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Abstract_

‘Given the clear and pressing need for improved computer system performance, there are

several means of \Sachie\;ing this end. In the simplest approach, current comp‘uter
architectures are r¢implemented using faster technologies. Although this approach will
always be exploited, physical, technol'ogical, and economicilimita;ions make it incapable

of providing all the needed computational power.

Instead, parallelism must be exploited to obtain iruly significant performance

improvements. Pé:allelism is a two dimensional problem. Along one dimension we find
‘pure data parallelism as might be found in typical array algorithms involving vectors and
matrices. Along the other dimension we find concurrency where independent processes
work on facets of an algbrithm which may not lend themselves to array processing.
Assuming the use of the fastest reasonabie technology, any further increase in performance

requires the efficient exploitation of parallelism in one form or another.

The performance of computers can be made incrementally extensible by exploiting VLSI

technology to build concurrent/parallel computérs, ensembles of processing nodes -

connected by a network. Low latency communication elements are required to support

fine-grain or medium-grain parallel computation. Communication between nodes of a -

multicoqﬁf)uter"ﬁeed not be slower than the communication between the processor and

s memory?_,of a conventional computer. A VLSI-Based network controller can provide node-

to-node communication times that approach main memory access times of sequential

computers. A VLSI chip is subject to several technological constraints. Whenever each
node of a multicomputer system is implemented as a VLSI chip or a printed circuit board,
péckaging constraints limit the number of connections that can be made available for
communication links. Some key issues which must be considered when designing a high

performance network controller based on VLSI technology are also discussed. '

New variations on the 2-d mesh interconnection computer which can be implemented

°
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very efficiently using VLSI technoldgy for chips and packaging -are- proposed.—Direet-—————

connectivity along rows and columns reduces the diameter of an nxn 2-d mesh from 2n-2

to 2. This technique permits the network communication bandwidth to be more balanced Q

(or yniform) with the node processor data bus béndWidth Simulation studies on severa] -

~ important permutation and matrix algorithms show that direct connect1v1ty in hypermesh
highly simplifies algorithm design and supports very efﬁc1ent comr}lmucatlon patterns.

o

Ve



To my parents : - o

i



- A’cknowledgements |
I would hke to thank my superv1sor Dr. R1¢k Hobson for his gu1dance throughout my
research and development of this thesis and also for the financial support in the forms of
research assistantships. ‘
The VLSI lab and all its enthusiastic members provided a very inspiring work "
~ environment. John Simmons for helping me and his support deserves speqlhal mention.
Many of my colleagues in computlng science were very helpful." ' Garmk Haftevani and
Ranabir Gupta deserve many thanks - ‘ o
I would also like to acknowledge the School of Computing Science and S1mon FraserA

University financial assistance in the forms of teaching ass1sta_ntsh1ps and a Graduate

Fellowship.



- Table of Contents

Approval V | : - - | i

Abstract - o ‘ iii
Acknowledgements ' oy
Table of Contents - : v , vi
1. Introduction \t} ' . , S

- 1.1. Multicomputer Networks: A Definition
1.2. Multicomputers Building Blocks
1.3. VLSI Constraints
1.4. Interconnection Networks
1.5. Multicomputer Programming
1.6. Thesis Objectives :
2. Architectural Features and Design Consnderatlons of Hypermesh Multxcomputers for
Array Processing o : 10

2.1. Issues in Desighing Parallel Machines ' ‘

2.1.1. General versus Fixed Communication:

- 2.1.2. Fine Grained versus Coarse Grained

2.1.3. Multiple versus Single Instruction Stream
2.2. The Communication Network —

2.2.1. Choosing a Topology

2.2.2. Choosing a Routing Strategy and Mechanism
2.3. Enhancements on Mesh Structure
2.4. Proposed Network Structure

2.4.}. The Architecture

2.4.2. Routing Scheme in Hypermesh

2.4.3. Characteristics of Hypermesh
2.5. Characterizing the Computational Power of the Hypcrmcsh

2.5.1. Hypermesh vs. Regular Mesh :

2.5.2. Hypermesh vs. mesh with single broadcasting

2.5.3. Hypermesh vs. mesh with multiple broadcasting

2.5.4. Hypermesh versus Fully Connected Network

2.5.5. Divide and Conquer Strategy
2.6. Symmetry and Embedding
2.7. Applications
2.8. Diagonal Hypermesh
2.9. Sorting

-

vi

CONN W b

12
12

13

14
16

20
21
22

.25

26
26
27
28
29
30
32
33
34



3\1 i

7/ “\

3 VLSI Constramts and Hardwére Suppori for Commnniwﬁm in Mulucomputer

Networks : _ . g 37
3.1. Commumcauon Paradlgm and Hardware Support ' ’ '

. 3.1.1. Buffer Management , * 4 I ,
, ~3.1.2. Flow Control - | ‘ o e
- 3.2, Commumcatlon Protocol in a VLSI-Based Multlcomputcr N ctwork "f,f’

3.3. Node Processor Considerations' ]
: 3.3.1. A Streaming Méemoty Intcrfacc
3.4. Network Interface Considerations
3.5. Network Controller and 1/O Embcddmg ﬁﬂche Proposed Mcsh
3.5.1. Satnple Operations '
3.5.2. Network Inpus/Output

4. Evaluating Success and Benchmarking “ ‘ B 49

4.1. Important Metrics of Network Pcrform ce and Propertlcs of Hypcrmesh
4. 2 Some Fundamental Permutations on Hypermeshes
4.2.1. A Simple Routing and message density for permuta‘tlons ~
4.2.2. Exchange Permutation
4.2.3. Perfect Shuffle Permutation
4.2.4. Butterfly Permitation
4.2.5. Bit Reversal Permutation
4.2.6. Shift Permutation
-4.2.7. Analytical Proof for 2- Step Routing on D- hypcrmcsh
4.3. Environment for Multicomputer Simulation
4.3:1. Array Summation =
'4.3.2. Matrix Multiplication
-4.3,3. Performance Study of Matrix Multiplication
4.3.4. Matrix Muluphcatlon on Diagonal Hypermesh

o /,;

5. Conclusions . L : 73
Appendix A. Glossary of Acronyms 76
Appendix B. Uniprocessor Matrix Multiplication - ’ 77
Appendix C. MicroAPL Code for Matrix Multlphcatlon on Hypermesh ._ 79

References , C - 84

e -

vii

38

- 38

39

43

43

44

45

E
it

45

50

g




List of Tables
,Table 3-1: A sample o‘} nctwork coproccssor instructions. a 41
Table4 1: Routing complexity -on hypcrmesh of size (nxn) with a set of 58 ¢

indexing scheme for a variety of frcquently used permutations.

-

- >
L -

viii



Figure 1-1:

—Figure 1:2:-
~ Figure 1-3:
: Flgure 2412

Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
~ Figure 2-6:
Figure 2-7:

‘Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:

Figure 3-1:

Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 4-1:;

Figure 4-2:
. Figure 4-3:
Figure 4-4:

Figure 4-5:
Figure 4-6:

‘Figure 4-7:

* Figure 4-8:
- Figure 4-9:

Figure 4-10: _

List of Figures

Structure of a hypercube multlprocessor o 3
Multlcomputer Node. . T - 4
Representattve interconnection networks. . ) 7

7

Latency of Store-and-forward routmg (top) vS.
(bottom). ,
- . The mesh with a single global mesh. 19
- Proposed bus structure. ' 21

. - A hypermesh interconnection network (A) and compamon "2’1" -
processor plan (B)..

A message moving. toward its destmanon

(first step of two hop). . - . ‘
A simple routing algorithm for hypermesh. S - 25
An illustration of a mesh with single broadcasting. ' - 27

- Mesh interconnection network with multiple broadcasting, , 28

- (a) 4-d hypercube; (b) hypercube embedded in hypermesh s 31

Diagonal hypermesh interconnection network. ‘ 33
Some indexing Schemes, (a) row-major; (b) snake like; (c) 35
proximity; (d) shuffle row-major.

Node processor functional components. ' L 42 i

Network controller signaling. - L. , - 44
Network input/output. - . 46
A hierarchy of network controllers for I/O. 48

Flow diagram of (A)perfect shuffle, and (B)blt rcversal 52
. permutations on hypermesh. '

Perfect shuffle on hypermesh with snake hke ordermg and 2-step' 54
routing solution. to

Bit reversal on a hypermesh with a shuffle row ordermg, andthe 55

overloaded pivots after first step of the data routing.

Flow Diagram of bit revcrsal permutation on an. 8x8 D-- 56

hypermesh.

Perfect shuffle on hypermesh with proxnmty ordermg, and 2-step 57 ‘

routing solution.

Tree reduction scheme.
A typical slice algorithm for a scalar aggregauon in synchromzed .64
'* array processing. A -
Mapping 4x4 matrix items on 2x2 processor array . ' 67
“Another representatlon ofa D1agonal Hypermesh. 69

One step reordermg m a D- hypermesh horlzontal hnks are = 71
elided. . : .

wormhoie }' 1 '

mahypermesh, 23

g



Chapter1

Introduction

Multicomputer networks consist of a lzlxrge number of interconnected COTP/WW — :
that asynchronously cooperate via ~message passing- to-execute the tasks of parallel
programs Each-network node, fabrxcated as a small number of VLSI chips, contains a |

processor, a local memory, and (optionally) a commumcatlon controller capable of routing =~

messages without delaying the computation processor

With the advent of fast, powerful mlcroprocessors, a new branch of the computer industry
~_ has emerged. E,EM&@@MLHWSM@WM,LW, '
m memory, it is possible to build a computing system with very irnpressi&e potential
- performance If the processors are connected to each other s0 that they can exchange

messages in a reasonably efﬁc1ent manner and if the programmer can decompose hlS

computation into a large systern of commumcatmg processes, such a multicomputer

network can be a powerful supercomputer. I

The appeal of multicomputer networks and their commercial emergence is based on their
effective exploitation of VLSI technology, the availability of a high degree of "general -
- purpose” parallelism, and moderate price [ReedFuji %7] As Dally [Dally 87a] stated, a
- VLSI chip is subject to several technological constraints. VLSI systems (VLSI chips -
packaged together on modules and boards) are limited by wire density, not by terminal or
logic density. | ‘

« - . e

Multicomputer networks pose several irgportantfand challenging problems in network —~ - ——
topology selection, communication. hardware design, operating systems, fault tolerance,
and algorithm design. This chapter summarizes recent results in some of these areas, with

_the following empha51s

=



: — - —e models of interconnection networks
® VLSI constraints |
] multicoxi)puter building blocks

We begin this cﬁapter by defining a multiconiputer network. Given this definition, we
~__ examine the spectrum oﬂmercbnnecﬁon networks and rcciuired building blocks for various
" models. The limitations of VLSI technology  are also discussed. In_section 1.5

_ multicomputer programming is considered. Finally, the thesis objt:gtivcs are outlined. - —

1.1. Multicomputer Networks: A Definition

In much of the literature, multiprocessor ‘systems and multicomputer systems are
considered to be equivalent [Soucek 88]. However, they can be distinguished by the
following considerations. According to Bell [Bell 86], the tightly coupled systems, called

o

multiprocessors, have multiple processors and common or global memory. The processors . ”

and memories are connected by one or more high speed busses. Loosely coupled systems,

called multicomputers, have local memories for each processor, although they sometimes

have global memory for shared data.

_ A multicomputer network consists of tens or hundreds of nodes connected in some fixed
topology.  As Figure 1-2 shows, a multicomputer node minimally ' contains - a
microprocessor, local memdry, and hardware support for internode communication.
Special applications may dictate inclusion of specialized 'co-processors‘: for ﬂoating-point,

graphics, or secondary storage operations [ReedFuji 87].

Ideally, each node would be directly ééhnécted to all other nodes. Unfortunately,
’packaging/cohstraints, hardware limitations and costs limit the number of connections. -
Because the node degree is limited, mcsségcs are often-routed through a sequence-of — - ————
intermediate nc;des to reach their final dest'matior'l.‘ In contrast to sequential computers and
= shared-memory computers which operate by sending messages between processors and\ .
memories, a message-passing parallel computer operates by sending messages between

nodes that contain both logic and memory. As shown in Figure 1-1 message-passing

-
— 3 -
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. parallel computers such as mmﬁeommeﬁﬂmmﬁm
Connection Machine [Hillis 85] consist of a number of processing nodes each contéim‘ng
‘-both a processor and a local memory. - The communication channels used for memory

access are completely separated from those used for inter-processor communication.

host

node 0 node 1 Cieres node N-1
. _<'d'> . T H . V X B ,,,;——"’ - Vﬂi/n 7/ ;:

An n-cube Interconnection

- = Figure 1-1: Structuré of a hypercube multiprocessor.

‘Message-passing computers take a further step toward jrcducirig the Von Neumann -
bottleneck by using a direct! network which allows locahty to be exp101tcd2 A mcssage
to another process residing in a neighboring processor travcls a variable distance Wthh can ——

be made short by appropriate process placcment [Bokhan 87, L1nMol 85, LecAgg

87, Sinclair 88]. T

,_/—// - -v .
We will limit our attention to message-passing multicomputers. By combining a

processor and memory and communication support in each node of the machine, this class -
of machines allows us to manipulate data locally. By using a direct network, message

passing machines allow us to exploit locality in the communication between nodes as well.

Ipoint-to-point connections.

ZShared memory multicomputers (indirect networks) consist of a number of processors connected to a
number of memories through a switch [Dally 87a].

-~



 Introduction - e .

»Systenm Bus
Local | | o
- Memory L
Microprocessor |—{| oy
— | Communication|<—= ,,
—1 Controller | Po ather nodes
Co-processor

Coprocessor |t~

- ,/J"lgure 1- 2 Mulueomputer Node

1.2. Multicomputers Building Blocks

The nodes of a multicomputer network each contain a processor with some locally
addressable memory, a communication controller capable of routing messages without

delaying the processor and a small number of connections to other nodes.

e
e

Many realized that a_universal building block would greﬁtly simplify 1 multlcomputcr
Wnetwork design and construction [Dally 87a, ReedFuji 87].

General - purposc buﬂdmg
blocks have been proposed and in some cases implemented, for both computation a

communication aspects of a multicomputer network node. Two such building blocks are
"the Inmos Transputer” [Soucek 88} and thc "Torus routing chip” [DalSei 86]. Design

issues for a general purpose communication component will be discussed in Chapter 3.
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" 1,3. VLSI Constraints

A general purpose VLSI communication component is envisioned that can be used as a
building block for constructing large multicomputer networks. These components feature .

_ - —special purpose hardware to implement frequently used communication functions.

A VLSI chip is subject to aA number of technological constraints. Several researchers
have discussed these limitations [Seitz 84, Dally 87a Dally 87b, FranDhar 86]. Violation
of these constraints will result in a chip which cannot be manufactured in large quantltles R
FUJI [Fuji 83] describes the implications of some constraints, (i.e silicon area, power
dissipation, and number of-pins) on the design of a VLSI communication component.
~Closer examin‘ation; of VLSI networklimplementation problems however show Tthat»pih'

limitations, rather than chip.area or logical component limitation, are a major constraint in

e

.-~ designing large networks. The number of interconnections to the chip’s periphery is

limited, and will increase much more slowly than the number of transistors per chip.

Whenever each node of a multicomputer system is implemented as a VLSI chip or a
pnnted circuit board, pac pacmnsﬁnﬂmﬂxmmbefeﬂeexmcum&maman be
made to the node, p}acmg -an upper bound - on “the - I/O - bandwidth available for- — e

communication link. As more links are added to each node, less bandwidth is available for
each one. However, increasing the number of the links will uﬁsually‘ reduce the average
number of hops required to reach a particular destination. Therefore, a tradeoff exists
between link bandwidth and average hop count as the number of links on each node is
changed. ‘ ' |

)
[ _ —

A paekagmg strategy based on Dense Interconnectlon Technology has been proposed = - —
[HobKaf 89], that can be used for efficient bottom layer of a parallel computer hierarchy.
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,,,;L@nm;gnnecﬁnnﬂema:ks ,,,,,, L
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Interconnection networks for parallel computers have been studied intensely, and many

different netwgrﬁkﬂtﬁqpologiés have been proposed [Feng 81, ReedFuji 87, ReedGrun 87]. -
-Avm(i)ng; the proposed interconnection networks several that serve as useful points of - |
refcrencé or flave particularly attractive features are the single rbus, the complete
B ;/pggncct'iOn, the singlé ting, the chordal ring, the spanning bus hypercﬁbc’, the dual-bus
- “hypercube, the t‘orus,‘ generalized hypercubes, the cube-connected cycles, the R-ary\N- -
cube, the lens, the X-tree, and B-ary tree. Figure 1-3, illustrates a subset of these nc_t\:(ﬁ\

The single bus network joins all nodes and uses a contention resolution protocol to -
resolve simultaneous requests for the bus. Although inexpensive; it can efficiently support
only a modest number of nodes. In contrast, the complete connection network directly

!

~ connects each node to all othérs. Its performance is the best achievable. These two
networks, the bus and the complete connection, bound the spectrum of price and

performance for all practical multicomputer networks.

1.5. Multicomputer Programming

Multicomput; gc?w;rg\a;; typically programmed using familiar- sequential - - —
programming languages, augmented with message passing communication primitives
[ReedFuji 87). The application programs for multicomputer networks must be
'decompoged into a collection of parallel tasks that communicate using the message passing
mechanisms provided by the machine. In the following, some possible appx:oaches%wﬂl be

reviewed. - y

\
The Massively Parallel Processor (MPP) [Soucek 88] is programmed in a high level -
language Parallel Pascal [ReevGut 89]. Parallel Pascal is an extended version of the Pascal -
\\ v
programming language which is designed for the convenient and efficient programming of

MPP parallel processors. In Parallel Pascal all conventional expressions are extended to

array data types.
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- Daﬂy‘fDill);—S‘ﬁ] proposes the use of Objer'et-(jnerizrtedr. programmlﬁg. appmaea, to

. program concurrent computers.  The message-passing paradigm of: : objeet-orienied e
languages introduces a discipline into the use of the communication’ mechamsm of

- message-passing computers. In an obJect-onented language computation is performed by

‘ sending messages to objects. Objects never wait for or explicitly receive messages. Instead,

objects are reactive. The afrival of a message at an object triggers an action. The action‘

may mvolve modeylng the state of the object, transmitting messages that continue the

R control flow, and/or creatmg new objects. Since the actions on an object are ordered, - -~ -
simultaneous processing of messages is not consistent with the model of compiltation

- described above. Therefore, the concept of distributed objects has been proposed, which
consists of a collection of all constituent objects, each-of which can receive messages-on -~~~ ==
behalf of the distributed object. Since many constituent objects can receive messages at |
the same time, the distributed objeet can process many messages simultaneously. In this
thesis APL language has been used for programming a $imulator of the proposed
multicomputer system (Chapte; 4). APL provides a syntax which is appropriate for the

_type of parallelism associated with array and vector processors.
1.6. Thesis Objectives
Within the context of multicomputer networks for array processing a summary of the

‘objectives of this thesis are the following:

-Proposal of a new multicomputer network for array procie;sing an(l\sEﬁa; T T —
eminimum diameter and symmetry . ,

erouting algorithm
ecfficiency for some well known scientific computations

«VLSI communication consideration.

-Simulation of multicomputer networks on a Unix-based Sun workstation, in APL (using.. —
C for hnkmg multiple APL workspaces) and study o
-oalgonthms for some problems in array processing

s partial instruction set for a network controller chip.
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— -
.

" The development of an aféhitecturc that applies VLSI technology to support parallel .

' 'proééssing is approached in two steps. First we consider the interconnection network ovér '

- which processing clémcnts communicate. In addition to a topology a network rcquircs» a
communication mechanism for routing messages. A VLSI-Based Communication
cofnponcnt will be discussed infh'aptchS. Performance characteristics of the hypermesh
and also the simulation,rcsﬁlts are presented in Chapter 4.
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, Chaptero«Z |

| g Architectural Features and Design‘Considerations
- of Hypermesh Multicomputers for Array Processing

Para]lel algorithms and the architectures- used to execute them have been “of great mteresL;;“j:,;;:—~
to. computer researchers reccntl;a 'Fhas~rsﬂue to the potentlal speedups they offer in- '

— T —solving - 1mportant application problems. A well-studied method for interconnecting many
' different processors is the me&h—conneeted'paréllel eomputer, in which connections are -

made only to nearest neighbor processors in two dimensions.

Parallel machines such as IL.LIAé IV have been built based on the mesh interconnectien
strategy. Also, parallel algbrithms for important computational problems—including”s'orﬁhg
[NasSah 80], and linear algebra, imaée precessihg [Page 88], comptnational geometry [Lu
88, MilStou 89 MllStou 86, BoxMil 88], 2-d convolution [FaL1N1 89] and numencal

In a two-dimension mesh connected parallel computer consisting of N processing clements ,
3, (PE’s) PE’s atithe extremes of the mesh are separated from each other by approximately !
N12 intermediate PE’s. For a parallel algorithm that starts with one input per PE and |
forms an output whose value depends on all the inputs, parallel time O(N%2) is required.
Problems having this time requirement on the mesh include all of those listed above, and

other important ones such as solving linear recurrences.

———— o

Gentleman [Gentlema.n 78] has conducted research into the data movement required- fon,,,,,,', -

matrix multiplication, and for the inversion of a matrix on a lattice of mterconnected

processors (MCC). His analysis confirms that data movement- and not arithmetic

*Throughout this thesis, N=r?.

\ A 10



Architectural Features and Design Considerations

i pr,otocols%nmuhi’éc’)ﬁlputér networks are also discribed in section 2.3. Enhancements on T

onypermeshMulticomputersforArmyProcessing A R TR
operations- is often the limiting factor in the performance ohﬂgorxthms mtdﬁso that——————
conventional eomplexity analyses for parallel computations commonly,lgnore the details |

of machine structure, which can ofteh result in misleading conclusior-lé., In brief, it

suggests more attention should bewpaid to the hardware characteristics of a particular
- 3 L3 )

- implementation. C : R 2

Issues in désigning parallel machines are described first. A /sdrvey of communication

the mesh structure are reviewed from the literature. In section 2.4 an architecture called
the Hypermesh is proposed. In section 2.5 comparisons with other mesh-like orga’Qiz’ations
are described. Embeddability of some other important interconnection networks like
hypercube and mesh on a hypermesh are also discussed. The complexity results of a set of -

algorithms [KumRag 87, Bokhari 84] which can be implemented efficiently using

~broadcasting features of the hypermesh are also shown. Another variations on the

hypermesh structure called the diagonal hypermesh is proposed. Finally a quick review of
existing parallcl sorting techmqucs which may be used efficiently on the hypermesh wraps
up the chapter.

2.1. Issues in Designing Parallel Machines

Three of the most important choices in designing any parallel machine are:
- o general versus fixed communication

o fine versus coarse granularity
o multiple versus single instruction streams
Although each issue can be characterized by the extreme schools of thought each offers a

spcctrum -of choices rather than a binary decision.
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211 G,eneral, versus Fixed Cbmmunication:

Some portlon of the computation in all parallel machmes involves communication among
individual elements. In some machines, such communication is allowed in ‘only a few

specific patterns defined by the hardware. For example, the processors may be arranged in

- - a-two-dimensional grid w1th each | processor- connected o four others. Proposed connecuorrr: B

) pattems forsuch ﬁxed-topology machmes include rings, cubes, bmarycubes etc.

-~

The alternanve to a fixed topology is a general commumcauon network that perrmts any -
processor to communicate with any other”. There are also many other intermediate
possibilities, namely dynamic reconf igurable systems [Murakamr 88] that can be
reconfigured as either a shared-memory tightly coupled mulnprocessor or a message-‘

passing loosely coupled mult1processor at run time, also as a hybnd of the two.

2.1.2. Fine Grained versus Coarse Grained

We first define the term granularity, which is used to classify parallel computers in terms
of complexity and number of processors. Machines with a large number of elementary =
processors, each holding a small volume of data, are fine-grained, those with a small
number of complex processors, each holding a large volume of data, are course-grained.
In any parallel computers with multiple processing elements, there is a trade off between
the number and the size of the processors. The conventional, single “processor Von
Neumann machine is the extreme case of this. The opposite approach achieves as much
parallelism as‘possible by using alarge number of small machines. In general, the ideal
granularity of parallelism is application dependent [Brock 86]. -

The fine grained processor has the potential of being faster because of the larger degree of
parallehsm But more parallelism does not necessarily mean greater speed. The individual
processors in the small- gramed design are necessanly, less powerful, so many small

processors may be_slower than one large one. For example, the Connection Machine

~

4.e. through a shared memory.
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- [Hllhs 85] and Massrvely Parallel Processors (MPP) [Soucek 88] are fine-grained

machmes

Perhaps the most important issue here is one of programming style. Since serialgrocessor

machines are coarse gramed the technology for programming coarse gramed machines is

better understood

2.1.3. Multiple Versus Single Instruction Stream

A Multiple Instruetion Multiple Data (MIMD) machine is a collection of connected
autonomous corrlputers, each capable of executing its own program. Usually an MIMD
machine also includes mechanisms for synchronizing operations between processors when
desired. In a St'ngle Instruction Multiple Data (SIMD) machine, all processors are
controlled from a single instruction stream that is broadcast to all the processing elements
simultaneously. Each processor typically has the -option of executing an instruct_ien or
ignoring it, depending on the processor’s internal state. The correct choice depends on the
application. For well-structured problems with regular patterns of control, SIMD machines
have the edge, because more of the hardware is devoted to operations on the data. This is
beeause the SIMD machine, with only one instructiorr stream, can share most of its'cont'rol
hardware among all processors. In applications in which the control flow requirements of

each processing element is complex and data dependent, MIMD architectures have the -

advantage. The shared instruction stream in SIMD architectures can follow only one

branch of the code at a time, so each ?eoss1ble branch must be executed in, sequence,
whereas the uninterested processors are idle. The result is that processors in an SIMD

machine may sit idle much of the time.

The other issue in choosing between an SIMD and an MIMD architecture is one of
prograrrlmability. There are arguments on both .dsides [Hillis 85]. There are\ also SIMD
machines that allow varying amounts of autonomy for the individual processing element
and/or small instruction streams, so basically this issue presents a ‘spectrum of possible

e

choices.
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2.2. The Communication Network

The most difficult problem in the design of a mulﬁproce_ssor network is the design of the |
general interconnection network through which the processors communicate. The building
blocks from which the interconnection network is constructed are autonbmdus switching
elements called (oétters. The routers are wired in some relatively sparse. pattern, called the

“topology of the network. In other words, not every router is connected to every other.
Proces’sors communicate with oge another through the routers, with the routers forwarding
~ messages between processors jli as the post office forwards mail from one branch to
another. There are two issues in the design of such a system. One is choosing the
topology for connecting the fouters, and the other is choosing the algorithm for routing the

messages.

2.2.1. Choosing a Topology ‘ -

In choosing a topology, the goals can be dividedsroughly into two categories: cost and

performance. On the performance side, we look for a combination of the following.

Small Diameter: The diameter is the maximum number of times that a message can be

forwarded between routers when traveling from one processor to another. In other words,
the diameter is the maximum of the minimum length path between any pair of nodes in a
network. If this distance is small, then processors are likely to be able to communicate

more quickly.

’ Uniformity: It is desirable that all pairs of processors communicate with equal ease or at
least that the traffic patterns between all pairs or routes be reasonably balanced. This
ensures that there are no bottlenecks. For example, in mesh connected computers, nodes
are located at the, corners of the network have less load in terms of the number of
communication activities than other nodes in between. Intermediate nodes not only have
to handle communication activities as a part of their communication patteras, but also have

to take part in routing as an intermediator for their neighbors.
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Extendability: 1t should be possible to build a network of any given size or, as a

minimum, it should be p0551ble to build an arbltranly large version of the network.

Short Wires: If the network can be efficiently embedded in two or three-dimensional
space such that all the wires are relatively short, then the physical distance between routers

can be small. This means that information can propagate quickly between routers.

Redundant Paths: If there are many possible paths between each pair of processors, a

partially defective network may continue to function. Also if a path is blocked because of

traffic, a message can be directed along another route.
On the cost side we look for the following.

Minimum number of wires: Each physical connection costs money. Thus if the number

of wires is small, the cost is likely to be small also.

Efficient layout: If the topology can be tightly and neatly pm small space, the

W\gj)% job becomes easier.

Simple routing algorithm: Because the routers can be locally controlled ,this keeps down

the cost of the routers.

Fixed degree. If each router connects to a ﬁxed number of other routers, then one router

design can serve several sizes of network.

Fit 10 available technology: If the network can be built easily with available components,

it should be less expensive.

Notice that the wish list contains cohtrédictions, for example, for minimum number of 7
wires and redundant paths or for ‘ixed degree, small diameter, and short wires. Any
decision will be a c‘:gmpromise. Deciding which performance factors are most important is
not easy. On the cost side mosff()? the factors are difficult to measure and even more
difficult to rationally traglp off against one another. The fit to available technology often
turns out to be one of the most important [Fuji 83]:
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2.2.2. Choosing a Routing Strategy and Mechanism

Along with choosing a topology for the network, we must choose an algorithm for
- moving information through it. This is called the routing algorithm. Often the
performance of a parallel computer depends primarily on 'its data routing 6apabih'ty. The
routing mechanism or transport mechanism provides a facility for moving data through the
netwbrk. Several frequently used transport mechanisms and their distinguishing

characteristics are discused in [ReedFuji 87]. Briefly, these characteristics are:
® Data Unit: The indivisible unit of data transported through the network is
either a variable-length message or a fixed-length packet.

® Routing Overhead: The overhead associated with message routing is incurred
either on a hop-by-hop basis at each network node or only in the initial
~ establishment of a circuit.

“s Bandwidth Allocation: Bandwidth is allocated by the network either statically,
e.g., when a circuit is established, or dynamically as messages are forwarded
through the network.

® Buffering Complexity: The complexity of the buffering hardware varies with
the sophistication of the chosen routing mechanism.

There are m\r:ajor types of network, each one applicable to any of the above topologies
{Shute 88]. Ho

that, for an n-dimensional hypercube, the worst-case communication path involves passing

ever to compare them, consider the hypercube as an example. It is clear

" the message along n edges. If it acts as a store-and-forward network, the source code sends
its message, along with the destination address, to the neighboring node. The neighboring
node, realizing that the message is not addressed to itself, sends it on to its neighbor in an
appropriate direction. After n of these message-forwarding operations, the message arrives
at the destination node. At each stage, the message is handled as a single unit (a packet).
Once it has been passed to a neighbor, the node is free again to continue with the rest of its
work, even though the message is still in trarfSit. This is analogous to the process of

sending messages through the postal system.

If it is a circuit-switched network instead, the analogy is with messages sent through the
telephone system. The source node starts by setting up a route, first by contacting its

neighbor and informing it of the address of the required destination node. Each of the
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‘nodes along the path to the destination are set into a"recéptive mode, in much the same way
as each of the intervening exchanges in a telephone network being configured when a
telephone is dialed. Once the connection is made, the message can be transferred directly
from the source node along the established pafh to ther destination node. Just like the
telephone exchange, each of the nodes in the path must maintain the connection until the
source node ’signals that it has reached the end of its message. The primary disadvantage

of this approach is the extensive bandwidth usage.
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Figure 2-1: Latency of Store-and-forward routing (top) vs. wormhole (bottom).

According to [ReedFuji 87] three types of store-and-forward networks are common:
Datagram networks are characterized by the unit of data sent through the network with
variable length message. Clearly, buffer management is the primary disadvantage of this
approach. In packet-switched transport mechanism each message is divided into fixed-
sized packets that are routed separately through the network. Because packets can be
relatively small, (eg. one byte) buffering requirements in each component are reduced.

One of the disadvantages of the packet-switched approach is that the routing overhead
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occurs on every packet rather than on every message sent into the network. It is possible
to have one setup cost for one messagezbnsisting of several packets. This approach is
called virtual circuit transport mechanism [ReedFuji 87]. A virtual-circuit is established
between nodes that wish to communicate. All packets of one message sent on this circuit,

travel along this path to reach their destination.

—~

To reduce the latency of communications that traverse more than one channel, we can use
wormhole? routing rather than store-and-forward routing [DalSei 86]. Instead of reading
an entire message into a network controller before starting transmission to the next node,
the network controller forwards each f1it0 of the message to the next node as soon as it
arrives (Figure 2-1). Wormbhole routing thus results in a message latency that is the sum of
~ two terms, one of which depends on the message length, L and the other of which depends
on the number of communication channels traversed, D. Store-and-forward routing gives a |
latency that depends on the product of L and D. Another advantage of wormhole routing is

that communication does not use up the memory bandwidth of intermediate nodes.

2.3. Enhancements on Mesh Structure

Several multiprocessor architectures have been proposed for parallel processing {BeHeLa
87, Carlson’ 85, GoodSeq 81, Hillis 85, Hwang 89, Kale 86, LiMar 87, Page 88, Soucek
88, Stout 83, ThStSa 88, YounSing 88]. Of these, the Mesh Connected Computers (MCCs)
have been widely used; their regular structure are particularly suitable for VLSI
implementation. They seem to be a natural structure for solving many problems in matrix
computation and image processing. In I_Jarallel and distributed computations the solution
times of problems are constrained by information flow rather than proeessing times: within
PEs [Gentleman 78]. Moreover, even if the problem isr not c‘onstrained by a large flow of

information, the solution time can be constrained by the time required for moving a single

-

SThis mechanism has been named cur-through in [ReedFuji 87).

6A FLow control digIT, is the smallest unit of information that can be accepted by a communication
channel or gueue. One or more flits make up a message [Dally 87a].
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piece of data over a long distance (as well as disturbing the other processors in betWeen).
For example, in a two-dimensional MCC with N PEs in which the PEs are plaécd at the
grid points in a plane , moving a datum from one PE to another may take as much as
2\/N—2 time in the worst case.

Carlson [Carlson 85] proposes a modification to a regular mesh by adding one or more
global mesh structures to the processor array (Figure 2-2). Modifying the mesh with
multiple global busses can also be done (this is treated in a separate paper [JraHal: 87]). A

3

3

Figure 2-2: The mesh with a single glé)bal mesh.

clear disadvantage of this network is that the regularity of mesh is not maintained and
some of the nodes do not have the same topology as the others. In the following, other -

modifications to the regular mesh will be discused.

Given that a mesh éonnected computer is a natural and realistic parallel architecture for
the efficient solution of many problems but solution times are constrained by long data
movements, an obvious extension is to augment the network with a faster mechanism for
moving data over long distances. Such a technique, called broadcasting, has been
considered in [Gentléman 78, Stout 83]. In broadcasting, a single PE can broadcast data

which are received by all the PEs simultaneously. Several such problems have been
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considered [Bokhari 84, Stout 83] with substantial improveménts in computation time
compared to that required by MCCs without broadcasting.

2.4. Proposed Network Structure

In this section, we explore modifications of a mesh-connected parallel computer for the
purpose of increasing the efficiency of executing important application programs. The
modification is made by connecting each PE to all the other PE’s in the same row/column.

Such an extension toA the 2-d mesh might be called a Hypermesh.

The approach taken here is similar in some ways to that of [KumRag 87]. They also
propose an extension of the mesh connected computers, a mesh with multiple
broadcasting, and presented several interesting.algorithms running on, this netwotk quite
efficiently. There are several differences between their network anci\ ghe one proposed
here. First, in this work, several communication features of the proposed network are not
found in their network. Parallel message t;ransfer at each node (both transmit and receive)
provides a high data communication bandwidth for the entire network. The proposed bus
structure (for one row/column of this network) is shown in Figure 2-3. Second, providing
an insight in terms of actual design requirements and practical views in the communication
support unit based on VLSI technology, which in fact is one of the main concerns of this

thesis.

We will show how the hypermesh mo&iﬁcation allows asymptotic improvements in the
efficilency of executing computations having medium to high interprocessor
. communication requirements. Moreover, each PE can take advantage of pipelining which
will be described later. We also compare our modified mesh-connected parallel computer
to other similar organizations including the mesh, mesh with broadcasting, and
hypercubés. We also need to select the routing algorithms carefully to avoid "traffic jams"
when several messages are traveling through the network at once. These problems are

discused in detail in the next section.

v



Architectural Features and Design Considerations
of Hypermesh Multicomputers for Array Processing 21

+
|
l
1
|
{
|

e — — 4
ke —

=
2 gt

K N N
| Lor;}l Bus Locatl Bus boc£ Bus LocaIl Bus

Figure 2-3: Proposed bus structure.

2.4.1. The Architecture

Figure 2-4 demonstrates the hypermesh connection pattern. Each row and column link
has the structure shown in figure 2-3. The system consists of N processing nodes. Each
node consists of a procéssor, a local memory and meémory controller chip, and a
communication controller. Each node has a separate communication processor to allow

uninterrupted application processing.
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Figure 2-4: A hypermesh interconnection network (A)
and companion processor plan (B).
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We imagine our structure is composed of two separated nxn la&ers of PE’s: One layer is
dedicated to processmg, while the other is entirely dedicated to communication. Each
processor PE in the processing layer connects to a corresponding distinct router PE in the
communication layer. A processor uses the communication layer for efficiently routing
data to other processors. The interconnections among the routers will determine the
communication characteristics for this approach. This topology provides direct
connectivity for each PE ‘tof all the other nodes along its row and column. Processors are
identified by their two dimensional coordinates. =~ Communication components are

numbered similarly.

2.4.2. Routing Scheme in Hypermesh : -

All communication networks require some routing algorithm to build the paths between
communicating nodes. A great deal of research has been done in the area of routing in
multicomputer networks. In the context of the proposed communication domain, we will
only consider distributed routing that does not rely on central authority. In regular
networks (eg. mesh , torus, hypercube, etc.) routing can be performed in each node by a
state machine or microprogrammed engine using a fixed algorithm based on the local and
destination addresses.” Routing algorithms are known for many standard topologies. In a
square lattice, for example, the routing controller could forward the message in a direction
that would reduce the difference between the X- or Y-coordinates of the current and the
destination nodes. In the n-cube, lipks are selected which reduce the Hamming'distance by

one, until the target is reached.

7For irregular networks, touting must be based on suitable lookup tables [ReedFuji 87]. In such a system
each node i has entries of the form:

NN = R{DN)

implying that messages destined for node DN are forwarded by node i to neighbor node MNN. This table
]ookup, commonly called a routing table, can be defined statically, or it-can be maanwned-dynamlcally
using information exchanged between neighboring nodes. This technique could be of use even in
hypermesh. Hierarchical techniques can be used to implement general lookup table mechanisms for message
routing without excessively large memories. Memory size is minimized when many levels are used. .
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In the following, we will show that many data routing functions which the mesh cannot

- perform well can be achieved by Hypermesh very cfﬁ01cnt1y. One way to evaluate the

| routing capability of an interconnection network is the communication time between any 2
processors. The communication for node(i 14;) t0.node(i,j,) requires |i 1-i21+ | j1‘j2|
steps on a mesh, which is 2(N?/2-]) in the worst case. By using Hypermesh, this can
always bé“ achieved in two steps. First node(i;,j;) sends to node(i,.j,) , then node(i,,j,)
receives back from node(i 1 Jo )8. Figure 2-5 illustrates this process.

— 0,2 - — 0,2 -

Source Plvot

T T e

Figure 2-5: A message moving toward its destination’
in a hypermesh, (first step of two hop).

Row/column broadcasting can be performed as following: ﬁode( ij) sends a message to
node(i,*)s'0 or node(*j)s. This can be done by first injecting message by PE(ij) to
Router(i,j), then through a handshaking mechanism, all the Routers in the same
row/column read it back simultaneously. Generally, broadcasting on hypermesh can be

defined as following: . -

3node(i2J ) acts as a pivot and forwards the received message.

To achieve a bidirectional transaction flow, the proposed rauting algorithm pfevents congestion for the
pivoting node and creating a cylinder ®ffect; (all transaction flow occurs in a counterclockwise direction).

104¢;,*) and A(* j) denote all the nodes in the i row and /# column of A, respectively.

T e
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PE{; 1k;e {12,...N}} —>PEsc {1,2,....¥)

i=1 single broadcastmg
i>1 multiple broadcasting!1

Row and column broadcasting is a powerful communication mechanism. Suppose only
PEs in a particular row, say row 0, each have a data item and we wish to compute, for
example, the maximum of these numbers; then, we can use multiple broadcast busses to

simulate a tree structure.

. e

Performing permutations of data on SIMD computers efficiently is important for high
speed execution of parallel algorithms. For an efficient execution of parallel algorithms on

SIMD computers, an important objective is the fast rearrangement of intermediate results.

The total execution time greatly depends on the time required to perform permutations of

data. The classes of permutation usually considered are the permutations strongly
suggested by the communication needs imposed by the existing parallel algorithms, and by

the data storage schemes.

Simple algorithms for performing important permutations can be achieved for our

proposed network. Many permutations can be done in a constant number of steps (Chapter

4), as opposed to 2(‘/N—1 ) the lower bound in mesh with wrap-around [RagKum 84] , andv

3( \/_1\7-1 ) in regular mesh [LinMol 85]. This approach is quite simple, and unlike previous
approaches, makes efficient use of the special topology of the proi)OSed network to realize
these permutations using the minimum number of data transfer steps. Here, a very simple
control algorithm on the hypermesh network is proposed. The control algorithm is actually
based on a very simple idea. Assume permutation P maps node(i,j) to node(r,s). The
routing algorithm would be the following:

This can be done concurrently for each pair of the permutation P. Applying this éontrol

#

11 An extreme case of multiple broadcasting called flooding [FriBa 87]. This data movement operation is
used to achieve the all-to-all ‘broadcast needed in some operations. Flooding is performed by broadcasting
along rows (for all PEs) which leaves n items at each node. Then similar broadcasung operation along
columns, that is n-step routing for al] n items, results an n+1 routing steps. It is interesting to note that in a
mesh with multiple broadcasting O(n?) (in fact n?+n) steps are required for this operation.

R e DR
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if (i=r or j=s ) then ’
node(i,j) --> node(r.s)
else
node(i.j) --> node(i.s)
node(i,s) --> node(r,s)
fi

/* node(i,s) is called a "pivot” */

JLigure 2-6: A simple routing algorithm for hypermesh.

algorithrn on the hypermesh network, it turns out that many frequently used permutations
can be realized with a constant number of passes through the network. Th1s w111 be

discussed, in detail, in Chapter 4.

T

2.4.3. Characteristics of Hypermesh

Some characteristics of the proposed mesh are:

e medium number of processors- the proposed architecture.is shown in Figure
2-4. It contains 16 nodes. The readily available technology permits a single
controller chip to serve both rows and columns of a 4 by 4 mesh.

e asynchronous execution- each node executes independently of all other nodes.
Synchronization between nodes relies on message passing or instruction
fetching primitives.

e message based communication- because it contains no shared memory, the
cooperating task of a parallel algorithm relies solely on message passing. The

message is, in fact, a raw fixed-length packet of data which contains a fixed
number of flits. :

e low communication overhead- hardware support in terms of a communication
chip with a high bandwidth provides an efficient communication environment.
Furthermore, by using the network to hold intermediate results, node
processors can feed array data directly to arithmetic units rather than first
movmg them to local memory.

e small diameter- direct connectivity along rows and columns reduces the
diameter of a n by n 2-dimensional mesh from 2n-2 to 2. This technique
permits the network communication bandwidth to be more closely matched to
node processor data bus bandwidth.

e medium grained computation- which provides a  well-balanced
communication, computation over such a network.
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The above mentioned properties and characteristics provide the following features: .

. e ¢fficient communication patterns, simplified algorithm design- both direct
connectivity and broadcasting simplify algorithm design and support very
efficient communication patterns, which in fact enables one to efficiently
emulate other important network topologies (i.e., mesh and hypercube).’

® high throughput- multiple broadcasting (wide bandwidth) supported by a
communication controller chip provides high network capacity and in turn
high throughput. Theset characteristics of the hypermesh will be analyzed in
Chapter 4. —

_

25, 6haracterizing the Computational Power of the Hypermesh

4
Ay

To explore the power of the modifications proposed here; we look at a fairly widéprangge

&

of c.omputational problems and show they can be solved algorithmically on a hypermesh-
connected pprallel computer. Our empha’sis is more towards exhibiting the advantages.of
our new parallel organization rather than on the actual algorithms. The algorithms. .
themselves are similar to previously known parallel algoritims for the problems
considered, and thus shouldn’t be thought of as the® major contribution of this- work.
Another topic treated in this section is how our hypenhesh compares to some other parallel
computer organizations. The performance of hypermesh is studied by comparmg it to

other mesh related networks as follows.

2.5.1. Hypermesh vs. Regular Mesh

For problems requiring information transfer between remote nodes (not neighbors),

hypermesh is much better than regular mesh as can be seen “below. - v -

» Communication between any two processors : This requires 2(N?/2-1) steps on
mesh of N nodes [NasSah 80], but just 2 steps on hypermesh.

® Broadcasting: On mesh, this requrres O(NJ iz ) step, but on hypermesh 2 steps
are sufﬁcrent ‘ ' e _

e Permutation: Hypermesh can perform permutatlonseaswr and faster.
The-lower bound for any permutation on regular mesh 1s 3(NIZ-] ) steps
[LinMol 85]. -

On hypermesh, many permutations can be done in a constant number of steps. Moreover,

- the system ovethead is different, although the upper bound for any arbitrary permutation s
~ B ' L T : o
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W, For mesh, performing different permutations may require different routing
algorithms. - In the case of hypermesh, our routing algorithm proposed in the previous

section is universal, (i.e. independent of permutations).

2.52. Hypermesﬁ vs. mesh with single broadéasting

Gentleman [Gentleman 78] was apparehtly the first to consider a supplemental
mechanism called broadcasting. When a node broadcasts a value, it is simultaneously

received by all other nodes (Figure 2-7). To avoid pandemonium, only one broadcast at a

global bus

node 0—‘ nodel | ..., ‘. . node N-1
<>

An XX N Mesh Interconnection

Figure 2-7: An illustration of a mesh with single broadcasting.

time is allowed. It is easy to see that a hypermesh can simulate a mesh with single
broadcasting. For almost all classes of algorithms, hypermesh performs better. In fact,
single broadcasting imposes a kind of sequentiality to the network [Bokhari 84]: since
broadcasting is done over a shared global bus only one item can be communicated over the
bus at any time. Thus, trying to cover many "long" jdistances using broadcasts will

increase the solution time.
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2.5.3. Hypermesh vs. mesh with muitiple broadcasting

In contrast with the mesh with multiple broadcasting, where the broadcasting bus is -
superimposed on conventional node-to-node links (Fig. 2-8), our proposed network can act
- bothasa neighbor to neighbor medium and a global broadcast medi In fact mesh with
| multiple broadcasting is similar to the proposed hypermesluiz::\and the available
algorithms for the mesh w1th multiple br?adcastlng can be simulated on the hypermesh and

in some cases with unprovements in efficienay.
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mulnple broadcastlng Also, the control overhead is large and the routing algorrthms are

complex [RagKum 84]." The upper bound for*an arbltrary permutauon on hypermesh is
exactly N 2 (Chapter 4) However, for a wide class of permutatlons a constant number of

steps arerequtre,d “Also the overhead is low.
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2.5.4. Hypermesh versus Fully Connected Network

The fully connected network is formed by placing a single link between every pair of
Trx{:»dm/(l::ig_ure 1-3). Here, the number of nodes is equal to the number of tasks required by
—_the parallel program and varies from application to application. This topology minimizes

the number of hops between every pair of nodes at the expense of a larger number of

branches to each node (n vs. 2n).

In some applicatibns, a single node needs to send a data item to all other nodes in the
network. If no broadcast mech;mism is provided, the node must send a separate copy'of
the message to each destination. A queue rapidly develops in the node sending the
message leading to long delays and poor performance. Therefore a significant performance
improvement results from inco_rpofating a broadcast mechanism. In a‘fully connécted"

network, in practice, O(log N) time is taken to perform broadcast operations!Z,

2.5.5. Divide and Conquer Strategy

The essence of the divide-and-conquer strategy is quite simple: .

. ‘ . . ” . L
To solve a large instance of a problem, break it into smaller instances of the] same

problem, and use the solutions of these to solve the original problem.

The fact that the smaller probléms are instances of the same™Problem is what
- distinguishes divide-and-conqueér from the more general top-down strategy. This strategy
is strongly encouraged in texts on data structures and algorithms. As Ullman notes, it is

also a useful strategy in hardware design [Ullman 84].

When using parallel computers, there are several reasons wﬁy a 'divide-and-cpnquer
approach may be particularly useful. First, there may be more data than can be obtained in

the processors at one time, so the data must be analyzed piecemeal [Stout 87]. Second, in’

12That’s simply because of the required fanout.
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some machines the individual processors may be quite large and power}ul, holding many

data items, in which case often a two-level strategy is needed. We can call such machines -

medium-grained machines, to distinguish them from fine-grained machines. In medium-

grained machines, we can exploit the pipelining features of functional units more -

efficiently. Finally, many of the interconnection schemes being used or suggested for

massively parallel processing (i.e. image processing) naturally suggest partitioning the
machine into smaller submachines. Meé‘hes (including hypermesh) can eésily be
partitioned into quadrants, each of which is a mesh. Meshes with broadcasting capabilities
almost force one to use a divide-and-conquer approach, dividing the network into subnets
! in which a standard nonbroadcasting algorithm is used, with broadéasting used to combine

" results of the subproblems.

In networks of higher dimensions, using the hypermesh structure as a building block, the
features of divide-and-conquer can be exploited more efficiently. In such a hypermesh
hierarchy, the given problem can be decomposed into small pieces (the size of hypermesh)

and distributed among the network components. —

2.6. Symmetry and Embedding

Symmetric graphs, such as the ‘ring', the n-dimensional hypercube, and the cube-
connected cycles, have been widely used as processor/ communication interconnection
networks. A special class of networks, called sym}netric interconnection networks, has the
property that the network viewed from any vertex of the network looks the same [Ak’ers
89]. It is interesting to note that the hypermesh interconnection network is also a
symmetric network. In such a network, congestion problems are minimized since the load
will be distributed uniformly through all the vertices. Moreover, this symmetry allows for
identical processors at every vertex with identical routing algc/)ltithms; It is also very usefﬁl

in designing algorithms that exploit the structure of the network.

The hypermesh interconnection network, in addition to its symmetry properties, has the

advantage of enabling many other interconnection networks to be embedded into itself.



Architectural Features and Design Considerations o . .
of Hypermesh Multicomputers for Array Processing i 3

The necessity for embedding arises when a programmer wishes to implement an algorithm
A for which it is clear that a certain network G is most appropriate, but only another
network H is available. The Fast Fourier Transformation algorithm, for example, idealty
requires the perfect-shuffle interconnection, but the programmer may nevertheless wish to
implement it on machines based on the lattice or the hypercube. The problem can be

solved by utilizing part of H as a model of G in other words embedding G in H [Modi 85].

1

)

~ Figure 2-9: (a) 4-d hypercube; (b) hypercube embedded in hypermesh.

In order to minimize data movement cost, the indirect links (caused by mapping) should be
short or avoided. In this respect the best embedding would be a direct one, which provides
no extra data movement requirements on new network. One of the skills in parallel ‘
computing is to find a convenient embedding, involving a minimum usé of long links of
one network in another. This has been an interesting problem in parallel programming for

a long time, and some researchers have tried to solve it. _But finally it turned out to be an
NP complete problem [NiKing 87, Berman 85].

Since hypermesh contains a mesh structure as a subgraph, the advantage of mesh is kept.
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On the other hand, hypermesh is isomorphic to Hypercube network. As the Figure 2-9
indicates, hypermesh also contains hypercube structure as a subgraph, so the advantagés of
hypercube and its routing scheme are kept as weH. Therefore, hypercube can be embedded
. in ‘hypermesh directly. This ability has some direct advantages, in a sense that there are
many bappiications and algorithms designed for hypercube, which can be executed on
hypermesh with no extra effort, or possibly can be enhanced. \

2.7. Applications

w

The hypermesh is an architecture with a variety of data routing capabilities. So, its
potential is promising. Since the regular mesh and cube can be directly mapped into the
hypermesh, any parallel algorithms designed for the mesh or cube can be adopted by
hypermesh. However, if global communications are required, hypermesh is a much better
architecture. In the following, we will disduss some application examples. Other

aﬁplic'ations can be probed by using the technique described here.

Semigroup computations, for example, include finding maximum, minimum, sum, etc.
on N data iter{ls. Ona regular MCC, a semigroup operation can be performed in O(N//2)
time which is optimal. If a siﬁgle broadcast bus is available then the time can be improved
to ©(N!3) [Bokhari 84]. An algorithm for semigroup operations taking O(NZ/6) time in
2-dim MCC with multiple broadcasting has been proposed in [KumRag 87]. Since
multiple broadcasting can be performed with hypermesh with no overhead, every step of

that algorithm can be simulated flere.

There are other parallel algorithms developed for many problems in the areas of lineaxf
algebra, image processing, éomputational— geometry, and numerical computations, on MCC
with multiple broadcasting, which can all be executed efficiently on hypermesh. An
algorithm is given [KumRag 87] that finds the median value of N numbers distributed one
per processor, in O(N!/6(log N }2/3 ) time. Another set of algorithms on convex polyges -
computation of digitized pictures with corhfﬂexity of O(N1/6) ﬁrrie, and nearest neighbor in

) AO(VN-],/6) time, are. proposed, which requifcs'Q(NI/3 ) on 2-MCC with single broadcast and
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Q(N1/2) on regular mesh. All of these algorithms can be efficiently simulated on proposed
hypermesh with no degradation and in some cases with improvement in efﬁciericy. A
further reduction in the execution time is possible (for some com“munication'pattems) by
taking - advantage of extra communication links and also broadcasting feature in a

hypermesh. This aspect needs more investigation in the future.

2.8. Diagohal Hypermesh

Another variation on the hypermesh interconnection network is depicted in Figure 2-10.

Figure 2-10: Diagonal hypermesh interconnection network.

In this network, the same direct connectivity along rows (just like in"hypermesh) is
maintained, but the column links are now replaced with ciiagonal links. This network
reminds us of the I-skewed storage techniquel3 in memory systems [Lawrie 75, HarJui
87]. This topology turns out to have very interesting properties in terms of permutations. It
can also be configured like the original hypermesh in just one simple communication step

(along rows), maintaining all the features of the hypermesh.

3A skewing scheme is a method for assigning the elements of a vector to parallel memory modules. Thls
techmque is used to obtain conflict-free vector accesses fora subset of access patterns.
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Studies on several i;pportant permutation functions on this topology showed that this
topology can realize the ﬁost important class of permutations (i.e perfect shuffle, bit
reversal, butterfly and exchange permutations,.':.) in at most 2 communjcation steps,
regardless of .the network size. An APL program has been implemented to verify this
property, using the same data routing algorititm described for hypermesh. Experimental

results are summarized in Chapter 4, for different sizes of the network.

2.9. Sorting

Sorting problem was not a research topic in this thesis. Nevertheless, reviewing of the
possible techniques which possibly can be of use on hypermesh, will be presented.
Extensive research into sorting techniques has been carried out during the last few years,
and a large volume of literature is available [Akl 85, SchSen 89, NasSah 79, ThoKun_
77, Thompson 83, SchSha 86, Han 85,_ SonKin 88, MarGaf 85] which provides an
introduction to parallel sorting methods. This problem involves routfng of each data item
‘to a distinct position of the array predetermined by some indexing schemes. Three
: differe’ht schemes have been considered by Thompson and Kung [ThoKun 77]: row major,

shuffled row major, and snake-like row major. Some of the standard'indexing.schemes are
illustrated in Figure 2-11. Much of the attention has focused on restructuring well-known
serial téchniques such as quick sort, od&-*édven transposition sort [ThoKun 77], and bitonic

sort [N asSah 79] in order to make them amenable to oarallelism.»

A serial algorithm based on, for example compan'son-interchange, necessarily requires at
least O(k_logk) comparisons to sort & numbers. If k comparisons are carried out
simultaneously at each stage, then clearly the lower bound on the number of parallel
comparisons (or délays) is O(log k). However, it does not seem possible to achieve this -
lower bound by restructuring one of the well-known O(k log k) serial algorithms, (for
example, the two=way merge sort), primarily because of lack of parallelism toward the end
of the sorting process. On the other hand, it is possible by using odd-even transposition

sort, using O(N) processors to sort N numbers in O(N) steps.
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Figure 2-11: Some indexing Schemes,
- (a) row-major; (b) snake-like;

(c) proximity; (d) shuffle row-major.

In the realm of sorting a two-dimensional array of numbers, a seemingly "nice" way

would be to sort rows and columns (since it involves sorting on smaller problems of -

approximatelyi ‘/]V size) and "hope” that somehow a combination of these two operations
will terminate in a sorted sequence. Unfortunately, such a procedure doesn’t seem to work
when implementing in a straight-forward manner (row major ordering) [Leighton 85].
Paradoxically things fall into place when one sorts the rows in a snake-like row-major
form without increasing the complexity of the procedure. A simple algorithm, called
shear-sort has been introduced using this scheme in [SchSha 86]. It is worth noting that in
a hypermesh we can get the snake-like ordering from the regular row major ordering in just

one routing step (Chapter 4), rather than ©(n) on a regular mesh. Since sorting along
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row/column can be performed in O(n) on an nxn hypermeshl4, and also log n steps are -
" required for this algorithm to converge [SchSha 86], therefore, the total complexity of the

algorithm exploring this scheme achieves a bound within Of n) of the optimal.

l4Since flooding operation can be performed in linear number of communication steps on a row of

hypermesh, an enumeration sort described in [YaTaYa 82] can be efficiently used to sort the row of the
network in linear time.
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Chapter 3 |
VLSI Constraints and Hardware Support
forrCommunication in Multicomputer Networks.

This chapter considers various physical constraints which influence the design of VLSI
based interconnection networks used in multicomputer systems. Design expressions are

presented for implementing a network controller for a mesh with direct connectivity along
rows and columns.

The design of effective multiprocessor systems involves numerous interacting elements

ranging from parallel algorithms to programming languages to computer architectures.

This section focuses on the computer architecture question and, in particular, on the design . .

of VLSI based electrical interconnection networks for use in multiprocessor systems. Due
to their potentially critical effect on overall multiprocessor performance, interconnection
\’\\/ networks have been widely studied. Various studies have focused on their functional

properties (permutation, control algorithms), their complexity and performance, and their
actual design.

In the following, some issues which must be considered when designing a high
pefformance network controller (NC) based on VLSI technology is discussed. A set of
useful NC instructions will also be propbsed. In sections 3.3 and 3.4 considerations on a
node processor and network interface chip along with an equation demonstrating the
number of required pins for a typical NC in a hypermesh network will be presented.
Finally, requirements for high bandwidth I/O subsystems will be discussed and a

* hierarchical solution will be proposéd.

37
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~ 3.1. Communication Paradigm and Hardware Support

Communication functions have traditionally been implemented by software in loosely
coupled communication networks. Workloads for such systems are generated by processes
that communicate infrequently to perform high level functions such as file transfers
[ReedFuji 87]. In contrast, multicomputer networks execute a collection of closely
coupled tasks that communicate -frequently. F/Therefore, although many of the same
problems-and issues that arise in loosely cou)pledﬂnetworks also arise in multicomputer
networks, the latter often require completely different solutions and implementation. In
particular, rather than software implementation“of .communication’pfotocols, hardware

support is more appropriate.

Several key issues must be considered when designing a high performance
communication controller: The routing issue has been discussed in a previous chapter,

therefore in the following other issues are considered.

3.1.1. Buffer Management

Each message passed into the communication domain must be subdivided by the sender
into some number of fixed length packets (flits). Packets form the indivisible unit of data
transmitted through the communication network. Due to conflicts that arise when several
packets simultaneously require the use of the same link, buffering is required in each node.
The. strategy for managing usage of these buffers can have a significant effect on
performance. One simple solution gives each channel on each link a separate buffer.
Allowing several channels to share buffers, is another approach. However, the control
logic would be more complex. The first approach takes advantage of regularity in terms of
VLSI design aspects. In order to support several activities simultaneouély on different
channels the first approach seems to be reasonable. Under these circumstances, better

performance is obtained by having a separate buffer for each channel.

Now, what happens when a packet arrives at a pivot? It is placed at the end of the linked

list corresponding to the output channel. on which the packet is to be forwarded. It is
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removed from the list after it has been successfully transmitted to the next node. - The: |
linked lists are managed as a FIFO queue to ensure “that packets are forwarded in the same
~ orderin “which they arsive. " This queue management can be implemented in hardware so |
 that packet forwarding cari proceed as quickly as possible [ChuLeu 86]: Each link has an.
associated FIFO buffer that temporanly stores message packets

3.1.2. Flow Control

Flow control is the mechanism that regulates the transaction of messages along circuits.
The network must be able to "throttle” traffic on communication lines to prevent buffer
overflow and handle other situations of that kind. There are 2 approaches to the flow
cont:rol) problem, remote buffer management and send/acknowledge protocol [ReedFuji
87]." The latter approach provides faster communication mechanism, which will be
discussed here. A simple send/acknowledge protocol for data t:ransmission over the link is
the most straightforward example of receiver controlled flow control. Each node sends a
packet and waits for the receiver (or receivers) to return a control signal (ack). It is
assumed that each link has a separate control line to carry the ack signal. Because the
receiver can generate an ackn:)wledgement after only the header (first flit) is received, a
‘direct connection to the sender (or receiver) offers the unusual feature that the sender will
receive acknowledgement before it has finished sending the packet. This allows a
"pipelined” stream of flits through the links. Flow control is built into our slice algorithms

(Chapter 4), i.e. we produce and consume data at exactly the proper rate.

3.2. Communication Protocol in a VLSI-Based Multicomputer Netwo'rk

A general purpose VLSI communication component is envisioned that can be used as a
building block for constructing large multicomputer networks. These components feature
special purpose hardware to implement frequently used communication functions. Each
router handles messages for one PE, allowing it to communicate with all other PE’s in-its

same row/column. A typical communication network of the hypermesh is formed by 16

routers connected by unidirectional wires (Figure 2-4). The routers are wired in the pattern
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of the hypermesh. The address of the routers within the network depends on their relative
. \posmon within the mesh. Networks with more than 16 nodes would require a larger router

‘ "(t’ e., 2 for 8x8 mesh) The operations of the router can be divided mto following

P

. categones [ReedFup 87] R
inj eqtion, deliyery :‘E‘W;&for‘warding. .

Pl D a

~

The injection process involves sinlple handshaking between processor and router. The -
process by which a router removes a message from the network and sends it to the node for
‘which it is destined is called forwarding: When a message finally reaches its destination
router, 1t is delivered to thq appropnate processor by writing into the processor’s memory
(reglster), which involve ag simple handshaking between the processor and router. Clearly
the router is hardware limited-to a fixed buffer capacity. The number of buffers. is large

' enouéh so that the router almost never runs short of storage, but an additional mechanism
could be provided for dealing with the overflow case should it occur. This mechanism
uses two FIFO queues at both sides of the communication link. Between the processor and.
router is a pair of first-in/first-out buffers (FIFOs) that buffer bytes going to the router and’

data returning to the processor. Thesc buffers allow the router to operate asynchronously

with. the processor.

To support array algorithms, the network data interface should pertnit some automatic-
sequencing from one processor port to ‘another. Some of the coprocessor strategy which
was used for SJMC [HobSim 87] can be used for a Network Coprocessor. These
coprocessors receive source and destination instructions over the system bus, 1 cycle in
advance of when they are needed. The system bus is thus used for one data transfer and

one instruction transfer during each cycle. For this reason 2 network data transfers can

occur in 1 system cycle.

" An instruction set for Network Coprocessor will evolve as a variety of array algorithms
are studied. A small collection of useful NC instructions are outlined in Table 3-1. These

primitives are executed by the NC firmware in accordance with instructions submitted to it
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by the node processor.- The list of proposed primitives cover the functionalities which are
required for programming Ahigher-level. communication and ‘synchronization protocols.
They have been designed in order to keep the NC simple and fast and, on the other hand, to
provide the high_er—level network modules an% the applications in the hqsts with a povt/‘g@rful

k=3

- set of communication instructions.

NRBC: Network row broadcast initialize. Subsequent data transfer will go to all row
- processors.

NCBC: Network column broadcast initialize. Subsequent data transfer will go to all
column processors.

NRWA: Network read word alternate. The number of words to rcad before changing
from row to column is provided on the data bus as a parameter.

NRRW: Network read row word. Initialize for automatically cycling through the
row ports. The number of words to read before changing from one row
processor to another is provided on the data bus as a parameter. This parameter
also selects which processor to start with.

NRCW: Network read column word. See NRRW.

NSN: Network source next. Data are place on the system bus and the next source of
data is readied. This may be the same processor, the next row _processor, or the
next column processor.

NDN: Network destination next. Data are sent from the system bus into the network
and the next destination is readied. This may be the same processor, the next
row processor, or the next column processor.

Table 3-1: A sample of network COprocessor instructions.

3.3. Node Processor Considerations
)

A central requirement for efficient array processing is to match data transfer bandwidth
with arithmetic processing bandwidth. If the Arithmetic Processor (AP) is pipelined, the

data links to memory or a network must also be'pipelined.

State-of-the-art floating-point AP’s are available with cycle times ranging from below
50ns up to 250ns depending upon the technology and the amount of pipelining. Data ports

can be either 32 bits or 64 bits wide. Vector data registers and highly interleaved memory

. L4
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' : banks are requmed to keep such chlps ma;unally busy [HobKaf 89]. When networking is

) brought in, it ns u;nhkely that gata paths in the network itself will be as wide as 32 or 64
bits. If w we afe gomg to stnve for maxlmum connect1v1ty (the largest number of direct
connecuons) wide data paths are iny pract1ca1 for a small number of processors, say a
2x2 hypermesh. " For the following dlscusswn we choose 8- b1t—w1de network data paths.
This number has been chosen only bécause it will perrmt hypermesh sizes of up to 16x16
with at most 2 network communication chips per node. Hypermeshes of size 8x§ or less
w111 only requxre 1 communication chip per node. Let us also assume that 2 network data
transfers can \e’ccur in 1 system cycle. This is reasonable if the network busses are
unidirectional, short, and only moderately loaded. Such a network can keep a 16-bit

;Srocessgf continuously supplied with data for bursts of computation. Node processors will

Control
| | Menory
~ Diagnostic
Port — Control
Processor -
Arithmetic | Network |
Coprocessor|— 1 Coprocessor | -
'J B

ALU Memory
Coprocessor

Data
Memory

¥
-

Figure 3-1: Node processor functional components.
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therefore have a 16-bit data path between the network, memory, AP, and control processor.
Wider data paths exist from the memory controller into the memory, and the AP controller

into the arithmetic unit. These functional components of Node Processor, are shown in

Fig. 3-1. With submicron technology, many of the functional components will fit onto one
chip [HobKaf 89]. )

3.3.1. A Streaming Memory Interface

Deéirable memory ihterface features have been identified in previous work [HobSim 87].
The SIMC memory coprocessor supports up to 8 data streams for array processing.
CSystems can be designed with memory cycle times 0, 2, or 4 times slower than the
processor cycle time, so low cost DRAM technology can be used. It is desired to retain as

much of this lookahead capability as possible in the expanded system.

Since arrays are our primary data structure, it is proposed [HobKaf 89], to map data from
1 processor into a network of nxn processors by interleaving data uniformly amongst the
processors. Thus a vector element V; will be stored with processor P, where & = i mod n?.
- Large data structures will wrap around many times, while small data structures will not
cover the hypermesh. We assume for this discussion that all data structures can be

N

extended to cover the hypermesh uniformly.

3.4. Network Interface Considerations

As mentioned previously, network data paths are 8 bits wide. Each node processor can
communicate directly with any processor in its row or column. We also assume the

existence of an I/O link for each row and column.

Since network data paths are unidirectional, each processor only needs one output bus
which can be used to broadcast data to one or more of the processors in its row or column.
Each processor must have 2n input busses for receiving data from one or more processors
in its row or column (Figure 3-2). The total number of data lines is thus 8*(2n+1)+16,

where the ’16” comes from a local (bidirectional) data bus. If we assume that 2 control
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lines are needed for each communication channel, there will ‘be 4n for outputs, 4n for
inputs, and 2 for the local bus, giving a total of 8n+2. Not counting clock and power, the

total number of pins for a network interface chip is about:
10(n) = 24n + 26

10(4) is quite modest at 122. 10(8) is quite demanding, but feasible at 218.

QUTPUT BUS INPUT  BUSSES
control lines

e ] =

NETWORK  CONTROLLER

v LOCAL BUS J{I

Figure 3-2: Network controller signaling.

An 8x8 hypermesh communication network on a single board would thus be a good
commercial target for the near future. Unless one can fit a 16x16 hypermesh onto a single
board, the two dimensional hierarchy should be investigated for larger systems. The

loading on a single broadcast bus with 32 ports may also be significant.

3.5. Network Controller and /O Embedding in the Proposed Mesh

The host talks to the network cells through a network controller. The purpose of the
network controller is to act as an arbiter for the entire network, in terms of initialization
and receiving the results. Another thing it does is to act as a bandwidth amplifier between
the host machine and the processors. It is not surprising that the Host Machine is in fact
similar to one of the nodes of the network (Figure 3-3), which has been featured with the

same communication controller.
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3.5.1. Sample Operations

A typical macro-instruction sent from the host to the network controller is a matrix
addition instruction, which specifies the addition of two matrices with one element within

each processor. Another macro-instruction could be a matrix multiplication (Appendix C).

o —

3.5.2. Network Input/OQutput

As In a conventional machine, it is important that a multicomputer machine
implementation support a balance of processing and input/output. In some applications the
input/output bandwidth may actually dominate the performance of the machine. For
example, in the hypercube multiprocessor of dimension n, each node consists of a
computation processor, a communication handling mechanism, and a local m¢ ory. This
communication handling mechanism is in charge of the communications between the host
as well as between the n neighboring nodes. The host, having a communication path to
each of the nodes, asually performs /fgram development, program and data down-
loading, and peripheral control (Figure 1-1). Under such a structure, the host-to-node
interconnection tends to be the system bottleneck, especially at initialization and summing-
up stages of the computation. The success of an implementation depends on how well it
fits all aspects of the applications, not just the processing. The input/output performance
can become extremely important, particularly if this portion of the machine is poorly
designed. The objective is to minimize 1/O overheads by maximizing parallel 1/O
capability.  Fortunately, the hypermesh machine architecture provides two natural
possibilities for high-bandwidth input/output ports, through the communications network

and directly to the individual communication controller co-processors. However, having a

diameter 2 in this topology, /O can efficiently be handled solely through the
communication network.

Many multiprocessor systems based on the Mesh and Hypercube topologies have been
built recently [TuaPet 85, LinMol 86, ShihIr 87, GeAbGu 88]. In such systems, 1/O
processors are used to handle the data transfers between the processors and the outside

world or the Host. In some systems each processor is connected to an I/O processor and
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the I/O processor handles all the data transfers between that processor and the outside
world. For example, the Intel iPSC system uses I/O hardware withiﬁ each processor for
I/O communication using the ethernet protocol [NaBaAb 88]. In the NCUBE system, an
I/O processor is connected to a subcube of 8 processors and the I/O processors are

themselves partially interconnected [Hayes 86]. |

A close look at our topology, gives us another idea. Since we can send a data item to
each node of the network in at most two routing steps (2 hops), the communication links
between nodes can handle that without any requirement for a dedicated I/O channel. Thisr
approach uses the sjl'stem links efficiently for both the I/O and "node-to-node
communication. The network itself should be connected to a host node, which can be the

same node as the other network’s node. One scheme would be the following: The host

1/0 PORTS
%
0 o
p .
0
R———— D
T
S

L |

Figure 3-3: Network input/output.

computer is hooked up to the first row and column of the network through a network
controller node quite similar to other nodes of the structure (Figure 3-3). By placing the

I/0O links along first row and column of the network, we do not require explicit I/O system



VLSI Constraints and Hardware S upport )
Jor Communication in Multicomputer Networks Y ¥4

for the network!S | as they are required in several other networks [Kale 86, GeAbGu 88].
Thus, we can use one of the communication components as a network controller to handle

network I/O to/from the outside world.

Since having only one row or column of the network, connected to the Host, provides the
required communication links for the whole network in just one routing step; this scheme’
implies a good tolerance of I/O failures. In other words, we can feed the data into the
network along two separate path, which will provide high tolerance of I/O failures. As
soon as the first column (or row) receives the data/instruction it will broadcast it along the

other dimension, using the regular system links.

Utilizing the system links for I/O transfer requires some consideration. We might create
congestion along the links when I/O and interprocessor communication have to take place
along the same link at the same time. There are two reasons to believe that sharing the
links for I/O and interprocessor communication does not lead to congestion. Most

problems are solved on multiprocessor systems in the following manner:
e Distribute the data and code to each processor

e carry out the computation in a cooperative manner, and

e combine the results together.

Step 1 and 3 are I/O communications and step 2 requires computation and interprocessor
communication. With such a model of solving. a problerﬁ we can see that the I/O
communication and interprocessor communication do not overlap in time. And this leads
us to conclude that the system links can be efficiently shared for both I/O communication
and interprocessor communication. An obvious problem with this approach is that it

forces the first column/row of the network to have a different topology.

In order to provide higher I/O bandwidth for the hypermesh and also to relax the problem

just mentioned, the following scheme is proposed. In this scheme the I/O requirement can

except the first row/column.
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Figure 3-4: A hierarchy of network controllers for I/O.

be handled in a hierarchical manner. This means that the required I/O to this two
dimensional network can be provided through a one dimensional array of the nodes
requiring exactly similar communication components. In this array, each node is in charge
of one row!© of the network (Figure 3-4). Since the described communication component
features two sets (one for each dimension) of n-I input channels for inter node

communications, therefore the nth link can be treated for I/O.

The next layer of this hierarchy will probably require a higher bandwidth for more
efficient I/O activities. In that respect, local bus links (16-bits wide) can then be assigned
and used effectively to provide the required bandwidth, between a single node and the

mentioned array of network controllers. =~ - -

Note that the whole system (including I/O) is quite symmetrical. In general, the node
architecture used to implement communication nodes in the base hypermesh
(communication layer) can also be used for nodes in the I/O subsystem, thereby reducing
the hardware variety in the system. Figure 3-4, shows part of a 16 node configuration. In
this figure, a 16 node base hypermesh is controlled by a 4 node NC which, in turn is
controlled by a single NC. Thus, there are a total of 1+4+16=21 NC nodes in the system.

16could be at most for two rows in hypermesh.
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Chapter 4

Evaluating Success and ABenchmarking

The appearance of any new computer system raises many questions about its
performance, both in absolute terms and in comparison to other machines of its class.

Multicomputer networks are no exception.

Repeated studies have shown that a system’s performance is maxinﬁzed when the |
components are balanced and there is no single system bottleneck [ReedFuji 87].
Optimizing multicomputer performance requires a judicious combination of node
computation speed, message transmission latency, and operating system software. For
example, high speed processors connected by high latency communication links restricts

the classes of algorithms that can be efficiently. supported ‘LP_age 8§].2

In this chapter expressions for important metrics of network performance for hypermesh
will be derived first. Another important performance characteristic of a parallel processor
1s its ability to perform data bermutations. In section 4.2 this issue v»;ill be discussed and
an upperbound for performing any permutation function on the proposed network with the
variety of indexing schemes will be derived. An interesting feature of the D-hypermesh in
performing a set of most important pérmutation functions in constant time will be followed
by an analytical proof. Section 4.3 explains our approach to parallel programming (slice
concept) and describes the implementation of two applications on a simulator of the

proposed multicomputer system.

49
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4.1. Important Metrics of Network Performance and Properties of
Hypermesh

Three important metrics of network performance are Iatenéy, capacity, and throughput
[Dally 87a]. Latency, T}, is the sum of the latency due to the network and latency due to

the processing node.
T1=Tno T hode 4.1)

Network latency depends on the time required to drive the channel, T,, the number of
channels a message traverses, D, and the number of cycles required to transmit the

message across a single channel, L/W, where L is message length. - 7
Tpor =T (D+LIW) ' (4.2)

Other important evaluative measures of an interconnection network is the average distance
[AgJap 86]. This is the distance messages must travel, on an average, in the network. It is
advantageous to make this as short as possible. The average distance (in terms of the

“number of links) is defined as:

(4.3)

total number of computers. If we select two processing nodes, P;, PJ- at random, the
average number of channels that must be traversed to send a message from P; to Pj is given

by the following equation for a hypermesh.

Tpm = | | (44)

T,(4)is 1.6. T, (8)is 1.78.

Throughput, another important metric of network performance, is defined as the total
number of messages the network can handle per unit time. One method of estimating

throughput is té calculate the capacity of a network, the total number of messages that can
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be in the network at once. Typically the maximum throughput of a network is some
fraction of its capacity [Dally 87a). The network capacity per node is the total bandwidth
out of each node divided by the average number of channels traversed l;y each message
[Dally 87a). For an nxn hypermesh, the bandwidth out of each node is (2n-1)W, and the
average number of channels traversed is given by (4.4), so the network capacity per node is
given by ’

2n—-1)W
l}lq)(@:ﬂ%_z

n+l

W | @.5)

Throughput will be less than capacity because not all channels can operate at the same
time. In hypermesh either row or column can be used for data transfer operations at each

. . . w . . .
time. This will make the throughput 5—2— A typical value for throughput is about 7 in a

torus (mesh with wraparound connections) [Dally 87a].

4.2. Some Fundamental Permutations on Hypermeshes

In order to analyze the performance of a multicomputer system it is necessary to
characterize its data permutation ability [ReevGut 89]. A permutation on an ordered set of
N nodes can be defined by a one-to-one function n(x), wherel? x and m(x) are integers in
the range 0 < x, n(x) < N-I [HoJess 81]. Itis often found that a simple way of defining a _
permutation can be obtained by lookiné at the binary representation of x. Thus

x={b,b, ;,....bj=b2" 4 2M24 .. .4p2ml (4.6)

represents the binary address of an element in the set. Permutations of the set of inputs can

now be defined by operations or permutations on their binary address (Figure 4-1).

In this section the performance of the hypermesh for a number of important data
permutations is described in'detail. These permutations occur in many scientific problems
and knowledge of their performance may also be useful in guiding a programmer to

develop efficient programs.

17x and m(x) represent the addresses of the elements before and after the permutation, respectively.
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@ ® ®
(B)

Flgure 4-1: Flow diagram of (A)perfect shuffle, and
(B)bit reversal permutations on hypermesh.

A simple routing algorithm for performing permutation functions on hypermesh is
described first. Then an upper-bound for any permutation using this algorithm will be
derived. In the rest of this section studies on some fundamental permutations on varieties
of hypermeshes (in terms of indexing schemes) will be presented. This will be followed
by an analytical proof verifying an interesting feature of the D-hypermesh in performing

the set of studied permutations in constant number of communication steps.

4.2.1. A Simple Routing and message density for permutations
N
We perform this in a two phase algorithm. In phase I of the algorithm, we displace the

messages between columns. This initial displacement ensures that there is no congestion
in routing the message to its target, if two nodes intend to exchange messages. Phase I
moves data to the same column as the destination is located (along the rows). Also,‘ in

phase I data is moved between adjacent nodes, (if the source and destination are on the

same row/column). At the end of phase /, each node is holding at most \/TIV-I messages. In

phase /I data is moved within columns to its destination row. Since a node can play at
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most \/I—\?-I times as a pivot, and the largest column distance to be covered is /, the number
of data transfers required in phase II to reach the target row is at most \/IT/-I . Thus, the
total number of data transfers executed by the algorithm is / +\/IT/-I =‘/1V.

This simple algorithm will result in a path in which one node acts as an intermediator, we
call it pivor here, for each pair of nodes. Clearly, whenever a pair of nodes swap their data
this simple routing algorithm is optimal in the sense that they always utilize different
pivots for each direction . For certain permutations some nodes are involved more than
others in message transmission, and not all the nodes carry an equal amount of traffic.
However, in this case, the maximum number of queued messages at those heavily loaded
pivots will never exceed \/IV , which gives the upper bound for any set of permutations to
be exactly \/N .

Some enhancements are possible. For example, if we use a proximity ordering for the
network nodes, a similar routing algorithm can perform perfect shuffle and bit reversal

permutations both in 3 steps, using hypermesh of size 8x8. A hypermesh with proximity

ordering has an interesting property that node;,node; ; are neighbors. Also this mesh-may—— T

be recursively subdivided into sub-meshes such that each sub-mesh contains consecutive
indexed nodes. Results on performing the set of fundamental permutations on
hypermeshes will follow their quick definition.

%

£

4.2.2. Exchange Permutation

The exchange permutation can be defined in terms of the binary representation of x.

g,=(b ... b, ...b) where 1<k<n @

The bar denotes the complement of a given bit. Thus the K** exchange permutation can be

defined by complementing the kzk bit of the binary representation of x .
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4.2.3. Perfect Shuffle Permutation

The perfect shuffle is so called as it can be performed by cutting the set in two and -
interleaving the two sets obtained, as in the perfect card shuffle. This permutation

corresponds to a unit circular left shift of the binary representation of x. .

G(x) {bn 17 n_27' ',-"blabn} (4'8)
R, :

In terms of row and column indices this can be written as

o(r,c)=2r mod \/JT/+EC ,2¢c mod \/ﬁ+E,) , 4.9)

where

: {1 cz\/ﬁ/2

0 otherwise

{1 r> \/IT’/2

0 otherwise

Ist step ::ﬁ_i

€
O
—0
@)
~—O0

2nd step

=@ ® I I

O O O ©

O0=0

Flgure 4-2: Perfect shuffle on hypermesb with
snake like ordering
and 2-step routing solution.
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4.2.4. Butterfly Permutation

The butterfly permutation is defined over the binary representation of x by exchanging

—the first and last bits. __
B(x).:{bl’bn_.l’ .. -7b27bn} ' ‘ (4.10)

1st step

@ O @ 0" o__o—=o
@ @ %P Cf ©
(if O ® O
. ; 2nd step | I l
® O ® R
O O O ®

Figure 4-3: Bitreversal on a hypermesh with
a shuffle row ordering; and the overloaded pivots
after first step of the data routing.

4.2.5. Bit Reversal Permutation

The bit reversal permutation, as its name suggests, is defined over the binary

representation of x by reversing the order of bits (Figure. 4-3).
p)={b.b,,...,b} 4.11)

In terms of row and columh indices this can be written as §
(4.12)

p(r.c) = (cR.rR)
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xR = reversal of {x,_jx_,.. .J;O}

= [x()xl . 'xn—l}

It 1s interesting to note that, the matrix transpose algorithm can be defined as a bit reversal
permutation on a hypermesh network. One application where this permutation odcurs is in

the Fast Fourier Transform algorithm [ReevGut 89].

® o o0 ®
® ®
® ®
® @
®
® ®

|
® ® O ® NO O ® 0

* Figure 4-4:  Flow Diagram of bit reversal permutation
on an 8x8 D-hypermesh.
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4.2.6. Shift Permutation

The near-neighbor interconnection network of the MCC can only directly implement the
shift permutation. Any other permutations can only be achieved through the shift
permutation. Clearly, this is not the case in hypermesh network. The shift permutation can
be defined as following. In terms of the binary representation of x, the following equation
defines the binary addition over the n-bit field, ignoring overflow .

ofx)=|x+1] | (4.13)

Ist step

Ind step (f

O @] @] o

Figure 4-5: . Perfect shuffle on hypermesh with
proximity ordering;
and 2-step routing solution.

It 1s important to note that some of these permutation functions can be realized with fewer

routmg steps on other typcs of ordering in hypermesh (Figures 4-2, 4-3, 4-5).

A summary of the complexity results of performing these permutations on hypermesh
networks (nxn) is given in Table4-1. Each entry in this table indicates the number of

routing steps required to perform the corresponding permutation function for the specified

S
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ordering of the nodes. As the table shows, D-hypermesh turns out to have very interesting
properties in terms of permutations. For thesé permutations a 2-step routing solution using
the routing algorithm presented in Chapter 2, exists. For example, the bit reversal
permutation can be performed on this network, in just 2 com}nunication steps, regardless
of the network size. Figure 4-4 shows the ﬂow diagram required to perform the bit
reversal permutation on an 8x8 D-hypermesh (in here network horizontal and vertical links

are elided). .

mﬁmprSMMIHemwmﬁysMﬁhmw&W@mwh

{n=4,8}
bit reversal| 0 n/? 3 o )
perf.shuffle 3 2 log n 0 )
exchange 1 2 T3 |1 1
butterfly 2 2 i i 1

Table 4-1: Routing complexity on hypermesh
of size (nxn) with a set of indexing scheme
for a variety of frequently used permutations.

4.2.7. Analytical Proof for 2-Step Routing on D-hypermesh

Experimental results (using an APL program) for performing permutation functions show
a 2-step routing solution on D-hypermesh with up to 256x256 in size. In order to
generalize this property to an arbitrary size of network, an analytical proof is given here.
Here the bit reversal permutation is used to demonstrate this proof. Clearly, this can be

done for some other permutation functions as well. In an nxn network of processorsm, the

8Define n=2% ¢ r are k-bit binary encoding of column and row numbers.
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bit reversal permutation!? function in terms of row and column indices can be written as

p(rc) = (R R) where 0<rc<n-1 and 0<cRR<n-1 4.14) -

The pivot node for each data transmission can be found using the function

8(r.c) = (r, (cR+R—r) mod n)

(4.15)

In order to prove that this network can perform permutation functions in 2-steps, we have
to demonstrate that in the first step of the routing algorithm, none of the pivots receives

' more than one message to forward.

To do that, it is sufficient to prove that the pivot function, J, is an injective function (i.e.

if 8(x1,x2) = S(yl,yz) =(z,2y) ,thenx; =y, and x; = y,).

Suppose (x,,x,) and (y,,y,) arethe coordinates of 2 nodes. Then
X = 8(x, x,) = Oy, O, Rx Rx)) mod m) (4.16)
Y =801,y = 0y, 0 +y R=y)) mod n)

are the pivot nodes of (x,x,) and (y,,y,) respectively.

Two tuples are equal if corresponding terms are equal. So,

if X=Y the D =) @.17)
- " b) - (x2R+x1R—x1) mod n = (yzR+y1R—yl) mod n i
- Since p is an 1-to-1 function, from Eq.(4v.-1j3v—a', we get
CxR=y R _ . “(4.18)
Substituting xR—x =y R-y; =C into Eq.(4.17) yields |
(0, R+C) mod n = (y,R+C) mod n ‘ (4.19)

N\
Since a mod n=b mod n —>(a+d) mod n= (b+d) mod n. Thereforc_ -

(X, R+C+=0)) mod n = (yR+C+(=C)) mod n

9Define R, to be a bitreversal of ¢.
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can be simplified to:
sz = y2R modn (4.20)
Finally since x,%,y,® < n (from Eq.(4.14)) implies that
xR =y f —>2 x =y

the proof is complete. O

4.3. Environment for Multicomputer Simulation

For effective use of parajlel systems, it is essential to obtain a good match between
algorithm requirements and architecture capabilities. Information which captures the
relationships between parallel algorithms and parallel architectures can be investigatéd
using a simulation. Moreover, task (application) level modeling of multiprocessor
architectures may produce some good insight into the trade-offs between computation
versus communication, low versus large granularity, alternate mapping, scheduling and

both static and dynamic routing strategies.

"~ The lack of adequate system software is currently the largest hindrance to parallel
program development for multicomputer networks [ReedFuji 87]. This is partly because
of the requirement for a network based operating system to support message-based
communication features at the édftware level, on top of primitive communication §ubp0rt
at the hardware level. Another reason perhaps is that no matter what the interconnection
network looks lifce,_ the communication patterns required by some algorithms will be

inefficient or difficult to formulate.

One of the objectives of this thesis was to study a possible simulator for a multicomputer -

20Again, because bitreversal is an 1-1 function.
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system based on the same language as the real version?l. Then, since the simulation and
implementation languages are identical, the overhead of transporting software to the real
implementation is negligible. This enables us to consider the correctness issue of the

programs outside the structure of the real system.

Simulations of the hypermesh were performed to evaluate various design options and to
validate that our design of a message transmission could meet the objectives. A
hypermesh simulator has been set up using the APL and C languages. The essence of this
approach is that each line of APL code represents one real microinstruction [Hobson 87].
A matrix multiplication algorithm has been implemented on the multiprocessing simulator,
to verify the correctness of the algdrithm and also to verify the required communication
primitives on such a network. Some other safnple algorithms using a tree reduction
technique and also using a centralized control algorithm for array summation has been
implemented. The system is written in APL and C language and run on a Sun workstation.

The code is divided into two parts. '

e An APL program which is the 'implemehtation ‘of the matrix-to-matrix
multiplication algorithm, specifically designed for the' hypermesh network.

The node program is exactly the same for all nodes. Another simple program
is also required (for a network manager) to set-up and configure the network.

e A C code, implementing the -communication primitives required for the
communication between APL processes. The role of the C code, is in fact, to
facilitate the communication between tasks (node programs) running on
different APL environments.

‘Work on a more realistic hypefmesh multicomputer simulator using APL and C on a
network of Sun workstations has been initiated, but because of the problem with the
existing APL-C interface, the Inter-net communication primitives cannot be implemented

directly in C as a routine?2. One of the aspects that needs to be considered in any

e em

21In a very recent work by Olsen et al, [BaOlSo 89] "Occam” language has been used for a simulator of a
network of transputers.

22An internet communication activity was causing a crash on APL-C interface. However, that was taken
care of by adding more complexity in Internet communication and implementing it as interrupt handler
routines.

&,
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simulation is to ensure that the simulator is free from properties like deadlock and various
time-dependent errors. In this respect, more work needs to be done in terms of the

handshaking requirements.

The algorithms developed in this chapter have a great deal in common:
® node processors are synchronized by passing messages,

e messages are short, containing constant length,

e routing decisions are solely based on local information.

To implement a good data parallel algorithm on the hypermesh multicomputer, one has to
consider the number of processors required, an efficient way to partition the data, an
efficient way to map partitions into processors, and the role of the network controller must
be determined. We use two simple examples, array summation and matrix multiplication,
to demonstrate various techniques to solve these problems. In this technique, each
processor knows exactly what to expect from the network as part of its algorithm slice.

There is no data interpretation overhead.

4.3.1. Array Summation

Given a vector of numbers, a; a, '. .., @, we want to compute ‘their sum,
A=a +ay+---+a,. Each number, alf, is stored on different node. One approach, the
centralized accumulation method, is to partition the vector into & subvectors, each having a
size ofxl. (0 < i< IIN)?3. One subvector is assigned to a node to calculate the partial sum.
All partial sums are collected by the host to evaluate A [NiKing 87]. The host then may
initiate another step, by redistributing the partial sums among half of the zlctive nodes of
the previous step, and carry on this strategy until a single result gets collected by the host.

An implementation of this model has been done.

Another approach, the tree structured accumulation method, is to use a tree reduction

among the nodes to accumulate the partial sums. The host then receives the final sum A

23N is the network size.
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stage I11
stage II
stage 1 :

® C

Figure 4-6: Tree reduction scheme.

from the root of the reduction tree (Fig. 4-6). There are other tree numbering conventions
which could be used in tree reduction algorithm. For example, a tree reduction algorithm

based on the balancing tree [Dally 87a] model has also been implemented (in a simulator).

To describe the concept of the algorithm slice in a synchronized array processing a scalar
éggregation on a hypermesh will be discussed. Here we consider the addition of a vector
of elements (or partial results), each resident in the local memories of each processor in the
hypermesh. First, all the nodes compute their local aggregate values. Next, all the local
aggregate valués need to be combined to determine the global aggregate value. The global |
aggregation phase takes logn steps for one row of an nxn hypermesh24.

In the k% step, k=1 to logn, nodes ) Whose rightmost k address bits are equal to the
rightmost k bits of the host address (the robt), read the aggregate value from the nodes
which differ in address (from p;) in the kh bit. Clearly 2logn steps would be required to
get the final result at the root (i.e. node(0,0)). A distributed rouiing algorithm of low

complexity has been implemented using a simulator. Each node in the network, has a

24Clearly, this process is running simultancously for all rows of the network, in which nodes along the first
column act as temporary roots for their row correspondingly. w
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binary number of length 2log n corresponding to its position in the mesh. All nodes are
programmed equally, and the routing algorithm is based on the node ID. A simplified
algorithm for one row of the network is given in 4-6. In this algorithm n processors are

employed, each initially holding one input value.

forall PEsdo;, 0<ID< n-1
for step=1to log n do
bit=myid(step)
if bit=0 then
receive-from (myid @ bit)
else
send-to (myid @ bit)
exit
fi
od
od
/* myid(i) is the i*" bit in binary
encoding of the node ID. */

Figure 4-7: A typical slice algorithm for a'scalar aggrégation
' in synchronized array processing.

The addition across a set of eight elements is shown in Fig. 4-6. The figure shows the
stages and the binary tree structure control in the operation. The architecture is initially

partitioned into clusters of two adjacent nodes with one active processor in each cluster.

4.3.2. Matrix Multiplication

Let A and B be matrices of size (nxn), the network size. In forming the matrix product

C=AxB with elements

n
cij;lgiaikbkj-(lsism1Sj£n) | - (4.21)

there are n? products aikbkj to be calculated. There are various strategies for forming this
product on a parallel computer with nxn processors [JagKai 89]. The matrix C=AB has n?

entries, each in the sum of products of n pairs of numbers.
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If * denotes term-wise multiplication respectively on objects such as matrices and

vectors; for vector L and :
x — % — X %
v (o—(u],...,un) ((o],...,(on)—(u] ®;, ..., 0,%0;)

Then all multiplications can be performed (notationally with a single application of *), by
multiplying positions of the data ehtn'es, at each node ( n-steps). For instance, for a 2x2

case, we have the following

& &yl (b, by
dy azzJ by by

which is now more conveniently arranged as

(a11/a12) <a111a12) ) (burbZl) (b12rb22)
(d91/d9y) (dpy a9 (b Dot by boy)

Now various additions must be made (after performing the termwise operation "*"), and
sums assigned to the corresponding position in C (at each node). In general there are n?
results in the result matrix and each of the entries consists of the addition of n numbers
(which takes log n steps using tree-reduction technique). However, since a multiply-
accumulate operation can be done in just one operation (pipelined), there is no reason for

that extra addition step.

A brief description of the program is the following: The Control Node program
configures the network2S. It initially broadcasts the size of the network. Then it receives a
vector operation by interacting with the user, and then broadcasts the vector operation to
the entire network. Each node then starts executing its own program, (all nodes are
-programmed equally). Each node is .assigned an /D associated with its, p9Sition in the

hypermesh structure. All the decisions making during the execution of the node program

-BControl Node is acting like a Cube Manager in hypercube architecture.
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are based on the node ID. The algorithm consists of 2-step broadcasting operations (one in
A, and one in B), followed by multiply-accumulate operation at each node. In the first
step, the elements in each column of the matrix A, is broadcast to all others. Similarly, in
the second step, the same algorithm will take place for the matrix B (in each row). These
steps leave 2n data at each node ready to be consumed by the node processor for n local
multiply-add (pipelined) operations. Moreover, all the routing decisions are solely based

on local information.

Up to this point we have assumed that theré are enough cells in the network to hold the
entire problem. Of course, there will always be problems too big to hold on a physical
machine. One is that the size of matrix is larger than the size of the network. In this case,
the matrices need“ to be partitioned into smaller units, where each unit is dealt with in
parallel; for example, if the matrices A, B, ..., H are all of order nxn, and with n°
processors available, the most obvious method of multiplying matrice% of order (2n)? is as

follows:

k BME FHAE+BG AP+
C DI H|T| CE+DS CF+DH}

[

Where each product in the right-hand side is computed in parallel. In general case, it is
possible that the given matrix is not a complete permutation of the network size. One
simple solution to this problem is to augment the matrix with extra zero elements (along
rows/columns) in order to get a complete permutation of the network size. Then split it
into small sizes each one the same size as the network. Figure 4-8 shows one example of

such partition. This approach has been taken in [HobKaf §9].
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Matrix A

Figure 4-8: Mapping 4x4 matrix items on 2x2 processor ar:ay.

4.3.3. Performance Study of Matrix Multiplication

All hypermesh computations combine both communication and computation; hence, a

single number such as MIPS, MFLOPS, or bits/sec will not accurately reflect

communication and computation or the performance for different applications.

In evaluating a parallel system, two performance measures of particular interest are

..Spgedup and efficiency [EaZal.a 89]. -Speedup is defined for each number of processors p

as the ratio of the elapsed time2® when executing a progiam on a single processor (the

single processor execution time) to the execution time when D processors are available. In

the notational form,

26The cost metric could be a throughput, which is an appropriate cost measure if one has many such
computations to be performed and the computations may be overlapped {Whelan 88).
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T, S
So)=7 4.22

Efficiency is defined as the avefage utilization of the p allocated processors. Ignoring I/O,
the efficiency of a single processor system is 1. Speedup in this case is of course 1. In

general, the relationship between efficiency and speedup is given by

Ep)="2

(4.23)
The theoretical maximum value of S(p) appears to be p (and of E(p) to be 1), attained when
the algorithm is fully parallel and the calculation is distributed equally among all
processors (processing elements). This time may be thought of as measured in clock
periods. An efficiency study has been done [HobKaf 89] for matrix multiplication
algorithm. MicroAPL techniques have been used to demonstrate how nxn matrix multiply
may be broken into outer and inner routines for execution on the hypermesh [HobSim
87, HobTho 81]. A copy of the code with explanations can be found in Appendix C (from
[HobKaf 89]). Uniprocessor version of tHis algorithm (from [HobGud 86]) can also be
found in Appendix B. For matrices of size M; (mxm), and hypermesh of size N; (nxn), the
efficiency function reveals that for m > 16 and n > 8, the efficiency is 2 1 [HobKaf 89].
This interesting result is due to a more efficient inner loop in the hypermesh algorithm than
in the uniprocessor algorithm. After processors broadcast row/column data, the network
co-processor can deliver this data for computation without the same startup penalty as the

local memory system.

A significant advantage that synchronized array processing algorithms have over message
passing concurrent algorithms is that data exchanges through the network are very precise.
. Each processor knows exactly what to expect from the network as part of its algorithm

slice. There is no data interpretation overhead.

-t
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4.3.4. Matrix Multiplication on Diagonal Hypermesh

>

Excellent features of diagonal hypermesh in performing most impoftant_ classes of
permutations have been discussed earlier. Now we are interested in performing matrix
multiplication on' D-hypermesh. It is clear that the communication pattern required for
matrix multiplication is not directly matched to the D-hypermesh structure. However,
several approaches can be taken into consideration. One could look for another algorithm.
For example, each column of matrix B (say col. i) can be projected into the row i, simply
in one routing step . Then using the horizontal links and broadcast operation and finally
reprojection of these data from row i to column i, it will end up in the same data setup
requirements as the previous scheme for matrix multiplication on regular hypermesh, (of
course the elements of matrix A must also become available to all nodes along rows which
needs a single" broadcast operation). In this scheme, the reprojection step requires n data

transmission steps, which is disappointing (Figure 4-9).

Figure 4-9: Another representation of a Diagonal Hypermesh.

In terms of time complexity, this scheme requires 09) steps communication and O(n)
times computation. Therefore, the total complexity stays unchanged (as compared to the
same operation on regular hypermesh). However, a close look at the APL implementation

(hardware execution) of this algorithm, and an asymptotic analysis of its execution time (in
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“terms of the number of cycles), will result a degradation in speed over 25 percent, for a 4x4
D-hypermesh. For a network of 64 processors (8x8 D-hypermesh) this dé'gradation is over
30 percent?’. Another ‘approach would be a techn}q\l}e by Winograd [JagKai 89] to .
compute the matrix multiplication using the following formula:

(n/2)-1 . ’ ’
Cij=- E) (ai,2k+1+b2k,j)(di,2k+b2k+l,j) (4.24)

(n/2)-1. (n2)-1
I E) 2 2%+1%i 2k~ k§) brs1 02k
The advan{age of this procedure is that only the first summation, which requires half as
many multiplications as the straigiltforward algorithm, need to be computed for each value
of the pair i,j. The second summation need just be evaluated once for every value of i28,
and the last summation for every value of j29. This means that these two sums can be
evzluated first at each row and column (using fastest technique, namely tree reduction
. along row/columh) and then the final result can be broadcast to other nodes along row, or
column accordingly. Then these two terms can be combined together (add operation)
locally, and form a constant number as a initial value for further multiply-add operations.
The effort required for communication and then computation of the first temi dominates
the final elapsed time in D-hypermesh, and also the pipelined multiply-add operation
which is a single cycle operation in current arithmetic units cannot be used efficiently. On
hyperrhesh class of networks this approach turns out to be no better than the previous
ap'p'féach. |

It is puossible to rearrange the initial data at each node, in order to derive a more efficient.

solution to this problem. Tﬁis can be done by reordering the initial data along rows of the

ZTThis is simply becauses of the extra number of communication based operations required in this

approach. \
28311 the nodes along each row will have the same value.

- 29all the nodes along each column will have the same value.
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- network (Figure 4-10). The crux of this algorithm is a data routing operation which we

shall now define. All the data permutation operations are cyclic shifts on rows or columns

(&) (B)
Figure 4-10: One step reordering in a D-hypermesh;
horizontal links are elided.
and may be broadly categorized under the following:
RRotate(+/-x), CRotate(+/—x) &

As the name suggests, there are cyclic shifts in the horizontal (Row) and vertical (Column)
directions, respectively. The amount of shift in each row(column) is determined by a
parameter (x). Figure 4-10 illustrates an instance of RRotate(+myrow). The elements in a
row are cyclically shifted. It is clear that shift on rows can be carried out in just one
routing step in D-hypermesh. Therefore, any data permutation operations defined by
Rotate() operation can be achieved in one parallel routing step if data under shift is in the

router, otherwise, a memory access time must be added to the required time.

Simﬁly applying this Rotate operation along rows of the D-hypermesh, with the amount
of shift equal to node’s row index, will result a regular hypermesh-like network. Then, the
same matrix multiplication algorithm on hypermesh can be carried out. Finally the end
results should be shifted back to the right places. Therefore, only small degradation in

performance over regular hypermesh will be caused.
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Performing a permutation from the set of most important permutation functions (Section
4.2; Table 4-1) on regular hypermesh seems to be possible to benefit from the current
results on transforming D-hypermesh to regulaf hypermesh. Since the mentioned
permutation functions can be performed on a D-hypermesh in at most 2 routing steps for
any network sizé, therefore performing one transformation from regular ordering to D-
‘hypermesh ordéring before the permutation task, and another rearrangement (fix-up) step
right after the permutation task, will give a 4-step routing solution for the set of mentioned
permutation functions regardless of the network size. This gives, for example, a 4-step
routing solution for performing bit reversal permutation on a regulér hypermesh of size
256, (16x16), instead of 16 steps required otherwise. Thus, any algorithm which requires

the class of the studied permutations can always be achieved in constant data routing time.
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Chapter 5

Conclusions

Parallel architectures and the way that they support the efficient execution of parallel
algorithms is an {mponant area of current research related to high-performance computer
systems. The choice of an appropriate architecture for any electronic system, is very
closely related to the implementation technology. This is especially true in VLSI computer
systems whose computational goal is the implementation of compute-bound algorithms
rather than I/O-bound computations. VLSI technology can provide us with a novel set of
building blocks for the construction of high performance point-to-point networks for

closely coupled multicomputer systems.

One of the objectives was to get topologies with minimum diameter and minimum
average distance simultaneously. We have shown an appropriate design choice of the
adjacency pattern between network elements, yielding a network satisfying this constraint.
This thesis has presented different modifications that can be made to a standard mesh-
connected parallel processor organization, and has shown how they support efficient
parallel algorithms for performing an important set of computational problems. The
proposed system i$ suitable for the large class of scientific applications which involve
regular operations on data arrays. Many of these applicafions involve matrix operations
such as the Fast Fourier Transform (FFT), in which data permutation is the basic functional
primitive, and matrix multiplication. The problem of efficiently performing permutations
on a hypermesh system has also been considered. Here, a very simple control algorithm on
the hypermesh network has been proposed, which can’ realize many frequently used
permutations in constant number of steps. H‘owever, the upper bound for any arbitrary
permutation has been shown to be N/ /2. Another variation of hypermesh named diagonal

hyperrnesh; has been introduced. An APL implementation of permutations on Diagonal

73
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hypermesh revealed that a 2 step routing solution exists, independent of the network size.
This interesting result has been accompanied with an analytical proof. Results about the
performance attained by hypermesh network have been presented here and comparison

with some other mesh-type networks are provided.

-
Another imponant advantage of the hypermesh is its ability to map other communication
topologies onto itself. In this regard a direct mapping of hypercubes onto the hypermesh
has been discused. This prdberty highly simplifies algorithm design and allows the
exploitation of very efficient communication patterns. For a wide class of problems, the
organization offers significant performance advantages over regular mesh-connectedv
computers, or other mesh modifications that have been proposed previously. The strong
connectivity, regularity, and symmetry of the hypermesh and also-its versatility in
embedding many other networks in linear complexity makes it a good candidate for a more
general-purpose parallel processors. Many classes of algorithms can be naturally mapped
onto the hypermesh, and distributed routing and broadcasting can be implemented
efficiently. A hypermesh’s‘full features can be exploited in array processing operations
where the sliceing concept is used by implementing a synchronized array processing
algorithm. However, this architecture may not be well suited for regular message passing

systems with asynchronous communication requirements.

The hypermesh is not easily expandable. This hampers a modular growth of the network.
We should thus seek a hierarchical solution to parallelism in the same sense that we have
hierarchical memory systems. At the bottom of the hierarchy we have modestiy sized and
very efficient arrays of processors. Above that layer one must tolerate gradual degradation
of efficiency due to inherent physicai constraints. Network topology in the bottom layer
may be different from network topology in higher layers. This is an (Spen problem. In fact,
hypermesh system’s expandability is due predominantly to the design of the NC chip. The
wiring complexity of the hypermesh grows at the rate of \/N where N is the network size.
This penalizes the hypermesh seriously under the packaging constraint. One solution to
this problem is reducing bandwidth which will allow us to have more communication links
for the NC chip.
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Simulations of the hypermesh were pérformed to evaluate various design options and to
validate that our design of a message transmission could meet the objectives. Hypermesh
simulator has been set up using APL and C languages. The essence of this approach is that
each line of APL code represents one real microinstruction. A matrix multiplication
algorithm has been implemented on a multiprocessing simulator, to verify the correctness
of the algorithm (slice) and also to verify the required communication primitives on such a

network.

Another goal of this thesis was to investigate hardware support for data passing that
obviates the ﬁeed for software control. .Some key issues which must be considered when
designing a high performance-network controller based on VLSI technology has been
discussed. Technological considerations in the design c‘)f a communication component
have also been examined. By offloading communication to a separate processor, the node
processor is potentially free to overlap computation with communication (just the
communication needs to be set up). Special instructions have been provided to support
communication between nodes. Unlike many other multiproéessor networks the
connectivity of the host and the hypermesh nodes is considerably richer, through a

hierarchy of network controllers, providing increased flexibility and greater I/O bandwidth.

Overall, the objectives of this thesis have been met. Further research is necessary to

determine the practical significance of the hypermesh in the commercial world.



Appendix A

Glossary of Acronyms

ACRONYM EXPANSION

AP Arithmetic Processor
D-hypermesh Diagonal hypermesh

DRAM Dynamic RAM |

FLIT " FLow control digIT

MIMD Multiple Instructicn Multiple Data
MCC Mesh Connected Computérs |
NC Network Coprocessor

PE * Processing Element

SIMD , - Single Instruction Multiple Data
SIMC SAMjr’s Memory Coprocessor
VLSI Very Large Scale Integration
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Appendix B

Uniprocessor Matrix Multiplication

MicroAPL techniques are used to demonstrate how matrix multiply may be broken into
special outer and inner routines [HobSim 87, HobTho 81]. Some simplifications are made
for the sake of readability. It is assumed that operands are pipelined to a floating-point
processor b;sed upon Weitek’s chip set used in flow through mode, cf. [Weitek 84]:
Action codes are placed in, FPCTRL, while an execution is triggered by an FPEXEC.
ERROR is one of 7 directly testable message (interrupt) flags. Each nonempty line of

microcode takes one system cycle, T.

The outer routine receives matrix dimensions, M, K, N in registers R{M], R[K], R[N].
Register RIRINDX] keeps track of columns in the right operand. R[LINDX] keeps track
“of rows in the left operand. R[T] holds the column step size in bytes. Data streams for
LEFT, RIGHT, and DEST are also passed to MATMUL by the format routine. Data
streams are started by SWW (segment write word) or SRW (segment read word). Data
streams are advanced by SSN (segment source next), or \SDN’ (segment destination next).
These memory coprocessor instructions are defined in [HobSim 87]. - - -

Comments are preceded by ®:

77
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V MATMUL
[ 1] estart destination and create column step:
[ 21 DEST SWW D'0’ A R[T)e- 2 XSHIFT R[M),ZEROS
[ 3] RILINDX]< NOP D0’ A
FPEXEC A FPCTRLe- D’clear—accumulator—code’

[4] LOOP1:

R[RINDX)« NOP D'-8’ s initialize column index.
[ 5] LOOP2: ‘

LEFT SRW R[LINDX] estart current row in left. &
[ 6] SBN LEFT A COUNTER«— NEGATE R[K] ®initialize hardware counter.
[ 71 CALL 'INNERPRODUCT’ A R[RINDX]« R[RINDX]} PLUS D8’
[ 81 = BAD IF ERROR A SF R[RINDX] MINUS R[T} A DEST SDN ABUF|[D0]
[ 9] DEST SDN ABUF[D1]
(10] DEST SDN ABUF[D?2] _
(11] - LOOP2 IF - ZERO A DEST SDN ABUF|[D3]
[12] RILCOUNT)« SF R[LCOUNT} MINUS D’1’ ®SF = sample flags.
[13] - LOOP1 IF - ZERO A R[LINDX)« SAR[LEFT] :
[14] ®SAR contains autoincremented row—offset.
[15] 2 0A SR « D’0’ eclear status.
[16] BAD: e processerror.
\Y

Inner-product proceeds as a 10 microinstruction loop using pipelined multiply-accumulate:

V INNERPRODUCT
® 64 bit data.

[ 1] COUNT V FPCTRL« 'multiply—accumulate—code’
[ 2] LOOP: : '
RIGHT SRW R[RP] estart right data stream.
[ 3] SBN.RIGHT -
[ 4] ABUF[LO]« SSN LEFT
[ 5]ABUF[L1]« SSN LEFT
[ 6] ABUF|L2]« SSN LEFT
[ 7Y ABUF[L3]« SSN LEFT AR[RP)« R[RP] PLUS R[T]
[ 8] ABUF[RO])« SSN RIGHT
[ 9 ABUF[R1)« SSN RIGHT
[10] ABUF[R2])« SSN RIGHT
(11] = LOOP IF — COUNT A FPEXEC A ABUF|[R3)« SSN RIGHT
[12] FPEXEC A FPCTRL« "unload-and—clear—accumulator—code’

[13] = 0 ®delay 1 for output to catch up.
\Y%



Appendix C

MicroAPL Code for Matrix Multiplication
on Hypermesh

MicroAPL techniques are used to demonstrate how (mxm=M) matrix multiply may be
broken into outer and inner routines for execution on the hypermesh [HobSim 87, HobTho
81]. The approach taken is to divide the operand matrices into nxn submatrices which fit
the hypermgsh exactly. The inner routine computes an nxn piece of the result, which
requires, K=m/n, nxn matrix multiplies. The outer routint; effectively sequences a smaller
matrix multiply prbb-lem of size, KxK,’wherc each result element is computed be the inner

routine.

Some simplifications are made for the sake of readability. It is assumed that operands are
pipelined to a floating-point processor based upon AMD or Weitek chips. Floating-point
data fifo-buffers for right and left arguments are FPR, and FPL. Floating-point instructions
are placed in FPCTRL, while an execution is triggered by an FPEXEC. FPERROR and
~NETERROR are directly testable message (interrupt) flags. Each nonempty line of

microcode takes one clock cycle, T.

The outer routine receives modulo matrix size in R[SIZE] (=K=m/n). This is the actual
matrix size, RIMAT] (=m), divided by the network diameter, RINET] (=n). Register
R[BINDX] keeps track of columns in the right operand. R[AINDX] keeps track of rows in
the left operand. R[STEP] holds the column step size in bytes. Data streams for AMAT,
BMAT, and CMAT are also passed to MATMUL by an outer control routine. Memory
coprocessor instructions are defined in [HobSim 87]. Network coprocessor instructions

are defined in table 3-1. Comments are preceded by e:
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V MATMUL
[ 1] e start result and clear A oj]“set
[ 2] CMAT SWW R[AINDX] « NOP D0/
[ 3} R[INC] « D’8’ e data size.
[ 4] e create column step:
[ S1R[T)e 2 XSHIFT R[SIZE,R[ZEROS] » mult by 8 for bytes.
[ 6] R[STEP]« NOP R[T] A
FPEXEC A FPCTRL« D’clear-accumulator—code’
[ 71 LOOP1: :
R[BINDX)¢ NOP D’( e initialize column index.
[ 8] R[BITTR] « R[SIZE] o initialize column counter.
[ 9] RIATEMP) « R[AINDX] .
[10] R[BTEMP) « R[BINDX]
_[11] LOOP2:
CALL 'INNERPROD UCT' A
R[ATEMP)« R[INC] PLUS AMAT SRWR[ATEMP]
[12] — EXIT IF ERROR A R[BITTR)] « SF R[BITTR] PLUS R[ONES] A
CMAT SDN FPSN
[13] CMAT SDN FPSN A R[BINDX)« R[BINDX] PLUS R[INC]
[14] CMAT SDN FPSN A R[BTEMP)« R[BINDX]
[15] = LOOF2IF -~ ZERO A CMAT SDN FPSN A R[ATEMP]« R[AINDX]
[16] R[T]« SF R[T] MINUS R[INC] e SF = sample flags.
[17] - LOOP1 IF - ZERO A R[AINDX]« R[AINDX} PLUS R[STEP]
[18] = O ASR « NOP D’() o clear status.
[19] EXIT: e process errors...
\%
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V INNERPRODUCT ’ : )
[ 1] @start col memory stream:
[ 2] RIBTEMP]« R[STEP] PLUS BMAT SRW R[BTEMP]
[ 3] RUTTR]« R[SIZE] A
FPCTRL « D'multiply-accumulate—code’

[ 4] SBN AMAT e fill row stream buffer.
[ 5] OLP:

SBN BMAT e fill col stream buffer.
[ 6] NRBC ®initiglize row broadcast.
[ 71 NDN SSN AMAT ®feed next 64 bzt row word to net.
[ 8] NDN SSN AMAT
[ 9] NDN SSN AMAT
[10] NDN SSN AMAT
[11]) NCBC ®initialize col broadcast.
[12] NDN SSN BMAT
[13] NDN SSN BMAT
[14] NDN SSN BMAT
[15] NDN SSN BMAT A COUNTER « NEGATE R[NET]
[16] NRWA D’4” A COUNT ®setup alternate read.
[17] ILP:

FPLN « NSN
[18] FPLN « NSN @ left arg.
[19] FPLN « NSN
[20] FPLN « NSN .
[21] FPRN « NSN ®right arg.
[22] FPRN « NSN ~
[23] FPRN « NSN  ~ >
[24] - ILP IF -~ COUNT A FPEXEC A FPRN « NSN
[25] — EXIT IF NETERROR
[26] — EXIT IF FPERROR A R[ITTR] « SF R[ITTR] MINUS D'V’
 [27] > OLP IF —=ZERO A R[BTEMP] « R[STEP] PLUS BMAT SRW R[BTEMP)]
*[28] FPEXEC A FPCTRL « D’unload—and—-clear—accumulator—code’
(291 = 0 ®one cycle delay for output.
[30] EXIT: ®error exit:
[31] SR « NOP D’error—code’
v .

Ignoring constant overhead, the above prototype algorithm executes in the fol\li)wing;
number of cycles:
NP(n.K) = ((8xn+15)xK)+10)xK+6)xK

In [HobKaf 89], this is compared with matrix multiply on a single processor like NP16, as
determined from similar microAPL code (Appendix A):
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NP(1,m) = ((10><m+9)><m+3)><m

An important issue here is balancing between the system components. Several commehts
on this program are in order. At a glance, a further reducg_ibn»in the execdﬁo’n time of this
“algorithm seems possible by employing a high bandwidth local bus. Having in mind the
limitation on the number of pins available toa NC Chlp, increasing the local bus bandwidth
will require the decrease of the communication hnks bandwidth. For simplicity of the
discussion, suppose we can afford going from 16 bits to 32 or even 64, without any
influence to the rest of the NC chip. A 64-bits local bus provides a one smglc cycle
transaction between node processor and NC. However, the required time to perform the
internode communication dictates a few wamng cycles (NOPs) to the node program. It is
not difficult to see that in case of 64-bits wide local bus, the number of inserted NOPs, wlll
not increase ;'he efficiency of this sample algoﬁthrn. Also, in the ILPAloop, the floating
point unit may not be able to keep up with the incoming operands. In generﬂ, these issues |
are the matter of technology being used. But it should be pointed out that these issues

must be considered in a hardware implementation.

Another issue here is the bandwidth, against possible network size, with the assumption
of a single NC chip with fixed number of pins. Varying the bandwidth of the internode
communication Lnks in a NC will influence the network size supported by that chip. In
order to support a larger }network with the same NC chip, one has to decrease the links
bandwidth. For example, reducing the bandwidth (bw) of the communication links from 8
to 4 bits (byte to nibble), allows the network size which can be supported by one NC chlp
to be doubled. The above prototype program,(with bw=4 and therefore n’'=2n, K’= 2)

executes in the following number of cycles:

NP(r' K') = NP(2n,-12£) - ((((8><2n+15+6)x§)+10)x§+6)x§

' ‘" Where the first ’6’ comes from the number of NOPs inserted inside the OLP loop, in order
. to let NC to perform the required data communication. Comparing this results w1th the

: case bw=8, reveals that reducing the bandwidth, from 8§ to 4, w1ll offer an asymptotlc

1
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speedup of about the order of 4.4 to 4, for different matrix sizes (from 64x64 to 1Mx1M):.
The point is that increasing the number of communication links with less bandwidth,
requires more control links. Therefore, a more complete analysis must consider the control

links as well as the links bandwidth.
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