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Abstract 
I .  

'L 3 - 

Given the clear and pressing need for improved computer system performance, there are - 

several means of achieving this end. In the simplest approach, current computer 

architectures are reimplemented using faster technologies. Although this approach will 
7 

always be exploited, physical, technological, and economic limitations make it incapable 

of providing all the needed compu@ional power. 

Instead, parallelism must be exploited to obtain m l y  significant performance 

improvements. Parallelism is a two dimensional problem. Along one dimension we find 

pure data parallelism as might be found in typical army algorithms involving vectors and 

matrices. Along the other dimension we find concurrency where independent processes 

work on facets of an algorithm which may not lend themselves to array processing. 

Id Assuming the use of the fastest reasonable technology, any further increase in performance 

requires the efficient exploitation of parallelism in one form or another. 

The performance of computers can be made incrementaliy extensible by exploiting VLSI - 

b 
technology to builda con~urrent/parallel computers, ensembles of proceSsing nodes 

connected by a network. Low latency communication elements are required to support 

fine-grain or medium-grain parallel computation. Communication between nodes of a 

multicor$uter need not be slower than the communication between the processor and 

/memory of a conventional computer. A VLSI-Based network controller can provide node- 

to-node communication times that approach main memory access times of sequential 

computers. A VLSI chip is subject to several technological constraints. Whenever each 

node of a multicomputer system is implemented as a VLSI chip or a printed circuit board, 

packaging constraints limit the number of connections that can be made available for 

communication links. Some key issues which must be considered when designing a high 

\ performance network controller based on VLSI technology are also discussed. 

New variations on the 2-d mesh interconnection computer which can be implemented 
0 

i i i  



very efficiently using VLSI techndogy for cws  and packaging aze piegosed;+ree€ 

connectivity along rows and columns reduces the diameter of an nm 2-d mesh from Zn-2 
9 

to 2. This technique permits the network communication bandwidth to be more balanced 

(or uniform) with the node processor data bus bindwidth. Simulation studies on several - 
important permutation and matrix algorithms show that direct connectivity in hypermesh 

highly simplifies algorithm design and supports very efficient c o m v c a t i o n  patterns. 
C 
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Introduction 
a 

- 

- - 
- 

Multicomputer networks consist of a large number of interconnected com win nod&- --- 

_--- 
9 

that asynchronously cooperate via message passing to cxTute the tasks of parallel 
-- / /- - 

programs. - Eadr-oetwork n a e ,  fabricated as a small number of VLSI chips, contains a 
- 4  - 

- 

processor, a local memory, and (optionally) a c o ~ u n i c a t i o n  controller capable of routing 

messages without delaying the computation processor. ' 
' - - - 

I 

With the advent of fast, powerful microprocessors, a new branch of the computer indiistq 

----- 
has emerged. By using a large number of these cheap proces-dq+ 
- -- 

private memory, it is possible to build a computing system with very impressive potential 

performance. If the processors are connected to each other so that rhey can exchange 

messages in a reasonably efficient manner and if the programmer can decompose his 
- - - - - - - - - - 

- - - 

computation into a large system of communicating processes, such a multicomputer 

- -- 
The appeal of multicomputer networks andtheir commercial emergence is based on their 

effective exploitation of VLSI technology, the availability of a high degree of "general 
-. . 

,- purpose" parallelism, and moderate price [ReedFuji 71. ~s Dally [Dally 87a] stated, a @ 
VLSI chip is subject to several technological constraints. ~ S I  systems (VLSI chips 

packaged together on modules and boards) are limited by wire density, not by terminal or 

logic density. 
- - - -- 

topology selection, communication hardware design, operating systems, fault tolerance, 

and algorithm design. This chapter summaFizes recent result& some of these areas, with 

-- t h e  following emphasis: 



--a models of interconnectionnetworks - - ----- ---- - 

VLSI constraints 

multicokputer building blocks 

We begin this chapter by defining a multicomputer network. Given this definition, we 

exmine the spectrum d b o n n e c t i o n  networks and required building blocks for various 

models. The limitations of VLSI technology are also discussed. In. section 1.5 

mu1 ticompu ter programming is considered. Finally, thethesis objectives are outlined. - 

- 

1.1. Multicomputer /- Networks: A Definition 

In much of the literature, multiprocessor systems and multicomputer systems -are 

considend to be equivalent Poucek 881. However, they can be distinguished by the 

following considerations. According to Bell [Bell 861, the tightly coupled systems, called 

multiprocessors, have multiple processors - -  and common or global memory. The processors , - - - - - - - - 

and memories are connected by one or more high speed busses. Loosely coupled systems, 

called multicomputers, have local memories for each processor, although they sometimes 

have global memory for shared data. 
- - 

- -- - 
- 

A multicomputer network consists of tens or hundreds of nodes connected in some fixed 

topology. As Figure 1-2 shows, a multicomputer node minimally contains a 

microprocessor, local memory, and hardware support for internode communication. 

Special applications may dictate inclusion of specialized co-processors for floating-point, 

graphics, or secondary storage operations [ReedFuji 871. 

-- 

Ideally, each node would be &ctly C O M ~ C ~ ~  to all other nodes. Unfortunately, 

'packagingconstraints, hardware limitations and costs limit the number of connections. 

Because the node degree is limited, messages are oftea muted & ~ ~ ~ & a - s q u e n c +  ef - - 

intermediate nodes to reach their final destination. In contrast to sequential computers and - - 
- 

shared-memory computers which operate by sending messages between processors and 

memories, a rnessage-passing parallel computer operates by sending messages between 

nodes that contain both logic and memory. As shown in Figure 1-1 message-passing 



Connection Machine m s  851 consist of a number of processing nodes each containing 

' -both a processor and a local memory. The communication channels used for memory 

access are completely separated from those used for inter-processor communication. 

node 0 node 1 a d . . , ,  node N-1 
- t <-n-> I . . . . . . a  

v 
An n-cube Interconnection 

- Figure 1-1: Structure of a hypercube multiprocessor. 

Message-passing computers take a further step toward reducing the Von Neumann 

bottleneck by using a direct1 network which a o y s  locality to be exploited2. A message: 
- 

% 

to another process residing in a neighboring processor travels a variable distance which can - -- 

be made short by appropriate process placement [Bokhari 87, LinMol 85, LeeAgg 
-- 

/ 

/-/- 
We will limit our attention to message-passing multicomputers. By combining a 

processor and memory and communication support in each node of the machine, this class 

of machines allows us to manipulate data locally. By using a direct network, message - 

passing machines allow us to exploit locali'ty in the communication between nodes as well. 
- 

- 

'point--point connections. 

'shared memory muIticomputers (indirect networks) consist of a number of processors connected to a 
number of memories through a switch Pally 87al. 



B System Bus 

To other nodes 

- - 
---A- 

- - - = _ -- 
t__-____ 

- --Figure 1-2: ~ul t icom~uter  Node. 

- 
- - A 

-- - - --- 

1.2. Multi&mputers Building Blocks 

The nodes of a multicomputer network each contain a processor with some locally 

address able memory, a comrnunic ation controller capable of routing messages without 

delaying the processor, and a small number of connections to other nodes. 
- - 

\ 
\ 

Many realized that a ~niversal building block would greatly simpw-multicompurer - 
- - 

network design and construction Dally 87% ReedFuji 871. General purpose building 

blocks have been proposed, and in some cansimplememcd, forboth cornputadorram- - 

communication aspects of a multicomputer nekork node. Two such bYlld ingbhksue  -- 

"the Inrhos Transputer" [Soucek 881 and th: "Toms routing chip" PalSei 861. Design 

issues for a general purpose communication component d l  be discussed in Chapter 3. 
- 



1.3. VLSI Constraints - 
-- - -- --- 

A general purpose VLSI communication component is envisioned that can be used as a 

building block :or consmcting large multicomputer networks. These componentfeature -__ - -- 

-;=-- - - -specidjurpose hardware to implement frequently used communication functions. 

A W I  chip-is subject to a number of technological constraints. Several researchers 
- - - 

have discussed these limitations [Seitz 84, Dally 87a, Dally 87b, FranDhar 861. Violation 
\ 

of these constraints will result in a chip which cannot be manufactured in large quantities. 
-- - - - - 

-- Tuj ipu j i  831 describes the implications of some constraints, (i.e silicon area, power 

dissipation, and number of pins) on the design of a VLSI communication component. 

Closer examination of VLSI network implementation problems however show that pin 
- 

limitations, rather than chip. area or logical component limitation, are' a major constraint in 
- - ---- 

-- - - - - --- desigiiing-lee networks. The number of intercom~ctions to the chip's periphery is 

limited, and will increase much more slowly than the number of transistors per chip. 

Whenever each node of a multicomputer system is implemented as a VLSI chip or a 
- 

printed circuit boardpackaging c o n i t r ~ ~ ~ b f n h - - _ _ ~  

made to the node, placing an upper h u n b  on the VO bandwidth available for - - 

- 

communication link. As more links are added to each node, less bandwidth is available for 

each one. However, increasing - the number of the links" will usually reduce the average 

number of hops required to reach a particular destination. Therefore, a tradeoff exists 

between link bandwidth and average hop count as the number of links on each node is 

changed. 
- - ! A 

- 
---- - -  

-- 
- - - --- - - - - - - 

A packaging strategy based on Dense Interconnection Technology has been proposed 

[HobKaf 891, that can be used for efficient bottom layer of a parallel computer hierarchy. 
i 



9 

Interconnechon networks for parallel computers have been studied intensely, a d  many 
-- 

different network topologies have been proposed Feng 81, R w u j i  87&edGnm87]. -c 
- 

Among the proposed interconnection networks several that serve as useful points of . 

reference or have particularly attractive features are the single bus, the complete 
- 

- - / 
connection, the single ring, the chordal ring, the spanning bus hypercube, the dual-bus 

/ 

hypercube, the torus, generalized hypercubes, the c~be -co~ec ted  cycles, the 

cube, the lens, the X-tree, and 3-ary tree. Figure 1-3, illustratesa subset of these 

The single bus network joins all nodes and uses a contention resolution protocol to * 

resolve simultaneous requests for the bus. Although inexpensive, it can efficientl'ysupport 

only a modest number of nodes. In contrast, the complete connection network directly 

connects each node to all others. Its performance is the best achievable. These two 

networks, the bus and the complete connection, bound the spectrum of price and 

performance for all practical multicomputer networks. 

1.5. Multicomputer Programming 
- -- - -- 

Multicomputer networks are typically proE%Geh--usiiiggTimiliar- -sequentkd - .  

programming languages, augmented with message passing communication primitives 

[ReedFuji 871. The application programs for multicomputer nenuorks must be 

decomposd into a collection of parallel tasks that communicate using the message passing 
-- - 

mechanisms provided by the machine. In the following, some possible approaches41 be 
- --- 

- 
reviewed. k 

'. 
The Massively Parallel Processor (MPP) [Soucek 881 is programmed in a high level 

language Parallel Pascal BeevGut 891. Parallel pascal is an e x t e n d e d u e r s i u ~ f ~ s c a L  
\, 

programming language which is designed for the convenient and efficient programming of 
-- - 

MPP parallel processors. In Par&lel Pascal all conventional expressions are extended to 

array data types. 
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Figure 1-3: Representative interconnection networks. 



-- 
. - 

-, 
A 

- .- D ~ w a B y 8 7 a ~ p r o p o s e s  the use ofibject-Oriented programming approach, to 

program concurrent computers. The message-passing paradigm of objwtdriented - 

languages introduces a discipline into the use of the communication mechanism of 

message-passing computers. In an object-oriented language, computation is perforined by 

sending messages to objects. Objects never wait for or explicitly receive messages. Instead, 
- 

objects are reactive. The arrival of a message at an object triggers an action. The action' 

may involve m m g  the state sf the object, transmitting messages that continue the 

control flow, and/or creating new objects. Since the actions on an object are ordered, - 

simultaneous processing of messages is not consistent with the model of computation 

described above. Therefore, the concept of distributed objects has been proposed, which 
- consists of a collection of a l l  eomfituent ebjexbs, each of which can reeeive messageson 

- 

behalf of the distributed object. Since many constituent objects can receive messages at 

the same time, the distributed object can process many messages simultaneously. In this 

thesis APL language has been used for' programming a Simulator of the proposed 

multicomputer system (Chapter 4). APL provides a syntax which is appropriate for the 

-- 
type of parallelism assbciated with array and vector processors. 

/ 

- 
* - - / 

- - 

1.6. Thesis Objectives 

Within the context of multicomputer networks for array processing a summary of the 

objectives of this thesis are the following: 
- -- - - 

--- 
- 

-- 
--- - 

- - -- - - - --- - -Proposal of a new multicomputer network for array processing and study 
minimum diameter and symmetry 

routing algorithm 

efficiency for some well known scientific computations 

VLSI communication consideration. - - -  - 

-SirmuMion of multicomputer networks on a Unix-base& Sun workstation, in APL (using - 
- 

C for linking multiple APL workspaces) and study * 
algorithms for some problems in array processing 

a partial instruction set for a network controller chip. 



, 
- 

ThFtk%5-nt-of 5iiiircmKtUre tha%p*s m ~ 1 ~ ~ h n 6 i o g ~  to support parallel 

processing is approached in two steps. First we consider the interconnection network over 

which processing elements communicate. In addition to a topology a network requires a 

commudication mechanism for routing messages. A VLSI-Based Communication 

component will be discussed mChapter 3. Performance characteristics of the hypennesh 

and also the simulation results are presented in Chapter 4. 



+ -+I Architectural Features and Design Considerations 
of Hypermesh Multicomputers for Array Processing 

Parallel algorithms and the architectures used to execute them have been-of great iiitms- - 
_ - - - -- 

to computer researchers-recently- ad&is-due E t h e  gknt ia l  speedups they offer in 
- 

- - - sorviiig important application problems. A well-studied method for interconnecting many 

different processors is the mesh-connected paraflel compttter, in which connections are - 

made only to nearest neighbor processors in two dimensions. 

Parallel machines such as ILLIAC IV have been built based on the mesh interconnection 
- 

strategy. Also, parallel algorithms for important computational problems including sorting 

[NasSah 801, and linear algebra, image processing page 881, compbtational geometry [Lu 

88, MilStou 89, MilStou 86, BoxMil 881, 2 4  convolution [FaLiNi 891, and numerical 
- - 

- computations [Modi.85h have -&vaoped foi the mesh:corinected computer. - 

In a two-dimension mesh-connqted parallel computer consisting of N processing elements 

), (PE's) PE's at the extremes of the mesh are separated from each other by approximately 
- 

N ~ "  intermediate PE9s. For a parallel algorithm &at starts with one input per PE and 

forms an output whose value depends on all the inputs, parallel time O ( N ~ / ~ )  is required. - 

Problems having this time requirement on the mesh include all of those listed above, and 

other important ones such as solving linear recurrences. 

- - - -- 

matrix muhiplication, and for the inversion of a matrix on a lattice of interconnected 

processors (MCC). His analysis confirms &at data movement- and not' arithmetic 

2 

%%roughout this thesis, N=$. 



conventional complexity analyses for parallel computations commonly ignore the details 

of machine structure, which can often result in misleading conclusions. In brief, it 

suggests more attention should be paid to the hardware characteristics of a particular 
4' 

implementation. 

Issues in designing parallel machines are described first. A survey of communication 
- - 

- - - - 

- -- 
protocohi~ multicomputer networks are also discnbed in section 2.3. Enhancements on 

- - 

the mesh structure are reviewed from the literatuqe. In section 2.4 an architecture called 

the Hypermesh is proposed. In section 2.5 comparisons with other mesh-like orga&ations 

are described. Embeddability of some other important interconnection networks like 

hypercube and mesh on a hypermesh are also discussed. The complexity results of a set of . 

algorithms [KumRag 87, Bokhari 841 which can be implemented efficiently using 
, 

broadcasting features of the hypermesh are also shown. Another variations on the 

hypermesh structure called the diagonal hypennesh is proposed. Finally a quick review of 

existing parallel sorting techniques which may be used efficiently on the hypermesh wraps 

up the chapter. 
- - 

2.1. Issues in Designing Parallel Machines 

Three of the most important choices in designing any parallel machine are: 
general versus fmed communication - 
fine versus coarse granularity 

- 

multiple versus single instruction streams 

Although each issue can be characterized by the extreme schools of thought, each offers a 

specntkn-of choices rather than a binary decision. 
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Arehiteckual Features and Design Considem&ns 
of Hypermesh MuWeomputers for A m y  Processing 

U1.  General versusFixed CiOEEfMunicatisn: 

Some portion of the computation in all paraUel machines involves communication among 
- 

- 

individual elements. In some machines, such communication is allowed in only a few 

specific patterns defined by the hardware'. For example, the processors may be arranged in 
\ - P 

/ . 
- - - a two-dimensional-grid with e~ch~processor connected tb four others. ~o~osedco&&on  

- - 
- 

patterns forsui3 fixed-topology machines include rings, c-&es, birtar)rcubes, etc. - 
+&- 

- - -+ 

- The alternative to a fixed topology is a general communication network that permits any 

processor to communicate with any othe8. There are also many other intermediate 

possibilities, namely dynamic reconJigurable systems [Muraleami 881 that c m  be 

reconfigured as either a shared-memory tightly coupled multip&essor or a message- ' 

passing loosely coupled multiprocessor at run time, also as a hybrid of the two. 

2.1.2. Fine Grained xersus Coarse Grained 

We first define the term granularity, which is used to classify parallel computers in terms 

of complexity and number of processors. Machines with a large number of elementiq 9 
processors, each holding a small volume of data, are fine-grained; those with a small 

number of complex processors, each holding a large volume of data, are course-grained. 

In any parallel computers with multiple processing elements, there is a trade off between 

the number and the size of the processors. The conventional, single processor Von 

Neumann machine is the extreme Ease of this. The opposite approach achieves as much 

- parallelism as possible by using a Wge number of small machines. In general, the ideal 

granularity of parallelism is application dependent [Brock 861. - 

. - 

Thefine grained processor has the potential of being faster because of the larger degree of 

parallelism. But more parallelism doesnot neceyarily mean greater speed. The individual 

processors in the small-grained design are necessarily, less powerful, so many small 

- prwessers may be slower than one large one. For example, the Connectioh Machine 

4i.e. t h u g h  a shared memory. 
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-"- _ _ m s  851 and Massively Parallel Processors (MPP) [Soucek 881 are fine-grained 

machines. 

Perhaps the most important issue here is one of programming style. Since serialrprocessor 

-- - - 
machines are coarse grained, the technology for programming coarse grained machines is  

better unders tood. 

2.1.3. Multiple versus Single Instruction Stream 

A Multiple Instruction Multiple Data (MIMD) machine is a collection of connected 

autonomous computers, each capable of executing its own program. Usually an MIMD 

machine dso includes mechanisms for synchronizing operations between processors when 

desired. In a Single Instruction Multiple Data (SIMD) machine, all processors are 

controlled from a single instruction stream that is broadcast to all the processing'elements 

simultaneously. Each processor typically has the -option of executing an instruction or 

ignoring it, depending on the processor's internal state. The correct choice depends on the 
' 

application. For well-structured problems with regular patterns of control, SIMD machines 
7 

have the edge, because more of the hardware is devoted to operations on the data. This is ~ 

because the SIMD machine, with only one instruction stream, can share most of its control 

hardware among all processors. In applications in which the control flow requirements of 

each processing element is complex and data dependent, MIMD architectures .have the 

advantage. The shared instruction stream- in SIMD architectures can follow only one 

branch of the code at a time, so each ossible branch must be executed in sequence, 8 
whereas the uninterested processors are idle. The result is that processors in an SIMD 

machine may sit idle much of the time. 

. The other issue in choosing between an SIMD and an MIMD architecture is one of 
? 

There are arguments on both sides [Hillis 851. There are also SIMD 

machines that allow varying amounts of autonomy for the individual processing element 

and/or small instruction streams, so basically this issue presents a spectrum of possible 

choices. 
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2.2. The Communication Network 

The most difficult problem in the design of a mul~processor network is the design u f a e  

general interconnection network through which the processors communicate. The building 

blocks from which the interconnection network is constructed are a u t o n o ~ u s  switching 

elements callecfrmters. The routers are wired in some relatively sparse pattern, called the 

Ltopology of the nesork. In other words, not every router is connected to every other. 

Processors communicate through the routers, with the routers forwarding 
\ 

messages between post office forwards mail from one branch to 

another. There are two issues in the design of such a system. One is choosing the 

topology for connecting the routers, and the other is choosing the algorithm for routing the 

messages. 

2.2.1. Choosing a Topology 
1 a 

In choosing a topology, the goals can be ?ivide&.roughly into two categories: cost and 

performance. On the performance side, we look for a combination of the following. 

Small Diameter: The diameter is tbe maximum number of times that a message can be 

forwarded between routers when traveling from one processor to,another. In other words, 

the diameter is the maximum of the minimum length path between any pair of nodes in a 

network. If this distance is small, then processors are likely to be able to communicate 

more quickly. 

Uniformity: It is desirable that all pairs of processors comdknicate with equal ease or at 

least that the traffic patterns between all pairs or routes be reasonably balanced. - This 

ensures that there are no bottlenecks. For example, in mesh connected compu.ters, nodes 

are located at thetcomers of the network have less load in terms of the number of 

communication activities than other nodes in between. Intermediate nodes not only have 

to handle cornrnunication activities as a part of their communication patterns, but also have 

to take part in rout& as an intermediator for their neighbors. 
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Extendability: It should be possible to build a network of any given size or, as a 
- Y 

- 
minimum, it should be possible to build an arbitrarily large version of the network. 

-<- 

Sbn Wires: if the network can be efficiently embedded in two or three-dimensional 
A -- 

space such that all the wires are relatively short, then the physical distance between routers 

can be small. This means that information can propagate quickly between routers. 

Redundant Paths: If there are many possible paths between each pair of processors, a 

partially defective network may continue to function,. Also if a path is blockedbecause of 

traffic, a message can be directed along another route. 

On the cost side we look for the following. 

Minimum n d e r  o f  wires: Each physical connection costs money. Thus if the number 

of wires is small, the cost is M l y  to be small also. 

Eficient layout: If the topology can be tightly and neatly p small space, the 

job becomes easier. 

Simple routing algorithm: Because the routers can be locally controlled ,this keeps down 

the cost of the routers. 

Fixed degree: I f  each router connects to a fixed number of other routers, then one router 

design can serve several sizes of network. 
3 

Fit -- to available technology: I f  the network can be built easily with available components, 

it should be less expensive. 

Notice that the wish list contains cohtr&ctions, for example, for minimum number of 

wires and redundant paths or for fixed degree, small diameter, and short wires. Any 

decision will be a compromise. Deciding which performance factors are most important is 
'&- A 

, not easy. On the cost side most of the factors are difficult to measure and even more 

difficult to rationally trade off against one another. The fit to available technology often 
, * 

turns out to be one of the most important Fuji 831: 
t e 
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2.2.2. Choosing a Routing Strategy and Mechanism 

Along with choosing a topology for the network, we must choose an algorithm for 

moving information through it. This is called the routing algorithm. Often the 

performance of a parallel computer depends primarily on'its data routing capability. The 

routing mechanism or transport mechanism provides a facility for moving data through the 

network. Several frequently used transport mechanisms and their distinguishing 

chkacteristics are discused in [ReedFuji 871. .Briefly, these characteristics are: 
Data Unit: The indivisible unit of data transported through the network is 
either a variable-length message or a fixed-length packet. 

Routing Overhead: The overhead associated with message routing is incurred 
either on a hop-by-hop basis at each network node or only in the initial 
establishment of a circuit. 

J 

Bandwidth Allocation: Bandwidth is allocated by the network either statically, 
e.g., when a circuit is established, or dynamically as messages are forwarded 

9- 
through the network. 

Buffering Complexity: The complexity of the buffering hardware varies with 
the sophistication of the chosen routing mechanism. 

types of network, each one applicable to any of the above topologies 

to compare them, consider the hypercube as an example. It is clear 

that, for an n-dimensional hypercube, the worst-case communication path involves passing 

the message along n edges. If it acts as a store-and-forward network, the source code sends 

its message, along with the destination address, to the neighboring node. The neighboring 

node, realizing that the message is not addressed to itself, sends it on to its neighbor in an 

appropriate direction. After n of these message-forwarding operations, the message arrives 

at the destination node. At each stage, the message is handled as a single unit (a packet). 

Once it has been passed to a neighbor, the node is free again to continue with the rest of its 

work, even though the message is still in trafit .  This is analogous to the process of 

sending messages through the postal system. 

If it is a circuit-switched network instead, the analogy is with messages sent through the 

telephone system. The source node starts by setting up a route, first by contacting its 

neighbor and informing it of the address of the required destination node. Each of the 
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nodes along the path to the destination are set into &eceptive mode, in much the same way 

as each of the intervening exchanges in a telephone network being configured when a 

telephone is dialed. Once the connection is made, the message can be transferred directly 

from the source node along the established path to the destination node. Just like the 

telephone exchange, each of the nodes in the path must maintain the connection until the 

source node signals that it has reached the end of its message. The primary disadvantage 

of this approach is the extensive bandwidth usage. 

Figure 2-1: Latency of Store-and-forward routing (top) vs. wormhole (bottom). 

According to [ReedFuji 871 three types of store-and-forward networks are common: 

Datagram networks are characterized by the unit of data sent through the network with 

variable length message. Clearly, buffer management is the primary disadvantage of this 

approach. In packet-switched transport mechanism each message is divided into fixed- 

sized packets that are routed separately through the network. Because packets can be 

relatively small, (eg. one byte) buffering requirements in each component are reduced. 

One of the disadvantages of the packet-switched approach is that the routing overhead 
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occurs on every packet rather than on every message sent into the network. It is possible 

to have one setup cost for one message consisting of several packets. This approach is 

called virtual circuit transport mechanism [ReedFuji 871. A virtual-circuit is established 

between nodes that wish to communicate. All packets of one message sent on this circuit, 

travel along this path to reach their destination. 
c1. 

To reduce the latency of communications that traverse more than one channel, we can use 

womhole5 routing rather than store-and-forward routing [DalSei 861. Instead of reading 

an entire message into a network controller before starting transmission to the next node, 

the network controller forwards each fli8 of the message to the next node as soon as it 

arrives (Figure 2-1). Wormhole routing thus results in a message latency that is the sum of 

two terms, one of which depends on the message length, L and the other of which depends 

on the number of communication channels traversed, D. Store-and-forward routing gives a 

latency that depends on the product of L and D. Another advantage of wormhqle routing is 

that communication does not use up the memory bandwidth of intermediate nodes. 

2.3. Enhancements on Mesh Structure 

Several multiprocessor architectures have been proposed for parallel processing fBeHeLa 

87, Carlsaa 85, GoodSeq 81, Hillis 85, Hwang 89, Kale 86, LiMar 87, Page 88, Soucek 

88, Stout 83, ThStSa 88, YounSing 881. Of these, the Mesh Connected Computers (MCCs) 

have been widely used; their regular structure are particularly suitable for VLSI 

implementation. They seem to be a natural structure for solving many problems in matrix 

computation and image processing. In parallel and distributed computations the solution 

times of problems are constrained by information flow rather than processing times within 

PEs [Gentleman 781. Moreover, even if the problem is not donstrained by a large flow of 

information, the solution time can be constrained by the time required for moving a single q 
, , 

%Ins mechanism has been named cut-~hrough in meedFuji 871. 

6~ FLOW control digIT, is the smallest unit of information that can be accepted by a communication 
channel or queue. One or more flits m&e up a message Pal ly  87al. 
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piece of data over a long distance (as well as disturbing the other processors in between). 

For example, in a two-dimensional MCC with N PEs in which the PEs are placed at the 

grid points in a plane , moving a datum from one PE to another may take as much as 

2&-2 time in the worst case. 

Carlson [Carlson 851 proposes a modification to a regular mesh by adding one or more 

global mesh structures to the processor array (Figure 2-2). Modifying the mesh with 

multiple global busses can also be done (this is treated in a separate paper [JraHal: 871). A 
- 

Figure 2-2: The mesh with a single global mesh. 

clear disadvantage of this network is that the regularity of mesh is not maintained and 

some of the nodes do not have the same topology as the others. In the following, other 

modifications to the regular mesh will be discused. 

Given that a mesh connected computer is a natural and realistic parallel architecture for 

the efficient solution of many problems but solution times are constrained by long data 

movements, an obvious extension is to augment the network with a faster mechanism for 

moving data over long distances. Such a technique, called broadcasting, has been 

considered in [Gentleman 78, Stout 831. In broadcasting, a single PE can broadcast data 

which are received by all the .PEs simultaneously. Several such problems have been 
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considered wokhari 84, Stout 8 31 with substantial improvements in computation time 

compared to that required by MCCs without broadcasting. 

2.4. Proposed Network Structure 

In this section, we explore modifications of a mesh-connected parallel computer for the 

purpose of increasing the efficiency of executing important application programs. The 

modification is made by connecting each PE to all the other PE's in the same row/column. 

Such an extension to the 2-d mesh might be called a Hypennesh. 

The approach taken here is similar in some ways to that of [KurnRag 871. They also 

propose an extension of the mesh connected computers, a mesh with multiple 
1 

broadcasting, and presented several interesting. algorithms running on this netwo* quite 
I 

efficiently. There are several differences between their network and, ?e one proposed 

here. First, in this work, several communication features of  the proposed network are not 

found in their network. Parallel message transfer at each node (both transmit and receive) 

provides a high data communication bandwidth for the entire network. The proposed bus 

structure (for one row/column of this network) is shown in Figure 2-3. Second, providing 

an insight in terms of actual design requirements and practical views in the communication 

support unit based on VLSI technology, which in fact is one of the main concerns of this 

thesis. 

We will show how the hypermesh modification allows asymptotic improvements in the 

efficiency of executing computations having medium to high interprocessor 

communication requirements. Moreover, each PE can take advantage of pipelining which 

will be described later. We also compare our modified mesh-connected parallel computer 

to other similar organizations including the mesh, mesh with broadcasting, and 

hypercubes. We also need to select the routing algorithms carefully to avoid "traffic jams" 

when several messages are traveling through the network - at once. These problems are 

discused in detail in the next section. 
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w w w w  Local Bus local Bas local BUS Local BUS 

Figure 2-3: Proposed bus structure. 

2.4.1. The Architecture 

Figure 2-4 demonstrates rhe hypermesh connection pattern. Each row and column link 

has the structure shown in figure 2-3. The system consists of N processing nodes. Each 

node consists of a processor, a local memory and memory controller chip, and a 

communication controller. Eech node has a separate communication processor to allow 

uninterrupted application processing. 

Figure 2-4: A hypermes h interconnection network (A) 
and companion processor plan (B). 
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We imagine our structure is composed of two separated m la&rs of PEJs: One layer is - 

dedicated to processing, while the other is entirely dedicated to communication. Each 

processor PE in the processing layer connects to a corresponding distinct router PE in the 

communication layer. A processor uses the communication layer for efficiently routing 

data to other processors. The interconnections among the routers will determine the 

communication characteristics for this approach. This topology provides direct 

connectivity for each PE to all the other nodes dong its row and column. Processors are 

identified by their two dimensional coordinates. Communication components are 

numbered similarly. 

2.4.2. Routing Scheme in Hypermesh zsa 

All communication networks require some routing algorithm to build the paths between 

communicating nodes. A great deal of research has been done in the area of routing in 

multicomputer networks. In the context of the proposed communication domain, we will 

only consider distributed routing that does not rely on central authority. In regular 

networks (eg. mesh , torus, hypercube, etc.) routing can be performed in each node by a 

state machine or rnicroprograrnrned engine using a fixed algorithm based on the local and 

destination addresses.' Routing algorithms are known for many standard topologies. In a 

square lattice, for example, the routing controller could forward the message in a direction 

that would reduce the difference between the X- or Y-coordinates of the current and the 

destination nodes. In the n-cube, links are selected which reduce the Hamming'distance by 

one, until the target is reached. 

 o or irregular networks, souting must be based on suitable lookup tables [ReedFuji.87]. In such a system 
each node i has entries of the form: 

implying that messages destined for node DN are forwarded - ~- - by node i to neighbor node NN.  p i s  table 
lookup, commonly called a routing table, can be defined stitiCfly, or it-canbe maintahaMynarnicaIly 
using information exchanged between neighboring nodes. This technique could be of use even in 
hypermesh. Hierarchical techniques can be used to implement general lookup table mechanisms for message 
routing without excessively large memories. Memory size is minimized when many levels are used. 
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In the following, we will show that many data routing functions which the mesh cannot 

perform well can be achieved by Hypermesh very efficiently. One way to evaluate the 

routing capability of an interconnection network is the communication time between any 2 

processors. The communication for node(il d l )  to node(i&) requires 1 i,-i, + I j, -j2 1 
steps on a mesh, which is 2 ( ~ ~ / ~ - 1 )  in the worst case. By using Hypermesh, this can 

always be achieved in two steps. First node(il jl) sends to node(il j2) , then node(iz&) 

receives back from n ~ d e ( i ~ & ) ~ .  Figure 2-5 illustrates this process. 

Figure 2-5: A message moving toward its destination9 
in a hypermesh, (first step of two hop). 

Row/column broadcasting can be performed as following: node(ij) sends a message to 

mde(i,*)slo or mde(*j)s .  This can be done by fust injecting message by PE(i j )  to 

Router(ij), then through a handshaking mechanism, all, the Routers in the same 

row/column read it back simultaneously. Generally, broadcasting on hypermesh can be 

defined as following: * .  

*node(i2 j l )  acts as a pivot and forwards the received message. 
4 

90 achieve a bidirectional transaction flow, the proposed muting algorithm prevents congestion for the 
pivoting node and creating a cylinder%fect; (all transaction flow occurs in a counterclockwise direction). 

0 

'OA(~,*)  and A(* j) denote all the nodes in the ifh row andfh column of A, respectively. 
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P E ( k i I k i ~  (1,2,. . .a}) ->PEsc (1,2,. . -pl )  
i = 1 single broadcasting - 

i > 1 multiple broadcasting l l 
& 

Row and column broadcasting is a powerful communication mechanism. Suppose only 

PEs in a particular row, say row 0, each have a data item and we wish to compute, for 

example, the maximum of these numbers; then, we can use multiple broadcast busses to 

simulate a tree structure. - 

Performing permutations of data on SIMD computers efficiently is important for high 

speed execution of parallel algorithms. For an efficient execution of parallel algorithms on 

SIMD computers, an important objedve is the fast rearrangement of intermediate results. 

The total execution time greatly depends on the time required to perform permutations of - -+- %- 

data. The classes of permutation usually considered are the permutations strongly 

suggested by the cornmpnication needs imposed by the.existing parallel algorithms, and by 

the data storage schemes. 

Simple algorithms for performing important permutations can be achieved for our 

proposed network. Many permutations can be done in a constant number of steps (Chapter 

4), as opposed to 2(&-1) the lower bound in mesh with wrap-around [RagKum 841 , and 

3(&-1) in regular mesh [LinMol 851. This approach is quite simple, and unlike previous 

approaches, makes efficient use of the special topology of the proposed network to realize . 
these permutations using the minimum number of data transfer steps. Here, a-very simple 

control algorithm on the hypermesh network is proposed. The control algorithm is actually 

based on a very simple idea. Assume permutation P maps node(ij) to node(r,s). The 

routing algorithm would be the following: 

This can be done concurrently for each pair of the permutation P. Applying this control 
& 

l1 An extreme case of multiple broadcasting calledflooding [FriBa 871. This data movement operation is 
used to achieve the all-mall broadcast needed in some operations. Flooding is performed by broadcasting 
along rows (for all PEs) which leaves n items at each node. Then similar broadcasting operation along 
columns, that is n-step routing for all n items, results an n+l routing steps. It is interesting to note that in a 
mesh with multiple broadcasting 0(n2) (in fact n2+n) steps are required for this operation. 
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if ( i=r or j=s ) then 
D 

node(iJ) --> node(r,s) 
- else 

nodeti J )  --> node(is) 
node(i,s) --> node(r,s) 

fi 
I* node(i,s) is called a 'bivot" */ 

Pigure 2-6: A simple routing algorithm for hypermesh. 

algorithm on the hypermesh network, it turns out that many frequently used permutations 

can be realized with a constant number of passes through the network. This will be -- / -- 

discussed, in detail, in Chapter 4. 
- 

c- *--- 

2.4.3. Characteristics of Hypermesh 

Some characteristics of the proposed mesh are: 
medium number ofprocessors- the proposed architecture.is shown in Figure 
2-4. It contains 16 nodes. The readily available technology permits a single 
controller chip to serve both rows and columns of a 4 by 4 mesh. 

nsjnchronous execution- each node executes independently of all other nodes. 
Synchronization between nodes relies on message passing or instruction 
fetching primitives. 

message based communication- because it contains no shared memory, the 
cooperating task of a parallel algorithm relies solely on message passing. The 
message is, in fact, a raw fixed-length packet of data which contains a fixed 
number of flits. 

communication overhead- hardware support in terms of a communication 
chip with a high bandwidth provides an efficient communication environment. 
Furthermore, by using the network to hold intermediate results, node 
processors can feed array data directly to arithmetic units rather than first 
moving them to local memory. 

small diameter- direct connectivity ' along rows and columns reduces the 
diameter of a n by n 2-dimensional mesh from 2n-2 to 2. This technique 
pennits the network communication bandwidth to be more closely matched to 
node processor data bus bandwidth. 

medium grained xmqwtdon- which provides a well-balanced 
communication, computation over such a network, ..? . 

. . e --: 
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The above mentioned properties and characteristics provide the following features: I 

mcient communication patterns, simplified algorithm design- both direct 
connectivity and broadcasting simplify algorithm design and support very 
efficient communication patterns, which in fact enables one to efficiently 
emulate other important network topologies (i.e., mesh and hypercube). 

high throug@ut- multiple broadcasting (wide bandwidth) supported by a 
communication controller chip provides high network capacity and in turn 
high throughput. These'characteristics of the hypermesh .will be analyzed in 
Chapter 4. H , 

// 
. . 

-- - 

4 
- - 2.5~haracterizin~ the Compptational Power of the Hypermesh - * 

1 
t 0 
\ 

To explore the power of the modificahons proposed here; we look at a fairly wide range 

of computational problems and show they can be solved algorithmically on a hypermesh- 

connected parallel computer. Our emphasis is more towards exhibiting the advantages of 

our new parallel organization rather than on the actual algorithms. The algorithms .- 

themselves are similar to previously known parallel algorithms for the problems 

considered, and thus shouldn't be thought of as theDmajor contribution of this- work. 

Another topic treated in this section is how our hypermesh compares to some other parallel 

computer organizations. The perfoiizlance of hypermesh is studied by comparing it to + 

other mesh related networks as follows. 

2.5.1. Hypermesh vs. Regular Mesh 

For problems requiring information transfer between remote nodes (not neighbors), 

hyperrnesh is much better than regular mesh as can be se& below. * -  

Communication between any two processors : This requires 2 ( ~ ~ ' ~ - 1 )  steps on - 
mesh of N  nodes [NasSah 801, but just 2 steps on hypermesh. 

Broadcasting: On mesh, this requires 0(hTIt2) step, but on hypermesh 2 steps 
are sufficient, -- ... - -- .- 
Permutation: Hypermesh can perform peimutatios~easier and faster. 
The lower bound for any permutation on regular mesh is 3 ( ~ ~ / ~ - 1 )  steps 
[LinMol85]. , 

Ir 

.-A On hypermesh, many permutations can be done in a constant number of steps. Moreover, 
--- the system ovahead is different, although the upper bound for any arbitrary permutation is - 

a?' I --_ 
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algorithms. In the case- of hypermesh, our routing algorithm proposed in the previous 

section is universal, (i.e. independent of permutations). 

2.5.2. Hypermesh vs. mesh with single broadcasting 

Gentleman [Gentleman 781 was apparently the first to consider a supplemental - 

mechanism called broadcasting. When a node broadcasts a value, it is simultaneously 

received by all other nodes (Figure 2-7). To avoid pandemonium, only one broadcast at a 

global bus' 

Figure 2-7: An illustration of a mesh with single broadcasting. 

C JI G 

time is allowed. It is easy to see that a hypennesh can simulate a mesh with single 

broadcasting. For almost all classes of algorithms, hyperrnesh performs better. In fact, 

single broadcasting imposes a kind of sequentiality to the network [Bokhari 841: since 

broadcasting is done over a shared global bus only one item can be communicated over the 

bus at any time. Thus, trying to cover many "long" distances using broadcasts will 
,J - &' 

increase the solution time. 

node 0 
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2.5.3. Hypermesh vs. mesh with multiple broadcasting 

hi contrast with the mesh with multiple broadcasting, where the broadcasting bus is 

superimposed on conventional node-to-node links (Fig. 2-8), our proposed network can act 
> 

both as $ neighbor to neighbor medium and a global broadcast In fact mesh with 

multiple broadcasting is similar to the proposed hypermes and he available 

algorithms for the mesh with multiple br adcasting can be simulated on the hypermesh and f 
in some cases with improvements in efficienw. - 

4 

b 

, 

a- 

2 &. 

\ri 

' ' Figure 2-8: Mesh interconnection network with multiple broadcasting. I 
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The camparis& betweed the'two architectures is donein terms of permutations. A mesh 

- T l e  brottdcasting feature does not periorm betier than a regular mesh in terms of 
* 

p e q u  ns. In general ~ ( N ~ " - I )  steps are required to perform permlitation on mesh with 
. * 

- 

multiple broadcasting. Also, the control overhead is large and the roudng algorithms are 
* 

complex [RagKum 841. The upper bound forLan arbitrary permutation on hypermesh is 

exactly ~ l ~ ~ . ( ~ h a p t e r  4): ~ o w e i e i ,  f& a wide class3,cif permutations a constant numb& of 

steps arerequiw. 'Also the overhead is low. 
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2.5.4. Hypermesh versus Fully Connected Network 

The fully connected network is formed by placing a single link between every pair of 
I 

-C d ~ i i g u r e  1-3). Here, the number of nodes is equal to the number of tasks required by 
/ 

, - " --&e parallel program and varies from application to application. This topology minimizes 

the number of hops between every pair of nodes at the expense of a larger number of 

branches to each node (n2 vs. 2n). 

In some applications, a single node needs to send a 'data item to all other nodes in the 

network. If no broadcast mechanism is provided, the node must send a separate copy of 

the message to each destination. A queue rapidly develops in the node sending the 1 
message leading to long delays and poor performance. Therefore a significant performance 

improvement results from incorporating a broadcast mechanism. In avully connected 

network, in practice, O(1og N )  time is taken to perform broadcast operations12. 

I' 

2.5.5. Divide and Conquer Strategy 

The essence of the divide-and-conquer strategy is quite simple: 
I 

To solve a large instance of a problem, break it into smaller instances of the same 9 
problem, and use the solutions of these to solve the original problem. 

// 

The fact that the smaller problems are instances of the same%blem is what 

mstinguishes divide-and-conquh from the mire general top-down strategy. This strategy 

is strongly encouraged in texts on data structures and algorithms. As Ullrnan notes, it is 
* 

also a useful strategy in hardware design [Ullman 841. 

When using parallel computers, there are several reasons why a divide-and-cpnquer 

approach may be particularly useful. First, there may be more data than can be obtained in 

the processors at one time, so the data must be analyzed piecemeal [Stout 871. Second, in 

12That's simply because of the required fanout. 
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some machines the individual processors may be qujte large and pwerful, holding many 

data items, in which case often a two-level strategy is needed. We can call such machines 

medium-grained machines , to distinguish them from fine-grained machines. In medium- 

grained machines, we can exploit the pipelining features of functional units more 

efficiently. Finally, many of the interconnection schemes being used or suggested for 

massively parallel processing (i.e. image processing) naturally suggest partitioning the 

machine into smaller submachines. Mes'hes (including hypermesh) can easily be 

partitioned into quadrants, each of which is a mesh. Meshes with broadcasting capabilities 

almost force one to use a divide-and-conquer approach, dividing the network into subnets 
3 
in which a standard nonbroadcasting algorithin is used, with broadcasting used to combine 

results of the subproblems. 

In networks of higher dimensions, using the hypermesh structure as a building block, the 

features of divide-and-conquer can be exploited more efficiently. In such a hypermesh 

hierarchy, the given problem can be decomposed into small pieces (the size of hypermesh) 

and distributed among the network components. - 

2.6. Symmetry and Embedding 

Symmetric graphs, such as the ring, the n-dimensional hypercube, and the cube- 

connected cycles, have been widely used as processor1 communication interconnection 

networks. A special class of networks, called symmetric interconnection networks, has the 

property that the network viewed from any vertex of the network looks the same [Akers 

891. It is interesting to note that the hypenqesh in~erconnection network is also a 

symmetric network. In such a network, congestion problems are minimized since the load 

will be distributed uniformly through all the vertices. Moreover, this symmetry allows for 

identical processors at every vertex with identical routing algorithms. It is also very useful 

in designing algorithms that exploit the structure of the network. 

The hypermesh interconnection network, in addition to its symmetry properties, has the 

advantage of enabling many other interconnection networks to be embedded into itself. 
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The necessity for embedding arises when a programmer wishes to implement an algorithm 

A for which it is clear that a certain network G is most appropriate, but only another 

network H is available. The Fast Fourier Transformation algorithm, for example, ideally 

requires the perfect-shuffle interconnection, but the programmer may nevertheless wish to 

implement it on machines based on the lattice or the hypercube. The problem can be 

solved by utilizing part of H as a model of G in other words embedding G in H [Modi 851. 

.- 

Figure 2-9: (a) 4-d hypemube; (b) hypercube embedded in hypermesh. 

In order to minimize data movement cost, the indirect links (caused by mapping) should be 

shon or avoided. In this respect the best embedding would be a direct one, which provides 

no exaa data movement requirements on new network. One of the skills in parallel 
a 

computing is to find a convenient embedding, involving a minimum use of long links of 

one network in another. This has been an interesting problem in parallel programming for 

a long time, and some researchers have tried to solve it. But finally it turned out to be an 

NP complete problem [NilGng 87, Berman 8.51. 

Since hypermesh contains a mesh structure as a subgraph, the advantage of mesh is kept. 
a : 
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0n the o k  hand, hypermesh is isomorphic to Hypercube network. As the Figure 2-9 

indicates, hypennesh also contains hypercube structure as a subgraph, so the advantages of 

hypercube and its routing scheme are kept as well. Therefore, hypercube can be embedded 

. in hypermesh directly. This ability has some direct advantages, in a sense that there are 

many appiications and algorithms designed for hypkube,  which can be executed on 
\ 

hypermesh with no extra effort, or possibly can be enhanced. 

2.7. Applications 

The hypermesh is an architecture with a variety of data routing capabilities. So, its 

potential is promising. Since the regular mesh and cube can be directly mapped into the 

hypermesh, any parallel algorithms designed for the mesh or cube can be adopted by 

hypermesh. However, if global communications are required, hypermesh is a much better 

architecture. In the following, we will discuss some application examples. Other 

apblications can be probed by using the technique described here. 

Semigroup computations, for example, include finding maximum, minimum, sum, etc. 

on N data items. On a regular MCC, a semigroup. operation can be performed in 0(Nli2) 

time which is optimal. If a single broadcast bus is available then the time can be improved 

to O(N1") [Bokhari 841. An algorithm for semigroup operations taking 0(N1I6) time in 

2-dim MCC with multiple broadcasting has been proposed in [KuinRag 871. Since 

multiple broadcasting can be performed with hypermesh with no overhead, every step of 

that algorithm can be simulated here. 

( 

There are other parallel algorithms developed for many problems in the areas of linear 

algebra, image processing, computational- geometry, and numerical computations, on MCC 

with multiple broadcasting, which can all be executed efficiently on hypermesh. An 

algorithm is given [KumRag 871 that finds the median value of N numbers distributed one 

per processor, in 0(ZVli6(log N ? / ~ )  time. Another set of algorithms on convex polyge~ 

computation of digitized pictures with co&plexity of o ( N ~ / ~ )  time, and nearest neighbor in 

o(N'!~) time, are proposed, which requires Cl(hrli3) on 2-MCC with single broadcast and 
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Q(N~") on regular mesh. All of these algorithms can be efficiently simulated on proposed 

hypermesh with no degradation and in some cases with improvement in efficiency, A 

further- reduction in the execution time is possible (for some co&unication patterns) by 

taking. advantage of extra communication links and also broadcasting feature in a 

hypermesh. This aspect needs more investigation in the future. 

2.8. Diagonal Hypermesh 

Another variation on the hypennesh interconnection network is depicted in Figure 2-10. 

Figure 2-10: Diagonal hypermesh interconnection network. 

In this network, the same direct connectivity along rows (just like in hypermesh) is 

maintained, but the column links are now replaced with diagonal ,links. This network 

reminds us of the 1-skewed storage technique13 in memory systems [Lawrie 75, HarJum 

871. This topology turns out to have very interesting properties in terms of permutations. It 

can also be configured like the original hypemesh in just one. simple communication step 

(along rows), maintaining all the features of the hypermesh. 

1 3 ~  skewing scheme is a method for assigning the elements of a vector to parallel memory modules. This 
technique is used to obtain conflict-free vector accesses for a subset of access patterns. 
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Studies on several important permutation functions on this topology showed that this 

topology can realize the most important class of permutations (i.e perfect shuffle, bit 

reversal, butterfly and exchange permutations, ...) in at most 2 communication steps, , 

regardless of the network size. An APL program has been implemented to verify this 

property, using the same data routing algorithm described for hypermesh. Experimental 

results are summarized in Chapter 4, for different sizes of the network. 

2.9. Sorting 

Sorting problem was not a research topic in this thesis. Nevertheless, reviewing of the 

possible techniques which possibly can be of use on hypermesh, will be presented. 

Extensive research into sorting techniques has been carried out during the last few years, 

and a large volume of literature is available [Akl 85, SchSen 89, NasSah 79, ThoKun 

77, Thompson 83, SchSha 86, Han 85, SonKin 88, ~ & a f  851 which provides an 

introduction to parallel sorting methods. This problem involves routing of each data item 

to a distinct position of the array predetermined by some indexing schemes. Three 

diffment schemes have been considered by Thompson and Kung [ThoKun 771: row major, 

shuffled row major, and snake-like row major. Some of the standardindexing schemes are 

illustrated in Figure 2- 1 1. Much of  the^ attention has focused on restructuring well-known 

serial techniques such as quick sort, o d z v e n  transposition sort [ThoKun 771, and bitonic 

sort [NasSah 791 in order to make them amenable to parallelism. 

A serial algorithm based on, for example comparison-interchange, necessarily requires at 

least O(k,. logk) comparisons to sort k numbers. I f  k comparisons are carried out 

simultaneously at each stage, then clearly the lower bound on the number of parallel 

comparisons (or delays) is O(1og k). However, it does not seem possible to achieve this- 

lower bound by restructuring one of the well-known O(k log k) serial algorithms, (for 

example, the twozway merge sort), primarily because of lack of parallelism toward the end 

of the sorting process. On the other hand, it is possible by using odd-even transposition 

sort, using O(N) processors to sort N numbers in O(N) steps. 
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. It) ID) 
Figure 2-11: Some indexing Schemes, 

.c (a) row-major; (b) snake-like; 
(c) proximity; (d) shuffle row-major. 

In the realm of sorting a two-dimensional array of numbers, a seemingly "nice" way 

would be to sort rows and columns (since it involves sorting on smaller problems of 

approximately'7h size) and "hope" that somehow a combination of these two operations 

will terminate in a sorted sequence. Unfortunately, such a procedure doesn't seem to work 

when implementing in a straight-forward manner (row major ordering) [leighton 851. 

Paradoxically things fall into place when one sons the rows in a snake-like row-major 

form without increasing the complexity of the procedure. A simple algorithm, called 

shear-sort has been introduced using this scheme in [SchSha 861. It is worth noting that in 

a hypermesh we can get the snake-like ordering from the regular row major ordering in just 

one routing step (Chapter 4), rather than e ( n )  on a regular mesh. Since sorting along 
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row/column can be performed in O(n) on an nxn hypermesh14, and also log n steps are 

required for this algorithm to converge [SchSha 861, therefore, the total cdmplexity of the 

algorithm exploring this scheme achieves a bound within O(n) of the optimal. 

14Since flooding operation can be performed in linear number of communication steps on a row of 
hypermesh, an enumerarion sort described in [YaTaYa 821 can be efficiently used to sort the row of the 
network in linear time. 
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Chapter 3 

VLSI Constraints and Hardware Support 
for~mmunicat ion in Multicomputer Networks. 

This chapter considers various p h y & i l  constraints which influence the design of VLSI 

based interconnection networks used in multicomputer systems. Design expressions are 

presented for implementing a network controller for a mesh with direct connectivity along 

rows and columns. 

The design of effective multiprocessor systems involves numerous interacting elements 

ranging from parallel algorithms to programming languages to computer architectured. 
, , 

This section focuses on the computer architecture question and, in particular, on the design - - 
of VLSI based electrical interconnec'tion networks for use in multiprocessor systems. Due 

to their potentially critical effect on overall multiprocessor performance, interconnection 

networks haye been widely studied. Various studies have focused on their functional 

properties (permutation, control algorithms), their complexity and performance, and their 

actual design. 

In the following, some issues which must be considered when designing a -high 

performance network controller (NC) based on VLSI technology is discussed. A set of 

useful NC instructions will also be proposed. In sections 3.3 and 3.4 considerations bn a 

node processor and network interface chip along with an equation demonstrating the 

number of required pins for a typical NC in a hypermesh network will be presented. 

Finally, requirements for high bandwidth I/O subsystems will be discussed and a 

hierarchical solution will be proposed. 
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3.1. Communication Paradigm and Hardware Support 

Communication functions have traditionally been implemented by software in loosely 

coupled communication networks. Workloads for such systems are generated by processes 

that communicate infrequently to perform high level functions such as file transfers 
- - 

[ReedFuji 871. In contrast, multicomputer networks execute a collection of closely 

coupled tasks that c o ~ u n i c a t e  -@equently. Therefore, although many -- of the same 

problems- and issues that arise in loosely coupled networks also arise in multicomputer 

networks, the latter often require completely different solutions and implementation. In 

particular, rather than software implementation of communication protocols, hardware 

support is more appropriate. 

Several key issues must be considered when designing a high performance 

communication controller: The routing issue has been discussed in a previous chapter, 

therefore in the following other issues are considered. 

3.1.1. Buffer Management 

Each message passed into the communication domain must be subdivided by the sender -. 
into some number of fixed length packets (flits). Packets form the indivisible unit of data 

transmitted through the communication network. Due to conflicts that arise when several 

packets simultaneously require the use of the same link, buffering is required in each node. 
. . 

The strategy for managing usage of these buffers can have a significant effect on 

performance. One simple solution gives each channel on each link a separate buffer. 

Allowing several channels to share buffers, is another approach. However, the control 

logic would be more complex. The first approach takes advantage of regularity in terms of 

VLSI design aspects. In order to support several activities simultaneously on different 

channels the fmt approach seems to be reasonable. Under these circumstances, better 

performance is obtained by having a separate buffer for each channel. 

Now, what happens when a packet arrives at a pivot? It is placed at the end of the linked 

list corresponding to the output channel on which the packet is to be forwarded. It is 
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removed from the list after it has been successfully transmitted to the next node. The 

linked lists are manag& as a FIFO queue to ensure-that packets afeiorwarded in the same - - - 

order .in whigh they arrive.' This queue management cin be implemented in hardware so - - .  
that packet forwarding can proceed as quickly as possiblb [ChuLeu 861. Each link has an'. 

+ 

associated FIFO bufTer that temporarily stores message packets. 

3.1.2. Flow control 
I 

Flow control is the mechanism that regulates the transaction of messages along circuits. 

The network must be able to "throttle" traffic on communication lines to prevent buffer 

overflow and handle other situations of that kind. There are 2 approaches to the flow 

control problem, remote bufSer management and sendlacknowledge protocol [ReedFuji 

871.' The latter approach provides faster communication mechanism, which will be 

discussed here. A simple send/acknowledge protocol for data transmission over the link is 

the most straightforward example of receiver controlledflow control. Each node sends a 

packet and waits for the receiver (or receivers) to return a control signal (ack). It is 

assumed that each link has a separate control line to carry the ack signal. Because the 
2 

receiver can generate an acknowledgement after only the header (first flit) is received, a 

direct connection to the sender (or receiver) offers the unusual feature that the sender will 

receive acknowledgement before it has finished sending the packet. This allows a 

"pipelined" stream of flits through the links. Flow control is built into our slice algorithms 

(Chapter 4), i.e. we produce and consume data at exactly the proper rate. 

3.2. Communication Protocol in a VLSI-Based Multicomputer Network 

A general purpose VLSI communication component is envisioned that can be used as a 

building block for constructing large multicomputer networks. These components feature 

special purpose hardware to implement frequently used communication functions. Each 

router handles messages for one PE, allowing it to communicate with other PE's inits 
- A  

same row/colurnn. A typical communication network of the hypermesh is formed by 16 

routers connected by unidirectional wires (Figure 2-4). The routers are wired in the pattern 



-. V W  Constraints and Hardware Support 
\for Communication in Multicomputer Network 40 

of the hypermesh. The address of the routers within the network depends on their relative 
. - 

.position *thin the mesh. Networks with more than 16 nodes would req&e a larger router - 

(i.e., 2 for 8x8 mesh). The operations of the router can be divided into following 

e-%- 
injection, delivery, b u w i ,  forwarding. . 

ad 

4 1 .  

The injection process involves simple handshaking between processor and router. The - 
I 

process by which a router removes a message from the network and sends it to the node for - - L 

which it is destined is calld, forwarding. When a message finally reaches its destination 

router, it is delivered to thdappropriate processor by writing i n t ~  the processor's memory 

(register), which involve a simple handshaking between the processor and router. Clearly 
6 

the router is hardware limiteif- to a fixed buffer capacity. The number of buffers is large 

enough so that the router almost never runs short of storage, but an additional mechanism 

could be provided for dealing with the overflow case should it occur. This mechanism 

uses two FlFO queues at both sides of the communication link. Between the processor and 

router is a pair of first-idfirst-out buffers (FIFOs) that buffer bytes going to the router and 

data returning to the processor. These buffers allow the router to operate asynchronously 

with the processor. 

To support array algorithms, the network data interface should perhit some automatic 

sequencing from one processor port to .another. Some of the coprocessor strategy which 

was used for SJMC BobSim 871 can be used for a Network Coprocessor. These 

coprocessors receive source and destination instructions over the system bus, 1 cycle in 

advance of when they are needed. The system bus is thus used for one data transfer and 

one instnktion transfer during each cycle. For this reason 2 network data transfers can 
b 

occur in 1 system cycle. 

An instruction set for Network Copracesso~ will evolve as a variety of array algorithms 

are studied. A small collection of useful NC instructions are outlined in Table 3-1. These 

primitives are exmuted by the NC fmware in accordance with instructions submitted to it 
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by the node processor: The list of proposed primitives cover the functionalitiw which are 

required for programming higher-level communication and 'synchronization protocol's. 

They have been designed in order to keep the NC simple and fast and, on the other hand, to 

provide the higher-level network modules and the - applications in the hosts uiith a powerful 
J 

set of communication instructions. 4' 

NRBC: Network row broadcast initialize. Subsequent data transfer will go to all row 
processors. 

NCBC: Network column broadcast initialize. Subsequent data transfer will go to all 
column processors. 

NRWA: Net\;Gork read word alternate. The number of words to read before changing 
from row to column is provided on the data bus as a parameter. 

NRRW: Network read row word. Initialize for automatically cycling through the 
row ports. The number of words to read before changing from one row 
processor to another is provided on the data bus as a parameter. This parameter 
also selects which processor to start with. 

NRCW: Network read column word. See NRRW. 

NSN: Nem.ork source next. Data are place on the system bus and the next source of 
data is readied. This may be the same processor, the next row processor, or the 
next column processor. 

NDN: Network destination next. Data are sent from the system bus into the network 
and the next destination is readied. This may be the same processor, the next 
row processor, or the next column processor. 

Table 3-1: A sample of network coprocessor instructions. 

L' 

3.3. Node Processor Considerations 
4-, 

A central requiremqnt for efficient array processing is to match data transfer bandwidth 

with arithmetic processing bandwidth. If the Arithmetic Processor (AP) is pipelined, the 

data links to memory or a network must also beapipelined. 

State-of-the-art floating-point AP's are available with .cycle times ranging from below 

50ns up to 250ns depending upon the technology and the mount of pipelining. Data ports 

can be either 32 bits or 64 bits wide. Vector data registers and highly interleaved memory 
8 4 
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b&s are requbd . r to keep such chips'ma$mally busy [HobKaf 891. When networking is 

a' brought in, ii-is .u,nlik& that (la& paths in' the network itself will be as wide as 32 or 64 
i 

bits. If we ;aie going to strive for maximum connectivity (the largest number of direct 
Q : 8 

connections), wide data paths are ehly practical for a small number of processors, say a 
C 

2x2 hypermesh. For the following discussion, we choose 8:bit-wide network data paths. 
\ 

This number has been chosen only because it will permit hypermesh sizes of up to 16x16 
C 

with at most 2 network communication chips per node. Hypermeshes of size 8x8 or less 

will only require 1 communication chip per node. Let us also assume that 2 network data 
4 

transfers c a n k c u r  in 1 system cycle. This is reasonable if the network busses are 

unidirectional, short, and only moderately loaded. Such a network can keep a 16-bit 

firmessp continyously supplied with data for bursts of computation. Node processors will 

Diagnostic v 

Coprocessor 

Memo ry 
Coprocessor 

Memory m 
Figure 3-1: Node processor functional components. 
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therefore have a 16-bit data path between the network, memory, AP, and control procdsior. 

Wider data paths exist from the memory controller into the memory, and the AP controller 

into the arithmetic unit. These functional components of Node Processor, are shown in 

Fig. 3-1. With submicron technology, many of the functional components will fit onto one 

chip WobKaf 891. 1 

3.3.1. A Streaming Memory Interface 

Desirable memory interface features have been identified in previous work [HobSim 871. 

The SJMC memory coprocessor supports up to 8 data streams for array processing. 

Systems can be designed with memory cycle times 0, 2, or 4 times slower than the 

processor cycle time, so low cost DRAM technology can be used. It is desired to retain as 

much of this lookahead capability as possible in the expanded system. 

Since arrays are our primary data struct&e, it is proposed WobKaf 891, to map data from 

1 processor into a network of nxn processors by interleaving data uniformly amongst the 

processors. Thus a vector element Vi will be stored with processor Pk where k = i mod n2. 

Large data structufes will wrap around many times, while small data structures will not - 

cover the hypermesh. We assume for this discussion that all data structures can be 

extended to cover the hypermesh uniformly. 

3.4. Network Interface Considerations 

As mentioned previously, network data paths are 8 bits wide. Each node processor can 

coqunicate  directly with any processor in its row or column. We also assume the 

existence of an I/O link for each row and column. 

, Since network data paths are unidirectional, each processor only needs one output bus 

which can be used to broadcast data to one or more of the processors in its row or column. 
\ 

Each processor must have 2n input busses for receiving data from one or more processors 

in its row or column (Figure 3-2). The total number of data lines is thus 8*(2n+1)+16, 

where the '16' comes from a local (bidirectional) data bus. If we assume that 2 control 
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lines are needed for each communication channel, there will be 4n for outputs, 4n for - 

inputs, and 2 for the local bus, giving a total of 8n+2. Not counting clock and power, the 

total number of pins for a network interface chip is about: 

IO(n) = 24n + 26 

IO(4) is quite modest at 122. IO(8) is quite demanding, but feasible at 218. 

control 
OUTPUT BUS INPUT BUSSES 

NETWORK CONTROLLER 
-- 

LOCAL BUS It A 

v 

Figure 3-2: Network controller signaling. 

An 8x8 hypermesh communication network on a single board would thus be a good 

commercial target for the near future. Unless one can fit a 16x16 hypermesh onto a single 

board, the two dimensional hierarchy should be investigated for larger systems. The 

loading on a single broadcast bus with 32 ports may also be significant. 

3.5. Network Controller and I/O Embedding in the Proposed Mesh 

The host talks to the network cells through a nenvork controller. The purpose of the 

network controller is to act as an arbiter for the entire network, in t e r m  of initializa~ion 

and receiving the results. Another thing it does is to act as a bandwidth amplifier between 

the host machine and the processors. It is not surprising that tht: Host Machine is in fact 

similar to one of the nodes of the network (Figure 3-3), which has been featured with the 

same communication controller 
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3.5.1. Sample Operations 

A typical macro-instruction sent from the host to the network controller is a matrix 

addition instruction, which specifies the addition of two matrices with one element within 

each processor. Another macro-instruction could be a matrix multiplication (Appendix C). 
/ -- . 

3.5.2. Network InputIOutpu t 

As in a conventional machine, it is important that a multicomputer machine 

implementation support a balance of processing and inputjoutput. In some applications the 

inputjoutput bandwidth may actually dominate the performance of the machine. For 

example, in the hypercube multiprocessor of dimension n, each node consists of a 

computation processor, a communication handling mechanism, and a local mc lory. This 

communication hantlling mechanism is in charge of the communications between the host 

as well as between the n neighboring nodes. The host, having a communication path to 

each of the nodes, usually performs gram development, program and data down- 

loading, and peripheral control (Figure ? -1). Under such a structure, the host-to-node 

interconnection tends to be the system bottleneck, especially at initialization and summing- 

up stages of the-computation. The success of an implementation depends on how well it 

fits all aspects of the applications, not just the processing. The inputloutput performance 

can become extremely important, particularly if this portion of the machine is poorly 

designed. The objective is to minimize YO overheads by maximizing parallel VO 

capability. Fortunately, the hypermesh machine architecture provides two natural 

possibilities for high-bandwidth input/output ports, through the communications network 

and directly to 'the individual communication controller co-processors. However, having a 

diameter 2 in this topology, I f 0  can efficiently be handled solely through the 

communication network. 

Many multiprocessor systems based on the Mesh and Hypercube topologies have been 

built recently [TuaPet 85, LinMol 86, ShihIr 87, GeAbGu 881. In such systems, YO 

processors are used to handle the data transfers between the processors and the outside 

world or the Host. In some systems each processor is connected to an VO processor and 
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the I/O processor handles all the data transfers between that processor and the outside 

world. For example, the Intel iPSC system uses VO hardware within each processor for 

VO communication using the ethernet protocol [NaBaAb 881. In the NCUBE system, an 

VO processor is connected to a subcube of 8 processors and the VO processors are 

themselves partially interconnected [Hayes 861. 

A close look at our topology, gives us another idea. Since we can send a data item to 

each node of the network in at most two routing steps (2 hops), the communication links 

between nodes can handle that without any requirement for a dedicated VO channel. This 

approach uses the s;stern links efficiently for both the VO and 'node-to-node 

communication. The network itself should be connected to a host node, which can be the 

same node as the other network's node. One scheme would be the following: The host 

110 P O R T S  I 

Figure 3-3: Network input/output. 

- - - - 

computer is hooked up to the first row and column of the network through a network 

cont~oller node quite similar to other nodes of the structure (Figure 3-3). By placing the 

UO links along fist row and column of the network, we do not require explicit VO system 



VLSI Constmints and Hardware Support 
for Communication in Multicomputer Networks 47 

for the network15 , as they are required in several other networks [Kale 86, GeAbGu 881. 

Thus, we can use one of the communication components as a network controller to handle 

network VO tolfrom the outside world. 

Since having only one row or column of the network,connected to the Host, provides the 

required communication links for the whole network in just one routing step; this scheme* 

implies a good tolerance of 110 failures. In other words, we can feed the data into the 

network along two separate path, which will provide high tolera~ce of I/O failures. As 

soon as the first column -(or row)' receives the datdinstruction it will broadcast it along the 

other dimension, using the regular system links. 

Utilizing the system links for VO transfer requires some consideration. We might create 

congestion along the links when VO and interprocessor communication have to take place 

along the same link at the same time. There are two reasons to believe that sharing the 

links for VO and interprocessor communication does not lead to congestion. Most 

problems are solved on multiprocessor systems in the following manner: 

Distribute the data and code to each processor 

carry out the computation in a cooperative manner, and 

combine the results together. 

Step 1 and 3 are I10 cornrnunications and step 2 requires computation and interprocessor 

communication. With such a model of solving a problem we can see that the VO 

communication and interprocessor communication do not overlap in time. And this leads 

us to conclude that the system links. can be efficiently shared for both 110 communication 

and interprocessor communication. An obvious problem with this approach is that it 

forces the first column/row of the network to have a different topology. 

In order to provide higher VO bandwidth for the hypermesh and also to relax the problem 

just mentioned, the following scheme is proposed. In this scheme the VO requirement can 

Isexcept the fist row/column. 
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. a .  

Figure 3-4: A hierarchy of network controllers for YO. 

be handled in a hierarchical manner. This means that the required I/O to this two 

dimensional network can be provided through a one dimensional array of the nodes 

requiring exactly similar communication components. In this array, each node is in charge 

of one row16 of the network (Figure 3-4). Since the described communication component 

features two sets (one for each dimension) of n-1 input channels for inter node 

communications, therefore the nth link can be treated for VO. 

The next layer of this hierarchy will probably require a higher bandwidth for more 

efficient VO activities. In that respect, local bus links (16-bits wide) can then be assigned 

and used effectively to provide the required bandwidth, between a single node and the 

mentioned array of network controllers. 

Note that the whole system (including I/O) is quite symmetrical. In general, the node 

architecture used to implement communication nodes in the base hypermesh 

(communication layer) can also be used for nodes in the 110 subsystem, thereby reducing 

the hardware variety in the system. Figure 3-4, shows part of a 16 node configuration. In 

this figure, a 16 node base hypermesh is controlled by a 4 node NC which, in turn is 

controlled by a single NC. Thus, there ire a total of 1+4+16=21 NC nodes in the system. 

16could be at most for two rows in hypermesh. 
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Chapter 4 

Evaluating Success and Benchmarking 

The appearance of any new computer system raises many questions about its 

performance, both in absolute terms and in comparison to other machines of its class. 

Multicomputer networks are no exception. 

Repeated studies have shown that a system's performance is maximized when the 

components are balanced and there is no single system bottleneck [ReedFuji 871. 

Optimizing multicomputer performance requires a judicious combination of node 

computation speed, message transmission latency, and operating system software. For 

example, high speed processors connected by high htency communication links restricts . , 
the classes of algorithms that can be efficiently. supported'page 8$. 

L 

In this chapter expressions for important metrics of network performance for hypermesh 

will be derived first. Another important performance characteristic of a parallel processor 

is its ability to perform data permutations. .In section 4.2 this issue will be discussed and 

an upperbound for performing any permutation function on the proposed network with the 

variety of indexing schemes will be derived. An interesting feature of the D-hypermesh in 

performing a set of most important permutation functions in constant time will be followed 

by an analytical proof. Section 4.3 explains our approach to parallel programming (slice 

concept) and describes the implementation of two applications on a simulator of the 

proposed mu1 ticomputer sys tem. 
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4.1. Important Metrics of Network Performance and Properties of 
Hypermesh 

Three important metrics of network performance are latency, capacity, and throughput 

Dally 87al. Latency, Tl, is the sum of the latency due to the network and latency due to 

the processing node. 

TI = Twt+Tmde (4.1) 

Network latency depends on the time required to drive the channel, T,, the number of 

channels a message' traverses, D, and the number of cycles required to transmit the 

message across a single channel, LIW, where L is message length. 

Tnel = Tc(D+L/W) 

Other important evaluative measures of an interconnection network is the average distance 

[AgJap 861. This is the distance messages must travel, on an average, in the network. It is 

advantageous to make this as short as possible. The average distance (in terms of the 

number of links) is defined as: . . 

r 

z d ~ ~  
d= 1 AvDist = 

N- 1 

where Nd is the number of PEs at a distance d links away:;-is the diameter and N is the 

total number of computers. If we select two processing nodes, Pi, Pj at random, the 

average number of channels that must be traversed to send a message from Pi to P, is given 

by the following equation for a hypermesh. 
2n - 

Tav(n) = a (4.4) 

Throughput, another important metric of network performance, is defined as the total 

number of messages the network can handle per unit time. One method of estimating 

throughput is td calculate the capacity of a network, the total number of messages that can 
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be in the network at once. Typically the maximum throughput of a network is some 

fraction of its capacity @lally 87al. The network capacity per node is the total bandwidth 

out of each node divided by the average number of channels traversed by each message 

[Dally 87aI. For an nxn hypermesh, the bandwidth out of each node is (2n-l)W, and the 

average number of channels traversed is given by (4.4), so the network capacity per node is 

given by 

Throughput will be less than capacity because not all channels can operate at the same 

time. In hypermesh either row or column can be used for data transfer operations at each 
nW 

time. This will make the throughput T. A typical value for throughput is about 1 in a 

torus (mesh with wraparound connections) [Dally 87al. 

4.2. Some Fundamental Permutations on Hypermeshes 

In order to analyze the performance of a multicomputer system it is necessary to 

characterize its data permutation ability [ReevGut 891. A permutation on an ordered set of 

N nodes can be defined by a one-to-one function n(x), where17 x and n(x) are integers in 

the range 0 I x , n(x) I N-1 [HoJess 811. It is often found that a simple -- way of &fbinga - - -- - 

permutation can be obtained by looking at the binary representation of x. Thus 

~={b , , , b~-~ ,  . . .,bl}=bn2n-1+bn-12n-2+ - .+b12"-* (4.6) 

represents the binary address of an element in the set. Permutations of the set of inputs can 

now be defined by operations or permutations on their binary address (Figure 4-1). 

In this section the performance of the hypermesh for a number of important data 

permutations is described in'detail. These permutations occur in many scientific problems 

and knowledge of their performance may also be useful in guiding a programmer to 

develop efficient programs. 

17x and x(x )  represent the addresses of the elements before and after the permutation, respectively. 
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Figure 4-1: Flow diagram of (A)perfect shuffle, and 
(B)bit reversal permutations on hypermesh. 

A simple routing algorithm for performing permutation functions on hypermesh is 

described first. Then an upper-bound for any permutation using this algorithm will be 

derived. In the rest of this section studies on some fundamental permutations on varieties 
-- 

of hypermeshes (in terms of indexing schemes) will be presented. This will be followed 

by an analytical proof verifying an interesting feature of the D-hypermesh in performing 

the set of studied permutations in constant number of communication steps. 

4.2.1. A Simple Routing and message density for permutations 
/ 

We perform this in a two phase algorithm. In phase I of the algorithm, we displace the 

messages between columns; This initial displacement ensures that there is no congestion 

in routing the message to its target, if two nodes' intend to exchange messages. Phase I 

moves data to the same column as the destination is located (along the rows). Also, in 

phase I data is moved between adjacent nodes, (if the source and destination are on the 
.<I 

same row/column). At the end of phase I, each node is holding at most &-I messages. In 

phase II data i's moved within columns to its destination row. Since a node can play at 
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1- 
most VN-1 times as a pivot, and the largest column distance to be covered is 1,  the number 

of data transfers required in phase II to reach the target row is at most dz-1 .  Thus, the 
P 

total number of data transfers executed by the algorithm is 1 +&-I =&. 

This simple algorithm will result in a path in which one node acts as an intermediatior, we 

call it pivot here, ,for each pair of nodes. Clearly, whenever a *pair of nodes swap their data 

this simple routing algorithm is optimal in the sense that they always utilize different 

pivots for each direction . For certain permutations some nodes are involved more than 

others in message transmission, and not all the nodes carry an equal amount of traffic. 

However, in this case, the maximum number of queued messages at those heavily loaded 

pivots will never exceed di , which gives the upper bound for any set of permutations to 

be exactly 43. 

Some enhancements are possible. For example, if we use a proximity ordering for the 

network nodes, a similar routing algorithm can perforin perfect shuffle and bit reversal 

permutations both in 3 steps, using hypermesh of size 8x8. A hypermesh with proximity 
---- 

ordering has an interesting property that n ~ d e ~ , n o d e ~ + ~  are neighbors. Also this-meshmay------- -~~~ 

be recursively subdivi&dintQ&&s-such-that each sub-mesh contains consecutive 
------ ---- - - 

------- 
- 

indexed nodes. Results on performing the set of fundamental permutations on 

hypermeshes will follow their quick definition. 

4.2.2. Exchange Permutation 

The exchange permutation can be defined in terms of the binary representation of x. 
- 

ek(x)={b,,. . .,bk,. . . ,bl} where l<k<n (4.7) 

The bar denotes the complement of a given bit. Thus the K~~ exchange permutation can be 

defined by complementing the kth bit of the binary representation of x . 
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4.2.3. Perfect Shuffle Permutation 

The perfect shuffle is so called as it can be performed by cutting the set in two and 

interleaving the two sets obtained, as in the perfect card shuffle. This permutation 

corresponds to a unit circular left shift of the binary representation of x. + 

In terms of row and column indices this can be written as 

a(r,c)=(2r mod &+E, ,2c mod &+E,) 

where 

Ec ={I C2dZl2 
0 otherwise 

1st step 

2nd step 

Figure 4-2: Perfect shuffle on bypermesh with 
snake like ordering 

and 2-step routing solution. 
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4.2.4. Butterfly Permutation 

The butterfly permutation is defined over the binary representation of x by exchanging 

-the first and last bits. 

P(x)=(b1,bn-p . . ,b2,bnI (4.10) 

1st step 

2nd step 

Figure 4-3: Bit reversal on a hypermesh with 
a shuffle row ordering; and the overloaded pivots 

after first step of the data routing. 

4.2.5. Bit Reversal Permutation 

The bit reversal permutation, as its name suggegs, is defined over the binary 

representation of x by reversing the order of bits (Figure. 4-3). 

p(x)={b1,b2, . . . ,bnl 

In terms of row and column indices this can be written as 

p ( w )  = @,+9 
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$= reversal of { ~ ~ - ~ x ~ - ~  . . .xo) 
= b(yl . . .xn-l 1 

It is interesting to note that, the matrix transpose algorithm can be defined as a bit reversal 

permutation on a hypermesh network. One application where this permutation &curs is in 

the Fast Fourier Transform algorithm ReevGut 891. 

Figure 4-4: Flow Diagram of bit reversal permutation 
on an 8x8 D-hypermesh. 
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4.2.6. Shift Permutation 

The near-neighbor interconnection network of the MCC can only directly implement the 

shift permutation. Any other permutations can only be achieved through the shift 

permutation. Clearly, this is not the case in hypermesh network. The shift permutation can 

be defined as following. In terms of the binary representation of x, the following equation 

defines the binary addition over the n-bit field, ignoring overflow . 
a(x)= 1 x+ 1 1 2. (4.13) 

1st step 

2nd step 

Figure 4-5: Perfect shuffle on hypermesh with 
proximity ordering; 

and 2-step routing s61ution. 

It is important to note that some of these permutation functions can be realized with fewer 
- 

- routing steps on other types of ordering in hypermesh (Figures 4-2,4-3,4-5). 

e - 

A summary of the complexity results of performing these permutations on hypermesh 

networks (nxn) is given in Table4-1. Each entry in  this table indicates the number of 

routing steps required to perform the corresponding permutation function for the specified 
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ordering of.the nodes. As the table shows, D-hypemesh turns out to have very interesting 

properties in terms of permutations. For these permutations a 2-step routing solution using 

the routing algorithm presented in Chapter 2, exists. For example, the bit reversal 
7 

permutation can be performed on this network, in just 2 communication steps, regardless 

of the network size. Figure 4-4 shows the flow diagram required to perform the bit 

reversal perfnutation on an 8x8 D-hypermesh (in here network horizontal and vertical links 

are elided). 

Table 4-1: Routing complexity on hypermesh 
of size (nxn) with a set of indexing scheme 

for a variety of frequently used permutations. 

row major snake like proximity shuffle row d-hypermesh 

---I 
k 4.2.7. AnalyticaLProof for 2-Step Routing on D-hypermesh 

bit reversal 

perf. shuffle 

exchange 

butterfly 

Experimental results (using an APL program) for performing permutation functions show 

d 
a 2-step routing solution on D-hypermesh with up to 256x256 in size. In order to 

generalize this property to an arbitrary size of network, an analytical proof is given here. 

Here the bit reversal permutation is used to demonstrate this proof. Clearly, this can be 

done for someother permutation functions as well. In an nxn network of processors18, the 
-- 

18~ef ine  n=2k; c,r are k-bit binary encoding of column and row numbers. 

n 

3 

1 

2 

n / 2  
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bit reversal function in terms of row and column indices can be written as 

p(r,c) = (cR,P) where 0 5 r,c 5 n-1 and 0 S cR,$ 5 n-1 (4.14) 

The pivot node for each data transmission can be found using the function 

6(;,c) = (r ,  (cR+P-r) mod n) ,, ,-- (4.15) 

In order to prove-tl& this network can perform permutation functions in 2-steps, we have 

to demonstrate that in the first step of the routing algorithm, none of the pivots receives 

more than one message to forward. 

To do that, it is sufficient to prove that the pivot function, 6, is an injective function (i.e. 

Suppose (xlr2)  and Cyly2) are the coordinates of 2 nodes. Then 

4- .. are the pivot nodes of (x1j2) and (yl,y2) regpectively. - - 

Two tuples are equal if corresponding terms are equal. So, 

a) XI  = Y 1  
if X = Y then 

b) - ( X ~ ~ + X ~ ~ - X ~ )  hod n = (y,R+YIR-YI) L mod n 

4 

V 

- Since p is an 1-to-1 function, from Eq.(4.-17)-a, we get 

Substituting xlRixl =ylR-Yl = C into Eq.(4.17) yields 

( x ~ ~ + c )  mod n = tyZR+C) mod n 
\ 

Since a mod n = b mod n ->"(a+d) mod n = (b+d) mod n. Therefare - 

- - 
(x~~+c+(-C))  mod n = c ~ ~ ~ + c + ( - C ) )  mod n 
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can be simplified to: 

xZR -y2R mod n 

Y 

< n (from Eq.(4.14)) implies that Finally since x2 ,y2 

X2R = y2R ->20 X2 = Y2 

the proof is complete. 

4.3. Environment for Multicomputer Simulation 

For effective use of parallel systems, it is essential to obtain a good match between 

algorithm requirements and architecture capabilities. Information which captures the 

relationships between parallel algorithms and parallel architectures can be investigated 

using a simulation. Moreover, task (application) level modeling of multiprocessor 

architectures may produce some good insight into the trade-offs between computation 

versus communication, low versus large granularity, alternate mapping, scheduling and 

both static and dynamic routing strategies. 

The lack of adequate system software is currently the largest hindrance to parallel 

program development for multicomputer networks [ReedFuji 871. This is partly because 

of the requirement for a network based operating system to support message-based 

communication features at the software level, on top of primitive comhunication support 

at the hardware level. Another reason perhaps is that no matter what the interconnection 

network looks like, the communication patterns required by some algorithms will be 

inefficient or difficult to formulate. 
- 

One of the objectives of this thesis was to study a possible simulator for a multicomputer- 

m ~ g a i n ,  because bitreversal is an 1-1 function. 
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system based on the same language as the real version21. Then, since the simulation and 

implementation languages are identical, the overhead of transporting software to the real 

implementation is negligible. This enables us to consider the correctness issue of the 

programs outside the structure of the real system. 

Simulations of the hypennesh were performed to evaluate various design options and to 

validate that our design of a message transmission could meet the objectives. A 

hypennesh simulator has been set up using the APL and C languages. The essence of this 

approach is that each line of APL code represents one real microinstruction [Hobson 871. 

A matrix multiplication algorithm has been implemented on the multiprocessing simulator, 

to verify the correctness of the afgbrithm and also to verify the required communication 

primitives on such a network. Some other sample algorithms using a tree reduction 

technique and also using a centralized control algorithm for array summation has beer? 

implemented. The system is written in APL and C language and run on a Sun workstation. 
? 

The code is divided into two parts. 

An APL program which is the implementation 'of the matrix-to-matrix 
multiplication algorithm, specifically designed for the* hypermesh network. 
The node program is exactly the same for all nodes. Another simple program 
is also required (for a network manager) to set up and configure the network. 

A C code, implementing the communication primitives required for the 
communication between APL processes. The role of the C code, is in fact, to 
facilitate the communication between tasks (node programs) running on 
different APL environments. 

work on a more realistic hypermesh multicomputer simulator using APL and C on a 

network of Sun workstations has been initiated, but because of the problem with the 

existing APL-C interface, the Inter-net communication primitives cannot be implemented 

dxectly in C as a m ~ t i n e ~ ~ .  One of the aspects- that needs to be considered in any 
--- -- 

2 1 ~ n  a very recent work by Olsen er 01, [BaOlSo 891 "Occam" language has been used for a simulator of a 
network of transputers. 

22An internet communication activity was causing a crash on APL-C interface. However, that was taken 
care of by addmg more complexity in Internet communication and implementing it as interrupt handler 
routines. 



Evaluating Success and Benchmarking 62 

simulation is to ensure that the simulator is free from properties like deadlock and various 

time-dependent errors. In this respect, more work needs to be done in terms of the 

hands haking requirements. 

The algorithms developed in this chapter have a great deal in common: 

node processors are synchronized by passing messages, 

messages are short, containing constant length, 

routing decisions are solely based on local information. 

To implement a good data parallel algorithm on the hypermesh multicomputer, one has to 

consider the number of processors required, an efficient way to partition the data, an 

efficient way to map partitions into processors, and the role of the network controller must 

be determined. We use two simple examples, array summation and matrix multiplication, 

to demonstrate various techniques to solve these problems. In this technique, each 

processor knows exactly what to expect from the network as part of its algorithm slice. 

There is no data interpretation overhead. 

4.3.1. Array Summation 

Given a vector of numbers, a,, a2. . . . , a,, we want to compute their sum, 

A=al+a2+ . a +a, . Each number, ai, is stored on different node. One approach, the - 

centralized accumi4lation method, is to partition the vector into k subvectors, each having a 

size of xi (0 2 i 5 l1N) 23. One subvector is assigned to a node to calculate the partial sum. 

All partial sums are collected by the host to evaluate A [NiKing 871. The host then may - - 
initiate another step, by redsmbuting the partial sums among half of the active nodes of 

the previous step, and c a n y m  this strategy until a single result gets collected by the host. 

An implementation of this model has been done. 

Another approach, the tree structured accrimulation method, is to use a tree reduction 

among the nodes to accumulate the partial sums. The host then receives the final sum A 

- - -  

2 3 ~  is the network size. 
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staqe I11 

staqe I1 

staqe I 

Figure 4-6: Tree reduction scheme. 

from the root of the reduction tree (Fig. 4-6). There are other tree numbering conventions 

which could be used in tree reduction algorithm. For example, a tree reduction algorithm 

based on the balancing tree [Dally 87a] model has also been implemented (in a simulator). 

To describe the concept of the algorithm slice in a synchronized array processing a scalar 

aggregation on a hypermesh will be discussed. Here we consider the addition of a vector 

of elements (or partial results), each resident in the local memories of each processor in the 

hypermesh. First, all the nodes compute their local aggregate values. Next, all the local 

aggregate values need to be combined to determine the global aggregate value. The global 

aggregation phase takes logn steps for one row of an nm hypermesh24. 

In the ph step, k = l  to logn, nodes (pi) whose rightmost k  address bits are equal to the 

rightmost k bits.of the host address (the root), read the aggregate value from the nodes 

which differ in address (from pi) in the kfh  bit. Clearly Zlogn steps would be required to 

get the final result at the root (i.e. node(0,O)). A distributed routing algorithm of low 

complexity has been implemented using a simulator. Each node in the network, has a 

24~learly,  this process is running simultaneously for all rows of h e  network, in which nodes along the firs1 
column act as temporary rools for their row correspondingly. v. 
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binary number of length 21og n corresponding to its position in the mesh. All nodes are 

programmed equally, and the routing algorithm is based on the node ID. A simplified 

algorithm for one row of the network is given in 4-6. In this algorithm n processors are 

employed, each initially holding one input value. 

for all PEs do; 0 I ID I n-1 
for step=l to log n do 

bit=myid(step) 
ifbit=O then 

receive-from (myid $ bit) 
else 

send-to (myid 63 bit) 
exit 

F 
od 

od 
I* myid(i) is the ith bit in binary 

encoding of the node ID. */ 

Figure 4-7: A typical slice algorithm for a'scalar aggregation 
in synchronized array processing. 

The addition across a set of eight elements is shown in Fig. 4-6. The figure shows the 

stages and the binary tree structure control in the operation. The architecture is initially 

partitioned into clusters of two adjacent nodes with one active processor in each cluster. 

4.3.2. Matrix Multiplication 

Let A and B be matrices of size (nxn), the network size. In forming the matrix product 

C=AxB with elements 

there are n3 products aiPk, to be calculated. There are various strategies for forming this 

product on a parallel computer with nxn processors [JagKai 891. The mamx C=AB has n2 

entries, each in the sum of products of n pairs of numbers. 
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If * denotes term-wise multiplica~ 

vectors; for vector and o: 

:ion respectively on objects such as matrices and - -  

u * w = (up . . ., u,) * (a1, . . . , o,) = (ul*ol , . . ., u,*o1) 

Then all multiplications can be performed (notationally with a single application of *), by 

multiplying positions of the data entries, at each node ( n-steps). For instance, for a 2x2 

case, we have the following 

which is now more conveniently arranged as 

Now various additions must be made (after performing the termwise operation "*"), and 

sums assigned to the corresponding position in C (at each node). In general there are n2 

results in the result mamx and each of the entries consists'of the addition of n numbers 

(which takes log n steps using tree-reduction technique). However, since a multiply- 

accumulate operation can be done in just one operation (pipelined), there is no reason for 

that e k a  addition step. 

A brief description of the program is the following: The Control Node program 

configures the network25. It initially broadcasrs the size of the network. Then it receives a 

vector operation by interacting with the user, and then broadcasts the vector operation to 

the entire network. Each node then starts executing its own program, (all nodes are 

programmed equally). Each n ~ d e  is assigned an ID associated w i ~ h  its,position in the 

hypermesh structure. All the decisions making during the execution of the node program 

35~onuol  Node is acting lke  a Cube Manager in hypercube architecture. 
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are based on h e  node ID. The algorithm consists of 2-step broadcasting operations (one in 

A, and one in B), followed by multiply-accumulate operation at each ;lode. In the first 

step, the elements in each column of the matrix A, is broadcast to all others. Similarly, in 

the second step, the same algorithm will take place for the matrix B (in each row). These 

steps leave 2n data at each node ready to be consumed by the node processor for n local 

multiply-add (pipelined) operations. Moreover, all the routing decisions are solely based 

on local information. 

Up to this point we have assumed that there are enough cells in the network to hold the 

entire problem. Of course, there will always be problems too big to hold on a physical 

machine. One is that the size of matrix is larger than the size of the network. In this case, 

the matrices need to be partitioned into smaller units, where each unit is dealt with in 

parallel; for example, if the matrices A, B, . . ., H are all of order nxn, and with n2 

processors available, the most obvious method of multiplying matrices of order (2nj2 is as 
1 

follows: 

Where each product in the right-hand side is computed in parallel. In general case, it is 

possible that the given matrix is not a complete permutation of the network size. One 

simple solution to this problem is to augment the matrix with extra zero elements (along 

rows/colurnns) in order to get a copplete permutation of the network size. Then split it 

into small sizes each one the same size as the network. Figure 4-8 shows one example of 

such partition. This approach has been taken in [HobKaf 891. 
t 
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Figure 4-8: Mapping 4x4 matrix items on 2x2 processor ar;ay 

4.3.3. Performance Study of Matrix Multiplication 

All hypermesh computations combine both communication and computation; hence, a 

single number such as MLPS, MFLOPS, or bitslsec will not accurately reflect 

communication and computation or the performance for different applications. 

In evaluating a parallel system, two performance measures of particular interest are 

sppedup and eflciency [EaZaLa 891. Speedup is defined for each number of processors p i.._ 

as the ratio of the elapsed when executing a progiarn on a single processor (the 

single prcxessor execution time) to the execution time when p processors are available. In 

the notational form, 

%e cost metric could be a throughput, which is an appropriate cost measure if one has many such 
computations to be performed and the computations may be overlapped [Whelm 881. 
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Efficiency is defined as the average utilization of the p allocated processors. Ignoring VO, 
-, 

the efficiency of a single processor system is 1. Speedup in this case is of course 1. In 

general, the relationship between efficiency and speedup is given by 

S(P) E ( p )  =- 
P 

The theoretical maximum value of S(p) appears to be p (and of E(p) to be I), attained when 

the algorithm is fully parallel and the calculation is distributed equally among all 

processors (processing elements). This time may be thought of as measured in clock 

periods. An eff&iency study has been done [HobKaf 891 for manix multiplication 

algorithm. MicroAPL techniques have been used to demonstrate how nxn matrix multiply 

may be broken into outer and inner routines for execution on the hypermesh mobSim 

87, HobTho 811. A copy of the code with explanations can be found in Appendix C (from 

[HobKaf 891). Uniprocessor version of this algorithm (from WobGud 861) can also be 

found in Appendix B. For matrices of size M; (mxm), and hypermesh of size N; (nxn), the 

efficiency function reveals that for m 2 16 and n 2 8, the efficiency is 2 1 [HobKaf 891. 

This interesting result is due to a more efficient inner loop in the hypermesh algorithm than 

in the uniprocessor algorithm. After processors broadcast row/column data, the network 

co-processor can deliver this data for computation without the same startup penalty as the a 

local memory system. 

A significant advantage that synchronized array processing algorithms have over message 

passing concurrent algorithms i4 that data exchanges through the network are very precise. 

Each processor knows exactly what to expect from the network as part of its algorithm 

slice. There is no data interpretation overhead. 
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4.3.4. Matrix Multiplication on Diagonal Hypermesh 
jr 

Excellent features of diagonal hypermesh in performing most important classes of 

permutations have been discussed earlier. Now we are interested in performing matrix 

multiplication on' D-hypermesh. It is clear that the communication pattern required for 

matrix multiplication is not directly matched to the D-hypermesh structure. However, 

several approaches can be taken into consideration. One could look for another algorithm. 

For example, each column of matrix B (say col. i) can be projected into the row i, simply 

in one routing step . Then using the horizontal links and broadcast operation and finally 

reprojection of these data from row i to column i, it will end up in the same data setup 

requirements as the previous scheme for matrix multiplication on regular hypermesh, (of 

course the elements of matrix A must also become available to all nodes along rows which 

needs a single broadcast operation). In this scheme, the reprojection step requires n data 

transmission steps, _which is disappointing (Figure 4-9). 

Figure 4-9: Another representation of a Diagonal Hypermesh. 

In terms of time complexity, this scheme requires O p  steps communication and O(n) 

times computation. Therefore, the total complexity stays unchanged (as compared to the 

same operation on regular hypermesh). However, a close look at the APL implementation 

(hardware execution) of this algorithm, and an asymptotic analysis of its execution time (in 
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terms of the number of cycles), will result a degradation in speed over 25 percent, for a 4x4 

D-hypermesh. For a network of 64 processors (8x8 D-hypemesh) this degradation is over 

' 30 percent27. Another approach would be a techr&$e by Winograd [JagKai 891 to 

compute the matrix multiplication using the following formula: 

- 
The advantage of this procedure is that only the first summation, which requires half as 

many multiplications as the straightforward algorithm, need to be computed for each value 

of the pair i,j. The second summation need just be evaluated once for every value of i28, 

and the last summation for every valae of j29. This means that these two sums can be 

evaluated fust at each row and column (using fastest technique, namely tree reduction 

. along row/colurnn) and then the final result can be broadcast to other nodes along row, or 

column accordingly. Then these two terms can be combined together (add operation) 

locally, and form a constant number as a initial value for further multiply-add operations. 

The effort required for communication and then computation of the first term dominates 

the final elapsed time in D-hypermesh, and also the pipelined multiply-add operation 

which is a single cycle operation in current arithmetic units cannot be used efficiently. On 

hypermesh class of networks this approach turns out to be no better than the previous 

approach. 
3 

It is possible to rearrange the initial data at each node, in order to derive a more efficient 

solution to this problem. This can be done by reordering the initial data along rows of the 

nThis is simply be&usec of the extra number of communication based operations required in this 
approach. 

28di the nodes along each row will have the same value. 

29all the nodes along each column will have the same value. 
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I 
- network (Figure 4-10). The crux of this algorithm is a data routing operation which we 

shall now define. All the data permutation operations are cyclk shifts on rows or columns 

Figure 4-10: One step reordering in a D-hypermesh; 
horizontal links are elided. 

P 

and may be broadly categorized under the following: 

RRotate(+l-x) , CRotate(+l-x) 

As the name suggests, there are cyclic shifts in the horizontal (Row) and vertical (Column) 

directions, respectively. The amount of shift in each row(co1urnn) is determined by a 

parameter (x). Figure 4-10 illustrates an instance of RRotate(+myrow). The elements in a 

row are cyclically shifted. It is clear that shift on rows can be carried out in just one 

routing step in D-hypemesh. Therefore, any data permutation operations defined by 

Rotate() operation can be achieved in one parallel routing step if data under shift is in the 

router, otherwise, a memory access time must be added to the required time. 

Simply applying this Rotate operation along rows of the D-hypermesh, with the amount 

of shf t  equal to node's row index, will result a regular hypermesh-like network. Then, the 

same matrix multiplication algorithm on hypermesh can be carried out. Finally the end 

results should be shifted back to the right places. Therefore, only small degradation in 

performance over regular hypermesh will be caused. 
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.+ 

Performing a permutation from the set of most important permutation functions (Section 

4.2; Table 4-1) on regular hypermesh seems to be possible to benefit-from the current 

results on transforming D-hypermesh to regular hypemesh. Since the mentioned 

permutation functions can .be performed on a D-hypermesh in at most 2 routing steps for 

any network size, therefore performing one transformation from regular ordering to D- 

hypermesh or&ring before the permutation task, and another rearrangement (fix-up) step 

right after the permutation task, will give a 4-step routing solution for the set of mentioned 

permutation functions regardless of the network size. This gives, for example, a 4-step 

routing solution for performing bit reversal permutation on a regular hypermesh of size 

256, (16x16), instead of 16 steps required otherwise. Thus, any algorithm which requires 

the class of the studied permutations can always be achieved in constant data routing time. 
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Chapter 5 

Conclusions 

Parallel architectures and the way that they support the efficient execution of parallel 

algorithms is an important area of current research related to high-performance computer 

systems. The choice of an appropriate architecture for any electronic system, is very 

closely related to the implementation technology. This is especially true in VLSI computer 

systems whose computational goal is the implementation of compute-bound algorithms 

rather than VO-bound computations. VLSI technology can provide us with a novel set of 

building .blocks for the construction of high performance point-to-point networks for 

closely coupled multicomputer systems. 

One of the objectives was to get topologies with minimum diameter and minimum 

average distance simultaneously. We have shown an appropriate design choice of the 

adjacency pattern between network elements, yielding a network satisfying this constraint. 

This thesis has presented different modifications that can be made to a standard mesh- 

connected parallel processor organization, and has shown how they support efficient 

parallel algorithms for performing an important set of computational problems. The 

proposed system is suitable for the large class of scientific applications which involve 

regular operations on data arrays. Many of these applications involve matrix operations 

such as the Fast Fourier Transform (FIT), in which data permutation is the basic functional 

primitive, and matrix multiplication. The problem of efficiently performing permutations 
I 

on a hypermesh system has also been considered. Here, a very simple control algorithm on 

the hypermesh network has been proposed, which can' realize many frequently used 

permutations in constant number of steps. However, the upper bound for any arbitrary 

permutation has been shown to be Another variation of hypermesh named diagonal . 
hypermesh has been introduced. An APL implementation of permutations on Diagonal 
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hyperrnesh revealed that a 2 step routing solution exists, independent of the network size. 

This interesting result has been accompanied with an analytical proof. Results about the 

performance attained by hypermesh network have been presented here and comparison 

with some other mesh-type networks are provided. 
l/',- 

Another important advantage of the hypermesh is its ability to map other communication 

topologies onto itself. In this regard a 'direct mapping of hypercubes onto the hypermesh 

has been discused. This prdperty highly simplifies algorithm design and allows the 

exploitation of very efficient communication patterns. For a wide class of problems, the 

organization offers significant performance advantages over regular mesh-connected 

computers, or other mesh modifications that have been proposed previously. The strong 

connectivity, regularity, and symmetry of the hypermesh and also its versatility in 

embedding many other networks in linear complexity makes it a good candidate for a more 

general-purpose parallel processors. Many classes of algorithms can be naturally mapped 

onto the hypermesh, and distributed routing and broadcasting can be implemented 

efficiently. A hypermesh's full features can be exploited in array processing operations 

where the sliceing concept is used by implementing a synchronized array processing 

algorithm. However, this architecture may not be well suited for regular message passing 

systems with asynchronous communication requirements. 

The hypermesh is not easily expandable. This hampers a modular growth of the network. 

We should thus seek a hierarchical solution to parallelism in the same sense that we have 

hierarchical memory systems. At the bottom of the hierarchy we have modestly sized and 

very efficient arrays of processors. Above that layer one must tolerate gradual degradation 

of efficiency due to inherent physical constraints. Network topology in the bottom layer 

may be different from network topology in higher layers. This is an open problem, In fact, 

hypermesh system's expandability is due predominantly to the design of the NC chip. The 

wiring complexity of the hypermesh grows at the rate of d ~ ,  where N is the network size: 

This penalizes the hypermesh seriously under the packaging constraint. One solution to 

this problem is reducing bandwidth which will allow us to have more communication links 

for the NC chip. 
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Conclusions 

Simulations of the hypermesh were performed to evaluate various design options and to 

validate that our design of a message transmission could meet the objectives. Hypermesh 

simulator has been set up using APL and C languages. The essence of this approach is that 

each line of APL code represents one real microinstruction. A matrix multiplication , 

algorithm has been implemented on a multiprocessing simulator, to verify the correctness 

of the algorithm (slice) and also to verify the required communication primitives on such a 

network. 

Another goal of this thesis was to investigate hardware support for data passing that 

obviates the need for software control. .Some key issues which must be considered when 

designing a high performance -network controller based on VLSI technology has been . 
discussed. Technological considerations in the design of a communication component 

have also been examined. By offloading communication to a separate processor, the node 

processor is potentially free to overlap computation with Communication (just the 

communication needs to be set up). Special instructions have been provided to support 

communication between nodes. Unllke many other multiprocessor networks the 

connectivity of the host and the hypermesh nodes is considerably richer, through a 

hierarchy of network controllers, providing increased flexibility and greater I/O bandwidth. 

Overall, the objectives of this thesis have been met. Further research is necessary to 

determine the practical significance of the hypermesh in the commercial world. 



ACRONYM 

AP 

D-hypermesh 

DRAM 

FLIT 

MIMD 

MCC 

NC 

PE 

SIMD 

SJMC 

VLSI 

Appendix A 

Glossary of Acronyms 

EXPANSION 
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Processing Element 

Single Instruction Multiple Data 

S AMjr 's Memory Coprocessor 

Very Large Scale Integration 



Appendix B 

Uniprocessor Matrix Multiplication 

McroAPL techniques are used to demonstrate how mamx multiply may be broken into 

special outer and inner routines [HobSim 87, HobTho 811. Some simplifications are made 

for the sake of readability. It is assumed that operands are pipelined to a floating-point 
L 

processor based upon Weitek's chip set used in flow through mode, cf. [Weitek 841. 

Action codes are placed in, FPCTRL, while an execution is triggered by an FPEXEC. 

ERROR is one of 7 directly testable message (interrupt) flags. Each nonempty line of 

microcode takes one system cycle, T. 

The outer routine receives matrix dimensions, M, K, N in registers R[M], R[K], R[N]. 

Register R[RINDX] keeps track of columns in the right operand. R[LINDX] keeps track 

o f  rows in the left operand. RIT] holds the column step size in bytes. Data streams for 

LEFT, RIGHT, and DEST are also passed to MATMUL by the format routine. Data 

streams are started by SWW (segment write word) or SRW (segment read word). Data 

streams are advanced by SSN (segment source next), or SDN (segment destination next). 

These memory coprocessor instructions are defined in [HobSim 871. - - 

Comments are preceded by : 
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MATMUL 
[ 11 start destination and create column step: 
[ 21 DEST SWW D'O' A R[n+- 2 XSHIFT R[Ml,Z'EROS 
[ 31 R[WNDx] t NOP D'O' A 

FPEXEC A F P C T R L t  D'clear-accumulator-code' 
[ 41 LOOPl: 

R [ R I N D X ] t  NOP D*-8' initialize column index. 
[ 51 LOOP2: 

LEFT SRW R[WNDX] start current row in left. 
[ 61 SBN LEFT A COUNTER* NEGATE R [ m  initialize hurdware counter. 

1 

[ 71 CALL 'INNERPRODUCT' A R[RINDX] t R [RINDX] PLUS D'8' 
[ 81 -+ BAD IF ERROR A SF R[RINDW MINUS R [ q  A DEST SDN ABUF[DO] 
[ 91 DEST SDN ABUF[Dl] 
[ l o ]  DEST SDN ABUF[D2] 
[ l l ]  + LOOP2 IF 7 ZERO A DEST SDN ABUF[D3] 
[ 121 R[LCOUNT]t- SF R[LCOUNT] MINUS D'1 ' SF = sample flcrgs. 
[13] -+ LOOP1 IF 7 ZERO A R [ L I N D X ] t  S A R [ L E W  
[ 14 1 SAR contains autoincremented row-ofSset. 
[ 151 -+ 0 A SR t D'O' clear status. 
[16] BAD: ' p  rocesserror. 
V 

Inner-product proceeds as a 10 microinstruction loop using pipelined multiply-accumulate: 

V INNERPRODUCT 
64 bit data. 

[ 11 COUNT V F P C T R L t  'nzultiplj-accumulate-code' 
[ 21 LOOP: 

RIGHT SRW R[RP] start right data stream. 
[ 31 SBN MGHT 
[ 41 ABUF[LO] t SSN LEFT 
[ 51 A B U F [ L l ] t  SSN LEFT 
[ 61 ABUF[L2] t SSN LEFT 
[ 71 ABUF[L3]+ SSN LEFT A R [ R P ] t  R[RP] PLUS R [ q  
[ 81 ABUF[RO]t  SSN RIGHT 
[ 91 ABUF[R 1 ]  t SSN RIGHT 
[ l o ]  A B U F [ R 2 ] t  SSN RIGHT 
[ l  11 +LOOP IF 7 COUNT A FPEXEC A A B U F [ R 3 ] t  SSN RIGHT 
[ 121 FPEXEC A FPCTRLc  'unload-and-clear-accumulator-code' 
[13] + 0 delay 1 for output to catch up. 
v 
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Mict'oAPL Code for Matrix Multiplication 
- on Hypermesh 

MicroAPL techniques are used to demonstrate how (mxm=M) matrix multiply may be 

broken into outer and inner routines for execution on the hypermesh [HobSim 87, HobTho 

811. The approach taken is to divide the operand matrices into nxn submatrices which fit 

the hypermesh exactly. The inner routine computes an nxn piece of the result, which 

requires, K=m/n, nxn matrix multiplies. The ouler routine effectively sequences a smaller 

matrix multiply problem of size, KxK, where each result element is computed by the inner 

routine. 

Some simplifications are made for the sake of readability. It is assumed that operands are 

pipelined to a floating-point processor based upon AMD or Weitek chip .  Floating-point ' 

data fifo-buffers for right and left arguments are FPR, and FPL. Floating-point instructions 

are placed in FPCTRL, while an execution is triggered by an FPEXEC. FPERROR and 

NETERROR are directly testable message (interrupt) flags. Each nonempty line of 

microcode takes one clock cycle, T. 

The outer routine receives modulo matrix size in R[SIZE] (=K=m/n). This is the actual 

matrix size, R[MAT] (=m), divided by the network diameter, R[NET] (=n). Register 

R[BINDX] keeps track of columns in the right operand. R[AINDX] keeps track of rows in 

the left operand. R[STEP] holds the column step size in bytes. Data streams for AMAT, 

BMAT, and CMAT are also passed to MATMUL by an outer control routine. Memory 

coprocessor instructions are defined in [HobSim 871. Network coprocessor instructions 

are defined in table 3- 1. Comments are preceded by : 
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V MATMUL 
[ 11 stmt result and clear A offset. 
[ 21 CMAT SWW R[AlNDX] t NOP D'O' 
[ 33 R[INC] t 0'8' data size. \ 

[ 41 create column step: 
[ 53 R [ q c  2 XSHIFT R[SIZEj,R[ZEROS] mult by 8 for bytes. 
[ 63 R [ S T E P ] t  NOP R [ g  A 

FPEXEC A F P C T R k  D'clear-accumulator-code' 
[ 71 LOOPl: 

R[BINDX] t  NOP D'O' initialize column index. 
[ 81 R[BI'ITR] t R[SIZE] initialize column counter. 
[ 91 R [ATEMP] t R[AINDXJ . 
[ l o ]  R[BTEMP] t- RIBINDXJ 
[ l  11 LOOP2: 

CALL 'IN~~ERPRODUCT' A 
R[ATEMP]+ R [ I N q  PLUS AMAT SRW R[ATEMP] 

[ 121 -+ EXIT IF ERROR A R[BI7'TR] t SF R[BlTTR] PLUS R[ONES] A 
CMAT SDN FPSN 

[13] CMAT SDN FPSN A R[BlNDX) t  R[BINDW PLUS R [ I N q  
[14] CMAT SD FPSN A R[BTEMP] t R[BINDXJ 
[15] -3 LOO d F  7 ZERO A CMAT SDN FPSN A R[ATEMP]+ R[AINDXI 
[ 161 R [ g  t SF R [ g  MINUS R[INCI SF = sample flags. 
[17] -+ LOOP1 IF 7 ZERO A R[AINDX] t R[AINDXJ PLUS R[STEP] 
[I81 + 0 A SR t NOP D'O' clear status. 
[19] EXIT: process errors. .. 
V 
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V INNERPRODUCT 
[ 11 start col memory stream: 
[ 21 R [ B T E M P ] t  RESTEP] PLUS BMAT SRW R[BTEMP] 
[ 31 R [ I F R ]  t R[SIZEl A 

FPCTRL t D'multiply-accumulate-code' 
[ 41 SBN AMAT *fill  row stream buffer. 
[ 51 OLP: 

SBN BMAT *fill col stream buffer. 
[ 61 NRBC initiqlize row broadcast. 
[ 71 NDN SSN AMAT feed next 64 bit row word to net. 
[ 81 NDN SSN AMAT 
[ 93 NDN SSN AMAT 

, [ l o ]  NDN SSN AMAT 
[ I  11 NCBC initialize col broadcast. 
[12] NDN SSN BMAT 
[13] NDN SSN BMAT 
[14] NDN SSN BMAT 
[ I S ]  NDN SSN BMAT A COUNTER t NEGATE R[NET] 
[ 161 NRWA 0'4' A COUNT setup alternate read. 
[ 171 ILP: 

FPLN t NSN 
[18] FPLN t NSN left arg. 
~ 1 9 1  PPLN t NSN 
[20] FPLN t NSN 8 

[21] FPRN t NSN right arg. 
[22] FPRN t NSN 
[23] FPRN t NSN A 

[24] + ILP IF 7 COUNT A FPEXEC A FPRN t NSN 
[25] + EXIT IF NETERROR 
[26] + EXIT IF FPERROR A R[I iTR]  t SF R[ITTR] MINUS D'l' 
[27] + OLP IF 1 ZERO A R[BTEMP] t R[STEP] PLUS BMAT SRW R[BTEMP] 

". 1281 FPEXEC A FPCTRL t D'unload-and-clear-accumulator-code' 
[29] -+ 0 one cycle delay for output. 
[30] EXIT: error exit: 
[ 3  11 SR t NOP D'error-code' 
V 

Ignoring constant overhead, the above prototype algorithm executes in the following. 
'A 

number of cycles: , 

NP(n,K) = ((((8xn+lS)xK)+ lO)xK+G)xK 
% 

a 

In [HobKaf 891, this is compared with matrix multiply on a single processor like NP16, as 

determined from similar microAPL code (App.endix A): 
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An important issue here is balancing be tween the system components. Several comments -. 
on this program are in order. At a glance, a further reduction in the executidn time of this 

algorithm seems possible by employing a high bandwidth local bus. Having in mind the 

limitation on the number of pins available to a NC chip, increasing the local bus bandwidth 

will require the decrease of the communication links bandwidth. For simplicity of the 

discussion, suppose we can afford going from 16-bits to 32 or even 64, without any 

influence to the rest of the NC chip. A 64-bits local bus provides a one single cycle 

transaction between node processor and NC. However, the required time to perform the 

internode communication dictates a few waiting cycles (NOPs) to the node program. It is 

not difficult to see that in case of 64-bits wide local bus, the number of inserted NOPs, will 

not increase the efficiency of this sample algorithm. Also, in the ILP loop, the floating 

point unit may not 'be able to keep up with the incoming operands. In general, these issues 

are the matter of technology being used. But it should be pointed out that these issues 

must be considered in a hardware implementation. 

Another issue here is the bandwidth, against possible network size, with the assumption 

of a single NC chip with fixed number of pins. Varying the bandwidth of the internode , 

communication links in a NC will influence the network size supported by that chip. In 

order to support a larger network with the same NC chip, one has to decrease the links 

bandwidth. For example, reducing the bandwidth (bw) of the communication finks from 8 

to 4 bits (byte to nibble), allows the network size which can be supported by one NC chip 
K b to be doubled. The above prototype program,(with bw=4 and therefore n'=2n, K'=T)7 

executes in the following number of cycles: / 

Where the first '6' comes from the number of NOPs inserted inside the OLP loop, in order 

1 to let NC to perform the required data communication. Comparing this results with the 
, kf 

case bw=8, reveals that reducing the bandwidth, from 8 to 4, will offer an asymptotic A 

I 
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speedup of about the order of 4.4 to 4, for different matrix sizes (from 64x64 to 1MxlM). 

The point -is that increasing the number of communication links with less bandwidth, 

requires more control links. Therefore, a more complete analysis must consider the control 

links as well as the links bandwidth. 
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