THE FROBENIUS PROBLEM

by<br>Sambandam Ekambaram<br>M.Sc., Simon Fraser University, 1987

# THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of MATHEMATICS AND STATISTICS 

© Sambandam Ekambaram 1991 SIMON FRASER UNIVERSITY

January 1991

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

## APPROVAL

| Name: | Sambandam Ekambaram |
| :--- | :--- |
| Degree: | Ph.D. (Mathematics) |
| Title of Thesis: | The Frobenius Problem |

Examining Committee:

Chairman: Prof. A. H. Lachlan

Dr. T. C. Brown, Professor<br>Senior Supervisor

Dr. A. R. Freedman, Professor

Dr. K. Heinrich, Professor

Dr. S. K. Thomason, Professor

Dr. William Yslas V̄élez, Professor
Department of Mathematics
University of Arizona
External Examiner

Date Approved: January 8, 1991

1 hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay
THE FROBENTUS PROBLEM

Author:
(signature)
S.EKAMBARAM
(name)
$\operatorname{Jan} 8$,'91
(date)

## ABSTRACT

The purpose of this thesis is to investigate the partition problem of Frobenius. Given relatively prime positive integers $a_{0}, a_{1}, \ldots, a_{s}$, the problem of Frobenius is to find the largest positive integer $g\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ which cannot be represented as a linear combination of $a_{0}, a_{1}, \ldots, a_{s}$ with non-negative integer coefficients. For $s=1$, the exact value of $g\left(a_{0}, a_{1}\right)$ was found by J. J. Sylvester back in 1884 . I. Shur was the first to give an upper bound for the number $g\left(a_{0}, a_{1}, \ldots\right.$, $a_{s}$ ) for any $s \geq 1$.

In this thesis we find upper bounds for $g\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ for any $s$ in specific cases using additive number theory and show that these bounds are better than the best known upper bounds. We also study the greatest common divisor $d$ of $a_{0}$, $a_{1}, \ldots, a_{s-1}$ and using this we prove that Lewin's conjecture

$$
\begin{equation*}
g\left(a_{0}, a_{1}, \ldots, a_{s}\right) \leq\left[\frac{\left(a_{s}-2\right)\left(a_{s}-s\right)}{s}\right]-1 \tag{}
\end{equation*}
$$

holds good in the special case when $\frac{a_{i}}{i} \leq \frac{a_{i+1}}{i+1}$, where $[x]$ denotes the largest integer $\leq x$. We also obtain a better upper bound for the case $s=3$ when $d \geq 2$. For $s=2$, we find the exact value of $g(a, b, c)$ where $b+c \equiv 0(\bmod a)$. An algorithm to find an upper bound for $g\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ for any $s \geq 3$ is given. We also investigate a related problem of the representation of positive integers by trees and give a different proof for finding the conductor $\kappa\left(g_{0}, g_{1}, g_{2}, \ldots, g_{k}\right)$ of a $\left(g_{0}, g_{1}, g_{2}, \ldots, g_{k}\right)$ tree.

In Chapter 1 we prove the existence of the number theoretic function $g\left(a_{0}\right.$, $a_{1}, \ldots, a_{s}$ ) and study two related functions that arise naturally in connection with $g\left(a_{0}, a_{1}, \ldots, a_{s}\right)$. We conclude this Chapter by presenting the exact solution to the problem for $s=1$.

In Chapter 2 we determine the exact value of $g(a, b, c)$ of relatively prime integers $a, b, c$ when $b+c \equiv 0(\bmod a)$. While the case $s=1$ is easy, it appears that all the difficulties of the problem in the general case are contained in the case $s$ $=2$. So we study the effect of extending $\{a, b\}$ of relatively prime integers to $\{a, b$, $c$ ) where $c$ is non-representable by $a, b$, and prove that $g(a, b, c) \leq g(a, b)-a$. Also, we show that this bound is sharp.

In Chapter 3 we use addition theorems in Number Theory and deduce upper bounds in special cases which are better than the best known upper bounds. We also prove that the conjecture $\left(^{*}\right)$ holds for any $s$ when $\frac{a_{i}}{i} \leq \frac{a_{i+1}}{i+1}$ for $i=2,3, \ldots$, $s-1$. If the g.c.d $\left(a_{0}, a_{1}, a_{2}\right)=d, d \geq 2$, then we find an upper bound for $g\left(a_{0}, a_{1}\right.$, $a_{2}, a_{3}$ ) which is better than the known bounds. An algorithm to find an upper bound for $g\left(a_{0}, a_{1}, \ldots, a_{5}\right)$, when $a_{0}$ is relatively prime to each $a_{i}$, is also described.

In Chapter 4 we study the related problem of finding the conductor of a ( $g_{0}$, $g_{1}, g_{2}, \ldots, g_{k}$ )-tree. We give a proof for finding the exact value of the conductor of $\kappa(a, a+1)$ and deduce the exact value of $\kappa(a, a+1, \ldots, a+s)$ for any $s, s \geq 1$.

DEDICATION

To my father Shri. Tulasi Sambandam.

Swamiyé Saranam Iyappà

## ACKNOWLEDGEMENTS

I cannot find words within me strong enough to adequately express my sincerest gratitude to Dr. Tom Brown for suggesting the problem, for his continued guidance, for his smiling readiness to help at all times, for his wisdom in dealing with my trying times, for his critical comments while reading the written work and for his financial support.

I would like to thank the Department of Mathematics and Simon Fraser University for the financial support throughout my graduate work. Many thanks to Maggie Fankboner for her help in functioning efficiently as a graduate assistant and also to Sylvia Holmes especially for informing me of regulations and deadlines. It is a pleasure to thank Mr. Rod Lapsley with whom I had several enjoyable discussions in Mathematics.

As for my family, I am ever grateful to my mother who has dedicated her life for the education of her sons, and today her wish is fulfilled. Though far from home, it is my brother Shri. S. Amirthalingam whose love, support and total commitment towards all my endeavours made me to complete my Ph.D program. May God bless you both for ever! Also, I would like to thank my sister-in-law Mrs. Sumathi Amirthalingam for taking good care of my mother. I appreciate my wife Malarvizhi who assumed full family-responsibility, leaving me entirely for my studies.

## TABLE OF CONTENTS

Page
APPROVAL PAGE ..... ii
ABSTRACT ..... iii
ACKNOWLEDGEMENTS ..... v
TABLE OF CONTENTS ..... vi
LIST OF FIGURES ..... viii
CHAPTER 1
1.1 Introduction ..... 1
1.2 The existence of $g(S)$ ..... 4
1.3 Related functions ..... 5
1.4 An analytical form of the Frobenius problem ..... 8
1.5 The exact solution for $s=1$ ..... 9
CHAPTER 2
2.1 Basic results ..... 11
2.2 Two known algorithms for $g(a, b, c)$ ..... 19
2.3 The exact solution for three variables when $b+c \equiv 0(\bmod a)$ ..... 29
2.4 Extending $\{a, b\}$ to an independent set $\{a, b, c\}$ ..... 35

## CHAPTER 3

3.1. Upper bounds by using additive number theory ..... 41
3.2 On the conjecture by M. Lewin ..... 49
3.3 An algorithm to find an upper bound for $g(S)$ ..... 58
CHAPTER 4
4.1 Basic Definition ..... 63
4.2 The conductor $\kappa(a, a+1, \ldots, a+s)$ ..... 66
4.3 A bound for $\kappa\left(g_{0}, g_{1}, g_{2}, \ldots, g_{k}\right)$ ..... 72
BIBILIOGRAPHY ..... 73

## LIST OF FIGURES

Figure 1 ..... 24
Figure 2 ..... 63
Figure 3 ..... 66
Figure 4 ..... 68

## CHAPTER 1

1.1 Introduction. Let $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ be a set of relatively prime positive integers where $a_{i}>1$ for all $i$. Define

$$
S p(S)=\left\{\sum_{i=0}^{s} x_{i} a_{i}: x_{i} \text { is a non-negative integer for } i=0,1, \ldots, s\right\}
$$

It is shown in section 1.2 that $S p(S)$ contains all but finitely many non-negative integers. We denote the largest integer not in $S p(S)$ by $g\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ or by $g(S)$. Given $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$, we say a non-negative integer $n$ is representable by $a_{0}, a_{1}$, $\ldots, a_{S}$, if and only if $n \in S p(S)$. Otherwise we say $n$ is non-representable.

We note that $g\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ is precisely the largest integer $N$ which cannot be expressed by $a_{0}, a_{1}, \ldots, a_{s}$ in the form

$$
N=\sum_{i=0}^{s} a_{i} x_{i},
$$

with non-negative integral coefficients $x_{i}$.

The problem of Frobenius consists of finding $g(S)$ or at least obtaining nontrivial upper bounds for $g(S)$ for any given set $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ of relatively prime positive integers. For $s=1$, with g.c.d. $\left(a_{0}, a_{1}\right)=1$,

$$
\begin{equation*}
g\left(a_{0}, a_{1}\right)=a_{0} a_{1}-a_{0}-a_{1} \tag{1}
\end{equation*}
$$

has been known [21] for over a hundred years.

A concrete algorithm ([3], [18]) is known for finding the exact value of $g\left(a_{0}\right.$, $\left.a_{1}, a_{2}\right)$ for integers $a_{0}, a_{1}, a_{2}, 1<a_{0}<a_{1}<a_{2}$ with g.c.d. $\left(a_{0}, a_{1}, a_{2}\right)=1$. However for $s \geq 3$, the exact value of $g\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ as a closed formula in $a_{0}, a_{1}, \ldots, a_{s}$ is not known except in special cases, for example, when $a_{0}, a_{1}, \ldots, a_{s}$ are consecutive integers [2], or when $a_{0}, a_{1}, \ldots, a_{s}$ are in arithmetic progression [1,17].

We say a set $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}, 1<a_{0}<a_{1}<\ldots<a_{s}$, of integers is independent if $a_{i} \notin \operatorname{Sp}\left(a_{0}, a_{1}, \ldots, a_{i-1}\right)$ for $i=1,2, \ldots, s$.

The set

$$
\{x: a \leq x \leq b \text { and } x \text { is an integer }\}
$$

of integers between two integers $a$ and $b, a<b$, including $a$ and $b$ is denoted by $[a, b]$. If $a$ divides $b$, we write $a \mid b$.

In this chapter, the next section begins with the proof of the basic fact that $g\left(a_{0}\right.$, $a_{1}, \ldots, a_{s}$ ) exists. Then we make some observations on the two best known functions that arise naturally in connection with $g\left(a_{0}, a_{1}, \ldots, a_{s}\right)$. We conclude Chapter 1 by presenting the complete solution to the Frobenius problem for $s=1$.

In Chapter 2 we are concerned with the study of the Frobenius problem for three variables $a, b, c$. Let g.c.d. $(a, b)=1$. Let $\{a, b\}$ be extended to an independent set $\{a, b, c\}$. We prove that $g(a, b, c) \leq g(a, b)-a$. In the special case when $c+b \equiv$ $0(\bmod a)$, we obtain the exact solution for $g(a, b, c)$. In general we prove that

$$
g(a, b, c) \leq g(a, b)-a
$$

We also show that if $c=g(a, b)$, then equality holds. Conversely, if equality holds we show that $b l(a+c)$.

In Chapter 3 we study the best known upper bounds for any $s \geq 2$. We obtain new upper bounds in special cases and show that they are better than the best known upper bounds. We prove that the conjecture of M. Lewin [14]

$$
g(S) \leq\left[\frac{\left(a_{s}-2\right)\left(a_{s}-s\right)}{s}\right]-1
$$

is valid in the special case of $S=\left\{a_{0}, a_{1}, \ldots, a_{5}\right\}$ which satisfies

$$
\frac{a_{i}}{i} \leq \frac{a_{i+1}}{i+1}, i=2,3, \ldots, s-1
$$

We also give examples to show that this bound is better than the best known upper bounds. A computational method is also studied to obtain a non-trivial upper bound for $s=3$ and the method is generalized to $s \geq 3$.

In Chapter 4 we study the problem of finding the conductor of a $\left(g_{0}, g_{1}, \ldots\right.$, $g_{k}$ )-tree, which is related the Frobenius problem. We give a different proof for finding the exact value of the conductor $\mathrm{k}(a, a+1, \ldots, a+s)$ for any $s \geq 1$.
1.2 The existence of $g\left(a_{0}, a_{1}, \ldots, a_{s}\right)$. In the beginning of this chapter we mentioned that $S p(S)$ contains all but finitely many non-negative integers for any given $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ of relatively prime positive integers. We will prove this fundamental fact.
1.2.1 Theorem. Let $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ and g.c.d. $\left(a_{0}, a_{1}, \ldots, a_{s}\right)=1$. Then there exists an $n_{0}$ such that $n \in S p(S)$ for all $n \geq n_{0}$.

Proof. Since g.c.d. $\left(a_{0}, a_{1}, \ldots, a_{s}\right)=1$, there exist integers $x_{i}$ such that

Let

$$
\sum_{i=0}^{s} x_{i} a_{i}=1
$$

$$
N=a_{0} \sum_{i=0}^{s}\left|\mathrm{x}_{i}\right| a_{i}
$$

Then,

$$
N+m=a_{0} \sum_{i=0}^{s}\left|\mathrm{x}_{i}\right| a_{i}+m \sum_{i=0}^{s} x_{i} a_{i}
$$

(2)

$$
N+m=\sum_{i=0}^{\sum_{=0}}\left(a_{0}\left|\mathrm{x}_{i}\right|+m x_{i}\right) a_{i} .
$$

Now,

$$
\begin{aligned}
& a_{0}\left|\mathrm{x}_{i}\right|+m x_{i}=x_{i}\left(a_{0}+m\right), \text { if } x_{i} \geq 0, \text { and } \\
& a_{0}\left|\mathrm{x}_{i}\right|+m x_{i}=-x_{i}\left(a_{0}-m\right) \text { if } x_{i}<0 .
\end{aligned}
$$

Therefore if $m \in\left[0, a_{0}-1\right]$, then $a_{0}\left|\mathrm{x}_{i}\right|+m x_{i} \geq 0$ for each $i=0,1, \ldots, s$.
Hence (2) implies that for each $m$ in $\left[0, a_{0}-1\right]$

$$
N+m \in S p(S)
$$

If $m \geq a_{0}$, then

$$
m=p a_{0}+q, 0 \leq q \leq a_{0}-1 \text { and } N+m=p a_{0}+(N+q)
$$

so that $(N+m) \in S p(S)$. Hence $S p(S)$ contains all $n \geq N$. This completes the proof of the theorem.

### 1.3 Related functions.

1.3.1 Definition. For integers $1<a_{0}<a_{1}<\ldots<a_{s}$, with g.c.d. $\left(a_{0}, a_{1}, \ldots, a_{s}\right)=1$, we define $f\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ to be the largest integer $N$ which can not be expressed in the form

$$
N=\sum_{i=0}^{s} x_{i} a_{i}
$$

with integral coefficients $x_{i} \geq 1$.
From the definition of the two numbers $f\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ and $g\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ it immediately follows that

$$
\begin{equation*}
f\left(a_{0}, a_{1}, \ldots, a_{s}\right)=g\left(a_{0}, a_{1}, \ldots, a_{s}\right)+\sum_{i=0}^{s} a_{i} \tag{3}
\end{equation*}
$$

1.3.2 Definition. Given a set $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ of relatively prime positive integers, the number of integers $x, 0 \leq x \leq g(S)$, such that $x \notin S p(S)$ is denoted by $n\left(a_{0}, a_{1}, \ldots, a_{s}\right)$.

Remark. If $0 \leq x \leq g(S)$, then $x$ and $g(S)-x$ can not both belong to $S p(S)$. For, writing

$$
g(S)=(g(S)-x)+x
$$

we observe that if both $x$ and $g(S)-x$ belong to $S p(S)$, then $g(S) \in S p(S)$, a contradiction. Since $|\{0,1,2, \ldots, g(S)\}|=g(S)+1$, we deduce that at least half of the elements in this set are are non-representable. That is,

$$
\begin{equation*}
\frac{g(S)+1}{2} \leq n(S) \leq g(S) \tag{4}
\end{equation*}
$$

In fact as we will see below in theorem 1.5.1 the bounds for $n(S)$ given above are sharp. For $s=1$,

$$
\frac{g(S)+1}{2}=n(S)
$$

and when $S=\{k, k+1, \ldots, 2 k-1\}$, it is easy to see that

$$
g(S)=k-1, \quad n(S)=k-1
$$

Moreover we note that this is the only case in which $g(S)=n(S)$.
1.3.3 Definition. Given integers $n \geq 2$ and $t \geq 3$ we define

$$
G(n, t)=\max g(S)
$$

where the maximum is taken over all sets $S=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ of relatively prime integers with $2 \leq a_{0}<\ldots<a_{n-1} \leq t$.

### 1.3.4 Bounds for $\boldsymbol{G}(\boldsymbol{n}, \boldsymbol{t})$. We easily see from (1) that

$$
\begin{equation*}
G(2, t)=g(t-1, t)=(t-2)(t-1)-1 \tag{5}
\end{equation*}
$$

Y.Vitek [22] has shown that

$$
g(a, b, c) \leq\left[\frac{a}{2}\right](c-2)-1, \text { for any integers } 1<a<b<c \text { which are }
$$

relatively prime.
For $c=t$, we have

$$
\left[\frac{a}{2}\right] \leq\left[\frac{t-2}{2}\right] \text { and } c-2 \leq t-2
$$

so that

$$
G(3, t) \leq\left[\frac{t-2}{2}\right](t-2)-1
$$

Since then $t-2, t-1, t$ are in arithmetic progression, using [17] we obtain

$$
\begin{aligned}
g(t-2, t-1, t) & =\left(\left[\frac{t-4}{2}\right]+1\right)(t-2)-1 \\
& =\left[\frac{t-2}{2}\right](t-2)-1
\end{aligned}
$$

Hence we conclude that

$$
G(3, t)=\left[\frac{t-2}{2}\right](t-2)-1
$$

For any $n \geq 2$, using the bound

$$
g\left(a_{0}, \ldots, a_{n-1}\right) \leq 2\left[\frac{a_{n-1}}{n}\right] a_{n-2}-a_{n-1}
$$

which was proved by P. Erdös and R. L. Graham [7], we deduce that

$$
G(n, t)<\frac{2 t^{2}}{n}
$$

We can improve this further by using the bound

$$
g\left(a_{0}, \ldots, a_{n-1}\right) \leq \frac{a_{n-1}^{2}}{n-1}
$$

obtained by Y.Vitek [23] so that

$$
G(n, t) \leq \frac{t^{2}}{n-1} .
$$

We now find a lower bound. It is easy to see that for the set

$$
\begin{aligned}
& \left\{x, 2 x, \ldots,(n-1) x, x^{*}\right\}, x=\left[\frac{t}{n-1}\right] \text { and } x^{*}=(n-1) x-1 \\
& G(n, t) \geq g\left(x, 2 x, \ldots, x^{*}\right)=g\left(x, x^{*}\right) \geq \frac{t^{2}}{n-1}-3 t
\end{aligned}
$$

Therefore for any $n \geq 2$, we have

$$
\frac{t^{2}}{n-1}-3 t \leq G(n, t) \leq \frac{t^{2}}{n-1}
$$

Very recently Jacques Dixmier [6] improved the upper bound for $G(n, t)$ and showed that for $t>n \geq 2$,

$$
G(n, t)=t\left(\left[\frac{t-1}{n-1}\right\rceil-1\right)-1
$$

1.4. An analytical form of the Frobenius problem. Define the rational function $f(z)$ by

$$
f(z)=\frac{1}{\left(1-z^{a_{0}}\right)\left(1-z^{a_{1}}\right) \ldots\left(1-z^{a_{s}}\right)},
$$

for any complex number $z$. Then $f(z)$ is the generating function for the number $r_{s}(n)$ of representations of $n$ of the form

$$
n=\sum_{i=0}^{s} a_{i} x_{i}
$$

with integral coefficients $x_{i} \geq 0$. So we may write

$$
f(z)=\sum_{n=0}^{\infty} r_{s}(n) z^{n} .
$$

Now it is easy to see that $g\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ is precisely the largest integer $k$ for which $f$ ${ }^{(k)}(0)=0$.

### 1.5. The Exact Solution for $s=1$.

1.5.1. Theorem. For relatively prime integers $a, b, 2 \leq a<b$, we have
(i) $g(a, b)=a b-a-b$,
(ii) $n(a, b)=\frac{g(a, b)+1}{2}$.

Proof of $(i)$. We first observe that the condition that g.c.d. $(a, b)=1$ implies that

$$
\{b t: t=1,2, \ldots, a-1\}
$$

forms a system of all non-zero residues modulo $a$.
Now we claim that in each non-zero residue class $r(\bmod a)$, the largest nonrepresentable number has the form $b t-a, 1 \leq t \leq a-1$. Suppose $b t-a=x a+y b$, where $1 \leq t \leq a-1, x \geq 0, y \geq 0$. Then $b(t-y)=(x+1) a$. Since g.c.d. $(a, b)=1$, it follows that $a \mid(t-y)$. Since $0 \leq y<t$, we must have $a \leq t$, a contradiction.

Therefore by definition,

$$
\begin{aligned}
g(a, b) & =\max (b t-a: t=0,1,2, \ldots, a-1\} \\
& =b(a-1)-a
\end{aligned}
$$

This proves ( $i$ ).
Now we show (ii). We need a Lemma.
1.5.2 Lemma. Let g.c.d. $(a, b)=1$. Then exactly one of the integers $x$ and $g(a$, $b)-x$ belongs to $\operatorname{Sp}(a, b)$, for each $x, 0 \leq x \leq g(a, b)$.

Proof of the Lemma. We note that for any $x \leq g(a, b)$, both $x$ and $g(a, b)-x$ can not be representable by $a, b$. Otherwise,

$$
g(a, b)=(g(a, b)-x)+x
$$

would be representable by $a, b$. In other words,

$$
\begin{equation*}
x \in S p(a, b) \text { implies that } g(a, b)-x \notin S p(a, b) \tag{6}
\end{equation*}
$$

On the other hand, suppose $x \notin S p(a, b)$. As g.c.d. $(a, b)=1$, we can find nonnegative integers $m, n$ such that

$$
x=m a-n b
$$

If $m \geq b$, then write $m=j b+k, 0 \leq k \leq b-1$ and $j \geq 1$.

Now, $x=j b a+k a-n b$, and therefore $x=k a-(n-j a) b, 0 \leq k \leq b-1$. Since $x$ is non-representable by $a, b, n-j a \geq 1$. So we can write $x$ in the form

$$
x=m a-n b
$$

where $0 \leq m \leq b-1$ and $n \geq 1$. Now

$$
g(a, b)-x=a b-a-b-(m a-n b)=(b-m-1) a+(n-1) b .
$$

Since $m \leq b-1$ and $n \geq 1$, the coefficients $b-m-1$ and $n-1$ are both non-negative. This shows that

$$
\begin{equation*}
x \notin S p(a, b) \text { implies that } g(a, b)-x \in S p(a, b) \tag{7}
\end{equation*}
$$

From (6) and (7) it follows that exactly one of the numbers

$$
g(a, b)-x \text { and } x
$$

is representable for all $0 \leq x \leq g(a, b)$.
Proof of (ii). From the above Lemma it follows that exactly half of the members in the set $\{0,1, \ldots, g(a, b)\}$ belong to $S p(a, b)$. This proves (ii).

## CHAPTER 2

### 2.1 Basic results.

2.1.1 Given a set $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ of relatively prime integers, $1<a_{0}<a_{1}<\ldots<$ $a_{5}$, suppose some $a_{i}$ is representable by $a_{0}, a_{1}, \ldots, a_{i-1}$. Then it is easy to see that any integer $n$ is representable by $a_{0}, a_{1}, \ldots, a_{s}$ if and only if $n$ is representable by $\left\{a_{0}, a_{1}\right.$, $\ldots, a_{s} \backslash\left\{a_{i}\right\}$. Hence

$$
S p(S)=S p\left(S-\left\{a_{i}\right\}\right)
$$

This implies that we can delete $a_{i}$ from the given set $S$ without affecting the value of $g(S)$. Hence we may assume that no $a_{i}$ is representable by the preceding ones.
2.1.2 Definition. We say that a set of integers $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}, 1<a_{0}<a_{1}<$ $\ldots<a_{s}$, is independent if no $a_{i}$ is representable by $a_{0}, a_{1}, \ldots, a_{i-1}$ for $i=1,2, \ldots, s$.

Remark. Note that any given set $S$ of positive integers always contains a maximal independent set $S^{\prime}$. By 2.1.1 $g(S)=g\left(S^{\prime}\right)$. Therefore it is no restriction to assume that $S$ is independent.
2.1.3 Definition.. Given a set $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ of relatively prime integers, we denote by $t_{r}=t_{r}\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ the smallest integer $\equiv r\left(\bmod a_{0}\right)$ such that

$$
\begin{equation*}
t_{r}=\sum_{i=1}^{s} a_{i} x_{i} \tag{1}
\end{equation*}
$$

for non-negative integers $x_{i}$.

It is trivial that for $r=0, t_{r}=0$. By the definition of $t_{r}$, it follows that $t_{r}-a_{0}$ is the largest integer $\equiv r\left(\bmod a_{0}\right)$ which can not be expressed in the form

$$
\begin{equation*}
t_{r}=\sum_{i=1}^{s} a_{i} x_{i} \tag{2}
\end{equation*}
$$

for any non-negative integral coefficients $x_{i}$. From this we obtain
2.1.4 Proposition [3]. Let g.c.d. $\left(a_{0}, a_{1}, \ldots, a_{s}\right)=1$. Then

$$
\begin{equation*}
g\left(a_{0}, a_{1}, \ldots, a_{s}\right)=\max \left\{t_{r}: r=0,1, \ldots, a_{0}-1\right\}-a_{0} \tag{3}
\end{equation*}
$$

2.1.5 Remark. We may use any $a_{i}$ instead of $a_{0}$ in the above Proposition.

The number of positive integers which can not be represented by $a_{0}, a_{1}, \ldots, a_{s}$ is easily determined by considering the positive integers $\leq t_{r}$ in the residue class $r$ (mod $a_{0}$ ), say,

$$
\left\{r, r+a_{0}, r+2 a_{0}, \ldots, r+m a_{0}=t_{r}\right\}
$$

where $1 \leq r \leq a_{0}-1$. All integers in this set $<t_{r}$ are non-representable by the definition of $t_{r}$. Now

$$
\frac{t_{r}-r}{a_{0}}=m,
$$

which is precisely the number of positive integers non-representable by $a_{0}, a_{1}, \ldots, a_{s}$ in the residue class $r\left(\bmod a_{0}\right)$. Thus, using the notation

$$
R\left(a_{0}\right)=\left\{1,2, \ldots, a_{0}-1\right\}
$$

we obtain

$$
n\left(a_{0}, a_{1}, \ldots, a_{s}\right)=\sum_{r=1}^{a_{0}-1} \frac{t_{r}-r}{a_{0}}
$$

which we state as follows.
2.1.6 Proposition. Let $R\left(a_{0}\right)=\left\{1,2, \ldots, a_{0}-1\right\}$ and let $a_{0}, a_{1}, \ldots, a_{s}$ be relatively prime positive integers. Then

$$
n\left(a_{0}, a_{1}, \ldots, a_{s}\right)=\left(\begin{array}{ll}
\frac{1}{a_{0}} & \sum_{r(a)} t_{r} \tag{4}
\end{array}\right)-\frac{a_{0}-1}{2} .
$$

Let $d=$ g.c.d. $\left(a_{1}, \ldots, a_{s}\right)$ so that $a_{i}=d b_{i}$, for $i=1,2, \ldots, s$. Since g.c.d. ( $a_{0}$, $\left.a_{1}, \ldots, a_{s}\right)=1$, we have g.c.d. $\left(a_{0}, d\right)=1$. For any residue $r\left(\bmod a_{0}\right)$ we define as in 2.1.3

$$
u_{r}=t_{r}\left(a_{0}, b_{1}, \ldots, b_{s}\right) .
$$

Then there exist non-negative integers $y_{i}$ such that

$$
\begin{equation*}
u_{r}=\sum_{i=1}^{s} b_{i} y_{i}, \tag{5}
\end{equation*}
$$

so that $\quad d u_{r}=\sum_{i=1}^{s} d b_{i} y_{i}$,

$$
\begin{equation*}
d u_{r}=\sum_{i=1}^{s} a_{i} y_{i} \tag{6}
\end{equation*}
$$

Clearly the last sum is $\equiv d r\left(\bmod a_{0}\right)$ and it is the smallest integer $\equiv d r\left(\bmod a_{0}\right)$ which is representable by $a_{0}, a_{1}, \ldots, a_{5}$. If this is not the smallest, then the right hand side of (5) will not be the smallest integer representable by $a_{0}, b_{1}, \ldots, b_{s}$ and $\equiv r\left(\bmod a_{0}\right)$. Hence by the definition of $t_{d r}=t_{d r}\left(a_{0}, a_{1}, \ldots, a_{s}\right)$, we must have

$$
t_{d r}=\sum_{i=1}^{s} a_{i} y_{i}
$$

Thus we get from (6)

$$
\begin{equation*}
t_{d r}=d u_{r} \tag{7}
\end{equation*}
$$

for any residue $r\left(\bmod a_{0}\right)$. Since $d$ and $r$ are relatively prime,

$$
\left\{r: r=0,1, \ldots, a_{0}-1\right\}=\left\{d r: r=0,1, \ldots, a_{0}-1\right\}
$$

By 2.1.4 we have now from (7)

$$
g\left(a_{0}, a_{1}, \ldots, a_{s}\right)+a_{0}=d \cdot\left\{g\left(a_{0}, b_{1}, \ldots, b_{s}\right)+a_{0}\right\}
$$

which yields
2.1.7 Lemma [3]. Let g.c.d. $\left(a_{0}, a_{1}, \ldots, a_{s}\right)=1$. Let $d=$ g.c.d. $\left(a_{1}, \ldots, a_{s}\right)$. Then

$$
\begin{equation*}
g\left(a_{0}, a_{1}, \ldots, a_{s}\right)=d \cdot g\left(a_{0}, \frac{a_{1}}{d}, \ldots, \frac{a_{s}}{d}\right)+a_{0}(d-1) \tag{8}
\end{equation*}
$$

This is a very useful reduction formula which we we will be using very often throughout our work. For $s=2$, this result was first proved [9] by S. M. Johnson.

We use (4) and (7) to deduce a similar reduction formula for the number of nonrepresentable integers.

From (4) we have

$$
\begin{aligned}
& n\left(a_{0}, a_{1}, \ldots, a_{s}\right) \quad=\frac{1}{a_{0}} \sum_{r \in R(a)} t_{d r}-\frac{a_{0}-1}{2} \\
& =\frac{1}{a_{0}} \sum_{r \in R(a)}^{\sum_{R} d u_{r}-\frac{a_{0}-1}{2}} \\
& =\frac{1}{a_{0}} \sum_{r \in R(a)} d\left(u_{r}-r\right)+\frac{1}{a_{0}} \sum_{r \in R(a)}^{\sum_{r} d r}-\frac{a_{0}-1}{2} \\
& =\frac{d}{a_{0}} \sum_{r \in R(a)}^{\sum_{r}\left(u_{r}-r\right)+} d\left(\frac{a_{0}-1}{2}\right)-\frac{a_{0}-1}{2} \\
& =d n\left(a_{0}, \frac{a_{1}}{d}, \ldots, \frac{a_{s}}{d}\right)+\frac{1}{2}(d-1)\left(a_{0}-1\right) .
\end{aligned}
$$

We give below a combinatorial proof of the above result.
2.1.8 Lemma. Let g.c.d. $\left(a_{0}, a_{1}, \ldots, a_{s}\right)=1$. Let $d=$ g.c.d. $\left(a_{1}, \ldots, a_{s}\right)$. Then

$$
n\left(a_{0}, a_{1}, \ldots, a_{s}\right)=d n\left(a_{0}, \frac{a_{1}}{d}, \ldots, \frac{a_{s}}{d}\right)+n\left(a_{0}, d\right)
$$

Proof. Define the sets

$$
\begin{aligned}
& A=\left\{x: x \notin \operatorname{Sp}\left(a_{0}, a_{1}, \ldots, a_{s}\right)\right\}, \\
& B=\left\{x: x \notin \operatorname{Sp}\left(a_{0}, b_{1}, \ldots, b_{s}\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
& C=\left\{x: x \notin S p\left(a_{0}, d\right)\right\}, \\
& D_{i}=\left\{i a_{0}+d y: y \in B\right\}, \text { for } i=1,2, \ldots, d-1, \\
& d B=\{d x: x \in B\} \text { and } D=D_{1} \cup D_{2} \cup \ldots \cup D_{d-1} .
\end{aligned}
$$

We will show that

$$
A=(d B) \cup C \cup D
$$

First we show that $(d B) \cup C \cup D \subseteq A$. If $x \in d B$, then $x=d y$ where $y \in B$. If $d y \notin A$, then

$$
d y=a_{0} x_{0}+\sum_{i=1}^{s} a_{i} x_{i}
$$

Consequently $d$ divides $a_{0} x_{0}$. Since g.c.d. $\left(d, a_{0}\right)=1, d$ divides $x_{0}$. But then

$$
y=a_{0}\left(\frac{x_{0}}{d}\right)+\sum_{i=1}^{s} b_{i} x_{i}
$$

which implies that $y \notin B$, a contradiction. This shows that $d B \subseteq A$. It is easy to see that $C \subseteq A$. We now show that $D_{i} \subseteq A$ for each $i$. Let $x \in D_{i}$. Then $x=i a_{0}+d y, y \varepsilon$ $B$. We have to show that $x \in A$. Suppose $x \notin A$. Then

$$
x=m a_{0}+d \sum_{i=1}^{s} b_{i} x_{i}, m, x_{i} \geq 0, \text { being integers. }
$$

We may write $m=p d+r, p \geq 0,0 \leq r \leq d-1$ so that

$$
x=r a_{0}+d\left(x_{0} a_{0}+\sum_{i=1}^{s} b_{i} x_{i}\right)
$$

Since $x \in D_{i}$, we have
so that

$$
i a_{0}+d y=r a_{0}+d\left(x_{0} a_{0}+\sum_{i=1}^{s} b_{i} x_{i}\right)
$$

$$
(i-r) a_{0}+d y=d\left(x_{0} a_{0}+\sum_{i=1}^{s} b_{i} x_{i}\right)
$$

Clearly $d \mid(i-r)$, say $i-r=q d, q$ an integer.
Case 1. Let $q=0$. Then $y \notin B$, a contradiction.

Case 2. Let $q \geq 1$. Then $r+q d=i$. But $i \leq d-1$. As $r \geq 0$, this is impossible.
Case 3. Let $q \leq-1$. Then $r=i-q d \geq i+d \geq d+1$, a contradiction.
Therefore $x \in D_{i}$ implies that $x \in A$, for each $i=1,2, \ldots, d-1$. Hence we have

$$
\begin{equation*}
(d B) \cup C \cup D \subseteq A \tag{9}
\end{equation*}
$$

Next we show that $A \subseteq(d B) \cup C \cup D$.
Suppose that $x \notin(d B) \cup C \cup D$. Then $x \notin d B$ and $x \notin C$ and $x \notin D$. Since $x$ $\notin C, x=m a_{0}+n d$ where we can assume that $0 \leq m \leq d-1$ and $n \geq 0$. Since $x \notin D$, we must have $m=0$ or $n \notin B$.

If $m=0$, then $x=n d$. If $n \in B$, then $x \in d B$, a contradiction. If $n \notin B$, then $n$ $=x_{0} a_{0}+x_{1} b_{1}+x_{2} b_{2}+\ldots+x_{s} b_{s}$ so that

$$
n d=x_{0} d a_{0}+d\left(x_{1} b_{1}+x_{2} b_{2}+\ldots+x_{s} b_{s}\right)
$$

That is, $x=n d=x_{0} d a_{0}+x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{s} a_{s}$ which implies that $x \notin \mathrm{~A}$.
On the other hand if $n \notin B$, then $n$ is representable by $a_{0}, b_{1}, \ldots, b_{s}$ in which case $x=m a_{0}+n d$ is representable by $a_{0}, a_{1}, \ldots, a_{s}$. Therefore $x \notin A$. Hence

$$
\begin{equation*}
A \subseteq(d B) \cup C \cup D \tag{10}
\end{equation*}
$$

From (9) and (10) it follows that $A=(d B) \cup C \cup D$.

By definition of the sets $B, C, D$, we easily see that

$$
|d B|=|B|=\left|D_{i}\right|=n\left(a_{0}, \frac{a_{1}}{d}, \ldots, \frac{a_{s}}{d}\right)
$$

for each $i=1,2, \ldots, d-1$ and $|C|=n\left(a_{0}, d\right)$.
We now show that the sets $d B, C, D_{i}$ are pairwise disjoint.

If $x \in D$ then $x \in D_{i}$ for some $i$. By definition of $D_{i}$ we see that $x \in \operatorname{Sp}\left(a_{0}, d\right)$ so that $x$ $\notin C$. Therefore $C \cap D=\varnothing$.

If $x \in d B$ then $x=d y, y \in B$. That is, $x=0 \bullet a_{0}+d y, y \in B$ so that $x \notin D_{i}$ for any $i$. This implies that $x \notin D$ and therefore $D \cap d B=\varnothing$.

Finally if $\mathrm{x} \in d B$ then $x=d y, \mathrm{y} \in B$ which shows that $x \in \operatorname{Sp}\left(a_{0}, d\right)$. That is, $x \notin C$. Therefore $C \cap d B=\varnothing$.

Since $|A|=n\left(a_{0}, a_{1}, \ldots, a_{s}\right)$, we get

$$
n\left(a_{0}, a_{1}, \ldots, a_{s}\right)=d n\left(a_{0}, \frac{a_{1}}{d}, \ldots, \frac{a_{s}}{d}\right)+n\left(a_{0}, d\right)
$$

The numbers $t_{r}, r=1,2, \ldots, a_{0}-1$, are related in a nice way. This is given by the following proposition.
2.1.9 Proposition. Let $a_{0}, a_{1}, \ldots, a_{s}$ be relatively prime positive integers Suppose for each integer $r, 0 \leq r \leq a_{0}-1$,

$$
t_{r}=\sum_{i=1}^{s} a_{i} x_{i r}, \text { for integers } x_{i r} \geq 0
$$

Then for every $j$ with $x_{j r} \geq 1, t_{r}-a_{j}=t_{m}$ for some $m$.
Proof. Suppose, for simplicity, $x_{1 r} \geq 1$. Let $t_{r}-a_{1} \equiv k\left(\bmod a_{0}\right)$. Write $T_{k}=t_{r}-a_{1}$. Then, by definition, we have $t_{k} \leq T_{k}$. If $t_{k}<T_{k}$, then $t_{k}<t_{r}-a_{1}$. But then $t_{k}+a_{1}$ $<t_{r}$. Since $t_{k}+a_{1} \equiv k+a_{1} \equiv t_{r} \equiv r\left(\bmod a_{0}\right)$, we see that the last inequality contradicts the fact that $t_{r}$ is the smallest representable number congruent to $r$ modulo $a_{0}$. Hence we must have $t_{k}=T_{k}$.
2.2 Two known algorithms for computing $g(a, b, c)$.
2.2.1 The problem of finding the numbers $t_{r}$ occuring in 2.1.4 is in general not easy even by using computers. It seems that for three variables $a, b, c, S$. M. Johnson [9] was the first one to develop a method to find $g(a, b, c)$. Later, A. Brauer and J. E. Shockley [3] found a simpler method to find $g(a, b, c)$. The latter method is to find the set of points ( $x_{r}, y_{r}$ ), with integer coordinates $x_{r}, y_{r} \geq 0$, so that the expression

$$
b x_{r}+c y_{r}
$$

assumes precisely the value $t_{r} \equiv r(\bmod a)$ at $\left(x_{r}, y_{r}\right)$ for each $r=1,2, \ldots, a-1$. In the next chapter we will develop a similar method to get an upper bound for $g(S)$ for any set $S$ of $s+1, s \geq 2$, relatively prime positive integers. Now we give an outline of the the method [3] for finding $g(a, b, c)$ where $a, b, c$ are relatively prime positive integers.

By Lemma 2.1 .7 it is no restriction to assume that the three integers are relatively prime in pairs. We will also assume that none of the three numbers is a nonnegative linear combination of the other two. Thus the three numbers are independent. Define the function

$$
\begin{equation*}
H(x, y)=b x+c y \tag{11}
\end{equation*}
$$

Consider the congruence

$$
\begin{equation*}
b x-c y \equiv 0(\bmod a) \tag{12}
\end{equation*}
$$

We first show that there exists a solution to (12) satisfying

$$
0<x_{r} \leq a, 0<y_{r} \leq a
$$

Taking $y_{r}=1, b x_{r} \equiv 0(\bmod a)$. Now g.c.d $(c, b)=1$ and therefore there exists $x_{r}$ such that $b x_{r}-c \equiv 0(\bmod a)$. If $x_{r}>a$ then $x_{r}=p a+q, 0 \leq q<a-1$. If $q=0$ then $c \equiv$ $0(\bmod a)$, a contradiction. Therefore $0<q \leq a-1$. Hence there exists an $x_{r}$ such that $0<x_{r} \leq a-1$ and $y_{r}=1$ satisfying $b x_{r}-c y_{r} \equiv 0(\bmod a)$. Consider the set $S_{1}$ of all integer solutions $\left(x_{r}, y_{r}\right)$ to (12) satisfying $0<x_{r} \leq a, 0<y_{r} \leq a$.
We claim that in $S_{1}$ there is a solution $\left(x_{r}, 1\right)$ such that

$$
\begin{equation*}
b x_{r}-c>0 \tag{13}
\end{equation*}
$$

Suppose $b x_{r}-c=-s a, s \geq 0$. Then $c=b x_{r}+s a$, in which case $c \in S p(a, b)$, a contradiction.

Thus there exist solutions $\left(x_{r}, y_{r}\right)$ to (12) satisfying
$0<x_{r} \leq a, 0<y_{r} \leq a$ and $b x_{r}-c y_{r}>0$.
In the same way we can see that

$$
\begin{equation*}
0<c y-b x \equiv 0(\bmod a), \text { and } 0<x \leq a, 0<y \leq a \tag{13}
\end{equation*}
$$

has solutions $(x, y)$, for example $x=1$ leads to such a $y$.

Let $\left(x_{1}, y_{1}\right)$ be the solution of (12) with smallest $x$, and $\left(x_{2}, y_{2}\right)$ be the solution of (13) with smallest $y$. Define $x_{3}=x_{1}-x_{2}$, and $y_{3}=y_{2}-y_{1}$. We now show that $x_{3}>$ 0 and $y_{3}>0$.

From (12) and (13) by addition we get

$$
0<\left(x_{1}-x_{2}\right) b+\left(y_{2}-y_{1}\right) c \equiv 0(\bmod a)
$$

Define $x_{3}=x_{1}-x_{2}$, and $y_{3}=y_{2}-y_{1}$. If $x_{1}-x_{2}<0$, then we get a contradiction from (13) to the choice of $y_{2}$ and if $y_{2}-y_{1}<0$, we get a contradiction from (12) to the choice of $x_{1}$. Moreover $x_{1}-x_{2} \neq 0$, and $y_{2}-y_{1} \neq 0$. Otherwise if $x_{1}-x_{2}=0$, then $0<\left(y_{2}-y_{1}\right) c \equiv 0(\bmod a)$. As $y_{1}, y_{2} \leq a$, and g.c.d. $(a, c)=1$, the congruence
$\left(y_{2}-y_{1}\right) c \equiv 0(\bmod a)$ is impossible. Similarly one can see that $y_{2}-y_{1} \neq 0$. Therefore $\left(x_{3}, y_{3}\right)$ has both coordinates strictly positive.

Define the rectangle $R$ by

$$
R=\left\{(x, y): 0 \leq x \leq x_{1} \text { and } 0 \leq y \leq y_{2}\right\} .
$$

For each non-negative integral point $(x, y)$ not in $R$, consider $H(x, y)$. If $H(x, y) \equiv r(\bmod a)$, then we are interested in finding $t_{r}$. If $x \geq x_{1}$, we choose

$$
u=x-x_{1}, v=y+y_{1},
$$

so that by using (12),

$$
H(u, v)=H(x, y)-b x_{1}+c y_{1} \equiv H(x, y)(\bmod a)
$$

and

$$
H(u, v)<H(x, y) .
$$

If $y \geq y_{2}$, we set

$$
u=x+x_{2}, v=y-y_{2} .
$$

Using (13) we see that

$$
H(u, v) \equiv H(x, y)(\bmod a)
$$

and

$$
H(u, v)<H(x, y) .
$$

We continue this procedure until we reach a point in the region $R$. We can show that we will obtain a point in $R$. Otherwise if there is an infinite sequence ( $x_{1}$, $\left.y_{1}\right),\left(x_{1}, y_{1}\right), \ldots$, all lying outside $R$ then $H(x, y)<H\left(x_{1}, y_{1}\right)<\ldots$ shows that $\left\{h\left(x_{r}\right.\right.$, $\left.y_{r}\right)$ ) is a decreasing sequence of positive integers congruent to $H(x, y)(\bmod a)$ which is not possible. For example if $H(x, y)=p a+r, 0 \leq r \leq a$, then the procedure brings ( $x$, $y)$ to a point in $R$ in almost $p$ steps of successive translations. This shows that $H(x, y)$ assumes a value $\equiv r(\bmod a)$ in the rectangle $R$ for each $r(\bmod a)$.

Now we can also show that $\left(x_{3}, y_{3}\right)$ is the point with least positive coordinates in $R$ such that $H(x, y) \equiv 0(\bmod a)$.

Suppose $(p, q)$ is any point in $R$ such that $H(p, q) \equiv 0(\bmod a)$. Then $p b+q c \equiv$ 0 , and $x_{2} b-y_{2} c \equiv 0(\bmod a)$. Therefore $\left(x_{2}+p\right) b-\left(y_{2}-q\right) \equiv 0(\bmod a)$. If $p<x_{1}-x_{2}$, then $x_{2}+p<x_{1}$, and the last congruence contradicts the choice of $x_{1}$. Therefore $p \geq x_{1}-x_{2}=x_{3}$. Similarly, we get $q \geq y_{2}-y_{1}=y_{3}$. That is $\left(x_{3}, y_{3}\right)$ is the point with least positive coordinates in $R$ such that $H(x, y) \equiv 0(\bmod a)$.

Now consider the region $U$ given by

$$
U=\left\{(x, y): 0 \leq x<x_{1} \text { and } 0 \leq y<y_{3}\right\} \cup\left\{(x, y): 0 \leq x<x_{3} \text { and } 0 \leq y<y_{2}\right\}
$$

If $(\xi, \eta)$ is a point of $R$ not in $U$, then

$$
H(\xi, \eta) \equiv H\left(\xi-x_{3}, \eta-y_{3}\right)(\bmod a)
$$

and

$$
H(\xi, \eta)>H\left(\xi-x_{3}, \eta-y_{3}\right)
$$

We now show that the function $H$ assumes all residues mod $a$ in the smaller region $U$. That is if $t_{r}=b \alpha_{r}+c \beta_{r}=H\left(\alpha_{r}, \beta_{r}\right)$, then ( $\alpha_{r}, \beta_{r}$ ) is not in $R$ we can apply the translation procedure and bring it to a point $(p, q)$ in $R$ such that

$$
H(p, q) \equiv H(\alpha, \beta) \text { and } H(p, q)<H\left(\alpha_{r}, \beta_{r}\right)
$$

But $H\left(\alpha_{r}, \beta_{r}\right)$ being the least representable integer $\equiv r(\bmod a)$, this is not possible. Thus $\left(\alpha_{r}, \beta_{r}\right) \in R$. But then $\left(\alpha_{r}, \beta_{r}\right) \in U$, for otherwise

$$
H\left(\alpha_{r}-x_{3}, \beta_{r}-y_{3}\right)<t_{r}
$$

Therefore if $t_{r}=H\left(\alpha_{r}, \beta_{r}\right)$, then $\left(\alpha_{r}, \beta_{r}\right) \in U$. Moreover if there exists another point $\left(\alpha_{r}^{*}, \beta_{r}^{*}\right)$ in $U$ such that $H\left(\alpha_{r}, \beta_{r}\right) \equiv H\left(\alpha_{r}^{*}, \beta_{r}^{*}\right)$ then

$$
0<\left|\alpha_{r}-\alpha_{r}^{*}\right|<x_{1}, 0<\left|\beta_{r}-\beta_{r}^{*}\right|<y_{3}
$$

Therefore $\left(\alpha_{r}-\alpha_{r}^{*}\right) b+\left(\beta_{r}-\beta_{r}^{*}\right) c \equiv 0(\bmod a)$. If $\alpha_{r}-\alpha_{r}^{*}$ and $\beta_{r}-\beta_{r}^{*}$ are both positive then the same congruence contradicts the fact $\left(x_{3}, y_{3}\right)$ in $U$ has the least positive coordinates such that $b x_{3}+c y_{3} \equiv 0(\bmod a)$. If $\alpha_{r}-\alpha_{r}^{*}$ and $\beta_{r}-\beta_{r}^{*}$ are both negative then we get a similar contradiction again. If these have opposite signs then we
get a contradiction to (12) or (13). Therefore $H(x, y)$ assumes least positive numbers in each residue class mod $a$ in U .

Therefore by Lemma 2.1.4, we get

$$
g(a, b, c)=\max \left\{x_{1} b+y_{3} c, x_{3} b+y_{2} c\right\}-a .
$$

We have shown below the region $U$.


The rectangle $\mathbf{R}$


The region $\mathbf{U}$

Figure 1

Example. The following example used by S. M. Johnson [8] is often referred to in the literature. Let $a=137, b=251, c=256$. The solution ( $x_{1}, y_{1}$ ) of congruence (12) 0 $<b x-c y \equiv 0(\bmod a)$, is $(13,9)$. The solution $\left(x_{2}, y_{2}\right)$ of $(13)$ is $(5,14)$. Then $\left(x_{3}\right.$, $\left.y_{3}\right)=(8,5)$. Therefore we have

$$
\begin{aligned}
g(137,251,256) & =\max [12(251)+4(256), 7(251)+13(256)\}-137 \\
= & 4948
\end{aligned}
$$

2.2.2 Another algorithm to find $g(a, b, c)$. Another well known algorithm for the computation of $g(a, b, c)$ is given by E. Selmer and Ö. Beyer [20] by considering the convergents of a finite continued fraction expansion of $\frac{a}{s_{0}}$ where the integer $s_{0}$ is determined by

$$
\begin{equation*}
b s_{0} \equiv c(\bmod a), 0 \leq s_{0}<a \tag{14}
\end{equation*}
$$

This algorithm has been modified and a simpler one is given by Ö.J.Rödseth [18 ]. The outline of the latter method is as follows.

If g.c.d. $(a, b)=d$, then by the reduction formula in 2.1 .7 we have

$$
g(a, b, c)=d g\left(\frac{a}{d}, \frac{b}{d}, c\right)+(d-1) c
$$

so that we may assume $a, b$ to be relatively prime. If $c$ is representable by $a, b$ then $g(a, b, c)=g(a, b)=a b-a-b$. So we can also assume that $s_{0} \neq 0$. We use the euclidean algorithm to obtain

| $a=s_{-1}$ | $=q_{1} s_{0}-s_{1}$, |  | $0 \leq s_{1}$ |
| ---: | :--- | ---: | :--- |
| $s_{0}$ |  | $<s_{0} ;$ |  |
| $s_{1}$ |  | $q_{2}-s_{2}$, | $0 \leq s_{2}$ |
|  | $=q_{3} s_{2}-s_{3}$, |  | $<s_{1} ;$ |

$$
\begin{array}{llll}
s_{m-2} & =q_{m} s_{m-1}-s_{m}, \quad 0 \leq s_{m} & <s_{m-1} \\
s_{m-1} & =q_{m+1} s_{m}, \quad 0=s_{m+1}<s_{m} .
\end{array}
$$

Define integers $P_{i}$ by $P_{-1}=0, P_{0}=1$, and

$$
\begin{equation*}
P_{i+1}=q_{i+1} P_{i}-P_{i-1}, i=0,1, \ldots, m \tag{16}
\end{equation*}
$$

We write $\quad \frac{a}{0}=\frac{s_{-1}}{P_{-1}}=\infty$. Since $q_{i} \geq 2$ for all $i$, it follows by induction from (16) that $P_{i+1}>P_{i}$. Hence

$$
0=\frac{s_{m+1}}{P_{m}+1}<\frac{s_{m}}{P_{m}} \ldots<\frac{s_{0}}{P_{0}}<\frac{s_{-1}}{P_{-1}}=\infty
$$

and there is a unique integer $v,-1 \leq v \leq m$, satisfying

$$
\begin{equation*}
\frac{s_{v+1}}{P_{v+1}} \leq \frac{c}{b}<\frac{s_{v}}{P_{v}} \tag{17}
\end{equation*}
$$

The exact value of $g(a, b, c)$ is now given by the following theorem.
2.2.3 Theorem [16]. Let $a, b, c$ be positive integers where $a, b$ are relatively prime and $c$ is not representable by $a, b$. Then

$$
\begin{equation*}
g(a, b, c)=-a+b\left(s_{v}-1\right)+c\left(P_{v+1}-1\right)-\min \left\{b s_{v+1}, c P\right\} \text { where } v \text { is } \tag{18}
\end{equation*}
$$ the unique integer determined by (17).

2.2.4 Remark. For the function $f(a, b, c)$ the above result looks even simpler.

$$
f(a, b, c)=b s_{v}+c P_{v+1}-\min \left\{b s_{v+1}, c P\right\}
$$

It is also interesting that this algorithm gives the number $n(a, b, c)$ of nonrepresentable integers. The following is proved in [16].
2.2.5 Theorem. Following the above notations,

$$
\begin{aligned}
n(a, b, c)= & \frac{1}{2}\left\{\left(1-a+b\left(s_{v}-s_{v+1}-1\right)+c\left(P_{v+1}-1\right)\right\}\right. \\
& +s_{v+1}\left(P_{v+1}-P_{v}\right) \frac{1}{2 a}\left(b s_{v}-c P_{v}\right)
\end{aligned}
$$

2.2.6 Example. It is easy to apply the method in numerical cases. The best known example used by several authors, for example first by S.M.Johnson [8], is as follows. Let

$$
a=137, b=251, c=256
$$

The congruence (14) gives $s_{0}=108$, and applying the Euclidean algorithm (15) we get

$$
\begin{aligned}
137 & =2.108-79, \quad P_{1}=2 \\
108 & =2.79-50, \\
79 & =2.50-21, \quad P_{2}=3 \\
& =4 \\
50 & =3.21-13, \\
21 & =2.13-54 \\
2 & P_{4}=9 \\
2 & P_{5}=14
\end{aligned}
$$

where the numbers $P_{i}$ are obtained by using (16).

Now we find $v$. We note that

$$
\frac{S_{5}}{P_{5}}=\frac{5}{14}<\frac{256}{251}<\frac{13}{9}=\frac{s_{4}}{P_{4}}
$$

and therefore by 2.2.3

$$
\begin{aligned}
g(137,251,256) & =-137+251 \cdot 12+256 \cdot 13-\min \{251 \cdot 5,256 \cdot 9\} \\
& =4948
\end{aligned}
$$

Using 2.2 .5 we find that the number

$$
\begin{aligned}
n(a, b, c) & =\frac{1}{2}\left\{1-137+251 \cdot 7+256 \cdot 13+5 \cdot 5 \cdot \frac{1}{137}(251 \cdot 13-256 \cdot 9)\right\} \\
& =2562
\end{aligned}
$$

In some cases it is possible to reduce the number of times we apply the Euclidean algorithm by re-naming the given numbers. For instance, in our present example let $a^{\prime}=251, b^{\prime}=137, c^{\prime}=256$. We see that $s_{0}=55$, so that

$$
\begin{aligned}
251=5.55-24, & P_{1}=5 \\
55=3.24-17, & P_{2}=14
\end{aligned}
$$

and therefore

$$
\frac{17}{14}<\frac{256}{137}<\frac{24}{5}
$$

We now obtain

$$
\begin{aligned}
& g(137,251,256) \\
& =-251+137 \cdot 23+256 \cdot 13-\min (137 \cdot 17,256 \cdot 5\}=4948
\end{aligned}
$$

and

$$
\begin{aligned}
& n(137,251,256) \\
& =\frac{1}{2}\left\{1-251+137 \cdot 6+256 \cdot 13+17 \cdot 9 \cdot \frac{1}{251}(137 \cdot 24-256 \cdot 5)\right\} \\
& =2562 .
\end{aligned}
$$

2.3 The exact solution for $g(a, b, c)$ when $b+c \equiv 0(m o d a)$. Given relatively prime integers $1<a<b<c$, the reduction formula (8) in Lemma 2.1.6 implies that we may assume that each pair of the integers $a, b, c$ is relatively prime. We may also assume that the set $\{a, b, c\}$ is independent. A. Brauer and J..E. Shockley [3] determined the value of $g(a, b, c)$ as an explicit function of $a, b, c$ when $b+c \equiv 0(\bmod a)$. We determine the exact value of $g(a, b, c)$ in the case of $b$ $+c \equiv 0(\bmod a)$, by using a completely different method and we get a different formula. We need also g.c.d. $(a, b)=$ g.c.d. $(a, c)=1$.
2.3.1 Lemma. Let $a, b, c, 1<a<b<c$, be relatively prime integers with g.c.d. (a, $b)=$ g.c.d. $(a, c)=1$ and $b+c \equiv 0(\bmod a)$. Let

$$
m=\left[\frac{a}{2}\right], A=\{b, 2 b, \ldots, m b\}, B=\{c, 2 c, \ldots, m c-\delta c\}
$$

where

$$
\delta=\left\{\begin{array}{l}
0, \text { if } a \text { is odd } \\
1, \text { if } a \text { is even }
\end{array}\right.
$$

Then $A \cup B$ contains a complete non-zero residue system $\bmod (a)$.

Proof. Since g.c.d. $(a, b)=$ g.c.d. $(a, c)=1$, the sets $A$ and $B$ each have distinct nonzero residues modulo $a$. Let $1 \leq i \leq m$ and $1 \leq j \leq m-\delta$.

Suppose $i b \in A$ and $j c \in B$ satisfy $i b \equiv j c(\bmod a)$, then

$$
i b \equiv-j b(\bmod a), \text { since } b+c \equiv 0(\bmod a)
$$

That is,

$$
(i+j) b \equiv 0(\bmod a)
$$

Since g.c.d. $(a, b)=1$ and $i+j \neq 0$, we must have $i+j=t a$ for some integer $t \geq 1$. But

$$
i+j \leq m+(m-\delta) \leq a-1
$$

Therefore we can not have

$$
i b \equiv j c(\bmod a)
$$

for any $1 \leq i \leq m$ and $1 \leq j \leq m-\delta$. Clearly $0 \notin A$ and $0 \notin B$. Thus $A \cup B$ contains a complete non-zero residue system $\bmod (a)$.
2.3.2 Lemma. Let $a, b, c, m, \delta$ be as in Lemma 2. 3. 1. Then for any integer $x$ with $1 \leq x \leq m$,

$$
m b+x b \equiv m c-x c+(1-\delta) c(\bmod a)
$$

Proof. Since $x b \equiv-x c(\bmod a)$, we only need to show that

$$
m b \equiv m c+(1-\delta) c(\bmod a)
$$

If $a$ is even, then $a=2 m$ and $m b \equiv-m c \equiv m c(\bmod a)$.
If $a$ is odd, then $a=2 m+1$ and $m b \equiv-m c \equiv(m+1) c(\bmod a)$.
2.3.4 Theorem.. Let $a, b, c, 1<a<b<c$ be relatively prime integers with g.c.d. $(a, b)=$ g.c.d. $(a, c)=1$ and $b+c \equiv 0(\bmod a)$. Let $m$ and $\delta$ be as in Lemma 2.3.1. Then

$$
g(a, b, c)=\max \{m b+\alpha b, m c-\alpha c-\delta c\}-a
$$

where

$$
\alpha=\left[\frac{(c-b) m+c(1-\delta)}{c+b}\right]
$$

Proof. Following the notation in 2.1.3, for $r=1,2, \ldots, a-1$, let $t_{r}$ denote the least positive integer $\equiv r(\bmod a)$ and representable by $b$ and $c$. By Lemma 2.4.1, $A \cup B$ is
a complete non-zero residue system mod $a$. Our aim is to find the minimum residues $t_{r}$ for $r=1,2, \ldots, a-1$. Consider the following list of multiples of $b$ and $c$.

| COLUMN 1 | COLUMN 2 |
| :---: | :---: |
| $b$ | $c$ |
| $2 b$ | $2 c$ |
| $\cdot$ | $\cdot$ |
| $\cdot$ | $\cdot$ |
| $m b$ | $\cdot$ |
| $\cdot$ | $\cdot$ |
| $\cdot$ | $\cdot$ |

We observe the following.

1. The numbers in each column are increasing.
2. In each non-zero residue class modulo $a$, the smallest number representable by $b$ and $c$ has the form $x b$ or $y c$, where $1 \leq x \leq a-1,1 \leq y$ $\leq a-1$. (For if $x>y$ then $x b+y c \equiv(x-y) b(\bmod a)$, and if $x<y$, then $x b+$ $y c \equiv(y-x) c(\bmod a)$.$) Therefore it is enough to consider the first a$ rows in order to find the minimum residue for each $r=1,2, \ldots, a-1$.
3. The first $m$ rows contain a complete non-zero residue system modulo $a$ by Lemma 2.3.1.
4. If $a$ is even, the numbers below $m b$ are respectively congruent $\bmod a$ to the numbers above $m c$, by Lemma 2.3.2.
5. If $a$ is odd, the numbers below $m b$ are respectively congruent $\bmod a$ to the numbers above $(m+1) c$, by Lemma 2.3.2

It is easy to see that each of the numbers $b, 2 b, \ldots, m b$ in column 1 is a minimum residue. That is, for $1 \leq i \leq m$,

$$
t_{i b}=i b
$$

We have two cases now.
Case (i) Suppose $m b+b>m c-\delta c$.
Since $m b+b \equiv m c-\delta c(\bmod a)$,

$$
t_{m b+b} \leq m c-\delta c
$$

But $m c-\delta c$ is neither congruent to any number above it in the second column nor congruent to any number above $m b+b$ in the first column. Hence $t_{m b+b}=m c-\delta c$. For $x=1,2, \ldots, m-\delta$, we have

$$
m b+b+(x-1) b>m c-\delta c-(x-1) c
$$

Moreover, the two numbers on either side of the above inequality are congruent by (22). Therefore each of the numbers $c, 2 c, \ldots,(m-\delta) c$ in the second column is a minimum residue. In other words the set $A \cup B$ is a set of minimum residues so that

$$
\{i b: i=1,2, \ldots, m\} \cup\{j c: j=1,2, \ldots, m-\delta\}
$$

forms a complete system of minimum non-zero residues mod $a$. Thus we obtain $g(a, b, c)=\max \{m b,(m-\delta) c\}-a$. The theorem is proved in this case if we show $\alpha$ $=0$. In fact,

$$
m b+b>m c-\delta c
$$

yields $c+b>m(c-b)+c(1-\delta)$ in which case

$$
\alpha=\left[\frac{(c-b) m+c(1-\delta)}{c+b}\right]=0 .
$$

Case (ii). Suppose $m b+b \leq m c-c+(1-\delta) c$. Then we can find a positive integer $\alpha$ such that $\alpha$ is the largest positive integer with

$$
m b+\alpha b \leq m c-\alpha c+(1-\delta) c .
$$

That is the set $B$ does not form a system of minimum residues. Since by (22)

$$
m b+x b \equiv m c-x c+(1-\delta) c
$$

and

$$
m b+x b \leq m c-x c+(1-\delta) c
$$

for any integer $1 \leq x \leq \alpha$, we certainly have

$$
t_{m b}+x b \leq m b+x b .
$$

Let $m b+x b \equiv r_{x}(\bmod a)$. Then $r_{x}(\bmod a)$ appears as $m b+x b$ in the first column for the first time and in the second column it appears as $m c-x c+(1-\delta) c$ for the first time. Since each column is increasing,

$$
t_{r_{x}}=m b+x b .
$$

If $x>\alpha$, then

$$
m b+x b>m c-x c+(1-\delta) c
$$

and therefore the numbers

$$
c, 2 c, \ldots, m c-(\alpha+1) c+(1-\delta) c
$$

are minimum residues mod $a$. Hence

$$
\{b, 2 b, \ldots, m b+\alpha b\} \cup\{c, 2 c, \ldots, m c-\alpha c+(1-\delta) c\}
$$

forms a complete system of minimum non-zero residues $\bmod a$. This gives $g(a, b, c)=\max (m b+\alpha b, m c-\alpha c-\delta c\}-a$ where $\alpha$ is the largest non-negative integer such that

$$
\begin{equation*}
m b+\alpha b \leq m c-\alpha c+(1-\delta) c \tag{23}
\end{equation*}
$$

which yields

$$
\alpha=\left[\frac{(c-b) m+c(1-\delta)}{c+b}\right] .
$$

2.3.4 Example. We shall find $g(9,16,20)$.

Here $m=4, \delta=0, \alpha=\left[\frac{(20-16) 4+20}{36}\right]=1$. By Theorem 2.3.4, $g(9,16$, 20) $=\max \{5 b, 3 c\}-9=80-9=71$.

Directly, by finding the number $t_{r}, r=1,2, \ldots, 8$, in each residue class $\{r, r+9$, $r+18, \ldots\}$, we get the same result.
2.4 Extending $\{a, b\}$ to an independent set $\{a, b, c\}$. Most of the difficulties of finding the exact solution of the Frobenius problem for $s \geq 2$ appear to be contained in the case $s=2$. So we study the effect of extending any given set $\{a$, $b$ ) of relatively prime integers $1<a<b$ to $\{a, b, c\}$ where $c$ is non-representable by $a, b$. Then we have the following.
2.4.1 Theorem. Let $\{a, b, c\}, 1<a<b<c$, be relatively prime integers. Let $(a, b)=1$. Let $c$ be non-representable by $a, b$. Then
(i) $\quad g(a, b, c) \leq g(a, b)-a$,
(ii) if $c=g(a, b)$, then $g(a, b, c)=g(a, b)-a$,
and
(iii) if $g(a, b, c)=g(a, b)-a$, then $b$ divides $(a+c)$.

Proof. According to Lemma 1.5.2, exactly one of the numbers

$$
g(a, b)-x \text { and } x
$$

is representable by $a, b$ for all $0 \leq x \leq g(a, b)$. For $1 \leq x \leq a-1$, it is trivial that $x$ is non-representable and therefore $g(a, b)-x$ is representable by $a, b$. In particular, $g(a, b)-x$ is representable by $a, b, c$ for every $x$ with $1 \leq x \leq a-1$. Since $c$ is non-representable by $a, b$, it is necessary that $c \leq g(a, b)$. Hence $g(a, b)-c$ is nonnegative and since $c$ is non-representable, $g(a, b)-c$ is representable by $a, b$. It now follows that $g(a, b)$ is representable by $a, b, c$. That is,

$$
g(a, b)-x, 0 \leq x \leq a-1
$$

is representable by $a, b, c$. However, if an integer $n>g(a, b)$, it is representable by $a$, $b$ (and $c$ ). This shows that if $n \geq g(a, b)-(a-1)$, then $n \in S p(a, b, c)$

We therefore conclude

$$
g(a, b, c) \leq g(a, b)-a
$$

This proves (i). We now show (ii).

Suppose $c=g(a, b)$. Since $a$ is in $S p(a, b), g(a, b)-a \notin S p(a, b)$. Further since $g(a, b)-a<c$,

$$
g(a, b)-a \notin S p(a, b, c)
$$

However, any integer $n \geq g(a, b)-(a-1)$ is in $S p(a, b, c)$, by the above theorem. It now follows that

$$
g(a, b, c)=g(a, b)-a
$$

To show (iii), let $c$ be non-representable by $a, b$. Let $c<g(a, b)$ and

$$
g(a, b, c)=g(a, b)-a
$$

Since $1,2, \ldots, a-1$ are non-representable by $a, b$ we see that $g(a, b)-1, g(a, b)-$ $2, \ldots, g(a, b)-(a-1)$ are representable by $a, b$. Therefore $c \leq g(a, b)-a$. By our
assumption $g(a, b, c)=g(a, b)-a$ and hence $c<g(a, b)-a$. We assert that $a+c$ is representable by $a, b$. For, otherwise if

$$
g(a, b)-a-c \in S p(a, b)
$$

then

$$
g(a, b)-a \in S p(a, b, c)
$$

This contradicts the fact that $g(a, b, c)=g(a, b)-a$.

Now let

$$
\begin{equation*}
a+c=a x+b y, x, y \text { being non-negative integers. } \tag{26}
\end{equation*}
$$

We must have $x=0$. For, if $x \geq 1$, then $c=a(x-1)+b y$, and consequently $c \in$ $S p(a, b)$, a contradiction. From (26) it follows now that $b l(a+c)$.
2.4.2 Remark. Suppose now that $g(a, b, c)=g(a, b)-a$ and $a+c=k b$.

Case 1. $a \geq 2 k+1$.
Now

$$
\begin{aligned}
g(a, b)-a \quad=a b- & 2 a-b \\
& =[a-(2 k+1)] b+2 c . \\
& \geq 2 c
\end{aligned}
$$

Case 2. $\quad a<2 k+1$.
Now,

$$
\begin{aligned}
& \left(\frac{a-1}{2}\right) b<k b=a+c . \\
& a b-b<2 a+2 c
\end{aligned}
$$

That is,

$$
g(a, b)-a=a b-2 a-b<2 c
$$

2.4.3 Remark. In general if $S$ is an independent set of relatively prime positive integers and if $S$ is extended again to an independent set $S^{\prime}=S \cup\{t\}$, say, then $g(S) \leq g(S)$. It is possible to have equality as in the above example. Indeed, if $S$ is any non-empty set of relatively prime integers and $S^{\prime}$ contains $S$, then $g\left(S^{\prime}\right) \leq$ $g(S)$.
2.4.4 Remark. If $c \in \operatorname{Sp}(a, b)$, then we have $g(a, b)=g(a, b, c)$. On the other hand, by $(i)$ of 2.4.1 if we extend a given set $\{a, b\}$ of relatively prime positive integers to an independent set $\{a, b, c\}$ then

$$
g(a, b, c)<g(a, b)
$$

However this is not true for more than three variables. Suppose we have the set $\{5,7,9\}$. The numbers form an arithmetic sequence and therefore we use the formula in [1], namely

$$
g(a, a+d, \ldots, a+k d)=\left[\frac{a-2}{k}\right] a+(a-1) d
$$

and obtain $g(5,7,9)=13$. Now take one more element 11 and consider the set $\{5$, $7,9,11\}$. We note that 11 is non-representable by $5,7,9$. We see that

$$
g(5,7,9,11)=13
$$

which is exactly $g(5,7,9)$.

Using the ' reduction formula' (8), Lemma 2.1.7, we can deduce easily the upper bound obtained by A.Brauer [2 ].
2.4.5 Theorem. Let $a_{0}, a_{1}, \ldots, a_{s}$ be positive integers such that

$$
d_{i}=\operatorname{g.c.d.}\left(a_{0}, a_{1}, \ldots, a_{i}\right), i=1,2, \ldots, s-1
$$

Let $d_{0}=a_{0}$, and $d_{s}=1$. Then

$$
g\left(a_{0}, a_{1}, \ldots, a_{s}\right) \leq \sum_{i=1}^{s} a_{i}\left(\frac{d_{i-1}}{d_{i}}-1\right)-a_{0}
$$

Proof. We prove this by induction on $s$. For $s=1$, by 1.5 .1 we know that

$$
\begin{aligned}
g\left(a_{0}, a_{1}\right) & =a_{1}\left(a_{0}-1\right)-a_{0} \\
& =a_{1}\left(\frac{d_{0}}{d_{1}}-1\right)-a_{0}
\end{aligned}
$$

since $d_{1}=1$ and $d_{0}=a_{0}$. Therefore the theorem is true for $s=1$. Now let $s \geq 2$. By using the result (8) of Lemma 2.1.7, we have

$$
\begin{aligned}
& g\left(a_{0}, a_{1}, \ldots, a_{s}\right) \\
& =d_{s-1} g\left(\frac{a_{0}}{d_{s-1}}, \frac{a_{1}}{d_{s-1}}, \ldots, \frac{a_{s-1}}{d_{s-1}}, a_{s}\right)+\left(d_{s-1}-1\right) a_{s} \\
& \leq d_{s-1} g\left(\frac{a_{0}}{d_{s-1}}, \frac{a_{1}}{d_{s-1}}, \ldots, \frac{a_{s-1}}{d_{s-1}}\right)+\left(d_{s-1}-1\right) a_{s}
\end{aligned}
$$

using the remark 2.4 .4 . We can apply our induction hypothesis to the $s$ elements $\frac{a_{0}}{d_{s-1}}, \frac{a_{1}}{d_{s-1}}, \ldots, \frac{a_{s-1}}{d_{s-1}}$ which are relatively prime. This yields

$$
g\left(a_{0}, a_{1}, \ldots, a_{s}\right)
$$

$$
\leq d_{s-1}\left\{\sum_{i=1}^{s-1} \frac{a_{i}}{d_{s-1}}\left(\frac{d_{i-1}}{d_{i}}-1\right)-\frac{a_{0}}{d_{s-1}}\right\}+\left(d_{s-1}-1\right) a_{s}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{s-1} a_{i}\left(\frac{d_{i-1}}{d_{i}}-1\right)-a_{0}+\left(d_{s-1}-1\right) a_{s} \\
& =\sum_{i=1}^{s-1} a_{i}\left(\frac{d_{i-1}}{d_{i}}-1\right)-a_{0}+\left(\frac{d_{s-1}}{d_{s}}-1\right) a_{s}
\end{aligned}
$$

Hence we have

$$
g\left(a_{0}, a_{1}, \ldots, a_{s}\right) \leq \sum_{i=1}^{s} a_{i}\left(\frac{d_{i-1}}{d_{i}}-1\right)-a_{0}
$$

## CHAPTER 3

### 3.1 Upper bounds obtained by using additive number theory.

3.1.1 Definition. Given a positive integer $a$ and non-empty subsets $A, B$ of nonnegative integers, the set

$$
\{x+y: x \in A, y \in B\}
$$

of all distinct integers of the form $x+y$ is denoted by $A+B$ or simply by $A+B$. It is convenient to write $A+A$ as $2 A$ and more generally the $m$-fold sum by $m A$.

By using a strong form of a theorem by M.Kneser, (Theorem $16^{\prime}$, [8 ]), it was shown by P. Erdös and R. L. Graham
3.1.2 Theorem Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, 1<a_{1}<a_{2}<\ldots<a_{n}$, be a set of relatively prime integers. Let $m=\left[\frac{a_{n}}{n}\right]$. Then

$$
\begin{equation*}
g(S) \leq 2 m a_{n-1}-a_{n} \tag{1}
\end{equation*}
$$

3.1.3 Remark. Let $S=\left\{a_{1}, a_{2}, \ldots a_{n-1}, a_{n}\right\}$ and let $S(b)$ denote the set of residues mod $b$ of elements in $S$. Consider the set

$$
S\left(a_{n}\right)=\left\{a_{1}, a_{2}, \ldots, a_{n-1}, 0\right\}
$$

It was shown by Erdös and Graham that the set

$$
2 m S\left(a_{n}\right)=S\left(a_{n}\right)+S\left(a_{n}\right)+S\left(a_{n}\right)+\ldots+S\left(a_{n}\right)
$$

(added $2 m$ times $\left.\bmod a_{n}\right)$ contains a complete system of residues $\left(\bmod a_{n}\right)$.
So we may write

$$
T_{r}=\sum_{i=1}^{n} a_{i} x_{i}
$$

where the coefficients $x_{i}$ are non-negative integers satisfying

$$
\sum_{i=1}^{n} x_{i} \leq 2 m
$$

It must be noted that the number $T_{r}$ need not be the smallest number representable by $a_{1}, a_{2}, \ldots, a_{n}$ for each residue $r\left(\bmod a_{n}\right)$.
E. Selmer [19] points out that instead of $a_{n}$ we can take the least number $a_{1}$ in the given set $S$ and assume that the set $S$ is independent so that $S\left(a_{1}\right)$ consists of distinct incongruent residues mod $a_{1}$. Then (1) becomes

$$
\begin{equation*}
g(S) \leq 2\left[\frac{a_{1}}{n}\right] a_{n}-a_{1} \tag{2}
\end{equation*}
$$

This is an improvement of (1). If $T_{r}^{\prime}$ denotes the smallest positive integer $\equiv r(\bmod$ $a_{1}$ ) and representable by $a_{1}, a_{2}, \ldots, a_{n}$, in the form

$$
T_{r}^{\prime}=\sum_{i=2}^{n} a_{i} y_{i r}
$$

then it was mentioned in [19] that

$$
y_{i r} \leq 2\left[\frac{a_{1}}{n}\right]
$$

for each $r=1,2, \ldots, a_{1}-1$. This is not true for the smallest representable number $t_{r}$. For example consider $S=\{5,11,19\}$. It can be easily calculated that

$$
t_{1}=11, t_{2}=22, t_{3}=33, t_{4}=19 .
$$

Now $t_{3}=3.11$ so that the sum of the coefficients is 3. But $2\left[\frac{a_{1}}{n}\right]=2$.

If $S$ contains an element $a_{i}$ which is relatively prime to every $a_{j}, j \neq i$, then we can use the following theorem [8] in additive number theory and deduce a sharp upper bound for $g(S)$ as shown below.

We remark that if $S$ is independent and $t \in S$, then the elements of $S-\{t\}$ must be pairwise incongruent modulo $t$.
3.1.4 Cauchy - Davenport - Chowla Theorem. Let $t$ be a given positive integer, $A=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$, a subset of $r$ incongruent residues $\bmod t$, and $B=\left\{0, b_{1}\right.$, $\left.b_{2}, \ldots, b_{s-1}\right\}$, a subset of $s$ incongruent residues $\bmod t$. Let $t$ be relatively prime to each $b_{i} \in B$. Then $A+B$ contains at least $\min (r+s-1, t)$ incongruent residues mod $t$.
3.1.5 Theorem. Let $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ be independent. If $S$ has an element, say $t$, such that $t$ is relatively prime to every member $a_{i} \neq t$, then

$$
g\left(a_{0}, a_{1}, \ldots, a_{s}\right) \leq m \cdot \max \left\{a_{i}: a_{i} \neq t\right\}-t,
$$

where $m=\left[\frac{t-1}{s}\right]+1$.

Proof. If $m=\left[\frac{t-1}{s}\right]+1$, then $m s \geq t$. Let addition of sets be taken modulo $t$. By the above theorem, taking $A=S, B=S-\{t\}$, we get $\backslash \operatorname{lve} \operatorname{lri}(2 S(\bmod t)) \geq \operatorname{xvelri}((A$ $+B)(\bmod t)) \geq \ldots \min (t, s+1+s-1=2 s\}$. By successive application of the theorem it is easy to see that

$$
|m S| \geq \min (t, m s)=t
$$

Hence $m S$ contains a complete system of residues mod $t$. Let $t_{r}$ denote the smallest non-negative integer $\equiv r(\bmod t)$ and representable by $a_{0}, a_{1}, \ldots, a_{s}$. By Lemma 2.1.4 we have $g(S)=\max \left\{t_{r}: r=1,2, \ldots, t-1\right\}-t$ which implies that

$$
g(S) \leq a_{0} x_{0}+a_{1} x_{1}+\ldots+a_{s} x_{s}-t
$$

where the sum of the coefficients $x_{i}$ is at most $m$.

Therefore we may write

$$
\begin{aligned}
& g(S) \leq\left(\sum_{i=0}^{s} x_{i}\right) \max \left\{a_{i}: a_{i} \neq t\right\}-t \\
& g(S) \leq \operatorname{m.~max}\left\{a_{i}: a_{i} \neq t\right\}-t .
\end{aligned}
$$

Sharpness for $s=1$. If $s=1$, then we may choose $t=a_{0}$ so that $m=a_{0}-1$ and therefore $g\left(a_{0}, a_{1}\right) \leq m \cdot a_{1}-a_{0}=\left(a_{0}-1\right) a_{1}-a_{0}$, which is exact.

A variant of Theorem 3.1.4 is also useful to deduce an upper bound for the case where $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ contains some element, say $t$, such that 0 has no
representation of the form $a_{i}+a_{j} \equiv 0(\bmod t)$, except when $a_{i} \equiv a_{j} \equiv 0(\bmod t)$. We need the following result.
3.1.6 Theorem (Kemperman and Scherk [8, p.50]). Let $t$ be a given integer. Let $A=\left\{0, a_{1}, \ldots, a_{r-1}\right\}$ be a given set of $r$ incongruent residues mod $t$ and $B=\left\{0, b_{1}\right.$, $\left.\ldots, b_{s-1}\right\}$ be a given set of $s$ incongruent residues $\bmod t$. Let $a_{i}+a_{j} \equiv 0(\bmod t)$ if and only if $a_{i} \equiv 0(\bmod t)$ and $a_{j} \equiv 0(\bmod t)$. Then $A+B$ contains at least $\min \{t, r$ $+s-1$ )distinct residues modulo $t$.

Using this theorem, we can alter the hypothesis of Theorem 3.1.4 accordingly. For certain sets $S$, this results in an improvement of known upper bounds. We state formally
3.1.7 Theorem. Let $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ be an independent set of positive integers $\geq$ 2. Suppose $S$ has an element $t$ such that $a_{i}+a_{j} \equiv 0(\bmod t)$ if and only if $a_{i} \equiv 0(\bmod t)$ and $a_{j} \equiv 0(\bmod t)$. Then

$$
g\left(a_{0}, a_{1}, \ldots, a_{5}\right) \leq m \max \left\{a_{i}: a_{i} \neq t\right\}-t
$$

where $m=\left[\frac{t-1}{s}\right]+1$.

Proof. The independence of $S$ ensures that the set $S(t)$ of residues mod $t$ will be a set of incongruent residues mod $t$. The rest of the proof is exactly similar to that of Theorem 3.1.4.

As mentioned before, the above bound is sharp for $s=1$. We now compare the bounds obtained by using the Theorems 3.1.5 and 3.1.7 with some known upper bounds.
3.1.8 Example. $S=\{137,251,256\}$. Since 137 is a prime and the numbers 251 and 256 are incongruent $\bmod 137$, we can apply theorem 3.1.5 (or 3.1.7). Here $t=$ 137, $s=2, \max a_{i}=256$ and $m=69$ so that

$$
\begin{equation*}
g(137,251,256) \leq 69 \cdot 256-137=17527 . \tag{3}
\end{equation*}
$$

We compare this value with the following known bounds.
J.J. Sylvester [21]

$$
\left(a_{0}-1\right)\left(a_{1}-1\right)-1
$$

33999
Y.Vitek [23]

$$
\left[\frac{a_{s}^{2}}{s}\right]-1 \quad 32767
$$

M.Lewin [14]

$$
\left[\frac{\left(a_{s}-1-1\right)\left(a_{s}-2\right)}{2}\right]-1
$$

P. Erdös \& R. L. Graham [7]

$$
2 a_{s-1}\left[\frac{a_{s}}{s+1}\right]-a_{s}
$$

42414

Now we turn to another result of this type.
3.1.9 Lemma. Let $A=\left\{0, a_{1}, a_{2}, \ldots, a_{s}\right\}$ be a set of distinct residues modulo $a_{0}$. If $a_{0} \leq 2 s+1$, then $2 A$ contains all residue classes modulo $a_{0}$.

Proof. Let $a_{0}=m$. Consider the additive group $Z_{m}$ of residues $\bmod m$. Suppose there exists an element $g$ in $Z_{m}$ such that $g$ is not in $2 A$. Define the set

$$
B=\{g-x(\bmod m): x \in A\} .
$$

First we show that $B$ is disjoint from $A$. For, otherwise $g-x \equiv y$ for some $y \in A$, then $g \equiv x+y, x, y \in A$, which contradicts the fact that $g$ is not in $A+A$.

Next, we shall show that $A$ and $B$ have the same cardinality. Consider the map

$$
x \rightarrow g-x
$$

from $A$ into $B$. If $g-x \equiv g-y$, then clearly $x \equiv y$. Since this map is also surjective, $|A|=|B|$. As $A$ and $B$ are disjoint,

$$
\left|Z_{m}\right| \geq|A|+|A|=2 s+2 \geq a_{0}+1>a_{0}=m
$$

a contradiction.
3.1.10 Theorem. Let $A=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right\}, 1<a_{0}<a_{1}<\ldots<a_{s} s \geq 2$, be an independent set of relatively prime integers. Let $a_{0} \leq 2 s+1$. Then

$$
g\left(a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right) \leq 2 a_{s}-a_{0}
$$

Proof. Let $r_{i} \equiv a_{i}\left(\bmod a_{0}\right), \quad 0 \leq r_{i} \leq a_{0}-1, i=0,1,2, \ldots, s$. It follows from independence that $r_{i} \neq 0$ for $i=1,2, \ldots, s$ and $r_{i} \neq r_{j}\left(\bmod a_{0}\right)$ for all $i \neq j$. For, if $r_{i}=0$, for some $i \geq 1$, then $a_{i} \equiv a_{0}\left(\bmod a_{0}\right)$. Since $a_{i}>a_{0}, a_{i}$ has a representation $a_{i}=a_{0}+t a_{0}, t \geq 1$, by $a_{0}$ alone. This contradicts independence.

Now suppose that

$$
r_{i} \boxminus r_{j}\left(\bmod a_{0}\right) \text { for some } i<j .
$$

Then $a_{i} \equiv a_{j}\left(\bmod a_{0}\right)$ so that $a_{j}$ has a representation of the form

$$
a_{j}=a_{i}+t a_{0}
$$

Again this contradicts independence.

Let

$$
B=\left\{0, r_{1}, r_{2}, \ldots, r_{s}\right\}
$$

Then $B$ is a set of distinct residues $\bmod a_{0}$. Now $s+1=|B|$ and $2 s+1 \geq a_{0}$. Therefore by Lemma $3.1 .9, B+B$ contains all residue classes mod $a_{0}$. Consider the set

$$
\left\{a_{i}+a_{j}: 0 \leq i \leq j \leq s\right\}
$$

Clearly if $a_{i}+a_{j} \equiv r\left(\bmod a_{0}\right)$, and if $t_{r}$ denotes the smallest integer $\equiv r\left(\bmod a_{0}\right)$ representable by the $a_{i}$ 's then $t_{r} \leq a_{i}+a_{j}$. Therefore

$$
\max \left\{t_{r}: r \in\left[1, a_{0}-1\right]\right\} \leq a_{s}+a_{s}
$$

Hence by Proposition 2.1.4,

$$
g\left(a_{0}, a_{1}, \ldots, a_{s}\right) \leq 2 a_{s}-a_{0}
$$

This completes the proof.

Example for sharpness. Theorem 3.1.10 gives a sharp bound. If

$$
S=\{2 s+1,2 s+2, \ldots, 3 s+1\}
$$

then by [17], we have

$$
g(S)=\left[\frac{2 s-1}{s}\right](2 s+1)+2 s=4 s+1
$$

By the above theorem also we get

$$
g(S) \leq 2(3 s+1)-(2 s+1) \leq 4 s+1
$$

### 3.2 On the conjecture by M.Lewin.

3.2.1 I. Shur was the first one to obtain an upper bound

$$
\begin{equation*}
g(S) \leq\left(a_{0}-1\right)\left(a_{s}-1\right)-1 \tag{4}
\end{equation*}
$$

for any set $S$ of $s+1$ relatively prime positive integers where $s \geq 1, S=\left\{a_{0}, a_{1}, \ldots\right.$, $\left.a_{s}\right\}, a_{0}<a_{1}<\ldots, a_{s}$. This bound was published by A. Brauer [2].
M. Lewin [15] proved that for $s \geq 2$,

$$
\begin{equation*}
g(S) \subseteq\left[\frac{1}{2}\left(a_{s}-2\right)^{2}\right]-1, \tag{5}
\end{equation*}
$$

where $[x]$ denotes the greatest integer $\leq x$, and he also showed that for $s=2$, this bound is sharp. He conjectured [15, page 69] that for any $s \geq 1$,

$$
\begin{equation*}
g(S) \leq\left[\frac{\left(a_{s}-2\right)\left(a_{s}-s\right)}{s}\right]-1 \tag{6}
\end{equation*}
$$

For a given set $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ of relatively prime integers, Y.Vitek [23] considered the two special cases
(7) Case (i). $a_{0} \geq \frac{2}{3} a_{s}$.
(8) Case (ii). $S$ contains distinct residues $\bmod \left(a_{0}\right)$ such that for every divisor $r$ of $a_{0}$ with $r<s$ such that $r$ does not divide $s$, the number of residues $\left(\bmod a_{0} / r\right)$ of $S$ is not $1+[s / r]$.

In each of these two cases he showed that

$$
g(S) \leq\left[\frac{\left(a_{0}-2+s\right)}{s}\right]\left(a_{s}-s\right)-1
$$

Since $a_{0}+s \leq a_{s,}$ (9) shows that the conjecture of Lewin is valid in each of these two cases.

The purpose of this section is to show that the conjecture of M.Lewin is valid for any $s \geq 3$ in a special case different from the cases mentioned above. In fact the bound we obtain is stronger than (6) for all $s \geq 3$. Our main theorem is
3.2.2 Theorem. Let $S=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right\}, 1<a_{0}<a_{1}<\ldots<a_{s,} s \geq 2$, be a given independent set of relatively prime integers. Let

$$
\frac{a_{2}}{2} \leq \frac{a_{3}}{3} \leq \ldots \leq \frac{a_{s}}{s} .
$$

Then

$$
\begin{equation*}
g\left(a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right) \leq\left[\frac{a_{0}\left(a_{s}-s\right)}{s}\right] \tag{10}
\end{equation*}
$$

## We first prove a Lemma.

3.2.3 Lemma. Let $a_{1}, a_{2}, \ldots, a_{s, 1}<a_{1}<\ldots<a_{s}$, satisfy
$a_{i} \neq a_{j}\left(\bmod a_{1}\right)$ for $i \neq j$.
Let $d=$ g.c.d. $\left(a_{1}, a_{2}, \ldots, a_{s}\right)$. Then $d \leq \frac{a_{1}}{s}$.
Proof. Suppose $d>\frac{a_{1}}{s}$. Let $a_{i}=d b_{i}, i=1,2, \ldots, s$. Let $r_{i} \equiv b_{i}\left(\bmod b_{1}\right), i=1,2$, $\ldots, s, 0 \leq r_{i} \leq b_{1}-1$. Suppose $r_{i}=r_{j}$, where $i<j$ then $b_{j} \equiv b_{i}\left(\bmod b_{1}\right)$.
That is, $b_{j}-b_{i}=t b_{1}$ for some integer $t \geq 1$. This implies that

$$
a_{j}-a_{i} \equiv 0\left(\bmod a_{1}\right),
$$

which contradicts the hypothesis. Therefore the set $\left\{r_{1}, r_{2}, \ldots, r_{s}\right\}$ has $s$ distinct non-negative integers $\leq b_{1}-1$. In other words

$$
\left|\left\{r_{1}, r_{2}, \ldots, r_{s}\right\}\right|=s \leq b_{1}<s \text {, which is not possible. }
$$

Hence we must have $d \leq \frac{a_{1}}{s}$. This proves the Lemma.
We now prove Theorem 3.2.2.

Proof of Theorem 3.2.2. Let $d=$ g.c.d. $\left(a_{0}, a_{1}, \ldots, a_{s-1}\right)$. The numbers $a_{0}, a_{1}, \ldots$, $a_{s}$ are pairwise incongruent modulo $a_{0}$. For, otherwise if $a_{i} \equiv a_{j}\left(\bmod a_{0}\right)$ where $0 \leq i$ $<j \leq s-1$, then $a_{j}=a_{i}+x a_{0}$ for some integer $x \geq 1$, which contradicts the fact that the set $\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ is independent. We therefore assume that $a_{i} \equiv a_{j}\left(\bmod a_{0}\right)$ for all $i \neq j$. Now we can apply Lemma 3.2 .3 to $\left\{a_{0}, a_{1}, \ldots, a_{s-1}\right\}$ which yields $d \leq$ $\frac{a_{0}}{s}$.

We now prove the theorem by induction on $s$.

For $s=2$, the result follows from (8) and (9) above. Let $s \geq 3$. By Lemma 2.1.7,

$$
\begin{equation*}
g\left(a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right)=d \bullet g\left(\frac{a_{0}}{d}, \frac{a_{1}}{d}, \ldots, \frac{a_{s}-1}{d}, a_{s}\right)+(d-1) \tag{11}
\end{equation*}
$$

$a_{s}$.
Also we have

$$
\begin{equation*}
g\left(\frac{a_{0}}{d}, \frac{a_{1}}{d}, \ldots, \frac{a_{s-1}}{d}, a_{s}\right) \leq g\left(\frac{a_{0}}{d}, \frac{a_{1}}{d}, \ldots, \frac{a_{s}-1}{d}\right) \tag{12}
\end{equation*}
$$

Using this in (11) we get

$$
g\left(a_{0}, a_{1}, a_{2}, \ldots, a_{s} \leq d \bullet g\left(\frac{a_{0}}{d}, \frac{a_{1}}{d}, \ldots, \frac{a_{s}-1}{d}\right)+(d-1) a_{s}\right.
$$

Using the induction hypothesis, we get

$$
\begin{aligned}
& g\left(a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right) \leq d\left[\frac{\frac{a_{0}}{d}\left(\frac{a_{s-1}}{d}-s+1\right)}{s-1}\right]+(d-1) a_{s} \\
& g\left(a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right) \leq d\left\{\frac{a_{0} a_{s-1}}{d^{2}(s-1)}-\frac{a_{0}}{d}\right\}+(d-1) a_{s}
\end{aligned}
$$

That is,

$$
g\left(a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right) \leq \frac{a_{0} a_{s-1}}{d(s-1)}+d a_{s}-\left(a_{0}+a_{s}\right)
$$

Define the function

$$
\begin{equation*}
u(x)=\frac{a_{0} a_{s-1}}{x(s-1)}+a_{s} \bullet x \tag{13}
\end{equation*}
$$

Then,

$$
\begin{equation*}
g\left(a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right) \leq u(d)-\left(a_{0}+a_{s}\right) \tag{14}
\end{equation*}
$$

By Lemma 3.2.3, $d \leq \frac{a_{0}}{s}$ and therefore we consider $u(x)$ on $J=\left[1, \frac{a_{0}}{s}\right]$.
Clearly $u(x)$ is a continuous function of $x$ on $J$, and $u^{\prime \prime}(x)>0$ on this interval. This implies that $u^{\prime}(x)$ is increasing on $J$. Therefore the absolute maximum of $u(x)$ on $J$ is attained either at $x=1$ or at $x=\frac{a_{0}}{s}$.

Now

$$
u(1)=\frac{a_{0} a_{s}-1}{s-1}+a_{s}
$$

and

$$
\begin{gather*}
u\left(\frac{a_{0}}{s}\right)=\frac{s a_{s-1}}{s-1}+\frac{a_{0} a_{s}}{s} . \\
u(1)-u\left(\frac{a_{0}}{s}\right)=\left(\frac{a_{s}-1}{s-1}\right)\left(a_{0}-s\right)+\frac{a_{s}}{s}\left(s-a_{0}\right) \\
u(1)-u\left(\frac{a_{0}}{s}\right)=\left(a_{0}-s\right)\left(\frac{a_{s}-1}{s-1}-\frac{a_{s}}{s}\right) \tag{15}
\end{gather*}
$$

Now by hypothesis,

$$
\begin{equation*}
\frac{a_{s-1}}{s-1} \leq \frac{a_{s}}{s} \tag{16}
\end{equation*}
$$

As $\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right\}$ is independent, the set constitutes $s+1$ distinct residues $\bmod a_{0}$ and therefore $a_{0} \geq s+1$. This implies

$$
\begin{equation*}
a_{0}-s>0 \tag{17}
\end{equation*}
$$

Using (17) and (16) in (15), we see that

$$
u(1)-u\left(\frac{a_{0}}{s}\right) \leq 0
$$

Now (14) yields
$g\left(a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right) \leq u\left(\frac{a_{0}}{s}\right)-\left(a_{0}+a_{s}\right)$

$$
\begin{aligned}
& =\frac{s a_{s-1}}{s-1}+\frac{a_{0} a_{s}}{s}-\left(a_{0}+a_{s}\right) \\
& =\frac{a_{0} a_{s}}{s}-a_{0}+\left(\frac{s a_{s-1}}{s-1}-a_{s}\right)
\end{aligned}
$$

so using (16) we get

$$
g\left(a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right) \leq \frac{a_{0} a_{s}}{s}-a_{0}
$$

That is,

$$
g\left(a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right) \leq\left[\frac{a_{0}\left(a_{s}-s\right)}{s}\right]
$$

This completes the proof of Theorem 3.2.2.
3.2.4 Example. Consider the set $S=\{15,21,26,40,65\}$. This set is independent since $21 \notin \operatorname{Sp}(15), 26 \notin \operatorname{SP}(15,21) 40 \notin \operatorname{Sp}(15,21,26)$ and $65 \notin \operatorname{Sp}(15,21,26$, 40). Since g.c.d. $(15,26)=1$, the set $S$ is relatively prime. Now Vitek's theorem cannot be applied since the conditions (7) and (8) are not true. That is,
(1) $a_{0}<\frac{2}{3} a_{4}$ and
(2) $s=4,3$ divides 15,5 divides $15,3<s, 3$ does not divide $s$. Taking modulo 5 , the elements of $S$ are 0 and 1 only. But $1+\left[\frac{4}{3}\right]=2$.

However the condition of theorem 3.2.2 is true since

$$
\frac{26}{2} \leq \frac{40}{3} \leq \frac{65}{4}
$$

Therefore we have

$$
g(15,21,26,40,65) \leq\left[\frac{15(65-4)}{4}\right]=228
$$

For comparison we give the following values obtained by using the best known bounds.
E. S. Selmer [19] $2 a_{4}\left[\frac{a_{0}}{5}\right]-a_{0}$ ..... 375
J. J. Sylvester [21] $\left(a_{0}-1\right)\left(a_{2}-1\right)-1$349
Y. Vitek [23]
$\left[\frac{a_{s}^{2}}{s}\right]-1$1055
P. Erdös \& R. L. Graham [7] $\quad 2 a_{s-1}\left[\frac{a_{s}}{s+1}\right]-a_{s}$. ..... 975
M. Lewin [15 ]

$$
\left[\frac{\left(a_{s}-1-1\right)\left(a_{s}-2\right)}{2}\right]-1
$$1227

3.2.5 Example. Consider the often quoted example [3] consisting of the three numbers $137,251,256$. We will take $a_{0}=137, a_{1}=251, a_{2}=256$ and $a_{3}=385$. Then $a_{0}, a_{1}, a_{2}, a_{3}$ satisfy the above theorem and we obtain

$$
g\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \leq 17444
$$

We give below the values obtained by using other best known bounds which are proved in the general case.

## J. J. Sylvester[21]

$\left(a_{0}-1\right)\left(a_{1}-1\right)-1$
33999
A. Brauer [2]
$\left(a_{0}-1\right)\left(a_{s}-1\right)-1$
52223
Y. Vitek [23]
$\left[\frac{a_{s}^{2}}{s}\right]-1$
49407
M. Lewin [14]

$$
\begin{equation*}
\left[\frac{\left(a_{s-1}-1\right)\left(a_{s}-2\right)}{2}\right]-1 \tag{48831}
\end{equation*}
$$

P. Erdös \& R. L. Graham [7]

$$
\begin{equation*}
2 a_{s-1}\left[\frac{a_{s}}{s+1}\right]-a_{s} \tag{48767}
\end{equation*}
$$

E. S. Selmer [19]

$$
\begin{equation*}
2 a_{3}\left[\frac{a_{0}}{4}\right]-a_{0} \tag{26043}
\end{equation*}
$$

Using Lemma 3.2.3 and similar techniques as in Theorem 3.2.2 we can get a better bound in the special case when $S=\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$ consists of relatively prime integers with and g.c.d. $\left(a_{0}, a_{1}, a_{2}\right)=d \geq 2$. We have the folowing result in this direction. We use the sharp bound for three variables obtained by Y.Vitek (Theorem 1, [22]) which is stated below.
3.2.6 Lemma. Let $p, q, r$ be an independent set of integers such that $p<q<r$ and $(p, q, r)=1$. Then

$$
\mathrm{g}(p, q, r) \leq\left[\frac{p}{2}\right](r-2)-1
$$

3.2.7 Theorem. Let $\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}, 1<a_{0}<a_{1}<a_{2}<a_{3}$, be an independent set of integers with g.c.d. $\left(a_{0}, a_{1}, a_{2}\right)=d \geq 2$. Then

$$
g\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \leq a_{3}\left(\left[\frac{a_{0}}{3}\right]+2\right)-a_{0}
$$

Proof. Let $d=$ g.c.d. $\left(a_{0}, a_{1}, a_{2}\right)$. Since $a_{0}, a_{1}, a_{2}, a_{3}$ are independent they are pairwise incongruent modulo $a_{0}$. Now using Lemma 3.2 .3 for the numbers $a_{0}$, $a_{1}, a_{2}$ we get $d \leq \frac{a_{0}}{3}$. Consider the set $S=\left\{\frac{a_{0}}{d}, \frac{a_{1}}{d}, \frac{a_{2}}{d}\right\}$. Since $\left\{a_{0}, a_{1}, a_{2}\right\}$ is independent so is $S$. So we can apply Lemma 3.2.6 and obtain

$$
\begin{equation*}
g(S) \leq\left[\frac{a_{0}}{2 d}\right]\left(\frac{a_{2}}{d}-2\right)-1 \tag{18}
\end{equation*}
$$

By Lemma 2.1.7,

$$
\begin{equation*}
g\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=d g\left(\frac{a_{0}}{d}, \frac{a_{1}}{d}, \frac{a_{2}}{d}, a_{3}\right)+(d-1) a_{3} \tag{19}
\end{equation*}
$$

Therefore $\quad g\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \leq d . g\left(\frac{a_{0}}{d}, \frac{a_{1}}{d}, \frac{a_{2}}{d}\right)+(d-1) a_{3}$

$$
\begin{equation*}
\leq d\left\{\left[\frac{a_{0}}{2 d}\right]\left(\frac{a_{2}}{d}-2\right)-1\right\}+(d-1) a_{3}, \text { using } \tag{18}
\end{equation*}
$$

so that

$$
g\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \leq \frac{a_{0} a_{2}}{2 d}+\left(a_{3}-1\right) d-\left(a_{0}+a_{3}\right)
$$

Define

$$
u(d)=\frac{a_{0} a_{2}}{2 d}+\left(a_{3}-1\right) d
$$

Then the last inequality becomes

$$
\begin{equation*}
g\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \leq u(d)-\left(a_{0}+a_{3}\right) \tag{20}
\end{equation*}
$$

Since $u(d)$ is a continuous function of $d$ for $d \geq 2$, (in fact for $d>0$ ), and $u^{\prime \prime}(d)$ $\geq 0, u^{\prime}(d)$ is increasing for $d \geq 2$. Therefore the absolute maximum of $u(d)$ on $\left[2, \frac{a_{0}}{3}\right]$ is assumed either at $d=2$ or at $d=\frac{a_{0}}{3}$. Now,

$$
\begin{aligned}
& u(2)=\frac{a_{0} a_{2}}{4}+2\left(a_{3}-1\right), \\
& u\left(\frac{a_{0}}{3}\right)=\frac{3 a_{2}}{2}+\frac{a_{0} a_{3}}{3}-\frac{a_{0}}{3} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
u(2)-u\left(\frac{a_{0}}{3}\right) & =\left(\frac{a_{2}}{4}-\frac{a_{3}}{3}+\frac{1}{3}\right)\left(a_{0}-6\right) \\
& =\left(\frac{a_{2}}{4}-\frac{a_{3}-1}{3}\right)\left(a_{0}-6\right) \\
& \leq\left(\frac{a_{2}}{3}-\frac{a_{3}-1}{3}\right)\left(a_{0}-6\right) \\
& \leq 0
\end{aligned}
$$

since $2 \leq d \leq \frac{a_{0}}{3}$ and $a_{2} \leq a_{3}-1$.

Returning to (20) we have

$$
\begin{aligned}
g\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \quad & <u\left(\frac{a_{0}}{3}\right)-\left(a_{0}+a_{3}\right) \\
& =\frac{3 a_{2}}{2}+\frac{a_{0} a_{3}}{3}-\frac{a_{0}}{3}-\left(a_{0}+a_{3}\right) \\
& <\frac{a_{0} a_{3}}{3}+\frac{a_{3}}{2}-\frac{4 a_{0}}{3} \\
& =a_{3}\left(\frac{1}{3} a_{0}+\frac{1}{2}-\frac{a_{0}}{3 a_{3}}\right)-a_{0} \\
& \leq a_{3}\left(\left[\frac{a_{0}}{3}\right]+2\right)-a_{0}
\end{aligned}
$$

This completes the proof of Theorem 3.2.7.

### 3.3 An algorithm to find an upper bound for $g\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$.

3.3.1 We begin with a set $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of four given relatively prime integers $\geq$ 2 , with $\left(a_{i}, a_{1}\right)=1$ for $i=2,3,4$, and $a_{2}, a_{3}, a_{4}$ pairwise incongruent modulo $a_{1}$. As $\left(a_{1}, a_{2}\right)=1$, the congruence

$$
a_{2} x \equiv a_{3}\left(\bmod a_{1}\right)
$$

has a solution $x_{1}$ with $0 \leq x_{1}<a_{1}$. As $a_{2}$ and $a_{3}$ are incongruent $\bmod a_{1}, x_{1}>1$. Hence there exist solutions $(x, y)$ to the congruence

$$
a_{2} x \equiv a_{3} y\left(\bmod a_{1}\right), 1 \leq y<x .
$$

Let $\left(x_{1}, y_{1}\right)$ be one such solution with least $x_{1}$. Then we have

$$
\begin{equation*}
a_{2} x_{1} \equiv a_{3} y_{1}\left(\bmod a_{1}\right), 1 \leq y_{1}<x_{1} \tag{30}
\end{equation*}
$$

where $x_{1}$ is least satisfying (30).

Similarly we obtain $\left(y_{2}, z_{2}\right)$ satisfying

$$
\begin{equation*}
a_{3} y_{2} \equiv a_{4} z_{2}\left(\bmod a_{1}\right), 1 \leq z_{2}<y_{2} \tag{31}
\end{equation*}
$$

and $y_{2}$ is least with these properties.

Further, in the same way we get $\left(x_{3}, z_{3}\right)$ satisfying

$$
\begin{equation*}
a_{4} z_{3} \equiv a_{2} x_{3}\left(\bmod a_{1}\right), 1 \leq x_{3}<z_{3} \tag{32}
\end{equation*}
$$

with least $z_{3}$. Set $z_{1}=x_{2}=y_{3}=0$.

Define the translation vectors $t_{i}, i=1,2,3$, as follows.

$$
\begin{aligned}
& t_{1}=\left(-x_{1}, y_{1}, z_{1}\right) \\
& t_{2}=\left(x_{2},-y_{2}, z_{2}\right) \\
& t_{3}=\left(x_{3}, y_{3},-z_{3}\right)
\end{aligned}
$$

We note that

$$
x_{1}>y_{1}+z_{1}, \quad y_{2}>x_{2}+z_{2}, \quad z_{3}>x_{3}+y_{3} .
$$

If either

$$
p \geq x_{1} \quad \text { or } q \geq y_{2} \quad \text { or } r \geq z_{3}
$$

then add $t_{1}$ or $t_{2}$ or $t_{3}$ respectively to the point $(p, q, r)$.

Define

$$
M(x, y, z)=a_{2} x+a_{3} y+a_{4} z
$$

Suppose $M(p, q, r) \boxminus j\left(\bmod a_{1}\right)$. If $p \geq x_{1}$, then add $t_{1}$ to $(p, q, r)$. We get

$$
M\left(p-x_{1}, q+y_{1}, r+z_{1}\right)=M(p, q, r)+M\left(-x_{1}, y_{1}, z_{1}\right)
$$

Using (30) we see that

$$
M\left(p-x_{1}, q+y_{1}, r+z_{1}\right) \equiv M(p, q, r)\left(\bmod a_{1}\right)
$$

Similarly each of the translations $t_{2}$, or $t_{3}$ preserves the congruence (mod $a_{1}$ ). Moreover taking the distance function $d$ as the sum of the absolute differences for any two 3 -tuples, we see that point $\left(p-x_{1}, q+y_{1}, r+z_{1}\right)$ is closer to the origin than $(p, q, r)$. Thus at each step of the translation by $t_{i}$, the point is moved closer to the origin. We continue the procedure until we arrive at the point $\left(p_{n}, q_{n}, r_{n}\right)$, say, where

$$
0 \leq p_{n}<x_{1} \quad, 0 \leq q_{n}<y_{2}, 0 \leq r_{n}<z_{3} .
$$

Any further translation would result in a point with a negative integral coordinate.

Notice that as initially the point $(p, q, r)$ is at a distance $p+q+r$ from the origin procedure must terminate in at most $p+q+r$ steps. Thus if $(p, q, r)$ is any point with non-negative integer coordinates outside the region

$$
P=\left\{(x, y, z): 0 \leq x<x_{1}, 0 \leq y<y_{2}, 0 \leq z<z_{3}\right\}
$$

and if $M(p, q, r) \equiv j\left(\bmod a_{1}\right)$, then there exists $\left(p_{n}, q_{n}, r_{n}\right) \in P$ with $M\left(p_{n}, q_{n}, r_{n}\right)$ $\equiv j\left(\bmod a_{1}\right) . \quad$ It follows that the set

$$
\{M(x, y, z): \quad(x, y, z) \in P\}
$$

contains a complete system of residues mod $a_{1}$.

Therefore by Lemma 2.1.4 we have

$$
\begin{array}{r}
g\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\max \left\{t_{r}: r=0,1, \ldots, a_{1}-1\right\}-a_{1} \\
\leq \max \{M(x, y, z):(x, y, z) \in P\}-a_{1} \\
g\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \leq\left(x_{1}-1\right) a_{2}+\left(y_{2}-1\right) a_{3}+(z 3-1) a_{4}-a_{1} \tag{33}
\end{array}
$$

3.3.2 This algorithm can be generalized to any set $S=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$, for $s \geq 3$. Assume that g.c.d. $\left(a_{0}, a_{i}\right)=1$ for $i=1,2, \ldots, s$ and that $a_{0}, a_{1}, \ldots, a_{s}$ are pairwise incongruent modulo $a_{0}$. We can generalize the above algorithm for finding an upper bound for $\mathrm{g}\left(a_{0}, a_{1}, \ldots, a_{S}\right)$, as follows.

We solve

$$
\begin{equation*}
a_{i} x \equiv a_{i+1} y\left(\bmod a_{0}\right), \quad 1 \leq x_{i+1}<x_{i} \tag{34}
\end{equation*}
$$

for $i=1,2, \ldots, s$ where we set $a_{s+1}=a_{1}$. The solution with least $x$ is denoted by $\left(x_{i}, y_{i}\right)$. The corresponding translation vector $t_{i}, i=1,2, \ldots, s-1$, is defined to be the $s$-tuple

$$
t_{i}=\left(0,0, \ldots, 0,-x_{i}, y_{i}, 0, \ldots, 0\right)
$$

where the $i$-th position has $-x_{i}$ and the $(i+1)$-th position has $y_{i}$. For $s$, we have $t_{s}=\left(y_{s}, 0, \ldots, 0,-x_{s}\right)$.

The algorithm now gives

$$
g\left(a_{0}, a_{1}, \ldots, a_{s}\right) \leq \sum_{i=1}^{s}\left(x_{i}-1\right) a_{i}-a_{0}
$$

## CHAPTER 4

4.1 Basic Definitions. A rooted tree is a connected acyclic digraph with a distinguished node called the root. The height of a node is the length of the unique path from the root to the node.

A node is called a leaf if it has outdegree zero. If the outdegree is not zero, the node is an internal node. The set of nodes of height $m$ is called the $m$ th level of the tree.

The notion of a (2, 3)-tree is well known (see for example [12]) in theoretical computer science. By definition, a (2,3)-tree is a rooted tree such that
(i) the outdegree of each internal node is either 2 or 3 ,
(ii) the heights of all leaves are the same.

## A (2, 3)-tree



Figure 2

This concept of a (2,3)-tree has a natural extension [11] as follows.
Given positive integers $g_{0}, g_{1}, \ldots, g_{s}, 1 \leq g_{0} \leq g_{1} \leq \ldots \leq g_{s}$, we define a $\left(g_{0}\right.$, $g_{1}, \ldots, g_{s}$-tree to be a rooted tree such that
(i) the outdegree of each internal node is either $g_{0}$, or $g_{1}$, or $\ldots, g_{s}$,
(ii) the heights of all leaves are the same.

It is easy to see that for any positive integer $n$ there is a (2,3)-tree having exactly $n$ leaves.

We say that a positive integer $n$ is representable by a $\left(g_{0}, g_{1}, \ldots, g_{s}\right)$-tree if there exists a $\left(g_{0}, g_{1}, \ldots, g_{s}\right)$-tree with exactly $n$ leaves. It follows from the last statement that every positive integer is representable by a $(2,3)$-tree. Figure 2 shows that 6 is representable by a $(2,3)$-tree. If we take the integers 3 and 5 then it is not true that every positive integer has a representation by a $(3,5)$-tree. For example, 8 is not representable by a (3,5)-tree.

A characterization (Theorem 1, [12]) for the representation of positive integers by $\left(g_{0}, g_{1}, \ldots, g_{s}\right)$-trees is as follows.

Given integers $g_{0}, g_{1}, \ldots, g_{s}, 1 \leq g_{0} \leq g_{1} \leq \ldots \leq g_{s}, s \geq 1$, there exists a positive integer $N=N\left(g_{0}, g_{1}, \ldots, g_{s}\right)$ such that every integer $n \geq N$ can be represented by a $\left(g_{0}, g_{1}, \ldots, g_{s}\right)$-tree iff g.c.d. $\left(g_{1}-g_{0}, g_{2}-g_{0}, \ldots, g_{s}-g_{0}\right)=1$.

The conductor $\kappa\left(g_{0}, g_{1}, \ldots, g_{s}\right)$ is the least positive integer such that for any $n \geq \kappa\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ there exists a $\left(g_{0}, g_{1}, \ldots, g_{s}\right)$-tree with exactly $n$ leaves.

Given positive integers $g_{0}, g_{1}, \ldots, g_{s}, 1<g_{0}<g_{1}<\ldots<g_{s}, s \geq 1$, with g.c.d. $\left(g_{1}-g_{0}, g_{2}-g_{0}, \ldots, g_{s}-g_{0}\right)=1$, the problem of finding the exact value of $\kappa\left(g_{0}\right.$, $g_{1}, \ldots, g_{s}$ ) is closely related to the Frobenius problem. In [10] an upper bound for
$\kappa\left(g_{0}, g_{1}, \ldots, g_{s}\right)$ is given. This bound yields the exact value of $\kappa\left(g_{0}, g_{1}, \ldots, g_{s}\right)$ when $g_{0}, g_{1}, \ldots, g_{s}$ are consecutive integers.

In the next section we first find the exact value of $\kappa(a, a+1)$ and then deduce from this the exact value of $\kappa(a, a+1, \ldots, a+s)$ for any integer $s \geq 1$.
4.2 The conductor $\kappa(a, a+1, \ldots, a+s)$ for $s \geq 1$.
4.2.1 Theorem. Let $a, b, 1<a, b=a+1$, be given integers. Then $\kappa(a, b)=a^{f(a)}$, where $f(a)$ is the least positive integer satisfying

$$
a^{f(a)+1} \leq b^{f(a)}+1 .
$$

Proof. Suppose $N$ is any positive integer such that
(1) $a^{n-r+1} b^{r} \leq N \leq a^{n-r} b^{r+1}$, where $r, n$ are integers such that $0 \leq r \leq n$.

Solving the equations
(2) $a x+b y=N, \quad x+y=a^{n-r} b^{r}$
we get $x=a^{n-r} b^{r+1}-N$

$$
y=N-a^{n-r+1} b^{r}
$$

By (1) we see that $x$ and $y$ are non-negative integers satisfying the system (2). We now construct an ( $a, b$ )-tree with exactly $N$ leaves.

We start with the root. Replace the root by an $a$-tree. (An $x$-tree is a rooted tree with $x$ leaves all at height one as shown in figure 3.)

An $\boldsymbol{x}$-tree


Figure 3

Now we have an $a$-tree. Replace each of the $a$ leaves with an $a$-tree. Starting from the root we do this $n-r$ times. The resulting tree has $a^{n-r}$ leaves, all at height $n-r$. Further, each of its internal nodes has outdegree $a$. Now replace each of these $a^{n-r}$ leaves by a $b$-tree. We obtain an ( $a, b$ )-tree with $a^{n-r} b$ leaves. Repeat this procedure of replacing by a $b$-tree for $r$-levels. This construction now gives an $(a, b)$-tree with exactly $a^{n-r} b^{r}$ leaves. We complete the construction (figure 4) by replacing $x$ of these $a^{n-r} b^{r}$ leaves by an $a$-tree and each of the remaining leaves by a $b$-tree. Since $a x+b y=N$ and $x+y=a^{n-r} b^{r}$ the resulting ( $a, b$ )-tree has exactly $N$ leaves.

Therefore every integer in the interval $\left[a^{n-r+1} b^{r}, a^{n-r} b^{r+1}\right]$, for integers $r$, $n$ satisfying $0 \leq r \leq n$, is representable by an ( $a, b$ )-tree. For any fixed integer $n$ $\geq 0$, we see that

$$
\bigcup_{r=0}^{n}\left[a^{n-r+1} b^{r}, a^{n-r} b^{r+1}\right]=\left[a^{n+1}, b^{n+1}\right]
$$

This implies that every integer in $\left[a^{n+1}, b^{n+1}\right]$ is representable by an $(a, b)$-tree for each integer $n \geq 0$.

Denote by $f(a)$ the least positive integer such that

$$
\begin{equation*}
a^{f(a)+1} \leq b^{f(a)}+1 . \tag{3}
\end{equation*}
$$

That is,

$$
\begin{equation*}
b^{f(a)-1}+1<a^{f(a)}, a^{f(a)+1} \leq b^{f(a)}+1 \tag{4}
\end{equation*}
$$

Then it follows that every integer $\geq a^{f(a)}$ is representable by an $(a, b)$-tree. This proves that

$$
\kappa(a, b) \leq a^{f(a)}
$$

In fact we can show that the equality holds.
Suppose $a^{f(a)}-1$ is representable by an $(a, b)$-tree say $T$. Then there exist non-negative integers $x, y$ such that

$$
\begin{equation*}
a x+b y=a^{f(a)}-1 \tag{5}
\end{equation*}
$$

It is easy to see that $a^{f(a)}$ is the least positive integer representable by an $(a, b)$ tree having $f(a)$ levels. Therefore the number $h$ of levels in $T$ is at most $f(a)-$ 1. Observe that $T$ has $x+y$ nodes at the $(h-1)$ th level. Note that the largest integer representable by an ( $a, b$ )-tree of height $t$ is $b^{t}$ and therefore

$$
x+y \leq b^{f(a)-2}
$$

Hence

Using (5),

$$
\begin{aligned}
& a x+b y<b(x+y) \leq b . b^{f(a)-2} \\
& a^{f(a)}-1<b^{f(a)-1} \\
& a^{f(a)} \leq b^{f(a)-1}, \text { a contradiction to }
\end{aligned}
$$

Therefore it follows that $\kappa(a, b)=a^{f(a)}$.

## Representation of $N$ by an ( $a, b$ )-tree



Figure 4
4.2.2. Corollary. Given positive integers $a, a+1, a+2, \ldots, a+s, s \geq 1$, we can deduce that

$$
\boldsymbol{K}(a, a+1, a+2, \ldots, a+s)=a^{k} \text {, where } k \text { is the least positive integer such }
$$ that

$$
a^{k+1} \leq(a+s)^{k}+1 .
$$

Proof. Clearly each integer in $[a, a+s]$ is representable by a ( $a, a+1, \ldots, a+s$ )tree. By the proof of the above theorem each integer in $\left[(a+i)^{n},(a+i+1)^{n}\right]$ is representable by an $(a+i, a+i+1)$ - tree for $i=0,1, \ldots, s-1$. If a number is representable by an ( $a+i, a+i+1$ )-tree then it is also representable by an ( $a, a+1$, $\ldots, a+s)$-tree. Therefore every integer in $\left[a^{n},(a+s)^{n}\right]$ is representable by an ( $a$, $a+1, \ldots, a+s)$-tree for all $n \geq 1$. Therefore if $k$ is the least positive integer such that

$$
\begin{equation*}
a^{k+1} \leq(a+s)^{k}+1 \tag{6}
\end{equation*}
$$

then

$$
\kappa(a, a+1, a+2, \ldots, a+s) \leq a^{k} .
$$

We will now show that the equality holds by a similar argument as in Theorem 4.2.1 for $s=1$.

Suppose $a^{k}-1$ is representable by an ( $a, a+1, a+2, \ldots, a+s$ )-tree say $T$. Then there exist non-negative integers $x_{i}, i=0,1, \ldots, s$, such that

$$
\begin{equation*}
\sum_{i=0}^{s}(a+i) x_{i}=a^{k}-1 . \tag{7}
\end{equation*}
$$

It is easy to see that $a^{k}$ is the least positive integer representable by an ( $a, a+1$, $a+2, \ldots, a+s)$-tree having $k$ levels. Therefore the number $h$ of levels in $T$ is at most $k-1$. Observe that $T$ has $\sum x_{i}$ nodes at the $(h-1)$ th level and therefore

$$
\sum x_{i} \leq(a+s)^{k-2} .
$$

Hence using (7) in

$$
\sum_{i=0}^{s}(a+i) x_{i}<(a+s) \sum\left(x_{i}\right) \leq(a+s) \cdot(a+s)^{k-2}
$$

we get

$$
a^{k}-1<(a+s)^{k-1} .
$$

That is,

$$
a^{k} \leq(a+s)^{k-1},
$$

a contradiction to the minimality of $k$ in (6). Hence

$$
\kappa(a, a+1, a+2, \ldots, a+s)=a^{k} .
$$

4.3 A bound for $\kappa\left(g_{0}, g_{1}, \ldots, g_{s}\right)$. In the general case, given positive integers $g_{0}$, $g_{1}, \ldots, g_{s}, 1<g_{0}<g_{1}<\ldots<g_{s}, s \geq 1$, with g.c.d. $\left(a_{1}, a_{2}, \ldots, a_{s}\right)=1, g_{i}-g_{0}=a_{i}$, $i=1,2, \ldots, s$, an upper bound for $\kappa\left(g_{0}, g_{1}, \ldots, g_{s}\right)$ is given in [10] using an upper bound for the Frobenius function $g\left(a_{1}, a_{2}, \ldots, a_{s}\right)$.

Let $d_{i}=$ g.c.d. $\left(a_{1}, a_{2}, \ldots, a_{i}\right), g\left(a_{1}, a_{2}, \ldots, a_{s}\right) \leq L$
where

$$
L=1+\sum_{i=1}^{s-1} \frac{a_{i+1} \cdot d_{i}}{d_{i+1}}-\sum_{i=1}^{s} a_{i}
$$

is the upper bound obtained by A. Brauer in [2]. Define

$$
A=90 . g_{n}+L, \quad C=90 \cdot g_{n}+a_{1}\left(g_{n}+1\right)-1 .
$$

Let $m \geq 2$ be the least integer satisfying

$$
g_{0} 0^{m+1}-g_{0}{ }^{2}+A \leq g_{n}^{m}-g_{n}^{2}+C+1 .
$$

Then

$$
\begin{equation*}
\kappa\left(g_{0}, g_{1}, \ldots, g_{s}\right) \leq g_{0}^{m}-g_{0}^{2}+A . \tag{8}
\end{equation*}
$$

The set of integers representable by height 1 trees is clearly $\left\{g_{0}, g_{1}, \ldots\right.$, $\mathrm{g}_{s}$ ). Let $d$ denote the maximum of the differences $\left(g_{i+1}-g_{i}\right), i=0,1, \ldots, s-1$. To prove (8) it was shown in [10] that there is a set containing more than $d$ consecutive positive integers representable by $g_{0}, g_{1}, \ldots, g_{5}$-trees of height 2 using an upper bound for the Frobenius function for $s$ variables. It would be interesting to find the the exact value of $\kappa\left(g_{0}, g_{1}, \ldots, \mathrm{~g}_{s}\right)$ as a function of the exact value of $g\left(a_{1}, a_{2}, \ldots, a_{s}\right)$.

## BIBILIOGRAPHY

1. P.T. Bateman, Remark on a recent note on linear forms, Amer. Math. Monthly, 65 (1958)517-518.
2. A. Brauer, On a problem of partitions, Amer. J. Math. 63 (1942), $299-312$.
3. A. Brauer and J. E. Shockley, On a problem of Frobenius, J. reine angew. Math. 211 (1952), 215 - 220.
4. A. Brauer and B. M. Seelbinder, On a problem of partitions-II, Amer. J. Math. 76 (1954), $343-346$.
5. J. S. Byrnes, On partition problem of Frobenius, J. Comb. Theory (A) 17 (1974) 162-166.
6. Jacques Diximier, Proof of a conjecture by Erdös and Graham concerning the Problem of Frobenius, Journal of Number Theory 34, 198-209 (1990).
7. P. Erdös and R. L. Graham, On a linear diophantine problem of Frobenius, Acta Arithm. 21 (1972), 399-408.
8. H. Halberstam and K. F. Roth, Sequences, Springer Edition, 1983.
9. S. M. Johnson, A linear diophantine problem, Canad. J. Math. 12 (1950), 390 398.
10. C. A. Jones, Using linear forms to determine the set of integers realizable by ( $g_{0}, g_{1}, \ldots, g_{k}$ )-trees, Discrete Mathematics 47(1983)247-254.
11. D. E. Knuth, The art of computer programming, Vol. 3, Sorting and Searching, Addison-Wesley, Reading, Ma, 1973.
12. D. T. Lee, C. L. Liu and C. K. Wong, $\left(g_{0}, g_{1}, \ldots, g_{k}\right)$-tree and unary OL systems, Theoretical Computer Science 22 (1983)209-217.
13. M. Lewin, On a problem of Frobenius for an almost consecutive set of integers, J. reine angew. Math. 273 (1976)134-137.
14. M. Lewin, On a linear diophantine problem, Bull. London Math. Soc. 5 (1973), 75-78.
15. M. Lewin, A bound for a solution of a linear diophantine problem, J. London Math. Soc. 6 (1972), 61-69.
16. A. Nijenhuis and H. S. Wilf, Representations of integers by linear forms in non-negative integers, J. Number Theory 4 (1972), 98 - 106.
17. J. B. Roberts, On a diophantine problem, Canad. J. Math. IX (1957), $219-222$.
18. Ö. J. Rödseth, On a linear diophantine problem of Frobenius II, J. reine angew. Math. 307/309 (1979), 431 - 440.
19. E. S. Selme, On the linear diophantine problem of Frobenius, J. reine angew. Math. 293/4 (1977), 1 - 17.
20. E. S. Selmer and Ö. Beyer, On the linear diophantine problem of Frobenius in three variables, J. reine angew. Math. 301 (1978), 161 - 170.
21. J. J. Sylvester, Mathematical questions, with their solutions, Educational Times 41 (1884), 21.
22. Y. Vitek, Bounds for a linear diophantine problem of Frobenius, J. London Math. Soc. (2) 10 (1975), $79-85$.
23. Y. Vitek, Bounds for a linear diophantine problem of Frobenius II, Canad. J. Math. 28 (1976), $1280-1288$.
