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Abstract 

Althougb spectral methods have attracted much of the attention in current research of 

numerical methods for solving differential equations, little experience is available in applying 

spectral methods to  solve (two - point) boundary vdue problems. In this thesis, two spectral 

methods (the pseudospectral Chebyshev method and the method of transformation to  the 

circle) have been studied to solve second order boundary value problems (BVPs). 

Emphasis is given t o  singzarly perturbed BVPs that are controlled by a singularity 

parameter E .  Three kinds of singularities are investigated: mild ( E  = stiff ( E  = 

and very stiff ( E  = and problems with interior or boundary layers are considered. 

Numerical performances of the above mentioned two spectral methods are judged by 

condition numbers, average errors and cpu times. It has been found that the pseudospec- 

tral Chebyshev method is more suitable t o  solve non-stiff problems than to stiff problems; 

that the method of transformation to  the circle can decrease the condition numbers of the 

relevant matrices when applied to solve non-stiff problems. However, for stiff problems, 

it is nevertheless seldom successful. A brief comparison of the above two methods to the 

Chebyshev collocation method is also presented in this thesis. It is found that once sufficient 

resdntioo is achieved, ouaericd solutims are accurate despite the large condition mmbers. 
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apter P 

Introduction 

Numerical methods for solving ordinary and partial differential equations have always been 

important in scientific investigations. With the advent of computers, the use of numerical 

methods has been popularized, and more importantly, people are now able to attack those 

problems which are fundamental to  our understanding of scientific phenomenon, but were 

so much more difficult t o  study in the past. 

There are a large number of numerical methods available for use now, and among them, 

spectral metZ.ods have attracted much of the attention in current research on numerical 

methods. In this thesis, we plan to  study two specific spectral methods for solving boundary 

%due problems. In this Chapter, we first introduce the pseudospectral Chebyshev method, 

and then briefly mention a quite popular numerical method for solving boundary value 

problems, viz., the collocation method. 

1.1 Pseudospectral Chebyshev Met hods 

Spectrd -!methods are tcday nst zs widely used in the numerical soluticc of (two-point) 

boundary value problems (BVPs), even though they are very popular for time-dependent; 

PDE's. However, for a mriety of BVPs, they are competitive with the classical finite 



UCT 

difference, shooting, and collocation methods (see [15]). In spectral methods, the solution 

is assumed to be a fmite linear combination of some set of global analytic basis functions, 

for example, Chebyshev polynomials. The differential equation yields then a system of 

equations for the coefficients. 

These schemes can be very efficient because the rate of convergence or the order of 

accuracy as the number of modes increases depends only on the smoothness of the solution. 

In particular, for an analytic solution of the differential equation, the error decays ex- 

ponentially (see [l5]). By contrast, for example, in finite difference methods, the order of 

accuracy is fixed by the scheme. 

For the pseudospectral Chebyshev methods, the solution is discretized at the Cheby- 

shev collocation points. The approximate solution is forced to satisfy the eqnation only at 

the Chebyshev collocation points. This method has the advantage of being able to  deal 

more easily with nonlinear terms than the spectral method. The basic idea of pseudospec- 

tral Chebyshev methods consists of replacing exact derivatives by derivatives of interpo- 

lating polynomials at  the Chebyshev points. Unfortunately, the pseudospectral Chebyshev 

methods lead to very ill-conditioned matrices ([4], [IT]). The condition number of the first 

derivative matrix is proportional to N 2 ,  while the condition number of the second derivative 

related matrix increases like N4, where N is the number of collocation points. 

In order to overcome the ill-conditioning an efficient preconditioner was suggested by 

Orszag [I?]. The resulting condition number is nearly constant with respect to N [8]. 

Canuto and Quarteroni [6] proposed two classes of preconditioning matrices: one arising 

from finite difference, the other from finite elements. Further, Orszag [I?] chose a different 

mesh for the preconditioner. An interesting alternative procedure was proposed in [8]: the 

preconditioning operator computes the first derivative at the intermediate grid points, then 

shifts the value to the original grid points. 

Rerrut [4] transfers the problem into an equivalent one on the circle, and then solves 

the problem on the circie with the pseudospectral Fourier method so that the matrix has 



condition 0(..V2) for second order ordinary diffsential equations. We will study this "circk 

technique" in Chapter 3. 

In this section, we will present the pseudospectral Chebyshev method. We considtx a 

smooth function n(xj in the domain s E i-1,1]. The Chebyshev collocation points are 

which are the extremrt of the Nth order Chebyshev polynomial 

TN(x) = cos(N cos-I x ) .  

rn  he function u(x) is interpolated by a polynomial P(x), (P(x;) = u(z;) = a;), of degree 

5 N ,  
N 

P(x) = C ujLj(x), 
j = O  

where Lj is the polynomial of degree N with 

It cca be shown [14] that 

where 

The derivative of u(x) at the collocation points xj  can be approximated in many different 

ways. The most obvious way to  compute the derivative is via matrix-vector multiplication 

f?]. The eotries of the Chebjjshev derivative matrix l?, are computed by taking the axdytical 

derivative of Lj(x) and evaluating it a t  the collocation points s k  for j, k = 0, . . -, ii, i.e., 

dkj = L3(xk). Then the entries of the matrix are 



and now the derivative of u(x;) becomes 

Some researchers have used other methods 1211. Variation of this matrix - vector multiplica- 

tion algorithm are described in [21]; the other popular method uses the FFT (Fast Fourier 

Transform), and is asymptoticaJly faster (O(N1ogN) operations) than a matrix vector mul- 

1.2 Collocation Method 

In this section, we will discuss a collocation method which in some sense is equivalent to 

the Runge-Kut ta method; for an extensive treatment (see [I]). The important difference 

between this method and the pseudospectral method is that it uses basis functions with 

local support and limited differentiability. 

We are given the linear equation 

where y is a given function. Approximating the solution x(t) of (1.2.1) by the method of 

collocation consists of finding a function xn;(t) E span{&, . - - , + N ) .  

by solving the N x N system of linear equations 

Here t l ,  t2, - - , t~ are N distinct points of the domain a t  which aJl the terms of (1.2.2) are 

defined. The function xN(t), if it exists, is said to collocate x(t) at  the points tl , . - , t ~ .  



Any function xN(t) so obtained is referred to as an approximate solution abtained by the 

method of collocation. 

For example, let us consider the Linear boundary value problem 

Lx(t) = x"(t) + p(t)x'(t) 4- q(t)z(t) = f (t), 0 < t 5 1 

and we assume that this problem has a unique solution x(t), and that p(t) and q(t) arc 

continuous on [ O , l ] .  To approximate s(t)  by collocation using the cubic B-splines {B;):!:, , 

let n := 0 = to < tl < - - - < t, = 1. Let x , ~  E s p ~ n { B - ~ ,  Bo,. . - , Using collocation 

with these approximating functions, we seek 

SN = a-lB-1 (t) + aoBo(t) + - -. + a,+l B,+l(t) (1.2.3) 

such that 

X N ( ~ ) =  0, 

LzN(t;) = f (ti), 0 5 i < n 
~ ~ ( 1 )  = 0. 

Notice that we are coliocating at  n+ 1 knots and we force xN(t) to satisfy the same boundary 

data as x(t). However, since we have n -t 3 basis functions, we have the same number sf 

unknowns as equations. 

To compute xN(t), we first use the linearity of L. 

Thus for 0 _< i 5 n, 
n-tl 

LxN(ti) = C ajLBj(ti) = f(ti), (1.2.4) 
j=-1 

where 

while 
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and 

Figure 1.1: Cubic B-spline functions 

Recalling that B;(t) = Bi(t) = B;"(t) = 0 when t 2 and t 5 for each i, we see 

that (1.2.4)  reduces to the hear system 

where the coefficient matrix Cn is 



and a = (a-l, ao, ax, - - - , an+l)T and b = (0, f (ro), f (XI), . , f(s,), o)*. Cn is almost 

tridiagonal, Eliminating a-1 and a,+l leads to an (n + 1) by ( n  $1) tridiagonal system. It 

is clear that x N ( t )  exists and is unique if and only if Cn is nonsingular. 

1.3 Thesis Plan 

In this thesis, we will study three numerical methods for solving singularly perturbed two- 

point boundary value problems of order 2. The plan of the thesis is as follows. In Chapter 

2, we wiU study a spectral method called the pseudospectral Chebyshev rneth~d. The 

necessary background about Chebyshev polynomials and expansions in terms of Chebyshev 

polynomials is reviewed, then the pseudospectral Chebyshev method is derived and thc 

numerical procedure for carrying out this method is explained. This is followed by an 

applicaticn of the pseudospectra! Chehyshev methsd to solve three carefully chosen BVPs. 

In Chapter 3, we will first study a spectral method with preliminary transformation to 

the circle. This method starrts with transforming a problem defined on x E: [-I, I] into an 

equivalent problem defined on the unit circle through x = cos 4; then the method proceeds to 

apply the Fourier spectral method to solve the transformed problem. Next, we will study two 



iterative methods. The first iterative method is the conjugate gradient iteration applied to 

the normal equations, and the second iterative method is the biorthogonalization algorithm 

adapted from the biconjugate gradient iteration. We then apply the transformation method 

and the iterative methods to solve the three problems studied in Chapter 2. 

In Chapter 4, we briefly discuss the Chebyshev collocation method and compare with 

the pseudospectral Chebyshev method discussed in Chapter 2. 

In Chapter 5, we will discuss the numerical results obtained in the previous three Chap- 

ters comp~ehensively, Both merits and shortcomings with each method will be considered, 

together with some explanations and a mention of future research. 

Emphasis in this thesis has been given to singularly perturbed BVPs controlled by a 

singularity parameter E .  Three kinds of singularities have been investigated: mild ( E  = 

stiff ( E  = and very stiff ( E  = 10-9, and three types of layers in exact solutions have 

been considered: one layer at the center of the domain; two layers on the boundaries of the 

domain; and one layer on the left boundary of the domain. Numerical performance of the 

above mentioned methcds have been judged in terms of condition numbers, average errors 

and cpu times. It is shown that numerical solutions are accurate despite the large condition 

number. 



A Pseudospectral Chebyshev 

Method 

2.1 Introduction 

There are many different numerical methods for solving differential equations, and spectral 

methods are now widely used. However, for boundary value problems (BVPs), the use of 

spectral method has not been studied in great detail. In fact, standard textbooks usually do 

not cover the spectral method or its variants for BVPs, although in the sixties polynomial 

collocation methods had received some attention for BVPs (see for example [23]). Efowever, 

spline collocation methods became more popular, and renewed interest in spectral methods 

is more recent. In this Chapter, we study a specific variant of spectral methods, namely, 

the pseudospectral Chebyshev method. 

The basic idea of pseudospectral Chebyshev methods consists of replacing exact deriva- 

tives by derivatives of interpolating polynomials at the Chebyshev points in the domain, 

Improving cornpilutationd efficiency of spectral methods is one of the main purposes of the 

current investigation into these met hods. Discrete Chebyshev differentiation can be rep- 

resented by matrices, and in practice, these matrices are severely ill-conditioried and full. 
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Thus, it is important to find efficient techniques for solving the algebraic systems. The con- 

dition number of the matrix related to the N-point Chebyshev pseadospectral approximation 

of the first derivative operator is proportional to N*,  while for the matrix related to the 

second derivative operator, the condition number increases like N" Iterative methods and 

preconditioning techniques have been proposed to solve these spectral algebraic systems by 

Orszag 1171, Canuto and Quarteroni [6] and other authors. We will discuss iterative meth- 

ods in Chapter 3. In this Chapter, we consider the direct method, namely, the Gaussian 

elimination met hod. 

2.2 Chebyshev Polynomial Expansions 

First, we review several results from approximation theory. The Chebyshev polynomial of 

degree k (k = 0,1, - - -) on [- l ,1] is defined by the formula 

Clearly, ITk(%)[ 5 1 for x E [-I, 11. The Tk are indeed polynomials in x. For example, 

by definition, and using elementary trigonometric identities, we can obtain the recursicn 

Let be the space of square integrable functions defined on [- 1, 11. Then the functions 

Tk constitute an orthonormal basis with respect to  the inner product 

in L?-l*,l. The convergence theory of Chebyshev polynomial expansions is very similar to 

that of Fourier cosine series. In fact, suppose for f ( x )  E Lf-l,ll, we write formay 
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the so-called the Chebyshe~ series associated with f(21, where ak is to be deter~nincd, then 

G(B) := g(cos 0) is the Fourier cosine series of F(6) := f (cos 0) for O < 0 5 T. '?his 

result follows from the definition ~f Tk, because Tk(cos 0) =: cosjkd). G(8) = gjcosB) = 

C& ak cos(k8). Thus, 

Lr f (cos 0) cos(k8)dQ = f (z)Tk(x)(l - r2)-'i'dr. a k  = - 
7i Ck 

where co = 2, ck = I (k > 0). 

It follows from this close relation between Chebyshev series and Fourier cosine series 

that if f(x) is piecewise continuous and if f(x) is of bounded total variation for -1 _< x 5 1 

theng(x) = f[f(x+)+ f(z-)j for each z (-1 < x < 1) and g ( l )  = j(1-),g(-I) = f ( - I + ) .  

Also, if f (p)(z) is continuous for all 1x1 < 1 for p = 0,1, ......, n - 1, and f (^)(r)  is integrahlr. 

then 

a k  = OCk-"1. (2 .2 .7 )  

Since ITk(x)l 5 1 for 1x1 5 1. it follows that the remainder after k terms of the Chebyshev 

series ( 2.2.5) is asymptoticaJly much smaller than k-("-') as k - 30. If f ( r )  is infinitely 

differentiable for jzi < 1; the error in the Chebyshev series goes to zero more rapidly than 

any finite power of k-' as k - m [Is]. 

The most important feature of Chebyshev series is that their convergence properties are 

not affected by the values of f(x) or its derivatives at the boundaries x = f 1, but only by 

the smoothness of f(x) and its deri~atives throughout - 1 < z < 1. In contrast, the Gihbs 

phenomenon shows that the rate of convergence of Fourier series depends on the value of 

f (z )  and its deriva.tives at the boundafies in addition to  the smoothness of f(z)  and its 

derivative in the interior of the interval. The reason for the absence of a Gibhs phenomenon 

for the Chebyshev series of ffx) at z = f l is due to the fact that F ( 0 )  = f (cos Oj satisfies 

F&+l(0) = I;ip+lj~) = 0 provided or& that all derivatives of f(x) of order at most 2 p  $ I 

exist at s = f 1. 

An important consequence of the rapid convergence of Cheby shev polynomial expansions 
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of smooth functions is &;it Chebyshev expansions may normally be differentiated termwise. 

Since 

uniformly for js/ < 1 I if ak --; 0 faster than any finite power of k-I as k - CC, then (2.2.5)  

2.3 A Pseudospectral Chebyshev Method 

Ln this section, we consider a pseudospectral Chebyshev method for the linear second order 

two-point boundary value problem, 

where E is a parameter that controls the sin,darity of the problem. Our discussion will 

follow Berrut [4], who formulated the algorithm for E = 1. Suppose that the problem is 

well-posed and in particular that it has a unique solution. The Chebyshev interpolation 

polynomial can be written as 
hi 

where 
j7i 

zj = cos - ?  j =  O,l , . - - ,X 
i3- 

N-1 are the interpolating points (also called collocation points), {pj},=, are the unknown 

cmff:cients to be and Lljf;z) is the Lagrange inteqdatioa polpomid ass~ciated 

Since L j ( z k )  = lijk (6jk is the Kronecker delta), it follows that r ( z j )  = vj. 



Figure 2.1: Distribution of Chebyshev colloci~tion jmirrts, AT = 32 

Here we analyze the relation between the numbcr of thc collocat,ion points rind t l ~c  widt,h 

Ofc) of the boundary la.yer. 

Since 

ax, = 1x1 - xo1 = 1 COS(T/N) - 1 1  

= 11 - sin(O)(~/N j - 4 COS(O)(T/N)~  + - - - 11 
1 7r2 5 = 2 p = p 9  

T az= ~ c o s ( ~ + 5 ) - 0 1 =  Fm- 

Therefore we can see that the spacing between the colloc;at,ior~ points ncar thc bourrdary 

' whilc t,hc is Axl 0 ( & )  and the spacing near the center of the interva.1 is A? -- O ( E ) ,  

width of the boundary layer is O(cj. For good resdution of our nurnr:rical sdiitiorlfj at 

!east one of the cdocation pokts should tie In the boundary layer (or any transition layclr). 

Therefore we need 5/IV2 < c, ie.,  N > &/&. If the width of the boundary laycr was 

exactly t, we should use N x 2200,220 and 22 for c = lowG, l W 4  and 1 W2 rcspr:ct,ivcly. 
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In our numerical computations we never used N larger than 1024, and therefore, were 

not able to resolve the boundary layers for E = See [24] for a method which achieves 

resolution for smaller values of TJ in the case of small E .  

The Chebyshev method substitutes the interpolation polynomial (2.3.11) into (2.3.10), 

and then replaces r ( z o )  by Uo and v ( x N )  by UN. Doing this, we have 

Using collocation points {zj};"=;', we have collocation equations 

Denoting by D, the matrix of the first derivatives L:(xj) (2, j = 0'1, - .., N), and letting 
- - 
U1(xj) = Uj ( j  = 0 ,1 , - - - ,N) ,  U(zj) = Oj (j = 0 7 1 r - - - , N )  gives 

where 



In view of the fact that the mat rh  of the second derivatives Lyjst)  is the square of D,. 

(see [4]), we obtain the system of linear equations 

for the B(si), i = 1 , 2 , - - - , N  - 1, with pi := p(x;), q; := q(x,).  The largest eigenvalue 

modulus of 02 is known to grow with N like 0 ( N 4 )  (see [4]), and in the example we 

consider in section 2.5, the numerical value of that modulus grows about that fast. 

For simplicity, we write equation (2.3.15) in matrix form 

For a fixed integer N, solving system (2.3.16) for U and substituting U ,  Uo and UN in 

t o  (2.3.11) will lead to  our numerical solution U(x) to the BVP (2.3.10). 

The LINPACK [7] subroutines operate on general square nonsymmetric matrices, The 

operations performed include the triangular factorization of matrices, the estimation of the 



matrix condition number, the solution of simultaneous linear equations and the calculation 

of determinants and inverses. Let A be a real or complex square matrix of order n. There 

is an upper triangular matrix U and a matrix L which is the product of elementary lower 

triangular and permutation matrices such that A = LU. This factorization can be used to 

solve linear equations Ax = b by solving successively L(Ux) = b to compute the inverse of 

The condition number k(A) is a quantity which measures the sensitivity of the solution 

x to  errors in the matrix A and the right hand side b. If the relative error in -4 is of size r ,  

then the resulting relative error in x can be as large as ~ ( A ) E .  Error in A can arise in many 

ways. In particular, the effect of the roundoff error introduced by the subroutines in this 

Chapter can usually be assessed by s&ng E to  be a small multiple of the rounding unit. 

It is possible to efficiently compute a quantity RCOND which is an estimate of the 

reciprocal condition, 1/k(A). If exact singularity is detected, RCOND may be set to 0. 

If A is badly scaled, then the interpretation of RCOND is more delicate. 

We use the double precision, general subroutines DGECO, DGEFA to solve linear system 

Az = b. DGECO is usually c d e d  first to factor the matrix and estimate its condition. The 

actual factorization is done by DGEFA which can be called in place of DGECO if the 

condition estimate is not needed. The time required by DGECO is roughly (1 $ 9 / N )  times 

the time required by DGEFA. Thus when N = 9, DGECO costs twice as much as DGEFA, 

but when N = 90, DGECO costs only 10 percent more. 

Roundoff errors in floating point arithmetic operations usually cause the quantities com- 

puted by the subroutines in this Chapter to be somewhat inaccurate. The following fairly 

vague statements give a general idea of the extent of these inaccuracies. 

DGEE4 produces matrices L and U for which the product LIT is almost always within 

roundoff error of -4, no matter how close A is to being singular. 

DGECO has experimentally been shown to produce an estimate RCOND for which 

IIRCOXD is u sudy  the same order of magnitude as the actual condition number. 



To make these statements more precise, we introduce the followi~tg ~ i o t i ~ t i ~ i l .  Lc6 a ,  bc 

the columns of A. For x E R", define 

Then the condition number of A with respect to lI.I1l is 

If errors are measured in the usual Euchidean norm, 

then the condition number is 

Here al(A) and u,(A) are the largest and smallest singular valuc of A.  k l j / l )  ; L I I ~  k2(/1) ;Lrc 

different, but are usually of the same order of rnagnitudc. 

2.5 Numerical Results 

The pseudospectral Chebyshev method discussed in section 2.3 was scMonr :~pplic:d to solvc 

'i0116: narrow singularly perturbed BVPs. For such problems, wc rlecd to cortsidw two reb. 

regions of very fast variation (so-called boundary or interior l qe r s ) ,  and witlcr rc!giorls of 

slow variation. The concept of singularly perturbed H V P  relates to th l~  r,c)nccpt of stiff UV I' 

in numerical analysis. All the computations in this thesis were done o ~ i  a Sparc sl,at,iori. III  

our Tables, the average errors are computed by 

1 N 
Average Error = - /u(x,) - u ,,,, l ( x , ) j ,  

1v 
3=1  
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where hi is the number of terms used in the Chebyshev series, u(x) is the numerical solution 

and ZL,,,~ is an exact solution. The condition number (RCOND) of A is obtained by 

LIEPACK [7] 

Example 1. 

Consider 

whose solution is 

where 

is the error function. For 0 5 c << 1 this solution has a rapid transition layer at  x = 0. 

COLSYS [I] has no problem for e = to reach error O(IO-~) with mesh points N = 

132, but if the problem is run using no mes5 selection, comparable accuracy is not achieved 

until N = 1280 [I]. The interior layer gets resolved well, because one of the col4ocation 

points is exactly at  the location of the layer. Usually interior layers pose more difficulty. 

We first tested E = For N = 32, 64 and 96, we plotted our numerical solutions 

(the solid-dotted lines) and the exact solution (the dotted line) in Figure 2.1 to Figure 2.3. 

As can be seen, our numerical solutions captured all the properties of the exact solution for 

N as small as 64. See Table 2.1 for a summary of the related condition numbers, average 

errors md cpu tines. It Is interestiog thzt for E = the cm&ticn numbers cf the matrix 

are much smaller than the theoretical 0(N4). 

Next: we tested E = In this case, the rapid transition of the exact solution at x = 0 

showed up moderately. We plotted our numerical solutions in Figare 2.4 to Figure 2.7 for 

N = 32, 64, 96 and 128, respectively. The approximation to  the exact solution improves as 
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AT increases. However, even when N = 128, there is noticeable oscillation near z = 0. Table 

2.2 contains the relevant numerical summary. Still, the condition numbers are smaller than 

o(-w4j. 

Finally, we tested E = In this case, the exact solution has a sharp change at x = 0! 

and it took N as large as 128 to reach a fairly good numerical solution. For this stiff problem 

(i.e. E = 1V6),  see Figure 2.8 to Figure 2.11 and Table 2.3. 

Figure 2.2: Example 1, pseudospectral Chebyshev method, c = N = 32 
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Figure 2.3: Example 1, pseudospectral Chebyshev method, E = low2, N = 64 

Figure 2.4: Example 1, pseudospectral Che3)yshev method, c = lov2,  N = 96 
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Figure 2.5: Example 1, pseudospectral Chebyshev method, e = N = 32 

Figure 2.6: Example 1, pseudospectral Chebyshev method, t. = N = 64 
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Figure 2.7: Example 1, pseudospectral Chebyshev method, E = AT = 96 

Figure 2.8: Example 1, pseudospectral Chebyshev method, E = loe4, N = 128 
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Figure 2.9: Example 1, pseudospectral Chebyshev method, E = N = 32 

Figure 2.10: Example 1, pseudospectral Chebyshev method, ts = lo-", N = 64 
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Figure 2.11: Example 1, pseudospectral Chebyshev method, E = low6, N = 96 

Figure 2.12: Example 1, pseudospectral Chebyshev method, E = N = 128 
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i i 3 / Condition Xumber / Average Error 1 Cpu-Tiroe 1 
/ 3 2 i  6.4x102 / 1.23 x10-I 0.3 1 

Table 2.1: Example 1, pseudospectral Chebyshev method, E = lo-" 

Table 2.2: Example 1, pseudospectral Chebyshev method, s = l o w 4  

3 I Condition Number 

32 1 4.5 x l o 4  

Bverage Error / Cpu-Time 

4.38 x 1 0 - ~  1 0 -28 

Table 2.3: Example 1, pseudospectral Chebyshev method, E = 

S / Condition Sumber 1 Average Error Cpu-Time 

32 j 5.8 x l o 6  4.65 x lW2 0.41 

j m /  1 . 2 ~ 1 0 ~  1.6.  lo-' :.R3 1 
/ 96 1 1.8 xlo7 I / 1.95 x ~ O - ~  5.68 



Example 2. 

-4s the second example, we considered the BVP 

which has the exact solution 

whtxe U(r) denotes an quantity which can be bounded by a constant times E .  This solution 

has two boundary layers at  the ends, and is smooth near the "turning point" x = 0. The 

numeric23 error propagates from the boundaries to the middle of the i n t e r d  [-I, 11. This 

equation has tendency for an interior layer. Maybe oscillations in interior are related to this 

fact. COLSYS succeeded in solving this problem for t = 10-"though the error is not too 

small (See [l]). 

Again, we considered three different cases corresponding to  E = loe2, E = and 

t = respectively. When E = accurate numerical approximation to  the true 

solution was easy to  obtain; see Figure 2.12, Figure 2.13 and Table 2.4. When r = 

it required a relatively large .ii t o  obtain a ~easonable numerical solution; see Figure 1.14 

to  Figure 2-16 for n = 128, 256, 512, respectively and Table 2.5. However, for N = 512, 

a fairly good numerical solution =as achieved. When E = it was difficult to reach 

gcmd numerical solutions wen for large N. It is shown that the pseudospectral Chebyshev 

method fails to solve this txo  boundary l a ~ s  problem with small r ( e g  while it 

succeeds in solving it with 6 = See Figures 2.17 and 2-18. and Table 2.6. However, it 

appears reasonable xo expect highly accurate solution for sufEiciently large IS? even for s m d  



Figure 2.13: Example 2, pseudospectral Chebyshev method, r = 1V2, N = 32 

Figure 2-14: Example 2, pseudospectral Chebyshev method, E = 10-5 N = 64 
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Figure 2.15: Example 2, pseudospectral Chebyshev method, E = N = 128 

Figure 2.16: Example 2, pseudospectral Chebyshev method, E = N = 256 



Figure 2.17: Example 2, pseudospectral Cbebyshev method, 6 = N = 512 

Figure 2.18: Example 2, pseudospectral Chebyshev method, 6 = 10-7 N = 128 



Figure 2.19: Example 2, pseudospectral Chebyshev method, E = N = 256 

Table 2.4: Example 2, pseudospectral Chebyshev method, E = 

N 

32 

N Condition Number Average Error Cpu-Time 

128 3.3 XIO" 2.10 xlo0 14.57 
I 

Table 2.5: Example 2: pseudospectral Chebyshev method, c = 

Condition Number 

3.0 x103 

Average Error , 

2.10 x ~ o - ~  

Cpu-Time 

0.39 



Table 2.6: Example 2, psexdospectral Chebyshev method, c = lo-" 

Example 3. 

-4s the third example, we considered a problem with one boundary layer 

which has the exact solution 

U ( Z )  = (1 - exp (--%)I / {I - exp (-:)I. 
Similar to the previous two examples, when 6 = 1W2, our numerical solutions became 

very accurate for N as small as 64; see Figure 2.19, Figure 2.20 and Table 2.7. When 

E = a large N was needed t o  produce a fairly good numerical solution; see Figure 

2.21, Figure 2.22 and Table 2.8. When E = low6, our numerical solutions were not close to 

the exact solution for N as large as 512; see Figure 2.23, Figure 2.24 and Table 2.9. For this 

problem, the condition numbers are much smaller than 0(N4),  because there is a smdl c 

multiplying the matrix D;. 

Finally? we plot some pictures of the error versus N for Example 1 and 2, as shown in 

Figure 2.25 t o  Figure 2.30. The errors become smaller as N is larger. 
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Figure 2.20: Example 3, pseudospectral Chebyshev method, E = N = 32 

Figure 2.21: Example 3, pseudospectral Chebyshev method, E = N = 64 
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Figure 2.22: Example 3, pseudospectral Chebyshev method, t = N = 128 

Figure 2.23: Example 3, pseudospectral Chebyshev method, t = N = 256 
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Figure 2.24: Example 3, pseudospectral Chebyshev method, 6 = N = 256 

Figure 2.25: Example 3, pseudospectral Chebyshev method, E = low6, N = 512 



Table 2.7: Example 3, pseudospectral Chebyshev method, E = 

N 

32 

Condition Number Average Error 

Condition Number 

1.7 xlo3 

Cpu-Time 

Table 2.8: Example 3, pseudospectral Chebyshev method, 6 = 

Average Error 

4.52 xloqG 

Cpu-Time 

0.36 

N 

256 

512 

Condition Number 

2.3 x lo4  

Table 2.9: Example 3, pseudospectral Chebyshev method, E = lo-' 

1.3 xlo5 

Average Error 

1.54 xloO 
Cpu-Time 

94.07 

1.32 xloO 
I 

749.28 



Figure 2.96: Example 1, average error (*1012) for e = loe2, N = 32,64,96,128 

Figure 2.27: Example 1, average error (*lo2) for e = lW4, N = 32,64,96,128 
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Figure 2.28: Example 1, average error (*lo2) for E = N = 32,64,96,128 

Figure 2.29: Example 2, average error (*lo3) for r = 1W2, N = 32,64,96,128 
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Figure 2.30: Example 2, average error for E = N = 128,256,512 

Figure 2.31: Example 2: average error for E = N = 128,256,512 



Chapter 3 

Preliminary Transform To The 

Circle 

3.1 Introduction 

In our study of the pseudospectral Chebyshev method for linear ODES of order 2 in Chapter 

2, we must solve a system of linear equations whose condition number grows with the 

number of collocation points X like 0(N4). This property arises from the differentiation of 

the Chebyshev interpolating polynomials. When a relatively large AT is needed to produce 

a fairly good numerical solution, the related condition a m b e r  is large, indicating relatively 

low precision in the numerical solution. Therefore, various efforts have been made t,o reduce 

the condition number whenever possible. 

l[n this Chapter, we will first discuss a variant of the pseudospectral Chehyshev method 

studied in Chapter 2, which was suggested by Berrut, L' j .  The idea is simple: firstl the 

problem is replaced by an equiialent one on the circle using a transforrnatiou; secondly, 

the trasformed problem on the circle is solved with the pseudosyectraI Fourier method. 

It is hoped that the related matrices resulted from doing this will have smaller mdi t ior i  

oumbers like 0(M2); see [4]. Fdowing this, we will discuss two iterative met-hods hriefl y. 



3.2 The Method of Transformation to the Circle 

For simplicity, w e  consider a first order problem. Consider the initial value problem 

If the pseudospectraf Chebyshev method is used to find the Chebyshev interpdation poly- 

nomials 
N 

P ( z )  = C @(xjpj(x),  
j = O  

and if the Chebyshev points 

are used as collocation points, one will reach a system of linear equations 

AO = b, (3.2.2) 

where A is D, defined in section 2.3, b = (F(xl), - . , F ( X - ~ ) ) ~ ;  I? = (a(xl) ,  + . - : U ( X ~ ) ) ~ .  

The direct solution to (2.2.2) requires 0 ( N 3 )  operations. The condition number of the 

matrix A grows with 3 like 0(.X2) (see 12;). 

1% new define the process of transformation to the circle with 4 denoting the angle; we 

have 

5 = COS 9, 

f(6) := F(cos 6).  

Thus ujd) and fjd) are 21;-periodic even functions on the full unit circle by defining 

f(21; - 9) = f(~). 

With these definitions, problem (3-2.1) now becomes 



or7 multiplying both sides by sin o, 

It is clear from the definitions that a31 functions appearing in (3-2.4) are 'LT-periodic and 

inherit the differentiability properties of the corresponding functions in the original problem. 

,More importantly: problem C3.2.4) can be solved by the pseudospectral Fourier method as 

described below. 

Interpolating the trigonometric polynomials of degree W between the equidistant. points 

and collocating at  the gj j  yield the linear system 

for the approximate d u e s  2~(+~j, - + - , 21(hNw1). The coefficients (D,+jj, are the values at 

@j of the derivative of the coefficient [4f 

1 @ - Qn 
1,(4j = - sin[hT(+ - d,)] cot -. 

2 2N 

This result comes from the general Lagangian form 

of the trigonometric po1pomid interpolating an arbitrary functiou f (4j  between the (Gj. 

From the definition of the deriwive and Bernoulli rule, one can easily compute [4f 

I"he matrix Dd of the s);stem (3.2.5) is therefore circulant laud skew symmetrjc j. The 4, 

are the images of the Chebyshev points under the transformation 6 = arccosls); therefore, 
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the values of F(+) used in the computation of h(4j) are the same as those used in AU = b 

of (32.2). 

The transformation to the circle technique can be applied to higher order problems. 

We now consider the (singularly perturbed) second order linear two-point boundary value 

problem 

Now, instead of solving (2.3.15) directly, we propose to  apply the circle transformation to 

obtain an equivalent problem which is defined on the circle. To do this, let #(x) = arc cos(x) 

be the inverse of x = cos q3 2nd define ~ ( 4 )  := U(cos 4), p(4) := P(cos +), q(4) := Q(cos $), 

and f(4) := F(cos4); then 

cos +(x) 
dtl(x j = [sin - cos +(x) . @I(%) = - -- 

sin3 $(x) ' 

Substituting the above expressions into (3.2.7) leads to  

cos 4 

Multiplying both sides by sin3 4, we get 

ml 
~ n e  boundary conditions in (3.2.6j are transformed into a(&,) = z k  and = UN. 

The pseudospectrd Fmrier xethod ~pplied t o  the ahme equation then leads to the 

h e a r  system ( j  = 0,1, .  - -,2& - 1) 



Similar to  the pseudospectral Chebyshev method, the matrix of the second derivatives !::(A j 

is the square of the matrix D4 of the first derivatives. And there even exists a simple formula 

Since p($), q(4)? f($) and ~ ( 4 )  are even functions of 4, and moreover, since D4 is 

antisymmetric and D$ is symmetric, only N - 1 of the 2N equations (3.2.10) are linearly 

independent: equations number j = 0 and N reduce to 0 (sin $j = 0 and (Dd)j,ii($,) = O), 

and for n = 1, - -, N - 1, equation number 2N -- n is the negative of equation number n. 

If we substitute G($2N-n) = G(&) into (3.2.9), we only need to solve the system composed 

of the equations numbered 1 to N - 1 of (3.2.9), namely 

by Gaussian elimination. Our computations later show that the condition number of (32.10) 

grows like 0(N2) for non-stiff problems (3.2.7)[4], But for stiff problems, this is not tnie. 

The principle is the transformation of the original problem to the circle and the consequent 

elimination of the endpoint singularities of the factor of the derivatives (csc(4) or an odd 

power of it). The Fourier method is then applied to  the regularized equation; it makes use 

of the same values of the functions appearing in the differential problem as the classical 

Chebyshev method. 
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3.3 Iterative Methods 

It is well-known that algebraic systems resulting from spectral methods are full and rather 

ill-conditioned. For problem (3.2.6), the condition number of the matrix Di grows like 

0 ( N 4 ) .  Considerable attention has been devoted to the use of iterative methods. In this 

section, we briefly discuss two iterative methods [16]. 

3.3.1 CGNR (The Conjugate Gradient Iteration Applied to the Normal 

Equations) 

CGNR is the name for implementation of the conjugate gradient iteration method applied to 

the normal equations [16]. We apply the conjugate gradient iteration to the nonsymmetric 

system 

The normal equations are 

A ~ A U  = ~ ~ b .  

This algorithm constructs a sequence 

T O ,  A ~ T . ,  ( A ~ A ) A ~ T ~ ,  . - - , ( A ~ A ) ~ - ~ A ~ T , - , .  

We want to find the unique sequence of vectors 

with minimal residual at  each step: 

1 1  r ,  I ] =  minimum 

where r ,  = b - ,421,. This is equivalent to the orthogonality condition: 

r,  i ~ ~ ~ { A A ~ T O ~  ( A A ~ ) ~ T O ,  - - - , ( A A ~ ) " T ~ } .  



Now, un can be formed by a three-term recurrence relation in the conjugate gradienr itera,- 

tion. 

The algorithm of CGNR: 

Given an initial guess uo and initial residual 

Given Po := 0; po := Ot  

DO n := 1 , 2 , - - - ,  

The convergence of CGNR is determined solely by the singular values of A. Any two matrices 

with the same singular values have identical worst-case convergence rates. If A is normal, 

the moduli of the eigenvalues are equal to the singular values. For details see (161. 

3.3.2 CGS (The Conjugate Gradient Squared) 

CGS is a biorthogonaLization algorithm adapted from the hiconjugate gradient iteration 

First, we introduce biconjugate gradient iteration (BCG j which constructs non-optimal 

approximations. 

BCG constructs a sequence sf vectors 

which implies 
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for some polynomial pn of degree n, where eo = A-lb - uo, and TO = b - AuO. The value pn 

is now determined by the orthogonality condition 

rn i ~pan{i;~,  AT?o, - + - , A,T~ FO) 

where To E Rn-I is a vector often taken equal to  ro. BCG computes its choice of un by 

three- term recurrence relations. 

CGS, which stands for "CG-squared", is a modification of BCG by Scbnneveld PO] who 

replaces equation (3.3.11) by 

The polynomial pn remains the same and there is no increase in the amount of work per 

step. 

Furthermore, whereas BCG requires vector multiplications by both A and AT, CGS only 

requires multiplications by A. 

CGS algorithm: 

1. Given an initial guess u0 and initial residual 
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Although the convergence of CGS is governed by eigenvalues of A [16], its convergence 

properties are less well understood than CGNR. It is still unknown how frequently CGS 

turns out to be effective. 

3.4 Numerical Results 

We look again at the three examples studied in Chapter 2, using the method of transfor- 

mation to  the circle of section 3.2. We emphasize the comparison of the methods of this 

Chapter and the pseudospectral Chebyshev method of Chapter 2. The reader is reminded 

that in al l  the figures t o  follow, the exact solutions are plotted as dotted lines, and the 

numerical solutions are plotted as solid-dotted lines. 

Example 1 Revisited. 

For the three different values of E and the method of transformation 

to  the circle was applied to solve the BVP of Example 1. Figure 3.1 to Figure 3.11 and 

Table 3.1 to Table 3.3 show the results of the same kind of numerical work that was done 

in Example 1 of Chapter 2. 

The pictures here and the pictures in Chapter 2 look similar, however, the condition 

numbers here are much smaller than those of Chapter 2 (except for the case where N = 128, 

E = and the average errors here tend to be smaller for c = and slightly larger 

for E = and E = low6. The cpu times here tend to  be larger than those of Chapter 

2 (except for the case where N = 128, E = When we applied the iterative methuds 

above, we found that CGNR converged reasonably fast, but CGS did not. Also CGNR 

appears t o  work better when applied to the original problems versus the transformation to 
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the circle. This came as a surprise, since the matrices associated with the circle thechnique 

are better conditioned. Figure 3.18 also shows that quite a few iterations of CGNR are 

required, making this rather expensive. Further study, especially on the use of efficient 

preconditioners is needed. We have chosen N = 96 and computed (2 x N) iterations of the 

CGNR method. The results for the pseudospectral method are shown in Figure 3.17 and 

Figure 3-i8. The Figure 3.19 and Figure 3.20 are the results for the transformation to the 

circle technique. 
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Figure 3.1: Example 1, transformation to the circle method, 6 = N = 32 

Figure 3.2: Example 1, transformation to the circle method, r = N : 64 
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Figure 3.3: Example 1, transformation to the circle method, E = 1W2, N = 96 

Figure 3.4: Example 1, transformation to the circle method, E = N = 32 
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Figure 3.5: Example 1, transformation to  the circle method, E = N = 64 

Figure 3.6: Example 1, transformation to  the circle method, r = lo-', N = 96 
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Figure 3.7: Example 1, transformation to  the circle method, E = N = 128 

Figure 3.8: Example 1, transformation to the circle method, E = -7V = 32 
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I 1 

- l l . O  -0'. 5 O!O 015 1!0 
X 

Figure 3.9: Example 1, transformation to  the circle method, c = rlr = 64 

Figure 3.10: Example 1, transformation to  the circle method, E = N = 96 
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Figure 3.11: Example 1, transformation to  the circle method, E = N = 128 

?i I Condition ir'umber 1 Average Error / Cpu-Time 

32 1 7.1 x102 1 1.23 x ~ O - ~  0.97 

/ 61 1 2.3 xlD3 1 4.18 xlO-" 3.26 



Cpu-Time 

0.92 

3.23 

7.17 

12.74 

X / Condition Xumber / Average Error 

Table 3.2: Example 1: transformation to the circle method, E - 3. W4 

4.39 x 1 0 - ~  

2.15 x10-' 

1.17 x 1 0 - ~  

6.20 x10-~  

32 1 3.2 xlo3 

2.2 xlo4 1 7.7 x IO '  96 

Table 3.3: Example 1, transformation to the circle method, r = 101" 

128 1.7 xlo5 

N 1 Condition Number 

32 

Average Error 1 Cpu-Time 

5.3 x105 4.65 X X O - ~  0.91 



Example 2 Revisited. 

The same kind of numerical vork was carried out as we did in Example 2 of Chapter 2. 

The results are displayed in Figure 3-15 to F i p r e  3.20 and Table 3.4 to  Table 3.6. 

The pictures here look close to the pictures in Chapter 2 again, but the condition numbers 

and the average errors show a crossed pattern. For E = the method of transformation 

to the circle produced much smaller condition numbers to reach the same average errors 

when compared with the pseudosvctral Chebyshev method, however, for 6 = and 

6 = this is no longer true. F x  E = the average errors are still the same for the 

two methods, but the condition numoers are larger for the first method when N is small, 

and then become smaller when N is large. For E - the condition numbers with the 

first method are always larger, while the average errors with the first method are always 

smaller. The cup times also show a crossed pattern. 

We wonder why the condition numbers related with circle technique for smaller 

and are much larger than the condition numbers obtained by pseudospectral Cheby- 

shev method. It seems that the circle technique is only successful in solving non-singularly 

perturbed boundary value problems, but not so successful for solving singularly perturbed 

boundary value problems. 



Figure 3.12: Example 2, transformation to  the circle method, 6 = 1W2, N = 64 

Figure 3.13: Example 2, transformation to  the circle method, 6 = lo-*, N = 128 



Figure 3.14: Example 2, transformation to the circle method, c = N = 256 

E'igure 3.13: Example 2: transformation to the circle method; E- = N = 128 
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Figure 3.16: Example 2, transformation to the circle method, E = lo-', N = 256 



CHAPTER 3. PRELI121INARY TRANSFORM TO THE CIRCLE 

Table 3.4: Example 2, transformation to the circle method, E = 

N 

32 

64 

96 

128 

Condition Number 

9.2 xlO1 

3.3 xlo2 

6.5 x102 

1.1 x l o 3  

N 

128 

Table 3.6: Example 2, trmsformation to the circle method, E = 

256 

Average Error 

2.10 x ~ o - ~  

7.89 XIO-4 

7.85 x l w 4  

7.83 XIO-~ 

Condition Number 

1.5 xlo6 

Cpu-Time 

0.91 

3.2 

7.18 

12.87 

3.7 xlo5 

Average Error 

0.21 x lo1 

0.24 x10-I 

Cpu-Time 

12.78 , 

0.13 XIO-~ fl 343.65 512 

Table 3.5: Example 2, transformation to the circle method, E = 

1.2 xlo5 
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Figure 3.17: Example 1, the pseudospectral method, N = 96, r = lo1* 

S'O 1d0 160 
Itaratf ons 

Figure 3.18: Example 1, the pseudospectral method, IV = 96, E = 
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Figure 3.19: Example 1, the circle technique, N = 96, E = lV4 

Figure 3.20: Example I, the circle technique, N = 96, E = lo-* 
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Chapter 4 

Chebyshev Collocation Met hod 

4.1 Chebyshev Collocation Method 

In this Chapter, we will consider the collocation method with Chebyshev polynomials to 

solve two point boundary value pr,blems. This method is discussed by Boyd [5] and it is a 

"nontraditionaln spectral method, in the sense that we formulate the problem in terms of 

the (Chebyshev) expansion coefficients, but still use collocation. Usually these coefficients 

are determined by a Galerkin approach. We will compare the collocation method with the 

pseudospectral Chebyshev method discussed in Chapter 2. The pseudospectral Chebyshev 

method has a feature that is very attractive for certain types of problems, but leads to dif- 

ficulties with others. This feature is very high resolution near the boundaries. For example, 

the collocation points for Chebyshev polynomial pseudospectral methods for prohlerns on 

-1 5 x 1 are usually chosen such that sj = cos(rj/N) ( j  = 0,1, - ., N). The collocation 

points XI and XN-1 are within approximately 7r2/2N2 of the boundary points and z ~ ,  

respectively, so that the boundary resolution is As = O(l/NZ). 

This leads to  extremely good resolution properties of spectrd metbods for touudary- 

layer problems. While resolution of a problem with a boundary layer of thicknss t. < 1 

would require O(l/ef uniformly spaced grid points, it requires only ~ ( l / r ' / ~ j  terms in the 
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Chebyshev spectral series. Nonuniform grids could be used in many of these problems, as 

they can be implemented fairly efficiently in spectral methods using coordinate transforma- 

tion. We will consider linear two point boundary value problems of the form: 

Using the Chebyshev collocation method, we seek a solution 

where {Tk} is the Chebyshev polynomial of degree k on [-I, 11 define! 

(4.1.2) 

d by formula 

Tk (cos 8) = cos(k0). 

Clearly, 

and, using elementary trigonometric id en ti tie^ 

T k + l ( ~ )  = 22Tk(2) - Tk -I(x) f OT k 2 1. 

We introduce N + 1 suitable collocation points which are the extreme of the Chebyshev 

polynomial of order N. i.e., x j  = c o s ( ~ j / N )  for j = 0,1, .--, N. Then, the approximate 

solution (4.1.2) must satisfy the ODE (4.1.1) and its boundary conditions at the collocation 

points {zj}. Moreover, the f ~ ~ o w i n g  three steps are done: 

(1) Determination of N + 1 coefficients ak(k = 0,1, - . - , N), so that 

and; (2) Evaluation of uf(xj) by 
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Here, the collocation equations are 

and substituting (4.1.3) (4.1.4) and (4.1.5) into the collocation equations, we have a linear 

system for determining coefficients {ak)Fzo, i.e., 

We write it in matrix form 

with 

Chapter 2 indicates that the matrix A is a very U-condition matrix, Its condition aumber 

is 0(N4). Some researchers consider a prwonditialliag scheme to solve this syt;tem(4.1,?) 

[6]- However, we use Lipack subroutines (Gaussian elimination) to solve (4.1.7). 



4.2 Numerical Results 

The method described in section 4.1 is applied to Example 2. Table 4.1 to Table 4.3 contain 

the summaries of the related res-its. 

/ N / Condition Number I Average Error / Cpu-Time i 

Table 4.1: Example 2, Chebyshev collocation method, E = 

Table 4.2: Example 2, Chebyshev collocation method, E = 

N 

96 

Table 4.3: Example 2, Chebyshev collocation method, c = 

Condition Number 

6.1 x104 

N 

96 

Average Error 

1.27 xloO 

Condition Nsmber 

5.0 x104 

Cpu-Time 

4.59 

Average Error 

1-28 xlo0 

Cpu-Time 

4.29 



For the large parameter(€ = 10-~), the numerical results are gradually better with 

increasing N. See Figure 4.1 to Figure 4-6 for N = 32, 641 96, 128. 256, 51'2 respectively. 

For stiff problem, E = we first try N = 96 and N = 128, respectively. Figure 4.7 

and Figure 4.8 show that there are large oscillations. A large N is needed to produce a fairly 

good numerical solution, see Figure 4.9 and Figure 4.10 and Table 4.2. 

For the very stiff problem f viz-, E = the method becomes difficult to solve it with 

the large average errors. See Figrrre 4.10, Figure 4.11 Figure 9-12 and Table 4.3. 

We compare the present method with pseudospectral Chebyshev method we studied in 

Chapter 2. The Chebyshev collocation method for solving the non-stiff problem ( E  = 

is less efficient than the pseudospectral Chebyshev method. For the stiff problem 6 = lo-", 

the Chebyshev collocation method can compete with the pseudospectral Chebyshev method. 

For the very stiff problem ( E  = 1W6), the Chebyshev collocation method is not quite as bad 

as the pseudospectral Chebyshev method. It is interesting the oscillation that occurred in 

the Chebyshev collocation method is still reasonable, while the oscillation that occurred in 

the pseudospectral method is unacceptable in some sense. However, our bastsic conclusjon is 

that the pseudospectral is better than the collocation approach. Also, the condition numbers 

resulting from the collocation approach appear to  be worse. 



Figure 4.1: Example 2, Chebyshev collocation method, E = 1W2, N = 32 

Figure 4.2: Example 2? Chebyshei. collocation method, E = 10-5 ,N = 64 



Figure 4.3: Example 2: Chebyshev collocation method, E =.. N = 96 

Fi,oure 4.4: Example 2: Chebyshev collocation method, r = loy2,  rV =; 128 
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Figure 4.3: Example 2, Chebyshev collocation method, E = N = 256 

Figure 4.6: Example 2, Chebyshe5- collocation method, E = LY = 512 



Figure 4.7: Example 2, Chebyshev collocation method, c - N = 96 

Figure 4.8: Example 2, Chebyshev collocation method, c- = l V 4 ,  hi = I 28 
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Figure 4.9: Example 2, Chebyshev collocation method, E = lW4, N = 256 

Figure -1.10: Example 2, Chebyshev collocation method, E = 1W6, 3 = 96 
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Figure 4.11: Example 2, Chebyshev collocation method, r = lom6, N = 128 

Figure 4.12: Exampie 2, Chebyshev collocation method, E = TO-" N = 256 



Chapter 5 

Discussion 

In this thesis we have studied three numerical methods for solving singularly perturbed 

boundary value problems of order 2. The pseudospectral Chebyshev method was little 

applied to  solve singularly perturbed boundary value problems, therefore, three problems 

have been chosen for our study-the first problem has a layer in the middle of the interval 

[-I: I]; the second problem has two bomdary layers at x = -1 and z = 1; and the third 

problem has one boundary layer at  z = -1. 145th each problem and with each method, we 

have considered three cases of singularity-mild ( E  = stiff ( E  = and very stiff 

( 6  = Our attention in the study has been given to three areas: condition numbers, 

average errors and cpu times. 

The pseudospectral Chebyshev method was studied in Chapter 2. The numerical results 

in this Chapter show that the conditioz number of the matrix related to the N-point pseu- 

dospectral Chebyshev approximation is smaller than N*, but it depends on the singularity 

paraneter E .  ffl general: the s m d a  the E ,  the larger the cmditim ownber. 

For E = lom2 and E = the pseudospectrd Chebyshev method can be successfully 

applied to  solve the three singulasly perturbed BVPs, even though for E = a relatively 

large 3' (X = 256 or 512) is needed to reach a fairly good solution. For E = lov6, the 

pseudospectral Chebyshev method succeeds in solving the first problem. When applied to 



solve the second and the third problems, the method fails to produce cowergins solutions 

for N as large as 512. The failure in these cases is most serious in the middle of the interval 

[-l? 11: where the exact solutions are flat and smooth, while the numerical solutions have 

large oscillations, 

The method of transformation to  the circle was studied in Chapter 3. By transforming 

the problem defined on z E f-l, l] into an equivalent problem defined on the unit circle 

through z = cos 4, this method proceeds to  apply the Fourier spectral method. The numer- 

ical results in this chapter also show that the condition number of the N-point approximation 

increases as the the singularity parameter E decreases. 

The numerical solutions produced with the method of transformation to the circle arc 

of similar quality when compared with those of the numerical solutions produced with 

the pseudospectral Chebyshev method. However, the transformation method does out- 

perform the pseudospectral Chebyshev method for the mildly singularly perturbed problems 

(E = low2). For the stiff (E = and very stiff ( 6  = lov6) problems, there is no 

dominance in performance; sometimes the transformation method does better; sometimes 

the pseudospectral Chebyshev method does better. We compare the condition number for 

above two methods as shown in Table 5.1 to Table 5.6. 

It is noticed that when E = both the pseudospectral Chebyshev method and the 

transformation method failed to  produce acceptable numerical solutions in all the case6 

related to  the second and the third examples, for N as large as 512. The failure is in 

the middle of the interval [-I, 11, where large oscillations occur in the numerical solutions 

even when N = 512. One possible reason for this failure is that there are always fewer 

collocation points near x = 0 than near x = -1 and x = 1 in the above two methods. (For 

the transformation method, thinlc in terms of the inverse transformation 4 = arccos(x), j 

The two iterative methods; the conjugate gradient iteration applied to the normal eyua- 

tions (CGNR) and the biorthogonalization algorithm adapted from the biconjugate gradient 

iteration (CGS) were also studied in Chapter 3- We had hoped to see a good performame 



of these two iterative methods, but only the CGNR method converged. 

Other effort has also been made to study the possibility of improving the quality of our 

numerical solutions. For instance, in the study of the pseudospectral Chebyshev method, 

we also tried to use Chebyshev polynomials to construct approximations (known as the 

Chebyshev collocation method) in addition to  the standard use of Lagrange polynomials. 

The condition number appears to be worse. 

Finally, we will briefly analyze the numerical errors. We consider the linear system 

A s  = b,  then the relative error in z [lo] is 

where f and 6 are the numerical results, i.e. AZ = 6. Thus, the relative error in x can be 

the condition number k2(A) times the relative error in A and b. In this sense, the condition 

number ka(A) quantifies the sensitivity of the Az = b problem. On the other hand, by a 

singular d u e  decomposition (SVD) analysis, the SVD of A is 

where U = (u1,u2,+-=,a,), V = (v1,v2,..-,vn) and C = diag(al,o2:..-,on) with UI 2 

a2 > . . 2 a,, > 0. Then 

The absolute error in x is 

n 

6b = b - 6 = C fiBiui (where ~i = 
i=l 



Here we assume that every component in 6 has the same relative error 

Therefore, we have 

The relative errors in x and b have the same order, 

We have plotted the singular vectors versus Chebyshev points for Example 1 (with 

E = 1 V 2  and N = 96) as shown in Figure 5.1 to Figure 5.6. The behaviour of the singular 

values and the coefficients {b;) of the equation (5.1) are shown in Figure 5.7 and Figure 

5.8. Based on our numerical experiments, we can see that the numerical solutions are 

accurate despite the large condition numbers. This needs to  be contrasted with the worst 

case scenario, namely that b = blul and 6b = ,Gnu.,, i.e. the right hand side is the direction 

of the singular vector associated with the largest singular value GI, but the perturbatio~l is 

only in the direction of 21, associated with the smallest singular vdue a,. Our investigation 

shows that the singular vectors associated with large singular values are highly oscillatory, 

whereas the ones associated with small 0;s are smooth. This is expeckd since A describes 

a differentiation process. Sow, although the right hand side of our BVPs may be smooth, 

the boundary conditions areincorporated ia the vector b, making it a nonsmooth vector (at 

least for problems which generate interior or boundary layers), as is illustrated by Figure 

5.8. However, the full effect of the large condition number kz(A) = a1 /a, could only he felt, 

if the perturbation in b were very smooth [associated with the small sir~gvlar K&PS), wfiicli 



is extremely unlikely for perturbation generated by finite precision arithmetic. Thus it is 

plausible that (5.2j holds. This also explains why the transformation to the circle, although 

decreasing the condition numbers, does not promote higher accuracy. 



N / Direct Method I Circle Techniaue 

Table 5.1: Example 1, the condition number for two methods, E - 1W2 

Table 5.2: Example 1, the condition number for two methods, E = lo-" 

K 

1 32 

Table 5.3: Example 1, the condition number for two methods, E = lo-" 

Direct Method 

4.5 x 104 

1 ?j Direct Method Circle Technique 

32 1 

Circle Technique 

3.2 x103 

Circle Technique 

5'3 x105 

6.3 x105 

5.8 x105 

5.3 x l o 5  

PI' / Direct Method 

Table 5.4: Example 2: the condition number for two methods, c = 

32 

64 

5.8 xlo6 

1.2 x107 

1.8 x107 

128 2.4 x l o7  



Table 5.6: Example 2, the condition number for two methods, E = 

3 

Figure 5.1: Example 1: singular vector (al) versus Chebyshev points, E = lo-*, N = 96 

Direct Method Circle Technique 

1.5 x106 

3.7 x l o 5  

1.2 x l 0 "  

128 

256 

Table 5.5: Example 2, the condition number for two methods, E = 

3.3 xlo4 

I 
2.5 x105 

512 ] 3.9 x106 



Figure 5.2: Example 1, singular vector (uz) versus Chebyshev points, c = lo-" N = 96 

Figure 5.3: Example 1; singular vector (a3) versus Chebyshev points, E = 1W2, M = 96 



Figure 5.4: Example 1, singular vector (ag3) versus Chebyshev points, E = loe2, N = 96 

Figure 5.5: Exmple l2 singular vector (2694) versus Chebyshev points, t = 10-'; N = 96 



Figure 5.6: ExampIe 1, sinDnlar vector (uS5) versus Chebyshev points, E = N = 96 

Figure 5.7: Example 1, singular d u e s  E = N = 96 



Figure 5.8: Example 1, coefficients ( b i }  of the equation (5.1) t- = lop2, N = 96 
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