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ABSTRACT

The purpose of this thesis is to investigate the partition problem of

Frobenius. Given relatively prime positive integers ag, ay, ..., as, the problem of
Frobenius is to find the largest positive integer g(ag, aj, ..., as) which cannot be
represented as a linear combination of ag, aj, ..., as with non-negative integer

coefficients. For s =1, the exact value of g(ag, a;) was found by J. J. Sylvester back
in 1884 . 1. Shur was the first to give an upper bound for the number g(ag, ay, ...,

as) forany s 2 1.

In this thesis we find upper bounds for g(ao, ai, ..., as) for any s in specific

cases using additive number theory and show that these bounds are better than

the best known upper bounds. We also study the greatest common divisor d of ag,

ai, ..., as_1 and using this we prove that Lewin's conjecture
(as —2) (as — )
&) g(ag, ay, ..., as) s[ = 5 . -1

a;+1
+1°

holds good in the special case when a-ii < where [x] denotes the largest

integer < x. We also obtain a better upper bound for the case s=3 when d 2 2. For
s=2,we find the exact value of g(a, b, c) where b + ¢ = O(mod a). An algorithm to
find an upper bound for g(ag, ay, ..., as) for any s = 3 is given. We also investigate
a related problem of the representation of positive integers by trees and give a
different proof for finding the conductor x(go, g1, g2, ---» 8k) of a (g0, £1, 82, ---, 8k)-

tree.



In Chapter 1 we prove the existence of the number theoretic function g(ag,
ai, ..., as) and study two related functions that arise naturally in connection with
g(ag, ay, ..., as ). We conclude this Chapter by presenting the exact solution to

the problem for s = 1.

In Chapter 2 we determine the exact value of g(a, b, ¢) of relatively prime
integers a, b, c when b + ¢ = O(mod a). While the case s = 1 is easy, it appears
that all the difficulties of the problem in the general case are contained in the case s
= 2. So we study the effect of extending {a, b} of relatively prime integers to {a, b,
¢} where ¢ is non-representable by a, b, and prove that g(a, b, ¢) < g(a, b) - a.

Also, we show that this bound is sharp.

In Chapter 3 we use addition theorems in Number Theory and deduce upper

bounds in special cases which are better than the best known upper bounds. We

also prove that the conjecture (*) holds for any s when 9:— < af :11 fori=2,3, ..,

s — 1. If the g.c.d(ag, a1, a2 ) =d, d 2 2, then we find an upper bound for g(ay, ay,
ay, az) which is better than the known bounds. An algorithm to find an upper bound

for g(ag, a1, ...,as), when qgg is relatively prime to each g;, is also described.

In Chapter 4 we study the related problem of finding the conductor of a (go,
g1, €2, ..., k)-tree. We give a proof for finding the exact value of the conductor of

K(a, a + 1) and deduce the exact value of x(a, a+1, ..., a+s) forany s, s 2 1.
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CHAPTER 1

1.1 Introduction. Let S = {ag, ay, ..., as} be a set of relatively prime positive
integers where g; > 1 for all i. Define
N
Sp(S) = 1 ¥ x;ja;:x;is a non-negative integer fori =0, 1, ..., s}.
i=0

It is shown in section 1.2 that Sp(S) contains all but finitely many non-negative
integers. We denote the largest integer not in Sp(S) by g(ayg, ay, ..., as) or by g(S).
Given S = {ay, ay, ..., as}, we say a non-negative integer n is representable by ay, ay,

..., s, if and only if n € Sp(S). Otherwise we say n is non-representable.

We note that g(ag, ay, ..., as) is precisely the largest integer N which cannot be
expressed by ap, ay, ..., ag in the form

N
N= ¥Yaxi

i =

with non-negative integral coefficients x;.



The problem of Frobenius consists of finding g(S) or at least obtaining non-
trivial upper bounds for g(S) for any given set S = {ay, ai, ..., as} of relatively prime
positive integers. For s = 1, with g.c.d.(ag, a1) = 1,

(D g(ag, a1) =apa) -ap-ai
has been known [21] for over a hundred years.

A concrete algorithm ({3], [18]) is known for finding the exact value of g(ag,
ai, ap) for integers ao, a1, a2, 1 <ag < a; < ap with g.c.d.(ag, ai, a2) = 1. However for

s 2 3, the exact value of g(ao, 41, ..., as) as a closed formula in ag, ay, ..., asis not

known except in special cases, for example, when ay, aj, ..., as are consecutive
integers [2], or when ay, ay, ..., as are in arithmetic progression [1,17].
We say a set S = {aog, 41, ..., a5}, ] <ag <aj< ... < a; of integers is

independent if a; & Sp(ag, ay, ...,ai-1) fori=1,2,...,s.
The set
{x:a<x<bandxis an integer}
of integers between two integers a and b, a < b, including a and b is denoted by [a, b].

If a divides b, we write a | b,

In this chapter, the next section begins with the proof of the basic fact that g(ag,
ai, ..., ag) exists. Then we make some observations on the two best known functions
that arise naturally in connection with g(ao, ay, ..., as). We conclude Chapter 1 by

presenting the complete solution to the Frobenius problem for s = 1.




In Chapter 2 we are concerned with the study of the Frobenius problem for
three variables a, b, ¢. Let g.cd. (a, b) = 1. Let {a, b} be extended to an independent
set {a, b, c}. We prove that g(a, b, c) < g (a, b) — a. In the special case whenc +b =
0 (mod a), we obtain the exact solution for g(a, b, ¢). In general we prove that

gla,b,c)<sg(a,b)-a.
We also show that if ¢ = g(a, b), then equality holds. Conversely, if equality holds we
show that bi(a + ¢).

In Chapter 3 we study the best known upper bounds for any s > 2. We obtain
new upper bounds in special cases and show that they are better than the best known

upper bounds. We prove that the conjecture of M. Lewin [14]

2(S) S[(as— 2) (a5 = 5) ]_1

is valid in the special case of S = {ag, ay, ..., a5} which satisfies
8 G+l -
i S i+l,l—2,3,.-.,s l-
We also give examples to show that this bound is better than the best known
upper bounds. A computational method is also studied to obtain a non-trivial upper

bound for s = 3 and the method is generalized to s > 3.

In Chapter 4 we study the problem of finding the conductor of a (go, g1, ..,
gr)—tree, which is related the Frobenius problem. We give a different proof for finding

the exact value of the conductor x(a, a+1,..., a+s) forany s > 1.




1.2 The existence of g(ay, ay, ..., as). In the beginning of this chapter we
mentioned that Sp(S) contains all but finitely many non-negative integers for any given
S = {ao, a1, ..., as} of relatively prime positive integers. We will prove this

fundamental fact.

1.2.1 Theorem. LetS = {ag, a1, ..., as} and g.c.d.(ap, a1, ..., as) = 1. Then there
exists an ng such thatn € Sp(S) for all n 2 ng.

Proof. Since g.c.d.(ag, a1, ..., as) = 1, there exist integers x; such that

A
Yxja; = 1.
i=0
A
Let N=ap 2 |xila
i=0
5 A
Then, N+m=a 2 |x,-|a,-+m > xiai,
i=0 i=
) N+m= igad xi| + mx)a;.
i =

Now,

ag|xi| + mx; = xi(ag + m), if x;2 0, and
ag|xi| + mx;j = - xj (ap — m) if x; < 0.
Therefore if m € [0, ag-1], then a0|x,-| +mx;20foreachi=0,1,...,s.
Hence (2) implies that for each m in [0, ag—1]
N + m e Sp(S).

If m 2 qp, then




m=pay+q,0<g<ap-landN+m=pag+ (N +q)
so that (N + m)e Sp(S). Hence Sp(S) contains all n 2 N. This completes the proof of

the theorem.
1.3 Related functions.

1.3.1 Deﬁnitibn. For integers 1 <ag <aj < ... < a5, with g.c.d.(ag, ay, ....a5) = 1,
we define f(ag, ay, .., as) to be the largest integer N which can not be expressed in the

form

k)
N= Yxia
2o

with integral coefficients x; > 1.
From the definition of the two numbers f{ag, a3, ..., a;) and g(ag, ay, ..., @y) it

immediately follows that

N
(3) ﬂa0$ ai, ..., aS)=g(a0v als ... aS)+ 2 aj.
i=0

1.3.2 Definition. Given a set S = {aog, a1, ..., as} of relatively prime positive

integers, the number of integers x, 0 < x < g(S), such that x ¢ Sp(S) is denoted by
n(ag, ay, ..., as).

Remark. If 0 < x < g(S), then x and g(S) — x can not both belong to Sp(S). For,
writing

8(8) = (g(S) —x) +x,



we observe that if both x and g(S) — x belong to Sp(S), then g(S) € Sp(S), a
contradiction. Since[{O, 1, 2, ..., g(8) }I = g(8) + 1, we deduce that at least half of

the elements in this set are are non-representable. That is,

@) B L < i) <gs).

In fact as we will see below in theorem 1.5.1 the bounds for n(S) given above
are sharp. For s = 1,
g(S)2+ 1 _ n(s)
and when S = {k, k+1, ..., 2k-1}, it is easy to see that
8(8)=k-1, n(S) = k-1.

Moreover we note that this is the only case in which g(S) = n(S).

1.3.3 Definition. Given integers n 22 and ¢t 2 3 we define
G(n, ©) = max g(S),
where the maximum is taken over all sets S = {ag, ay, ..., ap—1} of relatively prime

integers with 2 <gg< ... <an_1 <t

1.3.4 Bounds for G(n, t). We easily see from (1) that
&) G2, 0)=g(t-1,D=0-2)¢t-1)-1.
Y.Vitek [22] has shown that

g, b,c)<|8|(c-2) - 1, for any integers 1 < a <b < ¢ which are
3

relatively prime.

For ¢ =t, we have




so that
GG, z)s[‘ . 2] t-2)-1.

Since then t — 2, t — 1, ¢ are in arithmetic progression, using [17] we obtain

git-2,t-1, 0= ([' 5 4]+1}t—2) -1,

(-2)-1.

Hence we conclude that _
G@3,0)= 5 (-2)-1.

For any n 2 2, using the bound
a
g(ao, ..., an-1) <2 [%1] an-2 = Gn-1,

which was proved by P. Erd6s and R. L. Graham [7], we deduce that

212
G(n, 1) <T

We can improve this further by using the bound
2

n—1

n-1

a

g(a01 ey a’l—l) S

obtained by Y.Vitek [23] so that

12
G, t) £ ——m,
n-1

We now find a lower bound. It is easy to see that for the set

{x,2x, ..., (n = Dx, x*}, x = [EL——T] andx*=(n-1x-1,

G(n, )2 g(x, 2x, ..., x") =g(x,x") 2 -3t

n-1

Therefore for any n 2 2, we have



12 <
n_1—3tSG(n,t)_ 1

Very recently Jacques Dixmier [6] improved the upper bound for G(n, t) and

showed that fort>n 22,

G(n,t)=1 ’tl__ ll_l—l} -1

1.4. An analytical form of the Frobenius problem. Define the rational

function f(z) by

1
(1 -2z90 (1 -2%... (1 -:%)

f(2) =

for any complex number z. Then f{z) is the generating function for the number rg(n) of

representations of n of the form
S
n=_ Y a; x;
=
with integral coefficients x; 2 0. So we may write
f@= 2rsnan
n=20

Now it is easy to see that g(ap, a1, ..., as) is precisely the largest integer & for which f

&0 =0.



1.5. The Exact Solution for s = 1.
1.5.1. Theorem. For relatively prime integers a, b, 2 < a < b, we have

(i) g(a, b)=ab—a-b,
(ii) n(a, b) =8& 21 + 1 g) *1

Proof of (i). We first observe that the condition that g.c.d.(a, b) = 1 implies that
(bt:t=1,2,...,a-1}
forms a system of all non-zero residues modulo a.

Now we claim that in each non-zero residue class r(mod a), the largest non-
representable number has the form br—a, 1 St<a-1. Suppose bt —a =xa + yb,
wherel < t<a-1,x20,y2 0. Then b(t—y) = (x+1)a. Since g.c.d.(a,b) =1, it
follows that a| (t—y). Since 0 <y <1, we must have a < ¢, a contradiction.

Therefore by definition,

g@a,b)y=max{bt—-a:1t=0,1,2,...,a-1},
=ba-1)-a.
This proves (i).

Now we show (ii). We need a Lemma.

1.5.2 Lemma. Let g.c.d.(a, b) = 1. Then gxactly one of the integers x and g(a,
b) — x belongs to Sp(a,b), for each x, 0 < x < g(a, b).
Proof of the Lemma. We note that for any x < g(a, b), both x and g(a, b) — x can not
be representable by a, b. Otherwise,

ga, b)=(g@a, b)—x) +x

would be representable by a, b. In other words,




(6) x € Sp(a, b) implies that g(a, b) —x ¢ Sp(a, b).
On the other hand, suppose x ¢ Sp(a, b). As g.cd.(a, b) = 1, we can find non-
negative integers m, n such that

x=ma-nb.

Ifm2b,thenwritem=jb+k,0<k<b-1landj21.

Now, x = jba + ka — nb, and therefore x = ka — (n —ja)b,0 <k <b - 1. Since
x is non-representable by @, b,n—ja2 1. So we can write x in the form
x=ma-nb
where 0 <m<b-1andn21. Now
gla,by—x=ab-a-b-(ma—-nb)y=b-m-1)a+ (n-1)b.
Since m < b~ 1 and n 2 1, the coefficients b—m — 1 and n — 1 are both non-negative.
This shows that
@) x & Sp(a, b) implies that g(a, b) — x € Sp(a, b).

From (6) and (7) it follows that exactly one of the numbers
gla,b)-xand x
is representable for all 0 Sx < g(a, b).
Proof of (ii). From the above Lemma it follows that exactly half of the members in the
set {0, 1, ..., g(a, b)} belong to Sp(a, b). This proves (ii).

10




CHAPTER 2

2.1 Basic results.
2.1.1 GivenasetS = {ao, ay, ..., a5} of relatively prime integers, 1 <agg<a; <...<
as, suppose some a; is representable by ag, ay, ..., a; —1. Then it is easy to see that any
integer n is representable by ay, ay, ..., a; if and only if n is representable by {ao, ay,
...,as\{a; }. Hence

Sp(S) = Sp(S ~ {ai})
This implies that we can delete a; from the given set .S without affecting the value of

g(S). Hence we may assume that no g; is representable by the preceding ones.

2.1.2 Definition. We say that a set of integers S = {aq, a1, ..., a5}, ]l <ag <a; <

... <ayg, is independent if no q; is representable by ag, a1, ...,a;—1fori=1,2,...,s.

11



Remark. Note that any given set S of positive integers always contains a maximal
independent set S°. By 2.1.1 g(S) = g(S°). Therefore it is no restriction to assume that

S is independent.

2.1.3 Definition.. Given a set S = {aq, a1, ..., as} of relatively prime integers, we

denote by t, =t (ag, ay, ..., as) the smallest integer = r (mod ag) such that

s

(1) tr= Ya;iXxi
i=1
for non-negative integers x;.
It is trivial that for r = 0, t, = 0. By the definition of #,, it follows that 7, —ag is
the largest integer = r (mod ag) which can not be expressed in the form

s

(2) r= Yajx;

i=1

for any non-negative integral coefficients x; From this we obtain

2.1.4 Proposition [3]. Let g.cd. (ao, ai, ..., as) =1. Then

3) glag, ay, ...,a)=max {t,:r=0,1,...,a9-1} - ap.
2.1.5 Remark. We may use any g; instead of agin the above Proposition.
The number of positive integers which can not be represented by ay, ay, ..., as

is easily determined by considering the positive integers < ¢, in the residue class r (mod

ap), say,

12



{r,r+ag,r+2agp,....r+mag=t,}
where 1 <r <ag - 1. All integers in this set < #, are non-representable by the definition
of r,, Now

which is precisely the number of positive integers non-representable by ay, 4y, ..., @s in
the residue class r (mod agp). Thus, using the notation
R(ag) = (1,2, ...,a0-1}

we obtain
apg -1

z tr—r
n(a09 ay, ..., aS) = rTO_

r=1

which we state as follows.

2.1.6 Proposition. Let R(ag) = {1, 2, ..., ag - 1} and let ag, a1, ..., a5 be

relatively prime positive integers. Then

1 -1
4 n(ag, ay, ..., ds) = [a—o ¥ ,r) _107_ .
re€ R(a)

Letd = g.cd.(a1, ..., as) so thatg;=d b; fori=1, 2, ..., s. Since g.c.d. (ap,
ai, ..., ag) = 1, we have g.c.d.(ag, d) = 1. For any residue r (mod ag) we define as in
2.1.3

ur=t,(ag, by, ..., by).
Then there exist non-negative integers y; such that

5) Uy= ilbiy.-,
it =

13



k)
so that du, = ,lei biyi
i =
k)
(6) duy = i}_:?i)’i-

Clearly the last sum is = dr (mod ap) and it is the smallest integer = dr (mod ag) which
is representable by ay, 4y, ..., as. If this is not the smallest, then the right hand side of
(5) will not be the smallest integer representable by ag, by, ..., bsand =r (mod ap).

Hence by the definition of t4r = t4, (ag, ay, ..., as), we must have

N
= X4iYi -

Thus we get from (6)
¢)) tar=duy
for any residue 7 (mod ag). Since d and r are relatively prime,
{r:r=0,1,...,a9-1)={dr:r=0,1,...,a0-1}.
By 2.1.4 we have now from (7)
g(ag, a1, ..., as) +ag=d - {g(ag, by, ..., bs) + ap)
which yields

2.1.7 Lemma [3]. Let g.cd. (ag, ay, ...,as) =1. Letd = g.c.d.(ay, ..., as). Then

® 7 glag, ay, ...,as)=d'g(ao , a?il- s een s a—fi—)+a0(d—l).

This is a very useful reduction formula which we we will be using very often

throughout our work. For s = 2, this result was first proved [9] by S. M. Johnson.

14




We use (4) and (7) to deduce a similar reduction formula for the number of non-
representable integers.

From (4) we have

1 -1
n(agp, ai, ..., as) =2 Y tar - £0_2____
r€ R(a)
1 ag -1
=a, 29 -7
r € R(a)
1 -1
=o Td-r +g  Tdr - 40— >
D rer(a) re R(a)
d -1 -1
@ Y (ur—r) + d(a—QT—) — _292_
rer(a)
=dn(a0,a71, ’_qfi_) +%(d— 1) (ag—1).

We give below a combinatorial proof of the above result.
2.1.8 Lemma. Let g.cd. (ag, ay, ...,as)=1. Let d = g.cd.(ay, ..., a5). Then

n(ag, ai, ...,as)=dn( ao , a_‘% s eee s -gé—)+ n(ag, d).

Proof. Define the sets
A= {x:x¢ Sp(ag, ai, ..., as)},
B = {x:x¢ Sp(ag, by, ..., bs)},

15




C = {x: x¢ Sp(ap, d)},

Di={iag+dy:ye B}, fori=1,2,...,d-1,

dB={dx:xe Bland D=D1uD2V ...UDg.
We will show that

A=dB)uvCuUD.

First we show that (dB) W C uUD ¢ A. If x € dB, then x = dy where y € B.
Ifdy ¢ A, then

S
dy =agxg+ .Zlaixi-
1 =

Consequently d divides agxg. Since g.c.d.(d, ap) = 1, d divides xg, But then

y=ao(£dq) + Zs',bixi

i=1
which implies that y ¢ B, a contradiction. This shows that dB ¢ A. It is easy to see
that C ¢ A. We now show that D; ¢ A for eachi. Let x € D;. Then x =iag + dy, ye
B. We have to show that x € A. Suppose x ¢ A. Then
x=mag+d iil bixi, m, x; 2 0, being integers.

We may write m=pd +r,p 20,0 <r <d-1 so that
S
x=rao+d(xoao+ > b,-x,-) .

1=
Since x € D;, we have

iag + dy = rag + d | x0a0 + il bm) ,
=
so that (i-r)ag +dy=d (xoao + .Zsl bix ,')
=

Clearly d| (i—r), say i—r =qd, q an integer.
Case 1. Letg=0. Theny ¢ B, a contradiction.

16




Case2. Letg21.Then r+qd= i Buti<d-1. Asr 20, this is impossible.
Case3. Letg<-1. Then r=i-qgd2i+d2=d+ 1, a contradiction.
Therefore x € D; implies that x € A, for each i=1, 2, ..., d-1. Hence we have

9) @dB)uCuD CA.

Next we show that A dB) v CuD.

Suppose that x ¢ (dB)U CuUD. Thenx ¢ dBandx¢ Candx¢ D. Since x
¢ C, x =maq + nd where we can assume that 0 <m<d-1andn=20. Since x¢ D,
we must have m = 0 or n¢ B.

If m=0,then x=nd.If ne B, then x € dB, a contradiction. If n¢ B, then n
=xpdg + X1b1 + x2b2 + ... + xsbs so that |

nd = xodag + d(x1b1 + x2b2 + ... + x5by).

That is, x = nd = xodag + x1ay + x2ap + ... + x;a; which implies thatx ¢ A.

On the other hand if n ¢ B, then n is representable by ag, by, ..., bsin which
case x = mag + nd is representable by ag, ay, ..., as. Therefore x ¢ A. Hence

(10) Ag @B)uCuD.
From (9) and (10) it follows that A=(dB)uw CuUD.
By definition of the sets B, C, D, we easily see that

|dB| =|B| =|D,~|=n(ao N —"fi—)

foreachi=1,2,...,d~-1 and |C|=n(ap,d).

We now show that the sets dB, C, D; are pairwise disjoint.
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If x € D then x € D; for some i. By definition of D; we see that x € Sp(ag, d) so that x
¢ C. Therefore CND =@.

If xe dB then x =dy,y € B. That is, x = 0eag + dy,ye B so that x ¢ D; for any i.
This implies that x € D and therefore D " dB = .

Finally if x € dB then x =dy, y € B which shows that x € Sp(ag, d). Thatis,xe C.
Therefore C "dB = .

Since |A |= n(ay, ay, ..., as), we get

n(ag, ai, ...,as) = d n(ao , 071 s eee s -gfj-) + n(ag, d).

The numbers ¢, r=1, 2, ..., a9— 1, are related in a nice way. This is given by

the following proposition.

2.1.9 Proposition. Let ag, ay, ..., as be relatively prime positive integers

Suppose for each integerr,0< r<ap-1,

S
= Y aix;r, for integers x;r 2 0.
i=1
Then for every j with xjr 2 1, t,—aj=1, for some m.
Proof. Suppose, for simplicity, x1,2 1. Lett,—aj =k (mod ag). Write Tg =t —aj.
Then, by definition, we have ty <Ty If # <Tg then ty <t,—ay. Butthen # + a)
<t Since 1t + ay=k+ay=t,=r (mod ag), we see that the last inequality

contradicts the fact that ¢, is the smallest representable number congruent to r modulo

ag. Hence we must have 1 =Ty,
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2.2 Two known algorithms for computing g(a, b, c).

2.2.1 The problem of finding the numbers ¢, occuring in 2.1.4 is in general not easy
even by using computers. It seems that for three variables a, b, ¢, S. M. Johnson [9]
was the first one to develop a method to find g(a, b, c¢). Later, A. Brauer and J. E.
Shockley [3] found a simpler method to find g(a, b, ¢). The latter method is to find the
set of points (x, yr), with integer coordinates x,, y» 2 0, so that the expression
bx,+cy,

assumes precisely the value t, = r (mod g) at (x,, y,) foreachr=1,2,...,a-1. In
the next chapter we will develop a similar method to get an upper bound for g(S) for
any set S of s+ 1,5 =2, relatively prime positive integers. Now we give an outline
of the the method [3] for finding g(a, b, c) where a, b, c are relatively prime
positive integers.

By Lemma 2.1.7 it is no restriction to assume that the three integers are
relatively prime in pairs. We will also assume that none of the three numbers is a non-
negative linear combination of the other two. Thus the three numbers are independent.

Define the function

(11) Hx,y)=bx + cy.
Consider the congruence
(12) bx —cy=0 (mod a).

We first show that there exists a solution to (12) satisfying

0<x,<a,0<y,<a.
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Taking y, = 1, bx, = 0(mod a). Now g.c.d(c, b) = 1 and therefore there exists x, such
that bx,—c = 0(moda). If x,>athenx,=pa+q,0<qg<a-1.Ifg=0thenc=
O(mod a), a contradiction. Therefore 0 < ¢ < a — 1. Hence there exists an x, such that
0 <xr<a-1andy, = 1 satisfying bx, — cy, = 0 (mod a). Consider the set S of all
integer solutions (xy, y,) to (12) satisfying 0 <x,<a,0<y,<a.

We claim that in S there is a solution (x,, 1) such that

(13) bx,—c>0

Suppose bx, — c= —sa, s 2 0. Then ¢ = bx, + sa, in which case ¢ € Sp(a, b), a
contradiction.

Thus there exist solutions (x,, y,) to (12) satisfying

0<x,£a,0<y,<aand bx,-cy,>0.

In the same way we can see that

(13) 0 <cy-bx=0(mod a),and0<x<a,0<y<a

has solutions (x, y), for example x = 1 leads to such a y.

Let (x1, y1) be the solution of (12) with smallest x, and (x2, y2) be the solution
of (13) with smallest y. Define x3 = x1 — x2, and y3 = y2 —y1. We now show that x3 >

Oand y3> 0.

From (12) and (13) by addition we get
0<(x1-x2)b +(2-y1) ¢ =0(mod a)
Define x3 =x1—x2,and y3 = y2—y1. If x;—x2 <0, then we get a contradiction
from (13) to the choice of y; and if yp —y1 <0, we get a contradiction from (12) to
the choice of x1. Moreover x; —x2 # 0, and y3 —y; # 0. Otherwise if x; —x3 =0,

then 0 <(y2-y1) c=0 (mod a). Asyj,y2<a, and g.c.d.(a, c¢) = 1, the congruence
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(y2-y1) ¢ =0 (mod a) is impossible. Similarly one can see that y; — y; # 0. Therefore
(x3, y3) has both coordinates strictly positive.
Define the rectangle R by
R ={(xy): 0sx<xjand 0Sy<ys}.
For each non-negative integral point (x,y) notin R, consider H(x, y). If
H(x, y) =r (mod a), then we are interested in finding #,. If x 2x;, we choose
U=xX-Xx1,v=y+yi,
so that by using (12),
H(u,v) = H(x,y) - bx1 + cy1 =H(x,y) (mod a)
and Hu,v)< H(x,y).
Ify 2ys, weset
U=X+x2,Vv=y-ys,
Using (13) we see that
H(u,v) = H(x,y) (mod a)
and H(u,v) < H(x,y).
We continue this procedure until we reach a point in the region R. We can
show that we will obtain a point in R. Otherwise if there is an infinite sequence (xi,
y1), (x1, ¥1), ..., all lying outside R then H(x, y) < H(x1, y1) < ... shows that { h(x,,
yr)} is a decreasing sequence of positive integers congruent to H(x, y)(mod a) which is
not possible. For example if H(x, y) = pa + r, 0 < r < a, then the procedure brings (x,
y) to a point in R in almost p steps of successive translations.This shows that H(x, y)
assumes a value =7 (mod a) in the rectangle R for each r (mod a).
Now we can also show that (x3, y3) is the point with least positive coordinates

in R such that H(x, y) =0 (mod a).
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Suppose (p, ¢) is any point in R such that H(p, q¢) =0 (mod a). Then pb + gc =
0, and x2b — y2¢ = 0 (mod a). Therefore (x2 + p)b — (y2 — q) = 0 (mod a).
If p < x1 —x2, then x2 + p < x1, and the last congruence contradicts the choice of xj.
Therefore p 2 x1— x3 = x3. Similarly, we get ¢ 2 y2 —y1 =y3. Thatis (x3, y3) is the

point with least positive coordinates in R such that H(x, y) =0 (mod a).

Now consider the region U given by

U={(xy):0sx<xjand 0<y<y3ju {(x,y) : 0sx <x3and 0 <y<y3}

If (§, n) is a point of R not in U, then

H(G, M =H(¢ -x3,n - y3) (mod a)
and H( n)>H(E -x3,1 —- y3).

We now show that the function H assumes all residues mod a in the smaller
region U. Thatis if t, = b, + cfB, = H(oy , By), then (04, ;) is not in R we can apply
the translation procedure and bring it to a point (p, q) in R such that

H(@,q)=H(a, p) and H(p, q) <H(er, Br) .
But H(c, , B,) being the least representable integer = r(mod a), this is not possible.
Thus (o, Br) € R. But then (¢, B;) € U, for otherwise

H(ar —x3, Br—y3) <tr.
Therefore if ¢, = H(a, , B;), then (o, , B;) € U. Moreover if there exists another point
(&', B, )in U such that H(ay , B;) = H(a, , By ) then
Br—Br | <3

* * *® *
Therefore (ay — 0y )b +(B,— B, )c = O(mod a). If o, — ¢, and B, — B, are both

*
O<|a,—a, |<x1,0<

positive then the same congruence contradicts the fact (x3, y3) in U has the least
positive coordinates such that bx3 + cy3 = 0(mod a). If o, — a,* and B, - [3,* are both

negative then we get a similar contradiction again. If these have opposite signs then we
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get a contradiction to (12) or (13). Therefore H(x, y) assumes least positive numbers
in each residue class mod a in U.
Therefore by Lemma 2.1.4, we get
gla,b,¢c)=max{x1b+y3c,x3b+ y2c }—a.

We have shown below the region U.
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Example. The following example used by S. M. Johnson [8] is often referred to in the
literature. Let a = 137, b =251, ¢ =256. The solution (x}, y1) of congruence (12) 0
<bx-cy=0(moda),is (13, 9). The solution (x 2, y2) of (13) is (5, 14). Then (x3,
y3) = (8, 5). Therefore we have
g(137, 251, 256) = max{12 (251) + 4(256), 7(251) + 13(256)}) - 137
= 4948.

2.2.2 Another algorithm to find g(a, b, ¢). Another well known algorithm for
the computation of g(a, b, c) is given by E. Selmer and O. Beyer [20] by considering
the convergents of a finite continued fraction expansion of Tao- where the integer s is
determined by

(14) bsop=c(moda), 0<sp<a.

This algorithm has been modified and a simpler one is given by O.J.Rédseth [18 ].
The outline of the latter method is as follows.

If g.c.d.(a, b) = d, then by the reduction formula in 2.1.7 we have

g(a.b, c)=dg(‘j—,, 2, c) +@d-1)

so that we may assume g, b to be relatively prime. If ¢ is representable by a, b then
gla,b,c)=g(a,b) =ab-a-b. Sowe can also assume that sog#0. We use the

euclidean algorithm to obtain

a=s_| =q1 50 — 51, 0<s <50;
50 =q251— 52, 0<s2 <s1;
51 =q352—53, 0<s3 <s52;

(15)
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Sm =2 = dmSm-1 —Sm» O0S<spm <Sm-1;

Sm—1 qm+1Sm, 0=Sm+1<5Sm.

Define integers P; by P_1=0,Pg=1, and
(16) Piv1=qi«1Pi -Pi_1,i=0,1,..,m.

We write =31 = Since q; 22 for all i, it follows by induction

QIR

from (16) that P; +1 > P; Hence

Sm + 1 Sm 50 5_1
0=3%L < . < < =00
Pm+1 Pm Po P_

and there is a unique integer v, — 1 £ v < m, satisfying

Sy+1 _C Sy

The exact value of g(a, b, ¢) is now given by the following theorem.
2.2.3 Theorem [16]). Leta, b, ¢ be positive integers where a, b are relatively prime
and c is not representable by a, b. Then

(18) gla,b,c) = —a+b(sy - 1)+c(Py+1 — 1)—min {bsy 41, cP} where v is

the unique integer determined by (17).

2.2.4 Remark. For the function fla, b, c) the above result looks even simpler.

fa, b, c)=bsy+ cPy4+1 —min (bsy 41, cP}.
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It is also interesting that this algorithm gives the number n(a, b, ¢) of non-
representable integers. The following is proved in [16].

2.2.5 Theorem. Following the above notations,

n(a,b,0) =5 (1 -a +b(sy—sy+1 - 1) + c(Pya1 = 1))
+ 5y +1(Py +1 - Py (bsy — cPy).

2.2.6 Example. It is easy to apply the method in numerical cases. The best known
example used by several authors, for example first by S.M.Johnson [8], is as follows.
Let |

a =137, b =251, ¢ = 256.

The congruence (14) gives so= 108, and applying the Euclidean algorithm (15)
we get
137=2.108 =79, P1=2,
108=2.79 - 50, Pr=3
79=2.50 - 21, P3 =4

50=3.21 - 13, Ps=9

21=2.13 - 5, Ps5=14,

where the numbers P; are obtained by using (16).

Now we find v. We note that
s5 _ 3 256

13
Ps =14 <7251 <9 <

54
Py

and therefore by 2. 2. 3



T

2(137, 251, 256) = — 137 + 251'12 + 256’13 — min{251°5, 256 9)
= 4948,
Using 2.2.5 we find that the number
na,b,c) = %{1 — 137 + 2517 + 256°13 + 5-5-13%( 251°13 -256-9)}

= 2562.

In some cases it is possible to reduce the number of times we apply the
Euclidean algorithm by re-naming the given numbers. For instance, in our present
example let a’= 251, b’=137, ¢’ = 256. We see that 50 =55, so that

251 =555 - 24, Py=5,
55 =324-17, Py =14,

and therefore

We now obtain
g(137, 251, 256)
=-251 + 13723 +256'13 - min{137°17, 256'5} = 4948,
and

n(137, 251, 256)

N f—

{1 -251 + 1376 + 256°13 + 1.7'9'213(137'24 - 256'5)}

2562.
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2.3 The exact solution for g(a, b, c) when b +c = 0 (mod a). Given
relatively prime integers 1 < a < b < ¢, the reduction formula (8) in Lemma 2.1.6
implies that we may assume that each pair of the integers a, b, ¢ is relatively prime.
We may also assume that the set {a, b, c} is independent. A. Brauer and J..E.
Shockley [3] determined the value of g(a, b, ¢) as an explicit function of a, b, ¢
when b +c¢ =0 (mod a). We determine the exact value of g(a, b, ¢) in the case of b
+ ¢ =0 (mod a), by using a completely different method and we get a different

formula. We need also g.c.d.(a, b) = g.c.d.(a,c)=1.

2.3.1 Lemma. Leta,b, c, 1< a <b <, be relatively prime integers with g.c.d. (a,

b)=gcd(a,c)=1and b +c =0 (mod a). Let

m = [%] A= (b,2b,...mb}, B ={c, 2, ..., mc — &)

where

(19) 5= { lf), if a is odd

if a is even

Then A U B contains a complete non-zero residue system mod (a).

Proof. Since g.c.d. (a, b) = g.c.d. (a, c¢) =1, the sets A and B each have distinct non-
zero residues moduloa. Let 1Si<mandl1<j<m-4.
Suppose ib € A and jc € B satisfy ib = jc (mod a), then

ib = — jb (mod a), since b + ¢ =0 (mod a)
That is, (i +)b=0 (mod a)
Since g.c.d.(a,b) =1 andi +j# 0, we must have i +j=1ta for some integer ¢ 2 1.
But

i+jSm+(m-06)<a-1.
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Therefore we can not have
ib= jc (mod a)
forany 1<i<m and1<j<m-4. ClearlyO ¢ Aand 0¢ B. Thus A U B contains

a complete non-zero residue system mod (a).

2.3.2 Lemma. Leta,b,c,m, d be as in Lemma 2. 3. 1. Then for any integer x
with 1 £x<m,
mb + xb =mc - xc + (1 — 6)c (mod a).
Proof. Since xb = — xc(mod a), we only need to show that
mb =mc + (1 - d)c (mod a)
If a is even, then a = 2m and mb = — mc = mc (mod a).

If a is odd, then a = 2m + 1 and mb = —mc = (m+1)c (mod a).

2.3.4 Theorem.. Leta,b,c, 1 <a <b <c be relatively prime integers with g.c.d.
(a,b) =g.cd.(@c)=1and b+ c=0(mod a). Letm and 6 be as in Lemma 2.3.1.
Then

gla,b,c) = max {(mb+ab,mc-ac—-6c}-a.

where

o = [(c — b)m +c(1 - 5)].

c+b

Proof. Following the notation in 2.1.3, for r=1, 2, ..., a - 1, let t, denote the least

positive integer = r (mod a) and representable by b and c. By Lemma 2.4.1, AUB is
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a complete non-zero residue system mod g. Our aim is to find the minimum residues

tr for r=1,2,...,a—1. Consider the following list of multiples of b and c.

COLUMN 1 COLUMN 2
b c
2 b 2 ¢

mb m ¢

We observe the following.
1. The numbers in each column are increasing.
2. In each non-zero residue class modulo a, the smallest number
representable by b and ¢ has the form xb or yc, where 1<x<a-1,1<y
< a-— 1. (For if x > y then xb + yc = (x — y)b (mod a), and if x <y, then xb +
yc = (y —x)c (mod a@).) Therefore it is enough to consider the first a
rows in order to find the minimum residue foreachr= 1,2, ...,a-1.
3. The first m rows contain a complete non-zero residue system

modulo g by Lemma 2.3.1.
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4.1If aiseven, the numbers below mb are respectively congruent mod a to
the numbers above mc, by Lemma 2.3.2.

5. If a is odd, the numbers below mb are respectively congruent mod @ to the
numbers above (m + 1)c, by Lemma 2.3.2.

It is easy to see that each of the numbers b, 2b, ..., mb in column 1 is a
minimum residue. That is, for 1 <i<m,
tip=ib.
We have two cases now.
Case (i) Suppose mb + b >mc - &¢.
Since mb + b =mc — &¢ (mod a),
Imb+b S mcC — &c.
But mc — 8¢ is neither congruent to any number above it in the second column nor
congruent to any number above mb+b in the first column. Hence typ+p = mc — b¢.
For x= 1,2, ..., m- 6, we have
mb + b +(x - 1)b >mc - éc - (x -1)c.
Moreover, the two numbers on either side of the above inequality are congruent by
(22). Therefore each of the numbers ¢, 2 ¢, ..., (m — 8)c in the second column is a
minimum residue. In other words the set AUB is a set of minimum residues so that
{(ib:i=1,2,...m}u{jc:j=1,2,....m-6)
forms a complete system of minimum non-zero residues mod a. Thus we obtain
g(a, b, c) =max{m b, (m — d)c} —a. The theorem is proved in this case if we show a
=0. In fact,
mb + b >mc - b

yields ¢ + b > m(c — b) + ¢(1 — 8) in which case
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_|c=bym+c(1-8)|_
a-[ c+5b ]_0‘

Case (ii). Suppose mb + b <mc - c + (1 — 8)c. Then we can find a positive integer o
such that a is the largest positive integer with

mb+ab<mc-ac+(1-9dc.
That is the set B does not form a system of minimum residues. Since by (22)

mb + xb=mc —-xc + (1 - d)c
and mb+xb<mc-xc+(1-06)c
for any integer 1 <x < ¢, we certainly have

tmb +xb S mb + xb.
Let mb + xb =ry (mod a). Then ry (mod a) appears as mb + xb in the first column for
the first time and in the second column it appears as m ¢ —xc + (1 — d)c for the first
time. Since each column is increasing,

tr, =mb +xb.
If x > ¢, then

mb +xb >mc—-xc +(1-0d)c

and therefore the numbers

¢,2¢ ...mc—(ax +1)c+(1-06)c
are minimum residues mod a. Hence

{b,2b,....,mb+ab}u {c2,...mc-ac +'(1 -06)c}

forms a complete system of minimum non-zero residues mod a. This gives
ga, b, ¢) = max{mb +ab, mc — oc — &} —a

where « is the largest non-negative integer such that

33



23) mb+ab<mc-ac+(1-06)

which yields

- =|:(c - bym + c(1 - 6)]'

c+b

2.3.4 Example. We shall find g(9, 16, 20).

Herem=4,8 =0, ot = [(20‘ 1;5%4 + 20] = 1. By Theorem 2.3.4, g(9, 16,

20) = max{5b,3¢c} -9=80-9="71.
Directly, by finding the number ¢, r =1, 2, ..., 8, in each residue class {7, 7+9,

r+ 18, ... }, we get the same result.

2.4 Extending {a, b} to an independent set {a, b,c }. Most of the
difficulties of finding the exact solution of the Frobenius problem for s 2 2 appear to
be contained in the case s =2. So we study the effect of extending any given set {a,
b} of relatively prime integers 1 <a <b to {a, b, c}where ¢ is non-representable by

a, b. Then we have the following.

2.4.1 Theorem. Let {a, b, c },1 <a<b <c, be relatively prime integers. Let
(a, b) = 1. Let c be non-representable by a, b. Then
@®  g@ab,o) < glab) -a,
(ii) if ¢= g(a,b), then g(a,b,c) = g(a,b) —a,
and (i) if ga, b, c) = g(a, b) —a, then b divides (a + ¢).

Proof. According to Lemma 1.5.2, exactly one of the numbers

gla,b)—x and x
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is representable by @, b forall 0 <x < g(a, b). For1 Sx<a-1,itis trivial that xis
non-representable and therefore g(a, b) — x is representable by g, b. In particular,
g(a, b) — x is representable by a, b, ¢ for every x with 1 <x<ag-1. Since cis
non-representable by a, b, it is necessary that ¢ < g(a, b). Hence g(a, b) — c is non-
negative and since c is non-representable, g(a, b) — ¢ is representable by a, b. It now
follows that g(a, b) is representable by a, b, c. That is,

gla,b) —x, 0£x<a-1
is representable by a, b, c. However, if an integer n > g(a, b), it is representable by a,
b (and c¢). This shows thatif n 2 g(a, b) —(a—1), then n € Sp(a, b, ¢)
We therefore conclude

gla,b,c) < gla,b) - a.

This proves (i). We now show (ii).

Suppose ¢ = g(a, b). Since a is in Sp(a, b), g(a, b) —a ¢ Sp(a, b). Further
since g(a, b) —a<c,
gla, b) —a ¢ Sp(a, b, ¢).
However, any integer n 2 g(a, b)-(a-1) is in Sp(a, b, c), by the above
theorem. It now follows that

gla,b,c)=g(a,b) —a

To show (iii), let ¢ be non-representable by a, b. Let ¢ < g(a, b) and
gla,b,c)= ga,b)- a.
Since 1,2, ..., a— 1 are non-representable by a, b we see that g(a, b) -1, g(a, b) -

2,..., gla, b) —(a —1) are representable by a, b. Therefore ¢ < g(a, b) —a. By our
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assumption g(a, b, ¢) = g(a, b) — a and hence ¢ < g(a, b) — a. We assert that a + ¢
is representable by a, b. For, otherwise if
gla,b)y— a- ce Sp(a,b)
then
ga,b)~- ae Sp(a,b,c).
This contradicts the fact that g(a, b, ¢) = g(a, b) — a.

Now let
(26) a+c=ax+by,x,y being non-negative integers.
We must have x =0. For, if x21,thenc = a(x — 1)+ by, and consequently ¢ €
Sp(a, b), a contradiction. From (26) it follows now that

bl(a+ o).

2.42 Remark. Suppose now that g(a, b,c) =g(a,b)—a and a+c=kb.

Casel. a22k+1.

Now
gla,b)-a =ab-2a->b
=[a-Q2k+1]b+2c.
22c¢
Case 2. a<2k+1.
Now,
(a 31)b< kb =a+c.
ab-b<2a+2c
That is, gab)—a=ab-2a-b <2c.
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2.4.3 Remark. In general if S is an independent set of relatively prime positive
integers and if S is extended again to an independent set S ‘=S U (¢}, say, then
8(§ ) < g(8). It is possible to have equality as in the above example. Indeed, if S is
any non-empty set of relatively prime integers and S ‘contains S, then g(§) <

8(8).

2.44 Remark. If c € Sp(a, b), then we have g(a, b) = g (a, b, ¢). On the other
hand, by (i) of 2.4.1 if we extend a given set {a, b} of relatively prime positive integers
to an independent set {a, b, ¢} then

g (a,b,c)<g(a,b).

However this is not true for more than three variables. Suppose we have the
set {5,7,9 }. The numbers form an arithmetic sequence and therefore we use the

formula in [1], namely

2@, a+d, ... a+kd =[g-_k—2]a+(a-—l)d,

and obtain g(5, 7, 9) = 13. Now take one more element 11 and consider the set {5,
7,9, 11 }. We note that 11 is non-representable by 5,7, 9. We see that
265,7,9,11) = 13

which is exactly g(5, 7, 9).

Using the ' reduction formula ' (8), Lemma 2.1.7, we can deduce easily the

upper bound obtained by A.Brauer [2 ].

2.4.5 Theorem. Let agp, ay, ..., as be positive integers such that

d; = g.cd.(ag, ay, ...,ap),i=1,2,...,5s-1.
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Letdp=ap, and ds = 1. Then

5%

dj .
g(aO’ala-"’as) < a; (_d‘_ll_ - 1 )—ao

Proof. We prove this by induction ons. For s =1, by 1.5.1 we know that
g8(ag, a1) =ay (ap— 1) -ap
= a) ( %(ll - l)—ao
sinced] =1 and dp = ap. Therefore the theorem is true for s = 1. Now lets 22. By
using the result (8) of Lemma 2.1.7, we have

g(ag, ai,..., ay)

= aQ a] as 1 _

- ds—lg(ds-l ’ dS—l ’ eee dS—l » Qg )+ (ds—l l)as
a0 al as -1 _

<ds-1 g( ds_q1 *dg_1 * ds—l)+ ds1-1)as

using the remark 2.4.4. We can apply our induction hypothesis to the s elements

A 4 v ooes Z5=L yhich are relatively prime. This yields
ds -1 ’ds 1 ds -1

g(ag, ay,..., ag)

< ds_1 ol G R I et GRCRERT
: s -
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Hence we have

g(aO’ al [IXRT) aS) S : 'al

i=1
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CHAPTER 3

3.1 Upper bounds obtained by using additive number theory.

3.1.1 Definition. Given a positive integer @ and non-empty subsets A, B of non-
negative integers, the set
{x+y: x €A, yeB}.
of all distinct integers of the form x +y is denoted by A + B or simply by A +B. It
is convenient to write A + A as 2 A and more generally the m—fold sum by mA.
By using a strong form of a theorem by M.Kneser, (Theorem 16 ', [8 ]), it

was shown by P. Erdos and R. L. Graham

3.1.2 Theorem Let S ={aj,as,...,ap, },1<aj<az<..<a, be aset of

relatively prime integers. Let m = ‘—;ﬂ . Then

(D 88)< 2map_1-an
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3.1.3 Remark. Let S = (a1, ay, ... a,-1, an} and let S(b) denote the set of residues
mod b of elements in S. Consider the set
S(ap) = (a1,a2,...,an-1,0}.
It was shown by Erdos and Graham that the set
2m S(ap) = S(ap) + S(ap) + S(ap) + ... + S(ap),
(added 2 m times mod a,) contains a complete system of residues (mod a,).

So we may write
n
Tr= Yaix;

i=1

where the coefficients x; are non-negative integers satisfying

n
S xi £2m.
i=1

It must be noted that the number T, need not be the smallest number representable by
a1, a2, ..., an for each residue r (mod ap).

E. Selmer [19] points out that instead of a, we can take the least number gj in
the given set S and assume that the set S is independent so that S(a;) consists of

distinct incongruent residues mod a;, Then (1) becomes
@) gS) < 2[";}] an —ai.

This is an improvement of (1). If T,” denotes the smallest positive integer = r (mod

ap) and representable by aj, a2, ..., ap, in the form
n
T, = Y aiyir

1=

then it was mentioned in [19] that
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Yir< 2 |:‘_1n_l_:|

foreachr=1,2,...,a1 — 1. This is not true for the smallest representable number
tr. For example consider S = {5, 11, 19 }. It can be easily calculated that

n=11,1 =22,13= 33, 14=19.
Now r3= 3.11 so that the sum of the coefficients is 3. But 2 [g;l] = 2.

If S contains an element g; which is relatively prime to every aj, j # i, then we
can use the following theorem [8] in additive number theory and deduce a sharp upper
bound for g(S) as shown below.

We remark that if S is independent and z € S, then the elements of S — {t}

must be pairwise incongruent modulo z.

3.1.4 Cauchy - Davenport — Chowla Theorem. Let t be a given positive
integer, A = {ay, ay, ..., a;}, a subset of r incongruent residues mod ¢, and B = {0, by,
bz, ., bs_1]}, a subset of s incongruent residues mod ¢. Let ¢ be relatively prime to
each bje B. Then A + B contains at least min(r + s — 1, t) incongruent residues mod

t.

3.1.5 Theorem. Let S = {ag, a1, ..., as}be independent. If S has an element, say f,
such that ¢ is relatively prime to every member a; # ¢, then

glag, a1, ....,ap) Smemax{a;:a;#t } -1,

wherem=l:t ; 1] + 1.

42



t—1

Proof. If m =[ :I + 1, then ms 2 r. Let addition of sets be taken modulo ¢. By

the above theorem, taking A =S, B =S - (¢}, we get \x\le\ri(25(mod 7)) 2 \x\le\ri((A
+ B)(mod 1)) 2 ... min{t, s+1 + 5— 1 = 25}. By successive application of the theorem

it is easy to see that

| mS l 2 min{t,ms} =t.
Hence mS contains a complete system of residues mod r. Let ¢, denote the smallest
non-negative integer =r (mod f) and representable by ap, a 1, ..., as. By Lemma 2.1.4
we have g(S)=max {t, : r=1,2,...,t-1}-t which implies that

g(S) Sapxp+ayxy+...+asxs —t,

where the sum of the coefficients x; is at most m.

Therefore we may write

g8 < { gx,- Jmax{ai:aiaet}— t
i=0

g(8) Sm.max {a;:a;#t }-1t.

Sharpness for s = 1. If s = 1, then we may choose ¢t =agp so that m=ap—1
and therefore g(ag, a1y < m'ay —ap= (ap— 1)aj — ap, which is exact.

A variant of Theorem 3.1.4 is also useful to deduce an upper bound for the case

where S = {ag, a1, ..., agjcontains some element, say ¢, such that 0 has no
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representation of the form a; + aj= 0 (mod 1), except when ag;= aj= 0 (mod 1). We

need the following result.

3.1.6 Theorem (Kemperman and Scherk [8, p.50]). Let ¢ be a given integer. Let
A={0,ay,...,a,_1} bea given set of r incongruent residues mod ¢ and B = {0, b;,
..., bs_1} be a given set of s incongruent residues mod ¢. Let a; + aj=0 (mod 1) if
and only if g;=0 (mod ) and aj=0(mod r). Then A + B contains at least min {t,r
+ 5 — 1}distinct residues modulo ¢.

Using this theorem, we can alter the hypothesis of Theorem 3.1.4 accordingly.
For certain sets S, this results in an improvement of known upper bounds. We state

formally

3.1.7 Theorem. Let S = {ag, ay, ..., as}be an independent set of positive integers 2
2. Suppose S has an element ¢ such that g; + ;= 0 (mod ¢) if and only if a;=0 (mod ?)
and g;= 0 (mod 7). Then

glag, ay, ....,as) Smmax{aj:a;+t}) -t

where m = [%] + 1.

Proof. The independence of S ensures that the set S(f) of residues mod ¢ will be a
set of incongruent residues mod z. The rest of the proof is exactly similar to that of

Theorem 3.1.4.
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As mentioned before, the above bound is sharp for s = 1. We now compare
the bounds obtained by using the Theorems 3.1.5 and 3.1.7 with some known upper

bounds.

3.1.8 Example. S = {137, 251, 256 }. Since 137 is a prime and the numbers 251
and 256 are incongruent mod 137, we can apply theorem 3.1.5 (or 3.1.7). Here ¢t =

137, s = 2, max a; = 256 and m = 69 so that
3) g(137, 251, 256) < 69256 — 137 = 17527)|.

We compare this value with the following known bounds.

J.J. Sylvester [21] (@a-D@-1-1 33999
2
aS
Y Vitek [23] [?} -1 32767
M.Lewin [14] [@s e 2)] _1 31749
P. Erds & R. L. Graham [7] 2a5 1[s—“j_——l-] —as.
42414

Now we turn to another result of this type.
3.1.9 Lemma. Let A = {0, a1, a3, ..., a s}be a set of distinct residues modulo ag.

Ifag < 25 +1, then 2 A contains all residue classes modulo ag.
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Proof. Let agp = m. Consider the additive group Z,, of residues mod m. Suppose

there exists an element g in Z,, such that g is not in 2 A. Define the set
B={g—x(mod m): x e A}.

First we show that B is disjoint from A. For, otherwise g —x =y for some y € A,

then g=x+y,x,y € A, which contradicts the fact that g isnotin A + A.

Next, we shall show that A and B have the same cardinality. Consider the
map
xX—=g-x
from A into B. If g —x = g —y, then clearly x =y. Since this map is also surjective,
Al =1BIl. As A and B are disjoint,
1Zy| 21A1+ 1Al =25+2 2ag+1>ap=m,

a contradiction.

3.1.10 Theorem. Let A = {ag, a1, a3, ...,as },1<apg<ai<.. <as, s 22,be
an independent set of relatively prime integers. Letag<2s + 1. Then

g(aO’ ay, az, ... aS) s 2aS_a0'

Proof. Let r; = a; (mod ay), 0<ricapg-1i=0,1,2,...,s5 It
follows from independence that r; # Ofor i =1, 2,...,sand r; # rj(mod ap) for all
i #j. For, if r;=0, for some i 2 1, then @; = ag (mod ap). Since a; >ag, a; has a

representation a; =ag+tagp,t2 1, by ap alone. This contradicts independence.

Now suppose that

r; 2r;j(mod ap) for some i <.
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Then a; = aj(mod ap) so that g;jhas a representation of the form
a; = aj +tag,

Again this contradicts independence.

Let

B= (0, ri,rp,....,rs}.
Then B isa set of distinct residues moday. Nows +1=IBl and 25 + 1 2ay.
Therefore by Lemma 3.1.9, B + B contains all residue classes mod ap. Consider the
set

{ai+aj :0<i<j<s})
Clearly if a; +a;j = r (mod ag), and if ¢, dehotes the smallest integer =r (mod ag)
representable by the ag;'s thent, < g; + a; Therefore

max {t,:re [l,ay-1] }< a5+ ay
Hence by Proposition 2.1.4,

glap, a1, ...,as) S2a5-ay,

This completes the proof.

Example for sharpness. Theorem 3.1.10 gives a sharp bound. If
S = {2s+1, 25+2, ...,35+ 1},

then by [17], we have
8(8) = [—2s < L ](2s+1)+2s= 4s + 1.

By the above theorem also we get

88 <2@Bs+1)-(2s+1) <45+ 1.
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3.2 On the conjecture by M.Lewin.

3.2.1 1. Shur was the first one to obtain an upper bound
4 g8 <(ap-1(as-1)-1
for any set S of s + 1 relatively prime positive integers where s2 1, § = {ag, ay, ...,
as},ap<ap <..., as. This bound was published by A. Brauer [2].
M. Lewin [15] proved that fors 22,

5) £(5) {%(a - 2)2] -1,

where [x] denotes the greatest integer <x, and he also showed that for s = 2, this

bound is sharp. He conjectured [15, page 69] that for any s 21,

(6 g<S)s[“’s =24 - ”]—1.

For a given set S = {ay, ai, ..., as}of relatively prime integers, Y.Vitek [23]

considered the two special cases
(7) Case (i). ao 2 % a;,

(8) Case (ii). S contains distinct residues mod (agp) sug:h that for every divisor r of ag
with r < s such that » does not divide s, the number of residues (mod ag/r) of S is

notl+ [s/r].

In each of these two cases he showed that
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©) 0 < [@=229 [ g1,

Since ag+ s < a5, (9) shows that the conjecture of Lewin is valid in each of these two

cases.

The purpose of this section is to show that the conjecture of M.Lewin is
valid for any s 2 3 in a special case different from the cases mentioned above. In fact

the bound we obtain is stronger than (6) for all s 2 3. Our main theorem is

3.2.2 Theorem. Let S = {agp,ai,asz,...,as },1<ap<aj<.. <as,s22, bea
given independent set of relatively prime integers. Let

QB a4

) < 3 < ...< '
Then

(10) g(ag, a1, az, ...,ag) < [:M';—:s—)].

We first prove a Lemma.

3.2.3 Lemma. Letay, a2, ....,as,1 <aj<... <as, satisfy

a; #aj (mod ay) fori#j.
Let d= gcd.(ai, az,...,a5). Thend < as_l-

Proof. Sruppose d>%1—. Leta; =db; i=1,2,...,s. Letri= bj(mod by),i=1,2,

s 8,0 S ri< by — 1. Suppose r;=rj where i<jthen bj = b; (mod by).
Thatis, bj —b;=1tb) for some integer¢2 1. This implies that

aj— a; =0 (mod ay),
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which contradicts the hypothesis. Therefore the set {ry, 72, ..., 75} has s distinct
non-negative integers < by — 1. In other words

I (r1,r2,....rs) | =g5 £ by <s, which is not possible.

a .
Hence we must have d < Tl . This proves the Lemma.

We now prove Theorem 3.2.2.

Proof of Theorem 3.2.2. Let d =g.cd.(ap, ay, ..., ds-1). The numbers ag, ay, ...,
ag are pairwise incongruent modulo ag. For, otherwise if a; = a; (mod ap) where 0 <i
< j < s—1,then gj= a;+xap for some integer x 2 1, which contradicts the fact
that the set {ag, ai, ..., a5} isindependent. We therefore assume that g; # a;j (mod ap)

for all i#j. Now we can apply Lemma 3.2.3to {ap, ay, ..., a5 1}which yieldsd <

ao_
IR
We now prove the theorem by induction on s.
For s =2, the result follows from (8) and (9) above. Let s 2 3. By Lemma
2.1.7,
(11) g (ag, a1, a2, ...,a5) = dog(a—dQ , a—dL ) e s a—"d;-l- , A ) +d-1)
as.

Also we have

ay ajy ads — 1 ay ai as - 1
(12) g(d’ d’ —&d_—,as)sg(d, d,‘..., d }
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Using this in (11) we get

ds -1

ag a
7,7;,...,—(1—)+ @-1)a

g (ao, a1, ay, ..., a5) < dog(

Using the induction hypothesis, we get

apf ds —1 +1
dl d ~°%
+(d—1)as

g (ap, a1, a2, ...,a5s) <d _1

apas-1 a0
g (ap, a1, a2, ..., as) < d{m —7} t(@d-1as

That is,

agas -1
4 (aO, ai, az, ..., as) Sm+ das - (a0+ aS)°

Define the function

apas — 1
(13) ux) = x(ss—l) + asex
Then,
(14) g (ap, a1, az, ...,as) < u(d) - (ap+ as)

By Lemma 3.2.3, d < a._; and therefore we consider u(x) on J = [1 ,

Clearly u(x) is a continuous function of x onJ, and u”(x) >0 on this interval.

This implies that u’(x) is increasing on J. Therefore the absolute maximum of

. . . a
u(x) onJ is attained eitheratx=1or at x = R

04s - 1

a
Now u(l) = ] ‘T4
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and

a0} _Sas-1 +aoas
Ws )= 51 s

u(l) — u(%) =(ass_‘11)(a0-s) + 2 (s~ ap)

(15) (1) - u("T")=(ao_s) (%_11. _aTs)

Now by hypothesis,

as -1 as
< —
(16) ] S
As {ag, a1, a3, ..., as} is independent, the set constitutes s + 1 distinct residues

mod ap and therefore ag 2 s + 1. This implies
17 ap— s > 0.

Using (17)and (16) in (15), we see that

s

u(l) — u(a—o) <o.

Now (14) yields

ag
g(ap, ay, az, ...,a5) < u(;)—(ao + ays)

sas._ 1 aoas

=5_1 t75 — (a0 + ay)
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so using (16) we get

aoas
glap,a1,az, ...,a5) S— - ap,
That is,
aop(as - $)
gap, a1,ay, ..., as) < [—-s——]

This completes the proof of Theorem 3.2.2.

3.2.4 Example. Consider the set S = {15, 21, 26, 40, 65}. This set is independent
since 21 & Sp(15), 26 & sSp(15, 21) 40 ¢ Sp(15, 21, 26) and 65 ¢ Sp( 15, 21, 26,
40). Since g.c.d.(15, 26) = 1, the set S is relatively prime. Now Vitek's theorem

cannot be applied since the conditions (7) and (8) are not true. That is,

2
(Dag < 3 a4 and

(2) s = 4, 3 divides 15, 5 divides 15, 3 < s, 3 does not divide s. Taking

4
modulo 5, the elements of S are 0 and 1 only. But 1 + 3F 2

However the condition of theorem 3.2.2 is true since

26 40 65
zs 4.

?_

Therefore we have

g(15, 21, 26, 40, 65) < [W] =228.

For comparison we give the following values obtained by using the best known

bounds.
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E. S. Selmer [19] MA[?] —ag 375

J. J. Sylvester [21] (@pg-D@@-1-1 349
2
dg
Y. Vitek [23] [—J -1 1055
P.Erdos & R. L. Graham [7]  2as_ 1[;‘?—1] —a; 975

[(as— 1 - 1)(as - 2)} .

5 1227

M. Lewin [15 ]

3.2.5 Example. Consider the often quoted example [3] consisting of the three

numbers 137, 251, 256. We will take ag = 137, a; =251, ap =256 and a3z = 385.

Then ao, ay, a2, a3 satisfy the above theorem and we obtain

g(ap, a1, a2, a3)< 17444|.

We give below the values obtained by using other best known bounds

which are proved in the general case.

J. J. Sylvester[21] (@a-1D@-1-1 33999
A. Brauer [2] (@ap-1)(as-1)-1 52223
2
dg
Y. Vitek [23] [—s_} -1 49407
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[(as- 1= 1)(as—2)] .

M. Lewin [14] 5 48831

P. Erdés & R. L. Graham [7] 2a, _ 1[—5%] —ag 48767
ag

E. S. Selmer [19] 2a3[7] -agp 26043

Using Lemma 3.2.3 and similar techniques as in Theorem 3.2.2 we can get

a better bound in the special case when S = {ag, a1, a2, a3}consists of relatively

prime integers with and g.c.d.(ap, a1, a2) = d 2 2. We have the folowing result in

this direction. We use the sharp bound for three variables obtained by Y.Vitek

(Theorem 1, [22]) which is stated below.

3.2.6 Lemma. Let p, q, r be an independent set of integers such that p <gq <r

and (p, ¢, r) = 1. Then

g(p,q,r)s[‘zl](r-z)—l.'

3.2.7 Theorem. Let {ap,a), a2, a3}, 1 <ap<aj<az<a3, be an independent

set of integers with g.c.d. (ap, a1, a2) =d 2 2. Then

a0
glao, a1, @, a3) < a3 ([?] + 2)—00.

55



Proof. Let d = g.c.d.(ag, a1, a3). Since ag, a1, a3, a3 are independent they are

pairwise incongruent modulo ag, Now using Lemma 3.2.3 for the numbers ag,

a a1 a ) .
aj,ay weget d < 3 Consider the set § = { 1 d° _d}' Since {ag, a1, az}is

independent so is S. So we can apply Lemma 3.2.6 and obtain

(18) 2(8) <€ [2‘(}](‘1 -2) ~1.

By Lemma 2.1.7,
0 41 a2
(19) glag, a1, @, a3) = d g(‘g 4 7,03)+ d-1) a3
ap a1 a
Therefore glap,a1,a2,a3) < (Tg ,—al- , —2-) + (d-1)az

ao

<d 2d]( d 2) - 1} + (d-1)a3z , using (18)

so that

apaz
g(ap,a1,a2,a3) £ 5~ +(a3-1)d - (ao+ a3).

Define
uld) =—>5 +(@-1)d.
Then the last inequality becomes
(20 g(ao, a1, a2, a3)< u(d) — (ap+ a3).
Since u(d) is a continuous function of d ford 22, (in fact for d >0), and u’'(d)

> 0, u'(d) is increasing for d 2 2. Therefore the absolute maximum of u(d) on

ap | . . ag
2, 3 | is assumed either atd=2or at d= 3 - Now,
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2 ==y
ag ) _3ay
M3 =72
Therefore
u2) - u(%?—)

a
since2<d< ::,;Qand a<az-1.

Returning to (20) we have

g(ap, a1, az,a3)

aog
< u('?’—)-— {ag + a3z)
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This completes the proof of Theorem 3.2.7.

3.3 An algorithm to find an upper bound for g(ay, a3, a3, as).

3.3.1 We begin with a set {a1, a2, a3, a4 }of four given relatively prime integers 2
2, with (g;, ay) =1 fori =2, 3,4, and aj, a3, a4 pairwise incongruent modulo aj.
As (a1, a2) = 1, the congruence

az x = a3 (mod ay)
has a solution x; with 0 < x; <aj. As a and a3 are incongruent mod aj, x1 > 1.
Hence there exist solutions (x, y) to the congruence

ayx=a3zy(modap), 1<y<x.

Let (x1, ¥1) "be one such solution with least x; Then we have
(30) azx1=a3y) (modajp), 1<y1< x

where x1 is least satisfying (30).
Similarly we obtain (y;, z7) satisfying
(31) azy2=aq22(moday), 1<23< y2
and y; is least with these properties.
Further, in the same way we get (x3, z3) sa'tisfying
(32) aszz3=azx3(mod ap), 1<x3< 23

with least z3. Set z;=x72=y3=0.

Define the translation vectors t; i = 1, 2, 3, as follows.
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tl =(—x1,)’1,zl)
1 =(x2,-y2,22)
13 =(x3,y3,-23)

We note that

X1 >Yy1+21, y2 > x2 +22, 23 >x3 +y3,
If either
pZx or g2y, or rzz3

then add #; or £ or #3 respectively to the point (p, g, 7).

Define
Mx,y,2)=ayx+a3y +ay:z.
Suppose M(p, g, r) &j (mod a;). If p2x;, then add ;1 to (p, ¢, r). We get
Mp-x1,q+y1,r+z21)=M@p,q,r) +M(-x1,y1,21).
Using (30) we see that
M@ -x1,q+y1,r+z1) = M(p,q,r) (mod ay).

Similarly each of the translations #7, or t3 preserves the congruence (mod
a1). Moreover taking the distance function d as the sum of the absolute
differences for any two 3-tuples, we see that point (p —x1,q +y1,r +2z1) is
closer to the origin than (p, g, r). Thus at each step of the translation by z; the
point is moved closer to the origin. We continue the procedure until we arrive at
the point (pn, qn, rp), say, where

0 <pp<x1 ,0=qn<y2,0<ry,<z.

Any further translation would result in a point with a negative integral coordinate.
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Notice that as initially the point (p, g, r) is at a distance p + ¢ + r from the
origin procedure must terminate in at most p + g + r steps. Thus if (p, g, r) is any
point with non-negative integer coordinates outside the region

P={(xy,2): 0 €£x<x,0 £y<ys 0 £z <z3}
and if M(p, q, r) =j (mod ay), then there exists (pn, gn, rn) € P with M(p, qn, rp)
=j (mod ay). It follows that the set

{M(x,y,2): (x,y,2) € P}

contains a complete system of residues mod ag.

Therefore by Lemma 2.1.4 we have
glay, a2 a3, a4) = max{t,: r=0,1,...,a1-1} -a
Smax {M(x,y, 2) : (x,y,2) € P} —aj

(33) glai, a, a3, ag) < (x1-1) az + (y2-1) a3 + (z3-1) a4 - a1,

3.3.2 This algorithm can be generalized to any set S = {ag, a1, ..., as}, for s 2 3.
Assume that g.c.d.(ag,a;)=1 for i =1,2, ..., s and that ag, ay, ..., agare

pairwise incongruent modulo ag. We can generalize the above algorithm for

finding an upper bound for g(ap, a i, ..., as), as follows.
We solve
(34) aix = ajy1 y (mod ap), 1 <Xxj41 <X

fori=1,2,...,s where we set as4+1 = aj. The solution with least x is denoted by

(x; yi). The corresponding translation vector t;,i=1,2,...,5- 1, is defined to be

the s-tuple



ti=(0,0,...,0,-x;, 5,0, ..., 0),
where the i-th position has — x; and the (i+1)-th position has y; For s,
we have ;= (y;5, 0, ..., 0, — xy).

The algorithm now gives

k)
glag,au,...,as) < Z(Xi—l)ai—ao.
i=1
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CHAPTER 4

4.1 Basic Definitions. A rooted tree is a connected acyclic digraph with a
distinguished node called the root. The height of a node is the length of the unique
path from the root to the node.

A node is called a leqf if it has outdegree zero. If the outdegree is not zero,
the node is an internal node. The set of nodes of height m is called the mth level of
the tree.

The notion of a (2, 3)-tree is well known (see for example [12]) in
theoretical computer science. By definition, a (2, 3)—tree is a rooted tree such that

(i) the outdegree of each internal node is either 2 or 3,

(ii) the heights of all leaves are the same.
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A (2, 3)-tree

Figure 2
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This concept of a (2,3)-tree has a natural extension [11] as follows.

Given positive integers gg, g1, ---» &s» 1 <80<81<... < g;, we define a (go,
21, ..., &s)-tree to be a rooted tree such that

(i) the outdegree of each internal node is either gg, or g1, or ..., g,

(ii) the heights of all leaves are the same.

It is easy to see that for any positive integer n there is a (2, 3)-tree having exactly

n leaves.
We say that a positive integer n is representable by a (8o, g1, ..., gs)—tree if
there exists a (gg, &1, --.» &s)—tree with exactly n leaves. It follows from the last

statement that every positive integer is representable by a (2, 3)-tree. Figure 2
shows that 6 is representable by a (2, 3)-tree. If we take the integers 3 and S
then it is not true that every positive integer has a representation by a (3, 5)—tree.
For example, 8 is not representable by a (3,5)tree.

A characterization (Theorem 1, [12]) for the representation of positive
integers by (g0, &1, ---, 8s)-trees is as follows.

Given integers g0, &1, ---» 8- 1 £ 80581 < ... £ g5, § 2 1, there exists a
positive integer N=N(go, g1, ..., &) such that every integer n 2 N can be
represented by a (go, &1, -.., &s)tree iff g.c.d.(g1—-80.82—-80,---, 85— 80) = 1.

The conductor x(gg, g1, ...» &s) is the least positive integer such that for
any n 2 x(ag, 41, ..., as) there exists a (gg, g1, ..., gs)-tree with exactly n leaves.

Given positive integers g0, g1, ---» 8s» 1 <80<81<...<gs 521, with
g.c.d.(g1— 20, 82— £0, ---» 8s— 80) = 1, the problem of finding the exact value of k(gq,

g1, ..., &s) is closely related to the Frobenius problem. In [10] an upper bound for



x(g0, &1, ..., 8&s) 1s given. This bound yields the exact value of x(gg, g1, ..., &)
when go, g1, ..., g5 are consecutive integers.
In the next section we first find the exact value of x(a, a+1) and then

deduce from this the exact value of x(a, a+1, ..., a+s) for any integer s 2 1.

4.2 The conductor x(a, a+l, ..., a+s) fors 2> 1.

4.2.1 Theorem. leta, b, 1 <a, b=a+1, be given integers. Then x(qa, b) = af(a),

where f(a) is the least positive integer satisfying

af@D* <p /@,

Proof. Suppose N is any positive integer such that
(1) a1 b <N <a" b+, where r, n are integers such that 0 < r < .
Solving the equations
(2) ax+by=N, x+y=a"""b"
we getx=a"" 1N
y=N- an~r+l b
By (1) we see that x and y are non-negative integers satisfying the system (2).
We now construct an (a, b)-tree with exactly N leaves.

We start with the root. Replace the root by an a-tree. (An x—tree is a

rooted tree with x leaves all at height one as shown in figure 3.)

65



An x-tree

A
L |
x leaves
Figure 3

Now we have an a-tree. Replace each of the a leaves with an a—tree.
Starting from the root we do this n — r times. The resulting tree has a"" leaves,
all at height n — r. Further, each of its internal nodes has outdegree a. Now
replace each of these 4" leaves by a b—tree. We obtain an (a, b)-tree with a" b
leaves. Repeat this procedure of replacing by a b-tree for r-levels. This
n—rpr

construction now gives an (a, b)-tree with exactly a leaves. We complete

the construction (figure 4) by replacing x of these a”"~"b” leaves by an a—tree and
each of the remaining leaves by a b-tree. Since ax +by=Nandx+y=a""b"
the resulting (a, b)—tree has exactly N leaves.

A-r+lp” @™ BT, for integers

Therefore every integer in the interval [a
n satisfying O < r <n, is representable by an (g, b)-tree. For any fixed integer n

> 0, we see that
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n-r+l pr an—rbr+l]= n+1, bn+l]

n
U la [a
r=0
This implies that every integer in [@"*1, p"*1 s representable by an (a, b)-tree
for each integer n > 0.

Denote by f(a) the least positive integer such that

(3) af@+1 cpfa) 4 g,
That is,
(4) P@-141<@ A+l cpfa)

Then it follows that every integer > af@ s representable by an (a, b)-tree. This
proves that
x(a, b) <af@
In fact we can show that the equality holds.
Suppose alf® _1is representable by an (g, b)-tree say T. Then there

exist non-negative integers x, y such that
(5) ax+by=a"@ _1,
It is easy to see that a’® is the least positive integer representable by an (a, b)—
tree having f(a) levels. Therefore the number 4 of levels in T is at most f(a) —
1. Observe that T has x + y nodes at the (h-1)th level. Note that the largest
integer representable by an (a, b)-tree of height ¢ is b’ and therefore

x+ysf@-2
Hence

ax+by < b(x+y)<b. @-2
Using (5), afl9-1<pfa)-1

af@ < pf@ -1, contradiction to 4).

Therefore it follows that x(a, b) = @@,
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Representation of N by an (a,b)-tree

AR

n—rlevels

r levels

= x nodes y nodes
replaced by replaced by
a-trees b-trees

......... AN

Figure 4
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4.2.2. Corollary. Given positive integers a, a+1, a+2, ...,a + s,s 21, we can

deduce that

K(a,a+l,a+2, ...,a+s)= ak, where k is the least positive integer such
that
ak*l < (a+s)k + 1.
Proof. Clearly each integer in [a, a+s] is representable by a (a, a+1, ..., a+s)-

tree. By the proof of the above theorem each integer in [(a + i)?, (a+i+1)*] is
representable by an (a+i, a+i+1)- tree for i=0, 1, ..., s—1 . If a number is
representable by an (a+i, a+i+1)-tree then it is also representable by an (a, a+1,

..., a+s)—tree. Therefore every integer in [a”, (a+s5)"] is representable by an (a,

a+l1, ..., a+s)-tree for all n > 1. Therefore if k is the least positive integer such
that
(6) a1l < (a+s)k + 1
then
K(a,a+l,a+2, ...,a+5s)< a’c

We will now show that the equality holds by a similar argument as in Theorem

42.1fors=1.
Suppose a*-1is representable by an (a, a+1, a+2, ..., a + s)-tree say T.
Then there exist non-negative integers x;, i=0, 1, ..., s, such that
(7) i(aﬂ')x,- =ak- 1.
i=0
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It is easy to see that ak

is the least positive integer representable by an (a, a+1,
a+2, ..., a + s)-tree having k levels. Therefore the number 4 of levels in T is at

most k —1. Observe that T has 2.x; nodes at the (h — 1)th level and therefore

z Xx; < (a+s)k‘ 2

Hence using (7) in

i(aﬂ')xi <(a+s)2(x,-) S(a+s).(a+s)k"2,

i=0
we get
ak~ 1 < (a+s)F L.
That is,
dk < (a+s)k‘1,
a contradiction to the minimality of k£ in (6). Hence

x(a, a+l,a+2, ....,a+s)= ak.

4.3 A bound for x(go, g1, ..., &s). In the general case, given positive integers go,
g1, .- &5 1<g0<g1<...<gss21,with gcd.(ag,az,...,a5)=1, gi-go=a;
i=1, 2, ..., s, an upper bound for x(gg, g1, ..., &s) is given in [10] using an upper
bound for the Frobenius function g(ai, a, ..., as).

Let d;=g.c.d.(ay, az, ..., a;), gay,az, ...,as) <L
where

ai+1.di
L—1+2 T Za,

i=1

is the upper bound obtained by A. Brauer in [2]. Define
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A=g0.gn+L, C= gogntai(gat1)-1

Let m 2 2 be the least integer satisfying

g™t g0+ A< g M—g2+C+1.

Then
(8) K(80, 81 ---» £5) S 80™ — 80° + A.

The set of integers representable by height 1 trees is clearly {gg, g1, --.»
gs}. Let d denote the maximum of the differences (g;+1-8:),i=0,1,...,s-1. To

prove (8) it was shown in [10] that there is a set containing more than d

consecutive positive integers representable by go, g1, ..., gs—trees of height 2 using

an upper bound for the Frobenius function for s variables. It would be interesting

to find the the exact value of x(gg, g1, ..., gs) as a function of the exact value of

g(ay, aa, ..., ag).
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