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ABSTRACT

A method is presented for creating exact solutions of tae
interior Einstein field equations when the Segre class of the
stress—-energy tensor is prescribed. The "g" and "T" methods of
Synge are combined in a way which takes advantage of the alge-
praic structure of the stress-energy tensor. The field equa-
tions in orthogonal coordinates are written for the case when
the stress-energy teansor is of the algebraicailiy general Segre
class [111,1] and its eigenvectors are aligned with tae coordin-
ate vectors. A new exact solution of these equations is found
which in special instances satisfies the strong energy condi-

tions.
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I. Introduction

Motivation
From the beginning of the taeory of Generai Relativity
there has been a sustained search for new exact solutions of the

Einstein field equations

(1-1) Gg = -81TT.:j.

The solutions of (1.1) which are of the most interest are the
exact solutions i.e. solutions which satisfy (1.1) together with
appropriate side conditions. Tk2 side conditions will generally
reflect properties of physical situations which we wish to model
(boundary conditions, energy conditions). The system (1.1) is . a
guasilinear, coupled system of ten second order partial differ-
ential equations for ten unknown functions 9ij of four variables.
Adding to the complexity of (1.1) is the fact that the giokal
topology of space-time is unknown hence the boundary conditions
are arbitrary. -The question of what boundary conditions to use
is still not completely resolved. If we wisk the exact solu-
tions to have reasonable physical interpretations then we rmust
arrange that T, the stress-energy tensor, satisfies certain
conditions. If Ty describes macroscopic matter with physically

plausible properties such as everywhere nonnegative energy



density, nonspacelike momentum transfers, and pressures rather
than tensions, then the difficulties posed by the system (1.1)
become enormous. The nonlinearity of the partial differential
equations (1.1) is the most vexing feature from a mathematical
viewpoint.

As discussed in Synge [1;p184] there is a variety of ap-
proaches that may be adopted when looking for solutions of
(1.1). Systems of equations (1.1) may be classified into two
types depending upon the nature of the stress-energy tensor.
Wherever the stress-energy tensor is zero the system (1.1) de-
scribes a yvacuum space-time. For this case the equations (1.1)

reduce to

It
Q

(1. 2) Rg
vhere Rj; is the Ricci tensor. The vacuum field equations have
been extensively studied and in many special cases the solutiohs
of (1.2) are completely known [2].

When the stress-energy tensor is nonzero the system (1.1)
describes a region of space-time which is a body in the sense
used by Das [3]. Imn this case we will say that the equations
(1.1) describe an interior space-time. The interior field equa-
tions have been studied mainly for the simplest models of macro-
scopic matter i.e. dust, perfect fluids, wave fields, and other

idealized equations of state. As a consequence of these simpli-

fications there are no realistic exact soluticns of the interior



field equations for interesting simple astronomical situations
such as rotating stars, nonspherical stars and multibody sys-
tems. The interior field equations will be the exclusive
focus of our attenticn in the pages to follow.

In this thesis our principal objective is to write and, if

possible, solve the system of equations

(1.3) Gy = -8 Ty , T, # O,
where the stress-energy tensor is "algebraically general". ¥We
will impose certain conditions which guarantee that the solu-
tions we will find are physically reasonable. 1In pursuit of
this objective we will find it necessary to develop in detail a
method of solving (1.3). The method which we will use is de-
rived from the works of Sygne [1;p184] and Petrov [4;p323]. The
selection of this method will be seen to be consistent with our
goals of generality and reality implied previously. The proceés
of finding a methodology is a long and difficult one. The re-
cent book by Buchdahl [S5] presents many of the perplexities

which were encountered ir formulating our method.

Methodology

The method which we shall use is a compromise between two
methods outlined by Sygne coupled with an algebraic classifica-
tion of the stress—energy tensor. In the first of these two me-

thods, the "T-method", one proceeds by choosing a coordinate



system and then specifying the stress-energy tensor, Tg, as a
set of ten functions. In this approach tie systém (1.3) is
viewed as a difficult system of partial differential ejuat ions.
The T-method cannot completely satisfy our demand of physical
reality in the fullest sense, as a solution found in this manner
is quite unlikely to bear any resemblance to the matter distri-
bution to be modelled when the problem was first formulated.

The difficulty in specifying the "source" stems directly
from the fact that General Reiativity is a field theory in which
the role of field variables is played by the metric tensor. The
antrinsic linkage between the geometry of space-time and the
matter-energy distribution expressed in (1.3) rules out any a
priori notion of "distance" in space-time. This absence of
"distance" prevents one from ascribing a physical interp;etation
of the stress-energy tensor before the metric tensor is found
from (1.3). This problem has usually been avoided by assuring
that the metric is "almost flat" i.e. pressures and densit ies
are nonrelativistic. The reason for this hypothesis is taat
with it we can specify the geometrical distribution of matter
before we have solved (1.3). In the presence of extreme pres-
sures and densities this assumption cannot be used.

The second method, the "g-method", simply requires one to
prescribe ten sufficiently smooth functions gy as the metric
tensor provided that the correct signature is maintained every-
where. In this approach the equations (1.3) are regarded as de-

fipitions of the comporents of the stress-energy tensor. 1The



g-method is unsatisfactory since the calculated stress-energy
tensor is unlikely to have physically reasonable properties.

The heart of the difficulties in these two approaches lies
in the uncertain role of the cocrdinates with which we specify
either the geometry of space-time or the matter-energy distribu-
tion. Mathematically, the coordinates serve as a set of markers
of events in space-time. Central to any process of physically
interpreting the equations (1.1) is the concept of a local frame
of reference. The natural language to express the physical con-
tent of the field equations is that of the tetrad calculus. A
choice of local reference frame is a physical one and is usually
adapted to the problem at hand. 1In principle, the tetrad conm-
ponents of the tensors which appear in (1.1) are susceptible to
physical measurement. For the interior field equations we will
see that the best local reference frame is one which contains
the eigenvectors of the stress-energy tensor. We will call any
such local reference frame the natural frame of Tg. |

These considerations lead us to wonder if a hybrid method,
which combines the advantages of the T-method and the g-method
and is expressed in the tetrad calculus, might allow some pro-

gress towards our goals. We will call this hybrid method the

[o1]

"mixed method".

The mixed method allows us to specify the algebraic/relati-
vistic structure of the physical stress-energy temsor T, with
respect to the flat metric temnsor 44, - Naturally we will find

that when the tetrad is the "generalized eigentetrad" of Tpgg



then the corresponding tetrad field equations will assume their
simplest form. PFurther simplifying hypotheses may be made be-
fore we partition the tetrad field egquations for a nonempty

space-time:

With respect to its generalized eigertetrad, the physical
components of the stress—-energy tensor are either constant, hav-
ing values zero or one, or they are nontrivial scalar functions
of position. It will be seen in the third chapter that there
are at most four nonconstant physical components (related to tae
four eigenvalues) of T gg We can partition (1.4) into two sub-
systems using as a criterion the nature of the components of %&
The subsystem corresponding to trivial (zero or one) comnponents
will yield a system of partial differential equations which we

will attempt to solve. The subsystem corresponding to nontrivi-

al components of Tpqg will be viewed as a set of definitions of
these components. For the defined components of the stress—-en-
ergy tensor to be physically reasonable we must impose a set of
differential inequalities. These differential inequalities will
force the solutions found by the mixed method to satisfy tbke
strong energy conditions [6;p88]. Although any of the energy
corditions could be imposed on the solutions in this manner,
there is no guarantee thbat the matter-energy distribution corre-

sponding to Tag is realized in nature.



In this thesis we have not imposed an equation of state in
finding the new interior soluticn. An eguation of state may be
adjoined to the "reduced" system of partial differential equa-
tions which we attempt to solve in the mixed method. If the
eguation of state is a nonlinear relation between the energy
density and the principal stresses then the resulting system of
partial differential equations becomes extremely complicated.
The equations of state usuvally imposed in General Relativity are

simple linear equations as a result of this problen.

Description of Results

The second chapter contains most of tae mathematical back-
ground necessary to develop and employ the mixed method outlined
above. Some parts of the theory of differential manifolds are
developed in more detail than we employ; this was done with a
view to further work based on the results of this thesis. The
tensor calculus is described in this abstract setting. 1In ordér
that one may freely use any notation system for the tensor cal-
culus or the tetrad calculus, an appendix to this chapter is
given which provides a scheme fcr converting tensor equations
from one notation system to another.

The third chapter contains the algebraic tools necessary to
classify the stress-energy tensor. Several definitions from
linear algebra are gemneralized tc our needs. Several conditions
are found on the secular equation of the stress-energy tensor

which force the existence of four real eigenvalues at a point in



space-time. A short summary of the Segre characteristic and the
Plebanski classification of the stress-energy tensor completes
description of the mixed method. The "Principal Axes" theoren
for classifying a second rank symmetric tensor with respect to
an indefinite metric concludes this chapter.

The fourth chapter is a collection of three known exact so-
lutions which have been treated by a specialization of the mixed
method. The specialization of the mixed method which we use is
to require tkat the generalized eigentetrad is aligned with thke
coordinate tetrad. These examples illustrate the épplication of
the mixed method on simple solutions. Other solutions have also
been used to test the tetrad formulation of the equations (1.1)
but these have not been included since they do not satisfy the
alignment hypothesis.

In the fifth chapter the new exact solution which we find
is presented. A new family of interior solutions for stress-en-
ergy tensors of Segre class [ 111,1] 1is found and several para-'
metric subfamilies are shown to satisfy the strong energy condi-
tions. In view of the complexity of the solution, adequate de-
scription of a possible physical source appears difficult. A
second family of new solutions is also found but these are even
more complex and have not been analyzed in detail. Both fami-
lies of solutions are found via the mixed method under the sim-
plifying hypothesis that the generalized eigentetrad is aligned
with the coordinate tetrad. Scre of the more lengthy calcula-

tions which would only obscure the application of the mixed



method are omitted.

Possibilities for Further EResearch

There are many directions in which further work based on
this thesis could proceed. The mixed method could be extended
as a "generalization" of the Geroch-Held-Penrose formalism [2].
The G.H.P. formalism is a powerful tool whjch has been used pri-
marily to investigate the vacuum field equations. The use of
the generalized eigentetrad for the Segre class [11,2] and its
algebraic degeneracies produces the same tetrad £ield equatioas
in the mixed method as the G.H.P. formalism. However, the
G.H.P. formalism uses a tetrad consisting of two null and two
spacelike vectors for the Segre class [ 111,1] and its algekraic
‘degeneracies. The mixed method uses a tetrad of eigenvectcrs
for the Segre class [111,1] none of which can be null. It seens
to us that the mixed method can lead to a useful extension of
this formalism for the investigation of the interior field egué-
tions.

To develop a scheme for searching for interior and vacuunm
solutions simultaneously it will be necessary to carefully study
the interface (boundary) between the regions of space-time where
the stress-energy tensor is zero or not. This is the reascn for
the detailed discussion of piecewise differentiable maps in the
second chapter. The specification of just where this interface
occurs in physical terms will emtail a careful examination of

the "hypersurfaces of discontinuity" of physical quantities.



Perhaps one way to find this interface is by examining the hy-
persurfaces across which the Segre class of the stress-energy
tensor changes. A study in this direction of the hypersurfaces
where the Petrov type of the Weyl tensor changes has beea car-
rieé out by Case [7].

Another way in which we may possibly extend the results of
the fifth chapter is by extensively studying tae partial differ-

ential equation
(1.5) Uy + F(X,7)0 = 0

where f(x,y) is an arbitrary function of class C3. This egua-
tion is found to have solutions for a very special choice of
F(x,y). The general solution is unkown even for simple choices
of F(x,yY).

All of the work in the last two chapters is a conseguence
of the simplifying hybothesis that the generaliized eigentetrad'
of Tpp is aligned with the coordinate tetrad. 1In these cases we
always used orthogonal coordinate systems. Otuer relative or-
ientations introduced by using nonorthogonal coordinates of
these two tetrads will produce systems of partial differential
equations of great compliexity, however solutions of these sys-
tems may more accurately model realistic physical matter distri-
butions.

The process of completing the generaljzed eigentetrad when

the stress-energy tensor has less than four rea. eigenvectors

10



could be varied so that special vectors such as Killing vectors,
recurrent vectors, or other special vectors are incorporated.
Even in the cases where the stress-energy tensor has a proper
eigentetrad there may be some indeterminacy due to repeated
eigenvalues.

Finally, the generalized eigentetrads of the stress-energy
tensor should be of use in computing global topological invar-
iants of space-time. 1Invariants such as the Chern class have
been the subject of intensive research in theoretical physics
recently. The canonical form of the stress-energy tensor with
respect to its generalized eigentetrad could simplify the compu-
tation of these invariants. These simplifications should lead
to a deeper understanding of just what physical significance
these invariants are and what role they could play in the search
for a unification between Quantum Physics and and General Rela-

tivity.

11



II. Differential Manifolds, Tensor Calculus, and the Tetrad

Calculus

Differential Manifolds

In order to formulate the mathematical structures whicn are
used to model space-time in General Relatiwvity, a condensed ex-
position of terminology, notation, and conventions is regquired.
The main analytical tools we shall use are the tensor calculus
on manifolds and the tetrad calculus. A small background of ab-
stract manifold theory and the theory of fjibre bumndles is re-

quired to place these tools in a unified context.

A n-dimensional tofpological manifold is defined as a separ-
able Hausdorff topological space M such that every point inp K
has an open neighbournocd which is homeomorphic to an open sub-
set of R™ (we assume that R has the usual topology induced by the

Euclidean metric). A n-dimensional coordinate chart on ¥ , ab-

breviated to "n-coordinate chart", is a pair (U,u) where U is an
open subset of M and v is a homeomorpkism of U onto an open sub-
set of R". For any n-coordinate cnart (U,u) on M and for each i,

1€i<n, define the i-thL coordinate function of u, xa, so that

x, :U-=-->R is given by

FO-
-

(2.1) X

12



Here the i-th canonical projection of R onto R is denoted Ly
Pr; -

In general, n-dimensional topological manifolds cannot be
globally coordinatized by the use of a single n~coordinate
chart. Simple examples of this point are the spheres S", nz1,
and the tori T", n22. If (U,u) and (V,v) are two n-coordinate
charts on M then it is a reasonable requirement that the ccor-
dinates of a point P in UnV be unchanged in the tramnsition from
one n-coordinate chart to the other. Two n-coordinate charts

(U,u) and (V,v) are said to be gr-cogpatible , £20, if either

(a) Onv =g, or

(b) UnV #4 and both of the coordinate transition maps

(2.2) veu—1 : u(UAV)—-->v(UnY)

uev—1 : v (UnV)-—-=->u(UnV)

are of class C' when viewed as maps from B"to R'. The notion of
Cr-compatibility is illuvustrated in Figure 1.
Let A be an arbitrary set of indices. A collection
@ = {(Uy,us):a in A}

of n-coordinate charts on M is calied a gr-subatlas on M if

(a) {Us: a in A} is an open covering of M,

(b) for each (a,b) in AxA the n-coordinate charts (U,,u,) and
? (Vp ,Vp) are Cr—compatible.

Two C'-subatlases O and 8 are C'-equivalent if @U® is a

¢"-sukatlas. It is easy.to show that Cr—equivalence is an

13




Piqgqure 1: An Overview of Cr-compatibility
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equivalence relation on the class of c'-subatlases of M. Fach
c'-equivalence class of c"-subatlases of M is partially ordered
by inclusion. A maximal element in a Cr-eguivalence class of
c'-subatlases on M is called a gf:gg;gg on M . By a lemma of
Spivak [8] it can be shcwn that each equivalence class <@ has a
unique maximal element hence there is an injective correspon-
dence between C'-eguivalence classes <@y and Cc'-atlases. Fach

¢"-equivalence class, L&Y , is called a differentiable structure

of class grgg M. ke agree to use the unique ¢’ -atlas to repre-
sent any particular c’-differentiable structure on H.

Each c'-differentiable structure, r21, is known to corntain
a differentiable structure of class C”[Q]. kesults of Kervaire
[10] and Smale [ 11] show that a differentiable structure of
class CO0 does not always contain a Ct-difierentiable strqcture
if the dimension of the manifold M is greater tham or equal to
rour. To avoid these problems we replace Cr, r21 by c® as is
done in most texts on differential manifolds and differential
geometry.

r

A n-dimensional differentiable manifold Y of class C , r21,

Y

is a pair (M, {®y ) where M is a separable, Hausdorff n-dimen-
sional topological manifold and {®&” is a differentiable struc-
ture of class C'on M. #®hen r = 0 (M, <@ ) is simply called a

topological manifoigd.

We define a C"-subatlas ® to be oriented if r21 and for

each pair (a,b) in AxA, the Jacobian of the transition map ueu—?

is positive wherever it is defined. A differeantiable structure

15



L@y is oriented if each subatlas in {®) is oriented and if the
unior of any two subatlases is also orientea.
Let M be an m-dimensional differentiabie manifold of class

cr, r21, with c'-atlas

Q = {(Upsua): a in A}, A an arbitrary index set.
let N be an n~dimensional differentiable manifold of class Cs,
s21, with c®-atlas

& = {(Vp,vy): D in B}, B an arbitrary index set.
A continuous map F:k-—-->N is of class cFvhere k<min{(m,n) if for
each pair (a,b) in AxB, the coordinate representation of F,
Byt (U Ft [V ===> v (WNE(Up))

defired by

(2. 3) ?,_5 = yeFoug?

is in C‘(Rm;R"), the space of functions of class c®from F™into

n

R'. Fiqure 2 illustrates this definition. We say that F is in

c®(M:N) to indicate that F is of class C*from M into N.

A map F in Cc¥(M;N) is called a g“-g;ffeomorphisg if there

is a map F-1 in CK(N;M) such that

(a) FoF—1 identity on N, and

(b) F-1o F identity on M.
Since the physical entities of interest in General Relati-
vity may exhibit various types of discontinuity we will define

more general spaces of maps which will formalize the types of

discontinuity which are of interest. The foilowing definitions

16



Figure 2: The Coordinate Representation of a
Function

W&ﬁ;\
Ua(Ua F'[W,])

mm
U;(V&"F(“;n
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are drawn from the work cf Abraham [12].

Let D be open in R™, E be a subset of R", and let F:D--->E.
If

{g;:ﬁ"--—>R, i in 1}
is a finite family of functions with each g;in Cl(Rm;R) then for
each 1 in I we define a parametrized family of hypersurfaces
Sy (C) s -¢<c<& , where £ >0, and

5,(c) = g7t (o).

Define F to be piecewise of class g‘gg D if ard omnly if

(a) F is defined and of class C%in D-S, where S is a finite un-
iou of closed hypersurfaces %(O) in D;and

(b) the parametrized family of functions Frsgc) converges uni-
formly to a bounded 1limit function on each 5(0) as c tends to
zerc through both negative and positive valiues. The hypgrsur-

races S5,(0) are the hypersurfaces of discontinuity of F. For a

fixed
S =$ﬂ S;(0)
the space of piecevise C¥maps from D into E is denoted C?(D;E).
If F is in c?(D;E) and is also in Cg(D;E) with p<gqg we write that
Fe cB¥(;E).
Given a differentiable manifold (M,<&))of cléss c've say
that a function F:N--->R is in ch¥M;R) if
(a) p<g<r,
(b) S is a.finite union of closed hypersurfaces S in M where
each S;= g71(0) for some g; in C! (M3R),

(c) F is in cP (M:;R), and

18



(i) for each m-coordinate chart (Up sy, ) in & the function
Fougl : qJU,)———)B
is in Q&Q(R";R). The extension of this definition to maps
P:M--=->N where (M,{@®@Y) is a C'-manifolda and (N,48)) is a
C*-manifold is straigahtforward. We say F jis in C?W&;N) if
(a) p<g<min(r,s),
(b) S is a union of closed hypersurfaces S;in M where
each §; = gzl(O) for some g; in C! (M;R)
(c) F is in cP(4;N), and
(d) for each pair (a,b) in A*B the coordinate representation for
F, I,, defined in (2.3), is in cm)(ﬁ"‘;a“).
Figure 3 illustrates this complicated definition.
There are several egquivalent means of defining téngent
vectors and the tangent space on a differemntial manifold»[13],

[14], [15]. Define a tangent vector of M at P to be a linear

map Vp:C! (4;R)—-->R such that
(2.4) V.,(fg) = V(£) g (P) + £(P) V(9)

for all £,q9 in C1 (M;R).
TpM = {V : V is a tangent vector} is a vector space of dimension

equal to that of M. The vector space TpM is called the tangent

Let E, B, F be differential manifolds of class Ck,k21, re-
spectively of dimensions m+n, n, m. Let )} be a surjection in

C‘(E;B). If {Ug: a in A } is an open covering of B and
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Figure 3: Piecewise Differentiable Maps on Mani-
folds
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@y 1 UXF-==>¥-1[ U]
is a family of C“-diffeomorphisms such that
Xeo (P, V) =P
for all P in U,, and all V in F, then the system {(Ua,9a)} is a

local decomposition of ¥ and we say that ¥ has the local product-

property with respect to F. Since ¢ is a C‘-diffeomorphism

there is a C“-map
Ay X[ U]-=->F
suckL that

(XeA,) 1X~1[ Ug, J-==D>UXF

o+

is a diffeomorphism. The C“-map (X,4,) is called a bundle char

on E over Ua. The pair (¥.A,) is also called a local trivializa-
tion of X over Uasa. Note that it is important not to confuse a

local decomposition of ¥ with the notationally similiar concept
of a subatlas on B.

A differentiable fikre bundle of class g‘is a gquadruple

[E.%,B,F] in which ¥X has the local product property with respedt
to F for some open covering {Ug:a in A} of B. «We say that E is

the total space , ¥ is the bundle projection, B is the pase

space, and F is the typical fibre. For each P in B, the set

Ep= ¥X~1[P] is called the tyrpical fibre over P. Epcan be shown

to be a closed submanifcld embedded in E and that E is dif-
feomorphic to F {16]. Figure 4 illustrates some of the features
of the complicated structure of the fibre bundle definition.

If U,nUp#g, a#b, the two local trivializations of %, (*,A&)

and (*,[b), may not agree on ¥~ [ U,nUJ. For a fixed P in [NU
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the maps 1§P= xalEPand th= xblEPare CK—diffeomorphisms frcm Ep

to F. The maps A@; 1;; and [ t’(—; are C‘-diffeomorphisms of F
?

bp Ta,
which allow transition from one iocal trivialization to the oth-
er.

The group of ditfecmorphisms of F is wery large, so ﬁsually
a subgroup is selected as the allowable transition diffeomcr-
phisms which relate differemt local trivializations of ¥. Tae

subgroup G of diffeomorphisms on F which is allowed is called

the structural group of the fibre bundle. Tals process of re-

ducing the group of admissible transition diffeomorphisms is of
fundamental importance in some of the latest work in differen-
tial geometry and theoretical physics.

If S is a finite urion of closed nypersurfaces in B then a

cross-section of class gx

on E is a map £ jia CK(B;E) such that
¥ef = identity on B, and k2max(p,gq). Hany useful structures
such as vector fields, tensor fields, frames of reference, and
other structures can be elegantly written as sections in an ap?

propriate bundle.

Topology of Differential Manifolds

The point set topology on a differential manifold is built
into its definition. Additional topological properties waich
may be desired must be explicitly hypothesized. The hypotheses
that manifolds are Hausdorff and separable are made to avoid pa-
thologies. It can be skcwn that a separable Hausdorff topclog-

ical space is locally compact. Separability and local
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conpactness imply that all differential manifolds are paracom-
pact. Since every differential manifold is paracompact they all
admit partitions of unity. Partitions of unity are essential in
formulating a theory of integration on manjfolds. Thus the hy-
potoeses on the topology of a differegtial manifold allow many
of the ideas and concepts of calculus on Euclidean spaces to be
"n]ifted" up to differential manifolds.

The global topology of a differential manifold must be ex-
plicitly postulated. The usual way to determine the giobal to-
pology of a differential manifold is by giving’a suitable sub-
atlas. Often the global topology is not specified explicitly
but merely restricted by the existence of special structures on

the manifold i.e. line-element fields, spinor fields.

In General Relativity we assume that M4is a noncompact,
connected, oriented manifold of class C4 with a second count-
able, Hausdorff topology. We also assume that the dimensicn of
H4is four. Note that a poor selection of coordinates a sulkatlas
of class Cr, r<4, may be imposed on My. With such a subatlas
functions on M, may exnibit discontinuities wbich are solely the
result of coordinate discontinuities. This fact is of particu-
lar importance in General Relativity since we work almost exclu-
sively with coordinate representations of functions on My.

We also assume that Myis endowed with a pseudo—-Riemannian

metric i.e. there is a map g of class C%}3? on k,into the space orf
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bilinear forms on TplH, such that for each P in HM,, g(P) is non-
degenerate and of signature -2. By a well-known result of
Geroch [ 17] it is known that the existenoce of g together with
the Hausdorff condition on the topology of u*imply that M is
paracompact.

The principal mathematical structure of interest in General
Relativity is not the underlying manifold structure of H*but
rather the differential geometric structure which is induced on
M by the selection of the pseudo-Riemannian metric gi- Each pair
(Tp My, 9 (P)) realizes the correspondence principle that General
Relativity "goes over" to Speéial Relativity in the limit of in-
finitesimal regions near P.

Let P be a point in M4. We define T:H4to be the space of
linear functionals on TpM,. Both TyM, and T:u*are isomorphic to
R4. These isomorphisms are determined by a selection of bases
in both TPH*and T:M*. The bases may be either "holonomic" if
they are derived from some system of local coordinates near P or
they may be "nonholonomic" if they are not so derived. For each
pair of nonnegative integers (r,s) we define

THS H,= (F: (T:u,)'x(19r14)‘——->a, F is multilinear}.

. . r+$
T?m* can be shown to be a real vector space of dimension 4 .

The tensor bundie of type (r.s) over ¥ is [T™M,,X,H,,T¥R*]

where
™, = U 7% u,,
* MGMQP *
1S the disjoint union over H*of the tensor spaces T“u4. The

burdle projectiom ) is the natural projection and TR+ is the
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space of tensors of type (r,s) on R*. A tensor field t of type
{c,s) ou H4of class C?E 0<p<gq, is a section in f“uqof class C?*
i.e. t is in c?%u*;f”u¢). Each local trivialization of ¥ deter-
mines a local representation for a section t. Transitions be-

twveen local trivializations of ¥ induce transitions Letween loc-

al representations of sectioms.

Notation Conventions for Iemsor Calculus

There are a large number of books on coordinate tensor cal-
culus and its use in the formulation of differential geometry.
Unfortunately, many of these books differ jn the placement of
indices and even in the definitions of many of the tensors which
we will use later. To avoid any ambiguities in the placement of
indices on these tensors we have summarized the notation»which
we will use in future.

The following notation conventions will be used throughout
this thesis:

(a) small latin letters assume the range [1,2,3,4} when used as
indices;

(b) capital latin letters assume the range {1,2,3,4} when used as
tetrad labels.

The Einstein summation convention holds for all types of indices
when they appear in "up-down" pairs in a tensor expression. If
the sumnmation is to be suspended for an "up-down" pair of in-
dices it will be explicitly stated. The symbols" ()" and "“[]J"

placed around a set of n indices of the same level will demnote
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synmetrization and skew-symumetrization respectively. Both pro-
cesses incorporate the factor 1/(n!). Any indices, within tae
rarge of "() or "[ ]" which are to be excluded from the indicated
process, will be enclosed in bars "||". Partial differentiation
is denoted by a comma which precedes the index of the coordinate
function with respect to which we are differentiating. Covar-
iant differentiation will be denoted by a semicolon ";" preced-
ing the index of differentiation.

To enable easy transition between different notation sys-
tems encountered in various books, we have defined six paramet-
ers e;= +1 or -1, 1<i<é6 which characterize éll of the more usual
notation conventions. The parameters e;are defined to agree
with four parameters defined by Ernst [ 18] for a similiar fpur-

pose. The e;,1<i<6 are defined by the following relations:

(a) e, signature(q) = 2,

(b) e Vi Rijke = Viik = Vjske o

(c) eyRij = R imj o

(d) e4Gq = -e,e1e38ﬂ‘Tg ’

(e) e,= +1 if space-time indices range over {0,1,2,3},

-1 otherwise ,
(£) e Nijt =4idet g;T sign(ijkl).
In Appendix 1 relations are given which relate some of tne e},
1€i<6, to the Wheeler-Misner Thorne classification of notation
cornventions used in General Relativity[ 19]. HMethods are given
tnere which allow tensor equations to be converted from one con-

vention to another.
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In this thesis the choice e;=-1, 1£i%5, e, =+1 will be used
exclusively. This choice closely parallels the notation of
Eisenhart [ 20] except we use different punctuation to denote de-

rivatives of various types.

coordinate Tensor Analysis on M

For computational fpurposes the realization of tensor fields
as sections in various tensor bundles is impractical. Classic-
ally, at P in My, a tensor field T of type (r,s) is represented
by a set of u“squantities T*"”dhnuk which are its componeats
witk respect to a choice of local coordinates on My. The selec-
tion of local coordinates near P induces a natural choice of
bases on TPH4(the holoncmic basis associated with the local co-
ordinates). Since Myis endowed with a psendo-RiemannianAmetric,
any selection of a basis on TpH, induces a dual basis on Tﬁu*.
This pair of bases associated with the local coordinate systen
near P produces the representation TA """ igﬂuk of the temnsor T.

Let (U,u) and (V,v) be two coordinate charts such that P is
in UNV. Each set of coordinate functions {x£:1sisu} and
{xé:1_i$u} associated with these charts induce a holonomic basis
in Tpiy. The coordinate transition maps wev—? and veu—! induce
transformations of coordinate bases in T M,. The maps (uev~—1),
and (VOU'4)* are the maps which transform the bases under the
coordinate transformations above. The two maps just defined

with the subscript "stars" are called the Jacobian transforma-

tions of the coordinate transitions. Similiarly the coordinate
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charts (U,u) and (V,v) induce (via the pseudo-Riemannian metric)
duval bases on T:u¢uhich We write {dxi:lSisu} and {dx::1$i$4} re-
spectively. The maps (uov-lf'and (v»u-lf'transform the dual
bases on T:H4. The "starred" maps, where the superscript star
denotes pull-back, induce transition maps between diferent re-
presentations of T (each representation is associated with a
local trivialization of ¥). Figure 5 should clarify some of the
relations above.

With these relationships in mind the transformation law for

a tensor T of type (r,s) at P is written as

y ; Y b
2.4 TL]..-.-‘f,. o P =_3_Z_‘v'..._§__x_v-3§¥.._. KooK p
( ) Jye-eegs (V (P) 3)(:: ax:'b)a;, l""'ls(u (P))

where we have impiicitly assumed the Einstein summation conven-
tion for repeated indices. The transformation law (2.4) repre-
sents the change of representation of T induced by the coordin-
ate transition map veu—1. The importance of the metric tensor
in General Relativity and the need to do exeedingly complicated
calculations bésed on the Einstein field eguations force us to
enmploy the coordinate tensor calculus almost exclusively in lat-
er chapters.

The Christoffel symbols of the second kind associated with
a syuwmetric metric tensor gy are

2.5 {4} = 0" Lgju * ok ~gjee 12
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Figure 5: The Tensor Bundle Structure on
Space-Time
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where g“ is found from the equation
gt gy = &5,
where S% denotes the Kronecker tensor. The partial covariant

derivative of a tensor T““"'f&“ﬂﬁ with respect to x*is given by

. . . . r * . . . .
Lo L, e Sy . le Cper bt O gy, - br .
(2.6) T Greeoperk = T Tk +<;;'.{4k} T M Geeeds

S b . .
_ \ Geoenile, . .
E,L% T di-dpey LJDH' * s

the Riemann curvature temsor Rijx, 1s defined in terms of the

Christoffel symbols of the second kind as

@.n R = U L GHD -G

Contracting on the first and fourth indices we produce the

Ricci tensor
(2. 8) R = Bl jm -

. The Einstein tensor is defined by

(2.9) Gy = Ry = (R/2) gy
where R, the curvature scalar is given by

(2. 10) R = Ri.
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The Einstein field equations (1.1} summarize the relationship
between the differential gecmetry of H*and the matter-energy

distribution on M, .

Tetrad Calculus on n,

Of fundamental importance in studying General Relativity is
the careful distinction between the role of coordinates and tte
role of physical frames of reference [21],[22]. The axiom of
general covariance in General Relativity essentially asserts
that coordinates have no real physical role. On the other hangd,
frames of reference have real physical interpretations and may
induce extraneous effects in laboratory experiments. This con-
trasts favourably to the use of coordinates whose physical mean-
ing is often obscure or nonexistent [23]. More precisely, a
frame of reference is a linearly independent set of four vector
fields {ei:1$AS4}. The index i refers to the components of the
e, relative to some cocrdinate basis which we have prescribed.

A

The set {e;: 1<A<4} is also called a linearly independent tetrad

(four-leq, vierbein). If the members of the tetrad are pseudo--

(2.11) 95 €a € = "ae

where
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-1 0 0 0
(2.12) Npg = 0 -1 0 0
0 0 -1 0

K 0 0 1|

then the tetrad may be interpreted physically as follows:

(a) {e,,el,ea} is an "orthoﬁormal" triad of "rigid" rods,
(b) ey may be represented as a ‘standard"clock.

Tne equations (2.11) play a central role in the development of
the tetrad calculus.

From the canonical forms which will be given for the
stress-energy tensor in the next chapter it will become aplrarent
tnat for the most general uses of the mixed method we will need
to consider tetrads of greater generality than pseudo-orthcnor—
mal ones. We are forced to consider tetrads which include two
null vectors. For this purpose we extend the notion of
pseudo-ortaoenormality to that of quasi-orthonormality. A tetrad

{e{:1SA$4} is said to be quasi-orthonormal if it is either

pseudo-orthonormal or it satisfies (2.11) with the flat metric

tensor
= 0 0 0]
(2.13) Map = 0 -1 0 0
0 0 0 1
0 0 1 0
: b -
:
|
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where we assume the null vectors in tetrad are liabelled €3, €ye
Let P be a point in M,and (U,u) be a local coordinate sys-
tem at P. If TL"“A;mJJu(P)) is a tensor of type (r,s) then the
corresponding Lorentz tensor is found by projecting the cocrdin-
ate tensor onto a suitable pseudo-orthonormal (quasi-ertnoncrmal)

tetrad defined on (U,u). Thus

- l. ...... ( . . . : J.a ,|.
(2. 14) I‘ B|""' Bs - T 'JI"""J‘ e “.-..e ‘rea‘ ...eass

A

where the e"; are found from

(2. 15) e“‘- ea‘ = 8.”3.

Clearly this projection may be undone by projectiang onto
the dual tetrad {eﬂ:]SAsu} defined in (2.15). Any algebraic
identity among coordinate tensors has a corresponding analcgque
acong the Lorentz tensors [21]. The tetrad labels behave like
tensor indices under chkange of tetrad but act like labels under
change of coordinates. The dual statement is also true.

Lorentz indices (tetrad labels) are raised by the use of
Mas defined by (2.12) or (2.13) depending on thne tetrad type.
We apply the summation convention to up-down pairs of Lorentz
indices and generally carry most of the notation conventions
used for coordinate tensors. When a tetrad labei,naving a fixed
value in its range, is raised or lowered, the sign of the factor

in which the label appears changes if the labeli value is 1, 2, 3
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and remains the same if the label value is 4.
The gquantities in the tetrad calculus waich are the analo-
gues of the Christoffel symbols of the second are called the

Ricci rotation coeifients. For an arbitrary tetrad they are de-

fined by

The Ricci rotation coefficients for a pseudo-orthonormal tetrad

also satisfy the identity [20]

(2.17) Yasc="Ygac -

An extensive discussion of the Ricci rotation coefficieats
ray be found in Schouten [24]. Direct calculation of the EKicci
rotation coefficients is very tedious due to the presence of a
covariant differentiaticn in the defipnition (2.16). However,
enploying the skew-symmetry (2.17) this task is eased by tbhe in-

troduction of the quantities [25]
(2.18) Aase = (eqy; - e )eg' et .
This equation allows tne calculation of the Ypgc using only par-

tial differentiations with respect to the coordinates. The Ric-

ci rotation coefficients are given in terms of the Apee PY
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(2-19) Yoac= Lase * Apch = Acap )72

The Lorentz covariant derivative is defined on Lorentz tensors

by [21]

r

.ei R _ R~ A [} R,... Ap. EAqn - A,

(2' 20) T“‘ er"B;"k. T rs.....B‘\K + ZYE -nc T " o B,...B
n=i !

s -
- E Av.. 8
z YB .CT rs,...s By o

m=; m an snﬂ- b

In (2.20) we use a double stroke to denote the Lorentz covariant
differentiation and a sjingle stroke to denote tne directional

derivative. The directional derivative is defined by

.. - oh..f Lol
(2-21) TP pge= T, 800 € -

Referring to Eisennart we find the tetrad form of the Riemann

tensor is

N
(2.22) Rpgep = 2Yppreimy + ZYABN)'T'ch]* Yane Y en - Yawn Y'pc -

Raising the Lorentz index A and contracting on tae first and

fourth indices we get the tetrad form of the Ricci tensor

M N M N
(2.23) Rpc = Yo'man=— Yiguie * Y ewiom— rieergn-
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Advantages of the Tetrad Calculus

There are several important features that the tetrad calcu-
lus has the coordinate tenscr calculus does not. The principal
advantage of the tetrad calculus is that the components of any
tensor representing a physical quantity may be measured (in
principle) when projected onto a tetrad. Furthermore,when the
tetrad is pseudo-orthonormal with the timelike vector pointing
to the future, the tetrad components of physical quantities
transfarm as tensors over the proper isochronous lorentz group
L+, .

The tetrad calculus is gaining in popularity and usefulness
in theoretical physics. The tetrad calculus allows the possibi-
lity of describing gravitational radiation in terms of "optical"
scalars. Other applications of the tetrad calculus include the
classification of interior solutions by the algekraic structure
of the Ricci tensor or, as in this thesis, of the stress-energy
tensor. Recent work in attempting to express General Relativity
as a gauge theory has made essential use of tetrad methods. The
tetrad calculus and the coordinate calculus have been combined

to form a "bicovariant" calculus which has been used in General

Pelativity by Treder [ 26].
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ITI. Algebraic Classification of the Stress-Energy Tensor

As part of the "mixed" method we will incorporate a scheme
of algebraically classifying the stress-energy tensor with re-
spect to the metric tensor. A short search of the literature
shows that there at least ten different methods available for
algebraically classifying a symmetric tensor of rank two with
respect to the metric tensor. Clearly the choice of a classi-
fication scheme poses a fproblem particularly if we wish it to be
compatible with the aims and techniques of the mixed method.

Any sucoa scheme should be compatible with the tetrad calculus
since most of our calculations will be carried out in that lan-
guage. The methoas which appear to be the most suited to our
purposes are ghe scﬁemes of Petrov [4], based on the Segre char-
acteristic, and that of Plekanski [27] which is a refinement of

Petrov's.

Algebraic Preliminaries

The problem of algebraically classifying a second rank,
synmetric real tensor on a Riemannian space is considerably
simpler than the same problem on a pseudo-Riemannian space.
Complications which may arise in the pseudo-Riemannian case

include the possibility of non-real eigenvalues and non-simple
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elementary divisors. A more subtle difficulty, as pointed out
by Synge [28], is that before the metric tensor is known we have
no right to assume that Tg ’ Tﬁ , and T% are related to each
other as mathematical objects. It is the physical content of
the field equations (1.1) which allows us to assume that these
different tensors are really just different representations of
the same physical object. Corresponding to this statement ve
have (Ti,9;) (T%,s%), and (T%,g%) are equivalent as pairs of
gquadratic forms since g;; is nonsingular. The tensor T is asso-
ciated with an endomorphism of the tangent space at any point in
space-time. It is this endomorphism that we will classify. The
algebraic invariants of the endomorphism are also the algebraic
invariants of Tq with respect to gy

Let T:TpH,--->T, M, be the endomorphism associated with Tj;

at P. We say that a ncnzero vector V in T M, vector

of T with eigenvalue [ if
(3.17) T(V) = AV.
The polynomial Ci(x) defined by the equation

(3.2) CT(x) = det [T - x1I],

istic polynomial of T. The roots of the equation
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(3.3) Cr(x) =0

are called the eigenvalues of T.

When T represents the stress-energy tensor the eigenvalues
A are the principal stresses if the corresronding eigenvectors
are spacelike, or the energy flux density if the corresponding
eigenvector is timelike. Certain classes of stress-energy ten-
sors do not have timelike eigenvectors. For these stress-energy
tensors the physical significance of the eigenvalues and of the
eigenvectors is unclear. Plebanski [27] has shown that if a
stress-energy tensor csatisfies certain energy conditions for ma-
croscopic matter then it must have real eigenvalues. If we are
to find "realistic" solutions of the field equations (1.3) then
wve should ensure that the stress-energy tensor has four real
eigenvalues. A direct approach to this problem will be applied.
From now on we will always assume that we are working on a
four-dimensional vector space.

Since Tp My, is of dirmension four over R we see that the
characteristic polynomial is of degree four. Consider the gen-

eral quartic equation over R i.e.

(3. 4) X4 + Ax3 + Bx2 + Cx + D = 0

where A, B, C, D are real numbers. By the transformatior

(3.5) Y X + A/4
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we find that (3.4) reduces to

(3.6) Y4 + Py2 + Qy + R = 0
where

P = B - 3A2/3,

Q = A3/8 - AB/2 + C,

o
"

D + BA2/16 - AC/4 - 3A4/256 .

Let Yyr Yo Y3, y4denote the roots of (3.6). Following the ar-

gument of Kochendorffer [29] we set

2= (Y, * Ya) (It Y4) o
(3-8) Zo= (¥, + Y3) (Yot Yo)o

23 = (Y.* YI‘) (Y, + Ya)*

From (3.6) we see that y + y,+ y3+ y,= 0 so together with
Y, Y. Y ¥4= R,

(3.9) Y/Yat VY3t T\ Yyt VoY% Ya¥yt ¥y¥y= Py
Y Y 0, % ¥ Y, 0y ¥V Y, Yt Y77, -0

we get

(3.10) (u-z')(w—zl)(u—za) = w3 - 2Pw2 + (P2 - 4R)w + Q2
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which follows froum the definitions of the z5, 1£§<£3, and the Ba-
sis Theorem for Symmetric Polynomials (HMarcus [30]). The fo-

lynomial
w3 - 2Pw2 + (P2 - {R)w + Q=2
is the cubic resolvent of (3.6). The roots z;, 1<3j<3, of
(3.11) w3 - 2Pw2 + (F2 - 4R)w + Q2 =0
can be used to find the roots y;, 15i<4, by the formulae

9, = [ (2,05 + (~2.)%+ (-z,)% 1/2,
o= [ (=205 (-z,)% - (-z,)% 172,
1= [- (205 + (-2, 05— (-z,)* 172,

o= [-(-2))%- (-z,)% + (-2, 12,

[
where the sign ambiguity in (-gfﬁ,15j$3, is resolved by the re-

lation [31]
L L ¥
(3.12) (-2, )* (-29)* (-2z3)" = —Q.

These transformations have reduced the problem of finding

the roots of (3.4) to finding the roots of (3.11). Set
(3.13) v =w - 2B/3
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in (3.11) to produce

(3.14) v3 + av + b =0

where

(3.15) a = -P2/3 - 4R

(3.16) b = 2P3/27 - BPR/3 + Q2

The solutions of (3.14) are found by the use of the
Cardano-Tartaglia formulae [32].

We are now in a position to impose conditions on the coef-
ficients of (3.4) which will guarantee that the roots of (3.4)
are real. BRemembering that A is real we sge irom (3.5) that the
Yi., 18i<4, are real if the x;are. By a simple argument each y;
is real if and only if the z;, 12j<3, are real and nonpositive.
From (3.7) we see that fcr the z; to be real we need tne roots
v; . 1<j<3, to be real. This restriction on the roots of (3.14)
means that the discriminant of (3.14), defined by

A = 4a3 + 27b2,
must satisfy the inequality

D <o.

The roots of (3.14) when XA < 0 are given by the formulae

2¥M~a/3) cos#®
2Y(=a/3) cos(9 +*§ )

=
It

(3.17) v,
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vy = 2‘{(-a/3) cos($ +""§[)
where 8 is chosen to that 0<368<T and

‘(1/3)tan” (V=B 2762)n [0,%) if b < O,
(3.18) 8 =x L if b = 0,
(1/3)tan”' (<-}V-&,2702) N (%, %] if b > 0.

Using these roots in terms of the coefficients in (3.4) we

get the roots zj as

z,= (2/3)VB2+12D-3AC cos® +2B/3 - A2/4,

z,= (2/3)YB2+12D-3AC cos(6 +¥) + 2B/3 - A2/,

zy= (2/3)YB2+12D-3AC cos(8 +i) + 2B/3 - Az/4.

We will use the condition that z;<0 to find conditioas on
the coefficients of (3.4) to force (3.4) to have real distinct
roots. . First vwe need a lemna.

Lemma 1: If D <0 then

(a) a<0, and

(b) B2 + 12D -3AC > 0.

The proof of this lemma follows from the definition of [;,
(3.16), (3.17), and the definitions of the coefrficients P, Q,

and R. Finally we are in a position to state the following

theoren.

Theorem 1 : For the guartic equation (3.4) to have four distinct

real roots it is sufficient that the conditions
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(a) D<o,
(b) 302 - 8B > 0

(c) 3A4 - 16A2B - 256D + 64AC 2 0.

‘The procf of this theorem is a straightforward but lengthy argu-
ment based on the formulae for the roots z , given above, and
the lenmma.
The generalization of the theorem above to the case when
A < 0, so the roots are not necessarily distinct, is not eas-
ily accessible by direct methods. However Chaundy [33] has de-

rived the following theorem by means of algekraic geometry.

Theorem 2 : Necessary and sufficient conditions for (3.4) to

have four real roots are

(a) D0,
(b) 3a2 - 8B > 0,
(c) 3A® - 16A2R + 16B2 + 6U4AC - 64D > 0.

It is well-known that the eigenvalues and the eigenvectors
of a linear transformation T do not provide sufficient informa-
tion to characterize its similarity class. However a knowledge
of these quantities together with other algekraic invariants
will allow a complete characterization of the similarity class
of T. Choose a basis for T M,, then the endomorphism T will

have a ratrix relative to the tasis. The determination of
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similarity invariants of a matrix is well-known. We summarize

this theory by drawin¢ extensively on the text of Mal'cev[34].
A matrix over the real ring, R[], of polynomials in one
indeterminate, f, is called a f-matrix. Wwe define two

A-matrices to be f-equivalent if one may be transformed into the

other by a sequence of operations of the types:
(a) multiplicaticn of a row (column) by a nonzero real number,
(b) addition of one row (column), multiplied by an element in
R[AL], tc another row (column).

It is clear that f-equivalence is an equivalence relation
on the set of f-matrices over R. The f-equivalence classes have

canonical representatives of the form

—f, H © 0 0
(3.19) 0 £,(0 O 0
0 0 £, 0

K 0 0 £, (4)]

where £, () is a divisor of f,, (L) and all nonzero f, ({) are mon-
ic. Every f-matrix can be reduced by the operations (a) and (b)
to a caronical forr of the type above.

For any fixed /f-matrix A we have the following definitionm:

1 if x =0,
(3. 20) Dy (A) =99 (A) if not all kxk minors are 0 and k 2 1,
0 othervwise,
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for k = 0, 1, ..., order(A). The polynomial g({) is the mcnic
divisor of greatest degree of the kxk minors of A. The po-

lynomials Dy (A) and fy¢ (/L) are related by

Theorem 3(Mal'cev): If A is a f-matrix of order 4 and there is a

nunber r, 1Sr<#4, so that Dg(f) = 0 for k = 1,..,r and D (L) =0

then the polynomials f¢ (L) above are given by
DK ‘/() /DK-|(X) k = 1,2"0-.'- ,I’
(3.21) £.00 =

The polynomials fg (f) are called the invariant factors of A.
The number r is the rank cf A. The irreducible factors over R
of the nonconstant invariant factors of A are called the real

elementary divisors of A.

Theorem 4 (Mal'cev): The set of real elemeatary divisors along

with the rank and order of a f-matrix A completely determine tne
invariant factors of A, hence constitute a comnplete set of in-

variants for f-equivalence.

Finally, to link the notion of f-equivalence with similiar-

ity we have the

Theorem 5(Mal'cev): Two matrices A and B over R are simiiiar if

and only if their characteristic f-matrices A - (I and B - (I
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are [-equivalent.

To distinguish the possibility of having elementary divi-
sors which are irreducikle cver R we will say that T is adpis-
sible if the characteristic equation of T satisfies the hyfpo-
theses of Theorem 2. Frcm the previous two theorems we see that
to classify the stress-energy tensor we need to find its elemen-
tary divisors.

For an admissible T we can write the system of elementary

divisors in the pattern

U= AP A= P eeeen (A = g
A= A0 U= L Preeenan s (A = L)
(3-.22) creesecmsccccsenacccssemmamccccaanae

. 5 O DO G e e PE OB PG DS GO PO O OGe s S OES e

U= L™ (A= £l eecenaa s (A = L) Tm

m
where 52 1l = rank T £ 4, and the Xk,k = 1,..,0 are the dis-

K=
tinct real eigenvalues of T. 1If the algebraic multiplicity of
the eigenvalue [ is ng<4 then the numbers Pyj » j=1,...,1; satis-

fy the inequalities

1<Pk(j+d SPK;

4 pl‘f = Dy
J=1
For an admissible T we define the real Segre characteristic of T

as the symbol
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(3.23) L (pul---lpu, ) :(Pz, "’"'pzl.,_) A KN (Pm,l°-'Pm‘.) 1.

Since the real Segre cunaracteristic is difficult to compute we

defirne the real Weyr characteristic and give an algorithm relat-

ing the two characteristics.
For an admissible T we recursively define the numbers qﬁ

for each distinct real eigervalue A, by

(3.24) g =

dim N (T - A I8 - degj-y 1 2 1.

where N(T - (,I)' is the null space of (T ‘Klf. The real Weyr

characteristic of T is the symbol with noanzero Qi

(3.25) {(dy ¢Tua roce) s (d2) soae) peces(Umyoeee--20)}e

We can relate the Weyr characteristic to the Segre charac-
teristic py the following algorithm:
(a) for each distinct eigenvalue A of T we create an array of
dots (column by column) so that there are qﬁfdots in the j-th
column counting from the torf;
(b) the Segre characteristic numbers Pyj « corresponding to the

eigenvalues XK' are the numbers of dots in the rows.
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Classification of the Stress-Energy Tensor

The first of the algebraic classifications of the stress--
energy tensor that we will discuss is the Segre classification
described in Petrov[4], Plebanski[27]. Bromwich[35] has shown
that there are at most nineteen Segre characteristics which may
be assigned to a pair of tensors (T ,g9 ). Among these nineteen
cases there is cne which is "degenerate" in the sense that both
tensors in the pair are singular. Excluding the degenerate case
we can extend the Segre symbol to include the symbols "ZZ"™ which
indicate the existence of an irreducible quadratic elementary
divisor.

The condition that T is admissible excludes the character-
istics witk "ZZ". Admissibility of T reduces the number of pos-
sitle Segre characteristics for the stress-energy to sixteen.
Modulo algebraic degeneracies (repeated eigenvalues) the pos-

sible Segre characteristics are of the types:

(a) [111,1],
(b) [11,2],
(c) [¥+.3]1,
(d) 2,27,
(e) [41,

vhere we use the convention that the last digit represents the
elementary divisor corresponding to a timelike or null eigen-
vector.

Cormack and Hall[ 36 ] have shown that the type (d) and its

degeneracy together with (e) are not compatible with the
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T

synmetry of the stress-energy tensor and the inequality

dget(g ) < 0. Collinson and Shaw[37] have shown that the type
(c) and its degeneracy cannot satisfy reasonable energy condi-
tions on the stress-energy tensor i.e. reference frames may be
found in which the mass density is negative.

The types (a) and (b) admit eleven distinct symbols ccunt-
ing their algebraic degeneracies. Canonical forms for the co-
ordinate tensor formulatiocn of T are given in [4]), [27], and
(381.

For the type (a) we have

=L 0 0 0

0 -4 0 0

0 0 -A 0
_0 0 0 (_

For the type (b) we have

[ -4 0 0 0
0 -4 0 0
0 0 0 A

_0 0 £ x_

where Y = 1 or -1. For the type (b) Plebanski[27] has showuwn
that a necessary condition for the stress-energy tensor to sa-

tisfy the energy conditions is for y = 1.
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The Plebanski claseification is essentially a refinement of

the Segre classificatior. To each second rank trace-free sym-

metric tensor there is assigned a symbol of the form

[010;= D027 «eceedg,-qam....)
The symbols U have values given by
27 if the i-th eigenvalue 1is complex,
T if tpe i-tn eigenvalue is real
and the eigenvector is timelike,
U.= S if the i-th eigenvalue is real
and the eigenvector is spacelike,
N if the i-th eigenvalue is real
and the eigenvector is null.
The number n; is the algekraic multiplicity of the i-th eigen-
value and the number q; is the degree of the elementary divisor
of maximal degree corresponding to tane i-th eigenvalue. ¥We
shall adopt the convention that non-spaceiike entries in the
symbol will be recorded last. The Segre characteristic is eas-
ily found from the "subscript" part of the Plebanski symbol.
Since stress-energy temnsors with nonzero trace are included
in the scope of this thesis we extend the Plebanski classifica-
tion to such tensors. This extension does not allow the transi-
tion from trace-free tensors to non—-zero trace tensors to bLe
carried through while fpreserving tke Piebaaski symbol. The al-
gebraic multiplicities of the eigenvalues and the relativistic

type of the eigenvectors are preserved but the Segre class may

not pe preserved.
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in general T will not have four eigenvectors at a point P
in Mg. This will happen when T has a non-simple elementary divi-
sor. Even in the cases when T does have four simple elementary
divisors the corresponding eigenvectérs may not be determined
due to algebraic degeneracy. In order to apply the mixed method
it is crucial that the "natural" frame of T¢ be used. First we
consider the problem of coumpleting the set of eigenvectors of Tg
to a full tetrad when tlkere is a non-simple elementary divisor.

A theorem of wWoods(cited in Wong[38]) has the following

Corollary:In a 4-dimensional pseudo-Riemanmian space tuere exist
sets of r mutually orthogonal linearly independent nulil vectors
if r £ 2. When r > 2 there no such sets. The number of real
null vectors in each set cannot exceed the irteger mrin {p, 4-p}

where 2p-4 is the signature of the metric teusor.

Together with the result of Petrov[4] that a non-simple
elementary divisor corresronds to a null eigenvector this corol-
lary shows that for a stress-energy tensor of Segre type { 11,2]
we cannot even hope to have a pseudo-orthonormal eigentetrad.

We are tnus led to consider the problem of completing the set of
eigenvectors of T when there are fewer than four eigenvectors

and one of them is null.
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A theorem of Lense(cited in Wong[ 38]) provides tae solution

to this problen.

Theorem(lLense) :A given set of r+s linearly independent mutually

orthogonal vectors in an n-dimensional pseudo-Riemannian SEace,
r of which are nuli add s of which are non-null, can always be
normalized and completed to a quasi-orthonormal basis with g
nuil vectors if r 2 0, s 2 0, 2r + s £ n, and

(1/72) (n - s) 2 q 2 r.

This theorem guarantees that the set of eigenvectors of T
cau alvays can be completed to a quasi-orthonormal tetrad imn the
case of Segre class [11,2]. To find canonjcal forms for T of
Segre class [11,2] with respect to its generalized eigentgtrad
we appeal to the tueory cof elementary divisors. From the text

of Petrov [ 4] we may derive the following theoren.

Principal Axes Iheorem cn M, : Let Ty be a symmetric tensor of
rank two on a pseudo-Riemannian space (My,g;)- Let the Segre
characteristic of Tg with respect to gj be [111,1].Then the

canonical form of the pair cf tensors.(Tq,gg) is given by

Ty = mA e € T Ay&ay &) T Ape3p a5t Ay €y Sy

Jij = @ @j T €y € T €3 €3t ey €y
If the Segre characteristic of T with respect to gg-is {11,2]
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then the pair of tensors (Tq,gq) may be represented

Ty = —Ayep @y — La€ac ey v Ly(eg eqft e ey ) + Ve, e,

9y = -y €j = € €y * €y ey + €3, €y -

In the above canonical forms we have used ,(‘-, 1€i<4, to repre-
sent the eigenvalues of T;:,- with respect to gt:,-. The parameter Y

may take the value 1 or -1.
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IV. Application of the Mixed Method to Algebraically Degenerate

Stress-Energy Tensors

Special Hypotheses used witk the Mixed Method

In this chapter the mixed method is used to verity sorle
well-known solutions of the Einstein field equations. The three
exalples considered are algebraically degenerate in the semnse
that the stress—-energy tensors will have repecated eigenvalues.
The stress-energy tensors of the examples are in the Segre
classes [ (111),1] and [ (111,1) ]J. We also have imposed the hypo-
thesis that all tetrads are "aligned" in the sense that tae
vectors of a tetrad are parallel to the vectors of a holonomic
tetrad. This hypothesis restricts the examples to ones kncwn in
orthogonal coordinates.

The metric tensor is kncwn before the application of thne
mixed method so we will be able to find the aligned tetrad witan-
out solving any partial differential equations. In each example
the Ricci rotation coefficients are computed using the indirect
method indicated in Chapter 2. Then lengthy, but straightfor-
ward, calculations will verify the tetrad formulation of the

field equations.
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Stress-Energy Tensor of Segre Class [(111),1]

Suppose that the stress-energy tensor is of Segre class
[(111),1]. This means that an eigentetrad of the stress-energy
tensor is pseudo-orthonormal. There are two distinct eigenval-
ues p and P of multiplicities three and one respectively. The
eigenvalue P corresponds to a timelike eigenvector ey. The
eigenvalue p has an infinity of pseudo-orthonormal triads of
spacelike eigenvectors associated with it. By choosing an or-
tnogonal system of coordinates and applying the alignment aypo-
thesis we are able to select a unique triad of eigenvectors cor-
responding to p. Let this triad of spacelike eigenvectors be
written {e,,es,e3}. In the orthogonal coordinates we write the

field equations as
(4.1) Gef = ~8W[ (P + p)ey ey ~ Pgy) 1-

where the ey; are the covariant components of the eigenvector ey.
From (4.1) and the deriniticn of the Einstein tensor we calcul-

ate that the curvature scalar is
(4.2) R =8T(P - 3p).

Using (4.1), (4.2), and the definition of the Einstein tensor we

caL write (4.1) as

.3) Rjj

j = 4TM(P-p) Gy — 8BW(P+p) ey ey «
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Projecting (4.3) onto the eigentetrad {e::1SAsu} yields

(4.4) Kgg = 4W(P-p)Mae = 8T (P+p)7hahs -

The equations (4#.4) are the tetrad equations which will be veri-
fied.

The solution which we will use to verify (4.4) is the int-
erior Schwarzschild sclution for a homogeneous sphere of perfect
fluid [40]. In the coordinates (r,8,¢,t) we find the metric

tensor g is given by
(4.5) ds2 = -dr2/(1-qr2) - r2de2 - r2sin26d¢2 + (L-Vi-qr2)® dt2

where

(8/3)w P,

Q
f

P = "constant density" of the perfect fluid,

L = (3/2)M-qa?,
a = radius of the sphere of perfect fluid.

From the metric (4.5) we can easily find the eigentetrad to be
Vi-grz 3¢,

(\/r) &,

o
]

O
~
n"

e, = (1/rsind) %@ v

e = [ 2/ (2L-A1-qr?2) ]ﬂa-t .
The 1-forms dual to this tetrad are found by using (4.5) to low-
er the coordinate superscript index i. The 1-forms are found to

be
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8= (-1/¥1-gr?) ar,
e,= -r de,
€,= -r sin® de¢,
4= (1/2) (21-¥1-gqr?) at.

The independent nonzero Ricci rotation coefficients of the

eigentetrad above are

yr2z = (1/r)¥Wi-gre,
y133 = (1/r)¥1-qrz,
yi4+ = -gr/(21-Y1-qr?),
Y233 = (1/r) coté.

Computing the Lorentz-covariant Ricci tensor from the equation
(2.23) we find that the ncnzero components are

Ry = 4 (P-p) My

Rqa = 4T (P-p) ’Y}nl

Rys = 477 (P=P) N33

4T (P-p)Nyy - 81T (P+P) My Nug

The details of these calculations are omitted. It is a
straightforwvard task to check that results above are consistent

with the equations (4.4).

The cosmological version of the Eiastein field equations

are written as

(4.8) G +./\.g,;j = -8W Tij
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where /A is the cosmological constant. A simple transposition

shows that we may regard (4.8) as interior eguations with
~
(4.9) Ty = Ty + (Agyg) /M.

If we set Ty;; =0 and solve the field equations which result, then
for the Schwarzschild prcblem the cosmological solution [4Q] in

coordinates (r,6,¢,t), we get

(4. 10) ds2 = -dr2/(1-ar2) - r2d92 - p2sin26 d¢2 + (1-ar?)dt2
where a = A./3. From (4.9) and (4.10) the eigentetrad in terms

of the holonomic tetrad is

e = ¥V(1-ar?) aa‘,- ’
(4.11) e.= (/1) 35,
e3= 1/ (rsind) §'¢ v

ey = 1/U(1-ar2)gﬁ.

From (4.11) and (4.10) the 1-forms dual to this tetrad are

e = -1/V1-arz dr,
(4.12) &€,= -r dae,
. €= -rsin® d¢,

5¥= ¥Ni-are dt.
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Using Tq'=‘0, and (4.8) we find the tetrad form of the

field equations is

(4.13) Rap = N 1ge-

Appliying the definitions of Chapter 2 we find tne nonzero Ricci

rotation coefrficients are

y12z = (1/r) ¥ 1-arz,
(4.14)  y133 = (/1) ¥ i-are,

y14+ = ar/ 4 1-arz,

Y233 = (cot#®) /r.

By a lengthy but straigatforward application of (2.23) the

nonzero Lorentz components of the Ricci tensor are found to be

0 A#B,
(4.15) Rgg =y~ 3a 2=1,2,3
3a A=y,

Recalling the definition of 7y it is clear that (4.15) agrees
with the field equations (4.13). The unique eigenvalue or the
nodified stress-energy tersor T is A/8T.

As a further example of a stress-energy tensor in Segre
class [ (111,1) ] we will use the Einstein-de Sitter solution of

the cosmological field equations with A >0, and the mass
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density zero. The Einstein-de Sitter metric is given by
(4. 16) ds2 = -exp(2at)dx2 -exp(2at)dy? -exp(2at)dzz + dt2,

where a2 =A /3. The eigenvalue [ is zero since T is identically
zZzero as a consequence of the energy conditjons [6],Since the
cosmological constant J\ is assumed to be nonzero we get tetrad
field equations which are of the same form as (4.13). Fronm
(4.16) we find tne eigenvectors of the "stress—energy" tensor

.= =Aag
Ty téq to be

e = exp(—at)%§ v
(4.17) e,= exp(—at)gz ,
e;= exp(-at) 33,

=2
e‘f-at-

We find the corresponding 1-forms to be

€,= -exp (at) dx,
(4. 18) &,= -exp(at) dy,

e3 = -exp(at) dz,

~ —
e’_- dt.

The Ricci rotation coefficients are found to be

y141 = a,
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(4.18)  y2+2z = a,

y3‘3

I
[
.

Applying the definition (2.23) the tetrad components of the Ric-

ci tensor are

R11 = -33.2,
(4.19) R22 = -3a2,
R33 = -3a2,

R4¢ = 3az,

All the other Ricci tensor components are zero. From the de-

finition of Mpp we see that the field egquations are satiasfied.

63



V. A New Interior Solution for a Stress—-Energy Teansor of Segre

Class [111,1]

The Field Equations

Consider a stress—energy tensor of Segre class [111,1]

which has the canonical fornm

G- Ty = —A, eney™ A8 8~ Ay§.8% AL G0%y

where {eg: 1SA<4} is the eigentetrad of the stress—energy tensor
and 1,, Aye 13, and 1* are its eigenvalues. We assume tnat the
eigenvectors dre labelled so that ([, is the eigenvalue of the
timelike eigenvector ey. The field equations (1.1) can be con-

tracted to show that the curvature scalar R is
(5-2) R = 8“(‘|+ ‘1"’ K3+ /(.‘_) bd

Using (5.2) and projecting the field egquations (1.1) cnto

the pseudo-orthonormal tetrad of eigenvectors we find

(5-3) Rae= 8TLAMiaThe *A2"han"he* A3 aThe™ Ay Mua™hel
ST a8 (A, + Aot Ayt Ay) -
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Now two very restrictive hypotheses are imposed to siuzplify
the problem. First assume that a solution of'(5.3) exists which

bas the fornm

(3.4) ds2 = —-exp(~2a)dx? -exp (-2b)dy2 -exp(-2c)dz2

+ exp(-2d4)dt=

where a, b, ¢, and d are C3-functions of x,y,z,t. Secondly we
assume that the eigentetrad is aligned with the holonomic kasis
which is pseudo-orthogonal by the first hypothesis. The eigen-

1Y
tetrad can be written

e,= —exp(-a) % ,
(5.5) ey= -exp(-b)%a ,

ey= 'eXP('C)%ﬁ

-

ey= -exp(-d)ﬁ;

writing the 1-forms dual to the eigentetrad by (2.15) we get

e,= exp(a)dx,
(5. 6) 8,= exp(b)dy,
€,= exp(c)dz,

5*= exp(d)dt.

The Ricci rotation coefficients are computed from (5.5) and

(5.6) (2.23) to produce (we raise the tetrad indices by the
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rules in Chapter 2)

Y211 = -a,exp(-b) y322 = -bsexp(-c)
Y22 = -b,exp(-a) Y233 = -c,exp(-b)

(5.7 Y311 = -a,exp(-cC) Y422 = -p,exp(-4)
Y133 = -cyexp(-a) y24+ = dyexp(-b)
ysrt = -a,exp(-d) Y433 = -c4exp(-d)
yies = 4, exp (-4 y3s+ = dyexp(-c)

In (5.7) the numerical subscripts on the functions a, b, c,
d are to denote partial differentiaticn with respect to the in-
dicated variable. We label the coordinates by the schene
(x1,x2,%x3,x%) = (x,Y,2,t).
A straightforward application of (2.23) together with the rules

for raising tetrad indices gives

(5. 8) R11 = - y211§2 — y3113 + y1eat 4+ ya1djs - y1221 - y133h
+ [y122]2 + [y133]2 + [y144]2 + [y211]2 4[y31172
- [y*11]2 + y211y233 - y211y244 4+ y311y322
- y311y3as _ ya11ys22 - ya11)ya33

(5. 9) R12 = -y1332 + ylaalz 4 ylaay24a 4 y133y233 - y122y233

+ YIZZYZQQ

(5. 10) R13 = -y122]3 4+ y1443 4 y122y233 4 ylaay3es — y133y322

+ y133)/3ﬁ4
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(5.11)

(5.12)

(5.13)

(5. 14)

(5.15)

(5.16)

(5.17)

R14

R22

R23

R2¢

R33

R34

R44

-yt22s -y133s + yr22ys22 4 Y133ya33 - y1esyaz2

- y144y433

-y122 - y322p 4+ ye22p - y2112 - y233p + y2se2
+ [y211]2 ¢ [y233]2 + [y244)2 + [yr22]2

+ [y322]2 - [)IQZZ ]2 + y122y133 - y122y144

+ y322)/311 - y322y344 - y422y411 - y422y433

-y2113 + y244B 4+ y211y311 4+ y24asy344 - y233y311

+ y233)’344

~y211s - y233s + y211y411 +y233y344 4 yallp2es

- y244y433

=y133h - y2332 4+ ye33s — y3113 - y3223 4+ y344f3

+ [)/322 ]2 + [y344 ]2 +[y311]2 +[Y133]2 + [y233]2

- [Yy433]2 + y122y133 - y133y144 4+ y233y211
~ Y233y244 - ya33ya22 - ya33ya11l
_y31ﬂ4 - yazzh + y311ya11 4 y322y422 4 y3aaysl:

+ y3aaya22

-yxaqx - y2s4dpR - yaaab - ya11js - yszze - y43ﬂp
+ [y211]2 &+ [ye2272 + [ya33]2 - [y1r44]2
- [Y244]2 -~ [y344 ]2 + y1a4a)y122 4 y144y133

+ )/244)/211 + y244)/233 + y344r311 + y344y322
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From (5.3) we find (after solving a simple system of linear
equations for the xkin terms of the R®™'s) that the eigenvalues

are given by

A, = (1/16W)[ E}1 - R22 - R33 + R44]
(5.18) A, = (1/16U)[ - R11 + K22 - R33 + Re¢]
Ay = (1/16W)[~ E11 - B22 + R33 + R44]
Ay = (1/16W)[- F11 - R22 - R33 - R4 4 ]

The eguations (5.8) to (5.18) allow us to find the eigen-
values in terms of the yP®¢ _ §e find them to be
(5.19) BWXI: y3a2zp - ya22z¢ 4 y233l2 - yza4)2 - ye3ds - y3eas
+ [ys22]2 + [ye33]2 - [y233]2 - [[y244]2
- [y322 ]2 -y122y133 4 y122y144 4 y322y3es

+ Y422y 433 4 y133y144 4 y233y244

(5.20) 3nxi= y3113 - yaiye 4 yr33h - yieap - ys33dls - y3aaf3
+(y411]2 + [y433]2 - [)’133,]2 - [YIQQJZ - [)/311]2
- [y344]2 -y211y233 4 y2riy244 4 Y311y34a

+ y411y433 + )/133)/144 + y233y244

(5.21) 3u‘3= yzxﬂz - y41ﬂ4 +fy12ﬂ1 - y1éslr - yaz22e - y2442
+ [ye11]2 + [)ye22]2 - [y122]2 - [y144]2 - [y211]2
- [)y244 ]2 - y311y322 4+ y211)y244 4 y311)y344

+ y4l1ya22 4+ yr22y144 4 y322y3ss
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(5.22) ew‘*z Y211z + y3uazs + y122h 4+ yi3sp +y3223 4+ ya3F
- [y122]2 - [y133]2 - [y211]2 - [y233]2
- [y311]2 - [y322]2 + yallys22 4+ yailya3s

+ y422y433 - y211y233 - y122y133 - y311y322.

From the "off-diagoral" elements of R*™ we find the system of

equations which we will try to solve.

(5.23) yre42 - y1332 4+ y122y244 - y122y233 4 y133y233
+ yleay2aa =

(5. 24) yre43 - y122]3 + y133ysas - y133y322 4 y122y3z2
+ ylasey3ass = 0

(5. 25) y2443 - y2113 4+ y233y3es - y233y311 + y211)311
+ y24ay3ss = g

(5.26) -y122js - y1338 4 y14aye22 4 y144ye33 4 yl22ys22
+ y133y433 = 0

(5.27) -y211fe - y233% 4 y244yall 4 y244ya33 4 y211yetl
+ y233ya33 = 0

(5. 28) -y311jsa - y322/4 4 y3e4ys11 4 y3Ie4ys22 4 y3liyatl
+ y322y422 =
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Now using the expressions for tkLe )’“Bc

which we computed in (5.7)
and the rules for moving tetrad indices mentioned in Chapter 2
we can find the eguations (5.23) to (5.28) in coordinate fora.
Cpt dut G- crazt 4,4,- 4,a;~ by;c,- b, d= 0,
byt 43+ b, bS- E,ay+ d,dy—- d,a3~ ;b3 ¢, 4;= 0,
(5. 29) ayt dygt a,a,- azby+ d;d3- dyby- cjaz- ¢ 4;= 0,
byt cu*+ by o~ Ea,+ ccu- ¢ a*-. d,by- 4, c.= 0,
ay,t q*ﬂb a,a,- aab'r* C,Cy~ Cyby— d,a,- a, Cy = 0,

a3‘f+ h”+ aza, - a3c,f+ b, b*- b3c4- dsa,f— d3b*= 0.

Similiarly we can convert equatious (5.19) to (5.22) in the sane

vay.
(5. 30) 8Ir,(| = -exp(-2a)[b,c + b'd‘+ c'd, ]
(3
-exp (=2b)[ g+ d,- b,cy- by d,+ c:'+ d,+ c,4,]
* 2
-exp(-2c)[bn+ dy3- bycy- dycet b, + d, + b,d; ]
2 1
,+exp(-—2d)[b%+ Gy~ bydy - c,._dq+ b“+ C,+ b‘}c*]
T
(5.31) 8Wf, = —exp(-2a)[cy+ &~ a,c,~ a, d,+ ¢+ 4+ ¢ 4, ]
-exp(-2b)[a,cy+ a,d,+ c,d4,]
2 2
—exp(-—2c)[a35+ da3' ayCy~ czd3+ a,+ d3+ a3d3]
+exp(—2d)[a,w+ Gy~ a,+d,*- c,qu_+ a’,;,+ c:+ ayCy ]
(5-32) 8W[, = —exp (-2a)[by+ &,- a,b,= a,d,+ by + d+ b4, ]
-exp (-2b)[a,+ b~ a,b,= b, d,+ a;+ 4+ 2,4, ]
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—exp(-2c)[a,by + a,d,+ b,d, ]

+exp(-2d)[a,+ b~ a,d, - b,d, + a,+ c;w a b, ]

v

(5. 33) 8WA, = —exp(-2a)[b,+ c,- a,bj- a,c + b +c+bc]

T
[}

2
2

L

-exp(—2b)[an+ c,.— azbz- bzcz+ a’+ c

2 tanc,]

X 2
-exp(~2c) [ a,+ b,- a,c,- bycy+ aj+ L'+ a;b,]

texp (-2d) [ ayb, + a,c,+ b+c*]

Using the equations (5.29) together with (5.30> to (5.33)
we were able to verify the conservation equations

A8 _ qAt A b8 AD
Te= TN~ Y T ‘)'ps'r

= 0.

These calculations are extremely long and have been omitted.
Each conservation equation invclves approximately 250 terms. An
attenpt to calculate the Riemann tensor by the use of FORMAC73
programs was made. In ope instance for an unaligned tetrad a
single componeht of the Riemann tensor was on the order of 2000

terns.

Solution of the Off-Diagonal Egquations

In this secticon we will try to find a solution of the off--
diagonal equations (5.29). They are are a systen of six quasi-
linear partial differential equations for four unknown functions

a, b, ¢, d each of four variables. We start by making a very
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strong hypothesis i.e. that ali of the unknown functions do not

depend on the variable x4. This assumptioa implies that any so-
lutions which we find will be static since %;w will be a Killing
vector which is "hypersurface orthogonal."™ Transform the equa-.

tions (5.29) by a change of dependent variables

(Y
i
e
i
(oF
~

o2
|
[T
-

(5.34) b =

Q
i
(0% 4
i
[=1}
~

[T

i
2
.

The transformation (5.34) reduces the system (5.29) to

Cat 8- 4,6 B &0 2d,d,= o,
(5.35)° B+ B By- & By- 3,by+ 2d,d,= 0,
4+ 8,8,- £,3,- G, 3+ 2d,d,= 0.

Transforming the dependent variables once more by the transfor-

mation
2 = 1n|F|,
(5.30) b = 1lni|6Gi,
¢ = 1n{H|,

we get the systen
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Fy~ (G3/G)Fy— (Hy/H)Fy+ 2d,d,F = 0,
(5.37) G- (H /H) G- (F3/F)G + 2d,d,6
a

It
o
~

"
o
.

~

H,~ (Fo/F)H, - (G,/G)H,+ 24,d4,H
The system of equations (5.37) is very difficult to solve

for functions F, G, H of three variables even when the function
d is freely prescribed as a nontrivial function of three vari-
ables. We will assume as a working hypothesis that F, G, and H

have the following dependence on the three variables x! ,x2, x3.

F = F(x2,x3),
(5.38) G = G(x3),
H = H(x?2).

With this hypothesis the equations (5.37) reduce to

(5.39)  Fy- (G3/G)Ey~ (Ha/H)Fy+ 23,d,F = 0,
(5.400  23,d,6 = o,

LYY
(5.41)  2d,3,H = o.

As a consequence of this working hypothesis we must make some
.. ~r A
similiar hypothesis about d i.e. we assume that d = d(x2%,x3).

The equation (5.39) has the form

(5.42) Upy+ A(X3)Up+ B(x2)Uy+ C(x2,x3)U = 0
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wnere

A (x3) = - (63/6G),

B (x2)

= (Hs/H),

C(x2,x3) = 2d,d,-

The differential form W = A dx3 + B dx2 is exact hence there is
a function P(x2,x3) such that dP = W. The function P is fcund

after a simple integraticm to be
P(x2,x3) = -1n|GH]|.

Notice that there is no arbitrary function of the variable x1
added to P. This is consistent with the working hypothesis made
earlier. Now make a last transformation of the depeandent vari-

able given by [42]
(5- 43) F(xz,x3) = V(lex3) exp(-P (xz,le)).
From (5.43) the equation (5.39) reduces to

0.

(5. 44) V¢ [23,d3- (Gs/G) (Ha/H) IV

If g(xz,x3) = (1/p)1njH{ + (1/9)1n|G| with pg = 2 then equation

(5.44) becones
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(5. 45)

Vz3= 0.

The solution of (5.45) is

(5. 46)

V(x2,x3)

= £(x2) + g(x3),

where f and g are arbitrary functions of class C3. Reversing

this long trail of transformations we find a solution for (5.29)

is

(5. 46)

(5.47)

(5. 48)

(5. 49)

a(x2,x3)

b (x2 ,x3)

c(x2,x3)

d(x2,x3)

where the parameters

tion cf the eguation

functions a,

b, c,

d.

g a
1n|[£ (x2) +g (x3) ILH (x2) 17[ 6 (x3) I¥1,

+ \Y
lni[H(x2) J7[G(x3) 1%,
2= -L
1nl[H(x2)]P[G(x3) 1Y,
(1/p) InjH| + (1/9) 1ln|G{,
p and q must satisfy pgq = 2. Another solu-

(5.42) leads to a more complex form for the

This solution is in Appendix 2.
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The Enerqgy Conditions

From the text of Hawking and Ellis [6] we find that the

weak energy conditions (in our signature) are written as

(5.50) ,(42 o,

(5.51)  A,~ 4,20,
(5:-52) A~ A2 0,
(5.53) L~ Ay2 O-

These inequalities express the physical statement that the ener-
gy density is everywhere non-negative. Translating these ine-
qualities in terms of the expressions (5.30)'to (5-.33) for the
eigenvalues [; we find using the solution found in the previous

section

(5.54) T4, = —exp(-2a)[b,+ ¢~ a,b, - a,c,+ b+ b, c,+ c;]
—exp (-2b) [, Gy~ a,by + a,C,= 0,0, G+ qp ]
+ byy + 93]

—exp(-2c)[a33— a5c3+ a, by + b;'- b3c1~

2 0,

r 2 z
(5.55) 8 L&:K‘]=exp(-2a)[-b“- q|+a‘b‘+ a,c,- b,- c/+ bld‘+ c, 4,1
+ exp(-2b)[-ayt a,b,- ay- a,0,+ dy,+ d3- b,d, + c,d, ]
+ exp(-2c)[tydy+ d:+ 4~ C3dy= Ayt a3C,~ ay— azby ]

2 0,
ks 2
(5.56) 8 [(;Kl]=exp(-2a)[d"- a,dq + 4, + cld‘— b, + aib‘- b,- b,c, ]

76




+ exp(-2b)[a,d,+ c,d,- 2~ Cpt azbl- a:+ b,c,~ c:]
2

+ exp(-2c)[ayd;+ 4y~ C,d4,+ d,- a3b3- g3+ b3C,‘ b:]

2 0,

1 2
(5.57) 8ﬂ[4;[3]=exp(—2a)[-q'+alcl— b,c,- c t d”- a'd'+ b, d'+ d‘]
+ exp(-2b)[-c,- a,c,+ b,c)- c:* a,d,+ d:‘ b,d, + d,,]
2 r' S
+ exp(—zc)[-a33+ a3c3- as- b33+ bsca‘ b3+ b3d3+ a3d3]

From Hawking and Ellis [6] we also find energy conditions
called the strong energy conditions. The strong energy condi-
tions are a statement of the physically reasonable requirement
that the mass-energy density measured by a local observer is
positive and that all mcmentum vectors are non-spacelike. These
energy conditions for stress-energy tensors of Segre class
(111,1] are written as (5.51) to (5.53) together with the condi-

tiorn
(5.58) 5 = BW[A,~ A, — A~ A1 2 0-

Again using the solution frcm the previous section we find that

(5.58) becomes
e
(5.59) S = 2exp(-2a)[b,q, + ¢4, + 4,¢ d,-a,d,]
+ 2exp(=2b) [d,- byd,+ o+ c,d,+ a,d,]

2
+ 2exp(-2c)[bydy+ du+ ds- c5d3+ a3d3]
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We want to force the sclution we have found to satisfy the
strong energy conditions elaborated above. There is no kncwn
technique of ‘solving differertial inequalities like (5.55) to
(5.59) other than trial and error. We will suppose that the ar-

bitrary functions in (5.45) to (5.49) are of the simple forIms

below.
f (x2) = constant K,
(5.60) g (x3) = constant L,
H(x2) = A(x2)",
G (x3) = B(x3),

where A and B are nonzero constants. Since the strong energy
conditions imply the weak energy conditions we will use (5.54)
to find appropriate ranges of the exponents m, n in (5.60)

above. 1Inequality. (5.54) shows that we require

(5-61) L (2p-2)/p JHH" + [ (p-1)/p12(H")2 + (2-p)GG"

+ [ (2-p)/2]2(6")2 = 0,

where pq = 2. If we assume that p = 3 so that g = 2/3 then a
straighforward analysis of the inequality (5.61) will show us

that allowable ranges of the exponents m, n are
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méeR-[0,4/3],

ne (0:3/“].

For the choice n = 1/3, m = 2 it is a simple task to verify that

(5.54) is satisfied wherever all the functions are defined.

This choice of parameters also satisfies all the inequalities

(5.55) to (5.58). Thus we see that this 3~parameter family of

solutions satisfies the weak energy conditions. The strong

energy condiﬁions also hold for this choice of parameters.
Finally we write the metric tensor for the special values

that we assigned to the parameters above.

(5.62) dsz = —(A-}S B7/" y_qﬁ z'?‘l)dxz/(Ki-L)Z - (A5 By% z2) dy2

7'(‘

-4, - - -
- (A %p3y S ze)azz + (A PB-3y Bz-date.
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Appendix 1: Transformations between Systems of Notation used in
General Relativity

Generalizing work dcpne by Ernst [18] and Misner et al. [19]
we have found that almost all systems of notation in current use
in General Relativity can be classified by six parameters
{e; :1<i<6}. The parameters take the values +1 or -1 depending
on the conventions used. The five parameters
fe,se3se3/8¢0,8,]
are indepemdent and deal cnly with the definitions of mathemati-
cal symbolism. The parameter ey, is used as amn auxiliary para-
meter in order to unify this classification scheme with that of
Ernst. The parameters {el,ez,ea,e*} are identical with thcse of
Ernst. The three parameters defined in Misner et al. will be
denoted W;, W,, W; .

The sets of parameters {e,,ez,es,e4} and {W,,W,,W,} are
sufficient to transform any tensor expression which does nct in-
volve the Levi-Civita temnsor density (transformations of tensor
expressions which involve the Levi-Civita tensor density use the

parameters eg, €,). The definitions of the e;, 1£i<6, are as

follows:

(a) e, signature (g) = +2,

(0) eV B = Yy - Vi

(c) eyB;= Rlimj o

(d) e,‘Gt'J-= -e‘e1e581rT,;J-,

(e) eg= +1 if space-time indices run over {0,1,2,3},

-1 otherwvise
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(£) e;ﬂgk1==V|gl sign(i, j,k,1) where (i,j,k,l) denotes a

permutation in S, and |g| denotes the absolute

value of det(g ).

The parameters W,, R,, Wyare defined by

(a) W|signature(g) = +2,
. b _ .
{c) Wz G,;J' = 8ﬂ'TL'J ’
.

From these definiticns it is straightforward to find the

relations
e = W
ez- -Wz
ey= W -

To transform tensor egquations in one notation systeﬁ
(primed system) to another notation system (unprimed) it is ne-
cessary to calculate six parameters a;, 15i<6, which are defined
in terms of the e-parameters by the relation

a; = e;e;, 1<i<é.

- Oonce these conversion parameters are known then tensor egjuations
in the primed notation may be converted to tensor equations in

the unprimed notation by use of the following relations:

ng' =,a|gf="l
g'4= a, g4,
g' = g where g denotes the determinant oi g ,

[ 4
My = 2 -
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,,1"'1'= o i
i,k = a [ii.k),

=151,

B'ch‘ = a, BK,,J where Bf‘;j ={:'§_{t‘}'

R (insert one factor of a for each index

'ijm. a|a1R£ij ’
raised)
R& = azang, (insert one factor of a for each index raised)
E' = a,a,a,R
G; = a;aqu,
Sé.= ala,Sq, where Sﬁ= Bq—(R/u)gq.

The conformal curvature tensor Cf;KL and the projective

curvature temnsor Hf{xt transform the same way as the Riemann

tensor under changes in €;, e, but misbehave under changes in

€y3. »
The differential parameters A,¢ and A,(ﬁ transform by the
relations:
A,'CP = a, ¢,
A:cb = a, A, 9.

If hniis an orthonormal tetrad then the transformation relations
are

h'ﬂ‘: = a, hp,;,

hlai = hacs

h'A;= a,b*;, and

Al

= wht.
The Ricci rotation coefficients transfora by

y'ﬁ.ac = YABC ’
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Y
: A
rhe = a, Y. sc-
The directional derivatives transform as
[
¢M=:a1¢M'
¢r“=¢m.
For equations which involve the dualizing operation we use
the transformation format
e = L AR
(T' ... ) = aga (T' ).
All other transformations between tensor equations should ke de-

rivable from the above relations.
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Appendix 2:Another Solution of the Off-Diagonal Equations

If we approach the equations (5.29) with the ansatz

a = a(x2,x3),
t = b(x2,x3),
c = c(x2,x3),

a = d(x+),
we find that the system (5.29) collapses into

az,+ a,a

5837 azbs— ac, =0

32

with the other equations becoming trivial identities. Preform-
ing similiar transformations as in Chapter 5 we reduce the equa-

tion above to the fornm

U (P3 + B,B)U = 0

23

wvhere P is as in Chapter 5. Writing the expression in rparen-

theses as
(1) st + P1P3= /(I
where A = f(x2,x3), ve see that if

(2) 013— A0 = 0,
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then by prescribing f we may construct solutions of the off-
diagonal equations. Set £ = n(n+1)/(x2+x3)2, Assume a solution

of (1) exists of the form f = £ (x2+x3). Then (1) reduces to

fr + (f*)2 = n(n+1)/v2

where we have set v = x2 + x3, Transforming the dependent vari-

able by w = f' we get
(3) (W')2 + w2 = n(n+1)/v2,

which we recognize as a kiccati differential equation. The so-

iution U of (2) is related to the solution of (3) by

w(v) = U'/U.
This last equation is an Euler equation with characteristic
roots -n, n+1. The point v=0 is a regular singular point there-

fore the generai solution of the auxiliary eguation for (3) is

{44]
+
U(v) = K avi="+ Kivi™e
Reversing the trail of transformations we find that

. -ry "H
£(x2,x3) = 1nlK 1x2+4x3| + K,1x2+x3| | + K,.
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From [43]) we find that (2) has as a general solution

(n-v)

“ (x3) 1}

n
0 = 3, ((-1) (n+r) !/ (o-r) 1T} (x2+x3) [£
=0

x2) + g

where £ and g are arbitrary functions of class C". From these
results complicated expressions for a, b, ¢, d may be derived.
Tois family of solutions of (5.29) has not been tested for any

of the energy conditions due to their extreme complexity.
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