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The purpose of t h e  study was t o  monitor t h e  b r a i n t s  

responsiveness t o  s i g n i f i c a n t  s t i m u l i  during wakefulness and 

n a t u r a l  s leep.  

Tones whose s ign i f i cance  had been es tab l i shed  by 

C l a s s i c a l  o r  Operant condit ioning procedures were used a s  t h e  

s t imul i .  Averaged audi tory  evoked p o t e n t i a l s  ( AEPS ) were recorded 

from both c o r t i c a l  and r e t i c u l a r  a r e a s  i n  t h e  b r a i n  of s q u i r r e l  

monkeys. 

Analysis of t h e  AEP waveform was undertaken with a 

m u l t i v a r i a t e  procedure. 

Changes in t h e  o v e r a l l  form of t h e  AEPs were evident  

a f t e r  t h e  t r a i n i n g  procedures, and t h e r e  were ind ica t ions  t h a t  t h e  

b ra in ,  p a r t i c u l a r l y  i n  t h e  r e t i c u l a r  a r e a  w a s  s e l e c t i v e l y  responsive 

t o  t h e  CS during n a t u r a l  sleep. 
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I. INTRODUCTION 

A. Selective sens i t iv i ty  d u r W  sleep 

For Pavlov, "the fundamental and most general function of the 

hemispheres is  tha t  of reacting t o  signals presented by innumerable 

S t imul i  of interchangeable s ignif icanc en. ( ~ a v l o v ,  1929). 

What a r e  the  mechanisms tha t  enable an organism t o  respoM 

select ively to different  st imuli? What nervous structures a re  involved 

i n  the  discrimination of these innumerable stimuli? HOW does it 

recognize the significant from the non-informative? 

Such questions, raised long before Pavlov, a r e  still 

encouraging much research in to  the relationships between brain and 

function behaviour. Somehow the nervous system encodes the inf o m t i o n  

it receives, checks it against a s tore  of previous data, and reeponds 

i n  an appropriate fashion. 

It is  a cmon-place observation t h a t  we can block out input 

from certain sources and attend t o  only a s ignif icant  or important 

message. The mother, we a r e  told, w i l l  waken readily t o  the small 

sound of her baby crying, but will sleep through the sound of j e t  

planes tha t  habitually f l y  over her house She m.dd appear, in other 

words, t o  be select ively responsive t o  importent sounds even while 

asleep. 

How the brain performs such selection and what it does with 

the rejected input i s  still largely a ~ s t e r y ,  but it seems clear  

that ,  i n  sp i t e  of Pavlov, the cortex i s  not a l l  important i n  the 

andysf s of incoming ~thili-- conditioned or uncovdi tionea . For 

instance, since the c lass ica l  description of the  r e t i cu la r  act ivat ing 



system (Moruzzi and hgoun, 1949), much at tent ion has been paid t o  

the ro le  t h a t  the  mid-brain re t icu lar  system plays in the 

recognition and elaboration of incoming signals. This lower brain 

area t ha t  receives input from all the  afferant pathways could provide 

the anatconical poss ib i l i ty  for  much modification of stimulus input out- 

s ide the cortex. Various studies have shown t h a t  the development and 

maintenance of a stimulus nsignalling capacityn involves such cortkco- 

subcortical re lat ions.  (Anokhon , 1961; hlambos, 1961 ; Magoun, 1961 ; 

Norrell, 1961; Adey, 1962 ; Hernandez-Peon, 1966 ; John, 1967. ) . 
will be said l a t e r  concerning the ro le  of the re t icu lar  

system, but first, evidence relat ing t o  the a b i l i t i e s  of the  

"sensitive mother* previously mentioned be considered. Is there,  

i n  fact ,  any evidence, outside of anecdote and folklore t h a t  would lead 

us t o  believe tha t  the  brain i s  s e l e c t i ~ e l y  sensi t ive during natural  

sleep? 

Clearly, t o  be certain tha t  the select ive sens i t iv i ty  is t o  the 

meaning of the  s t ~ u s  we must control for  both stimulus in tens i ty  and 

stimulus novelty. The mother may be r e s ~ d i n g  t o  the child ?s cry not 

because it i s  of par t icular  significance t o  her but because, within 

the context of the  ordinary background st- tha t  a r e  pmsent during 

sleep, it is a novel event. Again, a Person W respond t o  his own 

name and not others only because it was spoken more koudly. Such 

confounding influent es are, however, re la t ive ly  easy t o  control. 

Zn a se r i e s  of studies, OSwald (1960; 1966) demonstrated 

rather  simp* t h a t  people are  S e l e c t i v e l ~  --9s~onsi.;9 to names of 

par t icular  significance to them. Volunteer subjects s l e p t  in the 

laboratory where the i r  scalp wa3 c o n t h u o u s l ~  recorded. A list, of 



about 50 tape recorded names of the same physical in tens i ty  was played 

t o  the aubjects while they s lep t .  Previoua instructions required the 

subject t o  clench his f i s t  whenever he heard h is  own name. Although 

spontaneous arousals during sleep (defined by slow waves i n  the EM;) 

were rare,  f i s t  clenching and cor t ica l  arousal ( e l i c i t a t ion  of the K 

complex) contingent on presentation of the subJectt8 orm name, occurred 

frequently, men more interestingly,  the cor t ica l  arousal respome was 

evident even though the f is t  clenching response sometimes f a i l e d  t o  

occur. The brain was responsive even though the  called-for behavioural 

response was apparently not made. 

In a similar vein, Wilson and Zung (1966) have a l s o  

demonstrated selective sens i t iv i ty  during sleep. In t h i s  study, a 

response was defined a s  any change in the t o  a l igh ter  stage of 

s leep from the  on-going level.  "Motivating" sounds, i.0. ; those 

previously specFfied as t a rge t  s ignds ,  produced more responses than 

"neutrsl" sounds, such a s  gongs and animal noises. Incidentally, 

Wilson and Zung report  t ha t  females in t h e i r  study were more 

responsive t o  the neutral  sounds than males. There was, however, no 

difference between men and women in t h e i r  responsiveness t o  the 

motivating stimuli. 

Four different  s leep stages were dis thguished according t o  

the s y a t a  poposed by Davis (Davis, e t .  ; 19371, and the subject ts 

responsiveness during different sleep levels  was analysed separately. 

Although responsiveness t o  the f b ~ t i v a t b g "  sounds was uniformly high 

J!lring sleep stages, re8ponsiveness t c  Lhe n s u ~ r a l  sounds 

diminished l inear ly  as  the subjects moved deeper i n t o  sleep. ~hus, 



f o r  t h e  sub jec t s  as a whole, 90% of t h e  h o t i v a t i n g H  s t i m u l i  produced a 

response even during t h e  deepest  s t age  of s leep,  but  only 25% of the  

n e u t r a l  sounds were e f f e c t i v e  i n  producing a change i n  t h e  E G  from level 

4 t o  a l i g h t e r  s tage  of s leep .  

In Oswald(s previously mentioned study, the sub jec t s  were shown t o  

be s e l e c t i v e l y  responsive t o  t h e i r  own names, whereas Wilson and Zungrs 

sub jec t s  were d i f f e r e n t i a l l y  responsive t o  ' ' targetv sounds, i.e. - they 

were t o l d  t h a t  they would be rewarded if they awakened when a p a r t i c u l a r  

sound occurred, e.g.; a telephone r inging.  The flmotivatingu na tu re  of 

t h e s e  sounds was, therefore ,  a r t i f i c i a l l y  created.  We might assume t h a t  

t h e  sound of o n e f s  own name would be more n a t u r a l l y  motivating, however, 

it should be noted t h a t  Oswaldfs sub jec t s  were ins t ruc ted  t o  respond t o  

t h e i r  own name. He did n o t  show t h a t  sub jec t s  were s e l e c t i v e l y  responsive 

without  p r i o r  i n s t r u c t i o n s .  Nevertheless, both s t u d i e s  would seem to 

demonstrate t h a t  the  bra in ,  a s  evidenced by changes i n  t h e  c o r t i c a l  W ,  

i s  s e l e c t i v e l y  responsive t o  c e r t a i n  % r u ~ i a l ~ ~  sounds during n a t u r a l  

( i .e .  ; non drug-induced) s leep .  

B. Learning Durin~ Sleep. 

(i) Complex Verbal Material.  



t h e  l ack  of proper c r i t e r i a  t o  determine whether t h e  sub jec t s  were, irl 

f a c t ,  a s l e e p  while t h e  stimulus mater ia l  w a s  being presented. 

Subsequent, we l l  control led  s t u d i e s  by h o n s  and Simon ( ~ i m o n  and 

h o n s ,  1956; E h o n s  and Simon, 1956), supported t h e i r  b e l i e f  t h a t  

learning could not  occur while subjects  were asleep.  

I n  t h e  first study, subjects  were presented with tape  recorded 

quest ions and answers, e.g.; "Where d id  General Grant work b e f o x  t h e  

C i v i l  War?ff h s w e r :  flIn a hardware s t o r e n .  Subjects were required t o  

repor t  inmediately if they heard any of t h e  answers. The next  day, they 

were t e s t e d  for r e t e n t i o n  of the mater ia l  in a mul t ip le  choice t e s t .  

The o c c i p i t a l  EEC w a s  continuously monitored, b u t  t h e  st imulus mate r i a l  

was presented, regardless  of the  s tage  of s l e e p  t h a t  was evident .  The 

s l e e p  s t ages  were defined in  terms of haw much Alpha a c t i v i t y  was 

present .  Results  indica ted  t h a t  both t h e  number of items answered 

c o r r e c t l y  and t h e  number of immediate repor t s  of having heard t h e  answe.. 

during t h e  previous n ight  were d i r e c t l y  r e l a t e d  t o  t h e  amount of u p h c i  

present  i n  t h e  EEG when t h e  stimulus mater ia l  was presented. When Alpha 

a c t i v i t y  was completely absent,  v i r t u a l l y  no items were reca l l ed ,  and 

t h e r e  were no h e d i a t e  responses. In ~ l h W  words, when t h e  sub jec t  was 

c l e a r l y  deeply asleep, no learning occurred* 

The second study (Ehmons and Simon, 19561, was performed t o  t e s t  

t h e  e f f e c t  of r e p e t i t i v e  st imulat ion.  A l is t  of 1 0  one-syllable nouns 

was presented repeatedly, but  only when t h e  mG showed an absence of 

u p h a  a c t i v i t y .  There was no evidence i n  a r e c a l l  test  t h a t  the  

sub jec t s  had learned the  nOVnS during slee7- 



( i i )  Conditioned response8 . 
More recently, Beh and Barratt  (1965) reported a s e r i e s  of 

experiments indicat ing t h a t  a c lass ica l ly  conditioned discrimination, 

elaborated during wakefulness, i s  retained during medium l eve l  

(stage C) sleep. They a l so  report  t ha t  they #ere able  t o  establish 

the discrimination during stage C sleep. In t he  first experiment, 

random presentations of both a 500 and a 300 cps. tone were made u n t i l  

they no longer produced blocking of the  on-going Alpha ac t iv i ty .  

After this habituation session, the experimental group received 

presentations of the  500 cps. tone paired with painful shock t o  the  

f inger .  Presentations of the  300 cps. tone were a l s o  made, but were 

never paired with shock. The control  group simp& received 

presentations of both tones without an. shocks Analysis of the data 

revealed t h a t  the experimental subjects  showed s ignif  icant1,y mare 

conditioned Alpha blocking t o  the 500 CPs* tone than the  Control group. 

I n  subsequent tests during s leep the  c r i t e r ion  f o r  a conditioned 

response wae a co r t i ca l  arousal response (K-com~lex) k i n g  stage C 

sleep, the experimental group again showed more conditioned dis-  

criminative responses than the  control group. Beh and Barrett  

concluded fia t h b  t h a t  the  subjects were d i f f e r m t i a l l y  responsive 

during s leep  t o  a stiarulus whose signFficance had been % u i l t  i n n  by 

the conditioning procedure. 

m e  next exprimant by Beh and demonstrated t h a t  it was 

possible t o  es tab l i sh  a conditioned c o r t i c a l  ~ r o u s a l  response dU"ing 

sleep. This time the  CI#s. tone paired during s l eep  v i t h  the 

*hock (the US fo r  the e l i c i t a t i on  of t he  :~-comple..x) foL* t h e  

experimental subjects, while the control  Qoup again mceived both 



tones unpaired with shock. h c e  again, the experimental group showed 

more conditioned responses than the control group. It should be 

noted tha t  in the l a t t e r  experiment the subjects were administered a 

dose of Chloral Hydrate (0.6 gm.) to  help induce sleep. 

From Beh and Barratt 's data, then, it would seem tha t  a 

c b s s i c a l l y  conditioned discriminatory response can be retained and 

established a t  least during medium levels  of sleep. However, as t h e  

authors point out, we cannot conclude frm t h i s  data  t h a t  similar 

re su l t s  would be found i f  the  s t h ~ l i  were more complex, e.g. ; verbal 

instructions.  

Granda and Harmaack (19611, in an experiment employing operant 

conditioning techniques, a l so  report posit ive r e su l t s  with regard t o  

conditioning during sleep. Five subjects were required t o  learn 2 

switch closing responses. A Sidman avoidance schedule was s e t  up 

under cantsol of the l e f t  hand, The shock-shock in terva l  was 3 sets; 

thus, a subject could avoid a l l  shocks, which were delivered t o  the 

r ight  leg, by responding a t  a rate higher than one response e v e v  3 

seconds. A fixed r a t i o  schedule of n t i m e - ~ ~ t n  periods was programmed 

on the right-hand switch; tha t  is, the subjects could g e t  the 

from the Sidman schedule by making a fixed nmber of right-hand 

responses. Ten s e c o d s  before the end of these "time-outlf periods, 8 

loud bwz;er was sounded next t o  the subject's e a r b  A signal  l ight  

mounted in front  of the subject's head was turned on a f t e r  t en  seconda 

of the buzzer - this l i g h t  Si lWlled the beginning of the  next Siban 

avoidance session. Grande and bnmackts t r e a h w t  of t h e  resu7. t~ ill 

rqr s u p r f  i c i a l .  Thsy c U ~ ,  howver, t h a t  t he  8ubBcts learned t o  

respond appropriately on both the Sidmm Schdule and t h e  ntime-out'f 



schedule "without returning t o  the e lec  troencephalographically defined 

"waking stateft .  The implication i s  tha t  the subjects nei ther  heard 

the "loud buzzerfl nor saw the signal l igh t ,  but, a s  the authors point 

out, t he  bulk of t h e i r  positive data came f r o a n  "l ight" sleep stages. 

It seems qui te  possible, then, tha t  Granda and Harmnackrs subjects were 

more awake than asleep. 

A .  experbent  in which care was taken t o  see tha t  the subjects 

were not awake during the conditioning procedure was performed by 

Weinberg (weinberg, 1966). Subjects received 25$ i f  they were able t o  

close a m u a l l y  operated switch within 15  seconds of the onset of the 

"positive" tone. I f  they f a i l ed  to respond correct ly  within the 1 5  

second l i m i t  they were flpunished" by being awakened by a loud b e l l .  

They a l so  received the 25# reward if they did close the switch 

when the "negativelt tone was presented. 

The EEC; was sampled aperiodically throughout the night, and if 

the subject shcwed stage C, Dy or E ac t iv i ty  (medium through deep sleep) 

he was tested fo r  responsiveness by being presented with f ive  100 vol t ,  

Condenser discharged shocka. These Shocks had been previously tested 

while the subjects were awake, and they were found t o  be suff ic ient ly  

intense t o  e l i c i t  p r i p h e r a l  ~ a s ~ c o n s t r i c t i o n  and t o  be described as 

painful. The conditioning procedure was begun Ff there was no 

vasomotor response and no behavioural or  EX arousal. With t h i s  cautious 

procedure, the subjects received the average, one tone (e i ther  positi.ve 

o r  negative) an hour throughout the  night* To complete the experiment, 

subjects returned t o  the  la'uoratorg 2 t o  4 t h ~  a week for  up ., + 3 

months. 



Three out of f i v e  of the subjects gave clear  indication of 

a gradual acquisit ion of a discriminatory response t o  t h e  2 tones. 

The remaining 2 subjects  seemed t o  make the discrimination from the  

beginning of the  experiment. It seems, then, t h a t  Weinberg, 

admittedly with a l imited number of subjects, has demonstrated the  

poss ib i l i ty  of establishing a conditioned discrimination during 

r e l a t i ve ly  deep s leep.  

We can add a t  t h i s  point t h a t  s tudies  using animal subjects 

confirm t h a t  discriminations learned i n  the wsh- s t a t e  a r e  s t i l l  

evident h t e r n  of select ive EEC desynchronization responses dur1n.g 

sleep. But even here, a s  of course in t he  case of the  human s tudies ,  

d i r ec t  reading8 from the  r e t i cu l a r  area have not been made. uso, 

resu l t s  have been presented i n  terms of de-synchronization o r  the  

e l i c i t a t i o n  of m e  K-complex. Reticular recordFngs would be 

par t icu la r ly  important in t h i s  regard since it is  now known t h a t  t he  

K-complex is e l i c i t e d  in the cortex v i a  the  r e t i c d m  system 

"rather than v i a  the  d i r ec t  specific afferent pthways, as prevfoue1.y 

thought (Brazier, 1968). 

TO su-ze br ief ly;  it would Seem tha t  although them is no 

evidence t o  support the  notion t h a t  complex ps~chologica l  material  

can be learned during sleep, there  is  Same evidence t h a t  subjects  are 

responsive t o  certain "crucialu o r  s iga i f ican t  sounds. The 

signFficance of t he  sound may be r e l a t i v e b  "naturalt1, such as the  

subjec t t s  own name, or it might be b u i l t  in by means of a Classical  

o r  conditioning procedure. Condi~loned d i s c r i r i ~ 2 n a t i ~ : ~ ~  

elaborated during wakefulneSS a r e  retained during sleep. 



Deep sleep and wakefulness may be viewed a s  widely separated 

s t a t e s  so f a r  a s  the organism's responsiveness i s  concerned. Whether 

a a t h i t u s  w i l l  be responded to  will depend on both the subject ts  

leve l  of arousal. and the importace of the s tb 'dus .  In deep sleep, a 

s t a t e  of r e l a t ive ly  complete inattention, the brain might respond 

(even though an overt, motor response i s  absent) only t o  s t imuli  of 

"crucialn importance. In order t o  monitor the responsiveness of 

various cortical and sub-cortical brain areas to these stimuli, sone 

s table  and qualifiable index is needed. The following section presents 

some of the research tha t  has employed the Average Evoked Potential 

(AEP) as such an index. 

C. m e  Average Evoked Potential a s  an Index of Cortical and 
Sub-cortical Resaonsiveness t o  Siwlificant Stimuli miry: 
Different States of Attention. 

( i )  General Arousal. 

Deep sleep has been referred t o  ea r l i e r  as  a a t a t e  of 

relatively complete h a t t  ention. The organism s behavioural 

It is t o  be expected a lso  that the brain's responsiveness, d i rec t ly  



Oswald studies previously mentioned). Particular d i f f i cu l t i e s  a r i se ,  

for  instance, u i th  regard t o  so-called paradodcal sleep, which i s  

characterized by an KEG pattern more similar t o  low amplitude, high 

frequency aroused s t a t e  than to  the  high amplitude, low frequency EEG 

pattern tha t  i s  recorded during deep sleep. During p r a d o d c a l  sleep, 

the brain appears aroused, but other indices, ego ,  lack of responsive- 

ness t o  external st imuli  and the presence of muscle atonia, indicate 

tha t  the organism is deeply asleep. In the studies reported below, 

eg., Huttenlocher, 1960; Winter, 1964; and Shagass and Trusty, 1966, 

the authors t a l k  of the ef fec t  of a decline in general arousal. The 

l eve l  of arousal here i s  defined by changes in the EEG frm "fast" 

a c t i v i t y  t o  low frequency, high voltage, "slow wave" sleep. Respons- 

iveness during paradoxical s leep in thf3se studies i s  t reated a s  a 

separate phenomena. 

The effect  of a decline in general tlarousalN on the AEP has, 

then, a t t rac ted  a cer tain amount of attention. (Allison e t  a l e ,  

1966; Shagass and busty, 1966). For instance, Shagass and Z'I-UB~Y 

(1966) report  resu l t s  concerning visual and s ~ t o s e n s o r y  cerebral 

evoked potentials i n  humans. Briefly, they find changes tha t  include 

a systematic lengthening of latencies a s  sleep progresses t o  deeper 

levels. So f a r  a s  the amplitude of the  i s  concerned they report 

tha t  the initial components a re  enhanced while l a t e r  components are  

decreased. In a similar vein, %r'i% (19651, record- co r t i ca l ly  and 

Subcortically in cats,  reports an i ~ r e a s e d  amplitude of cor t ica l  AEP 

t o  a~:j!.tow stimuli  except during stages of psradox! 2 ~ '  sleey.. 

~ g s h ,  cats,  Hattenlocher (1960) has demonstrated a 



diminution i n  the amplitude of click e l i c i t ed  AEPS, i n  the mesen- 

cephalic re t icu lar  formation during naturally occurring slow-wave 

sleep. Although during the waking s t a t e  the cl ick responses remained 

undiminished for  hundreds of presentations, the re t icu lar  response 

during slow-wave s leep  habituated t o  about 50% of itvs waking s t a t e  

level.  However, if a period of silence intervened between se r i e s  of 

5 t o  10 clicks,  large re t icu lar  responses were again e l ic i ted .  me 

habituation, then, was somewhat reversible, but occurred quite 

rapidly, ice* ; within 5 t o  10 presentations of the clicks.  It should 

be noted, hwever, that  the habituation was never complete even af te r  

hundreds of c l ick presentations. 

Cortical responses t o  the cl icks i n  the same animals were 

c lear ly  present during slm-wave sleep, although there was a decrease 

i n  the l a t e ,  ( l a t e r  than 50 m s .  a f t e r  Stirmlus onset) slow-wave, 

Components of the AEP wavef om. This diminution, a l so  reported by 

Shagass e t  al. (1966), was not evident un t i l  a f t e r  several hundred 

c l ick  presentatione. 

When rec ordjngs were made during 0-called paradoxical s leep 

stages, there was almost complete suppression of the r e t i cu la r  

response. Similarly, there was an absence of the slow-wave component 

in the co r t i ca l  response, although the short latency responses were 

maintained essent ial ly  the same a s  in the awake s t a t e  

Huttenlocher?s report suggests t h a t  there i s  a decreased 

responsiveness of the re t icu lar  system d m b g  sh f -W8~e  sleep, but 

Suppression of response is  never complete except du rhe5  w a a u d c a l  

sleep. Responsiveness Fn the cortex remains essent ial ly  the same, 



except for  the marked diminution of l a t e r ,  slow-wave components of 

the  JUP. As Huttenlocher points out, these l a t e  components probably 

r e f l e c t  a spread of a c t i v i t y  to secondary areas, and therefore, it 

appears that during s leep t h i s  secondary act ivat ion i s  diminished. 

In a s imilar  study, Winter (1964), r e su l t s  indicate  t ha t  t h e  

AEP t o  c l ick  s t imul i  does not decrease a t  a l l  i n  amplitude during 

sleep.  Zf anything, his data appears t o  show a s l i g h t  increase in 

amplitude compared to t h a t  found during the waking s t a t e .  One possible 

reason f o r  t h i s  contradiction of Huttenlocherrs r e su l t s  i s  that Winter 

used a variable interst imulus in te rva l  Specific a l l y  t o  decrease the 

poss ib i l i t y  of habituation. In Winter's StudS., the inter-click interval  

Varied between 0.5 and 6.0 seconds, whereas i n  the h t t en loche r  study, 

it was m i n t a b e d  constant a t  3.2 secs. 

The s t imuli  used in the previously mentioned s tudies  were of no 

par t icular  signFficance t o  t he  subjects, i e ;  they were neut ra l  c l icks .  

Although there  i s  conflict ing evidence concerning the  habituation of 

the r e t i c d a r  response during sleep, it is  c lear  t h a t  habituation i s  no- 

where near cmple te ,  even a f t e r  hundreds of presentations. It can be 

noted a l s o  t h a t  analysis of the changes in the  waveform of t h e  AEP were 

Confined mostly t o  t h e  observations of changes in amplitude alone* 

At t ampt s  were not made to deal with the  configuration of the  waveform 

a s  a whole. 

( i i ) .  Selective Responsiveness* 

AS noted ea r l i e r ,  subjects a r e  30rdhes responsive only to 

s t imuli  of par t icu la r  significance- Although they m y  b~ qu i t e  awake 

in general, it is as though they were as leep so  f a r  a s  cer ta in ,  usually 

habituated o r  non-important , ~ J I u I - ~  a r e  concerned- 



Much recent research investigating AEPs during these s t a t e s  

of what might be termed, "selective responsivenessfl, has been done 

under the  heading of sh i f t s  in attention.  The l a t e r  findings tend t o  

support Hernandez-Peon ts ear ly  paper concerning t h e  e f f ec t s  of visual  

d i s t rac t ion  on the amplitude of auditory evoked potent ia ls  i n  the  

cochlear nucleus of the ca t .  (Hernandez-Peon et. a l .  , 1956). In 

general, it seems t h a t  AEPs a r e  grea tes t  t o  s t imuli  t h a t  a r e  of most 

significance t o  the organism. (Haider, e t .  a l e ,  1964; Carcia-Auatt, 

e t .  a l .  , 1964; Guerro-Figueroa and Heath, 1964; Sat terf  i e ld ,  1965 ; 

Spong, e t .  a l e ,  1965). The Haider e t .  a l .  paper deaervea some special  

a t ten t ion  in t ha t  they recorded AEPs t o  both s ignif icant  and non- 

s ignif icant  stimulj. during d i f fe ren t  phases of a signal detection 

experiment. They used a vigilance 8ituation i n  which t h e  subjects, 

(humans), were required t o  detect  a par t icular  v i sua l  stimulus in a 

se r i e s  of other non-significant flashes. Over the course of the 

experimental session, as general vigilance declined, the  amplitude of 

the  AE& decreased. Hmever, they note fn par t icu la r  t h a t  the  evoked 

potent ia ls  t o  s ignals  t h a t  a subject f a i l ed  to detect  were reduced in 

amplitude i n  comparieon with the AEP t o  the  same SthUlus  when it was 

detected. The differences in the AEPs t o  detected versus missed 

signala were equally evident both e ~ l y  and Late i n  the  vigi lance 

session, thus indicating t h a t  the differences were not due t o  a general 

decline i n  vigilance. 

( i i i )  The AEP and Conditioned Stjmil.i, 

so far, mention has been made of the e f fec t s  P C  r,rcusal and 

a t tan t ion  on AEPs e l i c i t ed  by neutral  and i m p o r k t  st imuli .  The 

t l ~ p o r t a n c e t l  of the  was typical ly  established by instructions 

or, as in a s  case of ~ernandez-Peon's cats ,  a basical ly  n e u t r d  



stimulus was made even l e s s  important by introducing an ' innately '  

distracting stimulus." Another way, hwever, to make a stimulus 

important, as was pointed out above, i s  to  use it as a conditioned or 

discriminative stimulus for some response. 

Typical findings report that a stirmilus which no longer e l i c i t s  a 

high amplitude AEP due to  habituation, w i l l  do so  again i f  i t  i s  made 







t o  the waveform of the  AEP e l i c i t ed  by training stimulus A. Similar]?, 

when the response appropriate t o  stimulus B was e l ic i ted ,  the AEP, t o  

the new stimulus, was l i k e  tha t  originally e l i c i t ed  by stimulus B. 

Such data do, i n  fac t ,  seem t o  indicate that  the 8 t h d i  were trigger- 

ing d i f f e ren t i a l  neural codes. 

Similar r e su l t s  have a lso  been reported in human studies  

where it has been found tha t  an "evokedlf response t o  an expected, but 

deleted, stimulus i s  similar t o  that  e l ic i ted  by the stimulus i t s e l f ,  

( h d s l e y ,  1969; Weinberg, 1969; Sutton e t  a l e ,  1967). In  such studies, 

it i s  a s  though the response was l%mitted" rather than nexternally 

evokedf*. 

For example, i n  the Sutton e t  a l e  Study, 1967, subjects were 

Uncertain as  t o  whether an i n i t i a l  c l ick would be followed by a 

second cl ick which occurred 180 or 580 msec. l a t e r .  The AEP wave- 

forms e l i c i t ed  by the i n i t i a l  click showed a large posit ive deflection 

a t  the point in time where a second s t h l ~ s  could have occurred but 

d id  not. It i s  the  absence of the  second click, or the passage of a 

certain amount of ame, i.e,, 180 or 580 Illsec., t ha t  resolves the un- 

cer ta in ty  of the situation. That is, a f t e r  t he  time i n  which a 

second stimulus might occur has elapsed, the subject larows for 

cer tain tha t  it will not be f o r t h c d g .  Sutton e t  al , ,  argw that  

the large positive deflection ref lec ts  the resolution of uncertainty. 

In that  it i s  not "evokedfi by a S t b d u s  argue t h a t  the 

deflection r e f l ec t s  an endogenous brain Process, t h a t  is  related t o  

the subjectcs reaction or a t t i tude  kwlirds the s t h l l l u s  rather  than 

t o  the physical of the s i tuat ion i t s e l f .  Sutton's 

and fhdings ,  then, consti tute evidence suggesting that  a 



stimulus-specific pattern of neural ac t iv i ty  i s  l a id  down in the 

nervous system during the conditioning process. 

It is important to note that ,  although John ta lks  of 

I1neural readoutw of stored material, the actual  mechanism of 

information storage, e.g., i n  e lec t r ica l  or  bio-chemical terms, i s  

l e f t  open. If we can use the computer analogy again, the printed 

output m y  result from information stored in a var iety of weys. 

E. Factor Analysis as a Method f o r  E v d u a t i n ~  Chan~es 
i n  AEP Waveforms. 

Part of Qe usefulness of John's work derives from his  use 

of more objective, correlational,  technique s t o  measure wavef o m  

Similarity. The correlational measures, such as those reported by 

John e t ,  a1 (1969), have been extended v ia  the application of 

Principal Component Factor Anslytic techniqw s Donchin (l966), for 

instance, used a Principal Component technique t o  analyse AEPs from 

human pycho-pbsical  experiments. And similar techniques were 

employed same of ~ohn ' s  e a r l i e r  conditioning s tudies  (~ohn ,  e t ,  a l e ,  

1964). 

~n & a t i o n  t o  providing an objective index of wavefom 

similarity,  the Factor Arnamic technique allows f o r  an analysis of 

the AEP i n to  separate Ume related components, each of which 

contributes a certain percentage of the variance in the t o t a l  AEP. 

 he AEP can be broken d m  into the  independent components 

t h a t  make up the or iginal  waveform by plott ing "factor scorest1 for  

each of the factors  tha t  accounts for variance in the UP. 

Essentially, the digi t ized AEP i s  treated as a variable. of 

the digi t ized time points or addresses of the AEP is treated as a 



"personn In a factor  analytic study. AEPs collected under dif ferent  

conditions, e.g.; during successive conditioning days a r e  in te r -  

correla ted a s  t h e  first s t ep  i n  the  generation of a matrix of fac tor  

loadings. The s imi la r i ty  of AEP waveforms i s  ref lected i n  the  extent 

t o  which they load on the same factors. Condensation of the  or ig ina l  

data  matrix occurs to t h e  extent t h a t  a small number of factors  a r e  

found t o  account f o r  most of t he  variance in the  or ig ina l  UPS. Each 

time point (flperaonn) of the AEP has a score on each of the extracted 

factors .  If a s  many factors  a s  variables were extracted, the  exact 

shape of the  AEP could be reconstructed by re-combining t h e  factor 

scores of all the factors.  The usefilness of the technique, hanever, 

l i e s  i n  it's condensing power, i n  that  the shape of the AEPs can be re- 

Constructed frm the  scores of a m a l l  number of factors. For instance, 

in t h e  da ta  t o  be reported l a t e r ,  it will be seen t h a t  about 80% of the 

variance in 30 or  4.0 llEP waveforms can be accounted f o r  by a s  feu a s  3 

factors .  of course, a s  noted above, the  idea i s  not s o  much t o  re- 

construct  t he  AEP waveform from the factor scores, but t o  analyse it 

i n t o  a small nmber of camponmts t h a t  account f o r  most of it 's 

variance. 

There are ,  hmever, l imitations the method; such 

limitations show up most obviously when we a r e  dealing with a small 

number of variables,  o r  when it is necessarg to dea l  with the  con- 

figuration of a single,  i solated wavef t ha t  Was gathered under 

conditions t h a t  occur only once in the  qriment 

with fgn a c lear  factor  s t ruc ture  may not emerge. 

In the case of t h e  single ~ v e f o -  ~ e d 0 u s l - Y  mentioned, the  problem 

is t h a t  t he re  a r e  no other waveforms collected under t he  same 



experimental conditions, t o  correla te  with it. It w i l l  tend, 

therefore, t o  appear a s  a specif ic  factor ;  i.e., it will be the only 

variable with a high loading on a par t icular  factor ,  o r  it w i l l  have 

low loadings on a number of factors. In the l a t t e r  case, s ign i f ican t  

features  of the  waveform might be overlooked i f  we do not rever t  t o  

visual  inspection of the AEP. The par t icular  power of the  method, once 

again, e x i s t s  in i t s  a b i l i t y  to d i f fe ren t ia te  between la rge  numbers of 

vi s u l l y  highly similar waveforms. 

The procedure a s  it applies t o  t he  present research w i l l  

become clearer  when the specific r e su l t s  a r e  presented. 

In the  research t o  be reported, evidence w i l l  be presented 

which suggests (1) t ha t  specif ic  cmp0nents of t he  AEP are iden t i f iab le  

a f t e r  a stimulus has been made s ignif icant  v i a  a conditioning procedure, 

and (2) t h a t  t h e  s tored information Can be Veadoutn while the animal 

is asleep. 



11. PROCEDURE 

A. Sublects and A~paratus. 

Subjects were six, male, squirrel  monkeys (Saimiri sciureus ) 

whose weight a t  t he  beginning of t ra ining was between 600-900 grams. 

They were housed in a large colony cage and were maintained on a d i e t  

of Purina Monkey chow, supplemented b fresh f r u i t .  Drinking water 

was f r ee ly  available, but feeding occurred only once a day a f t e r  the 

t ra ining session. 

train* and recording took place i n  a b h i g h  Valley 

monkey chair,  which was housed i n  an d e c t r i c a l l y  shielded, sound 

attenuat- chamber. Amplification was performed by Grass model, 

7P5A wide bank AC EM; amplifiers, and the evoked potentials were 

averaged on the model 1052 LS, 1024 address, FabriTek s ignal  

averager.  he U P  waveforms were displayed on an oscilliscope, 

photographed, and digitized on a T a l l 7  P P e r  tape punch =chine. 

&ok& potentials were e l i c i t ed  by a brief ( ~ p p m h t e l g  

0.10 sec.), 90 db., tone. Freqwncy set t ings of the tone generator 

were e i ther  500 or 1000 cps. A l l  U P S  consisted of the average of 

64 stimulus p-esentations. Stimuli were programmed on standard tape 



through the animal's external auditory canal. Zero for  the ve r t i ca l  

coordinates was a l i n e  1 cm. dorsal t o  the l i n e  through the 

auditory canal. The midline zero reference was the saggi tal  skul l  

suture. (Bnrners and Akert, 1963). With these references, the  

r e t i cu la r  bipolar electrodes were placed 4.0 mm. anterior,  1.5 mm. 

l a t e r a l  ( l e f t  and r ight) ,  and were lawered t o  a depth of 1 m. dorsal 

t o  the ve r t i ca l  zero. Electrodes were a r r ~ e d  in a ? pin Amphenol 

Connector, which was anchored t o  the skul l  with jewellers screws and 

dental  cement. 

~voked p t e n t i a l s  were a l so  recorded from the  surface of bo+,h 

temporal and occ ip i ta l  cortex. Cortical electrode 1 was placed 

approximately 20 mm, posterior, and 5 mm. l a t e ra l .  Cortical electrode 

2 was placed 5 m. mare l a t e r a l  than 1. Lateral placements m r e  t o  

the l e f t ,  thus electrodes 1 and 2 were placed over the l e f t  occipital  

cortex in the visual association area. The teanparal electrode was 

placed mm. l e f t  l a t e ra l ,  and 2 mrn. anterior.  This electrode was 

thus phced towards the posterior portion of the  mid-taporal gyrus, 

Auditory evoked potentials were recorded between electrodes 

2 and 3. Evoked ac t iv i ty  from t h e  visual area was recorded between 

electrodes 1 and 2. 

C . sondit i  oning Procedure. 

(i) Classical Conditioning. 

Monkeys &I, E2, B-3 and Gl were trained, using a 

Classical discriminative procedure. After the monkeys had learned 



In phase I, the monkey was presented with both the  500 and 

1000 cps. tones randomly intermixed with .045 gram Noyes sucrose p e l l e t s  

which were delivered t o  a food cup d i rec t ly  in f ront  of him. Phase 1 

thus consti tuted a "pseudo-conditioning" control  session, i n  which 

reinforcement was never re l iab ly  contingent (or non-contingent ) on 

e i t h e r  tone, (cf, Rescorla, 1967). Stimuli were presented aperiodically 

on separate 25 second V I  schedules. Each t ra in ing  day the monkey received 

64 presentations of each tone plus about 128 pel le ts .  

The s ignal  averager could be programmed t o  record potent ia l  

changes evoked by e i the r  stimulus. AEPS were recorded from both s t imuli  

on every t ra in ing  day. Since recordings were being made from four 

d i f f e r en t  areas simultaneously, there were 256 averager addresses 

avai lable  fo r  each recording channel. Voltages were sampled every 2 msec, 

a f t e r  stimulus onset, The t o t a l  duration of t he  AE:P, therefore,  was 512 

msecs. Each &dress was digi t ized S O  t ha t  every waveform was described 

by 256 data points, 

The number of phase I t ra ining days varied from 3 t o  7 for 

d i f fe ren t  monkeys. 

Phase 11 of t ra in ing  was the conditioning phase i n  which the  

sucrose p u e t  was always delivered 0.5 Set- a f t e r  one of the  tones. 

besen ta t ions  of the other, negative, tone were s t i l l  independently 

programmed along with p s i t i v e  tone presentations. For monkeys and 

E3-3 t he  500 cpa. tone was positive, whereas fo r  J3-2 and C-1 the U)0o 

cps, tone always signalled the a r r iva l  of a pe l le t ,  

AEPe were collected in exactly the Same w q  aa in phase I, 

and the  nmber of phase I1 days varied s~mewhat from monkey t o  monkey. 



Phase I11 consisted of a repe t i t ion  of from 5 t o  7 days of 

Phase I tra ining.  These f i n a l  sessions could be thought of as  

const i tut ing an extinction session. 

In all phases of t ra ining AEPs t o  the  500 and 1000 cps. tone 

were collected first on a l te rna te  days. 

It might be noted tha t  fo r  t he  monkeys t ra ined with the  

c l a s s i ca l  procedure no overt behavioural response i s  recorded. 

Evidence concerning the  establishment of conditioning consists solely  

of changes in the waveform of the UP. The I1conditioned responsem, 

then, i s  purely a brain response. This brain response is  treated 

conceptually a s  though it were the nconditioned responset1 i n  a 

t r ad i t i ona l  c lass ica l  conditioning s i tuat ion.  For example, instead of 

looking fo r  ch-ges i n  r a t e  of sal ivat ion O r  amplitude of CSR, we are  

d i r ec t ly  monitoring co r t i ca l  and subcortical  changes in the  brain  

responsiveness over the course of t ra ining.  Such a procedure, is, 

indeed, extremely useful , part icular ly  in cases where, although there  

i s  reason t o  believe tha t  the  animal has developed a CS-ucs 

association,  overt behavioural evidence i s  ~o'ecluded ; f o r  instance, 

a s  when the animal is  deeply asleep. Direct monitoring of the  brain 's  

response t o  the  CS can be used t o  show evidence of conditioning when 

an overt  r e s p s e  is, f o r  some reason, precluded- 

We might note a l so  tha t  the F ' t i c u l a r  c h s s i c a l  conditioning 

design used &re incorporates good contmls  f o r  such a r t i f a c t s  as  

p ~ e u d ~ - ~ ~ n d i t i o n i n g ,  sensit ization,  and habituation. M e e d ,  few 

studies m p l o m g  a e  AEP a s  an index of conditioning have included 

p e c o n a t i o n i n g  ( ) sessions , discriminative conditioning 



sessions, and ext inct ion sessions i n  a within animal study. 

( i i  ) Operant Conditioning. 

For two monkeys, M-8 and M-9, an operant r a the r  than a 

Class ical  conditioning procedure was used. The discriminative 

stimulus was a 1000 cps., 90 db. tone. Over the course of 4 t o  5 

weeks of d a i l y  sessions, the  monkey learned t o  press a lever  f o r  a 

sucrose p e l l e t  only during tone presentations. Duration of t he  tone, 

csd), was gradually decreased u n t i l  fin- t h e  monkey had t o  press 

within 1.5 seconds of t he  occurrence of a 0.10 sec. tone "blip". The 



f i r s t  s leep t e s t .  I f  he f e l l  asleep readi ly  (vi thin  0.5 t o  1.0 

hours) a f t e r  only 1 nigtrti'~ deprivation, a l l  subsequent s leep  t e s t s  

were made after 1 n igh t f s  deprivation. I f  he d id  not fall asleep 

readi ly ,  he was kept awake a fur ther  night and hencefor&sleep t e s t s  

were made a f t e r  2 night 's  deprivation. 

The EEG was monitored throughout t he  t e s t  session and s t imuli  

were presented only when the record indicated slow-wave sleep. 

Frequent behavioural observations were a l so  made - without disturb- 

ing the monkey. Because of the  infrequency of arousals, the  stimuli 

could be presented on almost the  same schedule a s  during phase I1 

t ra in ing .  

None of t he  monkeys were agi ta ted by the s leep  deprivation 

procedure, p i m s r i l y  because of the Slow r a t e  of ro ta t ion  and the 

fact t ha t  they could see out of the cage and cl ing t o  it easi ly .  

k l i e r  s leep deprivation procedures using a round, opaque drum to 

r o t a t e  the  monkey had been found t o  cause them considerable dis t ress ,  

All monkeys f e l l  asleep readily a f t e r  1 or  2 night  1s 

deprivation. 

Phase I Phase I1 Phase I11 Sleep 
S Randm Conditioning Extinction Deprivation 

B-1 3 8 5 2 

B-2 3 10 7 2 

B-3 3 10 5 1 

C-1 5 18 10 1 



111. RESULTS 

A. Introduction and Summary of f i s t o l o q  

Results a r e  presented primarily i n  t e ~  of fac tor  loadings 

and p lo t s  of t he  f ac to r  scores. Representative AEP waveforms are a l s o  

presented fo r  comparison with the  f ac to r  score plots. Data a r e  

presented separately f o r  each of the  6 monkeys. 

A S-ary of t he  his tological  ve r i f i ca t ion  of the electrode 

placement i s  presented i n  f igure  1. A s  can be seen, the  r i g h t  

re t icular  electrode was grossly misplaced, due t o  electrode be:!:iing 

i n  monkeys M-8 and B-2. For t h e  sake of ~OnsiStency and economy of 

d a t a  presentation only t h e  r e s u l t s  from the l e f t  r e t i c u l a r  s i t e  a r e  

presented. 





Before After After 
Conditioning Conditioning Extinction 

Table 2. Showing t h e  number of stimulus contingent IZG arousals 
t o  t h e  posi t ive  and negative tones during s leep  t e s t s .  

In the  factor  analytic results t o  be reported, the  AEP 

waveform i s  t rea ted  a s  a variable. The 256 d i g i t i e d  time points of 

the  AEP a r e  -logous t o  flpeople" i n  a t n i c a l  factor analysis.  

AEPs fo r  both #e posit ive and negative s t imul i  were collected each 

day throughout the  3 phases of training.  There is, therefore, one 

var iable  (AEP) for  each day, f o r  each stimulus. 



from 2 through 9 of the  Principal  Component f ac to r s  were made t o  

f i n d  a s e t  of f ac to r s  t h a t  could most meaningfully be r e l a t e d  to 

t h e  AEPs (var iables) .  The a c t u a l  f ac to r  loadings from the se lec ted  

r o t a t i o n  appear a s  appendix 11, but day by day changes in the  

loadings on se lec ted  fac to r s  a r e  presented Qaphically.' The load- 

ings f o r  s l e e p t e s t  days a r e  d e a l t  with separately.  By thus  

p l o t t i n g  t h e  f a c t o r  loadings it i s  possible t o  see how, as training 

proceeds, a d i f f e r e n t  fac tor  begins t o  account f o r  successively more 

o r  less variance i n  the variables.  P lots  of t h e  fac to r  scores  - 
reproduce the "shape11 of each fac tor .  These p l o t s  a re  then d;imc+,a 

compared t o  t h e  a c t u a l  AEP waveform. 



C. Detailed R e s u m  

( i )  B-1 

Figures 2 and 3 show samples of the  EEG in the  awake and 

asleep animal, respectively. 

Figure 4 shows the  factor  loadings derived f r m  a ro ta t ion  

of 3 of the pr incipal  camponent factors .  The variables are  the AEPs 

e l i c i t e d  by the posi t ive  and negative stimuli in the r e t i c u l a r  area. 

Together, the  3 fac tors  account fo r  80% of t h e  t o t a l  variance. 

Included i n  the graph are loadings fo r  days 1 through 3 of phase I 

of t ra ining (random presentations of both sf,imuli and u.inforcements ) ; 

days 2, 3 ,  4, 6, 7 and 8 of phase I1 (conditioning), and days 1, 3, 

and 5 of phase I11 (extinction).  

The l eF t  s ide  of the  graph shows how, w e r  t h e  course of 

t ra ining,  the AEPs (var iables)  load progressively higher and higher 

on fac tor  1. The curves f o r  the  posit ive and negative stimuli do not 

separate, and loadings for  the  ext inct ion days a r e  s t i l l  high on 

factor  1. psychologically, t h i s  implies t ha t  over t he  course of t h L  

conditioning days the monkey has not discriminated, a t  least a t  the 

r e t i c u l a r  level ,  between the  two stimuli .  AEPs for  both posi t ive  

and negative tones l a d  on the same factor .  Hmever, if we think of 

fac tor  1 as a l l condi t ionwv factor ,  the successively higher load- 

ings ind ica te  t h a t  same non-discriminative conditioning might have 

taken place. 

The conditioning is  referred to a s  E-discriminative in t h a t  

there i s  evidence t h a t  t h e  monkey had learned a tone-food association,  

but d id  no t  show t h a t  he had discriminated between the  two tone 

st imuli .  









The i n t e r p r e t a t i o n  of f a c t o r  1 as a condit ioning f a c t o r  i s  

complicated by t h e  f a c t  t h a t  e x t i n c t i o n  day AEPs continue t o  l a d  

highly  on it. It could be t h a t  t h e  monkey had no t  extinguished 

within t h e  5 days, o r  it could be  t h a t  f a c t o r  1 i s  not r e l a t e d  to 

t h e  condit ioning process. The decis ion a s  to whether we shou ld  

l a b e l  f a c t o r  1 a "conditioningt' f a c t o r  in t h i s  ins tance  13 aided by 

a comparison with t h e  data  from C-1. The r e s u l t s  f o r  C - l  wil l  be 

presented i n  d e t a i l  l a t e r ,  bu t  we can note  here t h a t  a s i m i l a r  

f a c t o r  was obtained,  and C - l t s  da ta  c l e a r l y  i n d i c a t e  t h a t  even 

discr iminat ive  condit ioning had taken place . 
It can be seen from f igure  5 t h a t  f a c t o r  1 i s  r e l a t e d  t o  t h e  

slow negative de f lec t ion  t h a t  occurs i n  t h e  second half  of t h e  U P .  

The f a c t o r  s c o r e s  p lo t t ed  i n  f igure  5 should be  cornpared with t h e  

represen ta t ive  AEP waveforms i n  f igure  6. It can a l s o  be seen t h a t  

f a c t o r  3 (loadings a r e  graphed in t h e  rigfit p n e l  of f i g u r e  4)  i s  

r e l a t e d  t o  t h e  e a r l y  port ion of t h e  AEP and cons i s t s  e s s e n t i a l l y  cf 

2 r e l a t i v e l y  high amplitude negative peaks t h a t  a r e  probably 

represen ta t ive  of stimulus r e g i s t r a t i o n .  

~t should be noted t h a t  t h e  p l o t s  of t h e  f a c t o r  scores  a r e  

s t r e tched  out i n  t h e  in  comparison with t h e  AEP waveforms. Also, 

they a r e  samewhat moothed i n  t h a t  only every f i f t h  out  of t h e  t o t a l  

256 points  was  p l o t t e d .  

The slow, l a t e  appearing, negative deflection i n  t h e  

r e t i c u l a r  AEps, then, is t e n t a t i v e l y  considered t o  be r e l a t e d  t o  t h e  

F 3,+p3;t, ,n of condiu;-oned :,.C,ic,~ t i o n  of  I.h e . Fi re- 

inforcement. 
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F i ~ a r e  6.  Sinmple reticular ARPs, B-1. R - t k r tdom days; C - Condi.tioning days;  
E - E&t.inction days. 



Data from the  s l e e p  t e s t s  w i l l  now be examined t o  see  if 

there  i s  any evidence t h a t  the  s t imul i  e l i c i t  AEPs with 

c h a r a c t e r i s t i c s  l i k e  those e l i c i t e d  i n  t h e  awake animal. Table 3 

presents  f a c t o r  loadings f o r  each .o f  t h e  AEPs e l i c i t e d  by the  

p o s i t i v e  and negative tones during s leep.  

Factor 

Before cond, 
A 

.33,/&1-.04 045 -037 
I 

Pos i t ive  tone After  cond. 1<81 /,, .27 
, 

*23 02.4 003 

After e x t  , 

Negative tone  Before cond. .96 .03 .OO .03 

Table 3. Factor loadings of t h e  AEPs e l i c i t e d  dur ing the  s l e e p  t e s t ,  
Loadings above .50 a r e  underlined. 

As can be seen from t a b l e  3, t h r e e  of t h e  s l e e p  AEPs load 

most highly on f a c t o r  2, and 2 of them load on f a c t o r  4. The 

remaining s l e e p  AEP, t h a t  e l i c i t e d  by t h e  pos i t ive  tone a f t e r  

c o ~ d i t i o n i n g ,  loads  highly on f a c t o r  1. 

The s h i f t  from a high loading on f a c t o r  2 t o  a high loading 

on f a c t o r  1, out l ined i n  t h e  t a b l e ,  i s  unique t o  t h e  s l e e p t e s t  

a f t e r  condit ioning f o r  t h e  pos i t ive  stimulus. It has been argued 

previously t h a t  the re  i s  no evidence of between t h e  2 

tones, a t  l e a s t  on the  b a s i s  of +,he r e + . i c d a r  recordings,  b u t  here 

we f i n d  t h e  post-conditioning s l e e p  t o  load higtlly on t h e  

"conditioning" f a c t o r  1. It is a s  though t h e r e  was a d iscr iminat ion 



which i s  only  evident  dur ing  s leep .  Such a s u r p r i s i n g  conclusion may 

no t  be so far-fetched, f o r ,  a s  we s h a l l  see ,  the re  i s  evidence f o r  a 

discr iminat ion  a t  t h e  c o r t i c a l  l e v e l .  

Figure 7 shows t h e  AEP loadings  from a 3 f a c t o r  r o t a t i o n  day, 

t h a t  were recorded from the aud i to ry  cor tex .  It is  Clear t h a t  as 

t r a i n i n g  proceeds, f a c t o r  2 begins t o  account  f o r  more of t h e  var imr-e .  

It i s  c l e a r ,  a l s o ,  t h a t  t h e  pos i t ive  and negative curves a r e  separa ted .  

Referr ing t o  figure 8, it can be seen that  f a c t o r  2 i s  charac ter ized  by 

t h e  presence of a slow, negative wave "hump" in t h e  middle of the  wave- 

form. Comparing t h e  f a c t o r  score p l o t s  with r ep resen ta t ive  AEP wave- 

forms in f i g u r e  9, it i s  noted t h a t  t h e  previous ly  mentioned whumplf is 

no t  c l e a r l y  evident  i n  the  waveform of any s i n g l e  AEP. It does, 

however, appear c l e a r l y  a s  a f ac to r .  

It i s  a l s o  evident ,  from t h e  r i g h t  panel of f i g u r e  7, t h a t  

posi t ive-tone AEP loadings f a l l  off  F2 during e x t i n c t i o n  t o  a l e v e l  

s i m i l a r  t o  t h e  loadings of  t h e  tlrandom" day AEPs. 

Table 4 presents  t h e  f a c t o r  loadings  f o r  s l e e p  t e s t  AEPs, The 

c o r t i c a l  AEPs e l i c i t e d  during s l e e p  a f t e r  condit ioning,  from bo th  t h e  

p o s i t i v e  and negative stimuli, load most highly on t h e  same f a c t o r ,  

namely f a c t o r  1. However, these  loadings  of about .70 i n  each case 

ir ldicate t h a t  about 50% of the  variance i n  each of t h e s e  AEPs i s  

accounted f o r  by o the r  f ac to r s .  If it could be shown t h a t  t h i s  

r e s i d u a l  var iance  i s  accounted f o r  by different f a c t o r s  f o r  the  

posit , ive and tones,  we would have same evidence t h a t  a d i s -  

crimination during s l e e p  a f t e r  condit ioning ii. evlcletnt, uJi'ti~h:k;, 

also.  ~t could, then,  admit tedly  tenuously, be argued t h a t  t h e  





Figure 8, Plot,s of f s c t o r  scores for auditory cor tex AEPs, El. 



apparent  r e t i c u l a r  d iscr iminat ion during s l e e p  was produced by 

a cor t i co - re t i cu la r  in te rac t ion .  I n  f a c t ,  i f  we look a t  t h e  r e s u l t s  

from t h e  r o t a t i o n  of 7 fac to r s  (which does not  appreciably change 

t h e  f a c t o r  loadings on conditioning days)  the re  i s  evidence t h a t  

t h e  AEPs from t h e  pos i t ive  and negative s t i m u l i  during s leep a f te r  

condit ioning a r e  composed of d i f f e r e n t  f a c t o r s .  Factor loadings 

frm t h e  7 f a c t o r  r o t a t i o n  so lu t ion  show that the  negative tone AEP 

increases  i t ' s  loading on fac to r  1 s l i g h t l y  t o  .71+ while t h e  pcrsikve 

l o a d h g  drops t o  .54 with the  r e s i d u a l  variance being accounted f o r  

pr imar i ly  by t h e  second and f o ~ t h  f a c t o r s  

Inspect ion of t h e  AEPs in f igure  9 a l s o  shows t h a t  tb 

waveforms of the  AEPs e l i c i t e d  dur- s l e e p  a f t e r  c o n d i t i o n h g ,  

f o r  both t h e  pos i t ive  and negative tones, a r e  d i f f e r e n t  from those 

e l i c i t e d  before conditioning. In  p r t i c u l a r ,  t h e r e  i s  an accent- 

ua t ion of t h e  second, positive/negative de f lec t ion  t h a t  peaks 

p o s i t i v e l y  a t  about 80 msecs. 

lllthough the  point  cannot be pressed s t rongly ,  i f  a t  811, 

the re  i s ,  then, sane evidence t h a t  t h e  pos i t ive  st imulus i s  being 

r e g i s t e r e d  during s l eep ,  both c o r t i c d y  and sub-cor t ica l ly ,  a s  

being d i f f e r e n t  from the  negative S t h u l u s  
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F'if:llr~ 9. Sample audi t r i ry  c o r t e x  AEPs, R-1. R - Random days; C - Condit ioning 
days ; E - I k t i n c t i o n  days. 



Pos i t ive  tone  

Eefore cond. 

After cond. 

After  e x t  . 
Before cond. 

Negative tone  After  cond. 

After  ext.  

Factor  

2 3 

-. 05 s52 

.28 .25 

0 .12 

.09 & 
-.03 .46 

.12 2 

Table 4, Factor  Loadings f o r  C o r t i c a l  AEPs E l i c i t e d  burina 
t h e  Sleep Tests .  (B-1). 

Although recordings were a l s o  made i n  the occipi ta l ,  cor tex ,  

t h e r e  was no evidence of a c l e a r  s t imulus locked evoked a c t i v i t y ,  

except  in t h e  case  of M-9. The o c c i p i t a l  C O ~ ~ X  da ta  is ,  theyefore, 

n o t  included i n  the  analysis .  

(ii) B-2 

-plea of the EEG record f o r  t h e  awake and s l e e p  states are 

shown in f i g u r e s  1 0  and 11 respect ive ly .  fi@Wes 12  and 13 show 

f a c t o r  loadings from the  unrotated Pr inc ipdl  Component s o l u t i o n  

(PC) and f o r  t h e  7 f a c t o r  r o t a t i o n  derived from the r e t i c u l a r  AEPs. 

None of t h e  ro ta t ions  p o v i d e d  a more e a s i l y  h t e r p r e t a b l e  s t r u c t u r e  

than  the  solut ion.  ~ ~ ~ r o x i m a t e l y  90% of t h e  var iance  was accounted 

f o r  by the  7 fac to r s .  IfRandornv days 1-3; condit ioning days 1-10 

(excluding dey 3 ) ,  and ex t inc t ion  days 1, 2, 6 and 7 a r e  repl-esenteci 

t h e  ," . f i r t h e r  d;scussicn r : t h e  f a c t o r  '.oadi?gs ! I  US^ t h 9  ' 
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f a c t o r  r o t a t i o n  so lu t ion ,  al though e s s e n t i a l l y  t h e  same conclrlsjc,ns 

could be drawn from t h e  PC so lu t ion .  The major i ty  of tho U P s  

load  most h ighly  on f a c t o r  1 o r  5, and, a s  can be seen, the re  js 

l i t t l e  evidence of a  cons i s t en t  tendency f o r  the  loading* t o  move 

from one f a c t o r  t o  another  over the  course of t r a in ing .  There 13 

some ind ica t ion  t h a t  f a c t o r  1 i s  a  condit ioning f a c t o r ,  i? b a t  

t h e  "randomlf days have no appreciable  loading on it.  The loadirrgs, 

are, however, q u i t e  var iable  and the pos i t ive  and negative curves 

are no t  c l e a r l y  separated,  p a r t i c u l a r l y  on l a t e r  condit ioning d q  ,,, 

The 2 curves do seem more c l e a r l y  separated in t h e  PC so lu t ion ,  b u t  

t h i s  i s  not  subs tant ia ted  by t h e  r o t a t i o n a l  so lu t ions .  The b e s t  

t h a t  can conservat ive ly  be claimed, then, i s  t h a t  the re  i s  

evidence t h a t  non-discr iminat i~e  condit ioning i s  represented i n  the 

r e t i c u l a r  d a t a .  Factor scores  f o r  t h e  f irst  5 f a c t o r s  are shown iy 

f i g u r e  14.  A s  can be seen by comparing these  shapes wi th  those of 

t h e  sample U P  waveforms i n  f i g u r e  15, the double humped F1 an2 FS 

shapes a r e  charac ter is t ic  of t h e  m a j o d t y  of t h e  condit ioning day 

&Ps. The d i f fe rence  between t h e  2 f a c t o r s  l i e s  in t h e  h t m c y  of 

the  2 negat ive  going humps; both a r e  s l i g h t l y  e a r l i e r  i n  F5. As i s  

evident from the factor loadings,  the re  i s  no c l e a r  i n d i c a t i o n  t h a t  

one o r  other of ~e waveforms i s  more c h a r a c t e r i s t i c  of  t h e  

Stimulus. we might  note, however, t h a t  the  late , slow, negative- 

going de f l ec t ion  i s  of t h a t  sn^n in data the 

Previous monkey, alth9uEh it f a l l s  off about 125 msecs. ~ ~ r l j - .  

~ ~ b l ~  5 shows the  loadings f o r  t h e  r e t i c u l a r  AEPs co l l ec ted  

dur ing t h e  sleep tests. There dm8 not  s e a l  t o  be any i n t e r p r e t a b l e  
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Sleep 
After 



pa t t e rn  t o  t h e  loadings. None of the  d e e p  AEPs has appreciable 

loadings on e i t h e r  F1 o r  F5 fac to r s .  

1 2 3 

Before cond. .00 - .37 

Posi t ive  tone After cond. -04 & -.61 - 
After  ex t .  -. 13 - .68 .O? 

Before cond. .Oh -a 3 

Negative tone After  cond. -.lo & -.29 

After ext .  .22 -.02 .20 

Table 5. Factor Loadings f o r  Ret icular  AEPs 
Sleep Tests  ( ~ 2 ) .  

El ic i t ed  DurLrg t h e  

If, however, we depart  from the  mathematical a n a l y s i s  f o r  :. 

maanent and examine t h e  a c t u a l  Am waveforms t h a t  a r e  shown in 

figure 15, it does look a s  though t h e  AEPs e l i c i t e d  during s leep  

a f t e r  condit ioning a r e  highly s imi la r ,  and d i f f e r e n t  in form fr.m 

those e l i c i t e d  during the other s l e e p  t e s t s .  After conditioning, 

t h e  AEPs have a more pronounced i n i t i a l  negative de f lec t ion ,  and t h e  

subsequent pos i t ive  def lec t ion i s  f l a t t e r  and of longer durat;lon. 

This desc r ip t ion  i s  supported by t h e  a c t u a l  co r re la t ions  amongst the 

6 AEPs which a r e  shown i n  t a b l e  6. The highes t  co r re la t ion ,  .79, 

i s  between t h e  2 after-conditioning wnveforms. Other c o r r e l a t i o n s  

involving t k s e  AEPs a r e  low o r  negative.  There i s ,  then, 39::1e 

evidence from t h e  r e t i c u l a r  d a t a  t h a t  the s t i m u l i  a r e  malysed  

d i f  ferent1.y a f t e r  conditioning. 



Negative Tone 

(1)  ( 2 )  (3  ) 

Before cond. (1) a d -07 

Pos i t ive  tone After  cond. (2) -. 72 2 2  -.38 

After  d. (3) -.47 d! -.38 

Table 6. Showing t h e  Correlat ions Between t h e  Sleep Test 
Re t i cu la r  AEPs E l i c i t e d  b y  t h e  Pos i t ive  and Negative 
Tones ( ~ 2 ) .  

Figure 1 6  shows the  fac to r  loadings from a 7 f a c t o r  rotat!.on 

f o r  t h e  c o r t i c a l  recordings. A s  can be seen, t h e  AEPs load 

progress ively  higher on F1 a s  they f a l l  off F2. The AEP e l i c i t e d  by 

the  p o s i a v e  st imulus on conditioning day 10 i s  an  unexplained 

exception. The high loadings on F1 f a l l  off sys temat ica l ly  over t!lp 

course of e x t i n c t i o n  days, and the  % m d ~ r n ' ~  day loadings are 

neg l ig ib le .  There i s  good evidence, then, (with t h e  exception of 

t h e  abberant  day 1 0  loading)  t h a t  F1 i s  a l fcondit ioningu f a c t o r .  i_ll 

t h a t  t h e  curves f o r  both s t i m u l i  follow t h e  same trend the re  is no 

evidence t h a t  a  discrimination had taken place. 

From t h e  p l o t s  of the  f a c t o r  scores  in figure 17, it, is 
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Figure 17. Plots  of f a c to r  scores f o r  auditory cor tex  AEPs, B.-2. 





So f a r  a s  t h e  s l e e p  t e s t  d a t a  a r e  concerned, both t h e  

pos i t ive  and negative tone LEPs f o r  t h e  s l e e p  test  a f t e r  ccndition- 

ing  load highly, .89 and -84, on f a c t o r  3 .  No other  AEPs have 

even moderate loadings on t h i s  f ac to r .  The configurat ion of F3 i u  

somewhat similar t o  t h a t  of F1, but  t h e  second, negative def lec t ion 

i s  of longer dura t ion and the waveform does not  end with a long, low 

amplitude, negative swing as does Fl. In that n e i t h e r  the  r e t i c u l a r  

d a t a  nor t h e  c o r t i c a l  da ta  g ive  evidence t h a t  t h i s  monkey had m d e  a 

c l e a r  d iscr iminat ion between the  tones, it would seem reasonable t o  

expect t h a t  these  s l e e p  AEPs should load on the same f ac to r .  T h ~ t  

t h e  AEPs from t h e  o the r  s l e e p  t e s t s  do no t  load on the  same f a c t o r ,  

( ~ 3 ) ,  i s  a l s o  cons i s t en t  with t h e  evidence t h a t  a t  l e a s t  some non- 

d iscr iminat ive  condit ioning had taken place. Although t h e  s l e e p  

af ter-condit ioning AEPs do not  load on t h e  r fcondi t ioningf~ f a c h r ,  

they a r e  t r e a t e d  exact ly  a l i k e  in terms of  t h e i r  loadings.  

Although, a s  it was pointed out  above, t h e  f a c t o r  loadings 

of t h e  r e t i c u l a r  s l e e p t e s t  d a t a  were d i f f i c u l t  t o  i n t e r p r e t ,  ~d.sml 

inspection,  and cor re la t iona l  d a t a  suggested t h a t  t h e  W s  for tile 

af ter -condi t ioning,  s l e e p  t e s t  data were d i f f e r e n t  from t h e  otner  

s l e e p t e s t  da ta .  The c o r t i c a l  s l e e p t e s t  d a t a  d i r e c t l y  support the  

notion t h a t  the  s t i m u l i  a r e  being analysed d i f f e r e n t l y  a f t e r  

conditioning. Both t h e  r e t i c u l a r  and t h e  c o r t i c a l  d a t a  s e a  to 

show t h a t ,  even dur ing s leep,  condit ioned s t imul i ,  a s  compared t o  

n e u t r a l  s t imul i ,  a r e  analysed o r  encoded d i f f e r e n t l y .  m e  two 

s t b , u l i  a r e ,  however, not t r e a t e d  d i f f e r e n t i a l l y .  



( i i i )  B-3 

Samples of the  EEG from t h e  awake and a s l e e p  s t a t e s  are 

shown i n  f igures  1 9  and 20. 

So f a r  a s  evidence f o r  condit ioning goes, the  r e s u l t s  from E-3 art? 

disappointing.  Referring first t o  t h e  AEPs col lec ted  from the  

audi tory  cortex,  samples of which appear i n  f i g u r e  21, it  seems 

t h a t  t h e r e  is  l i t t l e  evidence of any systematic, stimulus-locked 

a c t i v i t y .  The AEP waveforms do not  have c l e a r l y  i d e n t i f i a b l e  peaks. 

Factor ana lys i s  of the  data  d id  not  produce an i n t e r p r e t a b l e  fac to r  

s t r u c t u r e  in t h a t  the  AEPs did  not  load un-ambiguously on any 

f a c t a r s .  The reason for  t h e  l ack  of any c l e a r l y  evoked a c t i v i t y  i s  

not  h e d i a t e l y  apparent.  The aud i to ry  e lec t rode  was not  misplaced, 

and the  on-going E X  records show t h a t  apparently normal a c t i v i t y  

was being picked up. It is c l e a r ,  however, t h a t  we cannot make use 

of t h e  c o r t i c a l  da ta .  

Typical evoked a c t i v i t y  was recorded from t h e  r e t i c u l a r  sl+,e 

as can be seen in the  sample records in f igure  22. Figure 33 shows 

the  AEP loadings on t h e  f irst  2 f a c t o r s  from a 7 f a c t o r  rotat,lon. 

flRandomn days 1 t o  3, conditioning days 1 through 10, and ext inct ion 

days 1 through 5 a r e  included. Only an occasional  AEP, fror:, the  

ttrandomft and ex t inc t ion  day records,  had appreciable () -70) 

loadings in f a c t o r s  o ther  than F l  o r  F'2. It i s  apparent  a l s o  t h a t  

loadings i n  general  tend t o  be s p l i t  between t h e  two f a c t o r s .  M o ~ t  

of t h e  co~ ld i t ion ing  l a y  AEPs f o r  both p o s i t i v e  and negative s(;i.nu; . 

have a moderate loading on both fac to r s .  There is,  however, a  
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Figure 21. Sample aud i to ry  c o r t e x  AEPs, l3--3; R - Random days; C - Conditioning 
days; E - Extinction days. 



Figure 22. Sample r e t i cu la r  AEPs, B-3. R - Random d a y s ;  C - Conditioning 
d a y s ;  E - Extinction days. 



-- 

at. 

tendency f o r  t h e  AEPs t o  load progressively more highly on F1 over 

t h e  course of condit ioning days. In te rp re ta t ion  of Fl a s  even a non- 

d iscr iminat ive  f a c t o r  i s ,  however, complicated by t h e  f a c t  t h a t  t h e  

AEP f o r  "randomtf day 3,  f o r  both p o s i t i v e  and negative s t i m u l i  a r e  

highly loaded on F1 (7.82 and .%). Loadings on FI during 

ex t inc t ion  days do, however, gradually f a l l  off ,  p a r t i c u l a r l y  f o r  

positive-tone AEPs. The r i g h t  panel of f igure  23 shows t h e  l a d i n g s  

on f a c t o r  2. Here, t h e  separat ion of "randomH from condit ioning days 

i s  more c lea r ,  b u t t h e  shift t o  F2 i s  not  acquired gradual ly  over days. 

Comparison of  t h e  sample IL";P wmeforms i n  f igure  22, with t h e  p l o t s  of 

f a c t o r  scores  i n  figure 24, shows t h a t  both F1 and F2 shapes a r e  

represented i n  t h e  p o s i t i v e  and negative tone records. The p r b e  

d i f fe rence  between t h e  two shapes appears t o  be the  d i r e c t i o n  of the  

l a t e ,  slow wave def lec t ion  t h a t  begins 130 msec. a f t e r  t h e  s t imulus .  

For fac to r  1, t h i s  de f lec t ion  i s  negative, b u t  pos i t ive  f o r  F2. We 

might r e c a l l  t h a t  f o r  El, t h e  f a c t o r  defined a s  a c o n d i t i o r ~ i n ~  

fac to r ,  a l s o  possessed such a slow, negative de f lec t ion .  It may be, 

then,  t h a t  F1 i s  t o  some extent  a condit ioning f a c t o r ,  and 

with more condit ioning days f o r  B-3, it would have appeared c l e a r l y  a s  

such. The conclusion from t h e  data  i s ,  however, tha t  t h e r e  i s  no 

s u b s t a n t i a l  evidence t h a t  conditioning, as r e f l e c t e d  i n  t h e  AEPs, had 

occurred in &3. We should expect ,  then, t h a t  t h e  AEPs co l l ec ted  

during s l e e p  should a l l  load highly On t h e  Same f a c t o r s .  That they 

do i s  c l e a r  from t a b l e  7, which shows t h e  loadings on t h e  first 2 

f a c t o r s .  
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Figure 24, Plots of factor  scores f o r  reticular AEPs, B-3, 



Factor 

1 2 

Before cond. - *  -.09 

Pos i t ive  tone After cond. .32 

After  e x t .  - .81 .32 

Before cond. -&* .02 

Negative tone After cond. & .18 

After ex t .  ,90 17 

Table 7. Factor  Loadings f o r  Re t i cu la r  m P s  E l i c i t e d  
During t h e  Sleep Tests  . ( B-3 ). 
(* See Footnote 1 concerning t h e  high negative 

loadings ) . 

( i v )  C-1. 

Samples from t h e  awake and a s l e e p  EEG records  a r e  shown i n  

f i g u r e s  25 and 26. The loadings of t h e  r e t i c u l a r  AEPs on t h e  f irst  

2 f a c t o r s  from a 7 f a c t o r  r o t a t i o n  a r e  shown i n  f i g u r e  27. Shown in 

t h e  f i g u r e  a r e  Mrandomu days 1,2,3,5, and 6; condit ioning days 3 

through 18, and ex t inc t ion  days 1 t h m g h  6, and day 10. The 

pos i t ive  and negative stimulus AEPs load moderately on F1 during 

9-andom" days, b u t  throughout t h e  condit ioning days the p o s i t i v e  

tone  AEPs load very h ighly  on F1, while t h e  negative tone loadings  

drop off and begin t o  load on F2 a f t e r  condit ioning day 6. It can be 

noted a l s o  t h a t  on ex t inc t ion  days 3 and 5, t h e  pos i t ive  tone  AEPs 

again load very h ighly  on Fl; t h i s  might be a r e s u l t  of "spontaneous-- 

recoveryw of t h e  condit ioning e f f e c t .  
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Figure 27. Factor  1-oadings f o r  r e t i c u l a r  U P S ,  C-1. R- Randon days; 

L C - Conditioninc days; E - Ekt inc t ion  days, 



The shape of these factors can be seen i n  t h e  p lo t s  presented i n  

f igure  28, F l y  the conditioning fac tor ,  i s  characterized by an 

i n i t i a l  posit ive deflection followed by a r e l a t i ve ly  low amplitude, 

negative/positive, hump which i s  followed by a long, slow, 

r e l a t i ve ly  high amplitude negative deflection.  A s  can be seen from 

a comparison with the  Smple AEPs h figure 29 (complete day by day 

tracings of the AEPs appear in Appendix I), t h i s  fac tor  characterizes 

the conditioning A P s ,  p a r t i c u h r l y  from the posi t ive  tone. AEPs 

e l i c i t e d  by both t h e  posit ive and negative tones during conditioning 

a re  visual ly  qu i te  similar,  but the  f i r s t  negative/positive " h u ~ l l ,  

and the  slow neeative def lect ion a r e  more pronounced, l a t e  i n  

conditioning, i n  the  records of the  posit ive AEPs. Factor 2 seems 

most charac te r i s t ic  of negative tone e l i c i t e d  during t h e  

extinction days. We sha l l  see a l so  tha t  the records e l i c i t e d  dur ing 

s leep  a l so  load highly on factor  2- 

On the basis  of the Systematic Shi f t s  i n  the loadings on the 

fac tors  t h a t  underlie the  AEPs, Gl evidently has d i s c r k i n a t e d  

between t h e  two stimuli .  

Factor loadings f o r  the r e t i cu l a r  AEPs e l i c i t e d  during the  

s leep  t e s t s  are  presented i n  t ab l e  8 .  A s  is evident from the table ,  

the  s leep AEPs load most highly on factor  2. Such a pattern of 

loadings would indicate  t ha t  the AEPs t o  the  s t imul i  during sleep 

a f t e r  conditioning a r e  similar, and not d i f fe ren t  from those 

e l i c i t e d  during the other sleep t e s t s -  Character is t ic  of the  s leep 

waveforms i s  t h e  absence of the ear iy  n%s~ive /pos i t ive  ilhmplt t h a t  

appears i n  t he  conditioning records. Considering once again a 

v i sua l  analysis of the AEP waveforms shown i n  figure 29, it appears 



Figure 28. Plots of factor  scores f o r  r e t i c u l a r  AEPs, C-1, 
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Figure 29. Sample r e t i c u l a r  AEPs, C-1. R - Random da3.s; C - Condit ioning 
~ A V S :  E - & t i n c t i o n  dass .  



t h a t  the  posit ive AEP e l i c i t e d  i n  s leep  a f t e r  conditioning i s  

somewhat d i f f e r en t  from the others. Only in this one record is  

there  a small peak which appears about 125 msec. a f t e r  stimulus 

onset superimposed on the  ascending portion of the  slow, negative 

deflection.  The peak of this slow deflection is l a t e r  and grea te r  

Factor 

1 2 

Before cond. .24 .80 - 
Posit ive tone After cond. .23 La 

After ext  . .66 - - .61 

Before cond. .33 a2 
Negative tone After cond. .27 2% 

Table 8. Factor Loadings of Reticular A . h ,  El ic i ted  During 
the  Sleep Tests (C-1). 

-- 

in  amplitude than i n  all the other d e e p  records. Examination of the 

matrix of inter-correlations of the  AEPs showed tha t  this record i s  

highly correlated with the posit ive tone records e l i c i t e d  during t h e  

other s leep  t e s t s  - t h i s  does indicate  overal l  similarity of the  

waveforms. The problem with t he  analysis  of t h i s  p r t i c u l a r  AEp 

points out one of the drawbacks of the  factor  analysis  technique. 

Here we a r e  concerned with one isolated variable which in  gross 

respects i s  similar t o  many other vmiab1c?3. It - i s  highly correlated 

with other variables,  and, acco rd ing l~ ,  it loads on the same factor .  

However, were there more variables t h a t  it was even more highly correlated 

with, another fac tor  could be extracted.  On the other hand, we have seen 



al ready,  i n  t h e  conditioning, data,  t h a t  t h e  fac to r ing  technique has 

high discr iminat ing power i n  t h a t  it enabled the  separa t ion of a s e t  

of highly similar AEPs i n t o  separa te  fac tors .  I n  t h i s  case,  the re  

were enough records t o  allow t h e  production of t h e  two d i f fe ren t  

fac tors .  

Tentat ively,  then, it i s  argued t h a t  t h e  r e t i c u l a r  AEP 

e l i c i t e d  by t h e  pos i t ive  tone during Sleep a f t e r  conditioning, i s  

s u f f i c i e n t l y  d i f f e r e n t  from other  s l e e p  records t o  al low us t o  

conclude t h a t  t h e  r e t i c u l a .  a rea  is  t h e  p o s i t i v e  

st imulus a s  being d i f f e r e n t  from t h e  negative. 

The loadings of t h e  c o r t i c a l  AEPs on t h e  f i r s t  2 fac to r8  of 

a 7 f a c t o r  r o t a t i o n  are presented in f igure  3G. Uthough t h e  

loadings across  t r a i n i n g  days a r e  more va r iab le  than f o r  t h e  

r e t i c u l a r  data ,  F1 does seem t o  em!r@as a rrconditioningrt fac tor ,  

Ext inct ion day loadings remain high i n  my but f a l l s  off 

p rec ip i tous ly  on t h e  f i n a l  session.  The shape of t h e  f a c t o r s  13 

shown i n  f igure  31 and may be cornpard with t h e  sample AEP waveform. 

i n  f i g u r e  32. The major f ea tu re  of F1 is a high amplitude pos i t ive /  

negative de f lec t ion  t h a t  r e tu rns  t o  a l i t t l e  above basel ine  a t  

approximately 140 msecs. The remainder of the waveform c o n s i s t s  of 

a very shallow, slow, positive/negative deflect ion.  The configurat- 

i o n  of F2 is basica l ly  s imi la r ,  but the  major p0si t ive/negative peak 

5 s  l e s s  ponounced,  The arcending, neyativ? \ icnfcct ion ree,:hes i t 3  

peak e a r l i e r ,  a t  125 msecs. The fallowing, slow pos i t ive  de f lec t ion  

i s  steeper and more than i n  f a c t o r  1, Factor 1 character- 
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L F i m r e  30. Factor loadings f o r  audi t lory c o r t e x  AEPs, C-1. R - Random days: " .  

C - Condit ioning days; - Extinct, ion days. 
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Figure 31, p l o t s  of fac to r  scores f o r  c o r t i c a l  AEPs, C-1, 
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i z e s  the  l a t e  conditioning AEPs f o r  t h e  pos i t ive  tone, while F3, 

character izes  t h e  e a r l y  pos i t ive  AEPs and t h e  l a t e r  negative AEPs. 

Once again, a s  f o r  t h e  r e t i c u l a r  data ,  the  fac tor ing technique has 

discriminated the s l i g h t  d i f f e r a c e s  underlying v i s u a l l y  s imi la r  

AEP wavef o m s  . 
Reference t o  the sample AEPs in figure 32 shows t h a t  t h e  

mlplitude of the AZPs was much diminished during a l l  of the s l e e p  

records. Table 9 (see under t a b l e  81, shows t h e  unsystematic, and 

r e l a t i v e l y  ambiguous nature of t h e  f a c t o r  loadings f o r  t h e  c o r t i c a l  

AEPs e l i c i t e d  during the  s l eep  t e s t s .  The s t a t e  of t h e  da ta  here 

does not  seem t o  allow even speculat ive i n t e r p r e t a t i o n  concerning 

how the  c o r t e x  i s  responding t o  t h e  2 s t i m u l i  during sleep. 

Fact o r  

Before cond. 

Pos i t ive  tone After  cond. 

After ext .  

Before c a d .  

Negative tone After cond. 

After ex t .  



recovered on subsequent days. Such a decrease i n  amplitude was not  

observed i n  t h e  o the r  monkeys, nor was it evident  i n  t h e  r e t i c u l a r  

recordings. The decrease is  thought t o  be r e l a t e d  t o  t h e  f a c t  t h a t  

C-l developed an in fec t ion  t h a t  pmduced suppuration around the  

e lec t rode  cap a t  precise ly  this s tage  of t r a in ing .  Administration of 

a n t i b i o t i c s  cleared up the  suppuration almost immediately. If t h e  

suppuration had seeped under the s k u l l  around t h e  e lec t rode s i t e ,  tk 

increased r e s i s t a n c e  could have accounted f o r  the  temporary decrease 

in AEP amplitude. 

(v )  M-8. 

We turn  now t o  t h e  da ta  from t h e  operantly tza ined animals, 

M-8 and M-9. 

AS described Fn the  procedure sec t ion ,  these  monkeys were 

t r a i n e d  t o  r ~ k e  a l e v e r  press within 1.5 seconds of the  tone s i q d .  

They could obtain a maximum of 64 reinforcements if they  p c s s e d  

within t h e  time limit. They both learned t h i s  go, no-go response 

almost pe r fec t ly ,  without making more than a few e x t r a  responses. 

The AEPs from various t r a i n i n g  and ex t inc t ion  days, and f o r  

the  s l e e p  t e s t s  a f t e r  t r a i n i n g  and a f t e r  ext inct ion a r e  shown in 

f i g u r e s  33A and 33B. (Examples of the awake and a s l e e p  EM; are 

presented in f i g u r e s  34 and 35- 

A s  t h e  monkey l ea rns  t o  perform t h e  t a sk  without ex t ra  

presses,  t h e  r e t i c u l a r  AEP developrj 2 h i& amplitude negative/  

pos i t ive  paks ,  ~ ~ c h  of  which has a m a l l  p.;it , ive,/nezative lfjogv 

superimposed a t  t h e  top. The second major peak seems t o  be s l i g h t l y  

lower in amplitude. 
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Factor l a d i n g s  from a  5 f a c t o r  r o t a t i o n  a r e  shown in 

t a b l e  10. Days 3 through 6 load highly on f a c t o r  1, t h e  shape of 

which i s  shown in f igure  36. ( I n  conlpring t h e  f a c t o r  shapes with 

the  AEP waveforms, it should be noted t h a t  t h e  f a c t o r s  are Stretched 

out  i n  time, r e l a t i v e  t o  the  UPS) .  The day 6 waveform, which seems 

t o  have the  major peaks displaced a few msecs. t o  t h e  r i g h t ,  was 

recorded a f t e r  the  monkey had been re-trained a f t e r  some ex t inc t ion  

sess ions .  The s i m i l a r i t y  of t h i s  AEP t o  the  o t h e r  "trained11 AEPs 

a t t e s t s  t o  t h e  r e l i a b i l i t y  of t h e  records. Also evident  i n  t h e  

" t ra ined"  AEP waveform i s  a  slow, s h a U . 0 ~  negative de f l ec t ion .  Two 

separa te  ex t inc t ion  f a c t o r s  appear i n  the  da ta .  Ext inc t ion  days 3 

and 4 load h i g N y  on f a c t o r  2. It w i l l  be noted t h a t  ex t inc t ion  on 

these  days was almost complete; in f a c t ,  no responses a t  a n  were 

made on day 4. During the  f i rs t  2 ex t inc t ion  days the  monkey pressed. 

t h e  l e v e r  indiscriminately. This genera l ly  a g i t a t e d  s t a t e  produced 

. . much lfnoiseff i n  the  AEP records. This noise  i s  r e f l e c t e d  

f a c t o r  4, on which ext inc t ion  day 2 i s  highly  loaded. 

Factor 

1 2  3 4 

Training day 1 - .59 .12 -.13. .33 
2  .12 .lo .03 .17 
3 .82 .11 .13 .29 

4 & .05 .26 -,of+ 
5 -.26 .11 -13 

6 & .04 -20 -.05 

7 .72 -39 -.08 -.05 

1 ,js .18 -.37 .04 

2  .09 -.lo .02 

3 .36 & -.09 -.19 

4 - e l 3  & -.02 .04 

Sleep a f t e r  t r a i n i n g  3 -& -.U 
II  N ex t inc t ion  -.I5 .I3 - .OO 



I I I 

5 00 msec. 

F i ~ e  36.  Plo t s  of fac to r  scores f o r  r e t i c u l a r  AEPs, M-8, 



The AEP from the  s l e e p  t e s t  a f t e r  conditioning has 

moderate and low loadings on fac to r s  1, 2, 3,  and 5. The AEP, 

although d i f f i c u l t  t o  c lass i fy ,  does seem t o  have a slow, negative 

de f lec t ion  towards the  end, which d g h t  account f o r  i t s  moderate 

loading on F1. However, t r a in ing  day 1, i n  which t h e  monkey made 

many e x t r a  responses a l s o  has a noderate loading on ~ 1 .  

The AEP recorded during Sleep a f t e r  complete ext inct ion,  is 

the only va r iab le  with a high loading on f a c t o r  3. ( I n  comparine 

t h e  AEP with t h e  fac to r  shape i n  t h i s  case, t h e  fac to r  should be 

"reflected",  i .e. ,  turned up-side dobm. ) That t h e  2 s l e e p  AEPs 

ext inct ion.  

Cor t i ca l  recordings from M-8 a r e  q u i t e  disappointing (most 

changes i n  l e v e l  of t r a in ing .  



1 2  

Training day 1 -.02 -.lo 
2 -.20 -.02 

3 .31 003 

1, ..$A .02 

5 .22 .07 

6 ,35 -& 
7 2 -.20 

Factor 
Total 
Resp. 

Reinforced 
Resp. 

m i n c t i o n  day 1 .08 & -.U -,01 -.01 -.I8 -.Oh l!% 10 

2 .17 -033 -035 -& -00 -.29 -.l5 357 37 
3 .31 .28 -2 -05 -004 -.29 -.l5 7 L 
4 a .O7 -.08 -.07 .01 .02 -.11 0 0 

a f t e r  cond. - 1  0 -009 -.01 2 -.oh -.03 

'leap a f t e r  ext,  -04 -007 -.O6 -06 - -88 .16 

(vi) M-9. 

Awake and asleep EXG records a r e  shown in figures 37 and 3% no 
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c h a r a c t e r i s t i c  of t h e  e a r l y  trainine, days, t h e  last 2 ex t inc t ion  days, 

and both the  s l e e p  t e s t  days. The t r a i n i n g  days 7 and 8, where die-  

crimination i s  a t  i t s  bes t ,  load most highly on f a c t o r  2, which most 

c l e a r l y  shows t h e  l a rge ,  nega t ive /~Os i t ive  peak. Training day 4, where 

the re  a r e  s t i l l  many ex t ra  responses, a l s o  loads highly on t h e  same 

f a c t o r .  Other discrepancies i n  the  loadings of t h e  t r a i n i n g  day E P s  

a r e  a l s o  c l e a r l y  evident. For instance,  day 5 r e v e r t s  t o  a moderately 

high loading on F'l, while day 6 loads  very highly, and almost uni~uely, 

on F4. Although a bas ic  waveform patterm f o r  t h e  t r a i n i n g  days is 

evident ,  it s e m s  t h a t  s l i g h t  changes i n  the  l a t ency  of the major 

negative/positive def lec t ion a t  around 130 msecs. a r e  destroying any 

neat  f a c t o r  struc.tture. Contributing the  i n s t a b i l i t y  of the  fac tor  

loadings a l s o  i s  the  presence o r  absence of t h e  l a t e  negative 

de f lec t ion  t h a t  can be seen in t h e  records of days 3, 6, and 7. ~t is 

as though t h e  l a t e  t r a i n i n g  day AEP waveform, though c l e a r l y  d i f ferent  

from t h e  extinct ion and e a r l y  t r a i n i n g  day Pat terns ,  had not  cornplcte* 

s t ab i l i zed .  Had there  been more t r a i n i n g  day U P S  t o  e n t e r  i n t o  the  

analysis,  a  more s t ab le  f a c t o r  s t ruc tu re  s h o d d  have emerged. 



1 2 3 4  5 

Prior  t o  any t r a in ing  .14 -.01 -2 -.01 -.25 

Training day 1 & .08 -.31 .22 

2 111 -a16 -J6 .18 -24 

3 .33 .56 -2.5 .07 

4 4 4  .87 -.I2 21 .03 

5 2 a27 - a 0 7  -14 -.53 

6 .I3 2 0  .07 -.05 

Sleep before cond. -a -.05 -.02 -.12 .06 

Training day 7 -.24 - .80 .32 .25 -02 

8 & -a05 -.09 -.12 

Extinction day 1 .24 .27 .25 .a) .85 

2 a -.36 e32 .07 .16 

3 2 a27 -.30 el6 .18 

Sleep a f t e r  extinction & -.a .01 -.09 -09 

Table 12. Factor Loadings f o r  Reticular  AEPs (b9). 
and Reinforcements are  a h 0  Shown. 

Tot a 1  
Resp. 

39 

99 

u5 

114 

87 

70 

69 

72 

49 

38 

0 

Reinforced 
Resp. 

Total Responses 

A s  noted above, the 2 Sleep t e s t  AEPS load squarely on F1. They 

are c l e a r l y  qu i te  s imilar  t o  each other and di f ferent  from the  "trained" 

W s .  If neural encoding of the s ignal  h a s  taken place, it i s  clearly 

not being read out in the r e t i cu l a r  a rea  durine sleep.  

Cort ical  AEPs are  presented i n  f igure 41. The dominant feature 

is the l a t e ,  high r n p l i b d e ,  negative defl2ction th3 t  A r ~ ~ . -  of :' jllst 

before the  end of the  waveform, t h a t  is present a f t e r  the  a n h l  has 

learned the task. It is  a l so  present i n  reduced form in the  ea r ly  
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Figure /+la Auditory cortex AEPs fo r  various days, M-9. Numbers indicate  

total bar presses and reinforcement fo r  each day. 
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t r a i n i n g  days 3 and 4, where t h e  a n h a 1  is  s t i l l  making many extra  

responses, b u t  earning most of t h e  possible reinforcements. The 

f a c t o r  loadings, from a 5 fac to r  r o t a t i o n  shown i n  t a b l e  13, present a  

perplexing picture.  The AEPs from trainine; days h ,  5 ,  and 6 do load 

highly on Fly whose shape i s  shown in f igure  42, but  d q s  3, 7, and 8, 

which a l s o  show the l a t e ,  high amplitude, negative peak do not  load a t  

a l l  on t h i s  f ac to r .  Other r o t a t i o n s  do not  provide a more s a t i s f a c t o r y  

p ic ture .  The A poss ib le  reason f o r  t h e  lack of a s a t i s f a c t o r y  fac to r  

so lu t ion  might l i e  i n  the f a c t  t h a t  much high frequency a c t i v i t y  i s  

superimposed on the  bas ic  waveform. This % r r o r H  variance would sub- 

s t a n t i a U y  lower t h e  corre la t ions  between t h e  waveforms. Also, a s  was 

pointed out  i n  the  discussion of the  r e t i c u l a r  da ta ,  minor discrepancies 

i n  t h e  l a t e n c i e s  of t h e  major peaks would a l s o  tend t o  a t t e n u a t e  t h e  

c o r r e l a t i o n s  between AEPs with a genera l ly  s i m i l a r  waveform. Perhaps 

even more important i s  the f a c t  t h a t  f o r  M-8 and M-9, we a r e  dealing 

with a l imi ted  number of var iables  from which t o  cons t ruc t  a  f a c t o r  

s t r u c t u r e  . 



1 1 rn 
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1 

Pr io r  t o  any t r a i n i n g  .38 

Training day 1 .O3 

2 0 0 8  

3 .19 

4 Jg 

5 222 

6 A  

Sleep a f t e r  t r a in ing  .I9 

Training day 7 -.I8 

8 .10 

Extinction day 1 -.30 

2 -.I9 

3 .41 

Sleep a f t e r  Extinction .O6 

Table 13. Factor Loadings f o r  Cor t ica l  U P S  

Factor 

3 

-035 

l 05 

l 07 

. O L  

-0u 
-0 0 1  

-.I1 

.O3 

-33 

010 

025 

45 

-*Oh 

-a 
(M-9). 

The AEPs e l i c i t e d  during t h e  s l e e p  t e s t s  do n o t  possess any of 

t h e  major ~ h a ~ a c t e r i s t i c s  of the  t r a i n i n g  day AEPs, and they appear t o  

rese&le  extinction and flpre-trainedff waveforms more than anything else. 

There i s  no v i sua l  evidence t o  lead t o  the conclusion t h a t  the  stimulus 

i s  being treated by t h e  cor tex  more a s  a d i s c r h l i n a t i v e  than a n e u t r a l  

stimulus, and we s h a l l  conclude, a s  We d id  f o r  t h e  r e t i c u l a r  da ta ,  that 

t h e  i s  not  being recognized as s ign i f i can t  during sleep. 
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CONCLUSIONS AND DISCUSSION. 

A conditioning f a c t o r  was t e n t a t i v e l y  i d e n t i f i e d  f o r  monkeys 

El, B2, and C-I.. The shapes of these  fac to r s  may be compared i n  

f i g u r e s  44 and 45. The shape w a s  not  iden t i ca l ,  but  f o r  t h e  

r e t i c u l a r  data,  a l a t e ,  negative def lec t ion was iden t i f i ed  in each. 

It i s  assumed t h a t  t h i s  l a t e  coInp0nent i s  i n d i c a t i v e  of the  monkeys 

conditioned an t i c ipa t ion  of reinforcanent .  The t h r e e  fac to r s  



Figure 44. P l o t s  of f a c t o r  scores  f o r  r e t i c u l a r  ncondit ioninglt  f ac to r s .  
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500 msec 

Figure 45. Plots  of fac to r  scores f o r  c o r t i c a l  %ondit ioningU factors .  



then, some indication t h a t  t he  discrimination occurs f i r s t  a t  t h e  

cortex, but i s  l a t e r  apparent i n  t h e  r e t i cu l a r  area,  a lso.  

Orieinally,  it was thought t h a t  it might be possible t o  show 

t h a t  underlying the  AEPs e l i c i t e d  during s leep a f t e r  conditioning, 

there  was a fac tor  t ha t  could be iden t i f ied  with the "awake" 

conditioning fac tor .  Such was not the  case, except for  B-1. 

However, it has been argued tha t ,  p r t i c u l a r l y  i n  the  r e t i c u l a r  area,  

the  AEPs during s leep a f t e r  condit,ioning were su f f i c i en t ly  d i f fe ren t  

from those e l i c i t e d  in the  other sleep t e s t s  t o  warrant the  

conclusion t h a t  t h e  brain i s  recognizing the  s t imuli  a s  being 

d i f fe ren t  from neutral ,  or  unconditioned st imuli .  There i s  no 

evidence t h a t  a permanently established neural  code i s  being "readoutfl 

during sleep.  A s  noted above, it i s  claimed only t h a t  t he  changes i n  

the  AEPs a r e  indicat ive of the changes in brain s t a t e  tbt w e  

contingent on the conditioning; procedure. 

~n the operantly conditioned monkeys, changes i n  the e a r l i e r  

components of the r e t i cu l a r  ASPS were c l ea r ly  evident a f te r  they had 

learned the task. In the case of M-9, a ch3arl-Y ident i f iab le ,  negative/ 

posit ive peak was a l so  evident in the co r t i ca l  AEPs. It mnight be noted 

here tha t  the changes in the AEP tha t  a r e  considered indicat ive of 

conditioning appear temporally pr ior  i n  the r e t i c u l a r  records. John, 

(1967), has a l s o  reported tha t  components of the  AEP re la ted  t o  

conditioning (operant) seem t o  appear e a r l i e r  i n  t he  r e t i c u l a r ,  

compared t o  t h e  co r t i ca l  records* 

There was no evidence from M-8 or  M-9 t h a t  t he  significance of 

the  stimulus was being recognized e i the r  c o r t i c d l y  o r  i n  t h e  

r e t i c u l a r  a rea  during s leep-  



It i s  i n t e r e s t i n g  t o  note  t h a t  t h r e  is evidence t h a t  t h e  

b ra in  i s  responding, during s l eep ,  t o  t h e  s ign i f i cance  o f  a 

c l a s s i c a l l y  conditioned CS, b u t  n o t  t o  t h e  s ign i f i cance  of t h e  operant  

CS. To specula te  b r i e f l y  concerning t h e  impl ica t ion  of t h i s  d i f f e rence ,  

it might be  noted t h a t  t h e  operant ly  t r a i n e d  monkeys' t a s k  is, in a 

sense, two-fold. He l e a r n s  t h a t  a p a r t i c u l a r  CS i s  a r e l i a b l e  i n d i c j t o r  

t h a t  food i s  ava i l ab le ,  b u t  only i f  he makes a behavioural  response; 

i .e. ,  presses  a l eve r .  Cn r e c e i p t  of t h e  st imulus,  then, t h e  b r a i n  

must a s sess  it f o r  i t ' s  s ign i f i cance  - i s  it t h e  d iscr iminat ive  s t imulus?  

An over t  behavioural response, then,  must then be endt ted  i f  re inforce-  

ment i s  t o  be obtained;  i . e . ,  a  p a r t i c u l a r  behavioural response i s  

llattachedll t o  a  p r t i c u l a r  stimulus. The changes in t h e  AEP waveforms 

t h a t  occur a s  the  monkey l e a r n s  the  go, no-go discrimi.natior1 while he is 

awake a r e  assumed t o  r e f l e c t  the e n t i r e  process of (1) recognizing the  

s t h l u s ,  and (2) prepara t ion  fo r  t h e  emission of  t h e  c o r r e c t  response. 

The form of t h e  m, recorded dur ing s l e e p  a f t e r  t r a i n i n g  wa? 

complete, was v i r t u a l l y  i d e n t i c a l  t o  those recorded dur ing t h e  awake 

s t a t e s  before t r a i n i n g  and a f t e r  e x t i n c t i o n .  During s leep ,  t h e  b ra in  

apparent ly  was no t  responsive enough t o  process the  information 

conveyed by t h e  st imulus and emit  t h e  appropr ia t e  behavioural response. 

The task  of i n t e g r a t i n g  t h e  Stimulus information with t h e  appropr ia te  

response mechanism is ,  perhaps, too  d i f f i c u l t  f o r  the  s leeping brain.  

In t h e  case of the  c l a s s i c a l l y  conditioned monkeys, no 

s p e c i f i c  behavioural response has t o  be a t tached t o  t h e  s t imulus .  

Changes i n  the  AEP waveforms overthe course of c l a s s i c a l  conci t ioning 

days a r e  thought t o  r e f l e c t  t h e  animals1 a n t i c i p a t i o n  of forthcoming re- 



inforcement. The reinforcement here i s  no t  contingent  on h i s  

a t taching an  instrumental  response t o  the  stimulus. It might be  

claimed t h a t ,  in t h i s  case, t h e  bra in  has a simpler  t a s k  t o  perform; 

t h e  stimulus information does not  have t o  be in tegra ted  wi th  a 

p a r t i c u l a r  motor response. The f inding t h a t  t h e  AEPs recorded during 

s l e e p  a f t e r  condit ioning a r e  d i f f e r e n t  from those recorded p r io r  t o  

condit ioning i n d i c a t e s  t h a t  t h e  brain,  during s leep,  i s  s t i l l  r e s p n d -  

ing appropr ia te ly  enough t o  recognize the s igni f icance  of a CS so  long 

a s  t h a t  CS does not c a r r y  information t h a t  r equ i res  the  f u r t h e r  task  of 

producing a spec i f  i c  behavioural response. 

A sec t ion  of the  Introduction r e f e r r e d  t o  t h e  controversy 

concerning t h e  na tu re  of t h e  AEP. Spec i f i ca l ly ,  does t h e  BE;P r e f l e c t  

psychological codes, or  i s  i t  more accura te ly  described a s  an index 

of more general  changes t h a t  occur i n  the  b r a i n  contingent  on changes 

i n  t h e  independent variables? Put another way, do the d i f fe rences  ir! 

AEPs e l i c i t e d  by a 'tmeaningfulH a s  opposed t o  a ttnon-rceaningf'ulm 

stimulus c o n s t i t u t e  t h e  i n f o m t i o n a l  value  of t h e  stimulus, r a t h e r  than 

merely r e f l e c t i n g  a general change i n  t h e  sub jec t ' s  b ra in  a c t i v i t y ?  

The most impressive evidence t h a t  t h e  waveform of the  AEP 

accura te ly  r e f l e c t s  the  way the i n f o m t i o n  value of a s t imulus i s  

s tored comes from the previously mentioned work of John, e t .  a l .  (1969), 

and Sutton e t .  61. (1967). In t h e  former study,  it w a s  demonstrated 

t h a t  an AEP e l i c i t e d  by a new, generalized stimulus was highly s imi la r  

t o  t h a t  e l i c i t e d  by t h e  o r i g i n a l  t r a i n i n g  st imulus only when i t  a l s o  

l ed  t o  t h e  behavioural resaonse a m r o ~ r i a t e  to the o r i a i n a l  t r a in iw,  

stimulus. The same physical  s t imulus cculd e l i c i t  d i f f e r e n t  AEPs, 



depending on which behavioural  response it produced. If it produced 

the  behaviour appropr ia te  t o  s t imulus A, t h e  AEP was the  same a s  t h a t  

e l i c i t e d  by st imulus A,  b u t  i f  it l e d  t o  the  behaviour appropr ia te  to 

stimulus B, t he  AEP was the  same a s  t h a t  e l i c i t e d  by st imulus B. In 

t h a t  the  same physica l  s t imulus can e l i c i t  d i f f e r e n t  UPS ,  John 

concludes t h a t  it i s  t r i g g e r i n g  a neura l  process t h a t  accura te ly  

r e f l e c t s  the  way i n  which st imulus information i s  s to red .  Stimulus A ,  

the  s i g n a l  f o r  response A, is encoded i n  a p a r t i c u l a r  manner t h a t  i s  

r e f l e c t e d  i n  t h e  p a r t i c u l a r  form of t h e  U P  t h a t  it e l i c i t s .  When the  

animal i n t e r p r e t s  a .generalized st imulus as an I1An s t imulus;  i .e. ,  when 

it performs response A, t he  AEP appropr ia te  t o  s t imulus A i s  "readoutf1 

of s torage .  Put another  way, it is because t h e  general ized stimulus 

t r i g g e r s  t h e  s to red  neura l  code f o r  s t imulus A t h a t  response A occurs. 

If it t r i p g e r s  the  pa t t e rn  of  neura l  a c t i v i t y  t h a t  i s  s p e c i f i c  to 

st imulus B, response B w i l l  occur. 

Such f indings ,  then,  c o n s t i t u t e  evidence suggest ing t h a t  a 

r e t r i e v a b l e ,  s t imulus-specif ic ,  pa t t e rn  of neura l  a c t i v i t y  i s  l a i d  

down i n  the  b ra in  during the  condit ioning process. 

Other researchers ;  e.g., Hall and Mark (1967), argue t h a t  t h e  

changes i n  t h e  a P s  during condit ioning r e f l e c t  a genera l  change in 

t h e  nervous system t h a t  i s  not  r e f l e c t i v e  of the  a s soc ia t ive  aspect  of 

condit ioning per  s e .  For ins tance ,  they conclude t h a t  t h e  changes 

v i s i b l e  i n  t h e  AEP during t h e  acqu i s i t ion  of a conditioned emotional 

response r e f l e c t  t h e  animalsf  s t a t e  of f e a r ,  r a t h e r  than t h e  

establishment of t h e  CS-US connection. 



It should be pointed ou t  t h a t  it i s  not  necessary t o  conclude 

t h a t  the  AEP r e f l e c t s  a psychological code, o r  merely indeces general  

changes, i n  an e i t h e r / o r  fashion.  It i s  q u i t e  poss ib le  t h a t  i n  some 

experimental s i t u a t i o n s  t h e  U P  does r e f l e c t  a s t imulus-specif ic  code, 

while i n  o the r s  it monitors more genera l  changes i n  t h e  s t a t e  of t h e  

organism. John's s tudy was s p e c i f i c a l l y  designed t o  see  i f  the  AEP 

can be considered a s  r e f l e c t i v e  of  neura l  codes, and indeed, h i s  da ta  

support t h e  notion. 

The Factor  Analytic technique employed here  d id  e l u c i d a t e  

changes i n  t h e  AEP t h a t  were contingent  on t h e  condit ioning procedure. 

The research  was not ,  however, s p e c i f i c a l l y  designed t o  throw l i g h t  on 

the  s t a t u s  of the  AEP as an i n d i c a t o r  of neura l  codes. For t h e  

purposes of t h i s  work it was s u f f i c i e n t  t o  view the  AEP a s  an  index of 

b r a i n  responsiveness t h a t  i s  s e n s i t i v e  t o  var ious  experimental 

manipulations. 

We might add, a s  a f i n a l  note ,  t h a t  so f a r  a s  t h e  method of 

ana lys i s  is concerned, both s t r eng ths  and weaknesses were noted. The 

d iscr iminat ive  power of t h e  f a c t o r  a n a l y t i c  technique was pointed out  

i n  i t 's  a b i l i t y  t o  r evea l  underlying d i f f e r e n c e s  in v i s u a l l y  highly 

similar waveforrns. Short-comings of t h e  procedure were p a r t i c u l a r l y  

evident  when the re  were few v a r i a b l e s  t o  work with, a s  i n  the  case  of 

M-8 and M-9, and when t h e  concern was wi th  the  a n a l y s i s  of t h e  

c h a r a c t e r i s t i c s  of t h e  waveform of a s ing le ,  i s o l a t e d  AEP. In general ,  

however, it does seem t h a t  mul t iva r i a t e  a n a l y t i c  techniques,  such a s  

the  P r inc ipa l  Component a n a l y s i s  employed here,  can be u s e f u l l y  appl ied  

t o  psycho-physiological da ta .  



v. SUMMARY 

For animals t r a ined  with t h e  d iscr iminat ive  c l a s s i c a l  condit ioning 

technique, t h e  CS+ and CS- were tone b u r s t s  of 500 and 1000 cps. There 

were th ree  phases of t r a in ing .  During phase I both stimuli were presented 

on independent V I  20" schedules. Reinforcement p e l l e t s  ( .Oh5 gm. Noyes 

sucrose ) were a l s o  independently programed. Phase I, which consisted 

of 3-5 d a i l y  sessions,  thus  cons t i tu ted  a "randomu con t ro l  procedure. 

Phase I1 was t h e  condit ioning phase i n  which one of t h e  s t imul i  (CS+) 

always occured .5 scecs. before t h e  d e l i v e r y  of a reinforcement. CS- was 

s t i l l  presented on an independent schedule. The condit ioning phase consisted 

of from 8-18 d a i l y  sessions.  Phase 111, t h e  ex t inc t ion  sessions,  consis ted  

of a r e t u r n  t o  t h e  ttrandomN procedure of phase I. 

h average evoked p o t e n t i a l  (AEP) based on 64 presenta t ions  of  

each of t h e  tone b u r s t s  was co l l ec ted  dur ing each d a i l y  session. The dattq 

consis ted ,  therefore ,  of an AEP e l i c i t e d  by t h e  CS+ and t h e  CS- f o r  each 

t r a i n i n g  day. 

AEPs were co l l ec ted  during n a t u r a l  s l e e p  a f t e r  each phase of 

t r a in ing ,  Animals were deprived of s l e e p  f o r  24 o r  48 hours before each 

s l e e p  t e s t .  The EM; was monitored throughout the  s l e e p  test, and t h e  

stimuli were presented only during slow-wave sleep. 

Resul ts  consis ted  of desc r ip t ions  of changes i n  the  waveforms of  

AEPs recorded from t h e  surface  of t h e  temporal co r tex  and from t h e  l e f t  

mesencephalic r e t i c u l a r  a r e a s  of four  monkeys. 

The AEPs were automatical ly d i g i t i z e d  and a vers ion of t h e  

Pr inc ipa l  Component f a c t o r  a n a l y t i c  technique was used t o  a e t e c t  a spec t s  

of the  AEP t h a t  were c h a r a c t e r i s t i c  of  t h e  var ious  s t ages  of t ra in ing.  



A "Conditioning Factoru was t e n t a t i v e l y  i d e n t i f i e d  f o r  monkeys 

El, E2, and C-1. The condit ioning f a c t o r s ,  f o r  both t h e  r e t i c u l a r  and 

c o r t i c a l  data,  seemed t o  be characterized by a r e l a t i v e l y  l a t e ,  negative 

def lec t ion.  It was suggested t h a t  t h i s  de f lec t ion  was i n d i c a t i v e  of  t h e  

monkey's a n t i c i p a t i o n  of forthcoming reinforcement. It was a l s o  argued 

t h a t ,  p a r t i c u l a r l y  i n  t h e  r e t i c u l a r  area,  t h e  AEPs recorded during s l e e p  

a f t e r  condit ioning were s u f f i c i e n t l y  d i f f e r e n t  from those e l i c i t e d  i n  

t h e  o the r  s l e e p  t e s t s  t o  warrant t h e  conclusion t h a t  t h e  b ra in  was 

recognizing t h e  stimuli a s  being d i f f e r e n t  from neu t ra l ,  o r  unconditioned 

s t i m u l i  even during n a t u r a l  sleep. 

Two animals were t r a ined  i n  a  "go, no-goH discr iminat ion s i t u a t i o n ,  

They were gradually taught  t o  press  a  l e v e r  wi th in  1.5 seconds of a tone 

b u r s t  t o  ge t  a reinforcement. Dramatic changes in the  form of the  AZP 

emerged a s  the  animal became prof ic ien t  a t  the  task.  However, i n  d is -  

agreement with t h e  r e s u l t s  derived from t h e  c l a s s i c a l l y  t r a ined  animals, 

t h e r e  w a s  no evidence t h a t  the  bra in  was responsive t o  t h e  "signif icance" 

of the  st imulus during sleep. 
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A note on ca l ib ra t ion  

The analysis  of the  AEPs was not concerned with amplitude changes, 

however, estimated,uv. equivalences f o r  r e t i c u l a r  and temporal cortex 

AEPs are  shown below f o r  monkeys l3-1, B-2, B-3, and C-1. 

RETICULAR CORTICAL 

The following tab les  ( A - G ) Show the loadings of the  AEPs on ~e 

Varimaxed Pr incipal  Components. 
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EEandom 
Days 

Conditioning 
w s  

LOADINGS ON VARIMAiCED PRINCIPAL COMPC)N!3NTS 

POSITIVE TONE AEPs 

FACTOR 

Sleep Test Before Conditioning -91 
11 18 After n 
n 

73 32 22 -25 -09 -46 12 
n After Extinction $1 32 21 03 -32 -02 02 

Table E ( i ) ,  Loadings of Positive Tone AEPa on Varimaxed Principal 
Components. B -3, Reticular Recordings. 



LOADINGS ON VARIMAXH) PRINCIPAL COMPONEMTS 

NEGATIVE TONE AEPs 

FACTOR 

Random 
Dass 

Conditioning 
Dass 

Extinction 
Days 

Sleep Test Before Conditioning -88 02 -29 4 5  29 -03 4 5  
n n After 11 92 18 16 -02 -17 -15 12 
a After n 90 17 25 05 -11 20 05 

Table ~(ii),Loadings of Negative Tone AEPs on Var-d Pr incipal  
Components. E3, Reticular Recordings. 
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