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ABSTRACT 

The logistic regression model and the Cox proportional hazard model 
are employed to identify the factors influential on kingbird nest predation. 
The high overhead visibility of the nest and the high percentage of water 
and trees around the nest are found to decrease the probability of 
predation. 
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Chapter 1 

INTRODUCTION 

The eastern kingbird (Tyrannus Tyrannus) is a defiant and fearless small bird 

and is black and white in colour. It can be found in North and South America. It starts 

nesting in May, lays eggs in mid June through early July and the young fledge by 

August. The eggs take 14 days to hatch. After hatching, the mother bird provides heat 

to the young by sitting in the nest for approximately six days. It takes 8-12 more days 

before the young can fledge. 

During the 32 days from the laying of eggs, 

(a) the eggs or the young can be preyed upon. 

(b) the young can die due to lack of food, diseases etc. 

Predation can easily be distinguished from other causes of death because 

afterwards one can see the scattered nest, egg shells or wings of the young on the 

ground around the nest. The most common nest predators are crows, ravens, magpies, 

kestrels and hawks. In addition, there are ground predators like squirrels, racoons and 

snakes. We will refer to the nests in which the young were not preyed upon as the 

'fledged nests'. 

Ms. Joanne Siderius is a graduate student in Biological Sciences, Simon Fraser 

University (SFU) and she is interested in studying the factors which may be influential 

on the predation of kingbirds. She has collected some data on kingbirds in the Creston 

Valley Wildlife Management Area, Creston-Courtenay mountains in British Columbia. 

These data were collected during 1989-1990. In the first two years she collected data 

on the visibility and the environment surrounding the nests. In addition, in 1990, MS. 

Siderius collected some information on the behaviour of the parent birds during their 

nest vigilance. We name the data set containing environmental factors 

'ENVIRONMENT' and the data set containing behavioural factors 'BEHAVIOUR'. 

Ms. Siderius came to the Statistical Consulting Service in the Department of 

Mathematics and Statistics, SFU with these data sets, when I was taking Statistical 

Consulting II as a course requirement for my M.Sc. degree. She wanted us to help her 



recognize the factors which are influential on kingbird nest predation by means of more 

sophisticated statistical methods than those which she had previously attempted. 

Subsequently, Dr. Tim Swartz, Department of Mathematics and Statistics, who is my 

graduate supervisor, Mr. Francois Bellavance, the director of the Statistical 

Consulting Service and I had a discussion with Ms. Siderius concerning her data set. 

This discussion focused on her data collection methods and the problems of interest. 

According to Ms. Siderius, the kingbird is quite different from other birds in its 

nesting pattern and behaviour. She says that most birds hide their nests. But as we 

shall see later, a considerable portion of the nests of kingbirds are not hidden. In 

contrast to most birds, whose concern is restricted to the immediate vicinity of their 

nest, the kingbird's attention reaches far out. Its perch always commands a good view 

of the surrounding area; the kingbird is always on the watch for an enemy. It seems to 

consider any big bird its enemy; it does not wait for one to come near but, assuming 
the offensive, dashes out at crows and big hawks; size seems to make no difference to 

the kingbird aid it practically always wins. The kingbird is often noisier than other 

birds. It has a high sibilant, jerky voice. Sometimes it is noisy close to the nest while 

sometimes it is noisy far from the nest. 

Ms. Siderius raised the following questions : 

(a) How important is nest visibility in attracting predators? Are birds in visible nests 

more liable to lose their nests to predators than those who live in less visible nests? 

(b) Do noisy birds attract predators to their nests? Do birds which call close to the 

nest lose their nests to predators more often than birds which call less often or call 

further from the nest? 

(c) Is nest vigilance effective in preventing predation? Do birds that spend more time 

at the nest lose their offspring to predators less often than birds that spend less time 

at the nest? 

(d) In general, what are the environmental and behavioural factors, if any, upon which 

predation depends? 



Chapter 2 provides a description of the data and the data collection methods 

together with a running commentary on the experimental design. We include the data 

set in table 5.1.1 of appendix 1. The measurements of a few variables were 

transformed into other scales and a few were rounded off considering the nature of the 

measurements. A description of these changes is also presented in chapter 2. 

We present our analysis in chapter 3. In any statistical analysis, a preliminary 

exploration of the data set using graphical methods and other statistical tools plays an 

important role. In our attempt to address the problems proposed by Ms. Siderius, we 

do a preliminary analysis of the 2 data sets. The preliminary analyses of 

ENVIRONMENT and BEHAVIOUR are presented in sections 3.1 and 3.4 of chapter 

3. 

In an attempt to provide a more detailed analysis of kingbird nest predation we 

note that the fledge or the occurrence of predation can be regarded as the outcome of a 
binary variable.  heref fore, from a statistical point of view we are interested in the 

relationship between this binary response variable and certain explanatory variables. 

Generalized linear regression methods like logistic or probit regression analysis are 

widely used in this type of situation as a way of modelling relationships. We report 

our findings using logistic regression analysis on ENVIRONMENT and 

BEHAVIOUR in sections 3.2 and 3.5 of chapter 3. 

In a further attempt to provide a more detailed analysis of kingbird nest 

predation we are reminded that binary variables provide information only about 

whether or not an event has occurred. However, in some situations the time taken for 

an event to occur may carry additional information about the event. If the event is a 

death or an expiration of an object, the time is generally referred to as a 'survival time'. 

Survival analysis techniques are employed to extract information concerning 

covariates using the survival time. In a subsequent discussion with Ms. Siderius we 

came to realize that she had recorded the dates of her visits from which we could 

calculate an approximate length of time prior to predation. Even though our problem 

does not fit exactly into the usual framework of survival analysis, it seems that we can 
still use these techniques to extract information, if any, from our data set. We include 

our attempt to answer Ms. Siderius's questions by means of survival analysis in 

section 3.6 of chapter 3. 



Sections 3.3 and 3.7 of chapter 3 provide summaries of the analyses on 

ENVIRONMENT and BEHAVIOUR respectively. Finally, chapter 4 offers some 

concluding remarks. 



Chapter 2 

THE DATA SET 

Ms. Siderius started collecting data in 1988 at the Creston Valley Wildlife 

Management Area in the Creston-Courtenay mountains in British Columbia. She 

started visiting the site (by this we mean the area where the data collection took 

place) when the birds started building their nests. As soon as she noticed that a nest 
was being built, if the nest was within climbing height, that is less than about 10 
meters, a number, for identification purposes, was assigned to the nest. She visited 

the site every three days. In this way she could tell approximately the date on which 

the first egg was laid and also the approximate date that the nest was preyed upon if 

that was the case. During the breeding seasons of kingbirds, in 1988 and 1989, she 

collected data on the visibility and the environment surrounding the nests. These 

variables are time independent. In 1990, on a few more nests, in addition to the 

variables mentioned above, she gathered some information about the behaviour of the 

parent birds during their parenting period. These variables are time dependent. 

Therefore we have some nests on which only the time independent variables 

were observed and a few nests on which both the time independent variables and the 

time dependent behavioural variables were observed. We therefore have two sets of 

data. The first, which will be called 'ENVIRONMENT' contains the time independent 

visibility and environmental measurements and the second, which will be called 

'BEHAVIOUR' contains the time dependent behavioural measurements. 

ENVIRONMENT contains 95 observations on 95 nests while BEHAVIOUR contains 

48 observations on 23 nests. 

We now describe the variables contained in the two data files. 

2.1 ENVIRONMENT 

1. NEST Each nest was given a number for identification purposes. In this data 

set we have nest numbers up to 103. Even though Ms. Siderius gave a 

number as soon as she found a nest, 8 nests were later found unused 



for the laying of eggs. Therefore we have only 95 nests with at least 

one explanatory variable. 

2. PRED This is a bernoulli response variable. 

1 - if the nest was preyed upon 

0 - if the young had fledged. 

All the measurements of variables 3-21 were taken after the young had fledged 

or the nest had been preyed upon. The reason for this was that Ms. Siderius had to be 
very close to the nest to obtain these measurements and this might have caused 

unwanted problems to Ms. Siderius as well as to the birds. 

3. OVER This is supposed to be an estimate of the visibility of the nest from 

above the nest. Ms. Siderius looked up from directly below the nest and 

estimated the percentage of sky that could be seen through a one meter 

diameter circle, centred at the nest. It is assumed that if the nest is 

covered from above, then the percentage of the sky that one can see 

from below the nest is equivalent to the percentage of visibility of the 

nest for a predator flying over the nest. 
4. - 7. 

PN, PS, PE, PW 

These variables are the estimated percentage visibility of the nest at 15 

meters distance from the nest in four directions north, south, east and 

west respectively. Ms. Siderius walked towards the nest from a 

distance and observed that around 15 meters she could see the nest. 

Therefore she selected 15 meters as her fixed distance to estimate the 

visibility. 

Clearly variables 3-7 are prone to measurement error as there was no measurement 

device used. We mention that there is no reason to suspect that any of the variables 

4-7 are more accurate than any other. This observation is used in chapter 3. 

After the young had fledged or had been preyed upon, a box with 3 black stripes 

and 4 white stripes on each of four sides was placed at the nest location. Ms. Siderius 

then estimated the visible number of black stripes and the visible number of white 

stripes. These measurements were also taken at 15 meters distance from the nest. 



As kingbirds are black and white in colour, the use of above technique was intended to 

mimic the situation when there were birds in the nest. For instance, if she could see 2 

black stripes and li/z white stripes, she recorded them as 20 black stripes and 15 

white stripes. In her data set she had values like 3, 8 and 28 which meant that she 

could see 0.3, 0.8 and 2.8 stripes. These measurements are again not very reliable. As 

these are also visibility measurements like variables 4-7, we transformed these 

values into percentages to form the following variables. 

8. - 11. 
BN, BS, BE, BW 

These are the estimated percentage visibilities of black stripes from the 

north, south, east and west respectively. 

12 - 15. 

WN, WS, WE, WW 

These are the estimated percentage visibilities of white stripes from the 

north, south, east and west respectively. 

Ms. Siderius noticed that kingbirds start chasing predators or any other birds 

when they are as close as 100 meters to the nest and they chase them as far as 300 

meters from the nest. She thinks that the distance a kingbird can see may be an 

important predatory variable since by attacking a predator at a great distance the 

predator may not notice the nest. Therefore she is interested in seeing if it makes a 

difference if the parent birds can see far from the nest. She therefore looked far to each 

of four sides at the nest level and estimated the distance that she could see. Ms. 

Siderius says that when she could see very far, then she would record it as 1000 

meters. Unfortunately, we have missing values for approximately half of the nests as 

she did not collect data on these variables in 1989. 

16-19. 

DN, DS, DE, DW 

These are the distances from the nest in meters that Ms. Siderius could 

see, in north, south, east and west directions respectively. 



Sometimes Ms. Siderius could not reach the nest because there was a bee hive close 

to the nest or the tree was thorny or the nest was on a tiny branch over the water. In 

some cases such as these we have missing values for variables 8-19. 

Ms. Siderius thinks that kingbirds can see farther in higher nests. Also if 

ground predators were involved, higher nests would be more secure. She therefore 

measured the nest height when she could reach the nest level. She also measured the 

nest tree height because she was interested in knowing if kingbirds preferred nesting 

in particular portions of the tree like the upper 1/4th or the middle 213rd of the tree. We 

have many missing values for tree height corresponding to trees which were too tall 
for her to climb. Some missing values may also be due to the other reasons mentioned 

above. 

20. NH 

21. TH 

22. NTRE 

This measurement is the nest height in inches. Ms. Siderius chose only 

the nests which were within about 10 meters from the ground for her 

study. 

This measurement is the nest tree height in inches. Ms. Siderius did not 

collect this information in 1989 and hence we have 42 missing values for 

this variable. 

This is the distance in feet to the nearest tree exceeding 5 cm in 

diameter and exceeding 15 meters in height. This measurement gives 

some idea of the distance between the nest tree and other trees. 

Most of the time there was a number of thin trees surrounding the nest tree. Ms. 

Siderius calls these stems. They may provide a cover to the nest. It is also a measure 

of the vegetation around the nest. 

23. STEM This is the number of stems within 5 meters of the nest which are 

greater than 1 cm in diameter and taller than the nest height. 

24. NPER This is the distance to the nearest perch measured in meters. A perch 

should be taller than the nest so that the predatory birds can see the 

nest when they perch there. Ms. Siderius says that the perch may or 

may not be a tree. It could even be a telephone pole. 



Ms. Siderius says that kingbirds almost always feed within 100 meters from 

the nest and that most of the time they remain nearby. These birds feed on small 
insects in the long grass and larger insects like dragon-flies on the water. Therefore 

the availability of food depends on the environment surrounding the nest. If there is 

more water close to the nest, they can feed on larger insects and therefore they may 

not have to leave the nest as often. Furthermore, the type of predators around the 

nest may depend on the habitat. Collecting data on the following variables, getting a 

feeling for the environment surrounding the nest and thereby investigating their effects 

on nest predation was intended. 

25 - 29. 

WAT, FIELD, SHRUB, MARSH, TREE. 
These are the estimated percentages of water, field, shrub, marsh and 

trees within 100 meters of the nest. When these do not add up to 100, 

Ms. Siderius explains that it may be due to roads, rocks, etc. 

As mentioned before, if there is water close to the nest it may make it easier 

for kingbirds to find their food. If the nest is directly over the water the nest may be 

protected against ground predators. Furthermore, the water tends to moderate the 

influence of temperature and therefore the female bird may not require as much effort in 

incubation to keep a constant temperature in the nest. Ms. Siderius provided 

measurements of distance to the water from the nest. 

30. DWAT This is the distance in meters to the water from the nest. 

The variable WAT is the percentage of water within 100 meters of the nest. 

Therefore WAT=O means there was no water within 100 meters. But we have values 

like 0, 15,25, 30 and 70 for DWAT corresponding to nests which have WAT=O. There 

is clearly something wrong with this data. We also have DWAT=800 corresponding to 

WAT=25, which is also contradictory. We have 22 missing values of the variable 

DWAT. Considering the unreliability and the missing values, we decided to ignore 

this variable in the analysis. 

31. YEAR This is the year of data collection. 1-1988, 2-1989, 3-1990. 

The data set ENVIRONMENT appears in table 5.1.1 of appendix 1. 



2.2 BEHAVIOUR 

In 1990, in addition to visiting the site every three days to see if the young had 

been preyed upon Ms. Siderius monitored each nest several times during the period 

after hatching, and collected information on the behaviour of the parent birds and some 

other factors. 

Ms. Siderius divided the period of 32 days between the laying of eggs and 

fledging into 5 intervals as follows. 

She believes that we can assume that the behaviour of the parent birds is more or less 

constant within these intervals. She monitored each nest for 90 minutes during each or 

some of these intervals in order to estimate the behavioural measures. These 

observational periods were chosen to be either between 5 a.m - 11 a.m or between 6 

p.m - 9 p.m. Ms. Siderius claims that these are the most active times of the day for 

kingbirds. However, she had never witnessed a predation. This would suggest that 

she did not monitor the nests at the proper times or no predation during active times. 

1. NEST Nest number. 

2. INTE This is the interval in which the data was collected ( I1,12, I3,14, and I5 

will be denoted by 1 ,2 ,3 ,4  and 5 respectively). 

3. PRED This is a bernoulli response variable. 

1 - if the nest was preyed upon 

0 - otherwise. 

This corresponds to the final status of the nest. Later in the analysis, we change this 

definition according to the status of the nest within the interval. 

Kingbirds typically lay 2-5 eggs at a time. Three or four is the most common 

number and five is rare. Usually there are the same number of young in the beginning 



and at the time of fledging or predation. Ms. Siderius says that if the nest is preyed 

upon, all the young will be killed. We have for nest 96,3 young in I2 and 2 young in 13. 

She says that one young may have died due to some other reason in which we are not 

interested. In the study' this is the only case of a death due to causes other than 

predation. She thinks that when there are more young in the nest, the parent birds 
may visit the nest more often than when there are fewer young in the nest and thereby 

the nests which have more young may get better protection. Furthermore, when there 

are more young they may have more strength to defend themselves against predators. 

On the other hand, she adds, that more young may result in a noisier nest and this 

may attract predators. 

4. YNG Number of young in the nest. 

Each observation amongst the behavioural variables 5-13 was obtained during 

a 90-minute observational period. For a nest, there is at most one observation of 
variables 5-13 in any of the intervals. Ms. Siderius stayed at a place from where she 

could observe the nest. She was careful to choose locations where her presence would 

not disturb the kingbirds' behaviour. The closest such location was about 15 meters 

from the nest. 

Kingbirds visit their nests very frequently. When the young get older, the 

number of visits by the parent birds can be expected to increase because they have to 

be fed very frequently. This may also depend on the number of young in the nest. In 

some of their visits they are very noisy within two meters of the nest. Ms. Siderius 

calls these visits noisy visits. The reason for noisy visits is not clear. It may be a way 

of communicating an impending visit to the young or to the other parent bird. However, 

this noise may attract predators to the nest. Sometimes the parent birds were noisy at 

a distance more than two meters from the nest. These were not associated with the 

visits to the nest. She calls these noisy perches. The reason for noisy perches is also 

not understood. However, to see whether these kinds of behaviour have an effect on 

the nest predation, she collected observations on the following variables. 

5. VIS This is the number of visits to the nest by the parent birds. 

6. NVIS This is the number of noisy visits. 



7. NOIP This is the number of noisy perches. 

8. DNOI This is the mean distance in meters to the noisy perches. 

9. SDNOI This is the standard deviation of distances in meters to the noisy 

perches. 

As we mentioned earlier kingbirds chase any threatening bird that they see flying 

around the nest. The number of chasings might be a measure of how aggressive the 

kingbirds are and it might provide some information on the effect of aggressive 

behaviour in protecting the nest. Therefore she counted the number of crows and 

ravens that she could see and the number of aggressive encounters made by the 

kingbirds. 

10. AG This is the number of aggressive encounters. 

11. SEE This is the number of crows and other predatory birds that Ms. Siderius 
saw flying around the nest. 

Ms. Siderius wonders if a nest is less likely to be preyed upon if the parent 

birds maintain close contact with the nest. By 'close' she means within a distance that 

the parent birds could see the nest. Usually this means within 100 meters of the nest. 

She therefore observed the following variables. 

12. BOTH Duration in minutes where both parent birds were close to the nest. 

13. ONE Duration in minutes where there was only one parent bird close to the 

nest. 

The data set BEHAVIOUR appears in table 5.1.3 of appendix 1. 



Chapter 3 

THE ANALYSIS 

3.1 PRELIMINARY ANALYSIS OF ENVIRONMENT 

Kingbirds are averse to having another pair of kingbirds nest near them. Ms. 

Siderius told us that the closest two nests were more than 100 meters apart. This 

helps justify the assumption of independence between nests. In this analysis we 

assume that the observations are independent of each other. 

In the data set ENVIRONMENT we have 95 observations on 95 nests of 

which 50 .are preyed upon. Missing values of the variables is a major concern. 
Unfortunately, in this problem we could not find a reasonable way to simultaneously 

estimate all missing values. We therefore considered using only the complete cases. 

However if we take into account all the variables simultaneously, we are left with only 

38 complete cases. This is certainly not a desirable number of observations for an 

analysis with 30 explanatory variables. Therefore our first concern was to condense 

the available information into a reasonable number of variables. Note that the variable 

NEST takes no role in the analysis except that it is useful for identification purposes. 

Furthermore it was decided to eliminate DWAT due to its unreliability. Therefore the 

number of explanatory variables has been reduced to 28. 

The data were collected over three years. We would like to test if there is any 
significant difference of overall probability of predation in these three years. Let Pi, P2 

and P3 be the overall probabilities of predation in 1988, 1989 and 1990 respectively. 

The following contingency table (table 3.1.1) shows the total number of observations, 

number of preyed upon nests and the number of nests where the young fledged. It 

seems that there is an upward trend for predations over three years. 

1988 1989 1990 Total 

Fled in s 
Tot a1 31 36 28 95 

Table 3.1.1 

13 



We test the following hypothesis: 
Ho: P1=P2=P3 

vs HA: not the case that Pl=P2=P3. 

The value of the X2 statistic based on this contingency table is 2.97 with 2 degrees of 
freedom. The corresponding p-value is 0.23. Therefore Ho is not rejected. We conclude 

then that the probability of predation in the three years does not differ significantly. 

Therefore YEAR does not provide any information about the probability of predation 

and the number of predictor variables reduces from 28 to 27. 

The variables 4-15 are essentially the measures of visibility of the nest from the four 

directions, obtained from three different techniques. Let us examine the correlation 

between these 12 variables. The correlation mamx of the variables is given in table 

5.2.1 in appendix 2. The high correlations between the variables, extracted from this 

table are shown below. 

As one would expect, for each direction, the three visibility variables are fairly 

correlated. We also note that we have no reason to believe that any of the three 

techniques is more accurate than other. Therefore, we form the following 4 visibility 

variables for north, south, east and west directions respectively. This reduces the 

number of explanatory variables from 27 to 19. 

VN rounded average of PN, BN and WN 
VS rounded average of PS, BS and WS 

VE rounded average of PE, BE and WE 

VW rounded average of PW, BW and WW 



The correlation matrix of VN, VS, VE and VW appears in table 5.2.2 of appendix 2. It 

shows that these variables are not highly correlated. 

Let us now examine the following figures (figures 3.1.1-3.1.2). 

Histogram of OVER for all nests 

6 !a 40 b &I lb 
OVER 

Figure 3.1.1 

According to Ms. Siderius, most other types of birds hide their nests. However 

the histogram in figure 3.1.1 clearly shows that a considerable portion of kingbird 

nests are visible from above. Noticeably there is a high frequency of nests with 

overhead visibility greater than 80 percent. 

Figure 3.1.2 contains two plots of the relative frequency of the variable OVER. 
The solid line and the dotted line correspond to the preyed upon nests and the fledged 

nests respectively. The range of OVER is divided into 5 intervals of equal length and 

the relative frequency in each interval is plotted against the middle point of the 

interval. Surprisingly, the highest relative frequency of the fledged nests has overhead 

visibility greater than 80 percent. The relative frequency for the fledged nests is less 

than that for preyed upon nests when OVER is below 80 and the situation is reversed 



when OVER exceeds 80. This result may be explained by noting that kingbirds with 

high visibility may be alert to nearby predators. 

RELATIVE FREQUENCY vs OVER 

Figure 3.1.2 

Figure 3.1.3 gives the plots of relative frequencies of VN, VS, VE and VW 

respectively. The graphs are produced as described above. Again, the solid line and 

the dotted line correspond to the preyed upon nests and the fledged nests 

respectively. In contrast to OVER, the variables VN, VS, VE and VW have the 

highest frequency at value zero for both the preyed upon and the fledged nests. It is 

apparent that kingbird nests are more covered from the sides than from above. It is 

also clear that a moderate proportion of nests have more than 50 percent visibility 

from the four directions. There is no strong evidence that these variables have 

different distributions for the two populations of fledged and preyed upon groups. 

These variables are the measures of nest visibility taken from the ground. If there 

were ground predators involved, we may expect these variables to be influential. 

However, as far as the ground predators are concerned, a more reasonable variable to 

look at may be either the average of the four variables or the maximum of the four 



variables. We therefore chose to consider the following variables and thereby reduce 

the number of explanatory variables from 19 to 17. Note that we are left with only 

OVER and 2 of the original 12 visibiIity variables. 

AV rounded average of VN, VS, VE and VW 

MV Maximum of VN, VS, VE and VW 

Figure 3.1.3 

Recall that variables 16-19 provided information on whether the birds could 

see as far as 100 meters or 300 meters. Hence, it would be appropriate to look at the 

number of sides that they can see as far as 100 meters and the number of sides they 

could see as far as 300 meters. We create the following two new variables from 

variables 16-19. This reduces the number of explanatory variables in 

ENVIRONMENT from 17 to 15. 

NS 1 The number of sides that Ms. Siderius could see more than 80 meters. 

NS2 The number of sides that Ms. Siderius could see more than 250 meters. 



The correlation matrix of these 15 variables appears in table 5.2.3 in appendix 

2. It shows that these 15 variables are almost uncorrelated except for the high 

correlation between NS1 and NS2 and the high correlation between AV and MV. The 

correlation between NH and NS1 is 0.292 and the correlation between NH and NS2 is 

0.154. Therefore the speculation that the kingbirds can see farther in higher nests is 

not supported. 

We now examine the histograms in figures 3.1.4-3.1.7. The histograms of 

WAT (figures 3.1.4-3.1.6) show that about 314 of the nests have at least a small 

amount of water close to the nest. Noting that there are 95 nests a simple calculation 

shows that about 314 of the nests which do not have water within 100 meters are 

preyed upon. 

Histogram of WAT for all nests 

Figure 3.1.4 

Histogram of WAT for preyed upon nests 

Figure 3.1.5 
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Histogram of WAT for fledged nests 
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Figure 3.1.6 

Histogram of TREE for all nests 
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Figure 3.1.7 

The histogram of TREE (figure 3.1.7) shows that about 112 of the nests do not have 

other trees within 100 meters of the nest and approximately 90% of the nests are in 

areas where there are less than 20 percent trees within 100 meters of the nest. 

Therefore kingbirds seem fond of nesting in clear areas close to water. 

The population of kingbird nests can be considered to consist of two groups; 

fledged nests and preyed upon nests. If a variable is associated with this grouping, it 

may be reasonable for us to expect different characteristics of the variable in the two 

groups. Table 5.2.4 in appendix 2 contains a description of some simple distributional 

properties of each of the variables by the two groups. According to these descriptions 

clearly none of the variables is closely normally distributed. As a very conservative 

way of trying to choose the variables which are significant predictors between fledged 



and preyed upon groups, we did a one-way analysis of variance for each of these 15 

variables. Table 3.1.2 shows the p-values associated with the variables. 

Variable 

OVER 

AV 

MV 

NS 1 

NS2 

NH 
TH 
NTRE 

STEM 
NPER 

WAT 

FIELD 

SHRUB 

MARSH 

TREE 

F-value 

3.88 

1 .O7 

0.27 

0.00 

2.79 

0.13 

0.36 

0.84 

0.90 

0.14 

3.39 

2.46 

0.48 

0.09 

7.16 

Table 3.1.2 

p-value 

0.05 

0.30 

0.60 

1.00 

0.10 

0.72 

0.55 

0.36 

0.35 

0.7 1 

0.07 

0.12 

0.49 

0.76 

0.01 

In order to allow for the non-normality of the variables, the variables with 

corresponding p-values less than 0.25 were selected for further consideration. With 

this approach we have reduced the data set to 5 explanatory variables; namely, 

OVER, NS2, WAT, FIELD and TREE. We have 52 complete observations with 

these variables. 

3.2 LOGISTIC REGRESSION ANALYSIS OF ENVIRONMENT 

PRED is a bernoulli response variable which takes the value 1 if the nest is preyed 

upon and which takes the value 0 otherwise. For simplicity, hereafter it will be 

denoted by Y. 



Then Yi = 1 if NEST i is preyed upon 

= 0 if the young in NEST i eventually fledge. 

Our aim is to find a relationship, if any, between Pi and the set of variables OVER, 

NS2, WAT, FIELD and TREE. Let X be the design mamx comprised of the columns 

of these explanatory variables together with a constant term. 

Let 

be our statistical model where H(8) is a smctly increasing function of 8 with 
-=<€I<=, H(--)=O and H(=)=l. Note that a function H satisfies these requirements 

if it is the cumulative distribution function of any continuous random variable on (--, 

=). H-' or g is called the link function. A widely used link function is the logit link 

g(P)=log(P/(l-P)) which corresponds to the distribution function of the logistic 

distribution. Our basic interest is to find the components of P which are significantly 

different from zero. The maximum likelihood estimate b of p can be found by solving 

the system of non-linear equations given by allap=O where I is the log-likelihood 

function. 

Suppose L(bm ; y) is the maximum achievable likelihood corresponding to 

some maximal model and L(b ; y) is the maximum likelihood for a sub-model of 

interest. If the model of interest describes the data well then L(b ; y) should be 
approximately equal to L(bm ; y). If the model is poor then L(b ; y) will be much 

smaller than L(bm ; y). This suggests the use of the generalized likelihood ratio 

statistic h = L(b, ; y)/L(b ; y) as a goodness of fit statistic. Equivalently, log(h) = 

{l(bm ; y)-l(b ; y)) where 1 is the log-likelihood, can be used. It has been shown that 
2 

D=2log(h) has an asymptotic xr distribution, if the fitted model describes the data 

well. Here r is the difference in the number of parameters between the maximal model 

and the sub-model. D is called the deviance of the fitted model from the maximal 

model. 



There are two types of binary data: 

(a) binary data without common covariates (no covariate classes) 
(b) binary data with common covariates (with covariate classes). 

McCullagh and NelderES] (pp. 121) point out that for binary data without any common 

covariates, the large sample theory does not apply to the distribution of the deviance 

D. Aitkin et al[l] says that in this case, failure of the model to fit at individual 

observations has to be assessed by residual examinations. 

Let the estimated value of Pi be denoted by pi. For binary data, the Pearson 
residuals are defined as ei = (yi-pi)/qpi(l-pi) where yi is 0 or 1. These are 

approximately standardized variables with mean 0 and variance approximately 1. 
These residuals are not normally distributed as ei can take only two possible values ai 

and -l/ai for each i, where a i = - d m .  Large values of Pearson residuals indicate 

failure of the model to fit at the corresponding points. 

According to McCullagh and Nelder[8], when we have covariate classes, the 

large sample theory can be applied to the residual deviances given that the following 

assumptions are satisfied. 

1. The observations are distributed independently according to the binomial 

distribution. 

2. Letting n be the number of covariate classes, mi the number of observations 

in the i-th covariate class and Pi the corresponding probability of predation, the 

approximation is based on a limiting operation in which n is fixed, mi --> - and 

miPi(1-Pi) --> 00 . 

If the above assumptions are satisfied then D is asymptotically distributed as a x 2 

random variable with n-q degrees of freedom, where q is the number of fitted 

parameters. The sum of squares of Pearson residuals is the Pearson goodness of fit 

statistic and it is distributed as X2 with n-q degrees of freedom for large samples. If 

the fitted model is adequate, we may expect D and X2 to be close to n-q. McCullagh 

and Nelder[S] point out that the X2 assumption is usually quite accurate for 

differences of deviances even though it is inaccurate for the deviances themselves. 

The Statistical package GLIM allows us to fit the model (3.2.1) with several link 



2 functions. In GLIM output, the values of D and the Pearson x statistic are given as 

the scaled deviance and 95x2. 

We now report on the procedure to fit a logistic regression model log(Pl1-P)= 

Xp using variables OVER, NS2, WAT, FIELD and TREE as explanatory variables. 

We fit the model using a stepwise regression procedure. In each step we make use of 

the maximum number of complete observations for the combinations of variables 

concerned. 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Add each variable separately to the null model based on the available 

observations for the variable concerned. TREE gives the lowest p-value of 

0.007 corresponding to a deviance decrease of 7.29. This is the difference 

between the deviances corresponding to the null model and the 

constant+TREE model based on 92 observations. 

Add the rest of the variables separately to the constant+TREE model. 

WAT gives the lowest p-value of 0.034 corresponding to a deviance 

decrease of 4.47. This is the difference between the deviances 

corresponding to the constant+TREE model and the constant+TREE+WAT 

model based on 92 observations. 

Drop TREE from the constant+TREE+WAT model. The deviance increases 

by 8.38. The p-value corresponding to this increase is 0.004. Therefore do 

not drop TREE at this step. 

Add the rest of the variables separately to the constant+TREE+WAT 

model. OVER gives the lowest p-value of 0.01 corresponding to a deviance 

decrease of 6.66. This is the difference between deviances corresponding to 

the constant+TREE+WAT model and the constant+TREE+WAT+OVER 

model based on 92 observations. 

Drop TREE from the constant+TREE+WAT+OVER model. The deviance 

increases by 7.26. The corresponding p-value is 0.007. Therefore retain 

TREE in the model. Drop WAT from the constant+TREE+WAT+OVER 

model. The deviance increases by 8.16. The corresponding p-value is 0.004. 

Therefore keep WAT in the model. 



Step 6 Add the rest of variables separately to the constant+TREE+WAT+OVER 

model. NS2 gives the lowest p-value of 0.1 1 corresponding to a deviance 

drop of 2.56. This is the difference between deviances corresponding to the 

constant+TREE+WAT+OVER model and the constant+TREE+WAT+ 

OVER+NS2 model based on 52 observations. Considering the large 

number of missing values and the large p-value we do not add NS2 to the 

model nor any other variable. 

We have now recognized WAT, OVER and TREE as potential influential 

variables. Table 3.2.1 summarizes the deviance drops and the corresponding p-values 

of variables in the stepwise regression procedure. 

It seems that OVER, WAT and TREE are significant variables. The scaled 

deviance for the constant+TREE+WAT+OVER model based on 92 observations is 

108.95 with 88 degrees of freedom. This model leaves one big residual of size 4.00 at 

NEST 34. This nest is a preyed upon nest with OVER, WAT and TREE taking values 

60, 30 and 60 respectively. In general, at this step we should check for correctness of 

this observation with the experimenter. If it is correct the model should be modified, or 

else we accept the poor fit at this point as random variation. We mentioned earlier 

that some of the values of the variables in our data set are not very reliable. Ms. 

Siderius was unable to comment on the reliability of this outlier mentioned above. 

Therefore we consider the model based on 92 observations as well as the same model 

with the outlier removed. The scaled deviance corresponding to the model based on 91 

observations after removing NEST 34 is 102.17 with 87 degrees of freedom. This 

model fits the data without leaving any residual greater than 3 in absolute value. Table 

3.2.2 shows estimated parameters, estimated standard deviations of estimated 

parameters and the corresponding p-values associated with the variables in the refit 

model. 

p-value 

.007 

-034 

-010 

Variable 

TREE 

WAT 

OVER 

Table 3.2.1 

Deviance Decrease 

7.29 
4.47 

6.66 



I Variable 

constant 

OVER 

Table 3.2.2 

Estimated 

Parameter 

2.4 1 

-0.07 

-0.04 

-0.02 

However this model may not seem physically plausible. One would hesitate to believe 

that log-odds of predation depends linearly on TREE, WAT and OVER. Therefore, 

before we proceed modify the model let us look at the variables TREE, WAT and 

OVER more closely. Figures 3.2.1, 3.2.2 and 3.2.3 are the plots of OVER, WAT and 

TREE against NEST respectively. The circled points correspond to the preyed upon 

nests. 

Plot  of OVER vs  NEST ( c i r c l ed  po in t s  a re  preyed upon nes t s )  

Estimated 

Std Dev 

0.66 

0.02 

0.01 

0.0 1 

43 60 %) mo 
NEST 

Figure 3.2.1 

t-value 

3.65 

-3.50 

-4.00 

-2.00 

p-value 

0.0002 

0.0004 

0.0001 

0.02 



P l o t  of WiT vs NEST (circled points axe preyed upon nests) 

P l o t  of TREE vs NEST (circled points are preyed upon nests  ) 

Figure 3.2.2 and Figure 3.2.3 



In figure 3.2.1, the circled points are more dense when OVER is below 80. The 

percentage of preyed upon nests is 62.3 for OVER < 80 and 35.3 for OVER 1 80. 
Figure 3.2.2 shows that the circled points are more dense when WAT c 10. The 

percentage of circled points in this region is 68.6 while it is 44.4 outside the region. 

Figure 3.2.3 also shows this kind of accumulation of preyed upon nests in a region. We 

find that 63.8 percent nests for which TREE < 10 are preyed upon and 37.5 percent of 

the nests for which TREE 2 10 are preyed upon. Some possible biological 

explanations for these exploratory findings are given in section 3.3. At this point we 

would like to mention that although we are carrying out thoughtful exploratory data 

analysis, we should be careful to determine real trends and not simply artifacts of this 
particular data set. 

Although figures 3.2.1-3.2.3 give us some clues regarding potentially influential 

variables, they do not specify the form of these variables. We therefore construct 3 

new variable candidates from each of the old variables TREE, WAT and OVER by 

partitioning each old variable into 2 intervals as shown below. We then fit 27 models 

with different combinations of the three variables. 

1. TR1 = TREE if TREE c 10 

= 0 otherwise. 

TR2 = TREE if TREE2 10 

= 0 otherwise. 

TR3 = 0 if TREE < 10 

= 1 otherwise. 

2. WA1 = WAT ifWAT<10 

= 0 otherwise. 

WA2 = WAT ifWAT210 

= 0 otherwise. 

WA3 = 0 if WAT < 10 

= 1 otherwise. 



3. OV1 = OVER if OVER < 80 

= 0 otherwise 

0V2  = OVER ifOVER280 

= 0 otherwise. 

OV3 = 0 if OVER < 80 

= 1 otherwise. 

We now present a summary of fitting 27 logistic models in table 3.2.3. Each of 

these fits involves 92 observations. As we mentioned before, the measurements of 

the variables in our problem are not very reliable. Therefore when we find large 

residuals, (here we consider residuals which are greater than 3 in absolute value) we 

remove the associated observations and see whether the model fits the rest of the 

data. 

- 
Model 

-- 

Variables Involved 

TRl WA1 OV1 

TR1 WA1 0 V 2  

TRl WA1 0 V 3  

TR1 WA2 OV1 

TRl WA2 0 V 2  

TR1 WA2 0 V 3  

TR1 WA3 OV1 

TR1 WA3 0 V 2  

TRl WA3 0 V 3  

TR2 WA1 OV1 

TR2 WA1 0 V 2  

TR2 WA1 0 V 3  

TR2 WA2 OV1 

TR2 WA2 OV2 

TR2 WA2 0 V 3  

TR2 WA3 OV1 

Deviance 



98.33 

99.16 
115.65 

112.43 

1 12.98 

110.50 

102.76 

103.52 

109.10 

98.74 

99.59 

Table 3.2.3 

It appears that models 26 and 27 are the most promising models and we now 

investigate them more closely. 

Table 3.2.4 

Model 

26 

27 

The deviance difference between these 2 models is negligible. Both models fail to fit at 

NESTs 90 and 97. Note that these are the only preyed upon nests which have OVER, 

TREE and WAT greater than or equal to 80, 10 and 10 respectively. TR3 and WA3 

are related to the environment surrounding the nest. In models 26 and 27 these 2 

variables appear in similar forms which may make the comparison easier. If we 

consider the outliers as chance variation and include them in the models, then with 

regard to the scaled deviance, both models will be equally preferable. Model 27 is 

slightly simpler and easier to interpret than the model 26. The estimated parameters 

and the corresponding estimated standard errors associated with the variables in the 

two models are presented in table 3.2.5. 

Variables Involved 

TR3 WA3 0V2 

TR3 WA3 0V3 

Scaled Deviance 

98.74 

99.59 

Outliers (NESTS) 

90,97 

90,97 



constant 

TR3 (2) 

WA3 (2) 

OV2 

constant 

TR3(2) 

WA3(2) 

OV3(2) 

Model 
Parameter 

3.01 

- 1.02 

-2.48 

-0.03 

2.93 

- 1 .O5 

-2.40 

-2.52 

Std Dev 

0.83 

0.50 

0.81 

0.01 

0.81 

0.50 

0.79 

0.79 

Parameter t-value I p-value 

Table 3.2.5 

Estimated 

Note: If Z is a categorical variable with 2 levels, Z(2) will denote the regression 

coefficient associated with the second level of the variable, in GLIM output. 

Estimated 

Next let us examine the models where the outliers have been removed. If we 

refit model 26 without NESTs 90 and 97, we get a fit with no outliers greater than 3 in 

absolute value. Removing outliers slightly increases the p-values corresponding 'to 

the constant, WA3(2) and 0V2 terms and decreases the p-value corresponding to 

TR3(2). The deviance for this model is 83.10 with 86 d.f. The parameter estimates and 

the corresponding estimated standard errors associated with the variables in refit 
model 26 are presented in table 3.2.6. The refit model 27 omitting NESTs 90 and 97 

does not leave any residual greater than 3 in absolute value although the standard 

deviations of the estimates of the constant, WA3(2) and OV3(2) terms increase 

considerably. Aitkin[l](pp. 175) has pointed out that the use of parameter standard 

errors obtained from the expected information matrix could be seriously misleading in 

small samples when the likelihood function has substantial skew. We should heed 

this warning and place little faith in the individual estimated values of the parameters. 

We make this statement due to the extreme differences between models with and 

without their outliers. In order to see the combined importance of the constant, WA3 

and 0V3 terms, we omitted them from the model one at a time and found that the 

corresponding deviance increases are very significant. The deviance for the refit model 

27 is 82.33 with 86 d.f. The parameter estimates and the corresponding estimated 

standard errors associated with the variables in refit model 27 are also presented in 

table 3.2.6. 



Model Parameter 

constant 

TR3(2) 
WA3 (2) 

o v 2  

constant 

TR3(2) 

WA3(2) 

OV3 (2) 

Estimated 

Parameter 

Estimated 

Std Dev 

t-value p-value 

Table 3.2.6 

We prefer model 27 since it is simpler and easier to intergret than model 26. 

Furthermore, the deviance for model 27 is slightly less than the deviance 

corresponding to model 26. 

Therefore our final fitted model is: 

Table 3.2.7 presents the estimated probabilities of predation in each covariate class. 

Observed 

Probability 

1 .oo 
0.59 

1 .oo 
0.39 

0.73 

0.00 

0.00 

0.00 

Fitted 

Probabilitv 
Jovariate 

Jlass 

1 

2 

3 

4 

5 

6 

7 

8 

Table 3.2.7 

TR3 

0 

0 

1 

1 

1 0  

1 0  

1 

1 

0V3 

0 

0 

0 

0 

1 

1 

WA3 

0 

1 

0 

1 

0 

1 

0 

1 



The following graph (figure 3.2.4) shows the estimated probability of predation versus 

the percentage of overhead visibility for the 8 covariate classes. The numbers 1,2, ..., 8 

refer to the covariate classes in table 3.2.7. 

Estimated probability of predation vs OVER for 8 covariate classes 

40 8, 

OVER 

Figure 3.2.4 

3.3 SUMMARY OF THE ANALYSIS OF ENVIRONMENT 

After initially reducing the data set we found that the variables OVER, WAT 

and TREE are the most influential environmental variables affecting kingbird 

predation. Most of the other variables were eliminated by a conservative application of 

one-way analysis of variance. The remaining variables were eliminated using 

stepwise regression. 



Among the visibility variables, only overhead visibility turned out to be 

important. The apparent effect of the overhead visibility is quite interesting. One of 

Ms. Siderius's initial questions was whether infant kingbirds in visible nests are more 

liable to be preyed upon. The actual effect is in fact the reverse. Figure 3.2.4 suggests 

that the visible nests more often lead to a fledge. The high overhead visibility (2 80%) 

seems strangely to be an advantage to the kingbirds rather than to the predators. It 

may be possible that the birds in more visible nests can see the predators more 

easily, before they come close to the nest. 

From figure 3.2.4 it also seems that the existence of trees has little effect on 

predation when either 

(a) there is poor overhead visibility and little water 

or (b) there is good overhead visibility and substantial water. 

In these two cases the estimated probability of predation is nearly 1 and 0 

respectively. In other scenarios it seems that the existence of some trees (210%) may 

have a mild effect in helping the young to fledge. This may be explained by noting that 

trees offer protection against detection. 

Figure 3.2.4 clearly shows that the percentage of water is an influential 

variable. It seems that the existence of some water (210%) is a great help in aiding 

young kingbirds to fledge. As mentioned before kingbirds feed on insects in the field 

and on the water. With available water, kingbirds may not have to leave their nests as 

often since insects may be more plentiful and perhaps larger. This would aid kingbirds 

in their nest vigilance. 

3.4 PRELIMINARY ANALYSIS OF BEHAVIOUR 

The data set BEHAVIOUR contains 48 observations on 23 nests of which 9 
were preyed upon. The interval of 32 days after the laying of eggs was divided into 5 
intervals as described in section 2.2. One observation per nest in each or some of the 

intervals was collected. Although we have 5 intervals, we do not have any information 

in interval I1 because Ms. Siderius did not collect data in this interval. Therefore, for 

simplicity we define new INTE to be old INTE-1. 



The number of kingbird visits, VIS is expected to increase with time. We 

therefore expect a set of increasing, parallel time series corresponding to different 

nests. If VIS is influential on predation we would also expect a difference between the 

plots for preyed upon nests and the plots for fledged nests. Figure 3.4.1 gives the 

plots of VIS versus INTE for the 6 preyed upon nests on which we have at least 2 
observations in consecutive intervals. Figure 3.4.2 is the similar plot for the 7 fledged 

nests. These plots suggest that VIS varies with time. However we can not see any 
parallelism between lines for different nests, in either group, as expected. Figures 
3.4.1 and 3.4.2 do not provide any evidence for the dependence of VIS between 

different intervals as no pattern is recognizable. (In comparing the plots, it sould be 

noted that there is a scale diffrence in two plots.) 

VIS vs INTE for preyed upon nests 

1 2 3 r: 

INTE 

Figure 3.4.1 

VIS vs iNTE for fledged nests 
b 

lNTE 

Figure 3.4.2 



One of Ms. Siderius's questions was whether birds that spend more time at 

the nest lose their offspring to predators less often than birds which spend less time 

at the nest. Figures 3.4.3 and 3.4.4 are the plots of BOTH vs INTE for the 6 preyed 

upon nests and the 7 fledged nests respectively. These plots do not provide enough 

evidence to support the above speculation. Furthermore, these plots also do not 

provide enough evidence of dependence between intervals for a given nest. We also 

examined graphically the variables NVIS, NOIP and DNOI and obtained similar 

results to VIS and BOTH. We can neither identify a similarity of any variable within 

groups nor a difference of any variable between groups. (Again notice the scale 

difference in two plots) 

BOTH vs lNTE for preyed upon nests BOTH vs INTE for fledged nests 

I 

1 2 3 4 

INTE 

Figure 3.4.3 

!2 3 P 

INTE 

Figure 3.4.4 

As mentioned in section 3.1, we can reasonably assume independence 

between nests. We also noticed that the observations for a given nest in different 

intervals do not show any dependence. Therefore it may be reasonable to assume that 

the 48 observations are independent of each other. 



Let us next examine the correlations between the variables in this data set. 

The correlation matrix of the variables appears in table 5.2.5 of appendix 2. The 

correlation between BOTH and ONE is very high as the sum of these is 90 minutes or 

very close to 90 minutes. One of Ms. Siderius's questions was whether noisy birds 

attract predators. The variables NVIS and NOIP can be considered as measures of 

the noisiness. SEE is the number of predatory birds that fly around the nest. The 

correlation between NVIS and SEE is 0.103 while the correlation between NOIP and 

SEE is 0.118. Therefore there is no evidence to support the idea that noisy birds 

attract predators. SDNOI, the standard deviation of the distances from the nest to 

where the parent birds were noisy is greater than DNOI, the mean of those distances. 
Therefore, due to its variability DNOI may not be a good summary statistic for the 

distances. The second highest correlation is 0.549 between NVIS and NOIP. This 

implies that there are no other significant linear relationships between variables. 

We would like to emphasize strongly that with an extremely limited number of 

observations it is very difficult to recognize variables that are influential on kingbird 

nest predation. Even when there is a real difference of a variable in the two groups, 7 

observations is hardly enough to visualize such a difference. In sections 3.5 and 3.6 

we try to identify significant variables, if any, using more advanced methods. 

3.5 LOGISTIC REGRESSION ANALYSIS OF BEHAVIOUR 

In Ms. Siderius's data set, PRED was a binary variable taking value 1 if the 

nest was preyed upon within 32 days and 0 otherwise. We change this definition as 

follows. 

PRED = 1 if the nest was preyed upon within the interval concerned. 

= 0 otherwise. 

This definition does not change the values of PRED in Ms. Siderius's data set for 

fledged nests. It does however change the values of PRED for preyed upon nests. Ms. 

Siderius provided us a record of dates from which we could estimate the approximate 

length of time prior to the predation. This list of dates is presented in table 5.1.4 in 

appendix 1. Table 3.5.1 shows the estimated length of time prior to the predation and 



the values of the variable PRED according to the new definition. For example, Ms. 
Siderius found that the fiast egg was laid approximately on the 28th of June, 1990 in 

NEST 94. Her last visit of the nest prior to the predation was on the 22nd of July and 

the first visit after the predation was on the 27th of July. From this information we 

estimate the length of time prior to the predation to be 27 days. Therefore it has been 

preyed upon in the interval 13. However Ms. Siderius has observed behavioural 

variables for this nest only in I1 and 12. Within these two intervals the nest was not 

preyed upon. Therefore PRED takes the value 0 corresponding to these two intervals. 

In Ms. Siderius's original data set, both values of PRED were set equal to 1 because 

the nest was preyed upon within 32 days. NEST 96 is similar. The time prior to the 
predation for NEST 39 is not known. However we have an observation on this nest in 

11. The reason that we do not have an observation in I2 may be that the nest had 

already been preyed upon when Ms. Siderius visited the nest for the second time. 

Therefore we assume that the nest was preyed upon at the end of the interval 11. 

INTE 

I1 

I1 

I3 
I1 

I2 

I1 

I2 

I3 

I4 

I1 

I1 

I2 

I1 

I2 

I1 

I2 

I1 
I2 

Days to Predation 

20 

PRED 

1 + 
0 

1 

0 
1 
0 

0 

0 
1 

1 

0 
1 

0 

1 
0 
O u  
0 
0 ++ 

Table 3.5.1 
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+ Assume that the nest was preyed upon at the end of the interval 11. 
++ Nest was preyed upon in 13. But we have observations in I1 and I2 only. 

As we discussed in the previous section, in this analysis we make the strong 
assumption that the 48 observations in the data set BEHAVIOUR are independent of 

each other. We also assume that the explanatory variables within an interval are 

solely responsible for the outcome within that interval. A logistic regression model 

was tried, considering newly defined PRED as the binary response variable. We have 

41 observations corresponding to fledgings and only 7 observations corresponding to 

predations in this analysis. Considering the possible time effect, we included INTE as 

an explanatory variable. Since BOTH and ONE are highly correlated, it is satisfactory 

to include only one of them in the model. We have chosen BOTH as it seems 

biologically preferable to ONE. The deviance decreases and the corresponding p- 

values associated with the variables are given in table 3.5.2. 

Variable 

[NTE 

VIS 

NVIS 

NOIP 
DNOI 

AG 

BOTH 

decrease Y 
0.97 19 0.32 
0.102 0.75 
0.252 0.62 
2.1287 0.14 
1.8499 0.17 
0.213 0.64 
0.314 0.58 

Table 3.5.2 

These p-values imply that none of the variables in BEHAVIOUR are significantly 

related to the probability of predation. If anything there seems to be some mild 

evidence that noisier kingbirds may encourage predation. The binary variable PRED 

may not be reflecting the variation contained in the explanatory variables well. In a 

further attempt to explore the problem, we are reminded that the time prior to the 

predation may contain additional information. In the next section, we carry out an 

analysis using the time prior to predation as our response variable. 



3.6 SURVIVAL ANALYSIS OF BEHAVIOUR 

Survival analysis is a loosely defined statistical term that encompasses a 

variety of statistical techniques for analysing positive valued random variables. 

Typically, the value of the random variable is the time to the death of a biological unit 

or the time to the failure of a physical component. Time in such a case is generally 

referred to as 'survival time' and we denote it by T. In general, survival time carries 

more information than the simple observation of whether or not a death or a failure has 

occurred. Survival analysis techniques are employed to extract information concerning 

covariates using the survival time. 

Let T20 have the density f(t) and the distribution function F(t). The survival 

function S(t) (i.e. probability of survival up to time t) is, 

and the hazard rate or the hazard function h(t) is 

The hazard rate can be interpreted as the instantaneous failure rate at time t given 

survival up to time t. That is; 

It can then be easily shown that 

A characteristic feature of survival data is the occurrence of censored 

observations, i.e. observations on which the complete survival time is not observed. 

Censoring is usually on the right; that is the observed censored time is less than the 

actual survival time. Sometimes the distribution of T is known and then parametric 

models are used to model the relationship between the hazard and the covariates. 

When the distribution of T is unhown, non-parametric methods have to be used. 

Cox's proportional hazards model is a widely used semi-parametric model used to 



describe the relationship between the hazard function and the covariates when the 

distribution of T is unknown. 

Let x be the vector of covariates. Under the Cox proportional hazards model, 

the hazard function is, 

h(t) = b(t)exp(x'P) 

where h(t) is an arbitrary unspecified function of t; the base-line hazard when the 

covariate x = 0. The unknown parameter vector p has components which are the 

coefficients of the covariates of interest. 

Let us now consider our problem. The predation in our problem is equivalent to 

the death or the failure in the usual framework of survival analysis. Let T be the time 

prior to the predation and it is equivalent to the survival time. We have four intervals 

in which observations were collected. We assume that the outcome in an interval 

depends solely on the corresponding covariates in the interval. We noticed in section 

3.4 that there is no evidence of dependence between intervals. In this analysis we 

assume that the base-line hazards in intervals 11, 12, I3 and I4 are hi, 2.2, hg and hq 
respectively and that they are independent. 

In any of the first three intervals the outcome is either a predation or a non- 

predation. When it is a predation, the corresponding survival time is the time prior to 

the predation within the interval. If it is a non-predation, we consider it as a censored 

observation with censored time equal to the length of the interval. In the fourth 

interval, the outcome is either a predation or a fledge. The predation can be considered 

as before. The case of fledge can be considered as non-predation in other intervals and 

the time for the fourth interval is censored at 5 days. 

Let hij be the hazard function of the i-th nest in the j-th interval. Our model is given by 

where xij is the vector of covariates for the i-th nest in the j-th interval and P is the 

vector of coefficients of the covariates. Again, making the strong assumption that the 

48 observations can be considered independent as in section 3.5, the marginal 

likelihood of P can be written as 



where Lj(P) is the marginal likelihood arising from the j-th interval. Kalbfleisch and 

Prentice[7] have extensively discussed the estimation of P maximizing the marginal 

likelihood function. The program that we used to estimate P is a modification of 

several sub-routines provided in Kalbfleisch and Prentice[7] and Forsythe, Malcolm 

and Moler[6]. It is available upon request. 

Let IND be the censoring indicator. 
IND =1 if t is uncensored 

=O if t is censored. 

NEST T 

76 3 
79 3 

8 1 3 

83 3 

85 3 

86 3 

8 8 3 

9 1 3 
93 3 

94 3 

96 3 

99 3 

103 3 

- 
IND - 

1 
0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

- 

IND 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

NEST 

39 

75 

76 

77 

79 

8 1 

82 

83 

85 

86 

87 

9 1 

92 

93 

94 

96 

97 

98 

103 

NEST - 
75 

79 

80 

8 1 

83 

86 

93 

103 

- 

T 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

Table 3.6.1 

4 1 



Table 3.6.1 shows the survival times and the corresponding censoring indicator for 

each observation as used in the analysis. We fitted model 3.6.1 with 7 explanatory 

variables, one at a time. Estimated values of P were found by maximizing the marginal 

likelihood function. Table 3.6.2 contains the estimated coefficients and the 

corresponding approximate p-values associated with the explanatory variables. 

Variable 

YNG 

VIS 

NVIS 

NOIP 

DNOI 

AG 

BOTH 

Estimated 

Parameter 

Estimated 

Std Dev 

0.37 

0.05 

0.09 

0.03 

0.02 

0.25 

0.01 

Approximate 

p-value 

0.13 

0.02 

0.16 

0.41 

0.46 

0.42 

0.19 

Table 3.6.2 

The Cox proportional hazards model indicates that the variable VIS, the number of 

visits by parent birds may be an influential behavioural variable. The positive 

coefficient implies that the hazard and hence the probability of predation increases 

with VIS. 

3.7 SUMMARY OF THE ANALYSIS OF BEHAVIOUR 

Both the logistic regression analysis and the survival analysis assume the 

independence of the 48 observations. Observations on different nests were assumed 

to be independent because the nests were reasonably far apart. Observations on the 

same nest in different intervals were assumed independent merely because there was 

not enough evidence of dependence from the graphs based on the 13 nests. The 

logistic regression model was unable to identify any significant variables. VIS, the 

number of visits by parent birds was found to increase the probability of predation, by 

the survival analysis approach. For this result it is difficult to find a biological 

explanation. Further more, the figures 3.4.1 and 3.4.2 do not show any difference of the 



variable VIS in preyed upon and fledged groups. It seems to us that nest vigilance and 
protection has little to do with the actual number of visits by kingbirds and more to do 

with the percentage of time that the nest was protected. We would have expected 

BOTH to be a significant variable. We emphasize again that the validity of the result 

depends on the independence of the observations on the same nests and the integrity 

of the data. 

In addition to the odd result involving VIS, the reader may notice that the p- 

value for VIS using survival methods (0.02) differ markedly from the p-value for VIS 

using logistic regression (0.75). The most likely explanation for this phenomena is 
that the model (3.6.1) is incorrect. Although (3.6.1) is semi-parametric it imposes a 

great deal of structure. Besides the strong independence assumption (3.6.1) requires 

that the proportionality assumption in the hazard behaves the same way across 

intervals even though the intervals are of different lengths. Also testing is based on 

asymptotic normality. With so few observations it is doubtful that normality has 

"kicked in7'. For all of these reasons we will conclude that the data gives no evidence 

linking behavioural variables with predation. 



Chapter 4 

CONCLUDING REMARKS 

As far as the visibility of the nest is concerned, only the overhead visibility 

turned out to be significant. The interesting feature is that in contrast to what 

one would expect, overhead visibility decreases the possibility of predation. 

Among the environmental factors considered, only the availability of water and 
trees around the nest are found to have significant effects on nest predation. 

(a)  Regardless of overhead visibility, availability of water reduces the 
possibility of predation. 

(b) When water is present, tree density makes a difference in predation only 
when the overhead visibility is less than 80 percent. On the other hand, 

when there is little water, tree density makes a difference only when the 

overhead visibility is greater than 80 percent. In both cases the effect of 

more trees is to decrease the possibility of predation. 

The analysis on the behavioural factors reveals that out of 7 variables 

considered, none are influential in predicting predation. 

We now offer some final remarks: 

Ms. Siderius had never witnessed a predation during her monitoring period. This 

may suggest that she had not monitored the nests at the ideal times. 

Furthermore, 90 minutes may be a too small fraction of time for monotoring the 

behaviour of parent kingbirds. Therefore the variables available in BEHAVIOUR 

may not reflect the true effects. 

The analysis on both data sets was based on the assumption of independence 

between observations. In the case of ENVIRONMENT, the assumption of 

independence may be justified by the fact that nests are considerably far apart 



and kingbirds do not live in groups. However, in 

assumption of independence is doubtful because 

on the same nest. 

the case of BEHAVIOUR the 

we have several observations 

As mentioned in section 3.6 the survival model (3.6.1) is highly questionable. 

Inferences obtained from this model should be regarded cautiously. Despite this, 

we believe that the modelling exercise was worthwhile since the weakness of 

the data did not yield any conclusions using less demanding models. As a 

general rule, the more that one assumes in a model, the more that one can infer. 

Most importantly, as discussed in the running commentary in chapter 2, the data 

is at times unreliable and sparse. With more complete data more convincing 

results may have been obtained. 



ROW 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10  
11 
12  
13 
14 
15 
1 6  
17  
18  
1 9  
2 0 
2 1 
22 
23 
24 
25 
2 6 
2 7 
2 8 
29 
30 
3 1  
32 
3 3 
3 4 
3 5 
36 
3 7 
3 8 
39 
4 0 
4 1 
42 
43 
4 4 
4 5 
4 6 
4 7 
4 8 
4 9 

- 50 
5 1  

NEST 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10  
11 
12  
13  
14 
15 
16  
17 
20 
2 1  
22 
25 
2 6 
27 
28 
2 9 
3 0 
3 1 
32 
33 
34 
35 
3 6 
37 
3 9 
41 
4 2 
43 
44 
45 
4 6 
47 
4 8 
4 9 
50 
5 1 
52 
53 
54 
55 
56 
5 7 

PRED 

1 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
1 
0 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 

APPENDIX 1 

Table 5.1.1 -ENVIRONMENT 

OVER 

0 
80 
70 
95 

0 
0 

75 
3 0 
80 
50 
30 
90 
80 
50 
25 
95 
80 
65 
20 
20 
95 
10 
60 

0 
100 

5 
85 

100 
5 

60 
95 
0 

4 0 
0 

75 
0 
0 

4 0 
20 
20 
15 

5 
4 0 

0 
0 

85 
0 

85 
30 
20 

100 



NEST PRED OVER PE 

0 
0 
0 
0 

30 
5 
0 

50 
0 
* 
0 
0 
0 
0 
* 
5 
0 
0 

35 
0 
0 
0 
0 

50 
55 

0 
0 
5 

3 0 
0 
0 
0 
0 
0 
0 
0 
* 
5 

50 
0 

10 
LOO 
60 
90 



ROW PRED WS WE WW DN DS DE DW NTRE STEM 



ROW 

5 1  
52 
53 
54 
55 
5 6 
57 
58 
5 9 
60 
61  
62 
63 
64 
65 
66 
67 
68 
69 
70 
7 1  
72 
73 
74 
75 
7 6 
77 
78 
7 9 
80 
8 1  
82 
83 
84 
85 
8 6 
87 
88 
8 9 
90 
91  
92 
93 
94 
95 

PRED WS 

0 100 
0 38 
1 0 
0 * 
0 50  
0 50  
0 0 
0 38 
0 0 
1 0 
1 13  
1 0 
1 0 
1 100 
1 0 
1 0 
1 * 
1 100 
1 0 
0 63 
1 0 
0 100 
0 75 
1 0 
1 0 
0 13  
1 0 
0 88 
0 0 
0 0 
0 0 
1 0 
1 * 
1 100 
1 50 
0 0 
1 0 
1 50 
1 25 
1 0 
1 75 
1 0 
1 0 
1 0 
0 63 

NTRE 

50 
175 

60 
* 
4 

1000 
* 

60 
250 

* 
* 

100 
15 
* 
* 

100 
110 
15 
* 

4 5 
90 

130 
200 

30 
150 

15 
9 

70 
12 
70 
* 

110 
7 

10  
2 00 
700 

50 
25 

700 
88 
50 
20 

100 

STEM 

* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 

18  
33 
40 

0 
0 

29 
60 
69 

7 
98 

4 
2 

10 
3 1  
5 8 
33 

0 
1 
0 

7 8 
2 0 

5 
56 

0 
* 
3 

39 
10  



ROW PRED NPER WAT FIELD SHRUB MARSH TREE DWAT YEAR 



ROW 

5 1  
5 2 
5 3 
5 4 
5 5 
5 6 
5 7 
5 8 
5 9 
6 0 
6 1 
62 
63 
64 
65 
6 6 
67 
68 
6 9 
7 0 
7 1 
72 
7 3 
74 
7 5 
7 6 
7 7 
78 
7 9 
8 0 
8 1  
82 
8 3 
8 4 
8 5 
86 
8 7 
8 8 
89 
90 
9 1 
92 
93 
9 4 
95 

PRED 

0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
0 
1 
1 
0 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 

NPER 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
2 
2 

10 
15 

6 
4 
3 
2 
3 
* 

15 
3 0 

5 
2 
3 
7 
7 
5 

100 
1 
2 
6 

25 
* 
1 

5 0 
2 

WAT 

5 
0 
0 

20 
10  

0 
10  
15 
2 0 
* 
0 
0 
0 
0 

15 
55 

0 
3 0 

0 
0 
0 

10  
40 

0 
4 0 
5 0 
3 0 

5 
3 0 
4 0 
50 
3 0 
1 0  

0 
5 

3 0 
2 0 

0 
10 

5 
0 

10  
4 0 
4 0 
2 0 

FIELD 

70 
75 
5 0 
70 
40 
80 

0 
0 
0 
* 

80 
80 
80 
80 
8 0 

5 
0 

65 
8 0 
60 
60 
7 5 
10 

0 
0 
0 
0 

50 
60 
15 
20 
2 0 

0 
5 0 
8 0 
50 
10 
85 
60 
75 
90 
3 0 
3 0 
40 
65 

SHRUB 

15 
25 
50 

5 
0 
0 

5 0 
5 
5 
* 

20 
15 
15 
17 

0 
4 0 
40 

5 
2 0 
20 
4 0 
15 
40 
40 
40 
30 
20 

0 
10 
25 
30 
50 
70 
50 

0 
10 
60 
15 
10 
15 
10 
10 
3 0 
15 

0 

MARSH 

0 
0 
0 
0 
0 
0 

40 
8 0 
7 5 
* 
0 
0 
0 
0 
0 
0 

60 
0 
0 
0 
0 
0 
5 

4 0 
2 0 

0 
5 0 

0 
0 
0 
0 
0 

10  
0 
0 
0 

10  
0 
0 
0 
0 
0 
0 
0 
0 

TREE 

10  
0 
0 
5 

5 0 
2 0 

0 
0 
0 
* 
0 
5 
5 
3 
0 
0 
0 
0 
0 
0 
0 
0 
5 

2 0 
0 

2 0 
0 

4 5 
0 

20 
0 
0 

10  
0 

15 
10 

0 
0 

20 
0 
0 
0 
0 
0 

25 

DWAT 

* 
* 
* 
* 
* 

100 
* 
* 
0 
* 
* 
* 
* 
* 
* 
0 
0 
1 

120 
1 5  

4 00 
40 

0 
0 
0 
0 
5 

60 
0 
0 
2 
8 

25 
120 

90 
10  

8 
7 0 
80 

100 
100 

* 
0 
3 

60 

YEAR 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 



Table 5.1.2- Created Variables for ENVIRONMENT 

ROW PRED 

1 1 
2 0 
3 0 
4 0 
5 0 
6 1 
7 1 
8 1 
9 0 

10 0 
11 0 
12 1 
13 1 
14 1 
15 0 
16 0 
17 0 
18 0 
19 0 
20 0 
2 1 0 
22 0 
23 1 
24 0 
2 5 1 
26 1 
2 7 0 
28 0 
29 1 
30 1 
3 1  1 
32 1 
3 3 0 
34 1 
3 5 1 
36 1 
37 1 
38 1 
39 0 
4 0 1 
4 1 1 
42 0 
43 1 
4 4 0 
45 0 
4 6 0 
4 7 0 
4 8 0 
4 9 0 
5 0 1 



ROW PRED 



Table 5.1.3-BEHAVIOUR 

ROW NEST INTE PRED YNG V I S  

1 6  
10 
25 
12 

9 
10 
11 
11 
18 

8 
17 

7 
15 
2 9 
16  
2 1  

9 
13 

5 
7 

19 
15 
16  
10 
12 
20 
28 
11 
17 
10 
10 

7 
16  
10 
24 
37 

7 
19  

8 
10 

9 
4 

10  
22 
10 
2 1  
35 
37 

MIS 

6 
1 
3 
1 
1 
5 
7 
4 
2 
0 

16  
3 
5 
5 
3 
9 
1 
7 
1 
6 

13 
1 
1 
1 
0 
0 
2 
1 
0 
1 
0 
0 
2 
1 
0 
6 
3 
0 
1 
6 
0 
3 
6 

12 
3 
1 
2 
7 

NOIP 

12  
4 
7 

11 
12  
17  
1 9  
17 
2 5 

9 
62 
3 3 
1 9  
10 
12 
1 6  
14 
2 7 
14 
1 2  
2 0 
5 4 
17  

9 
16  

4 
13  

9 
2 

14 
11 

9 
9 
4 
4 
6 

18  
7 

13  
3 0 
1 

2 7 
9 

28 
27 
13 
10  
3 8 

DNOI 

3 
3 1 
12 
12  
22 
13 
12 
25 
12 
44 
12  
23 
12 

7 
6 

2 9 
2 1  
12 
25 
18 
25 
23 
70 
39 
19  

7 
32 
52 
35 
14 
33 
48 
60 
1 

20 
1 
8 

32 
8 

22 
9 

20 
16 

8 
6 

24 
12 
17 

SDNOI 

5 
39 
11 

3 
25 
26 
17 
25 
12 
25 
13 
37 
1 6  

7 
8 

5 6 
38 
42 
27 
28 
60 
15 
37 
3 4 
29 
12  
5 1 
64 
2 1 

6 
24 
12 
13 

7 
7 
2 

1 6  
57 
13 
23 
* 

37 
2 6 
19  

7 
27 

9 
20 

AG SEE 

3 1 
1 4 
2 6 
1 3 
1 1 
0 2 
0 0 
0 1 
1 2 
1 3 
2 3 
0 1 
2 1 
1 1 
1 1 
2 2 
0 0 
0 1 
1 3 
1 3 
0 3 
0 3 
1 0 
0 0 
0 0 
3 1 
4 3 
3 2 
1 0 
1 1 
0 2 
0 1 
0 1 
3 2 
3 0 
0 0 
0 0 
1 0 
0 1 
0 0 
1 0 
0 1 
0 0 
0 0 
1 1 
0 0 
1 0 
3 1 

BOTH 

6 9 
65 
60 
66 
68 
90 
69 
63 
50 
4 9 
90 
78 
57 
3 9 
30 
3 1  
74 
77 
4 6 
88 
1 6  
90 
22 
56 
4 9 
7 6 
6 1  
2 8 
19  
90 
64 
7 7 
61  
62 
78 
8 9 
90 
82 
7 6 
7 6 
5 1 
8 6 
8 1 
20 
66 
8 8 
5 1 
7 8 

ONE 

9 
23 
27 
24 
22 

0 
2 1  
27 
4 0 
41  

0 
12 
33 
50 
60 
59 
16  
13 
44 

2 
73 

0 
64 
34 
4 1 
14 
2 9 
55 
7 0 

0 
22 
13 
29 
28 
12 

2 
0 
7 

14 .  
14 
39 

4 
9 

65 
2 4 

2 
3 4 
12 



Table 5.1.4-Dates of visits for 9 preyed upon nests in BEHAVIOUR 

NEST date of first egg last visit before first visit after 

predation predation 

39 * * * 
75 June 15 July 10 July 12 

76 June 21 July 12 July 15 

8 1 June 19 July 18 July 20 

82 June 20 July 8 July 11 

9 1 June 20 July 12 July 14 

92 It is known that the young were preyed upon at about 10 days 

94 June 28 July 22 July 27 

96 June 17 July 11 July 16 



APPENDIX 2 

Table 5.2.1 -Correlation matrix of 12 visibility variables associated with 
north, south, east and west. 

Table 5.2.2-Correlation matrix of OVER, VN, VS, VE and VW 

OVER VN VS VE 

VN 0.271 

VS 0.541 0.221 

VE 0.329 0.523 0.268 

VW 0.482 0.451 0.412 0.466 



Table 5.2.3-Correlation matrix of variables in reduced ENVIRONMENT 

AV 

MV 

NS1 

NS2 

NH 

TH 

NTRE 

STEM 

NPER 

WAT 

FIELD 

SHRUB 

MARSH 

TREE 

OVER 

0.548 

0.468 

0.113 

0.117 

0.225 

0.017 

0.084 

-0.136 

-0.243 

-0.310 

0.142 

-0.043 

-0.003 

0.147 

STEM NPER WAT FIELD SHRUB MARSH 

NPER -0.196 

WAT -0.000 -0.023 

FIELD -0.381 0.023 -0.549 

SHRUB 0.436 -0.248 0.108 -0.508 

MARSH 0.473 -0.000 -0.116 -0.461 0.049 

TREE -0.176 0.183 -0.090 -0.082 -0.320 -0.222 

NTRE 

-0.120 

0.430 

-0.25 6 

0.283 

-0.244 

0.063 

-0.094 



Table 5.2.4-Description of 15 variables in reduced ENVIRONMENT 

OVER 

AV 

MV 

NS1 

NS2 

NH 

TH 

NTRE 

STEM 

NPER 

WAT 

FIELD 

SHRUB 

MARSH 

TREE 

FRED 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

MEAN 

53.51 

38.86 

29.49 

24-34 

52.89 

49.20 

1.739 

1.759 

0.957 

1 . 4 1 4  

93.24 

89.04 

181.8 

166.7 

100.3 

137.1 

20.32 

28.30 

25.35 

20.69 

23.75 

16.52 

32.50 

42.29 

21.75 

24.35 

6.59 

7.71 

14.39 

6.12 

MEDIAN STDEV MIN 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.000 

0.000 

0.000 

0.000 

4.00 

24 . O O  

5.0 

67.0 

4.0 

4.0 

0.00 

0.00 

1.00 

1.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

............................................................................................ 

N*-number of missing values Q1-first quartile Q3-third quartile 



VIS 

N V I S  

N O I P  

DNOI  

AG 

S E E  

BOTH 

O N E  

Table 5.2.5-Correlation matrix of variables in BEHAVIOUR 

YNG 

0.145 

-0.219 

-0.354 

-0.002 

0.109 

0.020 

-0.256 

0.278 

VIS NVIS N O I P  DNOI  AG SEE BOTH 
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