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ABSTRACT
This paper is an exposition on the following non-parametric esti-
mation problem: given a random sample txj}j:l whose corresponding
distribution function is absolutely continuous, how can one estimate
the density function £(x)? In particular, the techniques suggested by
E. Parzen, Loftsgaarden and Quesenberry, and Schwartz are discussed.

Parzen (AMS 33) considered estimates'of the form %n(x) =
n x-X
1

nh(n) jélK(h(n))
function and h(n) is a sequence of positive numbers converging to

where K is essentially a probability density

zexro. When x is a point of continuity of £(x), Parzen has esta-
a0

blished that the sequence of estimates {gn(x)} is an asymptotically

n=
unbiased and consistent (in quadratic mean) estimite of f£(x). Consis-
tency in mean integrated square error, rates of convergence, and the
construction of estimators with optimal convergence properties are

also discussed. (Watson and Leadbetter, AMS 34.)

Loftsgaarden and Quesenberry (AMS 36) have introduced an estimator

of the form £n(x) ={k(n)-l}{ 1 } where k(n) is a non-decreasing
n Zrk(n)(x)
sequence of positive integers such that k(n) - ® as n =+ ®, k(n) = o(n)
and rk(n)(x) is the distance from x to the k(n)th closest o¢bserva-
n

tion among {Xx At points x where f£(x) is positive and

373=1" A
continuous, they have shown that £n(x) is a consistent estimate of
f(x) in the sense that f£n(x) > £(x) in probability.

For a density function which is square integrable over the reals,

Schwartz (AMS 38) has discussed estimators of the form
g(n)

fn(x) = j%o an¢j

(x) where ¢j(x) is the jth Hermite function,

“ 1 X X
ajn = ;>i§1¢j(xi) and g(n) 1is an integer such that g(n) = o(n).

Conditions on g(n) and f£f(x) are given such that %n(x) is a
consistent estimate of f(x) in the mean integrated square error
sense and the quadratic mean sense.

This paper also compares the three methods, indicates applications

and discusses their generalizations.
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CHAPTER O - THE INTRODUCTION

)

The non-parametric estimation of density functions has received
an increased amount of attention during the last few years including
that of several outstanding statisticians such as M. S. Bartlett [2],
E. Parzen [21], M. Rosenblatt [23], and G. S. Watson [32]. Aalthough
there are several approaches to this particular estimation problem,
in this paper we shall discuss some of those results which have been
obtained by Loftsgaarden and Quesenberry [17], Parzen [21] and
Schwartz [26].

In the subsequent sections of the introduction we shall define
the problem, trace the historical development of techniques of
density estimation and present the form of the estimators which we

shall consider.

0.1 Definition of the problem and basic assumptions

Let X be a r.v. whose distribution function F(x) is
absolutely continuous over the reals. That is, there is a

£(t) ¢ Ll(R) such that

X

F(x) = Sf(t)dt for all x € R {0.1.1)

=00
f(t) is called the density function of the r.v. X .

Let Xl'x2""’xn be a sequence of independent r.v.'s identica-

lly distributed as the r.v. X . We shall consider estimates



%n(x) of f(x) of the general form

fn(x) = fn(xl’xz""’xn 3 %) {0.1.2)

and assume throughout that we have an absolutely continuous distri-

bution function.

0.2 Historical development

A well known estimate of the density function is thé ¢common
histogram. However, it is dependent on the arbitrary choice of
class intervals and provides only a step function approximation.

Continuous approximations of F(x) and f£f(x) were considered
by Gram-Charlier and Edgeworth, ([7}'_EELEE£:EE&1LWQThese estimates
are expressed in terms of the normal distribution function and its
derivatives as well as the central moments of the random variable.
However, in general, the estimates are unsatisfactory since we must
assume that the central moments of all orders are finite. 1In
addition, for pointwise convergence of the estimates we must assume
that fexp (i‘?—)dF(x) < », f(x) is of bounded variation on R and
X 1is a point of continuity of f(x).

For density functions not satisfying the assumptions required
for the Edgeworth series approximation, the first reasonable
estimates were expressed in terms of estimates of the distribution
function. For this reason, we shall now consider estimates of the
c.d.f. Given a random sample xl'xz""’xn' the following

function is a well known estimate of F(x), ([Ellmp&;ggliw

for all x &€ R, Pn(x) = %{number of xi < X where (0.2.1)

i=1,...,n}



Fn(x) enjoys the following properties:

Letting E{-} denote Mathematical Expectation, we have

E{Pn(x)} = F(x) for all x e R and n=1,2,... (0.2.2)

That is, Fn(x) is an unbiased estimate of F(x). ([6], p.123).
In addition to this desirable statistical property, Glivenko-
Cantelli have established the convergence property

supan(x)—F(x)l + O(a.e.) as n -+ oo, ([6], p.124).(0.2.3)
XER

From (0.1.1), we have that FI'(x)=f(x) (a.e.) and with (0.2.2)
and (0.2.3) it seems reasonable to consider an estimate of f£(x) of

the form

Fn (x+h)-Fn(x~h)
2h

fn(x) = (0.2.4)

In fact, (0.2.4) is the kind of estimator which Rosenblatt,
[23], first considered. He constructed a more general estimator
by proceeding as follows:

0
Let {Kn(u)}n=l be a sequence of functions with the properties
(a) Kn(u)zo for all ueR and n=1,2,...
(b) ‘SKn(u)du =1 for all n.

(c) for all € > 0, 1im5kn(u)du =1
n*o
lul<e

(o]
Corresponding to each sequence {Kn(u)}n_1 satisfying {(a),

‘(b) and (c) an estimator of the form



n
jElxn(x-xj)

Sie

tn(x) =

was proposed.

(0.2.5)

We shall now show that Rosenblatt's estimator (0.2.5) is a

generalization of the sample c.d.f. estimator (0.2.4).

that

1 u
Kn (u) = EK(K)

where h = h(n) + 0 as n -+ ® and gK(u)du =1,

If K(u) is defined by
%-if ]u|<l

K(u) = {
0 otherwise

Then

n

tnoo = & Ik (X,

n X-X .

e (—3y by(0.2.6)

=1
n 1h h

J

1 ; XXy
=;ﬁj=lK( o )

However, notice that by (0.2.7)

x-X, 1 x-X.
K(—1) = 5 if and only if |2 <1

if and only if x-h<Xj< x + h
Hence,

no.of xj € (x~h,x+h]

tnix) = ﬁ%{ > } by (0.2.7)

Suppose

(0.2.6)

(0.2.7)

(0.2.8)



- Fn(x+;;~Fn(x“h) by (0.2.1)

From (0.2.5), estimators with desired properties may be con-
structed by choosing suitable weighting functions Kn(u). Yor
example, if Kn(u) is continuous, then %n(x) is a continuous
estimate of f£(x).

With regard to the statistical properties of (0.2.5),

n

Lz -
E{= so1Kn xj)}

E{fn(y)}

i

E{Kn(y-X)}

L}

an (y-x) f£(x)dx
1f Kn(') is of the form (0.2.6), we have

E{%n (v} = j}((u) £ (y+hu)du

If £ is also continuous on the reals, it follows that f is
bounded and by the Lebesque Dominated Convergence Theorem we can
show that

lim E{En(y)} = £(y).
e
A o
Hence the sequence of estimates {fn(y)}n=l is asymptotically

unbiased. We would like to have

E{En(x)} = f{x) for every n=1,2,...

However, Rosenblatt has established that if a density function

satisfies relatively mild reqularity conditions such as continuity



or differentiability then
"There exists no unbiased estimates of the density function.”  [Al]

Although Rosenblatt was the first to publish estimates of the %
form (0.2.5), it was Parzen, [21], who presented the most referred to
discussion. It is difficult to ascertain who originally conceived’
this method of density estimation since the method is an application ?
of a technique which has been used in Time Series analysis for the
purpose of estimating the spectral density function.

We shall conclude the introduction with a brief description

of the three most popular techniques of density estimation.

0.3 _ Techniques for constructing an estimator

In 1962, Parzen [21], considered estimators of £(x) of the

n .
R x-X,
form fn(x) = ﬁ%-iEIK(—T;JQ which are a special case of the more

general classes of estimators defined by Rosenblatt. (0.2.8).
In 1965, Loftsgaarden and Quesenberry [17], introduced an

estimator of the form

k(n)-1 1
{ H }
2Ty (n) %)

decreasing sequence of positive integers such that k(n) + @

En(x) = where k(n) is a non-

as n -+ o, k(n) = 0(n}) and rk(n)(x) is a random distance

function.
In 1967, Schwartz [26], considered the case of a density

function which is square inteqgrable over the reals. Assuming

f(x) e LZ(R)' we have the representation

o0 0

f(x) = L a.@d (x) where {g.(x)}. is an orthonormal
(x) j=0 J¢J ) ¢J 3=0

subset of 'L2(R)
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and a,. =5¢j (2x)f (x)dx. We shall examine an estimator of the form

J
a(n) , n
%n(x) = & ; 4.(x) where ; <1 2z d.(x.)
4=0 "9n"5§ in n 17471

and q(n) is an integer dependent on n such that g(n) = o(n).



g e

CHAPTER 1 - THE KERNEL METHOD

RS

po g e e e

LLLL y RAUAE | # /
J

§1.1 Some Asymptotic Properties of Kernel Estimates

In the introduction, we motivated an estimator of the form

n X~-X.

tn(x) = x%-h & K D (1.1.1)

and remarked that (1.1.l1) is a generalization of the sample distri-
"~

bution function estimator. With f£fn(x) expressed as in (1.1.1) we

are made aware of a multitude of possible estimates of f(x). For

example,
hin) = n P for >0 satisfies the conditions
h(n) is a seguence of positive constants and

lim h =0
ngg (n)

Also the choice of K(*) is quite arbitrary. With these remarks
in mind, how should we choose K and h ? The following discussion
will establish that K should be a Borel measurable function.

Recall that {xi}i:l is a random sample. Therefore, if we

=X,
i

assume that K is a Borel function, then {K(~TT-Q}ifl is a sequence

of independent random variables identically distributed as a r.v.
K@Trﬂ.
Regarding {fn(x)}n‘f1 as a sequence of r.v., we shall now consider

~
some statistical properties which are desirable for f£n(x) to satisfy.
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9
Estimators are usually deemed *'good" if they satisfy some of the
following properties: !
(a) unbiasedness
(b) minimum variance
(c) consistency
(d) efficiency
(e) have a known and tractable distribution.

In addition to these statistical properties, if we regard
{%n(x)} as a sequence of functions defined on the reals, we can
consider modes of convergence of En(x) to £(x). For example,
pointwise convergence, convergenceé in probability and convergence in
mean,

If we wish %n(x) to satisfy some statistical or convergence
properties, this will force K and h to have properties in addition
to those stated. However, K and h will still be fairly general.

Conditions on K and h such that {%n(x)}nzl is asymptotically
unbiased are given in Parzen's Theorem (1.1.3) and its corollary as
follows :k

Theorem (1.1.3)

Suppose K(y) is a Borel function satisfying

sup |K(y)]< =, [kiphy < = and lim |yk(y)| = o.
YER y

Let g(y) satisfy J}g(Y)ldy < o,
Let h(n) satisfy (1.1.2). Define gn(x) as

Ak q(x-
gn(x) = l’x(n)j;((h(n))g(x ¥)dy
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Then at every point x of continuity of g(-),

[

lim gn(x) = g(x){K(y)dy
n+e

Proof

gn(x)=-g (x)jK(y)dy = h%n) jx(h();) ) g (x~y)dy-g (x) JK(y)dy

I y o) A (w) e v Y
“Mm}%‘mV“xY”Y“”HGTK%m)

- _JL, 4
j}g(x Y) g(x)}h(n) h(n))dy since the

indicated integrals exist.

Hence

- ~y) =g (X) o K (L
lgn(x)-g(x)Jk(y)ay! ijg(x ¥)-g () hrs K i ay |

flg(x-y) -9 00 |y IxGE lay
Letting 6 > 0 and splitting the region of integration into

ly}<8 ana |y|>6, we have

-y)- L |k olay = —y)- 1
ﬁ“xwgw”mml“mm*Ylq:xwgwnmm|“mm”®
Y

Slg(x =g 00 | [k [ay
|y|=

smaxlg(x-y)-g(x){ji%;jlx(ﬂ%%jdldy
y|<8
lyl <

{|g(x~y)|+|g(x)|}h(n)|K(h(n))|dy
|y 26

Let z= —X-—, then |y|<§ implies |z|srovr O and |y|28 implies

h(n)’ h(n}’

A



5 O
|zl

Therefore,

where the second integral follows since

Thus,

J]g(x-y)-g(x)[ (n)IK(h(n)

jlg(x-y)-g (x) I YY) |x( Y XL |ay <

11

)|dy =max|g(x-y)-g(x)| ||X(2)|az

|2| <8 |z l»h(n)

1 .
+f’9g“w iy % ek Loy
E h(n)

+loto | izl

ly|=8

(x-
Iy ! h(n)tK(h(n))ldy

|y 28

+fg(x)‘ﬁl<(2) |az

8
|zl 25y

|y|26 > 0.

maxlg, (g—y)-g (x) IflMZ) |dz
lyl<s

-l—'s%plzK(z) I]gy) IdY
)
+|g(x) Iﬁx(z)ldz

2 e
l I hn)
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O 1~

since |y|26 > 0 implies riT <

)

Upon letting n + ® and then § + 0 the result follows as we now show

. §
For a fixed § > 0, letting n » « implies h(n) - 0 and Ry

8

o) + © we have suplzK(z)l * 0.

8
23 (n)

Since lim|zK(z)|= 0 and
2> 0

Also we have Sflg(y)ldy < @

Thus for a fixed 6 > O, %-suplzK(z)lj[g(y)ldy +0 as n*®
$
*Hm)

Again for a fixed § > O,

lgx) | }|x(z)|az > 0 as n + ® since ‘I]K(z)ldz < @

Hbyey
Finally letting & -+ O, maxlg(x—y)—g(x)[f#(z)]dz + 0
ly|=
since g 1is continuous at x and the indicated integral is finite.
As a special case of theorem (1.1.3) if “;(y)dy = 1, then at

every point x of continuity of g(+¢), lim gn(x) = g(x). Hence,
. >

Corollary (1.1.4)

If lim h(n) = 0 where h(n) is a sequence of positive constants
n> o ’ :

and K(y) satisfies sup|K(y)|<», \|k(y)|dy < = , limjyk(y}]| = 0
YER yre
and ‘SK(y)dy =1 and if the probability density function f£(x) is

continuous at x, then

lim E{fn(x)} = £(x)
nrw
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Proof

For estimators of the form (1.1.1), we have

E{tn(x)} = E{%—x(l‘{!ﬁ)} (1.1.5)

oo

- 1 X~y
SK"(ETK‘hm))f‘Y’dy

-00

For fixed x, the transformation 2z = x-y gives

- 00

-~ 1 Z
E{fn(x)} = HTETK(ETET)f(x—Z)d(-z)

]

1 4
= K;TETK(KT;T)f(x—z)dz

-00

o0
Hence by theorem (1.1.3) and the fact that gK(z)dz =1
-00

lim E{fn(x)} = £(x)
Thus if K sgatisfies the conditions of the corollary, and if
f(x) is continuous at x, then estimates of the form (1.1.1) are
asymptotically unbiased.
We shall call K a weighting function if K is an even

function satisfying the conditions in (1.1.4). That is,

Definition (1.1.6) K(y) is a weighting function if
R(y)=K(-y), sup|K(y)| <=, Jlx(y)ldy < o
YER

jK(y)dy =1 and lim|yK(y)l = 0
, g

The standard normal density function is a weighting function. Other
weighting functions and their Fourier transforms, k(u), are displayed

in Table 1.



K(y)

%%-if 'ylsl

0 if |y|>1

l-lyl if Iy's‘l

0 if |y|>1

4 _ 2

F-evieslyl® g |y|<}

3,

-g- (1-lyh if —]2-'-g|y!sl
0 if y°1
L Lz2

(2m) 2e 2

_;_(;M

1, 2-1

F(l-&-y )

EJ#(sin(z/z)z
y/2

TABLE 1

H

k(u)-—gaiuyx(y)dy

sin u/u

sin(u/2) 2
u/2

sin(u/4) 4
u/4

1-|u} if
0 if

<1
>1

u
u

14

sz (y) dy=—2}T-r k2 (u) du

i
2

wiwn

.96

ji=

(21%)

| S o

The following remark about weighting functions will be useful

in subsequent sections of the chapter.

sup’K(y)l < © and
YER

for all & 20. [a2].

fll((y)’|dy < o implies [lK(y)Iz-Hsdy <o  (1.1.7)

We shall now investigate conditions for estimators of the form

(1.1.1) to be consistent.

Theorem (1.1.8)

If £(x) is continuous at x and {h(n)}nz

positive constants such that 1lim h(n) = 0, then

hagatd

As a preliminary result we have

is a sequence of
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lim nh Var(fn(x)) = f(x)}%?(y)dy

nre
Proof
From (1.1.1) Var(fn(x)) = %Var[%l-{((?-%}i)]
n
1 X-X,
since {EK(—T;JQ} are independent r.v. identically distributed

j=1

1l  x-X
as a r.v. EK(—F-)'
By the definition of Var(-+), we have
1l x-X 1, ,x~X, .2 2,1  x-X
Var[EK(—H*)] = E{[EK(—E—0] } -E {EK(—H~)}

Let gn*(x)

1l x-X 42
hE{[HK(T) 17}

1 2 x~-X
EE{K (~E-0}

1.2, %~
= (i‘-ﬁl)f (y)dy

and notice that gn* satisfies the conditions of theorem (1.1.3).

Since x 1is a point of continuity of £(x),

lim gn*(x) = f(x)sz(y)dy

»n—)co

However,

nH Var(fn(x)) = h Var[%l((z{-;—x)]

1l x-X. 4,2 2,1 x-X
h{E{[EK(_H-)] } -E {EK(—E—)}}

gn*(x)-hEz{%K(iiéé} by defn. of gn*(x)

gn*(x)-hEz{En(x)} since E{fn(x)}

1 x-X
= E{EK(—E—d}

Hence,



le

lim nh Var(£n(x)) = lim gn*(x) = lim hE>{fn(x)}
ne e n-eo

f(x{;;z(y)dy

where the first equality follows since the indicated limits exist

and are finite. We have the second equality by (1.1.4) and the fact

that 1lim h(n) = 0.
o

Corollary (1.1.9)

Let h(n) be a sequence of positive constants satisfying

lim h(n) = 0 and 1lim nh(n) = o, Ef_ £(x) ig_continuous EE. X,
e uasd n-»e

then
lim Var(%n(x) =0
nree
Proof
Var(%n(x)) - 1h Var {fn(x)) since n,h > 0

nh

{nh Var(fn(x))}

Observe that lim Var(fn(x)) = lim =

n-oo n-+co

The result then follows from the hypothesis and theorem (1.1.8).
As an immediate consequence of corollary (1.1.9) we can state
conditions under which the estimate f£n(x) is consistent in

quadratic mean in the sense that

lim E{|En(x)-£(x) |} = 0 (1.1.10)
nroo

We have
El|En(x)-£(x)|% = varn(x)) + b2[En(x)] (1.1.11)

where b[fn(x)] = E{En(x)} - £(x) is the bias of %n(x).
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Corollary (1.1.12) '

If lim h(n) = 0, lim nh(n) = »,, and x is a point of
ne e

continuity of f£f(x), then fn(x) is a consistent estimate of

in quadratic mean.

Proof

From (1.1.11), corollary (1.1.9) and corollary (1,1.4)

lim E{|En(x)-£(x) |2} = lim var (En(x))}
n»» n-»o

+ lim [E{En(x)} - f(X)]2

ne

=0

Recall that £n*f in quadratic mean implies frrf  in

probability. Therefore, at points of continuity of the density

£(x)

function, estimates of the form (l1.1.1) are consistent estimates

of f(x) in the sense that f*f  in probability.
For the following development, we shall assume
(a) gn(x) is of the form (1.1.1)
(b) K 1is a weighting function

(c) h satisfies 1lim h(n) = 0 and 1lim nh(n) = <,
n>® n->x

Theorem (1.1.13)

Under assumptions (a), (b) and (c), if x is a point of

continuity of £(x), then the sequence of estimates {fn(x)}n:l

is asymptotically normal as well as consistent.

Proof

x—
1 . _ 1 Xy
n kglvhk where V  S=———X(——=) and

First note fn(x) = nk hi{n) " ‘h(n)

n
{Vnk}k=l are independent r.v. identically distributed as a r.v
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v - K(lg:zo. Recall that {;n(x)} ® is asymptotically normal
n h(n) " "h(n) " 'n=1

if and only if

Lim P[En(xl-E{En(x)}

for all c € R, <cl = g (c)

o o(fn(x))
where § 1is the c.d.f. of the standard normal density function.
From Loéve ([16], p.316) a necessary and sufficient condition that

{fn(x)}A:l be asymptotically normal is that

v ~g{v_} 2

2 .
2. l2en} +0 as n->® (1.1.14)

for all € > 0, nP{|—m——
o(v )

See [A4].

A sufficient condition for (1.1.14) to hold is that

E{|v_~E{v_}| 248y
for some & > 0O, 3 + 0 as n =+ ® (1.1.15)
/72 2+8
n (o) [Vn]
see [A3].
We shall show that
2+
E{lvn-E{vn}l 6}
for all & > 0, lim 575373 = 0 (1.1.16)
me n’“g [Vn]

which with (1.1.14) establishes the theorem.

<o ]
Let {s(n)}n=1 and {t(n)}n- be two sequences of reals.

1
Recall that, we say

s{n)

tin) =1

s{n) ~ t(n) if and only if lim
. o0
For 8§ > 0, we have

24§ 1 x-y. 248
{|v_|**°) =ji-}; k(D | e yay

- 11 %5[1((?) 12+0¢ (y)ay)
h
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However, notice that IK(Eil)I2+6 satisfies the hypotheses of

1

theorem (1.1.3).

Therefore at every continuity point x of £,

lim {%Slx = 1% (yray} = £ (x)flx(y) 1204y
e '

We claim Sl—i{(—!)|2+6f(y)dy - ———a-f(x) Ix(y) | #*0ay

because
246
| | £(y)dy
lim {

10 —-—;Sf(x)fll(( )]2*"S

Jlx & | 248 . ay
lin { 2+6
1o f(x)le( )|

(f(x)J]K(y)]z’"s " lim {%—ﬁx(x—;l)lz"éf(y)dy}
n->ee

and we conclude

e{|v_ ‘2+6 h1+5 f(x)SlK(y)lz+5 (1.1.17)

We also have
£(x) 2
Var[Vn] ~ =5 51( (y)dy
which follows from

Var[Vn] =n Var[%n(x)]

_nh var[£n (x) ]
h




and ( >
h h £ (x)!K (v)ady
However,
lim Db Var[ £n(x) ] -

e f(x)SKz(y)dy no

That is,

£ 2
Var[Vn] ~ ﬁxi§; (yv)dy

nh Var[%n(x)])/ (f(x)ng(y)dy) _ nh Var[gn(x)]

1 by theorem (1.1.8)

20

(f(x)skz(y)dy)_l lim nh Var (fn(x)

(1.1.18)

The following properties of “~" are useful in finishing the proof

and in the succeeding material dealing with the Berry-Esseen bound.

(a) u(n) # 0 for all n and s(n) ~ t(n) implies u(n) s(n)

“ u(n) t(n)

(b) s(n) ~ t(n) implies (s(n))* ~ (t(n))T for all real r.

s_. (n)

sz(n)

{c) sl(n) ~ sz(n), tl(n) ~ tz(n) implies tl(n)

Since Vn‘: 0, observe that

" E{'Vn-E{Vn}lz+6} E{lvn|2+6}
<

Now by (1.1.18), (a) and (b),

dﬂ»

2+6 £(x) (.2 1
c [vn] ~ - ‘I% (y)dy)

Thereby, by (a), (¢), (1.1.17) and this equivalence

2+6} 2+6dy

1
{|v_| N hl+8f(x)}]K(y)|
“8/2&2+6[Vn] A&z(gﬁ§15§2(y)dy)l+6/2

tz(n)

(1.1.19)

(1.1.20)
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f(x)[JK(y)[2+5dy

(nh)é/z(f(x)sz(y)dy)

1+8/2

N

With the assumption nh + ® ag n - %, we have

§/2

(nh) +® a5 n>o for § > 0.

Thus by (1.1.20), for & > 0
248
(v |7}

lim ————————— =
a0 n6/202+6[vn]

and this with (1.1.19) gives (1.1.16) and proves the theoren.
A o«
Having established that the sequence of estimates {fn(x)}n=l

is asymptotically normal, it is naturél to ask "How quickly does the
approximating expression converge to its limiting form?" Some idea
of the closeness of the normal approximation can be obtained £rom
the Berry-Esseen bound. Following Loeve ([16], p.288) we have for a
suitable C in the reals,

3
E{Ivnl }

Fn (x) -E{fn(x)}
sup. | p{
1723

- cal - ¥a) | sc
a€R ofl£n(x)]

[vn]

~
since fn(x) is a sum of independent r.v. V identically distri-

nk

buted as the r.v. Vn and E{Ivn|3} < o,

Notice that

3
CE{Ivnl } 1 0 flx(y)l3dy

2%V ] (ng e 2 gfx2<y>dy>3/2

because if ¢ = 1 in (1.1.17) we obtain

(v ?} ~ el |k | ay (1.1.21)
n hz .
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°3[Vn] = (oz[vn])3/2 - ‘féﬁ)Skz(y)dy)3/2 (1.1.22)

(1.1.21), (1.1.22) and (b) give the result.

§1.2 Uniform Consistency of Kernel Estimates

We shall now investigate conditions under which the sequence
of estimates {’f\n(x)}n:l converges uniformly in probability to
f(x). In this case, if the mode is unique we are able to obtain
consistent estimates of the mode.

~ @
Recall that {fn(x)}n&l is said to converge uniformly in

probability to £(x) if

for all € > 0, lim P[sup |fn(0)-£(x)] < €] =1
n->e ' XER

Let K(y) be a weighting function (1.1.6) and k(u) its Fourier
transform.

That 1is,
k (u) =5e-iuyl<(y)dy (1.2.1)
Notice that if K(y) is even, then k(u) is even.
If we assume k(u) is absolutely integrable, then ([6], p.143)
1 .
K(y) = 57 exp (iuy)k (u)du (1.2.2)
and K(y) is uniformly continuous in vy.

Let ¢n(u) = }exp(iux)dFn{x)

iux
18 k be the sample characteristic function.

Ny

s

Y
" nk

From these comments, we have
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~ N x-x
fn(x) = 6h) LK
-1 ; X ~% i .
= (nh) k=lK( " ) since K is even
1 op 1 Xy "%
= (nh) kﬁlaaj;xp[iu( T )k (u)du by (1.2.2)
h iux
1 -1 -jiux k
= -Z-T-Fy(nh) exp ( R ) kElexp( 5 Yk (u) du

1§ ~1 -iux
27 exp ( h

E

)¢n(%)k(u)du by defn. of #n(-)

-zl'ﬁjexp(-iux)k(hu)ﬁn (u)du with change of variable

Since k(hujgn(u) is the characteristic function of fn(x) we can

write

En(x) = -51'1'7' exp(-iux);égn(x) (u)du (1.2.3)

Theorem 1.2.4

If {h(n)}n:l satisfies lim h(n) = 0 and lim nh’(n) = ®
e e

and if f(x) is uniformly continuous, then for all € > 0O

lim Plsup|En(x)-£(x)] < €] = 1"
e YER

Proof
Since convergence of fn+f  in the mean implies convergence of
fm>f  in probability, it suffices to show that

172

1im £/ %{sup|nx)-£(x) |} = 0 (1.2.5)

n->oe

From Corollary (1.1.4) we know that

lin |E{fn(x)} - £(x)| = 0

nre
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and since £(x) 1is uniformly continuous, it follows that
lim sup|E{fn(x)}~£(x)| = 0
> XgR
Therefore, (1.2.5) will follow by the triangle inequality if we can

show that

lim El/z{suplgn(x)-g{ﬁn(x)}]} =0 (1.2.6)
e XER

From (1.2.3) and Fubini's Theorem, we have

B{gn(x)} = E{

-;Fgexp (~iux)k (hu)gn (u)du}

[}

f%’éxp(-iux)k(hu)E{¢n(u)}au

Hence for all x € R,

[£n ) -E{fnx)}| < f%-|exp(-iux)|lk(hu)|l¢n(u)—E{¢n(u)}|du

< 54|k (o) | [gn (w -E{gn () }|au
since |exp(—iux)l =1

sup'gn(x)-E{En(x)}f < é%-|k(hu)l‘¢n(u)-E{¢n(u)}|du
XER

from which we obtain

sup|En () -E{En ()} | % < (-%r{lk(hu) | |80 (w)=E{gn (w)} | du) 2
XER

1 2
< ——Ej}k(hu)|2|¢n(u)—E{¢n(u)}| du
4T
by the Cauchy-Schwarz Inequality.
Hence,

El/z{supl'fn x)-E{n(x)}} < a}ﬁ—glk(hu) Isl/z{ | #n (u)-E{gn (u) }| %}au
XER .

by Fubini's Theorem.
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Applying Minkowski's inequality, we obtain

EY2( | gn(w)-Elgnw 12 s Y2 (|gn |2} + 23 |e{gnw }] %)
< 28Y?(|gn)|?} since IE{¢n(u)H2

< El|gnw |}

Therefore,
El/2{sup[§n(x)-E{%n(x)}[2} < —Q%735|k(hu)|du
X€ER mn

zn
€ —=——\lk (v) |du
nl/zh

1/2h+o: as n =+ «

With the assumption nh2 + ©® ag n -+ % we have n
Hence,

lim El/z{suplgn(x)-E{En(x)}12} = 0
1o XER

from which (1.2.5) follows and the theorem is proved.

§1.3 Rates of Convergence of Kernel Estimates and Related Results

In sections 1.1 and 1.2 we considered the consistency properties
of estimates of the form (l1.1.1). By Corollary (1.1.12) if £(x)
is continuous at x, then En(x) is a consistent estimate of f£(x)

in quadratic mean in the sense that

lim E{|fn)-£x)|%} = o
nree
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A natural qﬁestion to ask is "How quickly does %n converge to
f in quadratic mean?" '
In order to partially answer this question and related questions,

we shall consider the results of Watson and Leadbetter. [32].

We shall estimate £(x) by estimates of the form
n

tao =3 SE1K, (%) (1.3.1)
which is the kind of estimator proposed by Rosenblatt (0.2.5).
However, we do not assume {Kn(u)}nzl is a sequence of weighting
functions. Rather we suppose that Kn(-) and f(x) rare square
integrable'over the reals.

Definition (1.3.2) For Kn('), f(x) € LZ(R) we define the Mean

Integrated Square Error (MISE), J , of the estimator fn(x) as

follows:

g = E{j(%n(x)-f(x))zdx}

x
Let {H(n)}n=1 be a sequence s.t. 1lim H(n) = %, then
. oo

Definition (1.3.3) The estimator fn(x) is integratedly consistent

of order H(n) if 1lim H(n)Jn =a# 0 and a € R.
N0

In the succeeding development, various types of estimators
will be discussed and their orders of integrated consistency invest-~
igated. One class of estimators we shall consider is estimators of
the Parzen type. (1.1.1). We shall see that the type of estimator
which is appropriate depends largely on the behaviour of the
characteristic function ¢f(t) of the probability density f(x)

for large t.
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Our criterion of a good estimate will be an estimate which
minimizes the MISE. Thus, we shall determine the functions Kh(')

in such a way that we minimize Jn.

For g(x) € Ll(R), let
¢g(t) =‘yexp(ixt)g(x)dx be the Fourier transform of g.

We shall now present some preliminary results with the following

objectives in mind:

(a) to express J, in terms of ¢fn(t) and ¢f(t),
(b) to express ¢%n(t) in terms of ¢K (t),

n

(c) to determine ¢K (t), and hence X (x), such that
. n
we minimize Jn.

From (1.3.2) and Parseval's Theorem [A5], we have

g = B{ {(En (0 -£ (x)) %ax} (1.3.3)

1 2
ETrE{ﬁ Bep (£)-8 (1) [at}
which is (a). For (b), recall that (1.2.3)

¢§n (t) = ¢n(t)¢Kn(t) (1.3.4)

where Bn(t) is the sample characteristic function.
From (1.3.3) and (1.3.4)

A 2
2ng_ = E{ﬁ¢n(t)¢xn(t)-¢f(t)| at} (1.3.5)

=5[n‘1|¢K ®]%a-{g 0% + |4, ()] (J1-g, (&)[%)at [a6)
n n
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and (1.3.5) is eguivalent to

1 n-1 2 ' n‘¢f(t)|2 2
ZTTJn=5('—'—"‘n o |¢f(t)| )(I;zsK (t)- 2} ydt (1.3.6)
n l+(n-l)l¢f(t)|

2 2
4_Sl¢f<t>| (1-|g ()|

S— at
1+(n-1) |8 (£) |

Since the integrands are real and non-negative ZﬂJn is

minimized if we choose K.n = Kn* in such a way that

nl¢f(t)|2

¢K (t) = > (1.3.7)
n 1+(n-1) |g_(t) |

Corresponding to this choice of ¢K (t), we have
n

l¢f(t)|2(1-|¢f(t)|2)
21y * = 5— at (1.3.8)
; l+(n—1)|¢f(t)|

Hence we have accomplished objective (c).

In order to discuss orders of integrated consistency, we show

K*(0) |¢f(t)|4 .
Jn* - ~ - 2.1? 3 at (1.3.9)
1+(n-1) |4 (0) |
K _*(0)
n 1
TR0

From (1.3.8),

2
L1 (’ ERC]
e (m-1) |8, (0| 2

4
| (t) |
£ at

L}

1
t o 2
l+(n-1)|¢f(t)|

and by the Inversion theorem,

1 .
Kn*(x) = ETS;xp(-ltx)¢Kh*(t)dt

Consequently,
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' 1
R *(0) = EES;Kn*(t)dt

1 ni¢f(t)!2
3= 5 at by (1.3,7)
1+(n-1) |g_(t) |

and

2
K_*(0) 1 }¢f(t)| o
" T men g 0|2

H]

Since l¢f(t)|2 <1

l6_(t]*
-3;(’ £ At S =t !¢f(t)|2dt

2")1+(n~1){¢f(t)12 27 (n-1)

However, S&¢f(t)izdt < ®, and therefore

1 2 1
Ty | e | 7ae = o

Hence, {(1.3.9) follows.

We give some examples to illustrate (1.3.7), (1.3.9) and a later

result (1.3.12)

Examgle

Suppose f{x) = {exp(—x) for xko' then ¢f(t) = (1-1’.t:)ml for teR

0 otherwise

Hence g (6)]% = (1+t)™Y and by (1.3.7)
nlg (0]
B, *(t) = 5
n 1+(n-1) {#_(t) |
___na+th7t
- 2,-1

1+(n-1) (1+t™)
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Thus by the Inversion theorem

1 , '
5;5?xp(~1tx)¢xn*(t)dt

o0
2{costx n(1+t2)-l
Ty -

l+(n-1)(l+t2) 1
1/2

Eir—exp(-lx]n

K *(x)
n

=3 dt

1/2)

i

Therefore, Kn*(O) =

From (1.3.9),

172

1 -
N o= o
and n Jn 5 O(n

Therefore, 1lim nl/2

n+eo

* =
Jn 1/2

Hence the estimator fh(x), formed by Kn*(x), is integratedly
consistent of order nl/z. This result is a special case of (1.3.12)

in which p = 1.

§1.3A Characteristic Functions Which Decrease Algebraically

We shall begin an investigation of orders of integrated con-
sistency of estimators whose characteristic functions decrease
algebraically.

Some preliminary definitions and examples.
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Definition (1.3.10) ¢f(t) decreases algebraically gg‘degreé p>0

if ;
lim |t|Plg ()] = cl/? 5 0
[t]>e

Example

In the previous example, we had ¢f(t) = (1--it)-'l for teR

Therefore, l¢f(t)| = (l+1:2)“l/2

Hence ¢f(t) decreases algebraically of degree 1 since

lim |t|]g (t)] = Lim [t] (14t2)"1/2
|t} [ £]>e
=1

The characteristic function of the Gamma density function

decreases algebraically whereas that of the normal density does not.
n

Definition (1.3.11) fn(x) = %-jglKn(x-Xj) has algebraic form if

¢

X (t) = h(Ant) where h 1is a bounded, even square integrable
n

function and An - 0 as n > %o,

Remark  This condition is equivalent to specifying that Kn(x)

be of the form

1, x
Kn(x) = K—k(x—) where ¢k(t) = h(t)
n ‘n
because Kn(x) = iLk(XEO if and only if
n n

g, (t) = ¢ (t)
K 1l x
n a <G
n n

= 8, A t)
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= h(A_t)
n

Example For the exponential density and its optimum weighting
function we have,

1/2

172
K *(x) = P--—:E—--exp(--lx'n / )
-1 -l
( 1/2) 1/2 )
Let An = n-'l/2 and k(x) = lexp( 'xl), then

1 X

* - -
Kn (x) E_R(P )
n n

In this section, our estimates are of the form

n
%n(x) = .ElKn(x-Xj)

J

Sl

Under the assumption, %n(x) has algebraic form, Kn(x-xj)

xX~X
= k(5D
n n
n 1 n 1 X-X,
== 7 _—
Hence, fn(x) n 351 X;k( An )

and this estimate is of the form considered by Parzen (1.1.1)
We shall now investigate the order of integrated consistency of

the optimum estimate.

Theorem (1.3.12)

Let ¢f(t) decrease algebraically of degree p > 1/2, C as

in (1.3.10) then Jn*, the minimum MISE satisfies,

1 1
1o Cr—
lim n 2PJ * o= 2p at

n>o n 2m 1+ltf2p
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Proof
From (1.3.9), )
2
TS o
Jn* = 3 5 dt - 0in ™)
1+(n-1) | (t) |
We first examine
2
lg.(t)]
Jn** = 5 dt
1+(n-1) | _(¢) |
Since ¢f(t) decreases algebraically of degree p > 1/2,
lim [t|p|¢f(t)| =ct/?5 0
[ t]se
It follows that
lim It'-2p|¢f(t)|-2 = ¢! and we conclude that
[£]>e
for all € > 0, there is a T such that
|t]2r implies ||t|°2pi¢f(t)|-2-c_l <eg
We have
1 1 7T 2
" g (1%
n Jn** = n 5 3 dt
A 1+(n—1)]¢f(t)|
1 2
l°§§ '¢f(t)*
+ n 5 dt
le]>T1+ (n-1) | (0) |
15
The second integral in the expression for n pJn** can be written as
1’51“ { at 2
n “P é = since |¢f(t)| >0 for €
lt] T(n—1)+l¢f(t)l ,

sufficiently small.
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1
1'55' dt

since
lt|>T(n-1)+[¢fkt)l 2(6)"%P|¢| %P

Then we can write n

lt|>r implies |t|® > o

Therefore,

T

1 1 2
P 1~ [g.(t) ]

n 2pJn** =n %p £

5 dt
~T1+(n-1) [ (©) |

1

j —

2p dt
|t|>T(n-1)+]¢f(t)_2'tl_ZPltlZp

+n

=i
1 2p dt

)(n—l)+lt‘2pc_

Upon adding n and its negative to this

1

expression and then regrouping we obtain

15 1-3L-f |8(e)]2

n 2PJn** =n P dat (1.3.13)

Sl (a1 g (0 ]2

L
+ 2p dt —
)(n—l)+|t| Pc
17T
l--2p dt
- n 2p.~1
-7 (n-1)+|t]c
1
l1-—
+n 2p 1 1 }dt

lef>r m-D+lg 0] 2 el P[] m1y+]e] e

' . 2
Consider the first term of (1.3.13). Since l¢f(t)| <1,

1
T 2 1-—
1 0] 2t 2p
n P 3 it s—————> 0 as n > >,
4T1+(n—1)|¢f(t)l (n~1) :

1 1

<
n~1

For the third term of (1.3.13), since C >0, 5T
(n-1)+|t] Pe
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1

1 l...———

l—T 2Tn" 2p
%p ( at +0 as n + %,

Hence n <
-0 (n-1+|t| Pt T i1

As for the second term of (1.3.13), we have

1 1
1 Lo le—
S at n 2P (n-1) “Pat
n ), - = 1 ‘
2p -] 1---:-* 2p -1
- - c
(n 1)+|t§ C (n=1) 2p } (n 1)+|t|
1 - 1
o 2"( me1) Par _ 1, P -y “Pat
= (- = ) .
n-1 /1+(n—1)"1|t|29c 1 'n=l . T "= 2p
2p 2p
1+} (n-1) “Ftc
1.1
letting s = (n-1) 2Pc %P¢, we have
1 1

ds = (n-1) “Pc %Pge

and the limits of integration are unchanged since C > 0 and

n-1>0 for n > 1.

Therefore, under the transformation,

17 2
)(n-1)+ lef et n-l }1+[s| ’p

Hence,

1

l -—

1-—-( 1o 2p
lim (n 501 = lim fl) Zpf C© gs
nrsco /(n-1)+|t| Pc™ e P )1+]s| P

1
- 2p ds
1+fs|2P

Finally for the fourth term of (1.3.13)

1
! 2p [ 1 .

[>T (-1)+]8, ) | 72| t] P[] (na1)+|e|%Pe

n _1]
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1 2p_-1 2 -2 (=2
1-5; ] “Pe™ -]t Pl¢f(t)' [t] P

d

1 2p; ~1_ : -2 -2p
1 ngltl fe7l-lgg 0|72 )

= dt
] X ’
1
l———- 2p ‘
<n ZT€|( i lﬁl( ;- dt  since |t|2T implies
ti{>T

I|¢f(t)|'zltl'29—c'1| <e

1-L

2p£' dat
|t|>T((n-1)|t]'29+|¢f(t)|'2|tl'2p)((n—1)+|t|29c'1)

=n

since lt'>T implies |t|2p>0

Now, |¢f(t)|2 continuous, ItI2P continuous implies that
|¢f(t)'2|t]2P is continuous.

Since lim |¢f(t)l2|t{2P=c, then ]¢f(t)|2 is bounded
e[+

That is, there is a B £ R such that
l¢f(t)l2|t|295B for all t € R

This bound with the fact that the integrand is non-negative gives

1-1
n 2p 1 - L lat
|£1>2 (m-1)+|g0) | 72[€] 72P[€] P (n-1y#|e| PP
L
< BEn Zif dt 55 1 since |tI>T implies
(n-1)+|t|“Pc

a
LS ((n-1)+|¢f(t)]'zltl'zpltlzp)((n-1)+|ttZPC'1)
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However, by the argument forlthé second term in (1.3.13) we have

that '
1
1 2p dt

<
(n-1)+|t| 2Pc2

and since € depends on T and is independent of n, we conclude
that the fourth term of (1.3.13) is arbitrarily small for sufficient
large T.

Hence, we conclude that

1-L. 1
lim {n 2PJn**} = C2P ——~§EE~
no l+ltl P
Recall from (1.3.9) that
K_*(0)
J * = A . O(n l)
n n
J * %
n -1
=5y ~ 07
Therefore,
1
j ——
* -3 -
n Jn T O(n )
Hence,
l'fL' 1 l'fL
1lim n Py * = lim == pJ *%
27T n
n-oo oo
L
2p
=& | dt which is (1.3.12)
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Discussion

)

The theorem shows that when ¢f(t) decreases algebraically of

degree p > 1/2, the estimate %n(x)‘ formed from Kn*(x), where

K * is defined in (1.3.7), is integratedly consistent of order

n . Recall that the estimate in terms of Kn* is gptimal in the
sense that the corresponding MISE, Jn*, is a minimum. However, in
practice, we would not be able to determine Kn* for Kn* is
expressed in terms of ¢f(t) and knowing ¢f(t) would enable us
to determine f directly by the Inversion theorem. Hence, we are
forced to look at classes of estimates formed from suitably chosen
Kn. Such a class of estimates is the estimates of algebraic form
as defined in (1.3.11).

We have considered the consistency properties of the optimum
estimate in (1.3.12). Let us now look at the consistency properties
of an estimate of algebraic form and compare its properties with

those of the optimum estimate.

Consistency Properties of an Estimate of Algebraic Type

Theorem (1.3.13)

Let f£n(x) be an estimate of algebraic type and ¢f(t)

decrease algebraically of degree p > 1/2. If gltl_zp(l—h(t))zdt

exists (where ¢K () = h(Ant)) and if An = Dn 2p (where D > 0),
n . - -

1

 —

2p~-1
then n 2“?’.:rx +(21D) J'jhz(t)dt + SP‘Z"FJHFZP(l-h(t)Zdt as n >
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where J = is the MISE corresponding to K.  and llai.m [¢f(t)|2|t|2p = C.
t |0

)

Proof

Since %n(x) is an estimate of algebraic type, ¢K (t) = h(Ant)
n
where h(t) is a bounded, even square integrable function and

An + 0 as n »> «, From (1.3.6)
-1 2 2 2 2
my = S{n |¢Kn(t)l (1-lg % + |g.(0)] (11-¢Kn(t)l ) lat

and we have

f

2
|¢K (t)|

n

2
Iha t)]

h(A t)h(A t)
n n

h(Ant)h(-Ant)

(]

hz(Ant) since h 1is even.

Also [i_¢K-(t)[2

|1-h(a_t) ]2
n n

= (l--h(Ant))2 since h is even.

Hence,
1 1
5 “2p{ 2 2
2 Py = n Phéa t) a-|g,. ()] Hat (1.3.14)
n n £
1--1

+n Plig )| 21-ha ) lae

For the first term of (1.3.14)
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1 1
n 29}2 (A t) (1-|g. (v) [%)at =n 2pjh2 (a_t)dt (1.3.15)

1

‘ 2pf, 2 2

-n 5; (Ant)‘¢f(t)i dat
1

Under the transformation u = Ant = Dn 2pt we have

n 2p§h2 (a_t)at = D"lfh2 (u) du

1/2

and noting h(t) bounded implies |h(t)|~_<_BI/2 for some B £ R

implies |h(t)|2sB

implies h2(t)SB since h 1is even

Therefore,
L L
n 2pgh2 (Ant)|¢f(t)|2dts n 2p39¢f(t)|2dt where the

integral is finite.

Hence,
-1
0 slimn 29’112(;\ t) g, (6) | 2at
11300 n £
1

< lim n 2P |¢f(t)l2dt
n-»ee

0 since p > 0.

That is,
1

1m0 Plhia og, ) ]%at = o
100 v n £

Therefore, from (1.3.15) and the above we conclude that
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-1
Lin n Ple’@_6) -|g, 0 [Pt = D-ljhz (u)du (1.3.16)

n-»oo

For the second term in (1.3.14), let

1
l...—.
130 Plg @] a-ne ) et

We shall show

1= CD-ljltl—ZP(lwh(t))zdt ¥ D-lﬁtl-zp(l—h(t))z [1a.3.17)
1

1 2p 2
where [ ] = [{n1/2l¢f(n Lol tPY - oo®Plat

This follows since

1
j
1=n P\g @)]*{a-na_t)’lat
2
1-—-2—1~(I¢f(t)|2[t[ p{(l-h(Ant))z}
= n p) dt since a Lebesque
€%
Integral
L 1

-1 2y - 2

1120700 | 2|01 P (1-h )2} . A
2p £ -1 2p
1 D n"Fdu
-1 2p 2
ID ln2pu[ P
where u = A t
1
=D Pt
n
1

-1 2 -1 42

-1 (]¢f(D L Pu)|2|p 10| ?P{ (1-h (u))?} 'g;
=D "n du since n“P # 0

} 'D—lul2p
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1
-1 o5 2 2 .
_1(}n1/2'¢f(D lnzpu)llu]p} (1-h(u)) D 2p
=D ) 15 du
D" ul
l .
~1 2p 2 -
_fg([{nl/21¢f(D 15220y | Ju|P -cp?P] (1-h () 20" ZPec (1-h () %)
=D du
’D—lu|2p
1
B 2 -
'1j11'h(u))2 _l‘t{nl/2|¢f(D anPu)llulP} -cp?P] (1-h (w)) %p" %P
=CDh }———3>—4du +
-1 |2p j 2p_-2p
ID ul 'ul D

1
- 2 2 5= 2
- %P (l—h(;)) au + D-ljll:higll_{{nl/2‘¢f(D—ln2pu)|'ulp} -c0?P] au
Ju]“® u] P

which is (1.3.17)

We shall now show the second integral in the expression for I

is arbitrarily small. The second integral may be written

2pH (1-h(m))? LT 2, 25, P
pP -—‘~E—“~[ g_( n“Pu)|°Ip " n“Pu] -clau
'u!2p f
Define
1 1

_ 2 1 5= 15— 2p

gnlu) = ilThfgél‘ll¢f(D 2P0 1207 %] c| if u# o0
u

=0 if u=0;

2
Then [gn(u)| <(B+C) (E?Ef%%l~ since |¢f(t)l2|t|2353
u
(1-h (u)) > 1-h(u)) >
However, ———-—%—-— integrable implies (B+C)i——~—%-—~
[u| P la] P

is integrable.

du
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Also since ¢f(t) decreases algebraically of degree p > 0 and

L '
D—l 2p

t = n “u, then

lim gn(u) = 0
n-ee

Thus by the L.D.C.T., the second integral is arbitrarily small. In
view of (1.3.14), (1.3.16), (1.3.17) and this fact we have established

theorem (1.3.13).
Discussion

This theorem shows that if En(x) is an estimate of algebraic form

and ¢f(t) decreases algebraically of degree p > 1/2, then J ,

the MISE corresponding to fn(x), is integratedly consistent of

1L

2 .
order n “P. 1t may seem surprising that the orders of integrated

consistency for the optimum estimate and an estimate of algebraic
form are the same. lHowever, this result is a consequence of our
choice of A =D 2P in the theorem.

In the applications, theorem {1.3.13) means if we assume

¢f(t) decreases algebraically of degree p > 1/2 and we construct

an estimate of algebraic type which satisfies the properties

(a) J]tl_zp(l-h(t))zdt exists where g, (t) = h(a t)
n

and h is a bounded, even square integrable

function, and
1

(b) A =p 2P
n n
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In terms of Kn(x), we choose h{t) such that

l,,x »
Kn(x) = K;k(X;) where ¢k(t) = h(t)

and h(t) satisfies (a). 1Including (b) we obtain

- l 1 X t
Kn(x) = 13( 1) as the form of K/'s to choose.

However, notice that h,k and Kn are quite arbitrary. In case
we do not know p precisely, if we choose 1/2 < r < p we have

Theorem (1.3.18)

Let fn(x) be an estimate of algebraic type, and ¢f(t)

decrease algebraically of degree p > 1/2, Assume

1

-2p 2 . T2r

€] " (1-h(t))“at exists. If 1/2<r <p and A =D,
1
15

Proof

As in (1.3.14) and (1.3.15),

1 1
1 ——— -
l— 2r 2r
2r.  _ 2 2 n 2 2
n =5 Sh (A t) (-8 (e) [)ae + ——2—-1?-5|¢f(t)| (1-h(a t))“at
L
-1 2r
_D 2 _h 2 2
= Syhpwat -—-—-2“jh (a_t) g (t)] at
1
l'-21:

+

n 2 2
—-E—ﬂ-—jlyéf(t)l (1-h(a_t))“dt

1 r-p 4 1

since n 2F = n%P%, 2P
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L L
1o -1 2r
2r D 2 n 2 2
= e - t
n T3 = SEht et - S Jh @ )|¢f(t)| at
1
o 2P 2 2
pr  n _
+ 0 5I¢f(t)! (1-h(a_t))“at}
Now 1lim n§:§-= 0 since 1/2 < r < p and
o <P
L
. n 2 2 .
lim h™ (A t)|¢ (t)|“at = 0 since r > 0 and the
e 2T n £

integral is finite.

1--1
7p 2p-l( ey 2
also lim 2——\jg_(0) | -n(a ) ar = E—15 2ED ¢ which
w2 ) 1e®
is finite. Hence,
1'2i 14.2
lim n rJn = ==\n“(t)at
n—)OO
L
Hence, if we choose 1/2 < r < p, An = Dn 2r and Kn(x)
so that ]t[-ZP(l-h(t))zdt exists, our estimator fn(x) will
1l
1>
be integratedly consistent of order n .

Existence of an Estimator of Algebraic Form with the Asymptotic

Optimum Property

If ¢f(t)

decreases algebraically of degree p >

1/2, we

can construct an estimator of algebraic form with the asymptotic

optimum property as follows:

(a) Choose K (x) such that h(t) = (1+|t|29)-l
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(b) Choose A such that A =D ZP.
n -y n n

Now h(t) is a bounded, even integrable function and recall that h
bounded and integrable implies that h is square integrable.
Also notice that

(1—-h(t))2= 1¢]%P 1
1£]%P 14|¢| P 1+|1:|2p

1

< = since ltlzp z 0.
1+]t]|“P

Hence, Sltl_ZP(l—h(t))zdt exists.

By theorem (1.3.13),

1
loem 2
2pJn - jhz(t)dt + S5 ZP'lj_.__L(l‘h ;L—) at

oo 21mD 21 N D
2p—l 2p ‘
= 2;D(’ : 55 5 9t + CDzn ( | ¢] 553 dt by choice of h(t).
)] ] ®) JFERNES)
2p~1, 12p
- l( dt . l(CD |t at

ZTTD)(l_'_It‘Zp)Z 2m:) (1+ltl2p)2

1 {1+CDZP"l|tJ %p
2nD) L+ €] 2p,2

1

Choosing D = C 2p where lim |¢f(t)|2!tlzp = C > 0 we have
|t [>=

dt

i
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1 1

"% %
limn J =-C.E"-.._‘li°_.2_. ' (1.3.18)
el n 1+(t| P

which is (1.3.12).

This construction is extremely important in the applications.
For in the practical situation we can not determine the functions
Kn*(x) which give rise to a minimum MISE Jn*. However, by the

construction, if ¢f(t) decreases algebraically of degree p 1/2,

1..

our estimator fn(x) is integratedly consistent of order n

Sy

and moreover satisfies the asymptotic optimum property.

Therefore, if the asymptotic efficiency is defined as
J *
. n
1

in [J
o T n

}, choosing h and A as above we have

1+

Jn* n 2pJn*

lim [3-—] lim [""'T“']
n*e n n*e e
2p

[}

since limits exist and

e " LWL
limnn %P3 #o0
1o n

=1 by (1.3.12) and (1.3.18)

In the following section we shall consider classes of estimates
for those densities whose characteristic functions decrease exponent-
ially. For such densities we shall define estimates ef exponential
form. As in the previous section we shall investigate consistency

properties of the following:
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(a) the optimum estimate
(b) an estimate of exponential type

Also we shall exhibit the construction of an estimate of

exponential type with the asymptotic optimum property.

§1.3B Characteristic Functions Which Decrease Exponentially

Definition 1.3.19 ¢f(t) is said to decrease exponentially of

coefficient p > 0
if |¢f(t){sAe—p’t[ for some constant A and all t.(1.3.19a)

1

and 1lim g(l+ezpvl¢f(vt)|2)-ldt =0 (1.3.19b)
{0

0
Example
wpnrrailp————

If f(x) = (Tr(1+x2))_1 for x in the reals, then ¢f(t)==e-'tl

for t € R
Hence

lg_e)] = e'Itl and p=A=1,
£

In addition,

i¢f(Vt)12 - e"letl
= e“2Vt for v,t 2 0.
Therefore,
1 1
1 1
ii:-£1+e20v’¢f(t)|2 ae = iig 01+e2pve-2.vt ae
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1
1
= lim\———m————— dt sgince p =1
v*”51+e2ve vt
0
1
= flim e qt by the L.D.C.T. (1 is a dominating function)
2v(1l-t)
oV 1+e
1

0 since 1lim it = 0 except when t = 1.

v lte
-1t : s
Thus ¢f(t) = e decreases exponentially of coefficient 1.
Of course, the characteristic function of the normal density

function decreases exponentially.

Definition 1.3.20 An estimate Zn(x) formed from Kn(x) is said

to have exponential form if ¢K (t) = h(Aneulth where An-+ 0 as
n

n~+®, ¢g>0, and h is bounded and square integrable.

Remark hz(Ané1’t|) is real valued since

2 (S
|8 (£)]7 = 8, ()8, (£
n n n

il

¢K (t:)réK (-t)
n n

na & thna e“l"t')
n n

h2(A eultl)
n
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Consistency Properties of the Optimum Estimate

Theorem (1.3.21)

Let ¢f(t) decrease exponentially of coefficient p. Then

Jn*, the minimum MJSE, satisgﬁes

lim ey ¥ = o
oo log n'n 21p

Proof

First we show

|8 0)] 20l t]
lim > dt - —spTeT 9t = © (1.3.22)
w1+ (n-1) B (1) ] 1+(n-1)e <P

because
2
80| 20!l
| 5 dt - =0 at|
1+(n-1) |g_(t) | 1+ (n-1)e <P
((|¢ 0 |2-"20l el ‘
= at
)(1+(n-1)|¢f(t)| ) (1+ (n-1ye~2P 1 tly
7 -2t
< 2(A2+1)§e at £ dt

o(l+(n-l)|¢f(t)|2)(1+(n-l)e_20 )

log(n-1) )
20 -2pt -2pt
2 e dt Jf e dt
= 2(A +1 A, 1. ——
(a+1) jr TN ()
0 log(n-1)

from (1.3.19a) and the fact that [¢f(t)|2 and e-ZDIt' are

even functions.




Denote the first integral by 1I

Then I, =

1

Under the transformation,

(n-1) |4 (t) |2

Hence,

<

=

i

and the second by I

1l 2°
log(n—l) )
Iz o] e-zpteZQtdt
(1+(n-1) | (£) %) (*P%4 (n-1)
0
log(n-1)
2p
1 S at
n-1 1+(n-1) | (01 |2
0
t = vs where v = EE%éE:ll we
(n-l)|¢f(vs)|2
elog(n_l)]gff(vs)[2 since © > 0 impl
6 =

exp(zelegég:ll)[¢f(vs)|2 since p > 0

ezDV‘¢f(VS)‘2 by definition of v,

log(n-1)

_ log(n-1)

(%
n-1

0

dt
1+(n-1) |g (0) |

1

~ 2p(n-1)

As n=+ o, vy

2p

j ds
1462V g £ (vs)
0

I2

log(n-1) , and we have

51

since

e2pt

have

ies

elog@



0 < 1lim Il < lim {

e e 20

1 log(n-1) ds
N 2pv

ds

|¢ (vs)l

20

1
o n®

L}

Thus 1lim Il = 0
n-roo

Dealing with 12,
[+

12 < exp(=-2pt)dt
log(n-1)
2p

-t
~ 2p(n-1)

Hence 1lim 12 = 0 and we have (1.3.22)
nrco

However, letting z = 1+(n-—1)e"2pt we have

.-20(t|

t=.].'..
Y

log Zzoel @

1+(n-1l)e

and by (1.3.22) and (1.3.23), it follows that

|8, (t) |2
1 dt =
°q "1+ (n- 1)|¢f<t)|

But by (1.3.9),

K *(0) -1

* et ————
Jn = = Oo(n ™)

© |

1+e2pv

2.l
l¢f(vs)l

since |¢f(t)|232 0 and exp(-2pt) > 0,

52

0 since the indicated limits are zero (1.3.19b)

(1.3.23)

(1.3.24)
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K_* (0) (I¢ (t)!2
n 1 £
where Y =3 5 ,dt
,/1+(n—1)|¢f(t)|

So by (1.3.24) and (1.3.9),

L *, 1

log n “n p 28 ™ + © which is (1.3.21).

if ¢f(t) decreases exponentially of coefficient p, then Jn*

is integratedly consistent of order . However, in the

n
log n
practical situation, we are concerned with the consistency properties
of estimates of a particular form. In the following discussion, we

shall deal with estimates of exponential type.

Consistency Properties of Estimates of Exponential Type

Let %n(x) be an estimate of exponential type. That is,

5 (t) = na 2t
K n

n

where h is bounded and square integrable.

In addition, suppose h(t) satisfies
J1-ner| s B Je] for ] <1 (1.3.25)

Theorem (1.3.26)

Let ¢f(t) decrease exponentially of coefficient p > 0 and

let fn(x) be an estimate of exponential type such that h(t)

satisfies (1.3.25). Let An = Dn-b for b > 1/2 and o < 2pb.

Then the I corresponding to £n(x) satisfies

. n _12b
:‘;: {log n Jn} N 21T(0t)
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To prove the theorem we establish two lemmas:

'

Lemma 1

Under the above conditions,

(=]

2
1 h*(t)
lim { at} = b (1.3.27)
n log n g N t

D

Proof

log n t log n t log n}] t

D D 1
n n

1 2
1 SQE 1 Il-h(t)dt_'_l no(t) o
-b -b

The first term is b - log D, b as n =+ o,
log n

o0

Hence the lemma will follow if we can show that ‘St-lhz(t)dt < ©
1

The finiteness of the integral follows since

h square integrable implies ‘f£2(t)dt < © which in turn implies

oo

jhz(t)dt <w®, But for t 21, t Th(t) £ h2(t)
1

(=]
Consequently, gt-lhz(t)dt < ® and we have lemma 1.
1

Lemma 2

Under the conditions of the theorem,
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n 2 2
lim =——\|g_(t) |“(1-g_ (£))“at = 0 (1.3.28)
log n f Kn \

Proof

Since £n(x) is an estimate of exponential type,

8 (&) =na 2l

> i = 0. 1 A = Dn
K where Q 0 and 1lim An 0 Also "

n <o
where b > 1/2.

5 “bolt]
n

Letting x

=D -beat
n

for t 20 we have

[}

n 2 2 2n 2 2
Tog n |8 (£)] " Q=g (t))7at = I;g——n{héf(t)‘ (1-¢, (t))7at

n A n
o
b 2 2
_ __2n 1. n (1-h(x))
" log n |¢f(a1°g(7;X))l ox dx
o ~b
n
1l
— a%ex [:3910 (EEx)]B 2% ax
log n Pl 9 D la
-b
n
[+ ]
20 1,20 1720000 By Jam) 2
log n P o 9 D ax

1

For the following reasons:

(a) by (1.3.1%a), |¢f(t)'5Ae—pIt' implies |¢f(t)I2$:A2e"2p't|

2 -
e 2pt

= A gince t = O.




(b) by (1.3.25), for |[x|s=1,

(©) | (1~h(x))?|

A

in

= (1+B)2

The conditions o < 2pb and b > 1/2

which gives us (1.3.28).

Proof of (1.3.26)

a-hex)?, B
b OX ox 1

since x ZDn— >0

| 1-2h (x) +h° (x) |
2
1+2|h(x) |+|h” (%) |

1+2B+B2 since h is bounded

imply both terms tend to 0

From (1.3.5) and the fact that gn(x) is an estimate of

exponential type we have

n 1

27 J = h2(Dn_bea‘tl)dt -

lognn log n)

n

+ log n N

but
@
1 2, -b ot 2 2
h =
log n (Dn e ydt log n h (Dn
0
©
- 2
log n
~b

D
n

~b

1
log n

2, -balt] 2
h“ e ThH|g (t) ] at

2 2
lg. )] “Q1-g, (t))7at

eat)dt since h is even implies

2 .,
h is even

hz(x)gi- under the transformations
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[+ +]
and by lemma 1, lim {5 1 h (X)) gy} =1
e 109 D
D
n

1
log n

2 -b aft] _2b
h*( e yat} = 5

Hence, lim {
o

1 (.2  ~-balt] 2., _ . .
Tog nSh (Dn e )|¢f(t)| dt} = 0 since h is bounded

Also, 1lim {
s

and ‘S|¢f(t)|2dt is finite.

By lemma 2,
2 2
1im {=——\|g_(&)]|“(1-¢_ (£))%at} = o
. log n}'"'f K.n
. n _1.,2b
Therefore, lim {log n‘Jn} = 2“(7;)

n¥>o
Remark

We have that any estimate fn(x) of exponential type is

integratedly consistent of order provided h satisfies

n
log n
(1.3.25)., Contrast this with estimators of algebraic type, where
we had to choose h satisfying ‘Sjtluzp(l-h(t))zdt is finite.

(1.3.13).
For the applications, we need

An Estimator of Exponential Type with the Asymptotic Optimum Property

If ¢f(t) decreases exponentially ofycoefficienﬁ o, let

gn(x) be an estimate of exponential type such that h(t) satisfies
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(1.3.25). Let An=nn‘b for b > 1/2 and o S 2pb, then by

(1.3.26)
n _1.2b
lim {ISE—;'Jn} = EF(EF).

nHeo

Hence, if we choose b > 1/2 such that b satisfies o = 2pb,

D__ 7} =z which is the

(0. and p are known), then lim Tog 1 ’n 3P

nroee
optimum property (1.3.21).
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CHAPTER 2 - THE L AND Q METHOD

Loftsgaarden and Quesenberry, [17], proposed an alternative
method of estimating a density function whibh is fundamentally
different from the Kernel method. We shall present the L and Q
method for a one dimensional random variable X, extend the
presentation for a p~dimensional random variable and then discuss

similarities and differences of the Kernel and L and Q techniques.

§2.1 The Estimates for a One Dimensional Random Variable

We wish to estimate £ at a point 2z where £ is positive
and continuous. Since £ is continuous at 2z, F'(z) = f£(z).
That is,

lim F(z+h)-F(z-h) = g(z) (2.1.1)
h*0 2h

Let P be the {unique) probability measure corresponding to the

c.d.f, F{x).
Then F(z+h)-F(z-h) = P{(z~h,z+h]}
= P{[z—h,z+h]}‘since F is continuous.

Define the closed sphere of radius h with centre =z as
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i

sh,z = {xeRr||x-z|<h}

i

[ z=h,z+h]

Letting A denote Lebesque measure, we have

i

A(sh,z) = X ([z-h,z+h])

= 2h

Consequently (2.1.1) becomes

p{sh,z} _ i

lim = f(z) (2.1.2)

>0 A(sh,z)
The L and Q technique is to estimate P{Sh,z}=F(z+h)-F(z-h)
as follows:

o] .
Let {k(n)}n=1 be a non-decreasing sequence of positive

integers such that

lim k(n) = and k(n) = o(n) {(2.1.3)
o

Having k(n) and a random sample Xl,xz,...,xn we define

hk(n)(z) as the distance from 2z to the k(n)th closest

xi where i = 1,2,...,n.

Letting S denote the sphere of radius hk(n)(z)

e (my) B0 2

~
about 2z we shall estimate f(z) by £n(z) where

En(z)i{k(ﬁ)-l 13 1 ’ (2.1.4)
hk(n)‘Z)'z



6l

- (k-1 1

n 2hk(n)(2) '

§2.2 Extension for a p Dimensional Random Variable

The previous discussion extends immediately to the case
where we have a p dimensional random variable X = (Xl'xz""'xp)
with absolutely continuous c¢.d.f. F(xl,xz,...,xp) and density

function f(xl,x ,...,xp). We shall make the notational conven-

2

tions
X = (xl,xz,...,xp) and z = (zl,zz,...,zp)

and we shall estimate £(z) at a point 2z ¢ RP  where £(z)

is positive and continuous.

P 2,1/2
Let d(x,z) = (I (xi-zi) ) and as before define
i=1

sh,z = {xeRP|d(x,z)<h}

Letting A denote Lebesque measure in RF, we have

P/opP
21
A(sh,z) = ~———— where T is the gamma function.
pl(p/.)
2
[}
With {k(n)}n=l and hk(n)(Z) as previously defined
A - 1
fn(z) = (ER17L

s
noo ol B ) () 02)

- {k(n)-l}, pl"(p/Z) }
n Y P
2w 2(hk(n)(z”-
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§2.3 Comparison of the Kernel and L and Q Methods

The Kernel technique tacitly assumed £(x) = 0, for x
under consideration, whereas L and Q state f£(x) > 0. In addition,
L and Q assume that f is continuous at a point x when estimating
£(x). Similarly, Parzen assumed that f is continuous at a point
x for such properties as asymptotic unbiasedness, consistency and
asymptotic normality.

We can elucidate further differences by considering the form
of the estimators. Recall that a Kernel estimator is of the form

- x-X.
fn (x)

i
= T ]

) (2.3.1)

i

1. Xy
= K( o }y dFn(y)

where the distance h = h{n}) and h 1is not a random variable.
Contragt this with L and Q estimator (2.1.4) where the distance
h is a function of k(n} (hence n), the point 2z and observe
that h is a random variable.
From (2.3.1), we could say Kernel estimators are sample
c.d.f. oriented whereas L and Q estimators are distance oriented.
We shall now consider some properties of L and @ estimators.

Let %n(z) be as in (2.1.4). The L and Q basic result is

Theorem

If f is positive and continuous at 2z, then f£n(z) is

a consistent estimate of flz).
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As Moore énd Henrichon, [18], have observed there is a basic
error in the proof of this result. For this reason, we shall
(a) present Moore and Henrichon's results

(b) indicate a valid proof of the L and Q theorem.

Let rk(n)(Z) denote the distance from 2z Eg_the k(n)th observa-

tion.
The L and Q estimator is

k(n)"l}{ 1

£n(z) = {
2r
k(n)

}
(z)

Moore and Henrichon have introduced a step function approximation

fn*(z) for fn(z) as follows:

L . » i i
et xl,nsxz,ns g,xn n be the order statistics

’
corresponding to xl'xz""'xn' Then

0 if z<X1 n or zzxn n

fn*(z) = {A y !
4 s 4

fn(ki'n) if Xi'ﬂsz Xi+l,n where

i=1,2,...n-1.

For uniform consistency of the estimates

Theorem (2.3.2)

If £(z) is uniformly continuous and positive on (-,®)

and k(n) is chosen such that log n = o(k(n)) and k(n) = o(n),

then for all e > 0,

lim p{supﬂ%n(z)-f(z)ln} =0 (2.3.3)
n+o ZER

and
lim pP{sup|fn*(z)~£(z)|>€} = 0 (2.3.4)

e ZER
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Subsequently, we shall write

fr*>£(UP), uniformly in probability, for (2.3.3) and

aﬂ+a(P) for convergence in probability.

Proof

Let U (z) = F(z+r (2))

k (n) X (n) (z))-l-"(z-rk

(n)
The proof consists of showing that

(z) » 1 (UP) (2.3.5)

{———1}

n
K(n)-1° ’k (n)
from which we shall obtain

Uk(n)(z) + 0 (up)

and rk(n)(z) + 0 (Up)

Uk(n)
Tk (n)

and + £ (UP)

To obtain (2.3.5), recall that by definition of rk(n)(z)

the interval [z-r (z) ,2+r (z)] contains exactly k(n)

k(n) k(n)

observations one of which is an endpoint of the interval. Without

loss of generality, suppose Xq n is the lower end point. That

(z)

qen k(n)
n
Since F is a c.d.f. and {x _} are order statistics,
p.,n p=1
we have F(xl,n) <. . 'SF(Xq,n) <. . .SF (xq+j ,n) P g‘(xq+k(n) ,n) <

...sF(Xn n) where 3 =1,...,k(n).

r

. However, since X = zZ-r 2 we have
’ q,n k(n)( ),
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(z)sF (X )-F(X_ )

gq+k(n) ,n q,n

(z)sF (X

)-F (X )sU

F(Xq+k(n)-1,n q,n k{n)

because F(X )SF (z+r )

a+k{(n)-1,n k(n) g+k(n) ,n

However,
k{n)-1

)-F(X_ )= L {Frx_.. )-F(X_.. )}

F(Xq+k(n)-1,n q.,n j=1 q+j,n “g+j-1,n

and
k(n)

)-F(X_ ) {rx )~F (X )}

F(X
( q+k(n) 24} gqg.,n J=1 q+jln q+j—1'n

with the conventions F(Xo,n) = 0 and F(Xn+1,n) =1
Therefore,
k(n)-1 k(n)
j§1 {F(xq+j’n)—-F(Xq+j_l’n)}s Uy () ) sj;z-.l {F(Xq_'_j’n) (2.3.6)
-F(Xq+j*1,n)}
from which we obtain
k(n)-1
D sh Py P& s G Y @ (2.3.7)
k(n)
< {ETﬁ%'I' (P P )

It is known that the random variables F(xl,n)’F(Xz n)-F(xl’n),

’

oo B (X )-F(X },1-F(X_ )} have the same joint distribution

n,n n-1,n"’ n,n
Y b 4 Y
as the random variables S'l '3 2 ,...,sn+1 where Yl’Yz""’Y +1
n+l Sn+l n+l n

are independent exponential random variables with mean 1 and

Sy = Y HY gt HY (111, p.78).
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Hence, if we can show that

i+k (n)
1 T j ;
max | o 2 e -1] > 0(P) (2.3.8)
Odsn-k(n)+1 K@) =i+l =lg

n+l

Then the upper and lower bounds for { 1 (z) in (2.3.7)

~2__Ju
k(n)~1" "k(n)
will converge to 1 (UP). [A7]. This in turn will imply that

n
{;TET:I} Uk(n)(z) + 1 (UP).

Thus we shall now establish (2.3.8).
Since the Yj's are independent, identically distributed

random variables with mean 1,

n-lsn+1 + 1l(p) by the strong law of large numbers.

Therefore (2.3.8) will follow if we show that

i+k(n)
1 bX
5T 3=ie1 ¥ -1| +~ 0 (up)

Let € > 0 be arbitrary and define P as

i+k(n)
= ; z -
Pn = P{for some i, ]j=i+1 (Yj 1)l>k(n)e}
i+k(n)
- : L -
P{for some i, sei41 (Yj 1)>k(n)e} +
i+k (n)
. ¥ - _
P{for some i, =i+l (Yj 1)<-k (n)e}
n  i+k(n) n itk(n)
< £ p{ I (v.-1p>k(m)el+ Zpl I (v.-1)<-k(n)e}
i=l  §=i+l 3 i=1 =i+l

We establish a bound for the first term by using the fact that

if X is any r.v. such that E{etx} <© and t > 0,
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Then p{x>0} = E{e™X}, ([16], p.158)..
itk (n) '
. - P 1Yo . tx <
Letting X =i+l (Yj 1l)-k(n)e and noting that E(e ) < &

since the Yj's are exponential random variables, we obtain

i+k (n)

P {j=§+1 (¥;-1)>k (n)e} < Elexp (£ (¥ -kn)-kin)e))}

it

exp(-k(n)t-k(n)et)E{exp(tEYj)}
_ {e-t(l+€)}k(n){E{etY}}k(n) since Yj's

are i.i.4. r.v.

e—t(l+€) k(n)

= < <
{(Fg7 for 0<t<1
since E{e™} = (1-t)! for 0 < t<1
Differentiating (l-t)“l e_t(1+€), we have

t min = l--(l+t‘:)”1 from which we obtain

e~t min (1+€)

= (l+e)e %€
1-t min
<(1+e)e
and we conclude that
i+k(n)
P{j=§+l (Yj~1)>k(n)s} s{(1+eye B3R ™
€ =-k(n)
- 8
= {a(e)} k@
€
where a(g) = £_>1 if e>0.

1+
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A similar bound exists for each term of the second sum in

(2.3.9) !
Namely,
i+k{(n)
p{ I (v.-L)<-k(ne} s {(1-g)e"r*®
J=i+l
= {(1-e) L 6y K ()

it

{b(s)}—k(n)

1

where b(g) = (1-g) "¢ ®>1 if € > 0.

Let c¢(e} = min(a(e),b(e)) for € > 0, then from (2.3.9) and the

above bounds we conclude that

P S 2n{c(s)}'k‘n’ where c(€) > 1 if € > 0.
However,
anfe(e)} k™) o 20 Ty
{c(e)}
log n
2e

= ek(n)log c(e)

- 2{elog n-k (n) log c(s)}

Since c¢(€) > 1, log c(e) > 0 and recalling that log n = o(k(n))

we conclude that
log n~k(n)log c(e) + ~*® as n > ®,
Therefore, lim Pn =0

N>

Thus (2.3.8) follows and hence (2.3.5).
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With (2,3.5) we easily obtain

Uk(n)(z) + 0 (UP) (2.3.5a)
and
rk(n)(z) -+ 0 (UP) (2.3.5b)

(2.3.52) is immediate. We shall show (2.3.5b).

That rk(n)(z) + 0 (UP) is almost obvious.

For suppose that rk(n)(z) is bounded away from zero in probability.

Then recalling that f is everywhere positive and continuous it

would follow that uk(n)(Z) is bounded away from zero in probability

which contradicts U (z) = 0 (UP).

k(n)
Uk(n)
For (2.3.3) we need that CT + £(UP). This result follows
k{(n)
since
Uk(n)(Z) F(z+rk(n)(z))-F(z-rk(n)(Z))

[-1£(2) =] TS -£(2) |

| X
2Ty (my (B k(n)
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Z+r (z) z+r (z)

k(n) k(n)
1 1
|—-—--——-—g £(t)dt - -»—--—-—-—-5 £ (z)at|
2rk(n) (z) Zrk(n) (2) )
k(n)

z—rk(n)(z) Z=Y

z+rk(n)(z)
— [£(£)-£ () Jat|

2rk(n)

(z)

Z-x (z)

k(n)
z2+r (z)
n

k (n)

1

smax |£(t)-£(z)| 55— g ldt |
te[z-rk(n)(z),z+rk(n)(z)] k (n) -

z-rk (n)

=  max [£(t)-£(2) |
te[z-rk(n)(z),Z+rk(n)(z)]

If |t-z| = (2) is sufficiently small, we have |f(t)-£f(z)|

“k (n)
arbitrarily small. Note that r, .~ + O(UP) implies | t-z|

is sufficiently small (UP) and this with the fact that £ is
uniformly continuous on the reals implies that If(t)-f(z)l is

arbitrarily small.

Hence,

Y (n)

+ £(0P).
Zrk(n)

~

We shall now show (2.3.3). From the definition of fn(z), we

obtain

~ 1 )_l 1
|En(z)-£(z) | = |{&BL1y } - £(2)]
n 2rk(n)(Z)
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1 u (z)
= | — —) (B - £(2)|
T % m 2 k@
From (2.3.5) we have that {ETET:I}ﬁk(n)(z) -+ 1(UP) and we have
Uk( )(z)
just shown that 5;“2‘_72) + f(z) (UP). Hence we conclude that
k(n)

Fn(z) » £(2) (UP).

The argument for (2.3.4) is quite similar to that for (2.3.3)
and for this reason it will not be discussed. However, f£n*(z)
is important in the estimation problem since fn* is easy to
compute.

We shall conclude Chapter 2 with the following remark:

(a) the argument used to show (2.3.3) is a valid
argument for the L and Q theorem.
1/2

(b) choosing k(n) near n appears to give

"good" estimates of f(z2).
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CHAPTER 3 - SERIES ESTIMATORS

The series technique of density estimation was conceived by
Cencov [5], and independently by Schwartz [26]. A basic assumption
we shall make is that f(x) € LZ(R)' For example, bouﬁded density
functions are square integrable over the reals.

Recall that with an inner product (,): L2(R) X LZ(R) + R

which is defined by

(£,9) =Jg¥(x)g(x)dx for f,g € L2(R)

L,(R) is a Hilbert space. ([12], p.235).

2
X
The Hermite functions ¢j(x) = (ij!ﬂl/z)-l/ze 2Hj(x)
j x2 d5 -x2 th
where H,(x) = (-1)7e* Sd_(e ) for j=0,1,2,... is the j

3 dxj

Hermite polynomial constitute a complete orthonormal set in Lz(R).

([12], p.416).

Let = {¢j(x)lj=0,1,...}
Since ¢ is an orthonormal subset of L2(R),

The following properties are equivalent ([12], p.245).

(a) the set ¢ is complete
o0

(b) for all £ ¢ LZ(R)’ f = jEOaj¢ (x) where aj = (f,¢j)

j

(c) for all f e L_(R) ||f]|2 = (f,f) = T la,|?
2 4 4 j=0 j
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One may wonder, why we shall use the Hermite functions
rather than the more familiar trigon&metric functions as our ortho-
normal set. The reason is simple. The trigonometric functions
are not square integrable over the reals., However, for function
spaces whose elements are defined on compact subsets of R, the
trigonometric functions are extremely usefui in approximating.
Kronmal and Tarter, [13], have discussed the estimation.of density
functions which have support on compact subsets of R making
extensive use of the trigonometric functions. For more arbitrary
densities, they have devised a truncation procedure.

Proceeding with Schwartz's results,

Since f£(x) € L2(R) we have

£(x) = L a. g, (x) where a, = \f(x)g. (x)dx (3.1.1)
j=0 3 3 3 j
As an estimate of f(x), Schwartz proposed
. g(n)
=% 2
fn(x) 3=0 ajn¢j(x) where (3.1.2)
A l g

and g(n) is a sequence of positive integers such that g(n)=0(n)

and g(n) +® as n -+ o

(3.1.2) and (3.1.3) are obvious estimates because assuming

£(x) € LZ(R) we have (3.1.1) where only aj is dependent upon
f. Therefore our problem is reduced to estimating the Fourier

coefficients aj.
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Notice that ajn is an unbiased estimate of aj since
A 1 n
E{ajn} = iglE{R’j (Xi)}
= E{¢j (x)}

il

S¢j (w)f (x)dax
= a,
]

Just ag in the case of Kernel estimators our criterion of a good

estimate will be a consistent estimate.

To discuss consistency of estimates of the form (3.1.2) in

terms of  MSE = lim E{ (fn(x)-£(x))?}
n—)m

and MISE = lim E{j}%n(x)—f(x))zdx} we need
1n-rco

Lemma 1

Let £(x) 95 continuous, of bounded variation, Ll and L2
[e ]

in (=o,®) then jgoaj¢j(x) converges uniformly to f(x) in any

interval interior to (-»,®). (See [24], section 4.10)

To discuss rates of convergence for the MSE and MISE we need

Lemma 2

Assume f'(x) exists and that (xf(x)~f'(x)) € Lz(R) then

aj,j=l,2,... satisfy

3 .
]aj[<733737§ vhere C, is the L, norm of (3.1.4)

(xf(x)~£'{x))
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Proof
. = VE(x)d. d '
aJ 5 x)¢3(x) >4

X
- ff(x) (23410t/2y"1/2, 2 H, (x)ax

2

The Hermite polynomials satisfy the following recursive relation

4 .
&ty (00) = 20G4DH G0 ([12], p.244)

. -1 -
Therefore, (2(j+1)) de+1(x) Hj(X)dx

j+1

Hence, 5
.
-1 3,172 =172 2
aj = (2(3+;)) £(x) (273177 %) e de+l(x)
X
Letting u = f(x)e 2 and dr = (2(j+1))-l(zjj!wl/z)“l/de
We have
2
X
du = (£'(x)-x£(x))e ZAx
and r = (2(5+1)) Y @352 V% ()
j+1
Integrating by parts, we obtain
x2 o
_ 2., -1, _5,.,.1/2 =1/2
aj = [f(x)e (2(3+1)) ~(275!m"") HJ'+1(X)]-°°
2
N (2j+2)-l/2j(xf(x)-f'(x))e 2 (234 (441)1 1727172

The first term in the expression for a, is O since

3

Hj+l(x) is a polynomial of degree j+1 and £ is bounded.

Hence with the definition of ¢j+1(x), we have that

Hj+l(x)dx
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3 = (2j+2>“1/2f(xf(x)-f' (%)), (x)dx

1

Since (xf(x)-f'(x)) € L2(R), by the Schwarz inequality

2] = (2j+z)'1/2(§(xf<x)—f' (x)) 2ax) 1/2 (jgsjfl (x)ax) /2
= (2j+2)—1/2l|(xf(x)-f'(x)]l*]. gsince § 1is orthonormal
C
< ~——§73- where C, z || (x£(x)-£" (x)) ]
(23
Lemma 3 5 5 r .
5— . -= r-i
assume e (e %) - (2o e 12 %p (2 SVZ & (s
—_— axt /

exists and is square integrable over the reals. Then aj,j=1,2,...

satisfy
C3(r)
Ia.l < , where C (x) is the L_ norm of
3 @ep¥™r T 3 i
2 2
X, X
e 29 (e 25w
r
Proof

By repeated application of the method of Lemma 2.

Remark The standard normal density function satisfies the hypotheses

of the lemmas.
cramér ([9], p.208) has established the following bound for

the Hermite functions:

C
|¢ (x)l = C, where C. (hence C2) is indepen= {3.1.6)

ﬂl/2 2 1

dent of x and j.
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Theorem (3.1.7)

Assume f(x) is square integrable and that the sequence of

positive integers q(n) is chosen such that q(n)=o(n). Then the

sequence of estimates defined by (3.1.2) and (3.1.3) is consistent

in the sense of MISE. Furthermore, if f(x) _satisfies the hypotheses
- X

of lemma 3 with r 22, then with q(n) = O(n’) the MISE satisfies

E{jfgn(x)-f(x))zdx} = 0(—=p)
T

Proof
Since § is an orthonormal subset of L2(R), by the Pytha-

gorean theorem

[ Enx)-£ 0 | | =] | fq(m) G0-£0) || 2] |0 ) -£q(n) () | |2 (3.1.8)

gq(n)
where for x € R fq(n) (x) = jéo aj¢j(x)

q(n)
but I'fn(x) fq(n)(x)]l =0 (ajn--'aj)2 by definition of fn(x)
and fg(n) (x)
e}
and ||fq(n)- f(x)ll = ~q(n)+1 since ¢ is orthonormal

Hence from (3.1.8),

a(n) 5

(a,_=-a.) (3.1.9)
J

= 2, %
llfn(x) f(x)ll -q(n)+l 3 *5=0 jn

and therefore,

E{| |£n(x)-£ (x) | | %) E{j}%n(x)—f(x))zdx} (3.1.10)

o0 q(n)

2 2
..q(n)+lﬂ + Z E{ (aj "aj) }




We may obtain a bound for the second term on the right hand side of

(3.1.10) as follows: !

since Ef{a. } = a, we have that
m J

A 2 ~
E{(ajn~aj) } VAR(ajn)

2

~ 2
E{a.’} - a.
n ]

However,
2 1.1 I
(@) =;2—{k=1¢J (xk)+k k2=1¢j (xKl)¢j(xK)
k) # k,
Therefore
L 7
E{(S n2y) }——E{ 2x.)+ B X, Vg (X )}-a.2
n k= l K kl,kz-l j Kl 3j K2 j
k) # Xk,
n

1 2 T 2
S;E{nc + E(¢j(XK ))E(¢j(XK N} a

2 kyrky=l 1 2

k) # k,

78

by (3.1.6)

and the independence of the r.v.

n
W22 Tk k=% 3
k) # k,

=—l{nc 2+n(n-1)a 2}-a.2
n2 2 3 3

=4L{nc 2, I 4 2}-a 2 since E{¢j(X)}=aj

]

I
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Hence,

~ oy . C2 ~-a,
El(a, ~a,)}s =1 (3.1.11)
jn 73 n

Q)
N
N

4
n 4 2 3j

From (3.1.10) and (3.1.11)

() = £ () 2 ) 2, g(n)+l
E{S(fn(x) B faxt <. ady o (3.1.12)

Since f£(x) € LZ(R) and g(n)=o(n), we have

1im E{ {(En(x)~£(x))2ax} = 0

n—-x

o]
Thus, the sequence of estimates {%n(x)}n_l is consistent in MISE.

To establish the rate of convergence as in (3.1.7), assume f£(x)

satisfies the hypotheies of lemma 3 with r 2 2 and choose ¢(n)

such that gq(n) = 0(n%).

Then,
ey o 2 N 2 q(n)+1 .
E{ (fn(x)-f(x)) dx}squ(n)+laj +2"H——" ¢, by (3.1.12)
2
et C, (x)
3 qn)+l
Sj=q(§)+l 7 + o C4 by lemma 3,
(23)
C, (r)
3
la, |
J (2j)r/2
=]
2 T 1 q(n)+1
C3 (r) j=q(n)+1 M n C4

©

2 +

sC;(r)j 9—:— + S,.SI%__l_ C4 since r 2 2 implies
X

the series converges we can use

the Integral test.
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2
~ C3 (r)

2" (r-l)qr-

g(n)+1
Tt a4
1
nC 2(r) r
Let g{(n) be the largest integer less than or equal to (-—-é-—-—)
4

Then for each n there is a &(n) such that 0 < 8(n) < 1 and
2 1
nC3 (r) )-f'

€4
1

nc () T
Hence, q(n) = (--E—-—-—-) - §(n)
4

g(n)+8(n) = (

Therefore,
2
N C (r) C
E[j(fn (x)-f (x))zdx}< 3 + (q+l)--4—
r r-1 n
2 (r-1l)gq
2.

C3 (r)

+
r nC32(r) 1/x r-1
27 (r-1)] (—“-C-———) -8 (n)]

4
4 nC32 (r) 1/x
A (-*é-;-*"—) -8 (n)+1}

C

=K1(r)

4

- since 0 £8(n) <1
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L r-1
oF
Kl(r)[ TC l/r] > 1 as n =+
r ( )
n-
C3 (r)

Hence the first term is Of i—l)
r
n

Clearly the other terms are O i-l) and we have (3.1.7).

r
n

For consistency in Mean Square, more conditions are reguired

on the density function and the sequence q(n). Specifically,

Theorem (3.1.13)

——

Assume f(x) 1is continuous, of bounded variation, Ll and

2
L2 in (-»,»). Choose q(n) such that 2_%2L.+ 0 as n >,

Then the sequence of estimates defined by (3.1.2) and (3.1.3)

converges in Mean Square, uniformly in x .  Furthermore, assume

f(x) satisfies the hypotheses of lemma 3 with r2z 3.
1

Then with g(n) = 0(n¥) the mean square error satisfies

1
r~2

Y
n

e{ (2 (x)~£(x)) 2} = 0(—m)

Proof

As in the preceding theorem, for x € R define
q(n)
fq(n) (x) = £ a.g (x) and notice that
q =0 3¢3()
q(n)
E{fnx)} = E{ .22 4. (x)
(Ene} = (L) 4, g, 000}

9
ol

!
#

#

il
[
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q(n)
= o0 E{ajn}¢j(x)'
q(n)
= jEO aj¢j(x) since ajn is an unbiased estimate
of a,
J
= fg(n) (x)

That is, fn(x) is an unbiased estimate of fg(n) (x).

Therefore, E{(%n(x)-f(x))z} (3.1.14)

=E{[ (n(x)~£q (n) (x)+ (£q(n) (x)=£ (x))]°}
=E{(%n(x)-fq(n)(x))2+2(fn(x)-fq(n)(x))(fq(n)(x))+(fq(n)(x)~f(x))2}

=E{(?n(x)—fq(n)(x))2}+2(fq(n)(x)—f(x))E{(En(X)—fq(n)(X))}+
£{ (£q(n) (x)~£ (x))°}

=£{ (Fn (x) ~fq (n) (x)) °}+ (£q(n) () ~£(x))% since E{fn(x)} = faq(n) (x)

For the first term,

E{ (3n (x)~£q (n) (x)) %}
q(n) q(n)
“E{ E A . x)-L a.g.(x))3)
j=0 "jn"j j=0 7373
a(n)
- Lo 2
=E {(j_o (3 208, ) )
q(n) g(n)

I 2,2 r -~ -
..E{j=o (ajn aj) ¢j (x)+j’k=0(ajn—aj)(akn-ak)¢j(x)¢k(x)}

j#k
q(n) q_(n)
=L BB, —a)B4.2 0+, b EB{(a, -a.) (3 _-a)}g. ()4 (x)
j=o Bt18yn7a5) U8y 0y o By mag) (g ma ) id; (g

i#k
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By the Schwarz inequality,

1/2

) A _ A 2 ~ 2
IE{(ajn—aj)(akn—ak)}l = (E{(a;n-a)"h (E{ (2, -a,)})

and by (3.1.11),
c
~ 2 4
- € e
E{(ajn aj) } =

while by (3.1.6),

|¢j(x)| < C, where C, is independent of x and

2

Therefore,

A C
E{ (£n (x)-£q(n) (x))°} s (am+1ic,

C
2 274
= {q(n)+l) C2 e

and from (3.1.14),

) 2
el (Fn(x)-£(x)) %} s (ﬁq(n)(x)-f(X))2+szc4iﬂ!p;+l)

‘ 2
Letting gq(n) + @ in such a way that 5-£21-¢ 0, we have

2 2 2
(gn)+1)" 0 because A+l g (n) g 1
n n n n n

C
274 274
=+ (q(n)+l)q(n)C2 ry

172

je

(3.1.15)

2
and g~£ﬂl-¢ 0 implies Eiﬂl.* 0 which in turn implies that

n1/2

aln) 0 since aln) gqln) .
n n n1/2

Hence from (3.1.15) and lemma 1

lim E{(En(x)—f(x))z} = 0 uniformly in x.
o
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For the rate of convergence we assume the conditions of lemma 3

with r 23.
Consider the first term in (3.1.15)
o q(n)
| £(x)=£q(n) (x)]| = l 0255 (x)- a ¢j(x)(

@©

= t -q(n)+1 j (x)!

o0
SJ'q+l| 2384 00 !

oo

<, j=q+l!aj| since |¢j(x)| < C, for all

x and all 4j=0,1,...

(-]
C2C3 (r) b 1

2r/2 j=q+l ;;75 by lemma 3,
C,(r)
3
la,] < ~=———r
3 (zj)r/Z

]

C.C.(x) ax
<,
=53 /3 by the Integral test

=q
C {r)
r’z(- -1y £
Therefore, from (3.1.15)
c C (r) 2
A 2 2 "3 2. (g(n)+l)
E{ (£n(x)~£ (x)) °} s ——=— r_2 +¢,%c, Ao (3.1.16)

2r(-— 1)

Finally, to obtain (3.1.13), let gq(n) be the largest integer less

!

fi
L
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2 1
(r—2)C3 (r)n ¢
than or equal to ( p— ) . Then for each n there is a
2F@ e

4

8§ (n) such that
1

(z=2)C.%(z)n T

0<d8(n) <1 and gn)+8(n) = ¢ 3 5—)  from which
2PN ¢
2, L 4
(r—2)C3 {(r)n r
g(n) = ( 5 -8(n)
-1
227 ¢
4 ' fl

With this choice of g(n) in (3.1.16), we obtain i
fl

Fn (x) - 2 1 i
E{ (fn(x)-£(x))“} (r—2)C32(r)n Z 2 |
( T 5 ) ~8(n)+1) l
g Kl(;) : _, c,’c, G-, |
(r=2)C," (x)n /x r= n
[ ) 8]
r{=-1)
2772 C4 )
(r—2)C32(r)n 1/c 2
2 [t r 2 ) + 1]
< Kl(r)Kz(r) . C2 C4 2r(-2—-1) C4 o
nce
1 _ r(_r__ 1)2 1lr-2 n
?-S(n) 272 C4 r
[n ——]
(r-2)C3 (x) 05 §(n) <1
1/
-2
K, (x}) < x (r)n K
3 > rR@mE T 2 2
1 r(£-1) 1/r r-2 4 n n n
- 272 C4
b ——s= ]
(r—2)C3 (r)
1

o 2) as in the previous theorem.

—————

r
n



Hence,

2{ (En(x)-£ (x)) 2} = of

n

1

r-

m—

r

2

)
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CHAPTER 4 - COMPARISONS AND APPLICATIONS

4.1 Comparisons

In 2.3 we have compared the Kernel and.L and O techniques in
terms of the form of the estimators and the motivation for the
form of the estimators. In this section, we shall compare the
Kernel and Series methods.

From a computational point of view, the Series estimator is
better than the Kernel estimator since the Series estimator is
easier to update. That is, suppose we have a second group of
observations and wish to construct an estimator using the new
observations as well as our first set of observations. In the
Series method, we would have to compute new coefficients ;jn which

~
can be expressed in terms of the old coefficients ajn and the new

observations. However, if we had constructed a Kernel estimate of

n n x~-X.
the form f£n(x) = ﬁ%-jglK(—E—l) an increase in the sample size

would usually change our choice of h and we would have to compute
a new estimate using all of the observations since in general a
recursive relationship does not exist.

An apparent disadvantage of the Series method is the possibility
of negative estimates of the density function over non-degenerate
subsets of R . However, Anderson [1], and Kronmal and Tarter, [13],
have stated that in practice this situation does not arise. In the

‘Kernel method the possibility does not arise since the weighting
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functions are chosen to be non-negative.
Kernel estimators generaily enjoy better convergence properties
as we shall now illustrate. TFollowing Watson and Leadbetter theorem
(1.3.12) for f£f(x) ¢ LZ(R)’ if ¢f(t) decreases alagebraically of

degree p > 1/2, then

22-1
2p n >
lim[n E{S}fn(x)-f(x)) dx}] = a where a€R and a # 0
nroe
That is, E{ }|(£n(x) £ (x))2ax} = O (i)
' 22-1
n 2P

For the Series method to obtain the same rate of convergence

wezwould neeg to require that the density satisfies
b

e 24 3 {e 2f(x)] exists and is square integrable where
ax“P
2p 22 (Lemma 3, p.76). (4.1.1)

A sufficient condition for (4.1.1) is that the functions

. J2p~i
xl(g-ii:z{f(x)]) exist and be integrable for i = 0,1,...,2p.(4.1.2)
dx

Thus for the Series method to achieve the same rate of con-
vergence as the XKernel method in MISE we have to assume that the
density function satisfies the differentiability and integrability
properties in (4.1.2).

We shall now consider consistency in MSE. Suppose the Kernel K
satisfies xiK(x)dx =0 for i=1,2,...,r-1 (4.1.3)
mdjfk&ﬂ&<m.'

If f(x) satisfies ltr¢f(t)Idt <o

and 4g(n) 1is chosen such that ¢g(n) = O(n 2r+1), then

(4.1.4)
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_.2r
2r+y

E{ Bn(x)-£(x))%} = o(n 2"y ([21], pp.1072-1074).

Note that property (4.1.4) implies fr(x) exists.

For example, suppose r = 3 and f3(x) exists. If we choose
K S%Fisfying (4.1.3) and h(n) = O(n-7) then E{(fn(x)-f(x))2}=
O(n-i;. Whereas, in the Series method, with r = 3 and assuming
that £ (x),x£2(x),x2F" (x) ,x°£(x) € L (R) then by choosing
qfn) = O(n_l/3) we have E{(%n(x)-f(x))z}==0(n-l/3). (Theorem 3.1.3).

Thus for r = 3, and the appropriate assumptions, the Kernel
method estimator achieves a rate of convergence in MSE which is more
than twice as fast as the Series estimator.

As Schwartz [26], has observed, it is in the estimation of
a Multivariate density function that the Series method may prove to
be most advantageous. For in the Series method, the rate of con-
vergence in the sense of MSE or MISE is dependent upon the
differentiability properties of the density and is independent of
the dimension of the density which we are estimating.

However, for the multivariate Kernel estimator, the rate of
convergence is dependent upon the dimension of the density being

estimated. As a matter of fact, the rate of convergence decreases

with increasing dimension. [4].

4.2 Applications

The estimation of density functions has been applied to the
testing of hypotheses [27] and to problems of classification [29].

Schwartz [27] has considered the following problem:
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Suppose we have a single observation of a r.v. X and we wish

to decide between the following simple hypotheses:

HO: X has d.€f. fO(X)

le X has d.f. fl(x)

with apriori probabilities ﬂo and “l = luﬂo respectively.
With a suitable test function T = T(fo,fl) and a criterion we can

decide whether to accept or reject H

0

Schwartz considered the case where the density functions are
unknown but the apriori probabilities are known. Assuming that the
unknown density functions are square integrable over the reals, he
estimated the densities by the methods of Chapter 3. A test

"~

function T = T(f

O'Tl) was then defined in terms of the estimated
densities. In order to test the hypotheses, he used the criterion
in the case where the densities are known.

Van Ryzin, [29], considered a similar problem. However, his
results are more general in that the random sample is of arbitrary
size and the apriori probabilities as well as the density functions
are estimated. In addition, Van Ryzin is concerned with the

consistency properties of the classification procedure rather than

with just the consistency properties of the density estimates.
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CHAPTER 5 - GENERALIZATIONS AND FURTHER RESULTS

In this section, we shall discuss some results which are

generalizations of the Kernel and Series methods. However, our

‘main purpose is to summarize some recent results which are helpful--

\N e ™
in applying the techniques of density estimation.

Murthy [19], has generalized Parzen's results to the case

where the c.d.f. is of the form
F(x)=Fl(x)+F2(X)

where Fl(x) is everywhere continuous and Fz(x) is a pure step
function with steps of magnitude SV at X, V= 1,2,... . We
are assuming that F3(x), the singular component of F(x) is

identically zero,” ([7], pp.52,53).

A

Analogouslykté Parzen, Murthv has shown that the sequence of
estimates {%n(X)}n:l is an asymptotically unbiased estimate of
f(x), a consistent estimate of f(x) in MSE and is asymptotically
normally distributed provided x 1is a point of continuity of both
P(x) and f(x) and the series ET;§§§T converges.

As a further abstraction, Craswell [8] has considered density
estimation in a topological group. He has generalized sequences

of weighting functions to so called § sequences of functions

and considered estimates of f(x) of the form




4
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[l e =1

Fn(x) = %'j lKn(x'xj_l) wh?re = 1is the group operation
Craswell has established that if s and t are distinct continuity

=]

points of £ with f(s) + £(t) # O, then {fn(s),fn(t)} _, is

jointly asymptotically normal and independent.

Schuster [25] has congidered estimating a density function and

(r)

its derivatives. The form of the estimator is fn (x) =

n (x) x-X,
) Ix ‘"TTi* for r=0,1,...,8. He has established the
nh i=1

converse of Nadaraya's results [20] which gives

Theorem (5.1.1)

A necessary and sufficient condition for the sequence of

=~}
estimators {fn(x)} _, to converge uniformly to f£(x) with

probability one is that f£(x) is uniformly continuous.

Picklands [22] has been concerned with the efficiency of
density function estimates. He has shown how to construct an
estimator sequence which is the most efficient among all estimator
sequences of algebraic type. (1.3.11]). We shall present some
preliminary definitions then exhibit the construction.

For £(x) € L2(R), the MISE of the sequence of estimates

«©
{fn(x)}n=l was defined as
2
g = E{S(fn(x)—f(x)) ax}
= = u(\|gs (0-g_ () |%at}  (1.3.3).
2n fn f
We say that the estimator sequence is consistent in MISE if

‘lim Jn = 0. For any characteristic function ¢f(t), ¢K (t) can
o gacd ‘
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be chosen to minimize Jn (1L.3.7). Hence we define

1

In Z min Jn where the minimum is taken over all possible

functions
n ¢Kn(t) .

This leads to the following definition of efficiency,

I
Eff = lim {7} where I is the MISE of the given estimator.
e Tp

Suppose ¢f(t) decreases algebraically of degree p > 1/2

(1.3.10) and lim t-g% log |¢f(t)|2 =0 where 00 € R and a > 1.

-0
If we construct an estimator £n(x) of algebraic typve (1.3.1l1),

then the most efficient estimator is the one where we chose Kn(x)

such that the Fourier transform of Kn(x) is of the form

1
g, (t) =
Kn 1""“{_:“%"&

for 0 <t <>

where tn satisfies ]¢f(tn)[2 = H%T

In this case, Eff = 1.

Observe that ¢K (t) is of the form considered by Watson and
Leadbetter in their cgnstruction of an estimator of algebraic form
with the asymptotic optimum property. (1.3.18).

In the following, we shall consider some further results in
the Series method of density estimation. 1In the introduction to
the Series method of densitv estimation, we remarked that Cencov,
[5], conceived the method. His results and presentation are more
general than Schwartz's.

Recall that Schwartz was concerned with density functions

defined on the reals such that £(x) € L,(R). He proposed estimates



924

of such densities in terms of the orthonormal family of Hermite
functions. !

On the other hand, Cencov considered the case where we have
a weighting function in v(x) defined on S where S& R. By
means of the inner product (f,q) = Sf(x)g(x)v(x)dx a Hilbert
space L,(v(x)) is defined. Lettlnq {¢i(x)} be an ortho-
normal basis for L2(v(x)), Cencov proposed estimators of the form
considered hy Schwartz. (3.1.2) and (3.1.3).

He also obtained a result which gives information about the
convergence of a histogram when the number of intervals is
approximately equal to the cube root of the sample size. His

result is

Theorem (5.1.2)

Suppose the r.v. X satisfies agXgb, £'(x) 1is continuous

and £'(x) $ 0 . Let f£n(x) be the histogram estimate of £(x)

n
constructed with respect to the random sample {Xi}i_l. Then for
1/3

N intervals (NZn

) of equal length h , E{Sk%n(x)-f(x))zdx}

~-2/3

is in probability of order O(N ).

Motivated by Cencov and Schwartz, Kronmal and Tarter [13],
have proposed continuous approximations of f(x) and F(x) in‘
terms of the classical Fourier series involving the trigonometric
functions.

Assume f£(x) € Ly([a,b]). Recall that {cos km(Eo)} =
is an orthogonal subset of Lz([a,b]). The sample trigonometric
moments E; are defined by

n

X
—_ 2 5 _ ~ N
Ck = B-a1n 1=1°°% kﬂ( )I{ ,b](xi) for k =0,1,2,...
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where I[a b](') is the indicator function of [a,b].

Kronmal and Tarter have proposed an estimate of f(x) of the

following form:

2

O 4

Fn (x)
nx--2 k

~Ma

—— X~a
1Ck cos kﬁ(b_a)

where m is the optimal number of terms for the construction of the

/2.

estimator and m = O(n1
Similar estimators using the orthoagonal subsets

- oo
{sin km X2y}
b~a

X=-a . X-a @
k=0 and {cos kﬁ(b_a), sin kﬁ(b_a)} have also been

k=0
developed.

These types of estimators are certainly desirable from the
computational point of view since they may be casily updated. But
of even more importance, they are competitive with other types of
estimators. For example, in using MISE as a criterion of goodness
the Kronmal and Tarter estimators are competitive with Watson and
Leadbetters optimal estimator for the Cauchy density function ([13],
p.947).

Apparent disadvantages are how to choose [a,b] and how to
choose m, the optimal number of terms. The choice of [a,b] is
arbitrary with the suggestion that different [a,b] be tried
depending upon how much error can be tolerated.

As a means of estimating m, Krommal and Tarter have devised
a stopping rule which is expressed in terms of n,(b-a), C,_ and S, .

k k
([13], p.949).
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[al] 1Let x X be independent random variables identically

l,-.-, n

distributed as a r.v. X with the continuous density function £(x).

Let %n(y) = ?n(xl,...,xn,y) be an estimate of £(y) and suppose

that fnly)z O for all y and n=1,2,... . Then #£n(y) is

not an unbiased estimate of f(y).

Proof
Suppose to the contrarv that E{En(y)} = £(y) for all vy.

Then since f£(y) is continuous on R, we have E{%n(y)} < o,

Assume thit %n(y) is a symmetric function of Xl’xz""’xn’

since the symmetrizeg n-tuple is a sufficient statistic fog the

problem. But then g%n(y)dy is a symmetric estimate of Sf(y)dy
a a

F(b)~F(a) and moreoger %n(y)gy is an unbiased estimate of
a

F(b)-F(a) since E{I%n(v)dy} = 5E{%n(y)}dy by Fubini's theorem
a a

b
= Sf(y)dy
a

= F(b)-F(a)

However, the only unbiased estimate of F(b)-F(a) symmetric

in Xl,...,xn is Fn(b)-Fn(a) where Fn(-) is the sample
b

distribution function [15]. Hence, Fn(b)-Fn(a) = ‘fn(y)dy for
a

all a and b and almost all Xl""’xn and this implies Fn(y)
is absolutely continuous for all vy and almost all Xl""'xn'
Consequently, PFn(y) is continuous for all y and almost all

xl,...,xn which is impossible.
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‘ 248
[a2] sup lK(y)] < ®© and S]K(y)ldy < © implies jlx(y)l * dy € @
yER

for all & z 0.

Proof

Let & 20 be arbitrary. Suppose sup |K(y)| = Sy -
YER

8
Observe that this implies sup IK(y)l6 < w, say sup |K(y)| = 85
YER YER

24§

Then |K(y)| [k | x| ¥k |

< sup {lK(y)HK(y)lS} k(|
yER

sup ‘K(y)|sup IK(y)|6 |K(y)|
YyER yER

A

s s lK(y)l
1l 2

L}

However, |K(y)’E:Ll(R) and s € R implies slsle(y)] £ Ll(R)

152
246 24§

but 0 < |k(y)| < slsziK(y)[, hence IK(y)l £ Ll(R)-
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The notation in [A3] and [A4] is defined in theorem (1.1.13) (pp. 17-21)
E[vn-E(vn)]2+6

[A3] suppose that for some & > 0, lim =0,
n-+o n6/202+6(vn)
Vv -E(V ) 1/2

for all € > 6; 1lim P{I
n->e

—-—————-—o(v)|29n } = 0.
n

Proof

Suppose § > O satisfies the condition in the hypothesis.

Define ¢g(x) = |x[2+6 . Then ¢ is strictly increasing on (0,%)
and g(x) = g(-x).
vn-E(vn) lvn—E(vn) 2+§
Now E{g(—=——)} = E{|—m }
nl/zo(v ) nl/zo(v )
n n
2+8
_ L.Elvn-E(Vn)l
n n1/202+6(vn)
E|[V -E(v )] 248
Since 1lim 5/3 3% = 0, it follows that for sufficiently large n,
me n’“g (Vn)
EIVn—E(Vn)]2+6
<
n6/202+6(vn)
Then by Tchebicheff's theorem and the monotonicity of ¢ we have
v _~E(V. )
v -E(V ) E{g( I11/2 =}
P{[—i7~2—-————|>.e} < n cF(Vn)
n O(Vn) #(€)
2+8
) ;_Elvn'E(Vn)'
n e2+¢5n5/20(v )
n
Hence,
{Ivn-E(vn) : Ean‘E(Vn)|2+6
0 <nP |7 €l S >0 as n > %
nl/zo(vn) €2+6n6/20(vn)
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[A4] We shall now establish (1.1.14). First, some preliminary
definitions and results are given. 'Following Loéve ([1€], pp. 315,
316) for a T > b, let

anK(T) = f xdPF

xer

2 2 2
and © (T) = g x dF - ( S xd¥F )
nk |x|<T nkK |x|<T nkK

where Fnk is the c¢.d.f. of the r.v. an. If FnK + F completely
([16], p. 178) we shall write £(X ) » fX). Let m(®,62) be the
c.d.f. of a normal random variable with the parameters o and 02 .

The Normal Convergence criterion ([16], p. 316) states that

Let XnK be independent summands. Then gdian) > m(a,UZ)

and max P{lxnxlze} >0 as n=>® if and only if for all € > 0

K
n n
anda T>0 kglp{IXnK‘zﬁ} *0 as n > o, kélanK(T) >0 as n*>®
n
and £ 0° (1) » o’ as now
— k=1 n — )

K

To obtain (1.1.14) using the above theorem we let

vnK—E(vn )

X . = X

nkK -
/n U(VnK)

which results in

£n(x)-E(En(x))
o(fn(x))

n
= kéanK

Observe that for any € > 0

n vV _-E(V_ ) vV _-E(V.)
£, Pl |22 o6} = np{]-2—0

k=1
V/n o(vnK) o(Vn)

|26v/n} since the r.v.'s
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n
{Vnk}k=l are identically distributed as the r.v. Vn' One can show
n n
2
that kélanK(T) +0 as n~+® and kélc nK(T) + | as n -+ ®. Hence

(1.1.14) follows by the Normal Convergence criterion.
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A 2 1 2
[as] a = E{S(fn(x)-f(x)) dx} = EFE{S|¢fn(t)"¢f(t)| at}

Proof
For g,h € L2(R) the inner product is defined as (g,h) =
Sg(x)h(x)dx where h(x) denotes the complex conjugate of hi{x).

The Parseval transform of g, g(t) is defined by

1
dg(t) (2m) %j;ltxq(x)dx for g Ll(R)

1

(2m) 2¢g(t) where ¢g(t) is the Fourier transform

#

of g.

Parseval's theorem ([36], p.70) states that

for g,h ¢ LZ(R) and (, ) as defined (g,h) = (gﬂéh) where

@g and Gh are the Parseval transforms of g and h respectively.

Thus, Sg(x)h(x)dx =f§q(t)§h(t)dt

1 R
= Eijgg(t)¢h(t)dt

Hence,

‘5(%n(x)—f(x))2dx =4f(%n(x)—f(x))(%n(x)-f(X))dx

1 [ N .
5;j;fn—f(t)¢§n-f(t)dt

it

1 2
57;5! a2 _g(t}]at

]

1 2 . . :
o l¢fn(t)-¢f(t)' dt s;nce # 1is linear.

Therefore, we have [A5].
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~ 2
[n6] To show that 27rJn = E{j’¢n€t)¢xn(t)-¢f(t)l dt}

g, (]2
n 2
=‘S[-——~;;--(1—l¢f(t)| ) +

2 2
EROY (!1—¢Kn(t)| ) lat

Proof
First note that 2'nJn =‘5E{f¢§n(t)—¢f(t)l2}dt by Fubini’s

theorem.

(t)l2

~ 2
18, (818, (t)-g_(t)]

n

Now |¢%n(t)—¢f

i

| y
I¢Kn(t)| % (018, (817 (016, (014 TE)-

rr—— 2
¢f(t)¢Kn(t)¢n(t)+|¢f(t)|

n
But E{¢n(t)} E{-rl; i§1e>:p(:'.x:'.t:)}

E{exp(ixt)}

L

1

¢f(t)

and similarly, E{¢n1t)}

E{exp (-ixt)}

it

¢f(—t)

= ¢f(t)
Also notice that
n n

ST N N
¢n(t)¢n(t) (n i=le}q_3(:lXJ.t:))(n i=1exp( iXit))
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n n n
=‘3L{.Z e1X1t9-1X1t+.Z I elete—1X3t}
n2 i=1 ‘j“-=l i=1
i#j
Hence
E{¢n(t)¢n(t)} = i%{n+n(n-l)E{elXt}E{e-lXt}} since we have
n
i.i.d. r.v.
1 n-1 e ared
= _I’-l- + T ¢f(t)¢f(t)
1 n-1 2
==+ Wgul
Therefore,

ellg, (g ()-8, (t)]%)

n

2.1 n-1 2 et 2 2
!¢Kn(t)l (= + -;—-'¢f(t)| ) - ¢Kn(t>!¢f(t)| - ¢Kn(t)]¢f(t)l +

2
PACY

2
lg, ol

- - 2 2 T
= (1+(n 1>l¢f(t>l ) + l¢f<t)! (1-g, (E)-g, (t))

n
n n

2
ls, w0l

_ n - 2 _ 2 2
= ———— (1+(n 1)l¢f<t>l !¢f<t>l I¢K (t)]

n

(1-g, (61 -4, (©)+l5. ()] |8, ()]
Kn Kn Kn £

= - (1+(n 1)I¢f<t)l ) - +

2 2 2
lg, wl nlg, (t)] 1¢Kn(tn

2 st t—
l¢f<t)l (l-¢Kn(t))(l-¢Kn(t))
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2
g, (0]
n
n

a-lg 0| + g 0|3 1-g, (©)|%
n
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The notation in the next result is defined in theorem (2.3.2) (p. 63).

i+k(n)’
(A7]  If max I - 1| = o (p), then
_—bsisn—k(n)+l k(nj j=itl n~ISn+1
k(n)-1
~0 1 T -
ToT 8 P&y, FXpgor,n)} > 1 (0P (a7,1)
k(n) ‘
03z -
and (et FOX g0 F Kgpgor,n? > 1 0P (A7,2)

where the uniform convergence is taken over g = 0 to q = n-k(n)+l

Proof
n i+k(n) Y,
From o Tax "ETET .; EH%T - ll =+ 0 (P) we have that
<d<n-k(n)+1 =i+l -
i+k (n)

I n X

N
K(n) j=i+l Sn+l ll + 0 (UP) where the uniform

convergence is taken over i =0 to i = n-k(n)+l., Since the r.v.'s

Yy, n+l ny,
3 3 e v
{Sn+1}j=l are i.i.d. we have that ==+ 1 (P). This implies that

-F (> -
n[F(xj,n) F(Yj_l'n)] 1 (P) and hence that

k(n)

A

k(n)-1"4=1 )} + 1 (UP) where the

A b

uniform convergence is taken over g =0 to q = n-k(n)+l.

The argument for (A7,l1l) is similar.



