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ABSTRACT
Flux entry into an anisotropic type II superconductor was investigated
using magnetization measurements on single crystals of NbSez.
Demagnetization effects were large and were taken into account
quantitatively. Flux entry measurements were also performed on an isotropic
superconductor, Nb 48 atomic % Ti, as a check on the experimental method.
The measured critical flux entry fields for NbSe2 were larger than the
expected lower critical fields calculated using literature values of the
upper critical field and anisotropic Ginzburg-Landau theory. For fields
applied parallel to the crystal layers, the entrance field was found to
have a small dependence on the crystal size. It is suggested that these
obscrvations could be explained using critical state theory. A plot of the
critical entry field against the angle of the applied magnetic field with
respect to the crystal c-axis, shows an anomalous cusp-like feature. This
cusp 1s not explained for NbSe2 by the anisotropic Ginzburg-Landau theory.
It can be explained by assuming that, at the critical entrance field, the
flux lines are not parallel to the magnetic field, but are either nearly
parallel to or nearly perpendicular to the crystal layers depending on the

direction of the applied field.
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I. Introduction

| Anisotropic type II superconduqtors have been the object of much
interest in recent years. There have been considerable theoretical and
experimental investigations of the properties of anisotropic |
superconductors, in particular, the anisotropy of the upper criticel field.
Only recently, however, haé there been a theoretical treatment of the lower

critical field HC To déte, there has not been an experimental

1'

determination of the anisotropy of Hc 2. The most commonly studied

1
anisotropic superconductors are layered transition metal dichalcogenides.
Crystals of these substances grow in the shape of platelets. A
superconductor near Hcl is in a strongly diamagnetic state. Therefore,
large demagnetizing effects due to the shape of these crystals complicate
the measurement of Hcl'

Intimately connected with the lower critical field is the entry of
magnetic flux into a superconductor. For applied fields above Hcl it is
thermodynamically favorable for flux to enter a superconductor. But in a
real superconductor, there can exist irreversible effects which oppose the
movement of flux. This can delay the entrance of flux until an applied
field somewhat larger than Hcl is reached. It is the entrance of flux into
a superconductor which marks the transition from the fully diamagnetic
(Meissner) state to the partly diamagnetic (mixed) state. The measurement
of magnetization of a crystal can be used to determine the onset of flux
entry which marks the phase change.

In Chapter II of this thesis, a theoretical description of an

isotfopic~type IT superconductor is given along with a derivation of the



value of Hc This is then generalized to include demagnetization effects.

1°
The theory developed by Klemm and Clem1 for anisotropic superconductors is
presented in the same way as the theory of the isotropic case. Finally,
Chapter II gives a discussion of the possibility of delayed flux entry.
Chapter III gives the construction details and operating principles of the
magnetometer used to measure the magnetization of samples. In Chapter 1V,
flux entry measurements for an isotropic superconductor Nb48ZTi, are
reported. These results are used aé a check on demagnetization calculations
and to investigate delayed flux entry for the isotropic case. The flux
entry measurements for an anisotropic superconductor, NbSez, are given in
Chapter V. Also in Chapter V, is a discussion of the experimental results

and a comparison with theory. Chapter VI summarizes the work presented in

this thesis and suggests some possible future work.



11. Theory

Isotropic Type II Superconductors

This section will use Ginzburg-Landau theory to show how to find the
lower critical field HC1 of an isotropic type II superconductor. First Hcl
will be found for a long cylinder parallel to an applied field, and then
demagnetization effects will be taken into account. The first part of this
calculation is done in any textbook covering type II superconductivity.3’4

Type II superconductors can be characterized by two lengths. Firstly,
the coherence length & , which is the length scale over which the order
parameter can vary. Secondly, the penetration depth A, which is the length
scale over which the microscopic magnetic field can vary. Both of these
parameters have the same temperature dependence near TC. This leads to the
definition of the temperature independent parameter x=1/&, which is used
to classify the behavior of a superconductor.

When a small magnetic field is applied to a type II superconductor,
it will be in the Meissner state where the magnetic induction ié zero in
the bulk of the superconductor. The superconductor is now a perfect
diamagnet with magnetization M=-H/47. If the applied field is increased to

the lower critical field HC it will be energetically favorable for the

1’
superconductor to allow the entry of some magnetic flux. This marks the’
transition to the mixed state. The flux enters in the form of fluxoids. An

isoléted fluxoid can be modeled, for large K» as a cylinder extending



through the superconductor in the‘direction of the applied field. The core
of the fluxoid is in the normal state and has a radius of &. The
microscopic magnetic field is at a maximum within the core. Shielding
currents around the core cause the field to decrease, over a length scale
A, to zero in the superconducting bulk. The magnetic flux contained in a
fluxoid, including both the core and the shielding current areas, is one
quantum of magnetic flux ¢. As the applied field is further increased more
fluxoids enter the supefconductor. When the applied field reaches the upper

critical field Hc the entire bulk of the superconductor makes a second

2

order transition to the normal state.

A value for HC can be found by considering the Gibbs free energy

1
per unit volume of the superconductor (in cgs units),

— e

9=nk + 2% + - HoM | | (1)

£ g
F1 is the self-energy of a fluxiod. It consists of the lost condensation’
energy of the normal core plus the kinetic energy of the shielding
supercurrents. n is the number of fluxoids per unit area. Since each
fluxoid contains one quantum of flux, n can be expressed in terms of the
average magnetic induction, n=B/%. The second term expresses the
interaction energy between fluxoids. Near Hc1 the dist#nce between fluxoids
is large compared to X and the interaction term can be neglected. The
third term is the energy density of a magnetic field. The final term gives
the energy of a magnetized material in an externally applied field. The
magnetization can be expressed as 4“M=B-Hi, where Hi is the internal
magnetic field. For a long cylinder parallel to Ha, H1=Ha and B will bé

parallel to Ha. Near Hc B will be small and terms in B2 can be

1’



neglected. The Gibbs energy near H can then be written
cl

_ B Ha B Ha
9= gf —on * wm | (2)

The Gibbs energy can be decreased for non-zero B, if

HU%E:E = H, - 3)

Hcl is the limit of Ha as B goes to zero. This defines the lower critical

field Hc « The self-enefgy of a fluxoid F, can be found using

1
Ginzburg-Landau theory. One finds

1

Y :J%ﬁ,—(‘- (InK + 0.497) ()

where Hc is the thermodynamical critical field.

For other shapes and orientations of a magnetic (superconducting)
sample demagnetizing effects must be considered. The demagnetization
problem can be solved analytically for a magnetic material in the shape of
an ellipsoid, whose magnetization is given by M=XH. In this case H cén be
described by a scalar potential, H=V¢, and the scalar potential is the

5,6,7

solution to Laplace”s equation. For a uniform applied field Ha, there

will be a uniform field Hi inside the ellipsoid. If the coprdinates are
chosen along the symmetry axes of the ellipsoid, the components of the

internal field are given by

‘X I+ X L/yrr
H
. — lay
Hey T Mzen | (5)

Haz
Hae 75 %\7em



where L, M, and N are geometrical demagnetization factors in the x, y, and
z directions, respectively. The general expressions for the demagnetization
factors include elliptic integrals and are quite complicated. In the case
of an oblate spheroid with semiaxes a, b, and ¢ in the x, y, and z

directions, and where a=b>c the demagnetization factors are

. PV o _cb_a_"/z
o =g A eresn (B - 13

a A ke
N: (b/C) } _ ' e arcsin Hc} ]

[er-13 (" -~ e

Now, the applied critical field can be found for an oblate spheroid,
with its short axis, c, in the 2z direction, for an arbitrary direction of
the applied field. Starting from equation (2-1), neglecting the interacting

term and the B2 term, gives for the Gibbs energy
- b T, : |
J= gk — HeM (7)
o
where M depends on the internal field, so that

_Br = [B H‘-] - |
9" ¢°E Ha.[ﬁ— l+_1;‘ . (8)
Substituting for'ﬁi using equation (2-5) leads to
—ﬁ — -’44 .[B ﬁ“
9=%fi ~um s - o5 (9

=
where D is the demagnetization tensor. It can be expressed as a diagonal

matrix with L, M, and M as its diagonal elements. Doing the dot product

and omitting terms independent on B gives

BF _ Hux B sinBs Haz B cosBp

9:?&2 LT () - L) T e (i-N) ’ (10)




where GB is the angle of B with respect to the z axis. (B is in the same
direction as the fluxoids.) The Gibbs energy can be decreased by choosing
B=0 when

.0 o ’
Hax stnCg Haz COS 8 > E ‘ ﬂl}

wrr(i-L) ‘+ 4111 -N) -ZP: )

If ea is the angle between the applied field and the z axis,

equation (2-11) can be solved to give Ha,

wrrk /g, - .
Hq ? 5in8, 5in6g cos6, cos By H"q {'2)

I -L * [ - N

The angle GB is still undetermined. It can be found by considering, for a

fixed angle of the applied field, in which direction the first fluxoid

lies, giving the smallest value of Hc In other words, minimizing Hc with

1° 1

respect to GB, which gives

tanee = ]L:T_N tanB, - - (13

The angle 6, which the internal field Hi makes with respect to the =z

i

axis, can be found using equations (2-5) to be
6; = =¥ o (i)
tan O; = = tanBs. -
That is, for an isotropic superconductor the first flux line at Hcl enters
in the direction parallel to the internal field. The applied critical field
given by equation (2-12) is the same as using the internal critical field

(equation (2-3)) transformed to the applied field using equations (2-5) and

X'—""l/ll'".



Anisotropic Type 11 Superconductor

In this section an expression is found for Hcl for an anisotropic
superconductor and the interesting features of this solution will be
described.

The usual way to describe an anisotropic superconductor is to use an
anisotropic effective electron mass in the Ginzburg-Landau theory.l’
Consider a layered substance with éonducting layers in the x-y plane
separated by van der Waals gaps. The effective mass in the z direction
would—be larger than in the x and y directions, mz>mx=my. The effective
mass model is in good agreement with experimental results for the upper
critical field.9

We found that the calculation of Hc for an anisotropic

1
superconductor can be done in the same way as the above calculation for an
isotropic superconductor. The only difference is in the calculation of the
self-energy of a fluxoid, Fl(eB). The self-energy will depend on the
direction in which the fluxoid lies. This calculation is somewhat
complicated. It has been done by R. A. Klemm and J. R. Clem.1 Their result

has the same form as the isotropic theory, but they use an anisotropic

Ginzburg Landau parameter K given by

K= K [0’y + £ 5in’6 ]_Va . (15)

where 5_=K(m/mz) and x is an average value of the Ginzburg Landau

parameter, m=(mxmymzf% and €=mx/mz. The self-energy of a fluxoid is found

to be
F ¢ ,'ic ~s .



Putting this into equation (2-12) gives

H/p % (InE + 0.497)
Hoa = = : (i7)

$inBq 5inBy 4+ cosBa C0sHp
I ~L I =N

Minimizing equation (2-17) with respect to 9B gives the condition for 9B,

(In% + 0.497)( 5inB4 £ cos6 )

(1-L) sinBg o (1-N) cos Eg

(18)

- ( sinB, s5indg + c056a Coseg) (I_ E)
I-L | =N
This equation must be solved numerically for each fixed angle of the
applied field. In their calculation, Klemm and Clem find only the internal
lower critical field. In a later paper, Klemm7 transforms the internal
critical field to the applied critical field usiﬁg demagnetization factors.
These calculations of Klemm are equivalent to our much simpler and more
transparent calculation.

The directions of Ha’ H and B relative to the crystal axes of a

i’

sample are drawn in Fig.II.l. Fig.II.2a shows Hc plotted against 9a for

la
a spherical sample with k=9, for two anisotropies €=0.119 and €=0.01. The
demagnetization factors for a sphere are L=M=N=1/3, so»Fig.II.Za is the
same as a plot for the internal critical field. For a mildly anisotropic
superconductor (€=0.119) the curve is continuous, but there is a break in
the curve for a very anisotropic superconductor. Changing the parameter
has little effect on the shape of the curve. A plot of 9B against 9a is
shown in Fig.II.2b. For €=0.119 the curve is continuous, but shows that
the initial fluxoid is not parallel to the internal field. If it were,
then 6

would equal 6 as in the isotropic case. The curve for €=0.01 is

B i



Fig.II.1- Sketch showing definitions of the angles ea’ ei’ and 9B°

10
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discontinuous. There 1s a range of angles 6, which give directions in

B
which the initial fluxiod will never lie. That is, this range of angles is

not allowed. This discontinuity in @_ marks the position of the break in

B

Hcla'

The effects of demagnetization are shown in Fig.II.3, for the case
€=0.01. Here Hcla vs ea is shown for an oblate spheroid with a ratio of

.the axes of c¢/a=0.1. Since B=0 at Hcl’ X==1/47 and the internal field is

given by
Ha
Hil = I—i = 1.075 Hax
H (19)
Hie =52 = T18% Ha

The magnitudes of Hcla near thg 6=0 direction for the oblate spheroid are
much reduced compared to the values for the sphere because the
demagnetizing effects are large in this direction. At the same time, the
position of features in Hcla move from smaller angles for the sphere ﬁo
larger angles for the spheroid.

It is the appearance of the discontinuity in OB vs Oi, which is

reflected in the break of Hcli vs 01, that triggered the present research.

Up to now, these unusual features have never been observed experimentally.

Flux Entry
The theory, so far, has considered only an ideal type 1I

superconductor, for which flux begins entering the bulk of the

superconductor at Hcl' In a real superconductor there may be effects which

12
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delay the entry of flux. A surfacé barrier to flux entry can exist, for an
applied field parallel to the surface of a superconductor, when a fluxoid
sees its image in the flat surface.4 This will delay flux entry to a field

Hen which 1is larger than Hc « A roughened or scratched surface will

1
minimize the surface barrier. Another possible cause of delayed flux entry
is flux pinning. As the flux begins to enter a superconductor, the fluxoids
can become pinned on defects in the superconductor. A field larger than Hcl
is needed to move the fluxoids pasf the pinning centers. This situation is
described by the theory of the Critical State;3’10’11 This theory assumes
that any emf, however small, will induce a transport supercurrent which is
equal in magnitude to the critical current of the superconductor. When flux
first crosses the surface of the superconductor this irreversible transport
current is induced in a layer at the surface which shields against further
flux entry. As the externally applied field is increased the layer
containing the shielding current grows.

The solid line in Fig.II.4 shows a magnetization curve for an ideal
type II superconductor. At Hcl there 1is little resistance to flux entry and
the magnetization decreases sharply. The magnetization curve for an ideal
superconductor is reversible. Effects which delay flux entry will cause an
irreversible magnetization curve as shown by the dashedlline in Fig.I1.4.
Magnetization measurements of a superconductor will give the field Hen

where the flux first enters a superconductor. This entrf field may be

larger than the lower critical field.

14



Fig.IT.4~ Ideal magnetization curve (solid) and irreversible
magnetization curve (dashed) for type II superconductors.
Only the initial branch of the irreversible curve is shown.

15



I11. SQUID Magnetometer
| The magnetometer has the capability to measure changes in either the

dc or the ac magnetization of a sample. It can be operated with a fixed
applied field where the temperature of a sample is varied or thel
temperature can be held constant and the applied field varied.

| An overall view of the magnetometer is shown in Fig.III.l. The sample
holder sits in an evacuated tube to insulate the sample from the liquid
helium bath. An O-ring seal and an in-line valve at the top of the
magnetometer allow the sample holder to be removed without letting'air into
the magnetometer. Thin walled stainless steel tubes run from room
temperature into the liquid helium to minimize heat conduction into the
bath. A vacuum tight joint between the pyrex tube and the copper tube was
made using Epibond 1266 epoxy mixed with an equal amount, by weight, of
powdered pyrex glass. The construction and operation of each part of the

magnetometer is discussed in this chapter.

squip
The SQUID unit is made by SHE,12 model 330. The SQUID probe itself
is contained in a superconducting case and located near the bottom of the
magnetometer (see Fig.III.l1). An input signal is brought to the SQUID probe
using superconducting niobium wire which makes superconducting connection
with the SQUID probe using niobium screws. The SQUID functions as a
microammeter with a maximum sensitivity of 0.0952 MA input giving 1.98 V

output. This is about 0.05 uA/V.
Oy 04 €1

16



F’ | SQUID RF ELECTRONICS

|™——|———0-RING SEAL

@_ ———INLINE VALVE

lindila

____— SAMPLE HOLDER

/—soum PROBE
H | _— THERMAL BRIDGE
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___——THERMOMETER & HEATER

| — PICKUP COIL
T——— SAMPLE
~—llm———PYREX TUBE
TT—— MAGNETS

~L.HE, [ ———— LEAD SHIELD

L. HE.

Fig.III.1- Diapram showing the construction of the SQUID magnetometer.
The lower portion is shown in cross—-section.
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Flux Transformer

A sample is placed at the center of one of two pickup coils as
shown in Fig.III.2. The coaxial pickup coils are identical but wound in
opposition from a single superconducting wire. A complete superconducting
path is made by connecting the pickup coils to a signal coil which is
inside the SQUID. Conneéting leads are tightly twisted to minimize their
self inductance. A change in magnetization of the sample will induce a
current in the top pickup coil due to their mutual inductance. This current
then couples the change in magnetization to the SQUID through the signal
coil. Since the flux transformer is superconducting, it works even for dc
signals. If the two pickup coils are in perfect balance a changing uniform
field will not induce a current in the flux transformer.

Since the total flux linked by a superconducting loop must remain
constant, the total flux linked by the flux transformer will remain
constant. Let ¢ext be the flux linked by one loop of the top pickup coil
~due to a change in magnetization of the sample. The flux linked by the

pickup coil will be N¢ where N is the number of turns on the'pickup

ext’
coil. In order to keep the total flux constant a supercurrent J is induced
in the superconductor. The flux linked by the flux transformer due to J is
just JL, where L is the total self inductance of the flux transformer. If
Lsg’ Lpu’ and le

and the twisted leads respectively, then

are the inductances of the signal coil, one pickup coil,

L= Lsg + Ly + 2lpa | ()

18
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Since the flux linked due to J musf balance the flux linked due to the

sample,

>N¢ext :7—(1-59 + le + J'Lpu) J . : ()

The flux linked by the SQUID due to the current J is

where Msg is the mutual inductance of the SQUID and the signal coil.
Combining the last two equations gives the basic equaticn for a flux

1
transformer 3

_ "My N
4,5“ B (Ls9 +Lig +2Lpu) ¢e1t . (4}

In designing a flux transformer one usually attempts to maximize the flux
transfered to the SQUID. In our comercial SQUID, Msg and Lsgare part of
the SQUID probe and are fixed. The inductance of the twisted leads is very

small (about 0.3 HH per meter13) and will be neglected. Maximizing ¢SQ is
a matter of making N as large as possible while keeping Lpu as small as
possible. Since Lpu is proportional to N2, the condition for maximizing ¢S

Q

is 2L =L . N and ¢ are maximized by making the pickup coil as small
‘pPu sg ex : :

t
as possible (with it still being in the liquid helium béth). The pickup
coils used were made of 0.003 inch diameter niobium wire. Each was a seven
turn single layered coil with Lpu=0.8uH. The signal coil has Lsg=1.8uH,
which is about the same as 2Lpu.

The heat switch (Fig.III.2) does not affect the normal operation of

the flux transformer. It is operated when a large dc field is being

applied, and keeps the current in the flux transformer equal to zero. A
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large current could put the SQUID out of its range of linear opperation
and could even damage the Josephson junction. The heat switch is
constructed by placing a section of the superconducting leads against a
10K metal film resistor and encasing.these with epoxy. Applying a few
milliamps to the resistor heats the flux transformer wire above its
critical temperature. Any supercurrent in the flux transformer will decay

rapidly.

Magnets
A magnetic field can be applied by one of two solenoids (Fig.II1I1.2).

The dc magnet is usedrto apply a constant magnetic field in the persistant
mode. The ac magnet is used to apply a changing (or rampéd) dc field or an
ac field. Both coils are wound from superconducting wiré with copper
cladding (Supercon,14 T48B). The ends of the dc magnet”s windings are spot
welded together to form a complete superconducting path. A section of the
wire can be driven normal using a heat switch, similar to the heat switch
used with the.flux transformer. A current is induced in the magnet by
applying a voltage across the normal section. When the heat switch is
turned off, there is é closed superconducting path and the current is
maintained without an externally applied voltage. Since the flux linked by
a superconducting loop must remain constant, the dc magnet gives a very
stable field.

The ac magnet does not operate in the persistant mode. Any electrical
noise, from the current supply or §icked up in the leads, will affect Fhe‘
applied field. In particular, even a small amount of rf noise will

interfere with the operation of the SQUID. Rf noise is filtered out using
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low pass R-C filters placed just above the ac magnet and compensation coil.
Ideally a ramped or ac field, applied in the absence of a sample, would
not induce a signal in the flux transformer. In practice the pickup coils
are not quite identical and the field is not quite uniform. There will be
a small "out of balance™ signal. This out of balance signal is cancelled
using a small compensation coil placed around the lower pickup coil
(Fig.I111.2). In the case of an applied ac field, both the amplitude and
phase of the current in the compensation coil must be adjusted to give a
null signal. This was accomplished using an SHE impedance bridge, model
RBU.

The magnets and pickup coils are encase; in a closed-bottom,
superconducting , lead cylinder. This is an effective shield against
magnetic noise from the environment.

The magnetic field produced by the dc coil in free space was found
by using the standard formula for a solenoid of infinite length, then
applying a correction for finite length from a table (Lorrain and Corsbn15
page 347). This field constant for the dc coil in free space is
H/I=1.066 Oe/ma. When the coil is placed inside a superconducting cylinder
the field changes. Fig.III1.3 shows the situation. Applying Ampere”s law
twice along the paths shown and noting that the flux througﬁ a
cross-section of the superconducting cylinder must remain constant, gives

H; = H, Aot (5
S
Hi is the field inside the solenoid, Ho is the field inside the solenoid

without the superconducting shield, As is the cross—sectional area of tHe

shield, and Ao is the cross-sectional area of the solenoid. Applying this
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correction gives for the dc coil, Hi/I=0.85 Oe/ma.

This field calibration was checked experimentally in two ways. First
by measuring the height of the superconducting to normal transition of a
sample with known volume and demagnetization. Knowing the characteristics
of the flux transformer, the flux linked from the sample to the pickup
coil,16 and the SQUID sensitivity, the value of the applied field can be
deduced. Two measurements gave values of H/I=(0.8220.05)0e/ma and
H/1=(0.84%0.05)0e/ma. This is in géod agreement with the calculation. The
other experimental check was made by measuring the temperature dependence
of the critical field of a lead sample and comparing this with the
literature result. This gave a field calibration of H/I=(0.86%0.04)0e/ma.
Again there is good agreement. |

The field calibration of the ac coil was made by comparing transition
heights, produced by the dc and ac coils. The field constant for the ac

coil is H/I=(0.4910.04)0e/ma.

Sample Holder

The sample holder positions the sample inside the pickup coil as
shown in Fig.III.1l. The thermal bridge is made of copper aqd makes
mechanical contact with the sample holder. This centers‘and holds the lower
end of the sample holder. The thermal bridge also puts the sample holder
in contact with the 4.2 K liquid helium bath.

Fig.II1.4 shows the lower end of the sample holder. It is the thermal
anchor sectién of the sample holder which makes contact with the thermal
bridge. The function of the radiation shield and the thermal anchor is:to

prevent heat from the top of the sample holder from warming the thermometer

24



STAINLESS STEEL TUBE

==
é % _— RADIATION SHIELD
|

COPPER THERMAL ANCHOR
TO L.HE. BATH

Il

THIN -WALLED
CuNi INSULATOR

HEATER

THERMOMETER

S

BAS AN

COPPER
THERMOMETER HOUSING

, SAPPHIRE
|

COPPER
FIXED ANGLE HOLDER

SAMPLE

Fig.III.4~ Details of the Jlower portion of the sample holder.

25



or the sample itself. Heat conducted down the electrical leads and the
stéin]ess steel tube is absorbed by the thermal anchor. The radiation
shield consists of a number of metal discs held at 4.2 K. It absorbs the
300 K radiation which comes from the top of the sample holder. The entire
sample holder is evacuated. The sample is held on the bottom of the sample
holder (Fig.IIT.4). In order to minimize the magnetic background seen by
the magnetometer, the thermometer and heater must be kept some distance
away from the pickup coil. Thermal contact between the heater and
thermoieter is made by a sapphire rod. Sapphire is a good thermal conductor
and yet is an electrical insulator. This is of particular importance if
there is an ac applied field, since a conductor will give a large magnetic
response due to induced eddy currents. The sapphire rod is set into a
close-tolerance hole in the copper thermometer housing using Apiezon
grease. The HCI measurements reported in this thesis were made with dc
applied fields. This allows the use of interchangable copper fixed angle
holders at the bottom of the sapphire rod. These fix the angle of thé
sample relativé to the applied field. The copper angles and the samples are
also held on with Apiezon grease. The thermometer is a calibrated carbon
glass resistance thermometer. The heater is a bifilarly woqnd coil of
manganin wire. A thin-walled cuprous nickel tube connects the thermometer
housing to the thermal anchor, to allow only a small thermal conductance
between the two. Tn addition, to minimize thermal conductance, the
thermometer and heater leads up to the thermal anchor are thin constantan
wire and thin manganin wire, respectively.

Heating the sample is accomplished by applying current to the heéter.

The sample is cooled by thermal conduction to the thermal anchor, radiation
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to the liquid helium bath, and conduction through a small amount of helium
exchange gas (let into the vacuum space in which the sample holder sits).
For‘temperétures less than 10 K, the dominant form of cooling is through
the exchange gas. Since the thermometer is some distance from the sample,
when heating or cooling the sample, there will be a temperature lag between
the thermometer and the sample. To minimize this, the temperature should be
changed slowly. A typical rate of temperature increase would be about half
a degree in five minutes..Even at‘a éonstant temperature, the sample will
be somewhat cooler than the thermometer. This temperature difference was
found to be about 0.05 K by measuring Tc for a lead sample and comparing
it to the accepted value. It varied for different amounts of exchange gas.
This difference was found to remain constant over a small range of
temperatures (about half a degree) by measuring the temperature dependence

of Hc for a lead sample.

Magnetization Measurements

This apparatus does not measure absolute magnetization. Rather, it
measures changes in magnetization. There are two ways to induce a change in
the magnetization of a sample. The temperature can be varied or the applied
field can be varied. In order to measure the temperature induced
superconducting transition, the sample is first cooled to well below Tc in
zero applied field. Then a constant field is applied using the dc magnet
in the permanent mode. The temperature is then raised slowly and the SQUID
output is recorded. A typical transition is shown in Fig.III.5. At low .
temperatures the sample is in the Meissner state and its magnetizationyis

M=—Hr. At temperatures above Tc’ the sample is normal and its magnetization

27



|
|
|

is practically zero. The transition height is the total change in SQUID

output from the Meissner state to the normal state. This is proportional to

the internal‘field in the sample when it was in the Meissner state. In
addition to the dc field, an ac field can be applied. In this case, both:
the in phase and 90° out of phase reéponses can be recorded. Ac
measurements are not reported in this thesis, but this technique is
described elsewhere.17 The other mode of operation of the magnetometer is
the field sweep mode. The temperature of the sample is lowered in zero
field to below Tc' The teﬁperature is held fixed while a dc field is
slowly applied using the ac coils. The balancing current which is in the
compensation coil changes at the same rate as the current in the main ac

coil. The SQUID output gives the changing magnetization of the sample.
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IV. Results - Isotropic Superconductor

Samples

In order to investigate the effects of demagnetization and as a
check on the magnetization method for measuring Hcl a large.K, isotropic
superconductor was first used. Samples were made from a bar of niobium 48
atomic percent titanium. This bar was obtained from Supercon.14 The Nb48ZTi
was annealed, in vacuum, in an induction oven at 1200 C for four hours. A
small amount of evaporation of the sample occurred. It was assumed that
more titanium was lost than niobium since titanium has the higher vapor
pressure. The resulting sample would contain a small amount less than 48%
titanium. The exact composition of the sample is not important for our
investigation. There are no measurements of Hcl for Nb48ZTi in the

literature to compare with the results here, but the main interest in

measuring Hc for an isotropic superconductor is to Iinvestigate the effects

1
of demagnetization. It is important that the sample be uniform and
isotropic. Anmnealing is necessary to obtain this. Samples in the shape of
oblate spheroids were made from the annealed Nb48%ZTi using a lathe, a small
file, and emery paper. Their surfaces were smoothed by etching in a fresh

mixture of two parts HZSOA’ one part HF, and one part 30%Z hydrogen

peroxide for five minutes. The surfaces were smooth but not shiny.
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Demagnetization

The height of the magnetic transition from the Meissner state to
normal can Be used to find the demagnetization of the sample. Since the
magnetization is proportional to the internal field, the demagnetizing
factors can be found by measuring the transition heights along the axes of
symmetry of the sample. These measurements were made using two Nb48ZTi
ellipsoids of different shapes.

For an ellipsoid wiih the applied field along its z—-axis, as shown in
Fig.IV.la, the exact flux linked to the pickup loop can be calculated. The
field distribution outside an ellipsoid in a uniform applied field can be
found using ellipsoidal coordinates in the same way as demagnetizing
factors are found as mentioned in Chapter II. The integral of field over
the area of the pickup loop can be done analytically. These calculations
have been published elsewhere.16 For an oblate spheroid of height 2c¢ in the

z direction and diameter 2b in the x-y plane in a pickup loop of radius o,

the flux linked by the pickup loop is

o= 323 - e CE5T) (-7
+ 3 arctdn([(_g—}a_—,j@) I } ,

where a=b/coshn, n=arcsinh(b/c), and m is the magnetic dipole moment m=MV

()

<4

where M is the magnetization and V is the sample volume. For other angles
between the ¢ axis and the applied field the flux integral can not be dome
analytically. For a sample which is much smaller than the pickup loop the
flux linked approaches the form of the flux linked for a dipole (spherical

sample) which is

- 1T h .
¢dipo’e - P (2)
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Fig.IV.la- An oblate ellipsoid in the pickup loop with the applied
field parallel to the c-axis.

Fig.IV.1b- The sample rotated an angle Ba with respect to the
- applied field.
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The difference between the exact flux calculation and the dipole
approximation will be greatest when the applied field is along the c axis,
since this is when the sample fills the greatest area in the plane of the
pickup loop. If the dipole approximation is good when the field is along
the ¢ axis, it will be good for all directionms.

Using the dipole approximation the ratio of the transition height
S(0) for a field along the c axis to the transition height S$(90) for a

field along the b axis is

50 _ o _ amM@VYp M(0) _ 4N
S(30) ~ $(30) T amM@ave ~ M(90) T UVi-L

’ (3)

using M=-H, and equation (2-5). Using the identity L+M+N=1 for the

i
demagnetizing factors and using the measured transition heights, the
demagnetizing factors for the two samples were found. These reSul;s along
with the calculated demagnetizing factors, using equations (2-6), are given
in Table IV.l. The dipole approximation was good for the smaller more
spherical sample, Nb48%Ti#l, and the measured transition heights were used
for S in equation (4-3). But for the larger flatter sample, whose radius
was about 1/4 the radius of the pickup coil radius, the exact flux linked
given by equation (4-1) is 2% larger than that of the dipolg equation
(4-2). Therefore the measured transition height when the.field was along
the ¢ axis was reduced by 2% to find S(0). It was assumed the dipole
approximation was still good when the field was along the b axis. The
calculated and measured values of L and M in Table IV.l are in good
agreement.

As a check on calculations 6f internal field for intermediate anglés

between the applied field and the c¢ axis, the transition heights were also
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measured over a range of angles. This situation is shown in Fig.IV.lb. The
internal field and the magnetization are no longer in the same direction as
the applied field. This situation can be treated exactly in the case of a
dipole. If the angle between the magnetic moment of the dipole and the

axis of the pickup loop is @ the flux linked by the pickup loop is

P = ¢, cOSA = &;m cos« . ()

The angle o is the difference between the angle of the applied field ea

and the angle of the internal field 91. Using the demagnetization formula

from Chapter II,

. = arctan .
&; ar [, tan 9] (5)
Since the dipole moment is proportional to the internal field Hi’ the
transition height S is proportional to Hi’

5(6) = KH; cosax - ()]

K is a normalization constant and H can be found from

H, = Ha[(;,s%\_ce_._,)a cas Ga}] | -‘ o (7)

Measured S(Ba) for Nb48ZTi#2 are shown in Fig.IV.2 along with the curve

calculated from equation (4-6). There is fairly good agreement between the
measurements and the calculations. The measurements fall below the
calculation as @ gets larger. This suggests that the correction for a
dipole, cos «, does not quite hold for the sample Nb48ZTi#2.

This section shows that demagnetizing effects can be taken into

account quantitatively.
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Fig.IV.2- Measured (dots) and calculated transition heights plotted
against the applied field for Nb48ZTi#2.

35



Measurementkgi the Entry Field

The temperature induced magnetic transition is used to find “en'
Fig.IV.3 shows a typical set of transitions for different applied fields,
with the sample heid at a fixed angle. In each case the sample is gooled
from above the tramsition temperatgre Tc to well below TC in zero applied
field. Then a constant field is applied using the dc magnet in the
persistent mode. The sample temperature is raised slowly and the
magnetization is recorded. At low temperatures the sample is in the
Meissner state and the curves all follow the same path. As the temperature
rises, the curve coresponding to the highest applied field breaks away from
the other curves. This point is where\the first flux entry occurs. It
gives the temperature T(Hen) for which that particular applied field is
Hen' The dashed line shows the irreversible curve obtained upon cooliqg the
sample from above Tc with an applied field of 3.4 Oe.

Fig.IV.4 shows a plot of Hen vs T using the values of T(Hen)
determined from Fig.IV.3. Theory predicts that the curve Hcl vs T should be
linear near Tc. The slcpe dHen/dT is found from graphszlike Fig.IV.A for
various ea' Results for the two samples, Nb48%ZTi#l and #2, are given in
Table IV.2. The slopes of the internal field are found from the measured
applied field values using equation (4-7). The four values for the internal
field dHenildT are in good agreement with each other. This shows that the
only effect that the shape of these samples has on the value of Hen 1Sfdue
to demagnetization.

“Hen was measured for some intermediate angles using Nb48%ZTi#2.
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Table IV.1

The semiaxes of the two Nb487Ti samples along with the calculated and
measured demagnetization factors.

calculated measured .
sample b(mm) c(mm) L N L N
#1 0.47 0.245 0.242 0.516 0.239 0.522
#2 0.79 0.064 0.0576 0.885 0.0576 0.887
Table 1V.2

The measured Hen(O) and Hen(90) for the Nb48%ZTi samples along with the
calculated internal fields, Heni(o) and Heni'

sample dH__(0)/dT dH_ (90)/dT  dH__,(0)/dT dH__( 90)/dT
#1 =3414(0e/K) =56 5(0e/K) -71%8(0e/K) -74%7(0e/K)
#2 -8.220.4 -6815 -72% 5 -72%6
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Fig.IV.3~ Temperature induced magﬁetic transitions for Nb48ZTi#2 with
‘9 _=90. The cooling curve (dashed) is shown for an applied
8
field of 3.4 Oe.
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Fig.IV.4- A plot of experimentally determined Henvs T
for Nb48ZTi#2 for ea=9o.
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Fig.IV.5- H_ vs 6_ for Nb48Ti#2 at T=(T_-0.05)K. Data points
and theoretical curve are shown.
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Fig.IV.5 shows the data. The theoretical curve is found by solving
equation (4-7) for Ha and using 72 Oe/K for Hi' The graph shows Hen for a
particular temperature (T=TC-0.05K). This is equivalent to plotting dHen
(9)/dT since

Hen vs T is a straight line. Again the measurements agree with the theory.
The angular dependence of Hen is explained by only considering
demagnetization.

Measurements of HC for Nb-Ti alloys have not been given in the

1
literature. An estimate of ¥ can be found using measurements of dch/dT
and normal state resistivity f. Using the formula given by Orlando et

al,18 in the dirty limit, x is given by

l/a
_ 7.49 x10® JHca) Y2
= hvsx 1o ( aT 4, P ) | &l

An estimate of dHcZ/dT can be obtained using data from Neuringer and
Shapira,19 who give for Nb37ZTi a value dch/dT=-15,400 Oe/K and for
Nb56%ZTi a value of -25,900 Oe/K. Interpolating between these results gives
dch/dT=—20,000 Oe/K for Nb48%Ti. The normal resistivity just above TC was

measured for our annealed NbL48%Ti to be 6><10-'5

Q°cm using a four probe
technique. Putting these values into the above equation yields X=39. Using

Ginzburg-Landau theory, the relation between dHcl/dT and dchldT-is

He,
-dd—_'—_— = -——‘Jﬁl‘;‘ ;L; (InK + 0.%97) (9)

This gives an estimated value for dHclldT of 27 Oe/K.
The measured value of dHeni/dT=72 Oe/K is much larger than the
expected dHClldT value. Evidently there is some mechanism which delays the

entry of flux into the superconductor. 1f the cause of the delayed flux
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was a surface effect, it should have a different magnitude for different
sizes and shapes of surfaces. The four measured values of dﬂeﬁi/dT are the
same. This would indicate that the cause of the delayed flux entry was a
bulk effect rather than a surface effect. In addition, the appearance of
the surfaces was dull and the surface barrier to flux entry 1is maximum for
shiny surfaces, so the effect of a surface barrier is expected to be
small. As pointed out 1in Chapter II, the presence of delayed flux entry is
accompanied by an irreversible magnétization curve. Curves for the Nb48Z%Ti
were found to be very irreversible (see Fig.IV.3), whereas, for an ideal
supérconductor, all the flux should be expelled below T(Hcl). The
measrurement of Hen’ in this case 1s not just a measurement of Hcl but it

also includes the effects of flux pinning, which appear to be isotropic.
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V. Results -~ Anisotropic Superconductor

Samples
) Single crystals of 2H--NbSe2 were obtained from Dr. R. F. Frindt

(batch R). The crystals were grown by the iodine vapbr transport method.20
The structure of NbSe2 is of electrically conducting layers which are
loosely bound together by van der Waals gaps. The spacing of the layers is
about 6 A. The crystals grow in the shape of thin platelets with the

layers parallel to the broad surfaces of the platelet. Samples were
carefully chosen single crystals with smooth surfaces and uniform

thickness. NbSe2 is a soft substance and the crystals were handled with due
care. Each sample was weighed on a Cahn model G-2 electrobalance. The
dimensions of the broad surfaces were measured under a microscope. Using
the measured area and mass of a crystal, its thickness was calculated,

taking the density of NbSe, to be 6.45 g/cc. The following convention was

2
used when labeling the dimensions of the broad surfaces. As shown in
Fig.V.la, for a magnetic field applied parallel to the layers, the height h
of the crystal is the dimension in the direction of the applied field,
whereas the width w of the crystal is taken to be the dimension of the
broad surface perpendicular to the applied field. Fig.V.lb shows how h and
w change for a different orientation of the applied field (still parallel
to the layers). Extensive magnetization measurements were made on three '

crystals which will be called NbSez#l, NbSe2#2, and NbSe2#3. Fig.V.2 and

TableiV.l show the shapes and the dimensions of the samples.
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Fig.V.la- Sketch of a sample in a field applied parallel to the
layers. h is the dimension of the sample parallel to the field.

x4

—— > —|

Fig.V.1b- Sketch showing how h changes when the sample is rotated
from its position in Fig.V.la. The applied field 1s still

parallel to the layers.
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Fig.V.2~ Sketches of the shapes of the three NbSe2 samples drawn
approximately to scale.
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Demagnetization

Demagnetization factors for the NbSe2 samples were found f;om fhe
measured trangition heights using the method described in Chap.IV. The |
results are summarized in Table V.l. Fig.V.3 shows measured transifion
heights for NbSe2#1 plotted against the angle of the applied field.'(When
ea=0 the applied field is perpendicular to the crystal layers.) The solid
curve shows the calculated transition heights. There is good agreeqenf
between the measurements and the Ealculation, but the measured points lie
élightly below the calculated curve. This, again, is probably Aue to the
dipole assumption used in the calculation. 7 .

Unlike the Nb48%Ti samples, which were shaped into ellipsiods, the
NbSe2 samples are somewhat irregular in shape. When a magnetic field is
applied perpendicular to the platelets the demagnetizing factor will be
somewhat smaller at corners than it is in the bulk.3 The average

demagnetizing effect, which is measured by the transition heights, will be

somewhat smaller than the calculated demagnetizing effect using ‘the average
sample dimensions. The samples NbSe2#1 and #2 were not far from ellipsoidal
in shape and the measured demagnetizing effect in the z-direction was about
10% smaller than the calculations. The shape of NbSe2#3 deviates
considerably from an ellipsoid. The internal field near the edges will be
smaller than the field near the centef of the platelet. Since the flux
lines enter’at the edges, a calculation of internal Hen due to

demagnetizing effects will overestimate it for NbSe2#3.
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Fig.V.3- Measured and calculated transition heights for NbSez#l.
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Entrance Field Measurements

Temperature Iinduced magnetic transitions were recorded for the NbSe2
samples in the same way as for the Nb4BZTi samples. A sample would be
cooled in zero field, then a constant field applied and the temperature of
the sample raised slowly. Fig.V.4 shows examples of magnetic transitions
for NbSe2#3 with the applied field‘parallel to the layers. As for the
Nb48%Ti, these transitions were found to be irreversible. Upon cooling the
sample in a constant field most of the original flux through the sample
remained trapped. The amount of flux trapped depended on the direction of
the applied field relative to the crystal layers. (This is not shown in
the figure.) T(Hen) is the point where a curve breaks away from a lower
field curve. For each fixed angle of the sample in the applied field,
entry points T(Hen) were found for a number of applied fields. The plot of
Hen vs T, Fig.V.5, shows the expected linear relationship, near Tc. Vélues
of dHen/dT for the applied field perpendicular to and parallel to the
layers for the three samples are given in Table V.2. A graph showing the
angular dependance of Hen for NbSe2#3 is shown in Fig.v.6..1n order to
obtain the angular dependence, the sample was rotated ih steps from being
perpendicular with respect to the field to being parallel. In Fig.V.6, for
the sample parallel to the field, h was the largest sample dimension as
shown in Fig.V.la. Data for the same crystal are given in Fig.V.7, but
here the sample rotation is done so that when it is parallel to the field,
h is the smaller dimension as in Fig.V.lb. Data for NbSez#l and #2 are

shown in Fig.V.8 and Fig.V.9. In both cases h is the larger dimension.
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Table V.1

The approximate largest and smallest distance across the NbSe, samples are
given for the two definitions of h and w. Also given are the sample
thickness t and area of the broad surfaces A. The last columns give the
measured demagnetization factors.

sample w(mm) h(mm) t (mm) A(mmz) 1/1-L 1/1-M 1/1-KN

#1 0.77 1.15 0.041 0.877 1.04 - 12.82
#2 0.63 0.43 0.014 0.27 1.02 1.03 19.2
#2 0.43 0.63
i#3 2.7 1.2 0.028 3.1 1.01 1.02 29
#3 1.2 2.7

Table V.2

The measured Hen(O) and Hen(90) for the NbSe, samples along with the
calculated internal fields, Heni(o) and H 1 0). The rows correspond to
the rows in Table V.l. en

sample dH__(0)/dT dH__(90)/dT dHeni(O)/dT dH_ . (90)/dT
# 11.5(0e/K) 47.0(0e/K) 150(0e/K) 48.9(0e/K)
#2 8.075 50.7 155 52.2

#2 - 45.45 - 49 .4

#3 6.035 46.75 175 47.7

#3 - 42.5 - 42.9
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Fig.V.d- Fagnetic transitions for NbSe2#3 for ea=90.
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Fig.V.5- Meazasured H vs T for NbSe,#3 for ea=90, with a straight
line drawn through the data.
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Fig.V.6— Experimental H (dots) and H*en (crosses) for NbSe2#3
with h equal %o the largest sample dimension.
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Fig.V.7- Experimental Hen e
with h being the smaller samﬂle dimension.
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Fig.V.8~ Experimental H (dots) and H*en (crosses) for NbSez#l.
Hen was found by both field sweep and temperature sweep
téechniques. ’
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Fig.V.9- Experimental Hk  for NbSe,#2.
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There still may be some coﬁcern that the measured values of Hen are
lowered by inhomogenious regions of the sample or by irregularities in the
shape of the sample. An indication of how the flux enters the bulk of a
sample is found by considering the main region of the transition where a
large quantity of flux is entering the sample. This part of the transition
is linear and can be extrapolated back to lower temperatures as shown by
the dotted lines in Fig.V.4. The point where this extrapolation crosses an
extrapolation of the low temperature curve gives a value which will be
called T(H*en). The quantity H*en will be somewhat larger than the actual
critical entry field Hen' H*en should be related to the bulk properties of
the crystal. (Size and shape are included in "bulk properties™.) The slopes
dH*en/dT can be found near T . These results are shown for NbSe2#3 in
Fig.V.6 and Fig.V.7, plotted against the angle of the applied field. The
data for H*en show the same features as those for Hen but are larger by
about a factor of l.4. This would indicate that the features of the
measured Hen are not due to inhomogeneities of composition or
irregularities in shape of the sample. The curve Hen(ea) is a property of
the whole crystal (ie. a bulk property).

A field sweep method was also used to measure Hen' Ihe sample was
cooled in zero field to a temperature below Tc. The sample is then held at
a fixed temperature while a gradually increasing field is applied. The
magnetization is measured as a function of the applied field. The ac magnet
was used to apply the field as described in Chapter III. There was
considerably more noise in the SQUID signal in the field sweep method than
in the constant field method. Examples of magnetization curves for Nbéez#l

at a fixed angle are shown in Fig.V.10. Ideally, for low fields, when the
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Fig.V.10- Measured magnetization curves for NbSe #1 with the applied
field perpendicular to the layers.
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sample is in the Meissner state, fhe magnetization vs field would give a
linear plot. The non-linearity of the low temperature curve is due to a
background éignal from the magnetometer itself and was present even .in the
absence of a sample.

To find‘Hen from the field sweep data, the curve for the lowest
temperature, at which the sample was in the Meissner state, was used as a
base. The value of Hen-is taken from where a fixed temperature curve
breaks away from the Meissper state curve. The values of Hen found using
the field sweep method agreed within errors with the values of Hen found
using the temperature sweep method. The results for Hen(ea) for NbSe2#1 are
shown in Fig.V.8. Also in Fig.V.8 are the results of H*en(ea) found by
extrapolation of the bulk of the temperature swept transitions. Hen is
again smaller than H*en by a constant factor.

The temperature induced transition curves, Fig.V.&, show a slowly
decreasing magnetization even before T(Hen) is reached. This is probably
due to the temperature dependence of the penetration depth. The penetfation
depth will reduce the volume in which flux is excluded in the Meissner
state. When the applied field is parallel to the platelet, the thickness of
the Meissner region will be reduced by an amount 2A(T). Where 2 is the
distance the induction penetrates into the broad surfaces of the platelets
in a direction perpendicular to the crystal layers. The surface area of the
edges of the platelets are small and the penetration here is neglected. For
fields smaller than Hen’ the magnetization should be proportional to

(t - 2X(T)), where t is the platelet thickness. Near Tc the penetration.

depth has the form21

AT = L a0 () , 0
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where A(0) is the London penetration depth at T=0. The magnetization curve
for NbSe2#1 did fit this functional relationship giving A(0)=110 nm. Finley
and Deaver Jr. measured A for NbSe2 using a SQUID magnetometer.22 Their
result for the penetration depth perpendicular to the layers was 124 nm.
Using specific heat measurements, Schwall et al8 calculated A to be 115

nm. This agreement confirms that the decrease of magnetization below Hen is

due to the increasing penetration depth.

Comparison of Results and Theory

Table V.2 gives a summary of the data for the three NbSe2 samples.
The internal entry field parallel to the layers Hen(90) varies, not only
from crystal to crystal, but for the same crystal with the field in the x‘
or the y direction (see Fig.V.l). This implies that the cause of the
different values for Hen(90) would not be differences in composition.
Keeping the thickness of a crystal constant, Hen(90) gets larger as the
ratio h/w gets smaller. This is seen by looking at two values of Hen(QO)
for NbSe2#2 or #3. Comparing all of the values of Hen(90) for the three
crystals, it would appear that Hen(90) gets larger as t gets smaller. By
trial and error it was found that a systematic result is aghievedbby
plotting Hen(90) vs (h/w)(A/t), which is shown in Fig.V.ll. Considering the
size of the error bars, the data points fall on a remarkably smooth curve.
This would suggest that the errors are over-estimated. However, the exact
point of T(Hen(90)) on the magnetization curves is difficult to choose and
the author feels the quoted errors are realistic. The general trend which
the data implies is for Hen(90) to increase as the size of a crystal *

decreases, while Hen(90) decreases slowly or perhaps approaches a constant
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Fig.V.11- Graph showing the dependence of dHe (90)/dT on the size of
NbSe2 crystals. A smooth curve is %%awn to connect data
points. Heni is the internal field corresponding to Hen'

Fig.V.12- Graph showing the approximate empirical relation between
dH__./dT and crystal size for NbSe,, for the data from
Frgv.11 2
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as the size of a crystal increases. The shape of the curve of Hen(90) vs
(h/w)(A/t) suggests a logarithmic dependence. A plot of Hen(90) vs
In(h/w)(A/t) is given in Fig.V.12. The functional dependence-is
approximately logarithmic, although somewhat uncertain because of the large
error bars and the small range of crystal sizes. There is, at present, no
theoretical explanation for this relationship.

The calculated internal entry fields perpendicular to the crystal
layers Hen(O) also show some variation. The demagnetizing effect for a
perpendicular field has large uncertainties, especially for NbSe2#3, and
this can account for the different values completely. The results for NbSe

2
#1 and #2 of approximately 150 Oe/K will be taken as the best value of

Heni(O).
Predictions for the value of Hc1 can be made using measurements of

ch and ¥ found in the literature. Using Ginzburg-Landau theory as in

Chapter 1V,
dHea
= InK + 0-9-97)
dHe _ 4T ( ) @)
dT 2 K2

Schwall, Stewart, and Geballe8 use specific heat measurements to find
dHc2(90)/dT=25,700 Oe/K, dch(O)/dT=6450 Oe/K, k;=54, and x, =13.5. Putting

these values into the equation for dHclldT gives dH _(90)/dT=20 Oe/K and

cl(
dHcl(O)/dT=55 Oe/K. As for the Nb48ZTi, measured values of the internal

fields for NbSe dHen(QO)/dT=50 Oe/K and dHen(O)/dT=150 Oe/K, are larger

21
than the expected values. The cause of this delayed flux entry would again
be the presence of flux pinning forces.

. There is a theoretical model (Chapter II) which describes quite
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successfully, the delayed flux entry caused by flux pinning. It is called

3,10,11 The critical state model has been used to

the critical state model.
calculate the critical current density (which is directly related to flux
pinning) for large applied fields using a constant temperature field sweep
technique. In the critical state model, irreversible transport currents
provide shielding from the applied field in addition to the shielding
provided by the reversible Meissner currents. Unfortunately, a temperature
dependent theory has not been developed. A quantitative analysis of the
data reported here cannot Se done at present.

A description of how the flux enters would be helpful in
understanding anisotropic superconductors. Although the effects of
reversible magnetization and flux pinning can not be separated here,
measurement of Hen does give the point when flux enters a sample. It is
useful to compare the theoretical dependence of Hcl on the angle of the
applied field ea and the measured angular dependence of Hen' Graphs

comparing the Hc theory, outlined in Chapter II, and the Hen data are

1
given in Figs.V.13, 14, 15, and 16, using Schwall”s values of k,=13.5 and
v€=0.25. The figures show that the actual entry field differs in behavior

from the theoretical Hc By using a smaller value for €, i.e. higher

1°
anisotropy, Klemm and Clem”s theory does show a break in the curve,
Fig.V.14. But the shape of the smaller € curve does not agree with the
shape of the measured curve, so it 1is reasonable to take Schwall”s measured
value for € as being correct for NbSez. Since the measured Hen has a
larger anisotropy than the calculated Hcl’ the flux pinning which is

present in the real crystals, must add to the anisotropy.

_ A simple model can be developed to show how the fluxoids might enter
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90 (deg-)

Fig.V.13- Experimental H _ data points for NbSe,#1 compared with Klemm
and Clem”s th%%ry for x, =13.5 and v€=0.25 (solid) and
- v€=0.19 (dotted), and with the parallel/perpendicular model
(dashed).
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Fig.V.14- Experimental er data for NbSe,#2 compared with Klemm and
Clen”s theory Yor «,_=13.5 and2 ve=0.25 (solid), and with the

parallel/perpendicular model (dashed).
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Fig.V.15- Experimental H_ data points for NbSe2#3, with h equal to
the lopg sample dimension, compared with Klemm and Clem”s
theory~ for k. =13.5 and v€=0.25 (solid), and with the
parallel/perpendicular model (dashed). The insert shows the
applied field direction for ea=90.
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Fig.V.16~- Experimental H data points for NbSe,#3, with h equal to
the smaller dimension, compared with Klemm and Clem”s
theory  for k, =13.5 and v€=0.25 (solid), and with the
parallel/perpendicular model (dashed). The insert shows the’
direction of the applied field for 0a=90.
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a crystal. Suppose the fluxoids are allowed to lie only perpendicular to -

the crystal layers or parallel to the layers. Substituting Hen for Hcl in

equation (2—10) and putting OB=0 or 9B=90, gives for Hen

_ G-N¥TE/, _ Hen (0)
Hen (€a) = cos B, cos Ea

(3)

- (-l 4TR /¢, _  Hen(90)
or Heh(eﬁ) - ( 3in9° 2 = l;"n(eq

whichever is smaller. Hen(O) and Hen(90) are the measured values of the
entrance field at O and 90°. This model is compared with the measured data
in Figs.V.13, 14, 15, and 16. Agreement is quite good. The shape of the
simple model predicts the shape of the data, except in Fig.V.16. This
suggests that the flux lines do enter a crystal either parallel or
perpendicular to the layers and not parallel to the external field.

Klemm and Clem”s calculation assumes that the fluxoids are symmetric;
that is, the shielding currents circle in planes which are perpendicular to
the fluxoid axis. In a recent paper, Kogan23 shows that symmetric fluxéids
cannot satisfy the anisotropic London equations. Kogan suggests that the
shielding curents stay in the plane of the crystal layers even if the
fluxoid is not perpendicular to the layers. From this, he shows that the
self-energy should be larger for angles where the fluxoid is not parallel
or perpendicular to the crystal layers. The fluxoids would prefer to 1lie
closer to either parallel or perpendicular to the layers than Klemm and
Clem predict. This gives theoretical justification to the above conclusion

of the simple parallel-perpendicular model.
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VI. Summary and Conclusions
Magnetization measurements were used to find the critical field for

flux entry into the bulk of superconducting samples. Measuremen;s of Hen
for samples of Nb487Ti, after correction for demagnetization, were found to
be isotropic as expected. But the measured value of Hen was found to be
higher than thg expected Qalue for Hcl' This delayed flux entry is most
probably caused by pinning effects and can be qualitatively described by
the theory of the critical state.

Measurements of Hen(90) and Hen(o) for the anisotropic superconductor
NbSe2 were lzrger than the expected values of Hc]' As for the Nb4BZTi,
flux entry is delayed. Small variations of Hen(90) were observed for
different crystals and even different orjentations of one crystél. An
empirical relation between Hen(QO) and the dimensions of the crystals was
found. This has not been explained theoretically but the variations are not
due to differences in crystal composition.

The measured angular dependence of Hen shows a break or cusp at about
0 =80°. This result does not agree with the angular dependence of Hcl
predicted by Klemm and C]em.1 A simple model, assuming that the fluxoids
enter either parallel or perpendicular to the layers, gives qualitative
agreement with the observéd angular dependence. This would suggest that in
the actual crystals there is an effect which causes the fluxoids to 1lie
closer to parallel or perpendicular than Klemm and Clem predict. In a
recent paper, Kogan shows that an assumption made by Klemm and Clem is not
valid for intermediate angles. The self-energy of a fluxoid at an

intermediate angle should be larger than Klemm and Clem”s result. This
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would cause the fluxoid to lie closer to either parallel or perpendicular

to the crystal layers. Finally, Hen is not only dependent on Hc but aiso

1
on the crifical current. It is most likely that the critical current in
NbSe2 is itself anisotropic. This would also have an effect on the angular
dependence of Hen'

A motivation of this work was a desire to investigate to what extent
low-field magnetic transitions could be used to find superconducting
parameters for anisotropic materials. The present experiments show that the
strong demagnetizing effects can be taken into account quantitatively.
However the determination of HCl and quantities related to it is made
complicated by the presence of flux pinning.

The theory of anisotropic superconductors near Hc1 has not been
developed to a satisfactory degree. Developement along the lines Kogan
suggests shows promise. In addition, it seems possible to develop a
workable temperature-dependent theory of the critical state, by inserting a
temperature—-dependent critical current. This would allow a determination of

both the critical current and Hc of a superconductor from the temperature

1
induced magnetization curves. It is possible that such a critical state
theory could explain the variations of Hen with crystal s;ze.
Experimentally, it would be interesting to measure Henusing crystals
of larger anisotropy (for example intercalated layered compounds such as
TaSZ(pyridine)). Artificially produced layered materials show much promise
in investigations of anisotropic superconductivity.24 Precise layers of
superconducting and non-superconducfing materials can be built up by

processes such as sputtering or e-beam evaporation. The anisotropy, purity,

and. shape can be controlled to a much higher degree than in grown
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crystals. In such highly anisotropic films it should be even more difficult
to place the flux lines parallel to the planes, unless the applied field
is lined ub precisely. Artificially-produced samples should make it
possible to separate, experimentally,'the effects of anisotropy and flux
pinning. In this way, low field magnetization measurements would be useful
in finding supercondqcting parameters and in explaining the anomalous

entrance and movement of flux in anisotropic superconductors.
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