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ABSTRACT 

The purpose of this thesis is to investigate the partition problem of 

Frobenius. Given relatively prime positive integers ao, a l ,  ..., a,, the problem of 

Frobenius is to find the largest positive integer g(a0, a l ,  . . ., a,) which cannot be 

represented as a linear combination of ao, a 1, . . . , a ,  with non-negative integer 

coefficients. For s =1, the exact value of g(a0, a l )  was found by J. J. Sylvester back 

in 1884 . I. Shur was the first to give an upper bound for the number g(a0, a l ,  ..., 

a,) for any s 2 1. 

In this thesis we find upper bounds for g(a0, a l ,  . . ., a,) for any s in specific 

cases using additive number theory and show that these bounds are better than 

the best known upper bounds. We also study the greatest common divisor d of no, 

a l ,  ..., a,l and using this we prove that Lewin's conjecture 

a i  +' where [ x ]  denotes the largest holds good in the special case when s x7 
integer I x.  We also obtain a better upper bound for the case s=3 when d 2 2. For 

s = 2, we find the exact value of g(a, b, c) where b + c = O(mod a).  An algorithm to 

find an upper bound for g(a0, a l ,  ..., a,) for any s 2 3 is given. We also investigate 

a related problem of the representation of positive integers by trees and give a 

different proof for finding the conductor  go, g l ,  g2, . . ., gk) of a (go, g l ,  g2, . . ., gk)-  

tree. 



In Chapter 1 we prove the existence of the number theoretic function g(a0, 

a l ,  ..., a,) and study two related functions that arise naturally in connection with 

g( ao, a l ,  .. ., a,  ). We conclude this Chapter by presenting the exact solution to 

the problem for s = 1. 

In Chapter 2 we determine the exact value of g(a,  b ,  c )  of relatively prime 

integers a ,  b ,  c when b + c = O(mod a) .  While the case s = 1 is easy, it appears 

that all the difficulties of the problem in the general case are contained in the case s 

= 2. So we study the effect of extending { a ,  b )  of relatively prime integers to ( a ,  b, 

c )  where c is non-representable by a ,  b ,  and prove that g(a ,  b ,  c )  < g(a ,  b )  - a. 

Also, we show that this bound is sharp. 

In Chapter 3 we use addition theorems in Number Theory and deduce upper 

bounds in special cases which are better than the best known upper bounds. We 
a .  

also prove that the conjecture (*) holds for any s when -f < for i = 2, 3, . .., 

s - 1 . If the g.c.d(a0, a l ,  a2 ) = dl d 2 2, then we find an upper bound for g(a0, a l ,  

a2, a3) which is better than the known bounds. An algorithm to find an upper bound 

for g(a0, a l ,  ..., a,), when a0 is relatively prime to each ai, is also described. 

In Chapter 4 we study the related problem of finding the conductor of a (go, 

g l ,  82, ..., gk)-tree. We give a proof for finding the exact value of the conductor of 

~ ( a ,  a + 1) and deduce the exact value of ~ ( a ,  a+l,  . . ., a+s) for any s, s 2 1. 
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CHAPTER 1 

1.1 Introduction. Let S = (ao, a l ,  . . ., as )  be a set of relatively prime positive 

integers where ai > 1 for all i. Define 
s I 

SP(S) = i i X 0 x i  ai : xi is a non-negative integer for i = 0, 1, ..., . 1 
It is shown in section 1.2 that Sp(S) contains all but finitely many non-negative 

integers. We denote the largest integer not in Sp(S) by g(a0, a l ,  . . ., a,) or by g(S). 

Given S = {ag, al,  . . ., as),  we say a non-negative integer n is representable by ag, al,  

. . ., a,, i f  and only if n E Sp(S). Otherwise we say n is non-representable. 

We note that g(ag, al, . . ., a,) is precisely the largest integer N which cannot be 

expressed by ag, al,  . . . , a, in the farm 
S 

N =  E a i x i ,  
i =  0 

with non-negative integral coefficients xi. 



The problem of Frobenius consists of finding g(S) or at least obtaining non- 

trivial upper bounds for g(S) for any given set S = {ag, al ,  . . ., a,) of relatively prime 

positive integers. For s = 1, with g.c.d.(ao, al)  = 1, 

(1) g(ma1) = m a 1  -@)-a1 

has been known [21] for over a hundred years. 

A concrete algorithm ([3], [18]) is known for finding the exact value of g(a0, 

al ,  a2) for integers ao, al ,  a2, 1 < ag < a1 < a2 with g.c.d.(ag, al, a2) = 1. However for 

s 2 3, the exact value of g(a0, a l ,  ..., a,) as a closed formula in ao, a l ,  . . ., a, is 

known except in special cases, for example, when ao, a l ,  ..., a, are consecutive 

integers [2], or when ag, al, . . ., a, are in arithmetic progression [1,17]. 

We say a set S = (ao, a l ,  ..., a,), 1 < a0 < a l e  ... < a,, of integers is 

independent if ai 4 Sp(a0, a l ,  . . ., ai - 1) for i = 1,2, . . ., s. 

The set 

{ x :  a SxSbandxisaninteger) 

of integers between two integers a and b, a c b, including a and b is denoted by [a, b]. 

If a divides b, we write a I b. 

In this chapter, the next section begins with the proof of the basic fact that g(ag, 

al ,  . . . , a,) exists. Then we make some observations on the two best known functions 

that arise naturally in connection with g(a0, al ,  . . ., a,). We conclude Chapter 1 by 

presenting the complete solution to the Frobenius problem for s = 1. 



In Chapter 2 we are concerned with the study of the Frobenius problem for 

three variables a, b, C. Let g.c.d. (a, b) = 1 .  Let ( a ,  b )  be extended to an independent 

set ( a ,  b, c ) .  We prove that g(a, b, c) I g (a, b) - a. In the special case when c + b = 
0 (mod a), we obtain the exact solution for g(a, b, c). In general we prove that 

g (a, b, c) g (a, b) - a. 

We also show that if c = g(a, b), then equality holds. Conversely, if equality holds we 

show that bl(a + c). 

In Chapter 3 we study the best known upper bounds for any s 2 2. We obtain 

new upper bounds in special cases and show that they are better than the best known 

upper bounds. We prove that the conjecture of M. Lewin [14] 

is valid in the special case of S = (q, al, . . . , as) which satisfies 

We also give examples to show that this bound is better than the best known 

upper bounds. A computational method is also studied to obtain a non-trivial upper 

bound for s = 3 and the method is generalized to s 2 3. 

In Chapter 4 we study the problem of finding the conductor of a (go,  81, . . . , 
gk)-tree, which is related the Frobenius problem. We give a different proof for finding 

the exact value of the conductor ~ ( a ,  a+l,. . ., a+s) for any s 2 1. 



1.2 The existence of g(a0, a l ,  ..., as).  In the beginning of this chapter we 

mentioned that SpQ contains all but finitely many non-negative integers for any given 

S = (ao, a l ,  . . ., as) of relatively prime positive integers. We will prove this 

fundarnen tal fact. 

1.2.1 Theorem. Let S = (ao, a l ,  . . ., a,) and g.c.d.(ao, al, . . ., a,) = 1. Then there 

exists an no such that n E Sp(S) for all n 2 no. 

Proof. Since g.c.d.(ag, al ,  . . ., a,) = 1, there exist integers xi such that 

Let 

Then, 

Now, 

4 xil + Mi = xi(ao + m), if xi 2 0, and 

d x i l  + M i =  -&(ao-m) ifxi< 0. 

Thereforeifm~ [ ~ , ~ ~ - l ] , t h e n ~ l x ~ l  +mxi;?Oforeach i =0 ,  1, ..., s. 

Hence (2) implies that for each m in [0, e l ]  

N + m E Sp(S). 

If m 2 ag, then 



m = p a g + q , O I q 5 a o - l a n d N + m = p a g + ( N + q )  

so that (N + m ) ~  Sp(S). Hence Sp(S) contains all n 2 N. This completes the proof of 

the theorem. 

1.3 Related functions. 

1.3.1 Definition. For integers 1 c a0 c a1 c ... c a,, with g.c.d.(ao, a l ,  ..., a,) = 1, 

we define f (q ,  al ,  . . ., a,) to be the largest integer N which can not be expressed in the 

with integral coefficients Xi  2 1. 

From the definition of the two numbersflao, al ,  . . ., a,) and g(ag, al ,  . . ., a,) it 

immediately follows that 

1.3.2 Definition. Given a set S = (ao, a l ,  . . ., a,) of relatively prime positive 

integers, the number of integers x, 0 5 x I g(S), such that x 4 Sp(S) is denoted by 

n(a09 ai,  . . ., a,). 

Remark. If 0 5 x 5 g(S), then x and g(S) - x can not both belong to Sp(S). For, 

writing 

g(S) = (g(S) - x) + x, 



we observe that if both x and g ( S )  - x belong to S p ( S ) ,  then g ( S )  E S p ( S ) ,  a 

contradiction. Since 1 (0,  1 ,  2 ,  ..., g ( S )  ) I  = g(S) + 1 ,  we deduce that at least half of 

the elements in this set are are non-representable. That is, 

(4) 
8 ( S )  + 1 I n(S)  I g (S) .  

In fact as we will see below in theorem 1.5.1 the bounds for nQ given above 

are sharp. For s = 1 ,  

and when S = ( k ,  k+ 1 ,  . . . ,2k-11, it is easy to see that 

g(S) = k -1, n(S) = k-1. 

Moreover we note that this is the only case in which g(S) = n(S). 

1.3.3 Definition. Given integers n 2 2 and t 2 3 we define 

a n ,  t )  = m a  g(S), 

where the maximum is taken over all sets S = (ao, a 1 ,  . . . , an-1 ) of relatively prime 

integers with 2 I ag < . . . < an-1 5 t. 

1.3.4 Bounds for G(n, t). We easily see from ( 1 )  that 

(5 )  G(2, t) = g(t-1, t) = (t - 2)(t - 1) - 1. 

Y.Vitek [22] has shown that 

g(a, b ,  C )  L [ ~ ] ( c  - 2) - 1, for any integers 1 < a c b E E which are 

relatively prime. 

For c = t ,  we have 

[:] I [y] and c - 2 6 1 - 2  



so that 

G(3,  t )  b [T] (t  - 2) - 1 .  

Since then t  - 2, t  - 1 ,  t  are in arithmetic progression, using [17] we obtain 

Hence we conclude that 

G(3,  t )  = [ y ] ( t - 2 )  - 1 .  

For any n 2 2, using the bound 
r 1  

which was proved by P. Erdos and R. L. Graham [7] ,  we deduce that 
2 t2 

G(n ,  t )  <y 

We can improve this further by using the bound 

obtained by Y.Vitek [23] so that 

G(n, t )  
t2 

n - 1  ' 

We now find a lower bound. It is easy to see that for the set ,- T 

t  
(x ,  2, ..., (n - l ) x , x * ) , x  = andx* = ( n -  1 ) x -  1, 

t A  
G(n, t )  2 g(x, 2x, ..., x*) = g(x, x*) 2 -- n - 1  3  t. 

Therefore for any n 2 2, we have 



Very recently Jacques Dixmier [6] improved the upper bound for G(n, t) and 

showed that for t > n 2 2, 

1.4. An analytical form of the Frobenius problem. Define the rational 

function f(z) by 

for any complex number z. Thenflz) is the generating function for the number r,(n) of 

representations of n of the form 

with integral coefficients Xi 2 0. So we may write 
m 

f O ) =  C . s ( n ) z n .  
n = 0 

Now it is easy to see that g(ag, al, . . ., a,) is precisely the largest integer k for which f 



1.5. The Exact Solution for s = 1 .  

1.5.1. Theorem. For relatively prime integers a,  b, 2 I a < b, we have 

(i) g(a, b) = ab - a - b, 

Proof of (i). We first observe that the condition that g.c.d.(a, b) = 1 implies that 

{bt : t = l ,2 ,  ..., a - 1) 

forms a system of all non-zero residues modulo a. 

Now we claim that in each non-zero residue class r(mod a), the largest non- 

representable number has the form bt - a, 1 I t I a -1. Suppose bt - a = xa + yb, 

where1 5 t I a -1, x 2 0, y 2 0. Then b(t - y) = (x+l)a. Since g.c.d.(a,b) = 1, it 

follows that a1 ( t  - y ) . Since 0 I y < t, we must have a I t, a contradiction. 

Therefore by definition, 

g(a, b)=max{bt-a: t=0 ,1 ,2 ,  ..., a -  I) ,  

=Ha-1)-a .  

This proves (i). 

Now we show (ii). We need a Lemma. 

1.5.2 Lemma. Let g.c.d.(a, b) = 1. Then s x a c a  one of the integers x and g(a, 

b) - x belongs to Sp(a,b), for each x, 0 < x I g(a, b). 

Proof of the Lemma. We note that for any x I g(a, b), both x and g(a, b) - x can not 

be representable by a, b. Otherwise, 

g(a, b) = Ma,  b) - x) + x 

would be representable by a, b. In other words, 



(6 )  x E Sp(a, b) implies that g(a, b) -x 4 Sp(a, b). 

On the other hand, suppose x 4 Sp(a, b). As g.c.d.(a, b) = 1, we can find non- 

negative integers m, n such that 

x = m a - n b .  

I f m 2 b ,  t h e n w r i t e m = j b + k , O I k I b - 1  and j2  1. 

Now, x = jba + ka - nb, and therefore x = ka - (n - ja)b, 0 5 k I b - 1. Since 

x is non-representable by a, b, n - j a 2 1. So we can write x in the form 

x = m a - n b  

w h e r e O I m I b - 1  andn2  1. Now 

g ( a , b ) - x = a b - a - b - ( m a - n b ) = ( b - m - l ) a + ( n - 1 ) b .  

Since m I b - 1 and n 2 1, the coefficients b - m - 1 and n - 1 are both non-negative. 

This shows that 

(7) x t i  Sp(a, b) implies that g(a, b) - x E Sp(a, b). 

From (6) and (7) it follows that exactly one of the numbers 

g(a, b) -x and x 

is representable for all 0 S x S g(a, b). 

Proof of (ii). From the above Lemma it follows that exactly half of the members in the 

set (0, 1, ..., g(a, b)) belong to Sp(a, b). This proves (ii). 



CHAPTER 2 

2.1 Basic results. 

2.1.1 Given a set S = (ao, a l ,  . . ., a,) of relatively prime integers, 1 < a0 < a1 < . . . < 

a,, suppose some ai is representable by ag, a l ,  . . ., ai -1. Then it is easy to see that any 

integer n is representable by ag, a l ,  . . ., a, if and only if n is representable by {ao, a l ,  

. . . , a,)\ {ai ) . Hence 

SP(S) = SP(S - (ail)  

This implies that we can delete ai from the given set S without affecting the value of 

g(S).  Hence we may assume that no ai is representable by the preceding ones. 

2.1.2 Definition. We say that a set of integers S = (ao, a l ,  ..., a,), 1 < a0 <a1  < 

. . . < a,, is independent if no ai is representable by ag, al, . . ., ai - 1 for i = 1,2, . . ., s. 
I 



Remark. Note that any given set S of positive integers always contains a maximal 

independent set S'. By 2.1.1 g(S) = g(Sg). Therefore it is no restriction to assume that 

S is independent. 

2.1.3 Definition.. Given a set S = (ao, a l ,  . .., a,) of relatively prime integers, we 

denote by t, = t, (ag, al, . . ., a,) the smallest integer = r (mod ag) such that 

for non-negative integers Xi. 

It is trivial that for r = 0, t, = 0. By the definition of t,, it follows that t, - a0 is 

the largest integer i r (mod q )  which can not be expressed in the form 

for any non-negative integral coefficients xi. From this we obtain 

2.1.4 Proposition 131. Let g.c.d. (ao, a l ,  ..., a,) = 1. Then 

(3) g(ag,al, ..., a,)=max (t,: r = 0 ,  1, ..., q - 1 )  -q. 

2.1.5 Remark. We may use any ai instead of a0 in the above Proposition. 

The number of positive integers which can not be represented by ag, al,  . . ., a, 

is easily determined by considering the positive integers I t, in the residue class r (mod 

ao), say, 



{r,r+ag,r+2ao, ..., r+rnag=tr) 

where 1 I r I ag - 1. All integers in this set c tr are non-representable by the definition 

oft,. NOW 

which is precisely the number of positive integers non-representable by q, al,  . . ., a, in 

the residue class r (mod ag). Thus, using the notation 

R(a0) = (1,2, ..., ao- 1) 

we obtain 
a0 - 1 

which we state as follows. 

2.1.6 Proposition. Let R (ao) = { 1, 2, . . ., a0 - 1) and let ao, a 1, . . ., a, be 

relatively prime positive integers. Then 

Let d = g.c.d.(al, ..., a,) so that ai = d bi, for i = 1, 2, ..., s. Since g.c.d. (ao, 

al ,  . . ., a,) = 1, we have g.c.d.(ao, d) = 1. For any residue r (mod ag) we define as in 

2.1.3 

U r  = tr (w, bl, b,). 

Then there exist non-negative integers yi such that 



S 

SO that d ~ r =  Cd  bi yi,  
i = 1 

Clearly the last sum is = dr (mod ao) and it is the smallest integer = dr (mod ag) which 

is representable by ag, a l ,  . . ., a,. If this is not the smallest, then the right hand side of 

(5) will not be the smallest integer representable by ao, 61, . . ., bs and = r (mod ag). 

Hence by the definition oft& = t& (ag, al ,  . . ., a,), we must have 

Thus we get from (6) 

(7) t&=dur 

for any residue r (mod q). Since d and r are relatively prime, 

( r : r = O ,  1 ,..., w - 1 } =  [ d r : r = O ,  1 ,..., ao-1 1. 

B y  2.1.4 we have now from (7) 

gbo ,  a l ,  ..., a,) + ag = d ' (g(ag, 61, . .., 6,) + ag) 

which yields 

2.1.7 Lemma [3]. Let g.c.d. (ao,al ,  ..., a,) = 1. Let d = g.c.d.(al, ..., a,). Then 

This is a very useful reduction formula which we we will be using very often 

throughout our work. For s = 2, this result was frrst proved [9] by S. M. Johnson. 



We use (4) and (7) to deduce a similar reduction formula for the number of non- 

representable integers. 

From (4) we have 

We give below a combhatorial proof of the above result. 

2.1.8 Lemma. Let g.c.d. (ao, a l ,  ..., a,) = 1 .  Let d = g.c.d.(al, ..., a,). Then 

Noh a ~ ,  ..., as) = d n  a0 , 3 , ... , %)+ "(ao, 4. 

Proof. Define the sets 

( 

A = { x  : x d  Sp(ao,al, ..., a,)) ,  

B = { x  : x  4 Sp(a0, bl ,  ..., b, ) ) ,  



c = ( x : x B  Sp(ao,d)), 

Di= ( i a o + d y : y ~  B ),fori= 1,2, ..., d -  1,  

d B =  ( d x : x ~  B )  and D = D l u D 2 u  ... uDd-1. 

We will show that 

A = ( d B ) u C u D .  

First we show that (dB) u C u D A. I f x  E dB, then x = dy where y E B. 

Consequently d divides ~ 0 .  Since g.c.d.(d, ag) = 1, d divides xo. But then 

which implies that y 4 B ,  a contradiction. This shows that dB s A. It is easy to see 

that C s A. We now show that Di s A for each i. Let x E Di. Then x = iao + dy, ye 

B. We have to show that x E A. Suppose x d A. Then 

x = mag + d f bixi, m ,  xi 2 0 ,  being integers. 
i= 1 

Since x E Di, we have 

S 
so that (i-r)ag+dy=d 

i= 1 

Clearly d I ( i  - r), say i - r = qd, q an integer. 

Case 1. Let q = 0. Then y d B, a contradiction. 



Case 2. Let q 2 1. Then r + qd = i. But i S d-1. As r 20, this is impossible. 

Case 3. Letq S-1. Then r = i -qd2  i + d 2 d + 1, acontradiction. 

Therefore x E Di implies that x E A, for each i=l, 2, . . ., d-1. Hence we have 

(9)  ( d B ) u C u D  s A .  

Next we show that A s  (dB) u C u D .  

Supposethat x d  ( d B ) u C u D .  Thenxd dBandxd Candxd D. Sincex 

B C,x=mao+nd where wecan assume that O I m I d -  1 andn20.  Since xd D, 

we must have m = 0 or nd B. 

If m = 0, then x = nd. If n E B, then x E dB, a contradiction. If n 4 B, then n 

=xwo +xlbl +x2b2 + ... +x&, so that 

nd = xodq + d(xlbl+ x2b2 + .. . + xsbs). 

That is, x = nd = xodao + xla l+  x2a2 + . . . + x ~ ,  which implies that x B A. 

On the other hand if n B B, then n is representable by ao, bl, . . . , b, in which 

case x = mag + nd is representable by ag, al ,  . . . , a,. Therefore x B A. Hence 

(10) A G  ( d B ) u C u D .  

From (9) and (10) it follows that A = (dB) u C u D. 

By definition of the sets B, C, D, we easily see that 

foreachi=1,2 ,..., d - 1  and ICI=n(q,d). 

We now show that the sets dB, C, Di are pairwise disjoint. 



If x E D then x E Di for some i. By definition of Di we see that x E Sp(ag, 6) so that x 

e C. Therefore C n  D = 0. 

If x E dB then x = dy, y E B. That is, x = Oeao + dy, YE B so that x e Di for any i. 

This implies that x e D and therefore D n dB = 0. 

Finally if x E dB then x = dy, y E B which shows that x E Sp(a0,d). That is, x e C. 

Therefore C n dB = 0. 

Since I A I= n(og, al ,  . . ., a,), we get 

The numbers t,, r = 1,2, . . ., og - 1, are related in a nice way. This is given by 

the following proposition. 

2.1.9 Proposition. Let ao, a l ,  .. ., a, be relatively prime positive integers 

Suppose for each integer r, 0 I r I ag - 1, 

S 

t, = C aixir, for integers xir 2 0. 
i = l  

Then for every j with Xjr 2 1, tr - aj = t,,, for some m. 

Proof. Suppose, for simplicity, xi, 2 1. Let t, - a1 = k (mod ao). Write Tk = r, - al.  

Then, by definition, we have tk I Tk . If rk < Tk, then tk c tr - a1. But then tk + a1 

< t,. Since tk + a1 = k + a1 i t, = r (mod ao), we see that the last inequality 

contradicts the fact that t, is the smallest representable number congruent to r modulo 

ao. Hence we must have tk = Tk. 



2.2 Two known algorithms for computing g (a ,  b ,  c ) .  

2.2.1 The problem of finding the numbers tr occuring in 2.1.4 is in general not easy 

even by using computers. It seems that for three variables a, b, c, S. M .  Johnson [9] 

was the first one to develop a method to find g(a, b, c). Later, A. Brauer and J. E. 

Shockley [3] found a simpler method to find g(a, b, c). The latter method is to find the 

set of points (x,, yr), with integer coordinates xr, Yr  2 0, so that the expression 

bxr + cyr 

assumes precisely the value t, m r (mod a) at (x,, y,) for each r = 1,2, . . ., a - 1. In 

the next chapter we will develop a similar method to get an upper bound for g(S) for 

any set S of s + 1 ,  s 2 2, relatively prime positive integers. Now we give an outline 

of the the method [3] for finding g(a, b, c) where a,  b,  c are relatively prime 

positive integers. 

By Lemma 2.1.7 it is no restriction to assume that the three integers are 

relatively prime in pairs. We will also assume that none of the three numbers is a non- 

negative linear combination of the other two. Thus the three numbers are independent. 

Define the function 

( 1 1 )  H ( x , y ) = b x  + c y .  

Consider the congruence 

(12) bx - cy E 0 (mod a). 

We first show that there exists a solution to (12) satisfying 

0 < x , I a ,  0 < y r I a .  



Taking y, = 1, bx, = O(mod a). Now g.c.d(c, b) = 1 and therefore there exists x, such 

that bxr-c=O(moda).Ifx,>a t h e n x , = p a + q , O I q < a - 1 .  I f q = O t h e n c =  

O(mod a), a contradiction. Therefore 0 < q I a - 1. Hence there exists an x, such that 

0 < x, I a -1 and yr = 1 satisfying bx, - cy, = 0 (mod a). Consider the set S1 of all 

integer solutions (x,, y,) to (12) satisfying 0 < x, I a, 0 < y, I a. 

We claim that in S1 there is a solution (x,, 1) such that 

(13) ~ x , - c  > 0 

Suppose bx, - c= -sa, s 2 0. Then c = bx, + sa,  in which case c E Sp(a, b), a 

contradiction. 

Thus there exist solutions (x,, yr) to (12) satisfying 

O < X, I a, O < yr S a and bxr - cyr > 0. 

In the same way we can see that 

(13) 0 < c y - b x  =O(mod a ) , a n d O < x S a , O < y I a  

has solutions (x, y), for example x = 1 leads to such a y. 

Let (xi, yl) be the solution of (12) with smallest x, and (x2, y2) be the solution 

of (13) with smallest y. Define x3 = xl - x2, and y3 = y2 - yl. We now show that x3 > 

0 and y3 > 0. 

From (12) and (1 3) by addition we get 

O<(xl-x2)b +(y2-y1)c=O(moda) 

Define x3 = xl  - x2, and y3 = y2 - y1. If xl  - x2 < 0, then we get a contradiction 

from (13) to the choice of y2 and if y2 - yl < 0, we get a contradiction from (12) to 

the choice of xi. Moreover xl - x2 f 0, and y2 - yl z 0. Otherwise if xi  - x2 = 0, 

then 0 < (y2 - yl) c = 0 (mod a). As yl, y2 I a, and g.c.d.(a, c) = 1, the congruence 



(y2 - y1) c = 0 (mod a )  is impossible. Similarly one can see that y;! - yl # 0. Therefore 

(x3, y3) has both coordinates strictly positive. 

Define the rectangle R by 

R = ( ( x , y ) :  O l x l x l a n d  O S y I y 2 ) .  

For each non-negative integral point ( x , y )  not in R ,  consider H ( x , y ) .  If 

H(x, y )  = r  (mod a),  then we are interested in finding t,. If x 2 xi, we choose 

u  = x - x 1 , v  = y + y y ,  

so that by using (12), 

H(u,  v )  = H(x,  y )  - bxl + cyl  = H(x ,  y )  (mod a )  

and H ( u ,  v )  < H(x ,  Y ) .  

If y  2 y2, we set 

u = x + x 2 , v = y - y 2 .  

Using (13) we see that 

H(u,v) = H(x,y) (mod a )  

and H(u,v )  C H(x,y).  

We continue this procedure until we reach a point in the region R.  We can 

show that we will obtain a point in R. Otherwise if there is an infinite sequence ( x i ,  

y l ) ,  (xi,  y l ) ,  . . ., all lying outside R then H(x ,  y )  c H(x1, y l )  < . . . shows that (h(x,, 

y,)] is a decreasing sequence of positive integers congruent to H(x, y)(mod a)  which is 

not possible. For example if H(x,  y )  = p a  + r ,  0 I r  I a, then the procedure brings (x, 

y )  to a point in R in almost p  steps of successive translations.This shows that H(x, y )  

assumes a value = r (mod a)  in the rectangle R for each r (mod a). 

Now we can also show that (x3, y3) is the point with least positive coordinates 

in R such that H(x,  y )  = 0 (mod a). 



Suppose (p, q) is any point in R such that H(p, q)  = 0 (mod a). Then pb + qc = 
0,  and x2b - y2c = 0 (mod a). Therefore (x2 + p)b - (Y'L - q) = 0 (mod a). 

If p < xi - x2, then x2 + p c x i ,  and the last congruence contradicts the choice of xl. 

Therefore p 2 xi- x2 = x3. Similarly, we get q 2 y2 - yl = y3. That is (x3, y3) is the 

point with least positive coordinates in R such that H(x, y) = 0 (mod a). 

Now consider the region U given by 

U =  {(x ,y) :  OIxucland O I y c y 3 ) u  { ( x , y ) :  0 1 x ~ q a n d  O I y c y 2 )  

If (6, 77) is a point of R not in U, then 

H(6, 77) = H(6 - x3, 77 - y3) (mod a)  

and H(5, 77) > H(5 - x3, 77 - ~ 3 ) .  

We now show that the function H assumes all residues mod a in the smaller 

region U. That is if t, = bar + c& = H(a, , a), then (4 , a) is not in R we can apply 

the translation procedure and bring it to a point (p, q) in R such that 

H(p, q )  =Wa, P) and H(p, q)  c W a r ,  P,) . 
But H(a, , p,) being the least representable integer = r(mod a),  this is not possible. 

Thus (G , P,) E R. But then (a, ,  &) E U , for otherwise 

~ ( a ,  -x3, a - y 3 )  < t,. 

Therefore if t, = H(ar , p,), then (a, , a) E U. Moreover if there exists another point 

(e*, h*) in U such that H(G , a) = ~ ( a , * ,  &*) then 
* 

a, I < x i , o c I P r - ~ , ' I  cy3.  
* * * * 

Therefore (a, - a, )b + (P, - Pr )c = O(mod a). If a, - a, and P, - p, are both 

positive then the same congruence contradicts the fact (x3, y3) in U has the least 
* * 

positive coordinates such that bx3 + cy3 = O(mod a). If a, - a, and - a are both 

negative then we get a similar contradiction again. If these have opposite signs then we 



get a contradiction to (12) or (13). Therefore H(x, y) assumes least positive numbers 

in each residue class mod a in U .  

Therefore by Lemma 2.1.4, we get 

g(a, b, c )  = max(x1 b + y3 c ,  x3 b + y2 c 1- a.  

We have shown below the region U. 
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Example. The following example used by S. M. Johnson [8] is often referred to in the 

literature. Let a = 137, b = 25 1, c =256. The solution (x i ,  y l )  of congruence (12) 0 

< b x - c y = 0 (mod a) ,  is (13, 9). The solution ( x  2, y2) of (13) is (5, 14). Then (x3, 

y3) = (8,5).  Therefore we have 

g(137,251,256) = ~ ( 1 2  (251) + 4(256), 7(251) + 13(256)) - 137 

= 4948. 

2.2.2 Another algorithm to find g(a, b, c ) .  Another well known algorithm for 

the computation of g(a, b, c)  is given by E. Selmer and 0. Beyer [20] by considering 

the convergents of a finite continued fraction expansion of where the integer so is 
s 0 

determined by 

(14) bso = c (mod a), 0 I so < a. 

This algorithm has been modified and a simpler one is given by i ) .~ .~ i~dse th  [ 18 1. 

The outline of the latter method is as follows. 

I f  g.c.d.(a, b)  = d, then by the reduction formula in 2.1.7 we have 

so that we may assume a, b to be relatively prime. If c is representable by a, b then 

g(a, b ,  c )  = g(a, b )  = a b - a  - b. So we can also assume that so # 0. We use the 

euclidean algorithm to obtain 



Define integers Pi by P-1= 0, Po = 1, and 

(16) P i + ~ = q i + ~ P i  -P i - l ,  i = o ,  I, ..., m. 

- = 00. Since qi 2 2 for all i, it follows by induction We write -.- 

from (1 6) that Pi +I > Pi, Hence 

and there is a unique integer v, - 1 S v I m, satisfying 

The exact value of g(a, b, c) is now given by the following theorem. 

2.2.3 Theorem [16]. Let a, b, c be positive integers where a, b are relatively prime 

and c is not representable by a, b. Then 

(18) g(a, b, c) = - a  + b(sv - 1) + c(Pv +1 - 1) - min (bs, + I ,  cP) where v is 

the unique integer determined by (17). 

2.2.4 Remark. For the functionflu, b, c) the above result looks even simpler. 

f(a, b, C) = bsV + cPy +1 - min (bsv +I, cP). 



It is also interesting that this algorithm gives the number n(a, b, c) of non- 

representable integers. The following is proved in [ 161. 

2.2.5 Theorem. Following the above notations, 

2.2.6 Example. It is easy to apply the method in numerical cases. The best known 

example used by several authors, for example first by S.M.Johnson [8], is as follows. 

Let 

a = 137, b = 251,c = 256. 

The congruence (14) gives so= 108, and applying the Euclidean algorithm (15) 

we get 

137=2.108 -79, P1=2,  

108 = 2.79 - 50, P2 = 3 

79=2.50 - 21, P3 = 4  

50 = 3.21 - 13, P 4 = 9  

21 =2. 13 - 5, P5=14, 

where the numbers Pi are obtained by using (16). 

Now we find v. We note that 

and therefore by 2.2. 3 



Using 2.2.5 we find that the number 

n(a, b, c )  = ( 1  - 137 + 251.7 + 256.13 + 5 . 5 . 3  251.13 - 2 5 6 . 9 ) )  

In some cases it is possible to reduce the number of times we apply the 

Euclidean algorithm by re-naming the given numbers. For instance, in our present 

example let a' = 251, b'= 137, c' = 256. We see that so = 55, so that 

and therefore 

We now obtain 

g(137,251,256)  

= - 251 + 137'23 + 256'13 - min( 137'17, 2 5 6 3 )  = 4948, 

and 

n(137, 251,256)  



2.3 The exact solution fo rg (a ,  b, c )  when b + c = 0 (mod  a). Given 

relatively prime integers 1 < a < b < c, the reduction formula (8) in Lemma 2.1.6 

implies that we may assume that each pair of the integers a, b, c is relatively prime. 

We may also assume that the set (a,  b, c )  is independent. A. Brauer and J..E. 

Shockley [3] determined the value of g(a, b, c) as an explicit function of a ,  b, c 

when b + c = 0 (mod a). We determine the exact value of g(a, b, c) in the case of b 

+ c = 0 (mod a), by using a completely different method and we get a different 

formula. We need also g.c.d.(a, b) = g.c.d.(a, c) = 1. 

2.3.1 Lemma. Let a, b, c, 1c a < b < c, be relatively prime integers with g.c.d. (a, 

b) = g.c.d.(a, c) = 1 and b + c 10 (mod a). Let 

m = [$I, A= (b, Zb, . . ., mb ), B = (c, 2c, . . ., mc - &) 

where 

(19) 
= { 0, if a is  odd 

1, if a is  even 

Then A u B contains a complete non-zero residue system mod (a). 

Proof. Since g.c.d. (a, b) = g.c.d. (a, c) = 1, the sets A and B each have distinct non- 

zero residues modulo a. Let 1 I i I m and 1 I j I m - 6. 

Suppose ib E A and jc E B satisfy ib n jc (mod a), then 

ib = - jb (mod a), since b + c n 0 (mod a) 

That is, (i + j]b = 0 (mod a) 

Since g.c.d.(a, b) = 1 and i + j # 0, we must have i + j = ta for some integer t 2 1. 

But 

i + j I m + ( m - @ < a - 1 .  



Therefore we can not have 

ib = jc (mod a) 

forany 1 I i I m  and 1 I j I m - 6 .  Clearly0 4 Aand 0 4  B. ThusA uB contains 

a complete non-zero residue system mod (a). 

2.3.2 Lemma. Let a ,  6, c, m, 6 be as in Lemma 2. 3. 1. Then for any integer x 

with 1 l x l m, 

mb + xb s mc - xc + (1 - S)c (mod a). 

Proof. Since xb = -xc(mod a), we only need to show that 

mb=mc+(l-6)c(moda) 

If a is even, then a = 2m and rnb i - mc n mc (mod a). 

If a is odd, then a = 2m + 1 and mb n - mc rn (m+l)c (mod a). 

2.3.4 Theorem.. Let a ,  6, c, 1 c a c b c c be relatively prime integers with g.c.d. 

(a, 6) = g.c.d.(a, c) = 1 and b + c n  0 (mod a). Let m and 6 be as in Lemma 2.3.1. 

Then 

g(a,b,c) = rnax ( m b + a b , m c - a c - 6 c ) - a .  

where 

Proof. Following the notation in 2.1.3, for r = 1, 2, . . ., a - 1, let t, denote the least 

positive integer = r (mod a) and representable by b and c. By Lemma 2.4.1, A u B is 



a complete non-zero residue system mod a. Our aim is to find the minimum residues 

t,, for r = 1,2, . . ., a - 1. Consider the following list of multiples of b and c. 

COLUMN 1 COLUMN 2 

b c 

2 b 2 c 

m b m c 

We observe the following. 

1. The numbers in each column are increasing. 

2. In each non-zero residue class modulo a, the smallest number 

representable by b and c has the form xb or yc, where 1 5 x S a - 1, 1 5 y 

5a-1.(Forifx>ythenxb+yci(x-y)b(moda),andifx<y,thenxb+ 

yc = @ -x)c (mod a).) Therefore it is enough to consider the first a 

rows in order to find the minimum residue for each r = 1,2, . . . , a - 1. 

3. The first m rows contain a complete non-zero residue system 

modulo a by Lemma 2.3.1. 



4. If a is even, the numbers below mb are respectively congruent mod a to 

the numbers above mc, by Lemma 2.3.2. 

5. If a is odd, the numbers below mb are respectively congruent mod a to the 

numbers above (m + l)c, by Lemma 2.3.2. 

It is easy to see that each of the numbers b, 2b, ..., mb in column 1 is a 

minimum residue. That is, for 1 I i 5 my 

fib = ib. 

We have two cases now. 

Case (i) Suppose mb + b > mc - &. 

Since mb + b = mc - & (mod a), 

t d + b  I mc - &. 

But mc - & is neither congruent to any number above it in the second column nor 

congruent to any number above mb+b in the first column. Hence fmb+b = mc - &. 

For x =  1, 2, ..., m-8, we have 

mb + b +(x - l)b > mc - & - (x -1)c. 

Moreover, the two numbers on either side of the above inequality are congruent by 

(22). Therefore each of the numbers c, 2 c, . . ., (m - 6)c in the second column is a 

minimum residue. In other words the set AuB is a set of minimum residues so that 

( i b : i = l , 2 ,  ..., m ) u  ( j c : j= l ,2 ,  ..., m - 8 )  

forms a complete system of minimum non-zero residues mod a. Thus we obtain 

g(a, b, C) = m ( m  by (m - 6)c) -a. The theorem is proved in this case if we show a 

=O. In fact, 

m b + b > m c - &  

yields c + b > m(c - b) + c(1- 6) in which case 



Case (ii). Suppose mb + b I mc - c  + ( 1  - 6)c. Then we can find a positive integer a 

such that a is the largest positive integer with 

m b + a b I m c - a c +  ( 1  -6)c. 

That is the set B does not form a system of minimum residues. Since by (22) 

mb+xb=mc-xc+( l -6 )c  

and m b + x b S m c - x c + ( l - 6 ) c  

for any integer 1 I x  I a, we certainly have 

t h + x b S m b  +xb. 

Let mb + xb = rx (mod a). Then rx (mod a) appears as mb + xb in the first column for 

the first time and in the second column it appears as m c  - xc + ( 1  - 6)c for the first 

time. Since each column is increasing, 

trx = mb + xb. 

I f  x  > a, then 

mb+xb >mc-xc+( l -6 )c  

and therefore the numbers 

c ,2c ,  ..., m c - ( a  + l ) c + ( l - 6 ) c  

are minimum residues mod a. Hence 

( b ,  26, ..., mb + a b ) u  (c ,  2c, ..., mc - a c  + ( 1  - 6 ) c )  

forms a complete system of minimum non-zero residues mod a. This gives 

g(a, b, C )  = max{mb +a&, mc - ac - &) - a 

where a is the largest non-negative integer such that 



which yields 
( c  - b ) m  + c ( l  - 

a = [  c + b  

2.3.4 Example. We shall find g(9, 16, 20). 

Here m = 4, 6 = 0 ,  a = [(20- + 20] = 1. By Theorem 2.3.4, g(9, 16, 

20)=max(5b,3c) - 9 = 8 0 - 9 = 7 1 .  

Directly, by finding the number t,, r = 1,2, . . ., 8, in each residue class ( r ,  r+9, 

r + 18, . . . ), we get the same result. 

2.4 E x t e n d i n g  { a ,  b )  to an independent set { a ,  b ,  c ). Most of the 

difficulties of finding the exact solution of the Frobenius problem for s 2 2 appear to 

be contained in the case s = 2. So we study the effect of extending any given set (a ,  

b )  of relatively prime integers 1 < a < b to (a ,  b, c )  where c is non-representable by 

a, b. Then we have the following. 

2.4.1 Theorem. Let ( a ,  b, c ), 1 < a < b < c, be relatively prime integers. Let 

(a, b)  = 1. Let c be non-representable by a, b. Then 

(9 g(a, b ,  C )  5 g(a, b) - a, 

(ii) i f  c = g(a, b), then g(a, b, c)  = g(a, b )  -a ,  

and (iii) i f  g(a, b, c) = g(a, b)  -a,  then b divides (a + c). 

Proof. According to Lemma 1.5.2, exactly one of the numbers 

g(a, b )  - x and x 



is representable by a, b for all 0 2 x I; g(a, b). For 1 I; x 5 a - 1, it is trivial that x is 

non-representable and therefore g(a, b) - x is representable by a ,  b. In particular, 

g(a, b) - x is representable by a,  b, c for every x with 1 I x I a - 1. Since c is 

non-representable by a ,  b, it is necessary that c I g(a, b). Hence g(a, b) - c is non- 

negative and since c is non-representable, g(a, b) - c is representable by a, b. It now 

follows that g(a, b) is representable by a, b, c. That is, 

g(a,b) - x, 0 I x I a -  1 

is representable by a, b, c. However, if an integer n > g(a, b), it is representable by a, 

b (and c). This shows that if n 2 g(a, b) - (a - I), then n E Sp(a, b, c) 

We therefore conclude 

g(a, b, C) I; g(a, b) - a. 

This proves (i). We now show (ii). 

Suppose c = g(a, b). Since a is in Sp(a, b), g(a, b) - a 4 Sp(a, b). Further 

since g(a, b) - a c c, 

g(a, b) - a B Sp(a, b, c). 

However, any integer n 2 g(a, b) - (a - 1) is in Sp(a, b, c), by the above 

theorem. It now follows that 

g(a, b, C) = g(a, b) - a 

To show (iii), let c be non-representable by a, b. Let c c g(a, b) and 

g(a, b, C) = g(a, b) - a. 

Since 1,2, . . . , a - 1 are non-representable by a, b we see that g(a, b) - 1, g(a, b) - 

2, ..., g(a, b) -(a - 1) are representable by a, b. Therefore c I g(a, b) -a. By our 



assumption g(a, b, c) = g(a, b)  - a and hence c < g(a, b )  - a. We assert that a + c 

is representable by a, b. For, otherwise if 

g(a, b)  - a - c E Sp(a, b)  

then 

g(a, b) - a E Sp(a, b, c). 

This contradicts the fact that g(a, b, c) = g(a, b) - a. 

Now let 

(26) a + c = a x + b y, x, y being non-negative integers. 

We must have x = 0. For, if x 2 1, then c = a (x - 1 )  + b y ,  and consequently c E 

Sp(a, b), a contradiction. From (26) it follows now that 

bl (a + c). 

2.4.2 Remark. Suppose now that g(a, b, c) = g(a, b) - a and a + c = k b. 

Case 1. a 2 2k + 1. 

Now 

= [a-  (2 k + l ) ]b  + 2 c. 

Case 2. a c 2 k + l .  

Now, 

a b - b c 2 a + 2 c  

That is, g(a,b)- a = a b - 2 a - b  c 2 c .  



2.4.3 Remark. In general if S is an independent set of relatively prime positive 

integers and if S is extended again to an independent set S '= S u ( t ) ,  say, then 

g(S ') < g(S). It is possible to have equality as in the above example. Indeed, if S is 

any non-empty set of relatively prime integers and S 'contains S,  then g(S') I 

g(S).  

2.4.4 Remark. If c E Sp(a, b), then we have g(a, b)  = g (a ,  b ,  c). On the other 

hand, by (i)  of 2.4.1 if we extend a given set (a ,  bJ  of relatively prime positive integers 

to an independent set {a ,  6, c )  then 

g (a, b, c )  < g(a, b). 

However this is not true for more than three variables. Suppose we have the 

set { 5 , 7 , 9  ). The numbers form an arithmetic sequence and therefore we use the 

formula in [ 1 ] ,  namely 

g(a,a+d,  ..., a + k d )  = p ; 2 ] a + ( a - 1 ) d ,  - 

and obtain g(5,7,9) = 13. Now take one more element 1 1 and consider the set 15, 

7 ,9 ,  11  ). We note that 11 is non-representable by 5,7,9. We see that 

g(5,7,9, 1 1 )  = 13 

which is exactly g(5,7,9). 

Using the ' reduction formula ' (8), Lemma 2.1.7, we can deduce easily the 

upper bound obtained by A.Brauer [2 1. 

2.4.5 Theorem. Let ao, a l ,  . . ., a, be positive integers such that 

di = g.c.d.(ao, a l ,  ..., ai), i = 1, 2, ..., s - 1. 



Let&=ao, and ds = 1. Then 

Proof. We prove this by induction on s. For s = 1 ,  by 1.5.1 we know that 

since dl = 1 and do = ao. Therefore the theorem is true for s = 1 .  Now let s 2 2. By 

using the result (8) of Lemma 2.1.7, we have 

&a a19.. ., as) 

using the remark 2.4.4. We can apply our induction hypothesis to the s elements 
aOal a - 1  , ... , -which are relatively prime. This yields 
4 - 1  ' d s - 1  d,  - 1  

g ( a  4 9 . .  ., as) 



Hence we have 



CHAPTER 3 

3.1 Upper bounds obtained by using additive number theory. 

3.1.1 Definition. Given a positive integer a  and non-empty subsets A, B of non- 

negative integers, the set 

{ x + y :  x  E A, Y E  B ). 

of all distinct integers of the form x  + y  is denoted by A + B or simply by A + B. It 

is convenient to write A + A as 2 A and more generally the m-fold sum by mA. 

By using a strong form of a theorem by M.Kneser, (Theorem 16 ', [8 I), it 

was shown by P. Erdos and R. L. Graham 

3.1.2 Theorem Let S = ( a l ,  a  2, ..., a,  ), 1 < a1 < a  2 < ... < a,, be a set of 

relatively prime integers. Let m = [:I. Then 

(1) g(S) I  2 m a n - l - a n .  



3.1.3 Remark. Let S = ( a l ,  a2, . . . an-1, an)  and let S(b) denote the set of residues 

mod b of elements in S.  Consider the set 

S(an)= ( a i , a 2 ,  ..., a n - i , 0 ) .  

It was shown by Erdos and Graham that the set 

(added 2 m times mod an) contains a complete system of residues (mod an). 

So we may write 
n 

Tr = C ai X i  
i = l  

where the coefficients xi are non-negative integers satisfying 

It must be noted that the number Tr need not be the smallest number representable by 

al,  a  2,  . . ., an for each residue r (mod an). 

E. Selrner 1191 points out that instead of an we can take the least number a1 in 

the given set S and assume that the set S  is independent so that S(a1) consists of 

distinct incongruent residues mod al.  Then (1) becomes 

This is an improvement of (1). If T,' denotes the smallest positive integer = r (mod 

a l )  and representable by al ,  a  2,  . . ., a,, in the form 
n 

Tr' = C a i  Y i r  
i =2 

then it was mentioned in [ 191 that 



for each r = 1, 2, . . ., a1 - 1. This is not true for the smallest representable number 

t,. For example consider S = ( 5 ,  11, 19 ). It can be easily calculated that 

ti =11, t2 = 22, t3= 33, t4 = 19. 

Now t3 = 3.1 1 so that the sum of the coefficients is 3. But 2 [z] = 2. 

If S contains an element ai which is relatively prime to every a,, j # i, then we 

can use the following theorem [8] in additive number theory and deduce a sharp upper 

bound for g(S) as shown below. 

We remark that if S is independent and t E S, then the elements of S - { t ]  

must be pairwise incongruent modulo t. 

3.1.4 Cauchy - Davenport - Chowla Theorem. Let t be a given positive 

integer, A = (a l ,  a2, ..., a,), a subset of r incongruent residues mod t,  and B = (0, bl,  

b2, ..., bs-I) ,  a subset of s incongruent residues mod t. Let t be relatively prime to 

each bi E B. Then A + B contains at least min(r + s - 1, t )  incongruent residues mod 

t. 

3.1.5 Theorem. Let S = (ao, a l ,  ..., as)be independent. If S has an element, say t, 

such that t is relatively prime to every member a i # t, then 

g(ag,al, ..., a s ) I m * m a x ( a i : a i # t  ) - t ,  

where rn = [y] + 1. 



t -  1 Proof. If m = + 1, then ms 2 t. Let addition of sets be taken modulo t. By 

the above theorem, taking A = S, B = S - ( t ) , we get WleLi(2S(mod t)) 2 \xUeLi((A 

+ B)(mod t)) 2 . . . min(t, s+l + s- 1 = 2s). By successive application of the theorem 

it is easy to see that 

I m S  1 2 min(t,ms) = t .  

Hence mS contains a complete system of residues mod t. Let t, denote the smallest 

non-negative integer r r (mod t) and representable by ag, a 1, . . ., a,. By Lemma 2.1.4 

we have g(S) = max {tr : r = 1,2, . . ., t - 1 )- t which implies that 

g(S) I a g x o + a l x l +  ... +asxs -t,  

where the sum of the coefficients xi is at most m. 

Therefore we may write 

-rs= 1. I f s =  1, then wemayciiooset=ag sothat m = a o -  1 

and therefore g(w, a 1) I m'a 1 - a0 = (4 - 1)a - a0, which is exact. 

A variant of Theorem 3.1.4 is also useful to deduce an upper bound for the case 

where S = {ao, a 1, ..., a,)contains some element, say t, such that 0 has no 



representation of the form ai + a, i 0 (mod t), except when ai = a j  = 0 (mod t). We 

need the following result. 

3.1.6 Theorem (Kemperman and Scherk [8, p.501). Let t be a given integer. Let 

A = (0, a l l  .. ., a-1) be a given set of r incongruent residues mod t and B = (0, bl, 

. . ., b,l} be a given set of s incongruent residues mod t. Let ai + aj = 0 (mod t) if 

and only if ai = 0 (mod t) and a, E 0 (mod t). Then A + B contains at least min (t, r 

+ s - 1 }distinct residues modulo t. 

Using this theorem, we can alter the hypothesis of Theorem 3.1.4 accordingly. 

For certain sets S, this results in an improvement of known upper bounds. We state 

formally 

3.1.7 Theorem. Let S = (ag, al,  . . ., a,) be an independent set of positive integers 2 

2. Suppose S has an element t such that ai + aj r 0 (mod t) if and only if ai i 0 (mod t) 

and a, = 0 (mod t). Then 

g(agla1, ..., a , ) I m ' m ~ ~ ( a i : a i # t } - t  

where rn = [y] + 1. 

Proof. The independence of S ensures that the set S(t) of residues mod t will be a 

set of incongruent residues mod t. The rest of the proof is exactly similar to that of 

Theorem 3.1.4. 



As mentioned before, the above bound is sharp for s = 1 .  We now compare 

the bounds obtained by using the Theorems 3.1.5 and 3.1.7 with some known upper 

bounds. 

3.1.8 Example. S = { 137, 25 1 ,  256 ) . Since 137 is a prime and the numbers 251 

and 256 are incongruent mod 137, we can apply theorem 3.1.5 (or 3.1.7). Here t = 

137. s = 2, ma, ai = 256 and m = 69 so that 

We compare this value with the following known bounds. 

J.J. Sylvester [21] ( ~ - l ) ( a l - l ) - l  

P. Erdiis & R. L. Graham [7] 

Now we turn to another result of this type. 

3.1.9 Lemma Let A = (0, a l ,  a2, ..., a ,)be a set of distinct residues modulo ao. 

If a0 I 2 s + 1, then 2 A contains all residue classes modulo ag. 



Proof. Let a0 = m. Consider the additive group Zm of residues mod m. Suppose 

there exists an element g in Zm such that g is not in 2 A. Define the set 

B=(g-x(mod m ) :  x E A ) .  

First we show that B is disjoint from A. For, otherwise g - x  E y for some y E A, 

then g = x + y, X ,  y E A, which contradicts the fact that g is not in A + A. 

Next, we shall show that A and B have the same cardinality. Consider the 

map 

x + g - x  

from A into B. If g - x = g - y, then clearly x = y. Since this map is also surjective, 

HI= BI. As A and B are disjoint, 

IZmI 2lAI+IAl = 2 ~ + 2  2 % + 1  >ag=m, 

a contradiction. 

3.1.10 Theorem. Let A = {ao, a l ,  a2, ..., a, ), 1 <a0 <a1 < ... <a,, s 2 2, be 

an independent set of relatively prime integers. Let ag < 2s + 1. Then 

g(a0, ai, a2, . . ., as) S 2 6  - a0. 

Proof. Let ri r ai (mod ag), 0 S r iS  a o - l , i = O ,  1,2,  ..., s. It 

follows from independence that ri f 0 for i = 1,2, . . ., s and ri f rj (mod ao) for all 

i # j. For, if ri = 0,  for some i 2 1, then ai r a0 (mod ag). Since ai > ao, ai has a 

representation ai = ag + t ag, t 2 1, by ag alone. This contradicts independence. 

Now suppose that 

ri rj (mod 4) for some i < j. 



Then ai = a, (mod ag) so that a, has a representation of the form 

U j  = ai + t a g ,  

Again this contradicts independence. 

Let 

B =  (0 ,  rl,r2, ..., r s ) .  

Then B is a set of distinct residues mod ao. Now s + 1 = IBI and 2 s + 1 2 ao. 

Therefore by Lemma 3.1.9, B + B contains all residue classes mod ao. Consider the 

set 

(ai+aj : O  5 i I j I s ). 

Clearly if ai +a, E r (mod q), and i f  tr denotes the smallest integer = r (mod ag) 

representable by the a: s then tr I ai + aj. Therefore 

r n a x ( t , : r ~  [l,cy)-11 ) I a s +  as. 

Hence by Proposition 2.1.4, 

g(agla1, ..- , a s )  1 2  as-ag. 

This completes the proof. 

Example for sharpness. Theorem 3.1.10 gives a sharp bound. If 

S = (2s+l, 2s+2, ..., 3s + 1 ), 

then by [17], we have 

g(S)= [ 2 ' ;  ] ( 2 s + l ) + 2 s =  4s + l .  

By the above theorem also we get 

g(S )  I 2  (3s +I) - (2s  + 1 )  1 4 s  + 1. 



3.2 On the conjecture by M.Lewin. 

3.2.1 I. Shur was the first one to obtain an upper bound 

(4) g ( m ( a g - l ) ( a s - l ) - l  

for any set S of s  + 1 relatively prime positive integers where s  2 1, S = (ao, al, . . ., 
a,), a0 < a1 < . . . , a,. This bound was published by A. Brauer [2]. 

M. Lewin [15] proved that for s  2 2, 

where [x] denotes the greatest integer I x ,  and he also showed that for s  = 2, this 

bound is sharp. He conjectured [15, page 691 that for any s  2 1 ,  

For a given set S = {ag, at,  . . ., as)of relatively prime integers, Y.Vitek [23] 

considered the two special cases 
2 (7) Case (i). ag 2 7 a, 

(8) Case (io. S contains distinct residues mod (ag) such that for every divisor r  of ag 

with r  < s  such that r does not divide s, the number of residues (mod a&) of S is 

not 1 + [ s l r ] .  

In each of these two cases he showed that 



Since ag + s 5 as, (9) shows that the conjecture of Lewin is valid in each of these two 

cases. 

The purpose of this section is to show that the conjecture of M.Lewin is 

valid for any s 2 3 in a special case different from the cases mentioned above. In fact 

the bound we obtain is stronger than (6) for all s 2 3. Our main theorem is 

3.2.2 Theorem. Let S = {ao, a l ,  a2, ..., as ), 1 c a0 c a1 c ... < a,, s 2 2, be a 

given independent set of relatively prime integers. Let 

Then 

(10) 

We first prove a Lemma. 

3.2.3 Lemma. Let al,  a2, ..., a,, 1 c a1 c ... c a,, satisfy 

ai f a j  (mod al) for i # j. 
a1 Let d = g.c.d.(al, a2, ..., a,). Then d 5, 

a 1 Proof. Suppose d>?Le t a i  =db i , i=  1,2, ..., s. Letrim bj(mod b l ) , i =  1,2, 

..., s, 0 5 r i I  b l -  1. Suppose ri=rj, where icjthen bj bi(mod bl). 

That is, bj - bi = tbl for some integer t 2 1. This implies that 

a,- ai E 0 (modal), 



which contradicts the hypothesis. Therefore the set ( r l ,  r2, . . ., r,) has s distinct 

non-negative integers S bl - 1 .  In other words 

I { r l ,  r2, ..., rS)  1 = s 5 bl < s, which is not possible. 

Hence we must have d 5 J . This proves the Lemma. 

We now prove Theorem 3.2.2. 

Proof of Theorem 3.2.2. Let d = g.c.d.(ag, all . . ., as-1). The numbers ao, al,  . . . , 
a, are pairwise incongruent modulo ag. For, otherwise if ai = aj (mod m) where 0 I i 

< j 5 s - 1 ,  then a,= ai + x  ag for some integerx 2 1, which contradicts the fact 

that the set (ag, al, . . ., as) is independent. We therefore assume that ai f a, (mod ao) 

for all i # j. Now we can apply Lemma 3.2.3 to {ao, al,  . . ., as - I ]  which yields d I 
a ?  

s '  

We now prove the theorem by induction on s. 

For s = 2, the result follows from (8) and (9) above. Let s 2 3. By Lemma 

2.1.7, 

as. 

Also we have 

g p , a $ ,  ... , a s -  d 1 , a s )  ~ g ( 9 ,  '2, ... , '9) 



Using this in (1 1) we get 

Using the induction hypothesis, we - get -, 

That is, 
a0 as -1 

g (ao, al, a2, ..., as)  5,- s -  1 + d as - (a0 + a,). 

Define the function 
was - 1 

u(x) = x(s-1) + 

Then, 

(14) g (ao, al ,  a2, ..., as 1 I u(d) - (a0 + a,) 

w 
By Lemma 3.2.3, d I y and therefore we consider u(x) on J = [I ?]. 

Clearly u(x) is a continuous function of x on J ,  and uV(x) > 0 on this interval. 

This implies that ul(x) is increasing on J. Therefore the absolute maximum of 
a0 

U(X) on J is attained either at x = 1 or at x = 7 .  



and 

Now by hypothesis, 

As (ao, a l ,  a2, ..., as) is independent, the set constitutes s + 1 distinct residues 

mod a0 and therefore a0 2 s + 1. This implies 

(17) a0 - s > 0. 

Using (17)and (16) in (15), we see that 



so using (16) we get 

That is, 

This completes the proof of Theorem 3.2.2. 

3.2.4 Example. Consider the set S = (15, 21, 26, 40, 65). This set is independent 

since 21 p Sp(15), 26 e sSp(l5, 21) 40 e Sp(15, 21, 26) and 65 e Sp( 15, 21, 26, 

40). Since g.c.d.(15, 26) = 1, the set S is relatively prime. Now Vitek's theorem 

cannot be applied since the conditions (7) and (8) are not true. That is, 

2 
(1)ao < 7 nq and 

(2) s = 4, 3 divides 15, 5 divides 15 , 3 < s 

modulo 5, the elements of S are 0 and 1 only. But 1 + 

,, 3 does not divide s. Taking [$I= 2 .  

However the condition of theorem 3.2.2 is true since 

Therefore we have 

For comparison we give the following values obtained by using the best known 

bounds. 



r 

E. S. Selmer [19] 

J. J. Sylvester [21] (ao- 1) (a2- 1) - 1 
$ 

Y. Vitek [23] 

P. Erdos & R. L. Graham [7 ] 2%- [s] -a* 

M. Lewin [15 ] 

3.2.5 Example. Consider the often quoted example [3] consisting of the three 

numbers 137,251,256. We will take ag = 137, a1 = 251, a2 = 256 and a3 = 385. 

Then ao, a l ,  a2, a3 satisfy the above theorem and we obtain 

We give below the values obtained by using other best known bounds 

which are proved in the general case. 

J. J. Sylvester[21] (ao- 1) (al - 1)- 1 33999 

A. Brauer [2] (ao- 1) (as- 1)- 1 52223 

Y. Vitek [23] 



M. Lewin [14] 

P. Erdijs & R. L. Graham [7] 2l.l~ - I[%] - as 

E. S. Selmer [191 ~ P [ Y ]  - a0 

Using Lemma 3.2.3 and similar techniques as in Theorem 3.2.2 we can get 

a better bound in the special case when S = {ao, a l ,  a2, a3)consists of relatively 

prime integers with and g.c.d.(ao, a l ,  a2) = d 2 2. We have the folowing result in 

this direction. We use the sharp bound for three variables obtained by Y.Vitek 

(Theorem 1, [22]) which is stated below. 

3.2.6 Lemma. Let p, q, r be an independent set of integers such that p < q < r 

and @, q, r) = 1. Then 

g@, q, r) 5 [el (r-  2)- 1. 

3.2.7 Theorem. Let (ao, a l ,  a2, a3 ), 1 < a0 < a1 < a2 < a3, be an independent 

set of integers with g.c.d. (ao, a l ,  a2) = d 2 2. Then 



Proof. Let d = g.c.d.(ao, a l ,  a2). Since ao, a l ,  a2, a3 are independent they are 

pairwise incongruent modulo ao. Now using Lemma 3.2.3 for the numbers ao, 

a0 {9 al 9} Since (ao,  a l ,  a2)is a l , a 2  we get d 5~ Consider the set S = , , d .  

independent so is S. So we can apply Lemma 3.2.6 and obtain 

By Lemma 2.1.7, 

( 1  9) g(a0, a1, a29 a3 = 

1 
Therefore g(a0, a l ,  a2, a3 ) d d.g ,; , 7) + (d-l)al 

d ] - 2 )  - I} + ( l a  , i n  ( 1 8 )  

Define 

Then the last inequality becomes 

(20) g(a0, a1, a2, a315 u ( 4  - (ao+ a3). 

Since u(d) is a continuous function of d for d 2 2, (in fact for d > O), and u"(d) 

> 0, ul(d) is increasing for d 2 2. Therefore the absolute maximum of u(d) on 
a0 

is assumed either at d = 2 or at d = 7. Now, 



Therefore 



This completes the proof of Theorem 3.2.7. 

3.3 An algorithm to find an upper bound for g(a1, a2, a3, aq). 

3.3.1 We begin with a set { a l ,  a2, a3, a4)of four given relatively prime integers 2 

2, with (ai, a l )  = 1 for i = 2, 3, 4, and a2, a3, a4 pairwise incongruent modulo al. 

AS (al ,  a2) = 1, the congruence 

a2 x = a3 (mod a1) 

has a solution xl with 0 I X I  < al .  As a2 and a3 are incongruent mod a l ,  xl > 1 .  

Hence there exist solutions (x, y) to the congruence 

a2x=a3y  (modal) ,  1 I y < x .  

Let (xi ,  y l )  ' be one such solution with least xi. Then we have 

(30)  a2xl=agyl  (modal),  1 l y l <  xi 

where xl is least satisfying (30). 

Similarly we obtain (y2,z2) satisfying 

(31)  a3 y2 = a4 z2 (mod al) ,  1 I z2 < y2 

and y2 is least with these properties. 

Further, in the same way we get (x3, z 3 )  satisfying 

(32)  a4z3 ~ ~ 2 x 3  (modal),  1 1x3 < z3 

with least z3. Set z l  = x2 = y3 = 0. 

Define the translation vectors ti, i = 1 ,  2, 3, as follows. 



If either 

P 2x1 or q 2 y2 or r 2 23 

then add tl or t2 or t3 respectively to the point (p, q, r). 

Define 

M(x, y, z )  = a2 x + a3 y + a4 z. 

Suppose M(p, q, r)  j (mod al).  If p 2 xi ,  then add tl to (p, q, r). We get 

M@ - x i ,  q + yi, r + z i )  = M(p, q, r )  + M(-  xi,  yi, 21) .  

Using (30) we see that 

M ( p  - xi,  q + yi, r + zl) = M(p,  q, r) (mod all. 

Similarly each of the translations q ,  or t3 preserves the congruence (mod 

a l ) .  Moreover taking the distance function d as the sum of the absolute 

differences for any two 3-tuples, we see that point (p - x l ,  q + yl ,  r + z l )  i s  

closer to the origin than (p, q, r). Thus at each step of the translation by ti, the 

point is moved closer to the origin. We continue the procedure until we arrive at 

the point (p,, q,, r,), say, where 

0 I p,<xl ,O Iq,<y2, 0 I r, <z3. 

Any further translation would result in a point with a negative integral coordinate. 



Notice that as initially the point (p, q, r)  is at a distance p + q + r  from the 

origin procedure must terminate in at most p + q + r  steps. Thus if (p, q, r )  i s  any 

point with non-negative integer coordinates outside the region 

P =  ( (x ,y , z ) :  0  I  x<x1,0 I  y<y2, 0  I z  <z3) 

and if M(p, q, r)  n j (mod al) ,  then there exists (p,, q,, r,) E P  with M(pn, q,, r,) 

= j (mod al).  It follows that the set 

{ M ( x , y , z ) :  ( x , y , z ) E  P )  

contains a complete system of residues mod al.  

Therefore by Lemma 2.1.4 we have 

g(a1, a2, a3, aq) = max{t, : r  = 0, 1, ..., a1 - 1 )  - a1 

l m a x  {M(x,y, z )  : (x,y, z )  E P) -a1 

(33) d a i .  a2, a3, a41 I  (xi-1) a2 + (YZ-1) a3 + 0 3 - 1 )  a4 - ai. 

3.3.2 This algorithm can be generalized to any set S = [ao, al,  . . . , a,}, for s 2 3. 

Assume that g.c.d.(ao, ai) = 1 for i = 1, 2, ..., s and that ao, a l ,  . . ., a, are 

pairwise incongruent modulo ao. We can generalize the above algorithm for 

finding an upper bound for g(a0, a  1,  .. ., a,), as follows. 

We solve 

(34) aix E aj+l Y (mod ao), 1 I  Xi+l  <Xi 

for i = 1 ,  2, . . ., s where we set a,+l = ale The solution with least x is denoted by 

(xi, yi). The corresponding translation vector ti, i = 1, 2, . .., s - 1, is defined to be 

the s-tuple 



ti= (0, 0, ..., 0, - X i , y i ,  0, e e . 3  O), 

where the i-th position has - x i  and the (i+l)-th position has yi. For s, 

we have ts = b,, 0, . .., 0, - x,). 

The algorithm now gives 



CHAPTER 4 

4.1 Basic Definitions. A rooted tree is a connected acyclic digraph with a 

distinguished node called the The height of a node is the length of the unique 

path from the root to the node. 

A node is called a leaf if it has outdegree zero. If the outdegree is not zero, 

the node is an internal node. The set of nodes of height m is called the mth level of 

the tree. 

The notion of a (2, 3)-tree is well known (see for example [12]) in 

theoretical computer science. By definition, a (2, 3)-tree is a rooted tree such that 

(i) the outdegree of each internal node is either 2 or 3, 

(ii) the heights of all leaves are the same. 



Figure 2 



This concept of a (2,3)-tree has a natural extension [ l l ]  as follows. 

Given positive integers go, gl, . . ., g,, 1 I go I gl I . . . 5 g,, we define a (go, 

g 1, . . ., g,)-tree to be a rooted tree such that 

(i) the outdegree of each internal node is either go, or g 1, or . . . , g,, 

(ii) the heights of all leaves are the same. 

It is easy to see that for any positive integer n there is a (2, 3)-tree having exactly 

n leaves. 

We say that a positive integer n is representable by a (go, g 1, . . . , g,)-tree if 

there exists a (go, 81, ..., gs)-tree with exactly n leaves. It follows from the last 

statement that every positive integer is representable by a (2, 3)-tree. Figure 2 

shows that 6 is representable by a (2, 3)-tree. If we take the integers 3 and 5 

then it is not true that every positive integer has a representation by a (3, 5)-tree. 

For example, 8 is not representable by a (33)-tree. 

A characterization (Theorem 1, [12]) for the representation of positive 

integers by (go, 81, . . . , &trees is as follows. 

Given integers go, g l ,  ..., g,, 1 5 go I g1 I ... 5 g,, s 2 1, there exists a 

positive integer N=N(go, g 1, ..., g,) such that every integer n 2 N can be 

represented by a (go, 81, . . ., g,)-tree iff g.c.d.(g 1 - go, g2 - go, . . . , g, - go) = 1. 

The conductor  go, gl ,  ..., g,) is the least positive integer such that for 

any n 2 ~ ( a o ,  a l ,  ..., a,) there exists a (go, gl ,  ..., g,)-tree with exactly n leaves. 

Given positive integers go, g l ,  . . ., g,, 1 c go c g1 < . . . c g,, s 2 1, with 

g.c.d.(gl - go, g2 - go, . . ., g,- go) = 1, the problem of finding the exact value of  go, 

gl,  . . ., g,) is closely related to the Frobenius problem. In [lo] an upper bound for 



~ ( g o , g l ,  ..., gs) is given. This bound yields the exact value of  g go, 81, . . ., g,) 

when go, g l ,  . . ., gs are consecutive integers. 

In the next section we first find the exact value of ~ ( a ,  a + l )  and then 

deduce from this the exact value of ~ ( a ,  a+l, . .., a+s) for any integer s 2 1. 

4.2 The conductor ~ ( a ,  a+l, ..., a+s) for s 2 1. 

4.2.1 Theorem. Let a ,  b ,  1 < a ,  b=a+l, be given integers. Then ~ ( a ,  b) = a f@), 

where f(a) is the least positive integer satisfying 

a A 4  +1 < - b f ( d  + 1. 

Proof. Suppose N is any positive integer such that 

( 1 )  an-'+' b' I N I an-'br+', where r, n are integers such that 0 5 r I n. 

Solving the equations 

(2) ax + b y  = N ,  x + y  = an-'b' 

we get x = an-' br+' - N 

y = N - a  n-r+l br 

By (1) we see that x and y are non-negative integers satisfying the system (2). 

We now construct an (a, b)-tree with exactly N leaves. 

We start with the root. Replace the root by an a-tree. (An x-tree is a 

rooted tree with x leaves all at height one as shown in figure 3.) 



An x-tree 

x leaves 

Figure 3 

Now we have an a-tree. Replace each of the a leaves with an a-tree. 

Starting from the root we do this n - r times. The resulting tree has an-' leaves, 

all at height n - r. Further, each of its internal nodes has outdegree a.  Now 

replace each of these an-' leaves by a &tree. We obtain an (a, b)-tree with an-'b 

leaves. Repeat this procedure of replacing by a b-tree for r-levels. This 

construction now gives an (a, b)-tree with exactly an-'br leaves. We complete 

the construction (figure 4) by replacing x of these an-'br leaves by an a-tree and 

each of the remaining leaves by a b-tree. Since ax + by = N and x + y = an-'br 

the resulting (a, b )-tree has exactly N leaves. 

Therefore every integer in the interval [an-'+' br, an-' b '+' 1, for integers r, 

n satisfying 0 I r I n, is representable by an (a, b)-tree. For any fixed integer n 

2 0, we see that 



This implies that every integer in [an+', bn+l] is representable by an (a, b)-tree 

for each integer n 2 0. 

Denote by f(a) the least positive integer such that 

( 3 )  aAa)+l <bAa)+ - 1. 

That is, 

(4) bf(4 - 1 + 1 < d(0) ($0) +1 - < bf (4  + 1. 

Then it follows that every integer 5 af(') is representable by an (a, b)-tree. This 

proves that 

~ ( a ,  b) I aAa) . 

In fact we can show that the equality holds. 

Suppose a f(") - 1 is representable by an (a ,  b)-tree say T. Then there 

exist non-negative integers x, y such that 

(5) ax +by = aAa) - 1. 

It is easy to see that alla) is the least positive integer representable by an (a, b)- 

tree having f(a) levels. Therefore the number h of levels in T is at most f(a) - 

1. Observe that T has x + y nodes at the (h- 1)th level. Note that the largest 

integer representable by an (a, b)-tree of height t is b' and therefore 

x +y 5 $(a) - 2. 

Hence 

ax + by s b(x + y) I b. fi) - 2. 

Using(5), a f l a ) - I s @ ) - 1  

- a < - I, a contradiction to (4). 

Therefore it fo1Iows that ~ ( a ,  b) = 



Representation of N by an (a,b)-tree 

... L x nodes ... y nodes 
replaced by replaced by 

a-trees b-trees 
I I I 

Figure 4 



4.2.2. Corollary. Given positive integers a,  a+l, a+2, ..., a + s, s 2 1, we can 

deduce that 

k ~ ( a ,  a+l, a+2, ..., a + s )  = a , where k is the least positive integer such 

that 

ak+l I (a+s)k + 1. 

Proof. Clearly each integer in [a,  a+s] is representable by a (a ,  a+l, . . ., a+s)- 

tree. By the proof of the above theorem each integer in [(a  + i)", (a+i+l)n ] is 

representable by an (a+i, a+i+l)- tree for i=O, 1, . . . , s-1 . If a number is 

representable by an (a+i, a+i+l)-tree then it is also representable by an (a, a+ 1, 

. . ., a+s)-tree. Therefore every integer in [an, (a+s)"] is representable by an ( a ,  

a+l, . . ., a+s)-tree for all n 2 1. Therefore if k is the least positive integer such 

then 

~ ( a ,  a+l, a+2, ..., a + s)  5 h. 
We will now show that the equality holds by a similar argument as in Theorem 

4.2.1 for s = 1. 

Suppose ak -1 is representable by an (a ,  a+l, a+2, . . ., a + s)-tree say T. 

Then there exist non-negative integers Xi, i=O, 1 ,  . . ., s, such that 



It is easy to see that ak i s  the least positive integer representable by an (a, a + l ,  

a+2, . . ., a + s t t ree  having k levels. Therefore the number h of levels in T is at 

most k -1. Observe that T has Z x i  nodes at the (h - 1)th level and therefore 

Hence using (7) in 

we get 

ak- 1 < ( a + ~ ) ~ - l .  

That is, 

k a s (a+s)"l, 

a contradiction to the rninimality of k in (6). Hence 

k ~ ( a , a + l ,  a+2, ..., a + s) = a  . 

4.3 A bound for  go, 81, ..., g,). In the general case, given positive integers go, 

gl ,  ..., gs, 1 < go < g1 < ... < gs, s 2 1, with g.c.d.(al, a2, ..., a,) = 1, gi-go = ai, 

i=l, 2, ..., s, an upper bound for  go, 81, ..., g,) is given in [lo] using an upper 

bound for the Frobenius function g(a1, a2, . . ., a,). 

Let di = g.c.d.(al, a2, ..., ai), g(a1, a2, ..., a,) 5 L 

where 
s- l 

is the upper bound obtained by A. Brauer in [2]. Define 



Let m 2 2 be the least integer satisfying 

gom+l- 80 2 +AIgnm-gn 2 + C +  1. 

Then 

(8)  go, g1, . . ., gs) 5 gom - go2 + A .  

The set of integers representable by height 1 trees is clearly (go, g 1, . . ., 

gs 1. Let d denote the maximum of the differences (gi+l- gi), i = 0, 1, . . . , s- 1. To 

prove (8) it was shown in [lo] that there is a set containing more than d 

consecutive positive integers representable by go, g 1, . . . , gstrees of height 2 using 

an upper bound for the Frobenius function for s variables. It would be interesting 

to find the the exact value of  go, gl, ..., gs) as a function of the exact value of 

g(a1, a29 ..-, as). 
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