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ABSTRACT

This thesis consists of a study of expansions in some subcategories of the
category %% of semigroups. In particular, we consider expansions in the

category %x* of quotients of the free semigroup on X.

The first chapter includes an introduction to the subject of the thesis and a
brief resume of the results.

The second chapter contains some background and preliminaries for the
succeeding chapters.

In the third chapter we first develop the concept of contractions on the
lattice T'(X) of congruences on the free semigroup on X and then we show that
there exist mappings ¢ and Y between the set of contractions in I'(X) and the
set of expansions in %x* which are inverse order anti-isomorphisms , and we give
these mappings explicitly. We also give some basic properties of these lattices.

The fourth chapter consists of the characterization of some special
expansions in terms of contractions and the explicit definitions of the joins and the
meets of some known expansions.

In the final chapter we characterize the expansions in the category of
monogenic semigroups and we also give results related to the lattice of these
expansions such as the order in this lattice and the compatibility of these lattice

operations with multiplication.
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HAPTER 1
Introduction.

From the point of view of the theory of semigroups, it is natural that one
should wént to'considAer for a given semigroup S those semigroups S for which
there is a natural epimorphism ng: S — S; thatis, S is a homomorphic image of
S, and such that S is close to the particular semigroup S. More precisely, we
are interested in functors F, from special categories of semigroups and morphisms
into special categories of semigroups and morphisms. Such a functor F, is called an
expansion if in addition there exists a natural transformation N from the functor F
to the identity 'functor such that each mg is surjective.

So, given a semigroup S, we are interested in the situation where there
exists an expanded semigroup F(S) and an epimorphism mgs: F(S) = S ; given a
morphism ¢: S — T, there exists a morphism F(¢): F(S) = F(T) ; if ¢ is
surjective, F(¢) should also be surjective ; and (functorially) if 1 is the identity
function of S, then F(1) is the identity of F(S), andif S 5 T % U then

F(® o ¥) = F(P) o F(¥) ; morover the following diagram commutes :

F(o)
F(S) > F(T)
. | i
S ¢ > T



This thesis is devoted to the investigation of expansions in the category %y

and its subcategories. In order to do that, the concept of a contraction in ConX? is

introduced.

We begin in Chapter 2 by giving the appropriate background for the
Chapters 3, 4 and 5. For a general introduction to the theory of semigroups, the

reader is referred to [4] , [6] or [9] .

In the third chapter we start with the definition of an expansion in % and
we introduce the subcategory %x* of #x , and we prove that every expansion in
x is congruent to an expansion in #x* in order to work only in #x*. We then
describe the concept of a contraction in ConX*t and we givé the order on the set of
contractions in ConX* , ® , which is shown to be a lattice. We also introduce the
expansions in #x* based on contractions in ConX™ and conversely the
contractions in ConX™ based on expansions in #x*. Finally, we give two
mappings , ¥ and @, from the set of expansions in Fx* , &, onto €, and from ¥
onto & respectively. The main result of this chapter is the fact that these
mappings are order anti-isomorphisms and consequently , we define a partial order
on & which is then viewed as a lattice. We also show that ¥ and & form as well
semigroups with composition as multiplication and that ‘¥ and @ are also
semigroup isomorphisms. The last result of this chaptér concerns the compatibility

of the product and the join of two expansions, and is illustrated by an example.

In Chapter 4 we consider some known expansions. The first section is

devoted to the machine expansion 5% Wwe begin by introducing a congruence p*



and a contraction f: p — p¥. We also give an isomorphism ¢ from the free
semigroup on X , X¥, modulo p to the cutdown to generators A of the left
machine expansion on X¥/p . We close this section by proving that ®(f) is
congruent to the left machine expansion cutdown to generators. In the second
section we turn our attention to an expansion based on the machine expansion ,
S and we introduce a congruence P and a contraction /: p — P¥. We give an
isomorphism ¢ from X¥/5¥ to the cutdown to generators A of the expansion
(f%)*’. We end by proving that ®(}) is congruent to the expansion L which
maps X*/p to the cutdown to generators A of the expansion /()((?/T))Y. In the
third section we are concerned with the Henckell's expansion g(z) and as before
we give the congruence P® , the contraction h: p — p®, the isomorphism ¢
from X*? onto | ()F’B)i) and we end by proving that ®(h) is congruent to
the expansion H which maps X*/p to the cutdown to generators A of the
expgnsi'on ()?"Tp)(z). The fourth section contains some lattice theoretical results
about the congruences and the expansions stated in sections 1, 2 anid 3. We
introduce an expansion P, which is shown to be the join of the expansions
E¢:S— $¥ and E %S - $* We define the congruence pP corresponding to
P, we prove that the contraction p :p — pP is congruent to the expansion Pp

which maps S to the cutdown to generators A of P(S). The last result of this

section is that pP is the meet of P* and P*.

In the last chapter we are concerned with the expansions in category of
monogenic semigroup .# , and the contractions in the congruences on the free
monogenic semigroup F. In the first section we give a characterization of the

congruences on F and the order in ConF. We remark that ConF can be identified



with .#. This section is closed by a characterization of contractions in ConF and
an example. The second section is devoted to the expansions in the category of
monogenic semigroups. We first remark that the set of expansions in A, & 4, is
equal to the set of contractions in €. We then give a partial orderin &4 , and
we define the lattice operations. Finally, we investigate the compatibility

conditions of these lattice operations with multiplication.



CHAPTER 2

Preliminaries.
The purpose of this chapter is to introduce basic concepts used throughout

this thesis and to establish a few properties of these to be used in the succeeding

chapters.

2.1. Basic concepts concerning semigroups.

Definition 2.1.1. Let S beaset and * be a binary operation on S. Then (S,x)

is called a semigroup if andonlyif (axb)*c=ax(b xc) forany ab,ce S.
It is customary to say " semigroup S " rather than " semigroup (Sx) ".

Definition 2.1.2. A semigroup S is generated by a subset G if every element of

S can be written as a product of some elements of G, and it is denoted by S =(G).

Definition 2.1.3. An equivalence relation p on a semigroup S is a left

congruence if for all ab,ce S,a p b impliesca p cb, a right congruenceif a p b

implies ac p bc; p isa congruence if it is both a left and a right congruence.

Lemma 2.1.4. An equivalence relation p on a semigroup S is a congruence if

and only if for all a,b,c,d € S a p b and ¢ p d implies ac p bd.



Proof. Let p be a congruenceon S,let ab,c,d € S besuchthat a p b and

c p d. Thensince p is aright congruence we have ac p bc and since p is
also a left congruence we have bc p bd. Hence ac p bd. Conversely, if for any

a,b,c,d € S,a p bandc p d implies ac p bd then p is clearly a congruence .o

Definition 2.1.5. For a semigroup S let ConS denote the set of all congruences

on S.

Let X be a non-empty finite set. A non-empty finite sequence X1,X2,...,Xp
usually written by juxtaposition , X1x3...Xp , of elements of X is called a word

over the alphaber X . Let 1 denote the empty word .

Definition 2.1.6. The set X of all non-empty words with operation of
juxtaposition
(x1X2...Xn)"(Y1Y2..-Yn) = X1X2...XpY1¥2...¥n

is a semigroup called the free semigroup on the set X . Let X*= Xt u {1}.

For u =x1X9...Xp€ X7, let lul denote the length of u, which is equal to n

in this case .

Definition 2.1.7. Forany i20,let el and si be functions from X* into X*
defined by : Let u=x1X3...xp€ X¥, then el(u) = Xj41Xj42...Xn and

si(u) = X1X2... X -



2.2. Basic concepts concerning expansions and %

Definition 2.2.1. Let S,T be semigroups and ¢ be a function from S into T.
Then ¢ is called a morphism of semigroup if and only if (s@)-(s'@) = (s:s)@ for

any s,s'e€ S.

For a formal definition of a funcror, a category and a subcategory the reader

is referred to [5] or [8].
Let % denote the category of all semigroups and morphisms.

Definition 2.2.2. A functor f from a category & of semigroups into 7 is called
an expansion if there is a natural transformation 7 from the functor f to the
identity functor, such that each Mg is surjective . This concept was introduced

and studied in the papers by Birget and Rhodes [1] and [2] .

Definition 2.2.3. A semigroup S is "generated” by a set X if and only if there
exists a function o : X — S such that S ={(X)o) ; i.e., S is generated -in the
classical sense- by the range (X)a of o ; we do not assume that X < S, nor

even |XI <ISI.

Definition 2.2.4. For a given set X , we consider the category #x of all
semigroups "generated" by X : The objects of the—category Fx are of the form

(S,o) where S isa semigroup and o : X — S is a function such that S = (X)) .



The morphisms from (S,o) into (T,B) are those semigroup morphisms ¢ :S —> T

VAN

S ——— > T

such that the following diagram commutes :

The elements of #x are (S,a) but when convenient we will simply write S for

(S,0).

Remark 2.2.5. In %, due to the commutativity of the above diagram , any

morphism ¢ is necessarily surjective. Moreover, since any morphism is
completely determined by its action on a set of generators, the morphisms in %y

are uniquely determined .

Some other basic properties of % are given in [1]. .



CHAPTER 3

In this chapter we develop the concept of contraction and we explicitly
give two mappings which are inverse order anti-isomorphisms between the lattice

of expansions in % and the lattice of contractions in ConX™.

In the context of %% , due to the Remark 2.2.5, the definition of an

expansion simplifies to the following :

Definition 3.1. Let = be a subcategory of %x . A functor F: & — & iscalled
" an expansion if the following condition is satisfied:

E(i) For any (A, o) € &, there exists an epimorphism Ma: F(A) — A.

Definition 3.2. Let s be a subcategory of %% . Let Fand G be -expansions
within #x and &, respectively. We say that F is congruentto G if , for any
(S, o) € P, there exist (T, B) € «» and isomorphisms ¢ and y such that

(S, o) is isomorphic to (T, B) via ¢ and F(S, o) is isomorphic to G(T, B) via .

Note that , by the remark following Definition 2.2.2 , the following diagram
is automatically commutative:
F(S,a) Y, G(T,B)
ns l l nr

(8,0) ——— (T,B)
¢



For any congruence p € ConX*, let 1p:X — X*/p be the morphism
defined by (x)1p=xp. |
Let Px*= {(X*/p, p):pe ConX*}. Clearly .#x* is a subcategory of P .

Remark 3.3. In %* there exists a homomorphism @: (X*/p, 1p) = (X*/1, 1)

if and only if p <t and when this is the case ¢ is unique.
That being understood, we can identify (X*/p,1p) with X*/p.

Proposition 3.4. Let F be an expansionin %x . Then F is congruent to an
expansion in Sx*. —
| Proof. Let F be an expansionin %x . By the universal property of X7, for any

(S,0) € F , there exists a unique congruence p € ConX™ such that

(X*/p, 1) £ (S,@) , namely p =coarl.

X
s
Xt/p ——(E——-> S
Now , define
G P o F* by
G: Xt/p = X*/pF (pe ConX')
where pF is the unique congruence on X such that (X*/pF, 15r) = FX*/p, 1p).
For any X*/p € #x*, since there exists an epimorphism 1 from F( X*/p) onto
X*/p and an isomorphism @p from G(X*/p) = X*/pF onto FX*/p),n'=1M0¢p
is an epimorphism from X*/pF = G(X*/p) onto X*/p.

10



GOXHp) = X*pF — P F(X+/p)
n
1
X”"/p
Now, let X*t/p, X*/t € P*and 0: Xt/p - X*/t be a morphism. Then

there exists an epimorphism  F(0): F(X*/p) = F(X*/1) , and isomorphisms

Op: Xt/pF 5 F(Xt/p) and Wr F(Xt/r) - X+/1F.
Therefore G(0) = Wz o F(8) o @, is an epimorphism from X*/pF =G(X*/p)
onto X*/F=G(X*/). |

F(6
- X*/pF —— F(X*/p) ——Q—» F(X*/t) — X*/F
Op l ‘l Yq
: . |

Xt —— X*n
Hence, G is a functor consequently , G is an expansion in Sx* .
~ Next, let (S, @) € Fx. Again by the universal property of X% there

exists a unique homomorphism @: Xt — S such that the following diagram

X
Xt ¢ » S

Since (S,a)e Fx, @ isan épimorphism and therefore S = X'*'/p ,

commutes:

where p=Qo (p‘1 . By the definition of G, F(S) is isomorphic to GX*/p).

Thus, F is congruentto G .e

For the remainder of this chapter, we restrict our attention to x*.

11



Definition 3.5. A function f: ConX* — ConX™ is called a contraction if the
following conditions are satisfied:

C() f(p) cp forany p e ConX™.

C@i) If p,te ConX™ and pct then f(p) < f(1).

Definition 3.6. Let
&= { F. ¥* = %*, Fis an expansion } ,

%= { f: ConX* — ConX?, fis a contraction }.

We now introduce order relations on & and ¥ :

Definition 3.7. For F,Ge & ,let F2G ifforany X%/p € #x* there exists
an epimorphism 0, from F(X*/p)onto G(X*/p). For f,g € ¥,let f<g if
f(p) < g(p) for all p € ConX™t. |

Clearly these are partial orders on & and ¢, respectively.

Lemma 3.8. ¥ is a lattice where

fAg)p)=1fp)Agp) and (v g)p) =1(p) v glp).
Proof. Let f and ge ¥ anddefine h: ConX* — ConX* by :

h(p) = f(p) A g()  (p € ConX™).
We first show that he #.

Since f(p) cp and g(p) < p we have h(p) =f(p) A g(p) S p sothat h
satisfies C(i). Let T < p. Then f(1) < f(p) and g(t) < g(p) since f,g € €
and therefore, we have that h(t) = f(t) A g(7) c f(p) A g(p) =h(p). Thus h
satisfies C(ii) and he €. '

12



Now, let t € & besuchthat t<f and t<g. Then t(p) < f(p)
and t(p) c g(p) forany p e ConX*. Therefore we have
t(p) < f(p) A g(p) =h(p) forany p e ConX™*.
Thus t<h. Clearly, h is a lower bound of f ‘ahd g, conséquently h is the
greatest lower bound of f and g .
Next , define k: ConX* — ConX* by
k(p) =f(P) v g(p) (p e ConX™),
Let us see that ke € :

Since f(p)cp and gp)cp wehave k(p)=f(p)v glp)cp andk
satisfies C(i). Let 1< p then f(t) cf(p) and g(t) < g(p) and therefore we
have k(1) =f(1) v g(1) < f(p) v g(p) = k(p). Thus k satisfies C(ii) and k € ¥.
Clearly , k is an upper bound of fand g. | |

Now,let te ¢ besuchthat t>f and t2g.Then f(p)St(p) and
g(p) c t(p) for any p € ConX™ . Therefore we have:

k(p)=f(p) v g(p) c t(p) forany p e ConX*
Thus t=k, and k is the least upper bound of f and g .e

Deﬁnition 39. Forany fe ? let Ef: %x* — %x* Dbe defined by :
Ef(X*/p) = X*/f(p) (pe ConX¥)

and similarly forany Fe & let Cp: ConXt — ConX™ be defined by:
Cr(p) = pF where F(X*t/p) = X*/pF.

Lemma 3.10. (i) Forany fe ¢, Er is an expansion in Sx* .

(i) Forany F e &, Cr is a contraction .

Proof. () Let X*/pe Fi*.Then Eg(X*/p)=XT/f(p), by the definition of Ef.

13



Define m , from X1t/f(p) into X*/p, by
(wi(p))n = wp (we X1

Then 7 is a well-defined epimorphism since f(p) ¢ p and p € ConX*. This
proves that Er satisfies E(i) .

Now let X*/p, X*/te S* andlet 6: X*/p = X*/1 be a morphism .
For this morphism to exist p must be contained in T and therefore 0 is necessarily
surjecti{/e. Since p ¢t and f satisfies C(ii) , we have f(p) < f(1). Next, define
Ef(0) : EqX*/p) — EfX*/1);ie.,Ef(0) maps X¥/f(p) into X/f(t), by

| (wf(p))Ef(0) = wi(1) (we X¥)
Then Eg(0) is a well-defined epimorphism since f(p) c f(t) and f(p), f(t) are
from ConX™. Thus, Er is a functor . Hence , Efe &.

(ii) Let X*/p e F*. Since Fe &, there exists an epimorphism 'n' from
F(X_'*'/p) = X*/pF onto X';T/p. Since T isa morphismin #x*, we must have
pFc p. Thus Eg satisfies C(i).

| Next,let p c71. The only morphism ©: X*/p — X*/t is given by
(xp)® = xt. Then since F is a functor there exists an epimorphism F(8) from
F(X*/p) onto F(X*/1); i.e, F(®) maps X*/pFonto X*/1F. On the other hand
Cr(p) =pF and Cpg(t) = 1tF. Hence , because we are dealing with morphisms
in %x*, we must have Cg(p) = pF < 1F =Cp(T) . This verifies that Cr satisfies

C(@i). Therefore, Cpe € .

Definition 3.11. Let ®: ¥ - & and ¥: & — ¥ be defined by:
O.f>E (fe¥) and WY:F-ocp (Fe &)

Theorem 3.12 . The mappings ® and W are inverse order anti-isomorphisms.

14



Proof. By definition it is clear that forall fe ¢, Fe &,
Yo®(f)=¥Y(Ep) =cg,=f and @ o'¥(F)=®P(cp) =Ecp=F,
and so that @ and ¥ are inverse bijections.
Now, let f,g € € be suchthat f<g. Then f(p) < g(p) forany pin
ConX*. Therefore , 6,: X*/f(p) = X*/g(p) defined by
(wf(p))8p = wg(p) (we X1
is an epimorphism. Since Eg(X*/p) = X*/f(p) and Eg(X*/p) =X*/g(p) and
since there exists an epimorphism 8p: Ef(X*/p) — Eg(X*/p) forany X*/pin
Fx*, we have that ®(f) =Ef2> Eg= O(g) .
Finally,let F,Ge & with F>G. Thenforany X%/p e %* there
exists an epimorphism 6, from F(X*/p) onto G(X*/p); that is |
Bp: XT/pF —» X*/pC. -
Then since 6pis a morphism in #x* we must have that pFc pC. Hence,
cr(p) = pFc pG=cg(p) forany pe ConX™, and therefore
Y(F) = cr < cg =¥(G)

as required. Therefore, ® and ¥ are inverse order anti-isomorphisms.e
One important consequence of Lemma 3.8 and Theorem 3.12 is that we
can now consider & as a lattice with respect to the operations

FAG=ECmc, and FvG=EGacy-

Definition 3.13. Let F, Ge & . Define F-G by
FGX*/p) = FGX/p) (Xt/pe FH*).

Proposition 3.14. & is a semigroup with the multiplication defined above.

15



Proof. Firstlet X*t/p e Fx*. By E(i) there exist epimorphisms NG from
G(X*/p) onto X*/p and Mg from F@GX1/p)) ono G(X*/p). Let
N =ngG ong. Then 71 is an epimorphism which maps F-G(X*/p) = F(G(X*/p))
onto X*/p . Next let Xt/p, X*/1 € H* andlet 0: Xt/p - X'/t bea
morphism. Then there exist epimorphisms Og and O ,where

0g: G(X*/p) » G(X*/) and Or: F(G(X1/p)) = F(GX /7).
Hence F-G is a functor and so, F-G € &. Since the composition of functions is

associative, we have that F-(G-H) = F-(G-H) = F-G-H forany F.Gand He &.o

—

Definition 3.15. Let f and ge ¥. Define f-g by
f-g(p) = f(g(p)) (pe ConX"').

Prog.osition 3.16. ¥ is a semigroup with the multiplication defined above.
Proof . If pe ConX™* then f-g(p)=1£(g(p)) gp)<p.andif p,T € ConX*
with pct, then g(p) < g(t). Therefore, f(g(p)) < f(g(t)); thatis,

f-g(p) < f-g(1). Hence, if f,ge ¥ then f-ge ¥. Since the composition of
functions is associative , we have that f-(g-h) = (f-g)-h =f-g-h, forany f,g and h

in #. Consequently, & is a semigroup .e

Let F,Ge &. Since
X*/pFG = F-G(X*/p) = FGX*/p)) = FX*/pC) = X*/(pO)F,
we have that pFG = (pG)F. Consequently,
cra(p) = pFO = (pG)F = cr(pC) = Cr(ca(P)) -
:I‘hat is Crg =CpCg. Therefore,

Y(F-G) = Crg=CrCg = Y(F)-Y(G).

16



Theorem 3.17. @ and W are semigroup isomorphisims.
Proof. That ¥ is a homomorphism was established prior to the theorem. That
® is a semigroup homomorphism follows from the fact that the inverse mapping

of a semigroup homomorphism is a semigroup homomorphism .e

Proposition 3.18. Forany F,G € &, FG2FvG.
Proof. Let X*/p e Fx*. Then |
(F v GYXT/P) = E(cp n o) X*1P) = XT/((CR A Ca)(P)) = XT/(CE(P) A Ca(P))
= X*/(pF A pO).
On the other hand, F-G(X*/p) = F(G(X*/p)) = FX¥/pC) =X+/(PG)F7 Also
(p®)F c pF by C(i) since pGcp,and (pO)FcpC by C(i). Thus we have
that (pS)F < pF A pC. '
Now define 6p: F-G(X*/p) = (F v G)(X*/p) by
(w(p©®)F)8p = w(pFa pO) (we X7).

Then O is an epimorpism, andso F-G2Fv G .e
Example 3.19. The inequality in Proposition 3.18. may be strict. Define the
Henckell's expansion H, [1], on a semigroup S by

@ _

m k '
H(S) = 8% = {{Isi, IIsD 10 S m<k } 1 (51,5208l € st}

with multiplication

T

m k+h
((fsi, l'kllsi)lOSmsk )+ ((Tsi, ITs) | k ST <k +h)

imk+

17



n k+h
={(Hsi , ,I'Lsi) |0<n<k+h ).

By [1] we know that H(S) is a homomorphic image of H2(S), but H(S) is not
isomorphic to H2(S). So, we have that
(H v H)(S) = H(S) v H(S) = H(S)

however,
H- H(S) = HH(S)) = H2(S).

Thus, H- H= H v H in this case.
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HAPTER 4

In this chapter we construct the contractions corresponding to some known
expansions and we give some lattice theoretical results concerning these

expansions and contractions.

4.1. The contraction corresponding to the machine expansion.

We begin this section with the definition of the left machine expansion .
We then introduce a congruence p“ on X* for any given congruence p on
X+, and a contraction f:p — p¥ which is shown to correspond tothe left

machine expansion.

For (S,o) € %, let

o .
S” = { (s15283...50,5283...8n,...,Sn) | 81,82,...,sp € S }

with multiplication given by
(515253...50,5283...8n,..-,8n) (t1t2t3.. . tm,12t3.. . tm, .. ohtm) =
(s1sz...snt1t2...tm,8283...snt1t2...tm,...,Snt1t2...tm,t1t2t3...tm,t2t3...tm,...,tm ),

andlet af:x — (xa). Then (55:&9’ ) is called the machine expansion and was

introduced by Birget and Rhodes in [1].
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Let AcS suchthat S=(A). Then Sa <S° defined by
§X=((a)|ae A)

is called the cutdown of s t0 generators A.

For any p € ConX™ define p¥ on X* as follows :
For u, v e X%,
u p? v ifandonlyif ei(u) p ei(v) forany i20 and lul = Ivl.
Since u p*v implies, in particular, that u=e0u) p eO%v)=v, we
have p“cp.

Lemma 4.1.1. p¥

is a congruence on X™.
" Proof. Clearly p%is an equivalence relation. In order to see that it is a
congruence, let u,v,sandt € Xt besuchthat u p“v and s p“t. It
suffices to show that us p¥ vt. |

Since lul=1Ivl and Isl=1Itl, lusl =lul +Isl =1vl+Itl = Ivtl.
Next, let i20.

| If i<lul=Ivl then ei(us)=ei(u)s and ei(vt)= ei(v)t. Since
ei(u) p el(v) and spt we have el(us) = ei(u)s p ei(v)t =ei(vt) .

If i>lul=Ivl then ei(us)=¢eK(s) and ei(vt) =ek(t) where
k=i-lul=i-1Ivl. Since ek(s) p eX(t) we have that ei (us) p ei(vt).

pod

Hence, us p p¥

vt. Consequently, p¥ is a congruence on X, as required .o

Let pe ConX* besuchthat XT/p=S andletA={xp: x € X}.
Then Ac S and S=(A). We also have that

Sk=XYp)s =(xp)lxe X)
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= { (X1X2:..Xp)P, (X200 0. X0)Pseceeree XnP) I xje X and n20}.

Now define ¢ :X*p¥ — (X+/P): = §K by

@ (x1%2.-.X0)PT > ((K1X2...Xn)Ps(X2. - X)Pse -, XnP)

Proposition 4.1.2. ¢ is an isomorphism.
Proof. We first show that ¢ is well-defined.

Let u,ve X1 be such that

U=X1X2..Xn P° Y1y2..Yym=V.
Then ei(u) p el(v) forany i20 and n=m. Therefore we have
op?) = Om)p.el)p,......) = €0W)p.el(v)p,......) = O(vp¥).
Thus, ¢ is well-defined and clearly maps X*/p* into (XT/p):.

We first show that @ is injective. Let u=X1Xx2...Xp and “v=y1y2....ym
be elements of X* such that (up?)Q = (vp¥)Q. Then ei(u)p =ei(v)p for
~any i20, and m=n. Thatis, ei(u) p ei(v) and lul=Ivl. It follows from
the definition of p* that u p* v. Hence @ is one-to-one.

We now show that ¢ is a homomorphism.

((X1X2+ e Xn)P QO = ((X1X200ee X0)Ps(X2000 X)) Pievvrsene »XnpP)
and

(Y12 YmP)P= ((Y1Y2-0o-YmIPs (Y 2w - Ym)Pisecvovvnee ;YmP)-
Therefore,

Wp?)P-(vp¥)Q
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= ((x1%x2...Xp)P(Y1Y2---Ym)Ps-- - XnP(Y1Y2- .. Ym)P>(Y1¥2+ . Ym)Ps+ -+ sYmP)
= ((X1X2..-XnY1y2.--Ym)Ps--,(XnyY1¥2---Ym)P>(Y1¥2-- - Ym)Ps- .- 5¥YmP)

and
((V)PF)P = ((X1X2...XnY1Y2-.. Ym)P)QP
= ((X1X2...XpY1Y2---Ym)Ps--»(XnY 12+ . YmIPs(Y1Y2.-- Ym)P>- - »YmP)-

Therefore,
Wp)P- (v = ((vp)Q.
We finally show that @ is surjective. Forany x € X, we have that
xp? e X*p¢ and (xp9@= (xp). Since (X*/p)i=((xp)ixe X), §
maps the generators of X1/p¥ onto those of (X_"'/_p)i.

Thus, @ is an isomorphism .e

Now define f: Con Xt — ConX*™ by

f:p - p° (pe ConX™).

Lemmad.l3 fe &
Proof. That p¥ < p was discussed before. For p,T € Con X' such that

p <t weclearly have p¥ < T7%.e

Now let F be defined by
F: (S,0) — (Sao?) ((S,0) € Fx).

It follows easily from [1] that F is indeed an expansion in #x.

Theorem 4.1.4. F is congruent to Ef.

Proof. As before , for any (S,0t) e #x we know that there exists a unique
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congruence p € ConX* such that (S,x)=(X%/p,1p). Then
RS) = Sk = X*p* (by Proposition 4.1.2)
= X*/f(p) =Ef X¥ip),

so that F is congruent to Ef .®

~Z

-l

4.2 Th ntraction COIT! n" X ion

In this section we turn our attention to an expansion based on the machine
expansion of a semigroup. We introduce a congruence p“ and a contraction
f:p — P¥ . We close the section by showing that this contraction corresponds to

that expansion .

For (S,0) € % let

~y kX
S = {(Ts;,{ Msil0<m<k})|sie S}
1 m+l

and
§*=((1si10<n Sk],fjsi) Isie S).
Equivalently,
§% = { (81.+..5n »{8182.++:50:82e+:Siseeesevvee Sl ! siyenSp€ S}
and

~

S” = {({S182...5n » S152+-+:80-1-++»5152,81}, §182....8n) | §1,82,....8n € S}

Define a multiplication on 57 by :

(s, A)-(t, B) = (st, At UB)
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andon S~ by :

(A, s)(B, t) = (A UsB, st)
where

At={xtl xe A} and sB={sy|yeB}.
and let &¥:x— (xa, {xa,1}) and ©W*:x - ({1,xa}, xa).

The expansions (S, 8¢ )and (§”, 8%) were introduced in [1] and [3] .

Let AcS suchthat S =(A). Then Sxc S’ defined by
S =( @lal)lacA)

. 7
is called the cutdown of S~ to generators A.

Forany p e ConX* define P on Xt as follows :
For u,ve Xt with lul=m and Ivl=n,
u p* v if and only if
(i) upv;
(i) forany 1<k<m ,thereexists 0</ <n such that
ek(u) p elv);
(iii) forany 1<r<n ,there exists 0<s<m such that

ef(v) p eS(u).
Lemma4.2.1. B isa congruence on X,

Proof. Clearly ¥ is an equivalence relation . We wish to show that pe is

also a congruence .
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Clearly p“ <p. Let uv,wandz € X¥ besuchthat u p*v and
w p“z where lul=m,lvi=n, Iwi=p and lzl=t. Then upv and wpz
implies uw p vz. Let 1<k <m+p.

If 1Sk<m thenthereexists 0</<n<n+t with ek(u) p el(v).
Since ek(u)w = ek(uw) and el(v) =el(vz) we have that ek(uw) p e/(vz).

If k=m,let I=n. Then ek(uw)=w p z=el(vz) and thus
ekuw) p el(vz).

If m<k<mi+p, let k'=k-m. Then 1<k'<p and so there exists
0<l'<t with ekK'(w) p ef(z). Also, ek(w)=ek(uw) and, if we let /= ['+n,
then 0<n<I<t+n and ¢/'(2) =el(vz).

‘Hence in all cases, ek(uw) p el(vz) forsome O<I<t+n.
Similarly for any‘ 1<r<n+t, thereexists O0<s<m+p such that

ef(vz) p eS(uw). Therefore, uw P vz and so Pp“ is a congruence .

Let pe ConX*t besuchthat X*/p=S and A={xp:xe X}. Then
AcS and S = (A). Also, we have that
Sx=X¥Ia =((xp,(xp,1})xe X)

= { (X1.0eXp)P »{ (X1eeeXp)PoeeeesX)Ps1} ) | X5 € X

Now, define  @: X*/p¢ — (XT/p)a = Sa by:

Q. (x1...xp)P° = (X1eoxp)ps {(X1eoeXp)Poeres Ep)p> 1 1) .

Proposition 4.2.2. @ is an isomorphism.

Proof. We first show that ¢ is well-defined. Let u,v e Xt such that

U=Xp..Xn P° YieYm=V.
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Then, by the definition of $*, we have that (X1...Xp)p = (y1..ym)p and for
any 1<i<n, thereexists 0<j<m suchthat ei(u)p =ei(v)p. We also
have that for any 1<i <m, there exists 0<j<n such that ef'(v)p = ef'(u)p.
Therefore,
{(x1...Xn)Psevvs Kn)Ps1} = {(Y1.--Ym)Pse o5 (Ym)P> 1}
Hence,
(OB = (FIP -
Thus, @ is well-defined.
To see that (0 is injective, let u=xj...Xp, V=Y1...ym € X' be such_
that ((WP?)P = ((v)p¥)@. Then
(x1...X0)p = (V1...ym)p (%)
and
{ (X1...x0)P5es(x0)P51 3 = {(Y1--.ym)Ps- 5 (Ym)Ps1 }-
Hchce, forany 1<i<n thereexists 0<j<m suchthat ei(u) p ei(v) (x %)
and conversely, forany 1<i'<m ,thereexists 0<j <n such that
el'(v) p el'w) (% % %).
Whence, by (x), (x ) and (x * %), u p¥ v; thatis, (u)p¥= (v)p“. Thus, ¢ is
injective.
" To see that ¢ is also a homomorphism let u =Xj...Xp, vV =Yy1...¥m € X+,
Then
(WP N (VPP =
= (x1-Xp)Ps {(X1+-Xn)Pseess X)L DY 1. Ym)Ps { (Y1 Ym)Ps--s(Ym)P,11)
= (X1 XY 1--Ym)Ps { (X1 XY 1oo-Ym)Psec s (XnY 1 Ym)Po(Y 1o Ym)Pseoe,(Ym)P, 1 1)
= ((X1... XY 1...Ym)P) © = (v)p¥)@ |

Finally, we show that @ is surjective. Letx € X and
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xp.(xp.1})) € X*/p)x. Then xp‘e X*/P* and (xP¥)Q = (xp,(xp,1}).
Since ()’(T/E): is generated by {(xp,{xp,1})! xe€ X} and ¢ is onto on

generators, (¢ is surjective .e

Now define [/: ConX* — ConX*  by:
I: p - p%.

Lemmad23. /e €
Proof. That p¥ < p is clear from the definition of P, part (i). For

p,t € ConX™* suchthat p g1, weclearly have p¥ < 7.

Now let L be defined by
L: S0 = (SA89)  (Sa)e F.

It follows from [1] or [7] that L is indeed an expansion in %#x.

Proposition 4.2.4. L is congruentto E; .

Proof. As before, for any (S,a) € %x ,we know that there exists a unique
p e ConX* suchthat X¥/p=S. Then,by Proposition 4.2.2,
L) = Sa = X'/ = X*/ip) =E (X*/p),

so that L is congruent to E; -

4.3. The contraction corresponding to the Henckell's expansion.

This section is devoted to Henckell's expansion. We first recall this
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expansion and then introduce a congruence P@ for any given p € Con X*. This
is followed by the definition of a contraction h: p — P®. We then show that this

contraction corresponds to the Henckell's expansion.
For (S,a) € % let

A2 m k
S ={ {((IIsj, Is):0sm< k}Isy,..sk€ S}
1 m+1

with multiplication
m k i n+k
{( II'I Si ’nElsi) :0<m<k }-{(kI;I1 Si ,II;Ilsi): k<I<n+k}

T n+k
S

= {(Ilsi,Is): 0ST<n+k )

1+l

andlet O&:x—> {(xa,1), (1,xa)}.

Then (gm,&) is called the Henckell's expansion and was introduced in [1].

A(zv) A®
Let AcS suchthat S=(A). Then S, < S defined by
A2)

SA =< {(lya),(a’l)} lae A)

: A
is called the cutdown of S to generators A .

For p € ConX* define p® on X% as follows :
For u,ve X¥, where lul=m and Ivl=n,
u p?v if and only if
(i) forany 0<i<m, thereexists 0<j<n such that

siw) p si(v) and  em™i(u) p eMi(v);
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(ii) forany 0<k<n thereexists 0</<n such that

sk(v) p slu) and  enk(v) p em-l(u).

Lemma 4.3.1. P® is a congruence on X+,
Proof. Clearly f® is an equivalence relation. To see that it is also a congruence
we first show that BPcp. Let u,v € X* besuchthat u P®v. Then
sO(u) p si(v) forsome 0<j<n and eM(u) p e™i(v). Therefore,
u=s0(uemu) p si(v)emi(v)=v. Hence, u p v, as required.
Now let u,v,w and z e X' besuchthat u p® v and w P® g
where lul=m,lvi=n,|lwl=p and lzl=r. Then luwl=m+p and Ivzl=n+r.
Next, let 0 <i< m+p.
Case (i) 0<i<p. Since w 6‘2’ z there exists 0<j<r such that
siw) p si(z) and eP-i(w) p eri(z). Since u P®v and therefore u p v,
by the above, we have that usi(w) p vsi(z). But since 0<i<p=Iwl and
0<j<r=lz,wehave usi(w)=si(uw) and vsi(z) = si(vz). Hence,
si(uv) p si(vz). Alsosince 0<i<p=Iwl and 0 <j<r=Ilzl, we have that
eP-i(w) = em+P-i (uw) and ef-i(z) = eM*T-i (vz). Thus, eM+P)-i(uw) p eM+1)-j(vz).
Case (ii) i=p. Let j=r. Then ¢ have si(uw)=upv=si(vz) and
e(m+p)-iuw) = eM+P-P(uw) = eMuw) = w p z = el(vz) = eMT-I(vz) = eM+)-j(vz).
Case (iii) p<i<p+m. Then 0<i-p<m and so there exists 0 <j'<n
such that si-P(u) p si'(v) and em-G-P)(u) p eni(v). Let j=j+r. Thenr <j < n+r
and §i'(v) = si(vz). Since si-P(u) = si(uw), we have that si(uw) p si(vz). Also,
since w p z, eMP-i(u)w = e@+P)-iuw) and en(v)z = en-(-(vz) = e(*1)-i(vz) ,

we have that e(@+p)-i(uw) p e®+1)ri(vz).
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In cases (i) ,(ii) and (iii) we have shown that uw and vz sétisfy
condition (i) in the definition of P®. That they also satisfy condition (ii) is

similarly shown. Hence, uw P® vz and therefore, P® is a congruence .o

Let p e ConX™ be such that X*/p=Sand A={xplxe X}. Then AcCS
and S =(A). Also, we have that

N
§D= X = ({(Lxp).(xp,D)} Ix € X)
= {{((ﬁxi)p,(rﬁlxi)p)ms:ng }In21and xje X).

@ _A®@

A
Now define @:X*pP?® — (X'/p)o=S, by

¢: (i) P = (I x)p.( I xi)p)10Sm<n).

Proposition 4.3.2. ¢ is an isomorphism.
Proof. We first show that ¢ is well defined.

Let u,v € X' besuchthat u=x1...xn P® y1...yk=v. Let 1 <m<n

and i=n-m. Then 0<i<n andhence there exists 0<j<k such that

and

For m=0, since u p v, (1,up) =(1, vp).

Hence, forany 0<m<n thereexist 0<k-j<k suchthat:
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m n . lﬁl k
(A1 x0p,(IT 1p) = (AT ye )P, I1 yo)p)

Similarly any pair
I k
(@ yoe,( ILyip)
is equal to a pair of the form
P n
(A1 xDp, (1, x)p).
Hence, u¢p =v@. Consequently, ¢ is well-defined.
Tosee that ¢ is injective, let u=Xj...Xn , V=Y1...ym € X be
such that
(WP®) ¢ = (VPP .
Then forany O<r<n thereexists  O0<t<m such that
(TIIXi)p=(TII'yi)P and .(illxi)P=(fllxi) P;
ie, @x) p (Iy) and  (fxp p (Hy.
That is, forany 0<k <n, if we let r=n-k then there exists 0<t<m such
that
fw=Mx p Iyi=smi)
and
en-k(u) = ﬁxi ) In’iyi = eli(v).
r+1 t+1
Similarly, forany 0<p<m, thereexists 0</<n such that
sP(v) p sf(u) " and emP(v) p sl (u).
Thus, u P® v and so, ¢ is injective.
To see that ¢ is a homomorphism, let u=Xj...Xp, V=Xp¢l...Xntk € xt,

Then we have that :
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(W) §®).((v) PP = {(l'ﬁ X)P (:Iil;xi)p) |0 <m<n+k )

= ((xx)P™e .
Finally, we show that ¢ is surjective. Let xe€ X and
/+\ (2)

{(xpyl)» (1» xp)} € (X /p)A .
Then (x)p?e XTH? and

[P0 = {(Lxp),(xp, 1)},

) P )

Since (X+/p)(A is generated by {{(1,xp),(xp,1)} | x € X}, ¢ is surjective .®

~ Now define h: ConX* — ConXt by
h:p—p®@.

Lemma433. he¥€.
Proof. That P® cp was discussed in the proof of Lemma 4.3.1. For

p,t € ConX' suchthat p ot we clearly have P® < 2@ .o

Now let H be defined by
H: S0 - (§9.8) (S,0) € F.

It follows easily from [1] that H is indeed an expansion.

Proposition 4.3.4. H is congruent to Ep, .

Proof. As before, for any (S,0) € & ,we know that there exists a unique
pe ConX" suchthat X*/p=S. Then
HES) = §F = xtp@ (by Proposition 4.3.2)
= X*/h(p) =En(XT/p),

so that H is congruent to Ep, .®
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4.4. Some lattice theoretical results.

In this section we introduce the congruence P* which is the dual of §*
and we show , by an example , that p® § B¥ A §* We then turn our
attention to expansions; in particular to $¢ and §*. We define an expansion
P: S — P(S) and we prove that P(S) =S¥ v §". We then introduce the
contraction p:p — pP corresponding to the expansion' P: S—P®S). We

conclude this section by showing that pP=p%v p*

Definition 4.4.1. Let pe ConX*. Define * on X+ as follows :
- For u,ve X*, where lul=m and Ivl=n,
up® v if and only if
@ upvy
(ii) Forany 1 <k <m there exists 0 </ <n such that ék(u) p slov) ;
and

(iii) Forany 1 <r<n there exists 0 <s <m such that sT(v) p sS(u).

Proposition 4.4.2.
(i) p* isacongruence on X*.
(i) Let r:ConX*— ConX* be defined by
rip— p* - (p € ConXt).
Then re €.
(i) Let R:(S,0) » (54,89 (Swe F (itfollows from [1] or

[7] that R is indeed an expansion in %x ). Then E, is congruentto R.
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Proof. All statements are the duals of results in 4.2 and may be proved

similarly.e
Clearly P®< p¥ and PP<p* Thus, P < (P A P9.
We now prove, by an example, that p® £ (P A 5.

Example 44.3. Let X = {x1,X2,X3,x4,x5}. Define p on Xt by

upv ifandonlyif ll=Il=1 or lulandIvl>1 (ve X¥)
Clearly p isacongruenceon Xt and X*/p=S=(0,1} where the
“multiplication on § isdefinedby 11=01=10=00=0.

Let u=x1xpx3x4 and v=x1X,then lul=4 and Ivl =2 . We now will show
that >(u,v) e p% (uv)e p* bur (uv)e p® .

To see that u P* v, firstnotethat upv.Next let 1<k<4. If
k<2 thenwith /=0 wehave eK(u)p el(v), whileif k=2 thenwith [=1
we have e_k(u) p el(v). Conversely, since vl =2 and 1 <r<Ivl, r must be 1, in
which case taking s =3 we have ef(v) peS(u). Hence, (u,v)e p*%

Dually, (u,v) e p*

However, for i=1, sl(u) =x1xpx3 and Isi(u)l =3 > 1. Therefore,
sicu) p si(v) onlyif Isi(v)i>1. But 2=Ivl2 siv) for any j=0 andso
si(u) p g(v) only if j=0; thatis, si(v) =s0(v) = v. But then we have

em-i(y) = e4'1(u) =x4 and en'j(v) = c2'0(v) = c2(v) =0
so that (eM-i(u) , eN-i(v)) & p. Thus, uandv do not satisfy the condition
(i) in the definition of P®, and as a result (u,v) & B .

It follows that P® $ DT A p*.e
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We now turn our attention to expansions .
For (S,a) e %%, let
P(S) = {({ lflsiIOSnSk},llfIsi,{ r}ilSHOSmSk}) sie S }.
Define the multiplication on P(S) by
(A1.8 A2)(B1,t,By)=(A; Us-By,st, A2:tUBg)
where sBi={sxlxe By} and Axt={ytlye Az}
and let p(a) : x = ({1,xa}xa,{xa,l}).

It is easily seen that P(S) is a semigroup.

Lemma 4.44. Define P: % — % by P:(S,0) = (P(S),p()). Then P is
an expansion in %x.

. Proof. Let (S,0)e % . Define n:P(S) — S as follows :

. n k k k
n: ({IITsiI OSnS_k},IlTsi,{nlllsiIOSmSk}) - llTSi.

Clearly n is an epimorphism. Next, let STe %y and 6: S > T an

epimorphism. Deﬁne P(©) : P(S) —) P(T) by
P(©) : ({Hs,l 0 <n <k}, Hsl { H sllo<m<k}) -

({(1} )0 10<n<kj}, (111 510, {(nl11+1 $)0 1 0<m<k}).

Then P(@) is an epimorphism , thus P is a functor. Hence P is an expansion in

Fx .o

Let E¢, Eg € & be defined by
Ee:S - §° and Eg: S5 85° SeH.
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For expansions E ,F in % ,let E<F if and only if there exists an
epimorphism  6(S) : F(S) = E(S) for any (S,a) € %. Therelation < isnota
partial order. However , although we are aware of this, for the next part of the

discussion we will proceed in the understanding that we are only working within

isomorphism of expansions.

Proposition 44.5. P=Ey VEg.
Proof. Forany S e %x*, clearly
0: PS) —» §¥ and 64 : PS) - S¥

defined by:
n k k
eg:({IlIsiI OSnSk],Illsi,{"{Lsi I0€m<k}) —

k k
(Ill 8i ,nﬂl sil0<m<k})
and
. - . k . k o < <k
63.({I11s1IOSnSk},Illsl, {nglsllo_m_ D — )
n
({IIIsi IOSnSk},I;I $i)
are epimorphisms. Hence P 2 E¢ and PZEg..
Tosee that P=Eo»vEg, let Fe & besuchthat F>Eg and F2
Eg. Let S e %x*. Then there exist epimorphisms

¢y FES) — §y and Qg:F(S) — §x, such that the following diagram

commutes : F(S)
2% . \Pﬂ
3¢ - §;e
1\% ! / N
S
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Now, let
I={(sQg,sQs ) |se F(S)}.
Since the above diagram is commutative we have (S)QgoNg = ()P goNg .
Hence the pairs (s g , sQ¢ ) are of the form :
(i si1 0<n k), s, (I s (I si10Sm<k )
(Recall that Mg and Mg are the projection mappings on the first and second
coordinates, respectively). We define the multipliéation on I lby :
((A1,5),(s,A2))-((B1,1),(t.B2)) = ((A1 U s-By,st),(st,A2:t U B2))
where sB)={sx|xe By} and Axt={ytlye Az}. '
Let Y :F(@S) — I bedefined by
Vs o (s@g,s0s).
Since (5Qg, 50 ) (P g .t ) =(5Q 5 1P g.5Qs 1Ps )
= (DPq » (VP )
and @, and @, are epimorphisms, ‘' is an epimorphism.

Next, define % :I — P(S) by

k k k
X (sl 0<nsk), s, (I s, (sl 0<Sm<k)) -
k k . :
((T sl 0<n<k}, s ([sil0<m<k}).
1 1 > "m+l

It is not difficult to verify that 7 is an isomorphism. Let 6 =7 oY, then we
have that 0 : F(S) — P(S) is an epimorphism. Thus, F 2P and this proves

that P=Egyv Eg .0

For pe ConX*, define pP on X* as follows :
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For u,ve X*, where lul=m and Ivi=n,
u pPv if and only if
i) upw
(ii) forany 1<i<m thereexist 0<j, j<n such that
siw) p siv)  and  el(u) p ef(v);
(iii) forany 1<k <n thereexist 0 </,!/’<m such

that sk(v) p sfu) and ek(v) p ef(u).

Lemma4.4.6. pP € ConX™.

, Proof. Clearly pP is an equivalence relation. To see that it is also a congruence,
let u,v,w and z € Xt besuchthat u pPv and w pPz where lul=m,Ivi=n,
lwi=p and Izl =t.

Let 1 <i<m+p.

If 1<i<m then there exists 0 <j' <n<n+t such that ei(u) p ef'(v).

‘Since el(u)w = ei(uw) and e&'(v)z = ei'(vz), we have el(uw) p ei'(vz).

If m<i<m+p thensetting i'=i-m, we havethat 1 <i'<p andso
there exists 0 <j <t suchthat ei(w) p ei(z). Let j'=j+n. Then 0<j <n+t.
We also have ei(z) = e'(vz) and ei'(w) = el(uw) , whence ei(uw) p ei'(vz).

If i=m then setting j’ =n we have that ei(uw)=w p z=el(vz).
Hence , in all cases, there exists 0 < j' <n+t such that ei(uw) p ef(vz). We
now look at the following cases :

If 1<i<p then there exists 0 <j<t suchthat si(w) p si(z). Since
situw) = usi(w) and si(vz) = vsi(z) and u p v wehave siuw) p si(vz).

If p<i<m+pthensetting i' =i-p, we have that 1 <i'<m and so there

exists 0 <k <n suchthat si(u) p sk(v). Let j= k+t. Then we have

38



sk(v) = si(vz) and si'(u) = si(uw). Thus si(uw) p si(vz).
If i=p thensetting j=t we havethat siuw)=u p v = si(vz).
Thus in all cases there also exists 0 <j <n+t such that si(uw) p si(vz).
Dually forany 1<k<n+t thereexist 0</ /' <m+p such that
ek(vz) p el(uw) and sk(vz) p sl(uw). Therefore, uv pP vz. Hence

pP is a congruence .o

Let AcS suchthat S= (A). Then P(S)a < P(S) defined by
P(S)a= (({l,a},a,{a,1})| ae A)

is called the cutdown of P(S) to generators A .

Let p € ConXt besuchthat X*/p=S. LetA={xpl xe X}. Then
AcS, S=(A) andwehave P(S)a=PX*/p)a where
PXT/p)a=( ({1xp}xp,{xp,1}) | x € X)
= {({L,&xDP (X1 Xn)P 5 (X1 Xn)P, { (X1 Xp)Pseeees (X0)P, 1) X1 € X ).

Define ¢: X*/pP — P(XT/p)a=P(S)a by:
@: (x1.-Xp)PF = ({ 1,(x1)Psee s (X1 X)P 1 (X 1. Xp)P, { (X140 X0) P (XR)P5 1 ).

Proposition 4.4.7. ¢ is an isomorphism.

Proof. We first show that ¢ is well defined. Let u=xj...xn PP y1...ym=V.
Then from the definition of pP we have :
(L, x1ps-- (X1 X0)p} = {1,(yD)Ps- .o (Y1... ym)P)

{(xl...xn)p,...,(xn)p,ll = {(y1...Ym)Ps---»(Ym)P,1}

and
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(X1...Xn)P = (¥1...Ym)P-
Thus, (WPP)P = (V)pP)@ and @ is well defined.
To see that @ is injective,let u=xj...Xx5, v=Y1...ym € Xt be such that
(PP = (VpP)@. Then

(X1...Xn)p = (y1...Ym)P

(L&D, 1. x0)p) = {LDPs - (Y1...Ym)P} 5
and |

{(x1...x0)Ps--.,xn)P} = {(y1.-.Ym)Ps- - ,(Ym)P,1}.

Hence u pPv, ie., (upP=(v)pP and @ is injective.
To see that ( is also a homomorphism let u =Xj...Xp, V=y1...ym € XT. Then

((WPPYP - (v)PP)P

=({1,xDp,....(x1...x0)P} (x1... X0)P, { (X1...Xn)Ps..o (X0)P})-
(LGP 1 YmIP LY 1 ym)P (Y1 Y m)Ps o (Ym)Ps 1 D)
=({1,(x1)Ps- s (X1-- Xn)Ps (X1 Xny DPs- - o (X1 XnY 1. Ym)P ) (X 1. . XnY 1. . Ym)P,
{x1...XnY1...ym)Ps- s (XnY1- . Ym)P5(¥Y1:--Ym)Ps. - (Ym)P,11})
= ((X1...Xny1...ym)PP)Q .

Finally we show that @ is surjective. Let x € X, and
({1,xp}.xp.{xp,1}) be an element of P(X*/p)s. Then xpPe X*/pP and
xpP)P = ({1,xp},xp,{xp,1}). Since P(X*/p)a is generated by

C {{Lxplxp,(xplD) Ix e X))

and @ is onto on generators, ( is surjective .®

Now define p : ConX™ — ConX* by

p:p—pP.

40



Lemmad48 pe ¥.
Proof. That p(p)=pP < p is clear from the definition of pP. For p,te ConX™

such that pc 1t weclearly have p(p)=pFPc1P=p(1).0

Now ,let Pp be defined by
Pa: (S, a) = (P(S)a ,p(a)) S.o)e Fx.

It is easy to verify that P is an expansion in %.

Proposition 4.4.9. P is congruent to Ej, .
Proof. As before , for any ( S,a-) € #x we know that there exists a unique

congruence p € ConX* such that (S,a)=(X%/p,1p). Then
PA(S) =P(S)a = X"'/p(p) ( by Proposition 4.4.7)
= E,(X*/p),

so that P is congruent to E, .e

Proposition 4.4.10. pP=p*Ap*.
Proof. Let L,R be defined, as before, by
L:S—>S5i ad R:S - Si.
Then by 44.5,Pa=LvR. Let pe ConX*. Then by 4.49,
pP=p(p) = cp, () = (F(PAN(p) = (F(L v R))(p)
= (¥ (L) A YR)Xp)
=P L)) A F(R)(P)

=AD" o
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HAPTER

In this chapter we turn our attentions to the category of monogenic
semigroups. First we are going to characterize the contractions in ConX*, where
X= {x}. Then we look at the expansions in the category of monogenic semigroups

and we give some results concerning the lattice of the expansions in this category.

5.1. The contractions in the congruences on the free monogenic semigroup.

We start this section with a characterization of the congruences on the free
monogenic semigroup, F These results are well-known, although not perhaps in
this form, and follow easily from the description of monogenic semigroups to be
found in Howie [6] and Clifford and Preston [4]. Then, we give the 6rdcr on

ConF. Finally, we define the contractions in ConF and we present an example.

Let X = {x}. The free semigroup Fon X is F= {xM : m = 1,2,...} with the
usual multiplication xM-x0 = xM+n  Let [i,p] denote the monogenic semigroup of
index i and period p.

Let 4= {[i,p]!i,p are integers,i20,p=1}.

Definition 5.1.1. Forany [i,p] € A, define p[ip) onF by

XM ppip) X1 ifandonlyif m=n <i+l or mn 2i+l and plm-n.

Lemma 5.1.2. p(ip] is a congruence onF.
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Proof. That pip) is an equivalence relation is clear. To see that it is a
congruence, let mynr ands € (1,2,3,...} be such that x™ ppip) x0  and
X" pri,p) XS. We want to show that  xM-xT = xM* pr; ) XM+ = xS,
If m=n<i+l and r=s<i+l then m+r=n+s and either
m+r = n+s < i+l, in which case we have xM+T prj o) X™S, or m+r = n+s 2 i+1,
and if this is the case we have p/l (m+1)-(n+s) =0 hence , xM+r PLi,p] XM*S.
If m=n<i+l,r,s2i+l and plr-s or mn=2i+l,plim-n and
r =s < i+l, then we have m+r,n+s2 i+l and p!(m+r)-(n+s) hence,
xm+r Pli,p] x+s |
If mnzi+l,plm-n,rs2i+l and plr-s then we have m+r, n+s 2i+1
and p | (m+r)-(n+s) hence, xM+F pr; 51 xP+S, Thus, in all cases XMHT o p) X045,

Therefore ppip) is a congruence on F.e

Lemma 5.1.3. ConF = {1} U {prip : [ipl € M }.
Proof. Let p e ConF, p #1. Then the set

{me {1,2,...} | there exists ne {1,2,...} suchthat xMp x", m # n}
is non empty and so has a least element k. Then the set

(re {1,2,...}) : xk p xk+T}

is non empty and so it too has a least element p.

Firstof all let re {1,2,...} besuchthat xKp xk+r, Then r2p andso
r = ap+b for some integers a and b suchthat a21,0<b<p. Hence,
k+r = k+ap+b and xK p xk+r = xk+ap+b = xk+ap.xb p xk.xb = xk+b, But then b must

be 0 since p is the minimum of such elements, hence plr.
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Now let 0<a<p,and x2p xb forsome be {1,2,...}. Then xk+ap xk+b,
And, since p-a>0, xkp xk+p=xk+a+(p-a) p xk+b+(-2) | Then , by the above ,
p | b+p-a = p+(b-a). Hence plb-a. |

Finally, let s¢te {1,2,...} besuchthat s,t2k and xSp xt.Then
k+ap < s <k+(a+l)p and k+bp <t <k+(b+1)p. Hence O < s-(k+ap) <p.
Since s = k+ap+s-(k+ap) and t = k+bp+t-(k+bp) it follows that :

x8-ap = xkxs-(k+ap) p xk+apxs-(k+ap) = xs o xt= xk+bpxt-(k+bp) p xkxt-(k+bp) = xt-bp,
and so, x5-a8P p xt-bp. Then, by the above , we have that
p | (s-ap)-(t-bp)= s-t+p(b-a) .

Hence pls-t. Now, by setting i=Kk-1, we have p =p[jp] .

Lemma5.1.4. pfip) € Py if andonlyif i2k and rlp.

Proof. First,let pfip) < pﬂ;,r]. Then, by definition of pfjpj, xi+l PIi,p] xi+p+1

and so xi*! ppxy xi*P*l. Then, since i+l #i+p+l, we must have i+] and

i+p+1 2 k+1, in particular i+1 2k+1 andso i2k,and r| (i+p+1)-(i+1) = p.
Conversely, let i2k and rlp. If mn, € {1,2,...} are such that

XM prip; XM then either m=n <i+l in which case xM pprx™=x" or,

m,n 2 i+l and p!m-n then, since i+12k+1 and rlp, wehave XM ppcs xM.

Hence pfip] < PLks] -

Let ¥4={c:cisacontractionin ConF}. Letce €4 and pe ConF.
Then, by Lemma 5.1.3, either p=1 or p =p[jp) for some [i,p] € A4 . Note that,
by C(i) in the definition of contraction, f(1) =1 for any contraction f. Therefore ,
it suffices to define the contraction on ConF\ {1} and so, we identify ppip) by

[i,p]. Hence ¢ can be regarded as a function from £ into £ i.e.,



c:[ip] - [kr]=[c1(ip), c2(i,p)].
We recognize that [i,p] has two meanings , one being a congruence pfjp)
and the other being the monogenic semigroup with index i and period p, because

of the close relation between the sets ConF and 4. However, we believe that

there will be no confusion due to the context.

Proposition 5.1.5. ce €4 ifandonlyif c isof the form:

c¢:[i,p] — [c1(,p), c2(i.p)]
where ¢ and ¢, are functions of two variables satisfying the following conditions:

(i) ci4,p)2i ’forany ipe {1,2,...};

(i) plep@,p) for any ipe {1,2,..};

(i) if ik and rlp then ci(i,p) 2cik,r) and ca(kr)lca(i,p)..
Proof. Letce €4 be suchthat ¢:[i,p] = [c1(i,p), c2(i,p)]. We will now show
that c¢; and ¢y satisfy the above fhrce conditions.

By C(i) in the definition of contraction c(p) cpforany p € ConF,
that is, P[c,(i,p), c,(i,p)] S Pli,p)- Then, by Lemma 5.1.4, ci(i,p)2i and plc2@,p).
Also, by C(ii) in the definition of contraction , if p £t then c(p) cc(7); ie,if
Plipl S Pkl then  Pic,Gip), co(ip)] & Pleikr), colkr)] 5 that is, by Lemma 5.1.4, if
ik and rlp then ci(i,p)2citkr) and ca(k,1) | ca(,p).

Next, let ¢ be a function as defined in the proposition. Let p e ConF,
say P =plipl- Let c(P) =Pe(lip) = Ploiip)calip))- Then, since c1(ip) 21 ,
p2co(i,p) and by Lemma5.14, c(p)cp.

Let p,se ConF besuchthat pct,say p=pfp and 7T=pKr
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[iplikrl € 4. Then, by Lemma5.14,i2k and rlp andso, ci(ip)= cy(ky)

and - catkr) [ ea(ip). Hence, c(p) = Pic,ip)csip)] € Pleykidesk)) = (5) by
Lemma 5.1.4. Thus ce €4 .o

Example 5.1.6. Define ¢: 4 — # by
c: [ip]l — [i+p, 2i-p]
Then for [ip] € # we have that c1(i,p) =i+p2i and plco(i,p) = 2lp
and for i2k and rlp wehave ci(i,p)=i+p2k+r=cik,yr) and

catk,r) = 2% 1 2Lp = cp(i,p). Hence ¢ € ¥y .

5.2. The expansions in 4.

In this section we turn our attention to the expansions in the category of

monogenic semigroups .#. We define these expansions and we give the order in

the lattice of expansions in this category.

Let &4={E: Eisanexpansionin 4 }. Since F/p[ip)= [i,p] and we
have the anti-isomorphisms ® and ¥ we have that &4 =%, . We remark

that the relation < in &, is the reverse of the relation < in €.

We have the relation < in &4 ,as defined previously in &, as follows :
For E,F € &4 ,where E=(e1,e2) and F=(f1,f3), ESF ifand

only if there exists an epimorphism @i p) from F([i,p}) onto E([i,p]) for any

li,p] € 4;thatis E<F ifandonlyif ej(,p)=fi(i,p) and f2(ip)!e2(,p).
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In contrast to the situation in general for expansions this is clearly a partial order
on &,. Infact,&, is alattice where the join and the meet of two expansions

are given as in the proceeding proposition.

Proposition 5.2.1. For E,F € &4 ,where E=(e1,62) and F=(f1,f2)

EvF=J=(1j2) where ji(i,p) =max {e1(i,p),f1(i,p)}

j2@i,p) = Le.m. {e2(i,p),f2(i,p) ],

and

EAF=M = (mj,mg) where m;(i,p) = min {e1(i,p),f1(i,p))

ma(i,p) = g.c.d.{e2(i,p),f2(i,p)}.

Proof. Ttisclearthat J € &4 and J2E,F. Let G=(g1.820€ &4 be
suchthat G2E and G2F. Then g)(i,p)=e1(i,p) and gi(,p) 2 fi1(,p)
and so g1(i,p) 2 max {e1(i,p),f1(i,p)} = ji1(i,p). Also, since ex(i,p) | go(i,p) and
fa(i,p) | g2(i,p)  jo(i,p) = Lc.m.{ea(i,p).f2(i,p)} | ga(i,p). Hence, G217 and
consequently J=E Vv F.

Itisalsoclearthat M € &4 and M<E,F. let H=(h;,hy)e &y
be suchthat H<E and H<F. Then ej(i,p) 2 hi(i,p) and f1(i,p) 2 hi(i,p)
and so hj(i,p) € min {ej(i,p),f1(i,p)} = my(,p). Also, since ha(i,p) | e2(i,p) and
ha(i,p) | e2(i,p), ha@i,p) | = g.c.d.{e2(,p).f2(i,p)} = ma@i,p). Hence, HEM and

consequently M =E A F.e
For expansions in .# we have the following compatibility conditions.

Proposition 5.2.2. Let E,Fand G € &4, E = (e1,e2), F = (f1,f2) and

G =(g1.g2). Then (EAF)G=EGAFG however, GEAF) <GEAGF
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but G(E A F) is not necessarily equal to G-E A G'F.
Proof. Let [i,p] € 4. Then,

LE A F)-G]({i,p)) = (E A B)G([i,p]) = (E A F)([g1G,p),g2(i,p)])

= [my(i,p),m2(i,p)]

where  mi(i,p) = min {e1((g1(i,p).g2[i.p]).f1([g1(.P),g2(i.p)]} and

- mp(i,p) = g.c.d.{e2([g1(i.p).g2li.p]).f2([g1(i.p).82G,P)1}.
On the other hand ,
(E-G A FG)([i,p]) = [min{e1([g1(i.p),g2[i,p]).f1([g1(i,p).g2[i,p])},

g.c.d.{e2([g1(i,p)-g2[1,pD.f2([g1G.p), g2[i,p ] }].

Therefore , (E A F)-G =E-G A F-G.

First of all since EA F<E,F we have that G-(E A F)<GE, GF.
Hence, G:(E A F) < GE A GF. Now we will give an example for which
G-(E A F) is not equal to G-E A G-F. Define E,F and G by

e1(i,p) = e1(i) = f1(i,p) =f1() = g1(,p) =g1(D)=i

ifp#2

e2(i,p) = e2(p) = { Z §§=2

£ ¢ p  if 2 does not divide p
2(l,p) - 2(p) - 6k ifp = 2k

and
10k ifp=2kandke N\{I}

g2(i,p) = g2(p) = {p otherwise
It is easy to verify that E.F and Ge &,. Then for [i,p] = [2,2] we have that
(G-(E A F))(I2,2]) = G([min {e1(2),f1(2)} , g.c.d.{e2(2),f2(2)}])
=G([2, g.c.d.{4,6}]) = G([2,2]) = [2,2].

However,

(GE A GF)([2,2]) = [min{g)(e1(2)),g1(f1(2))},g.c.d.{ga(e2(2)),g2(f2(2)) }]
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= [min{2,2}, g.c.d.{g2(4),22(6)}]
= [2, g.c.d.{20,30}] =[2,10].
Thus, we have G-(E A F) # G-E A.G-F in this case.

Remark5.2.3. The dual result holds for the joins; thatis, (E v F)-G =E-Gv F-G

and G(EVF)2GEv GF but G(E vF) isnotnecessarily equal to
G-E v G'F.
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