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ABSTRACT

A Brillouin scattering apparatus has been constructed
and measurements performed on the II-VI semiconductor
ZnSe. In the experiments a single mode of the 514.5 nm
line of an argon-ion laser was used as the light source
and a molecular iodine filter was used to resolve the
Brillouin components 'in the presence of a strong Rayleigh
component. An analysis of the spectra has provided the
following values for the elastic constants of single-crystal
Cll = 87.2 = 0.6, C12 = 52.4 + 0.8 and C44 = 39.2 + 0.4

in units of 10'%dyne/cm?. The present results were com-

ZnSe:

pared to previous piezo-resonance and ultrasonic measure-

ments and also to values determined from neutron data.

In addition, comparisons were made with the elastic moduli
of polycrystalline ZnSe and further, an estimate was made

of the relative magnitude of the photoelastic coefficients.
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CHAPTER 1

INTRODUCTION

1.1 Preface

The long wavelength acoustic vibrations of dielectric
crystalline solids have been investigated in the past by
various methods. These methods include ultrasonic techniques
(ﬁuntington, 1947, 1958), piezo-resonance techniques (Cady,
1964), neutron scattering experiments (Batchelder et al.,
1970) and Brillouin scattering measurements (Gornall et
al., 1971). The results of such experiments provide infor-
mation on the velocity of sound (elastic moduli), photo-
elastic constants and piezoelectric coefficients of the
‘crystal. 1In addition, if the measurements are made as a
function of frequency the long wavelength dispersion of
the acoustic phonon branches can be determined. This infor-
mation is of course not only of direct interest, as it
pertains to the properties of the crystal, but is impor-
tant as a basis for any theoretical analysis of the
vibrational spectrum. A brief discussion of the merits of

X i
the above techniques is given in the following sections.

1.2 Ultrasonic Methods

Ultrasonic techniques are used to generate long wave-

‘length acoustic vibrations in crystalline solids. Transducers



are used to excite the longitudinal;and transverse elastic
waves at frequencies up to about 1&3 Hz. The sound velocity
is determined from the time taken for the impressed pulse to
travel through a known crystal dimension and the elastic
constants are then determined from these measured sound
velocities (Fedorov, 1968). Using pulse-echo techniques,
~as outlined by McSkimin (1950, 1961), the sound velocities
can be determined to within .1%.

| ﬁue to their poor performance at higher frequencies
transducers are limited in operation to frequencies g 108

Hz and as a result only acoustic phonons within this rather
limited frequency range can be investigated. Furthermore,
the requirement of sufficiently large samples (~1 cm?®) limits

the range of available crystals. A discussion of the

experimental technique is given by Huntington (1947, 1958).

1.3 Piezo-Resonance Techniques

The piezo-resonance technique, also known as the resonance
or dynamic method, uses the response of a piezoelectric crys-
tal to an alternatiﬁg~e1ectric field to determine the elastic
and piezoelectric constants. The specially cut piezoelectric
crystal is oriented in an external electric field in such’

a manner as to excite the desired vibrational mode. The
applied electric field produces a deformation of the crystal

through the action 'of the converse piezoelectric effect and,



as a result of the direct effect, this deformation induces

a polarization in the crystal. This polarization, in turn,
has an associated electric field whose reaction on the
external field can be monitored. When the frequency of

the applied field corresponds to a normal vibrational

mode of the crystal the amplitude of the deformation reaches
a maximum. This resonance can be observed by monitoring

the current in the driving circuit. This current is maxi-
mized at resonance. The measured resonant and anti-resonant
frequencies of the driving field can be related directly to
the elastic, piezoelectric and dielectric constants of the
crystal (Cady, 1964; Berlincourt et al., 1964; Mason, 1950).

This technique has the advantage in that it provides
a measure of the dielectric constants as well as the elastic
and piezoelectric coefficients. This method is further
useful in determining the effect of external influences,
such as temperature and pressure, on theée parameters. Also,
due to the present interest in piezoelectric devices much
technical information exists on the piezoelectric effect.

In this technique typical resonant frequencies occur in
the range of .1 ~ 50 MHz and thus only very low frequency
'phonons are sampled. Also, the elastic constants determined
by this method have an uncertainty of about 1-2%; due mainly

to the complex mathematical analysis required and uncertainty



in the dimensional measurements of the‘crystal samplés.

The method requires rather iarge crystals (.1 cm x 1 cm x1 cm)
usually in the form of a parallelepiped. The analysis of

the data with different field orientations is naturally
simplified if the external field is applied along a symmetry
axis of the crystal and becomes increasingly complex as other
orientations are used. Furthermore, this method is only

applicable to piezoelectric crystals.

1.4 Neutron Scattering

A direct measure of phonon dispersion throughout the
Brillouin zone is provided by neutron scattering (Leake
et al., 1969; Hennion et al., 1971). Thermal neutrons
from a reactor have energies and wavelengths comparable to
those of the vibrational frequencies and lattice spacings,
respectiveiy. The energy change of the neutron as a function
of scatteriﬁg angle can be used to determine the frequency
and wavelength of .the lattice vibrations. However, due to
insufficient energy resolution and small fluxes it is
difficult to analyze the scattering from long wavelength
acoustic phonons.

Alternatively, an interatomic force constant model is
usually used to fit a theoretical dispersion curve to the
data. The model has several parameters which are detérmined
from measured phonon frequencies and the model is then used
to determine the elastic constants from the slope of the

acoustic branches in the long wavelength limit.



Since. neutron beams are not intense large crystal
volumes (~1 cm®) and long counting times are required.
Some materials aﬁe not suited for this method because of
their high neutron absorption or large incoherent scatter-
ing cross-sections. Also, the elastic constants determined
from the neutron datalmay differ significantly from those
determined by moré,direct methods (Irwin and LaCombe, 1972).
On the other hand neutron data does provide valuable infor-
mation about phonon dispersion and when used with other
measurements can provide an accurate indication of disper-

sion throughout the Brillouin zone.

1.5 Brillouin Scattering

The invention of the laser renewed interest in the
phenomena of the scattering of light by crystal lattice
vibrations first proposed by Brillouin (1914, 1922). This
method serves to complement that of ultrasonics in that it
enables one to extend the measured phonon frequencies to the
gigahertz.

In Brillouin scattering laser light is incident on a
sample and the scattered light is frequency analyzed. The
light is scattered due to fluctuations in the polarizability
tensor. These fluctuations are generated by the thermal sound
waves in the medium. From an analysis of the spectrum of
the scattered radiation the phase velocity of the sound waves

 can be measured and the eldlastic constants determined.



Essentially there are no restrictions on crystal size
or type other than that the crystal transmit a portion of
the exciting light. Phonon phase velocities can be deter-
mined for practically any crystallographic direction but
the more symmetric directions naturally provide the simplest
relations between phase velocity and elastic constants. The
relative ease of applying Brillouin scattering measurements
in various scattering geometries can result in more infor-
mation about phonon dispersion than from either ultrasonic
or piezo-resonance methods. However, the experimental
uncertainty associated with phase velocity measurements in
Brillouin scattering is usually about 1% as compared to .1l%
for ultrasonic methods; due primarily to a lack of angular
resolution associated with the former. A reView of thé
Brillouin scattering technique is given by Benedek and
Fritsch (1966) and aﬁ outline of their analysis is presented
in Chapter 2 of this thesis.

From this discussion it can be concluded that Brillouin
scattering is a versatile method for obtaining sound veloci-
ties and complements ultrasonic and piezo-resonance measure-
ments. However, in the past Brillouin scattering experimentation
in solids has been complicated by the large amount of light
scattered at the unshifted laser frequency. Thisvunshifted
component will hereafter be referred to as the Rayleigh

component. The intensity of this central component was



4 to 5 orders of magnitude larger than that of conventional
Rayleigh scattering. This increased scattering was mainly
due to scattering from crystal imperfections and the collection
of specularly reflected light from the crystal faces. This
component may be so intense that the insEruﬁental "wings"
are not sufficiently rejected by the experimental apparatus
and as a result the Brillouin components cannot be resolved.
This problem is particularly severe in solids with a large
refractive index due to the enhanced reflections from such
crystals; as for example the ZnSe crystals used in the
present experiment.

This problem has been overcome by using a molecular
iodine filter as proposed by Devlin et al.(1971) to attenuate
the 5145 R single mode output of an argon-ion laser. This
arrangement should now make the technique of Brillouin scat-
tering applicable to an extremelf wide range of solids and
in particular to wide band semiconductors of the II-VI and
III-V groups where large single crystals are hard to obtain.

1.6 Present Work

Due to our interest in II-VI semiconductors it was
decided to construct an apparatus for performing Brillouin
scattering measureﬁents. The assembly and experimental method
of such an apparatus is described in Chapter 3 of this thesis.
An evaluation of the apparatus and method is given in Chapter
4 where measurements were performed on crystalline a-Quartz
for which the elastic constants are well known (McSkimin, 1962;

Cecchi et al., 1970).



The primary aim of this experiment waé, however, to
measure the elastié’constants of Zinc Selenide (ZnSe). The
elastic constants were.first determined by Berlincourt et al.
(1963) from piezo-resonance data. A more recent ultrasonic
measurement by Lee (1970) produced values which disagreed
with Berlincourt's. Furthermore, on the basis of his neutron
results Hennion ét al. (1971) suggested that Berlincourt's
results were grossly in error. This suggestion was reinforced.
by Talwar et al. (1972) on the basis of an interpretation of
the neutron data using a seven parameter model called the
second neighbour ionic (SNI) model (Banerjee and Varshni} 1969).

Due to the large discrepancies between these sets of
data it was decided that an independent measurement was
warranted. The method of Brillouin scattering was chosen
since it seemed the most appropriate, especially due to the
small crystal samples available and further because of the
recent discovery (Devlin et al., 1971) of the molecular.
iodine filter.

Furthermore, this technique would complement the previous
measurements by extending the phonon frequencies. to the
gigahertz range;.thus providing an indication of any serious
dispersion in the acoustic phonon branches near K = 0.

The results of the Brillouin scattering measurements

are presented in Chapter 5 where a comparison is made to the



previous experimental resﬁlts. In particular, the present
work is compared to the measurements of Berlincourt et al.
(1963) , Lee (1970) and the neutron results of Hennion et al.
(1971) and Talwar et al. (1972). In addition, a comparison
is made to the polycrystalline elastic moduli of ZnSe (Chung
et al., 1967) and 5 discussion of the consistency of the
data is made usiné a relation due to Martin (1970). Finally,
the pressnt data is used to estimate the relative magnitude

of the photoelastic coefficients.
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CHAPTER 2

THEORY

2.1 Introduction

In the first part of this chapter the theory of Brillouin
scattering in cubic crystals is presented. The analysis
follows that given by Benedek and Fritsch (1966). Results
for the scattered field and spectral density function are
derived and a weighting factor is defined for the scattered
intensity. In the second part a theory of elastic waves in
cubic crystals,due to Fedorov (1968),is used to determine
the relation between the sound velocity and the elastic
constants. Finally, relationships between the Brillouin
frequency shifts and the elastic constants are derived
(Tables I~-V) for the various scattering geometries used in the

present experiment.

2.2 Brillouin Scattering

Brillouin scattering refers to the scattering of light
by long wavelength acoustic phonons. The scattering results
from interactions between the incident electromagnetic field
and propagating thermal fluctuations in the medium. These
thermal fluctuations cause a local change in the polarizabi- .
lity or dielectrie constant and the scattering can be analyzed

in terms of these thermally generated fluctuations.
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Such an analysis follows from the identification (Debye,
1912) of the thermél content of the medium with the excitation
of‘crystal lattice vibrations. The connection between the sound
wave and the fluctuations in the dielectric constant was
derived by Pockels (1906). In his analysis Pockels related
the fractional change in the dielectric tensor to the strain
tensor components of the sound waQe. The fluctuating com-
pohent of the dielectric tensor causes the incident radiation
to be scattered.

The scattering may also be viewed classically as "Bragg"
reflection from fluctuations‘whose wavelength (Af) and
scattering angle (6) are related to the wavelength of the

A
exciting radiation in the medium (—%) by the Bragg condition:

o 0
——n——- = 2)\f Sl‘n(i') (2.1)

where n is the index‘of refraction of the medium. Alternatively,
the scattering may be Qiewed as a doppler shift in frequency

of the incident radiation due to propagating dielectric
fluctuations of phase velocity VS. The gorresponding frac-

tional shift in frequency is given by the Brillouin formula:

. ,B
- ZnVS 51n(5)

>-'!ll>
>J

o]
o]

(2.2)

<F>
<

Cc

where C is the velocity of light in vacuum. This formula
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was first obtainéd by Brillouin (1914, 1922) and shows
that the spectrum of the scattered light can provide a
determination of the phase velocity of thermally exéited
sound waves whose wavelength is of the same order as that
of the detecting radiation. Such sound waves have frequencies
of the order of 1 - 50 GHz in solids.

Early theories of Brillouin scattering were made by
Brillouin (1914, 1922) and Landau and Placzek (1934).
More recent theories were formulated by Pecora (1964)
and Mountain (1966). In these later treatments the spectrum
of the scattered light was related to the space-time
correlation function for the density fluctuations in the
scattering medium. A classical treatment appropriate to
crystalline solids has been given by Benedek and Fritsch

(1966) and an outline of their analysis is presented here.

2.3 Scattering Amplitude

In this section an expression for the amplitude of the
scattered field is derived. Scattering of the incident
radiation arises from the presence of a fluctuating component
in the polarizability tensor of the medium. The polarization
P(r,t) at r gives rise to a scattered field dE' (R,t) at the

field point R and fime t:

dE' (R,t) = EB"I_ x (z x _'g(_;,t')) |ar| o (2.3)
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where the vectors R, r and the unit vectors @R*r and @k

are shown in Figure 1.

Figure 1. The Scattering Geometry

For simplicity the field point R is taken within the
medium, the exterior field given by the general laws of

reflection and refraction. 1In equation 2.3, t' is the
R...
|R-x]|
C

n
of light in the medium (Cn = C/n).

retarded time (t - calculated using the velocity

The macroscopic polarizability tensor o(E,t) may be written
as the sum of a time averaged part(o(r,t)> and a fluctuation
da(r,t). The dielectric tensor is related to the polari-
zability tensor according to:

,g(£lt) "'l - <,§ (£It)—l> + 6£(£It)
4T 4T 4T

(2.4)

,%(Elt) =
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where 6g(£,t) = Qg(g,t)/4n. Here the dielectric constant
tensor g(r,t) is written as the sum of a time averaéed
part <€ (x,t)> and a fluctuation §¢(r,t) with tensor compo-
nents 6eij(£,t).

The coupling between the thermal sound wave and the
fluctuation in the polarizability is provided by the photo-

elastic (elasto-optic) coeffients Pi (Pockels, 1906;

jkl
Nye, 1957; Born and Huang, 1954):

3

= —— 2 2

3¢ (2, ) Z_ ni? n? P S (58) (2.5)
k’zQ/_l

where n is the component of the refractive index referred

to the i-th coordinate axis and Sij(E’t) are the strain

tensor components associated with the sound wave. The

strain tensor components are defined to be:

;s (e =5 (i 4 Y5, | (2.6)
] axj axi :

where Ui is the i-th component of the displacement (g(g,t)z
of the atom at point r and time t and xj refers to the j-th
coordinate axis relative to which the tensor components

P are defined.

ijk&
In the special case of a cubic crystal there are only
three non-zero photoelastic tensor components and equation

2.5 takes the form (Benedek et al., 1966; Nye, 1957):



- 15 -

56 (L, t)
-] = = 2p . s..(r,t) (2.7)
€. 2 44 i3 —

HPyTRy 7Py S5y 54y (B

3
P12 (;;1 Sge (2t )6ij

where éij is the kronecker delta function and the reduced

+

form of the photoelastic tensor has been used. The trans-
formation Pijk - P has the same form as that for the

L aB

elastic constants.,Cijk (Appendix A} Fedorov, 1968). The

2

reference coordinate axes employed here correspond to the

four-fold rotational symmetfy axes of the cubic lattice.
The polarizability at each point r in the medium

can be written:

ei (ko Z-wyt)

P(r,t) = (<glr,t)> + salr,t)) « Ej

(2.8)
To evaluate the second time deri?ative of P as required by
equation 2.3 it should be remembered that the characteristic
frequency for thermal fluctuations is 3 10'?Hz compared to
the light frequency of about 10'*Hz. Thus &g (r,t) may be
regarded as a slowly varying function of time and we may

write:

9
B
¢
R
|
£

2 P(z,t) (2.9)
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" On substitution of equations 2.8 and 2.9 in equation
2.3 and integrating over the illuminated volume V at the

retarded time t' we have for R>>r:

(2.10)

w\? i(k'e R-w_t)
E'(Brt) =-<E9'> e '—=0 - 0O
R

Qk X @k x.lzyn(<g(£,t')> + ég(xr,t"))

E ei(Eo—Eé)'E | ax]
——o —

where 2 . s,ﬁk'
hw n
Ol - x| =« & - (R-p)
C (o
. nwg A
K =5

and in the denominator |R - r| = R.

The volume integral in equation 2.10 represents the
superposition of phases of waves scattered from each il-
luminated point in the medium. In the absence of the
fluctuations 8 this superposition leads to a complete
cancellation of the scattered field. The contribution
to the integral from the <f> term is zero except in the
forward direction (6 = 0). Scattering out of the incident

direction results entirely from fluctuations in the
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polarizability.
The fluctuations in the polarizability tensor can be

analjzed into spatial fourier components:

1 Boilger fe (@t")
da(r,t') = ——= ldgléga(gre 4 = "Tu
- (2'rr)3/2 ?ﬂ 4 4

(2.11)

where g and wu(g) are the wavevector and frequency of
the fluctuation respectively. The index u denotes the
possibility of a number of branches in the dispersion
relation w(g) which correspond to the different phonon
modes. In general wu(g) can be complex to include damping
of the fluctuation. Also 'wu(g) is double valued (%) to
account for degeneracy in the dispersion relation for
positive and negative running waves.

The scattered field (2.10) can now be written using

equation 2.11 as:
E'(R,t) = -(-2 >Z“ (2.12)

{ // [dKI(BOL (K) “E_ Je i(ke R—(w *w (K))t)}
x (2m 372 |2 [[[ lag| et Ko7k L
, , (2m)® )

where:

(2.13)
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is the scattered wavevector which corresponds to the
scattering from a vibration of frequency wu(E)'

The final integral in equation 2.12 is a delta
function [8(&0-5 + K)] provided the illuminated region is
very large compared to the wavelength of the light. This
merely expresses the conservation of momentum between
the incident photon (50), the scattered photon (k) and the
scattering fluctuation (crystal momentum) K = 5;50. It is
emphasized that only the K-th fourier component of the
fluctuation cohtributes to the scattered field observed
at the field point'g.

Substitution of equation 2.4 in 2.11 and relabelling
E'(R,t) by E'(K,t) to emphasize the dependence on scattering

wavevector (K) eqguation 2.12 becomes:

w \? 3/2 . ‘
. _ ol (2m) i(k*R-(w_*w (K))t
EQ‘J”““(E‘)W Zue keR=ugru, ()€
2 2 X H . . )
i x|t .(a,g (5}E> (2.14)

where it is noted that 62“(5) = 6gﬁ§)-§o is the fluctuation
in the displacement Vector for the u-th vibrational mode
of wavevector K. |

The amplitude of the scattering from each branch ()
is seen (2.14) to be proportional to that spatial fourier

component of the fluctuation in § which has wavevector
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K. The frequency of the scattered wave (w') is shifted

from the incident wave by an amount £ wu(g). The scattered
field contains peaks in amplitude at the freqﬁencies

w, * wu(g). For a given phonon mode (1) these peaks are
referred to as the Brillouin doublets. The peak at

Wy wu(g) is called thé Stokes component and that

at W, + wn(g) is called the anti-Stokes component.

2.4 Angular Dependence

The angular dependence of the Brillouin doublet spacing
may be analyzed in the following manner. Let the incident
light be scattered through an angle 8. Since the phonon
energy is much less than that of the photon, -the incident
and scattered wavevectors are nearly of the same magnitude.
Using conservation of momentum the phonon wavevector can

then be given by:

K

R

.0, _ 2nw -
2kO s;n(i) = _—EQ— 51n(2) (2.15),

I~

o
¥
ko

The corresponding frequency shift is determined
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by the acoustic dispersion relation:

N

w (K) = V(u, %)K (2.16)

K

U
where %,= K/K is the unit phonon wavevector. (Note: in

K

this analysis the long wavelength limit is assumed).
Combining equations 2.15 and 2.16 the Brillouin formula
(2.2) can be derived:

w'-wg  *w (K) £2nV (1, 4,) sin (.%)

—= = —— = C(2.2)
o o C

The dispersion relation (2.16) for acoustic phonons
in solids contains in general three branches. These branches
correspond to a longitudinal and two transverse vibrational
modes. Thus there are three frequencies associated with the
wavevector K and the Bfillouin spectrum will in general
contain three sets of doublets located "symmetrically" about
the incident light frequency.

The derivation of the Brillouin formula (2.2) ignored
the small change in the magnitude of the wavevector of thes
scattered radiation. A complete analysis has been given by
Chandrasekharan -(1965). The only modification is a slight
asymmetry in the placement of the Brillouin doublets about the
unshifted frequency Wy The correction éwu being towards higher

frequencies for both Stokes and anti-Stokes components.
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It can be shown that the fractional shift is: 5wu = % %H .
. W (0]

u
This fraction is approximately 10~® for most solids and

in the present expériment was too small an effect to be

measurable.

2.5 Weighting Factor

In this section a weighting factor for the scattered
field is defined. The weighting factor provides a measure
of the amplitude of the scattered field and was found use-
ful in predicting polarization selection rules in the
scattering experiments.

The analysis of the scattered field (2.14) involved
computing the fluctuation in the displacement vecfor
62?(5). This requires a knowledge of the K-th fourier
component of the fluctuation in the dielectric tensor
(qu(g)). Taking the fourier transform of equation 2.7

and using equation 2.6 the following equations result:

"

5€L . (K, t) y
© 2 Py 834 EE) (2.17)

u
t(Py17Pyp72Pyy) 054 855 (KN E)

3 M
(. Sh,(K,£))8,.

+ P
12° & J

2

and

H

_i,m u
om (Krt) = (U (K, t) K +U_(K,t) K;) (2.18)

]




where we have included the mode index u and assumed a
travelling wave whose amplitude can be fourier analyzed

into spatial components:

v 1 | .

u, (r,t) = ‘ . ;

s (2n)372,[xyﬁldgl UE (g,t) e’ (2.19)
where:

’ : ’
g“(g,t) = v* () otiv, (Kt (2.20)

Equation 2.20 represents the K-th fourier component of
-the elastic displacement of the souhd wave. The oscillatory
character of the wave is contained in the exponential factor
and g??g) is assumed to contain a slow time dependence which
corresponds to the decay of the sound wave due to viscous
damping, thermal conduction ' and scattering from crystal
defects.

Substitution of equations 2.17 and 2.18 in the definition

of §D"(K) (2.14) gives:

€ 2 /
ot (k) = 35— v xe_ p" (2.21)

u

where the vector p~ is given by (Benckert and Backstrdm ,

1973) :

~

u-— U ~ .A A“'/\ ~
0 7_p44[ﬂ (2 QEO) + (I KEO)KK]

A

_ _ /\u A ~
+ Py - P, ZP“)Ei(H ) g g Vg 1y (2.22)
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~ _
where " is a unit vector in the direction of polarization

~
of the sound wave. The components of e along the cube

el

1,2,3. The unit vector QK points in

I

~
axes are (Hu)ﬁ,g

the direction of the sound wave and has components (@K)2

A

along the cube axes. The unit vector QEO points in the

direction of polarization of the incident light wave with

A
Eo)g along the cube axes. 12 are unit vectors

components (%
along the four-fold symmetry axes of the cubic lattice.
The direction and magnitude of vector EP is determined
A
by the vectors K, Eo and T" and the magnitude of the

photoelastic coefficients %! In general the electric dis-

g
placement 62?(5) is in a different direction from that of
the incident field (go). Comparison with equation 2.14

reveals that we measure not EU but the vector §P which

is related to p“ by:
, [
M=y x (g x pY) (2.23)

That ié we measuré the component of the displacement
vector in the plane perpendicular to the scattered
-wavevector (k). The factors |§“| are called weighting
factors since they determine the relative intensity .
of the light which is scattering from a phonon of mode

W
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The expression (2.14) for the scattered electric

field can now be written using equations 2.20, 2.21 and

2.23 as:
w _\? 3/2 .
' - (9] (2m) >, Ji(keR-w_t)
€
= U (K, t) LI (2.24)

2.6 Spectral Distribution

The spectral distribution of the scattered radiation
is best described by introducing the auto-correlation

function for the scattered field:

* 3
<E'(K,t+1) + E'(K,t)> = (2.25)
T ¥*
limit 1 _ E'(K,t+1)+E'(K,t) dt
T>oo. 2T
~T

The usual spectral density function S(K,w') is then
defined by:

» S
i—}r-f <E' (K, t+1) * E' (K, t)> e Tar

S‘(Elw')_ =
E' (X, t)] 2 '
<JE'®0]S> (2.26)

which satisfies:

[ee}

jS(_IS,w') dw' = 1. (2.27)

- 00
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vThe total power radiated in all frequencies which is
scattered into the solid angle d& at the field point R is
proportional to the mean squared field strength and can be

expressed as:
dP' (K,R) = §C-T; <]E"(K,t) | ?> R? AR (2.28)

Using equations 2.26, 2.27, and 2.28 the power scattered
into the solid angle dQ at the field point R which lies in

the frequency interval between w' and w' + dw' is given by:
dP' (K,w') de' = aP'(X,R) S(K,u') dw' (2.29)

To determine the auto-correlation function (2.25)

equation 2.24 can be used to derive the following expression:
N

\ € .
' gt - o " o 2 2
<E'(K,t+1) *E'(K,t)> = \ c} 5 —xz K'EJ°  (2.30)
3 ¥
1 5 u -iw T
8 Ugl [£"2<u” (®, t+0) -UM (K1) > e o
where it is remembered that sound waves belonging to dif-

ferent polarization branches are mutually orthogonal.

We call

. »*
<gM (&, t+1) U (K, £)>
the auto~correlation function fbr<gu(§,t). This function may be
obtained by reasoning along the following lines. 1In equation

2.20 the temporal dependence of the sound wave displacement
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was broken into two parts. One contained the rapid sound

+ 3 /
-1w“g5)t) the other (QU(E;H being the much

oscillation (e
slower statistical fluctuation of the amplitude factor.
This amplitude factor is a random variable and is cha-
racterized by a temporal coherence with correlation time
TU(E) énd a correlation rate 1/rng . Assuming that the
correlation function for this amplitude is exponentially

damped in time then:

*

/ .
<" (x,t+1) ~UM (R, 1) > = <|y_“(5,t)|2>eil‘*’u(l<.)T T BT

(2.31)
Physically FU(K) represents the decay rate for a sound
wave of mode p and wavevector K.
The mean squared amplitude of the sound wave (2.31)
can be related to the temperature (T) by the equipartition
theorem for harmonic oscillators: the total vibrational

energy is equal to twice the kinetic energy (K.E.):

<E> = 2<K.E.> = </[ ldr|plU(x,t) |2 > (2.32)

where p is the mass density. Allowing for the double
degeneracy in wU(E) for positive and negative running

waves and using the fourier expansion of U(r,t) (2.19):

<E> = zzuﬂ/mg pwuz(_g) " (g |2 (2.33)
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Since U(g) are the normal coordinates(for the lattice
vibrations it is reasonable to denote <Eu(é)>'as the
thermal average of the energy for each normal mode. Using
this correspondence the total energy can be written as the
sum over all normal mode energies. This sum can be replaced
by an integral over,ldgl with an appropriate density of

states function:

<E> =%£ZT.|dg|T§¥T? <E“(g)> (2.34)

where V is the volume of the solid. Comparing equationé 2.33
and 2.34 and for kT‘>>ﬁwu(k is Boltzmann's constant) using

<Eu(g)> = kT we find:

v kT

(21],)3 zpwnf(g) (2-35)

<|t? |2 =

Substitution of equation 2.35 in 2.31 gives the
following expression for the correlation function (2.30):

y €
] |* 2 (0]
<E' (X, t+T) *E" (K, £)> = E_2 (-2)

3 2 -3 T -
e B et K T ()T (e r (_g)r)
u=1

X 5= 2
2
P w, " (X)

(2.36)

where it is remembered that the * notation indicates a

sum over both positive and negative running waves.




The total powervscattered into the solid angle dQ
at R is given by equation 2,28 and the spectral density

function (2.26) is given by:

3
o ) EU 2 1
S(K,w') = UZ.-.:l "'wujl(_zg) T

I (K) I (K)
W= + M=
[ - 2 2 [ - 2 2
y (w [wo+u>u (K)1)© + Tu (K) (w'=Twg w0, (K)1)“° + TU(K_)
4 - B}
M
2)(2 -—!.i—l.—z_

=1 w 2(K
u y (K)

(2.37)

It is seen from equation 2.37 that the spectrum of the
scattered rédiation consists in general of three pairs
(0 = 1,2,3) of doublets split around the incident light
frequency W by the amount #* wU(E)' Also the lineshape
of the Brillouin components is lorentzian with linewidth

FU(E) and lifetime 2ﬂ/FUQ9 .

The coefficients |§P| act as weighting factors which
determine the relative intensity* of each Brillouin com-
ponent. The magnitude of these coefficients depend on
(2.22, 2.23) propagation directions and polarizations of
the phonon and photons and on the value of the photoelastic

tensor components.

*The relation between the weighting factors and the
classical scattering coefficient defined by Fabelinskii

(1968) 1is given in Appendix B.



In the present experiment values for the weighting

factors were determined from equations 2.22 and 2.23. |
The propagation'directions and polarizations of the phonons
and photdns were used as parameters in these equations and
the results are given in Tables I-V. Also presented inu
these Tables are expressions for the phonon phase velocity
as a function of the elastic constants. The relation
between the phase velocity and the elastic constants is

discussed in the following section.

2.7 Theory of Elastic Waves in Cubic Crystals

In this section a brief description of the theory of
elastic waves in cubic crystals is presented. A more
complete analysis is presented in Appendix A.

The theory of Brillouin scattering presented in the
previous sections of this chapter allows for a measure of
the phase velocity (w,/K) of the acoustic vibrations as
a function of propagation direction. in the present
section theoretical predictions for the magnitude and
angular dependence of this velocity are considered.

The theory of lattice vibrations is well established.
It is known (Fedorov, 1968) that a general formulism exists
for calculating the phase velocity of acoustic vibrations.

In this formulism the phase velocity is obtained
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by diagonalizing the so-called dynamiéal matrix. It is
known (Mafadudin‘et al., 1963) that when the wavelength

of the lattice vibratiéns become very long compared to the
interatomic distances thé elements of this matrix can be
written in terms of the elastic constants. In this limit
the phase velocity can be determined from an eigen-
equation for the normal mode vibrations. This equation is

referred to as Christoffel's equation and may be written:

3
— 2 - 1 =
E (Aim v 6im) U, = 0 for i 1, 2, 3
m=1
(2.38)
where the second-rank tensor Aim is given by:
' 3
Aim = . E :kijim (SLK)j (Lg) (2.39)
3, 0=1
C..
and A, .. = —ilEm
ijim p

A

where QK is the unit phonon wavevector with components
(Lg)g (2 =1, 2, 3) along the cube axis, Aijim the reduced

elastic modulus tensor, Ci. the elastic constant tensor,

j4m
p the mass density, V the phase velocity and U, the m-th
component of the unit displacement vector () of the
acoustic vipratiop. The cube axes are chosen parallel to
the four-fold rotational axes of the cubic lattice.
Christoffel's equation (2.38) is the eigen—equation

for normal mode vibrations where unit polarization vectors of

the phonons are the eigenvectors and the square of the phase




velocity is the eigen-value. The eigen-values are

determined from the root of the characteristic equation:

jr - v, | =0 | o (2.40)

The problem of determining the normal mode acoustic
vibrations in an elastic solid reduces to solving for
the eigen-vectors (G) and eigen-values (V?) of the tensor
A.

The elastic constant tensor for a cubic crystal
contains only three non-zero components (Nye, 1957),
namely C,,, C;, and C,,. (Note: the reduced form of
the elastic constants has been used, see Appendix A (A4)).
The components of the A tensor (2.39) are given by:

- 2 2 2
Q1 = €11ty * Cpqa iy + £3)

2 2 2
Qo = Cygty * Ci1to *+ Cyut3

- 2 2 2 2.41
Qg5 = Cyq (A + £5) + C 105 ( )

QU = Qyp = (Cp + Cyy) 492,

= (Crp + Cyy) L9204

+ C44) L4548

Q35 = (€, 2%3

A
where Q =pA and (L.). = &. .
P K'3 73
As a sample solution to the problem of determining

the normal mode vibrations in a cubic crystal consider
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the following Brillouin scattering experiment. Light is
incident along the edge of the cube and scattered light
is observed at an angle of 6 = 90° along another edge of
the cube. |

Let the light be incident along (100) and scattered
along (010). From conservation of momeptum the wavevector

of the scattering vibration is given by:

K=k -k =72k (3, & O . (2.42)
and the unit vector:

o2 (L 1

'QfK"‘ (/'2" /'2'/ 0) (2.43)
The components of the tensor Q (2.41) are given by:

i .

Q17 = Q2 = 3(Cp3 * Cyy)

Q33 = Cyy

Qg = Q. = ~%(C.., + C,,)

12 21 2 12 44
Ql3 = Q23 =0 (2.44)

The eigen-equation (2.38) can be written in the
expanded form:

(Qpy - X)U; + 0,0, =0

]
o]

Q15 Uy +(Qp; ~ XU, (2.45)

(Q33 = X)U3 = 0 |
where X = pV2 is the eigen-value for this set of equations.

For a non-~trivial solution the determinant of the matrix

(Q - Xdim) must vanish (2.40):

3
ki
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Q=X 2, 0 (2.46)
Q5 Q);-X 0 =0
0 0 Q,5X

or
_ 2 _ A2 _ -
[(Qll X) Q12] (Q33 X) 0
The three non-trivial solutions to the characteristic

equation (2.46) are:

. . _
. . 2 =
i) Xl = le = C44, U (001)
- 1 -
= 2 = = - = /2 (1, 1
which correspond to the two transverse waves (ﬁ-@K = 0) and
. L
PR - 2 - =
iii) X3 = pV3 = 2(Cll + C12 + 2C44)
A
U =7 (-3, 3, 0)

A A
which is a longitudinal wave (U-ZK = 1)

In a similar manner Christoffel's equation (2.38) can
be solved for any arbritrary direction of wave propagation
(QK). The solutions provide the polarization (G) and phase
velocity (V) of the. elastic wave. 1In each case the phase
velocity is given as a function of the mass density (p)

).

and the elastic constants (CaB
Results for the polarizafion and phase velocity of
the acoustic vibrations which are relevant to the present

experiment are given in Tables I~-V. Presented are the

frequency shifts (cm-;) calculated from the Brillouin
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formula (2.2) where the phase velocity is used as a
parameter. Also given are the weighting factors Egt
defined by equations 2.22 and 2.23 where the subscripts
¢ and T referrto the polarizations of the incident and

scattered radiation respectively.
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TABLE ‘I

Fine structure of light scattered in a cubic crystal for
which light is incident and observed along an edge of the
cube. (ko = ko(100), k = k,(010), 6 = 90°)

Weighting Factor EgT #

3 £h £5 £
Phonon + Frequency_l 33 31 23 21

Mode u Shift (cm ) *

=51 |=E | 6L

. C.. - C
T 11 12
1 ‘“ﬁ;“iﬂ?‘“““ 0 0 0 0

C

T, 44 0 Pay | Py .
P 2 V2

L Ci1 ¥ €12 % Cyy > . . >
0 12 44

$ &gT are the weighting factors (section 2.5, equations
2.22, 2,23) for which the polarizations of the
incident and scattered radiation are denoted by the
subscripts ¢ and T respectively. The correspondence
1,2,3 -- %x,y,z is used and the notation 1 ,|| denotes
these polarizations as perpendicular or parallel to
the scattering plane, respectively (x=(100), y=(010),
z=(001), with respect to the cubic axes).

+ The modes Tl and T., are polarized parallel and
perpendicular to tﬁe scattering plane, respectively.

* The common factor zzg-has been deleted in the expressions
for the frequency shifts.




- 36 -

TABLE IX

Fine structure.of light scattered in cubic crystal
for which light is incident and observed along a
diagonal to the faces of the cube. (k, = k,(110),
k = kg (110), 6 = 90°) V2

7%

Weighting Factor ggT

Phonon + - Frequency_ u B B u
Mode Shift (cm 1) * S ] B L EL ] G
T C
1 44 0 0 0 0
b
T C ) }
2 44 o Pyy | Pus 0
P /2 /2
L €11 P12 0 0 ] PP
D 3

+ The modes Tl and T, are polarized parallel and
perpendicular to tﬁe scattering plane, respectively.

* The common factor v2n has been deleted in the
expressions for CA the frequency shifts.
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TABLE III

Fine structure of light scattered in a cubic crystal for
which light is backscattered along an edge of the cube.
(ko = ko (100),; k = k,(100), 6=180°)

Weighting Factorf;gT

u U
£33 £32
' u u
Phonon Frequency‘_l * =g22 =g23
Mode u shift (cm ™)
C
Ty _44 0 0
P
T, (€44 0 0
P
L C .
;l Py 0

* The common factor Zn has been deleted in the expressions
for the frequency shifts.
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TABLE IV

Fine structure of light scattered in a cubic crystal for
which light is backscattered along a diagonal to the face
of the cube.(ﬁfk (110) , k = §%(110), 6 = 180°)

%3

Weighting Factor E§T

m m TR
£31 £13 €11 612
u
£33
Phonon + Frequency__l * 32 23 21 22
Mode u Shift (cm 7) -
T €117C12 P117P10
1 ) 0 0 0 11 12
2p 4
P
T Ca4 0 0 7%3 0
p - .
L C11%C12%2Cyy p 0 0 P117P127 2Py
2p 12 4

+ The transverse modes T, and T, are polarized along (1T0) /vV2
and (001), respectivel%.

* The common factor 2n has been deleted in the expressions
for the frequency shifts.
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TABLE V.
Fine structurc ofi light scattered in a cubic crystal
for which light is incident along an edge of the cube and
observed at 90° along a diagonal to the face of the cube.
(kg = ko(100), k = k,(011))

%

Phonon 2 . . *
Mode u pv (V, is the sound velocity)
T, t
2 (Cll - c12 + 2C44)/4
(pure)
Q.T
1 (3Cll + 6Cy, + C12)/8
(quasi) }
2
-1 (Cyjq # Cip) ™+
Q.L + 8
4(c12 + C44)-(—Cll + 4C12 + 5C44)

+ The pure transverse T, mode is polarized perpendicular to
the scattering plane.

* The frequency shifts are given by the Brillouin formula
(2.2). The appropriate weighting factors are not given
here since the quasi-nature of the vibrational modes
leads to a lengthy formulation of these factors. However,
it has been determined that for this scattering geometry
all modes contribute to the scattered field; whether
sufficient to be detected has not been determined.
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CHAPTER 3

EXPERIMENTAL METHODS

3.1 Introduction

This chapter presents a descriptién of the experimental
apparatus and method used to perform the Brillouin scatteriﬁg
experiments. The general experimental arrangement is out-
lined and followed by a detailed description of the indivi;~

dual components.

3.2 Experimental Arrangement

A schematic of the present experimental apparatus appears
in Figure 2 for both the right-angle and backscattering geo-
metries used.

The light source was an argon-ion laser operating single
mode in the 5145 a line. The laser beam ehtered a light
tight box which contained the sample and optics. For right-
angle scattering thevlight was focussed onto the sample by
a lens of 180 mm. fqcal length. The sample, mounted on a
goniometer, was positioned with one of its faces normal to
the incident laser beam. The sample was aligned to within
*30' by matchiné the specularly reflected beam from the front

face of the crystal to the incident laser beam.

4
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A 1mm. diaﬁeter pinhole was positioned about 15mm.
from the sample, along a line at right angles to the laser
beam. This pinhole served as the source aperture. A sheet
polaroid could be inserted adjacent to this pinhole to inves-
tigate the polarization characteristics of the scattered
light. The scattered light was collected and collimated by
an achromatic lens of 115mm. focal length. The light then
passed through a molecular iodine filter that attenuated the
strong Rayleigh component found in the scattered light. The
filtered light passed through an adjustable iris diaphragm
and entered a pressure scanned Fabry-Perot interferometer.

An objective lens with a focal léngth of 35cm. served as
the exit window of the Fabry-Perot and focussed the inter-
ference pattern onto a metal screen. A lmm. diameter pinhole
was mounted on this screen and positioned at the center of
the interference pattern. Adjacent to this pinhole a 5145§‘
filter with 103 bandpass was inserted to discriminate against
luminescence from the sample and spectral lines from the lasér
plasma. Finally, £he scattered light was allowed to enter
a photomultiplier tube housing which contained an ITT FW-130
photomultiplier tube. The photomultiplier response was fed
into a_photon counting system and eventually displayed on a
chart recorder.

The scattering anglei(e) was measured by a triangulation

technique. The vertices of the reference triangle were located
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at the sample, the center of the pinhole adjacent to the
photomultiplier tube and at a reference position along a
line defined by thejincident laser beam. Using the cosine
law and measuring the length of the sides of this triangle
the scattering angle was determined.
In the backscattering geometry the laser beam was
focussed by a 197mm. focal length achromatic lens through
a 90° prism onto the sample. The prism was mounted in front
of the 115mm. focal length achromatic collecting lens. A
7mm. diameter spot at the center of the collecting lens
was made opaque to prevent collection of specularly reflected
light from the front face of the crystal. An adjustable
iris diaphragm was also inserted between the 90° prism and
the sample to aid in the elimination of this reflected light.
A spectrum was obtained by changing the gas pressure
between the Fabry-Perot plates linearly with time. The fre-
quency output of the spectrometer was thus scanned linearly
in time and one effectively obtains an output on the chart

recorder of light intensity versus frequency.

Component Description

3.3. Light Source

The light source was a Spectra Physics model 165 Argon-

ion laser tuned to the 5145A line. A single mode output was
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obtained by using a Spectra Physics model 589 intracavity
tilted etalon, as‘described by Hercher (1969). Such an
etalon is sufficiently detuned that it is decoupled from the
main laser cavity. In such a situation it acts simply as

a bandpass transmission filter.

The free spectral range of the intracavity etalon (8 GHz)
is larger than the total gain bandwidth of the laser (6 GHz)
aﬁd thus transmits only one mode of the laser line. Different
modes can be selected by rotation of the etalon. The bandpass
of the etaion was less than the separation of adjacent cavity
modes (approximatély 143 MHz) and thus single mode operation
was obtained. The single mode power output was found to be
about 50% of the total multimode power and no drift in fre-
quency was detected within the instrumental resolution of ~1GHz.

The laser output was checked for single mode operation
with the Spectra Physics model 470 Optical Spectrum Analyser.
Figure 3 shows a typiqal oscilloscope trace for both the
multimode pattern and for the single mode operation resulting

from the use of the intracavity etalon.

Molecular Iodine Filter

3.4‘ Introduction

A major difficulty in Brillouin scattering experiments

in solids is the large amount of stray light scattered at



(a) Free-Running; No Intracavity Etalon (~850 MEz/cm)

(b) Single Mode Obtained with Intracavity Etalon (~425 MHz/cm)

Figure 3. Free-running (a) and single mode (b) argon-ion
' laser operation at 5145 A  showing relative

intensity (vertical scale) versus frequency
(horizontal scale). -
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the unshifted laser frequency. The intensity of this
Rayleigh component may be so great that its "wings" com-
pletely mask the éignal‘under study. In the scattering
experiments performed on ZnSe this was found to be the
case and some method had to be found to overcome this
difficulty. |

The problem Qas resolved by using a molecular iodine
(12) filter (Devlin et al., 1971) which has a strong ab-
sdrption line situated within the gain profile of the 51453
line of the argon-ion laser.

The specific iodine fransition used is approximately
1500 MHz higher in frequency than the center of the argon-ion
laser gain profile and approximately 700 MHz in width. That
mode of the argon-ion laser that is closest to the center of
this transition is chosen by tilting the intracavity etalon,
whose operation was described in the previous section.
Attenuation results from absorption in the iodine vapour
and can be varied by changing the concentration of iodine

vapour in the filter.

3.5 Construction

The molecular iddine filter was made from a 5-cm. dia-
meter pyrex tubing, 10-cm. in length, whose ends were sealed
with standard optically flat pyrex glass; An amount of solid
iodine (12) wasvplaced in the cell corresponding to approxi-

mately 40 mg/cc. of cell volume. The cell was evacuated for
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about ten minutes with a mechanical pump then sealed,
leaving behind abouf one-half of the original iodine. This
procedure removes the foreign gases and also ensures that
there was always some solid iodine inequilibrium with its'
vapour at the highest cell temperatures used (~80°C).

To prevent condeng@tion of the iodine vapour on the end
windows it was necessary to install 3-cm. diameter apertures
about l-cm. away from these end windows. Each aperture was
machined in the end of a metal cylindér which fitted over the
ends of the cell. Heating tape was wrapped around the cell,
the wrappings were concentrated at the ends of the cell to
ensure that condensation did not occur. A copper-constantan
(#30 wire) thermocouple was epoxiedito the ceﬁter of the cell,

away from the heating tape, toc monitor the cell temperature.

3.6 Calibration

The attenuation‘provided by the filter was strongly
dependent upon the partial pressure of iodiné (IZ) vapour in
the cell. This pressure was controlled by varying the
temperature of the cell. The present cell was calibrated by
measuring the laser power transmitted through the cell as.a
function of the éell temperature. The results are shown in
Figure 4. The attenuation is given‘in db as a function of
cell temperature. Also shown in this figure is the attenuation
as a function of cell temperature for twc filters used by

Devlin et al., (1971), one 4.5 cm in length, the other
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20 cm. in length. In the present experiment the cell tempera-

ture was varied from.about 40 to 70°C resulting in an attenua-

tion of from 5 to 20 db.

3.7 1Iodine Spectrum

The specific molecular iodine transition used has been

assigned, Devlin et al.(1971), to absorption from the v"=0 level

of the xlz; electronic ground state to the v' = 43 vibrational

level of the B? m.,* e€Xcited state. For the consideration of

the present experiment it is important to realize that the

above iodine transition is only one of many transitions occur-

ring near (within 2 cm™') the lasing frequency. Devlin et al.

(1971) mentioned that there are as many as five other sharp

1

lines within 1 cm~™". Furthermore, Kurzel and Steinfeld (1970)

indicate that the following six rotational lines occur within

1A (~.4 cm™!) of the laser line:

43-0 . P(12), R(14)
45-0 P(64)
49-1 R(18)
50-1 P(39)
51-1 P(53)

Kurzel et al. (1970), {(from Campbell et al. (1969) and

LeRoi et al., unpublished) commented that 95% of the fluo-

rescence observed by pumping with the argon-ion laser (5145.36A )

arose from the 43'-0" transition, while only 5% was due to

the 45'-0" transition. This implies that it was likely the
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J = 11, 15 rotational levels of the Vv' = 43 vibrational
state of the B3ndu+ that was the specific excited state
which gave rise to absorption of the laser line.

| The presence of these other absorption-fluorescent
lines in the present experiment was evident from the ob-
servation that some of the Brillouin components were often
partially or even completely attenuated. This condition

proved troublesome in analyzing the data and as a conseqguence

. different scattering geometries were employed as cross-checks

on each other.

-This accidental overlap of an iodine abéorption line
with a Brillouin component is also evident in Love's (1973)
Brillouin spectra of fused silica. 1In particular the Stokes
longitudinal Brillouin component was absorbed by the filter.
A thorough investigation of the iodine absorption spectrum
in this region has not been carried out to date but would
be valuable in that it would provide an unambiguous analysis

of the observed Brillouin spectra.

Pressure Scanned Fabry-Perot Interferometer

3.8 1Introduction

A pressure scanned Fabry-Perot Interferometer similar to
that described by Biondi (1956) was used to fregquency analyze
the scattered radiation. A description of the interferometer

and its operation is given in the following sections.
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3.9 Construction

A cross-sectional drawing of the interferometer is
shown in Figure 5; For simplicity the cross-section has
been shown as symmetric about the optic axis (K). In actual
fact there is only a three-fold rotational symmetry about
this axis, defined by the positions of the three adjustment
screws (J).

The Fabry-Perot plates (P), 98% reflecting at 5145%,
were mounted inside a‘éylindrically machined brass tube
referred to as the plate holder (F). The plates (P) were
positioned inside the plate holder by a cylindrical spacer
(Q). The plates were separated from each other by a plate
spacer (0). The plate spacer was formed from a set of three
invar pins each of length 4 (0.2052 * 0.0002 cm). The pins
were mounted 120° apart in a brass ring. The dielectrically
coated sufaces of the Fabry-Perot plates were held against
the plate spacer by the pressure exerted from three retainer
springs (I). The retainer springs acted upon a thin teflon
ring which was positioned against the outer non-coated
face of the plate.

The plate holder (F) was positioned inside the Fabry-
Perot housing (B) by the cylindrical suspension housing (E).
This assembly (E and F) was held fixed inside the Fabry-
Perot housing by retainer rings (D). The ends of the

Fabry-Perot housing (B) were fitted with end plates (A)
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Legend for Figure 5

A End Plate

B | Fabry-Perot Housing
C . Water Cooling Coil

D Retainer Ring

E Cylindrical Suspension Housing
F Plate Holder

G Pumping Line

H Spring Retainer Ring
I Spring Retainer

J Adjustment Screw

K Optic Axis

L Objective Lens

M O-Ring

N Teflon Spacer

0] Plate Spacer

P Fabry-Perot Plate

0 Cylindrical Spaégr
R Vent Hole

S Glass Window
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forming a vacuuﬁ seal with the o-rings (M).

A glass window {S) mounted to one of the end plates (A)
served as the entrance window, allowing light to enter the
housing. An achromatic lens of 35-cm. focal length,mounted
on the other end plate,served as the exit window for the
interferometer.

Adjustment of the Fabry-Perot plates for parallelism
was accomplished by'varying the pressure exerted by the three
spring retainers (I) dn the plates. The pressure exerted
by each spring retainer was controlled by the adjustment
screw (J). The interference pattern formed from a low
pressure Mercury Arc Lamp was viewed and the plates aligned
parallel by the standard visual procedure outlined in
Jenkins and White (1957).

Vent holes (R) allowed the region between the inter-
ferometer plates as well as the rest of the interior of the
housing to be pumped out and pressurized uniformly. The
pumping scheme used appears in Figure 2. The housing was
evacuated through the pumping line' (G} and the liquid nitrogen
cold trap by a mechanical vacuum pump. . The cold trap was
used to prevent deposit of pump 0il vapour on the inter-
ferometer plates. A vacuum gauge (DVIM thermocouple)
was used to monitor the gas pressure (10u to 1000 mm. of

mercury) in the interferometer.
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Argon gas from a high pressure reservoir was allowed
to enter the inte:ferometer through a needle valve-constant
differential flow controller assembly, as shown in Figure 2.
The Moore Constant Differential Type Flow Controller
(model 63BU-L) was obtained from the Moore Instrument
Company Limited, Rexdale, Ontario. This flow controller
maintained a linear rate of pressurization of the Fabry-
Perot housing to within 1%. The rate of pressurization was
controlled by the pressure of the gas reservoir (30 p.s.i.)
and the needle valve setting. The desired rate of pressﬁri—
zation was adjusted such that the time taken to scan through
one interference‘order was about three minutes. This rate
allowed ample time to display the photomultiplier signal on

a chart recorder tracing.

3.10 Operation

The scattered light was collimated by the collecting
lens and allowed to enter the interferometer through the
glass window (S). The Fabry-Perot interference pattern
was focussed on a screen containing a pinhole aperture.
The pinhole aperture was situated at the center of the
pattern and thus transmitted only those wavelengths for
which 2nd = mA where n is the refractive index of the
medium between the Fabry-Perot plates, d is‘the platé sepa-

ration, and m is the order of the interference. Wavelength
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(or frequency) scanning was achieved by varying the index
of refraction between the plates. This was accomplished
by allowing argon‘gas.to pressurize the interferometer
linearly in time.

The number of interference orders swept through in one
pressurization of the Fabry-Perot housing is determined by
the change in the refractive index of argon. (N.T.P. re-
fractive index of argon is 1.000281, Biondi, 1956). The
number of orders swept through in pressurizing tbe inter-

ferometer to atmospheric pressure is thus:

This corresponds tb a pressure change from 10 microns to
760 millimeters of mercury for X = 5145& . In the present
experiment the pressure changed from about 10 microns to
1,000 millimeters of mercury resulting in the display of
about 4 interferénce orders.

The corresponding spectral range <AA> between orders

is determined by m Al = (m-1) (Al + A)X). The free spectral
: 2
range <A\A>. (<AV>) is thus given by <AA> = %a (<AD> = 5%).

The free spéctral range used in the present experiment was
chosen to be 2.437 + 0.002 cm ~—! (d=0.2052 * 0.0002 ch.).
With this free spéctral range most of the spectra to be
investigated oc¢cupied a spectral range less than <AY> and

thus were repeated several times (without order overlap)



as the interferometer was scanned.

3.11 7Photon Counting System

An ITT FW-130 photomultiplier tube of S-20 response
was used to detect the intensity of the scattered light.
The photomultiplier tube was housed in a Products for
Research model TE-104 refrigerated chamber. The photo-
multiplier tube was maintained at a temperature of -20°C
* ,5°C. The cathode was maintained at a voltage of
-1750 * 10 volts with respect to the anode and the anode
current passed through a 1M2 low noise resistor. The
resulting voltage signal was applied to the input of a
commercial photon counting system.

The commercial counting system was obtained from the
Princeton Applied Research Corporation (PAR) and consisted
of a model 202 preamplifer (gain of 10), model 281 power
supply and model 231 discriminator and rate meter.

The voltage signal across the 1MQ load resistor was
amplified by the preamplifier and applied to thé input of
the discriminator. The discriminator voltage was adjusted
by displaying the rate meter output‘on an oscilloscope trace
and adjusting the discriminator voltage (.4 volts) until
the noise spikes were just eliminated. The resulting dark

count was about two counts per second.




The spectra were recorded as the Fabry-Perot inter-
ferometer was linearly pressurized. The rate meter output
was applied to the Y-input of a chart recorder and the tracing
made as a function of time. This allowed for a recorder
tracing of the intensity of the scattered radiation as a

function of frequency.

3.12 Resolution

Effects on the measured linewidth of the scattered radia-
tion will be discussed in this section. Both intrinsic and
instrumental contributions will be considered.

The ultimate resolution of a Fabry-Perot Interferometer
is best described in terms of its finesse. The finesse (F)
is defined as the ratio of the free spectral range (FSR)
of the interferometer to the spectral interval that can just
be fesolved by the interferometer. In this sense the spectral
interval refers to the full width at half maximum intensity
of an ideal monochromatic source.

In a Fabry-Perot interferometer there are three distinct
contributions to this finesse. First the effect of the dia-
meter of the pinhole used to select the central order of the
interference pattern must be considered. In the present
experiment this pinhole was located in front of the photo-

multiplier tube and in the focal plane of the interference

pattern. The resolution associated with this pinhole aperture
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is discussed in terms of the instrumentél width. The
instrumental width is defined as the fractional spread in
frequency (or wa&elength) at the focal plane of the inter-
ference pattern for a disc of radius R centered on this
pattern. The instrumental width can be estimated from the

dispersion in the interference pattern:

o
X - 2-, (Biondi, 1956)

Q2

where £ is the focal length of the objective lens. The

instrumental width (6vp) is given by:

for a 1 mm. diameter pinhole located in the focal plane of

a 35-cm. focal length lens. This corresponds to an instru=-

mental width 6vp &~ .6 GHz (65p >~ .02 cmT!). The correspon-
ding finesse is F_ = -ﬁg = 120 - (4L = 2,437 £0.002 cm™!).
P va 2d

" Secondly there is the contribution to the resolution
from the reflectivity of the interferometer plates. The
operation of the interferometer depends upon the interfefenCe
between wavefronts which have undergone many reflections
between the plates before being transmitted. The resolution
increases with the number of such reflections and thus

depends upon the reflectivity. Expressed as a finesse
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(Davis, 1963) the contribution from the reflectivity of the

plates, assuming no losses from the dielectric coatings, is:

FR = %é%, where R is the reflection coefficient,

assuming that both plates have the same reflectivity. 1In

the present experiment R = .98 which corresponds to a finesse
of FR = 155. The associated instrumental linewidth is about
5\ = .5 GHz. (8U,= 0.016 cm™').

R (% )

Finally the resolution is limited by the flatness of the
interferometer plates. Davis (1963) has shown that plates
flat to A/k yield a spectral finesse of about F, = k/2. The
present interferometer plates were flat to A/50 and thus the
associated flatness finesse was of the order of 25. This
finesse corresponds to using the full plate area’to obtain
the interference pattern and can be substantially improved
by using only a portion of the plates. In the present experi-
ment the active plate area used was about 1 cm. in diameter
as compared to the full plate diameter of 5 cm. Consequently
an achieved experimental finesse of about 40 was not surpri-
sing. This finesse corresponds to a linewidth of about
1.8 GHz (~0.06 cm."'). |

An instruméntal contribution to the linewidth of the
scattered radiation arises from the finite solid angle of
observation determined by the collecting optics. This cone

of light acceptance contributes to the linewidth since one
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effectively samples the scattering which arises from a
corresponding distribution in phonon wavevectors. To
estimate the magnitude of this effect for right-angle
scattering an f?number of about 15 is assumed for the

collecting optics. This results in an angular spread
86! about the scattering angle 6, (8 = 90°) of 5ot = 5%:3%6

radians as viewed exterior to the crystal. The corre-

sponding angular spread 69 with reference to the interior

1
of the crystal is 66 & E%—-x.g%— radians (n = 2.71).

Assuming no dispersion in the phonon phase velocity the
fractional spread in frequency 6ve can be estimated from

the Brillouin formula (equation 2.2) to be:

Y
6 - s(2 8
o = 6(2) 4cot(2> ’

where v is the Brillouin frequency shift. Typically the
Brillouin‘frequency shifts are of the order of 30 GHz

(1 cm~!). The associated linewidth contribution is

v, = .2 GHz (™~0.006 cm™') .

In the backscattering experiments the collecting optics
are estimated to be about f/4. The associated linewidth
contribution is calculated from Svg = L(—l——)ato be

: v 32\ nf
Sv

g =.7 MHz (~10 Scm™!).

Finally there is the contribution to the linewidth

which arises from the frequency content of the light source.
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The argon-ion laser operating siﬁgle mode with a power out-
put stable to 1% had a linewidth of about 40 MHz.

In summary the important instrumental linewidth con-
tribufions arise from the pinhole diameter and the flatness
of the Fabry-Perot plates. These two contributions are com-
parable in magnitude and together yield an instrumental
finesse of about 40,’corresponding to an instrumental reso-
lution of approximately 1 GHz. The other instrumental con-
tributions to the apparatus width are negligible in.comQ
parison. |

This apparatus width should be compared to the intrinsic
phonon linewidth. As discussed in the section on Brillouin
scattering the phonon can be considered as an exponentially
damped fluctuation. This damped fluctuation results in
broadening of the Brillouin line over that caused by the
instrument ( i.e. apparatus width). An estimate of the intrinsic
phonon linewidth is made from Love's data (1973) and a value
of about 1 GHz is obtained. This intrinsic contribution is
comparable to the resolution of the present instrument (~1GHz)

and thus an estimate of the phonon linewidth should be possible.

3.13 Zinc Selenide

Zinc Selenide (ZnSe) is a group II-VI semiconductor that
crystallizes in the zinc-blende structure. This can be des-
cribed as a two component diamond structure, or rather, two

interpenetrating face-centered cubic lattices with one lattice
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containing zinc‘atoms and the other selenium atoms. The
cube sides are of length 2a and the two sublattices are
displaced from each other a éistance /gi% along the body
diagonal. This structure is illustrated in Figure 6.
The symmetry of the zinc-blende structure is described
in the Schonflies group notation as ?i (Nye, 1957). The
elastic constant tensor for such a structure has cubic
symmetry, there being only three independent elastic constants,

-namely C and C

11’ C12 44"

The two single-crystal samples used here were obtained
from a large polycrystalline sample grown by the Harshaw
Chemical Company. The impurity concentrations of the poly-
crystal were not given, however, the sample was purchased as
an undoped "pure" sample. The samples were light yellow in
colour and were both approximately 1 mm X 2 mm X 3 mm in
size.

The density 6f ZnSe was taken from Lee (1970) to be
5.264 g/cc. at a temperature of 22°C a;d at atmospheric pres-
sure. The refractive index at 5145& was calculated from

the results of Marple (1964). Marple using the prism re-

fraction method fitted his results to the standard formula:
2 BA 2

where n is the refractive index and A the wavelength in
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Figure 6. The zinc-blende lattice structure.
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microns. For ZnSe the best values for the parameters are:

A= 4.00, B=1.90 and ¢’ = 0.113. The refractive index
calculated from the above formula is 2.705 * 0.005 at 5145 g .
(The error of .005 is associated with the range of Marple's
data) .

A similar result for the refractive index results from

‘an extrapolation of Rambauske's data (1964). Rambauske used

the method of minimum deviation for a prismatic cut crystal.
The extrapolated result is 2.71 * .01 at 5145 i . A value
of 2.71 for the refractive index was used in the present ex-
periment. |

Two differently cut single-crystals were used in the
present work and their orientations are deséribed with res-
pect to the laboratory reference frame in the following manner.
A rectangular X, Y, Z laboratory coordinate system was adopted.
The crystal designated (100) was oriented with <100> directions
parallel to each of the X, Y, Z axes with faces cut and
polished perpendicular to these axes. The second crystal
designated (110) had <110> axXes along X and Y and a <100>
axis along Z with faces cut and polished perpendicular to
these axes. Both crystals were X-ray oriented to better
than 1° in all directions.

Standard notaﬁion, A(BC)D, (Damen et al., 1966) was used

in each of the spectra. The first and last letters specify

- the direction of propagation of the incident and scattered



light respectively. The second and third bracketed letters
specify the polarization directions of the incident and
scattered light respectively. A complete description of
the scattering geometry includes the particular crystal

"sample used. For example the notation:

ZnSe (100)

X(Z,>Z()Y

indicates light scattering from the (100) crystal sample
where the scattered light, observed at 90° from that of the
incident light direction, was observed in the absence of an

analyzer.
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CHAPTER 4

RESULTS

4.1 Introduction

In this chapter the Brillouin spectra are analyzed
and the Brillouin frequency shifts are determined. The
theory of elastic waves in cubic crystals (section 2.7) and
the Brillouin formula (equation 2.2) are then used to
determine values for the elastic constants from these
measured frequencies. In the first part of this chapter

the elastic constants C and C of alpha-Quartz are

33 44

determined in order to test the applicability and relia-
bility of the experimental technique . 1In the second part
the Brillouin spectra obtained for Zinc Selenide are

presented and analyzed to provide values for the elastic

constants.

4.2 Alpha-Quartz

As an evaluation of the present experimental technique
-several Brillouin spectra of o-Quartz were recorded. A
typical spectrum is shown in Figure 7 where scattering from

two transverse (T T2) and a longitudinal (L) mode is

ll
evident. (R denotes the Rayleigh component). This spectrum
was not used in the present analysis because piezoelectric

corrections to the elastic constants are required.
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The measurements were performed on a single crystal
sample obtained from the Valpey-Fisher Corporation. The
crystal was a z-cut wafer which measured 2mm x lcm x lcm
in size with the c~axis normal to the large face. The
crystal was mounted with the c-axis parallel to the laboratory
Z-axis and one of the three a-axes parallel to X (IRE
Standards on Piezoeiectric Crystals, 1949).

The density of a-Quartz is 2.6485 g/cc at 25°C
(McSkimin, 1962). The refractive index was obtained from
an extrapolation of Martens' (1901) data at 23°C
(American Institute of Physics Handbook). The
extrapolated values are : n_ = 1.548 and n, = 1.557 at
5145 A.

Experimentally it was found that the intensity of
the Rayleigh component was comparable to that of the
Brillouin components and as a result the molecular
iodine filter was not required to attenuate this component.
It is emphasized that this Rayleigh component was
mainly due to the scattering from crystal defects and also

from surface scattering.



‘"The elastic constants C33 and C44 were determined
from the measured Brillouin frequency shifts for the back-
scattering geometry Z(Y,i)z and the results are given in
Table VI. The elastic constants were determined from the
sound velocities og the longitudinal (VL =‘/§§2 ) and
transverse (VT = —%i ) phonon modes. (p is the density
of o-Quartz). The sound velocities were determined from
the measured frequency shifts by using the Brillouin for-
mula (egn. 2.2). No corrections have been made in the
present considerations for piezoelectric effects on the

measured sound velocities. A‘'discussion of the justifica-

tion of this omission is presented in the Appendix, section C.
As a comparison some previously determined values

for these elastic constants are alsc given in Table VI.

It is evident that the present values for the elastic

constants-C33 and C44 agree to within about 2% with these

previous measﬁrements. In particular there is good agree-

ment (.7%) between the present value of C44 and the Brillouin

measurement of Cecchi et al. (1970). Agreement to within

2% between the present data and the previous results is

in line with the expected order of agreement. The major

experimental sources of error contribute an uncertainty

in the measurements which are of the order of 1%. These

sources of error include the degree to which the rate of

pressurization of the interferometer was linear in time
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TABLE VI

The Elastic Constants C33 and C44 of o-Quartz

a. Present Data

Elastic
Scattering Phonon Frequency_l Sound Velocity Constant
Geometry Mode shift (cm ) (10%cm/sec.) (10'° dyn/cm?

at 22°C)
Z(Y,X)2 T .933%.005 4.65+.02 T Cyq=57.3%.5%
Z(Y,Y)2 L 1.270%.003 6.33t.01 T C43=106.1%. 3%

* TIndicated error limits refer to standard deviation of
results and do not indicate absolute accuracy.

-

b. Previous Data

Elastic Constant

Reference | Method (10!%°dyn/cm?)
1. Atanasoff et al. (1941)# piezo-resonance Ca4 c 3
(35°C) 57.86 106.8
2. Koga et al. (1958) piezo-resonance 58.2567 105.94
(20°C) £.0065 .12
3. McSkimin (1962) ultrasonic 58.18 105.74
(25°C) +,06 £.10
4, Cecchi et al. (1970) Brilloyin 57.7 105.1
(4880 A , 25°C) .3 .5

# Results as corrected by Lawson's method (1941).

T Sound velocities were determined using the ordinary index
of refraction (no).



(1%) and the error in the scattering angle (1%). Con-
sequently, it is: not surprising that the present results,
which include an intrinsic error of about 1-2%, deviate
within this range from the earlier measurements. In con-
clusion it is felt that the present results for o-Quartz

confirm the correctness of the present experimental technique.

4.3 Zinc Selenide

A general deécription of the Brillouin spectra obtained.
from the single-crystal ZnSe samples is presented here. As
mentioned previously (section 3.7) the accidental coincidence
of an iodine absorption line with a particular Brillouin
componeht could cause the component to be absent or severely
attenuated. This problem necessitated the use of several
scattering geometries sorthat a determination of all three
elastic constants éould be made. The frequency shifts were
measured only for those Brillouin components which were
upattenuated and symmetric. A qualitative description of
the individual Brillouin spectra taken is given in the

following paragraphs.

ZnSe (100) X(Z,i)Y (Figure 8)
As outlined in section 3.13 this spectrum of Figure 8
was obtained using the (100) crystal with the laser beam

incident along (100), polarized along (001) and the scattered



light observed along (010) in the absence of an analyzer.
The scattering angle was measured to be 6 = 91°28'x 16'.
The central Rayleigh component of the spectrum was chosen
to be the origin of the frequency scale (cm-'). A free
spectral range of <AU> = 2.437 +0.002 ¢m” ! was chosen for
all measurements in the present experiment.

The polarization selection rulesi(section 2.7, Table I)
predict for this orientation that light should be scattered
from only two acoustic phonons. The scattering should occur
from the fast transverse (T2) and the longitudinal (L)
modes. The observation of only two Brillouin components
in this spectrum agrees with these predictions. The frequency
shifts were measured for only the Stokes transverse (TZS)
component since the other modes were attenuated by the mole-

cular iodine filter.

znse (110) X(z,2)y  (Figure 9)

The polarization selection rules (section 2.7, Table II)
predict scattering from the fast transverse (T2) and the
longitudinal (L) modes and these two modes can be observed
in the spectrum shown in Figure 9. Attenuation of the anti-
Stokes modes for both the fast transverse and longitudinal
modes and the increased noise level at the estimated positions
of these components is evident. The Brillouin frequency

shifts were measured from the Stokes components. The
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scattering angle was measured to be 6 = 91°28' * 16'.

ZnSe (100) i(z,\i)x (Figure 10).

In this backscattering geometry of Figure 10 the
polarization selectioh rules (section 2.7, Table III)
predict scattering from only the longitudinal mode. The
Brillouin frequency shift of this mode being more than
one-half of the free spectral range of the interferometer
resulted in an overlap of the Stokes and anti-Stokes
componenté. The presence of a small peak about .43 cm™ !
on the high frequency side of the Rayleigh line is attri-
buted to fluorescence from the iodine filter. This peak is
also evident in the spectra of Figures 8, 9, 11, and 12.
znSe (110) )—((Y,;{)X (Figure 11)

For this geometry the selection rules (section 2.7,
Table IV) predict scattering from all three phonon modes

(Tl, T L) . However the frequency shifts of the transverse

o
modes are such that these components (Tl and T2) occur near
the sides of the strong longitudinal components and in

the present experiment could not be resolved. Their presence
was evidenced oﬁly by the increased noise level on the sides
of these longitudinal components. Only the frequency shift

of the Stokes longitudinal component was measured due to

the slight attenuation of the anti-Stokes longitudinal



mode by the iodine filter. Also, as in Figure 10, the
Stokes and anti~-Stokes longitudinal components overlap.

znse (110) X(Y,})Z (Figure 12)

For this scattering geometry selection rules
(section 2.7 , Table V) predict that scattering should
occur from a slow quasi-transverse mode (Q.Tl), a fast
pure transverse mode (T2) and a quasi-longitudinal mode
(Q.L). Only the quasi-modes were observed due to the
Weaker scattering from the pure transverse mode. Atten-
uation of the Stokes quasi-longitudinal and the absence
of the anti~-Stokes quasi-transverse modes indicate
extensive attenuation by the iodine filter. The scatter-
ing angle was measured to be 6 = 90°48' * 10',

A summary of the measured Brillouin frequency shifts
is given in Table VII. For near right-angle scattering
geometries the measured frequency shifts have been corrected
to correspond to 90° scattering angle. From the.frequency

shifts the phonon phase velocities were calculated using the

Brillouin formula (equation 2.2) and the elastic, constants
were related to the phase velocity and scattering
geometry using the procedure outlined in section 2.7
(Tables I-V). .

The final values for the elastic constants were
determihed from a weighted average of the results which

appear in Table VII. The values obtained are:
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TABLE VII

Brillouin Measurements in ZnSe

Crystal Scattering Phonon Frequency_lT
Sample Geometry Mode Shift (cm )
(100) X(Z2,X)Y : T2 .68%,01
.680+.007
X(Z,2)X L 1.43+,01
(110) X(z2,X)Y T2 .68%.01
.677+.005
X(2,2)Y L 1.014+.005
1.006%.007
X(Y,Y)X L 1.596+.005
1.601%.005
Y
X (Y, y)2 0.7,  .51%.01
Q.L 1.160£.007 }
1.167+.005

Result
(10*°dyn/cm?)

=39.5+]1.1

C
"44=39.5i0.8

C12=51.4il.3#
"T"=53.4+1.3%

C12=53.3i2.5#

C12=54.0i3.5#

Indicated error limits refer to standard deviation of

results and do not indicate absolute accuracy.

# The results for C
C and C

11
1—

44 (Tabl&?VIIT)

were determined using the final values for

The listing of more than one measurement for a given scattering

geometry and phonon mode indicates that these measurements

were made from data which were taken on different experimental

runs.



C;; = 87.2 40.6
Ciy = 52.4 10.8
C44 = 39.2 10.4

in units of lOlOdyn/cmz.

Throughout.the present anal?sis the piezoelectric
nature of ZnSe has been neglected. The effect of piezo-
electricity on the values determined for the elastic
constants is discussed in Appendix C.

An estimate of the intrinsic phonon linewidth can

be made from the present data. The experimental

finesse was approximately 40 and from a measure of the

increased linewidth broadening of the Brillouin compon-
ents the intrinsic phonon linewidth is estimated to be
about$.1 GHz. This value is of the order of that estimated

from Love's data (~1GHz; section 3.12).
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: CHAPTER 5

DISCUSSION

5.1 Introduction

In this chapter the results described in the previous
chapter are compared to earlier measurements. In .section 5.2
the values obtained for the elastic moduli of ZnSe are
éompared with values determined previously by Berlincourt
et al. (1963) and Lee (1970) from measurements on single-
crystals. In addition, the polycrystalline elastic moduli
are calculated from the single-crystal values and compared
in section 5.3 to the experimental values of Chung and
Buessem (1967). Fufther, in section 5.4 an estimate of
the relative magnitude of the photoelastic coefficients
is made from the present data. In section 5.5 a relation
between the single-crystal elastic moduli due to Martin
(1970) is used to compare the present data with the earlier
measurements. The chapter concludes with a comparison of

the present results with those obtained from neutron data.

5.2 Single-Crystal Elastic Moduli C~

- The present single-crystal elastic moduli of ZnSe
are tabulated in Table VIII together with the previous
values of Berlincourt et al. (1963) and Lee (1970).

Berlincourt et al. (1963) determined the elastic constants
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TABLE VIII

Ilastic Constants of ZnSe

a. Ilastic Constants

Berlincourt et al.

Elastic Present Work Lee (1970)
constants 5.264 g/cc. 5.264 g/cc.
(295°K) (295°K)
(10'°dyn/cm?) 1-50 GHz 15MHz
Brillouin Ultrasonic
Ciq 87.2t0.6 * 85.9+0.3
Ciy 52.4+0.8 * 50.6+0.4
C44 ; 39.2+£0.4 * 40,6x0.2

b. Sound Velocities

Propagation Displacement
Designation Mode direction  direction

vy Long 001 001
v, Shear 001 110
vy Long 110 llOv
Vy Shear 110 001
Ve Shear 110 110

* TIndicated error limits refer to standard
and do not indicate absolute accuracy.

# Lee's values accurate to .2%.

c. Anisotropy Factor (A)

Present Work Lee
2 C44 —

A= :
iCll—Clz) 2.25+.06 2.30

5.262 g/cc.(1963)
(298°K)
.10v100 MHz

Piezo-~Resonance

81.0+6.0
48ﬁ8i6.0
44.1%1.3
Velocity
(10°cm/sec.)

Lee Present
4.0386 # 4.07+.01
2.7770 #  2.73*.01
4.5496 #  4.55%.02
2.7782 #  2.73+.01
1.8323 # 1.82%.02

deviation of results

Berlincourt

2.74
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(25°C) from piezo-resonance measurements. In their
experiment Berlincourt et al.‘investigated phonons with
frequencies between about 100KHz and a few MHZ. Berlincourt
commented that the large errors in their elastic constants
resulted from the method of deriving all moduli from only one
crystal plate. More recently, Lee (1970) determined the
elastic moduli (22°C) using ultrasonic pulse-echo methods
(McSkimin, 1961) to excite 15 MHz phonons. The discrepancy
between these two sets of data was considerably in excess
of the quoted experimental errors.

It is evident from Table VIII that there is agreement
between our present elastic moduli and the previous
results of Lee. This agreement is further evident from a
comparison of the measured sound velocities shown in
Table VIII. There is agreement to better than2% between Lee's
and the present measured sound velocities. However, there
is a discrepancy between the present data and Berlincourt's.
This discrepancy is particularly evident in the case of
C44=where our value is about 11% smaller than Berlincourt's.
and C are about 8% and 7% respec-

11 12

tively, larger than Berlincourt's.

Also our values of C

This discrepancy is further evident from a comparison
of the anistropy factor (A = 2C44/(C11—C12)). This factor
is a measure of the degree of anisotropy of the crystal.

For an isotropic crystal the anisotropy factor takes on




the value 1. The anisotrepy factor is calculated from the
elastic constants ahd the results appeer in Table VIII.

Due to the agreement between our results and those of
Lee and the present discrepancy when compared to Berlincourt's
results it is concluded that our results substantiate

the correctness of Lee's work.

5.3 Polycrystalline Elastic Moduli

The only other measurement of the elastic moduli of
ZnSe were carried out on polycrystalline samples by Chung
and Buessem (1967). In their experiment a modified
Forster~type resonance method in the kilocycle range
(Spinner and Tefft, 1961) and ultrasonic methods (McSkimin,
1964) were used. The isotropic shear modulus (G*), longi-
tudinal modulus (L) and Young's modulus (E) for a bar-
shaped polycrystal were determined.

| The single-crystal elastic moduli can be compared

with those of the polycrystal by means of the Voigt-Reuss - .
Hill (v-R-H) approximation methods (Chung et al., 1967).
The V-R-H approximations provide a useful scheme by which
anisofrdpic single-crystal elastic constants can be used

to estimate theisotropic polycrystalline elastic moduli.
These approximations are valid for all crystal claeges and
can provide a practical and accurate (to better thahjl%,

Anderson, 1963) estimate of the mean sound velocity in
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crystals.

The isotropic V-R-H moduli can be calculated from

those of the single-crystal according to the following

relations:
- 3 = = = R* = - 3
the Bulk modulus, KVRH KV‘ KR K Cll 2C/
- — *
the Shear modulus, GVRH = G* = (GV + GR)/Z

where C = (C - Clz) and the subscripts V and R denote the

11
Voigt and Reuss limiting moduli, respectively and

GV = (C + 3C44)/5

and

GR = 5CC44/(4C44 + 3C).

Young‘s modulus (E) can be calculated (Anderson, 1963)
from the Bulk modulus . (K*) and Shear moduli (GV and GR)

according to:

E = (EV + ER)/2 where

= + i .
E., = 9K, Gi/(3Ki Gi) for ie{v,R}

The V-R-H moduli are calculated from the single-crystal

values according to the previous relations and the results
are given in Table IX. It is evident that the V-R-H
moduli calculafed from both the present single—crystaﬁ?
moduli and those of Lee show better agreement to the
experimental values of Chung et al., than do those deter-
mined from Berlincourt's data. This result is expected
due to the smallervvalue in the anisotropy factor for both

the present samples and those of Lee as compared to that

s«

[
T
1]
I

I

)
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TABLE IX

The Isotropic Polycrystalline Elastic Moduli of ZnSe

Elastic Modulus
(10*? dynes/cm?)

SAMPLE : Shear ‘ Young's Bulk
(G*) (E) (K*)
1. Single crystal. 2.945 7.57 5.953
(Berlincourt et al.,
1963)
2. Single crystal. 2.91 7.54 . 6.24

(Lee, 1970)

3. Single crystal. 2.83%20.05 7.39£0.10 6.40+0.06
(Present work) '

4. Polycrystalline. 2.88%20.07 7.46%0.10 6.67
(Chung et al.,
1967)
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of Berlincourt's (Table VIII).

5.4 Photoelastic Coefficients

It has been pointed out by Benckert and Backstrom
(1973) that it is possible to determine the photoelastic
coefficients of transparent.crystals by means of Brillouin
scattering. In the present experiment’the relative
magnitude of these coefficients can be estimated from the
ratio of peak intensities of the Brillouin components.
This ratio may be expressed (Benckert et al., 1973) as a
function of the weighting factors |£"| (section 2.5) and
the phonon phase velocity (V).

An expression for the relative intensity of the
Brillouin components can be developed in the following
manner. In the present experiment it was observed that
the natural linewidths of the Brillouin components
(¢ .1GHz) were much less than the instrumental width
(v1.8GHz). This implies that a measure of the integrated
intensities of the Brillouin components can, to a good
approximation, be replaced by a measure of the peak inten-
sities of these eomponents. The intensity of the scattered
field was seen (section 2.6, 2.36) to be proportional to
<l§'(5,t)f2> and it follows that the ratio of peak inten-

sities between the Brillouin components of modes My and

By is given by:
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1M1 2 2
I(K,uy) ) ]g ’ w ()
~H212
TKup) o (2727wl (K)
W12 2
2
l§U2I Vl

where we have used the dispersion relation (2.16).

The ratio |P12/P44[ can be obtéinéd from a measure
of the peak intensities of the transverse (T2) and longi-
tudinal (L) phonon modes for the particular scattering
geometry ZnSe (110) X(Z,i)Y. This ratio is given by
(Table II):

I(K,L) 2C,, <p12>2
1(x,T,) 11 \"44

Using the present values fér the elastic constants
(Table VIII) together with a measure of the relative peak
intensities, a suitable weighted average of the results
yields:

P12

= 3.4 + 0.3 o
Paag

P
Similarly lﬁill may be estimated (Tables III and IV)
12
from the ratio of peak intensities of the longitudinal
components from the backscattering geometries: ZnSe(100)

X(2,2)X and ZnSe (110) X(Y,Y)X. This ratio is:
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&, L119) T30 €11
LK, Lygg) T1o0 \2(C11%C1%2C,,)
2
P11 2 Pas
12 12

where IllO and IlOO are the incident laser intensities
used in the (110) and (100) experiments, respectively,
The spectra were performed with different incident power

levels and consequently the ratio of peak intensities
P

11
P12

must be weighted by this factor. The value |

estimated in this manner is :

. |
lﬁli = 2.6 +0.2 .
12

[
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5.5 Martin's Consistency Relation

To compare the consistency of the present results
with those determined previously by Berlincourt et al. (1963)
and Lee (1970) a relationship between the elastic constants
due to Martin (1970) is applied. Martin used an expansion
of the elastic strain energy in terms of nuclear displace-
ments (Keating, 1966) to develop a relation between the
elastic constants.. This relation can be expressed as a
function of the optic-mode splitting (wLo - wTo)’ the force
constants (k), the equilibrium bond length (r) and the
internal-strain parameter (£) defined by Kleinman (1962).
Using an approximation for the internal-strain parameter
suggested by Keating (1966) the relation between the
elastic constants and the optic-mode splitting can be

written as:

-C') -
2C44(C11+C12 c')

=1
= T i ] —E
(Cll ClZ)(Cll+3C12 2C') + 0.831C (C11+C12 c")
(5.1)
where C' = 0.314 SC, ‘
- f(zx)?2 _( @ 2 _ 2 | {
S =% _(47re2) m("Lo Wpo v
= w2 ek
Co e?/r

for the unit cell volume (), the reduced mass (m) and

‘electron charge (e).



Using the value of the optic-mode splitting for ZnSe
given by Irwin et al. (1970) the value of S can be deter-
mined (S = 0.715). Using the elastic constants determined
by Berlincourt, Lee and those of the present experiment
the left-hand side of equation 5.1 has been evaluated
and the results are given in Table X. Also listed for
comparison are values obtained for other similar crystals.

As can be seen from Table X the relation (equation 5.1)
between the elastic constants and the optic-mode splitting
is not well satisfied using Berlincourt's values for the
elastic moduli. Martin (1970) commented that since there
is no a priori reason to suspect that ZnSe would be dif-
ferent from similar crystals that this discrepancy would

suggest that Berlincourt's value of may be in error.

C44
This hypothesis has been verified by the present work and
as is evident from Table X the present value of equation 5.1

agrees well with the values obtained for similar crystals.

5.6 Neutron Results

The phonon dispersion curves of ZnSe have been measured
(Hennion et al., 1971) at room temperature in the [001],
[110] and [111] crystallographic directions by inelastic
neutron scattering. These dispersion curves can be used
to estimate values for the elastic constants which can in

- turn be compared to previous results. Hennion et al. (1971)



1)
2)

3)

4)

5)
6)
7)
8)
9)
10)
11)
12)

13)

#
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- TABLE X

The Value of Martin's Consistency Relation (5.1)

Material

ZnSe
ZnSe
ZnSe
Zns

ZnTe
AlSb
CdTe
GaAs
GaP

GaSb
InAs
InP

InSb

(Berlincourt et al., 1963)
(Lee, 1970)

(present work)

#
#
#
#
#
,
#
#
#
#

Left-hand side of Egn.5.1

1.311
1.124
1.092
1.082
1.059
1.056
1.045
1.068
1.044
1.059
1.109
1.075

1.103

Pertinent references given by Martin (1970)
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attempted to fit the neutron data with a second-neighbour
rigid ion model containing ten general parameters. These
parameters were determined by the frequencies of the cri-
tical point zone bouhdary phonons.

The elastic constants were also calculated from the
model and an appreciable discrepancy was found between the

theoretical value for C (20.8 x 10'%dyn/cm?) and that of

44
Berlincourt et al. (44.1 x 10'%dyn/cm?) (Table XI). Hennion

also commented that an increase in the value of C beyond

11
the experimental limits of Berlincourt's data produced a
slight improvement in the match of the data.

Hennion's data was also analyzed by Talwar and Agrawal
(1972) with a 7-parameter second-neighbour ionic model
(S.N.I.). The model parameters were determined from the
measured critical point phonon frequencies and the calcu-
lated elastic constants again differed significantly from
Berlincourt's. In particular the theoretical value of
C44 (19.5 x 101°dyn/cm2) was similar to that determined
by Hennion et al. The results are summarized in Table XI.

On the basis of the above comparison with Berlincourt's
results, Talwar and Agrawal suggestéd that Berlincourt;s
values were grossly in error and recommended that the
elastic constants should be reinvestigated. In view of the

results of Lee (1970) and the present work it now appears

"that Berlincourt's (1963) results were indeed slightly
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TABLE XTI

Summary of the Elastic Constants of ZnSe

Elastic Resonance Ultrasonic Brillouin Neutron
Constant (Berlincourt) (Lee) (present) (Hennion;Talwar)
iy © 81.06.0 85.9%0.3 87.2+0.6  84.0 ; 95.7

C12 , 48.8+6.0 50.6+0.4 52.4%0.8 47.0 , 51.0

C44 ‘44.lil.3 40.6+0.2 39.2+0.4 20.8 , 19.5

in units of 10'° dyn/cm?.




erroneous (5%). However it is also evident that fitting
a theoretical model to the neutron data has provided
values that are grossly in error (50%). This somewhat
limited applicability of rigid ion models‘has been noted
previously. Irwin et al. (1972) commented that sﬁch models
cannot accurately predict the acoustic modes throughout
the Brillouin 2zone. In particular, if zone boundary
frequencies are used to determine the model parameters a
good fit will be obtained for large wavevectors but the
small wavevector frequencies are highly inaccurate (20-50%
error). The present results are further indication of the

correctness of this statement.



CHAPTER 6

CONCLUSIONS

6.1 Brillouin Scattering in ZnSe

An appératus for performing Brillouin scattering mea-
surements has béen constructed. The apparatus incorporated
a pressure scanned Fabry-Perot interferometer and a single
méde of the 514.5nm line of an Argon-ion laser was used
as a light source. The scattered light was detected with
a standard photon counting system. To resolve the Brillouin
components in the presence of the strong Rayleigh component
a molecular iodine filter (Devlin et al., 1971) was used.
The filter provided a continuously variable (5~50db) attenua-
tion of the Rayleigh compbnent. As an evaluation of the
present experimental technique measurements were performed
on a-Quartz for which the elastic moduli are well known.
Agreement of the present results with previous measurements
has indicated the applicability of the{present experimental

L
technique.

The elastic moduli of ZnSe have been determined in the
present experimént and present work has confirmed‘the cor-
rectness of previous ultrasonic measurements by Lee (1970).
This conclusion is further substantiated from comparisons

with the elastic moduli of polycrystalline ZnSe and also



from comparisoné with a consistency relation for the
elastic constants derived by Martin (1970).

Furthermore,‘a detailed comparison of the present data
with the ﬂeutron results has suggested that the SNI model
as used by Talwar et al. (1972) yields unreliable values
for the phonon frequencies near the center of the Brillouin
“zone (K = 0). A similar conclusion was arrived at previously
by Irwin and La Combe (1972, 1974) from comparisons of
phonon dispersion curves using the SNI' model with neutron

results and specific heat measurements.

6.2 Suggestions for Future Research

The present research was made possible by the use of a
molecular iodine filter (Devlin et al., 1971; Section 3.4)
to attenuate the strong Rayleigh component found in the
light scattering experiments. However, the accidental coin-
¢idence of a Brillogin component with an iodine absorption
line resulted in attenuation of the Brillouin component.
This problem was evident in the pfesent experiment and
served to hinder the measurement of the Brillouin frequency
shift. |

It would bé worthwhile to determine from absorption and
fluorescence experiments the distribution and relative inten-.
1

sity of the iodine absorption lines within about 10 cm™

of the tuned argon-ion laser line. A knowledge of the
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iédine (12) absorption spectra in this region would facili-
tate the analysis of Brillouin experiments and the absorption
lines could also be used as an alternate method for cali-
bration of the Brillouin frequency shifts.

The technique demonstrated in this work should also
be ideally suited for the investigation of layer structure
semiconductors such aé GaSe. These crystals are in general
very thin in a diréction perpendicular to the layers and as
a result ultrasonic téchniquesbare not readily applicable.
Brillouin scattefing however could be used to measure sound
velocities in such crystals and the information gained would
be very useful in aiding in an understanding of the

effects of the anisotropy in such crystals.
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| Appendix A

Theory of ElaSticIWaves in Cubic Crystals

In this section a theory of elastic waves in cubic
crystals due to Fedorov (1968) is outlined. The theory
is applicable to acoustic vibrations in the long wave-
length limit.

If a symmetrig stress tensor T is defined such that
Tij is the i-th Cbmponent of the force acting on unit
areé whose .normal ‘has the direction Ej then,expanding each

component of the stress tensor as a Maclaurin series in

the deformation:

' Al
3 (aTi.)
T.. = T,.(0) + e
ij 13( ) ZE: P s =0 Som T eer
% ,m=1 m

where ngvare the normal strain tensor components (2.6).
We assume all deformations Sﬂm are small so we need.only
retain terms up to the first order. The requirement of
absolute elasticity implies Tij(O) = 0. This simplifica-
tion results in a linear homogeneous relation between the
components of stress and strain (deformation) tensors:

< 3T
Tij (8) = Z , S!Lm
1

Am Szm=0 : A2

3
- E Cij5om Sam

L, m=1
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where the set'{Cijgm} forms an orthogonal fourth=-rank
tensor. This relation (A2) is known as the generalized
Hooke's law and the coefficients Cijkm are referred to
as the elastic moduli or elastic constants.

From the symmetry of the stress and strain tensors
it follows that the components of the elastic constant
tensor obey:

€ijem T S3itm T Cijme T Comij A3
These relations (A3) reduce the number of independent
cinm considerably. It is convenient to pass from the
three dimensional fourth—rank tensor to a six dimension
matrix representation. This transformation is accomplished

by replacing pairs of subscripts with values 1, 2, 3 by

one taking on the values 1 through 6 in the following

manner:
11 - 1 23 = 32 -
22 > 2 - 13 = 31 ~» A4
33 >~ 3 - 12 = 21

for example: Cllll = Cll’ C1223 = C64

The number of.indépendent ’Cijﬁm equals the number of
independent elements in a six-row symmetric matrix. It
further follows from the symmetry of the cubic crystal.

(Nye, 1957) that :

AS
€11 = C22 = C33 + C4q = Cg5 = Cg

Cip = Ci3 = Cyr3 + all other components being identi-
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cally zero.
Hence, for the cubic class the six dimensional matrix

representation of the elastic constants is given by:

€11 €2 G2 O O O
€12 ¢33 G O O O
() = 212 212 211 Z Z Z A
44
0 0 0 o ¢, O
0 0 0 o o ¢,

A further restriction on the elastic constants
arises from the requirement that the energy associated
with the deformation be positive. This implies for the
cubic class:

Cip > eyl v cqq 2C;, > 0, Cyy > O A7

The general equations of motion follow from equating

the i-th component of the force with the acceleration:

- 3 oT. .
= 2: 1 . 1=
pUl = F}_{;—l ; 1 =1, 2, 3 18
. =1 ;

Substitution of equations A2 and 2.6 in A8 gives the

following wave equation:

, \ 2 2
pa _ 2?: CijZm 9 Um + o 5
i . 2 axjaxl ij me
J,4,m=1
'V‘l tl '
or equiva ep vy A9
3. 32U
- ZE: m

j,2,m=1
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which follows from the symmetry of Cijlm’(A3)'

We seek travelling wave solutions of the form:

U=10 el (5. £"(1)t)

u=21, Alo

and on substitution in equation A9:

3

pwzui:= 2: C.oom K: K U All
j,2,m=1 * J

where Kj is the j-th component of wavevector K. 1In place

of Cijzm we introduce the reduced elastic modulus tensor
Aijem®
C..
- _ijam
Aijzm 5 Al2

and replace Kj by K(QK)- then equation All becomes:

j
3 3
— 2 =
Eéi jjgil Mijam gl )= V7 85 |Up = 0 AL3

where sim is the kronecker delta function and V = w/K is
the phase velocity.

If we define the second-rank tensor A by:

3
Fa) ~
im o 5,2=1 “ijm ] 2

then equation Al3 becomes:

3

2 (A v o - -
m=l( im =V Sim> u, =0 for i=1,2,3 AlS5
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This equation (AlS) is referred to as Christoffel's
equation and is the fundamental eigen-equation for normal
mode vibrations in crystalline solids. The square of the
phase velocity (v?) is the root of the characteristic

’

equation:

|A - V2§ =0 Al6

im’
and the eigenvectors (6) are the unit polarization vectors
of the acoustic vibrations.

The problem of determining the normal mode vibrations
in an elastic soiid reduce to solving for the eigenvectors
and eigenvalues of the tensoi A. The form of this tensor
for the cubic class of crystals is given in section 2.7,

equation 2.41.
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Appendix B

Scattering Coefficient

In this section the present analysis of the séattered
field (sections 2.5, 2.6) is compared with the classical
treatment of the scattering éoefficient. The intensity of
the scattered radiation was found (2.24, 2.37) to be pro-
portional to the square of the weighting factor ([g!z).

The magnitude of thése factors depends on propagation direc-
tions and polarizations of the phonon and photons and on

the photoelastic tensor components (2.22 and 2.23).

A comparison between the present formulism due to
Benedek and Fritsch (1966) and that of Fabelinskii (1968)
can be made in the following manner. The classical scat-

tering coefficient R (Fabelinskii, 1968) is given by:

® E

where Sn and Sﬁ are the normal components of the Poynting

S

“
5

vectors for the incident and scattered waves respectively
and L is the length of the scattering medium of volume V.
The scattering coefficient R is related to the weighting

factor éu in the following manner:

2 8 2
gh = T Kkn S gk l” B2
pA* w, * (K)

where k is Boltzmann's constant, T the temperature of the

medium and the subscripts c(o = QE ) and Tt indicate the
o
polarizations of the incident and scattered waves respectively.
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The scattering coefficient (R) and the weighting factor

(E) are designated by the phonon mode . and by the pola-
v, ()
K 2
function of the elastic constants (CaB) and the factor

é% is the common Rayleigh scattering factor.

rization of the photons. The term p is only a
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Appendix C

Piezoelectric Stiffening of the Elastic Constants

The effect of piezoelectricity on the measured sound
velocities is discussed in this section. Crystals which
possess no inversion center are piezoelectric in chéracter.
Examples of such crystals are:ZnSe, a—Quartz, Cds and Cdse.
The piezoelectric effect associates an induced electric
field with a state of deformation of the crystal and it is
natﬁral to conclude_that the dynamics of such a deformation
would be affected by the presence of this induced field.

In particular, the phase velocity of the sound wave will
depend on its interaction with the field. This piezoelectric
contribution to the phase velocity must be considered for

any complete theory of Brillouin scatterihg in piezoelectric
crystals.

The effect of pieéoelectricity on the velocity of sound
waves may be interpreted as a "stiffening” of the elastic
constants since the induced electric field acts in such a
manner as to oppose the deformation. In the preéent experi-
ment this was a second order effect since no external D.C.
electric field was applied to the crystal. An analysis of
the piezoelectric effect follows that given by O'Brien et
al. (1969) in which simultaneous solutions to Maxwell's field

equations and Newton's second law provides the following
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results:

The basic wave equation is the ‘same as that of pure

elastic theory (A8):

3
2.0 AT, .
vp_g_t_lzh:F‘: IS ] cl
i j=1 axj

where p is the mass density, Tij are the stress tensor
components. The strain tensor components sij’ are defined

in the usual manner (2.6).

For quasi-static fields in non-magnetic, non-conducting,

charge free media, Maxwell's equations are given by:
VxE=0and V+«D=10 c2

where E is the stress induced internal field and D the
displacement vector. The fundaméntal piezoelectric equations

for adiabatic conditions are:

3 3
= > Es e .. E c3
ij K 2=1 ijk& k& =1 mij m
and
3 3
D € E _
B D e .. s+, -mmn c4
av i,3=1 T Y p=l
where C?jkz is the elastic constant tensor for constant

field, emij the piezogelectric tensor and Emn the dielectric

constant tensor.



- 110 -

Simultaneous plane wave solutions of equations Cl
through C4 yields the displacement U as solutions to the

normal mode equation:

3
) B § :,
wc U, = C* U. K, K C5
e 1 5. K, 2=1 ;jkl 2 3 k

where the "stiffened" elastic constant (in c.g.s.) is given

by: 3
* E p,a=1 °pij ®qks’p “g
Cijke T Cijre T 3 c6
E €
m,n=l mn m n

where K is the phonon wave vector with direction cosines
K (K = RK)'~

The important result is that the displacement U satisfies
the same wave equatiqn as in pure elastic theory (All) with
the inclusion of an effective elastic constant C;jkz’
The effective elastic constant contains a positive contri-
bution from the piézoelectric effect (if both e's are
positive). This "stiffening" of the elasticvconstant causes
’the sound velocity to be enhanced and the Brillouin frequency
shifts to be increased.

To estimate the importance of the piezoelectric effect

in the present experiment on Zinc Selenide,Berlincourt et al.’s

7(1963) value for the piezoelectric stress tensor components
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- - - - 2 .
€4 e, €36 are used (el4 0.049 Coul/m*). (Note:

the crystal symmetry of ZnSe is 31 and thus the only non-.

zero components are e » where the reduced form

14 ®25 T ©36
e ..—>e has been used (A4)). Using the present value for
P1] P ,

the elastic constants (Table VIII) and a value of €= 6.1
(Berlincourt et al., 1963) the piezoelectric corrections to

the elastic constants are given by the following:

i) the correction to Cllz

= + K =
¢ it e a8 %1 % e fa T 1

herice C11 is unstiffened (no corrections are

required) .

ii) the correction to C12:

A A

pl %q2 ¥p Kq T 12

* 47 —
Cc = C + - } e
12 12 € P, q

hence C12 is unstiffened.

iii) the correction to C44 (C44 = C =C__):

55 66
¢ =c, . o+ am e? (i )2 and since (i )2 < 1 then
44 44 € “14 1 1 -
C* (@ :
44 44 o Am (e )2 ¥ 1.14 x 1077
c €C 14
44 44

thus the correction to C44 is at most ~.1%.
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iv) the correction to the other elastic constants:

By symmetry the only other elastic constants which

45’ C46 and C56 where the stiffening

is at most .05% of C

are stiffened are C
44~
Now since the experimental error in this work

was of the order of 1% and because the contribution

from the  piezoelectric effect is at most .1%, the

effect of piezoelectric stiffening should be negligible.

Furthermore, the results of pure elastic theory (section

2.7;'Appendix A) can be used without any modifications

to calculate the phase velocity and polarization of the
sound waves.

Zinc Selenide is only weakly piezoelectric and no cor-
rections for piezoelectric effects were necessary. However
these effects have to be considered in strongly piezoelectric
crystals such as oa-Quartz. In o-Quartz the only non-zero
piezoelectric stress coefficients are e and e (Bechmann,

11 14
1958). It has been determined that the elastic constant C33
is unstiffened for all directions of wave propagation while
C44 is stiffened only for phonons which have a component of
wave propagation normal to the optic axis. Hence for the
present backscattéring geometry along the optic axis the
values obtained fbr C33 and C44 (Table VI) need no>

corrections from piezoelectric effects.
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