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ABSTRACT 

This thesis consists of a study of expansions in some subcategories of the 

category YX of semigroups . In particular , we consider expansions in the 

category .Yx* of quotients of the free semigroup on X. 

The first chapter includes an introduction to the subject of the thesis and a 

brief resume of the results. 

The second chapter contains some background and preliminaries for the 

succeeding chapters. 

In the third chapter we first develop the concept of contractions on the 

lattice T(X) of congruences on the free semigroup on X and then we show that 

there exist mappings (p and ljJ between the set of contractions in r(X) and the 

set of expansions in .Yx* which are inverse order anti-isomorphisms , and we give 

these mappings explicitly. We also give some basic properties of these lattices. 

The fourth chapter consists of the characterization of some special 

expansions in terms of contractions and the explicit definitions of the joins and the 

meets of some known expansions. 

In the final chapter we characterize the expansions in the category of 

monogenic setnigroups and we also give results related to the lattice of these 

expansions such as the order in this lattice and the compatibility of these lattice 

operations with multiplication. 
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CHAPTER 1 

Introduction. 

From the point of view of the theory of semigroups, it is natural that one 

should want to consider for a given semigroup S those semigroups for which 

there is a natural epimorphism q~ : 3 + S ; that is, S is a homomorphic image of 
- 
S , and such that is close to the particular semigroup S. More precisely, we 

are interested in functors F, from special categories of semigroups and morphisms 

into special categories of semigroups and morphisms. Such a functor F, is called an 

expansion if in addition there exists a natural transformation q from the functor F 

to the identity functor such that each q, is surjective. 

So, given a semigroup S, we are interested in the situation where there 

exists an expanded semigroup F(S) and an epimorphism qs: F(S) 4 S ; given a 

morphism cp: S + T, there exists a morphism F((p): F(S) + F(T) ; if (p is 

surjective, F(cp) should also be surjective'; and (functorially) if I is the identity 

O W  function of S, then F(t) is the identity of F(S), and if S + T + U then 

F(<P o Y) = F(@) o F(Y) ; morover the following diagram commutes : 



This thesis is devoted to the investigation of expansions in the category .VX 

and its subcategories. In order to do that, the concept of a contraction in C O ~ X +  is 

introduced. 

We begin in Chapter 2 by giving the appropriate background for the 

Chapters 3, 4 and 5. For a general introduction to the theory of semigroups, the 

reader is referred to [4] , [6] or [9] . 

In the third chapter we start with the definition of an expansion in Yx and 

we introduce the subcategory Yx* of Yx , and we prove that every expansion in 

YX is congruent to an expansion in Yx* in order to work only in Yx*. We then 

describe the concept of a contraction in ConxS and we give the order on the set of 

contractions in ~ o n X +  , W , which is shown to be a lattice. We also introduce the 

expansions in YX* based on contractions in C O ~ X +  and conversely the 

contractions in ~ o n X +  based on expansions in Yx*. Finally, we give two 
b 

mappings , and @, from the set of expansions in Yx* , 8 ,  onto Q, and fiom Q 

onto B respectively. The main result of this chapter is the fact that these 

mappings are order anti-isomorphisms and consequently , we define a partial order 

on 8' which is then viewed as a lattice. We also show that Q and 8 form as well 

semigroups with composition as multiplication and that Y and @ are also 

semigroup isomorphisms. The last result of this chapter concerns the compatibility 

of the product and the join of two expansions, and is illustrated by an example. 

In Chapter 4 we consider some known expansions. The first section is 
-9' 

devoted to the machine expansion S . We begin by introducing a congruence p9 



and a contraction f : p + px. We also give an isomorphism cp from the free 

semigroup on X , x+, modulo p to the cutdown to generators A of the left 

machine expansion on ~ + / p  . We close this section by proving that @(f) is 

congruent to the left machine expansion cutdown to generators. In the second 

section we turn our attention to an expansion based on the machine expansion , 
MY- 
S , and we introduce a congruence pY and a contraction 1 : p + p". We give an 

isomorphism cp from x+@" to the cutdown to generators A of the expansion 

(~7~)~. We end by proving that @ ( I )  is congruent to the expansion L which 

maps x+/p to the cutdown to generators A of the expansion " ( ~ 7 ~ ) ~ .  In the 
A (2) third section we are concerned with the Henckell's expansion S and as before 

we give the congruence , the contraction h : p + the isomorphism cp - (2) from x+@~) onto ( x + / P ) ~  and we end by proving that @(h) is congruent to 

the expansion H which maps ~ + / p  to the cutdown to generators A of the - (2) expansion (X+/p) . The fourth section contains some lattice theoretical results 

about the congruences and the expansions stated in sections 1, 2 arid 3. We 

introduce an expansion P, which is shown to be the join of the expansions 

Ey : S -1 gY and E9 : S -t g9. We define the congruence pP corresponding to 

P, we prove that the contraction p : p -t pP is congruent to the expansion PA 

which maps S to the cutdown to generators A of P(S). The last result of this 

section is that pP is the meet of p" and p9. 

In the last chapter we are concerned with the expansions in category of 

monogenic semigroup , and the contractions in the congruences on the free 

monogenic semigroup F. In the first section we give a characterization of the 

congruences on F and the order in ConF. We remark that ConF can be identified 



with 4 .  This section is closed by a characterization of contractions in ConF and 

an example. The second section is devoted to the expansions in the category of 

monogenic semigroups. We first remark that the set of expansions in A, €fA, is 

equal to the set of contractions in VJ . We then give a partial order in 8~ , and 

we define the lattice operations. Finally, we investigate the compatibility 

conditions of these lattice operations with multiplication. 



CHAPTER 2 

Preliminaries. 

The purpose of this chapter is to introduce basic concepts used throughout 

this thesis and to establish a few properties of these to be used in the succeeding 

chapters. 

2.1. Basic concepts concerning: sernimoups. 

Definition 2.1.1. Let S be a set and * be a binary operation on S. Then (S,*) 

is called a semigroup if and only if ( a * b ) * c = a * ( b * c ) for any a,b,c E S. 

It is customary to say " semigroup S " rather than " semigroup (S,*) ". 
b 

Definition 2.1.2. A semigroup S is generated by a subset G if every element of 

S can be written as a product of some elements of G, and it is denoted by S = (G). 

Definition 2.1.3. An equivalence relation p on a semigroup S is a left 

congruence if for all a,b,c E S ,  a p b implies ca p cb , a right congruence if a p b 

implies ac p bc ; p is a congruence if it is both a left and a right congruence. 

Lemma 2.1.4. An equivalence relation p on a semigroup S is a congruence if 

and only if for all a,b,c,d E S a p b and c p d implies ac p bd. 



Proof. Let p be a congruence on S , let a,b,c,d E S be such that a p b and 

c p d . Then since p is a right congruence we have ac p bc and since p is 

also a left congruence we have bc p bd. Hence ac p bd. Conversely, if for any 

a,b,c,d E S, a p b and c p d implies ac p bd then p is clearly a congruence .* 

Definition 2.1.5. For a semigroup S let Cons denote the set of all congruences 

on S. 

Let X be a non-empty finite set. A non-empty finite sequence xl,x2,. . .,x, 

usually written by juxtaposition , ~1x2. .  .xn , of elements of X is called a word 

over the alphabet X . Let 1 denote the empty word . 

Definition 2.1.6. The set X+ of all non-empty words with operation of 

juxtaposition 

(xlx2...xn).(~1~2...~n) = xlx2-.-xnYlY2...Yn 
b 

is a semigroup called the free semigroup on the set X . Let X* = X+ u (1). 

For u = ~1x2 . .  .xn E X+ , let I u I  denote the length of u , which is equal to n 

in this case . 

Definition 2.1.7. For any i 2 0 , let ei and si be functions fiom X* into X* 

defined by : Let u = ~1x2. .  .xn s x', then ei(u) = xi+lxi+2.. .xn and 

s'(u) = ~ 1 x 2 . .  .Xn-i . 



2.2. Basic concerns concerning. expansions and .Yy , 

Definition 2.2.1. Let S,T be semigroups and cp be a function from S into T. 

Then cp is called a morphism of semigroup if and only if (scp).(sfcp) = (s.sf)cp for 

any s,s' E S. 

For a formal definition of a functor, a category and a subcategory the reader 

is referred to [5] or [8]. 

Let 9 denote the category of all semigroups and morphisms. 

Definition 2.2.2. A functor f from a category d of semigroups into d is called 

an expansion if there is a natural transformation q from the functor f to the 

identity functor, such that each I'), is surjective . This concept was introduced 

and studied in the papers by Birget and Rhodes [I] and [2] . 

Definition 2.2.3. A semigroup S is "generated" by a set X if and only if there 

exists a function a : X 4 S such that S = ((X)a) ; i.e., S is generated -in the 

classical sense- by the range (X)a of a ; we do not assume that X c S, nor 

even IXI I IS1 . 

Definition 2.2.4. For a given set X , we consider the category PX of all 

semigroups "generated" by X : The objects of the category .YX are of the form 

(S,n) where S is a semigroup and a : X + S is a function such that S = ((X)a) . 



The morphisms from (S,a) into (T,P) are those semigroup morphisms cp : S + T 
such that the following diagram commutes : X 

/ \ 

The elements of .Yx are (S,a) but when convenient we will simply write S for 

Remark 2.2.5. In .Yx , due to the commutativity of the above diagram , any 

rnorphism q is necessarily surjective. Moreover, since any morphism is 

completely determined by its action on a set of generators, the morphisms in .Yx 

are uniquely determined . 

Some other basic properties of YP, are given in [I]. 



CHAPTER 3 

In this chapter we develop the concept of contraction and we explicitly 

give two mappings which are inverse order anti-isomorphisms between the lattice 

of expansions in Yx and the lattice of contractions in CO~X+.  

In the context of .Vx , due to the Remark 2.2.5, the definition of an 

expansion simplifies to the following : 

Definition 3.1. Let d be a subcategory of YX . A functor F: d + d is called 

an expansion if the following condition is satisfied: 

E(i) For any (A, a )  E d , there exists an epimorphism q ~ :  F(A) + A, 

Definition 3.2. Let .d be a subcategory of .Vx. Let F and G be .expansions 

within Yx and d, respectively. We say that F is congruent to G i f ,  for any 
b 

(S, a) E &, there exist (T, p) E d and isomorphisms cp and w such that 

(S, a) is isomorphic to (T, P) via cp and F(S, a )  is isomorphic to G(T, P) via W. 

Note that , by the remark following Definition 2.2.2 , the following diagram 

is automatically commutative: 
W 

F(S,a) ----+ G(T,P) 



For any congruence p s C O ~ X +  , let rp : X + ~ + / p  be the morphism 

defined by (x)tp = xp . 
Let Yx*= ((x+/p, rp) : p E CO~X'). Clearly Yx* is a subcategory of .Vx . 

Remark 3.3. In Yx* there exists a homomorphism 9: (x+/p, rp) + (x+/T, b) 

if and only if p c z and when this is the case <P is unique. 

That being understood, we can identify (x+/p, rp) with x+/p . 

Pro~osition 3.4. Let F be an expansion in Yx . Then F is congruent to an 

expansion in Yx*. 

Proof. Let F be an expansion in Yx . By the universal property of x+, for any 

(S,a) E Yx , there exists a unique congruence p E C O ~ X +  such that 
cP 

( xf/p,  lp ) E (S ,a)  , namely p = a o a-l. 

Now , define 

G: Yx* + Yx* by 

G: x+/p -, x+/ pF (p E CO~X+) 

where pF is the unique congruence on X+ such that (x+/pF, I ~ F )  F(x+/~, I ~ ) .  

For any x+/p E YX4, since there exists an epimorphism q from F( ~ + / p  ) onto 

x+/p and an isomorphism (pp from G(x+/~)  = x+/pF onto ~ @ + / p )  , q' = q o  gp 

is an epimorphism from x+/pF = G(x+/~) onto x+/p . 



Now, let ~ + / p  , X+/T E YX* and 8: x+/p + X+/T be a morphism. Then 

there exists an epimorphism F(8): F(x+/~)  + F(x+/T) , and isomorphisms 

Therefore G(@ = !?!, o F(@ o Op is an epimorphism from X+/pF = G(x+/~) 

onto x+/TF = G(x+/T) . 

Hence, G is a functor consequently , G is an expansion in Yx* . 
Next, let (S, a) E Yx. Again by the universal property of X+ there 

exists a unique homomorphism 9: X+ -t S such that the following diagram 

commutes: 

Since ( S, a ) E Yx , (P is an epirnorphism and therefore S o ~ + / p  , 

where p = cp o cp-I . By the definition of G , F(S) is isomorphic to G(x+/~). 

Thus, F is congruent to G .* 

For the remainder of this chapter, we restrict our attention to Yx*. 



Definition 3.5. A function f : conX+ + conX+ is called a contraction if the 

following conditions are satisfied: 

C(i) f(p) E p for any p E ConX'. 

C(ii) If p , z E ~ o n X +  and p G z then f(p) E f(z). 

Definition 3.6. Let 

8'= { F: YX* + YX*, F is an expansion ) , 

V= { f : + ConX', f is a contraction 1. 

We now introduce order relations on 8 and 9 : 

Definition 3.7. For F, G E 8 , let F 2 G if for any x+/p E Px* there exists 

an epimorphism ep from F(x+/~) onto G(x+/~) . For f, g E 9, let f 5 g if 

f(p) E g(p) for all p E conX+. 

Clearly these are partial orders on 8 and 9 ,  respectively. 

h(p) = f(p) A g(p) (p E ConX+). 

We first show that h E 9 . 
Since f(p) c p and g(p) c p we have h(p) = f(p) A g(p) c p so that h 

satisfies C(i). Let z G p. Then f(z) G f(p) and g(z) G g@) since f , g E 9 

and therefore, we have that h(z) = f(z) A g(z) c f(p) A g(p) = h(p). Thus h 

satisfies C(ii) and h E V. 



Now, let t E 58' be such that t S f and t S g . Then t(p) G f(p) 

and t(p) c g(p) for any p E conX+ . Therefore we have 

t(p) E f(p) A g(p) = h(p) for any p E CO~X+. 

Thus t < h . Clearly, h is a lower bound of f and g , consequently h is the 

greatest lower bound of f and g . 
Next , define k: COX& + ~ o n X +  by 

Up)  = f(p) v g(p) (p E Cofl+). 

Let us see that k E %' : 

satisfies C(i) . Let z c p then f(z) E f(p) and g(z) c g(p) and therefore we 

have k(z) = f(z) v g(z) c f(p) v g(p) = k(p). Thus k satisfies C(ii) and k E W. 

Clearly , k is an upper bound of f and g . 
Now, let t E P be such that t 2 f and t i  g . Then f(p) r t(6) and 

g(p) r t(p) for any p E conX+ . Therefore we have: 

Thus t 2 k, and k is the least upper bound of f and g .e 

Definition 3.9. For any f E V let Ef : Yx* + Yx* be defined by : 

w x + / p )  = x+/f(p) (p E C O ~ + )  

and similarly for any F E 8' let CF: C O ~ X +  + CO& be defied by: 

CF (p) = pF where F(x+/~) = x+/pF. 

Lemma 3.10. (i) For any f E V , Ef is an expansion in Yx* . 

(ii) For any F E 8' , CF is a contraction . 
Proof. (i) Let ~ + / p  E YX* . Then E~x+/P)  = x+/f(p) , by the defintion of Ef. 



Define q , from x+/f(p) into ~ + / p ,  by 

(wf(p)Pl = wp (w E x+) 
Then q is a well-defined epimorphism since f(p) E p and p E CO~X+. This 

proves that Ef satisfies E(i) . 
Now let ~ + / p  , x+/z E Yx* and let 8: x+/p + X+/T be a morphism . 

For this morphism to exist p must be contained in z and therefore 8 is necessarily 

surjective. Since p 5 z and f satisfies C(ii) , we have f(p) c f(z). Next, define 

E&) : ~ f ( ~ + / p )  + E~(x+/T) ; i.e. , Ef (8) maps x+/f(p) into ~+/ f (z) ,  by 

(wf(p))Ei-@) = wf(z) (w E x+) 

Then Ef(e) is a well-defined epimorphism since f(p) E f(7) and f(p), f(7) are 

from CO~X+.  Thus, Ef is a functor . Hence , Ef E 8. 

(ii) Let x+/p E Yx*. Since F E 8, there exists an epimorphism q from 

F(x*+/~) = x+/pF onto x+/p. Since q is a morphism in Yx*, we must have 

pF 5 p. Thus Ef satisfies C(i). 

Next, let p 2. The only morphism 0: x+/p + X+/T is given by 

(xp)8 = xz. Then since F is a functor there exists an epimorphism F(8) from 

F(X+ lp) onto F(x+/T); i.e., F(B) maps x+/pF onto x+/TF . On the other hand 

C F ( ~ )  = pF and CF(T) = zF. Hence, because we are dealing with morphisms 

in YX*, we must have cF(p) = pF c zF = cF(z) . This verifies that CF satisfies 

C(ii). Therefore, CF E V .* 

Definition 3.11. Let (D: V + 8 and Y/: 8 + V be defined by: 

(D:f+Ef  ( ~ E V )  and Y/ :F+cF  ( F E ~ ) .  

Theorem 3.12 . The mappings @ and Y/ are inverse order anti-isomorphisms. 

14 



Proof. By definition it is clear that for all f E V, F E 8, 

y o @(f) = y(Ef )  = CE, = f and @ oy(F)  = @(cF) = ECF = Fy 

and so that 0 and y are inverse bijections. 

Now, let f,g E V be such that f l g. Then f(p) E g(p) for any p in 

CO~X+.  Therefore , Bp: x+/f(p) + x+/g(p) defined by 

(wf(p)P, = ws(p) (w E x+) 

is an epimorphism. Since E~x+/P)  = x+/f(p) and Eg(x+/p) = x+/g(p) and 

since there exists an epimorphism €Ip: Ef(x+/p) + Eg(x+/p) for any x+/p in 

Yx*, we have that @(f)  = Ef 2 Eg = @(g) . 
Finally, let F , G E 8 with F 2 G. Then for any X+/P E &* there 

exists an epimorphism Bp from F(x+/~) onto G(x+/~); that is 

Bp: x+/p + x+/pG. 

Then since €Ip is a morphism in Yx* ,we must have that pF G pG . Hence , 

cc(p) for any p E CO~X', and therefore CF(P) = p F c  p = 

y ( F )  = CF I CG = y ( G )  

as required. Therefore, @ and y are inverse order anti-isomorphisms.@ 

One important consequence of Lemma 3.8 and Theorem 3.12 is that we 

can now consider 8 as a lattice with respect to the operations 

F A G = E(cF"cG) and F v G = E(cF~cG)  . 

Definition 3.13. Let F , G E 8 . Define F-G by 

F-G(x+/~) = F(G(x+/~) (x+/p E ,4Pxh). 

Proposition 3.14. 8 is a semigroup with the multiplication defined above. 



Proof. First let x'lp E Yx* . By E(i) there exist epimorphisms q~ from 

G(X+/p) onto X+/p and q~ from F(G(X+/~)) onto G(x+/~). Let 

q = q~ o q~ . Then q is an epimorphism which maps F-G(x+/p) = F(G(x+/~)) 

onto x+/p . Next let ~ + / p ,  X+/T E &* and let 8: x+/p + X+/T be a 

morphism. Then there exist epimorphisms eG and OF ,where 

eG: G(x+/~)  + G(x+/T) and OF: F(G(x+/~)) + F(G(x+/T)). 

Hence F-G is a functor and so, F-G E 8. Since the composition of functions is 

associative, we have that F.(G.H) = F.(G.H) = F.G.H for any F,G and H E 8.. 
__ - - 

Definition 3.15. Let f and g E V. Define f.g by 

Pro~osition 3.16. V is a semigroup with the multiplication defined above. 

Proof. If p E CO~X' then f.g(p) = f(g(p)) G g(p) G p , and if p, T E  con^' - 
with p c z , then g(p) G g(z) . Therefore, f(g(p)) G f(g(z)) ; that is , 

f.g(p) E f.g(z). Hence, if f,g E V then f-g E V. Since the composition of 
b 

functions is associative , we have that f-(g-h) = (f.g).h = f.g.h, for any f,g and h 

in 59. Consequently, V is a semigroup .* 

Let F, G E 8'. Since 

x+/pF.G = F-G(x+/~) = ~(G(x+/p))  = F(x+/~G) = x + / ( ~ G ) ~ ,  

we have that pF.G = ( ~ I G ) ~ .  Consequently, 

CF.G(P) = pFmG = (pGIF = cp(pG) = CF(CG(~))  . 
That is CF.G = C F ~ G  . Therefore, 

'Y(F.G) = CF.G = CF-CG = Y (F).Y (G). 



Theorem 3.17. 0 and 'l' are semigroup isomorphisims. 

Proof. That Y' is a homomorphism was established prior to the theorem. That 

@ is a semigroup homomorphism follows from the fact that the inverse mapping 

of a semigroup homomorphism is a semigroup homomorphism .. 
Pro~osition 3.18. For any F, G E 8 ,  F-G 2 F  v G. 

Proof. Let x+lp E Yx*. Then 

(F v G)(x+/~)  = EqF, cG)(~+lp )  = x+/((cF A co)(p)) = x+/ (c~(p)  A CG(P)) 

= x+/(pF A pG). 

On the other hand , F-G(x+/~) = F(G(x+/p)) = F(x+/pG) = ~ + / ( p ~ ) ~ .  Also 

(pG)F c pF by C(ii) since pa  p , and ( P G ) ~  pG by C(i). Thus we have 

that E pF A pG. 

Now define ep: F.G(x+/~) + (F v G)(x+/~) by 

( w(pGIF )ep  = w(pF/, pG) (w E x+). 

Then ep is an epimorpism, and so F-G 2 F v G .. 
Exam~le 3.19. The inequality in Proposition 3.18. may be strict. Define the 

Henckell's expansion H , [1] , on a semigroup S by 

with multiplication 

m k k+h 
{ ( n s i ,  1=1 m+l n s i ) l O S m S k ) .  { ( f i s i , n s i ) l k s r S k + h )  

i=k+l r + l  



By [I] we know that H(S) is a homomorphic image of H~(s), but H(S) is not 

isomorphic to H*(s). So, we have that 

(H v H)(S) = H(S) v H(S) = H(S) 

however, 

H. H(S) = H(H(S)) = H2(S). 

Thus, He H # H v H in this case. 



CHAPTER 4 

In this chapter we construct the contractions corresponding to some known 

expansions and we give some lattice theoretical results concerning these 

expansions and contractions. 

4.1. The contraction corres~onding to the machine ex~ansion. 

We begin this section with the definition of the left machine expansion . 
We then introduce a congruence pY on X+ for any given congruence p on 

x+, and a contraction f : p + isY which is shown to correspond to the left 

machine expansion. 

For (S,a) E .YX, let 

with multiplication given by 

-Y-Y 
and let Ey : x + (xa). Then (S ,a ) is called the machine expansion and was 

introduced by Birget and Rhodes in [I]. 



Let A c S such that S = (A). Then 5; E SY defined by 

is called the cutdown of SY to generators A. 

For any p E ConXS define PY on X+ as follows : 

For u , v E x', 
u py v if and only if ei(u) p ei(v) for any i 2 0 and lul = Ivl. 

Since u pY v implies , in particular, that u = eo(u) p eO(v) = v, we 

have pyc_ p . 

Lemma 4.1.1. py is a congruence on x'. 
Proof. Clearly pY is an equivalence relation. In order to see that it is a 

congruence, let u,v,s and t E X+ be such that u Fy v and s pY t . It 
suffices to show that us pY vt . 

Since lul = Ivl and Isl = Itl , lusl = lui + Isl = Ivl + Itl = I d .  

Next, let i 2 0 . 
If- i I lul = Ivl then ei(us) = ei(u)s and ei(vt)= ei(v)t . Since 

ei(u) p ei(v) and s p t we have ei(us) = ei(u)s p ei(v)t = ei(vt) . 
If i > lul = Ivl then ei(us) = ek(s) and ei(vt) = ek(t) where 

k = i - lul = i - Ivl. Since d ( s )  p ek(t) we have that ei (us) p ei(vt) . 
Hence , us py vt . Consequently, p9 is a congruence on x+, as required .. 

Let p s C O ~ X +  be such that ~ + / p  s S and let A = {xp : x E X 1. 

Then A c S and S = ( A ) . We also have that 
Y 5:. (x+lP), =((xp) I X E  X )  



Proposition 4.1.2. cp is an isomorphism. 

Proof. We first show that cp is well-defined. 

Let u, v E X+ be such that 

-9 
U = XlX2.  ..Xn P Y l Y 2  ...Ym = V . 

Then ei(u) p ei(v) for any i 2 0 and n = m. Therefore we have 

(p(uP9) = (eo(u)p,el(u)p ,......) = (eo(v)p,e l(v)p ,......) = cp(vpX). 

Thus, cp is well-defined and clearly maps x+/PX into (x+lP):. 

We first show that cp is injective. Let u = ~ 1 x 2  ..... xn and 'v = y1y2.....ym 

be elements of X+ such that (uPY)cp = (vpx)(p. Then ei(u)p = ei(v)p for 

any i 2 0 , and m = n . That is, ei(u) p ei(v) and lul = lvl. 1t follows from 

the definition of p9 that u P9 v . Hence cp is one-to-one. 

We now show that cp is a homomorphism. 

Let u = (~1x2 ..... xn) and v = (yly2 ....... ym) E x+. Then 



Therefore, 

We finally show that cp is surjective. For any x E X, we have that 
- 

xFY E x+/fiY and (xP?cp= (xp). Since ( ~ + / p ) f  = ( (xp) I x E X ), cp 
- 

Y 
maps the generators of x+/Fy onto those of (X+/p)*. 

Thus, (p is an isomorphism .* 

Now define f : Con X+ + Con X+ by 

Lemma4.1.3. f E V. 

Proof. That FY c p was discussed before. For p, T E Con X+ such that 

p c 2 we clearly have Py c T9.* 

Now let F be defined by 
Y -  

F : @,a) + (SA, ay)  ( ( ~ , a )  E yX ). 

It follows easily from [I] that F is indeed an expansion in Px. 

Theorem 4.1.4. F is congruent to Ef . 
Proof. As before , for any ( S,a ) E Yx we know that there exists a unique 



congruence p E Con X+ such that ( S,a ) z ( ~ + / p  , I.,-,). Then 

F(S) = z x + @ ~  (by Proposition 4.1.2) 

= xf/f(p) = Ed x+/p 1, 
so that F is congruent to Ef .. 

-9 
4.2, The contraction corres~ondinp: to the expansion S,, 

In this section we turn our attention to an expansion based on the machine 

expansion of a semigroup. We introduce a congruence pY and a contraction 

f : p += PY . We close the section by showing that this contraction corresponds to 

that expansion . 

For (S ,a) E YX let 

Equivalently, 

S" = { (SI .... sn ,{ ~ 1 ~ 2  .+.. Sn,S2 ....b...... ...., sn,I}) I S1, ..., Sn E S ) 

and 
-9 
S = ( ( ( ~ 1 ~ 2  ... sn , S l S 2  .... Sn-l,....,S1~2,~1), S1S2 .... sn) I S1,SZ ,... .Sn E S ) 

-9 
Define a multiplication on S by : 

(s, A).(t, B) = (st, A.t u B) 



and on S1 by : 

(A, s).(B, t) = (A u S-B, st) 

where 

A.t = { xt I x E A } and s.B = { sy I y E B }. 

and let Ccy : x + (xa, {xa, 1)) and W: x + ({ l,xa}, xa). 

The expansions ( S r  W ) and ( !?I, tZJ ) wen  introduced in [I] and [3] . 

Let A G S such that S = (A). Then Sf G SY defined by 
--Y 
SA = ( (a,{a,l)) 1 a E A ) 

is called the cutdown of S9 to generators A. 

For any p E  con^+ defme pY on X+ as follows : 

For u, v E X+ with lul = m and Ivl = n, 

u i jy  v  if and only if 

( i )  u p v ;  

(ii ) for any 1 l k c m , there exists 0 S 1 < n such that 

ek(u) p el(v) ; 

(iii) for any 1 l r < n , there exists 0 l s < m such that 

er(v) p eS(u) . 

Lemma 4.2.1. py is a congruence on x+. 
Plpnf. Clearly py is an equivalence relation . We wish to show that py is 

also a congruence . 



Clearly iJy G p . Let u,v,w and z E X+ be such that u v and 

w iJ9 z where lul = m , Ivl= n , Iwl = p and lzl = t . Then u p v and w p z 

implies uw p vz. Let 1 I k < m+p. 

If 1 I k < m then there exists 0 I I I n < n+t with ek(u) p el(v). 

Since ek(u)w = ek(uw) and el(v) = el(vz) we have that ek(uw) p el(vz). 

If k = m , let 1 = n. Then ek(uw) = w p z = el (vz) and thus 

ek(uw) p el(vz). 

If m < k < m+p, let k' = k-m. Then 1 I k' < p and so there exists 

0 I I' < t with ekl(w) p er(z). Also, ek'(w) = ek(uw) and, if we let I= I'+n, 

then 0 5 n I I < t+n and ele(z) = el(vz). 

Hence in all cases, ek(uw) p el(vz) for some 0 S I < t+n . 
Similarly for any 1 I r < n+t, there exists 0 S s < m+p such that 

er(vz) p eS(uw). Therefore, uw j ~ "  vz and so p9 is a congruence .@ 

Let p E C O ~ X +  be such that x+/p = S and A = {xp : x E X ). Then 
b 

A c S and S = (A). Also, we have that 
-9 - 9  
S A =  (X+/P)A = (  ( x p  ,{xp,l))l X E  X) 

= { (X l....~n)p ,{ (xl .... xn)p ,....., (xn)p,l) ) I Xi E X) .  

Pro~osition 4.2.2. <P is an isomorphism. 

Proof. We first show that (p is well-defined. Let u,v E X+ such that 



Then, by the definition of p", we have that (x l....xn)p = (y 1 ...ym)p and for 

any 1 I i < n, there exists 0 l j < m such that ei(u)p = d(v)p. We also 

have that for any 1 I i' < m, there exists. 0 I j' < n such that eT(v)p = dt(u)p. 

Therefore, 

Hence, 

Thus, (p is well-defined. 

To see that (p is injective, let u = XI.. .xn, v= yl.. . ym E X+ be such - 

that ((u)pY)(p = ((v)pY)cp. Then 

and conversely, for any 1 5 i' < m , there exists 0 I j' < n such that 

e?(v) p d(u)  (* * *). 
Whence, by (*), (* *) and (* * *), u px v; that is, (u)PY= (v)pX. Thus, cp is 

injective. 

To see that p is also a homomorphism let u = xi .... xn , v = yl. ... ym E x'. 



generators, cp is surjective .* 

Now define 1 : Con X+ -+ Con X+ by: 

1 :  p + py. 

Lemma 4.2.3. 1 E %? 

Proof. That pY c p is clear from the defiition of pY , part (i). For - 
p,z E Con X+ such that p G 7, we clearly have p' E 5".* 

Now let L be defined by 

It follows from [I] or [7] that -L is indeed an expansion in YX. 

Pro~osition 4.2.4. L is congruent to El . 
Proof. As before, for any (S,a) E L4P, ,we know that there exists a unique 

p E C O ~ X +  such that x+/p n S. Then ,by Proposition 4.2.2 , 
-9- 

L(S) = S A  G x+/PY = ~ + / l ( p )  = El ( X +/P ), 

so that L is congruent to El .* 

4.3. The contraction corres~onding: to the Henckell's ex~ansion. 

This section is devoted to Henckell's expansion. We first recall this 
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expansion and then introduce a congruence am for any given p E Con x+. This 

is followed by the definition of a contraction h : p + an). We then show that this 

contraction corresponds to the Henckell's expansion. 

For (S,a) E YX let 

A (2) m k 
S = ( ((  7 Si , II si) : 0 5 m S k ) l sl, ..., sy s S ) 

m+l 

with multiplication 

and let 6, : x + {(xa,l), ( 1 , x a ) ) .  

Then ("S2),&) is called the Henckell's expansion and was introduced in [I]. 
b 

A(2 )  A (2) 
Let A c S such that S = (A). Then S A G S defined by 

A(2) s * = ( ((l,a>,(a,l>I 1 a E A ) 
(2) 

is called the cutdown of S to generators A . 

For p E CO~X' define an) on X+ as follows : 

For u, v E x+, where lul = m and Ivl = n, 

u fY2) v if and only if 

(i) for any 0 I i c m, there exists 0 I j < n such that 

si(u) p d(v) and em-i(u) p en-J(v) ; 



(ii) for any 0 I k I n there exists 0 l 1 I n such that 

sk(v) p sl(u) and en-k(v) p em-I(,). 

Lemma 4.3.1. is a congruence on x+, 
Proof. Clearly $3(2) is an equivalence relation. To see that it is also a congruence 

we first show that f i ( 2 ) ~  p. Let u ,v E X+ be such that u a(2) v. Then 

sO(u) p d(v) for some 0 l j c n and em(u) p em-J(v). Therefore, 

u = sO(u)em(u) p d(v)em-J(v) = v. Hence, u p v, as required. 

Now let u , v , w and z E X+ be such that u v and w z, 

where lul = m , lvl = n , lwl = p and Izl = r . Then luwl = m+p and lvzl = n+r. 

Next, let 0 I i c m+p. 

Case (i) 0 S i < p. Since w fia) z there exists 0 S j < r such that 

s~(w)  p d(z) and ep-i(w) p er-J(z). Since u Pa v and therefore u p v, 

by the above, we have that usi(w) p vd(z). But since 0 < i < p = Iwl and 

0 5 j c r = I z I  , we have usi(w) = si(uw) and vd(z) = d(vz). Hence, 
b 

si(uv) p ~ ( v z ) .  Also,since 0 I i < p = Iwl and 0 I j < r = lzl, we have that 

e~- i (w) = e m + ~ - i  (UW) and er-j(z) = en+r-j (vz). Thus, e(m+~)-i(uw) p e(n+r)-J(vz). 

Case (ii) i = p. Let j = r. Then .- have si(uw) = u p v = &vz) and 

Case (iii) p c i < p+m. Then 0 < i-p < m and so there exists 0 I j' < n 

such that si-~(u) p d(v) and em-(i-P)(u) p en-jl(v). Let j= j'+r. Then r I j < n+r 

and d'(v) = d(vz). Since si-~(u) = si(uw), we have that si(uw) p d(vz). Also, 

since w p z,  em+^-i(u)w = e(m+~)-~(uw) and en-jl(v)z = en-(j-r)(vz) = e(n+r)-j(vz) , 

we have that e(m+P)-i(uw) p e(n+r)-j(vz). 



In cases (i) ,(ii) and (iii) we have shown that uw and vz satisfy 

condition (i) in the definition of fi(2). That they also satisfy condition (ii) is 

similarly shown. Hence, uw vz and therefore, Pa) is a congruence .* 

Let p E C O ~ X +  be such that ~ + / p  E S and A = {xp I x E X). Then A S 

and S = (A). Also, we have that 

m n 
= {{( (?x i )p , (n  x i ) p ) I O I m I n )  l n 5 l a n d  x i s  X). 

m+l - (2) - A(2) 
Now define (P : x+@" + ( ~ + / p ) ~  = S A by 

m n 
(P : (X l,...Jn) + {(( 7 xi )p,( II xi)p) l 0 S m I n). 

m+l 

Pro~osition 4.3.2. (P is an isomorphism. 

Proof, We first show that (P is well defined. 

Let u ,v E X+ be such that u = xl ...... xn ,(2) yl ...... yk=v. ~ e t  1 ~ m ~ n  

and i = n - m. Then 0 I i < n and hence there exists 0 I j < k such that 

and 
n k 
nx,=en- i (x l  ..... x,) p ek-j(yl ..... yk)=  n y,. 
m+ 1 k-~+l  

For m = 0 , since u p v, (1, up) = (1, vp). 

Hence, for any 0 S m I n there exist 0 I k-j 5 k such that : 



Similarly any pair 

is equal to a pair of the form 

Hence, ucp = vcp. Consequently, cp is well-defined. 

To see that cp is injective, let u = xl ..... xn , v = yl ..... y, E X+ be 

such that 

That is, for any 0 2 k < n , if we let r = n - k then there exists 0 I t < m such 
. . 

that 

Similarly, for any 0 I p < m, there exists 0 I I < n such that 

SP (v) p sl (u) - and em-P (v) p s "-1 (u). 

Thus, u bc2) v and so, cp is injective. 

To see that cp is a homomorphism, let u = xi .... xn , v = xn+l ... xn+k E x+. 
Then we have that : 



= ((xx')fY2))cp . 
Finally, we show that cp is surjective. Let x e X and 

A 
Since ( x+@)(:) is generated by { ((l,xp),(xp,l)} I x e XI, cp is surjective .@ 

Now define h : ~ o n X +  + c o d f  ' by 

h : p -t aO. 

Lemma 4.3.3. h E 9 . 

Proof. That $Ic2) c p was discussed in the proof of Lemma 4.3.1. For 

p,r E ConX+ such that p G z we clearly have G Oc2) .. 

It follows easily from [I] that H is indeed an expansion. 

Pro~osition 4.3.4. H is congruent to Eh . 
Proof. As before, for any (S,a) E Yx )we know that there exists a unique 

p c Conxf such that ~ + / p  % S. Then 

H(S) = 8:) . ~ + / b ( ~ )  (by Proposition 4.3.2) 

= x+/h(p) = Eh( X+/P 1, 

so that H is congruent to Eh .@ 



4.4. Some lattice theoretical results, 

In this section we introduce the congruence p" which is the dual of px 
and we show , by an example , that a@' 6 pY A pJ. We then turn our 

attention to expansions; in particular to SY and SJ. We define an expansion 

P : S -+ P(S) and we prove that P(S) = SY v S J .  We then introduce the 

contraction p : p + pP corresponding to the expansion P : S + P(S). We 

conclude this section by showing that pP = p" v pJ. , 

Definition 4.4.1. Let p E ConX+. Define pJ on X+ as follows : 

For u , v E X+, where lul = m and Ivl = n, 

u p" v if and only if 

(9 u p  v ; 

(ii) For any 1 i k < m there exists 0 S 1 < n such that sk(u) p sl(v) ; 

and 
b 

(iii) For any 1 I r c n there exists 0 5 s < m such that sr(v) p ss(u). 

Pro~osition 4.4.2. 

(i) p" is a congruence on X+. 

(ii) Let r : ConX+ + ConX+ be defined by 

r : p +  - (p E ConX+). 

Then r E @. 

(iii) Let R : ( S,a) + ( 5: ,E") (S,a) E 55, ( it follows from [I] a 

[7] that R is indeed an expansion in Yx ) . Then E, is congruent to R. 



Proof. All statements are the duals of results in 4.2 and may be proved - 
similarly.* 

We now prove, by an example, that fY2) 5 (py A P*). 

Example 4.4.3. Let X = {xl,x2,~3,xq,xg). Define p on X+ by 

u p v if and only if lul = Ivl = 1 or lul and lvl > l  (u,v E Xs) 

Clearly p is a congruence on X+ and X+/p z S = (0,l)  where the 

multiplication on S is defined by 1.1 = 0.1 = 1.0 = 0.0 = 0. 

Let u = xlx2x3xq and v = xlx2 , then lul = 4 and Ivl = 2 . We now will show 

that (u,v) E j3: (u,v) E PJ but (u,v) B $(2) . 
To see that u f3' v, first note that u p v . Next let 1 5 k c 4 . If 

k 1 2 then with 1 = 0 we have ek(u) p el(v), while if k = 2 then with I = 1 
b 

we have ek(u) p e[(v). Conversely, since lvl = 2 and 1 i r 1 Ivl, r must be 1, in 

which case taking s = 3 we have er(v) p es(u). Hence, (u,v) E p? 

Dually, (u,v) E f3? 

However, for i = 1 , si(u) = ~ 1 x 2 ~ 3  and lsi(u)l = 3 > 1. Therefore, 

si(u) p d(v) only if lsj(v)l > 1. But 2 = lvl 2 d(v) for any j 2 0 and so 

si(u) p &(v) only if j = 0 ; that is, d(v) = sO(v) = v . But then we have 

em-i(u) = e4-l(u) = x4 and en-j(v) = e2-0(v) = e2(v) = 0 

so that (em-i(u) , en-j(v)) e p . Thus, u and v do not satisfy the condition 

(i) in the definition of and as a result (u,v) e 8")  . 
It follows that ?(2) 5 PY A p.0 



We now turn our attention to expansions . 
For (S,a) E Yx , let 

Define the multiplication on P(S) by 

( A1 ,s, A2 ).( B1 ,t, B2) = ( A1 u s.B1 ,st, A2.t u B2 ) 

where s . B 1 = { s x I x ~  B 1 )  and A 2 - t = { y t I y ~  A 2 )  

and let p(a) : x + ({ l ,xa),xa,(xa,l  1). 

It is easily seen that P(S) is a semigroup. 

Lemma 4.4.4. Define P : Yx + Yx by P : (S,a) + (P(S),p(a)). Then P is 

an expansion in Yx. 

, Proof. Let (S,a) E Yx . Define q : P(S) + S as follows : 

Clearly 7 is an epimorphism. Next , lei  S,T E .Yx and 8 : S + T an 

epimorphism. Define P(B) : P(S) + P(T) by 
n k k 

P(8):  ({Vsil  0 5 n S k ) , ? s i , {  m+l II s i I 0 S m S k ) )  + 
n k k (((7 si)B I 0  5 n 5 k),  (7 si)B, { ( I I  si)B I 0  S m 5  k)). 

m+l 

Then P(8) is an epimorphism , thus P is a functor. Hence P is an expansion in 

.Yx .e 

Let Ey , E 9  E 8' be defined by 

E y :  S + SY and Es: S + S1 (S E Px). 



For expansions E ,F in Yx , let E 5 F if and only if there exists an 

epimorphism 0(S) : F(S) + E(S) for any (S,a) E Yx. The relation I is not a 

partial order. However , although we are aware of this, for the next part of the 

discussion we will proceed in the understanding that we are only working within 

isomorphism of expansions. 

Pro~osition 4.4.5. P = E y  v E s .  

Proof. For any S E YX*, clearly 

B y  : P(S) + gY and 0 9  : P(S) + gJ 

and 
n k k 

Oa:({llsi l  O l n S k ) ,  T Sil { II S i l O S m I k ) )  + 
1 m+l 

n k 
({flsi I O S n i k ) , T  si) 

are epimorphisms. Hence P 2 E4p and P 2 E s .  . 
To see that P = E y  v E s  , let F E 8 be such that F 2 Ey and F 2 

E9. Let S E YX*. Then there exist epimorphisms 

vY : F(S) + sY and (p,: F(S) + ?, such that the following diagram 

commutes : 



Now, let 

1 = ((scp,, scpy I s E F ( W .  

Since the above diagram is commutative we have (s)<p90qy = (s)(paoqs . 

Hence the pairs (ST, , scpy ) are of the form : 
n k k k (((7 Si l  0 5 n*), 7 si), (7  Si, ( I'I S i I  0 S m S k 1)) 

m+l 

(Recall that q9 and q, are the projection mappings on the first and second 

Next, define X : 1 + P(S) by 

It is not difficult to verify that X is an isomorphism. Let 0 = X o y  , then we 

have that 6 : F(S) -+ P(S) is an epimorphism. Thus, F > P and this proves 

that P = Ey v E9 .* 

For p P CO~X', define pP on X+ as follows : 



For u,v E x+, where lul = m and Ivl = n, 

u ppv if and only if 

( 0  u p v ;  

(ii) for any 1 5 i < m there exist 0 5 j, j'c n such that 

si(u) p d(v) and ei(u) p dt(v); 

(iii) for any 1 < k < n there exist 0 I l , l l u n  such 

that sk(v) p s I(,) and ek(v) p el'(u). 

Lemma 4.4.6. pP E CO~X+. 

Proof. Clearly pP is an equivalence relation. To see that it is also a congruence, 

let u,v,w and z E X+ be such that u pPv and w pP z, where lul = m , lvl = n , 

Iwl = p and lzl = t. 

Let 1 5 i < m+p. 

If 1 < i < m then there exists 0 I j' < n I n+t such that ei(u) p dV(v). 

Since ei(u)w = ei(uw) and dl(v)z = dl(vz), we have ei(uw) p dt(vz). 
b 

If m < i < m+p then setting i' = i-m , we have that 1 5 i' < p and so 

there exists 0 I j < t such that eY(w) p d(z). Let j' = j+n. Then 0 I j' < n+t. 

We also have d(z) = dt(vz) and eit(w) = ei(uw) , whence ei(uw) p dl(vz). 

If i = m then setting j' = n we have that ei(uw) = w p z = dl(vz). 

Hence , in all cases, there exists 0 I j' < n+t such that ei(uw) p dl(vz). We 

now look at the following cases : 

If 1 5 i < p then there exists 0 I j < t such that si(w) p d(z). Since 

si(uw) = usi(w) and d(vz) = vd(z) and u p v we have si(uw) p d(vz). 

If p < i < m+p then setting i' = i-p , we have that 1 5 i' c m and so there 

exists 0 5 k < n such that sit(u) p sk(v). Let j = k+t. Then we have 



sk(v) = d(vz) and sil(u) = si(uw). Thus si(uw) p ~ ( v z ) .  

If i = p then setting j =t we have that si(uw) = u p v = ~ ( v z ) .  

Thus in all cases there also exists 0 I j < n+t such that si(uw) p d(vz). 

Dually for any 1 I k < n+t there exist 0 I I ,  I' < m+p such that 

ek(vz) p ell(uw) and sk(vz) p sl(uw). Therefore, uv pP vz . Hence 

pP is a congruence .@ 

Let A c S such that S = (A). Then P(S)A G P(S) defined by 

P(S)A = ( ({l,a),a,{a,l)) I a E A ) 

is called the cutdown of P(S) to generators A . 

Let p E C O ~ X +  be such that x+/p n S. Let A = { xp l x E X }. Then 

Pro~osition 4.4.7. 9 is an isomorphism. 

Proof. We first show that (p is well defined. Let u = xl . . .xn pP y 1.. . ym = v. - 
Then from the definition of pP we have : 

and 



To see that cp is also a homomorphism let u = xi . .  .x,, v = yl.. . Ym E x+. Then 

Finally we show that is surjective. Let x E X ,  and 

( {  1 ,xp ) ,xp, (xp,l ) )  be an element of P(x+/~)* . Then xpP E x+/pP and 

(xpp)(p = ({ 1 ,xp ) ,xp, ( xp, 1 1). Since P ( x + / ~ ) ~  is generated by 

(((l,xp),xp,(xp,lH I x E X 1 

and cp is onto on generators, 9 is surjective .e 

Now define p : C O ~ X +  + C O ~ X +  by 

p :  p'  p p .  



Lemma 4.4.8. p E V . 
Proof. That p(p) = pP c p is clear from the definition of pP. For p,z E CO~X+ 

such that p c z we clearly have p(p) = pP E zP = p(z) .* 

Now , let PA be defined by 

PA : ( S, a) ( P(S)A ,p(a)) (S,a> E y x  

It is easy to verify that PA is an expansion in 9,. 

Proposition 4.4.9. PA is congruent to Ep . 
Proof. As before , for any ( S,a-) E Yx we know that there exists a unique 

congruence p E Con X+ such that ( S,a ) z ( x+/p , lp). Then 

P A W  = P(S)A n X+lp(p) ( by Proposition 4.4.7) 

= Ep( X+/P). 

so that PA is congruent to Ep .* 



CHAPTER 5 

In this chapter we turn our attentions to the category of monogenic 

semigroups. First we are going to characterize the contractions in ConX+, where 

X= (x}. Then we look at the expansions in the category of monogenic semigroups 

and we give some results concerning the lattice of the expansions in this category. 

$. 1. The contractions in the conmuences on the free monogenic semimou~. 

We start this section with a characterization of the congruences on the free 

monogenic semigroup, F. These results are well-known, although not perhaps in 

this form, and follow easily from the description of monogenic semigroups to be 

found in Howie [6] and Clifford and Preston [4]. Then, we give the order on 

ConF. Finally, we define the contractions in ConF and we present an example. 

Let X = {x).  The free semigroup Fon X is F = {xm : m = 1,2, ...) with the 

usual multiplication xm-xn = xm+n . Let [i,p] denote the monogenic semigroup of 

index i and period p. 

Let A = { [i,p] I i,p are integers, i 2 0, p 2 1 ) . 

Definition 5.1.1. For any [i,p] E A, define p[iSp] on F by 

xm p [i81 xn if and only if m = n < i+ 1 or m,n 2 i+ 1 and p l m-n . 

Lemma 5.1.2. ~ [ i , ~ ]  is a congruence on F . 



Proof. That p[iVpl is an equivalence relation is clear. ~6 see that it is a 

congruence, let m,n,r and s E { l,2,3,. . . ) be such that xm P[iSpl xn  and 

xr  PI^,^] xS. We want to show that xm.xr = x ~ + ~  P[i,pl xn+S = xn.xS. 

If m = n < i+l and r = s c i + l  then m+r = n+s and either 

m+r = n+s < i+l, in which case we have xm+r p[i,p] xn+S, or m+r = n+s 2 i+l, 

and if this is the case we have p I (m+r)-(n+s) = 0 hence , xm+r p[i,p~ xn+s . 
If m = n < i+ l  , r,s 2 i+l and p l r-s or m,n2 i+l , p I m-n and 

r = s < i+l, then we have m+r , n+s 2 i+l and p I (m+r)-(n+s) hence, 

xm+r P[i,p] xn+' . 
If m,n 2 i+l , p I m-n , r,s 2 i+l and p I r-s then we have m+r, n+s 2 i+l 

and p I (m+r)-(n+s) hence, xm+r ~ [ i , ~ ]  xn+S. Thus, in all cases xm+r p[i,p] xn+s . 
Therefore ~ [ i , ~ ]  is a congruence on F.* 

Lemma 5.1.3. Cod?= {I) u (~ [ i ,p ]  : [i,p] E M 1. 

Proof. Let p E ConF, p # I. Then the set - 
L 

{m E { 1,2,. . .) 1 there exists n E { 1,2,. . .) such that xm p xn , m + n)  

is non empty and so has a least element k . Then the set - 

{r E {1,2, ...) : xk p xk+f) 

is non empty and so it too has a least element p. 

First of all let r E (1,2, ...) be such that xk p xk+r. Then r 2 p and so 

r = ap+b for some integers a and b such that a 2 1 , 0 I b < p. Hence , 

k+r = k+ap+b and xk p xk+r = xk+ap+b = xk+aP.xb p xksxb = xk+b. But then b must 

be 0 since p is the minimum of such elements, hence p I r . 



Now let 0 5 a < p, and xa p xb for some b E (1,2, ...). Then xk+ap xk+b. 

And , since p-a > 0 , xk p xk+p = xk+a+@a) p xk+b+(P-a) . Then , by tk above , 

p I b+p-a = p+(b-a). Hence p I b-a . 
Finally, let s,t E { 1,2,. . . ) be such that s,t 2 k and xs p xt .Them 

k+ap 5 s c k+(a+l)p and k+bp 5 t < k+(b+l3p. Hence 0 S s-(k+ap) c p. 

Since s = k+ap+s-(k+ap) and t = k+bp+t-(k+bp) it follows that : 

XS-ap = xkxs-(k+ap) P xk+ap&k+ap) , xs P xt = xk+bpxt-(k+bp> P xkxt-(k+bp), xt-bp, 

and so, xs-aP p xt-bP. Then, by the above , we have that 

p I (s-ap)-(t-bp)= s-t+p(b-a) . 
Hence p l s-t . Now, by setting i = k-1, we have p = p[i,P] .e 

Proof. First , let p[i,p] I Pfi,r] . Then, by definition of ~ [ i , p l ,  xi+1 ~ [ i , ~ ]  xi+p+l 

and so xi+l p ~ k , ~ ]  xi*P+l. .Then, since i+l # i+p+l , we must have i+l and 

i+p+l > k+l, in particular i+l 2 k+l and so i 2 k , and r 1 (i+p+l)-(i+l) = p. 

Conversely, let i 2 k and r I p. If m,n, E {1,2,. . .) are such that 
b 

xm ~ [ i , ~ ]  xn then either m = n < i+l in which case xm pkJ] xm = xn or, 

m,n 2 i+l and p I m-n then, since i + l 2  k+l and r l p, we have xm p[kJ] xn. 

Let PA= [ c : c is a contraction in ConF 1. Let c e 5?Q and p s ConF. 

Then, by Lemma 5.1.3, either p = I or p = p[i,p] for some [i,p] E A. Note that , 

by C(i) in the definition of contraction, f(l) = 1 for any contraction f. Therefore , 

it suffices to define the contraction on ConF \ {I) and so, we identify ~ [ i , ~ ]  by 

[i,p], Hence c can be regarded as a function from A into A ; i.e., 



We recognize that [i,p] has two meanings , one being a congruence p[iSp] 

and the other being the monogenic semigroup with index i and period p , because 

of the close relation between the sets ConF and A. However , we believe that 

there will be no confusion due to the context. 

Proposition 5.1.5. c E if and only if c is of the f o m  : 

c : P,pI -+ h( i ,p ) ,  c2(i,p)l 

where cl and c2 are f~nc'hdns of two variables satisfying the following conditions: 

(i) cl( i ,p)2i  forany i , p ~  {1,2 ,... } ;  

(ii) p l c2(i,p) for any i,p E {1,2 ,... } ; 
(iii) if i 2 k and r l p then cl(i,p) 2 c l  (ks) and c2(k,r) I c2(i,p). 

Proof. Let c E VA be such that c : [i,p] + [cl(i,p), c2(i,p)]. We will now show 

that cl and c2 satisfy the above three conditions. 

By C(i) in the definition of contraction c(p) E p for any p E Con. ,  

that is, P[c,(i,p), cz(i,p)l c P[i,p]. Then , by Lemma 5.1.4 , cl(i,p) 2 i and p I c2(i,p). 

Also, by C(ii) in the definition of contraction , if p G z then c(p) c c(z) ; i.e., if 

P[i,p] c P[k,r] then P [cl(i,p), c2(i,p)] !Z P[c1@,r), c2(k,r)l ; that is, by k l l m a  5-1.4, if 

i 2 k and r l p then cl(i,p) 2 cl(k,r) and c2(k,r) I c2(i,p). 

Next, let c be a function as defined in the proposition. Let p E ConF, 

Say p = P[i,p]. Let c(p) = pc([i,p]) = P[cl(i,p),c2(i,p)] 7 % ~  , since cl(i,p) 2 i 3 

p 2 c2(i,p) and by Lemma 5.1.4, c(p) E p . 
Let p,z E ConF be such that p s; 7, say p = p [i,p~ and T = P[k,r], 



Example 5.1.6. Define c : A + A by 

c : [i,p] + [i+p, z ~ - ~ I  
Then for [i,p] E A we have that ci(i,p) = i+p 2 i and p l c2(i,p) = 2i-p 

and for i 2 k and r 1 p we have c l  (i,p) = i+p 2 k+r = c l(k,r) and 

k cz(k,r) = 2 .r 1 2'ap = c2(i,p). Hence c E V'. 

In this section we turn our attention to the expansions in the category of 

monogenic semigroups A. We define these expansions and we give the order in 
C 

the lattice of expansions in this category. 

Let = ( E : E is an expansion in A ). Since F/p[ilpl 2 [i,p] and we 

have the anti-isomorphisms @ and '%' we have that 8' = @A. . We remark 

that the relation 2 in if'j is the reverse of the relation 5 in V'. 

We have the relation I in 8~ ,as defined previously in 8, as follows : 

For E , F  E 8~ ,where E=(el,e2) and F=(fl,f2), E I F  ifand 

only if there exists an epimorphism (P[i,p] from F([i,p]) onto E([i,p]) for any 

[i,p] E 4 ; that is E 5 F if and only if e l  (i,p) 2 f i  (i,p) and f2(i,p) I e2(i,p). 



In contrast to the situation in general for expansions this is clearly a partial order 

on ifA. In fact ,& is a lattice where the join and the meet of two expansions 

are given as in the proceeding proposition. 

Proposition 5.2.1. For E , F  E 8' ,where E=(el,e2) and F=(fl,f2) 

E v F = J = ( j l , j 2 )  where jl(i,p)=max {el(i,p),fl(i,p)) 

j2(i,p) = 1.c.m. {e2(i,p),fdi,p) I ,  
and 

E A F = M = (ml,m2) where ml(i,p) = min {el(i,p),fl(i,p)) 

m2(i,p) = g.c.d. ( e2(i,p),f2(i,p) I .  
Proof. It is clear that J E and J 2 E , F. Let G = (gl,g2) E ifJ be 

such that G 2 E and G 2 F. Then gl(i,p) 2 el(i,p) and gl(i,p) 2 fl(i,p) 

and so gl(i,p) 2 max {el(i,p),fl(i,p)) = j l(i,p). Also, since ez(i,p) I g2(i,p) and 

f2(i,p) I ga(i,p) j2(i,p) = l.~.m.(e2(i,p),f2(i,p)) I g2(i,p). Hence, G 2 J and 

consequently J = E v F. 

It is also clear that M E 8' and M .I E , F. Let H = (hi ,h2) E 8~ 

be such that H I E and H I F. Then el(i,p) 2 hl(i,p) and fl(i,p) 2 hl(i,p) 

and so h l(i,p) 5 min {el(i,p),fl(i,p) ) = ml (i,p). Also, since h2(i,p) l e2(i,p) and 

h2(i,p) I e2(i,p), h2(i,p) I = g.~.d.(ez(i,p),f2(i,p)) = ma(i,p). Hence, H < M and 

consequently M = E A F.. 

For expansions in A we have the following compatibility conditions. 

Proposition 5.2.2. Let E, F and G E 8~ , E = (el,e2), F = (fi,f2) and 

G = (g1,g2). Then (E A F).G = E-G A F.G however, G(E A F) I G.E A G-F 



Hence, G.(E A F) 5 G-E A G-F. Now we will give an example for which 

G.(E A F) is not equal to G-E A G.F. Define E,F and G by 

el (i,p) = el(i) = fl(i,p) =fl(i) = gl(i,p) =gl(i)= i 

p if 2 does not divide p 
6k i fp=2k 

and 
10k i f p = 2 k a n d k ~ N \ { 1 )  

P otherwise 

It is easy to verify that E ,F and G E Then for [i,p] = [2,2] we have that 

( W E  A F))([2,21) = G(Cmin (ei(2),fi(2)) , g.~.d.{e2(2),f2(2))1) 

= G([2, g.c.d.(4,6)]) = G([2,2]) = [2,2]. 

However, 

(G.E A G.F)([2,21) = [min{gl(el(2)),gl(fl(2))),g.c.d.{g2(e2(2)),g2(f2(2))]] 



= Cmin I2,2 1 Y g.c.d. I g2(4)9g2(6) 1 I 

= [2, g.c.d.{20,30)] = [2,10]. 

Thus, we have G-(E A F) ;c G-E A.G.F in this case. 

Remark5.2.3. The dual result holds for the joins; that is, (E v F).G = E.G v F-G 

and G.(E v F) 2 G.E v G-F but G.(E v F) is not necessarily equal to 

G-E v G.F. 
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