
THE DESIGN OF 

A CHANGE NOTIFICATION SERVER 

FOR CLIENTS OF A 

PASSIVE OBJECT-ORIENTED DATABASE MANAGEMENT 

SYSTEM 

by 

Kathleen A. Peters 

B.Sc., Simon Fraser University, 1982 

THESIS SUBMI'ITED IN PARTIAL FULFB-LMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in the School 

of 

Computing Science 

O Kathleen A. Peters 1992 

SIMON FRASER UNIVERSITY 

July 1992 

All rights reserved. This thesis may not be 
reproduced in whole or in part, by photocopy 

or other means, without permission of the author. 



Name: 

Degree: 

Title of Thesis: 

Examining Committee: 

Chair: 

Date Approved: 

Approval 

Kathleen A. Peters 

Master of Science 

The Design of a Change Notification Server 
for Clients of a Passive Object-Oriented 
Database Management System 

Dr. Nick Cercone 

b r .  Wo-Shun Luk 
Senior Supervisor 

Dr. Tiko Karneda 
External Examiner 



PARTIAL COPYRIGHT LICENSE 

I hereby g ran t  t o  Simon Fraser U n i v e r s i t y  the  r i g h t  t o  lend 

my thes is ,  proJect  o r  extended essay ( t h e  t i t l e  o f  which i s  shown below) 

t o  users o f  the  Simon Fraser U n i v e r s i t y  L ibrary,  and t o  make p a r t i a l  o r  

s i n g l e  copies on ly  f o r  such users o r  f n  response t o  a request  from the 

l i bra ry  o f  any o t h e r  u n i v e r s i t y ,  o r  o the r  educailona l l n s t i t u t  ion, on 

i t s  own behalf  o r  f o r  one o f  i t s  users. I f u r t h e r  agree t h a t  permission 

f o r  m u l t l p i e  copying o f  t h i s  work f o r  scho la r l y  purposes may be granted 

by me o r  t h e  Dean o f  Graduate Studies, I t  i s  understood t h a t  copying 

o r  p u b l i c a t i o n  o f  t h i s  work f o r  f i n a n c i a l  ga in  s h a l l  no t  be al lowed 

w i thou t  my w r i t t e n  permlssion. 

T it l e o f  Thes i s/Pro ject/Extended Essay 

The Design of a Change Notification Server for  Clients of a Passive 

Obj ect-Oriented Database Management System.. 

Author: ,, - 
L 

( s igna tu re )  

Kathleen A. Peters 

(name 

July 23, 1992 

(da te)  



Abstract 

One way to aid database clients in detecting change to shared data is to provide a 

notification mechanism which informs clients when the data they have an interest in has 

changed. Previous research has focused primarily on embedding change notification 

schemes in a database management system (DBMS). 

This work explores the feasibility of separating the notification mechanism from the 

DBMS, thereby allowing an active component to be added to applications which use a 

passive DBMS. 

This thesis presents a comprehensive design specification for an object-oriented database 

management system (OODBMS) change notification server. Objectstore is used as the 

example underlying OODBMS. 
\ 

The major contributions of this thesis are its focus on object-oriented (as opposed to 

relational) data change, the design of a change notification server, and the description of a 

language used by clients to specify conditions of interest to monitor for change. Further, 

we present a model of version management, and describe how our notification server can 

complement an application where clients are versioning data. 

iii 



Acknowledgments 

I wish to express my gratitude to my supervisor, Dr. Wo-Shun Luk, for his advice and 

support. His patience and enthusiasm were invaluable, 

I want to thank my friends and family, all of whom stuck with me through both the good 

times and the tough times. I especially wish to acknowledge Russ Tront, who spent hours 

reading various drafts of this thesis, and Alicja Pierzynska, who created graphics files for 

many of the diagrams. They, along with Pat Brearley, Charlotte Culver and my parents, 

always had words of encouragement when I needed them most. 

I am also grateful to the many graduate students, faculty members, and staff of the School 

of Computing Science who supported me throughout my time at SFU. 



Table of Contents 

Approval 

Abstract iii 

Acknowledgements 

Table of Contents 

List of Tables 

List of Figures 

1. Introduction 

1.1 WHY DB CLIENTS NEED TO DETECT CHANGE 

1.1.1 To Watch for Special Conditions 
1.1.2 To Maintain Local Copies of Data 
1.1.3 To Work More Effectively with Versioning 
1.1.4 To Support Other Methods of Concurrency Control 

1.2 THE TWO CHOICES: POLLING OR NOTIFICATION 

1.3 THESIS SCOPE 

1.3.1 Objectives 
1.3.2 System Design Goals 

1.4 THESIS ORGANIZATION 

2. Related Work and Objectstore 
8 

2.1 CHANGE NOTIFICATION 

2.1.1 Notify Locks 
2.1.2 Active Queries 
2.1.3 Active Databases 
2.1.4 Model-View-Controller (MVC) Paradigm 
2.1.5 Selective Broadcasting 
2.1.6 Our Approach 

2.2 CONDITION EVALUATION TECHNIQUES 

2.3 OBJECTSTORE 



3. Change Notification Design Requirements and Limitations 

3.1 BASIC ASSUMPTIONS 

3.2 MONITORING CHANGE IN THE DATABASE 

3.2.1 Database Update Events 
3.2.2 Database Update Event Messages 
3.2.3 EnablingIDisabling Event Messages 

3.3 CONDITION SPECIFICATION 

3.3.1 Language Overview 
3.3.2 Inheritance Hierarchies 
3.3.3 Aggregation Hierarchies 
3.3.4 Specifying Attribute Change for Updates 
3.3.5 Placing Limits on the WHERE Clause 

3.4 ACKNOWLEDGING CONDITION SPECIFICATION 

3.5 CANCELLING CONDITION SPECIFICATION 

3.6 CHANGE NOTIFICATION 

3.6.1 Sending Notification (Server) 
3.6.2 Accepting Notification (Client) 

3.7 PROCESS STARTUP, SHUTDOWN, AND UNEXPECTED 
TERMINATION 

4. Example Applications 

4.1 DATABASE DESIGN CONVENTIONS 

4.2 RAILWAY NETWORK APPLICATION 

4.2.1 Overview 
4.2.2 Database Design 
4.2.3 Client Processes 
4.2.4 The Use of Change Notification 

4.2.4.1 Maintaining Local Copies 
4.2.4.2 Detecting Special Conditions 

4.2.5 Avoiding Lost Updates 

4.3 DOCUMENT CO-AUTHORING APPLICATION 

4.3.1 Overview 
4.3.2 Database Design 
4.3.3 Client Processes 



4.3.4 The Use of Change Notification 47 

4.3.4.1 Maintaining Local Copies 
4.3 A.2 Long-Term Updates Without Versioning 

5. Design of the Interface Between Clients and the Notification Server 51 

5.1 OVERVIEW 5 1 

5.2 CLIENTISERVER COMMUNICATION 54 

5.2.1 Database Update Event Messages 54 
5.2.2 Condition Specification Messages 57 
5.2.3 Acknowledge Condition Specification Messages 57 
5.2.4 Cancel Condition Specification Messages 57 
5.2.5 Change Notification Messages 58 

6. Internal Design of the Notification Server 59 

6.1 THE FOUR MAJOR DATA COMPONENTS 59 

6.1.1 The Application Schema Knowledge Base 60 

6.1.2 The Monitored Event Set 6 1 

6.1.2.1 Data Structure Overview 62 
6.1.2.2 Intra-Object Condition Specifications 64 
6.1.2.3 Inter-Object Condition Specifications 67 
6.1.2.4 Aggregation Hierarchy Condition Specifications 69 

6.2 HIGH-LEVEL PROCESSING ALGORITHMS 7 1 

7. Internal Design of Client Processes 76 

7.1 SENDING DB UPDATE EVENT MESSAGES 76 

7.2 MAIN PROCESSING ALGORITHMS 79 

7.2.1 Main Body Without a Window Management System 79 
7.2.2 Main Body With a Window Management System 80 
7.2.3 Processing Messages from the Server 82 

8. Extending the Design to Handle Multiple Versions 
# 

8.1 OUR MODEL OF VERSION MANAGEMENT 

8.1.1 Basic Concepts 
8.1.2 The Basic Version Managrnent Model 
8.1.3 Allowing Multiple Branches 
8.1.4 Sharing the WIP Version 

v i i  



8.2 USING THE CHANGE NOTIFICATION SERVER 

8.3 CLIENT/SERVER COMMUNICATION REVISITED 

8.3.1 Database Update Event Messages 

8.3.1.1 Version-Level Event Messages 
8.3.1.2 Data-Object-Level Event Messages 

8.3.2 Condition Specifications 

8.3.2.1 Version-Level Condition Specification 
8.3.2.2 Data-Object-Level Condition Specification 

8.3.3 Acknowledge Condition Specification Messages 

8.3.4 Cancel Condition Specification Messages 

8.3.5 Change Notification Messages 

8.3.6 Group Change Messages 

8.3.7 Group List Request and Reply Messages 

9. Conclusions and Future Work 

9.1 CONCLUSIONS 

9.2 FUTURE WORK 

Appendix A: Objectstore Version Management 

A. 1 CONFIGURATIONS 

A.2 WORKSPACES 

Appendix B: Server Data Structure Design 

B.l THE APPLICATION SCHEMA KNOWLEDGE BASE 

B.2 THE MONITORED EVENT SET 

References 

vii i  



L i s t  of Tables 

5- 1 Messages Passed Between Clients and the Server 

5-2 DB Update Event Message Format 

5-3 Condition Specification Message Format 

5-4 Acknowledge Condition Spec. Messages Format 

5-5 Cancel Condition Specification Message Format 

5-6 Change Notification Message Format 

Messages Passed between Clients and the Notification Server 

Version-Level DB Update Event Message Format 

Extended Object-Level DB Update Event Message Format 

Version-Level Notification Message Format 

Extended Object-Level Notification Message Format 

Group Change Message Format 

Group Change Acknowledge Message Format 

Group List Request Message Format 

Group List Reply Message Format 



List of Figures 

3- 1 Choice of System Architecture 
! 

3-2 Basic Condition Specification Language Format 

3-3 An Inheritance Hierarchy Example 

3-4 An Aggregation Hierarchy Example 

3-5 Attribute Change in the Condition Specification Language Format 

5- 1 Application Architecture Example 

6-1 The Server's Four Major Data Components 

6-2 High-Level Application Schema KB Structure 

6-3 High-Level Monitored Event Set Structure 

6-4 Query Construction Diagram 

6-5 Server High-Level Function Hierarchy Chart 

7- 1 Flow of Control in a Notifier-Based Client 

Illustration of the Basic Version Management Concepts 

A Linear Version Graph 

Basic Version-Level Access and Manipulation Functions 

A Multiple-Branch Version Graph 

Multiple-Branch Version-Level Access and Manipulation Functions 

Orphaned Branch Problem 

Merge Continuity Problem 

change-WIPWIPaccess Function 

General System Architecture (Revisited) 

Version-Level Condition Specification Language Format 



L i s t  of Figures cont. 

9- 1 A Comparison of Change Notification Approaches 

A-1 Subconfiguration Example's Version Graph 

8 A-2 A Workspace Hierarchy Example 

B- 1 Application Schema Knowledge Base Structure 

B-2 Monitored Event Set Data Structure 



CHAPTER 1 

Introduction 

Traditionally, database management systems (DBMSs) have been designed to permit 

multiple database (DB) clients to access and manipulate data concurrently, yet allow each 

individual client to behave as if they alone were using the system. This has forced the 

DBMS to take responsibility for data consistency, and it does this through mechanisms 

such as transaction management and, more than likely, a strict locking protocol. As long as 

transactions are of short duration (i.e., at most a very few seconds), strict locking is an 

acceptable method of ensuring consistency because the delay conflicting clients will 

experience is small. 

While strict locking and a guarantee of short duration transactions are reasonable for many 

multi-user applications, they are not appropriate for an important, relatively new application 

area called "cooperative work", or "groupware". Two differences between these 

applications (which include co-authoring documents, software, or computer-aided designs 

(CAD), and multi-user data monitoring and control) and more traditional applications are: 

. DB clients are collaborating, each making changes to shared data in accordance with 

his or her role(s) in the group. Clients know they are not working alone. They need 

to know what others are doing; they must be able to discover when data that affects 

their actions has been changed. 

. DB clients need a high level of concurrency in accessing a database where long-term 

read and write conflicts are likely. Each collaborative application has different 

concurrency requirements; sometimes they can be met by relaxing strict locking (e.g., 



allowing unrepeatable reads), and sometimes by using multiple versions of data. 

Specialized concurrency control schemes often mean that clients must take on some 

responsibility for data consistency; by detecting changes made by others, clients can 

avoid actions which might lead, for example, to lost updates. 

Cooperative applications are user-directed and event-driven systems where change occurs 

in a non-deterministic manner. In addition, the number of concurrent clients, their data 

interests, and their role(s) in the group can vary over time. 

This thesis explores the question of how clients in cooperative applications can be informed 

of change to shared data stored in an object-oriented database management system 

(OODBMS). Previous research has focused primarily on embedding change notification 

schemes in database management systems. Although this is certainly a valid option, we 

feel it is important to explore alternative means of providing this functionality as it is 

difficult for a commercial, general-purpose OODBMS to provide for all the needs of all 

possible end users. The more functionality the OODBMS contains, the more difficult the 

system becomes to use and maintain, and the more its performance may suffer. 

Applications may not need to use all the capabilities embedded in an OODBMS, or may 

find that their requirements do not match what is provided. 

The alternative is to separate the change notification functionality required by an application 

from the database management system the application uses. We can then build a 

notification mechanism with a standard "look and feel" regardless of the underlying 

OODBMS, and we can tailor parts of the mechanism to the needs of the application. We 

can add an active component to a passive OODBMS. This thesis is a design feasibility 

study of such an approach. 



In this chapter, we first discuss in more detail the various ways change detection can be of 

use in cooperative applications. Then we review the two main ways database clients can 

detect change to persistent data. Finally, we describe the scope of this thesis, including our 

main objectives and system design goals. 

1.1 WHY DB CLIENTS NEED TO DETECT CHANGE 

1.1.1 To Watch for Special Conditions 

Some database clients need to react to the occurrence of particular data patterns (e.g., alarm 

or exception conditions) or data manipulation operations (i.e., objects created, deleted, or 

modified). Clients must detect changes to discover these conditions. 

1.1.2 To Maintain Local Copies of Data (Long-Term Reads) 

DB clients access persistent data through transactions, logical units of work which involve 

one or more database operations on one or more data objects. The DBMS ensures that each 

transaction is either completely done or completely undone. Further, the DBMS ensures 

that concurrently executing transactions do not interfere with each other (the serializability 

property). Typically, the DBMS does this through the use of a locking protocol; when one 

transaction holds a lock on some part of the database, any other transaction requesting 

conflicting access to the same part of the DB must wait until the first transaction releases its 

lock. 

Conventional DBMSs often implement a strict locking protocol: shared read and exclusive 

write locks, with all locks being released when a transaction commits or aborts. This 

provides a high level of data consistency. However, this only provides a reasonable level 

of concurrency if the number of clients queuing for the same data is relatively small. If the 

lock granularity is large (e.g., page-level locking rather than object-level locking, a 



situation not uncommon in OODBMS for performance reasons [DMFV90]), concurrency is 

further restricted. 

Data monitoring and cooperative work applications can involve DB reads of relatively long 

duration (e.g., user interface display of data which lasts for minutes or hours). These 

long-term reads delay conflicting updates until read locks are released. Concurrency can be 

increased if clients performing long-term reads instead make local copies of the data and 

then release the read locks. This action creates the potential for unrepeatable reads (i.e., 

local copies becoming out-of-date when other clients subsequently perform DB updates to 

the same data). Therefore, clients must detect change in order to keep their local copies 

(unlocked long-term reads) up-to-date. 

1.1.3 To Work More Effectively with Versioning 

Cooperative work applications can involve updates of long duration (e.g., hours, days, or 

weeks). Under a strict locking protocol, a long-term update unreasonably delays 

conflicting reads and other updates until its exclusive write lock(s) are released. It is also 

important to note that these write locks are typically transient (i.e., they exist only as long 

as the client process remains active and the transaction remains open). Updates taking days 

or weeks require persistent locks, and a way of saving "work in progress", so that clients 

can leave and return to a long-term update at any time. Versioning data is one way of 

solving all these issues. 

Versioning is a mechanism (which may be embedded in an OODBMS) where a record of 

the changes made to data objects is kept by saving the changes as separate persistent 

instances, or versions, in the database. One version of a data object supersedes another 

rather than replaces it. If one client is in the process of creating a new version (a long-term 

update), other clients still have read access to the previous version(s). Concurrent updates 



to the same data can be performed by creating alternate versions which may be intelligently 

merged at a later time. 

DB clients may wish to detect when the version they have accessed is in the process of 

change; that is, knowing a new version is being created but not yet knowing what the 

changes are. Then, for example, clients can choose to avoid performing actions based on 

data that they know will be superseded. 

Alternatively, DB clients may wish to monitor, or even participate in, the changes made to a 

new version. 

1.1.4 To Support Other Methods of Concurrency Control 

Versioning incurs both a storage and performance overhead, so it is desirable to restrict its 

use to only those applications where DB clients need to perform concurrent 

CONFLICTING updates, or keep a history of change. 

One way to avoid versioning, yet (a) enable reads during long-term updates, and (b) 

provide long-term persistent locks, is to replace a long-term object update with two short- 

term updates: one to set a persistent application-level object lock, and one to store the 

changes and reset the application lock. Clients who create local copies (i.e., long-term 

reads) prior to the start of the long-term update will be warned that the object is undergoing 

change when they detect that the object's update lock has been set. Clients who read the 

object will know from the value of the application lock whether or not it is currently 

undergoing change. Clients cooperate by respecting the lock (by not doing conflicting 

updates) until they detect that the update has completed (when the second short-term update 

occurs). 



The scheme outlined above not only provides a partial alternative to versioning, but allows 

applications to tailor long-term lock granularity to their specific needs. 

1.2 THE TWO CHOICES: POLLING OR NOTIFICATION 

Conventional DBMSs are generally passive, responding only to direct calls. Clients query 

the database and retrieve the information currently available. To detect changes made by 

others, clients must regularly poll the DBMS and compare new information with old. 

Polling allows a DB client the flexibility of requesting only the specific information of 

interest. However, there are disadvantages: 

. a certain percentage of a client's processing time is spent doing VO and data 

comparison. This can be expensive if the amount of data being checked is large 

and/or little or no change is detected much of the time. 

. if the polling interval is too long, a client may not be able to respond quickly enough 

to change; alternatively, too short an interval wastes the client's processing time. If 

the pattern of data change is unpredictable, determining the appropriate polling 

interval is difficult. 

. polling can only provide DB clients with committed data changes. It does not allow 

clients to share uncommitted changes in order to, for example, merge concurrent 

updates on the same data. 

The alternative to polling is to provide some form of notification which interrunts clients 

when data is changing (as yet uncommitted) and/or has changed (committed). Clients 

should have flexibility in specifying what changes they are interested in so that notification 

interrupts are kept to a minimum. [Day881 and [CH90] have shown that the notification 



approach is better than polling when the amount of data being monitored is large or when 

timely response is required. 

1.3 THESIS SCOPE 

This thesis explores the major issues and the feasibility of implementing a change 

notification server for clients of passive, object-oriented database management systems. 

We have chosen to focus on object-oriented DBMS for two reasons. First, we will be 

examining many relational DBMS change notification requirements concurrently because 

they are a subset of the requirements for OODBMSs. Second, OODBMSs differ 

significantly from relational DBMS s in that OODBMS s must support complex inheritance 

and aggregation hierarchies. We can make an important contribution by examining how a 

change notification mechanism will be affected by these additional capabilities. This thesis 

uses Object Design's OODBMS, Objectstore, as an example. 

This thesis presents a comprehensive change notification design specification. Prototype 

implementation and performance analysis are left for future work. 

1.3.1 Objectives 

This work is divided into two parts. The first part assumes that the DB schemata of 

potential applications do not contain versioned data, and has 3 main objectives: 

. to identify and discuss object-oriented change notification requirements, including the 

messages which must be exchanged between clients and the notification server. 

. to present the internal design of an object-oriented change notification server, and the 

design of relevant sections of client processes which use the notification server. 



. to present a detailed description of two example applications in order to show how the 

change notification mechanism would be used. 

The second part of this thesis presents a model for OODBMS version management, and 

discusses how our change notification mechanism should be extended when application DB 

schemata contain versioned data. 

1.3.2 System Design Goals 

This work has a number of design goals. They are: 

. the condition specification, monitoring and notification mechanisms proposed should 

be simple but effective. 

. the mechanism for specifying conditions of interest should be flexible (a specification 

language will be defined) and dynamic (DB clients should be able to activate and 

cancel condition monitoring and notification at any time). 

. the condition monitoring and notification mechanism should not intervene between 

DB clients and the OODBMS, but rather be a completely separate server process 

which is informed of change and then notifies clients who have registered their 

interest. Thus, data exchange between the clients and the OODBMS is not slowed by 

an extra layer of processing, and the processing requirements of the notification 

mechanism are also simplified. 

. the condition monitoring and notification mechanism should produce no side effects. 

The notification server may need to read application data, but only client processes 

may change the data. 



. notification should occur as quickly as possible, but real-time performance is not a 

goal. Since cooperative work applications (as we have defined them) do not have 

strict real-time constraints, and monitoring/control applications exist which do not 

require real-time response, we have chosen not to focus on real-time performance. 

. application-specific sections of the design should be identified and isolated. 

1.4 THESIS ORGANIZATION 

Chapter 2 contains a literature review, and a brief description of the Objectstore OODBMS. 

Chapters 3, 5, 6, 7 collectively present a complete description of our change notification 

mechanism. Chapter 3 describes what functionality is, and is not, included in the design, 

and why. Chapter 5 describes the messages passed between clients and the notification 

server. Chapter 6 describes the server's internal data components and its high-level 

processing algorithms. Chapter 7 describes the internal design of relevant sections of a 

client process which uses the notification server. 

Chapter 4 presents two applications which provide examples of how our change 

notification mechanism can be used. 

Chapter 8 contains a description of our model of version management and extends our 

change notification server design to applications with versioned data. 

Chapter 9 contains our conclusions and suggestions for future work. 



CHAPTER 2 
Related Work and ObjectStore 

In this chapter, we first present a survey of previous work on change notification and 

condition evaluation techniques. Our approach is compared and contrasted with the work 

of others. Then, we provide a brief description of the ObjectStore OODBMS. 

2.1 CHANGE NOTIFICATION 

The literature contains a number of approaches to change notification. These are discussed 

briefly in the sections which follow. 

2.1.1 Notify Locks 

[HZ871 describes the concept of notify locks used in Observer (the ENCORE OODBMS 

object server) to enable clients to work cooperatively. A client who holds a lock on an 

object may ask to receive notification when other clients read, update, or have lock requests 

queued on the object. To make a range of data sharing and notification options possible, 

Observer has five lock modes: restrictive read and write (i.e., shared read and exclusive 

write), nonrestrictive read and write (i.e., allowing unrepeatable reads), and a null lock (a 

way of receiving update notification since only lock holders can be notified). 

[HZ871 does not explicitly discuss how clients are notified, or if notification is possible 

when objects are deleted. It is clear that clients cannot be notified when objects are inserted 

by others since no one but the creator has a lock on a new object, and clients cannot specify 

what kind of change to objects is important (they are notified of ANY change). 



2.1.2 Active Queries 

One DBMS method of data retrieval is the use of some form of passive query language 

(i.e., access by value). Relational DBMS queries return a set of tuples which match the , 

query conditions; object-oriented DBMS queries return a collection of objects. To detect 

change, a client must regularly re-issue the passive query and compare the new result with 

the previous one. 

An active query acts initially like a passive query - a set of tuples, or a collection of objects, 

is returned which match the query conditions. After that, the DBMS continuously monitors 

changes made to the database, checking to see if the active query result has changed, and if 

it has, informs the client who issued the query. 

[Ris89] describes an implementation of active queries embedded in the Iris OODBMS (an 

extended relational DBMS). A client activates a monitor for a stored function (an Iris 

query) and then the DBMS checks after every committed update to see if the function result 

changed. If it has, the DBMS invokes the client's "tracking procedure" (a call-back) which 

must fetch the changes. The client avoids polling and re-evaluation of the query result 

(since the monitor has to recalculate the result to discover change, the DBMS stores the 

new result until the client retrieves it), but must still pay the penalty of VO for the entire 

result and must compare newlprevious data to find changes. 

[SPAMgl] describes an implementation of active queries embedded in the Starburst 

extensible RDBMS. An append-only table (essentially a journal file) is created for each 

active query and a fetch-wait (a blocking read) SQL primitive is used to monitor the active 

table waiting for new tuples to be added. A complete new result is never fetched; the client 

merely modifies the initial result with the contents of active table entries as they arrive. 

OODBMS query languages may be expressively andlor computationally restricted PC911 

[BM91] in comparison to relational query languages like SQL. In Objectstore, for 

1 1  



example, full joins are not possible (the result of a query can only be a subset of the 

collection being queried [LLOW91]) and methods which derive data values (e.g., sum, 

count) cannot be used. The conditions which could be monitored by an embedded active 

query language are thus restricted. 

An OODBMS provides two ways to access data - by value (i.e., query language), and by 

navigation through object identifiers, or pointers. Thus, an active query language alone 

cannot provide complete coverage for specifying objects of interest by performing data 

access. 

2.1.3 Active Databases 

An active database monitors situations (events and conditions) and initiates some kind of 

response (action) when events occur and conditions are true. The response may be to: 

. alert processes outside the database of data changes made by other clients. 

. perform activities such as integrity checking or change propagation within the 

database. [ZM90] refers to this as "active data". 

Triggers were an early active mechanism embedded in a DBMS. They were discussed for 

System R (circa 1975), and are implemented in relational DBMSs like Sybase and Ingres 

[Day881 [Daygl]. Relational triggers are a somewhat restricted form of rules (see 

discussion below), and are specified separately from the table(s) they reference. 

[BeM91] implements OODBMS triggers as user-defined methods encapsulated in class 

definitions, and as such they are always enabled for each instance of a class. [GJ91] 

extends the C++ class definition syntax to specify OODBMS triggers in a separate section 

and allows them to be activated or deactivated at any time after object creation. Only intra- 

object triggers are implemented by [GJ91]; that is, the condition is only evaluated when the 

1 2  



object associated with the trigger is changed. If the condition references other objects (an 

inter-object trigger), their change(s) do not cause trigger evaluation. 

Recent work on active databases is aimed at embedding general-purpose imperative rules in 

a DBMS which specify events, conditions, and actions [Day881 [Day911 [DPGgl]. Rules 

are seen as first-class objects; they exist separately from the objects they reference. Events 

may be database operations (read, insert, update, delete), temporal events, or signals from 

arbitrary processes. Conditions, checked when events occur, may contain database 

queries. If the condition part is true, the action is performed. 

A rule limits notification to the OCCURRENCE of a condition. To provide the same range 

of notification as is possible with an active query, the following set of rules must be 

specified.. 

ON i n s e r t ,  I F  x now t r u e  THEN n o t i f y  ( o c c u r r e n c e )  
ON d e l e t e ,  I F  x w a s  t r u e  THEN n o t i f y  ( d i s c o n t i n u e )  
ON u p d a t e ,  I F  x now t r u e  THEN n o t i f y  ( o c c u r r e n c e )  
ON upda te ,  I F  x was t r u e  THEN n o t i f y  ( d i s c o n t i n u e )  
ON upda te ,  I F  x s t i l l  t r u e  b u t  now d i f f e r e n t  THEN n o t i f y  

Rules allow us to separate data access from condition specification for notification. Unlike 

active queries, rules do no force clients to obtain a copy of the previous data before change 

notification can be received. Rules also allow us to limit notification to particular kinds of 

change (e.g., only inserts and deletes), 

The issue not explicitly addressed by embedded triggers or rules is that of selective 

activation by particular clients. If the number of active clients varies, or clients have 

different notification requirements, can triggers or rules be made flexible and dynamic? 



2.1.4 Model-View-Controller (MVC) Paradigm 

The Model-View-Controller paradigm is an object-oriented concept that has been used in 

the development of user interfaces [KP88] [Shan90] [Wiss90]. MVC divides a user 

interface into three types of objects: 

Model: the underlying data structure(s) of the application 

View(s): graphical display(s) of some, or all, of the model data 

Controller: the interface between model, view(s), and user input 

Each view object must register its existence with its model object. A model object keeps a 

list of its dependent views. A typical interaction scenario for these three parts of a user 

interface is as follows: 

A user selects some action (via an input device like a keyboard or a mouse). 

The controller responds by sending a 'take action' message to the model. The 

model carries out the operation and then broadcasts 'I have changed' messages 

to all its dependent views. Each view then queries the model to get the 

change(s) and updates its display, if necessary. 

A model object sends a message to a view object by calling a method (e.g., 

'model-update()') in the view object. The method may have parameters which are used to 

tell the view what data in the model has changed (e.g., 'model-update(attribute-name, 

new-value)'), so that the view does not have to query the model to get the changes. 

The MVC paradigm provides a convenient object-oriented division of labour at the concept 

level, but any implementation results in highly coupled model, view and controller classes. 

MVC is more for smaller rather than larger numbers of model objects, and more for 

transient rather than persistent data. If we substitute 'client' for 'view object' and 'DBMS' 



for 'model object' in the above description, we can see that the resulting change notification 

is too coarse. If we change the substitution to 'persistent data object' for 'model object', 

every object in the database is then keeping track of which client is interested in it. 

2.1.5 Selective Broadcasting 

[Meygl] discusses the Unix-based Field environment [Rei90] where independent tools 

(clients) coordinate their actions and maintain consistency of shared data by sending and 

receiving messages. Clients register message patterns (conditions of interest) with a 

message server process; the server then filters messages from other clients so that each 

client receives only those messages (change notifications) of interest to it. This technique is 

called selective broadcasting. 

2.1.6 Our Approach 

This thesis adopts the selective broadcasting idea to design a change notification server for 

a passive OODBMS, specifically Objectstore. Each client sends messages to a notification 

server to: 

. specify what data conditions are of interest. A change specification language will be 

defined which combines aspects of both active queries and imperative rules. The 

conditions start being monitored as soon as the specification that describes them is 

received by the server, and remain active until either the condition specification is 

withdrawn by the client or the client process terminates. 

. inform the server of the persistent data changes made by the client. 

The persistent data change information will be selectively forwarded by the server (via 

notification messages) to clients who have expressed an interest in the changes. 



2.2 CONDITION EVALUATION TECHNIQUES 

Determining if an active query result has changed, or if a rule condition has become true, 

may be computationally expensive. It may be necessary to recompute the result after each 
t 

database change if more than one relation or collection (i.e., a join) is involved. 

A number of techniques have been identified for efficient condition evaluation, including: 

. multiple condition optimization (Pay881. Different DB clients may specify the same 

condition(s) of interest, and different conditions may have common subconditions. 

These common parts should only be evaluated once after a DB change. 

. materialization and maintenance of intermediate results [Day88]. Also known as 

partial view materialization [Ris89]. Conditions will be evaluated more than once, so 

it is more efficient to maintain partial results in memory than to regenerate them for 

each evaluation. 

. identification of readily ignorable updates [BC79] [pay88]. It may be possible to 

infer that a DB change is not relevant to any condition without having to evaluate 

them all. 

. incremental, or partial, evaluation [BC79] [Day88]. Careful analysis of conditions 

may reveal an ordering to their evaluation which can more quickly detect if a DB 

change is relevant or not. Complete evaluation should be avoided unless it is 

absolutely necessary. 

. if a condition references an indexed attribute, [SPAM91] watches for changes to the 

index as a way of triggering condition evaluation. 



This thesis does not involve implementation of the notification server design, but we 

recognize that the efficiency of condition evaluation will be a critical issue for server 

performance. Knowledge of these techniques has influenced the design of server data 

structures discussed in Chapter 6. 

2.3 OB JECTSTORE 

The following is a brief description of Object Design's OODBMS, ObjectStore. For a 

more detailed description, see &LOW9 11. 

ObjectStore's DBMS functionality is divided between two processes: the ObjectStore 

Server which stores and retrieves pages of data (with no knowledge of the contents of the 

page), and a Cache Manager which handles query and DBMS processing. There is one 

ObjectStore Server running on each workstation where disk storage is maintained, and 

there is one Cache Manager running on each workstation where client processes exist that 

access ObjectStore data. 

The ObjectStore Server provides strict two-phase locking with a readwrite lock for each 

PAGE. This can result in a low level of concurrency. 

ObjectStore's primary access language is an extended form of C++. Extensions include 

new keywords (i.e., persistent, indexable), data manipulation constructs (i.e., transaction 

statements, iteration paths, query expressions), a collection facility (i.e., sets, lists, bags) 

in the fonn of an object class library, an inverse data members facility which maintains 

bidirectional object relationships, and support for versioning data. 

Objects of any C++ data type may be allocated persistently (in the database) or transiently 

(in memory). In ObjectStore, persistence is not part of the type of an object; instead, it is 

selected when the object is created. For example, 

1 7  



a-train = new Train ( ... ); /I transient 

I a-train = new ( d b ) Train ( ... ); 11 persistent I 
The db argument to the new operator specifies that the train object being created should be 

allocated in database db. 

Every statement that accesses data in an Objectstore database must be within a transaction. 

For example, 

database *db; 

db = database::open ("Idbnarne"); 

do-transaction (0, transacti0n::update) { 

a-train = new (db) Train ( ... ); 
) 11 end transaction; the commit point 

db -> close 0; 



CHAPTER 3 

Change Notification Design 
Requirements and Limitations 

In this chapter, we discuss what functionality will, and will not, be included in the design 

of our change notification server. First, our basic design assumptions are outlined. Then, 

the requirements are given for communication between clients and the server. Of special 

interest is the presentation of a condition specification language used by clients to inform 

the server of the conditions they wish monitored for change. Lastly, we briefly discuss the 

issues every multi-process system must consider: coordinating process startupJshutdown, 

and what must be done when processes terminate unexpectedly. 

3.1 BASIC ASSUMPTIONS 

This thesis assumes that notification functionality is NOT embedded in the database (i.e., 

the OODBMS is passive). Therefore, to enable client change notification either (1) clients 

must communicate with each other directly, (2) a software layer or a server process must 

intervene in the data exchange between DB clients and the OODBMS in order to detect 

change and then notify interested clients, or (3) a server process not involved in data 

exchange must be told of change by clients and then notify other interested clients. 

We have chosen the third option because it maintains the independence of client processes 

(they do not need to know about each other), data exchange between DB clients and the 

OODBMS is not slowed by an extra layer of processing, and the processing requirements 

of the notification server are simplified (no need to detect change; only need to decide 

which clients should be notified of change). 



messages 

Figure 3-1 Choice of System Architecture 

This thesis assumes that DB update information is only sent to the notification server once 

the change has been committed. This restricts notification to committed changes. 

Receiving uncommitted update information would add significant complexity to the design 

of the notification server, and since uncommitted change notification is not required for all 

applications, it is left for future work. 

Since clients send information to the server after change is committed to the OODBMS, the 

server is behind (though hopefully by a small margin most of the time) in its processing of 

DB change. The server's view of the application data is some past state; however, its view 

will likely be more recent than that of the clients it needs to notify of the change. On the 

other hand, there is no guarantee that notification will arrive to update a client's view before 

the client accesses the database to, for example, update an object in its view. A client must 

be able to determine that its view is out-of-date; the use of a technique such as the 



declaration of a sequence counter variable in objects which can be updated by multiple 

clients will be an important necessity. 

This thesis assumes that network communication may be required. The design assumes 

that the OODBMS process(es), DB clients, and notification server need not run on the same 

workstations. 

This thesis assumes the application uses one centralized database. Thus, there is no need to 

include a database identifier in the messages exchanged by DB clients and the notification 

server. 

This thesis assumes that there is notification server for each application. We realize 

that a centralized approach (as opposed to a distributed design) has limitations (e.g., 

network traffic may be higher depending on the locations of the notification server and 

client processes; scalability and fault tolerance are reduced). However, a single change 

notification server is much simpler to design, implement , and use. We have chosen not to 

burden this study of OODBMS change notification with distributed design overhead (e.g., 

more complex message passing and timing problems); we leave the study of a distributed 

change notification server to future work. 

This thesis assumes that change notification can only be requested and occur during client 

process and notification server lifetimes. Long-term condition specification (e.g., to enable 

notification via email to users who may not be logged on when data changes) would require 

storage of specifications in the database; this extension to the requirements is left for future 

work. 



3.2 MONITORING CHANGE IN THE DATABASE 

The occurrence of particular database update events must be communicated to the 
I 

notification server, as these events are key in triggering the server to check if any 

notification messages need to be sent. 

3.2.1 Database Update Events 

The database update events are: 

. class instance creation (insert) 

. class instance attribute value modification (update) 

. class instance removal (delete) 

During one database transaction a number of updates to different objects (i.e., correlated 

events) may occur. This thesis makes no attempt to monitor the net effect of multiple 

changes. Each object update event is assumed to be independent of any other update event. 

It is possible that correlated events, taken individually, cause a condition to be briefly true 

and then false (or vice versa). A client interested in this condition might receive two 

notification messages, where one or none may be preferable. 

Clients send the update event messages. This means that only changes known to clients 

can be made known to the notification server. Change propagation (e.g., the recalculation 

of derived values; cascading deletes) embedded within methods in the database schema is 

usually considered invisible to clients, and is therefore considered invisible in this thesis. 

3.2.2 Database Update Event Messages 

One database update event message is sent by a client to the notification server for each 

committed object update. How much information must be included in the message? 

If the message only uniquely identifies the object instance that changed and how (insert, 

update, delete), but not details of the change, the notification server cannot determine what 



occurred by reading the information from the database. Inserted objects could be read, but 

versioning would be necessary to keep beforelafter values for object updates, and deleted 

objects would not exist. In addition, since the server is behind in its processing of DB 

change, the information it reads from the database could contain changes made after the DB 

update it is currently processing. , 

To give the server all the information it might need about a DB change, the DB update event 

message must contain a copy of ALL after-change attribute values for inserts and updates, 

and a copy of ALL before-change attribute values for deletes. In addition, the message 

must contain a copy of before-change values for the modified attributes of update events. 

If the number or size of object attributes is large, then the message length can become a 

communication and/or performance problem under this approach. Though it will not be 

feasible for all applications, this message format is nonetheless sufficient for many 

applications. 

How will the DB update event message uniquely identify the object instance that has 

changed? The two possible options are: 

. reference by object identifier (ID) 

. reference by value, using the tuple <class name, primary key> 

In theory, an OODBMS object ID is unique among all objects in the database and it never 

changes. In practice, some OODBMSs, including Objectstore [LLOWgl], implement an 

object identifier as an address, a pointer to physical or virtual storage [BM91]. But an 

object's address is not fixed; the illusion of an unchanged object ID is maintained by 

ensuring that all references to an object are updated by the OODBMS if the object's location 

is changed. 



Thus, the DB update event messages described in this design must use object reference by 

value. First, the message must include the object's class name. Second, one attribute's 

value (or the value of several attributes in combination) must be unique among all persistent 

object instances of the class. The attribute may be as simple as a counter which increments 

each time an object is created, or it may be a more meaningful key such as employee 

number. 

3.2.3 EnablingIDisabling Event Messages 

It is not difficult to globally turn DB update event message passing on or off. Clients 
P 

merely check the state of some flag before sending a message to the notification server. If 

the server is not active, or if it receives no messages, change notification is disabled. 

Clients then must poll to discover change. 

If there are large numbers of updates but few or no conditions being monitored for change, 

there will be a significant overhead in message passing for which little or no benefit is 

being derived. It would be better if update event messages were sent to the server only for 

those classes directly related to conditions of interest. However, it is difficult to selectively 

enable or disable update event messages. If done dynamically (i.e., the server tells clients 

what update events to send), it would require more communication between notification 

server and clients, and more software complexity in clients. 

A simpler solution is possible for applications where clients send a fixed set of condition 

specifications to the notification server - if the sending of unnecessary event messages is a 

significant overhead, change the client software to send only update event messages for 

those classes which need to be monitored, This is not an ideal solution (software changes 

may be necessary if a new condition specification is sent by a client) but it is easy to 

implement and keeps to our system design goal of "simple but effective". 



3.3 CONDITION SPECIFICATION 

Clients send one or more condition specification messages to the notification server to 

indicate what changes are of interest to them. Roughly, clients state "inform me if this 

change occurs to the result of this query". 

3.3.1 Language Overview 

We propose a flexible condition specification language. The basic format is as follows: 

[ID#] ON <Chg-type> TO <class-name><Hchar>(<Attr-list>) 
WHERE <Predicates> 

Figure 3-2 Basic Condition Specification Language Format 

where: 

[ID#] is a unique (for each client) number identifying the particular condition 

specification. It is used later when cancelling or receiving change notification for a 

specification. 

<Chg - type> is any combination of the three characters 'It, 'D' and 'U'. '1' 

asks for notification when an object is inserted (condition occurrence) into the query 

result. 'D' asks for notification when an object is removed (condition discontinued, 

or object deleted) from the query result. 'U' asks for notification when an object 

already in the query result is updated (condition remains true, but the value of some 

attribute(s) has changed). 

<class - name> indicates the class of the query result (the collection of objects). 

The class must exist in the DB schema - a query result cannot join two or more 



classes into a new class. Since the result will never actually be returned, 

<class-name> may be a superclass, or a parent class in an aggregation hierarchy, and 

then by using <Elchar> (see below) the query result can be a logical collection of 

more than one class. 

cHcharz is either null, '*', '!', or '*!'. <Hchan provides a way of referring to 

a number of classes in a hierarchy with one condition specification. 

If &char> contains '*I, then <class-name> refers to a superclass in an inheritance 

hierarchy, and the notification server is to monitor changes to objects of that class and 

all its subclasses. This convention is the same as that used by Orion OODBMS 

queries [BM91]. See Section 3.3.2 below for a more detailed discussion of 

inheritance hierarchies. 

If <Hchar> contains '!', then <class-name> refers to a class which is part of an 

aggregation hierarchy (it contains inter-object references), and the notification server 

is to monitor changes to all objects in the hierarchy from the level of the class 

downwards. See Section 3.3.3 below for a more detailed discussion of aggregation 

hierarchies. 

c Attr - list> is a selected list of <class-name>'s attributes, possibly empty, 

which may be given when the 'U' (update) chg-type is specified. This list tells the 

notification server which attributes are important to the client; without it, the server 

would either have to report change to any attribute, or focus only on those attributes 

referenced in the WHERE clause. 

An attribute's type may be structured (e.g., CurDate, a structured attribute containing 

year, month, and day attributes). Thus, <Attr_list> may reference CurDate, in which 

case the client will be notified of any change to any part of the structure, or 

2 6 



<Attr-list> may reference a specific part of the attribute's structure (e.g., 

CurDateyear). 

If the condition specification references an inheritance class hierarchy, only 

superclass attributes may be included in <Attr_list>. The attributes must be common 

to all the classes which will be monitored by the server. 

<Predicates> is similar to predicates in other query languages such as SQL. 

The condition that <Predicates> describes must evaluate to true for any object 

belonging to <class-name> to be included in the query result. The following 

describes the general format of <Predicates>: 

<Predicates> := [ NULL I <Predicate> O{ [AND I OR] <Predicate> In ] 

<Predicate> := [ <AttrConst> <Op> <AttrConst> I &unction> ] 

(Function> := &unction-name> ((Func-attrJist>) 

The &unction> may be a general-purpose function such as 'count()' or 'sum()', or it 

may be an application-oriented function. 

The following are some examples from a railway application: 

[I] ON I TO Track-Segment() Notify if any Track-Segment object is added 
WHERE status = "closed" to the collection of objects whose status = 

"closed". 

[2] ON ID TO Train*() WHERE Notify if any Train class or subclass object is 
cu~speed > speed-lim added to or is removed from the collection of 

speeding trains. 

[3] ON IUD TO Train-Schedule! () Notify if any object in the Train-Schedule 
WHERE train-id = 1 aggregation hierarchy where train-id = 1 is 

added, or updated, or removed 



[4] ON U TO Freight-Train Notify if the attribute speed-lim is changed for 
(speed-Lim) WHERE traixid = 1 the Freight-Train object with train -id = 1 

[5] ON U TO Track-Segment() Notify if any Track-Segment in the western 
WHERE in-view(West, seg-id) region is changed. 'in-view' is an example 

of an application-oriented function 

Condition specifications differ from active queries (as defined in Chapter 2) in that they do 

not return an initial result (or any future result; only notification of change to the result is 

sent to the client) and they offer finer control in indicating what particular changes to the 

result are of interest. 

Condition specifications differ from active database rules (as defined in Chapter 2) in that 

they can combine requests to monitor for condition occurrence (insert), discontinuance 

(delete), and object update in one statement as well as allowing notification of those 

changes to be requested individually if required. Condition specifications do not need to 
t 

state what database update event(s) to monitor - the notification server can determine what 

update events cause change (if provided with some knowledge of the application DB 

schema). Condition specifications do not need an action clause because only one action is 

possible - to send a notification message to clients. 

3.3.2 Inheritance Hierarchies 

We assume that the notification server will have to handle both single and multiple 

inheritance in application class definitions. The following is a brief discussion of how 

inheritance affects the design. 

Given the following inheritance hierarchy (the arrows show the superclass(s) which a 

subclass inherits from), 



I I 

Figure 3-3 An Inheritance Hierarchy Example 

if a client process issues the following two condition specifications, 

[I] ON UID TO B*(<Attr_list>) 

[2] ON IUD TO C*(<Attr_list>) 

it should receive notification twice for change to objects of class E, except for updates 

where attributes in <Attr-lisp are different. 

On the other hand, if a client process issues one condition specification: 

it should receive only one notification for change to objects of class E. The notification 

server should detect common subclasses and only evaluate their changes once. 

Also, the notification server can use knowledge of the DB schema to perform more efficient 

monitoring. If, for example, class B is an abstract base class (that is, no persistent 

instances of B are stored) then the server need not monitor for change to B in condition 

specifications [I] and [3] above. 



3.3.3 Aggregation Hierarchies 

Aggregation hierarchies occur when class definitions contain inter-object references: 

attributes in a class definition which may be single-object pointers or may be collections of 

pointers to objects. Inter-object references allow navigational data access. 

For example, we could define a Car class with attributes which are single-object pointers to 

Engine and Body class objects: 

bdy: ptr 

Body 

- 

Figure 3-4 An Aggregation Hierarchy Example 

In the above, the direction of the navigational access is all one-way: from Car to Engine, 

and from Car to Body. There is a 1: 1 relationship between a Car and each of its subparts. 

To be informed of any change to, for example, a particular Car hierarchy, a client would 

issue the following condition specification: 

[I] ON IUD TO Car!() WHERE car jd  = x 

The condition specification's query result is the collection of all objects in a hierarchy 

whose ancestor node is an object of class Car with car-id = x. Inserts and deletes to the 



result will refer to the named class (Car objects). Updates to the result will refer to Car 

attributes and, through the navigational references, to Engine and Body objects and their 

attributes. If, for example, the size attribute of the Engine object is changed, it is 

considered an update to the Car hierarchy. 

Aggregation hierarchies require that the condition specification language format allow 

navigational references in the <Attr_list> and WHERE clause. For example, if a client 

wishes to be notified when a Car's Engine size is changed, the condition specification 

might look like: 

[2] ON U TO Car! (Car.eng->size) WHERE ca r jd  = x 

On the other hand, we could focus on the Engine object itself, and use a special predicate in 

the WHERE clause to identify the Engine by way of the navigational access through a 

parent. 

[3] ON U TO Engine(size) WHERE NAV=Car(x).eng 

A third approach would be to define an attribute in Engine objects which points to the 

parent Car object (allowing two-way 

specification might look like: 

# 

navigational reference). Then, the condition 

[4] ON U TO Engine(size) WHERE parent->car_id = x 

All three approaches above are valid options in the definition of our condition specification 

language. The same syntax is used no matter whether the reference attribute is a single 

pointer or a collection of pointers. 

Aggregation hierarchies can be of arbitrary depth, so the notification server must be 

prepared to resolve lengthy navigational references. 



3.3.4 Specifying Attribute Change for Updates 

One thing missing so far from the condition specification language definition is a way of 

stating what kind of attribute change is of interest. Currently, the language can specify that 

a client is interested if, for example, the attribute cur-speed changes, but a client cannot 

narrow notification any further (e.g., interested only if cur-speed goes up). We can add a 

clause to the specification language which may be used when the 'U' (update) Chg-type is 

used: 

[ID#] ON ~Chg-type> TO <class-name>cHchar>(<Att r-list>) 
IF <A-chg> WHERE <Predicates> 

Figure 3-5 Attribute Change in the Condition Specification Language Format 

where: 

<A - chg> indicates what kind of attribute change is important. Functions to 

return before-change and after-change values are required. For example, 

[I] ON U TO Train*(cur_speed) IF AFTER(cur_speed) > BEFORE(cur-speed) 

WHERE train-id = 1 

[2] ON U TO Train*(speed-limit) IF AlTER(speed-limit) > 50 

WHERE train-id = 1 

This fine control in condition specification may be needed for some, but not all, 

applications. 



3.3.5 Placing Limits on the WHERE clause 

The more general-purpose the condition specification language and the more broad its 

definition, the more complex the server design becomes and the more its performance may 

suffer. Two important limitations which any implementation of this design must consider 

are: 

. the number of joins allowed in the WHERE clause. Joins cause a significant amount 

of storage and processing overhead (see the discussion in section 6.1.2.3) 

. the number of predicates allowed in the WHERE clause. The more predicates that 

must be evaluated each time a related DB update occurs, the slower the performance. 

3.4 ACKNOWLEDGING CONDITION SPECIFICATION 

The notification server will send an asynchronous message to clients acknowledging receipt 

of any condition specification. Clients should always wait to receive the acknowledge 

message before reading any data which is intended to be updated by receipt of a notification 

message because: 

. if the condition specification is invalid (e.g., syntax errors) it will not be monitored, 

and 

. the notification server may have to read data from the DB to set up a monitor on multi- 

object conditions. The server must be monitoring the condition BEFORE the client 

reads any relevant data in order to guarantee that changes will not be missed. By 

registering interest before reading data, a client may receive notification for data not 

yet read, but will not end up with data which is out-of-date. 



3.5 CANCELLING CONDITION SPECIFICATION 

At any time a client may wish to cancel change notification for any or all conditions 

specified. The client must send the notification server a 'cancel condition' message. 

3.6 CHANGE NOTIFICATION 

3.6.1 Sending Notification (Server) 

When the notification server detects that a particular DB change affects the result of any 

active condition specification, it must send a notification message to each interested client. 

The client who made the DB change and sent the DB update event message will receive 

notification from the server for that change if the client has an active condition specification 

that is affected by the change. It is up to the client to weed out what it already knows from 

what is doesn't know when a notification message is received. 

How much information must be provided to a client by a change notification message? 

Using the concept of selective broadcasting, the simplest way of looking at notification is 

that the notification server is selectively forwarding DB update event messages to clients - it 
could just add the affected condition specification ID# to the content of the DB update event 

message and send it "as is" to interested clients. However, this is not sufficient for two 

reasons. 

P 

Firstly, there isn't always a 1: 1 correspondence between the type of change made to the DB 

and the type of change made to the result of a condition specification. An ~ v d a t e  

(modifying the value of attribute(s)) to an object may cause an insert, update, or delete to 

the result of a condition specification. For example, given the following condition 

specification, 

[I] ON IUD TO Employee() WHERE salary > 30000 



I if a DB change modifies an existing Employee's salary by reducing it from 31000 to 

29000, the effect on [I] is to delete the Employee object from the result. Conversely, if a 

modification increases salary from 29000 to 31000, the effect on [I] is to insert the 

Employee object into the result. 

Secondly, some DB changes do not involve objects of a condition specification result class, 

but they do cause objects to be inserted into or removed from the result. For example, the 

result of a condition specification with one or more joins in the WHERE clause can be 

affected by a change to more than one object, as in the following: 

[2] ON IUD TO Employee() WHERE Employee.deptnum = Dept.deptnum 

AND Dept.location = "Vancouver" 

If either the Employee changes departments or the Department location changes, the result 

of the condition specification could change. For example, if an update to a Department 

object changes location from "Vancouver" to "Richmond", the effect on [2] could be the 

delete of one or more Employee objects from the result. In this case, not only is the cause a 

different type of change (an update causing deletes), but the object which changed is not of 

the condition specification result class, and the one DB change may cause more than one 

change to the result of the condition specification. 

So, merely forwarding the DB update event message would not necessarily tell a client the 

change to the result. The notification server must be prepared to generate one, or more, 

t notification messages which tell a client: 

. exactly how the condition specification result has changed, and 



. what DB change caused the change to the condition specification result. The cause is 

important, not only because clients may want to know, but because it will tell clients 

if inserts and deletes to the result are physical or logical (i.e., has an object just been 

created or destroyed, or is the condition just no longer true for it). 

The client must not have to read any data from the DBMS to determine what has changed 

after notification is received because that change may already have been superseded in the 

OODBMS by another client update. The notification server is slightly behind in its 

processing of DB updates - if clients read data from the OODBMS they may not get what 

they expect. 

3.6.2 Accepting Notification (Client) 

Change notification must be asynchronous - client processes should not have to be blocked 

awaiting a change notification message. Clients must have the choice to wait for 

notification or do something else. 

3.7 PROCESS STARTUP, SHUTDOWN, AND UNEXPECTED 
TERMINATION 

A robust system must be able to handle the following situations: 

. client & server startup 

Under normal circumstances, the notification server should start up before any 

client process and shut down after all clients have terminated. If a client starts up 

without the server it must poll the OODBMS to detect change. It should establish 

connection with the server as soon as it is available though, so that its DB update 

event messages will reach other interested clients (since they assume that no client 

is making changes without notifying the server). To keep the system design 

3 6 



simple, this thesis assumes that clients expecting change notification will not start 

up if the notification server is unavailable. 

. client process termination 

Under normal circumstances, a client process should cancel all condition 

specifications it has registered with the notification server before it shuts down. 

If a client process terminates unexpectedly, the notification server will detect it 

(when an error condition occurs while attempting to receive or send a message). 

The server should then cancel all condition specifications for that client. 

. notification server termination 

If the notification server crashes (or is shut down while in use by clients) it loses 

all knowledge of active clients and their condition specifications. Clients can 

detect a server crash when next attempting to send or receive any message as the 

attempt will fail. If we assume that clients always have an outstanding read 

waiting for messages to arrive, clients can detect a server crash almost 

immediately. 

When a client detects a server crash it should start polling the DBMS. This thesis 

does not address how clients and a restarted server might re-establish 

communication. 



CHAPTER 4 

Example Applications 

In this chapter, we present two different applications which help illustrate how change 

notification might be used. First, a brief description of the database design diagram 

conventions used in this, and subsequent chapters, is given. Next, the two applications, a 

railway network monitoring and control system, and an editor for co-authoring documents, 

are described. 

4.1 DATABASE DESIGN CONVENTIONS 

An application's database schema design is shown diagramatically as a number of object 

classes, possibly connected by inheritance and/or aggregation (inter-object pointer) 

references. Each class definition has three parts: 

Class name 

Attributes 

I Methods 

At least two methods, a 'constructor' and a 'destructor', must be present for each class. 

The former sets attribute values as an instance of a class is created; the latter deals with 

cleanup just before an instance of a class is destroyed. 

The following is an example of how an inheritance hierarchy is shown: 



An example of how an aggregation hierarchy is shown is given below. An arrow indicates 

the direction of the inter-object reference. If the reference attribute is of a single object 

pointer type, the relationship is 1:I in the direction of the arrow. If the reference attribute is 

of a collection type, the relationship is 1 :many in the direction of the arrow. 

A class may have a persistent root collection, called an 'extent' by Objectstore, which 

enables direct access to all persistent instances of the class. If a class extent is defined, it is 

shown in the following way: 

Class A 

b l :  ptr 

b2: collection 

I class extent I 

Attributes 

b 

1 :1 

1 :m 

Class B 



4.2 RAILWAY NETWORK APPLICATION 

4.2.1 Overview 

This application is the less-than-real-time operation of a simple railway monitoring and 

control system. Given a database containing a description of the railway network (e.g., 
I 

stations, track segments connecting stations), train schedules (e.g., routes through the 

network), and active train information (e.g., location, speed), various DB client processes 

monitor and offer control options for the movement of trains in the network, 

An example of a railway network is shown below. A single track connects stations. 

Trains can travel in either direction, but not on the same track segment at the same time. 

4.2.2 Database Design 

The following two classes define the railway network: 

I Station I 

I stationjd: int 
capacity: int I 
constructor 
destructor 
chg-capacity 

Track-Segment 

segment-id: int 
endpt 1 : stationjd 
endpt2: stationjd 
length: int (km) 
status: {open, closed) 
update-counter: int 

constructor 
destructor 
chg-status 



The following classes define active trains. Only instances of 'Freight-Train' or 

'Passenger-Train' are stored in the database. 'Train' is simply an abstract base class. 

I Train 
train-id: int 
status: 
speed-lim: int 
cur-speed: int 
locn: 
update-counter: int 

constructor 
destructor 
chg-status 
chg-speed-lim 
chg-cur-speed 

status: 
{wait-to-leave-st n, 
wait-to-enter-stn, 
enroute, 
i n-st n) 

locn: 
station-id 
km-to-stn 

ptrain-extent 7 
Freight-Train I I hazardous-cargo: {T,F} I 

The following 2 classes define the train schedule aggregation hierarchy: 

I Tsched-Segment 

?ai n-Sc hedule 

cur-seg: int 
segs: collection 

- parent: ptr 
segjd: int 
from: stationid 
to: station-id 
depart: datehime 
arrive: dateltime 

constructor 
destructor 
chg-cu r-seg 

constructor 
destructor 
chg-depart 
chg-arrive 



Whenever an aggregation hierarchy is defined, the DB designer must document the insert, 

modify, and delete scenario for the hierarchy. This infomation will be important later 

when DB client code is written, because it can influence the way condition specifications 

are written, what DB update event messages are sent to the server, and what notification 

clients can expect. 

In this case, the important points in the change scenario for the train schedule aggregation 

hierarchy are as follows: 

. Tsched-Segment instances do not exist without a parent Train-Schedule instance. 

This means that if a client inserts or deletes a Tsched-Segment instance, two DB 

update event messages will always be sent to the notification server: one for the 

Tsched-Segment change, and one for the change to the parent Train-Schedule's 

collection attribute, segs. 

. Tsched-Segment instances are not shared among Train-Schedules. This means that 

the navigational access path to any Tsched-Segment instance is unique. No 

Train-Schedule hierarchies overlap, so clients need not worry about getting more 

than one notification for the same change even when the server is monitoring more 

than one Train-Schedule hierarchy for a client. 

. A Train-Schedule instance deletion automatically triggers a delete of all related 

Tsched-Segment instances (change propagation). This means that a client only sends 

the notification server rn DB update event message (Train-Schedule object delete), 

and clients should expect only one notification message for the DB change. 

. An update to the value of the attribute seg-id (the primary key) in Tsched-Segment is 

not allowed. Instead, two changes, a delete of one object and an insert of a new 

object, must be made. This means three DB update event messages will be sent to 



the notification server: one for each Tsched-Segment change, and one for the 

changes to the parent Train_Schedulets collection attribute, segs. 

4.2.3 Client Processes 

The client processes for this application are graphic user interfaces (GUIs) for train 

operators and station operators. 

There is one train operator GUI process for each active train. Each train operator GUI 

provides the following functions: 

. display up-to-date train information (speed limit, current speed, current location, 

schedule) 

. ask for, and receive, permission to enter or leave a station 

. update current speed and/or location of the train 

There are three station operator GUI processes: a master process which monitors the entire 

railway network and controls train schedules, and two region processes (west and east) 

which monitor subsections of the network and control the tracks and trains within their 

field of view. 

A station GUI provides some or all of the following functions (depending on whether the 

GUI is a master or a regional process): 

e 

. display up-to-date network information (network diagram; train speed, location and 

direction of travel for each train) 

. receive requests, and grant permission, for trains to enter or leave a station 

. update train schedule 



. update train speed limit 

. update track segment status (open, closed) 

4.2.4 The Use of Change Notification 

The pattern of data access and manipulation for clients of this kind of application is as 

follows: 

. long-term reads for GUI display, and 

. short-term updates occurring when track and train information is updated 

4.2.4.1 Maintaining Local Copies 

Client processes avoid long-term read locks by making local copies of data from short-term 

reads. Change notification is used to keep the local data copies up-to-date. 

A train operator GUI process (in the following examples, a Freight-Train) sends the 

following condition specifications to the notification server in order to keep its local data 

copies up-to-date: 

[I] ON U TO FreightTrain(speed-h) WHERE train-id = x 

[2] ON U TO Train-Schedule! () WHERE train-id = x 

A station operator GUI process (in the following examples, for the western region) sends 

the following condition specifications to the notification server in order to keep its local data 

copies up-to-date: 

[I] ON IUD TO Train*(cur-speed,locn) WHERE in-view(West,locn) 

121 ON U TO Track-Segment(status) WHERE in-view(West,seg-id) 

4 4  



Both examples above use a convenient application-oriented function, 'in-view', to limit the 

object instances included in the result to those within a particular station operator's network 

field of view. 

4.2.4.2 Detecting Special Conditions 

Change notification is also used to detect the occurrence of conditions which require special 

attention. 

A station operator receives a train request to enter or leave a station by receiving notification 

that a train is waiting: 

[3] ON I TO Train*() WHERE status = wai~to-leave-stn OR status = waitto-enter-stn 

A train operator receives permission to enter or leave a station by receiving notification that 

a station operator has changed the train's status to enroute (leave) or in-stn (enter): 

[3] ON I TO Freight-Train() WHERE train-id = x AND 

(status = enroute OR status = in-stn) 

A station operator can also monitor alarm conditions like the following for detecting 

speeding trains: 

[4] ON I TO Train*() WHERE cucspeed > speed-limit 
I 

4.2.5 Avoiding Lost Updates 

Train or station operators can choose to update the information they see displayed on the 

screen. The display reflects the contents of the GUI's local data copies. Theoretically, 

these copies are kept up-to-date by change notification, but it is possible to request an 

update to an object which is out-of-date (i.e., notification has not yet arrived). 

4 5  



TO detect out-of-date data, an update-counter variable is maintained for each object which 

may be updated by more than one client. At the start of an update transaction (i.e., after , 

locking the object), DB clients should verify the state of the object by checking that the 

value of the update-counter in the DB and in the local copy match. If they do not match, 

the client must update its local copy before starting the update (and then be prepared for a 

notification message that contains redundant information). 

4.3 DOCUMENT CO-AUTHORING APPLICATION 

4.3.1 Overview 

This application is a very simple editor that allows more than one user to concurrently 

update a document. 

A 'document' consists of a document header, and any number of paragraphs (text only) 

linked together in a particular order. Users can insert, update, delete, and re-arrange 

paragraphs. 

Users cannot update the text of the same paragraph concurrently. They will be informed 

when another user has exclusive access to a paragraph and must cooperate by waiting until 

the changes have been committed. 

4.3.2 Database Design 

The following two classes define the document aggregation hierarchy: 



I Parag rap h 

I Document-Hdr 

doc-id: string 
num-paragraphs: int 
f i r s t j :  ptr 

constructor 
destructor 

text: string 
textunder-mod: {T,F) 
nextg: ptr 
update-counter: int C 
constructor 
destructor 
chg-text 
chg-undermod 
chg-nextp 

The important points in the change scenario for the document aggregation hierarchy are as 

follows (the significance of these points was discussed previously in Section 4.2.2): 

. Paragraph instances do not exist without a parent Document-Hdr instance 

. Paragraph instances are not shared among Documents 

. A Document-Hdr instance delete automatically triggers a delete of all related 

Paragraph instances (change propagation) 

4.3.3 Client Processes 

The client processes for this application are graphic user interfaces (GUIs) that allow users 

to display and edit documents. 

4.3.4 The Use of Change Notification 

The pattern of data access and manipulation for clients of this application is: 

. long-term reads for document display 

. short-term updates for paragraph insert, delete, and re-ordering 



. long-term updates for changes to existing paragraph text 

4.3.4.1 Maintaining Local Copies 

A client process sends the following condition specification to the notification server in 

order to keep its local data copies up-to-date: 

[I] ON IUD TO Document-Hdr!() WHERE doc-id = x 

The client process will be then informed of any change to the document. Note that by 

issuing a condition specification that monitors the entire document, clients will receive 

notification of their own changes as well as those of others. 

I 

4.3.4.2 Long-term Updates Without Versioning 

When a user is updating the text of an existing paragraph (generally, a long-term update), 

the DB object cannot be write-locked as this would delay concurrent reads. To allow 

concurrent reads and inform other users that the text is changing, the client process wanting 

to change a paragraph first performs a short-term update to set the specific paragraph's 

'text-under-mod' variable to true. The notification server is informed by the client who 

performed the change that a committed update to 'text-undermod' took place. This 

information is passed on to interested clients (those who have issued the condition 

specification [I] above). 

When the updated text is committed some time later, interested clients are informed (again 

via [I] above). If the 'text-under-mod' variable is now false, then another client may 

begin a long-term text update; otherwise, the first client still has exclusive update access, 

but has chosen to let others see an intermediate result. 



A non-conflicting concurrent update is allowed when a client is updating the text of a , 

paragraph and another client wishes to change the 'next-p' variable of that paragraph 

(inserting a new paragraph, or rearranging paragraph order). The change to 'next-p' is a 

short-term update. The update- counter variable is used by the client process doing the 

long-term update to determine that a change has occurred to 'next-p' if notification does not 

reach it before the text update is committed. 

There are two interesting things to note in the above: 

. there is no way for users to queue for access to an object for long-term update. When 

'textunder-mod' is reset, ALL interested users are informed and whoever then sets 

'text-under-mod' first gets to perform the next long-term update. This is acceptable 

for the application, and is no worse than what is possible if ObjectStore versioning is 

used since queuing on long-term locks isn't possible with versioning either. 

. what happens if a client process terminates, leaving one or more 'text-under-mod' 

variables set to true? For this application, it would be convenient if the application 

locks did not remain set beyond the lifetime of the process that set them. If a client 

process terminates normally it will reset its application locks (in the spirit of 

cooperation); if it terminates abnormally, the application lock(s) it leaves behind 

prevent other clients from updating the data. This again is no worse than what is 

possible if ObjectStore versioning is used. 

The notification server (if it does not also terminate) will detect the client process' 

termination, and could reset any outstanding application locks, but then a 

fundamental design goal (that the notification server does not modify the application 

data) is violated. The server is a selective broadcaster, not a lock manager. 



An approach that does not violate design goals would be to have the notification 

server inforrn other clients that a client terminated leaving application lock(s) set. The 

remaining clients could then release or override the lock(s) if they wished to. This 

approach would broaden the definition of "change" that the server is monitoring, and 

is left for future work. 



CHAPTER 5 
Design of the Interface Between 

Clients and the Notification Server 

In this chapter, we first describe the general architecture of applications which use 

ObjectStore and our notification server. Then, we present the detailed design of 

clientherver communication. The content of each message sent between DB client 

processes and the notification server is described. 

5.1 OVERVIEW 

DB client, Objectstore, and notification server processes are expected to run on SUN 

workstations using the UNIX operating system. These processes may reside on the same 

or separate workstations; our server design allows for distributed applications. 

I 

The interprocess communication (IPC) mechanism in UNIX [Hor86] [CS92] is based on 

socket pairs - reference points to which messages may be sent and from which messages 

may be received. The notification server design requires sequenced, reliable interprocess 

communication, so the stream socket protocol is used. 

One example of an application architecture is shown in Figure 5-1: two workstations, one 

where two DB client processes are run, and one where the ObjectStore server and the 

notification server are run. The ObjectStore server process is merely a disk page manager. 

An ObjectStore Cache Manager process (one on each workstation where other processes 

exist that access ObjectStore data) has knowledge of the DB application class schema, and 



therefore it maps Objectstore data into a client's virtual memory and does query 

processing. 

Object Store 
Cache 

Manager 

data 

messages 

signals 

socket 
1 

Figure 5-1 Application Architecture Example 

5 2 



Each client establishes communication with the notification server by issuing a connect call 

to socket SO. When the server accepts the connection, a new server socket (Sn) is created 

and paired with the client's socket (Cn) so that the server may continue listening for other 

connection requests through the original socket (SO). 

Figure 5-1 shows one way client processes can be structured to receive asynchronous 

messages from the notification server. Each client process forks a child process to listen at 
, the client socket (Cn) for messages from the server. The child is blocked waiting for a 

message. When a message is received, the child interrupts (signals) the parent process, 

and then the parent reads and processes the message from the server. Alternately, if client 

processes use a window management system, a different architecture is possible (see 

Chapter 7). 

Clients send messages to the notification server through their sockets (Cl..Cn). The 

notification server scans its half of the client socket pairs (S l..Sn) waiting for messages to 

arrive. Messages must be processed oldest-first, using timestamps, so that the server stays 

in sync with (though slightly behind in real time) the order in which condition 

specifications were issued and database updates were made. 

The use of timestamps within a distributed system has a drawback - each workstation could 

have a (perhaps largely) different system time in which case the server's ordering of 

messages might not accurately reflect the sequence of events. This thesis assumes that 

workstation system times are closely synchronized and/or that the applications do not 

generate closely spaced DB updates where ordering is critical (that is, if ordering is 

occasionally out of sync nothing vital is lost). 



5.2 CLIENTISERVER COMMUNICATION 

All message passing between DB client processes and the notification server is done 

asynchronously. 

From Clients to the Server From the Server to Clients 

DB Update Event Messages Change Notification Messages 

Condition Specification Messages Acknowledge Condition Specification Messages 

Cancel Condition Specification Messages 
- 

Table 5-1 Messages Passed Between Clients and the Server 

Table 5- 1 above summarizes the interface between DB clients and the notification server. 

The following sections discuss the format and content of the messages. 

5.2.1 Database Update Event Messages 

Clients send one DB update event message to the notification server for each committed 

change (insert, update, delete) to an object. 

The DB event message format is given in Table 5-2 below. The first six fields are part of 

every message. The remaining fields are only present if the message describes an object 

modification event (an 'update', rather than an 'insert' or 'delete'). 

For example, if a client changed a railway track segment object's status variable value from 

"open" to "closed", the DB update event message would look something like the following: 

U<timestamp><msglen>U,Track-Segment, 1,1,3,100,closed,6,status,open 
u w  

after image before info 



FIELJI 
Message type 
Timestamp 
Message length 
'I' I'D' I 'U' 
Class name 
After-change attribute values 

- - - - -  

* field repeated for each attribute m&ed 

Table 5-2 DB Update Event Message Format 

DESCRIPTION 
'U' (DB update event message code 
commit time 
#bytes 
object insert, delete, or update flag 
object's class 
value of each obiect attribute - 

Attributename * 
Before value * 

There are several things to note about the DB update event message format: 

(ordered as liskd in the class definition) 
if change flag = 'U', full name of the 
attribute that changed 

if change flag = 'U', value of the 
attribute before change 

. after-change attribute values must be listed in some known order so that attribute 

names do not also have to be specified. We have chosen to list the attributes in the 

order in which they are declared in the class definition. If the class is part of an 

inheritance hierarchy, attributes are listed in the order of inheritance (i.e., superclass 

attributes before subclass attributes, taking care to note where superclass attributes 

are overridden by subclass definitions). 

. where attributes have structured types, the before-change attribute names must be _full 

names (e.g., CurDate.year) to prevent ambiguous attribute identification. 

. attributes values can have a long length (e.g., a 512 x 512 image, or a 1024 byte text 

string). Including both the before-change and after-change values for these kinds of 

attributes can make the DB update event message length uncomfortably long (maybe 

too long for IPC message buffering or adequate performance). The after-change 

value must be sent, but it may not be necessary to send the before-change value for 

these long-length attributes. 



The before-change value is sent so that the server can appropriately evaluate the 

WHERE clause of a condition specification (to see if the object was/wasn1t in the 

result before the change, and to see if the object idisn't in the result after the change). 

How likely is it that a condition specification's result will be restricted or selected by 

a WHERE clause which uses a long-length attribute? It depends on the application, 

but when an application's clients will not use a long-length attribute in any condition 

specification's WHERE clause, clients need not include the before-change value in 

the DB update event message. 

In any case, if a long-length attribute is used, as in the following condition 

specification 

[I] ON IUD TO Paragraph() WHERE contains(text,"Vancouver") 

clients must be prepared for slower server performance since the evaluation of such a 

predicate will be costly. 

. some attributes may be single-object pointers or collections of pointers. To put the 

actual value of such attributes (zero, one, or a number of storage addresses) in the 

DB update event message is of no use, since the addresses are only valid within a 

client's DB transaction. Instead, the object(s) the pointer(s) refer to are identified by 

value (i.e., primary key). 

For example, if a client adds a new Tsched-Segment object (seg-id = 5) to a 

Train-Schedule aggregation hierarchy, the DB update event message would look 

something like the following: 



U<timestamp><msglen>U,TrainnSchedule,l, 1,(1,3,5), segs, (1,3) 

after image 

5.2.2 Condition Specification Messages 

t Clients send condition specification messages to the notification server in order to indicate 

what changes are of interest. The condition specification message format is given below. 

Table 5-3 Condition Specification Message Format 

FIELD 
Message type 
Timestamp 
Message length 
Condition specification 

5.2.3 Acknowledge Condition Specification Messages 

DESCRIPTION 
'S' (condition spec message code) 
time message sent 
# bytes 
format as discussed in Section 3.2 - 

The notification server sends a message to clients acknowledging receipt of each condition 

specification. Clients should always check that a 'valid' status code is returned. The 

acknowledge message format is given below, 

Table 5-4 Acknowledge Condition Spec. Message Format 

mELD 
Message type 
Timestamp 
Message length 
Condition ID 
Status code 

5.2.4 Cancel Condition Specification Messages 

At any time a client may wish to cancel change notification for any or all conditions 

specified. The cancel condition message format is given below. 

DESCRIPTION 
'A' (acknowledge message code) 
time message sent 
# bytes 
client's unique condition spec. # 
0 (valid and now active); 1 (error) 



Table 5-5 Cancel Condition Specification Message Format 

FIELD 
Message type 
Timestamp 
Message length 
Cancel flag 
Condition ID 

5.2.5 Change Notification Messages 

DESCRIPTION 
'C' (cancel message code) 
time message sent 
# bytes 
'1' or 'A' (all) 
the # of the condition spec. to be cancelled 

(if cancel flag = '1') 

The notification server sends notification messages to clients, one for each change to the 

result of an active condition specification. The notification message format is given below. 

The comments about attribute names and values made in section 5.2.1 apply here as well. 

mELD 
Message type 
Timestamp 
Message length 
Condition ID 
'I' I 'D' I 'U' 
CAUSE: 

DESCRIPTION 
-i 

time message sent 
# bytes 
client's unique condition spec. # 
result change (insert, delete, update) 

DB update event 
Class name 
Primary key 

1 B e f i  value * 

'I' I 'D' I 'U' 
class of the object that changed 
unique ID of the object that changed 

mm 
After-change attribute values 

Attribute name * ( attribute that changed 
if cause event = 'U', value of the attribute 

value of each result object attribute 
(ordered as listed in the class definition 

if cause event = 'U', full name of the 

I 1 that changed I 
* field repeated for each attribute modified 

Table 5-6 Change Notification Message Format 



CHAPTER 6 
Internal Design of the Notification 

Server 

, 
In this chapter, we first present a description of the notification server's major data 

components by discussing their content and providing examples of their use. Then we 

present the server's major processing algorithms. 

It is not our intention here to completely specify the server's detailed design (ready to 

code). Instead, we only wish to show that it is feasible for the server to accomplish what 

we've said it will do, and show the directions an implementation of our approach would 

take. 

6.1 THE FOUR MAJOR DATA COMPONENTS 

We have identified four major data components of the notification server as shown in 

Figure 6-1 below. 

Notification 
Sewer 4 data flow 

0 persistent 
0 transient 

Figure 6-1 The Server's Four Major Data Components 

5 9 



The application schema knowledge base (KB) provides descriptive information about the 

application's database schema. Condition specifications are mapped into the monitored 

event set. Partial views are collections of application data objects which must sometimes be 

kept by the server when monitoring complex condition specifications. The function 

knowledge base provides descriptive information about functions (e.g., count(), in-view(), 

etc.) which can be used in the WHERE clause of condition specifications. 

These data components are described in the sections which follow, where the high-level 

content of the data structures is defined. See Appendix B for a more detailed description of 
, 

the application schema KB and the monitored event set. 

6.1.1 The Application Schema Knowledge Base 

Descriptive information about the application's DB schema is required by the notification 

server so that it can validate condition specifications and can determine the appropriate DB 

update events to monitor, 

Relational DBMSs maintain a 'system catalogue' which contains information about every 

table, every table attribute, and every table index in the database [Date90]. The system 

catalogue's tables can be queried just like application tables; thus, DB clients are able to 

retrieve information about the structure of the application DB schema. 

The ObjectStore OODBMS (release 1.2) stores application schema information in the 

database, but its structure is not documented and its content is not accessible by application 

client processes. Therefore, we have had to define our own application schema knowledge 

base (KB) structure. Its content must be generated for each application system that intends 

to use the notification server. If the ObjectStore schema information becomes accessible in 

a future release, its structure should be compared with our KB; if ObjectStore provides the 

6 0 



necessary information, the notification server design could be modified to use the 

Objectstore data (but that would make it more Objectstore-dependent). 

Figure 6-2 below shows the classes that form the high-level application schema knowledge 

base structure. 

AppClass AAttribute 

subclasses: collection 
attributes: collection 

Figure 6-2 High-Level Application Schema KB Structure 

There is one AppClass instance for each application schema class. The subclasses 

collection documents class hierarchy connections. The attribute information in AAttribute 

instances is needed for validation, and to document aggregation hierarchies (i.e., attributes 

may be pointers, or collections of pointers, to other objects). 

6.1.2 The Monitored Event Set 

Condition specifications are mapped into a dynamic data structure called the monitored 

event set. The notification server compares incoming DB update event messages with the 

contents of the monitored event set, looking for matches. When a match is found, one or 

more clients will then be sent a change notification message. 



6.1.2.1 Data Structure Overview 

Figure 6-3 shows the classes that form the high-level monitored event set data structure. 

Generally, the structure maps each active condition specification into one or more DB 

update events, each of which has a condition to be evaluated when the event occurs and 

action(s) to be taken when the condition is true. 

deletes: collection 
updates: collection condition: ptr 

CAs: collection 
SAs: collection 

I before-chg 
after-chg 1 focus-attrlist 1 

CAction 

socket # 
condspec # 

Figure 6-3 High-Level Monitored Event Set Structure 

There is one AmClassEvents instance for each application schema class being monitored 

for change by the notification server. Each application class may have O..n insert, delete, 

and update event conditions being monitored. 



When an event occurs, and a Condition (the contents of a condition specification's 

WHERE clause) is true, the server responds by sending notification to one or more clients 

(using CAction information) and may also update its partial views (using SAction 

information). 

In On U Event instances, the attributes before-chg and after-chg are boolean values 

which indicate whether the condition must be true before and/or after an object update. The 

following table shows the valid combinations, and what they represent: 

I False I True I lo$cal insert I 

before-chg 
True 
True 

On U Event instances also contain a list of O..n "focus attributes" whose change of value 

is to be reported. For example, the condition specification below has two focus attributes: 

locn, and cur-speed. 

[I ON U TO Freight-Train(locn,cur_speed) WHERE trainjd = 1 

after-chg 
True 
False 

The following is an example of how the monitored event data structure is used. The 

condition specification: 

object update 
logical delete 

[I] ON I to Track-Segment() WHERE status = "closed 

asks that a client be notified when a Track-Segment object is inserted into the result; that is, 

when a new Track-Segment object with status = "closed" is created, or when an existing 

Track-Segment object has its status changed to "closed". Thus, the notification server has 

to set up the monitored event set to check each Track-Segment insert or update DB event. 

The corresponding monitored event set must contain the following information: 
, 



Class & Client Server Attribute 

Events Condition Action Action List 

Track-Segment 

6.1.2.2 Intra-Object Condition Specifications 

The condition specification [I] above is an intra-obiect [GJ91] example. These kinds of 

, condition specifications are relatively straightforward to map into the monitored event set 

because they contain no joins (not even self-joins). All the information necessary to 

determine if a change has occurred to the result can be found in a single DB update event 

message. Other intra-object examples are: 

[2] ON D TO Train*() WHERE c ~ s p e e d  > speed-lim 

[3] ON U TO Freight-Train(speedJm) WHERE train-id=l 

[4] ON U TO Traiochedule! () WHERE trainjd = 1 

[5] ON U TO Track-Segrnent(status) WHERE in-view(West,seg-id) 

Example [2] uses an inheritance hierarchy reference. The notification server must generate 

two intra-object condition specifications from this as follows: 

[2a] ON D TO Passenger-Train() WHERE cur-speed > speed-lim 

[2b] ON D TO FreightTrainO WHERE cur-speed > speed-lim 

When an existing Train* object has either cur-speed or speed-lim changed so that 

cur-speed is no longer greater than speed-lim, or when a Train* object with cur-speed 

greater than speed-lim is deleted, client notification will occur. The notification server has 

to check each Passenger-Train and Freight-Train update and delete DB event message. 



For example [3], the notification server has to check each Freight-Train update DB event 

message. If the train-id = 1 and the speed-lim variable has changed, client notification will 

occur. 

Example [4] uses an aggregation hierarchy reference. The notification server must generate 

two intra-object condition specifications from this as follows: 

[4a] ON U TO Train-Schedule() WHERE train-id = 1 

[4b] ON IUD TO Tsched_Segment() WHERE parent->train-id = 1 

[4b] comes from the Train-Schedule attribute, s egs ,  being a collection of pointers to 

Tsched-Segment objects - every attribute of the parent that is a pointer or collection of 

pointers will cause the server to monitor the object(s) the attribute(s) point to. The 

definition of Tsched-Segment should be checked for pointer attributes as well, to discover 

if the aggregation hierarchy extends any further. In this example, the hierarchy is only two 

levels deep. 

Example [4] is an intra-object condition specification because (1) the WHERE clause 

references only the primary key, (2) Tsched-Segment objects have a parent attribute, and 

(3) the aggregation hierarchy is only two levels deep. These three properties ensure that all 

the information necessary to determine if a change has occurred to the result of [4b] can be 

found in a single DB update event message, because the parent attribute in a 

Tsched-Segment after-change image will contain the parent's key value (as discussed in 

Section 5.2.1). 

Not all aggregation hierarchy condition specifications are the intra-object kind. See Section 

6.1.2.4 below for a more detailed discussion. 



Example [5] contains a function, 'in-view', which restricts the condition specification 

result to those Track-Segments in the western region. We assume here that the definition 

of 'West' is fixed; the notification server may wish to retrieve and store the definition of 

'West', but there is no need to monitor it for change. The server just has to check each 

Track-Segment update DB event message. If it is in the western region, and the status 

variable value has changed, client notification will occur. 

Example [5] shows that the notification server needs some knowledge of the functions 

which may be used in the condition specification WHERE clause. The content of the 

Function KB is left for future work. 

The monitored event set will contain the following information after condition 

specifications [2], [3], [4] and [5] have been processed: 

Class & Client Server Attribute 

Events Condition Action Action List ........................................................... 

Freight-Train 

(delete) cur-speed>speed-lim (<socket#>, 2) 0 
(update) cur-speed>speed-lim, TI F (<socket#>, 2) 0 0 
(update) train-id=1, T, T (<socket#>, 3) (1 ( speed-lim) 

Passenger-Train 

(delete) cur-speed>speed-lim (<socket#>, 2) 0 
(update) cur-speed>speed-lim, T, F (<socket#>, 2) 0 0 

Track-Segment 

(update) in-view (West, seg-id) , T, T (<socket#>, 5) 0 (status) 

Train-Schedule 

(update) train-id = 1, T, T (<socket#>, 4) 0 0 

Tsched-Segment 

(insert) parent->train-id=l (<socket#>, 4) 0 
(delete) parent->train-id=l (<socket#>, 4) 0 

(update) parent->train-id=l,T, T (<socket#>, 4) 0 0 



6.1.2.3 Inter-Object Condition Specifications 

Inter-obiect [GJ91] condition specifications are the other case. They are more difficult to 

monitor because determining if the result has changed involves the examination of more 

than just a DB update event message. For example, the following condition specification: 

[6] ON I TO Tsched-Segment() WHERE 

Tsched-Segment.seg-id = Track-Segmentsegment-id AND 

Track-Segmentstatus = "closed" 

asks that a client be notified if any train's schedule is affected by a track closure. Two sets 

of objects, Tsched-Segments and Track-Segments, are being joined. The result of this 

condition specification will change if a new or existing Track-Segment's status changes to 

"closed" and any Train-Schedule contains that segment, or if a "closed" track segment is 

added to any Train-Schedule's segment collection. 

If we were to evaluate [6] as though it were a query, we would use a construction diagram 

[BC79] like the following: 

result 

. 
s e g j d  = segment-id GT' 

RESTRICTION 
status = "closed 

Figure 6-4 Query Construction Diagram 

6 7 



First, a partial result (or view) would be generated: the restriction of all Track-Segments 

with status = "closed". Then that partial result would be joined with all Tsched-Segments 

to determine the final query result. 

From the above, we can determine what the notification server has to do to monitor 

condition specification [6] for change. First, it must maintain two partial views because the 

notification server is BEHIND in its processing of DB change. The partial views represent 

the state of the DB at the time of the DB update; if the server reads data from the DB instead 

of using the partial views, it will assess change based on a future DB state and may then be 

incorrect in its condition evaluation. 

For example [6], the partial views are: 

. viewl: the collection of all Track-Segment objects with status = "closed" 

. view2: the collection of all Tscheuegrnent objects 

Second, the server must set up the monitored event set as follows: 

........................................................... 
Class  & Client  Server At t r ibu te  

Events Condition Action Action L i s t  
........................................................... 

Track-Segment 

( i n s e r t )  status="closed" (<socket#>, 6 )  (see A l )  

(update) status="closed",F, T (<socket#>, 6) (see A l )  0 
(update) status="closed",T,F (<socket#>, 6) ( see  A2) ( )  

(de le te )  status="closed" ( )  (see A2) 

TSched-Segment 

( i n s e r t )  

(update) 

(de le te )  

(<socket#>, 6 )  (see A3) 

0 (see A4) 

( )  (see A5) 

continued on next page 



Al: 

A2: 

A3: 

A4 : 

A5 : 

add t h e  object  t o  p a r t i a l  viewl. I f  t h e  ob jec t ' s  

seg-id matches any segment id  i n  view2, no t i fy  c l i e n t s  

remove t h e  object  from p a r t i a l  viewl 

add t h e  object  t o  p a r t i a l  view2. I f  t h e  o b j e c t ' s  

segment-id matches any seg-id i n  viewl, no t i fy  c l i e n t s  

update t h e  object  i n  p a r t i a l  view2. The segment-id is  

a primary key f i e l d ,  and an update event w i l l  not 

change i ts  value (delete/add t o  change key). The 

server  could ignore UPDATES t o  p a r t i a l  view2 a s  they 

do not cause t h e  kind of change [61 i s  in te res ted  in ,  

but t h e  se rver  may be using p a r t i a l  view2 f o r  o ther  

condition spec i f ica t ions ,  so it i s  bes t  t o  keep view2 

up-to-date. 

remove t h e  object  from p a r t i a l  view2 

6.1.2.4 Aggregation Hierarchy Condition Specifications 

Example [4] above illustrated an aggregation hierarchy condition specification that was 

intra-obiect because of its three properties: (1) the WHERE clause referenced only the 

primary key, (2) there was a 2-way navigational reference (i.e., child objects had an 

attribute which pointed to the parent object), and (3) the aggregation hierarchy was only 

two levels deep. When one or more of these properties do not hold, at least part of the 

process of mapping the original condition specification into the monitored event set 

involves an inter-obiect condition. 

For example, the notification server will split the following condition specification (which 

does not reference a key field in the WHERE clause): 

[7] ON UID TO Document-Hdr! () WHERE author = "Kathy" 

into one intra-object condition specification, [7a], and one inter-object condition 

specification, [7 b] : 



[7a] ON UID TO Document-Hdr() WHERE author = "Kathy" 

[7b] ON UID TO Paragraph() WHERE parent->author = "Kathy" 

, The server must keep a partial view of all Document-Hdr objects where author = "Kathy", 

and then whenever a Paragraph object changes, check to see if the parent's key value is 

found in the partial view - if it is, then client notification occurs. 

If Paragraph objects do not contain a parent attribute (no 2-way navigational reference), the 

server has no way to connect a Paragraph update event with its parent, so it must keep 

partial views. To reduce the number of different cases that the notification server must 

handle, we can make it a rule that 2-way navigational references must be added to 

application DB schema for notification purposes if they are not already defined. 

If aggregation hierarchies are more than two levels deep, the notification server must keep 

at least one partial view for each level beyond 2. For example, let's say we have a class A 

which contains an attribute which points to objects of class B, and class B contains an 

attribute which points to objects of class C - a three level aggregation hierarchy. The 

notification server receives the following condition specification 

[81 ON UID TO A!() WHERE key = k 

and splits it into two intra-object condition specifications, [8a] and [8b], and one inter- 

object condition specification, [8c]: 

[gal ON UID TO A() 

[8b] ON UID TO B() WHERE parent->key = k 

[8c] ON UID TO C() WHERE parent->parent->key = k 



The notification server must keep a partial view of all objects of class B whose parent->key 

= k so that when an object of class C changes, the server can check to see if its parent is 

found in the partial view. 

6.2 HIGH-LEVEL PROCESSING ALGORITHMS 

This section describes the notification server's high-level processing algorithms. Figure 6- 

5 shows the functions we will describe and their calling structure. 

C> loop 
main a 0 optional call 

process- 

Figure 6-5 Server High-Level Function Hierarchy Chart 



BEGIN main 

create socket(S0) where clients establish connection 
read application DB schema KB and function KB 
initialize monitored event set 

while(not done) 

if socket SO has a message pending 
add new client (with socket Sn) to monitored event set 

if any client sockets (S 1 ..Sn) have messages pending 
MsgList = get-client-messages 
process-messages(MsgList) 

END while 

END main 

BEGIN get-client-messages 

read the first message from each client socket that has a message 
and append it to MsgList 

return MsgList 

END get - client-messages 
-----_---------------------------________________________________________----------------------- 



......................................................... 
BEGIN process~messages(MsgList) 

while (get~oldest~client~message(MsgList,Msg)) 

CASE Msg.msg-type OF 

condition-spec-msg: 
process~condition~spec~msg(Msg) 

db-update-event-msg: 
{ 
OMsg = Msg 
while ((Ms g.ms gtype == db-update-event-ms g) AND 

(Msg.timestamp == 0Msg.timestamp)) 

NMsg = read next message from the client socket 

'if (another message from client found) 
if ((NMsg.msgtype == db-update-event-msg) AND 

(NMsg.timestarnp == OMsg. timestamp)) 
OMsg = Msg 
Msg = NMsg 

else 
undo socket read (put NMsg back on queue) 
Msg.msg-type = no-msg 

else 
Msg.msg-type = no-msg 

END while 
1 

END case 
END while 

, END process - messages 

(A) all DB update event messages from the same transaction will have the same 

timestamp, and they should be processed one after another. 





BEGIN process-db-update - msg(Msg) 

if (Msg.class-name in monitored event set) 
if (Msgevent in monitored event set for class) 

CASE Msgevent OF 
t t t  I , Dl: 

if (a condition in the monitored event set 
is TRUE for Mspfter-image) 

send notification message to client(s) 
perform the appropriate server actions (if any) 

{ 
ac = the value of a condition in the monitored event set, 

using Msg.after_image 
bc = the value of a condition in the monitored event set 

using Msg.before_values 

if (ac == after-chg value of the condition as specified in 
the monitored event set) AND 

(bc == before-chg value of the condition as specified in 
the monitored event set) AND 

(either there are no focus attributes, or at least one focus 
attribute is found in Msg.before-values 

send notification message to client(s) 
perform the appropriate server actions (if any) 

1 

END case 

END process~db~update~msg(Msg) 



CHAPTER 7 
Internal Design of Client Processes 

In this chapter, we describe how client processes send DB update event messages, and 

, how clients might be designed to receive and process notification messages. 

It is not our intention here to completely specify a client's detailed design, since much of 

each client process is application-specific. Instead, we only wish to show how an 

implementation of the notification functionality might be done. 

7.1 SENDING DB UPDATE EVENT MESSAGES 

Methods in the DB class schema which perform database updates could include code to 

send message(s) to the notification server to signal DB update event(s). For example, here 

is a partial definition of the Train class: 

:lass Train { 
int train id; 
int cur - speed; 

public: 

Train (int t, int s) { / /  constructor 
train id = t; 
cur-speed = s; 
get cur time (t) ; 
sen3 - db-update - - message (t, Train, . . . ) ; 

1 

Then, using code like the following example, a client process can create a persistent Train 

instance in the Objectstore database: 



T r a i n  *a - t r a i n ;  

do - t r a n s a c t i o n  (0,  t r a n s a c t i o n :  :upda te )  { 

I a - t r a i n  = new (db) T r a i n  (l,5O) ; I 
I 1 / /  commit p o i n t  I 

Unfortunately, the placement of message-sending function calls in class methods isn't 

appropriate for two reasons: 

(1) Since the Train class constructor method (and any other method accessing persistent 

data) must be invoked from within a transaction, DB update event messages are 

sent to the notification server BEFORE commit. The possibility of transaction 

aborts, nested transactions, and multiple invocations of the same method within a 

transaction severely complicates the design of a notification server that receives 

uncommitted update event messages. Therefore, this thesis restricts DB update 

event messages to COMMITTED changes. 

(2)  if a client creates a transient instance of the Train class (a local object), a DB update 

event message will be sent to the notification server! Persistence is not part of an 

object's type - the Train object itself does not, and should not, care where it is 

stored. We could get around this problem by passing a flag to every class method 

which updates the object to indicate whether or not the notification server should be 

sent a message, but that makes the code more awkward. 

So, in our approach DB schema class methods do not contain code to send messages to the 
t. 

server; instead, clients send update event message(s) to the server after changes have been 

committed: 



T r a i n  * a  - t r a i n ;  

do - t r a n s a c t i o n  (0,  t r a n s a c t i o n :  : u p d a t e )  { 

a t r a i n  = new (db) T r a i n  ( l f 5 0 )  ; - 
g e t  c u r  t i m e  ( t)  ; - - 

1 / /  commit p o i n t  

s end  db u p d a t e  m e s s a g e ( t , T r a i n ,  . . . ) ;  - - - 

This approach guarantees that only committed change information is sent to the server, but 

it has a weakness. If a client processes terminates after committing a change, but before it 

has a chance to send an update message to the server, notification is lost. The server can 

detect that a client process has terminated, but has no idea what the client might have done 

to the DB just prior to termination. The server's only recourse is to notify all other clients 

that notification of change have been lost. Clients can then choose to poll the DB to 

check for change. 

A client may make changes to several objects in one transaction. For example: 

T r a i n  *a t r a i n ;  
T r a i n  - Schedule  * a t s c h e d ;  - 

do t r a n s a c t i o n  ( 0 ,  t r a n s a c t i o n :  : u p d a t e )  { I - 
a t r a i n  = new (db) T r a i n  ( l , 5O)  ; 
a t s c h e d  - = new (db)  T r a i n  Schedu le  ( . . . ) ; - 

I g e t  - c u r  - t i m e  ( t)  ; 

send  db u p d a t e  message (t, T r a i n ,  . . . ) ; 
send-db-update-message (t,  rain Schedule ,  . . . ) ; I - -  

- - 



All DB update event messages for one transaction must carry the same timestamp. This 

ensures that the notification server will process all messages from one transaction before 

doing anything else. We assume that a client process cannot have multiple independent 

transactions in progress at the same time, but can nest transactions within one another. 

Client processes can send DB update event messages for a nested transaction as soon as the 

commit point for that transaction has been reached (which may not be until the outermost 

transaction commits, depending on the implementation of the underlying OODBMS). 

7.2 MAIN PROCESSING ALGORITHMS 

A client process may, or may not, use a window management system. We have considered 

both cases in the sections which follow. 

The algorithms below show all the client's condition specifications being sent to the server, 

one after another, near the beginning of the program. This is a simplification for 

illustration purposes only - client processes can send, and cancel, condition specifications 

at any time. 

7.2.1 Main Body Without a Window Management System 

If a client process does not use a window management system, we assume that a child 

process is forked to wait for messages from the notification server so that the client (the 

parent) is free to perform other processing (see illustration in Figure 5-1). The child uses a 

signal to interrupt the parent when a message arrives. The parent's signal handler function 

, reads and processes the message (or messages), then sends a signal back to the child to 

start it watching again. The software designer must remember to disable signal interrupts 

during critical sections of code. 



....................................................... 
BEGIN main 

register a message-handler function, to be invoked when this client 
process receives a signal from its child indicating that a message has 
arrived from the server 

create a socket(Cn) and connect to server 

fork a child to listen for messages from server 

send condition specification(s) to server 

wait for acknowledgement from server that each condition specification 
sent has been accepted and is now active 

while (not-done) 
do client processing 

END while 

cancel condition specifications 
close socket 

7.2.2 Main Body With a Window Management System 

If a client process uses a window management system, it must usually allow the window 

system to handle all its inputs, including the arrival of messages at a socket. The "notifier 

model" of input handling is typical of toolkits like SunView or Xviews PVFH901- we use 

this model as our example. 

The client process registers a function with a central Notifier for each input event (e.g., 

keypress, mouse movement, message arrives at a socket) the client wishes to handle. The 

Notifier can either be a separate process or a procedure linked in with the client's code. 

The client turns over control to the Notifier. When an input event occurs, the Notifier will , 

"call-back" the appropriate function registered by the client. Figure 7- 1 [Sun901 illustrates 

the flow of control in a Notifier-based client process. 



Client Process 
h 
b Notifier 
b 

register callback 
function(s) with 

the Notifier 

b 
get event from 

queue 
b 
b 
b 

process event 4 
b call appropriate 
b callback function I I 

Figure 7-1 Flow of Control in a Notifier-Based Client 

The Notifier has a default order (a priority scheme) for calling back event handler 

functions. It is important for the software designer to determine the Notifier's priority for 



socket events - if it is too low, there may be times when notification messages are delayed 

by client input activity rather than by the performance of the notification server. 

create a socket(Cn) and connect to server 

send condition specification(s) to server 

wait for acknowledgement from server that each condition specification 
sent has been accepted and is now active 

initialize the window environment 

register the socket(Cn) and a message-handler function with the 
Notifier, to watch for messages from the notification server 

hand over control to the Notifier, which will call back a client 
whenever an input event occurs 

cancel condition specifications 
close socket 

END main 
........................................................ 

7.2.3 Processing Messages from the Server 

Regardless of whether the message-handler function is invoked when a signal arrives from 

a child process, or when a window system Notifier calls back the function, the same basic 

processing is done by the function. 

A client can receive two message types: condition specification acknowledge messages, and 

change notification messages (see the high-level description given below). Just what the 

client does when it receives these messages is application-dependent. For acknowledge 

messages, it may set global variables which indicate the status of condition specifications 

sent to the server. For notification messages, it may update local data copies and/or refresh 

screen displays. 

8 2 



read message from socket(Cn) 

CASE msg-type OF 

acknowledge-msg : 
{ 
CASE status OF 

valid: ... 
error: ... 

END case 
1 

notification-msg: 
C 
CASE condition-id OF 

1: ... 
2: ... one case for each condition 

specification sent to the server 
... 

END case 
1 

END case 



CHAPTER 8 
Extending the Design to Handle 

Multiple Versions 

In the previous chapters we have assumed that there was only one version of each database 

object. Whenever an object update occurred, the new attribute value(s) overwrote the 

previous one(s). 

This chapter discusses how our change notification design could be extended to handle the 

versioning of objects in application DB schemata. We assume that the underlying 

OODBMS supports versioned data through some form of embedded version management 

scheme. 

First, we describe our model of version management. Then, we discuss how our change 

notification server complements an application where clients are versioning data. Finally, 

we describe the extensions which must be made to our design of the interface between DB 

clients and the notification server. , 

8.1 OUR MODEL OF VERSION MANAGEMENT 

Our model is somewhat based on Objectstore's version management mechanism [ODgla] 

[OD91b] [LLOW91], which in turn has been influenced in part by the model described in 

[CK88], but we have abstracted and simplified Objectstore's approach to make our model 

much less implementation-dependent, much easier to understand, and much easier to 

design a change notification mechanism for. 



For a comparison of our model with ObjectStore's version management scheme see 

Appendix A. 

8.1.1 Basic Concepts 

A version unit is a persistent instance of a class whose purpose is to group together and 

order a number of persistent objects called versions. Each version contains one or more 

data objects of one or more application classes. The ordered set of versions in a version 

unit records the modification history for the data objects. 

Each version in a version unit has a unique identity and can be directly accessed. A version 

is updatable (i.e., its content can be overwritten) until a DB client decides that its current 

state should be saved, or "frozen", for all time. Once the first version of a version unit is 

frozen, change can only be made by first creating an updatable copy (a new version) of 

version 1. When the second version is frozen, a new version can be derived from it, and 

so on. The history of change forms a version-derivation hierarchy [CK88], or version 

gavh  [OD9 1 a]. 

To simplify what our change notification design must handle, our version management 

model assumes that different version units do not overlap (i.e., a data object cannot be a 

member of more than one unit), and that objects in one version unit do not contain pointers 

to objects in another unit. These issues are left for future work. 

The following example is presented to help clarify the basic version management concepts: , 

Let's say we wish to store a number of project documents in the database (using the 

Document-Hdr and Paragraph classes as defined in Chapter 4). We could create a 

separate version unit for each document in the document set (option A below), or we 



could create one version unit that contains all documents in the document set (option 

B below). 

Option A version unit 
Version 1 

- --  - 

Option B version unit 
Version 1 

after version 1 is frozen, 
version 2 must be created 

to add a paragraph to document 1 I 
Parag rap h d 

Option A version unit 
Version 2 

Option 6 version unit 
Version 2 

Figure 8-1 Illustration of the Basic Version Management Concepts 

Which option we choose depends on the kind of history we wish to keep, on how 

clients intend to update documents, and on how related one document's content is to 

8 6 



another's. Option A would keep a separate history of each document, and would 

reduce conflict when concurrent clients work on different documents. If change to 

one document often means change to another, option B would allow us to save 

internally consistent versions of a set of documents, rather than having to determine 

which version of each option A document version unit makes a consistent set. 

, 

8.1.2 The Basic Version Management Model 

The simplest version graph is linear - Figure 8-2 below provides an example. 

current work-in-progress 
version (WIP) 

P P t version F 
........................... . ............................ 4 A .......,**........ 4 

public, read-only versions private, updatable 
version 

version 1 

Figure 8-2 A Linear Version Graph 

A version number is all that is necessary to uniquely identify a particular version in a linear 

version graph. 

-* 

Versions 1, 2, and 3 are read-only versions (also referred to as "stable" or "frozen" 

versions) of the version unit . Version 3 is the latest read-only version, and is referred to 

as the current version. Version 4 is an updatable version, currently undergoing change. 

version 2 
A 

version 3 --+ 4 



Versions 1, 2, and 3 are public versions; that is, they can be read by any DB client. 

Version 4 is a private version, accessible only by the client who created it and is in the 

process of updating it. 

Figure 8-3 lists the version-level access and manipulation functions required by our basic 

model. 

new v e r s i o n  <= checkout  ( u n i t  name) - - 

check in  ( u n i t  - name) 

I v e r s i o n  <= r e a d  ( u n i t  - name, v e r s i o n  number) - 

I v e r s i o n  <= r e a d  - n e x t  (unit-name, v e r s i o n  number) - 

( v e r s i o n  <= r e a d  - p r e v  ( u n i t  - name, v e r s i o n  number) - 

I d e l e t e  - u n i t  ( u n i t  name) - 

I d e l e t e  - v e r s i o n  ( u n i t  name), v e r s i o n  number) - - 

Figure 8-3 Basic Version-Level Access and Manipulation Functions 

The checkout function creates a new version (an updatable WIP version) by copying 

the current version. Only the client that checked out the current version can make changes 

(i.e., insert, update, delete objects) to the WTP version. A version cannot be checked out 

once it has a successor. 

The checkin function makes the WIP version the current (latest public) version. The 

WIP version must be checked in by the client that checked it out. 

The three read functions ( r e a d ,  read - next, r ead -p rev )  return the appropriate 

version of the specified version unit. If the version-number parameter is 0, then the 

current version is read, or is used as the reference node from which to determine the next or 

previous version. If the WIP version is the function result, it is only returned if the client 

8 8 



who called the function is the owner of the WIP version. Thus, other clients cannot even 

discover that a WIP version exists unless they call the checkout function and it is 

unsuccessful because the current version already has a successor. 

An entire version unit (all versions) can be removed from persistent storage by using the 

d e l e t e  - u ni t  function. This kind of delete should not be allowed if the current 

version of the version unit is checked out. 

A node can be removed from a version unit's version graph by using the 

de l e t e  - version function. A read-only version can only be deleted if (1) it has no 

parent, and (2) it is not currently checked out. The first restriction forces version history to 

be compressed (i.e., removing versions from oldest to newest). Deleting a version with an 

existing parent would be like "ripping out a chapter from a history book - continuity 

would be lost. 

If the de l e t e  - version function references a WIP version, the delete is, in effect, a 

rollback of a checkout operation. Only the owner of a WIP version can delete the WIP 

version, 

8.1.3 Allowing Multiple Branches 

Our model becomes more complex when the version graph is allowed to have branches, as 

in Figure 8-4 below. 



- 

the initial branch .... . ...................................... ..---*\ ............................................... 
B 3 

Figure 8-4 A Multiple-Branch Version Graph 

initial. 1 initial.2 initial.3 4 

Each version is uniquely identified by a name, 'branch-name.nl. The initial branch's name 

is "initial"; an alternate branch is given a name by a DB client when it is created. Versions 

initial.4 

are sequentially numbered within a branch. 

t I branch B 
h ....... k+------* 

alternate 
branch A 

An alternate branch is created when clients wish to make concurrent updates to a version 

unit (e.g,, versions initial.2 and altA.llaltA.2 in Figure 8-4) or, generally, any time an in- 

line (same branch) successor already exists for a version. Alternate branches may be 

merged at a later time, or they may remain separate to represent diverging data (e.g., 

document sets for different customers). For simplicity, we will allow a node in the version 

graph to have at most two children: an in-line successor, and one alternate branch 
I 

successor. 

Figure 8-5 shows the version-level access and manipulation functions required by our 

model when multiple branches are allowed. 



new-version <= checkout (unit - name,branch - name) 

new - version <= checkout branch (unit name, - - 
from version-name, 
new - branch - name) 

checkin (unit - name, branch - name) 

new - version <= merge (branch1 - name,branch2_name) 

version <= read (unit - name,version name) - 

version <= read - next (unit - name,version - name) 

version <= read - prev (unit - name,version-name) 

version - list <= read - all - next (unit - name,version-name) 

version - list <= read - all - prev (unit - name,version - name) 

delete - unit (unit-name) 

compress - versions (unit - name,to - version-name) 

delete - WIP - version (unit - name,version - name) 

Figure 8-5 Multiple-Branch Version-Level Access and Manipulation Functions 

The checkout function creates a new version (an updatable WIP version) by copying 

the current version of the specified branch. 

The checkout - branch function creates the first version (an updatable WIP version) 

for a new branch by copying the specified version. Only the client that checked out the 

specified version can make changes (insert, update, delete objects) to the WIP version. A 

new branch cannot be created from a version once it has one branch successor. 

The checkin function makes the WIP version the current (public) version of the branch. 

The merge function creates a new version (an updatable WIP version) by copying the 

current version of the fxst specified branch. It is then up to the client to merge the contents 

9 1 



of the current version of the second specified branch with the WIP version. The 

checkin of the WLP version makes it a read-only version which supersedes the current 
, 

versions of both branches involved in the merge. 

The first three read functions ( r e a d ,  read n e x t ,  read p r e v )  return the - - 
appropriate version of the specified version unit. If the version number part of the 

version-name parameter is 0, then the current version on the specified branch is read, or is 

used as the reference node from which to determine the next or previous version. If there 

is more than one next or previous version, the one on the same branch as the reference 

node is returned. 

The two new read functions ( r e a d  a l l  n e x t ,  read a l l  p r e v )  return a list of - - - - 
versions. These functions are used to determine if a node in the version graph has more 

than one child (alternate branches) or parent (a merge). 

The delete - unit  function is the same as described for our basic model. 

Deleting a read-only version is more difficult now than in our basic model. A read-only 

version can only be deleted if (1) it has no parents, (2) the result does not orphan an 

alternate branch (see Figure 8-6 below), (3) merge continuity is not lost (see Figure 8-7 

below), and (4) the version is not currently checked out. 

initial.1 cannot be deleted, as that 
would leave its alternate branch 

altA.2 orphaned (unattached) 

Figure 8-6 Orphaned Branch Problem 



initial. 1 initial.2 initial.3 

I 
a merge 

altA. 1 

initial.1 can be deleted, since altA.l remains 
attached to initial.3. However, the resulting graph 
presents a problem: if only one of altA.1 or initial.2 
is deleted, continuity for initial.3 will be lost 

-- - 

Figure 8-7 Merge Continuity Problem 

Conditions (2) and (3) mean that some versions in a multiple-branch version unit cannot be 

deleted with the delete version function. Therefore, we replace that function with - 
a new function, c o m p r e s s  v e r s i o n s ,  where all previous versions up to, but not - 
including, the referenced version are deleted as long as conditions (1) through (4) above 

can be met. Compressing up to version initial.2 in Figure 8-6 removes an entire branch; 

compressing up to version initial.3 in Figure 8-7 removes all evidence of the merge. 

A new function, delete WIP v e r s i o n ,  provides the way to rollback a checkout - - 
operation on any branch. Only the owner of a WIP version can delete the WIP version. 

8.1.4 Sharing the WIP Version 

So far, we have assumed that a WIP version can only be read, updated, checked in, and 

deleted by its owner (the client that checked it out). This is too restrictive for some 
I 

cooperative work, or "groupware", applications where the owner wishes to share by 

granting other clients access to the WIP version. 



l2w-e are two dimensions to sharing: the possible degrees of sharing (i.e., read-only, read- 

write, read-write-delete-checkin), and which other clients are granted what degree of 

sharing (i.e., none, all, one, group(s)). 

We extend our model to allow the WIP owner to grant read-only, read-write, or read-write- 

delete-checkin access to all or no other clients. We define a function, 

c h a n g e  - WIP - a c c e s s ,  which allows only the WIP owner to broaden WIP access. 

Once public, a WIP version cannot be made private; however, the degree of public sharing 

can be changed at any time. 

change - WIP - access (unit-name, version - name, new - access) 

Figure 8-8 change-WIP_access Function 

8.2 USING THE CHANGE NOTIFICATION SERVER 

Cooperative work, or groupware, applications often require a DB schema which maintains 

multiple versions of data objects. Individuals, or groups of clients, need to work in parallel 

on the same data (i.e., creating alternate branches of a version unit) because either they are 

working on separate, but equally valid, versions of the data (e.g., alternate designs for a 
t 

car), or they are circumventing the delay of another client's long-term update by creating 

their own version (with the intent to merge their version with another's at some later time). 

Cooperative work applications require clients to be kept informed of what others are doing, 

not only to keep a local copy of a public WIP version up-to-date or to watch for particular 

data patterns in a public WIP version, but to follow the structural changes to version graphs 

(i.e., checkout, checkin, version delete, etc.). Clients could poll the database, searching 

for change in version graphs and change to data objects in WIP versions, but this places an 

undesirable 110 and processing burden on clients (especially when version graphs are large 
9 4  



t 

and complex). Integrating a change notification server with knowledge of the underlying 

OODBMS version management scheme into a cooperative work application provides clients 

with an effective alternative to polling. 

If we assume that a DB client only wishes to receive change notification for updates to the 

content of one public WIP version at a time, we can partition clients into groups, and then 

we can make the notification server even more supportive of cooperative work. 

The notification server can partition clients into groups based on the WIP version they wish 

to receive notification for when that version's content is changed. Since each branch of a 

version unit can have at most one WIP version, clients select the W P  version, and thereby 

assign themselves to a group, by specifying a branch. If the branch doesn't currently have 

a WIP version, or the WIP version is currently private, clients are still members of the 

group (there just isn't anything to notify them of yet). 

Once a client is assigned to a group, the condition specifications it sends to the notification 

server do not have to specify which WIP version to monitor for change; the WIP version is 

given by group membership. Thus, clients can change groups, or WIP versions can be 

created and checked in along the client's current branch, and the notification server can 

adjust the focus of a client's active condition specifications automatically. Clients do not 

have to cancel and re-issue condition specifications each time they change groups or a new 

WIP version is created. 

In addition to providing flexible condition specification, the notification server's group 
h 

membership information can be provided to clients upon request in order to, for example, 

enable clients to communicate directly with other group members to coordinate updates to a 

public WIP version. 



8.3 CLIENTISERVER COMMUNICATION REVISITED 

To review, clients send one or more condition specifications to the notification server to 

indicate what DB changes they wish to be notified of, and they send a DB update event 

message to the notification server for each change made to application data after the change 

has been committed to the OODBMS. The notification server sends an acknowledge 

message to clients for each condition specification it receives, and the server sends a 

notification message to clients for each change they have indicated an interest in. The 

general system architecture is shown in Figure 8-9 below. 

data 
messages 

Figure 8-9 General System Architecture (Revisited) 

In previous chapters, our notification server design addressed sinyle-version data-obiect- 

DB update events, condition specification, and change notification. 

When an application's DB schema includes version units and versions, the design of data- 

object-level communication between clients and the notification server remains relatively 

unchanged (there are small modifications to the content of some messages), and the full 



scope of data-object-level condition specification is still possible (though implementation 

may be more complex in some cases). 

Data-object-level updates are made to public WIP versions by one or more clients. Data- 

object-level notification allows clients sharing the WIP version to keep local copies of the 

data up-to-date, and/or watch for special conditions (e.g., a new document added to a 

document set). 

Since data objects can now be contained within version units and versions, a second level 

of database change must be addressed. Version-level DB update event messages, condition 
, 

specification, and change notification messages must be added to the server design. 

Version-level updates are changes made to a unit's version graph or to a version's 

publiclprivate access. Notification of these changes can tell a DB client that, for example, 

the current version on a particular branch has been checked out, or a WIP version has been 

checked in, or a WIP version now has public access. 

Messages sent by clients to the server to request a group change or request a list of group 

members, and messages sent by the server to clients to acknowledge a group change or 

return a list of group members, must also be added to the server design. 

A list of all the messages which may now be passed between clients and the notification 

server is given in Table 8- 1 below. Each of these messages is discussed in more detail in 

the sections which follow. 



FROM CLIENTS TO THE SERVER 1 FROM THE SERVER TO CLIENTS I 
Version-level DB update events 

Data-object-level DB update events 
Version-level Notification 

Data-object-level Notification 

( Cancel Condition Specification I I 
Version-level Condition Specification 

Data-object-level Condition Specification 

I Group Change Request I Acknowledge Group Change 
Group List Request Group List Reply I 

Acknowledge Condition Specification 

Table 8-1 Messages Passed between Clients and the Notification Server 

8.3.1 Database Update Event Messages 

8.3.1.1 Version-Level Event Messages 

The following are the version-level DB update events: 

. checkout, checkout-branch 

. merge 

. checkin 

. delete-unit, compress~version 

. delete-WLP-version 

. change-WIP-access 

When the checkout or checkout - branch function is called, the client must send 

one message to the server: an 'update' for the version that was checked out. 

When the merge function is called, the client must send two messages to the server: one 

'update' for each version involved in the merge. 

When the checkin function is called, the client must send one message to the server: an 

'insert' for the WIP version if it remained private, or an 'update' for the WIP version if it 

was public. 



When the delete unit function is called, the client must send one message to the - 
server: a 'delete' for the entire version unit. 

When the compress versions function is called, the client must send one message - 
to the server: a 'delete' for all versions prior to the specified version. 

When the delete - WIP - version function is called, the client is deleting a WIP 

version and rolling back a checkout, checkout-branch, or merge operation. If the WIP 

version is private, the client must send only an 'update' message to the server for each 

public version whose checkout or merge is being cancelled. If the WIP version is public, 

the client must also send a 'delete' message to the server for the WIP version. 

When the change - WIP - access function is called, the client must send one message 

to the server: an 'insert' for the WIP version when its access goes from private to public, or 

an 'update' for the WIP version when its public access is changed (e.g., from read-only to 

read-write, etc.). 

The notification server design is extended to include a version-level DB update event 

message sent by clients to the server. The message format is given below. 



Message Ength 
'I' I 'D' I 'U' 
Unit name 
if 'I' operation: 
version ID 

FIELD 
Message type 
Timestamp 

- - 

if 'D' o~eration: 

DESCRIPTION 
'V' (version update message code) 
commit time 

delete b e  

version ID 

if 'U' operation: 
update type 

version1 ID 
version2 ID 
new access 

# bytes 
Insert,Delete,or Update operation 
unique version unit name 

branch name, version # 

U (unit), W (delete WIP) 
V (compress versions) 
if delete type = 'V' or 'W', 
branch name, version # 

CO (checkout), CB (checkout branch), 
co (cancel checkout), 
cb (cancel checkout branch), 
MG (merge), mg (cancel merge), 
CI (checkin), CA (chg WIP access) 
branch name, version # 
if 'MG', second version involved 
if 'CA', new WP access for others 

- - - - -  

Table 8-2 Version-Level DB Update Event Message Format 

8.3.1.2 Data-Object-Level Event Messages 

When a WP version is public (i.e., access is read-only, read-write, or read-write-checkin- 

delete) clients must send a data-object-level update event message to the notification server 

for each data object insert, update, and delete they perform to that version. 

Data-object-level events for a WIP version are the same as the DB update events for non- 

versioned data discussed in Section 3.1.1. 

The data-object-level DB update event message format given previously in Table 5-2 must 

be modified (see Table 8-3 below) to handle the reporting of change to both versioned and 

non-versioned data. One new field, version unit name, has been added to the message so , 

that the notification server can determine if and where the object is being versioned. Note 

that the WIP version name does not have to be part of the message because the notification 



server knows which group each client belongs to, and each group can only be updating one 

WIP version of a version unit at a time. 

* field repeated for each attribute modified 
** field only used for versioned data; otherwise blank 

FIELD 
Message type 
Timestamp 
Message length 
'I' I'D' I 'U' 
Class name 
Unit name 
After-change attribute values 

Attribute name * 
Before value * 

Table 8-3 Extended Object-Level DB Update Event Message Format 

DESCRIPTION 
'U' @B update event message code 
commit time 
# bytes 
object insert, delete, or update flag 
object's class 
unique version unit name ** 
value of each object attribute 

(ordered as listed in the class definition) 
if change flag = 'U', full name of the 
attribute that changed 

if change flag = 'U', value of the 
attribute before change 

8.3.2 Condition Specifications 

8.3.2.1 Version-Level Condition Specification 

In this section we present a condition specification language that allows DB clients to 

describe a collection of public versions in a version unit that they wish the notification 

server to monitor for change. 

The general format of the version-level condition specification language is as follows: 

[ID#] ON <Chg t y p e >  TO < u n i t  name>(<Chg-level>) - - 
WHERE < P r e d i c a t e s >  DO < ~ c t i o n >  

Figure 8- 10 Version-Level Condition Specification Language Format 



The default condition specification query result is a collection of ALL public versions of a 

version unit. For example, the condition specification 

[I] ON IUD TO proj 1-doc-set() 

asks for notification of any version-level change to any public version of the proj 1-doc-set 

unit. 

Remember that WIP versions of a version unit are private when created, so if the owner 

does not make a WIP public, clients who have issued [I] above will only receive 

notification of WIP change when a WIP version is checked in. If and when the owner 

makes a WIP version public, notification of that access change and any subsequent 

version-level changes to the WIP version will occur for clients who have issued a condition 

specification like [I] above. 

Version-level condition specifications also cause the notification server to set the client's 

WIP group affiliation for the specified version. For example [I] above, the server sets the 

client's group to the default branch, 'initial'. 

Using a keyword in the WHERE clause, version-level change notification can be restricted 

to a particular branch, and the server will set the client's WIP group affiliation to that 

branch. For example, 

[2] ON UID TO proj 1-doc-set() WHERE Branch-Name = "altA" 

To receive notification of ALL object-level change to the public WIP version of the client's 

current group, a version-level condition specification can include the chg-level keyword 

'OLEVEL' . For example, 



[3] ON UID TO proj 1-doc-set(0LEVEL) 

[4] ON UID TO proj 1-doc-set(0LEVEL) WHERE Branch-Name = "alt* 

To restrict object-level notification to particular objects or types of object change in a public 

WIP version, data-object-level condition specifications can be sent to the notification server 

as discussed in Section 8.3.2.2. 

This thesis made an assumption (see chapter 3) that change notification can only be 

requested and occur during client process and notification server lifetimes. Long-term 

condition specification and notification by means other than inter-process communication 

(PC) has been left for future work, but we recognize that some applications which involve 

versioning (e.g., computer-aided design, software control) are where clients might want to 

receive notification when they are not active. The DO <action> clause could be used, for 

example, to request notification via email: 

[5] ON UID TO proj 1-doc-set() DO email(doc-librarian@cs.sfu) 

8.3.2.2 Data-Object-Level Condition Specification 

Previously (in section 3.3) we presented a condition specification language that allows DB 

clients to describe a collection of application class objects that they wish the notification 

server to monitor for change. 

Data-object-level condition specifications can be used to restrict notification to particular 

objects, or types of object change, in a WIP version. For example, if a DB client wishes to 

receive notification of changes to a specific document in the proj 1-doc-set unit, an object- 
, 

level condition specification like [6] below can be sent to the notification server after a 

version-level condition specification like [I] or [2] above has been sent to the server: 

[6] ON UID TO Document-Hdr! () WHERE doc-id = " AA- 123" 

103 



Later, when the notification server receives a data-object-level DB update event message for 

an object in a Document-Hdr aggregation hierarchy where doc-id = "AA-123", the server 

will notify the client if either: 

. the object is not part of a version unit (i.e., it is not being versioned), or 

. the object change was made to a version unit that the client has an active version-level 

condition specification for (e.g., projldoc-set), and the object change was made to 

the WIP version of the client's current group. 

There are four points of interest to note from the above: 

. earlier, we restricted our version management model to version units which do not 

overlap. This means that the notification server does not need to determine if an 

object is a member of more than the one unit where it was changed (not a trivial 

problem), in order to figure out if clients interested in other units need to be notified 

of the change. 

. we also restricted our version management model to version units whose data objects 

do not reference other objects in other version units This means that the notification 

server does not have to monitor aggregation hierarchies that span version units, or 

resolve pointers (which may be static or dynamic) to versions of other units. See 

[CK88] for an implementation which attempts to address these issues in the ORION 

OODBMS. 

. in part because of points one and two above, intra-object conditions in version units 

are relatively straightforward for the notification server to monitor for change. All the 

information necessary to determine if a change has occurred for intra-object 

conditions can be found in a single data-object-level DB update event message. 



. inter-object conditions in version units, however, can present complex implementation 

problems, even when all the objects involved are within one version of a unit. This 

is because inter-object conditions require the notification server to read data to set up 

the appropriate events in the monitored data set, and perhaps to maintain partial 

views. When the server receives an inter-object condition specification, it has to 

determine which version unit (if any) the objects are in now and then read the WIP in 

the client's current group to set up its internal data structures. If the client changes 

groups, or a new WIP version is created, the server must adjust its internal data 

structures. 

8.3.3 Acknowledge Condition Specification Messages 

Function and format of the acknowledge condition specification message are the same as 

, those given in Section 5.2.3. 

8.3.4 Cancel Condition Specification Messages 

Function and format of the cancel condition specification message are the same as those 

given in Section 5.2.4, 

8.3.5 Change Notification Messages 

The change notification design given previously in Chapter 5 must be extended in two 

ways. First, an additional notification message is defined for version-level change. The 

message format is given below. 



FlEm 
Message type 
Timestamp 
Message length 
'I' I 'D I 'U' 
Unit name 

version ID 
if 'D' o~eration: 
delete b e  

version ID 

if 'U' operation: 
update type 

version1 ID 
version2 ID 
new access 

time message sent 
# bytes 
result change (insert,update,delete) 
unique version unit name 

branch name, version # 

U (unit), W (delete WIP) 
V (compress versions) 
if delete type = 'V' or 'W', 
branch name, version # 

CO (checkout), CB (checkout branch), 
co (cancel checkout), 
cb (cancel checkout branch), 
MG (merge), mg (cancel merge), 
CI (checkin), CA (chg WIP access) 
branch name, version # 
if 'MG', second version involved 
if 'CA', new WIP access for others 

Table 8-4 Version-Level Notification Message Format 

Second, the data-object-level notification message format given previously in Table 5-6 

must be modified (see Table 8-5 below) to handle the reporting of change to both versioned 

and non-versioned data. One new field, unit name, has been added to the message so that 

clients can determine where the object is being versioned. 

Note that the WIP version name does not have to be part of the message because each client 

knows which group it currently belongs to for the specified version unit, and each group 

can only be updating one WIP version of a unit at a time. 



Timestamp 

I Message fength 
Condition ID 
'I' I 'D' I 'U' 
CAUSE: 

DB update event I Class name 
Primary key 

Class name 

I After-change attribute values 

Attribute name * 
Before value * 

- 

'N' (notification message code) 
time message sent 
# bytes 
client's unique condition spec. # 
result change (insert, delete, update) 

'I' I 'D' I 'U' 
class of the object that changed 
unique ID of the object that changed 
result object's class 
unique version unit name ** 
value of each result obiect attribute 

(ordered as listed in the class definition) 
if cause event = 'U', full name of the 
attribute that changed 

if cause event = 'U', value of the attribute 
that changed 

* field repeated for each attribute modifled 
** field only used for versioned data; otherwise blank 

Table 8-5 Extended Data-Object-Level Notification Message Format 

If a client sends a group change message to the server (see Section 8.3.6), the client must 

wait for the receipt of a group change acknowledge message before assuming change 

notification messages relate to the new group. 

8.3.6 Group Change Messages 

By default, a client's group affiliation is set for a version unit when it issues a version-level 

condition specification for the unit. A client may have only one version-level condition 

specification active in the notification server for a particular version unit because a client can 

only belong to one group at a time. 

To leave one group and join another, a client could cancel the active version-level condition 
I 

specification and issue a new one, but that would cause unnecessary processing overhead 

in the notification server. Instead, a group change message is defined which asks the 

107 



server to change a client's current group for a particular version unit. The message format 

is given below. 

FIELD I DESCRIPTION 
Message type 1 'G' (group change message code) 
Timestamp 
Message length 
Unit name 
Branch name 

commit time 
# bytes 
unique version unit name 
unique branch name (new group) 

Table 8-6 Group Change Message Format 

The notification server sends a message to clients acknowledging receipt of each group 

change message. Clients should always check that a 'valid' status code is returned. An 

'error' status code will be returned if the unit name or branch name is invalid, or if the 

client has no active version-level condition specification for the particular version unit (i.e., 

the group change message cannot be used to initialize a client's current group). The 

acknowledge message format is given below. 

- 

Table 8-7 Group Change Acknowledge Message Format 

FIELD 
Message type 
Timestamp 
Message length 
Unit name 
Branch name 
Status code 

8.3.7 Group List Request and Reply Messages 

DESCRIPTION 
'G' (group acknowledge message code) 
commit time 
# bytes 
unique version unit name 
unique branch name (new group) 
0 (change accepted); 1 (error) 

A client can request a list of members in any group at any time. The message format is 

given below. 



Timestamp 
Message length 
Unit name 

I Branch name 

commit time 
# bytes 
unique version unit name 
unique branch name; if blank, default to 
client's current group 

Table 8-8 Group List Request Message Format 

FZEL;D 
Message -- type 

The server sends a group list reply to the client. The message contains the number of 

DESCRIPTION 
'L' (group . . list request message code) 

clients currently in the group, and a list of socket ids so that clients can choose to initiate a 

- 

direct dialogue with other members of a group. The message format is given below. 

FIELD 
Message type 
Timestamp 
Message length 
Unit name 
Branch name 
Number of clients 

* field repeated for each client in the group 

Table 8-9 Group List Reply Message Forrnat 

DESCRIPTION I 

'R' (group list reply message code) 
commit time 
# bytes 
unique version unit name 
unique branch name (group) 
total number of clients in the group 

Client ID * 
Socket # * 

unique name, or process id 
socket # of a client in the group 



CHAPTER 9 
Conclusions and 

9.1 CONCLUSIONS 

Figure 9-1 below lists our high-level change noti 

Future Work 

fication requirements and summarizes how 

well various notification approaches meet those requirements. We were motivated to 

develop our change notification server because no embedded approach currently satisfies all 

our requirements, and we feel that separating the notification mechanism from the DBMS 

provides more flexibility and extensibility. 

Embedded in an OODBMS 

Our Chg Notification NOTIFY ACTIVE 
Requirements LOCKS QUERIES 

I 

Complex condition 
N 

specification possible 
Y* 

(1) 

Conditions specified 
separate from data 

access I I 
Able to indiv. specify 
kinds of chg (I,U,D) 

N N 
(3) 

I 
-- 

l~ailored to the needs I 

Dynamic (run-time) 
cond. specification (5) 

101 each active client 
(6) I Y l  

Y 

ACTIVE OODBMS 
Triggers I Rules 

Y 

Chg notification for 
versioned DB schema 

NOTIFICATION 
SERVER 

N 

N 

N 

* has limitations 

Figure 9-1 A Comparison of Change Notification Approaches 

maybe 

N 

N 



- - -- 

Notes for Figure 9-1 
- - - 

1) limited by the capabilities of the embedded (i.e., fixed) query or rule-specification 

anguage. Our condition specification language can be tailored to the needs of particular 
tpplications by allowing application-specific functions to be used. 

- - -- - -- - 

.2) OODBMS triggers are embedded in class definitions. Although complex conditions 

:an be specified, they are only checked when the object containing the embedded mgger 

s changed. Notification with triggers is either limited to intra-object conditions, or 

riggers must be specified in all objects which may be part of an inter-object condition 

:awkward to verify the correctness of and to maintain, especially in large application 

DB s). 

[3) in the current literature, active queries are implemented using the DBMS's passive 

pery language and a set of activateldeactivate functions embedded in the DBMS. Our 

:ondition specification language is an active language, and as such, allows clients to 

specify an interest in particular kinds of change. 
- - - - - - - - - 

(4) The format of triggers and rules is, generally: "ON <event> IF <condition> DO 

<action>". To provide the same range of notification as is possible with an active query, 

a number of triggers or rules must be specified. Our condition specification language 

dlows clients to specify one or all kinds of change with one statement. 

(5) by 'dynamic condition specification', we mean the ability to add or activate condition 

specifications, and delete or deactivate current condition specifications at run-time. 

(6) Condition specifications and notification must be able to be individualized, since 

each DB client's interests may be different. Embedded triggers and rules generally affeci 

all currently active clients. Also, clients come and go - embedded triggers and rules don'i 

generally keep track of active clients, so it is difficult to determine who to notify. 

(7) [CK88]'s version management model is limited to versions of single objects only 

and notification is more for internal change propagation than for external 

monitoring/alerting. Our version management model allows a number of data objects to 

be grouped into a versionable 'unit', and includes the concept of client groups (which 

allows the notification server to make condition specification and notification more 

flexible). 

111 



The major contributions of this thesis are as follows: 

(1) examination of object-oriented (as opposed to relational) change notification. 

In fact, we have examined relational change notification because its requirements 

are a subset of the requirements for object-oriented change notification. Relational 

DBMSs have tables whose data changes through row insert, update, and delete, 

while OODBMSs have classes whose data changes through instance insert, update, 

and delete. Whether DB update events, condition specification, and change 

notification are focused on tables or classes, our basic design remains the same. 

However, OODBMSs differ significantly from relational DBMSs in that 

OODBMSs must support complex inheritance hierarchies and aggregation 

hierarchies. This work makes an important contribution by examining, in detail, 

condition specification and change notification for these hierarchies. 

(2)  description of a flexible and sufficient language for specifying conditions of interest 

to monitor for change in an OODBMS. 

We have combined aspects of both active queries and imperative rules so that DB 

clients can specify exactly what kinds of changes they are interested in. We have 

designed the language so that clients can easily specify an entire inheritance or 

aggregation hierarchy with one condition specification. 

We have allowed application-oriented functions to be a part of the language 

definition so that condition specification can be tailored to the needs of particular 

applications. 



(3) design of a change notification server which is informed of committed data change 

by DB clients (i.e., the server does not have to intervene between clients and the 

OODBMS to detect change), and then notifies clients who have registered their 

interest in the change. 

(4) presentation of a version management model, and a detailed examination of how 

our server design can be extended to handle notification of change to versioned 

data. 

We have added a second set of DB update event, condition specification, and 

notification messages to the design to address version-level change. The basic 

design, which addresses data-object-level change, is essentially the same for both 

versioned and non-versioned DB schema. 

We have grouped clients within a version unit by requiring them to focus on one 

branch of the version graph at a time. Then, the condition specifications a client 

sends to the notification server do not have to specify which work in progress 

(WIP) version to monitor for change. The WIP version is given by a client's 

current group membership, and if that group membership is changed, the server can 

automatically adjust the focus of a client's active condition specifications. 

We have shown that a centralized OODBMS change notification server is possible, that the 

interface between DB clients and the notification server can be simple but effective (i.e., 

there are a small number of messages, and message content is relatively simple to generate 

and interpret), and that condition specification can be dynamic (i.e., clients can issue and 

cancel condition specifications at any time). 



However, our notification server design has several limitations which make it inappropriate 
I 

for use by some applications. The following is a summary: 

. only change made directly by DB clients can be made known to the notification 

server. Change propagation (e.g., the recalculation of derived values, or cascading 

delete) is generally considered invisible because it is encapsulated in DB schema class 

methods. 

. when the number or size of object attributes is large, the length of DB update event 

messages and change notification messages could be a communication and/or 

performance problem. 

. if there are large numbers of DB updates, but few or no conditions being monitored 

for change, there will be a significant overhead in message passing for which little or 

no benefit is being derived. 

. because the notification server is behind in its processing of DB update event 

messages, and therefore cannot read the DB for information when evaluating some 

inter-object condition specifications, the server must keep some partial views that are 

optional in other approaches to change notification (i.e., embedding notification in the 

DBMS). 

, the change notification server is "stateful"; that is, if the server crashes (or is shut 

down while in use by clients) it loses all knowledge of active clients and their 

condition specifications. This thesis does not address how clients and a restarted 

server might re-establish communication - we recognize that server failure recovery is 

not a trivial problem, and have left it to future work. 



In addition, the notification server can be overloaded by large numbers of incoming and 

outgoing messages, and/or having to parse and evaluate a large number of complex 

condition specifications. These performance limits are not unique to our approach - they 

are expected of any central-server design, and of any centralized approach to change 

notification (i.e., embedded active queries or rules) that must evaluate complex condition 

specifications. Like query processing, our approach pays an additional performance 

penalty by allowing dynamic condition specification - the server must parse condition 

specifications and map them into the monitored event set as they arrive, rather than being 

able to preprocess them. 

If an implementation of our change notification server existed, it would take application 

prograrnmer(s) some time and effort to use it. An application DB schema knowledge base 

(KB), and an application-oriented function KB (if any functions were to be used - an 

examination of potential condition specifications would determine this) would have to be 

created. Class definitions and data access routines for any application data that the 

notification server might need to read would have to be linked into the server. If any 

aggregation hierarchies were to be monitored, they would have to be studied to determine 

t what DB update events should be reported, and what notification should be expected from 

condition specifications (as discussed in Section 4.2.2). A library of server communication 

routines would likely be provided for clients to call, but application programmer(s) would 

have to provide software to generate the content of DB update event messages for each 

application class, and to parse the content of change notification messages for each 

application class. 

Despite the effort required to use the change notification server, it is not excessive, nor is it 

difficult to understand what has to be done and why. The effort would be worth it if 

polling is not a desirable option for an application's DB clients (e.g., when the amount of 

115 



data being monitored is large, or when timely response is required). Therefore, we can 

, conclude that our change notification server would be a valuable component for many 

applications. 

9.2 FUTURE WORK 

In the future, it would be desirable to do the following with our current design: 

. implement the notification server, and prototype the two example applications 

. study the requirements of the Function KB, and determine how application-oriented 

functions in condition specifications could be implemented 

. analyze notification server performance 

. apply change notification to a broader set of applications, including an application 

with versioned data 

. study the impact on the notification server design and implementation when it is 

applied to other OODBMS and to RDBMS. 

In the future, it would also be desirable to study extensions to the notification server 

design, including (in no particular order): 

. broadening the kind of change that the server can notify clients of. Currently, the 

server only sends notification of persistent data change. However, we discovered at 

least two cases (see Sections 4.3.4.2 and 7.1) where clients would benefit if they 

could receive notification when another client terminated unexpectedly, and although 

we defined a group list request message for versioning applications, clients do not get 

notification of change to the group. We could modify the server design to send 

116  



notification to clients when others establish communication with the server, 

terminate, join or leave a configuration group. 

. allowing long-term condition specification (i.e., storing condition specifications in the 

database) and allowing notification when clients are not active (e.g., via email). 

. handling applications whose data is distributed in two or more databases 

. handling correlated data change; that is, collecting all the DB update event messages 

for one transaction, and assessing the net effect of the changes before sending out 

notification messages. 

. allowing uncommitted DB update event messages (via methods embedded in DB 

schema class definitions) so that the notification server can be informed of change 

propagation. Note that change notification would still be for committed change. 

. investigating the need for, and requirements of, uncommitted change notification 

. adding an option to the condition specification language so that clients can indicate 

whether or not they wish to be informed of their own changes. Currently, they are 

always informed of their own changes if they have an active condition specification 

that requests notification of the changes. 

. investigate the design of a distributed change notification server 



APPENDIX A 
ObjectStore Version Management 

This appendix is included in order to give the reader some idea of how ObjectStore's 

implementation (Release 1.2) of version management compares with the model of version 

management presented in Chapter 8. 

There are two significant differences, namely configurations and workspaces, for 

which an overview is provided in the sections which follow. ObjectStore also allows inter- 

object references (static or dynamic) between configurations, has two more version-level 

update events ('new-version', and 'freeze'), and appears to allow single version delete 

under all but one circumstance ([OD91b] indicates that all but the most recent read-only 

version on the initial branch may be deleted). 

We do not include a detailed discussion in this appendix of how these differences affect our 

change notification design, but we have possible solutions to all but the inter-object 

references between versions of different configurations (which we have left for future 

work). Therefore, we can say that our change notification server can be made to support 
# 

much of ObjectStore's version management model, but at the cost of making it much more 

complex and Objectstore-specific. 

A. l  CONFIGURATIONS 

In ObjectStore, a confieuration is the unit of versioning, but its definition is different from 

what we called a 'version unit' in Chapter 8 because ObjectStore allows subconfigurations. 



For example, let's use the document set example once more - in Objects tore, proj 1-doc-set 

is defined as a configuration, and each document is defined as a subconfiguration. When a 

version of a configuration is checked out or checked in, ObjectStore's default behaviour is 

to propagate the action to all its subconfigurations, and then their subconfigurations, and so 

on. This recursive behaviour can be overridden when necessary to create a configuration 

which consists of mutually consistent versions of a set of documents as the following 

scenario illustrates: 
t 

Version- 1 of proj 1-doc-set is created containing version- 1 of document A and 

version-1 of document B. Three versions of document A (V2 thru V4) are 

subsequently created (via checkoutlcheckin of just the Document-Hdr 

subconfiguration) before its text is considered complete enough to be included in 

version-2 of proj 1-doc-set. 

The second version of projl-doc-set is created by checking it out with recursive 

behqviour turned off so that version-5 of document A and version-2 of document B 

are NOT created. When version-2 of projl-doc-set is checked in (again with 

recursive behaviour turned off), Objectstore has to resolve version-2's 

subconfiguration references to some objects, and it chooses the most recent versions 

of document A (V4) and document B(V1). 

Figure A-1 shows what the version graph would look like after version-2 of 

projl-doc-set is checked in. Note that V2 and V3 of Document A are not referenced 

by any version of projl-doc-set, but they can be accessed through the use of 

ObjectStore's predecessor (i.e., read-prev) and successor (i.e., read-next) functions 

on document A. 



Document B 1 (V1) 1 
projl -doc-set 

(V1) 

r 

(V2) (V3) 
Document A 

(V4) 

Document B 1 ~ 1  
projl -doc-set 

(V2) 

Figure A- 1 Subconfiguration Example's Version Graph 

A.2 WORKSPACES 

In our version management model, the rules of configuration/version sharing are simple. 

All read-only versions of all configurations are accessible by all clients. The WIP versions 

of configurations are controlled (owned) by the clients that checked them out. Other clients 

are unable to access a WIP version unless the owner makes the WIP version public, and 

the degree of sharing granted by the owner may be read-only, read-write, or read-write- 

delete-checkin. 

In Objectstore, sharing is controlled by workspaces; configurations/versions are owned by 

a workspace (WS), not one or all DB clients. A client's current workspace controls what 

configurations, and what versions of those configurations, are visible to the client. If a 

WIP version is in a client's current workspace, the client has read-write-delete-checkin 

access. 

t 

Workspaces form a hierarchy that can have any number of levels. Configurations/versions 

in a parent workspace are visible from its descendants, but configurations/versions in a 



child workspace are not visible from its ancestors. Thus, nodes higher in the hierarchy 

have higher visibility (i.e., are more public), 

A DB client checks out a version from a parent workspace into a child workspace, makes 

updates to the WTP version over some period of time, then checks the WIP version back in 

to the parent. Other clients whose current workspace is the parent will not be able to access 

the WIP version until it is checked back in. Note that if a client knows the child WS name, , 

there is nothing in ObjectStore to prevent a client from changing its current workspace from 

the parent to the child in order to gain access to a WIP version. 

Different applications will define different workspace hierarchies, and will store 

configurations in different nodes of the hierarchy. In ObjectStore, clients are grouped 

based on their current workspace, so the WS hierarchy design will depend on how clients 

in the application will share version& data. For example, 

data available to 
all DB clients 

data available to 
select groups of 
DB clients 

data available to 
smaller group of 
DB clients 

WIP for 
proj 1 -doc-set 

I group1 WS group2 WS 

groupl .I WS 

Figure A-2 A Workspace Hierarchy Example 



In Figure A-2, the proj2-doc-set configuration is only visible to those clients whose 

current workspace is groupl or groupl .I. The versions of the proj 1-doc-set configuration 

in the global workspace are visible to all clients, no matter what their current workspace is. 



APPENDIX B 
Server Data Structure Design 

In this appendix, we describe two of the notification server's data structures, the 

application schema KB and the monitored event set, in more detail. The information they 

must contain is given, but their physical structure when implemented may be different from 

what we present here. 

B . l  THE APPLICATION SCHEMA KNOWLEDGE BASE 

The following classes define the application schema knowledge base structure: 

class-name: string 
persistent: boolean 

subclasses: collection . 
attributes: collection , 

primary-key : collection- 

AAttri bute 

attr-name: string 

Figure B-1 Application Schema Knowledge Base Structure 

1 2 3  

I 

I I I I I 
AAi nt 

I 

AAstring AAptr 

-, 
I 

AAset 

class: ptr 

AAst ruct 



There is one AppClass instance for each application schema class. AppClass attributes 

indicate if persistent instances of the class are possible (i.e., is the class an abstract base 

, class or not), document class hierarchy connections, list the class attributes, and identify 

the primary key (if a composite key, then the primarzkey collection must be ordered). 

There is one AAttribute subclass (AAint, AAstring;. etc.) instance for each class attribute, 

and each common structured type (e.g., date, time). The number of AAttribute subclasses 

depends on the number of attribute types expected to be used by application data. Figure 

B-1 does not show all the subclasses that are possible. The attribute information is used 

for validation, and to document aggregation hierarchies (i.e., AAptr and AAset attributes 

are inter-object connectors). 

The definition of each AAttribute subclass must provide the necessary information for the 

server to do the desired level of condition specification validation. For example, given a 

condition specification like the following: 

[..I ON IUD TO Station() WHERE capacity > 9 

the notification server could reject this if it knew that the valid range for the capacity 

attribute was from 1 to 5 (i.e., don't monitor for a condition that will never occur). We 

expect that an implementation of the notification server will minimize validation since many 

condition specifications will be fixed in application software. If condition specifications 

may be entered dynamically by a user, validation is more critical. 

The following is an illustration of part of the schema knowledge base for the railway 

network application (see Section 4.2.2 for the DB schema diagrams): 



Passenger-Train T () num-passengers int 

Freight-Train T () hazardouscargo int 

Train-Schedule T () 

Tsched-Segment T () 

trainjd int (PRIMARY KEY) 
cur-seg int 
segs set of Tsched-Segment 

parent ptr to Train-Schedule 
segjd int 
from int 
to int 
depart struct (date, time) 
arrive struct (date, time) 

date 
time 
yr 
mth 
day 
hr 
min 
sec 

struct (yr, mth, day) 
struct (hr, min, sec) 
int 
int 
int 
int 
int 
int 



B.2 THE MONITORED EVENT SET 

The following classes define the monitored event set data structure: 

I AppClassEvents 17 
class-name: string 
inserts: collection 
deletes: collection 

cspecs: 

T 

CondSpec 

cond-id: int 
ins: collection 
del: collection 

.- 
Condition 

<to be> 
<determined> 

D. 

- - 

before-chg: b o o q  

On-An-Event 

-- parent: ptr 

CAs: collection 
SAs: collection 

after-chg: boo1 
focus-attr: <tbd> 

updates: collection--- 

- 
-- -- 

socket # 
cond-id: int 

I 

I 

- 

Figure B-2 Monitored Event Set Data Structure 

- 

- 

- - 
m 

condition: ptr 

There is one AppClassEvents instance for each application schema class being monitored 

for change by the notification server. The application schema classes are those with 

-- 

persistent instances; abstract classes are not monitored. Each application class may have 

O..n insert, delete, and update event conditions being monitored. 

On An Event, and therefore On U Event, instances have four (4) attributes: a pointer to 

the parent AppClassEvents object (for finding the parent when deleting condition 
I 

specifications), a pointer to a Condition object, a collection of pointers to client action 

126 



objects, and a collection of pointers to server action objects. The last two attributes are 

collections because more than one client may need to be notified and more than one action 

may need to be taken by the server. 

On U Event instances have additional attributes as described in Section 6.1.2.1. 

A Condition instance contains the contents of a condition specification's WHERE clause. 

A Condition can be shared by any number of On An Event and On U Event instances. 

The definition of the Condition class is designated 'to be determined' because we have left 

, the implementation of predicate evaluation for future work. 

CAction instances provide the information necessary to send a notification message to client 

process(es) when a change occurs. If we assume only notification to active DB clients, 

CAction attributes are the client's socket number (how to send the message) and the client's 

condition specification ID (what condition spec. the change refers to). If notification could 

take another form (e.g., email), the CAction definition would have to be extended. 

SAction instances provide the information necessary for the server to update its partial 

views and check complex results when a change occurs. The SAction definition is 

designated 'to be determined' because we have left the implementation of complex 

condition specifications for future work. 

There is one Client instance for each active DB client process connected to the server. The 

cond-specs collection is empty until a client sends the notification server its first condition 

specification. There is one Conds~ec instance for each active condition specification. 

CondSpec instances allow the server to cancel condition specifications without having to 

search the A~pClassEvents aggregation hierarchy for all CActions associated with a 

particular client or cond-id. 

127 



References 

[B C79] 0. Peter Buneman and Eric K. Clemons, "Efficiently Monitoring Relational 

Databases", ACM Trans. on Database Systems, Vo1.4, No.3, Sept. 1979, 

pp. 368-382 

[BeM91] Catriel Beeri and Tova Milo, "A Model for Active Object Oriented Database", 

Proceedings of the 17th International VLDB Conference, Barcelona, 1991, 

pp. 337-349 

[BM9 11 Elisa Bertino and Lorenzo Martino, "Object-Oriented Database Management 

Systems: Concepts and Issues", Computer, April 1991, pp. 33-47 

[CK88] Hong-Tai Chou and Won Kim, "Versions and Change Notification in an 

Object-Oriented Database System", Proceedings of the 25th ACMIIEEE 

Design Automation Conference, 1988, pp. 275-281 

[CN90] Sharma Chakravarthy and Susan Nesson, "Making an Object-Oriented 

DBMS Active: Design, Implementation, and Evaluation of a Prototype", 

Proceedings of the International Conference on Extending Database 

Technology, Italy, 1990, pp. 393-406 

[CS92] Raymond G.A. Cote and Ben Smith, "Tapping into Sockets", Byte, March 

1992, pp. 261-266 

[Date901 C.J. Date, "An Introduction to Database Systems, Volume 1 (5th ed.)", 

Addison-Wesley, 1990 



Day881 Umeshwar Dayal, "Active Database Management Systems", Proceedings of 

the 3rd International Conference on Data & Knowledge Bases, Jerusalem, 

June 1988, pp. 150-169 

[Day<) 11 Umeshwar Dayal, "Tutorial 8: Active Database Management Systems", notes 

distributed at IEEE 7th International Conference on Data Engineering, 199 1, 

pp. 1-62 

DMFV901 David J. DeWitt, David Mater, Philippe Futtersack, and Fernando Velez, "A 

study of three alternative workstation-server architectures for object-oriented 

database systems", Proceedings of the 16th International VLDB Conference, 

Brisbane, 1990, pp. 107-121 

DPG911 Oscar Diaz, Norman Paton, and Peter Gray, "Rule Management in Object 

Oriented Databases: A Uniform Approach", Proceedings of the 17th 

International V . B  Conference, Barcelona, 1991, pp. 317-326 

[FVFH90] J. Foley, A. Van Dam, S. Feiner, and J. Hughes, "Computer Graphics (2nd 

ed.)", Addison-Wesley, 1990 
, 

[GJ91] N, Gehani and H.V. Jagadish, "Ode as an Active Database: Constraints and 

Triggers", Proceedings of the 17th International VLDB Conference, 

Barcelona, 1991, pp. 327-336 

[Hor8 61 R. Nigel Horspool, "C Programming in the Berkeley UNIX Environment", 

1986 

133~871 Mark F. Hornick and Stanley B. Zdonik, "A Shared, Segmented Memory 

System for an Object-Oriented Database", in Readings in Object-Oriented 

Database Systems, Morgan Kaufmann, 1990, pp. 273-285 

129  



[Kim891 Won Kim, "An Approach to a Total Solution to Long-Duration 

Transactions", MCC Technical Report ACT-00DS-223-89 

[w881 Glenn E. Krasner and Stephen T. Pope, "A Cookbook for Using the Model- 

View-Controller User Interface Paradigm in Smalltalk-80", JOOP, AugISep 

1988, pp. 26-49 

1 ~ 9 1 1  W.S. Luk and Amelia Choi, "Dynamic Spatial Query Language: A 

Customized Query Language for Object-Oriented Database Systems ", 

Proceedings of IEEE Computer Software and Applications Conference 

(COMPSAC), 199 1 
, 

I&LOW91] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb, "The 

ObjectStore Database System", Comm. of the ACM, Vol. 34, No. 10, 

October 199 1, pp. 50-63 

CMeY911 Scott Meyers, "Difficulties in Integrating Multiview Development Systems", 

IEEE Software, January 1991, pp. 49-57 

[OD9la] Object Design Inc., "Objectstore User Guide", Release 1.1, March 1991 

(DN 1 1 OSUN-DEV) 

[OD9 1 b] Object Design Inc., "ObjectStore Reference Manual", Release 1.1, March 

199 1, @N 1 1OSUN-DEV) 

[Rei9 01 Steven P. Reiss, "Connecting Tools Using Message Passing in the Field 

Environment", IEEE Software, July 1990, pp. 57-66 

[Ris89] Tore Risch, "Monitoring Database Objects", Proceedings of the 15th 

International VLDB Conference, Amsterdam, 1989, pp. 445-453 

130 



[Shan90] Yen-Ping Shan, "MODE: A UIMS for Smalltalk", ECOOPIOOPSLA '90 

Proceedings, Ottawa, October 1990, pp. 258-268 

[SPAMgl] Ulf Schreier, Harnid Parahesh, Rakesh Agrawal, and C. Mohan, "Alert: An 

Architecture for Transforming a Passive DBMS into an Active DBMS", 

Proceedings of the 17th International VLDB Conference, Barcelona, 1991, 

pp. 469-478 

Sun Microsystems, "Sunview Programmer's Guide", Part# 800- 1783- 1 1, 

Revision A, March 27, 1990 

P. Wisskirchen, "Object-Oriented Graphics: From GKS and PHIGS to 

Object-Oriented Systems", Springer-Verlag, 1990 

Kevin Wilkinson and Marie-Anne Neirnat, "Maintaining Consistency of 

Client-Cached Data", Proceedings of the 16th International VLDB 

Conference, Brisbane, 1990, pp. 122-133 

Stanley B. Zdonik and David Maier (eds.), "Readings in Object-Oriented 

Database Systems", Morgan Kaufmann, 1990, p. 25 


