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ABSTRACT 

* 0 

:An'attempt.is made to find a connection between Planck's 

constant';h, Boltzspann's constant, k, and the speed of light, c. 
, 

a=- 

The method used i b to 'study blackbody radiation without: quantum 
/ 

mechanics. #sical thehodynamics and statistical mechanics 
C 

s -a?e reviewed. The problem of finding aWtisfactory relativistic 
1- 

, generalization of these theories is discussed and the i 

1 ' 
canonical approach due to Balescu i$ presented. A discussion of 

the standard treatment ,of blackbody radiation (including quantum 
11 

results) follows. The quantum result (~lanck law with zero po_int 
a 

3 " 
derived, as first done by Einstein, Hopf.and Boyer, using the 

, techniques of stochastic electrodynamics (non-quantum 

,derivation). Unfprtunately, P nckl's consta& must be introduced 

as a scale factor in this treatment. Hence, there are still too - s 
2 - 

C 
many free choices for a relationship between h, c, and k to be a 

3 necessity. Accordingly, two attempts arb made to study this 

problem in more detail: 1. A "classical Fermi-Dirac" statistics 

is cieveloped, t% =reat t h e  walls oc the blachbody cau-ity as a 

F e r s i  gas. 2. Adjastments t~'~~~errnod~namics, required by the 

n~n-qaanturn derivation of the spect~ral density, are subjected to 

E ~ P  ~elativisti~ r n ~ r m o d ~ ~ a m & s  previously developed. These two 

prablems are'very difficult and little progress is made on 
. . - 

e 1 ~ 2 e r .  Eence, WP z r e  ief;  wi'th 'no concfusion'about definite 

ir.3ependence c r  deperBence of h, k and c. 

i i i  
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CHAPTER I 
- - 

INTRODUCTION 
--- 

An ongoing problem in the development ,a I - 

physics is deciding just how many degrees ,* . - . 
available for choosing units and dimensio 

- 

parameters. While the literature and man4 texts include brief 

overviews of this topic, - detailed discussions are not too 

commoff. For an in depth review, see L6vydLeBlond [ I ] .  We can % 

illustrate the problem with a simple example: If we choose a 
.! 

?k 

a time scale arbitrarily, we then appear to be able to choose a 
r 

length scale arbitrarily, thereby fixing the speed of light, We 

can introduce a mass scale an& determine the dimension and scale 

of force (if we choose dimensions for the constant in Newton's 
9 / 

second law - normally set equal to 1 ) .  We seem to be able to 
'- 

'-contipue this chain of defining parameters and constants 
/ - -  - 

(subject to physical relevance) as we please. For example, if we 

choose electric charge and temperature as independent then we 
e 

get two more fundamental constants; Q,e permitivity constant (of 
t 

f r e e  space) and Boltzmann's constant. The 'questioniis: Do we 

really have all this freedom? Is it possible that by devehping 

ma~hematical physics in this manner, we have made arbitrary 

choices which a r e  in fact incompatible? If s , then unification P 
of diverse fields of physics would be impossible. 

I n  this thesis we attempt to gain more insight into this 

situation by searching for a physical connection between three 



f Andamental physical constants: Planck' s constant, h, 

Boltzmann's cdnstant$'k, and the speed of light, c. We wish to 
. 

-- 

make it clear at the onCset that we are not referring to 
A - 

i 

"mathematical rel&ionshipsn. A search for mathematical 

relationskiips involves looking for clusters of constants that 
I .. 

have the same dimension. For example, if the unit of'length is 

defined as h 2----- where m and e are respectively the mass and 
k' 

* 4x2'me 
fl charge on an electron, and the unit of time is defined as 

h3 
8r3rne.$ ' then that leaves c proportional to - This iort- 'of"' h .. 
approach seems %nhelpful, since we can take an extreme -(but very 

- 

convenient) case and choose a system of units and d.imensions 
c? - 

such that h = k'= c = 1 . Then there are all manner of 
Ielationships between h, k and c. For example, k2 = h3& . 

Accordingly, to make progress on the question we have posed, 

we need to search for a physical relationship between h, k and 

c. By this we mean starting with any two of the th$,ee - 

disciplines of physics associated with these constants (quantum 

mechanics, thermodynamics, an$ electrodynamics-relativity) and 

deriving results thought to require theory from the third. The 

particular trio of constants, h, k ,  a ,  is considered in this 

paper because a relationship between rhem was suggested from 

considerations of another project. That work is an attempt to 
I 

extend special relativity by incorporating a generalized 

position function Y { X , T )  where x and 7 are surfaqe parameters 
- 

fwe are suppressing ~ w o  dimensions). The idea is that, L 

general, a- particle is 'smeared' over a world hypersurface 



- . 
-, I - 

I 

rld line. The ideak'of the - 

,' /' \ 
I .  

' ~ ~ n e r a l i ~ a ~ ~ ~ ~ - c ~ ,  i )  with the ',rest mass' of the 
- 

/" - %%, %. 

particle via some conformally invariant second order 
- 

!differentkal equation (not yet discover@). Of course, the I 

-1 symmetry group might be some other extension of the Po-incar* 

group. In any case, given that there exists a physically 

relevant function Y(x,T), by analogy with relativity the 

? +  . 
a Y parame-ters, - and - , where x and t are space-time , .  ax at 

coordinates, should Eave fundamental const-ants associated.with 
1 ,  a Y them. We would like to associate - and - ax 

, with h and k 
at 

/ respectively. The? in the standard relativistic limit:. in which 

the particle follows aUtrajectory, a is non-zero so that - dt 
-- a' dx = . This suggest that hc = k in this limit. Of course, a x  at at 
k must be redefined dimensionally for this relationship ,to be 

. G 

acceptable. In general, sinc& we are searching for a 

relationship between h, k and c, we must leave one constant 

undefined dimensionally until we have discovered the 

relationship between all three (assuming"$uch a relationship 

exists). We will nevertheless, continue €% refer to the 
- 

/ * 
"thermodynamic constant' as Bol+tzmannts constant. As the above 

project has not been worKed-out in detail, it will be discussed 

no further. 

we would like to suggest some more concrete physical reasons 

why a relationship might hold between h ,  k, and c. Before doing 

k h i s ,  however, we will briefly discuss a common perception 

amongst theoreticians: It is that Boltzmann's constant is not as 



mndamental as Planck's constant an? the speed 

as it is, merely a scale factor betwqen energy 
, I - - 

(private conversations with M. Plischke and L. 
-- 

of light, - - being pp 

- 

and temperature 
- - - - - - 

S.F.U. physics dept. [this map or may not be their personal - 
. *- 

view]). However, several of the important constants of physics 
.ih 

. 0 
scale factors between various parameters and.energy, for 

f 

a -; - i " 
- .  I- e, E =Z hv and E = moc2. . 

1 

Q is that there does not seem to 
i 

is taken. to be ei%.Fer inf inite 
e a 

n: c->= ; these limits change the 

Thus, what is really meant here, 

be some physical realm in which k 

or zero. (Classically, h->O and 

physics in a fundamental way; 

eg., momentum and position operators commute; 'and Lorentz 

symmetry reduces to Galilean symmetry, respectively.) However, 

as a test for 'fundamentalness' the abdve criterium will not do: 

It c o u h  be that k is more fundamental than h and c, having the - 
:same relationship to all of physics that h and c have in their 

A 

respective realms, i.e., it could be that 1ett;ng k->O (or -) 

leads to the whole universe being in a differenk realm, whereas 

l~tting h-> 0 or c->= leads to a different realm within theg . 
present universe. After all, in the usual formulations of 

physics, temperature is treated as a funda&ntal dimension along 
. . 

with length,- time, mass and electric charge (possibly among 

others, 'such-,as, color or ba'ryon number). Since, temperature 
9 

seems to be definable (statistically at least 1- for even very 3 
simple systems, such  as a point particle subject-to a central - 
force, the status of k in relation to h and e is still m c l e a r .  



With this- question in mind we can ask another, namely, 

exactly how does the concept of temperature arise? The answer 

22 
-- 

seems to be that temperatur rises from the fact that 

specifying the energy of a-system is not-sufficient, in general, 

to specify the microsopic details of bhe system. For example, 

for a particle subject to a central  force^ with energy E, there 

are many possible trajectories. Temperature is essentially a 

tef lec t ion of how the amount of 'degeneracy (number of possible 

states) depends on E (see equation (2.20. &J djhapter six). 
a 

6 

Saying that k, h, and c are all independent is, tantamount to 
<*+ 

claiming that relativity and quantum mechanics do n& restrict ' 

J 

eneracy any further than classical Qhysics, i.e., every 

system displaying degeneracy accordihg to classical physics el-so 
,'%A 

displays degeneracy accordin; tdJquantum mechanics and 
\ 

relativity and vice versa. (This statement needs to be . 
7% . 

distinguished from the actual calculation of* the amount of 
- - 

\ 
degeneracy which, in general, depends on whether quantum - 

mechanics,' felativistic or classical theories are'used for the 

calculation:) So, once more we are stuck with considerations 
P 

which are not very tractable-. 

In any case, from these rather vague considerations., we have 

puk.together a concrete plan of study (which, however, may only 
r 

be less obvious y as untractable as the previous A "  
coosidefdions! 1 :  Find a phenomenon that involves all three of 

the above discipli~es for a standard explanation and try to - 

explain it using theory from at most two of the above 
- 



disciplines. The phenomenon we-6ave chosen is blackbody P 

v - 
radiation, since it has been extensively~studied, is well 

understood, and has several properties which~are independent of 

rr the details of the particular system used to model it. The 

problem of deriving the spectral density (the central- problein, 

see chapter six) .using only.relativity (electrompgnetic fields) 

and thermodynamics has already been done by Timothy Boye? u - (2-71. 
T- 

~ n f o r t u n a t R ~ ,  Planckf s constant must be .introduced - . intd this 
\ . 

work as a proportionality constant, thereby leaving h, k, and c 

ifldependent. Actually, this is not surprising, since by using 

electromagnetic field tr;;?ory we have introduced a fourth 
a 

dfscipline and a fourth constant, namely the permittivity 

constant, e o  (or. equi?glently w e a b i l i t y ,  eo.  ~e'call that 

c2 = - ) .  A 

P o  € 0  

S i n ~ g  this development is apparently unavoidable, 

, (essentially, a force law must be introduced somewhze,'ifwe 

r are to explain a dynamical system) in this thesis we have. 

concentrated on two possible refinements of Boyer's derivation: 

weshave developed a "classical- Fermi-Dirac" statistics, assuming 
* /  / .the Pauli - Exclusion principle i; independent of quantum 

mechanics. (This has surely been done by others as well, but we 

have not found a reference to such.) Then the walls of the 

biackbody cavity can be treated as a Fermi-gas s,ubject to local 

forced oscillations from the radiation in the cavity. Of course, 

:he phase average of ;he electric field components tangent to 

2 rhe walls is zero as zsual, but <ET> may not be. Essentially, 



the problem 5s to modify the.Rayleeigh - Jeans approach (see 
chaptd; three) to include the Fermi energy of the electrons. We 

have not bee6 ablb to do this calculation. The other approach we 
- - 

have taien is to see what relativity has to say a b u t  

adjustments, ;equired by ~&er's analysis, to the thermodynamic 

and statistical mechanical notions - -- of entropy. In particular, 

these two concepts of entropy are no 1onger:equal (see chapter 

4, section 2). For-this work we have made a thorough study of 
'2 

relativistic statistical mechanics (for systems in equilibrium), 

but, alas, to no avail - we have not solved this proi5lem either. * 

Before beginning.detailed discussions, we give a brief 

overview. Chapter two is a brief review of classical 

thermqdynamics and statistical mechanics. Topics covered are 

restricted to those used in later chapters. In chapter three we 

present the various generalizations of equilibrium 

thermodynamics to relativistic thermodynamics. The development 
\ 

of relativistic stati'stical mechanics bue to ~aiescv is also e 

discussed in detail here. chapter four is a summary of the usual 
+ 

treatment of blackbody radiation, 'beginning with the 

Stefan-Boltzmann law and concluding w&h the modern quantum . 
treatment (included for later coniparison). In chapter five, the 

rather long defivation of the blackbody- spectral density due to 

Boyer is explained. Also given here are the adjustments to 

thermodynamics and statistical mechanics required by Boyer's 
P - approach. Finally, chapter six includes the 'development of 

"classical Fermi-Dirac statisticsn, some comments on 



relativizing Boyer's adjustments t o  thermodynamics*and - 

;tatistical mechanics, and some concluding remarks. ." - -- 

The reader should be forwarned that there is a seiious - 

- ,--- 

problem with notati-on arising from bringing together several 
. 

diverse fields of study which employ coinciding symbols to mean 

different things. For example, traditionally, "P" is used to . 
denote 'bressur; in thermodynamics, the generator of space 

translations in canonical mechanics, and the radiation drag * 

a function in the equation, F = -pvg from stochastic I , 

electrodynamiqk. We have chosen not to break with tradition in 

our notafion, and have attempted to insure that new usage3 of 
3 - 

symbols already introduced in a previous context are nnt- 

3 
confusing. Some other overworked symbols to be careful with are: 

"pn, invariably used to denote momentum (or the canonical 

momentum variable), in the earlier chapters, but also used for 
- 

the dipole moment in chapter 5. "VW is used to denote volume 

throughout, whereas "vn is used to express velocity. "Kn with' 
I 

various subscripts'and superscripts is used to denote frames of I 
- 

reference, while "k" is used variously, as the wave vector, unit 

vector in the z-direction, Boltzmann's constant, and the 

magnitude of the wave vector (vector quantities are denoted by 

+boldface type). 



CHAPTER I I 

Classical Thermodynamics 

We begin with a concise overview of thermodynamics and 

statistical mechanics. Quantum statistics will not be necessary 

since the analysis of blackbody radiation presented in Chapter 4 

is specifically intended to use relativity and thermodynamics 

alone. The classical case is developed here and extended to 

relativity in the next chapter. The development presented here 

follows Reif 181. . ---. . 

Classical ~hermodyfiamics is concerned with making 

macroscopic statements about. the properties of macroscopic 

systems. No attempt is made to understand the, microkcopic 
\ 

picture of the system at hand. This approach is based on four 

empirical laws, described as follows': 

1 .  Zeroth law - I f  two systems are in thermal equilibrium with a 

third system then they are in equilibrium with each other. 

Experimentally, "thermal equilibrium" means there is no net heat 

f l ~ w  between the two systems. This law establishes temperature 

as a useful parameter with which to measure thermal equilibrium 

(The third system acts as a thermometer.). 

2. First law - A system in equilibrium, in a specific 

~acrostate, can be described by a parawter E called the 

l ~ t e r n a l  energy which has the following properties: 

Fcr  an isolated system, E = constant. If the system is 





- 
sl~wly enough to Peep the system in approximate equilimium 

- 

ghout the process. Of course, "slowly enough" depends on 

the particular system at hand. ---- . 

To calculate changes to the macroscpkic parameters of a 

system due to an arbitrary process is usually very difficult in 

classical thermodynamics, since, in general, the expression 
8 

A dQ = dE + dW , i 

- 
is not an exact differential, 'and hence &$detailed knowledge of 

the process is required to integrate.,That is, a knowledge of 
f 

the initial and final states is not-sufficient since $,dQ i$. 
1 .$- 

'path dependent. To get around this piroblem, generally only 

quasi-static processes are considered. Henceforth, all processes 

will be assumed to be quasi-static unless otherwise stated. In 

this case, the first law can be written as,. 
- 

TdS = dE + PdV , (2.3) 

where P is the pressure and V the volume of the system. 

&& 
I f  the equation of state of the system is known, then all. 

the macroscopic parameters of the system can be determined. The 
3 

4 4. 
two mathematical techniques>involved are Legendre 

transformations and pwperties of exaci differentials. Since - 
this kind of analysis will be used in the next chapter, a brief 

illustration is given here for the case of an ideaL gas. 

Thz equation of state for an ideal gas in a container is: 

where P i ~ t h e  pressure, V is the volume, v is the number of 
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\ 
To calculate the change in entropy of the gas, define the 

- -- -- 

molar specific heat at constant volume, . 
- 

, . . 
Cv may be a function of T but not V.4-Then by the previous 

iesult , dE = (EIVd~.* substituting into (2.3) yields, k .  

aT f 

2 s  = (%IVd~ + PdV . 
Using (2.4) and ( 2 . 8 )  to substitute for P and (=lv respectively 

L-C~T 
we get, %.-&aa 

4 
SP 
I! 

I f  we define arbitrarily the value of the molar.entropy, So, of 
- ,  

some standard state,' then this equation can be integrated along 

any convenient quasi-static path to get: 

where v o ,  Vo, and To are the number of moles, the volume and 
P 

temperature that define the standard state respectively, . 
S ( V , T , v )  is the entropy of v moles of gas in the final state, So 

v o  v 
the molar entropy of the standard state, and Vi = - , is the 

Yo 
volume of v moles of gas in the standard state. The number of 

moles of gas, v ,  remains fixed throughout the process. For 

example, start with volume VA, raise the temperature from To to 

T at constant volume, then change the volume from Vov/vo to V at 

constant temperature. 





'3. Helmholtz Free Energy, FtF(T,v); F 5 E - TS ; 
1\ 

dF = -SdT PdV (2.14) 
-- - 

, 4. Gibb's Free Energy, G=G(T,P);% r E - TS + PV ;: 
' 

dG = -SdT + VdP . (2.15) 

Y 
In each case the differential'expresses the first law in 

. - 
ter&'%of the new ene,rgy function. Each function is useful for 

9 I % 

particular types of processes. For example, for processes at 
! 

constant pressure, H is most useful. If volume is held constant 

during the process then E is most useful. For an adiabatic 
r 

(thermally isolated) process at constant volume, the Helmholtz 
. . 

free energy, F, is most useful. Finally, G is used to describe 

adiabatic processes at constant pressure. ~b se; how these 

relations are developed from the first law ( 2 . 3 1 ,  we proceed as 

-- follows: (The Helmholtz free energy is used to illustrate, as it 

will be used in chapter three.) -- 

Starting with dE = TdS - PdV , substitute 
TdS = ~ ( T S )  - SdT , to get dE = d(TS) -SdT - PdV , or \ 

d(E - ST) = -SdT - PdV r dF , since F E E - ST . 
The Maxwell relations (2.11) follow immediately from the fact 

that dE, dF, dH, and dG are all exact differentials. For 

example, for the case of dF above, 

The other equations follow similarly. Naturally, these relations 

only hold fotJq'uisi-static processes. 
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as Since (-IT is hard to determine experimentally, the Maxwell 
aP 

as av relation (---IT = -(-IP can be used to yield, 
ap a~ - 

av ap Cv = Cp - T(-) (-1 I av 
aT P aT V ' 

The quantity, a - -  is the volume 
V aT 

coefficient of expansio and is readily measured. It is easy to 

a p  a 1 av show.that - = - where K = - -  is the isothermal 
aT K V a P  

compressibility. ~e'nce, CV = Cp - T V ~  . T ~ U S ,  the difference, 
K -.- 

Cp - %, has been,expressed in terms which are readily 
measurable. 

P 

Before discussing the statistical approach, we will briefly 
\ 

discuss Carnot cycles as t h ~ y  will be used in the analysis of 

blackbody radiation in chapter four. 

A Carnot cycle is. the simplest p r ~ ~ - e ~ ~  •’0; co rting heat . 

from a reservoir to external work. The usual picture is 
a 

illustrated in Figure 2.1. Each figure represents the system at 

the end of the previous step in the cycle (all processes are 

quasi-static). 

a) An isothermal expansion is performed in this step. An amount 

of heat-, Q, is absdrbed from the reservoir and work is done by 

the system. On completion of the expansion the system has 
C pressure and volume P, and V, respectively, hut the temperature 

is +till T,. 

b )  The reservoir is now sealed-off and the system allowed to 
. Q  

expand adiabatically (by relaxing the -external pressure). The 



ADIABATIC PROCESS 

6 -  

Figure 2.1 - Carnot Cycle 



1/ 
temperature and pressure drop to T, and P3 respectively, while 

'i - 
the volume increases to V,. 

.- 
C) The system is connected to a reservoir at temperature.T, 

(<T,) and an isothermal contraction is performed. This can be 

done, for example, by increasing the pressure to Pa. The volume 
k is reduced to V,%and the temperature remajns constant at T,. 

. d )  The last stage is an adiabatic compression. to the o;iginal 

state irr stage (a), i.e., pressure P,, voluple V,, and 
. 

temperature T, a 
- 

The process can be illustrated on a pressure-volume diagram, 
/=- 

Figure 2.2. The work done by the engine is just, $ PdV, where 

the integral is taken counterclockwise around the path bordering 
Lf-=-'? 

the shsed region in thg figure. 
, 



VOLUME 

- Figure 2.2 - Pressure-Volume Diagram for Carnot Cycle 



w 

Classical Statistical Mechanics - 

t 

L - 

In classical statistical mechanics a system is described in 

terms of its microstates. Specification of these microstates 

together with the main postulate of statistical mechanics allows 

calculation of all the macroscopic parameters of the system. A 

brief description of this approach is presented here. 

TO specify the microstates of the system one must first 

choose some microscopic' standard of the system. This could b 
-- 4" 

for exampie, atoms or molecules or electrons. Next, a suitable 

number of generalized coordinates must be chosen to completely 
4 

specify each microscopic unit. For the case of an ideal gas in a 

box with N particles, each par'ticle can be taken to be a f' 
microunit, and the position and 

specify it completely. In three 

6N degrees of freedom. In order 

approximation has to be made as 

. (consisting of 3 momentum and 3 

momemtum of each /particle 

dimensions this gives a total of 

to count the number of states an 

foLlows: The phase space 

position coordinates for each 

particle for a total of 6N dimensi.ons) is divided into cells of 
C 

volume h2N. The cells, of total volume are then enumerated, 
v 

1 ,  2 ,  ... r , . . .  - in some convenient and the system 
h p  ' 

considered to be in state r if the coordinates and momenta 

describing the system lie anywhere inside the rth cell. 

T 
-- 

E 

Classically, h, can be made arbitrarily small. In quantum 
4 

- 

mechacics h, must be greater than h (Planck's constant). In 

addition, the system is normally specified by the quantum states 

of the wave function. Once a procedure for specifying the 





In p r a c t m  the function O(E) is not very useful sipce; in 

general, it is difficult to calculate. Instead of actually 
-- 

counting states it is much easier to calculate the probability 

of a state being occupied. The sum of the probabilities over all 

states is-then equal to one. There are several ways to calculate 
I 

probabilities depending on how the statistical ensemble is 

chosen, but the most common distribution is called the canonical' 

distribution. By considering a system in equilibrium with,p-heat 

reservoir, to excelgent approximation the probability, Pr, of 

the system being in a microstate r is, 

where t'he sum is taken over all accessible states. The sum, 

is termed the partition function and is usually much more 
-- 

convenient to work with than Q ( E ) .  

An ensemble of such systems can be imagined as consisting of 

,a large number of identical systems, each in contact with a heat 

reservoir. I f  the energy, ES, of the system is very much less 

than the energy, E, of the resevoir, then the probability of the , 

system having energy in the range ES to ES + dEs is, 

approximately, P(ES) = C!2(Es)exp{-PEs] , where C i s a  constant. 
I -- - 

Since Q(E) is rapidly increasing and expi-@E).rapidly 

decreasing, Q(E)expi-pE] has a sharp'maximum around the average 
- 

energy, E. Since iZ is the macroscopic parameter that is 

measured, measurement will agree very closely with the 



probabilistic calculation, with the agreement-improving for 

A simple example of the calculation of Z is furnished by a 

monatomic ideal gas. For an ideal gas in a container of volume 

V, the total energy of the gas is, 

where N is the number of gas particles in the box, m is the mass 
* 

of each particle, pi is the momentum of each partic15 and 

U(rl,r2, ... PN) is the potential energy of the gas. Since the 
states are continuous, the sum Z e-flEn can bs calculated using 

n 
an integral as follows: The states are specified by the N 

f 

position and momentum vectors, r l ,  r2,..., p l ,  p2,...p~, 

respectively. The number of states with xmenta and coordinates 

in the range pl to pl + dp,, ..., r ~  LO r~ + drN per unit cell of 

d3pld3p2.. .d3pNd3r ,d3r2.. .d3rN 
phase space is, . Multiplying by 
I haN 

P f the Boltzmann factor, expi-p[ .f! - + U r  r . . r  1 , 
1 = 1  2m ' & 

- 

dividing by N!, and summing over all phase space ( a s  an 

integral), we have, 

1 The factor of - arises because permuting two gas particles does 
N! 

not lead to a new state of the gas. Thus, the total number of 

states is reduced by a factor of ode over N!. For an ideal gas 

U(r,,r,, ... rN) = 0 , so the integral works out to, 
- 



I 
- - 

Several macroscopic parameters can now be calculates. The 
I 

average energy of the system is given by, 

where as always, the sum is cilculated over all possible states 

of the gas. Substituting (2.26) into (2.23) we have, 
I 

4 

I f  X is the generalized force corresponding to tbe parameter 
- 

x ,  then X = - -  ' a'nz . If x = V, then X = P , the average. 
p a x  

pressure, and P = , or FV = NkT , which is the equation of v 
state of the gas. To calculate the entropy,-set Z = Z(0,x). 

Then, 

for a quasi-static process in which the parameter x undergoes a 

change dx. The last step follows by the first law (2.3), with -- 

dW = PdV . Thus, it follows that 

Substituting the expressions for Z and E already calculated we 



S = kf-lnN! + NlnV + 3N 2m - -1np 3N + 2 1  
? - l n ~  2 2 

Z 

3N 2m 3N = kf-ln~! + NlnV + -InT + - 1 n ~  + B) . 
2 ho 2 2 

i 

*. 1 

Since N >> 1 , we can use stirling's formula to approximate 

InN! NlnN * N, so we have finally, 

The Helmholtz free energy has a simple relationship to Z . 
/ 

that makes it particularly useful. Using (2.24) and rearranging. i 

- 
F = E - TS = -kTlnZ . (2.25) 1 

i 

1 
Having surveyed classical thermodynamics and statistical e 

f 
mechanics, we will next discuss attempts to generalize these i 

4 
b 

B \ ideas to relativity. But as will be seen the problem is very 

complicated. 



CHAPTER -1 I I 
s_ 

RELATIVISTIC THERMODYNAMICS AND STATISTICAL MECHANICS, 

General Considerations 

d 

This chapter is divided into three sections. In section one 

the many problems of generalizing thermodynamics to relativity 

are discussed in a general way.'In section two several systems 

for generalizing thermodynamics are described. In section three 

statistical mechanics is generalized using the scheme of Balescu 

and Kotera [ 9 , 1 0 ] .  
+ 

A major problem in relativistic thermodynamics arises from 

the problems associated with simultaneity and extended bodies. 

OtherProblems include ambiguities in defining thermodynamic 

parameters, questions about exactly how to incorporate into the 

first law the systematic energy resulting from the motion of the 

center of mass of the system, a'nd a lack of experimental 
- 

evidence with which to resolve disagreement between theories. - 
Before further discussion of these problems it is*perhaps 

'useful to mention several things that all authors a-gree on. Even 

here there is room for discussion. All authors implicitly assume 

that Boltzmann's constant (and where relevant Planck's constant) - 

is a relativistic invariant. Such an assumption is esthetically 

pleasing, but has no experimental basis. Most authors agree that 

entropy and pressure are relativistic invariants. In the case of 

entropy there are two arguments used: 



I .  Since thq mtropy is proportional to the number of states 
--- - 

accessible the system at some energy E, this is just a number 

and so must be a relativistic invariant. 

2. The overall motion of the center of mass of the system can 

not affect the microscopic distribution of states so the entropy 

must be invariant. 

Both these arguments are, in general, unclear. In relativity 

it is true that a scalar is invariant, but 'not all scalars in 

Newtonian physics are Lorentz scalars. A simple example to - 
illustrate that argument 1 ig, incorrect, in general, is provided 

\ 
\ 

by energy. In Newtonian mechan'ics, energy is a scalar, sl by 

argument 1 ,  energy must be a scalar in relativity as well. As is 

well known, this is not the case; energy is the ti-me component 

of the momentum 4-vector. The difficulty arising here can be 

traced to tfie fact that entropy is a measurement of a 

distribution in three dimen'sional space3and so it is not obvious 
.% - - 

L. that this distribution will retain the same "shapew under a 

Lorentz transformation. 

\ Some authors, for example Dixon [ 1 1 ] ,  have tried to c formulate an entropy 4-vecto'r, but there is an obvious 
', 

'\ 
circularity in reasoning here. ( I *  fairnes's to Dixon and others 

) who have adopted this method,'we point out that they are well 
i a 

-' / aware of the difficulty with this approach. They circumvent the 
f 

logical problem by not expecting thermodynamic parameters which 
-- 

have been generalized to 4-vectors to have &he same physical 

interpretation as their classical counterparts.) 



The second of the above arguments is unclear because of 

peculiarities of the relativistic velocity transformation. For 

example, Landesberg [ 1 2 ] ,  has discussed the velocity 

distribution of an ideal gas in relative motion. He points out 

that if the box has velocity v with respect to an observer, K, 

then for K, more particles travel in the direction of motion, 

and at slower speeds than in the direction opposite to the 

motion of the box. In addition, for K, the interparticle spacing 

appears to be less in the direction of motion than in other 

directions, so the position distribution appears anistropic. It 

is not a all obvious if the number of states accessible to the 
- 

system is preserved. Of course, the incorrectness of these 

arguments does not disprove the claim that S' = S o  for the. 

system. After all, the velocity transformation is one to one, so 

one expects the number of velocity states to be preserved. It 

would be nice to have a rigorous proof. 
- 

e6 
The argument that pressure is invariant can be understood as 

follows: Consider a square box of side L with one edge moving . 
along the x-axis, with speed v. Then for gas particles of 

constant rest mass, the relativistic force transformation laws 

for the 3-force are (see Ritchmeyer 

where the frame moves with speed v along the x-axis with 

respect to the unprimed frame, the speed of light is taken to be 
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as 4-vectors that reduce to the usual quantities in the rest 

frame. In addition, as already pointed out, thermodynamic 

parameters lose their usual physical intgrpretations in these 

theories.   here are several consistent tensor theories (for 
* > 

perfect fluids). Only experimen-t can res6lve the different 

theories and these are considered no further here, as they seem 

no more f u n d a m e n t a m t h e  non-tensar theorkes. The interested 
i 

Synge [ 1 5 ] .  (The tensord formulations have been more widely 

accepted ,than the non->tensor theories.) 

Since thermodynamic quantities such as temperature, volume 

and pressure are averages over an extended body, simultaneity is 
7 

a problem. Thus, if the rest frame observer an&moving observer 

measure a thermodynamic quantity using a notion of simultaneity 
- 

in their own frame, they are not measuring the same thing, in 

general. For quasi-static processes or systems in static 

equilibri-urn this should not be a problem, since simultaneous 

measurement is not crucial in,this case. 

The final topic in this section is the problem of how to 

distribute the increase in-internal energy, due to the motion of 

the center of mass of the system, between the heat and work 

increments in the first law ( 2 . 1 ) .  Heat is generally agreed to 

be energy flow of a'random nature, whereas work is ordered 

energy flow. An attempt to calculate the kinetic energy of the 

moving system and call this the work done on the system fails 

because of the peculiarity of the relativistic velocity 

3 1 



transformation law. For example, for an ideal gas in a box 

moving w i 6 1 0 c i t y  v in the x direction, the observed~velocity ' 

components of a given gas particle are, - 

d 

1 U I Ux+V r - - - 
0 ; Uy - ; uz - uz 

ux - l+vux - y( l+vu,) y(l+vux) , 
1 

where y = . The kinetic energy associated with the 
dl - v2' L 

velocity, v, of the center-of mass of the box can be taken as 
- t? 

the work that has been done on the box-, but if this energy is 

simply subtracted from each particle's total energy what is left 
\ 

is not equal to the rest frame heat and work. For example, 

consider a particle moving with velocity u=ux in the x-direction 

with respect to the box. Then if the box is moving with velocity - 
v in the x-direction with respect to the observer, this particle 

appears to have kinetic energy: 

ux + v u, + v 
mo ( )(I - ( )2)-i . This particle's, contribution to 

1 +vux 1 +vux 

the kinetic energy of the box with respect to the observer is 

ymov . Then the difference of these two expressions is: 

The expression on the right is the kinetic energy of the 

particle in the box frame. So it is not clear what&o do with 

the ~ysternatic'energ~ of the motion of the box. (Evidently, the 

problem arisihg here has its origins in the indiscriminant 

comparison of quantities in different frames.) 

We conclude this section with a discussion of the difficulty 

of obtaining experimental data about the temperature of moving 



bodies. The chief obstacle of measuring the temperature of a 

moving kody T -arises because the thermometer, B, must come to d equilibrium with A as A moves by B. If A is moving rapidly 

enough-then A and B do not have time to come into equilibrium, 

measurement is meaningless. Landesberg, and 

others I12,16-191, 
^pry 

have discussed this '~roblem extensively. 
d 

argues t h a t l ~ = ~ ~ ,  i.e., temperature invariance, is the only 
I 

physically reasonable transformation as follows: Suppose 
b 

T = To/? . Then if A-and B are two identical objects both of 
rest temperature Tb, A moving with speed v with respect to B, 

then according to B, A appears cold and. heat should flow from B 
/ 

to A .  The reverse occurs in A's rest frame. Since, Landesberg 

- considers that this is evidently contrbdictory, he conclude~s 

that T=T,. This problem is similar to t 6  twin (paradox) probldm 4 
as seen in the foilowing version: An object is quasi-statically 

- , accelerated along a very long, straight, frictionless,' 
- 

onducting rail, which is in thermal equilibrium with a very 

long heat reservoir. The object is then insulated, slowed down 

and reversed to return to its original s ting point. An ?? + 

observer at rest with reiprct to the rail concludes that the* 

object is now hotter since it appeared cooler during the 

acceleration stage of its trip, and so absorbed heat from the 
4 

reservoir. The observer on the object says the.obiect is now 

colder since it lost heat to the, according to him, colder 

reservoir. So we have the same problem as the two twins (each - 

claims the other is younger). Perhaps ?he thermal problem can be 

resolved in a manner similar to the twin patadom That is, one 
<I 1 



felt accelerations and the other did not, etc. The general 
- --- 

response to ~andesberg's problem has been that it cannot be 
-- 

discussed within the realm of &uilibrium thermodynamics. 
- 

Kellerman [ 1 9 ]  has suggested an alternative way out, via 

modification of the definition o • ’  entropy. We will discuss this 

' briefly later, as it ties-in with the modifications to entropy .di 

.. required by the stochastic electrodynamics of chspter six. 

Since the original Planck - 
. 

Einstein formulation, and especially 
-- 

-, since 1963, a large number of formulations of relativistic 

thermodynamics have been proposed. Several good classification 

schemes have been proposed, but we will defer classifying the 

various formulations~ until the last section. An overview of the 

various prescriptions is presented here. As usual - 
7 = ( 1  - v2)-2 , c=l , the subcript " O w  denotes rest frame 

values, and K and K O  denote the moving and.rest frame,, 

respectively. 

Planc k, Ein% andQhers 1 2 0 - 2 2 1  ioried out the fillowincj 

scheme : 

P = Po ; ' p  = y ( U o  + P o V o ) v  , ( 3 . 2 )  
4 

a 

' where p is the momentum 0-f the whole system, P the pressure, V 

the volume, S the entropy, and U the total energy. The second 

l aw ,  TdS = dQ , is retained by these authors so that 
- - .I 

dQ = d Q o / r  . ( 3 . 3 )  



-!he work done by the system is defined, - - 

Y 

where 'we recall that, Ho = Uo s PoVo , is the enthalpy, and the 

last term represents the work done in accelerating the system to 

velocity v and momentum p. This definition for dW keeps the 

first law (2.3) form invariant. using (3.2, 3.3, and 3 . 4 1 ,  the 

heat transfer works-out to, dQ = dU + dW . ~vidently, in this 
formulation energy-momentum is not conserved with a change in 

V,, because of the term PoVo . This is a consequence of the fact 
. , 

that in this formulation, U and p are obtained by simply 
i 

performing a Lorentz transformation on Ti, for a perfect fluid. 

W, according to this definition, K~makes measurements at 

constant time in his frame and KO does likewise. Because of the 

relativity of simultaneity they are not measuring the same thiftp- 

(see, for example, Yuen[23]). The usual explanation for the PoVo 

term is that stresses are induced in the walls of the container. 

This explanation is made more apparent in the next section. 

In 1963 Ott [241, aid later Meller aqd Kibble I25,261, 

challenged the Planck - Einstein formulation and proposed 

instead that, 

U = ~ ( U O  + v2Pov0) ; T = yTo ; P =Po ; 

Thus, they retain the first and second laws., but reject the 

Planck - Einstein temperature transformation law. 

Their primary objection to the classical fornulation arises 
* 

out of the ambiguity of defining thermodynamic quantities such- 



as heat and work in relativity. Their argument runs as follows: 

\ Suppose thermodynamics~variables have been chosen so that, 
4 

a~ = au + aw : as = ~Q/T , T = , d~ = C I Q ~ / ~  . 
Then.define new variables by T' = * ~ g ' ( ~ )  , and dQ' as dQg(y) , 

, 'Q3 
where g(y)'is an arbitrary smooth- function of y. Then t o  keep 

the first law invariant in the new variables we require that dW1 
9 

* -  

be defined as,'dwl = dW - d~'{[g(y)I-' - 1 )  . Thus, to have a 
clear theory it is important to distinguish carefully between 

h=at and work. For the classical treatment with 

dW = dWo/y - v2yd~, , dW need not be 0 even if dW, is, so that 

it is possible for a purely radiative system to do work of 

amount dW = - dQov2y (where for dWo = 0, dE, = dQo). The above 

three authors find this resultv~?$$Ysically unreasonable, and 
Jd 

propose (3.5) as a remedy. It mag9be that in relativity the 
?' 

4.. 

distinction between work and heat is a frame dependent concept: 

This is not too farfetched, for, as Kibble [261 has pointed out, 

fundamentally there is not much distinction between heat and 

work - only a notion of randomness separates them. Since such a 

notion is aJ space-time relation we should not expect it to be 
t 

A 

Lorentz invariant. 
a 

- 

In the mid sixties Arzelies and Gamba [27,28] suggested thp 

scheme : 

These authors argue that U = yUo so that the two observers are 

. measuring the same quantity. If one uses U = y(Uo + V ~ P ~ V , )  , 



8 
- derived by performing a Lorentz transformation onLTij (we are - 

a *  

using Tij to indicate the stress-energy tensor, not its 

components) and integrating over a constant time surface in K, 
t 

this is not the same quantity as Tij integrated 0ver.a constant 

time surface in KO. They argue that the only*quantities of 

interest are those that transform by a Lp~entz transformation. 

As previously mentioned, ~andesber~, John, and Van Kampen 

among others [12,16-18,29,30] have argued for temperature 

i n\.ar iance : 

These authors distinguish between confined systems (includes 

.walls) and .inclusive systems (free). For confined systems 

U = y(Uo + v2~,V0) . In this formulation the second law is not 
invariant. Also the transformation law for temperature is 

assumed to-be.an independent physical law, that can not be 

determined from relativity and equilibrium thermodynamics alone. e 

Landesberg [ 1 2 ]  has found a classification scheme for the 

various formulations, but instead of going through his synopsis, 

we will present, in the next section, the scheme worked out by 



~elativistic Statistical Mechanics 

1 There have been two basic approaches 90 relativistic statistical 
mechanics. ~ o t h  approaches start with scalar distributibn 

functions. The argument for this assu ption is that jf n 

particles of the system have the same P I  then those . 
I 

.particles will have the same 4-momentum, PI for any Lorentz 

observer, so that n(P), the distribution function of- the 
\ 

particles, is invariant, i.e., n ( P )  = K(P) . This argument would 
be obvious if we were using the Galilean transformation, in 

m i c h  relative motion of the system would simply be added to all 

the particles. However, as already pointed out, this argument is 

not so clear in relativity. In any case, we will only briefly 

3 describe the 4-tensor approach worked out by several 

authors [11,14,15,31], but will discuss in detail the canonical 

approach due to Balescu and Kotera [9,10,32]. 

As we have seen, (see equation (2.21) e t  s e q )  in the rest - 

frame the Boltzmann distribution depends on the quantity 

E4 = - . The tensor approach is to generalize Ep to the 
kT0 

product of two 4-vectors, one of which is obviously the 

- 4-momentum P. 4, can be defined as, 4, = - , where up are the 
kTn - 

components of the 4-velo~~ity (e=0,1,2,3). I f  PO = j&- , is 

chosen so that Po = 1 
kT 

then we recover the Planck - Einstein 

law. T = To/7 . Of course, 0, can be defined in a variety of 

ways. The ambiguity problem has thus, not been solved because, . 

as already pointed out, no matter how 0, is defined we must 

discover what the physical connection is between the new ' 



parameter p and the standard notion of temperature. 
- 

The canonical approach is attractive since it makes it clear 

(once a scalar distribution is accepted) that all of the various 

generalizations of thermodynamics are self-consistent and amount 

to different choices of t'wo arbitrary functions d f  y.  In this 

development, the ~oincar& groue is represented as a subgroup of 

the group of canonical transformations of the dynamical system. 

No attempt is made Yo retain duality between time and space 

coordinates.,The subgroup of canonical transformations satisfy 

the Lorentz group axioms, but the specific coordinates qr and pr 

need not be components of 4-vectors.'The key result needed to 

make progress is that under appropriate conditions a canonical 

distribution goes over into a canonical distribution under a , 

Lorentz transformation. Then since any thermodynamic system can 

be represented by a canonical distribution (see for example, v 

Tolman [22], Landau and Lifshitz [ 3 3 1 ,  or Huang [341), wewill 

have solved the problem of the transformation of thermodynamic 
e- 

quantities in relativity. 
a .  

Before show'ing the above results'in detai.1, we will briefly 

discuss the canonical approach to mechanics and show that-the . 

~oincarP group can be expressed as a subgroup of the group of 

canonical transformations. 

Classically, in the canonical adpoach a system is described . 

in terms of three space coordinates, qr, and three momentum 

coordinates, pr, for each particle, yielding a configuration . 

space of 6N dimensions (r=1,2,3). Following the prescription of 

I 



\Dirac [35], the coordinates are specified at some specific 

observer time, say t=O . The macroscopic parameters of? the 
L 

system are described by "dynamic functions" of the canonical 

variables, (qr,pr). An example of such a function is the 

~amiltonian. Of special importance are the canonical 

transformations, defined as follows: Q = ~ ( q , p )  and P = ~(q,p) 

is a canonical transformation provided, 

where we have used the Einstein summing convention, and 

It is then not difficult to show (see, e.g., Desloge [ 3 6 ] )  that 

if ~ ( q , p )  and Giqfp) are dyhamic functions of the system, then . 

the Poisson bracket, 

is invariant under a canonical transformation. 

d 

A ca~onical disttibution function is any function, f(q,p), 

sufficiently smooth, (usually f (q,p) E C 1  is enough, but we will 

assume that f(q,p) is C" or at least that f(q,p) has a 

sufficiently accurate C= approximation) such that f ( q , p )  2 0 and 
L 

$ $  f,(q,p)dqdp = 1 , where the integral is taken over all of 

phase space. Once such a distribution has been specified for the 
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where b,, = -b,,". (Greek indices take values in the' rangeF 
- - - - 

0,1,2,3, and Latin indices are in the range 1,2,3.) We next 

construct a dynamical function. F = F(q,p,a,,b,,) , such that 

under an infinitesimal Poincar* transformation, an arbitrary 

dynamic parameter, A(q,p), transforms as, 
/' # 

J 

Since the transformation is infinitesimal we require F to be 

linear in a, and b,,, so that 

1 
F = -pP(q.p)a, + T~""v(q,p)b,, . (3.19) 

The. ten functions, pp(qIp) and' MPv (q,p) ,are the generators of 
/ 1 the repr2sentation (the minus sign and - are convention). The 

2 

exact choice of pP(q,p) and MPv(q,p) depends on the nature of 

the system at hand, however, they must satisfy the commutator 
\ 

relations of the Lie Algebra for the ~oincar5 group: 

I t  is not hard to show that, as well, the equations ( 3 . 2 0 )  hold 

with all the indices raised. At this stage it is helpful to 

identify the generators, P' and M,,, in the usual manner: 

Po  = H is the Hamiltonian and the generator of time 

translations; - 

P, is the momentum and the generator of space translations: 

- 
Mrs - crsiJ1 is related to the angular momentum and is the 

generator of space rotations; 



Ms, = K, is <he generator of space-time rotations. 

As an illustration, consider a Lorentz transformation 

consisting of constant velocity v = tanhsIPalong the xl-axis. - 
Then the finite and infinitesimal transformations are, 

respectively: 

and, 

A dynamic. variable, A(q,p), is then transformed under (3.23) a s ,  

which yields the differential equation: # 

aA(qrp:s) = [~(q,p;s) , K 1  1 . 
as 

(.3.25) 

This equation can'be solved as previously described to get, 

~(q,p;s) = e[Klls~(q.p) , (3.26) 

for the finite  rans sf or mat ion (3.22). Similarly, the * 

distribution function transforms as, 

f(q,p:s) = e-IKllsf(q,p) . (3.27) 
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1 chS " 
. = exp$#?(~.~,s) - @%I(q,p) - (thS)~(q,p) 11 

C ~ S  - . 
4 

= e x p ~ ~ * ~ [ m ~ ( ~ , ~ , s )  - H(q,p) - (thS)P(q,p)l] . 
kT chs ch$ - (3.31) :- 

. 
In the grimed frame the distribution is normalized.over the 

- chs primed volume of the system, V' - -V; Thus, if we require, chS 

chs T - = TI F(T,V.S) = F(T~,v~,s) 
chS chS - 

e 

the distribution function is -form invariant under the canonical ns 
Lorentz transformation. This,is preci.sely the Planck - Einstein 

1 
formulation, i.e., 

-- chs where y - - . 
ch.5 

For the rest of the chapter we will set 5 = 0 to simplify 
, 

the calculations. Then, 

1 F(T,V,S) = -F(Tchs,Vch~,O) . 
chs 

We are now in a position to discuss the disagreements over 

ensor and thermodynamic transformation laws mentioned ;f 
previously. To do this we need to'derive the relation between 

the internal energy, E(T,V,s),lof the system and F(T,V,s). 

~ifferentiating (3.32) and sub;tituting for F(Tchs.~chs,O) we 
. A 

have ,  
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t The last integral is th,e x-componefit of the averaqe momentum, 

This calculation is actually only valid for an unconfined 
1 

, system. The definition (3.37) has been adopted from standard 

C canonical work (see [9] and Balescu, e t  a1 [39]) where f(q,p) is 
t 

not dependent on V and T. The partial, aE(s.) , i6 holding qi and ' 

* as 
fl pi  constant. With the introductibn of V and T as independent 

b 
variables, we need to calculate a total derivative with respect . -.. 

aE  s) to sf V. and TI initead of . That is, we have to take into 
as 

- D 
account the implicit dependence of V and T on s. This arises 

both in f(q,p,V,T,s) and the limits of integration%for confined 
c- 

systems. We will discuss this problem further, shortly. In any . 
\ 

case, if  we ignore V and T •’=%the moment,.(3.39') is the 
- 

v transformation equation of the energy component of the momentum I 

, I  

4-vector. That is: 

See [ 3 9 1  for more details. 

we now wish to treat the 'internal energy of the system as a 

state variable,, E E E(V,T,s) . We wish to calculate ( aE(s) a s  )TV 

compare this with the vector law (3.39). To do this we calculate 

E and G from their definitions, (3.371, (3.38) and ( 3 . 2 9 ) :  





- 
5 - - kT - ~ ~ ~ z ( v , T , s )  = (ch2s) (%IVT aF sech2s as ~(3.41) 

i 
Substituting (3.40) and (3.41) into (3.33) we get, 

aF We define the pressure, P - -(=ITs , so we get, 

G = -(ths)(E + Pv) . (3.42) 

s 

(From here until the discussion following (3.521, "P" is used 

exclusively to denote pressure and is unrelated t6 the generator 

of space translations%lso denoted "P". ) Differentiating both 

sides of (3.40) and (3.41) with respect to s, we have 

a n d ,  

L 

a 2~ = 2(ths)G + (ch2s)(s)TV , using (3.41). 

Further applications of (3.4,) yield, 
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right is, 

- Balescu evidently calculates derivatives of Z directly, using 

( 3 . 3 4 1 ,  getting various expressions involving averages such as 

cHP> and cP2>, but there is no need to do this, bekause of the 

fundamental relation, (3.351, which normalizes the distribution. 
6 

The calculations are essentially equivalent, and yield the same 

result, (3.50). 

Thu,s, we conclude that thermodynamic quantities such as 

energy do not transform like components of vectors except for 

unconfined systems. The loss of vector character is clearly an 

effect of the confinement-of the system. This supports the often 

mad'e suggestion that the non-vector character of the- 

transformation equation for energy is due to stresses in the 

walls of the ystem. P 
To conclude this section we wish tQ generalize the 

derivation of the invariance of the canonical.distribution. We 

start with a generalized equilibrium distriwtion, 

Here a ( s )  and j(s) are even functions, satisfying the condition, 

a ( 0 ) = 7 ( 0 ) = 1 ,  but are otherwise arbitrary, sufficiently smooth . 



functions of s.  We note that T(T,v,O) = L(T,v,O) , and that a(s) 

and ~ ( s )  do not interfere with the canonical formulism, i.e., 

previously shown, and -arrive at, 

This shows that the distribution function (3.531, while unique 
4 

when s=O, has a doubly infinite class of Lorentz invariant 

generalizations. If we.set S=O, to compare with the rest frame 

values, we have, 

P(T ) = 
OchS1chs ~ F ( T ~ , V ~ , O )  chs . 

.y 

In the rest frame we have the fundamental equations: 

aF aF (-To = -P and - = - S  , 
avo  TO 

where P and S are the pressure and entropy respectively. I • ’  we 

differentiate both sides of (3.55) we get, 

aF = -r(s)pF ) = Y(s)(~?? ) C ~ S  
(;IT)'' chs aTo Vo aT 

- = .- los ; 
chs aTo Voa(s) a(s) 

and, 

I f  we assume P and S are invariant and that thermodynamics is to 

be form invariant, then we must set y(s) = a(g) = 1 . This is 
the Planck-Einstein formulation (moving bodies appear cooler). 

The choice -y(s) = 1 and a(s) = ch2s is the Ott-~rzelies 
, -4- 



formulation (moving bodies appear hotter). It is not form 

invariant unless (3.56) is abandone,d. 1f'we set y(s)'= 1 and 

a(s) = chs we get Landesberg's scheme (invariance of 

temperature). 
a 

These results pretty well summarize all that can be said 
i 

about relativistic equilibrium thermod~amics. We wish only to 
L 

mention a paper by Kellerman [ 191 in which he suggests an 

addendum to Balesdu's work to help clear up the thought 

experiment devised by Landesberg and already described. He - 
suggests that we can consider the two moving bodies as an 

isolated system in which the relative velocity is treated as a 

thermodynamic parameter, as Balescu has done. Then the exchange 

, of energy between the two bodies will be governed by . . 

maximization of the total entropy. He shows that entropy can be 

generalized to include a dependence on the relative difference 

Sp, - SB , where VA = thsA and vg = thsg are the velocities of 

system A and B respectively, as seen by an observer in his own 

rest frame. Kellerman then gets a system of equations and 

contraints that covariant and independent of any temperature 

transformation laws. Thus, under these assumptions Landesberg's 

claim that T I =  To is the only consistent transformation law is 

incorrect. Unfortunately, Kellerman was not able to actually. 
'i 

solve the equations. 

Our next 1, ask is. to review blackbody radiation in- 
t 

preparation forfattempting to apply the work o • ’  this chapter to 

the problem of finding a general relation between the thermal ~ 



and statistical notions of entropy that is compatqble with the 
r - -- 

Stochastic electrodynamics worked out by Boyer and discussed in 



Since this thesis is inltimately concerned with blackbody 
1 

radiation, ,we4will give a rather complete and systematic 

treatment of the standard approach to this subject. We do this 

in spite of the thorough treatment given in most texts on Modern 

Physics or statistical Mechanics (seq, for example, [ 8 , 1 3 ]  , 
f + " 

Eisberg [41], or Wieder [421), because comparison oi the quantum . 
0 

I 

mechanical derivation (given in section 3 )  and the "classical 

fluctuation1' metkibd =,overed in chdpt%er 4, makes it hard-to - 

believe that the complete coincidence of the results from these 
\ 

two methods is fortuitous. 
i 

we begin with a description of the 'problem, and the 
a 

derivation of some early results. Wien' s-displacement law is 

derived, and Wien's radiation 
-7 
b' 

conclude with the derivations 

the mode-rn quantum mechanical 

3 Results -- 

law is briefly discussed. We 

of the Rayleigh - Jeans law and 
law for the spectral dcmsity. 

The blackbody problem is essentially the problem of 

determining the spectral density p(v,T) ; that is, the energy 

density radiated in the frequency range v tc v + dv ,.of a body 

at temperature T. I t  is assumed that the radiative process has 

reached a steady state so that T and p(v,T) are time 

indgpendent. In early studies of this problem p ( v , ~ )  was found- 



to be independent of the shape of the radiating object. p ( u , ~ )  
- -- 

does-depend on a parameter, 0 5 e 5 1 , which is a measure of 
- 

the emitivity of the object. For a perfect bfackbody e = I .  Such 
d 

is also a perfect absorber of radiation. The theoretical 

significance of this problem is that a great deal of progress 
r - 

can Be made towards solving it with very general thermodynamic 

arguments. 

In order to keep these analyses as simple as possible we 

need to consider a model that is in thermal equilibrium. The . 

model usually used is that of a cavity with perfectly reflecting 
- . ' 

walls. (In the stochastic electrodynamic approach used in 

khapter 5, we will modify this model by including an ideal gas 

inside the cavity.);It is not hard to see that the tadiation in 

the cavity must be isotfopic, in all frequencies, as otherwise 

,the second law would be violated. 

The first precise experimental results about blackbody 

radiation were determined in 1879 by Stefan. He found that the 

total power emitted per ,unit area of a perfect blackbody was 

. proportional to the fourth power of the temperature. In 1884 

Boltzmann managed to derive this result using a Carnot cycle as 
Y, 

follows (see figure 4.1): The cylinder and piston are assumed to 

be perfectly reflecting and frictionless. The working medium in 

this case is radiation. In step (a) the is moved from G ,  - 

1 

to Oz by isothermal expansion in contact with the reservoir, A , ,  - 

at temperature T,. The work done in this s t e p  is, 

1 W 1  ; P1(V, - v l )  = -u1(v2 - 
3 

V,) . ( 4 . 1 )  ' 



The last expression follows from the classical result connecting 

pressure and radiation density (see Richtmyer [ 131) : - /'-- 
I 1 P 1  = p1 . Y ( 4 . 2 )  

Since the volume of 'the cylinder has expanded from'v, to V2, to 
C 

keep the energy density, U 1 ,  constant, the cavity must absorb a n '  

amount of energy equal to U1(V2 - V 1 )  . Thus, the totai energy 
\ 

absorbed f&rn the reservoir in t h s  s t e ~  i !  

In step.(b) the piston is moved from 0, to 0 ,  adiabatically. If 
L. 

the change in v~lume in this step, V, - V,, is made small 
0s 

enough, then,T, -.TI = dT , U2 - U l  = dU , and, 
1 1 P, - P I  = dP = -dU , slnce P = -U . In step (c) the piston is 
3 3 

compressed from O, to O,, isothermally, while in contact with / 

the reservoir A ,  at.temperature T,. In this sfep, heat H,, is 

exhausted to the reservoir, A, .  The Iast step returns the piston 

to its original position by adiabatic compression. Since the 

pr'essure was constant in steps ( a )  and (c), if the change in 

pressure is kept small in step (b) (and therefor in step (dl as 

well),.the net external work done is just, 
= &, 

, For  any Carnot cycle we have, 

0 

This last expressi-on is equal td i f  P2 - P, is t p e n  to be 
T 1 

infinitesimal. Substituting for dW and H 1  from (4.3)' and (4.4) 

into (4.5) we have, with T, = T and U 1  = U, 



Figure 4.1 -Carnot Cycle for Radiatibn . 



a .  r--J 
Integrating this last expression yields the ~ A f a n  ,-.,-.Boltzrnann 

law, 

Wien'-s Displacement Law - 

The' next important development came in 18.93 with Wien's 
r 

3 displacement law. To derive Wien's law we consider an adiabatic 

expansion of the cavity, i.e., step 2 of the Carnot cycle, 

figure 2:l (.or step (b) of figure 4 . 1 ) .  We assume that the walls 
I 

t 

have been lined with some perfectly, diffusely'reflecting 

material, such as magnesium oxide, so that the radiation remains 

isotropic throughout the a( slow) exphsion. Then the radiation 

pre<s~re is given by (4:2). ~ h ;  work done by the radiatio-n 

during the expansion, i f  the cylinder has length 1 and cross 

1 section A, is PdV = jUAdl . The total energy of the radiation in 
t h e  cavity is lAU, so, 

1 --UAdl = d ( l ~ ~ )  = AUdl + AldU , or 
3 

/- 

4 dU = -4 dl --UAdl = AldU , SO - 
3 3 1 '  

I 

and integrating.we get, 
r' F 

u a ' 1 - J  . ( 4 . 7 )  

radiation in the cafity must remain b l a ~ k  to conform 

w i t h  ? h e  second law, we conc.1-ude that, 
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(4.10) 'we have, Z 

> '  - 

- , v 2  - - - vz + dvz. T2 - - - dvz Tz 
(4.11) , o r - = - .  

v 1 v ,  -+ dv, T, dv1 Tl 
i 

, 

The energy density in the range v ,  to v ,  + dv, is decreased by 
- 

the same ratio as the total energy. Thus, we have, . 

- -  dp(v'T) - 3dT . Using the mathematical relation, 
p(v,T) - 3  . 

dT = we .have 3p( v,T)-- T + ap(vrT)d~ I from which 'we get, 
T .  a v 

differential equation is readily solved to yield Wien's 

Displacement law: 

where g is an arbitrary E C1[R2->R] . Some' authors refer tor 
L 

Wien's Displacement law as the special case of (4.10) arising 

when u and T are chosen so that aplv-tT) = 0 ; i.e. ,'along the a v 
curve ap(vlT) = 0 , v = CT , where C is a fixed ;onstant. 

' 

a v 
' Equation (4.12) contains this statement for "physically ' 

reasonable" choices of g(l), where "physically reasofiable3s 
T 

defined once close agreement between theory and experiment is 

reached. Since this has been done, (4.12) is now often referred 
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cubic cavity of side L, and imagining the coordinateplanes to 

coinc2de with three walls of the cavity, we have, 
I 

nxX n a " z a  
El(xIt) = f l ( ~ , ~ ) e - i w n t [ s i n - x ~ [ s i ~ ]  [sin-z] , 

* 

L L L 

where 1 = x,y,z; and nx,ny,n, are positive integers, such that 

P 

The number of modes with this frequency, is then just equal to 

the number of ways tschoose the integers n,, ny, and nz subject ' 

to the given constraints, (4.13). For temperatures and 

frequencies of interest, n is very large so that the number of 

modes between frequencies w and w + dw can be estimated by the - 
volume of one eighth of a spherical shell of radius n. That is, 

Lon 1 d~ = 2.s{-)2d(&) . The factor of - arises because we require 
.. 8 lrc . ~ T C  8 . .  

"x 1 ny.l n, to be positive. The factor of 2 arises because for 

each mode there are two possible polarizations. Thus, the mode 

density (number of modes per unit volume) is 

In this approach the spectral density Is then just 

where r(w,T) is the average energy per mode. ' 

Rayleigh and Jeans assumed that the oscillators in the walls , 

absorbed and reradiated constantly and independently so that 

they could apply the classical equipartition theorem to the 
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where we have used J 2 . 2 0 ) .  Combining this last result with the 

mode density,- (4.141, we have, 

< 

This is the correct result as determined by experiment. The 

value of the constant h can be determined by fitting data to the 

experimental curve, however, better ways of finding h have been 

devised. The accepted value is h = 6.6256 X Joule sec.. 

To conclude this chapter we wish to point out that in a 

modern quantum mechanical treatment of this subject the wave 

1 equation is solved using a harmonic potential (-Kx~), yielding 
2 I 

1 energy eigenvalues for the oscillators: en = (- + n)hv . If we 
2 

use this result in the calculation for T(v,T), ( 2 . 2 3 ) ,  we get, 

And the spectral density becomes, 

Thus, we have a non-thermabl background spectrum that persist 



even a t , T  = 0 . 
In the next chapter we will derive this equation without 

explicit quantum assumptions. We assume a zero-point background 

energy density. Such an assumption is a possible s tion to T 
Maxwell's vacuum equations, under the usual boundary con itions. 

1 "f 
1 



CHAPTER V 

BLACKBODY SPECTRUM USING STOCHASTIC ELECTRODYNAMICS 

In this chapter we d e r i ~ e ~ t h e  blackbody spectral density 

using techniques which'have come to be known as stochastic 

electrodynamics. The idea of this procedure is based on the fact 

that classical, electrodynamics allows unspecified radiation in 

coming from the far past. As long as the phase averages of E and 

B are zero, this radiation will not affect the problem at hand. 
-, 

Maxwell's formulation of electromagnetism sets this radiation 

equal to 0, i.e., <E> = <B> = 0 , and < E ~ >  = <BZ> = 0 . If 
instead, we do not require < E ~ >  = < B 2 >  = 0 , then we get 

stochastic electrodynamics. The primary characteristic of this 

procedure is the assumed existence of a non-zero energy density 
-4 

even when the temperature of the blackbody cavity is zero. 

Before we begin the calculation of p(w,~), we give an 
I 

overview. First we calculate the zero point spectrum, 

p(w)~p(w,~=0),- under the assumption of Lorentz invariance of the 

spectrum (equation 5.8). Lorentz invariance is necessary as 

otherwise we should be able to find a preferred inertial frame 

with respect to the assumed universal zero point spectrum. In 

the next step, using a model of an ideal gas in equilibrium with 

radiation in a cavity we calculate the momentum balance equation 

( 5 . 1 6 ) .  Equation ( 5 . 1 6 )  involves averages of two statistical 

parameters, A and-PI related to the impulse received by a gas 

particle from the thermal bath and the radiation damping, 
b 

resp;ct ively. Thus, we proceed to calculate these two parameters 





I 
- 

I 
over k . The fluctuating phase, O(k,a), has been introduced in 

1 

accordance with the procedurek ~f Einstein and Hopf [45,46]. The 

Fourier amplitudes, to depend'on: 

qk = ck = cJkl, assumed to be isotropic. 

The subscript "k" on wk serve$ as a reminder of the relationship 

C "between o and k, and is neede to indicate the different 

frequgncy variables associate with different k spaces (see d 
below). When there is no ambi$uity we will often drop the k 

-i subscript from w. The polariz tfon vectors, r(k,o), and the wave it 
vector, k, satisfy the followjng orthogonality Conditions: 

r(k,o)-k = 0 ; I(k,o).r(kIo1) = 6001 . ' (5.2) 

The vectors r (k. 1 1 ,  e(k,2) and form an orthonormal righthanded 
r k  

triple in that order. We have /used "X" to denote the cross 
I 

product. (See Jackson [44] p.269 e t  s e q  for details.) 
I 

1 
I 

Next we calculate the avebage energy density of the field, 
I 

where the average is calculated over all pha-se angles, B(k.o): 

The phase average inside the integral, indicated by 

symbols, i'k just 1 b3(k1 
2 - k:)6010, , since the 

cos28 over one period is 1 . The •’*dctor of a3(k1 - k,) is the 
2 

Dirac delta function, which has the property that integration 





Next we perform s Lorentz traris,formation on E(x,t) and . 

~ ( x , t )  for uniform motion, v, along the x-axis. Starting with 

( 5 . 1 )  we used the ~orentz transformation for the electric and 

magnetic fields (see [44]), - T 

1 I 

Ex = Ex Bx = Bx 

e l  = f ( ~ y  - YB~.) B; = Y ( B ~  + :E~) 
C 

(5.5)  

1 -, to ;:alculate -<E l 2  + B ' ~ >  in the K  frame (we will deviate 
8 n  

slightly from our previous convention and u5.e K for the rest 

frame, and K' for a moving frame with reapect to K )  ag follows: - 
t. a -5 

a n d ,  
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.di 

where we have expressed t h e  phase average in' terms of Dirac and 
- 

Kronecker d e l t a  func t ions .  c a l c u l a t i n g  t h e  f i r s t  i n t e g r a l ,  t h e  
. olb 

f i r s t  sum,  and dropping t h e  r emain ingJsubsc r ip t  " 2 " .  we have, " 

b 
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h = So the constant of proportionality between h2(w) and w is - 
4 w 3  

and the zero point spectrum is: 

Our next task is to derive the differential equation 

9-rning the spectral density p(o,T) at equilibrium for any 

temperature, T. To do this we follow the classical procedure 

worked out by Einstein and Hop•’ [ 4 5 , 4 6 ]  and modified by 

Boyer [ 2 , 3 1  . They consider particles confined to a box in 
presence of a radiation field. (In many treatments, the cavity 

contains radiation only. The idea of including both particles 

and radiation is to take care of the objection, raised by these 

authors, to the radiation only treatments, that the radiation 

and the particles in the walls of the container can not come to 

L equilibrium. ) They next consider a particular particle, of mass 
I 

m, assumed to be traveling in the x-direction, v=v, . To model 
the interaction of the particle with the radiation, the particle 

is assumed to consist of a sperical shell containing a 

non-relativistic dipole oscillator with oscillations of 

frequency, w , ,  in the z direction. I t  is convenient to assume 

further, that one pole of the dipole is much more massiOe than 

the other, so that the massive pole is essentially fixed. This 

model allows both classical and statistical calculations (free 

translation of entire 'particles) and dipole interactions with 
U '  



1 

the electromagnetic field (radiation). P 

-- 

"\' 
Assuming the particles to be non-interact ing\jw@ each 

other), and that collisions with the walls and othwparticles 
E 

are elastic, (ideal gas), there are two forces acting on the 

particles from the radiation: 
\ 

1 )  In a short time interval, r, there is an impulse associated 
- 

with the random fluctuations, A, of the fields in the time r. 

2)  h he vqlocity dependent resistive force LFxb . I f  the velocity 
of the particle is small compared to c, then Fx can be assumed 

to be linear in v, so that, 

.6 

where P is a function of the spectral density th t eds to be 9 8 

determined. (Note that we are introducing a new meaning for the 

symbol "P"; the "P" in (5.9) is unrelated to any of the 

parhameters previously denoted by "P", e.g., the pressure or the 

. generator of' space translations.) Then if ; is small, the 

resistive impulse can be taken to be F X r  = -Pv7 . In the 
analysis that follows, no attempt is made tsk-explain i$ detail 

exactly how the particle and radiation field exchange energy. We 

assume'that force 1 causes absorption of energy by the particle . 

and that force 2 causes the particle to lose energy. I f  the 

particle's velocity at time t is v(t) (<<c, where c is the speed 
\ 

of light),'then (by cons~rvation of momentum); 

For the purpose of the following calculations it iis not 



-necessary to assume v=v, . The particle can have arbitrary 
direction since the radiation is assumed to be isgtropic an8 the 

gas in equilibrium: ~ u t  if the gas is in equilibrium, 

~(mv(t))~> = <(m~(t+r))~> , where the av&age is taken over all 

particles, so that, with the help of (5.10), 

- 
<(rn~<t+r))~> = <(mv(t) + A - P v ~ ) ~ >  

which implies that, 
t 

Since v(t) is fixed while A is random during the time interval 

t to t+7 , <vA> = O.,We-can choosb m >> P7 by making 7 small 
I 

enough andvm large enough so that p2r2<v2> can be omitted in 

comparison to mP7<v2.> . Thus we remain with, 

which is the Einstein - Hopf equation. 
l , i  

When the classical values for <A2> and P (calculated below), 

are substituted into this equation together with the 

' 1 1 equipartition relation, -m<v2> = -kT , (for one dimension) then 2 . 2  - , 
w we get, p(o,T) = - 
c3r2 

kTl the Rayleigh - Jeans law, (4.15). 

(~ecall that w = Z n u ) ,  Up to this point we have assumed that the 

particles collide elastically with the walis.' In fact this 

cannot possibly be the case, s-ince on striking the wall a 

particle undergoes an'acceleration arid therefore the charges 



forming the dipole in each particle must radiate. (~ecall that 

we are assuming the particles interact with the radiation 

field.) The radiative loss is quickly restored, however, as the 

particle moves toward the middle of the cavity. As the 

temperature, T->O, so%=thing quite different happens. In this 

limit the particles gradually lose energy (through collisions 

with the walls) to the zero point radiation field. In this limit 

there can be no velocity dependent forces, i.e. P(T=O) = 0 , 

since the zero point spectrum (5.8) is Lorentz. invariant. To 

take into account the interactio een the particles and the 
, 

walls as T->O we now modify the tion of ( 5 . 1 1 )  following 

Boyer [ 2 , 3 ] .  As T->O , 

where J is the impulse received in time T from a collision with 

the wall, if one occurs for this particle. Averaging the square 

over all particles gives: 

i f  the system is in a steady state. Then, 

* I 

As usual <AJ> and <Av> are 0 . ,  but <vJ> # 0 , since vJ is always 

negative for collisions with the wall. Boyer.argues that < J Z >  

can be neglected since A <c mvt so that J has to be small.. This 

is only one possibility, i.e., J 9 - - 1 - A Z  I '  , 
2 mv I 

1 A 2  or J - f2mv - - -1 . In the second case J is much larger than A - 
.2 mv r 



and should not be neglected. However, this second possibility 

corresponds to almost every particle having a collision with a 

wall in the time 7 . This canRot happen because we are 
explicitly assuming that 7 is so small that most particles do 

not strike the walls. Thus, we can ignore the second 

possibility. ~gnoring < J ~ > ,  we have, 
@ 

n 

Repeating the calculation for T # 0 , we include the velocity 

dependent resistive force: 

Squaring, averaging over all particles, and using the 

equilibrium condition, <imv(t+~))~> = <(mv(t)I2> , we get: 

A s  usual, <AJ> = <Av> = 0, and we can neglect < J ~ >  and PT 

compared to rn and and rnv respectively. Hence, 

The term Z~<JV,; is just equal to , since at TfO , the 

w a l l s  are in thermal equilibrium with the gas, so that only the 

zero point energy contributes to this term. Substituting ( 5 . 1 3 )  

into (5.14); 



Equation ( 5 . 1 5 )  is the zero-point modification of the 
- - 

Einstein - Hopf equation, ( 5 . 1 1 ) .  

I f  we assume otherwise elastic collisions at the walls,- the 

average power, Q, radiated at the walls during the time interval 

7, is given by, . 

where the average is taken over all particles. using ( 5 . 1 0 )  we 

have, 

where we have neglected terms of order r2 . AS we will shaw 
presently, (equations 5.23 and 5.30), P and <A2> are inversely 

proportional to m (because of the dependence on r ) .  Thus, Q will 

be negligible only in the limit m -> . Therefore in tgis limit 
we expect the equipartition theorem to be valid. This is 

incidently, the same limit in which the Rayleigh - Jeans law 
holds, since for a harmonic oscillator, u2 = - and as m->m , 

m ' 

Thus i f  we assume the particles are massive enough, we cqn 

1 1 replace <v2> in (5.15): -m<v2> = - k ~ ' ,  where v=v, . So (5.15) 
2 2 

become s , 

<A2> - = 2PrkT . (5.16) 

To make further progress we need to calculate <A2> and P in 

(5.16). This was done by   in stein and Hopf [ 4 5 , 4 6 ] ,  but we 

follow Boyer [2], who uses the same procedure in modern 

notation. We begin by calculating P in (5.16). 



The equation of motion for a non-relativistic dipole 

oscillator of frequency w,, aligned in the z-direction is given 

by the Abrahms - Lorentz equation, (see [ 4 4 ] ,  chapter 17) , 

where p is the dipole moment, p = ez , for a dipole consisting 

of two point charges, and I' = 2 eZ 3mc5 , is the radiationtdamping 

constant. (e is the charge on an electronc; m is the mass of the 

particle, c is the speed of light, z is the displacement between 

the charges of the dipole, and E, is the z component of the 

electric field of the radiation in the cavity.) Recalling that 

our model of a particle consist of a massive outer shell 

traveling in the x direction and an oscillator inside aligned in 

the z direction, we treat the rest frame of the particle as.the 

K' frame and the rest frame of the box as the K frame. Then 

although (5.17) is not Lorentz invariant it will be valid in the 

K '  frame, in primed coordinates, i.e., > 
d2p' - d3p' 

- r- 3 + &$p' = -Tc3~$ , 
d t t 2  dt' 2 

Using (5.5) and ( 5 . 6 ) ,  (5.18) can be solved to yield, 

( & $  - h2) 
, and the amplitudes h(ok,~j = h(ok) at 

r~ 3 

T=O : Eduation (5.19) expresses the dipole moment, p' , as 



observed from the K frame. Some of the variables have been left 

primed for conveneince. Note that we would not expect p' 

observed in the K frame, to satisfy ( 5 . 1 8 )  with the primes 

removed, since ( 5 .18 )  is not Lorentz invariant. 

The force on the particle arising from the action 01 the 

radiation on the dipole in the K' frame is (see [ 4 4 ] ) ,  

Substituting ( 5 . 1 9 )  and ( 5 . 5 )  into (5.20) we get: 



We can drop the primes in the calculation of phase averages', by 

(5.6). and since the phases are invariant. Th n the average over 

1 phases in the first term is -~ina(oi~~)6~(k,-k ) 6 0 1 ( 1 2 ,  , while the 
I 2  

average in the second term is the negative of this. Performing 

the first integration. the sums (in both termd), and dropping 
I 

the subscript " 2 1 1 ,  we get: I 
1 

" 
r 
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relation w = ck: 

3 

Computing the angular part to first order in 1, we have, 
4 C 

To make further progress, we assume rw, << 1 so that the 
3 

integral is sharply peaked at LI = h, . Since r -6.3 X l o - * '  

(statcou12sec/erg cm), this assumption is reasonable for a 

non-relat ivistic dipole oscillator. Changing the variabg & to 

x = & -  0, , and substituting Lo for O in terms not involving 

~5 - Lo , we get: 

Since the integral is sharply peaked at X=O; and wo >> 0 , we 
4 

can extend the lower limit of integration to -= , without 

significantly affecting the results. Then using-the 

1 transformation, x = -rh;tan@ , the integral works out to - 
2 

- -l-' . So 
2 

we have, 



Finally, we need to transform to the rest frame of the - box. This 

involves negligible terms of order - "' se the primes can simply 
c 2  

~ % r o p p e d ,  and using (5.9) we get (dropping the subscript " O n ) :  
\ 

Our next task is to calculate <&-'> following   in stein and 

Hopf (according to Boyer). ~ e c a l i  that A is the impulse, due to 

the fluctuating radiation, given to the particle in a time 
.I 

interval T. Then for the oscillator in the rest frame of the 

particle (we now let the unprimed frame be the rest frame of the 
J 

particle): 

where we have use (5.20). ~ntegrating by parts in the second 
% 

term, 

T aB 
9 d t  = [Elyp]; - J 2 pdt . 

0. at 

And using Maxwell's equation, 

so (5.24) becomes, 

The first term on the right can be ignored since 

inspection of ( 5 . 1 )  ant ( 5 . 1 9 )  (without primes) i't is of order .* 
r2 . AS will become clear later in the calculation, the integral 



is of order 7 .  Thus, for 7 << 1 ,  we can ignore the boundary 
0 

term. So we are -left with, 

Since we are interested in finding,.averages of quantities 
aEz  integrated over time, - and Ez must be regarded as havimg 
a x  

independent phases.  his is a theorem from probability theory, 

proved by Einstein and Hopf [46].-~hus, rather than just 
t 

differentiating E, we have, d 

Then using the solutior) of the dipole equation ( 5 . 1 7 )  in the , 

rest frame of the particle, 

u;-w2 where cota(w) E , we have, 
' ro3 

-- 

(5,282 
*r* 

I f  the origin of the coordinates is chosen at.the location-of p p  
C 

the paryicle, suitably;priented, then k 1  ex = = 0 . Then the 
\l.J 3 --i 





(5.29) > 

Strictly speaking the sine terms in (5.g9) should be the product 
3 & 

of 'two factors: The factor given in the equation (without the . a,, 

square) and a similar factor with primes in it. However, the . 

sine factors do not appear in the phase averages and integration 

over the primed variables will change primed variables to 

unprimed variables (on account of the delta functions). Thus, we 
@f 

can safely ignore the primes in the sine terms in (5.29). 

+ .  Squaring ( 5 . 2 8 )  and substituting (5.29) for the square of the 

4 time integral, we have, 

Carrying out the integrations over prim ax=- ariables, C 





where we have used (5.27) to repl-ate sin2a(02) . To make further 
progress, we need to make an approximation: Since the 

\ 
amplitudes, hr(okl ,TI and h(wk T will be completely negligible 

2 

at 'temperatures of interest unless w, and w2 are much larger 

than zero, we can neglect the term in 1 compared with the 
i 

1 
(w1+w2) 

term in . Then the integral has a sharp maxl Thn at 
(0,-w, ) 

%, . 
w2 = w ,  . Changing variables to x = w2-w, (in the first 

integral), replacing factors of w2 not involved in differen~es, 

w2-a,, with w l ,  and letting the lower limit of integration go 

to -- (as part of the approximation), we have, 

substituting + ( 5 . 4 )  for h(wkl,T) we have: 

As in the calculation of P (in 5.231,  we can treat the integral 
a 



\ 
""-- as sharply peaked at w l  = w, to arrive at: 

B 

We can" now combine (5.16). (5.23) and (5.30) to getthe 

differential equation governing p(w,~): 

where we havepdroppe&the subscript '0'. Substituting the zero 

pcoint spectrum, (5 .81,  and simplifying, 

Boyer [2] claims to have solved this equation using power series 
L 

methods (which he.do%s not elucidate). Insbead, we have used the 

general procedure for solving a Riccati equation, 

y' = p(x)y2 + q(x)y"+ r(x), which for (5.32) tuins out to be not' 

difficult (see e.g., Spiegel [47], p . 6 0 ) .  The result is: 

< 

where Cl(fi is an arbitrary, once continuously differentiable 
- 

function of T alone (Cl(T) r C1([O,=)->R))..However. by Wien's 

to approach the Rayleigh - Jeans limit, (4,15), a s w  -> 0 . 
1 .  



' 3 ' . . iir 

'3 

' Thus, we require C ,  = - 1  . So the final result is: - 

& ~ h i 6  is exactly the modern quantum re;ult for the spectral 

densi$y of blackbody radiation, (4.17). 

-.. 
At this point we need to make two consistency checks: That 

P=O for the zero point specArum in (5.23) and that we get the 

Rayleigh - Jeans spectrum if we set p(w) = 0 in (5.321, For the 
- .  

+L ;- 
zero point spectrum (5.8); = 302h i So we have, with the 

aW 47r3c3 'I 
help of (5.23), 

as required by the Lorentz invarfance of p(w), i.e.; the zero 

sbectrum cannot give rise to velocity dependent forces. 

>= 0 into 5 .  we get: Substituting 

L c. 

Using the Riccati procedure, 

p(w,T) = 

where Cl(T) E c~{[o,-)->R} . 

we have : 

To satisfy Wien's law we require 

c,(T) = C,T, where C, is an arbitrary constant. Thus, 

- 
W This spectrum is incorrect except in the limit o -> 0  . where it 

r 

will match experimental results just in case C 2 s 0  . This choice 
of C, yields the Rayleigh - Jeans law,' (4.15). 



Some Theoretical Considerations in More Detail - -2- 
5. 

A .  

In t~isiectiori we wish to discuss in niore detail some 
-- v 

claims made in-the previous section. In particular, we wish hc 

show tha& the breakdown of the equipartition theorem, mentioned 

previously, suggests that wthermodynamicw entropy and 
- 

, i "stat ist'ica!iw entropy. cannot be equal, as is usually assumqd. t - 

For our purposes, the equipa'rtition theorem says that for a 

gas of non-interacting particles, in equilibrium at temperature 
k 3 TI the average energy per pa'rticle is -kT , i.e., independent of 

z. 2 
the mass of thdparticles. Stated anothpr way, this theorem says 

that while the particles in the gas will, in general, exhibit an 
3 k -  

I +  
energy distribution, the likelihood of any given particle being 

in an infinitesimal energy range, E to E + dE , is independent 

of the mass of the particle (see ~eif" [8] or Feynman, ei a1 [ 4 8 ]  
43) 

for more discussion of the equipartition theorem). Recall that 

in the previous section, we showed that this theorem is correct 

only in the limit m -> . 

As has already been mentioned, classical thermodynamics 
r; '\ 

claims the equivalence of two disti2ct notions of entropy: The 

thermodynamic not ion is defined (for quasi-static processes) by 

(2.2), dS,al - - @ where Scal is found to be 7a state function 
T 

of the system (see chapter two). The statistical noeion of 

constant and, as explained in chapter two, Q(E) is the density 

of states. A major r sult of thermodynamids, due to Boltzmann, 

- 
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is that these two noti'ons of entropy are coincident. We wish 

next to giye an example to show that this result cannot be 
I < 

correct in the presence of zero point radiation. 
.* 

It has been shown by Marshall 1491 that the entropy of a 

harmonic oscillator (in one dimension) *is given by, 

S = S o  + klnE , where E is the average energy o.fAthe oscillator. . .  

This result has long been known from early statistical 

calculations, but Marshall gets this result using the procedures 

of Einstein and Hopf (without a zero point speckrum) given in 

the previous section. Then we have the equation, aS,,ob= 
aE E 

From the first - law (2.3), we have (for a system in a box, where - - 
'dv=O), - - - . Thus, if SgrOb = Seal , it follows that 

I aE T 
- = -  I or E = kT , as the average energy of an oscillator at E T '  
tetnperature T. Yet we have just shown (in the previous section, 

hwI 1 c.f. (5.34)) that E = T;; + [exp(= h" - 1 1 - ' I  . T ~ U S  we 
conclude that Sprob f Scal . (Of course, -the usual way out of 

a 

- this dilemma is to as&me that the radiation is quantized. Then 
3 

equivalence between the different notions of entropy can be 

retained. This point is covered in more detail below.) 

TO see what-the relationship between Sprob and Scal should 
1 

be, we follow an analysis ,originally worked out by ' 

'I 
Einstein [50]. (It is a further tribute to his genius that such 

simple considerations are so fruitful!) We consider a box of 
h 

4 

volume V, conta-ining radiation in equilibrium. A volume V, << 
t 

is now considered. The energy density U, of V,, of the radiatipn 

in the frequency range w,to w + dw , undergoes •’1 ctuations in < 



B 

accordance with the random phase approach. (See the previous 
- - - -  - - - - 

section; recall that in chapter three U-was the tota'l energy 
pL - - - -- -- 

density o f  the. cavity oyer all fpequencies.. .We are w i n g  U in a< 

~adiation dactubtes, se does the entropy of  he-cavity. If ST 

is the total entfopy of t h e . W E y  due to the radiation in the . t 

frequency range w to w + do, then Sp = S 1  + S , where S t  is the 
P- 

entropy contribution from the volume Vlmand S is tYiew entropy 

contribution from the volume V - V,,- due to the radiation in the . 
range o to o + dw. We can then express ST as a power series in' 

i 

E, expanded about the equilibrium entropies, S l o  and So, where'e 
V 

is the 'fluctuation in U, i.e., E = U - U, , and Uo is the , + , 
g 

average 'equi'librium value of U: 
4' 

In bhis ~xpression all derivatives are evaluated at E = 0 , ,At 
" .  

equilibrium ST will be maximum so the first derivative is-0 at - - - - -  
/ e  

' .? * -  

E = 0 . Since S >> S, , a will be negligible (r is-'just t%e 
. 

- a e 2  A -  + 

fluctuation of the small volume, V,). Hencq, to second order, 

- 
We can now use the .definition of the probabilistic notion of 

entropy, 
./ 

ST = klnQ(e) + STo + constant -- 

to 

due 

get (1n this definition ~k(r) is the entropy in excess of STo 
* \  
to the fluctuations, r ,  and the constant te;m rqflects. the 

ir 
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~ ~ u a t i o n  (5i45) relatps the probabil+istic entropy of -the 
- 

region V 1  to the average energy per mode of an oscillator in 

this region. It was first derived by Einstein. A t  this sta 
, 

, from which it follows Einstein assumes Sprob = Seal 
immediately (aslshown above) that E = kT . Einstein proposed 
that the wave theory of light be replaced with a3ahturn theory.. 

, 
Then c i 2 >  works out to (see [51], chapter 21, 

which leads to the Planck value for E, 

Instead we can retain (5..42) as follows: since the zero point 
-9- 

radiation and thermal radiation are independent we have, 

<€'>total =   zero point + <e2>cal . 
We can repeat the derivation ofo (5.39) using 

Scal = Sprob - Szero point get, 

-k 
* 

a2Scal - - - - -k 
au2 . (5.46) 

< ~ ~ > c a l   total - <f2'zero point 

Then using, <i2>,ero. point - -  - "'c' p2(o)dw , (5.43) and (5.8). we 
w2 

can repeat the prdcedure for deriving (5.45) to arri;e at 

Recalling t'hat S is being treated as a function of V and E with 

V held fixed, we can integrate (5.47) once with respect to E 



\ 

without Sonsideration of the arbitrary function of V arising in 

this pr6cess. So we have, 
\ \ 

a 

where the last equality follows from the first law, (2.3). 

I Solving (5.48) for E, we have, finally, ' 

which is thenmodern quantum resuly4compare with 4 . 1 7 .  Thus, 

abandoning the classical equivalence between probabilistic 

entropy and caloric entropy is an acceptable way to resolve the 
a 

difficulty posed by the Einstein equation, (5 .45) :  
. 9;; 



* EXTENSIONS OF BOYER'S ANALYSIS 

Classical Fermi - ~i'rac Statistics 

8 . , -  We begin this section with the- derivation of the 

Fermi-Dkrac (FD) distribution, using the'pau~i exclusion 
* 

principle, but otherwise from a classical point of view. We are 

treating the walls of the blackbody cavity as a free electron 
q 

gas subject to the-condition that at most one electron can 

occupy any given cePl in phase space. First we enumerate the 
# 

cells of phase space, 1 ,  2, 3, ..., r ... . As usual, each cell 
is of volume h i .  Then each cell has energy, rr, associated with 

it. Next we calculate the partition function, (2.2i), given- by, 

Z = C e  -orrnr ,'where nr is the number of particles in the rth 
r 

cell. In this case nr = O or 1 , and nr = N , the total number i 
of particles. As & have seen in Geveral exampiesf the partition 
function is easy to calculate for unrestricted sums. To 

calculate Z with restricted sums we use a rather ingenious 

mathematical trick: We note that for different values of N, Z(N) 

will, in general, change. In fact, Z(N), is a very rapidly 
- 

increasing function of N. So, we can substitute the dummy 

variable N' for N (so that N wid1 be arbitrary but fried) and 
define, v 

0 

where the sum is taken over all possible choices of N', that is, 



I ,  2 ,  3 ,  ... ( Z ( N ' ~ -  is called a "grand partition functionm). 

Then z(N') will have a sharp maximum which can be arranged to 

occur at N' = N with a proper choice of o . That Z(N') will be 
useful can be seen as follows: 

L .  

6 

where PN' is the width of the maximum which has been arranged to 

occur at N' = N . Then, 
lnE(~') 1. 1nZ - aN + In&' InZ - uN , (6.3) 

since the term 1nAN' is completely negligible compared to 

1nZ - aN (we will show this after we have demonstrated the 

mathematics required to'cafculate A N ' ] .    he point is, that E(N') 

is easy to calculate since it involves unrestricted sums. Thus, 

using (6.21, we have, 

where the sum is taken over all possible choices of each nk for 

all k = 1 ,  2, ... . For FD statistics each nk has only 2 values,. 
0 or 1 ,  and since the sums over each nk are independent, (6.4) . 
becomes, 

and, 



Using (6.3) and (6.5) we have, 

where we have dropped the prime on N', since a has been chosen 

to make Z(N') have a maximum at N' = N . To find a explicitly, 
we set the derivative oi lnZ(~') equal to 0: 

Thus, we expect a to depend on N. Diff=qrentiating (6.61, 

- 
Substit~~ting this expression into (6.7) and simplifying, we get, 

Equation (6.8) is the normalization condition on the partition 

function 2. 
Z 

- 
The FD distribution is the average number of particles, n,, 

in the rth cell. For any statistics, 

where we have used (2.21). I f  we apply (6 :9 )  to (6.6) we have: 
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a 

N' - If re set h, = h and replace N with - to take into account thq 2 

two spin states,of each electron, then ( 6 . 1 4 )  is exactly the 
0 

quantum result. 

In chapter five we introduced Planck's constant as a scale 

factor in the derivation of the zero-point spectrum. In the 
v 

following section we attempt to connect the "scale factor" ' 

notion of Planck's constant to the size of a cell in phase Y, 
",*- 

QW 
space, h,, which classically must be takkWi to zero at the end of 

the calculation. The idea is that there must be a balance (at 

very low temperatures) between the emission and absorpthn of,. 
- 

radiation by electrons in the walls of the cavity.-We would 

expect this balance to depend on the spectral density of the 

radiation in the cavity. If we find an equation representing 

th'is balance that involves h,, then we will have found the - 

connection that we seek. m 

~odi-fication -- of the Rayleigh - Jeans Method 

We wish to calculate the average energy of an oscillator in 

the wall of the cavity at very low temperature, 1 ' ~  or less. 

We are treating the walls as a free electron gas subject to 

forced oscillations from the radiation. Recall that the walls 
e 

are being treated as a perfect, or at least very good conductor, 
-- 7 

+, 

so that charges respond to tlie rgdiation, essentially 

instantaneously, in such a way as to cancel the impinging 

electric (tangental component) and magnetic (normal component) 



fields. The calcul.ations are done at very low temperature since 
>i 

C 

we are interested in the connection, if any, between the 

zero-Point spectrum and the. Fermi energy. Furthermore, at higher 
B 

temperatures the metallic walls of the cavity absorb energy 

primarily by mechanical waves (phonons) which obey 

Maxwell-Boltzmann statistics. We need not be concerned with 

superconductivity as this effect has not been observ* in good 
&% ' 

conductors such as the alkali metals or noble metals (see 

. Ashcroft and Mermin [53]). 
*. '. 

. - The procedure we ha~e~followed is as follows: 

1. Calculate the chemical potential, P, of a free electron-gas. 
- 

2. Calculate <he average energy, e, per electron of a free 

electron gas. (in terms of p). 

1 3. Assign a "perturbed" energy, e = + + -mu2xex , per 2m 2 
electron, where 7 is the average translational energy calculated 

1 
# v ,-7 

in part'2, and + Lmu2x*x , is the 'small oscillator energy% - 
2 2m 

induced by radiation absorption. In this expression p is the 

additional momentum the particle acquires from the oscill~tions. 

4. pecalculate p, and find the new average energy, 7' . 
5. Calculate the density of modes in terms of the carrier 

density, n (number of free electrons per unit volume in the 

walls). 

6. Using the Rayleigh - Jeans prescription, the spectral 
- 

density, is given by p(u,T) = e'wmode density . 

We have not been able to calculate the mode density. 

u2 Comparison of the radiation mode density, -dw , with a 
R C 



typical value of the effective carrier density reveals a 

discrepancy of several orders of magnitude. To make this 

comparison, we integrate the radiation mode density,over all' 

frequencies up to the mihimum frequency, o$, that results in the 
9 

integral being equal to the effective carrier density, that is, 
I '~ 

(In this equation the integral js the total number of modes per ' 

unit volume with frequencies between 0 and o ~ ,  and neff is the 

total number of charges per unit volume not in their ground 

T state; that is. neff - {-InI where TF is the Fermz temperature. 
Tl? 
T~ For our considerations, - = lo-' . Then using 3 ( x  1O8m/s-for 
T~ 

c, o~ works out to = ~ O ~ ~ h e r t z ,  which is well a%ove,the plasma 

frequency (the frequency at which the metal becomes transparent 

to radiation). W e  require some physical criteria tor determining 
1 

how many carriers are actually involved in the process of 

"neutralizing" the electric and magnetic fields at the surface, 

as required by the classical model of a good conductor. In any 

case, we include the results from the first four steps. We have 
Q omitted most of the calculationsI since they are straightforward 

adaptations of standard calculations in FD statistics 

(see [8, 52, or 5 3 1 ) .  

, . 1 .  Calculation o•’ p for a free electron gas: 

We start with the normalization condition, (6.11), 
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6pproximation .of letting the 1o"er limit of int $4c" ation (after 

the change of vatiables) go from -eS to -" , (see, for example, p. .. 
the discussion preceeding (5.22)) we have,. - 

The first integral on the righthandside can be evaluated 

directly and is 1. The second integral is 0 since the integrand 

is odd: The third integral can be calculated by integration by 

parts and expressing, 1 - - e-x as a geometric series in 
ex + 1 e-X + 1 

r 2  e-X . Term by term integration leads to the result, - 
3 

. Thus, 

Using (6.14)~ we have, 

1 Next we expand P about r~ to first order since P - E F  *0C-) . 
Pk2 

The result is, 

2 ,  

Before continuing with the calculation of the average. 
'" - 

will return'to the calculation of AN' to 
- 

energy, e ,  (step 2 )  we 

show that it is indeed 

dispersion,. AN' by the 

( A N '  ) 

netjligi+ie compared to N. We define the 

equat ioh, 





h,+O bgc'ause we do not expecyto actually take this Iimit, that 
. 5. 

is, we'$re trying to show that if h (from the stochastic 

analysis of/chapter 4 )  is not zbro, then h, (from phase space) - 

, cannot be zero either. a 
\ 

2. We define the average energy per particle, 7 ,  by the 
$ 

equation: 

Both the1integra1$ in ( 6 . 16 )  can be done in the manner arready 

-, n outlined for calculating P .  Actually, we have just done the 

denominator. Alternatively, the denominator could be replaced 
d 

' 1 wi&h N. The result, to Q(--r) is, 
P 

3. - 4. We BOW repeat the calculations using 
- 1 

r = r + + -muZx2 , for the energy of each particle. We are 
2m 2 

assumin'g with this expression that the •’ree translational 
- 

kinetic energy of the elecf'ton gas particles has a negligible 

interaction with the radiation at low temperatures. If we accept 

this assumption we have,. 



Changing to six dimensional spherical coordinates, 

r2 = Ef + lrn2x2 , we have, 
21h 2,- 

8  where the factor of comes from changing variables and the 
'CP 0 

factor of n3 comes from the angular p8rg'of the integral. The 
9 

i n t e w  can be evaluated using the procedure already explained 

in part 1. The result is (to second order in $1: 
@4 c, 

Unfortunately, we cannot approximate further since B is now 
- 

dependent on the frequency, o. (Recall, however, fromchopter , 

three that the frequency is proportional to the temperature, 

i.e., inversely proportional to P . )  The cubic equation ( 6 . 1 8 )  

can be solved exactly (one real root) : 

We cannot do much with ( 6 . 1 9 )  since for some frequencies the 

term involving .w insidethe squar: root'is much larger than the 
"$" 9 

term in I but for other frequencies it is much smaller.  ina ally 
P ' 

we have calculated the new average energy, 5': 



' i, 
d . 

/ 

The result is, 

- 
1 - 

to second order in - where ( P  - E )  is now given by (6.19). 
P 

~t this stage we need to know how many charges are actually 

being oscillated, since as we have already pointed out, the 

effective carrier density is much largei than the.rnode density 

of'the radiation. We have not discovered any way to determined 

the density gf oscillations required by the Rayleigh - Jeans " 

method. 

1- 

Another approach altogether, which we have not Gorked out, 

is to4repeat all the calculations of chapter five for a free . 

electron gas, using FD statistics. We could start with (5.11) 

and would then get the average energy, m<v2> , in terms of , 

temperature using some equation such as (6.201, since the 

equipartition theorem does not hold (at low temperatures) for a 

free electron gas. Next we could attempt to calculate the 

radiation drag Qnd impulse, P and A, respectively, as in chapter 

five, using the equation of motion fo%r a free charge (see 1441, 

chapter 1 2 ) .  A question that is hard to answer a priori is 

whether or not the calculation should be done in two or three 
d 

dimensions: For a good conductor the charges are confined to the 

surface, so a two dimensional calculation seems appropriate. In 

z a n y  ca'se, we have left this calculation for a future project. 



Relativistic Thermodynamics 

In chapter three we presented a canonical formulation of v -  
relativistic thermodycsmics. We have not been able to apply this 

machinery to the blackbody problem. The chief difficulty is that 

the entropy of the zero-point field does not lend itself to 

ready calculation. For example, it cannot be dependent on the: 

energy of the system (otherwise f 0 , so.that there would be 
aE 

a thermal contribution from the zero-point entropy). As a matter 

of fact, calculation of the-entropy of a classical radiation 

field has not met with a lot of success: Attempts to do tKis . 
calculation require many ad h o c  assumptions (see ~arshall [54]). 

* 

- 
Conclusion 

We set out to show that h, k, and c are physically 

interdependent. We chose to do this by studying blackbody 

radiation withput quantum mechanics. Since this leaves 

4 relativity, thermodynamics and electromagnetism, we made a study 
- 

of relativistic thermodynamics as a matter of preliminary ground 

work. We chose the canonical approach over the tensor approach 

since the former is more physically accessible than thelattei. 

Next we studied the standard ,derivation of blackbody radiation. 

We then went through a classical derivation of the blackbody 

spectrum using stochastic electrodynamics. Again, we chose 

Boyer's original 1969 derivation, since this calculation uses 

statistical mechanics, and avoids physical complications (in 



K X P . 
later derivations, Boyer studies acceleration of charged 

I 

- 
particles in the zero-point field, and magnetic moments, see ' 

1 9 - 7 1 ) .  Finally, we have tried to discern a connection 5etween 
d 

7 h, k, and c by deriving an explicit relation between the - > 

constant of proportPonality (~1anck~'s cpnstant) arising in % 

stochastic electrodynamics and h,, the ;ize of a cell in 
classical phase &ace. We have not' suceeded in-der,iving such an 

equation. Thus, we are left with no conclusion about the 

possible interdependence of h, k, and 'c. 
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