
."
Canadian Theses Sewice Sewice des theses canadiennes , - - - -- - -

Thequalay of this microform is he&i1ydependent upon the
uality of the original thesis sumtted for microfilming.

zvery effort has been made to ens@$? the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.
\
$me pages may have indistinct print especially if the
wiginal pages were typed with a poor typewriter ribbon or
f the university sent us an inferior photocopy.

La qualit6 de cette microforme depend grandement de ra
qualit4 de la~these soumise au microfilmage. Nous avons
tout fait pour assurer une qualit6 supthieure de reproduc-
tion.

S'il ma ue, des pages, veuillez communiquer avec
I'universrt "Q qui a conf6r6 le grade.

i'

La qualit4 dimpression de certaines pages peut laisser A a

desirer, surtout si les pages originales ont 6t4 dactybgra-
phi& A i'aide dun ruban us6 ou si Punivers&3ws a fait --

parvenir une photocopie de qualit6 infdrieure.

3eproduction in full or in part of this microform is remed La reproductip, meme partielle, de cette microforme est
)y t M Canadian Copyrght Act, R.S.C. 1970, c. -30, and saumise a la Loi canadienne sur le droit d'auteur, SRC
;u&sequent amendments. 1970, c. C-30, et ses amendements subs&pents.

VLSI-Basedb Hypermesh Interconnection Networks
for Array Processing

Masoud Rostam Kafhesh

B.Sc., Sharif University of Technology, 1986

A THESISISUBMI'TTED IN PARTIAL FULFILLMENT OF

THEQREQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

O Masoud Rostam Kafhesh 1989

SIMON W S E R UNIVERSITY

July 1989

All rights reswved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

N a t W Library BiWioth4que nationale .
,duCanada *

Canadian Theses Service Service des theses canadienrtes

The author has granted an irrevocabie non-
exclusive licence allowingQ National Library

z- of Canada to reproduce. 6b~diitributebr sell
copies of hislher thesis by any means and in
any form or format, making this thesis avaihMe
to interested persons. , #..

-a

The author retains ownership of the copyright
in hislher thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without hislhr -per-
mission.

s *
h

L'auteur a accord6 une licence irrdvocable et
non exclusive permettant A la Bibliotht3que
nationale du Canada de reproduire, pr&er,
distribuer oy vendre des copies de sa these
de qqelque manibre et sous quelque fome
que ce soit pour mettwdes exempiaires de
cette these a la disposition des personnes
in teressks.

L'auteur conserve h propriet6 du droit d'auteur
qui prot6ge sa Wse. Ni h thbe ni des extraits
substantids de celle-ci ne doivent Btre
imprimes ou autrement reprodu& sans son
autorisation.

ISBN 0-315-59355-5

Approval

Name:
Masoud ~os tarn Kafhesh

Degree:
Master of Science

- -

Title of Thesis:
VLSI-Based Hypermesh ~n<erconnection Networks for Array Processing

/'

Exafnining Cornmi ttee:

' Dr. Warren Burton, Chairman

Dr. Rick Hobson
Director and Associate Professor
Senior Supervisor

Dr. Ramesh Krishnamurti
Assistant Professor
Supervisor

&. Art Liestman
Associate Professor
External Examiner

-
J u l y 2 4 , 1989

-- Date Approved

PAGINATION ' ERROR.

- - TEXT COMPLETE. LE TEXTE E S T COMPLET.

" NATIONAL LIBRARY OF CANADA.

CANADIAN THESES SERVICE.

BIBLIOTREQUE NATIONALE DU CANADA. *

SERVICE DES THESES CANADIENNES.

PART

I hereby g ran t t o Simon Fraser U n i v e r s i t y t he r i g h t t o lend

my t h e s i s , p r o j e c t o r extended essay (t he t i t l e o f which i s shown below)
\

t o users o f t he Simon Fraser U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r

s i n g l e cop ies o n l y f o r such users o r i n response t o a request from the

l i b r a r y o f any o t h e r u n i v e r s i t y , o r o t he r educat iona l i n s t i t u t i o n , on . .

i t s own beha l f o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r s c h o l a r l y purposes may be granted:

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying *- - .

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in s h a l l no t be a l lowed

w i t h o u t my w r i t t e n permission.

T i t l e o f Thesis/Project /Extended Essay

Author:

(s igna tu re)
- -

Masoud Rostam Kafhesh

(name)

(date) .

Abstract
I .

'L 3 -

Given the clear and pressing need for improved computer system performance, there are -

several means of achieving this end. In the simplest approach, current computer

architectures are reimplemented using faster technologies. Although this approach will
7

always be exploited, physical, technological, and economic limitations make it incapable

of providing all the needed compu@ional power.

Instead, parallelism must be exploited to obtain m l y significant performance

improvements. Parallelism is a two dimensional problem. Along one dimension we find

pure data parallelism as might be found in typical army algorithms involving vectors and

matrices. Along the other dimension we find concurrency where independent processes

work on facets of an algorithm which may not lend themselves to array processing.

Id Assuming the use of the fastest reasonable technology, any further increase in performance

requires the efficient exploitation of parallelism in one form or another.

The performance of computers can be made incrementaliy extensible by exploiting VLSI -

b
technology to builda con~urrent/parallel computers, ensembles of proceSsing nodes

connected by a network. Low latency communication elements are required to support

fine-grain or medium-grain parallel computation. Communication between nodes of a

multicor$uter need not be slower than the communication between the processor and

/memory of a conventional computer. A VLSI-Based network controller can provide node-

to-node communication times that approach main memory access times of sequential

computers. A VLSI chip is subject to several technological constraints. Whenever each

node of a multicomputer system is implemented as a VLSI chip or a printed circuit board,

packaging constraints limit the number of connections that can be made available for

communication links. Some key issues which must be considered when designing a high

\ performance network controller based on VLSI technology are also discussed.

New variations on the 2-d mesh interconnection computer which can be implemented
0

i i i

very efficiently using VLSI techndogy for cws and packaging aze piegosed;+ree€

connectivity along rows and columns reduces the diameter of an nm 2-d mesh from Zn-2
9

to 2. This technique permits the network communication bandwidth to be more balanced

(or uniform) with the node processor data bus bindwidth. Simulation studies on several -
important permutation and matrix algorithms show that direct connectivity in hypermesh

highly simplifies algorithm design and supports very efficient c o m v c a t i o n patterns.
C

* "

To my parents

7- \- - " - -- - --

, --- - --

0 i C

' Acknowledgements
-- , -'

\-.
I would like to thank my supervisor, Dr. ~ i c k Hobson, for his guidance throughout my .

research and development of this thesis and also for the financial support in the forms of

research assistantships.

The VLSI lab and all its enthusiastic members provided a very inspiring work-

environment. John Simmons for helping me and his support deserves spyial mention. -
Many of my colleagues in compuhng science were very helpful. Garnik Haftevani and -
Ranabir Gupta deserve many thanks.

I would also like to acknowledge the School of Computing Science and Simon Fraser

\ University financial assistance in the forms of teaching assistantships and a Graduate
Fellowship.

Approval
Abdrad
Acknowledgements
Table of Contents
1. Introduction

1.1. Multicomputer

 able of Contents

U

Networks: A Definition ,

1.2. ~ u l t i c o ~ u t e r s Building Blocks
1.3. VLSI Consti.aints
1.4. Interconnection Networks
1.5. Multicomputer Programming J

1.6. Thesis Objectives
- - -

Array Processing
2.1. Issues in ~ e s i g h n ~ Parallel Machines

2.1.1. General versus Fixed Communication:
2.1.2. Fine Grained versus Coarse Grained
2.1.3. Multiple versus Single Instruction Stream

2.2. The Communication Network
2.2.1. Choosing a Topology
2.2.2. Choosing a Routing Strategy and Mechanism

2.3. Enhancements on Mesh Structure
2.4. Proposed Network Structure

2.4. I. The Architecture
2.4.2. Routing Scheme in Hypermesh
2.4.3. Characteris tics of Hv~ermesh

2. Architectural Features and Design Considerations of Hypermesh Multicomputers for
10

2.5. Characterizing the ~om~u&ional Power of the Hypermesh
2.5.1. Hypermesh Ps. Regular Mesh
2.5.2. Hypermesh vs. mesh with single broadcasting
2.5.3. Hypermesh vs. mesh with multiple broadcasting
2.5.4. Hypermesh versus Fully Connected Network
2.5.5. Divide and Conquer Strategy

2.6. Symmetry and Embedding
2.7. Applications
2.8. Diagonal Hypermesh
2.9. Sorting

3. Wf Constmints and
Networks

3.1. Commwication Paradigm and Hardware Support
3.1.1. Buffer Management
3.1.2. Flow control d .;55 3.2. C o ~ u n k a t i o n Protocol in a n S I - ed Multicomputer Network* -

3.3. Node Processor Considerations .- rl
3.3.1. A Streaming ern or^ Interfac

3.4. Network Interface Considerations
3.5. Network Controller and UO Embedding M e Proposed Mesh

3.5.1. Satjnple Operations
3.5.2. Network Input,/Output . U

I

, 4, Evaluating Success and Benchmarking I 49
4.1. Important Metrics of Network Perform ce and Properties of Hypermesh ," 50
4.2. Some Fundamental Permutations on H . ermeshes 41-

4.2.1. A Simple Routing and message nsity for pernutarions -
4.2.2. Exchange Permutation 7 :$

I 1 4.2.3. Perfect Shuffle Permutation 54 + - - .

4.2.4. Butterfly Permutation . 55
4.2.5. Bit Reversal Permutation 55
4.2.6. Shift Permutation 57
4.2.7. Analytical Roof for 2-step Routing i n D-hypermesh 5 8

L 4.3. Environment for Multicomputer Simulation 60
4.3~1. Array Summation 62
4.3.2. Matrix Multiplication 64
4.3.3. Performance Study of Matrix Multiplication 67 - - - - -

4.3.4. Matrix Multiplication on Diagonal Hypermesh 69
5. Conclusions 73
Appendix A. Glossary of Acronyms 76
Appendix B. Uniprocessor Matrix Multiplication 77
Appendix C. MicroAPL Code for Matrix Multiplication on Hypermesh 79
References 84

vii

List of Tables

Table 3-1: A sample ok network coprocessor instructions. 4 1
Table 4-1: Routing complexity on hypermesh of size (nxn) with a set of 58

indexing scheme for a variety of frequently used permutations.

viii

List of Figures
ii

3
1 Figure 1-1: Strycture of a hypercube multiprocessor.

-Eigure 1;2:. Multicom~uter Node. . -
. -- d -.

Fikrel-3: ~ e ~ r e s e n k e interco~ection networks. 7
Figure 2-1:'. Latency of Store-and-forward routing (top). vs. wormhole 17

(bottom). \

Figure-2-2: The mesh with a single global mesh. 19
Figure 2-3: Proposed bus structure, 2 1
Figure 2-4: - A hypermesh interconnection network (A) and companion 21

processor plan (B). - /
Figure 2-5: A messagemoving.toward its destination in a hypermesh, 23

(fmt step of two hop).
Figure 2-6: A simple routing algorithm for hypermesh. : 25
Figure 2-7: An illustration of a mesh with single broadcasting. I 27
Figure 2-8: Mesh interconnection network with multiple broadcasting. 28
Figure 2-9: - (a) 4-d hypercube, (b) hypercube embedded in hypermesh. " 31
Figure 2-10: Diagonal hypermesh interconnection network. 33
Figure 2-11: Some indexing Schemes, (a) row-major; (b) snake-like; (c) 35

prorOximity; (d) shuffle row-major.
Figure 3-1: Node processor functional components. - 42
Figure 3-2: Network controller signaling. - - I - 44
Figure 3-3: Network input/output. 46
Figure 3-4: A hierarchy of network controllers for YO. 48
Figure4-1: Flaw diagram of (A)perfect shuffle, and @)bit reversal 52

permutations on hypermesh.
Figure 4-2: Perfect shuffle on hypermesh with snake like ordering and 2-step 54

routing solution.
Figure 4-3: Bit reversal on a hypermesh with a shuffle row ordering; and the 55

overloaded pivots after first step of the data routing.
Figure 4-4: Flow Diagram of bit reversal permutation on an 8x8 8- 56

hypermesh. l

Figure 4-5: Perfect shuffle on hypemesh with proxirnity.orde~g; and 2-step 57
routing solution.

Figure 4-6: Tree reduetion scheme. - - 4 3 -

-Figure 4-7: A typical slice algorithm for a scalar aggregation in\ synchronized 64
' i imypeming. ?

Figure 4-8: Mapping 4x4 matrix items on 2x2 processor array. . 67
Figure 4-9: Another representation of a Diagonal Hyprmesh. 69
Figure 4-10: One step eprderinglin a D-hypermesh; horizontal links are a 71

elided.

Introduction
a

-

- -
-

Multicomputer networks consist of a large number of interconnected com win nod&- ---

_---
9

that asynchronously cooperate via message passing to cxTute the tasks of parallel
-- / /- -

programs. - Eadr-oetwork n a e , fabricated as a small number of VLSI chips, contains a
- 4 -

-

processor, a local memory, and (optionally) a c o ~ u n i c a t i o n controller capable of routing

messages without delaying the computation processor. '
' - - -

I

With the advent of fast, powerful microprocessors, a new branch of the computer indiistq

has emerged. By using a large number of these cheap proces-dq+
- --

private memory, it is possible to build a computing system with very impressive potential

performance. If the processors are connected to each other so that rhey can exchange

messages in a reasonably efficient manner and if the programmer can decompose his
- - - - - - - - - -

- - -

computation into a large system of communicating processes, such a multicomputer

- --
The appeal of multicomputer networks andtheir commercial emergence is based on their

effective exploitation of VLSI technology, the availability of a high degree of "general
-. .

,- purpose" parallelism, and moderate price [ReedFuji 71. ~s Dally [Dally 87a] stated, a @
VLSI chip is subject to several technological constraints. ~ S I systems (VLSI chips

packaged together on modules and boards) are limited by wire density, not by terminal or

logic density.
- - - --

topology selection, communication hardware design, operating systems, fault tolerance,

and algorithm design. This chapter summaFizes recent result& some of these areas, with

-- t h e following emphasis:

--a models of interconnectionnetworks - - ----- ---- -

VLSI constraints

multicokputer building blocks

We begin this chapter by defining a multicomputer network. Given this definition, we

exmine the spectrum d b o n n e c t i o n networks and required building blocks for various

models. The limitations of VLSI technology are also discussed. In. section 1.5

mu1 ticompu ter programming is considered. Finally, thethesis objectives are outlined. -

-

1.1. Multicomputer /- Networks: A Definition

In much of the literature, multiprocessor systems and multicomputer systems -are

considend to be equivalent Poucek 881. However, they can be distinguished by the

following considerations. According to Bell [Bell 861, the tightly coupled systems, called

multiprocessors, have multiple processors - - and common or global memory. The processors , - - - - - - - -

and memories are connected by one or more high speed busses. Loosely coupled systems,

called multicomputers, have local memories for each processor, although they sometimes

have global memory for shared data.
- -

- -- -
-

A multicomputer network consists of tens or hundreds of nodes connected in some fixed

topology. As Figure 1-2 shows, a multicomputer node minimally contains a

microprocessor, local memory, and hardware support for internode communication.

Special applications may dictate inclusion of specialized co-processors for floating-point,

graphics, or secondary storage operations [ReedFuji 871.

--

Ideally, each node would be &ctly C O M ~ C ~ ~ to all other nodes. Unfortunately,

'packagingconstraints, hardware limitations and costs limit the number of connections.

Because the node degree is limited, messages are oftea muted & ~ ~ ~ & a - s q u e n c + ef - -

intermediate nodes to reach their final destination. In contrast to sequential computers and - -
-

shared-memory computers which operate by sending messages between processors and

memories, a rnessage-passing parallel computer operates by sending messages between

nodes that contain both logic and memory. As shown in Figure 1-1 message-passing

Connection Machine m s 851 consist of a number of processing nodes each containing

' -both a processor and a local memory. The communication channels used for memory

access are completely separated from those used for inter-processor communication.

node 0 node 1 a d . . , , node N-1
- t <-n-> I a

v
An n-cube Interconnection

- Figure 1-1: Structure of a hypercube multiprocessor.

Message-passing computers take a further step toward reducing the Von Neumann

bottleneck by using a direct1 network which a o y s locality to be exploited2. A message:
-

%

to another process residing in a neighboring processor travels a variable distance which can - --

be made short by appropriate process placement [Bokhari 87, LinMol 85, LeeAgg
--

/

/-/-
We will limit our attention to message-passing multicomputers. By combining a

processor and memory and communication support in each node of the machine, this class

of machines allows us to manipulate data locally. By using a direct network, message -

passing machines allow us to exploit locali'ty in the communication between nodes as well.
-

-

'point--point connections.

'shared memory muIticomputers (indirect networks) consist of a number of processors connected to a
number of memories through a switch Pally 87al.

B System Bus

To other nodes

- -
---A-

- - - = _ --
t__-____

- --Figure 1-2: ~ul t icom~uter Node.

-
- - A

-- - - ---

1.2. Multi&mputers Building Blocks

The nodes of a multicomputer network each contain a processor with some locally

address able memory, a comrnunic ation controller capable of routing messages without

delaying the processor, and a small number of connections to other nodes.
- -

\
\

Many realized that a ~niversal building block would greatly simpw-multicompurer -
- -

network design and construction Dally 87% ReedFuji 871. General purpose building

blocks have been proposed, and in some cansimplememcd, forboth cornputadorram- -

communication aspects of a multicomputer nekork node. Two such bYlld ingbhksue --

"the Inrhos Transputer" [Soucek 881 and th: "Toms routing chip" PalSei 861. Design

issues for a general purpose communication component d l be discussed in Chapter 3.
-

1.3. VLSI Constraints -
-- - -- ---

A general purpose VLSI communication component is envisioned that can be used as a

building block :or consmcting large multicomputer networks. These componentfeature -__ - --

-;=-- - - -specidjurpose hardware to implement frequently used communication functions.

A W I chip-is subject to a number of technological constraints. Several researchers
- - -

have discussed these limitations [Seitz 84, Dally 87a, Dally 87b, FranDhar 861. Violation
\

of these constraints will result in a chip which cannot be manufactured in large quantities.
-- - - - -

-- Tuj ipu j i 831 describes the implications of some constraints, (i.e silicon area, power

dissipation, and number of pins) on the design of a VLSI communication component.

Closer examination of VLSI network implementation problems however show that pin
-

limitations, rather than chip. area or logical component limitation, are' a major constraint in
- - ----

-- - - - - --- desigiiing-lee networks. The number of intercom~ctions to the chip's periphery is

limited, and will increase much more slowly than the number of transistors per chip.

Whenever each node of a multicomputer system is implemented as a VLSI chip or a
-

printed circuit boardpackaging c o n i t r ~ ~ ~ b f n h - - _ _ ~

made to the node, placing an upper h u n b on the VO bandwidth available for - -

-

communication link. As more links are added to each node, less bandwidth is available for

each one. However, increasing - the number of the links" will usually reduce the average

number of hops required to reach a particular destination. Therefore, a tradeoff exists

between link bandwidth and average hop count as the number of links on each node is

changed.
- - ! A

-
---- - -

--
- - - --- - - - - - -

A packaging strategy based on Dense Interconnection Technology has been proposed

[HobKaf 891, that can be used for efficient bottom layer of a parallel computer hierarchy.
i

9

Interconnechon networks for parallel computers have been studied intensely, a d many
--

different network topologies have been proposed Feng 81, R w u j i 87&edGnm87]. -c
-

Among the proposed interconnection networks several that serve as useful points of .

reference or have particularly attractive features are the single bus, the complete
-

- - /
connection, the single ring, the chordal ring, the spanning bus hypercube, the dual-bus

/

hypercube, the torus, generalized hypercubes, the c~be -co~ec ted cycles, the

cube, the lens, the X-tree, and 3-ary tree. Figure 1-3, illustratesa subset of these

The single bus network joins all nodes and uses a contention resolution protocol to *

resolve simultaneous requests for the bus. Although inexpensive, it can efficientl'ysupport

only a modest number of nodes. In contrast, the complete connection network directly

connects each node to all others. Its performance is the best achievable. These two

networks, the bus and the complete connection, bound the spectrum of price and

performance for all practical multicomputer networks.

1.5. Multicomputer Programming
- -- - --

Multicomputer networks are typically proE%Geh--usiiiggTimiliar- -sequentkd - .

programming languages, augmented with message passing communication primitives

[ReedFuji 871. The application programs for multicomputer nenuorks must be

decomposd into a collection of parallel tasks that communicate using the message passing
-- -

mechanisms provided by the machine. In the following, some possible approaches41 be
- ---

-
reviewed. k

'.
The Massively Parallel Processor (MPP) [Soucek 881 is programmed in a high level

language Parallel Pascal BeevGut 891. Parallel pascal is an e x t e n d e d u e r s i u ~ f ~ s c a L
\,

programming language which is designed for the convenient and efficient programming of
-- -

MPP parallel processors. In Par&lel Pascal all conventional expressions are extended to

array data types.

[linear)

[p a i d ; s a e links are dided]

(torus)
Iring)

P.

@ i q tree)

Figure 1-3: Representative interconnection networks.

--
. -

-,
A

- .- D ~ w a B y 8 7 a ~ p r o p o s e s the use ofibject-Oriented programming approach, to

program concurrent computers. The message-passing paradigm of objwtdriented -

languages introduces a discipline into the use of the communication mechanism of

message-passing computers. In an object-oriented language, computation is perforined by

sending messages to objects. Objects never wait for or explicitly receive messages. Instead,
-

objects are reactive. The arrival of a message at an object triggers an action. The action'

may involve m m g the state sf the object, transmitting messages that continue the

control flow, and/or creating new objects. Since the actions on an object are ordered, -

simultaneous processing of messages is not consistent with the model of computation

described above. Therefore, the concept of distributed objects has been proposed, which
- consists of a collection of a l l eomfituent ebjexbs, each of which can reeeive messageson

-

behalf of the distributed object. Since many constituent objects can receive messages at

the same time, the distributed object can process many messages simultaneously. In this

thesis APL language has been used for' programming a Simulator of the proposed

multicomputer system (Chapter 4). APL provides a syntax which is appropriate for the

--
type of parallelism assbciated with array and vector processors.

/

-
* - - /

- -

1.6. Thesis Objectives

Within the context of multicomputer networks for array processing a summary of the

objectives of this thesis are the following:
- -- - -

-

--
--- -

- - -- - - - --- - -Proposal of a new multicomputer network for array processing and study
minimum diameter and symmetry

routing algorithm

efficiency for some well known scientific computations

VLSI communication consideration. - - - -

-SirmuMion of multicomputer networks on a Unix-base& Sun workstation, in APL (using -
-

C for linking multiple APL workspaces) and study *
algorithms for some problems in array processing

a partial instruction set for a network controller chip.

,
-

ThFtk%5-nt-of 5iiiircmKtUre tha%p*s m ~ 1 ~ ~ h n 6 i o g ~ to support parallel

processing is approached in two steps. First we consider the interconnection network over

which processing elements communicate. In addition to a topology a network requires a

commudication mechanism for routing messages. A VLSI-Based Communication

component will be discussed mChapter 3. Performance characteristics of the hypennesh

and also the simulation results are presented in Chapter 4.

+ -+I Architectural Features and Design Considerations
of Hypermesh Multicomputers for Array Processing

Parallel algorithms and the architectures used to execute them have been-of great iiitms- -
_ - - - --

to computer researchers-recently- ad&is-due E t h e gknt ia l speedups they offer in
-

- - - sorviiig important application problems. A well-studied method for interconnecting many

different processors is the mesh-connected paraflel compttter, in which connections are -

made only to nearest neighbor processors in two dimensions.

Parallel machines such as ILLIAC IV have been built based on the mesh interconnection
-

strategy. Also, parallel algorithms for important computational problems including sorting

[NasSah 801, and linear algebra, image processing page 881, compbtational geometry [Lu

88, MilStou 89, MilStou 86, BoxMil 881, 2 4 convolution [FaLiNi 891, and numerical
- -

- computations [Modi.85h have -&vaoped foi the mesh:corinected computer. -

In a two-dimension mesh-connqted parallel computer consisting of N processing elements

), (PE's) PE's at the extremes of the mesh are separated from each other by approximately
-

N ~ " intermediate PE9s. For a parallel algorithm &at starts with one input per PE and

forms an output whose value depends on all the inputs, parallel time O (N ~ / ~) is required. -

Problems having this time requirement on the mesh include all of those listed above, and

other important ones such as solving linear recurrences.

- - - --

matrix muhiplication, and for the inversion of a matrix on a lattice of interconnected

processors (MCC). His analysis confirms &at data movement- and not' arithmetic

2

%%roughout this thesis, N=$.

conventional complexity analyses for parallel computations commonly ignore the details

of machine structure, which can often result in misleading conclusions. In brief, it

suggests more attention should be paid to the hardware characteristics of a particular
4'

implementation.

Issues in designing parallel machines are described first. A survey of communication
- -

- - - -

- --
protocohi~ multicomputer networks are also discnbed in section 2.3. Enhancements on

- -

the mesh structure are reviewed from the literatuqe. In section 2.4 an architecture called

the Hypermesh is proposed. In section 2.5 comparisons with other mesh-like orga&ations

are described. Embeddability of some other important interconnection networks like

hypercube and mesh on a hypermesh are also discussed. The complexity results of a set of .

algorithms [KumRag 87, Bokhari 841 which can be implemented efficiently using
,

broadcasting features of the hypermesh are also shown. Another variations on the

hypermesh structure called the diagonal hypennesh is proposed. Finally a quick review of

existing parallel sorting techniques which may be used efficiently on the hypermesh wraps

up the chapter.
- -

2.1. Issues in Designing Parallel Machines

Three of the most important choices in designing any parallel machine are:
general versus fmed communication -
fine versus coarse granularity

-

multiple versus single instruction streams

Although each issue can be characterized by the extreme schools of thought, each offers a

specntkn-of choices rather than a binary decision.

- --

Arehiteckual Features and Design Considem&ns
of Hypermesh MuWeomputers for A m y Processing

U1. General versusFixed CiOEEfMunicatisn:

Some portion of the computation in all paraUel machines involves communication among
-

-

individual elements. In some machines, such communication is allowed in only a few

specific patterns defined by the hardware'. For example, the processors may be arranged in
\ - P

/ .
- - - a two-dimensional-grid with e~ch~processor connected tb four others. ~o~osedco&&on

- -
-

patterns forsui3 fixed-topology machines include rings, c-&es, birtar)rcubes, etc. -
+&-

- - -+

- The alternative to a fixed topology is a general communication network that permits any

processor to communicate with any othe8. There are also many other intermediate

possibilities, namely dynamic reconJigurable systems [Muraleami 881 that c m be

reconfigured as either a shared-memory tightly coupled multip&essor or a message- '

passing loosely coupled multiprocessor at run time, also as a hybrid of the two.

2.1.2. Fine Grained xersus Coarse Grained

We first define the term granularity, which is used to classify parallel computers in terms

of complexity and number of processors. Machines with a large number of elementiq 9
processors, each holding a small volume of data, are fine-grained; those with a small

number of complex processors, each holding a large volume of data, are course-grained.

In any parallel computers with multiple processing elements, there is a trade off between

the number and the size of the processors. The conventional, single processor Von

Neumann machine is the extreme Ease of this. The opposite approach achieves as much

- parallelism as possible by using a Wge number of small machines. In general, the ideal

granularity of parallelism is application dependent [Brock 861. -

. -

Thefine grained processor has the potential of being faster because of the larger degree of

parallelism. But more parallelism doesnot neceyarily mean greater speed. The individual

processors in the small-grained design are necessarily, less powerful, so many small

- prwessers may be slower than one large one. For example, the Connectioh Machine

4i.e. t h u g h a shared memory.

~&iucfum F and ~ e s i g n Consiiiemtions
* of H~pennesh Mulficomputers for Army Processing

-"- _ _ m s 851 and Massively Parallel Processors (MPP) [Soucek 881 are fine-grained

machines.

Perhaps the most important issue here is one of programming style. Since serialrprocessor

-- - -
machines are coarse grained, the technology for programming coarse grained machines is

better unders tood.

2.1.3. Multiple versus Single Instruction Stream

A Multiple Instruction Multiple Data (MIMD) machine is a collection of connected

autonomous computers, each capable of executing its own program. Usually an MIMD

machine dso includes mechanisms for synchronizing operations between processors when

desired. In a Single Instruction Multiple Data (SIMD) machine, all processors are

controlled from a single instruction stream that is broadcast to all the processing'elements

simultaneously. Each processor typically has the -option of executing an instruction or

ignoring it, depending on the processor's internal state. The correct choice depends on the
'

application. For well-structured problems with regular patterns of control, SIMD machines
7

have the edge, because more of the hardware is devoted to operations on the data. This is ~

because the SIMD machine, with only one instruction stream, can share most of its control

hardware among all processors. In applications in which the control flow requirements of

each processing element is complex and data dependent, MIMD architectures .have the

advantage. The shared instruction stream- in SIMD architectures can follow only one

branch of the code at a time, so each ossible branch must be executed in sequence, 8
whereas the uninterested processors are idle. The result is that processors in an SIMD

machine may sit idle much of the time.

. The other issue in choosing between an SIMD and an MIMD architecture is one of
?

There are arguments on both sides [Hillis 851. There are also SIMD

machines that allow varying amounts of autonomy for the individual processing element

and/or small instruction streams, so basically this issue presents a spectrum of possible

choices.

Architecturn1 Features and ~ k s i g n Considerations
of Hypermesh Multicomputers for Army Processing

2.2. The Communication Network

The most difficult problem in the design of a mul~processor network is the design u f a e

general interconnection network through which the processors communicate. The building

blocks from which the interconnection network is constructed are a u t o n o ~ u s switching

elements callecfrmters. The routers are wired in some relatively sparse pattern, called the

Ltopology of the nesork. In other words, not every router is connected to every other.

Processors communicate through the routers, with the routers forwarding
\

messages between post office forwards mail from one branch to

another. There are two issues in the design of such a system. One is choosing the

topology for connecting the routers, and the other is choosing the algorithm for routing the

messages.

2.2.1. Choosing a Topology
1 a

In choosing a topology, the goals can be ?ivide&.roughly into two categories: cost and

performance. On the performance side, we look for a combination of the following.

Small Diameter: The diameter is tbe maximum number of times that a message can be

forwarded between routers when traveling from one processor to,another. In other words,

the diameter is the maximum of the minimum length path between any pair of nodes in a

network. If this distance is small, then processors are likely to be able to communicate

more quickly.

Uniformity: It is desirable that all pairs of processors comdknicate with equal ease or at

least that the traffic patterns between all pairs or routes be reasonably balanced. - This

ensures that there are no bottlenecks. For example, in mesh connected compu.ters, nodes

are located at thetcomers of the network have less load in terms of the number of

communication activities than other nodes in between. Intermediate nodes not only have

to handle cornrnunication activities as a part of their communication patterns, but also have

to take part in rout& as an intermediator for their neighbors.

. Arch&ecfuml Features and Design Considerations
of Hypemtesh Multicomputers for Array Processing

Extendability: It should be possible to build a network of any given size or, as a
- Y

-
minimum, it should be possible to build an arbitrarily large version of the network.

-<-

Sbn Wires: if the network can be efficiently embedded in two or three-dimensional
A --

space such that all the wires are relatively short, then the physical distance between routers

can be small. This means that information can propagate quickly between routers.

Redundant Paths: If there are many possible paths between each pair of processors, a

partially defective network may continue to function,. Also if a path is blockedbecause of

traffic, a message can be directed along another route.

On the cost side we look for the following.

Minimum n d e r o f wires: Each physical connection costs money. Thus if the number

of wires is small, the cost is M l y to be small also.

Eficient layout: If the topology can be tightly and neatly p small space, the

job becomes easier.

Simple routing algorithm: Because the routers can be locally controlled ,this keeps down

the cost of the routers.

Fixed degree: I f each router connects to a fixed number of other routers, then one router

design can serve several sizes of network.
3

Fit -- to available technology: I f the network can be built easily with available components,

it should be less expensive.

Notice that the wish list contains cohtr&ctions, for example, for minimum number of

wires and redundant paths or for fixed degree, small diameter, and short wires. Any

decision will be a compromise. Deciding which performance factors are most important is
'&- A

, not easy. On the cost side most of the factors are difficult to measure and even more

difficult to rationally trade off against one another. The fit to available technology often
, *

turns out to be one of the most important Fuji 831:
t e

I
Architectural Features ana Design Considerations
of Hypermesh MuZSicomputers for Array Processing 16

2.2.2. Choosing a Routing Strategy and Mechanism

Along with choosing a topology for the network, we must choose an algorithm for

moving information through it. This is called the routing algorithm. Often the

performance of a parallel computer depends primarily on'its data routing capability. The

routing mechanism or transport mechanism provides a facility for moving data through the

network. Several frequently used transport mechanisms and their distinguishing

chkacteristics are discused in [ReedFuji 871. .Briefly, these characteristics are:
Data Unit: The indivisible unit of data transported through the network is
either a variable-length message or a fixed-length packet.

Routing Overhead: The overhead associated with message routing is incurred
either on a hop-by-hop basis at each network node or only in the initial
establishment of a circuit.

J

Bandwidth Allocation: Bandwidth is allocated by the network either statically,
e.g., when a circuit is established, or dynamically as messages are forwarded

9-
through the network.

Buffering Complexity: The complexity of the buffering hardware varies with
the sophistication of the chosen routing mechanism.

types of network, each one applicable to any of the above topologies

to compare them, consider the hypercube as an example. It is clear

that, for an n-dimensional hypercube, the worst-case communication path involves passing

the message along n edges. If it acts as a store-and-forward network, the source code sends

its message, along with the destination address, to the neighboring node. The neighboring

node, realizing that the message is not addressed to itself, sends it on to its neighbor in an

appropriate direction. After n of these message-forwarding operations, the message arrives

at the destination node. At each stage, the message is handled as a single unit (a packet).

Once it has been passed to a neighbor, the node is free again to continue with the rest of its

work, even though the message is still in trafit . This is analogous to the process of

sending messages through the postal system.

If it is a circuit-switched network instead, the analogy is with messages sent through the

telephone system. The source node starts by setting up a route, first by contacting its

neighbor and informing it of the address of the required destination node. Each of the

Architectuml Features and Design Considemdons
of Hypermesh Multicomputers for Array Processing

nodes along the path to the destination are set into &eceptive mode, in much the same way

as each of the intervening exchanges in a telephone network being configured when a

telephone is dialed. Once the connection is made, the message can be transferred directly

from the source node along the established path to the destination node. Just like the

telephone exchange, each of the nodes in the path must maintain the connection until the

source node signals that it has reached the end of its message. The primary disadvantage

of this approach is the extensive bandwidth usage.

Figure 2-1: Latency of Store-and-forward routing (top) vs. wormhole (bottom).

According to [ReedFuji 871 three types of store-and-forward networks are common:

Datagram networks are characterized by the unit of data sent through the network with

variable length message. Clearly, buffer management is the primary disadvantage of this

approach. In packet-switched transport mechanism each message is divided into fixed-

sized packets that are routed separately through the network. Because packets can be

relatively small, (eg. one byte) buffering requirements in each component are reduced.

One of the disadvantages of the packet-switched approach is that the routing overhead

Architectunrl Features and Design Considerations .
of Hypemsia~Multicomputers for Array Processing 18

occurs on every packet rather than on every message sent into the network. It is possible

to have one setup cost for one message consisting of several packets. This approach is

called virtual circuit transport mechanism [ReedFuji 871. A virtual-circuit is established

between nodes that wish to communicate. All packets of one message sent on this circuit,

travel along this path to reach their destination.
c1.

To reduce the latency of communications that traverse more than one channel, we can use

womhole5 routing rather than store-and-forward routing [DalSei 861. Instead of reading

an entire message into a network controller before starting transmission to the next node,

the network controller forwards each fli8 of the message to the next node as soon as it

arrives (Figure 2-1). Wormhole routing thus results in a message latency that is the sum of

two terms, one of which depends on the message length, L and the other of which depends

on the number of communication channels traversed, D. Store-and-forward routing gives a

latency that depends on the product of L and D. Another advantage of wormhqle routing is

that communication does not use up the memory bandwidth of intermediate nodes.

2.3. Enhancements on Mesh Structure

Several multiprocessor architectures have been proposed for parallel processing fBeHeLa

87, Carlsaa 85, GoodSeq 81, Hillis 85, Hwang 89, Kale 86, LiMar 87, Page 88, Soucek

88, Stout 83, ThStSa 88, YounSing 881. Of these, the Mesh Connected Computers (MCCs)

have been widely used; their regular structure are particularly suitable for VLSI

implementation. They seem to be a natural structure for solving many problems in matrix

computation and image processing. In parallel and distributed computations the solution

times of problems are constrained by information flow rather than processing times within

PEs [Gentleman 781. Moreover, even if the problem is not donstrained by a large flow of

information, the solution time can be constrained by the time required for moving a single q
, ,

%Ins mechanism has been named cut-~hrough in meedFuji 871.

6~ FLOW control digIT, is the smallest unit of information that can be accepted by a communication
channel or queue. One or more flits m&e up a message Pal ly 87al.

Architectural Features and Design ~onsldemtions
of Hypermesh MuUicomputers for Array Processing

piece of data over a long distance (as well as disturbing the other processors in between).

For example, in a two-dimensional MCC with N PEs in which the PEs are placed at the

grid points in a plane , moving a datum from one PE to another may take as much as

2&-2 time in the worst case.

Carlson [Carlson 851 proposes a modification to a regular mesh by adding one or more

global mesh structures to the processor array (Figure 2-2). Modifying the mesh with

multiple global busses can also be done (this is treated in a separate paper [JraHal: 871). A
-

Figure 2-2: The mesh with a single global mesh.

clear disadvantage of this network is that the regularity of mesh is not maintained and

some of the nodes do not have the same topology as the others. In the following, other

modifications to the regular mesh will be discused.

Given that a mesh connected computer is a natural and realistic parallel architecture for

the efficient solution of many problems but solution times are constrained by long data

movements, an obvious extension is to augment the network with a faster mechanism for

moving data over long distances. Such a technique, called broadcasting, has been

considered in [Gentleman 78, Stout 831. In broadcasting, a single PE can broadcast data

which are received by all the .PEs simultaneously. Several such problems have been

Architecturn1 Features and Design Considerations
of Hypennesh Multicomputers for Army Processing

considered wokhari 84, Stout 8 31 with substantial improvements in computation time

compared to that required by MCCs without broadcasting.

2.4. Proposed Network Structure

In this section, we explore modifications of a mesh-connected parallel computer for the

purpose of increasing the efficiency of executing important application programs. The

modification is made by connecting each PE to all the other PE's in the same row/column.

Such an extension to the 2-d mesh might be called a Hypennesh.

The approach taken here is similar in some ways to that of [KurnRag 871. They also

propose an extension of the mesh connected computers, a mesh with multiple
1

broadcasting, and presented several interesting. algorithms running on this netwo* quite
I

efficiently. There are several differences between their network and, ?e one proposed

here. First, in this work, several communication features of the proposed network are not

found in their network. Parallel message transfer at each node (both transmit and receive)

provides a high data communication bandwidth for the entire network. The proposed bus

structure (for one row/column of this network) is shown in Figure 2-3. Second, providing

an insight in terms of actual design requirements and practical views in the communication

support unit based on VLSI technology, which in fact is one of the main concerns of this

thesis.

We will show how the hypermesh modification allows asymptotic improvements in the

efficiency of executing computations having medium to high interprocessor

communication requirements. Moreover, each PE can take advantage of pipelining which

will be described later. We also compare our modified mesh-connected parallel computer

to other similar organizations including the mesh, mesh with broadcasting, and

hypercubes. We also need to select the routing algorithms carefully to avoid "traffic jams"

when several messages are traveling through the network - at once. These problems are

discused in detail in the next section.

Architechcml Features and Design Considemtiom
of Hypermesh Multicomputers for Array Processing

- 6

w w w w Local Bus local Bas local BUS Local BUS

Figure 2-3: Proposed bus structure.

2.4.1. The Architecture

Figure 2-4 demonstrates rhe hypermesh connection pattern. Each row and column link

has the structure shown in figure 2-3. The system consists of N processing nodes. Each

node consists of a processor, a local memory and memory controller chip, and a

communication controller. Eech node has a separate communication processor to allow

uninterrupted application processing.

Figure 2-4: A hypermes h interconnection network (A)
and companion processor plan (B).

R

-
-

- - _ _
~rchi t ec i ra l Features and Design Considerations -
of Hypermesh Multicomputers for Array Processing 22

We imagine our structure is composed of two separated m la&rs of PEJs: One layer is -

dedicated to processing, while the other is entirely dedicated to communication. Each

processor PE in the processing layer connects to a corresponding distinct router PE in the

communication layer. A processor uses the communication layer for efficiently routing

data to other processors. The interconnections among the routers will determine the

communication characteristics for this approach. This topology provides direct

connectivity for each PE to all the other nodes dong its row and column. Processors are

identified by their two dimensional coordinates. Communication components are

numbered similarly.

2.4.2. Routing Scheme in Hypermesh zsa

All communication networks require some routing algorithm to build the paths between

communicating nodes. A great deal of research has been done in the area of routing in

multicomputer networks. In the context of the proposed communication domain, we will

only consider distributed routing that does not rely on central authority. In regular

networks (eg. mesh , torus, hypercube, etc.) routing can be performed in each node by a

state machine or rnicroprograrnrned engine using a fixed algorithm based on the local and

destination addresses.' Routing algorithms are known for many standard topologies. In a

square lattice, for example, the routing controller could forward the message in a direction

that would reduce the difference between the X- or Y-coordinates of the current and the

destination nodes. In the n-cube, links are selected which reduce the Hamming'distance by

one, until the target is reached.

 o or irregular networks, souting must be based on suitable lookup tables [ReedFuji.87]. In such a system
each node i has entries of the form:

implying that messages destined for node DN are forwarded - ~- - by node i to neighbor node NN. p i s table
lookup, commonly called a routing table, can be defined stitiCfly, or it-canbe maintahaMynarnicaIly
using information exchanged between neighboring nodes. This technique could be of use even in
hypermesh. Hierarchical techniques can be used to implement general lookup table mechanisms for message
routing without excessively large memories. Memory size is minimized when many levels are used.

Archkcluml Features and Design Consfdemtions
of Hypermesh Multicomputers for Army Processing

In the following, we will show that many data routing functions which the mesh cannot

perform well can be achieved by Hypermesh very efficiently. One way to evaluate the

routing capability of an interconnection network is the communication time between any 2

processors. The communication for node(il d l) to node(i&) requires 1 i,-i, + I j, -j2 1
steps on a mesh, which is 2 (~ ~ / ~ - 1) in the worst case. By using Hypermesh, this can

always be achieved in two steps. First node(il jl) sends to node(il j2) , then node(iz&)

receives back from n ~ d e (i ~ &) ~ . Figure 2-5 illustrates this process.

Figure 2-5: A message moving toward its destination9
in a hypermesh, (first step of two hop).

Row/column broadcasting can be performed as following: node(ij) sends a message to

mde(i,*)slo or mde(*j)s . This can be done by fust injecting message by PE(i j) to

Router(ij), then through a handshaking mechanism, all, the Routers in the same

row/column read it back simultaneously. Generally, broadcasting on hypermesh can be

defined as following: * .

*node(i2 j l) acts as a pivot and forwards the received message.
4

90 achieve a bidirectional transaction flow, the proposed muting algorithm prevents congestion for the
pivoting node and creating a cylinder%fect; (all transaction flow occurs in a counterclockwise direction).

0

'OA(~,*) and A(* j) denote all the nodes in the ifh row andfh column of A, respectively.

-

Architectural Features and Design Considemtions
of Hypermesh Multicomputers for A m y Processing 24

P E (k i I k i ~ (1,2,. . .a}) ->PEsc (1,2,. . -pl)
i = 1 single broadcasting -

i > 1 multiple broadcasting l l
&

Row and column broadcasting is a powerful communication mechanism. Suppose only

PEs in a particular row, say row 0, each have a data item and we wish to compute, for

example, the maximum of these numbers; then, we can use multiple broadcast busses to

simulate a tree structure. -

Performing permutations of data on SIMD computers efficiently is important for high

speed execution of parallel algorithms. For an efficient execution of parallel algorithms on

SIMD computers, an important objedve is the fast rearrangement of intermediate results.

The total execution time greatly depends on the time required to perform permutations of - -+- %-

data. The classes of permutation usually considered are the permutations strongly

suggested by the cornmpnication needs imposed by the.existing parallel algorithms, and by

the data storage schemes.

Simple algorithms for performing important permutations can be achieved for our

proposed network. Many permutations can be done in a constant number of steps (Chapter

4), as opposed to 2(&-1) the lower bound in mesh with wrap-around [RagKum 841 , and

3(&-1) in regular mesh [LinMol 851. This approach is quite simple, and unlike previous

approaches, makes efficient use of the special topology of the proposed network to realize .
these permutations using the minimum number of data transfer steps. Here, a-very simple

control algorithm on the hypermesh network is proposed. The control algorithm is actually

based on a very simple idea. Assume permutation P maps node(ij) to node(r,s). The

routing algorithm would be the following:

This can be done concurrently for each pair of the permutation P. Applying this control
&

l1 An extreme case of multiple broadcasting calledflooding [FriBa 871. This data movement operation is
used to achieve the all-mall broadcast needed in some operations. Flooding is performed by broadcasting
along rows (for all PEs) which leaves n items at each node. Then similar broadcasting operation along
columns, that is n-step routing for all n items, results an n+l routing steps. It is interesting to note that in a
mesh with multiple broadcasting 0(n2) (in fact n2+n) steps are required for this operation.

4
-

-
- -

~rchitectuml~errtures and Design Co~siderntions
of Hypermesh Mullicomputers for Army Processing 25

if (i=r or j=s) then
D

node(iJ) --> node(r,s)
- else

nodeti J) --> node(is)
node(i,s) --> node(r,s)

fi
I* node(i,s) is called a 'bivot" */

Pigure 2-6: A simple routing algorithm for hypermesh.

algorithm on the hypermesh network, it turns out that many frequently used permutations

can be realized with a constant number of passes through the network. This will be -- / --

discussed, in detail, in Chapter 4.
-

c- *---

2.4.3. Characteristics of Hypermesh

Some characteristics of the proposed mesh are:
medium number ofprocessors- the proposed architecture.is shown in Figure
2-4. It contains 16 nodes. The readily available technology permits a single
controller chip to serve both rows and columns of a 4 by 4 mesh.

nsjnchronous execution- each node executes independently of all other nodes.
Synchronization between nodes relies on message passing or instruction
fetching primitives.

message based communication- because it contains no shared memory, the
cooperating task of a parallel algorithm relies solely on message passing. The
message is, in fact, a raw fixed-length packet of data which contains a fixed
number of flits.

communication overhead- hardware support in terms of a communication
chip with a high bandwidth provides an efficient communication environment.
Furthermore, by using the network to hold intermediate results, node
processors can feed array data directly to arithmetic units rather than first
moving them to local memory.

small diameter- direct connectivity ' along rows and columns reduces the
diameter of a n by n 2-dimensional mesh from 2n-2 to 2. This technique
pennits the network communication bandwidth to be more closely matched to
node processor data bus bandwidth.

medium grained xmqwtdon- which provides a well-balanced
communication, computation over such a network, ..? .

. . e --:

'4

Architectural Features and Design Considerations
of Hypermesh Multicomputers for Army Processing : , *%;
The above mentioned properties and characteristics provide the following features: I

mcient communication patterns, simplified algorithm design- both direct
connectivity and broadcasting simplify algorithm design and support very
efficient communication patterns, which in fact enables one to efficiently
emulate other important network topologies (i.e., mesh and hypercube).

high throug@ut- multiple broadcasting (wide bandwidth) supported by a
communication controller chip provides high network capacity and in turn
high throughput. These'characteristics of the hypermesh .will be analyzed in
Chapter 4. H ,

//
. .

-- -

4
- - 2.5~haracterizin~ the Compptational Power of the Hypermesh - *

1
t 0
\

To explore the power of the modificahons proposed here; we look at a fairly wide range

of computational problems and show they can be solved algorithmically on a hypermesh-

connected parallel computer. Our emphasis is more towards exhibiting the advantages of

our new parallel organization rather than on the actual algorithms. The algorithms .-

themselves are similar to previously known parallel algorithms for the problems

considered, and thus shouldn't be thought of as theDmajor contribution of this- work.

Another topic treated in this section is how our hypermesh compares to some other parallel

computer organizations. The perfoiizlance of hypermesh is studied by comparing it to +

other mesh related networks as follows.

2.5.1. Hypermesh vs. Regular Mesh

For problems requiring information transfer between remote nodes (not neighbors),

hyperrnesh is much better than regular mesh as can be se& below. * -

Communication between any two processors : This requires 2 (~ ~ ' ~ - 1) steps on -
mesh of N nodes [NasSah 801, but just 2 steps on hypermesh.

Broadcasting: On mesh, this requires 0(hTIt2) step, but on hypermesh 2 steps
are sufficient, -- ... - -- .-
Permutation: Hypermesh can perform peimutatios~easier and faster.
The lower bound for any permutation on regular mesh is 3 (~ ~ / ~ - 1) steps
[LinMol85]. ,

Ir

.-A On hypermesh, many permutations can be done in a constant number of steps. Moreover,
--- the system ovahead is different, although the upper bound for any arbitrary permutation is -

a?' I --_

~rchitectunzl ~ e a 8 r e s rrad ~ e s h Considemcians
of Hypenncsh Multfcomputers for A m y Processing + For mesh, performing different permutations may require different routing

algorithms. In the case- of hypermesh, our routing algorithm proposed in the previous

section is universal, (i.e. independent of permutations).

2.5.2. Hypermesh vs. mesh with single broadcasting

Gentleman [Gentleman 781 was apparently the first to consider a supplemental -

mechanism called broadcasting. When a node broadcasts a value, it is simultaneously

received by all other nodes (Figure 2-7). To avoid pandemonium, only one broadcast at a

global bus'

Figure 2-7: An illustration of a mesh with single broadcasting.

C JI G

time is allowed. It is easy to see that a hypennesh can simulate a mesh with single

broadcasting. For almost all classes of algorithms, hyperrnesh performs better. In fact,

single broadcasting imposes a kind of sequentiality to the network [Bokhari 841: since

broadcasting is done over a shared global bus only one item can be communicated over the

bus at any time. Thus, trying to cover many "long" distances using broadcasts will
,J - &'

increase the solution time.

node 0

(4 > . a . 9 . 0

I An f~ ff Wesh Interconnection

node 1 node N-1

-* - -

r
..

Arcliitectuml Features and Design Considemtiom
of Hypsnnesh Mulficomputers for Army Processing

2.5.3. Hypermesh vs. mesh with multiple broadcasting

hi contrast with the mesh with multiple broadcasting, where the broadcasting bus is

superimposed on conventional node-to-node links (Fig. 2-8), our proposed network can act
>

both as $ neighbor to neighbor medium and a global broadcast In fact mesh with

multiple broadcasting is similar to the proposed hypermes and he available

algorithms for the mesh with multiple br adcasting can be simulated on the hypermesh and f
in some cases with improvements in efficienw. -

4

b

,

a-

2 &.

\ri

' ' Figure 2-8: Mesh interconnection network with multiple broadcasting. I

I

' ,
,'

r ' ' k /
.(,C J

d *
The camparis& betweed the'two architectures is donein terms of permutations. A mesh

- T l e brottdcasting feature does not periorm betier than a regular mesh in terms of
*

p e q u ns. In general ~ (N ~ " - I) steps are required to perform permlitation on mesh with
. *

-

multiple broadcasting. Also, the control overhead is large and the roudng algorithms are
*

complex [RagKum 841. The upper bound forLan arbitrary permutation on hypermesh is

exactly ~ l ~ ~ . (~ h a p t e r 4): ~ o w e i e i , f& a wide class3,cif permutations a constant numb& of

steps arerequiw. 'Also the overhead is low.
r

L r
0

I . .
&&' . h

Architectural Features and Design Considerations
of Hypermesh Multicomputers - for Array Processing

2.5.4. Hypermesh versus Fully Connected Network

The fully connected network is formed by placing a single link between every pair of
I

-C d ~ i i g u r e 1-3). Here, the number of nodes is equal to the number of tasks required by
/

, - " --&e parallel program and varies from application to application. This topology minimizes

the number of hops between every pair of nodes at the expense of a larger number of

branches to each node (n2 vs. 2n).

In some applications, a single node needs to send a 'data item to all other nodes in the

network. If no broadcast mechanism is provided, the node must send a separate copy of

the message to each destination. A queue rapidly develops in the node sending the 1
message leading to long delays and poor performance. Therefore a significant performance

improvement results from incorporating a broadcast mechanism. In avully connected

network, in practice, O(1og N) time is taken to perform broadcast operations12.

I'

2.5.5. Divide and Conquer Strategy

The essence of the divide-and-conquer strategy is quite simple:
I

To solve a large instance of a problem, break it into smaller instances of the same 9
problem, and use the solutions of these to solve the original problem.

//

The fact that the smaller problems are instances of the same%blem is what

mstinguishes divide-and-conquh from the mire general top-down strategy. This strategy

is strongly encouraged in texts on data structures and algorithms. As Ullrnan notes, it is
*

also a useful strategy in hardware design [Ullman 841.

When using parallel computers, there are several reasons why a divide-and-cpnquer

approach may be particularly useful. First, there may be more data than can be obtained in

the processors at one time, so the data must be analyzed piecemeal [Stout 871. Second, in

12That's simply because of the required fanout.

*-

Architectural Features and Design Considerations
of Hypermesh Multicomputers for Array Processing 30

some machines the individual processors may be qujte large and pwerful, holding many

data items, in which case often a two-level strategy is needed. We can call such machines

medium-grained machines , to distinguish them from fine-grained machines. In medium-

grained machines, we can exploit the pipelining features of functional units more

efficiently. Finally, many of the interconnection schemes being used or suggested for

massively parallel processing (i.e. image processing) naturally suggest partitioning the

machine into smaller submachines. Mes'hes (including hypermesh) can easily be

partitioned into quadrants, each of which is a mesh. Meshes with broadcasting capabilities

almost force one to use a divide-and-conquer approach, dividing the network into subnets
3
in which a standard nonbroadcasting algorithin is used, with broadcasting used to combine

results of the subproblems.

In networks of higher dimensions, using the hypermesh structure as a building block, the

features of divide-and-conquer can be exploited more efficiently. In such a hypermesh

hierarchy, the given problem can be decomposed into small pieces (the size of hypermesh)

and distributed among the network components. -

2.6. Symmetry and Embedding

Symmetric graphs, such as the ring, the n-dimensional hypercube, and the cube-

connected cycles, have been widely used as processor1 communication interconnection

networks. A special class of networks, called symmetric interconnection networks, has the

property that the network viewed from any vertex of the network looks the same [Akers

891. It is interesting to note that the hypenqesh in~erconnection network is also a

symmetric network. In such a network, congestion problems are minimized since the load

will be distributed uniformly through all the vertices. Moreover, this symmetry allows for

identical processors at every vertex with identical routing algorithms. It is also very useful

in designing algorithms that exploit the structure of the network.

The hypermesh interconnection network, in addition to its symmetry properties, has the

advantage of enabling many other interconnection networks to be embedded into itself.

Architectural Features and Design Considerations
of Hypennesh Multicomputers for Amrp Processing 31

The necessity for embedding arises when a programmer wishes to implement an algorithm

A for which it is clear that a certain network G is most appropriate, but only another

network H is available. The Fast Fourier Transformation algorithm, for example, ideally

requires the perfect-shuffle interconnection, but the programmer may nevertheless wish to

implement it on machines based on the lattice or the hypercube. The problem can be

solved by utilizing part of H as a model of G in other words embedding G in H [Modi 851.

.-

Figure 2-9: (a) 4-d hypemube; (b) hypercube embedded in hypermesh.

In order to minimize data movement cost, the indirect links (caused by mapping) should be

shon or avoided. In this respect the best embedding would be a direct one, which provides

no exaa data movement requirements on new network. One of the skills in parallel
a

computing is to find a convenient embedding, involving a minimum use of long links of

one network in another. This has been an interesting problem in parallel programming for

a long time, and some researchers have tried to solve it. But finally it turned out to be an

NP complete problem [NilGng 87, Berman 8.51.

Since hypermesh contains a mesh structure as a subgraph, the advantage of mesh is kept.
a :

Architectural Features and Design Considemdons
of Hypermesh Multicomputers for Array Processing ~

0n the o k hand, hypermesh is isomorphic to Hypercube network. As the Figure 2-9

indicates, hypennesh also contains hypercube structure as a subgraph, so the advantages of

hypercube and its routing scheme are kept as well. Therefore, hypercube can be embedded

. in hypermesh directly. This ability has some direct advantages, in a sense that there are

many appiications and algorithms designed for hypkube, which can be executed on
\

hypermesh with no extra effort, or possibly can be enhanced.

2.7. Applications

The hypermesh is an architecture with a variety of data routing capabilities. So, its

potential is promising. Since the regular mesh and cube can be directly mapped into the

hypermesh, any parallel algorithms designed for the mesh or cube can be adopted by

hypermesh. However, if global communications are required, hypermesh is a much better

architecture. In the following, we will discuss some application examples. Other

apblications can be probed by using the technique described here.

Semigroup computations, for example, include finding maximum, minimum, sum, etc.

on N data items. On a regular MCC, a semigroup. operation can be performed in 0(Nli2)

time which is optimal. If a single broadcast bus is available then the time can be improved

to O(N1") [Bokhari 841. An algorithm for semigroup operations taking 0(N1I6) time in

2-dim MCC with multiple broadcasting has been proposed in [KuinRag 871. Since

multiple broadcasting can be performed with hypermesh with no overhead, every step of

that algorithm can be simulated here.

(

There are other parallel algorithms developed for many problems in the areas of linear

algebra, image processing, computational- geometry, and numerical computations, on MCC

with multiple broadcasting, which can all be executed efficiently on hypermesh. An

algorithm is given [KumRag 871 that finds the median value of N numbers distributed one

per processor, in 0(ZVli6(log N ? / ~) time. Another set of algorithms on convex polyge~

computation of digitized pictures with co&plexity of o (N ~ / ~) time, and nearest neighbor in

o(N'!~) time, are proposed, which requires Cl(hrli3) on 2-MCC with single broadcast and

Architectural Features and Design Considerations
of Hypermesh Multicomputers for Array Processing 33

Q(N~") on regular mesh. All of these algorithms can be efficiently simulated on proposed

hypermesh with no degradation and in some cases with improvement in efficiency, A

further- reduction in the execution time is possible (for some co&unication patterns) by

taking. advantage of extra communication links and also broadcasting feature in a

hypermesh. This aspect needs more investigation in the future.

2.8. Diagonal Hypermesh

Another variation on the hypennesh interconnection network is depicted in Figure 2-10.

Figure 2-10: Diagonal hypermesh interconnection network.

In this network, the same direct connectivity along rows (just like in hypermesh) is

maintained, but the column links are now replaced with diagonal ,links. This network

reminds us of the 1-skewed storage technique13 in memory systems [Lawrie 75, HarJum

871. This topology turns out to have very interesting properties in terms of permutations. It

can also be configured like the original hypemesh in just one. simple communication step

(along rows), maintaining all the features of the hypermesh.

1 3 ~ skewing scheme is a method for assigning the elements of a vector to parallel memory modules. This
technique is used to obtain conflict-free vector accesses for a subset of access patterns.

Architectural Features and Design Considerations
of Hypermesh Multicomputers for Array Processing 34

Studies on several important permutation functions on this topology showed that this

topology can realize the most important class of permutations (i.e perfect shuffle, bit

reversal, butterfly and exchange permutations, ...) in at most 2 communication steps, ,

regardless of the network size. An APL program has been implemented to verify this

property, using the same data routing algorithm described for hypermesh. Experimental

results are summarized in Chapter 4, for different sizes of the network.

2.9. Sorting

Sorting problem was not a research topic in this thesis. Nevertheless, reviewing of the

possible techniques which possibly can be of use on hypermesh, will be presented.

Extensive research into sorting techniques has been carried out during the last few years,

and a large volume of literature is available [Akl 85, SchSen 89, NasSah 79, ThoKun

77, Thompson 83, SchSha 86, Han 85, SonKin 88, ~ & a f 851 which provides an

introduction to parallel sorting methods. This problem involves routing of each data item

to a distinct position of the array predetermined by some indexing schemes. Three

diffment schemes have been considered by Thompson and Kung [ThoKun 771: row major,

shuffled row major, and snake-like row major. Some of the standardindexing schemes are

illustrated in Figure 2- 1 1. Much of the^ attention has focused on restructuring well-known

serial techniques such as quick sort, o d z v e n transposition sort [ThoKun 771, and bitonic

sort [NasSah 791 in order to make them amenable to parallelism.

A serial algorithm based on, for example comparison-interchange, necessarily requires at

least O(k,. logk) comparisons to sort k numbers. I f k comparisons are carried out

simultaneously at each stage, then clearly the lower bound on the number of parallel

comparisons (or delays) is O(1og k). However, it does not seem possible to achieve this-

lower bound by restructuring one of the well-known O(k log k) serial algorithms, (for

example, the twozway merge sort), primarily because of lack of parallelism toward the end

of the sorting process. On the other hand, it is possible by using odd-even transposition

sort, using O(N) processors to sort N numbers in O(N) steps.

Architechlml Features and Design Considemtions
of H y p e m s h Multicomputers for Array Processing ~35

. It) ID)
Figure 2-11: Some indexing Schemes,

.c (a) row-major; (b) snake-like;
(c) proximity; (d) shuffle row-major.

In the realm of sorting a two-dimensional array of numbers, a seemingly "nice" way

would be to sort rows and columns (since it involves sorting on smaller problems of

approximately'7h size) and "hope" that somehow a combination of these two operations

will terminate in a sorted sequence. Unfortunately, such a procedure doesn't seem to work

when implementing in a straight-forward manner (row major ordering) [leighton 851.

Paradoxically things fall into place when one sons the rows in a snake-like row-major

form without increasing the complexity of the procedure. A simple algorithm, called

shear-sort has been introduced using this scheme in [SchSha 861. It is worth noting that in

a hypermesh we can get the snake-like ordering from the regular row major ordering in just

one routing step (Chapter 4), rather than e (n) on a regular mesh. Since sorting along

Architectuml Features and Design Considemlions
of Hypermesh Multicomputers for Army Processing

row/column can be performed in O(n) on an nxn hypermesh14, and also log n steps are

required for this algorithm to converge [SchSha 861, therefore, the total cdmplexity of the

algorithm exploring this scheme achieves a bound within O(n) of the optimal.

14Since flooding operation can be performed in linear number of communication steps on a row of
hypermesh, an enumerarion sort described in [YaTaYa 821 can be efficiently used to sort the row of the
network in linear time.

VLSI Constmints and Hardware Support
for Communication in Multicomputer Networks

--,

Chapter 3

VLSI Constraints and Hardware Support
for~mmunicat ion in Multicomputer Networks.

This chapter considers various p h y & i l constraints which influence the design of VLSI

based interconnection networks used in multicomputer systems. Design expressions are

presented for implementing a network controller for a mesh with direct connectivity along

rows and columns.

The design of effective multiprocessor systems involves numerous interacting elements

ranging from parallel algorithms to programming languages to computer architectured.
, ,

This section focuses on the computer architecture question and, in particular, on the design - -
of VLSI based electrical interconnec'tion networks for use in multiprocessor systems. Due

to their potentially critical effect on overall multiprocessor performance, interconnection

networks haye been widely studied. Various studies have focused on their functional

properties (permutation, control algorithms), their complexity and performance, and their

actual design.

In the following, some issues which must be considered when designing a -high

performance network controller (NC) based on VLSI technology is discussed. A set of

useful NC instructions will also be proposed. In sections 3.3 and 3.4 considerations bn a

node processor and network interface chip along with an equation demonstrating the

number of required pins for a typical NC in a hypermesh network will be presented.

Finally, requirements for high bandwidth I/O subsystems will be discussed and a

hierarchical solution will be proposed.

VLSI Constmints and Hardware Support
- for Communicahah~~ in Multicomputer Networks 38

3.1. Communication Paradigm and Hardware Support

Communication functions have traditionally been implemented by software in loosely

coupled communication networks. Workloads for such systems are generated by processes

that communicate infrequently to perform high level functions such as file transfers
- -

[ReedFuji 871. In contrast, multicomputer networks execute a collection of closely

coupled tasks that c o ~ u n i c a t e -@equently. Therefore, although many -- of the same

problems- and issues that arise in loosely coupled networks also arise in multicomputer

networks, the latter often require completely different solutions and implementation. In

particular, rather than software implementation of communication protocols, hardware

support is more appropriate.

Several key issues must be considered when designing a high performance

communication controller: The routing issue has been discussed in a previous chapter,

therefore in the following other issues are considered.

3.1.1. Buffer Management

Each message passed into the communication domain must be subdivided by the sender -.
into some number of fixed length packets (flits). Packets form the indivisible unit of data

transmitted through the communication network. Due to conflicts that arise when several

packets simultaneously require the use of the same link, buffering is required in each node.
. .

The strategy for managing usage of these buffers can have a significant effect on

performance. One simple solution gives each channel on each link a separate buffer.

Allowing several channels to share buffers, is another approach. However, the control

logic would be more complex. The first approach takes advantage of regularity in terms of

VLSI design aspects. In order to support several activities simultaneously on different

channels the fmt approach seems to be reasonable. Under these circumstances, better

performance is obtained by having a separate buffer for each channel.

Now, what happens when a packet arrives at a pivot? It is placed at the end of the linked

list corresponding to the output channel on which the packet is to be forwarded. It is

- -

0 .. -
VLSI Constrafna and Hanlware Support
for Communication in Multicomputqr Networks 39

removed from the list after it has been successfully transmitted to the next node. The

linked lists are manag& as a FIFO queue to ensure-that packets afeiorwarded in the same - - -

order .in whigh they arrive.' This queue management cin be implemented in hardware so - - .
that packet forwarding can proceed as quickly as possiblb [ChuLeu 861. Each link has an'.

+

associated FIFO bufTer that temporarily stores message packets.

3.1.2. Flow control
I

Flow control is the mechanism that regulates the transaction of messages along circuits.

The network must be able to "throttle" traffic on communication lines to prevent buffer

overflow and handle other situations of that kind. There are 2 approaches to the flow

control problem, remote bufSer management and sendlacknowledge protocol [ReedFuji

871.' The latter approach provides faster communication mechanism, which will be

discussed here. A simple send/acknowledge protocol for data transmission over the link is

the most straightforward example of receiver controlledflow control. Each node sends a

packet and waits for the receiver (or receivers) to return a control signal (ack). It is

assumed that each link has a separate control line to carry the ack signal. Because the
2

receiver can generate an acknowledgement after only the header (first flit) is received, a

direct connection to the sender (or receiver) offers the unusual feature that the sender will

receive acknowledgement before it has finished sending the packet. This allows a

"pipelined" stream of flits through the links. Flow control is built into our slice algorithms

(Chapter 4), i.e. we produce and consume data at exactly the proper rate.

3.2. Communication Protocol in a VLSI-Based Multicomputer Network

A general purpose VLSI communication component is envisioned that can be used as a

building block for constructing large multicomputer networks. These components feature

special purpose hardware to implement frequently used communication functions. Each

router handles messages for one PE, allowing it to communicate with other PE's inits
- A

same row/colurnn. A typical communication network of the hypermesh is formed by 16

routers connected by unidirectional wires (Figure 2-4). The routers are wired in the pattern

-. V W Constraints and Hardware Support
\for Communication in Multicomputer Network 40

of the hypermesh. The address of the routers within the network depends on their relative
. -

.position *thin the mesh. Networks with more than 16 nodes would req&e a larger router -

(i.e., 2 for 8x8 mesh). The operations of the router can be divided into following

e-%-
injection, delivery, b u w i , forwarding. .

ad

4 1 .

The injection process involves simple handshaking between processor and router. The -
I

process by which a router removes a message from the network and sends it to the node for - - L

which it is destined is calld, forwarding. When a message finally reaches its destination

router, it is delivered to thdappropriate processor by writing i n t ~ the processor's memory

(register), which involve a simple handshaking between the processor and router. Clearly
6

the router is hardware limiteif- to a fixed buffer capacity. The number of buffers is large

enough so that the router almost never runs short of storage, but an additional mechanism

could be provided for dealing with the overflow case should it occur. This mechanism

uses two FlFO queues at both sides of the communication link. Between the processor and

router is a pair of first-idfirst-out buffers (FIFOs) that buffer bytes going to the router and

data returning to the processor. These buffers allow the router to operate asynchronously

with the processor.

To support array algorithms, the network data interface should perhit some automatic

sequencing from one processor port to .another. Some of the coprocessor strategy which

was used for SJMC BobSim 871 can be used for a Network Coprocessor. These

coprocessors receive source and destination instructions over the system bus, 1 cycle in

advance of when they are needed. The system bus is thus used for one data transfer and

one instnktion transfer during each cycle. For this reason 2 network data transfers can
b

occur in 1 system cycle.

An instruction set for Network Copracesso~ will evolve as a variety of array algorithms

are studied. A small collection of useful NC instructions are outlined in Table 3-1. These

primitives are exmuted by the NC fmware in accordance with instructions submitted to it

VLSI Constmints and Haniware Support
for Communication in Multicomputer Networks

by the node processor: The list of proposed primitives cover the functionalitiw which are

required for programming higher-level communication and 'synchronization protocol's.

They have been designed in order to keep the NC simple and fast and, on the other hand, to

provide the higher-level network modules and the - applications in the hosts uiith a powerful
J

set of communication instructions. 4'

NRBC: Network row broadcast initialize. Subsequent data transfer will go to all row
processors.

NCBC: Network column broadcast initialize. Subsequent data transfer will go to all
column processors.

NRWA: Net\;Gork read word alternate. The number of words to read before changing
from row to column is provided on the data bus as a parameter.

NRRW: Network read row word. Initialize for automatically cycling through the
row ports. The number of words to read before changing from one row
processor to another is provided on the data bus as a parameter. This parameter
also selects which processor to start with.

NRCW: Network read column word. See NRRW.

NSN: Nem.ork source next. Data are place on the system bus and the next source of
data is readied. This may be the same processor, the next row processor, or the
next column processor.

NDN: Network destination next. Data are sent from the system bus into the network
and the next destination is readied. This may be the same processor, the next
row processor, or the next column processor.

Table 3-1: A sample of network coprocessor instructions.

L'

3.3. Node Processor Considerations
4-,

A central requiremqnt for efficient array processing is to match data transfer bandwidth

with arithmetic processing bandwidth. If the Arithmetic Processor (AP) is pipelined, the

data links to memory or a network must also beapipelined.

State-of-the-art floating-point AP's are available with .cycle times ranging from below

50ns up to 250ns depending upon the technology and the mount of pipelining. Data ports

can be either 32 bits or 64 bits wide. Vector data registers and highly interleaved memory
8 4

V U I ~oAtraints and Hardware Support *

for Communikation in ~ u l t i c o m ~ u t e r ~etworkr i.

a t . 42
b&s are requbd . r to keep such chips'ma$mally busy [HobKaf 891. When networking is

a' brought in, ii-is .u,nlik& that (la& paths in' the network itself will be as wide as 32 or 64
i

bits. If we ;aie going to strive for maximum connectivity (the largest number of direct
Q : 8

connections), wide data paths are ehly practical for a small number of processors, say a
C

2x2 hypermesh. For the following discussion, we choose 8:bit-wide network data paths.
\

This number has been chosen only because it will permit hypermesh sizes of up to 16x16
C

with at most 2 network communication chips per node. Hypermeshes of size 8x8 or less

will only require 1 communication chip per node. Let us also assume that 2 network data
4

transfers c a n k c u r in 1 system cycle. This is reasonable if the network busses are

unidirectional, short, and only moderately loaded. Such a network can keep a 16-bit

firmessp continyously supplied with data for bursts of computation. Node processors will

Diagnostic v

Coprocessor

Memo ry
Coprocessor

Memory m
Figure 3-1: Node processor functional components.

Support - pa
43

therefore have a 16-bit data path between the network, memory, AP, and control procdsior.

Wider data paths exist from the memory controller into the memory, and the AP controller

into the arithmetic unit. These functional components of Node Processor, are shown in

Fig. 3-1. With submicron technology, many of the functional components will fit onto one

chip WobKaf 891. 1

3.3.1. A Streaming Memory Interface

Desirable memory interface features have been identified in previous work [HobSim 871.

The SJMC memory coprocessor supports up to 8 data streams for array processing.

Systems can be designed with memory cycle times 0, 2, or 4 times slower than the

processor cycle time, so low cost DRAM technology can be used. It is desired to retain as

much of this lookahead capability as possible in the expanded system.

Since arrays are our primary data struct&e, it is proposed WobKaf 891, to map data from

1 processor into a network of nxn processors by interleaving data uniformly amongst the

processors. Thus a vector element Vi will be stored with processor Pk where k = i mod n2.

Large data structufes will wrap around many times, while small data structures will not -

cover the hypermesh. We assume for this discussion that all data structures can be

extended to cover the hypermesh uniformly.

3.4. Network Interface Considerations

As mentioned previously, network data paths are 8 bits wide. Each node processor can

coqunicate directly with any processor in its row or column. We also assume the

existence of an I/O link for each row and column.

, Since network data paths are unidirectional, each processor only needs one output bus

which can be used to broadcast data to one or more of the processors in its row or column.
\

Each processor must have 2n input busses for receiving data from one or more processors

in its row or column (Figure 3-2). The total number of data lines is thus 8*(2n+1)+16,

where the '16' comes from a local (bidirectional) data bus. If we assume that 2 control

VLSf Constraints and Hardware Support
for Communication in Multicomputer Networks ,

lines are needed for each communication channel, there will be 4n for outputs, 4n for -

inputs, and 2 for the local bus, giving a total of 8n+2. Not counting clock and power, the

total number of pins for a network interface chip is about:

IO(n) = 24n + 26

IO(4) is quite modest at 122. IO(8) is quite demanding, but feasible at 218.

control
OUTPUT BUS INPUT BUSSES

NETWORK CONTROLLER
--

LOCAL BUS It A

v

Figure 3-2: Network controller signaling.

An 8x8 hypermesh communication network on a single board would thus be a good

commercial target for the near future. Unless one can fit a 16x16 hypermesh onto a single

board, the two dimensional hierarchy should be investigated for larger systems. The

loading on a single broadcast bus with 32 ports may also be significant.

3.5. Network Controller and I/O Embedding in the Proposed Mesh

The host talks to the network cells through a nenvork controller. The purpose of the

network controller is to act as an arbiter for the entire network, in t e r m of initializa~ion

and receiving the results. Another thing it does is to act as a bandwidth amplifier between

the host machine and the processors. It is not surprising that tht: Host Machine is in fact

similar to one of the nodes of the network (Figure 3-3), which has been featured with the

same communication controller

VLSZ Constraints and Hardware Support
for Communication in Multicomputer Networks

3.5.1. Sample Operations

A typical macro-instruction sent from the host to the network controller is a matrix

addition instruction, which specifies the addition of two matrices with one element within

each processor. Another macro-instruction could be a matrix multiplication (Appendix C).
/ -- .

3.5.2. Network InputIOutpu t

As in a conventional machine, it is important that a multicomputer machine

implementation support a balance of processing and inputjoutput. In some applications the

inputjoutput bandwidth may actually dominate the performance of the machine. For

example, in the hypercube multiprocessor of dimension n, each node consists of a

computation processor, a communication handling mechanism, and a local mc lory. This

communication hantlling mechanism is in charge of the communications between the host

as well as between the n neighboring nodes. The host, having a communication path to

each of the nodes, usually performs gram development, program and data down-

loading, and peripheral control (Figure ? -1). Under such a structure, the host-to-node

interconnection tends to be the system bottleneck, especially at initialization and summing-

up stages of the-computation. The success of an implementation depends on how well it

fits all aspects of the applications, not just the processing. The inputloutput performance

can become extremely important, particularly if this portion of the machine is poorly

designed. The objective is to minimize YO overheads by maximizing parallel VO

capability. Fortunately, the hypermesh machine architecture provides two natural

possibilities for high-bandwidth input/output ports, through the communications network

and directly to 'the individual communication controller co-processors. However, having a

diameter 2 in this topology, I f 0 can efficiently be handled solely through the

communication network.

Many multiprocessor systems based on the Mesh and Hypercube topologies have been

built recently [TuaPet 85, LinMol 86, ShihIr 87, GeAbGu 881. In such systems, YO

processors are used to handle the data transfers between the processors and the outside

world or the Host. In some systems each processor is connected to an VO processor and

VLSI Constraints and Hardware Support
for Communication in Multicomputer Networks 46

the I/O processor handles all the data transfers between that processor and the outside

world. For example, the Intel iPSC system uses VO hardware within each processor for

VO communication using the ethernet protocol [NaBaAb 881. In the NCUBE system, an

VO processor is connected to a subcube of 8 processors and the VO processors are

themselves partially interconnected [Hayes 861.

A close look at our topology, gives us another idea. Since we can send a data item to

each node of the network in at most two routing steps (2 hops), the communication links

between nodes can handle that without any requirement for a dedicated VO channel. This

approach uses the s;stern links efficiently for both the VO and 'node-to-node

communication. The network itself should be connected to a host node, which can be the

same node as the other network's node. One scheme would be the following: The host

110 P O R T S I

Figure 3-3: Network input/output.

- - - -

computer is hooked up to the first row and column of the network through a network

cont~oller node quite similar to other nodes of the structure (Figure 3-3). By placing the

UO links along fist row and column of the network, we do not require explicit VO system

VLSI Constmints and Hardware Support
for Communication in Multicomputer Networks 47

for the network15 , as they are required in several other networks [Kale 86, GeAbGu 881.

Thus, we can use one of the communication components as a network controller to handle

network VO tolfrom the outside world.

Since having only one row or column of the network,connected to the Host, provides the

required communication links for the whole network in just one routing step; this scheme*

implies a good tolerance of 110 failures. In other words, we can feed the data into the

network along two separate path, which will provide high tolera~ce of I/O failures. As

soon as the first column -(or row)' receives the datdinstruction it will broadcast it along the

other dimension, using the regular system links.

Utilizing the system links for VO transfer requires some consideration. We might create

congestion along the links when VO and interprocessor communication have to take place

along the same link at the same time. There are two reasons to believe that sharing the

links for VO and interprocessor communication does not lead to congestion. Most

problems are solved on multiprocessor systems in the following manner:

Distribute the data and code to each processor

carry out the computation in a cooperative manner, and

combine the results together.

Step 1 and 3 are I10 cornrnunications and step 2 requires computation and interprocessor

communication. With such a model of solving a problem we can see that the VO

communication and interprocessor communication do not overlap in time. And this leads

us to conclude that the system links. can be efficiently shared for both 110 communication

and interprocessor communication. An obvious problem with this approach is that it

forces the first column/row of the network to have a different topology.

In order to provide higher VO bandwidth for the hypermesh and also to relax the problem

just mentioned, the following scheme is proposed. In this scheme the VO requirement can

Isexcept the fist row/column.

VLSI Constraints and Hardware Support '

for Communication in Multicomputer Networks

. a .

Figure 3-4: A hierarchy of network controllers for YO.

be handled in a hierarchical manner. This means that the required I/O to this two

dimensional network can be provided through a one dimensional array of the nodes

requiring exactly similar communication components. In this array, each node is in charge

of one row16 of the network (Figure 3-4). Since the described communication component

features two sets (one for each dimension) of n-1 input channels for inter node

communications, therefore the nth link can be treated for VO.

The next layer of this hierarchy will probably require a higher bandwidth for more

efficient VO activities. In that respect, local bus links (16-bits wide) can then be assigned

and used effectively to provide the required bandwidth, between a single node and the

mentioned array of network controllers.

Note that the whole system (including I/O) is quite symmetrical. In general, the node

architecture used to implement communication nodes in the base hypermesh

(communication layer) can also be used for nodes in the 110 subsystem, thereby reducing

the hardware variety in the system. Figure 3-4, shows part of a 16 node configuration. In

this figure, a 16 node base hypermesh is controlled by a 4 node NC which, in turn is

controlled by a single NC. Thus, there ire a total of 1+4+16=21 NC nodes in the system.

16could be at most for two rows in hypermesh.

Evaluating success and Benchmarking

Chapter 4

Evaluating Success and Benchmarking

The appearance of any new computer system raises many questions about its

performance, both in absolute terms and in comparison to other machines of its class.

Multicomputer networks are no exception.

Repeated studies have shown that a system's performance is maximized when the

components are balanced and there is no single system bottleneck [ReedFuji 871.

Optimizing multicomputer performance requires a judicious combination of node

computation speed, message transmission latency, and operating system software. For

example, high speed processors connected by high htency communication links restricts . ,
the classes of algorithms that can be efficiently. supported'page 8$.

L

In this chapter expressions for important metrics of network performance for hypermesh

will be derived first. Another important performance characteristic of a parallel processor

is its ability to perform data permutations. .In section 4.2 this issue will be discussed and

an upperbound for performing any permutation function on the proposed network with the

variety of indexing schemes will be derived. An interesting feature of the D-hypermesh in

performing a set of most important permutation functions in constant time will be followed

by an analytical proof. Section 4.3 explains our approach to parallel programming (slice

concept) and describes the implementation of two applications on a simulator of the

proposed mu1 ticomputer sys tem.

Evaluating Success and Benchmarking

4.1. Important Metrics of Network Performance and Properties of
Hypermesh

Three important metrics of network performance are latency, capacity, and throughput

Dally 87al. Latency, Tl, is the sum of the latency due to the network and latency due to

the processing node.

TI = Twt+Tmde (4.1)

Network latency depends on the time required to drive the channel, T,, the number of

channels a message' traverses, D, and the number of cycles required to transmit the

message across a single channel, LIW, where L is message length.

Tnel = Tc(D+L/W)

Other important evaluative measures of an interconnection network is the average distance

[AgJap 861. This is the distance messages must travel, on an average, in the network. It is

advantageous to make this as short as possible. The average distance (in terms of the

number of links) is defined as: . .

r

z d ~ ~
d= 1 AvDist =

N- 1

where Nd is the number of PEs at a distance d links away:;-is the diameter and N is the

total number of computers. If we select two processing nodes, Pi, Pj at random, the

average number of channels that must be traversed to send a message from Pi to P, is given

by the following equation for a hypermesh.
2n -

Tav(n) = a (4.4)

Throughput, another important metric of network performance, is defined as the total

number of messages the network can handle per unit time. One method of estimating

throughput is td calculate the capacity of a network, the total number of messages that can

Evaluating Success and Benchmarking 51

be in the network at once. Typically the maximum throughput of a network is some

fraction of its capacity @lally 87al. The network capacity per node is the total bandwidth

out of each node divided by the average number of channels traversed by each message

[Dally 87aI. For an nxn hypermesh, the bandwidth out of each node is (2n-l)W, and the

average number of channels traversed is given by (4.4), so the network capacity per node is

given by

Throughput will be less than capacity because not all channels can operate at the same

time. In hypermesh either row or column can be used for data transfer operations at each
nW

time. This will make the throughput T. A typical value for throughput is about 1 in a

torus (mesh with wraparound connections) [Dally 87al.

4.2. Some Fundamental Permutations on Hypermeshes

In order to analyze the performance of a multicomputer system it is necessary to

characterize its data permutation ability [ReevGut 891. A permutation on an ordered set of

N nodes can be defined by a one-to-one function n(x), where17 x and n(x) are integers in

the range 0 I x , n(x) I N-1 [HoJess 811. It is often found that a simple -- way of &fbinga - - -- -

permutation can be obtained by looking at the binary representation of x. Thus

~={b , , , b~-~ , . . .,bl}=bn2n-1+bn-12n-2+ - .+b12"-* (4.6)

represents the binary address of an element in the set. Permutations of the set of inputs can

now be defined by operations or permutations on their binary address (Figure 4-1).

In this section the performance of the hypermesh for a number of important data

permutations is described in'detail. These permutations occur in many scientific problems

and knowledge of their performance may also be useful in guiding a programmer to

develop efficient programs.

17x and x(x) represent the addresses of the elements before and after the permutation, respectively.

Evaluating Success and Benchmarking

Figure 4-1: Flow diagram of (A)perfect shuffle, and
(B)bit reversal permutations on hypermesh.

A simple routing algorithm for performing permutation functions on hypermesh is

described first. Then an upper-bound for any permutation using this algorithm will be

derived. In the rest of this section studies on some fundamental permutations on varieties
--

of hypermeshes (in terms of indexing schemes) will be presented. This will be followed

by an analytical proof verifying an interesting feature of the D-hypermesh in performing

the set of studied permutations in constant number of communication steps.

4.2.1. A Simple Routing and message density for permutations
/

We perform this in a two phase algorithm. In phase I of the algorithm, we displace the

messages between columns; This initial displacement ensures that there is no congestion

in routing the message to its target, if two nodes' intend to exchange messages. Phase I

moves data to the same column as the destination is located (along the rows). Also, in

phase I data is moved between adjacent nodes, (if the source and destination are on the
.<I

same row/column). At the end of phase I, each node is holding at most &-I messages. In

phase II data i's moved within columns to its destination row. Since a node can play at

. . Evaluating Success and Benchmarking ..

1-
most VN-1 times as a pivot, and the largest column distance to be covered is 1, the number

of data transfers required in phase II to reach the target row is at most dz-1 . Thus, the
P

total number of data transfers executed by the algorithm is 1 +&-I =&.

This simple algorithm will result in a path in which one node acts as an intermediatior, we

call it pivot here, ,for each pair of nodes. Clearly, whenever a *pair of nodes swap their data

this simple routing algorithm is optimal in the sense that they always utilize different

pivots for each direction . For certain permutations some nodes are involved more than

others in message transmission, and not all the nodes carry an equal amount of traffic.

However, in this case, the maximum number of queued messages at those heavily loaded

pivots will never exceed di , which gives the upper bound for any set of permutations to

be exactly 43.

Some enhancements are possible. For example, if we use a proximity ordering for the

network nodes, a similar routing algorithm can perforin perfect shuffle and bit reversal

permutations both in 3 steps, using hypermesh of size 8x8. A hypermesh with proximity

ordering has an interesting property that n ~ d e ~ , n o d e ~ + ~ are neighbors. Also this-meshmay------- -~~~

be recursively subdivi&dintQ&&s-such-that each sub-mesh contains consecutive
------ ---- - -

-

indexed nodes. Results on performing the set of fundamental permutations on

hypermeshes will follow their quick definition.

4.2.2. Exchange Permutation

The exchange permutation can be defined in terms of the binary representation of x.
-

ek(x)={b,,. . .,bk,. . . ,bl} where l<k<n (4.7)

The bar denotes the complement of a given bit. Thus the K~~ exchange permutation can be

defined by complementing the kth bit of the binary representation of x .

Evaluating Success and Benchmarking

4.2.3. Perfect Shuffle Permutation

The perfect shuffle is so called as it can be performed by cutting the set in two and

interleaving the two sets obtained, as in the perfect card shuffle. This permutation

corresponds to a unit circular left shift of the binary representation of x. +

In terms of row and column indices this can be written as

a(r,c)=(2r mod &+E, ,2c mod &+E,)

where

Ec ={I C2dZl2
0 otherwise

1st step

2nd step

Figure 4-2: Perfect shuffle on bypermesh with
snake like ordering

and 2-step routing solution.

b

Evalualing Success and Benchmarking

4.2.4. Butterfly Permutation

The butterfly permutation is defined over the binary representation of x by exchanging

-the first and last bits.

P(x)=(b1,bn-p . . ,b2,bnI (4.10)

1st step

2nd step

Figure 4-3: Bit reversal on a hypermesh with
a shuffle row ordering; and the overloaded pivots

after first step of the data routing.

4.2.5. Bit Reversal Permutation

The bit reversal permutation, as its name suggegs, is defined over the binary

representation of x by reversing the order of bits (Figure. 4-3).

p(x)={b1,b2, . . . ,bnl

In terms of row and column indices this can be written as

p (w) = @,+9

Evaluating Success and Benchmarking 56

$= reversal of { ~ ~ - ~ x ~ - ~ . . .xo)
= b(yl . . .xn-l 1

It is interesting to note that, the matrix transpose algorithm can be defined as a bit reversal

permutation on a hypermesh network. One application where this permutation &curs is in

the Fast Fourier Transform algorithm ReevGut 891.

Figure 4-4: Flow Diagram of bit reversal permutation
on an 8x8 D-hypermesh.

Evaluating Success and Benchmarking

4.2.6. Shift Permutation

The near-neighbor interconnection network of the MCC can only directly implement the

shift permutation. Any other permutations can only be achieved through the shift

permutation. Clearly, this is not the case in hypermesh network. The shift permutation can

be defined as following. In terms of the binary representation of x, the following equation

defines the binary addition over the n-bit field, ignoring overflow .
a(x)= 1 x+ 1 1 2. (4.13)

1st step

2nd step

Figure 4-5: Perfect shuffle on hypermesh with
proximity ordering;

and 2-step routing s61ution.

It is important to note that some of these permutation functions can be realized with fewer
-

- routing steps on other types of ordering in hypermesh (Figures 4-2,4-3,4-5).

e -

A summary of the complexity results of performing these permutations on hypermesh

networks (nxn) is given in Table4-1. Each entry in this table indicates the number of

routing steps required to perform the corresponding permutation function for the specified

Evaluating Success and Benchmarking 58

ordering of.the nodes. As the table shows, D-hypemesh turns out to have very interesting

properties in terms of permutations. For these permutations a 2-step routing solution using

the routing algorithm presented in Chapter 2, exists. For example, the bit reversal
7

permutation can be performed on this network, in just 2 communication steps, regardless

of the network size. Figure 4-4 shows the flow diagram required to perform the bit

reversal perfnutation on an 8x8 D-hypermesh (in here network horizontal and vertical links

are elided).

Table 4-1: Routing complexity on hypermesh
of size (nxn) with a set of indexing scheme

for a variety of frequently used permutations.

row major snake like proximity shuffle row d-hypermesh

---I
k 4.2.7. AnalyticaLProof for 2-Step Routing on D-hypermesh

bit reversal

perf. shuffle

exchange

butterfly

Experimental results (using an APL program) for performing permutation functions show

d
a 2-step routing solution on D-hypermesh with up to 256x256 in size. In order to

generalize this property to an arbitrary size of network, an analytical proof is given here.

Here the bit reversal permutation is used to demonstrate this proof. Clearly, this can be

done for someother permutation functions as well. In an nxn network of processors18, the
--

18~ef ine n=2k; c,r are k-bit binary encoding of column and row numbers.

n

3

1

2

n / 2

2

2

2

In=I,B)

3

log n

3

2

n

n

1

2

2

2

1

1

Evaluating Success and Benchmarking 59

bit reversal function in terms of row and column indices can be written as

p(r,c) = (cR,P) where 0 5 r,c 5 n-1 and 0 S cR,$ 5 n-1 (4.14)

The pivot node for each data transmission can be found using the function

6(;,c) = (r , (cR+P-r) mod n) ,, ,-- (4.15)

In order to prove-tl& this network can perform permutation functions in 2-steps, we have

to demonstrate that in the first step of the routing algorithm, none of the pivots receives

more than one message to forward.

To do that, it is sufficient to prove that the pivot function, 6, is an injective function (i.e.

Suppose (xlr2) and Cyly2) are the coordinates of 2 nodes. Then

4- .. are the pivot nodes of (x1j2) and (yl,y2) regpectively. - -

Two tuples are equal if corresponding terms are equal. So,

a) XI = Y 1
if X = Y then

b) - (X ~ ~ + X ~ ~ - X ~) hod n = (y,R+YIR-YI) L mod n

4

V

- Since p is an 1-to-1 function, from Eq.(4.-17)-a, we get

Substituting xlRixl =ylR-Yl = C into Eq.(4.17) yields

(x ~ ~ + c) mod n = tyZR+C) mod n
\

Since a mod n = b mod n ->"(a+d) mod n = (b+d) mod n. Therefare -

- -
(x~~+c+(-C)) mod n = c ~ ~ ~ + c + (- C)) mod n

Evaluating Success andyehhmarking

can be simplified to:

xZR -y2R mod n

Y

< n (from Eq.(4.14)) implies that Finally since x2 ,y2

X2R = y2R ->20 X2 = Y2

the proof is complete.

4.3. Environment for Multicomputer Simulation

For effective use of parallel systems, it is essential to obtain a good match between

algorithm requirements and architecture capabilities. Information which captures the

relationships between parallel algorithms and parallel architectures can be investigated

using a simulation. Moreover, task (application) level modeling of multiprocessor

architectures may produce some good insight into the trade-offs between computation

versus communication, low versus large granularity, alternate mapping, scheduling and

both static and dynamic routing strategies.

The lack of adequate system software is currently the largest hindrance to parallel

program development for multicomputer networks [ReedFuji 871. This is partly because

of the requirement for a network based operating system to support message-based

communication features at the software level, on top of primitive comhunication support

at the hardware level. Another reason perhaps is that no matter what the interconnection

network looks like, the communication patterns required by some algorithms will be

inefficient or difficult to formulate.
-

One of the objectives of this thesis was to study a possible simulator for a multicomputer-

m ~ g a i n , because bitreversal is an 1-1 function.

Evaluating Success and Benchmarking 6 1

system based on the same language as the real version21. Then, since the simulation and

implementation languages are identical, the overhead of transporting software to the real

implementation is negligible. This enables us to consider the correctness issue of the

programs outside the structure of the real system.

Simulations of the hypennesh were performed to evaluate various design options and to

validate that our design of a message transmission could meet the objectives. A

hypennesh simulator has been set up using the APL and C languages. The essence of this

approach is that each line of APL code represents one real microinstruction [Hobson 871.

A matrix multiplication algorithm has been implemented on the multiprocessing simulator,

to verify the correctness of the afgbrithm and also to verify the required communication

primitives on such a network. Some other sample algorithms using a tree reduction

technique and also using a centralized control algorithm for array summation has beer?

implemented. The system is written in APL and C language and run on a Sun workstation.
?

The code is divided into two parts.

An APL program which is the implementation 'of the matrix-to-matrix
multiplication algorithm, specifically designed for the* hypermesh network.
The node program is exactly the same for all nodes. Another simple program
is also required (for a network manager) to set up and configure the network.

A C code, implementing the communication primitives required for the
communication between APL processes. The role of the C code, is in fact, to
facilitate the communication between tasks (node programs) running on
different APL environments.

work on a more realistic hypermesh multicomputer simulator using APL and C on a

network of Sun workstations has been initiated, but because of the problem with the

existing APL-C interface, the Inter-net communication primitives cannot be implemented

dxectly in C as a m ~ t i n e ~ ~ . One of the aspects- that needs to be considered in any
--- --

2 1 ~ n a very recent work by Olsen er 01, [BaOlSo 891 "Occam" language has been used for a simulator of a
network of transputers.

22An internet communication activity was causing a crash on APL-C interface. However, that was taken
care of by addmg more complexity in Internet communication and implementing it as interrupt handler
routines.

Evaluating Success and Benchmarking 62

simulation is to ensure that the simulator is free from properties like deadlock and various

time-dependent errors. In this respect, more work needs to be done in terms of the

hands haking requirements.

The algorithms developed in this chapter have a great deal in common:

node processors are synchronized by passing messages,

messages are short, containing constant length,

routing decisions are solely based on local information.

To implement a good data parallel algorithm on the hypermesh multicomputer, one has to

consider the number of processors required, an efficient way to partition the data, an

efficient way to map partitions into processors, and the role of the network controller must

be determined. We use two simple examples, array summation and matrix multiplication,

to demonstrate various techniques to solve these problems. In this technique, each

processor knows exactly what to expect from the network as part of its algorithm slice.

There is no data interpretation overhead.

4.3.1. Array Summation

Given a vector of numbers, a,, a2. . . . , a,, we want to compute their sum,

A=al+a2+ . a +a, . Each number, ai, is stored on different node. One approach, the -

centralized accumi4lation method, is to partition the vector into k subvectors, each having a

size of xi (0 2 i 5 l1N) 23. One subvector is assigned to a node to calculate the partial sum.

All partial sums are collected by the host to evaluate A [NiKing 871. The host then may - -
initiate another step, by redsmbuting the partial sums among half of the active nodes of

the previous step, and c a n y m this strategy until a single result gets collected by the host.

An implementation of this model has been done.

Another approach, the tree structured accrimulation method, is to use a tree reduction

among the nodes to accumulate the partial sums. The host then receives the final sum A

- - -

2 3 ~ is the network size.

Evaluating Success and Benchmarking

staqe I11

staqe I1

staqe I

Figure 4-6: Tree reduction scheme.

from the root of the reduction tree (Fig. 4-6). There are other tree numbering conventions

which could be used in tree reduction algorithm. For example, a tree reduction algorithm

based on the balancing tree [Dally 87a] model has also been implemented (in a simulator).

To describe the concept of the algorithm slice in a synchronized array processing a scalar

aggregation on a hypermesh will be discussed. Here we consider the addition of a vector

of elements (or partial results), each resident in the local memories of each processor in the

hypermesh. First, all the nodes compute their local aggregate values. Next, all the local

aggregate values need to be combined to determine the global aggregate value. The global

aggregation phase takes logn steps for one row of an nm hypermesh24.

In the ph step, k = l to logn, nodes (pi) whose rightmost k address bits are equal to the

rightmost k bits.of the host address (the root), read the aggregate value from the nodes

which differ in address (from pi) in the kfh bit. Clearly Zlogn steps would be required to

get the final result at the root (i.e. node(0,O)). A distributed routing algorithm of low

complexity has been implemented using a simulator. Each node in the network, has a

24~learly, this process is running simultaneously for all rows of h e network, in which nodes along the firs1
column act as temporary rools for their row correspondingly. v.

Evaluating Success and Benchmarking 64

binary number of length 21og n corresponding to its position in the mesh. All nodes are

programmed equally, and the routing algorithm is based on the node ID. A simplified

algorithm for one row of the network is given in 4-6. In this algorithm n processors are

employed, each initially holding one input value.

for all PEs do; 0 I ID I n-1
for step=l to log n do

bit=myid(step)
ifbit=O then

receive-from (myid $ bit)
else

send-to (myid 63 bit)
exit

F
od

od
I* myid(i) is the ith bit in binary

encoding of the node ID. */

Figure 4-7: A typical slice algorithm for a'scalar aggregation
in synchronized array processing.

The addition across a set of eight elements is shown in Fig. 4-6. The figure shows the

stages and the binary tree structure control in the operation. The architecture is initially

partitioned into clusters of two adjacent nodes with one active processor in each cluster.

4.3.2. Matrix Multiplication

Let A and B be matrices of size (nxn), the network size. In forming the matrix product

C=AxB with elements

there are n3 products aiPk, to be calculated. There are various strategies for forming this

product on a parallel computer with nxn processors [JagKai 891. The mamx C=AB has n2

entries, each in the sum of products of n pairs of numbers.

Evaluating Succb?ss and Benchmarking

If * denotes term-wise multiplica~

vectors; for vector and o:

:ion respectively on objects such as matrices and - -

u * w = (up . . ., u,) * (a1, . . . , o,) = (ul*ol , . . ., u,*o1)

Then all multiplications can be performed (notationally with a single application of *), by

multiplying positions of the data entries, at each node (n-steps). For instance, for a 2x2

case, we have the following

which is now more conveniently arranged as

Now various additions must be made (after performing the termwise operation "*"), and

sums assigned to the corresponding position in C (at each node). In general there are n2

results in the result mamx and each of the entries consists'of the addition of n numbers

(which takes log n steps using tree-reduction technique). However, since a multiply-

accumulate operation can be done in just one operation (pipelined), there is no reason for

that e k a addition step.

A brief description of the program is the following: The Control Node program

configures the network25. It initially broadcasrs the size of the network. Then it receives a

vector operation by interacting with the user, and then broadcasts the vector operation to

the entire network. Each node then starts executing its own program, (all nodes are

programmed equally). Each n ~ d e is assigned an ID associated w i ~ h its,position in the

hypermesh structure. All the decisions making during the execution of the node program

35~onuol Node is acting lke a Cube Manager in hypercube architecture.

Evaluating Success and Benchmarking 66

are based on h e node ID. The algorithm consists of 2-step broadcasting operations (one in

A, and one in B), followed by multiply-accumulate operation at each ;lode. In the first

step, the elements in each column of the matrix A, is broadcast to all others. Similarly, in

the second step, the same algorithm will take place for the matrix B (in each row). These

steps leave 2n data at each node ready to be consumed by the node processor for n local

multiply-add (pipelined) operations. Moreover, all the routing decisions are solely based

on local information.

Up to this point we have assumed that there are enough cells in the network to hold the

entire problem. Of course, there will always be problems too big to hold on a physical

machine. One is that the size of matrix is larger than the size of the network. In this case,

the matrices need to be partitioned into smaller units, where each unit is dealt with in

parallel; for example, if the matrices A, B, . . ., H are all of order nxn, and with n2

processors available, the most obvious method of multiplying matrices of order (2nj2 is as
1

follows:

Where each product in the right-hand side is computed in parallel. In general case, it is

possible that the given matrix is not a complete permutation of the network size. One

simple solution to this problem is to augment the matrix with extra zero elements (along

rows/colurnns) in order to get a copplete permutation of the network size. Then split it

into small sizes each one the same size as the network. Figure 4-8 shows one example of

such partition. This approach has been taken in [HobKaf 891.
t

Evaluating success and Benchmarking

Data p l ane 0

Data p l a n 1 a(OlO) a (o11) a (o12) a (0 ,3)
C

Data p l ane 2 /

'a(310) a (3 , l) a (312) a (3 J)

Matr ix A

Figure 4-8: Mapping 4x4 matrix items on 2x2 processor ar;ay

4.3.3. Performance Study of Matrix Multiplication

All hypermesh computations combine both communication and computation; hence, a

single number such as MLPS, MFLOPS, or bitslsec will not accurately reflect

communication and computation or the performance for different applications.

In evaluating a parallel system, two performance measures of particular interest are

sppedup and eflciency [EaZaLa 891. Speedup is defined for each number of processors p i.._

as the ratio of the elapsed when executing a progiarn on a single processor (the

single prcxessor execution time) to the execution time when p processors are available. In

the notational form,

%e cost metric could be a throughput, which is an appropriate cost measure if one has many such
computations to be performed and the computations may be overlapped [Whelm 881.

\

Evaluating Success and Benchmarking

Efficiency is defined as the average utilization of the p allocated processors. Ignoring VO,
-,

the efficiency of a single processor system is 1. Speedup in this case is of course 1. In

general, the relationship between efficiency and speedup is given by

S(P) E (p) =-
P

The theoretical maximum value of S(p) appears to be p (and of E(p) to be I), attained when

the algorithm is fully parallel and the calculation is distributed equally among all

processors (processing elements). This time may be thought of as measured in clock

periods. An eff&iency study has been done [HobKaf 891 for manix multiplication

algorithm. MicroAPL techniques have been used to demonstrate how nxn matrix multiply

may be broken into outer and inner routines for execution on the hypermesh mobSim

87, HobTho 811. A copy of the code with explanations can be found in Appendix C (from

[HobKaf 891). Uniprocessor version of this algorithm (from WobGud 861) can also be

found in Appendix B. For matrices of size M; (mxm), and hypermesh of size N; (nxn), the

efficiency function reveals that for m 2 16 and n 2 8, the efficiency is 2 1 [HobKaf 891.

This interesting result is due to a more efficient inner loop in the hypermesh algorithm than

in the uniprocessor algorithm. After processors broadcast row/column data, the network

co-processor can deliver this data for computation without the same startup penalty as the a

local memory system.

A significant advantage that synchronized array processing algorithms have over message

passing concurrent algorithms i4 that data exchanges through the network are very precise.

Each processor knows exactly what to expect from the network as part of its algorithm

slice. There is no data interpretation overhead.

Evaluating Success and ~enchmarking .

4.3.4. Matrix Multiplication on Diagonal Hypermesh
jr

Excellent features of diagonal hypermesh in performing most important classes of

permutations have been discussed earlier. Now we are interested in performing matrix

multiplication on' D-hypermesh. It is clear that the communication pattern required for

matrix multiplication is not directly matched to the D-hypermesh structure. However,

several approaches can be taken into consideration. One could look for another algorithm.

For example, each column of matrix B (say col. i) can be projected into the row i, simply

in one routing step . Then using the horizontal links and broadcast operation and finally

reprojection of these data from row i to column i, it will end up in the same data setup

requirements as the previous scheme for matrix multiplication on regular hypermesh, (of

course the elements of matrix A must also become available to all nodes along rows which

needs a single broadcast operation). In this scheme, the reprojection step requires n data

transmission steps, _which is disappointing (Figure 4-9).

Figure 4-9: Another representation of a Diagonal Hypermesh.

In terms of time complexity, this scheme requires O p steps communication and O(n)

times computation. Therefore, the total complexity stays unchanged (as compared to the

same operation on regular hypermesh). However, a close look at the APL implementation

(hardware execution) of this algorithm, and an asymptotic analysis of its execution time (in

Evaluating Success and Benchmarking ' f' 70
/ ' .

terms of the number of cycles), will result a degradation in speed over 25 percent, for a 4x4

D-hypermesh. For a network of 64 processors (8x8 D-hypemesh) this degradation is over

' 30 percent27. Another approach would be a techr&$e by Winograd [JagKai 891 to

compute the matrix multiplication using the following formula:

-
The advantage of this procedure is that only the first summation, which requires half as

many multiplications as the straightforward algorithm, need to be computed for each value

of the pair i,j. The second summation need just be evaluated once for every value of i28,

and the last summation for every valae of j29. This means that these two sums can be

evaluated fust at each row and column (using fastest technique, namely tree reduction

. along row/colurnn) and then the final result can be broadcast to other nodes along row, or

column accordingly. Then these two terms can be combined together (add operation)

locally, and form a constant number as a initial value for further multiply-add operations.

The effort required for communication and then computation of the first term dominates

the final elapsed time in D-hypermesh, and also the pipelined multiply-add operation

which is a single cycle operation in current arithmetic units cannot be used efficiently. On

hypermesh class of networks this approach turns out to be no better than the previous

approach.
3

It is possible to rearrange the initial data at each node, in order to derive a more efficient

solution to this problem. This can be done by reordering the initial data along rows of the

nThis is simply be&usec of the extra number of communication based operations required in this
approach.

28di the nodes along each row will have the same value.

29all the nodes along each column will have the same value.

6
Evaluating Success and Benchmarking 71

I
- network (Figure 4-10). The crux of this algorithm is a data routing operation which we

shall now define. All the data permutation operations are cyclk shifts on rows or columns

Figure 4-10: One step reordering in a D-hypermesh;
horizontal links are elided.

P

and may be broadly categorized under the following:

RRotate(+l-x) , CRotate(+l-x)

As the name suggests, there are cyclic shifts in the horizontal (Row) and vertical (Column)

directions, respectively. The amount of shift in each row(co1urnn) is determined by a

parameter (x). Figure 4-10 illustrates an instance of RRotate(+myrow). The elements in a

row are cyclically shifted. It is clear that shift on rows can be carried out in just one

routing step in D-hypemesh. Therefore, any data permutation operations defined by

Rotate() operation can be achieved in one parallel routing step if data under shift is in the

router, otherwise, a memory access time must be added to the required time.

Simply applying this Rotate operation along rows of the D-hypermesh, with the amount

of shf t equal to node's row index, will result a regular hypermesh-like network. Then, the

same matrix multiplication algorithm on hypermesh can be carried out. Finally the end

results should be shifted back to the right places. Therefore, only small degradation in

performance over regular hypermesh will be caused.

Evaluating Success and Benchmarking . 72

.+

Performing a permutation from the set of most important permutation functions (Section

4.2; Table 4-1) on regular hypermesh seems to be possible to benefit-from the current

results on transforming D-hypermesh to regular hypemesh. Since the mentioned

permutation functions can .be performed on a D-hypermesh in at most 2 routing steps for

any network size, therefore performing one transformation from regular ordering to D-

hypermesh or&ring before the permutation task, and another rearrangement (fix-up) step

right after the permutation task, will give a 4-step routing solution for the set of mentioned

permutation functions regardless of the network size. This gives, for example, a 4-step

routing solution for performing bit reversal permutation on a regular hypermesh of size

256, (16x16), instead of 16 steps required otherwise. Thus, any algorithm which requires

the class of the studied permutations can always be achieved in constant data routing time.

Conclusions

Chapter 5

Conclusions

Parallel architectures and the way that they support the efficient execution of parallel

algorithms is an important area of current research related to high-performance computer

systems. The choice of an appropriate architecture for any electronic system, is very

closely related to the implementation technology. This is especially true in VLSI computer

systems whose computational goal is the implementation of compute-bound algorithms

rather than VO-bound computations. VLSI technology can provide us with a novel set of

building .blocks for the construction of high performance point-to-point networks for

closely coupled multicomputer systems.

One of the objectives was to get topologies with minimum diameter and minimum

average distance simultaneously. We have shown an appropriate design choice of the

adjacency pattern between network elements, yielding a network satisfying this constraint.

This thesis has presented different modifications that can be made to a standard mesh-

connected parallel processor organization, and has shown how they support efficient

parallel algorithms for performing an important set of computational problems. The

proposed system is suitable for the large class of scientific applications which involve

regular operations on data arrays. Many of these applications involve matrix operations

such as the Fast Fourier Transform (FIT), in which data permutation is the basic functional

primitive, and matrix multiplication. The problem of efficiently performing permutations
I

on a hypermesh system has also been considered. Here, a very simple control algorithm on

the hypermesh network has been proposed, which can' realize many frequently used

permutations in constant number of steps. However, the upper bound for any arbitrary

permutation has been shown to be Another variation of hypermesh named diagonal .
hypermesh has been introduced. An APL implementation of permutations on Diagonal

Conclusions

hyperrnesh revealed that a 2 step routing solution exists, independent of the network size.

This interesting result has been accompanied with an analytical proof. Results about the

performance attained by hypermesh network have been presented here and comparison

with some other mesh-type networks are provided.
l/',-

Another important advantage of the hypermesh is its ability to map other communication

topologies onto itself. In this regard a 'direct mapping of hypercubes onto the hypermesh

has been discused. This prdperty highly simplifies algorithm design and allows the

exploitation of very efficient communication patterns. For a wide class of problems, the

organization offers significant performance advantages over regular mesh-connected

computers, or other mesh modifications that have been proposed previously. The strong

connectivity, regularity, and symmetry of the hypermesh and also its versatility in

embedding many other networks in linear complexity makes it a good candidate for a more

general-purpose parallel processors. Many classes of algorithms can be naturally mapped

onto the hypermesh, and distributed routing and broadcasting can be implemented

efficiently. A hypermesh's full features can be exploited in array processing operations

where the sliceing concept is used by implementing a synchronized array processing

algorithm. However, this architecture may not be well suited for regular message passing

systems with asynchronous communication requirements.

The hypermesh is not easily expandable. This hampers a modular growth of the network.

We should thus seek a hierarchical solution to parallelism in the same sense that we have

hierarchical memory systems. At the bottom of the hierarchy we have modestly sized and

very efficient arrays of processors. Above that layer one must tolerate gradual degradation

of efficiency due to inherent physical constraints. Network topology in the bottom layer

may be different from network topology in higher layers. This is an open problem, In fact,

hypermesh system's expandability is due predominantly to the design of the NC chip. The

wiring complexity of the hypermesh grows at the rate of d ~ , where N is the network size:

This penalizes the hypermesh seriously under the packaging constraint. One solution to

this problem is reducing bandwidth which will allow us to have more communication links

for the NC chip.

, .
Conclusions

Simulations of the hypermesh were performed to evaluate various design options and to

validate that our design of a message transmission could meet the objectives. Hypermesh

simulator has been set up using APL and C languages. The essence of this approach is that

each line of APL code represents one real microinstruction. A matrix multiplication ,

algorithm has been implemented on a multiprocessing simulator, to verify the correctness

of the algorithm (slice) and also to verify the required communication primitives on such a

network.

Another goal of this thesis was to investigate hardware support for data passing that

obviates the need for software control. .Some key issues which must be considered when

designing a high performance -network controller based on VLSI technology has been .
discussed. Technological considerations in the design of a communication component

have also been examined. By offloading communication to a separate processor, the node

processor is potentially free to overlap computation with Communication (just the

communication needs to be set up). Special instructions have been provided to support

communication between nodes. Unllke many other multiprocessor networks the

connectivity of the host and the hypermesh nodes is considerably richer, through a

hierarchy of network controllers, providing increased flexibility and greater I/O bandwidth.

Overall, the objectives of this thesis have been met. Further research is necessary to

determine the practical significance of the hypermesh in the commercial world.

ACRONYM

AP

D-hypermesh

DRAM

FLIT

MIMD

MCC

NC

PE

SIMD

SJMC

VLSI

Appendix A

Glossary of Acronyms

EXPANSION

Arithmetic Processor

Diagonal hypermesh
-

Dynamic RAM

FLOW control digIT

Multiple Instruction Multiple Data

Mesh Connected Computers

Network Coprocessor

Processing Element

Single Instruction Multiple Data

S AMjr 's Memory Coprocessor

Very Large Scale Integration

Appendix B

Uniprocessor Matrix Multiplication

McroAPL techniques are used to demonstrate how mamx multiply may be broken into

special outer and inner routines [HobSim 87, HobTho 811. Some simplifications are made

for the sake of readability. It is assumed that operands are pipelined to a floating-point
L

processor based upon Weitek's chip set used in flow through mode, cf. [Weitek 841.

Action codes are placed in, FPCTRL, while an execution is triggered by an FPEXEC.

ERROR is one of 7 directly testable message (interrupt) flags. Each nonempty line of

microcode takes one system cycle, T.

The outer routine receives matrix dimensions, M, K, N in registers R[M], R[K], R[N].

Register R[RINDX] keeps track of columns in the right operand. R[LINDX] keeps track

o f rows in the left operand. RIT] holds the column step size in bytes. Data streams for

LEFT, RIGHT, and DEST are also passed to MATMUL by the format routine. Data

streams are started by SWW (segment write word) or SRW (segment read word). Data

streams are advanced by SSN (segment source next), or SDN (segment destination next).

These memory coprocessor instructions are defined in [HobSim 871. - -

Comments are preceded by :

Uniprocessor Matrix Multiplication

MATMUL
[11 start destination and create column step:
[21 DEST SWW D'O' A R[n+- 2 XSHIFT R[Ml,Z'EROS
[31 R[WNDx] t NOP D'O' A

FPEXEC A F P C T R L t D'clear-accumulator-code'
[41 LOOPl:

R [R I N D X] t NOP D*-8' initialize column index.
[51 LOOP2:

LEFT SRW R[WNDX] start current row in left.
[61 SBN LEFT A COUNTER* NEGATE R [m initialize hurdware counter.

1

[71 CALL 'INNERPRODUCT' A R[RINDX] t R [RINDX] PLUS D'8'
[81 -+ BAD IF ERROR A SF R[RINDW MINUS R [q A DEST SDN ABUF[DO]
[91 DEST SDN ABUF[Dl]
[l o] DEST SDN ABUF[D2]
[l l] + LOOP2 IF 7 ZERO A DEST SDN ABUF[D3]
[121 R[LCOUNT]t- SF R[LCOUNT] MINUS D'1 ' SF = sample flcrgs.
[13] -+ LOOP1 IF 7 ZERO A R [L I N D X] t S A R [L E W
[14 1 SAR contains autoincremented row-ofSset.
[151 -+ 0 A SR t D'O' clear status.
[16] BAD: ' p rocesserror.
V

Inner-product proceeds as a 10 microinstruction loop using pipelined multiply-accumulate:

V INNERPRODUCT
64 bit data.

[11 COUNT V F P C T R L t 'nzultiplj-accumulate-code'
[21 LOOP:

RIGHT SRW R[RP] start right data stream.
[31 SBN MGHT
[41 ABUF[LO] t SSN LEFT
[51 A B U F [L l] t SSN LEFT
[61 ABUF[L2] t SSN LEFT
[71 ABUF[L3]+ SSN LEFT A R [R P] t R[RP] PLUS R [q
[81 ABUF[RO]t SSN RIGHT
[91 ABUF[R 1] t SSN RIGHT
[l o] A B U F [R 2] t SSN RIGHT
[l 11 +LOOP IF 7 COUNT A FPEXEC A A B U F [R 3] t SSN RIGHT
[121 FPEXEC A FPCTRLc 'unload-and-clear-accumulator-code'
[13] + 0 delay 1 for output to catch up.
v

P A

Appendix C

Mict'oAPL Code for Matrix Multiplication
- on Hypermesh

MicroAPL techniques are used to demonstrate how (mxm=M) matrix multiply may be

broken into outer and inner routines for execution on the hypermesh [HobSim 87, HobTho

811. The approach taken is to divide the operand matrices into nxn submatrices which fit

the hypermesh exactly. The inner routine computes an nxn piece of the result, which

requires, K=m/n, nxn matrix multiplies. The ouler routine effectively sequences a smaller

matrix multiply problem of size, KxK, where each result element is computed by the inner

routine.

Some simplifications are made for the sake of readability. It is assumed that operands are

pipelined to a floating-point processor based upon AMD or Weitek chip . Floating-point '

data fifo-buffers for right and left arguments are FPR, and FPL. Floating-point instructions

are placed in FPCTRL, while an execution is triggered by an FPEXEC. FPERROR and

NETERROR are directly testable message (interrupt) flags. Each nonempty line of

microcode takes one clock cycle, T.

The outer routine receives modulo matrix size in R[SIZE] (=K=m/n). This is the actual

matrix size, R[MAT] (=m), divided by the network diameter, R[NET] (=n). Register

R[BINDX] keeps track of columns in the right operand. R[AINDX] keeps track of rows in

the left operand. R[STEP] holds the column step size in bytes. Data streams for AMAT,

BMAT, and CMAT are also passed to MATMUL by an outer control routine. Memory

coprocessor instructions are defined in [HobSim 871. Network coprocessor instructions

are defined in table 3- 1. Comments are preceded by :

MicroAPL Code for Matrix Multiplication
on Hypennesh

V MATMUL
[11 stmt result and clear A offset.
[21 CMAT SWW R[AlNDX] t NOP D'O'
[33 R[INC] t 0'8' data size. \

[41 create column step:
[53 R [q c 2 XSHIFT R[SIZEj,R[ZEROS] mult by 8 for bytes.
[63 R [S T E P] t NOP R [g A

FPEXEC A F P C T R k D'clear-accumulator-code'
[71 LOOPl:

R[BINDX] t NOP D'O' initialize column index.
[81 R[BI'ITR] t R[SIZE] initialize column counter.
[91 R [ATEMP] t R[AINDXJ .
[l o] R[BTEMP] t- RIBINDXJ
[l 11 LOOP2:

CALL 'IN~~ERPRODUCT' A
R[ATEMP]+ R [I N q PLUS AMAT SRW R[ATEMP]

[121 -+ EXIT IF ERROR A R[BI7'TR] t SF R[BlTTR] PLUS R[ONES] A
CMAT SDN FPSN

[13] CMAT SDN FPSN A R[BlNDX) t R[BINDW PLUS R [I N q
[14] CMAT SD FPSN A R[BTEMP] t R[BINDXJ
[15] -3 LOO d F 7 ZERO A CMAT SDN FPSN A R[ATEMP]+ R[AINDXI
[161 R [g t SF R [g MINUS R[INCI SF = sample flags.
[17] -+ LOOP1 IF 7 ZERO A R[AINDX] t R[AINDXJ PLUS R[STEP]
[I81 + 0 A SR t NOP D'O' clear status.
[19] EXIT: process errors. ..
V

MicroAPL Code for MatrirMultiplicadon
on Hypermesh

V INNERPRODUCT
[11 start col memory stream:
[21 R [B T E M P] t RESTEP] PLUS BMAT SRW R[BTEMP]
[31 R [I F R] t R[SIZEl A

FPCTRL t D'multiply-accumulate-code'
[41 SBN AMAT *fill row stream buffer.
[51 OLP:

SBN BMAT *fill col stream buffer.
[61 NRBC initiqlize row broadcast.
[71 NDN SSN AMAT feed next 64 bit row word to net.
[81 NDN SSN AMAT
[93 NDN SSN AMAT

, [l o] NDN SSN AMAT
[I 11 NCBC initialize col broadcast.
[12] NDN SSN BMAT
[13] NDN SSN BMAT
[14] NDN SSN BMAT
[I S] NDN SSN BMAT A COUNTER t NEGATE R[NET]
[161 NRWA 0'4' A COUNT setup alternate read.
[171 ILP:

FPLN t NSN
[18] FPLN t NSN left arg.
~ 1 9 1 PPLN t NSN
[20] FPLN t NSN 8

[21] FPRN t NSN right arg.
[22] FPRN t NSN
[23] FPRN t NSN A

[24] + ILP IF 7 COUNT A FPEXEC A FPRN t NSN
[25] + EXIT IF NETERROR
[26] + EXIT IF FPERROR A R[I iTR] t SF R[ITTR] MINUS D'l'
[27] + OLP IF 1 ZERO A R[BTEMP] t R[STEP] PLUS BMAT SRW R[BTEMP]

". 1281 FPEXEC A FPCTRL t D'unload-and-clear-accumulator-code'
[29] -+ 0 one cycle delay for output.
[30] EXIT: error exit:
[3 11 SR t NOP D'error-code'
V

Ignoring constant overhead, the above prototype algorithm executes in the following.
'A

number of cycles: ,

NP(n,K) = ((((8xn+lS)xK)+ lO)xK+G)xK
%

a

In [HobKaf 891, this is compared with matrix multiply on a single processor like NP16, as

determined from similar microAPL code (App.endix A):

MicroAPL Code for Matrix Multiplication
on Hypermesh 82

An important issue here is balancing be tween the system components. Several comments -.
on this program are in order. At a glance, a further reduction in the executidn time of this

algorithm seems possible by employing a high bandwidth local bus. Having in mind the

limitation on the number of pins available to a NC chip, increasing the local bus bandwidth

will require the decrease of the communication links bandwidth. For simplicity of the

discussion, suppose we can afford going from 16-bits to 32 or even 64, without any

influence to the rest of the NC chip. A 64-bits local bus provides a one single cycle

transaction between node processor and NC. However, the required time to perform the

internode communication dictates a few waiting cycles (NOPs) to the node program. It is

not difficult to see that in case of 64-bits wide local bus, the number of inserted NOPs, will

not increase the efficiency of this sample algorithm. Also, in the ILP loop, the floating

point unit may not 'be able to keep up with the incoming operands. In general, these issues

are the matter of technology being used. But it should be pointed out that these issues

must be considered in a hardware implementation.

Another issue here is the bandwidth, against possible network size, with the assumption

of a single NC chip with fixed number of pins. Varying the bandwidth of the internode ,

communication links in a NC will influence the network size supported by that chip. In

order to support a larger network with the same NC chip, one has to decrease the links

bandwidth. For example, reducing the bandwidth (bw) of the communication finks from 8

to 4 bits (byte to nibble), allows the network size which can be supported by one NC chip
K b to be doubled. The above prototype program,(with bw=4 and therefore n'=2n, K'=T)7

executes in the following number of cycles: /

Where the first '6' comes from the number of NOPs inserted inside the OLP loop, in order

1 to let NC to perform the required data communication. Comparing this results with the
, kf

case bw=8, reveals that reducing the bandwidth, from 8 to 4, will offer an asymptotic A

I

MicroAPL Code for Ma& Multiplication
on Hypermesh

speedup of about the order of 4.4 to 4, for different matrix sizes (from 64x64 to 1MxlM).

The point -is that increasing the number of communication links with less bandwidth,

requires more control links. Therefore, a more complete analysis must consider the control

links as well as the links bandwidth.

References

[Akers 891

[~ k l 851

I

I [BaOlSo 891
-

[Bell 861

Bern~an 851

Bokh'ui 841

Bokhari 871

BoxMil881

D. P. Agrawal, V. K. Jan&iram and G. C. Pathak.
Evaluating the Performance of Multicomputer Configurations.
IEEE Computer :pp. 23-37, May, 1986.

Sheldon B. Akers and B. Kri~h'nnmurth~.
A Group-Theoretic Model for Symmetric Interconnection Networks.
IEEE Transactions on Computers 38(4):pp. 555-566, Apr, 1989.

S. C. Akl.
Parallel Sorting Algorithms.
Academic Press Inc, 1985.

K. K. Bogchi, 0 . Olsen, A. Christensen and L. Sorensen.
Simulation and Design of Message Routing Systen~s for Network of

Transputers.
In Proc. ofthe 1989 Eastern MultiConference- the 22nd Annual

Simulation Symposium, pages 69-80. Apr, 1989.

Ramon Beivide, Enrique Herrada, J. Balcazar, and Jesus Labarta.
Optimized Mesh-Connected Networks for SIMD and MIMD .

Afchitectures.
* 1987ACM ():pp. 163-170, 1987.

C. Gordon Bell.
Expert Opinion.
IEEE Spectrum 23(1):pp. 36-38, Jan, 1986.

Francine Berman and Michael Goodrich.
PREP-P: A Mapping Preprocessor for CHiP Computers.
In Proc. of the 1985 International Conference on Parallel prow is in^,

pages 731-733. Aug, 1985.

S. H. Bokhui.
Finding Maximum on an Array Processor with Global 1311s.
IEEE Trarisactiorzs on Compllters c-33(2):pp. 133- 139, I'eb, 1084.

S. H. Bokhari.
Assignment Problems in ~ a r d l r l andDlstribirted Gmpr i i i i i ; : ,
Academic Publisher, 1987.

L. Boxer and R. Miller.
Dynamic Computational Geometry on Meshes and I-Iypercubcs.
In Proc.'of the 1988 International Conference on Parallel process in^,

pages 323-330. Aug, 1988.

J. Dean Brock, A. R. 0mondi;md D. A. Plaisted.
A Multiprocessor Architecture for Medium-Grain Parallelism.
In Proc. the 6th International Conference on Distributed Computing

Systems, pages 167-174. May, 1986.

David A. Cadson.
Performing Tree and Prefix Computations on Modified Mesh-

Connected Parallel Computers.
In Proc, of the 1985 International Conference on Parallel Processing,

pages 715-71 8. Aug, 1985.

T. Chu and C. K. Leung.
Design of VLSI Asynchronous FIFO Queues for Packet Communication

Networks.
In Proc. of the 1986 International Conference on Parallel Processing,

pages 397-400. Aug, 1986.

William J Dally. B

A VLSI Arcliitect~ue for Concnrrent Duta Structures.
KTuweT Academic Publisher, 1987.

William J. Dally.
Wire-Efficient VLSI Multiprocessor Communication Networks.
1987 Stanford Conference on Advanced Research in VLSI.
The MIT Press, 1987, pages 391-415.

William J. Drilly and Charles L. Seitz.
The TORUS Routing Chip.
Disrrihuted Conzputing (1): 187- 196, , 1986.

Derek L. Eager, John Zohorjan and E. D. Lazowska. -

Speedup Versus Efficiency in Parallel Systems.
IEEE Transactions on Computers 38(3):pp. 408-423, Mar, 1989.

Z. Fang, X. Li and L. M. Ni. 7

On the Conununication Complexity of Generalized 2-D Convolution on
Array Processors.

IEEE Trunsactions on Compnters 38(2):pp. 184-194, Feb, 1989.

T. Feng.
A Survey of Interconnection Networks.
IEEE Cotnpmr 20:, Dec, 1981.

hl. A. Franklin and S. Dhar.
d

On Designing Interconnection Networks for
I n Proc. of the 1986 International

pages 208-213. Aug, 1986.
\

[Fuji 831

[GeAbGu 881

[Gentleman 78L

[Hillis 851

Ophir Frieder and C. K. Baru.
Data Distribution and Query Scheduling Policies for a Cube-Conncctcd

Multicomputer System.
In Proc. Supercomputing 87, Vol I , pages 376-388. , 1987.

Richard M. Fujimoto.
VLSI Communication Conponents$or Mdticomputer Nenrv)rks.
Technical Report TR- 137, UCBICSD Berkeley California, 1983.

Edward F. Gehringer, Janne Abullarade and Michael H. Gulyn.
A Survey of Commercial Parallel Processors.
Computer Architectllre News 16(4):pp. 75-107, Scpt, 1988.

W. Morven Gentleman.
Some Complexity Results for Matrix Computations on Parallel

Processors. -

Journal of the Association for Computing Machinery 25(1) :pp. 1 12- 1 15,
Jan, 1978.

James R. Goodman and Carlo 14. Sequin.
Hypertree: A Multiprocessor Interconnection Topology.
IEEE Trhnsactions on Computers c-30(12):pp. 923-933, Dec, 198 1

Y. Han.
A Family of Parallel Sorting Algorithms.
In Proc. of the 1985 lnterriational Conjierenue on Pardlel Prorcssing,

pages 85 1-853. Aug, 198@a,-
+ ,._

I Fi

David T. Harper and Robert Jump.
Vector Access Performance in Parallel Mgmories using a Skewed

Storage Scheme.
IEEE Transactions on Computers ~-36(12):pp. 1440- 1449, Dec, 1987.

John P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley and J. Palmer.
Architecture of a Hypercube Supercomputer.
In proc. of the I986 International Conference on Parallel process in^,

pages 653-660. Aug, 1986.

W. Daniel Hillis.
The Connection Machine. n

The MIT Press, 1985.

R. F. Hobson, J. Gudaities, and J. Thornburg. \

A New machine Model for High-Level Language Interpretation.
In proceedings. 19th Ha~saii Ipternational Conference on System

Science, IEEE Press, pages 132- 139. Jan, 1986.

[I Iobson 87 J

(Kale 861
9

R'. F. Hobson and Masoud R. Kafhesh.
A Mesh-like Array Processor with Fully Connected Rows and Columns.
In IEEE 1989 Pacific Rim Conference on Communications, Computers

and Signal Processing, pages X5- 168. Jun, 1989.

R. F. Hobson, R. W. Spilsbury, VJ. Strange, J. Hmkin and J. Simmons.
Design Considerations for a New Memory Controller Chip.
In 1987 Canadian VLSI Conference, pages 149-154. Oct, 1987.

Richard F. Hobson.
Microprogramming Tools in an APL Environment.
Technical Report TR87- 14, LCCR, Computing Science Dept,

SFU,1987.

R. F. Hobson, P. Hannon and J. Thornburg.
Microprogramming with APL Syntax.
In 14th Annual Microprogramming Conference, pages 13 1 - 139. Oct,

1981.

R. W:Hockney and C. R. Jesshope.
Parallel Computers: Architecture, Programming, and Algorithms.
J . W . Arrow Smith Ltd, Bristol, 1981.

K. Hwang, P. Tseng and Z. Kim.
An Orthogonal Multiprocessor for Parallel Scientific Computations.
IEEE Transactions on Computers 38(1):pp. 47-61, Jan, 1989.

H. V. Jagadish and T. Kailath.
A Family of New Efficient Arrays for Matrix Multiplication.
IEEE Transactions on Computers 38(1):pp. 149-155, Jan, 1989.

A. M. Jrad and R. W. Hall. I

Orthogonal Fast Channels: An Enhanced MESH Architecture.
In Proc. of the 198Unternational Conference on Parallel Processing,

pages 828-831. Aug, 1987. ,

L. V. Kale.
Optimal Communication Neighborhoods.
I n Proc. of the 1986 International Conference on Parallel Processing,

pages 823-826. Aug, 1986.

V. K. Prasanna Kumar and C. S. Raghavendra.
Array Processor with Multiple Broadcasting.
Journal of Parallel and Distributed Computing 4(3):pp. 173-190, Feb,

1987.
C

Duncan H. Law-ie.
Access and Alignment of Data in an Array Processor. - -

IEEE Transactions on Computers c-24(12):pp. 1145-1 155, Dec, 1975.

[LeeAgg 871 S. Y. Lee and J. K. Agganval.
A Mapping Strategy for Parallel Processing.
IEEE Transactions on Computers c-36(4):pp. 433-441, April, 1987

[Leighton 851 T. Leighton.
Tight Bounds on the Complexity ofaParallel Sorting.
IEEE Transactions on Computers c-34(4):, Apr, 1985.

- [LiMar 871 H. Li and M. Maresca.
Polymorphic-TORUS Network.
In Proc. of the 1987 International Conference on Parallel Processing.

pages 41 1-414. Aug, 1987.

[LinMol85] T. Lin and Dan I. Moldovan.
Tradeoffs in Mapping Algorithms to Array ~rocessors.
In Proc. of the 1985 International Conference on Parallcl Processitrg,

pages 719-726. Aug, 1985.

[LinMol86] '- T. Lin and D. I. Moldovan.
par mesh: An Augmented Mesh Architecture.
In Proc. of the 1986 International Conference on Parallel Processitrp.

pages 308-315. Aug, 1986.

[Lu 881 M. Lu.
Solving Visibility goblems on MCC's.
In Proc. of the 1988 International Conference on Parallel Prucessit~g,

pages 95- 102. Aug, 1988.

[MarGd 851 J. M. Marberg and E. Gafni.
Sorting and Selection in Multi-Channel Broadcast Networks.
In Proc. of the I985 Zntermtional Conference on Parahel Processing,

pages 846-850. Aug, 1985.

[MilStou 861 Russ Wller and Quentin F. Stout.
Mesh Computer Algorithms for Line Segments and Simple Polygons.
In Proc. of the 1986 international Conference on Parallel Processing,

pages 282-285. Aug, 1986.

[hlilstou 891 Russ Miller and Q. F. Stout.
Mesh Computer Algorithms for Computational Geometry.
IEEE Transactions on Computers 38(3):pp: 321 -340, Mar, 1989.

[hlodi 851 ~agbish J. Modi.
Parallel Algorithms and Matrix Computations.
Oxford Publications, 1985.

[Murakami 881 K. Murakami, A. Fukuda, T. Sueyoshi and Shinji Tomita.
An Overview of the Kyushu University Reconfigurable Parallel

Processor.
Computer Architecture News 16(4):pp. 130-1 37, Sept, 1988.

A. L. Narasimha Reddy, P. Manerjee, and Santosh G. Abraham.
110 Embedding in Hypercubes.
In Proc. of the 1988 International Conference on Parallel Processing,

pages 331-338. Aug, 1988.

David Nassimi and Sartaj Sahni.
Bitonic Sort on a Mesh-Connected Parallel Computer.
IEEE Transactions on Computers c-27(1):pp. 2-7, Jan, 1979.

D. Nassimi and S. Sahni.
An Optimal Routing Algorithm for Mesh-Connected Parallel

Computer%
J . of the ACM 27(1):pp. 2-29, 1980.

L. M. Ni, C. Ta. King and Phi1ig;Prins.
Parallel Algorithm Design Considerations for Hypercube

Mu1 ticomputers.
I n Proc. of the 1987 International Conference on Parallel Processing, r .

pages 7 17-720. Aug, 1987.

Ian Page.
Parallel Architectures and Computer Vision.
Oxford Science Publications, 1988. .-,
C. S. Raghavendra and V. K. Prasanna Kumar.
Permutations on ILLIAC IV Type Networks.
In Proc. of the 1984 International Conference on Par

pages 59-62. Aug, 1984.

D. A. Reed and R. M. Fujimoto.

allel Proc

Multicomputer -Networks Message-Based Parallel Processing.
The MIT Press Publications, 1987.

D. A. Reed and D. C. Grundwald.
The Performance of Multicomputer Interconnection Network.
IEEE Computer 20:pp. 63-73, June, 1987.

essing,

Anthony P. Reeves and Maria Gutienez.
On Measuring the Performance of a Massively Parallel Processor.
NASA Grant 5-403 ():, , 89.

Isaac D. Scherson and S. Sen.
Parallel Sorting in Two-Dimensional VLSI Models of Computation.
IEEE Transactions on Computers 38(2):pp. 238-249, Feb, 1989.

Issac D. Scherson, S. Sen and Adi Shamir.
SHEAR SORT: A'True Two-Dimensional Sorting Technique for VLSI

Networks.
In Proc. ~f the 1956 International Conference on Parallel Processing,

pages 903-908. Aug, 1986.

I L

[Seitz 841 Charles L. Seitz.
Concurrent VLSI Architectures.
IEEE Transactions on Computers c-33():pp. 1247- 1265, Dec, 1984.

[ShihIr 871 Y. Shih and Keki B. Iarni.
Large Scale Unification using a Mesh-Connected Array of Hardware

Unifiers.
In Proc. of the 1987 International Conference on Parallel Procc.s.sin~,

d pages 787-794. Aug, 1987.
$

[Shute 881 Malcolm J. Shute.
Fifth Generation Wafer Architecture.
Prentice Hall International Ltd, 1988.

[Sinclair 881 James B. Sinclair.
Optimal Assignments in Broadcast Networks.
IEEE Transactions on Computers 37(5):pp. 52 1-53 1 , May, 1988.

I

[SonKin 881 J. Song and L. Kinney.
A Family of Parallel Sorting Algorithms.
In Proc. of the 1988 International Conference on Parullcrl Processittg,

pages 83-85. Aug, 1988.

[Soucek 881 B. Soucek and M. Soucek.
Neural and Massively Parallel Computers- The Sixth Gcnerutinn.
John Wiley and Sons Publication, 1988.

[Stout 831 Quentin F. Stout.
Mesh-Connected Computers with Broadcasting.
IEEE Transactions on Conpiters c-32(9):pp. 826-830, Sept, 1983.

[Stout 871 Quentin F. Stout. Y rn

Supporting Divide-and-Conquer Algorithms for Image Processing.
Journal of Parallel and Distributed Computing 4(3):pp. 95-120, Feb,

1987.
+

[ThoKun 771 C. D. Thompson and H. T. Kung.
Sorting on a Mesh-Connected.Paralle1 Computer.
Comm. of ACM 20(4):pp. 263-271, ~ ~ r . 1977.

[Thompson 831 Clark D. Thompson.
The VLSI Complexity of Sorting.
IEEE Transactions on Copzpnters c-32(12):pp. 1 17 1 - 1 184, Dec. 1983.

[ThStSa 881 Charles P. Thacker, L. C. Stewart, and E. H. Satterthwaite.
Firefly: A Multiprocessor Workstation.
IEEE Transactions on Computers 37(8):pp. 909-920, Aug, 1988.

[TuaPet 85 J J. Tuazon, J. Peterson, M. Pniel, and D. Liberman.
Caltech/Jpl MARK I1 Hypercube Concurrent Processor.
In Proc. of the 198.5 International Conference on Parallel Processing,

pages 666-673. Aug, 1985.

(Ullman 84) . Jeffrey, D. Ullmanr--
Computational Aspects of VLSI
Computer Science Press, 1984.

f
Weitek 841

IEEE Floating Point Arithmetic with [he WTL 1064/1065.
Weitek Corporation. .
1984

1 Whelan 881 M. Whelan, G. Gao and T. Yum.
Optimal decomposition of Matrix Multiplication on M.tiltiprocessor

Architectures.
f .

In Proc. of the 1988 International Conference on Parallel Processing,
pages 181-185. Aug, 1988.

1 YaTaYa 821 H. Yasuura, N. Takagi and S. Yajima.
The Parallel Enumeration Sorting Scheme for VLSI.
IEEE Transactions on Computers c-3 1 (1 2) : ~ ~ . 1 192-1201, Dec, 1982.

1 YounSing 881 H. Y. Youn and A. D. Singh.
A Highly Efficient Design for Reconfiguring the Processor Array in
? VLSI.
1kProc. of the 1988 International Conference on Parallel Processing,

pages 375-382. Aug, 1988.

