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ABSTRACT 

I 

This paper is an exposition on the following non-parametric 
w 

mation problem: given a random sample k . I  
3 j=l 

whose corresponding 

distribution function is absolutely continuous, how can one estimate 

the density function fh)? In particular, the techniques suggested by 

E. Parzen, Loftsgaarden and mesenberry, and Schwartz are discussed. 
h 

Pamen (AMS 33) considered estimates of the form fn(x) = 
n x-X - Z ~(2) where K is essentially a probability density 

nh(n) j=l h(n) 
function and h(n) is a sequence of positive numbers converging to 

zero. when x is a point of continuitv of ffx), Parzen has esta- 
h 00 

blished that the sequence of estimates {fn(x) is an asymptotically 

unbiased and consistent (in quadratic mean) estimate of f ( x ) .  Consis- 

tency in mean integrated square error, rates of convergence, and the 

construction of estimators with optimal convergence properties are 

also discussed. (Watson and Leadbetter, AMS 34.)  

Loftsgaarden and Quesenberry (AMS 36) have introduced an estimator 
A k (n) -11 ( 

of the form fn(x) ={- 1 
n 1 where k(n) is a non-decreasing 

2 r  (n) 
sequence of positive inteqers such that k (n) + as n + w, k (n) = o (n) 
and r (XI is the distance from x to the k(nIth closest observa- 

k (n) n 
tion among {xjljZl. At points x where f(x) is positive and 

A 

continuous, they have shown that fn(x) is a consistent estimate of 
A 

f (x) in the sense that fn(x) + f (x) in probability. 

For a density function which is square integrable over the reals, 

Schwartz (AMS 38) has discussed estimators of the form 

A g (n) 
fn(x) - . # x where #. (XI is the -jth Hermite function, 

j;Q Yn 3 
h 

3 
1 a = - Z #,  (Xi) and g (n) is an integer such that g (n) = o (n) . jn n i=l 3 

h 

Conditions on g (n) and f (x) are siven such that fn (x) is a 

consistent estimate of f(x) in the mean integrated square error 

sense and the quadratic mean sense. 

This paper also compares the three methods, indicates applications 

and discusses their generalizations. 
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GLOSSARY OF SYMBOLS 

LDCT 

MISE 

MSE 

r.v. 

R 

L1 (R) 

cumulative distribution function 

density function 

independent and identically distributed 

independent and identically distributed 

random variables 

Lebesque Dominated Converqence Theorem 

mean integrated square error 

mean square error 

random variable 

the set of all real numbers 

the set of all Lebesque measurable real 

valued functions such that f(x)dx exists i 
and is finite 

the set of all Lebesque measurable real 

valued functions such that f (x)dx exists I' 
and is finite 

item n in the Appendix 



CHAPTER 0 - THE INTRODUCTION 
9 

The non-parametric estimation of density functions has received 

an increased amount of attention during the last few years including 

that of several outstanding statisticians such as M. S. Bartlett [ 23, 

E. Parzen [21], M. Rosenblatt [23], and G. S. Watson [32]. Although 

there are several approaches to this particular estimation problem, 

in this paper we shall discuss some of those results which have been 

obtained by Loftsgaarden and Quesenberry ( 17 1 , Parzen [ 21 ] and 

Schwartz [26]. 

In the subsequent sections of the introduction we shall define 

the problem, trace the historical development of techniques of 

density estimation and present the form of the estimators which we 

shall consider. 

0.1 Definition of the problem and basic assumptiohs 

Let X be a r.v. whose distribution function F(x) is 

absolutely continuous over the reals. That is, there is a 

f (t) c L1 (R) such that 

X 

f(t) is called the density function of the r.v. X . 
Let Xl,X2, ..., X be a sequence of independent r.v.'s identica- n 

lly distributed as the r.v. X . We shall consider estimates 



A 

fn(x) of f (x) of the general form 

and assume throughout that we have an absolutely continuous distri- 

bution function. 

0.2 Historical development 

A well known estimate of the density function is the common 

histogram. However, it is dependent on the arbitrary choice of 

class intervals and provides only a step function approximation. 

Continuous approximations of F(x) and f(x) were considered 

by Gram-Charlier and Edgeworth, ([ 73, pp. 221-231) . These estimates 
-a 

are expressed in terms of the normal distribution function and its 

derivatives as well as the central moments of the random variable. 

However, in general, the estimates are unsatisfactory since we must 

assume that the central moments of all orders are finite. In 

addition, for pointwise converqence of the estimates we must assume 

X 
4 

that {exp (T BP(x1 < w, f (n) is of bounded variation on R and 

x is a point of continuity of f(x). 

For density functions not satisfying the assumptions required 

for the Edgeworth series approximation, the first reasonable 

estimates were expressed in terms of estimates of the distribution 

function. For this reason, we shall now consider estimates of the 

c .d . f .  Given a random sample X1,X2, .... X the following 
n 

function is a well known estimate of F (XI, ([6], 3.123) t_-- _ -- .- 

1 for all x E R, Fn(x) = -$number of X. r x where 
3. 

(0.2.1) 

i = l,...,n] 
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Fn(x) enjoys the following properties: 

Lettina E( . ) denote Mathematical Expectation, we have 

E{F~ (X 

That is, Fn(x) 

In addition 

) = F ( x )  fosall x e R  and n = 1 , 2  ,... (0.2.2) 

is an unbiased estimate of F (x) . ([  61, p. 123) . 
to this desirable statistical property, Glivenko- 

Cantelli have established the convergence property 

From (O.1.1), we have that P' (x)=f(x) (a.e.1 and with (0.2.2) 

and (0.2.3) it seems reasonable to consider an estimate of f(x) of 

the form 

In fact, (0.2.4) is the kind of estimator which Rosenblatt, 

[23], first considered. He constructed a more general estimator 

by proceeding as follows: 
00 

Let { K ~  (u) InP1 be a sequence of functions with the properties 

(a) Kn(u)zO for all u E R and n = 1,2,. . . 

(c) for all E :, 0, l im Kn(u)du = 1 
n- I 
I u k ~  

09 

Corresponding to each sequence ( K ~  (u) satisfying (a) , 

(b) and (c) an estimator of  the form 



was proposed. 

We shall now show that Rosenblatt's estimator (0.2.5) is a 

generalization of the sample c.d.f. estimator (0.2.4). Suppose 

that 

where h = h (n) 4 0 as n + " and 'K (u) du = 1. I 
If K(u) is defined by 

1 - if lul<l 2 
K(u) Q ( 

0 otherwise 

Then 

However, notice that by (0.2.7) 

x-X X-X . 
if and only if < I  

if and only if x-h < x < x + h 
j 

Hence, 



L 

Prom ( 0 . 2 . 5 ) ,  estimators with desired properties may be con- 

structed by choosing suitable weighting functions Kn(u). For 
A 

example, if Kn(u) is continuous, then, fn(x) is a continuous 

estimate of f (XI. 

With regard to the statistical properties of ( 0 , 2 . 5 )  , 
n 

If Kn(') is of the form (0.2.6), we have 

If f is also continuous on the reals, it fallows that f is 

bounded and by the Lebesque Dominated Convergence Theorem we can 

show that 

h Cb 
Hence the sequence of estimates { in ( y )  .". is asymptotically 

unbiased. We would like to have 

However, Rosenblatt has established that if a density function 

satisfies relatively mild regularity conditions such as continuity 
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or differentiability then 

"There exists no unbiased estimaies of the density function. " [~l] 

Althouqh Rosenblatt was the first to publish estimates of the 

form (0.2.5) , it was Parzen, [ 211, who presented the most ref erred to 

discussion. It is difficult to ascertain who originally conceived 

this method of density estimation since the method is an application 

of a technique which has been used in Time Series analysis for the 

purpose of estimating the spectral density function. 

We shall conclude the introduction with a brief description 

of the three most popular techniques of density estimation. 

0.3 Techniques for constructins an estimator 

In 1962, Parzen [ 211, considered estimators of f (x) of the 
x - x .  

form X I  = K )  which are a special case of the more 

general classes of estimators defined by Rosenblatt. (0.2.8). 

In 1965, Loftsgaarden and Quesenberry [ 171 , introduced an 

estimator of the form 

h 

fn(x) = (k(n)-ll(* } where k(n) is a non- 
n 2rk(n)(~) 

decreasing sequence of positive integers such that k(n) + 

as n + m, k (n) = 0 (n) and rk (n) (x) is a random distance 

Eunc tion. 

In 1967, Schwartz [26], considered the case of a density 

function which is square integrable over the reals. Assuming 

f (x) E L2 (R)  , we have the representation 

Ob a 

f (x) = a .  x where {fdj (x) j=O is an orthonormal 
j-0 3 Y 

subset of L2 (R) 



and a j  = j d j  b ) f  (xldx. We shall examine an estimator of the form 

q (n) , n 
h h h 

fn (x) = a .  6 .  (x) where a jn = (xi) j=O jn J 

and q (nl is an inteqer dependent on n such that q (n) = o (n) . 



CHAPTER 1 - THE KERNEL METHOD 
1 -  I,. 

51.1 Some Asvm~totic Pro~erties of Kernel Estimates 

In the introduction, we motivated an estimator of the form 

and remarked that (1.1.1) is a generalization of the sample distri- 

bution function estimator. With h(x) expressed as in (1.1.1) we 

are made aware of a multitude of possible estimates of •’(XI. For 

example, 

hfn) = n'* for p>O satisfies the conditions 

h(n) is a sequence of positive constants and 

Also the choice of K(*) is quite arbitrary. With these remarks 

in mind, how should we choose K and h ? The following discussion 

will establish that K should be a Borel measurable function. 

Recall that {xiIiEl is a random sample. Therefore, if we 
x-X 

i n assume that K is a Bore1 function, then { K (-i;-) 1 i=l is a sequence 

of independent random variables identically distributed as a r.v. 

Regarding {in (x) 1 n=l as a sequence of r.v., we shall now consider 
h 

some statistical properties which are desirable for fn(x) to satisfy. 
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Estimators are usually deemed "good" if they satisfy some of the 

following properties: , 

(a) unbfasedness 

(b) minimum variance 

(c) consistency 

(d) efficiency 

(el have a known and tractable distribution. 

In addition to these statistical properties, if we regard 
& 

{fn(x)} as a sequence of functions defined on the reals, we can 

consider modes of convergence of in (x) to f (x) . For example, 
pointwise convergence, convergence in probability and convergence in 

mean. 

If we wish htx) to satisfy some statistical or convergence 

properties, this will force K and h to have properties in addition 

to those stated. However, K and h will still be fairly general. 
A 00 

Conditions on K and h such that {fn (x) - is asymptotically 

unbiased are given in Parzen's Theorem (1.1.3) and its corollary as 

follows : 

Theorem (1.1.3) 

Suppose K(y) is a Bore1 function satisfying 

Let h(n) satisfy (1.1.2). Define gn(x) as - - 



Then a t  everv woint x of continuitv of s ( * ) ,  

Letting 6 > 0 and spl i t t ing  the region of integration into  



where the second integral follows since I y l ~ 6  > 0. 

Thus, 



1 1  s ince  ly l r6  > 0 implies - 
l Y l  

t 

Upon l e t t i n g  n -+ a, and then 6 -t 0 t h e  r e s u l t  follows a s  we now show 

6 
For a f ixed 6 > 0 ,  l e t t i n g  n -t implies h (n )  -t 0 and -+ UJ h (n) 

6 Since l i r n / z ~ ( z ) l =  0 and -+a w e  have suplzK(z)l + 0. 
z+ * h (n) 

f 
Also w e  have I g (y) 1 dy < ~0 I 

1 
Thus f o r  a f ixed 6 > 0,  - s u p l z ~ ( z ) l  Ig(y)1dy -t 0 a s  n - + m  

6 

Again for a f ixed 6 > 0,  

s ince  g i s  continuous a t  x and t h e  ind ica ted  i n t e g r a l  is f i n i t e .  

A s  a spec ia l  case  of theorem (1.1.3) i f  K(y)dy = 1, then a t  f 
every po in t  x of cont inui ty  of g ( * ) ,  l i m  gn(x) = g ( x ) .  Hence, 

woo 

Corollary (1.1.4) 

I F  l i m  h ( n )  = 0 where h (n )  is  a sequence of p o s i t i v e  constants  - - 
n-t 

and K(y) s a t i s f i e s  S U ~ I K ( ~ )  I <  m ,  K(y) Idy < a, , l i r n t y ~ ( ~ )  f = 0 

f 
YER Pa, 

- 
and IK(y)dy = 1 and i f  the  p robab i l i ty  dens i ty  function f ( x )  is 

continuous a t  x,  then 

l i m  ~ ( ? n ( x ) )  = f (x) 
n-t UJ 



Proof 
.iX 

For estimators of the form (1.1 .'l) , w e  have 

For f ixed x, the  transformation z = x-y gives 

Hence by theorem (1.1.3) and the f a c t  t h a t  ~ ( z ) d z  = 1 i' a 
A 

l i m  ~ { f n  (x) ) = f (x) 
n- 

Thus i f  K s a t i s f i e s  the  conditions of the  corol lary ,  and i f  

f (x) i s  continuous a t  x, then estimates of the form (1.1.1) a re  

asymptotically unbiased. 

We s h a l l  c a l l  K a weighting function i f  K is  an even 

function sa t i s fy ing  the  conditions i n  (1.1.4). That is ,  

Definit ion (1.1.6) Kly) is  a weighting function i f  

K(y)dy = 1 and l i rn ly~ (y )  1 = 0 
P" 

The standard normal density function is a weighting function. Other 

weighting functions and t h e i r  Fourier transforms, k ( u ) ,  a r e  displayed 

i n  Table 1. 



TABLE 3 

sin u/u 

sin (u/2) \ u,2 p 
sin tu/4) [ u/4 y 

The following remark about weighting functions will be useful 

in subsequent sections of the chapter. 

s u P ~ ~ ( y ~  I < and J I K ~ ~ I  ldy < implies flKly) 1216dy < (1.1.7) 
Y&R 

for all 6 2 0 .  [ ~ 2 ] .  

We shall now investigate conditions for estimators of the form 

(1.1.1) to be consistent. As a preliminary result we have 

Theorem (1.1.8) 
QO 

rf f(x) is continuous at x and {h(n) - - - is a sequence of 

positive constants such that lim h(n) = 0, then 
I 

I 
fl 



Proof 
A 1 1 x-X From (1.1.1) Var ( fn (x) )  = ; var[@(-@] - 

I 4  x-X 
s ince  {+(+)I a r e  independent r.v. i d e n t i c a l l y  d i s t r i b u t e d  

j=l 

1 x-x as a r.v. -K(-1. h h  

By t h e  d e f i n i t i o n  of V a r  ( ) , w e  have 

and no t i ce  t h a t  gn* s a t i s f i e s  t h e  condi t ions  of theorem (1.1.3). 

Since x is a p o i n t  of cont inui ty  of f ( x ) ,  

lim gn*(x) = f (x) f 2  K (y)dy 

However, 

2 1 x-X 
= gn* (XI-hE {~;x(T) 1 by defn. of  gn* (x) 

= gn* (x) -h~'{;n (x) I s ince  E{ ?n (x) 1 

Hence, 



h 

lirn nh Var(fn(x1) = lirn gn*(x) - lirn h~~{h(x)} 
rr" rr+ao n- 

where the first equality follows since the indicated limits exist 

and are finite. We have the second equality by (1.1.4) and the fact 

that lim h(n) = 0. 
Irww, 

Corollary (1.1.9) 

L e t  h(n) be -- a sequence of positive constants satisfying - 
lirn h(n) = 0 and lirn nh(n) = w. - - Zf f (x) is - continuous at - x, 
w n- 

then - 
lim var (hfn(x) = 0 
m 

Proof - 
A 

var(fn(x)) = nhVar(in(x)) since n,h, nh 
h 

A nh Var(fn(~))~ 
Observe that lim Var (fn (x) ) = lim{ nh 

n- n- 

The result then follows from the hypothesis and theorem (1.1.8). 

As an immediate consequence of corollary (1.1.9) we can state 

conditions under which the estimate h(x) is consistent in 

quadratic mean in the sense that - 

We have 

h 

where b[h (x) ] E  an (x) - f (x) is the bias of fn(x) . - 



Corollary (1.1.12) 

I f  l i r n  h (n) = 0 ,  l i m  nh (n) = Q), , and x is a point  of - 7 

n- IPQ 

continuity of f (x) , then &(x) is  a consis tent  estimate of f (x) - 
i n  quadratic mean. 

Proof - 
From (1.1.11), corol lary  (1.1,9) and corol lary  (1.1.4) 

+ l i r n  [E{in(x)} - f (x )12  
n* 

h 

Recall t h a t  :n+f i n  quadratic mean implies fn+f i n  

probabil i ty.  Therefore, a t  points  of continuity of the  densi ty  

function, estimates of the  form (1.1,l) are  consis tent  estimates 

of f ( x )  i n  the sense t h a t  ?n+f i n  probabil i ty.  

For the  following development, we s h a l l  assume 
A 

(a)  fn(x)  is  of the form (1.1.1) 

(b) K is  a weighting function 

(c) h s a t i s f i e s  l i m  h(n) = 0 and l i m  nh (n) = a. 
n- n- 

Theorem (1.1.13) 

Under assumptions ( a ) ,  (b) and ( c ) ,  i f  x is a point  of 
h 

Q) 

continuity of f (x) , then the sequence of estimates { fn  (x) 

is  asymptotically normal a s  well  a s  consistent .  

Proof - 
h 1 

F i r s t n o t e  fn(x) = -  !V- where V - 1 
n k=l nk 

n 

{"*}bl a r e  independent r.v. iden t ica l ly  d i s t r ibu ted  a s  a r.v. 



A x-X QO 
K -  . Recall that {in (XI 'n=h(n) h (n) - is asymptotically normal 

1 

if and only if 
h A 

for all c E R, lim P[ fn(xf-~{fn(x)) scl = Q(c) 
rr*co o(hfn(x) 

where Q, is the c.d.f. of the standard normal density function. 

From ~ o h e  ( f 163, p. 316) a necessary and sufficient condition that 
h a0 

{fn (XI be asymptotically normal is that 

See [~4]. 

A sufficient condition for (1.1.14) to hold is that 

2+6 
E{ I vn-4 vn3 I 

for some 6 > 0 ,  
6/2,2+6 3 0  as n - + c o  (1.1.15) 

n b n I  

See [A3]. 

We shall show that 

which with (1.1.14) establishes the theorem. 

Let {s (n) I nzl 00 
and k(n)}n=l be two sequences of reals. 

Recall that, we say 

s(n) = s(n) - t (n) if and only if lim - 
IT-' t (n) 

For 6 > 0, we have 
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However, notice that I K(?) 1 2+6 satisfies the hypotheses of 

theorem (1.1.3). 
1 

Therefore at every continuity point x of f, 

because 

and we conclude 

We also have 

which follows from 



h 

However, 

lim nh var[fn (x) 1 
n- f ( X ) ~ K ~  ( y ) d y  

= 1 by theorem (1.1.8) 

That is, 

var[vn1 -. - 
h (1.1.18) 

The following properties of "-" are useful in finishing the proof 

and in the succeeding material dealing with the Berry-Esseen bound. 

(a) u(n) # 0 for all n and s(n) - t (n) implies u(n) s (n) 

uh) t (n) 

(b) s(n) - t(n) implies (s (n) Ir - (t(n) Ir for all real r. 

Since V 
n 5 0, observe that 

NOW by fl.l.l8), (a) and (bl , 

Thereby, by (a) , (c) , (1.1.17) and this equivalence 



\ 

With the assumption nh + as n -+ ", we have 

(nh~~'~ + as n + for 6 > 0. 

E(: (vnl 2+6~ 
lim = 0 
w n  

and this with (1.1.19) gives (1.1.16) and proves the theorem. 

EO 

Having established that the sequence of estimates {;n(x)} n=l 

is asymptotically normal, it is natural to ask "How quickly does the 

approximating expression converge to its limiting form?" Some idea 

of the closeness of the normal approximation can be obtained from 

the Berry-Esseen bound. Following Lo&e ([ 161, p. 288) we have for a 

suitable C in the reals, 

h h 

fn(~)-"fn(~)' s - ((a) I r c  
E{ 1vn1 3~ 

sup IP{ 
aER UE iin (XI 1 nli203 [vn] 

h 

since fn(x) is a sum of independent r.v. 
'nk 

identically distri- 

buted as the r.v. V and E { I v ~ ~ ~ }  < . 
n 

Notice that 

because if 6 = 1 in (1.1.17) we obtain 
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(1.1.211, (1.1.22) and (b) give  the  r e s u l t .  

81.2 Uniform Consistency o f  Kernel Estimates 

We s h a l l  now inves t iga te  condit ions under which the  sequence 
h & 

of es t imates  {fn ( x )  Inel converges uniformly i n  p robab i l i ty  t o  

f b ) .  I n  t h i s  case,  i f  the  mode i s  unique we are ab le  t o  obta in  

cons i s t en t  es t imates  of  t h e  mode. 

Recall  t h a t  2n (XI is s a i d  t o  converge uniformly i n  - -  
p r o b a b i l i t x  - t o  f ( x )  i f  

L e t  K(y) be a weighting function (1.1.6) and k(u)  its Fourier  

transform. 

That is ,  

Notice t h a t  i f  K(y) is even, then k (u)  i s  even. 

I f  w e  assume k (u) is absolute ly  in tegrab le ,  then ( [  61, p. 143) 

(iuy) k (u)du (1.2.2)  

and K(y) is  uniformly continuous i n  y. 

L e t  &(u) = 

= - 
n k=l  be t h e  sample c h a r a c t e r i s t i c  function.  

. From these  comments, we have 



I 

X*-X 
= (nhl-' C K(-) since K is even 

k=l  h 

(-iux) k (hu) 6n (u) du with change of variable 

Since k(hu)@n(u) is the characteristic function of fn(x) we can 

write 

Theorem 1.2.4 

00 

If fh(n)}n-l 2 - - satisfies lirn h(n) = 0 and lirn nh (n) = - 
r13Qo rWQ 

and if f (x) is uniformly continuous, then for all E > 0 -- L --- 

Proof - 
A 

Since convergence of fn-tf in the mean implies convergence of 

A 

frrtf in probability, it suffices to show that 

From Corollary (1.1.4) we know that 
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and since f(x) is uniformly continuous, it fallows that 

Therefore, (1.2.5) will follow by the triangle inequality if we can 

show that 

From (1.2.3) and Fubini's Theorem, we have 

(-iux) k (hu) E{$n (u) )du 
21T 

Hence for all x E R, 

A A 

I f n (XI -E{ fn (x) / s exp (-iux) I 1 k (hu) 1 lgh (u) -E{& (u) I du 

since lexp(-iux) / s 1 

by the Cauchy-Schwarz 

Hence, 

Inequality. 

by Fubini's Theorem. 



Therefore, 

With the assumption nh2 -* as n + 00, we have n 1/2h 3 co as n -+ m 

Hence, 

from which (1.2.5) follows and the theorem is proved. 

81.3 Rates of Convergence of Kernel Estimates and Related Results 

In sections 1.1 and 1.2 we considered the consistency properties 

of estimates of the form (1.1.1). By Corollary (1.1.12) if f (x) 

is continuous at: x, then &(x) is a consistent estimate o f  f(x) 

in quadratic mean in the sense that 
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A 

A natural  question t o  ask is  "PIOW quickly does fn  converge t o  

f i n  quadratic mean?" 
, 

In  order t o  p a r t i a l l y  answer t h i s  question and re la ted  questions, 

w e  s h a l l  consider the r e s u l t s  of Watson and Leadbetter. [32]. 

We s h a l l  estimate f ( x )  by estimates of the form 

which is  the  kind of estimator proposed by Rosenblatt ( 0 . 2 . 5 ) .  

03 

However, we do not assume { K ~ ( U ) ~ ~ - ~  - is a sequence of weighting 

functions. Rather we suppose t h a t  K ( - ) and f (x) a r e  square n 

integrable  over the rea l s .  

Definit ion (1.3.2) For K n ( * ) ,  f ( x )  E L 2 ( R )  wedef ine  theMean _I_ 

Integrated Square Error (MLSE), Jn, -- of the estimator f n  (x) a s  

follows : 

03 
~ e t  {H (n) be a sequence s.t. l i m  H(n) = *, then 

. n* 
h 

Definit ion (1.3.3) The estimator fn(x)  is  integratedly consis tent  

of order H(n) i f  l i m  H(n) Jn = a # 0 and a E R. -- - 
lWcD 

In  the  succeeding development, various types of estimators 

w i l l  be discussed and t h e i r  orders of in tegrated consistency invest- 

igated. One c l a s s  of est imators w e  s h a l l  consider is  estimators of 

the P a r z ~ n  type. (1.1.1). We s h a l l  see t h a t  the  type of estimator 

which is  appropriate depends largely  on t he  behaviour of the  

cha rac t e r i s t i c  function 6 (t) of the probabi l i ty  density f ( x )  
f 

fox large t. 
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Our criterion of a good estimate will be an estimate which 

minimizes the MISE. Thus, we shall determine the functions Kn(*) 

in such a way that we minimize . 
Jn 

For g (x) € L1 (R) , let 

gg(t) = exp(ixt)g(x)dx be the Fourier transform of g. 1 
We shall now present some preliminary results with the following 

objectives in mind: 

(a) to express Jn in terms of $" (t) and gff (t) , 
f n 

(b) to express $A (t) in terms of $ (t) , 
f n 

Kn 

(c) to determine $ (t) , and hence K (x) , such that 
n 

we minimize 
Jn* 

From (1.3.2) and Parseval 's Theorem [AS 1 , we have 

2 
Jn (x) -f (XI dx) 

which is (a).  For (b) , recall that (1.2.3) 

A 

&in(t) = $nn(t)ZK (t) 
n 

where zn (t) is the sample characteristic function. 

From (1.3.3) and (1.3.4) 

2 
(t)-Zf(t) I dt) (1.3.5) 



and (1.3.5) is equivalent to 

Since the integrands are real and non-negative 21TJn is 

minimized if we choose K = K * in such a way that n n 

Corresponding to this choice of (dK (t), we have 
n 

Hence we have accomplished objective (c). 

In order to discuss orders of integrated consistency, we show 

Kn* (Of 
f 

1 
n - O($ 

and by the Inversion theorem, 

Consequently, 



and 

dt  S 
2n (n- I) I $df (t) 1 2dt 

However, 1 gf (t) I 'at < and therefore 

Hence, (1.3.91 f o l i o ~ s .  

We give some examples to i l lus trate  (1.3.7) , (1.3.9) and a later 

result (1.3.12) 

Example 

Suppose f (x) = { exp(-x) for xW 
r then t = - i t 1  for t E R 

0 otherwise 



Thus by the Inversion theorern 

2 -1 costx n(l+t 1 dt 
2 -1 (n-1) (l+t 

n 1/2 
Theref ore, Kn* (0) = 2 

1/2J * = - - o(n-li2) and n 

Therefore, lim n1l25 * = 1/2 
n n- 

Hence the estimator & (x) , formed by Kn* ( x )  , is integratedly 

consistent of order X I .  This result is a special case of (1.3.12) 

in which p = 1. 

$1.3~ Characteristic Functions Which Decrease Algebraically 

We shall begin an investigation of orders of integrated con- 

sistency of estimators whose characteristic functions decrease 

algebraically. 

Some preliminary definitions and examples. 



Defini t ion  (1.3.10) p J f ( t )  decreases a lgebra ica l ly  of degree p > 0 - 
i f  , 

Example 

I n  the  previous example, we had (bf (t) = (1-it)-' f o r  t s R 

2 -1/2 Therefore, 1 (bf (t) I = (l+t ) 

Hence e f ( t )  decreases a lgebra ica l ly  of degree 1 s ince  

The c h a r a c t e r i s t i c  funct ion  of the  Gamma dens i ty  funct ion  

decreases a l g e b r a i c a l l y  whereas t h a t  of t h e  normal dens i ty  does not .  
n 

h 1 
Defin i t ion  (1.3.11) f n  (x) = - K (x-X. ) has a lgebra ic  form if 

n j=l n J - 
IdK (t) = h(A t) where h i s  a bounded, even square in teg rab le  n n 

function and A + 0 as n -t m. 
n 

Remark This condi t ion  i s  equivalent  t o  speci fy ing that Kn(x) 

be of  the  form 

1 x because K x = ( 1  i f  and only i f  
n n 

Id ,  (t) = Id X (t) 
n 3 (A) 

n n 



, 
Example For the exponential density and its optimum weighting 

function we have, 

Let An = n -1/2 1 
and k(x) = lexp(-IxI), then 

In this section, our estimates are of the form 

A 

Under the assumption, fn (x) has algebraic form, K~ ( x - x  . 1 
3 

n 
Hence, h ( x )  = - 

and this estimate is of the form considered by Parzen (1.1.1) 

we shall now investigate the order of integrated consistency of 

the optimum estimate. 

Theorem (1.3.12) 

Let $df(t) decrease algebraically of degree p > 1/2, C as - - - 
in (1.3.10) then Jn*, the minimum MISE Satisfies, - - - - 



Proof 

From (1.3.9), 

We f i r s t  examine 

Since $ f ( t )  decreases algebraically of degree p 3 1/2, 

I t  follows t h a t  

l i m  1 t 1 -"l df (t) 1 -2 = C-' and w e  conclude t h a t  
I tl- 

fo r  a l l  E > 0, there  is a T such t h a t  

W e  have 

I 
1-- 

The second in tegra l  i n  the expression fo r  n 2 P ~  ** can be writ ten a s  
n 

suf f ic ien t ly  small. 



Then w e  can write n s ince  
1-2(t)-2pl ti2' 

Therefore, 

Upon adding n and i ts  negative t o  t h i s  

expression and then regrouping we ob ta in  

Consider t h e  f i r s t  term of (1.3.13). Since 

1 

- 1 For t h e  t h i r d  term of (1.3.13) , s ince  C >O, 
1 1 <- 

2p -1 - n-1 ( n - l ) + l t l  c 



1 
1- 

2Tn 2p 
Hence n s - + O  a s  n + W .  

2p -1 n-1 t -T ( n - l ) + l t l  c 

As f o r  t h e  second term of  (1.3.13) , we have 

1 1  - -- 
l e t t i n g  s = (n-1) 'PC 2Pt, we have 

and t h e  l i m i t s  of in tegra t ion  a r e  unchanged s ince  C > 0 and 

n-1 > 0 f o r  n > 1. 

Therefore, under t h e  transformation, 

n - ,t 2p -1 
(n-I)+ I t )  c 

Hence, 

l i m  {n - \  d t  
m 2p -1 (n- l )+ l t l  C 

Fina l ly  f o r  t h e  four th  term of (1.3.13) 



Now, I $, (t) 1 continuous, 1 t 1 2P continuous implies that 

I&f(t)121t12p is continuous. 

Since lim I$, (t) 1 2 1  ti 2 P = ~ ,  then (t) 1 is bounded 
Itl* 

That is, there is a B 8 R such that 

2 
I$f(t)I ~ t l ~ ~ q ~  for all t E R 

This bound with the fact that the integrand is non-negative gives 

c BEn since I tl>T implies 



37 

However, by t h e  argument fo r  t h e  second term i n  (1.3.13) w e  have 

t h a t  I 

and s ince  E depends on T and is  independent of n ,  w e  conclude 

t h a t  t h e  four th  term of (1.3.13) is  a r b i t r a r i l y  small f o r  s u f f i c i e n t  

l a rge  T. 

Hence, w e  conclude t h a t  

Recall  from (1.3.9) t h a t  

Therefore, 
1 

Hence, 

l i m  
WC" 

l i m  
n-Kp 

1 - 
which i s  (1.3.12) 

2n 



Discussion 

I 

The theorem shows that when $f(t) decreases algebraically of 

h 

degree p > 1/2, the estimate fn(x) formed from K,*(x), where 

Kn* is defined in (1.3.71, is integratedly consistent of order 
1 'I ,- 

4. 

n 2p. Recall that the estimate in terms of Kn* 
is optimal in the 

sense that the corresponding MISE, Jn*, is a minimum. However, in 

practice, we would not be able to determine Kn* for Kn* is 

expressed in terns of Ibf(t) and knowing $ (t) would enable us 
f 

to detenni~e f directly by the Inversion theorem. Hence, we are 

forced to look at classes of estimates formed from suitably chosen 

. Such a class of estimates is the estimates of algebraic fom 
as defined in (1.3.11). 

We have considered the consistency properties of the optimum 

estimate in (1.3.12). Let us now look at the consistency properties 

of an estimate of algebraic form and compare its properties with 

those of the optimum estimate. 

Consistency Properties of an Estimate of Algebraic Type -- - - 
Theorem (1.3.13) 

A 

Let fn (x) be an estimate of algebraic type and 6 (t) - - -- f 

decrease algebraically - of degree p > 1/2. - If f l t 1 -2P (1-h (t) 1 'dt 

exists (where (bK (t) = h(Ant) 1 and if An = Dn 2~ (where D > 0 )  , - -- - 
n 

1 1-- 
then n 2 p ~  +(2nD) (t)dt + 

2n - I r 



where is the MISE corresponding - Jn --- 

Proof - 
n 

Since fn(x) is an estimate of 

2 
to K~ and lim ldf(t)l /tlZp = C. - - 

I tl* 

where h(t) is a bounded, even square integrable function and 

A + 0 as n + m .  From (1.3.6) n 

and we have 

2 
Id, (t)I = lh(Ant)l 2 

n 

2 = h (A t) since h is even. 
n 

2 = (1-h(Ant) since h is even. 

Hence, 

1 1-- 
2m-i 2P~n = n 2p 2(~nt) ( 1 - 1 ~ ~  (t) J 2)dt -? 

For the first term of (1.3.14) 



1 - - 
Under the transformation u = A t = D 

n n 
2pt we have 

and noting h (t) bounded implies 1 h (t) 1 aU2 for  some B ~ ' ~  E R 

2 implies h ( t ) l B  since h is  even 

Therefore, 

f (t) I 'dt where the 

in tegra l  is  f i n i t e .  

Hence, 

(~,t)  (t) ( 2dt  

= O since p > 0. 

That is ,  

Therefore, from (1.3.15) and the above we conclude t h a t  



For the second term i n  (1.3.14) , l e t  

We s h a l l  show 

This follows s ince  

1 
l-T(~gp) I ~ / ~ ~ ~ P I  ( i - ~ ~ ~ t ]  121 

= n d t  s ince  a Lebesque 

Integral 

where u = A t 
n 



- 

-1 ap 2 2 
([ {n1I2 glf (D n u) I 1 u 1 - c D ~ ~ ]  (1-h (u) ) 'D-~P+c (1-h (u) ) ) 

du 
I D-lu 1 2P 

which is (1.3.17) 

We shal l  now show the second integral i n  the expression for I 

is arbitrarily small. The second integral may be written 

Define 

2 
However, (l-h (") ) integrable implies (B+C) (1-h (u) i s  integrable. 

lul 2P ldZP 



Also since ( d f ( t )  decreases a lgebraical ly  of degree p > 0 and 

1 
-1 2p 

t = D  n u,  then 

l i m  gn(u) = 0 
n- 

Thus by the  L.D.C.T., the  second in t eg ra l  is a r b i t r a r i l y  small. In  

view of (1.3.14), (1.3.16), (1.3.17) and t h i s  f a c t  we have established 

theorem (1.3.13). 

Discussion 

This theorem shows t h a t  i f  ?n(x) is  an estimate of algebraic form 

and ( d f ( t )  decreases a lgebraical ly  of degree p > 1/2,  then JnI 

h 

the  MISE corresponding t o  f n ( x ) ,  i s  integratedly consis tent  of 

i-- 
order n 2p. I t  may seem surpr is ing t h a t  the  orders of integrated 

consistency fo r  the optimum estimate and an estimate of algebraic 

form a re  the  same. However, t h i s  r e s u l t  is  a consequence of our 
1 - 

choice of A = Dn 2p i n  the  theorem. 
n 

In  the applications,  theorem I1.3.13) means i f  w e  assume 

d f ( t )  decreases a lgebraical ly  of degree p > 1/2 and we construct  

an estimate of algebraic type which s a t i s f i e s  the  proper t ies  

2 
(a)  [ t l - 2p (1 -h ( t l )  d t  e x i s t s  where dK (t) = h(an t )  

n 

and h is  a bounded, even square integrable  

function, and 
1 

1 I-- 
Then Jn is integratedly consis tent  of order n 2P 



In  terms of Kn(x), we choose h ( t )  such t h a t  

I 

1 x x = ) where d k ( t )  = h ( t )  
n n 

and h ( t )  s a t i s f i e s  ( a ) .  Including (b) we obtain 

1 X 
Kn(x) = lk  1 a s  the form of K n l s  t o  choose. - (1 7 

2~ 2~ 
Dn Dn 

However, notice t h a t  h,k and Kn a re  qu i t e  arbi t rary .  In  case 

we do not know p precisely ,  i f  w e  choose 1/2 < r < p we have 

Theorem (1.3.18) 

let f̂n (x) be an estimate of algebraic type, and df (t) - -7 - -- 
decrease a lgebraical ly  of degree p > 1/2. Assume - * 

- 
2 2r 

l t l w 2 ~ ( l - h ( t )  dt exis t s .  - I f  1/2 C r < p - and An = Dn , 
1 

1-- 
then i n k )  is integratedly consis tent  of order n 2r 
7 - 
Proof 

A s  i n  (1.3.14) and (l .3.15),  

1 1 1- r-Pl-- 
since n 2r = n 2pli, 2~ 



A r-p 1-- 

+ n t) ( (1-h (~,t) ) 2 d t ~  

Now l i m  n z  = 0 since 1/2 < r < p and 
w 2pr 

1 

( A n t )  1 $f (t) 1 'dt = 0 since r > 0 and the  

i n t eg ra l  is  f i n i t e .  
'I 

i s  f i n i t e .  Hence, 

1 1- 
2r l i m  n 

rrpco 
1 -- 

Hence, i f  we choose 1 / 2  < r < p, An = Dn and Kn(x) 
f 

h 

so  t h a t  \ I t (1-h (t) 'dt e x i s t s ,  our estimator fn(x)  w i l l  
'1 

1 I 
1-- 

2 r 
be integratedly consis tent  of order n 

Existence of an Estimator of Algebraic Form with the  Asymptotic 
-7 - --- 

Optimum Property 

I f  $ (t) decreases a lgebraical ly  of degree p 
f 

can construct  an estimator of algebraic form with the  

optimum property a s  follows: 

(a) Choose Kn(x) such t h a t  h ( t )  = (l+lt 

1/2, we 

asymptotic 

ZP) -1 



l. - - 
(b) Choose An such that An = D 2~ 

, n 

Now h(t) is a bounded, even integrable function and recall that h 

bounded and integrable ixhplies that h is square integrable. 

Also notice that 

s 1 since lt12' z 0. 
1+ltl2~ 

i 2 
Hence, I t~-~'(l-h(t) ) dt exists. 

By theorem (l.3.l3), 

1 
-7 

Choosing D = C 
2 

2p where lim l@f(t)l 1tl2' = C > 0 we have 
t tl- 



1 1- 1 - 
2~ c 2 ~  

lim n 
n- ~n ~~j'~+y: Zp * 

which is (1.3.12). 

This construction is extremely important in the applications. 

For in the practical situation we can not determine the functions 

Kn*(x) which give rise to a minimum MISE Jn*. However, by the 

construction, if gl (t) decreases algebraically of degree p i  1/2, 
f 

1 - z  
our estimator fn (x) is integratedly consistent of order n 

and moreover satisfies the asymptotic optimum property. 

Therefore, if the asymptotic efficiency is defined as 

Jn* lim [-I, choosing h and An as above we have 
w Jn 

1 1-- 

'n* 
n 2 P ~  * 

lint[.=--] = lim[ . 1 

1 1-- 
lim n 'PJ~* 

t 
v 

t since limits exist and 

= 1 by (1.3.12) and (1.3.18) 

In the following section we shall consider classes of estimates 

for those densities whose characteristic functions decrease exponent- 

ially. For such densities we shall define estimates of exponential 

form. As in the previous section we shall investigate consistency 

properties of the following: 



(a) t h e  optimum es t imate  

(b) an es t imate  of exponei t ia l  type 

Also w e  s h a l l  e x h i b i t  t h e  cons t ruct ion  of  an es t imate  Of 

exponential  type with the  asymptotic optimum property.  

$ 1 . 3 ~  C h a r a c t e r i s t i c  Functions Which Decrease Exponentially 

Def in i t ion  1.3.19 j d f ( t )  is  s a i d  t o  decrease exponential ly of 

c o e f f i c i e n t  p > 0 

and l i m  ( l + e  i ~ P V  

w 
0 

f o r  some constant  A and a l l  t. (1.3.19~4 

2 -1 
I f  f ( x )  = (TT(l+x ) )  f o r  x i n  t h c r e a l s ,  then @ ( t )=e-I t '  

f 

f o r  t E R 

Hence 

I n  add i t ion ,  

Therefore, 

1 

l i m  1 
dt = l i m  J l2pv -2vt d t  

vKa Ol+e e 



1 
l q  2v -2vt dt since p =,1 
v+eo l+e e 

dt by the L.D.C.T. (1 is a dominating function) 

0 since lim 1 
2v (1-t) = 0 except when t = 1. 

W l+e 

Thus Bf(t) = e - decreases exponentially of coefficient 1. 

Of course, the characteristic function of the normal density 

function decreases exponentially. 

Definition 1.3.20 An estimate h(x) formed from K (x) is said 
n 

to have exponential - form if plK (t) = h(Aneal tl) where -t 0 as 
n 

n -t 03, 

Remark 

a > 0, and h is bounded and square integrable. 

h2 (A eat ) is real valued since 
n 



Consistency Properties -- of the Optimum 

I 

Theorem (1.3.21) 

Estimate 

L e t  Idf(t) decrease emonentially of coefficient p. Then 

Jn*, the minimum MJSE, satisfies - - --- -. 

lim 1 " * = -  
n* log nJn 27rp 

Proof 

First we show 

lim 
rr+ao 

because 

log (n-1) 

2 = 2 ( A  +1) + 
0 

from (1.3.19a) and the fact that IZf(t)I2 and e - 2 ~ b l  are 

even functions. 



Denote t h e  f i r s t  i n t e g r a l  by I1 and the second by X 2 .  

Then xl = J2' -2Pt,2Ptdt s ince  
(I+ (n-1) 16, (t) 1 2, (e2Pt+ (n-1) 

log (n-1) 
/ 2P 

Under t h e  transformation, t = vs  where v = log (n-l) we have 
2P 

1 s ince  8 > 0 implies 

0 = e  log0 

= e2pv~  fdf (VS) 1 by d e f i n i t i o n  of v. 

Hence, 

- - log  (n-1) ds 

0 

AS n e w ,  v = log  (n-1) , , 
2 P 

and we have 



= 0 since the indicated l i m i t s  are zero (1.3.19b) 

1 log (n-1) 0 s l i m  I < l i m  {- ds  
2P n-1 2 1 

n- n-w~ l ieZPv 1 di tvs 1 
0 

Thus l i m  I1 = 0 
n- 

Dealing with 12, since (t) 1 2 2 0 and exp (-2pt) > 0, 

exp (-2pt)dt 

log (n-1) 
2P 

Hence l i m  I2 = 0 and we have (1.3.22) 
rrroo 

However, l e t t i n g  z = l+(n-1)e -2pt we have 

and by (1.3.22) and (1.3.23), it follows t h a t  



So by (1.3.24) and (1.3.91, 

n -J * + -  I. as n + which is (1.3.21). 
log n n 2np 

If 6 (t) decreases exponentially of coefficient p, then Jn* 
f 

n 
is integratedly consistent of order -. However, in the log n 

practical situation, we are concerned with the consistency properties 

of estimates of a particular form. In the following discussion, we 

shall deal with estimates of exponential type. 

Consistency Properties - of Estimates of Exponential Type - - 
Let h(x) be an estimate of exponential type. That is, 

fdK (t) = h(R ealtl) where h is bounded and square integrable. 
n n 

In addition, suppose h(t) satisfies 

Theorem (1.3.26) 

Let Idf(t) decrease exponentially of coefficient p > 0 and - - - 
h 

let fn(x) be an estimate of exponential type such that h(t) - -7 - -- 
satisfies 

Then the -- 
(1.3.25). Let An = ~ n - ~  for b > 1/2 and a s2pb. - - - 
Jn corresponding - to in (x) satisfies 

n lim I--- 1 2b 
J 1 = -(-) 

n- logn n   IT a 



To prove the theorem we establish two lemmas: 

, 

Lemma 1 

Under the above conditions, 
w 

Proof 

log n t d t  = - log n 

lo  D The f i r s t  term is b - g-* b as n -+-. log n 

Hence the lemma w i l l  follow i f  we can show that 
1 

The finiteness of the  integral follows since 

h square integrable implies h ( t ) d t  c which in  turn implies J 

Lemma 2 

Under the conditions of the theorem, 



lim - 
n*QO 

Proof 
h 

Since fn(x) is an estimate of exponential type, 

ldK (t) = h(A ealtl) where u > 0 and lim A = 0 .  Also An = Dn 
-b 

n 
rr+0o 

n 
n 

where b > 1/2. 

Letting x = D~ -bea 1 t 1 

-b at for t 2 0 we have = Dn C 

b 
2 -2p n 2x 

log n A e ~ p [ ~ l o g  (-*I D 1 B~ u dx 

b 
+ 2nIA2exp[ log n +log la 1 1 ( i m  2~ 

For the following reasons: 

2 -2pt 
= A e  since t 0. 



-b s ince x 2 D > 0 n 

2 2 
(c) I (l-h(x) ) 1 = 11-2h(x)+h (x) 1 

2 
I 1+2B+B since h is bounded 

= (1+B) 
2 

The conditions a s 2pb and b > 112 imply both terms tend t o  0 

which gives us  (1.3.28). 

Proof of (1.3.26) 

From (1.3.5) and the f a c t  t h a t  f n (x  

exponential type we have 

1 is an estimate of 

but 

~ f ~ ~ ~ ; ~ ~ ~ ' ~ , a r  log n = log n h2 ( ~ ~ - ~ e ~ ~ )  d t  s ince h is even implies 

0 
h2 is even 

= -  
log n 

' dX under t he  transformations h WE 



a:--- 
a log n 

1 hk (XI and by lemma 1, l i r n  {- f-bx dx} = b 
n- .. 

Hence, 

Also, 

and 

2b 1 jh2(D;be+ljat~ = , l i m  {- 
r- log n 

2 l$f(t)l d t  is  f i n i t e  

By lemma 2, 

f 

l i m  {- 
2 2 

l o  n J ~ ~ f  (t) 1 1 -  (t) I at3 = o 
n- n 

n 1 2b Therefore, l i m  {- J 1 = - 4 - 1  
fl 

log n n 2~r a 

Remark 

n 
We have t h a t  any estimate fn(x)  of exponential type is  

n 
integratedly consis tent  of order - provided h s a t i s f i e s  

log n 

(1.3.25). Contrast t h i s  with estimators of algebraic type, where 

2 
we had t o  choose h sa t i s fy ing  ~ t l - ~ ~ ( l - h ( t )  1 d t  is  f i n i t e .  

(1.3.13). 

For the applications,  we need 

An Estimator of Exponential Type with the Asymptotic Optimum Property - - -- 
If $ (t) decreases exponentially of coef f ic ien t  p,  l e t  

f 
h 

fn(x)  be an estimate of exponential type such t h a t  h ( t )  s a t i s f i e s  



-b 
(1.3.25). Let An = Dn for b > 1/2 and a S 2pb, then by 

Hence, i f  we choose b > 1/2 such that b s a t i s f i e s  a = 2pb, 

n which is  the (a and p are known), then lim {E Jn} = 
IF" 

optimum property (1.3.21). 



CHAPTER 2 - THE L' AND Q METHOD 

Lof tsgaarden and Quesenberry , [ 17 1, proposed an alternative 

method of estimating a density function which is fundamentally 

different from the Kernel method. We shall present the L and Q 

method for a one dimensional random variable X, extend the 

presentation for a p-dimensional random variable and then discuss 

similarities and differences of the Kernel and L and Q techniques. 

52.1 The Estimates for a One Dimensional Random Variable 

We wish to estimate f at a point z where L is positive 

and continuous. Since f is continuous at z, F'(z1 = f ( z ) .  

That i s ,  

lim Ffz+h)-F(z-h) 
h-tO 2h 

Let P be the (unique) probability measure corresponding to the 

c.d.f. F(x). 

Then F (z+h)-F (2-h) P( (2-h,x+h]) 

= P{ [z-h,z+h] 3. since F is continuous. 

Define the closed sphere of radius h with centre z as 



sh,z = {XERJ f x - z  lgh) 

= [z-h,z+h] 

Letting X denote Lebesque measure, we have 

A(s~,z) = X([z-h,z+h]) 

= 2h 

Consequently (2.1.1) becomes 

lim P{s~A = f ( z )  
PO A (Sh , z )  

The L and Q technique is to estimate ~{sh,z)=F(z+h)-p(z-h) 

as follows: 

03 

Let (k (n) Inpl be a non-decreasing sequence of positive 

integers such that 

lim k(n) = a) and k (n) = oh) 
n+= 

Having k(n) and a random sample Xl,X2, ..., x we define 
n 

hk (n) (2) as - the distance from z to the k (n) th closest -- 
Xi where i = 1,2,. ..,n. 

Letting S denote the sphere of radius $ (n) (2) 
4 (n) 

h 

about z we shall estimate f(z) by fn(z) where 



52.2 Extension for a p Dimensional Random Variable 

The previous discussion extends immediately to the case 

w h e r e  we have a p dimensional random variable X = (X1,X2, .... X 
P 

with absolutely continuous c.d.f. F(x ,x ,.... x ) and density 1 2  P 

function f f x  ,x ,..., x ). We shall make the notational conven- 
1 2  P 

tions 

and w e  shall estimate f (2) at a point z & IXP where f (z) 

is positive and continuous. 

P 
L e t  d(%,z) = ( C (x,-2,) ) and as before define 

Letting A denote Lebesque measure in R', w e  have 

2Tr 
PI2 hP 

h(Sh,z) = where r is the gamma function. 
P r(pI2 ) 

00 

With (k(n)]n=l and h ( 2 )  as previously defined 
k (n) 



52.3 Comparison of the Kerne1,and L and Q Methods 

I 

The Kernel technique tacitly assumed f (x) r 0, for x 

under consideration, whereas L and Q state f(x) > 0 .  In addition, 

L and Q assume that f is continuous at a point x when estimating 

•’(XI. Similarly, Parzen assumed that f is continuous at a point 

x for such properties as asymptotic unbiasedness, consistency and 

asymptotic normality. 

We can elucidate further differences by considering the form 

of the estimators. Recall that a Kernel estimator is of the form 

where the distance h = h (n) and h is not a random variable. 

Contrast this with L and Q estimator (2.1.4) where the distance 

h is a function of k(n) (hence n), the point z and observe 

that h is a random variable. 

From (2.3.11, we could say Kernel estimators are sample 

c.d.f. oriented whereas L and Q estimators are distance oriented. 

We shall now consider some properties of L and Q estimators. 

Let En(z) be as in (2.1.4). The L and Q basic result is 

Theorem 
A 

If f is positive and continuous at z, then fn(z) is - - - - - - 
a consistent estimate of f(z). - - 



A s  Moore and Henrichon, [ 183, have observed there is  a basic  

e r ro r  i n  the proof of t h i s  resu l t .  FOT t h i s  reason, we s h a l l  

(a)  present Moore and Henrichon's r e s u l t s  

(b) indicate  a va l id  proof of the  L and Q theorem. 

th Let rk(n) (2)  denote the  distance from z t o  the k(n)  observa- - - 7 -- 

The L and Q estimator is 

Moore and Henrichon have introduced a s t e p  function approximation 
6 

fn*(z) f o r  f n ( z )  a s  follows: 

L e t  X1 ,ns%,ns* e x  be the  order s t a t i s t i c s  
n,n 

corresponding t o  X1,X2, ..., X . Then 
n 

0 i f  z<X1 
fn*(z) = , n Or **n,n 

fn(Xi i f  Xi,$z<~i+l,n where 
r n 

For uniform consistency of the estimates 

Theorem (2.3.2) 

I f  f ( z )  is  uniformly continuous and pos i t ive  on (-m,m) - - - - 

then f o r  a l l  E > 0 , - C_ 

and 

l i m  p{sup1fn* (2)-f  (zf ( > € I  - 0 
m zER 



Subsequently, we s h a l l  wr i t e  

I 

h 

frr*f(UP),  u n i f a m l y  i n  p robab i l i ty ,  f o r  (2.3.3) and 

a -+a&') f o r  convergence i n  probabi l i ty .  n 

Proof - 
Let u k(n,  (z)  = F ( z + T ( ~ )  (2) ) - F ( z - ~ ~ ( ~ )  (11) 

The proof c o n s i s t s  of showing t h a t  

3u (z)  + 1 (UP) {k (n) -1 k (n) 

from which w e  s h a l l  ob ta in  

U 
and - k(n)  + f (UP) 

2 r  
k (n) 

To ob ta in  (2.3.51, r e c a l l  that by d e f i n i t i o n  of 
r k ( n ) ( z )  

the i n t e r v a l  [ z-rk (n) ( 2 )  , z+rk (n) (2) ] conta ins  exact ly  k (n) 

observations one of which is an endpoint of the i n t e r v a l .  Without 

l o s s  of genera l i ty ,  suppose X is t h e  lower end point .  That 
q1n 

is, X = Z-r 
qrn  k (n) l z )  

n 
Since F i s  a c.d.f.  and {X } are order  s t a t i s t i c s ,  

p,n p=1 

we have F(Xl ,n  
s. . .SF (X 1 s . .SF (X 

q ,n q+j ,n ) " *'B(Xq+k (n) ,n I s 

. . .&(Xn where j = 1,. . . , k (n ) .  
r n 

However, s ince  X = z-r ( z ) ,  w e  have 
Cl t n k (n) 



However, 
k (n) -1 

F(Xq+k (n)-l,n 
)-F(x ) = C 

~,II j=l {'(~q+j ,n)-F(Xq+j-l,n)' 

and 
k (n) 

with the conventions F (Xo ,n - 0 and F(Xn+l,n 1 1 1  

Therefore, 

from which we obtain 

It is known that the random variables F (X1 ) ,F (X2 In) -F (Xl 
,n 

... ,F(X )-F(Xn-l,n 1 1 -  X 1 have the same joint distribution n r n  ,n 

Y1 Y2 as the random variables - - Yn+l , ...#- where Y1,Y2,.p.IYn+1 
%+I' 'n+l 'n+l 

are independent exponential random variables with mean 1 and 

= Y +Y J-... 'n+l 1 2 "n+l ([ 111, p.78) .  



Hence, i f  w e  can show t h a t  
i+k (n) 

max Ik(n) j - i+l  -1 (2.3.8) 
o 4 a - k  (n) +I 

'n+l 

Then the upper and lower bounds f o r  n 
{* (n) -1 uk (n) (2) i n  (2.3.7) 

w i l l  converge t o  1 (UP). [A?] .  This i n  t u r n  w i l l  imply t h a t  

k (n) -1 'k (n) 
(2) + 1 (UP). 

Thus w e  s h a l l  now e s t a b l i s h  (2.3.8). 

Since t h e  Y.'s a r e  independent, i d e n t i c a l l y  d i s t r i b u t e d  
3 

random var iab les  with mean 1, 

- 1 
'n+l -t l ( p )  by t h e  s t rong law of l a rge  numbers. 

Therefore (2.3.8) w i l l  follow i f  we show t h a t  

1 C - Y -11 -c 0 (UP) 
Ik(n) j = i + l  j 

L e t  E > 0 be a r b i t r a r y  and de f ine  Pn 

i+k (n) 

Pn =  for some i ,  1 j=i+l (Y 

i+k (n) 

=  for some i, (yj - l )>k(n)€)  + j=i+l 

i+k (n) 

P{ for some i, (Y . - 1 ) ~ - k  ( n ) ~ ]  j = i + l  3 

We e s t a b l i s h  a bound f o r  the  f i r s t  term by using t h e  f a c t  t h a t  

t x  i f  X i s  any r.v. such t h a t  ~ { e  1 C and t > 0, 



Then P{x>o)L ~ { e ~ ~ } .  ([161. p.158).,  

i+k (n , 
t X  

Le t t ing  X = ( y  .-1)-k (n)E and noting t h a t  E (e! < j = i + l  -j 

s i n c e  t h e  Y . ' s  are exponential  random v a r i a b l e s ,  w e  o b t a i n  
3 

i+k (n) 

P { (Y . - l )>k(n )&)  < ~ { e x p ( t ( C Y  .-k(n)-k(n)&) 1) j = i + l  3 1 

= exp (-k (n)  t -k (n) st) ~ { e x p  ( t x y ,  ) 1 
3 

= {e - t ( l + ~ )  k(n) t Y  k ( n )  s i n c e  Y .  's 
h { e  1) 3 

are i . i .d .  r.v. 

t Y  - 1 Since ~ { e  1 = (14) f o r  0 < t € 1  

-1 - t ( l + c ) ,  we have D i f f e r e n t i a t i n g  (1-t) e 

t min = l - ( l + ~ ) - l  from which w e  o b t a i n  

-t rnin(l+E) 
e -2 -E = ( l + € ) e  e 

1-t min 

and w e  conclude that 

, e 
E 

where a ( & )  = - 
l+E 

> 1  if E > O .  
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A similar bound exists for each term of the second sum in 

(2.3.9) I 

Namely, 

i+k (n) 
€ k(n) 

(~~-l)<-k(n)~) 5 { ( I - ~ ) ~  } 
jti+l 

-1 -& where b 1 -  e > l if E > 0. 

Let C(E) E rnin(a(&),b(&)) for 12 > 0 ,  then from ( 2 . 3 . 9 )  and the 

above bounds we conclude that 

However, 

3 
2e 

e 
k (n) log c (E) 

= 2{e  
log n-k (n) log c (E) 1 

Since c ( € 1  > 1, log c (E) > 0 and recalling that log n = o(k(n)) 

we conclude that 

Therefore, lim Pn = o 
n* 

Thus (2.3.8) Eollows and hence (2.3.5). 



With (2.3.5) we easily obtain 

Uk (n) (21 + 0 (UP) 

and 

rktn) (2) + 0 

(2.3.5a) is immediate. 

(UP1 

We shall show (2.3.5b) . 

That rk (n) (2) 4 0 (UP) is almost obvious. 

For suppose that r (2) is bounded away from zero in probability. 
k (n) 

Then recalling that f is everywhere positive and continuous it 

would follow that Uk(,)(z) is bounded away from zero in probability 

which contradicts U (2) .+ 0 (UP) . 
k (n) 

For (2.3.3) we need that Uk(n) + f (UP) . This result follows 
2rk (n) 

since 



z-r k (n) 

I•’ I t - z (  = rk(n) (z)  is s u f f i c i e n t l y  small ,  we have If ( t ) - f  ( z )  1 
a r b i t r a r i l y  small.  Note t h a t  r 

k (n) -+ 0 (UP) implies I t -z 1 
is s u f f i c i e n t l y  small  (UP) and t h i s  with the f a c t  that f  i s  

uniformly continuous on t h e  r e d s  implies that I f  (t) -f (2)  1 is 

a r b i t r a r i l y  small. 

Hence, 

n 

We s h a l l  now show (2.3.3).  From t h e  d e f i n i t i o n  of fn(z.1, w e  

ob ta in  

~ g n ( z ) - f ( z )  I = 1{~(:-'3{ 2r 1 1 - f ( z ) l  
k  (n) 



)U ( z ) + ~ ( u P )  a n d w e h a v e  Prom (2.3.5) we have t h a t  {k(n)- l  k ( n )  

j u s t  shown t h a t  Uk(n)  + f ( z )  (UP). Hence w e  conclude t h a t  
2rk (n) 

The argument f o r  (2.3.4) is q u i t e  s i m i l a r  t o  t h a t  f o r  (2.3.3) 

and f o r  t h i s  reason it w i l l  not  be discussed. However, fn*(z)  
* 

is important i n  t h e  est imation problem s ince  f n  is  easy t o  

compute. 

We s h a l l  conclude Chapter 2 with t h e  following remark: 

(a) t h e  argument used t o  show (2.3.3) is a v a l i d  

argument f o r  t h e  L and Q theorem. 

(b) choosing k(n)  near n appears t o  g ive  

vgood" est imates of f(z). 



CHAPTER 3 - SEbZES ESTIMATORS 

The series technique of density estimation was conceived by 

Cencov [ 51 , and independently by Schwartz ( 261 . A basic assumption 
we shall make is that f(x) 6 L2(R). For example, bounded density 

functions are square integrable over the reals. 

Recall that with an inner product ( ,) : L2 (R) X LZ (R) -+ R 

which is defined by 

L2(R) is a Hilbert space. ([12], p.235). 

X 
2 

-- - 
The Hennite functions fdj (x) = (2 j i  !?T1'2)-1'2e 'H (x) 

j 
2 

j x %(e-x 2 where R (x) = (-1) e 1 for j = 01,2. . is the j th 
j *j 

Hermite polynomial constitute a complete orthonormal set in L2(R). 

([l2), p.416). 

Let m- {zj(x) 1 j=0.1. .. . I  

Since @ is an orthonormal subset of L2(R), 

The following properties are equivalent ([12], p.245). 

(a) the set is complete 

w 

(b) for all f E L2(R), f = a.# (x) where a = (f ,$.) 
j-0 J j j 3 
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One may wonder, why we s h a l l  use the  Hermite functions 

ra ther  than the  more familiar  trigondmetric functions a s  our ortho- 

normal s e t .  The reason is simple. The trigonometric functions 

a r e  not square integrable over the  r ea l s ,  However, f o r  function 

spaces whose elements a r e  defined on compact subsets of R I  the  

trigonometric functions a r e  extremely useful  i n  approximating. 

Kronmal and Tar ter ,  [13], have discussed the estimation of density 

functions which have support on compact subsets of R making 

extensive use of the  trigonometric functions. For more a rb i t r a ry  

dens i t i es ,  they have devised a truncation procedure. 

Proceeding with Schwartz's r e s u l t s ,  

Since f (x) E L (R) we have 
2 

03 / 

f ( x )  = a.gl.(x) where a = ) f ( x ) d . ( x ) d x  
j=o 3 3 5 3 

As an estimate of f ( x ) ,  Schwartz proposed 

and g(n) i s  a sequence of pos i t ive  integers  such t h a t  g(n)=O(n) 

and g(n) -t to a s  n 4 03. 

(3.1.2) and (3.1.3) a r e  obvious estimates because assuming 

f (x) E L2 (R) we have (3.1.1) where only a is dependent upon 
j 

f. Therefore our problem is reduced t o  estimating the  Fourier 

coef f ic ien ts  a 
j ' 



h 

Motice that a is an unbiased estimate of a since 
j n j , 

Just as in the case of Kernel estimators our criterion of a good 

estimate will be a consistent estimate. 

To discuss consistency of estimates of the Eoxm (3.1.2) in 

and 2 
MISE = lim E( (?n(x)-f ( x )  d x l  we need 

n- 

Lemma 1 

Let f ( x )  be continuous, of bounded variation, L1 aria La - - - 
03 

in (-m,m) then a .$ . (x) converges uniformly f (x) in - - j=o J J 

interval interior - to (-m,m). (See [ 241, section 4.10) 

To discuss rates of convergence for the MSE and MISE we need 

Lemma 2 

Assume f ' (x) exists and that (xf (x) -f ' (x) ) E L2 (R) then -- - 
2 , .  satisfy 

c3 where C3 is the L2 norm of IC(2 j)l/~ - 



Proof - 

The Hermite polynomials satisfy the following recursive relation 

Therefore, 2 j + 1 1  d H j + l ~  = H.(x)dx 
3 

Hence, 
X 

2 

-- - 
-1 j 

Letting u = f (x)e and d = 2 1 ) (2 j:n 1'2)-1'2d~j+l (XI 

We have 

Integrating by parts, we obtain 

X 
2 

The first term in the expression for 
aj 

is 0 since 

Hj+l 
(x) is a polynomial of degree j+l and f is bounded. 



Since (xf (x) -f' (x) 1 8 L2 (R) , by the Schwarz inequal i ty  

= (2 j + ~ ) - l ' ~  1 1 (xf (x) 4' (x) 1 1 1 s ince  9 is orthonormal 

< 3 
where C3 5 1 I (xf (x) -f' (x) ) 1 I 

(2 jfI2 

e x i s t s  and is  square in tegrab le  over the r e a l s .  Then a j=1,2 8 . . .  -- --_I_ - j ' 
s a t i s f y  

3 

lajI < r/2 
, where C (2) is t h e  L2 norm of 

3 -- -- 
2 ( 2 j )  

X X 

Proof 

By repeated app l i ca t ion  of the method of Lemma 2. 

Remark The standard normal densi ty  funct ion s a t i s f i e s  t h e  hypotheses 

of t h e  lemmas. 

Cram& ( [9 ] ,  p. 208) has es tabl ished the  following bound f o r  

the Hermite  functions:  

J. 
C2 where C (hence C2) is  indepen- 1 (3.1.6) 

dent  of x and j. 



7 7 

Theorem (3.1.7) 

Assume f ( x )  & square in tegrab le  and t h a t  t h e  sequence of --- - 
p o s i t i v e  in tegers  q (n) i s  chosen such #at  q (n) =o (n) . Then the  

---__I -- 
sequence of es t imates  defined - by (3.1.2) - and (3.1.3) - i s  cons i s t en t  

i n  the sense of MISE. Furthermore, i f  f ( x )  s a t i s f i e s  t h e  hypotheses ----- - 1 - - 
r 

of lemma 3 with r 2 ,  then with q ( n )  = O(n ) t h e  MISE s a t i s f i e s  - - 7- -- 

Since 9 is  an orthonormal subset  of L2 (R) t by the  Pytha- 

gorean theorem 

Hence from (3.1.8), 

and the re fo re ,  



78 

W e  may ob ta in  a bound f o r  t h e  second term on t h e  r i g h t  hand side of 

(3.1.10) a s  follows: I 

A 

Since ~ { a .  1 = a we have t h a t  
~n j 

A 2 A 

~ { ( a ~ ~ - a ~ )  1 = VAR(a .  ) 
I n  

= E { ~ . ~ I  - a j  2 
I n  

However, 

n 

kl k2 

Therefore 

n 

) ) E ( I . ( x  ))}-a by (3.1.6) 
n I K2 j 

kl + k2 

and t h e  independence of t h e  r .v .  

n 

a 21-a 2 
=%nc2ikl,k2=1 n j j s ince  ~ f # ~ ( X ) } = a ~  

kl + k2 



Hence, 

C4 = -  
2 2 

where C4 = C2 -a n j 

From (3.1.10) and (3.1.11) 

00 

~hus, the sequence of estimates G n  (XI) 
n-1 is consistent in MfSE. 

To establish the rate of 

satisfies the hypotheses 
1 - 

such that q (n) = o (nr) . 

convergence as in (3.1.71, assume f(x) 

of lemma 3 with r r 2 and choose q (n) 

Then, 

CQ 

2 
=C3 (r) C - j=q (n) +L (2jlr l +uc4 n 

n) +l 
C4 since r 2 2 implies n 

the series converges we can use 

the Integral test, 



L e t  q(n) be the largest  integer 

Then f o r  each n there 

2 1 
nc, (r) 

less than or  equal t o  ( ) .  
C4 

is a 6 (n) such that 0 s 6 (n) < 1 and 

n ~ , ~  (r )  
Hence, q(n)  = ( ) - 6 (n) 

C4 

Therefore, 

I-- 

1 r C4 ("1 C4 
( 1  K 2 ( r )  + -  n s ince  0 s 6 (n) < 1 



r- 1 - 
r Multiplying the  f i r s t  term by n y i e l d s  

Hence t h e  f i r s t  term is 0 t h )  - 

Clear ly  t h e  o the r  terms a r e  0 (5) and w e  have (3.1.7) . - 
r 

n 

For consistency i n  Mean Square, more condit ions a r e  required 

on t h e  densi ty  function and the sequence q ( n ) .  Spec i f i ca l ly ,  

Theorem (3.1.13) 

A s s u m e  f ( x )  is continuous, of bounded va r ia t ion ,  L1 pcJ - - 

Then the sequence of es t imates  defined by (3.1.2) and (3.1.3) -- - - - 
converges i n  Mean Square, uniformly i n  x . Furthermore, assume -- - 
f (x) s a t i s f i e s  t h e  hypotheses of lemma 3 w i t h  r 2 3 .  - - - 

a. - 
Then with q (n) = 0 (nr) the  mean square e r r o r  s a t i s f i e s  -- -- - 

Proof - 
A s  i n  the  preceding theorem, f o r  x E R def ine  



A 

That is, f n  (x) i s  an unbiased estimate of fq (n) (x) . 

q (n) 
A 

= .C a.8. (x) since a is an unbiased estimate 
1=0 3 3 j n 
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By the Schwarz inequal i ty ,  

and by ( 3 . l . l l ) ,  

while by (3.1.6), 

I #j (XI I < C2 where C is  independent of x and j . 2 

Therefore, 

2 
Let t ing q(n) -+ i n  such a way t h a t  q (n) + 0 ,  we have 

n 

2 2 
(q(n)+1)2 + 0 because (q (n )+ l )  = q (n) + 2g(n) + 1 

n n n n n 

and & 4 0 implies q (n) 
1/2 

+ 0 which i n  t u r n  implies t h a t  n 
n 

Hence from (3.1.15) and lemma 1 

2 l i m  E{ (Zn (x) -f (x) ) 1 = 0 uniformly i n  x .  
n- 



For tho rate  of  convergence w e  assume the conditions o f  lemma 3 
, 

with r 2 3 .  

Consider the f i r s t  term i n  (3.1.15) 

x and a l l  j=O,l, ... 

C2C3 (r) j by *e lntegrol  test - Z r / 2 x  x=q 

Therefore, from (3.1.15) 

Final ly ,  to obtain (3 .1 .13) ,  let  q(n)  be the largest  integer l e s s  
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2 1 - 
(r-2)C3 (r)n r 

than or equal to ( 1 . Then for  each n there is  a 

With t h i s  choice of q ( n )  in (3.1.16) , we obtain 

II 
Ill 

Each of the four terms i s  o(A) as i n  the previous theorem. 
r- 2 - 



Hence, 



4.1 Comparisons 

In 2.3 we have compared the Kernel and L and 0 techniques in 

terms of the form of the estimators and the motivation for the 

form of the estimators. In this section, we shall compare the 

Kernel and Series methods. 

From a computational point of view, the Series estimator is 

better than the Kernel estimator since the Series estimator is 

easier to update. That is, suppose we have a second group of 

observations and wish to construct an estimator using the new 

observations as well as our first set of observations. In the 
h 

Series method, we would have to compute new coefficients a which 
j n 

h 

can be expressed in terms of the old coefficients a and the new 
j n 

observations. However, if we had constructed a Kernel estimate of 
h 1 r1 x-X. 

the form fn(x) = - I: ~(?;l) an increase in the sample size nh j=l 

would usually change our choice of h and we would have to compute 

a new estimate using all of the observations since in general a 

recursive relationship does not exist. 

An apparent disadvantage of the Series method is the possibility 

of negative estimates of the density function over non-degenerate 

subsets of R , However, Anderson [ 11 , and Kronmal and Tarter, 113 I ,  

have stated that in practice this situation does not arise. In the 

Kernel method the possibility does not arise since the weighting 



functions are chosen to be non-negative. 

Kernel estimators generally enjoy better convergence properties 

as we shall now illustrate. Following Watson and Leadbetter theorem 

(1.3.12) for f(x) E L2(R), if $f(t) decreases algebraically of 

degree p > 112, then 

where n e n  and a # O  
n-M, 

That 

For the Series method to obtain the same rate of convergence 

we-would n e e  to require that the density satisfies 
xL x - 2p - 

e 2 { k [ e  f (x) ] exists and is square integrable where 

A sufficient condition for (4.1.1) is that the functions 

d2p-i 
x ( [ f (XI 1) exist and be integrable for i = O,l, . . . ,2p. (4.1.2) 

&p-i 

Thus for the Series method to achieve tho same rate of con- 

vergence as the Kernel method in MISE we have to assume that the 

density function satisfies the differentiability and integrability 

properties in (4.1.2). 

We shall now consider consistency in MSE. Suppose the Kernel K 

K(x)dx = 0 for i = 1,2, ..., r-1 (4.1.3) 
I 

and jxrlK(x) idx < -. 
If •’ (x) satisfies tr$•’ (t) idt < m it (4.1.4) -- 

and q(n) is chosen such that g(n) = O(n 2r+l 1 ,  then 



Note that property (4.1.4) implies fr (x) exists. 

For example, suppose r = 3 and f3 (x) exists. If we choose 

K satisfying (4.1.3) and h (n) = 0 (n-7 2 I then ~{(fn(x)-f(x)) )= - 
-7 

O h  . Whereas, in the Series method, with r = 3 and assuming 

3 2 2 that f (x) ,xf {x) vxZf' (XI ,x f (x) E L1 (R) then by choosing 

q(n) = ~(n-l'~ ) we have EI &(XI-•’ (x) ) '1 =~(n'~'~). (Theorem 3.1.3). 

Thus for r = 3, and the appropriate assumptions, the Kernel 

method estimator achieves a rate of convergence in MSE which is more 

than twice as fast as the Series estimator. 

As Schwartz 1261, has observed, it is in the estimation of 

a Multivariate density function that the Series method may prove to 

be most advantagecis. For in the Series method, the rate of con- 

vergence in the sense of MSE or MISE is dependent upon the 

differentiability properties of the density and is independent of 

the dimension of the density which we are estimating. 

However, for the multivariate Kernel estimator, the rate of 

convergence is dependent upon the dimension of the density being 

estimated. As a matter of fact, the rate of convergence decreases 

with increasing dimension. [4] a 

4.2 Applications 

The estimation of density functions has been applied to the 

testing of hypotheses 127 1 and to problems of classification [ 291. 

Schwartz [27] has considered the following problem: 



Suppose we have a sinqle observation of a r.v. X and we wish 

to decide between the follawing simple hypotheses: 

Ho : X has d.f. fo(x) 

H1: X has d . f .  fl(x) 

with apriori probabilities TO and Irl = 1-7t0 respectively. 

With a suitable test function T = T(f f ) and a criterion we can o 9  1 
decide whether to accept or reject . Ho 

Schwartz considered the case where the density functions are 

unknown but the apriori probabilities are known. Assuming that the 

unknown density functions are square integrable over the reals, he 

estimated the densities by the methods of Chapter 3. A test 

function T = T ( f  F 1 was then defined in terms of  the estimated 
0' -1 

densities. In order to test the hypotheses, he used the criterion 

in the case where the densities are known. 

Van Ryzin, [ 291, considered a similar problem. However, his 

results are more qeneral in that the random sample is of arbitrary 

size and the apriori probabilities as well as the density functions 

are estimated. Xn addition, Van Ryzin is concerned with the 

consistency properties of the classification procedure rather than 

with just the consistency properties of the density estimates. 



In this section, we shall discuss some results which are 

generalizations of the Kernel and Series methods. However, our 

in applying the techniques of density estimation. 

Murthy [19], has generalized Parzen's results to the case 

where the c.d.f. is of the form 

where F (x) is everywhere continuous and F2(x) is a pure step 
1 

function with steps of ma.gnitude Sv at x v = 1,2, ... . We 
v 

are assuming that F (x), the singular component of F(x) is 
3 

identically zero. ([7], pp. S2,53) . ,,\ 
. . 

__I_ _ -  - -  
~nalo~ousl$'to Parzen, Blurthv has shown that the sequence of 

A 
03 

estimates fn (x) is an asymptotically unbiased estimate of 

f(x), a consistent estimate of f(x) in MSE and is asymptotically 

normally distributed provided x is a point of continuity of both 
F a 

F (x) and f (x) and the series v-f--.l C V  converges. 
v 

As a further abstraction, Craswell [ 8 ]  has considered density 

estimation in a topological aroup. He has gene~alized sequences 

of weighting functions to so called 6 seuuences of functions 

and considered estimates of f(x) of the form 



n 
1 -1 

?n (XI = - K Ix-X ) where is the qroup operation n j=l n j , 

Craswell has established that if s and t are distinct continuity 
a Q) 

paints of f with f (s) + f(t) # 0 .  then {fn(s),&(t)~~~~ is 

jointlv asymptotically nornal and independent. 

Schuster 1251 has considered estimatinq a density function and 
h 

its derivatives. The form of the estimator is fn") (x) = 

1 x-X . - K(') (2) for r = 0.1,. .. .s. He has established the 
nhr+' i=l h 

converse of Nadaraya's results [ 201 which gives 

Theorem (5.1.1) 

A necessary 
A 

and sufficient - condition for the -- sequence 
03 

estimators fn ( x )  InS1 - to converge uniformly - to f fx) with - 
probability. one is that E(x) is uniformly continuous. 

-7- - 
Picklands [ 223 has been concerned with the efficiencv of 

density function estimates. He has shown how to construct an 

estimator sequence which is the most efficient among all estimator 

sequences of algeSraic type. (1.3.11). We shall present some 

preliminary definitions then exhibit the construction. 

For E (x) e L (R) , the MXSE of the sequence of estimates 
2 

{ fn (XI lnZl was defined as 

We say that the estimator sequence is consistent in MISE if 

lim Jn = 0. For any characteristic function 6 (t) , #K (t) can 
r+= f 

n 



be chosen to minimize 
Jn ( 1 3 . 7  Hence we define 

I 

In I min J where the miniram is taken over all possible n 

functions $ 
Kn(t). 

This leads to the followina definition of efficiency, 

Eff 5 lim {L} where Jn is the NXSE of the given estimator. 
n- Jn 

Suppose fif(t) decreases algebraically of degree p > 1/2 
a 2 

(1.3.10) and lim t-log lfif(t)I = a  where a & R  and o l >  1. 
t- at 

h 

If we construct an estimator fn(x) of algebraic type (1.3.11), 

then the most efficient estimator is the one where we chose Kn(x) 

such that the Fourier transform of s(x) is of the form 
'I 

where tn satisfies 
1 

b p n )  I *  = ip-i 

In this case, Eff - 1. 
Observe that #K (t) is of the form considered by Watson and 

n 
Leadbetter in their construction of an estimator of alqebraic form 

with the asymptotic optimum propertv. (1-3.18). 

In the following, we shall consider some further results in 

the Series method of density estimation. In the introduction to 

the Series method of density estimation, we remarked that Cencov, 

[5], conceived the method, His results and presentation are more 

general than Schwartzqs. 

Recall that Schv~artz was concerned with density functions 

defined on the weals such that f(x) € L (R). He proposed estimates 
2 



of such densities in terms of the orthonorntal family of Hemite 

functions. 1 

On the other hand, Cencov considered the case where we have 

a weighting function in v(x) defined on S where SS R. By 

means of the inner product (f ,g) = if (x)g (x)v (x)dx a Hilbert 
s Co 

space L2 (v (x) ) is defined. Letting (x) j=l b~ an ortho- 

normal basis for L (v(x)), Cencov proposed estimators of the form 
2 

considered by Schwartz, (3.1.2) and (3.1.3). 

He also obtained a result which gives information ab0u.t: the 

convergence of a histogram when the number of intervals is 

approximately equal to the cube root of  the sample size. His 

result is 

Theorem (5.1.2) 

Suppose the r.v. X satisfies asXsb, f'(x) is continuous -- - 
A 

and f' (x) $ 0 . Let fn(x) be the histogram estimate of f (x) - - -- - 
n 

constructed with respect to the random sample (X 3 - -- Then for i iel' - - 
2 

N intervals (N 3-1~'~) of equal length h , EI ((?n (x)-f (x) ) dx} 
J 

is in probability of order 0 ( N - ~ ' ~ ) .  -- 
Motivated by Cencov and Schwartz , Kronmal and Tarter [ 13 1, 

have proposed continuous approximations of f(x) and F(x) in 

terms of the classical Fourier series involving the trigonometric 

functions. 

Assume f (x) E L2 ([a.b] ) . Recall that {cos kn (E) jkz0 

is an orthogonal subset of L2 ( [a ,b I) . The sample triqonometric 

moments ?? are defined by 
k 

n 
- 

f 
2 c 'i-a 

'k (b-a) n i=l cos k?r (-1 I (X for k = 0,1,2,.. . 
b-a [a,b] i 



where 
' [ a h ]  

( 1  is the indicator function of [a,b]. 
I 

Kronmal and Tarter have ~roposed an estimate of P(x) of the 

h 
C: 
0 x-a fn(x) = - + ' iT cos krrf-) 
2 k=lk b-a 

where m is the optimal nmber of terms for the construction of the 

1 3  estimatorand m = O h  . 
Similar estimators using the orthoqonal subsets 

03 03 

(sin k~ 1 b-a k=O and {cos kT(z), b-a sin k T ( z ) )  b-a k=O have also been 

developed. 

These types of estimators are certainly desirable from the 

conputational point of view since they may be easily updated, But 

of even more ixportance, thev are competitive with other types of 

estimators. For exa~.ple, in using FUSE as a criterion of goodness 

the Kronmal and Tarter estimators are competitive with Watson and 

Leadbetters optimal estimator for the Cauchy density function ([13], 

Apparent d.isadvantaqes are how to choose [a,b] and how to 

choose m, the optimal number of tarms. The choice of [ a,b] is 

arbitrary with the suggestion that different [ a ,b] be tried 

depending upon how much error can be tolerated, 

As a means of estimatinq m, Kronmal and Tarter have devised 

- 
a stopping rule which is expressed in terns of n, (b-a), and 5 

k ' 

([ 131 , p. 949) . 
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[~l] Let X1, . . . ,X be independent random variables identically - n - L___ 

distributed as a r.v. X with the cbntinuous density function f (XI. --- -- 
h 

Let f̂n(y) = fn (XI,. . . .X,,y) be an estimate of f ( y )  and suppose - -- - - 
h 

that h(y) z 0 for all y and n = 1,2,.. . . Then fn(y) is - - - - 
not an unbiased estimate of f (y) . -- - 
Proof - 

Suppose to the contram that 

Then since f ( y )  is continuous on 

Assume that h(v) is a symmetric 

since the symmetrized n-tuple is a 
b 

problem. But then $ f̂n (y)dy is a 
a b 

R, we have ~(?n(y)) < m. 

function of X1 .X2, . . . ,Xn , 
sufficient statistic for the 

b 

symmetric estimate of Jffy)dy = 
a 

is an unbiased estimate of 

= F (b) +(a) 

However, the only unbiased estimate of F(b)-F(a) symmetric 

in XI,. . . ,X  is Fn (b) -Fn (a) where Fn ( ) is the sample 
n b 

h 

distribution function [ 151. Hence. Fn (b) -Fn (a) = fn (y) dy for 
a 

all a and b and almost all X1, ..., X and this implies Fn(y) 
n 

is absolutely continuous for all y and almost a11 XI.-.. , X  . n 

Consequently, Fn(y) is continuous for all y and almost all 

Xl, ..., X which is impossible. n 



for all 6 r 0. -- 
Proof - 

Let 6 z 0 be arbitrary. Suppose sup I ~ ( y )  1 = sl. 
YER 

6 6 
Observe that this implies sup II€(y) 1 < . Say Sup I K ( Y )  1 s2* 

YER YER 

6 
Then I K ( Y )  lZf6 = IK(y)l I K ( Y ) (  I K ( Y ) I  



The notation in [ ~ 3  1 and [A41 is defined in theorem (1.1.13) (pp. 17-21) 
E I Vn-E (Vn ) 1 2+6 

[A31 Suppose that for some 6 > 0, lim . 
6/2u2+6 

= o ,  
n- n (vn) 

for a l l  e > 0, lim P{I a E n1/2} = 0. 
n- 

Proof - 
Suppose 6 > 0 satisfies the condition in the hypothesis. 

Define $(x) = 1x1 2+6 . men # is strictly increasing on (0,a) 

follows that for sufficiently large n, 

Then by Tchebicheff's theorem and the monotonicity of pl we have 

Hence, 



[~4] We shall now establish (1.1.14) . First, some preliminary 
definitions and results are given. ' Following ~osve ([ 16 1, pp. 315, 

316) for a T > 0, let 

where Fnk is the c.d.f. of the r.v. 'n~ . If FnK+ F completely 

2 
([16], p. 178) we shall write a(XnK) + AX). Let p(a.0 ) be the 

2 
c.d.f. of a normal random variable with the parameters a and a . 

The Nomial Convergence criterion ([16], p. 316) states that 

Let XnK be independent summands. Then -P(~X,~) -+ @p(a,a2) - - r i  . 

and max P( 1 ~ ~ ~ 1 2 ~ 1  + 0 as n + if and only if for all E > 0 - - 
K 

------ 
n n 

and a T > 0 kzl~{I~nK1sf + 0 as n + ", Z a (r) + CL as n + -- - k=l  nK - 
n 

2 
and Z a 2  (r) + U  as n +  - k=l nK - 

To obtain (1.1.14) using 

*. 
the above theorem we let 

which results in 

Observe that for any E > 0 

VnK-E(VnK) Vn-E (Vn) 
c HI k-1 IS) " nHl I ~ J n f  since the r.v.'s 

JG u (v,,) a tv,) 



n 
{V k)k=l are identically distributed as the r.v. Vn. One can show " n n 
that kglanK(~) + 0 as n + - and kfl(12nK(r) + I as  n . Hence 

(1.1.14) follows by the Normal Convergence criterion. 



Proof - 
For g ,h € L (R)  the inner product is defined as (g ,h) = 

2 - - f g (XI h (xldx where h (x) denotes the complex con jugate of h (x) . 
The Parseval transform of g, ~ g ( t )  i s  defined by 

1 
J. 

p g ( t )  = (2~)-yeitxg(x)dx for g L ~ ( R )  

1 -- 
2 = ( 2 ~ )  @ ( t l  where @ (t) is the Fourier transform 

'3 4 

Parseval's theorem ( [36] ,  p.70) skates that  

Pg 
and C are the Parseval transforms of g and h respectively. 

h 

Hence, 

2 [$;,(t) -gf (t) ( d t  since $ is  linear. 

Theref ore, we have [ A S ]  . 



Proof 
I__ 

2 First note that 2 n ~ ,  EI 1 $Gn (t) -$f (t) 1 jdt by Fubini's 

theorem. 

Also notice that 
n n  



Hence 

- 1 
~f@~(t)@~(t) 1 = -#n+n(n-1)~{e i X t j E { , - i x t 1  since we have 

n 
i . i . d .  r.v. 
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The n o t a t i o n  i n  t h e  nex t  r e s u l t  is defined i n  theorem (2.3.2) (p. .63).  

[AT I 

and - 

If max - 
O&n-k (n)  +l 

where the uniform convergence is  taken over  q = F t o  q = n-k(n)+l -- - --- - 
Proof - 

n i c k ( n )  Y 
From max - C - 1 + 0 P we have t h a t  

Old@-k (n)  + l  Ik(n)  j=i+l . 

i+k (n )  
n - ' - - 1 I + 0 (UP) where t h e  uniform I k (n) j = i + l  Sn+l 

convergence i s  taken over  i = 0 t o  i = n-k(n)+l .  S ince  t h e  r .v . ' s  

{ L I n + l  nY 
Sn+l 3'1 are i . i .d.  we have t h a t  + 1 P )  . This impl ies  t h a t  

Sn+l 

~ [ F ( x .  )-F(X 
j-1,n 

) 1 + 1 (PI and hence t h a t  
J f n  

uniform convergence is taken over  q = 0 t o  q = n-k(n)+l.  

The argument f o r  (A7,l) is similar. 


