5 pub L .F.
T3 pub L .F.
T4 pub L .F.

T5 pub L .F.
D3 pub L .F.
D4 pub L .F.
D5 pub L .F.
P3CHOSEN priv N
P4CHOSEN priv N
PSCHOSEN priv N
D3RECNO priv N
D4RECNO priv N
DSRECNO priv N
F3RECNO priv N

32 variables defined,
224 variables available,

0 (0.00000000) C:OBRWLC3.prg
0 (0.00000000) C:OBRWLC3.prg
0 (0.00000000) C:OBRWLC3.prg

16 (16.00000000) C:OBRWLC3.prg
7 (7.00000000) C:OBRWLC3.prg
3 (3.00000000) C:OBRWLC3.prg

1 1 (11.00000000) C:OBRWLC3.prg
201 bytes used
5799 bytes available

