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Abstract 

Programming language design is explored from the viewpoint that support for program 

manipulation is a fundamental guiding concern. Three general areas of language design are 

identified as being of particular significance in terms of support for manipulation, namely the 

mapping between concrete syntax and abstract syntax, the mapping between static seman- 

tics (context-dependent syntax) and abstract syntax, and the mapping between equivalent 

language constructs. Abstract syntax-tree nodes and their context-dependent relations are 

the unifying concept in this realm. 

A particular programming language, Acer, based on the typeful programming language 

Quest, is designed and implemented to illustrate how support for manipulation is enhanced. 

Acer is a general-purpose, imperative language with a full accompaniment of modern lan- 

guage features, as well as a number of novel features (e.g., persistent storage). Its concrete 

syntax is designed to meet strict requirements, e.g,, every node gives rise to a token so that 

it is visible for selection or annotation. Its abstract syntax is similarly strict and provides 

node representations for all semantic objects. Hence, semantic relations are simply rela- 

tions on nodes and semantics-preserving transformations, such as folding and unfolding, are 

supported as simple transformations of node structure. 

Acer's support for manipulation demonstrates the benefits of designing abstract syntax 

first and treating concrete syntax as a particular way of viewing abstract syntax. It also 

demonstrates that a concrete syntax can be designed which is both natural in appearance 

and yet highly constrained. And, perhaps most importantly, it demonstrates that imperative 

languages can support the same kinds of powerful transformations supported by functional 

languages, e.g., all expressions can be folded. 
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Chapter 1 

The representation of language 

1.1 Programming language design 

This thesis explores progra~nlning language design from the viewpoint tha t  support for pro- 

gram manipulation is a fundalncntal guiding concern. A program, after all, is a structured 

object which throughout its lifetime is the target of numerous manipulation activities, in- 

cluding everything from initial construction to subsequent debugging and maintenance. As 

such, the design of a program representation that  facilitates manipulation is of primary 

importance. 

Consider, for instance, the design of a representation of natural numbers. Roman numer- 

als provide an  adequate representation but Arabic numerals provide a manipulable represen- 

tation: they facilitate meaningful semarltic manipulation (e.g., addition and multiplication 

of numbers) via simple syntactic manipulation (e.g., combining the  digits of numerals). For 

a language of programs, as for a language of numbers, such a manipulable representation is 

best. 

Illuminating the path towards the d&gn of more mariipulable languages is the well- 

recognized observation that  a language exists a t  three levels of abstraction: 

r meaningful semantic objects 

r abstract syntactic objects 

r concrete lexical objects 

Accordingly, language dcsig~l too takes pla.ces a t  three levels: 

r Designing the set of possible semantic objects. 
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Designing the abstract syntax to  represent the semantic objects. 

0 Designing the concrete syntax to  encode the  abstract syntax. 

And since the decisions made a t  each level depend on decisions made a t  the previous level, 

language design logically proceeds in a top-down manner. 

The  primary goal of a particular language design, then, is t o  represent a particular 

semantics in the simplest and most flexible way. To further this goal: 

T h e  complexity of the semantic objects should be kept t o  a minimum. 

0 The  abstract syntax should mirror the structure of the semantic objects. 

The  concrete syntax should mirror the structure of the abstract syntax. 

Now the semantic objects of a programming language vary considerably depending on 

whether the language is functional, imperative, relational, object-oriented, and so on. De- 

spite tha t ,  there are techniques applicable to any programming language for representing 

the semantic objects as syrltactic objects and for encoding the syntactic objects as sequences 

of symbols [AU72,AU73,A~77]. Alld the manipulation characteristics of the language are 

strongly influenced by the nature of these techniques. 

After all, the semantics of a program is derived from its syntactic structure, so meaningful 

manipulation is best supported by directly manipulating this structure. And indeed, existing 

high-level manipulation tools invariably represent programs as abstract syntax trees and 

carry out manipulation in terms of these syntax trees. Examples of such systems are  Mentor 

[DGKLMS4], PSG [BSSG], and the Cornell Program Synthesizer [TR8l,TRIISl,RepS4,RT84, 
RT891. To advance these higklevel manipulation tools, a well-designed language should 

specify an  abstract syntax that  enhances a programmer's ability t o  synthesize, analyze, and 

transform programs. 

The  design of a lexical encoding of abstract syntax, although a secondary concern, is not 

immaterial however, for abstract syntax can only be viewed in terms of a concrete encoding. 

Nevertheless, an encoding is simply one possible view; many alternative views could be 

defined for various different purposes. Only when underlying abstract syntactic structure is 

emphasized is it possible to consider the provision of such alternative views. 

Moreover, the advent of high-resolution bitmapped displays and high-quality typeset 

printing provides exciting possibilities for producing more readable views. T h e  notion of 

literate programming [KnuS4], which advocates an integrated approach to  program con- 

struction and documentation, benefits greatly from these technological advances: various 
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font cues, such as bold-face keywords and italic identifiers, can dramatically improve a pro- 

gram's readability. 

In this light, a language designer, ignoring the inherent limitations of ASCII, should first 

design the abstract syntax of a language and should only then design the portable ASCII view 

of that  syntax. The designer should then consider the possibility of defining more readable 

views that make better use of improving display technologies. For example, a mathematical 

expression encoded in ASCII as 

could be more readably viewed using mathematical notation as 

and could even be viewed as a syntax tree: 

square- (7 

A program, then, is a syntactic ol~jcct,  not merely a sequence of ASCII symbols. This 

perspective echoes the first scrltence of [TRIISl], which states: "Programs are not text; they 

are hierarchical compositions of computational structures . . ." 

It  is well-established that programs should be viewed abstractly as syntax trees consist- 

ing of nodes. What is not so wcll-established is that this abstract view should be specified 

during 1angua.g~ design. Doing so erlsurcs that different tools, and even different language 

implementations, support the same a.bstract view and that tools can be integrated into a 

unified supporting environment [DMSSll]. Since high-level support tools invariably imple- 

ment manipulation in terms of a syntactic representation, a standaad abstract view should 

clearly be specified as part of a language definition. 
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The  definition of DIANA [GWEB83], an intermediate representation for Ada [Ada83], 

demonstrates recognition of the fact that  a standard abstract representation for programs 

as da t a  objects is an important goal. An example of its use is presented in [Ros85]. Unfor- 

tunately, DIANA was designed almost as an  afterthought; i ts  design did not influence the 

design of Ada. As a result, DIANA is complex because it must handle all the details of 

Ada's concrete syntax. 

The  emphasis on abstract syntax as the basis for manipulation can even be taken one 

step further by insisting that  all aspects of a programming language's static semantics be 

defined in terms of nodes and relations on nodes. As such, all static semantic objects are 

represented as nodes and hence a program is just a set of related nodes. For instance, each 

identifier node in a program will have a related node that  represents its defining-occurrence 

and each expression node will have a related node tha t  represents its type. Dyck referred 

this use of nodes for representing both programs and their derived semantic attributes as the 

double-duty strategy [Dyc90]; he applies the strategy to  define the complete static semantics 

of I S 0  Pascal [ISOS3], thereby demonstrating its feasibility. I used the strategy in earlier 

work [Mer87] involving the source-to-source compilation of Modula-2 [Wir85]. 

To clarify any misconceptions, the term static semantics draws a distinction between 

semantic aspects tha t  are static in nature, such as scoping and typing, and semantic as- 

pects tha t  are dynamic in nature, such as activations, continuations, allocations, and so on. 

Although the distinction between static and dynamic semantics is clear, the distinction be- 

tween static semantics and syntax is blurred. Both deal with constraints on node structure: 

syntax deals with context-free constraints and static semantics deals with context-dependent 

constraints. For example, in the Pascal if-statement 

IF condition THEN action 

syntax constrains condition to be an  expression, while static semantics constrains condition 

to  be of type Boolean. This blurring of static semantics and syntax is desirable because it 

allows both notions to  be llandlod uniformly through the representation of nodes. 

In this thesis, "contcxt-free" syntax is used to describe the tree relations specified by a 

context-free grammar and "coiltext-depcndelfl syntax is used t o  describe the static-semantic 

relations derived from the tree relatio~ls. "Syntax" thus includes static semantics. 



CHAPTER 1. THE REPI tESEN' l i lT lON OF LANGUAGE 

The design of Acer 

TO bring substance to  this exploration of language design, I will demonstrate the design of 

a programming language called Acer. Like all language designs, the design of Acer begins 

with requirements. In this case, Accr is to  be a more manipulable version of Quest [Car89]. 

I chose Quest, a complex imperative language with a n  elaborate type system, so tha t  I 

would encounter, with the design of Acer, all the technical problems involved in designing a 

full-scale language. Furthermore, the richness of Quest's semantic structure provides many 

inherent manipulation opportunities and issues not present in other contexts. As well, Quest 

conforms to  many of the design principles discussed in Chapter 4. Realize, however, that  

the requirements for a programming la~lguage are often beyond the control of the language 

designer. In this scnse, the ctloicc of Qucst is an arbitrary one. 

TO demonstrate the manipulation advantages of Acer, I have implemented an  environ- 

ment for Acer, called PCAcer, collsisting of a language-based editor and a compiler. This 

environment, described in detail in Appendix B, was implemented using a GRAMPS-style 

metaprogramming system [Clsil], a tool tha t  enables programmers t o  write high-level tools 

and transformations i l l  terms of an abstract representation of programs. In many ways, 

designing a l a ~ ~ g u a ~ e  tllat supports manipulation is synonymous with designing a language 

tha t  has a simple metaprogramming system. Details are presented in Chapter 5 .  

The remainder of the tllesis is organized as follows. Chapter 2 presents an overview 

of Acer, outlining its features and  how they support manipulation. Chapter 3 explores 

techniques for specifying syntax, including a modified GRAMPS-style approach for specifying 

context-free syntax as well as a relational approach for specifying context-dependent syntax. 

Chapter 4 discusses manipulation principles for guiding language design, and explains how 

they are applied to the design of Acer-these principles were also presented in [MDC92]. 

Chapter 5 describes Acer's mctaprogram1~~ir~g system and shows how it is used to  facilitate 

manipulation. Finally, Chapter 6 summarizes the results of the thesis, relating it to  the work 

of others and suggesting directions for further research. 

Additional information is provided in the form of appendices. Appendix A gives a precise 

specification of Acer, providing morc detail than the overview of Chapter 2. Appendix B 

is the user's manual for PCAcer, Acer's language-based environment. Appendix C is the 

implementor's nmnual for Acer's rnctaprogramming system and its environment. And Ap- 

pendix D provides quick reference tables for Acer's manipulation primitives and Acer's type 

system. 
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Much effort has gone into the design and implementation of PCAcer in order to  demon- 

strate the efficacy and feasibility of the ideas presented. However, PCAcer is not intended 

t o  be innovative and so is not described in the main body of the thesis. Readers are never- 

theless urged to  read the user's manual of Appendix B to  get a feel for how Acer's semantic 

and syntactic framework enhances the manipulation support provided by a programming 

environment. 

PCAcer is a simple, yet powerful, programming environment. It is a language-based 

environment, according to the Dart taxonomy [DEFH87], and an  instance of an  individual 

model programming environment, in the terminology of [PK91]. It uses the hybrid approach 

to  language-based editing described in [RS86], providing both textual and structural views 

with easy conversion between the two. 



Chapter 2 

introduction Acer 

This chapter presents an  informal overview of Acer. It  is intended as  a more intuitive intro- 

duction than  the  detailed definition in Appendix A. However, the reader is strongly urged 

to consult Appendix A to  clarify questions concerning syntax tha t  might arise, particularly 

section A.34, which summarizes Acer's grammar. The  grammar formalism itself is described 

in Chapter 3. Appendix D provides quick reference tables. 

Throughout this thesis, hyphenated terms, such as binding-list, defined-identifier, and 

defining-occurrcnce, are used to refer to concepts with a particular Acer meaning, usually as 

a syntactic element or attribute. It would be more precise t o  use instead the terms binding- 

list construct, defined-identifier component, and defining-occurrence attribute.  However, to  

avoid being overly pedantic, this more precise terminology is used only if confusion would 

arise in its absence. 

2.1 Conceptual foundations 

Before outlining Acer, consider the general categories of semantic object t ha t  are  common 

to  programming languages and the implications of these categories on support for program 

manipulation. Ideally, a language should support a simple and uniform model of semantic 

objects and their corresponding syrltactic representations, for this simplicity and uniformity 

are key in supporting straightforward formal manipulation without a myriad of special cases. 
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2.1.1 Value 

In general, programs manipulate abstract entities, i.e., values, according to concrete repre- 

sentations, i.e., as bits in memory. The details of the concrete representation are unimpor- 

tant however, only abstract behavior matters. Therefore, the semantics of a programming 

language is concerned primarily with values, not with particular representations of values. 

However, when manipulating a program, it is often necessary to  manipulate the values to 

which the program refers. Hence, to support manipulation, it is desirable that  there exist for 

every value, a corresponding expression (i.e., a syntactic literal) to denote it. In other words, 

each value should have a syntactic representation, so it can be expressed and manipulated 

as part of a source program. 

As a counter-exa~nple, co~~sider  the way records are supported in Pascal. A variable of a 

record-type can be declared and the fields of that variable can be initialized via assignment, 

but there is no concept of a record-literal, i.e., a syntactic expression that  denotes a record 

with particular values for its fields. IIence, although Pascal supports manipulation of records 

as run-time values, it does not support manipulation of records as syntactic objects. Yet 

supporting environments must often present run-time values in a human readable form, such 

as when debugging a program, so the need for a syntactic representation for each class of 

value inevitably arises. 

With a well-designed expression syntax for literals, there is a blurred distinction between 

a semantic value and a syntactic expression that denotes it. After all, a semantic value 

must be represented in some particular way; when that representation closely mirrors the 

structure of the semantic value, the semantic value and its representation are easily confused. 

For example, drawing a distinction between the number ten and the numeral 10 may seem 

like semantic nit-picking. Rut it is this distinction which allows semantic manipulation (e.g., 

the sum of two numbers) to be achieved by syntactic manipulation (e.g., by a formal process 

involving adding the digits of the two numerals). It is also what allows the number ten to 

be concretely represented as the base two numeral 1010 in memory. 

To generalize, then, for any particular programming language, value is the ground-level 

category of semantic object, and to support program manipulation, a corresponding category 

of syntactic object should exist. The uniform treatment of abstract entities as values and 

the provision of syntactic representations for those values is the best way to support the 

syntactic manipulation of programs and the values they use. It is encouraging, therefore, 

that the trend toward more expressive programming languages, which include a richer variety 

of first-class values (e.g., Quest provides first-class functions and first-class modules), is also a 
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trend toward enhanced support for program manipulation, provided syntax is appropriately 

designed. 

2.1.2 Type 

Programming languages generally organize their value space according t o  type, giving rise to  

the type-level category of semantic object. Since manipulating a program involves manip- 

ulating the types to  which the program refers, it is desirable if there exists for every type, 

just as for every value, a corresponding expression (i.e., syntactic literal) to  denote it. 

When striving to  achieve an expressive programming language, there may be a tempta- 

tion to  treat types as values, as docs Poly [Har84], but this temptation should be avoided. 

Prograrn manipulation is best supported for programs with strong static constraints. This 

should riot hinder expressiveness though because dynamic typing can be supported within 

the framework of a statically typed language [ACPP91,CF91]. 

To generalize, then, for any particular programming language, values, the ground-level 

category of semantic object, are organized according to  type, the  type-level category of 

semantic object. And, just as for values, a corresponding type-level category of syntactic 

object should exist. 

2.1.3 Kind 

Just as programming languages organize their value space according t o  type, so too a pro- 

gramming language can organize its type space according to kind, giving rise to  a kind-level 

category of semantic object and a corresponding kind-level category of syntactic object. 

Quest has such a type system. 

This thesis will demonstrate, however, that  the inclusion of a syntactic representation for 

kinds is unnecessary. Acer has a type system analogous to tha t  of Quest, but Acer provides 

only syntactic representations for values and types. The  notion tha t  types are  typed is 

retained, but the type of a type, i t1  Acer, is a type rather than a kind. Manipulation is 

enhanced by an economy of syntax. 

2.1.4 Additional syntactic categories 

In an  ideal programming language, then, each category of semantic object gives rise to  a 

corresponding category of syntactic object. And to  enhance manipulation of the semantic 

objects, there should be a simple direct mapping between semantics and syntax. Thus, in 
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an  ideal programming language, a ~rograrn 's  semantic objects are  mirrored by the structure 

of its syntactic objects. 

Now, because a programming language is used t o  specify values in terms of computa- 

tions, the syntactic category for value (expression) will include additional syntactic classes 

corresponding to  various value-yielding semantic operations, e.g., function-calls, condition- 

als, and so on. As well, because not all semantic operations are  naturally value-yielding, 

syntactic categories disjoint from value may also occur, such as the category statement in 

Pascal. Nevertheless, in an expression-oriented language [vWMP+76,KR78], semantic oper- 

ations tha t  are not naturally value-yielding may be interpreted as yielding instead a special 

type of value indicating a void result. Thus all semantic operations can be treated uniformly 

as expressions, although some are evaluated purely for side-effect. This uniform treatment 

enhances support for manipulation. 

Another notion common to  programming languages is the notion of scope: an  identifier 

is associated with a semantic object and is visible over some region in which it is used to  

stand in place of that  semantic object. Static scoping with nested block structure is widely 

accepteA as the preferred approach for dealing with scope. 

According to the terminology used in this thesis, an  identifier denoting a semantic object 

(i.e., a value or type) can be introduced by either a binding or a declaration. The  distinction 

between the two is that  a binding construct associates with its identifier a particular semantic 

object, but a declaration specifies only the object's type-the actual semantic object is then 

associated with the identifier dynamically, either via parameter binding or via assignment. 

To reiterate then, a binding construct initializes the identifier it introduces but  a declaration 

specifies only the identifier's type. 

2.1.5 Summary 

To summarize the above, the semantic objects of a programming languages can be catego- 

rized according to  the ground-level category, which includes values; the type-level category, 

which includes types; and the semantic-operation category, which includes computational 

and scoping structures. 

Accordingly, the syntactic objects of a programming language can be categorized accord- 

ing t o  the value category, which includes value literals and value-yielding semantic operations; 

the type category, which includes type literals and type-yielding semantic operations; the 

binding category, which includes type- and value-bindings; the declaration category, which 

includes type- and value-declarations; and the miscellaneous category, which includes all 
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those syntactic objects tha t  serve merely as components of semantically complete syntactic 

objects (e.g., just as an argument-list serves merely as a component of a function-call and a 

signature serves merely as a component of a function-type). 

This conceptual framework is the basis for Acer's design and mirrors the underlying 

framework of many programming languages. 

2.2 Onward 

Acer's design is based on that  of Quest [Car89], an  imperative, general-purpose, expression- 

oriented language with an  elaborate type system tha t  supports type quantification and struc- 

tural subtyping [CWS5]. Like Quest, Acer features abstract types, polymorphism, single and 

multiple "inheritance," and garbage collection. Acer differs from Quest in significant ways, 

however. 

Most importantly, Quest has three levels of semantic objects (values, types, and  kinds), 

and Acer has only two (values and types) because kinds are  represented as  types. To under- 

stand h ~ w  this is possible one must realize that  Quest's subtyping rules induce a lattice on 

types (i.e., a type hierarchy), and that  a kind is simply a sublattice of this lattice. Intuitively, 

kinds classify types just as types classify values. Thus, in Quest one says, "The type T is 

an  element of kind I<.'' 

Now, a kind, being a sublattice, can always be denoted by its root type, i.e., the sublat- 

tice's maximum type. Therefore, in Acer, each of Quest's three ways of specifying a kind is 

replaced by a type as follows: 

Instead of providing the kind TYPE, which Quest uses to  denote the whole type 

lattice, Acer provides the a.ny-type Any, which it uses to  denote the root of the type 

lattice. 

Instead of providing the ~ower-k ind  P O W E R ( T ) ,  which Quest uses to  denote the 

sublattice rooted a t  type T, Accr provides just T itself. 

0 And finally, instead of providing an operator-kind O P E R  () K ,  which Quest uses to  

denote the sublattice rooted a t  a type-operator1 Oper ( )  T, where the type T is an 

element of kind Ii, Acer provides just the type-operator itself (see 2.9). 

'A type-operator is a function from types to types. 
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Therefore, in Acer, type expressions are  used to  denote kinds. Also, since the kind of a 

type expression is a type, it is as natural to  refer to  the type of a type expression as it is 

to  refer to  the type of a value expression. Thus type expressions and value expressions are 

jointly referred to  as simply expressions. And we can speak of the type of an expression, 

regardless of whether it denotes a type or a value. So, in Acer, when we say tha t  a type T 

is of type I< we mean tha t  T is a subtype of I<. 

Acer also includes a number of features not present in Quest. In particular, features for 

supporting high-level iteration and accumulation are provided (see 2.16), as  are  features for 

supporting high-level notations applicable to  abstract-types (see 2.7). 

Eliminating kinds from the syntax and introducing additional constructs significantly 

alters Quest. Quest's syntax is further altered in accordance with the  GRAMPS approach 

and the relational approach, as described in Chapter 3,  and t o  conform with the design 

principles described in Chapter 4 .  For example, in Acer, type and value expressions are  to  

be syntactically distinguishable. Therefore, a type-identifier must start  with an upper-case 

letter and a value-identifier must not. (An underscore is considered a n  upper-case letter.) 

Besides letters and digits, a value-identifier may also be spelled using a combination of the 

following: 

Here are some examples of type-identifiers: 

Base- Type 

and here are  some examples of va.lue-identifiers: 

value V- 0 ++ \ / <= 

As an  additional font cue for distinguishing type-identifiers from value-identifiers, type- 

identifiers are shown Italic and value-identifiers are shown slanted. Also, keywords are shown 

bold to distinguish them from identifiers; comments, which start  with a '%' and end a t  the 

end of the line, arc shown in Itoman; and character- and  string-literals (see 2.8) are  shown 

in typewriter. 

Acer's syntax includes a number of unusual features. First of all, several constructs 

contain unbalanced brackets (e.g., '(', '{', and '[') tha t  are balanced by the  matching bracket 

of a different construct. For example, a binding-list begins with a '{' followed by a series of 

binding constructs but no terminating ').' However, a binding-list in context can appear only 

as the initial component of a block, and a block provides the terminating 0.' Thus, although 
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a construct out of context may have unbalanced brackets, brackets are always balanced for 

constructs in context. The justification for this approach stems from the notion of avoiding 

phrase ambiguity as discussed in section 4.3. 

Another unusual aspect of Acer's syntax, which closely mirrors that  of Quest, is the fact 

that all commas and semicolons are optional. Acer's syntax is designed so that  it is always 

clear where a given construct ends and a new one begins; hence separators and terminators 

are redundant. Throughout this thesis, commas and semicolons are generally included only 

to separate or terminate constructs appearing on the same line; or when the example is 

intended to indicate appropriate punctuation. 

Acer's scope rules follow the traditional style of nested block structure, but forward- 

reference among declarations and bindings is generally permitted. This provides direct 

support for recursion. Restrictions on forward-references to  values prevents access to  unini- 

tialized values (see A.7.2). To begin this overview of Acer, consider the way value- and 

type-identifiers are introduced a t  the top level, that is, with global scope. 

2.3 Global identifier 

The most basic Acer program consists simply of a fixed-value-binding, for example, 

let pi be 3.14159 

introduces a location named pi of type Real containing an approximate representation of the 

mathematical value n. Compiling2 this binding produces the fixed-value-declaration 

pi : Real 

which is then globally visible to  subsequent compilations. 

An arbitrary number of global value-identifiers can be simultaneously introduced in the 

form of a binding-list. For example, compiling the binding-list 

{let x be y ;  
let y be 10; 

produces two declarations: 

x : Integer 

'Of course, compiling a binding produces object code in addition t o  producing a declaration 
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and 

y : Integer 

A binding-list begins with a left brace and the bindings are terminated by optional semi- 

colons; there is no terminating right brace. Top-level binding-lists typically are used only for 

introducing mutually dependent values, a situation that arises only infrequently. The above 

values are not mutually dependent since y could be compiled separately before x. 

A global type-identifier is introduced by a type-binding, for example, 

let Color be Enumeration red, blue, green end 

introduces an enumeration-type named Color. Unlike a fixed-value-binding, which must be 

compiled to produce the declaration that becomes visible, a type-binding is directly visible 

without prior compilation. 

To understand the reason for the different handling of global types and values, realize 

that Acer supports information hiding by introducing a global value-identifier with a decla- 

ration, x~rhich indicates the identifier's type but hides its implementation. Such a top-level 

declaration, as we shall see in section 2.7, is analogous to  a Modula-2 definition module 

[Wir85]; the binding from whicl.1 it is derived is analogous to a Modula-2 implementation 

module. Thus, in Modula-2 terms, one could think of it as if compiling an implementation 

module (a  binding) automatically produces a definition module ( a  declaration). 

Of course, in above exa.mple, there is little reason to hide the value associated with pi, 

except maybe to hide the number of significant digits supported by the implementation of 

Real. But then, the example is intended to be a simple one, not an example that  shows 

the need for information hiding. Had the binding introduced a function, the effect would 

have been to declare a value-identifier with a function-type, thereby hiding the function's 

implementation. 

Hiding of type implementat,ions is supported in similar manner using type-declarations, 

for example, 

Color :: Any 

A type-declaration indicates the kind of type bound to its identifier but hides the  actual 

implementation, which may be any subtype of the indicated type. However, hiding of a type 

implementation occurs only i l l  the context of a quantifier, which provides the operations that 

apply to values of the hidden type (see 2.7 and A.20.3). Hence, top-level type-declarations 
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are not supported. Type  hiding will be discussed further with respect to  type-declarations in 

function signatures (see 2.6) and with respect to  type-declarations in tuple-types (see 2.7). 

To summarize then, each top-level value-identifier is introduced by a fixed-value- 

declaration, for which there presumably exists a fixed-value-binding tha t  provides the value's 

definition, i.e., its hidden implementation; and each top-level type-identifier is introduced 

by a type-binding tha t  provides the type's definition. In this way, any value or type can be 

introduced a t  the top level to  make it globally visible. 

Acer economizes on notation by avoiding special top-level constructs, such as modules, 

interfaces, packages, and so on. Explicit imports and exports a re  also avoided. Acer simply 

makes do with nested block structure and existing constructs, such as  bindings and declara- 

tions, which serve other roles in the language as well. Such economy simplifies manipulation. 

2.4 Block 

Binding-lists are mow frcqucntly used in conjunction with blocks so tha t  bindings can be 

introduwd local to an  expression. A block consists of a binding-list and a body and is either 

a type-block, e.g., 

{let T  be I n t e g e r ;  T )  

or value-block, e.g., 

{let x be 10; let y be 20; {x + Y ) )  

depending on whetl~er the body is a type or a value. Remember, type and  value expressions 

are to  be syntactically distinguishable. Notice the use of a dyadic-method-call {x + y) ,  which 

is similar in appearance to a block, to invoke the I n t e g e r  addition operation. Method-calls 

are discussed in detail in section 2.7. 

A binding in a type-block's binding-list must be a type-binding, bu t  a binding in a 

value-block's binding-list may be a type-, fixed-value-, or variable-value-binding. A variable- 

value-binding is directly analogous to a fixed-value-binding except for the  additional var 

indicator, e.g., 

let var x be 0 

A variable-value-binding introduces an updatable location, initialized as  indicated, which 

may subsequently be modified by assignment, e.g., 



CHAPTER 2. AN lNTRODUCTION TO ACER 

{x becomes 10) 

The  syntax of an assignment expression mirrors tha t  of a dyadic-method-call. T h e  type of 

a n  assignment expression is Void, the type of a value expression evaluated for side-effect; 

the void-literal {) denotes the one value of type Void, and this is the value yielded by an  

assignment. 

When a value-block is evaluated, the bindings are evaluated first and the  body is evaluated 

in the context of those bindings to  yield the result of the block. The  bindings themselves 

can be evaluated in any order tha t  does not access uninitialized values. For example, in the 

block 

{let x be f (); let y  be g 0; {x + y) )  

either f or g can be evaluated first. Nevertheless, a left-to-right evaluation must be a correct 

evaluation order as determined by dependency analysis (see A.7.2), and  bindings may well 

be evaluated in tha t  order. For example, the block 

{let x be h (y);  let y be 42; {x + y ) )  

is incorrect because it cannot be evaluated left-to-right. So to  put it another way, the depen- 

dencies between bindings must be reflected in their left-to-right order, but when bindings do 

not depend on one another, they can be evaluated in any order. This provides a measure of 

freedom to  the compiler implementor. 

So that side-effects can be sequenced, Acer provides a compound-value, which is a list 

of value expressions bracketed by begin end and separated by optional semicolons, for 

example, 

begin f 0; g (); h ( )  end 

A compound-value is evaluated left-to-right ~ i e ld ing  the value yielded by the last expres- 

sion. If any evaluation raises an  exception (see 2.12), the compound-value also raises tha t  

exception. The  empty compound-value is equivalent t o  the  void-literal. 

Acer supports local program transformations by providing blocks tha t  can be introduced 

local to any expression context. IIcnce, new objects can be made visible over precisely the 

region in which they are required. See section 4.9 for further discussion of this issue. 
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2.5 Enumeration 

Acer provides the enumeration-type construct for defining enumerations. For example, the 

binding 

let Color be  Enumeration red, blue, green end 

introduces an enumeration-type named Color. The  values of type Color can be denoted using 

literal-selection, e.g., Color.red. The  commas separating the identifiers of a n  enumeration- 

type are optional. 

Enumeration-values are ordered and hence an  ord-call construct is provided t o  determine 

the ordinal position of an enumeration-value, e.g., ord (Color.red) yields the Integer value 0. 

In addition, given an ordinal position, the corresponding enumeration-value can be  obtained 

with a val-call, e.g., val (Color, 0 )  yields the value Color.red. Enumeration-values can also 

be used in Acer's variant-irispcction as dcscribed in section 2.13. 

Notice that  the identifiers of an enumeration-type are not visible without the qualification 

of a literal-selection. This enhances manipulation by keeping separate name spaces disjoint. 

See section 4.8 for a discussion concerning the impact of scope rules on manipulation. 

2.6 Function and function-call 

A function in Acer is defined using a function-literal. For insta.nce, a function named f can 

be introduced by a binding containing a function-literal as 

let f b e  function ( Type :: Any; value : Type) value end 

where 

( Type :: Any; value : Type) 

is called the signature. Thc  function denoted by f, which is the polymorphic identity function, 

can then be called as 

f (Integer, 10) 

or equivalently as 

f (let Type b e  Integer, let value be 10) 
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to yield the Integer value 10. In general, an argument-list is similar to a binding-list except 

that an argument-list comprises a list of arguments (i.e., expressions and bindings) that 

begins with a left parenthesis and is separated by optional commas. Just as the left brace 

of a binding-list is balanced by the right brace of a block, so too the left parenthesis of an 

argument-list is balanced by the right parenthesis of a function-call. 

When a function-call is evaluated, the arguments are bound to  the declarations of the 

function's signature and then the function's body is evaluated in the context of those bindings 

to  yield the result of the call. 

As a bit of an aside, Acer provides is and isnot to test for value-identity. Therefore, 

because f is the polymorphic identity function, the is-test 

{X is f  (TYPE (x) ,  x)) 

always yields true, regardless of the type of x. Hence, even 

{f is f (TYPE ( f ) ,  f ) )  

is valid and yields true. Notice how the type-designation T Y P E ( x )  is used to denote the 

type of x. In general, a type-designation can be applied to any expression to denote the type 

of that expression. 

The type of a function-literal is a function-type. For example, the type of f (i.e., the 

type denoted by TYPE ( f ) )  is the function-type 

Function ( Type :: Any; value : Type) Type end 

The result-type indicated by a function-type can be explicitly indicated in a function-literal. 

For example, f  above could be equivalently given as 

let f be  function ( Type :: Any; value : Type) : Type value end 

Notice how the initial lower-case or upper-case letter in function and Function distinguishes 

a function-literal from a function-type, just as it distinguishes a value-identifier from a type- 

identifier. This style is used often in Acer. 

The use of type-declarations in signatures supports polymorphism. For example, the 

function max in 

let max b e  
function (BnseType :: Any 

< : Function ( a  : Base Type; b : Base Type) Boolean end 
x : BaseType 
y : Base Type) 

if {x < y )  then  y  else x end 
end 
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defines a polymorphic function that takes four parameters, a base-type of type A n y ,  a less- 

than function that applies to values of the base-type, and two values of the base-type. The 

function m a x  yields the maximum of the two values of the base-type as determined by the 

less-than function. Notice the use of Acer's conditional expression (see A.23.3) ,  which can 

in general include e l s i f  clauses, and also the use of a dyadic-method-call to call the less-than 

function. Method-calls are described in the section 2.7. 

The type of rnax is 

Function ( B a s e  Type  :: A n y  
< : Func t ion  ( a  :Base  Type;  b : Base  T y p e )  Boolean e n d  
x : Base  Type 
y : Base Type )  

Base Type 
end 

and the appearance of BaseType  as the result-type demonstrates that  the type of a function- 

call can depend on its type parameters. For example, the function rnax could be called 

rnax ( In teger ,  integer.<, 10, 20) 

or equivalently as 

rnax ( l e t  BaseType  be  Integer 
l e t  < be  integer.< 
l e t  x be  10 
l e t  y b e  '20) 

to yield the Integer value 20. Notice how integer.< is used to select the  less-than function 

from the integer module. Sectiori 2.7 explains how such modules are defined in terms of 

tuples. 

The function rnax could be applied to a different type of argument as well, e.g., 

rnax (Rea l ,  real.<, 1.2, 10.2) 

yields the Real value 10.2. 

A function cannot ascertain the actual types bound in a function-call to  the type- 

identifiers declared in its signature so each of these identifiers is considered to  be an abstract- 

type. In other words, a type is an abstract-type if it is introduced by a declaration. (Note 

that the type bound to a type-parameter cannot be determined even a t  run-time since typing 

in Acer is static, except for dynamics which are described in section 2.15.) The values of 
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each abstract-type in a function signature, and the operations that  apply to those values, 

must be declared in the same signature; hence the signature quantifies the abstract-type (see 

A.20.3). For example, in the function max the abstract-type Base Type is declared along 

with two values of that type and a function applying to those values. 

Recall that the introduction explained that in Acer each type expression has a type just 

as each value expression has a type. Normally, for a concrete-type, such as a function-type 

or an enumeration-type, a type expression is its own type. But for an abstract-type, such as 

Base Type, its type is given by its type-declaration. (Here we see the double-duty strategy in 

action.) At run-time, all that is known about a given abstract-type is that  it is a subtype of 

the indicated type. In the function max, the type of BaseType is Any and hence BaseType 

is unrestricted. In other cases, the type of an abstract-type is something other than Any 

such as a function-type or an enumeration-type and hence is partially restricted. Specifying 

such restrictions involves Acer's subtyping rules, which will be described in section 2.14. 

When a function-literal is evaluated, as opposed to when a function-call is evaluated, a 

closure, i.e., the set of all values used by the literal, is computed. At run-time, a function- 

value therefore contains both a reference to the instructions for evaluating the literal's body 

and a reference to the closure. For example, 

let h be function ( x :  Integer) 
{let var y be  x 
function ( )  

begin {Y becomes {y + I}}; y end 
end) 

end 

defines a function h that returns a locally defined function with the updatable location y in 

its closure. Note that y is allocated on the heap. The type of h is 

Function (x : Integer) Function ( )  Integer end end 

and hence the type of h (0) is 

Function ( )  Integer end 

Successive calls to the function yielded by h (0) yield succesive Integer values starting with 

1. 

Acer's functions support manipulation by allowing any value expression to  be abstracted 

over (see 4.14). In addition, functions are first-class va.lues and can thus be used just like 

any other value: they can be ~ a s s e d  as parameters, stored in da ta  structures, and returned 

from functions. 
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Like Quest, Acer supports polymorphism through the use of explicit type-parameters, an 

approach that is substantially different from approaches that  infer the type-parameters from 

the value-parameters. Such a type-inference approach is the basis for supporting polymor- 

phism in ML [Mi1781 (or see [Wik87, pages 378-4201). A more extensive approach, which 

involves inferring not only the type-parameters but also the semantic operations associated 

with the type-parameters, is described in [CW90]. Explicit polymorphism has the advantage 

of being easier to define and support, but there are notational advantages to  the type- 

inference approach, terseness of notation being one of the primary advantages. A limited 

form of type-inference is supported in Acer through the use of method-calls (see 2.7). 

2.7 Tuple, method, and selection 

The tuple is Acer's primary data structuring mechanism and subsumes the conventional 

notion of modules. A tuple-literal, like an argument-list, is a list of arguments separated 

by optional commas. But in this case, the list is bracketed by tuple end. The type of a 

tuple-litoral is a tuple-type, which is analogous to a signature except that  the declarations 

are bracketed by Tuple end. For example, 

tuple 10, 10.0 end 

has type 

Tuple : I n t e g e r ;  : R e a l  end 

Notice that the defined-identifier of a declaration is optional SO that  a declaration can be 

derived from an expression as well as from a binding. This supports the declaration of 

anonymous parameters arid anonymous data-structure components. Notice too that  type- 

and fixed-value-declarations are distinguished by the fact that a type-declaration uses two 

colons rather than one. Thus the type-declaration ::Any is distinguishable from the fixed- 

value-declaration : Any. 

Tuples can introduce types as well as values, e.g., 

let t be 
tuple 

let T y p e  be I n t e g e r  
let value: T y p e  be 0 
let operation be function (x  : T y p e )  : T y p e  {x + 1) end 

end 
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which has type 

Tuple 
Type :: Any 
value: Type 
operation : Function (x : Type) Type end 

end 

Note how a binding explicitly indicates a type, as in the binding for value, t o  specify the 

type of the derived declaration. The  components of t are  accessed using either type-selection 

(e.g., t. Type) or value-selection (e.g., t.  value and t.operation). 

The  type-selection t .  Type is an  abstract-type because the actual type used in the defini- 

tion of t is inaccessible. For instance, we might have defined t as 

let t be 
tuple 

let Type be Real 
let value: Type be -10000.0 
let opera.tion be function ( x :  Type) : Type {x + 10.0) end 

end 

In either case, t introduces an  abstract-type t.Type of type Any, a single value t.value of 

that  type, and a single function t.opera.tion tha t  applies to  values of tha t  type. Thus the 

tuple t acts as a module implementing an abstract-type and to  support information hiding, 

the abstract-type's definition is inaccessible. 

The  reader may be unsettled that  t.value might contain any type of value whatsoever. 

This is of no concern, however, because each abstract-type is unique so t.value can only be 

used as a value of t. Type. Hence, it can only be passed to  the function t.operation by the 

call t.operation (t.va.lue) to  yield another value of type t. Type. 

Consider now an extended example in which we define a n  abstract-type for simple three- 

dimensional vectors. Compiling the binding 
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let vector be  
tuple 

let Type :: Any be Tuple x : Real; y : Real; z : Real end 
let construct be  

function ( x  : Real; y : Real; z :  Real) : Type 
tuple x, y, z end 

end 
let x be function ( v  : Type) : Real v.x end 
let y be function ( v :  Type) : Real v.y end 
let z be function ( v  : Type) : Real v.z end 
let + be 

function (vl  : Type; v2 : Type) : Type 
tuple {vl  .x + ~ 2 . ~ 1 ,  {vl  .y + ~ 2 . ~ 1 ,  {vl  .z + v2.z) end 

end 
let - be  

function ( v l  : Type; v2 : Type) : Type 
tuple (v1.x - v2.x), (v1.y - ~ 2 . ~ 1 ,  (v1.z - v2.z) end 

end 
let " be 

function ( v  : Type) : Type 
tuple { "  v.x), { "  v.y), {"  v.z) end 

end 
end 

produces the declaration 

vector : Tuple 
Type :: Any 
construct : Function (x : Real; y : Real; z : Real) Type end 
x : Function ( v  : Type) Real end 
y : Function ( v  : Type) Real end 
z : Function (v : Type) Real end 
+ : Function (vl  : Type; v2 : Type) Type end 
- : Function (vl : Type; v2 : Type) Type end 
" : Function ( v  : Type) Type end 

end 

The abstract- type vector. Type allows us to illustrate several significant aspects of Acer. 

First of all, notice that Accr cannot support overloading because the identifiers defined 

by a tuple must be distinct. Since '-' is used for subtraction of vector. Type values, a different 

symbol, namely '"', must be used for negation. Acer's Integer and Real are also defined in 

terms of abstract-types and so they too use '"' for negation, which can be called using a unary- 

method-call, e.g., {"  10). However, integer- and real-literals can still use the conventional 

notation (e.g., -10 and -10.0) since in this case '-' is considered part of the literal. 
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Given the values vl  and v2 of type vector. Type, which could be created as 

let vl be vector.construct (-10, 20, -30) 

and 

let v2 be vector.construct (10, -20, 30) 

we could add the two values using vector.+ (v l ,  v2). We could negate v l  using vector." ( v l ) .  

Also, we could access the x coordinate of v l  using vect0r.x ( v l ) .  These notations are rather 

verbose so Acer provides method-calls as a short-hand notation for function-calls (see A.21). 

A prefix-method-call is the most general form of method-call. It looks like a function-call 

except that  the function must be a value-identifier and the argument-list is preceded by a dot,  

e.g., + . (v l ,  v2). The  function-call equivalent of a given prefix-method-call is determined by 

searching the operations associated with each successive argument tha t  has an  abstract-type. 

Hence, +.(vl ,  v2) is equivalent to  vector.+ (v l ,  v2) because the type of v l  is vector. Type and 

vector provides a '+' component. A dot is used in the syntax for prefix-method-calls so 

that  a prefix-method-call is distinct from a function-call and SO tha t  one is reminded that  a 

prefix-method-call involves value-selection. 

Acer defines both unary- arid dyadic-method-calls in terms of prefix-method-calls, for 

example, {" vl  ) is equivalent t o  ".(vl ) and {vl  - v2) is equivalent t o  - . (vl ,  v2). Also, 

when value-selection is applied to a value with a n  abstract-type, it is treated as equivalent 

to  a prefix-method-call. By doing so, Acer allows values with abstract-types t o  support 

the familiar dot-notation for selecting components. For example, the x coordinate of the 

vector. Type value vl  could be accessed using the (abstract) value-selection v1.x which is 

equivalent by rewriting to  the prefix-method-call x . (v l )  which in turn is equivalent after 

method-lookup to  the function-call vect0r.x ( v l  ). 

To complete the discussion of method-calls, consider one last Acer construct tha t  is 

defined in terms of a prefix-method-call, namely an  index expression. An index expression 

such as a[;, j ]  is defined to be equivalent to  index2.(a, i, j ) ;  hence any value with an abstract- 

type can support the notation for subscripting. Notice tha t  the method-name used in the 

prefix-method-call is of the form indexn, where n indicates the number of indexing values, 

which may be zero or arbitrarily many. 

Abstract-types can also support assignable value-selection and indexing by using the 

rule that  if the prefi x-method-call equivalent method.(arguments) of a given value-selection 

or index has a Pointer or Reference type then the prefix-method-call equivalent is instead 

method.(argurnents)~. In other words, an abstract value-selection or index expression that 
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yields a reference or pointer is automatically dereferenced and hence the resulting expression 

may occur as the destination of an assignment. We shall see examples of this in the discussion 

of pointer- and reference- types in section 2.1 0. 

Acer's tuples support manipulation by providing modules as first-class values: they can 

be passed as parameters, stored in da ta  structures, and returned from functions. 

2.8 The standard abstract-types 

Acer provides special syntactic support for five basic types, namely Integer, Real, Character, 

String, and Boolean. Support for the first four types is provided in the form of literals. We 

have already seen examples of integer- and real-literals. A character-literal is of the form 'a' 

and a string-literal is of the form "abc". No additional special support is provided for these 

four types, each of which is defined in tcrms of an abstract-type encapsulated by a tuple. 

Special syntactic support is also ~ rov ided  for the type Boolean, but not in the form of 

literals since these are denoted as boolean.false and boolean.true, or simply as false and 

true (see A.23). Syntactic support for Boolean values is ~ r o v i d e d  in the form of short-circuit 

evaluation constructs for evaluating 'and' and 'or.' In particular, a n  andif-test 

is equivalent to 

if x then  y else false end 

and si~nilarly an orif-test 

is equivalent to  

if x then  true else y end 

Although the andif-test and orif-test have the appearance of a d~adic-method-call ,  they 

cannot be implemented as such (by the boolean module, say) because both arguments would 

be evaluated before the mcthod were called. 

Acer's standard abstract-types receive no additional syntactic support. Acer attempts to  

Provide general support for abstraction rather than attempting to  provide specific support 

for a mlmbcr of special built-in abstractions. This is in keeping with providing support for 

general manipulation. 
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2.9 Type-operator and operator-call 

Type-operators are  functions from types to types tha t  are evaluated statically, i.e., a t  

compile-time. For example, a type-operator can be introduced as 

let Dyadic be 
Operator (Base Type :: Any; Result Type :: Any) 

Function ( : Base Type; : BaseType) Result Type end 
end 

This type-operator can then be called using an  operator-call as  

Dyadic (lnteger, Boolean) 

which denotes a type equivalent to  

Function ( : Integer; : Integer) Boolean end 

In this way, type-operators provide a convenient short-hand notation for complex type ex- 

pressions. 

Acer does not support recursive type-operators since type-evaluation, i.e-, the rewriting 

of every operator-call in terms of the definition of its type-operator, must be guaranteed to  

terminate. For instance, suppose we wanted a type-operator BinaryTree tha t  we could call 

as Binary Tree (Real) or Binary Tree (vector. Type). Such a recursive type-operator might be 

incorrectly presented as 

let Binary Tree be 
Operator (Base Type :: Any) 

Tuple 
x : Base 7Spe 
lcft Child : Binary Tree (Base Type) 
right Child : Binary Tree (Base Type) 

end 
end 

It should instead be defined in terms of a recursive type, 

let Binary Tree be 
Operator (BnseType :: Any) 

{let Type be 
Tuple 
x : Base Type 
lcft Child : T y p e  
rig11 t Child : Type 

end 
Type) 

end 
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The power of type-operators lies not in the ability to use them as a short-hand notation 

but in the ability to use them to define parametric abstract-types. For example, suppose we 

wanted to define an abstract-type for ~aired-objects of the same arbitrary base-type. Such 

an abstract-type is provided by the declaration 

pair : 
Tuple 

Type :: Opera tor  (Base Type :: Any) Any end  
construct : 

Function (Base Type :: Any; x : Base Type; y : Base Type) 
Type (Base Type) 

end  
x : Function (Base Type :: Any; p : Type (Base Type)) Base Type end  
y : Function (BaseType :: Any; p : Type (BaseType)) Base Type end  

end 

which could be implernentcd by the tuple 

tup le  
let Type b e  

Opera tor  (Base Tgpe :: Any) 
Tuple x : Base Type; y : Base Type end 

end  
let constr~lct b e  

function (Base Type :: Any; x : Base Type; y : Base Type) 
: Type (Base Type) 

tuple  x, y end  
end  

let x b e  function (Base Type :: Any; p : Type (Base Type)) p.x end  
let y b e  function (BaseType ::Any; p :  Type (BaseType)) p.y end  

end  

With the above declaration of pail- visible, the function-call in 

let pr b e  pa.ir.construct (Integer, 10, 20) 

yields a value of type 

pair. Type ( Integer) 

The x compor~~nt  of the pair pr can then be selected using pair.x(Integer, pr). But this 

of the pair pr can also be seled,ed using the value-selection pr.x, which is equivalent to the 

~ r e f i x - m e t h ~ d - ~ ~ l l  x.(pr) since the type of pr is an abstract-type. When a prefix-method- 

call applies to an argument with an abstract-type given by an operator-call, as does pr with 



C H A P T E R  2. A N  INTRODUCTION T O  ACER 2 8 

type pair. Type (Integer), the type arguments given in the operator-call are included as the 

first arguments in the function-call equivalent of the prefix-method-call. Therefore x . ( ~ r )  is 

equivalent to   pair.^ (Integer, pr) .  In this way, all forms of method-call, namely index, value- 

selection, prefix-method-call, dyadic-method-call, and unary-method-call, are supported for 

parametric abstract-types. 

Type-operators enhance manipulation by supporting abstraction over type expressions, 

just as functions support abstraction over value expressions (see 4.14). 

2.10 Pointer and reference 

Acer provides two very similar types Pointer and Reference to  support the modeling of 

updatable locations. These two parametric abstract-types are introduced respectively by 

the type-bindings 

let Pointer be pointers. Type 

and 

let Reference be references. Type 

Their modules arc: made availa.ble by the dcclarations 

p o i ~ ~ t e r s  : 

Tuple 
Type :: Operator (Base Type :: Any) Any end 
new : Function (Base Type :: Any; : Base Type) 

Type (Base Type) 
end 

end 

and 



CHAPTER 2. AN INTRODUCTION TO ACER 

references : 
Tuple 

Type :: Operator (Base Type :: Any) Any end 
new : Function (Base Type :: Any; : Base Type) 

Type (Base Type) 
end 

create : 
Function 

(Base Type :: Any 
fetch : Function ( )  Base Type end 
store : Function ( : Base Type) Void end) 

Type (Base Type) 
end 

end 

Pointer-values model updatable locations in terms of memory addressing whereas reference- 

values model updatable locations in terms of fetchlstore functions. 

A pointer-value p of type Pointer (Integer) can be created as 

let p be pointemnew (Integer, 10) 

We can then define q as 

let q be p 

so tha t  the dereference po and the dereference qO yield the value a t  the same storage location. 

Hence, the dereference pa yields the value a t  the location pointed a t  by p. Such a dereference 

can be used anywhere tha t  a variable of the base-type can be used. For instance, 

{pa becomes 100) 

updates the value a t  the location pointed a t  by p. 

Acer provides a pointer-call construct, which can be used to  determine the address of an  

updatable location. Using this construct the pointer-value p could instead be created as 

let p be {let var loca,tinn be 10; pointer (location)} 

Remember, Acer allocates the variahl(:-vali,e-bindings of a block on the heap rather than on 

the stack, so the above does  lot produce a dangling stack reference. 

References are created in an analogous manner, e.g., a reference-value r of type 

Reference (Integer) can be created as 

let r be rcferences.new (Integer, 10) 
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The  value a t  the location referenced by r is yielded by the dereference r(D and we can use 

{ra b e c o m e s  100) 

to  update the value a t  the location referenced by r. Acer provides a reference-literal3 con- 

struct which could equivalently be used to create r as 

l e t  r be {let  var location b e  10; reference(1ocation)) 

From what has been described so far, ~ o i n t e r s  and references are equivalent. Their 

difference lies in the references.create function. The  original definition of r :  

l e t  r b e  references.ncw (Integer, 10) 

is equivalent to 

l e t  r b e  {let  v a r  location b e  10 
references. crea t e 

(Integer 
l e t  fetch b e  func t ion  ( )  location e n d  
l e t  store b e  func t ion  (update  : Integer) 

{location b e c o m e s  update) 

e n d )  1 
Hence, a refercnce-value is implemented as a pair of functions, for fetching and  storing the 

referenced value-the fetch function is called when the dereference rQ is used to  yield a 

value and the store function is called when the dereference is used as the destination of an  

assignment. Therefore, references provide high-level control over d ~ r ~ f e r e n c e  and assignment. 

For example, references could be used to  record the number of assignments made to  a 

Particular reference, or to  print out a message each time a reference is ~ c c ~ s s e d .  

To demonstrate a simple application of pointers and references we will show the  imple- 

mentation of an abstract-type for updatable paired-objects of the  me arbitrary base-type. 

The binding 

3Unlike a pointer-call, a reference-literal is a literal and SO can be the target of ade la~edre fe rence ,  thereby 
Supporting recursive dependencies, see A.7.2.  
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let pair be 
tuple 

let Type be 
Operator (Base Type :: Any) 

Tuple var x : Base Type; var y : Base Type end 
end 

let construct be 
function (Base Type :: Any; x : Base Type; y : Base Type) 

: Type (Base Type) 
tuple let var x be x '  [ I ] ,  let var y be y ' [ l]  end 

end 
let x be function (Base Type :: Any; p : Type (Base Type)) 

pointer (P.x) 
end 

let y be function (Base Type :: Any; p : Type (BaseType)) 
pointer (p .y)  

end 
end 

can be compiled to produce a declaration that  ~ r o v i d e s  such a type. 

As a bit of an  aside, notice in the definition of the construct function the use of the 

reused-value-identifier x ' [ l ]  to denote the outer definition of x in the signature, rather than 

the inner definition of x in the tuple. The  p n e r a l  form of this notation is x ' [n]  where n is 

a nori-negative integer-literal. This notation causes the search for the defining-occurrence of 

x to skip over the first 72 matching defining-occurrences. Hence, the reused-value-identifier 

x l [ l ]  in the previous example refers to the outer definition of x rather than the inner one. 

Acer also provides reuscd-type-idc~itificrs. 

Reused-identifiers are provided to access identifiers that are defined in an  outer scope 

and redefined in an inner scope, thereby ensuring that  all identifiers remain visible. Reused- 

identifiers are not intended to  encourage the use of nested renaming, which should only occur 

because the choice of identifier is forced. For example, nested reuse is forced if a tuple-literal 

with a cornporlc~~t riarllcd x is to be defined in a scope in which x is already visible, and i f  

the outer x must be used within that  tuple. 

To get back to  our example of updatable  airs, recall that  we earlier stated tha t  if the 

prefix-method-call equivalent of a value-selection (or an index expression, as we shall see in 

the next section) has a Pointer or Reference type then the prefix-method-call equivalent is 

automatically dereferenced. Therefore, with thepair defined as 

let thepair be pair.const,ruct (Inlegel; 10, 20) 
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we could use thePair.x to yield 10 because the type of x.(thePair) is Pointer (Integer) and 

SO thePair.x is equivalent to x.(thePair)Q. Furthermore, we could also use 

{thePair.x b e c o m e s  100) 

to  update the x component of thepair. In this way, pointers and references, in conjunction 

with value-selection (and index), provide support for modeling abstract-types with updatable 

components. 

Pointers and references support manipulation by allowing functions to  abstract over up- 

datable locations (see 4.14). 

2.11 Array 

Arrays in Acer are defined as a parametric abstract-type introduced by the binding 

l e t  Array b e  arrays. Type 

The implementation of arrays is rna.dc available by the declaration 

arrays : 
Tuple 

Type :: O p e r a t o r  (Base T y p e  :: A n y )  A n y  end 
error : Exception ( Void) 
length : Funct ion  (Base Type :: A n y ;  : Type (Base Type)) 

Integer 
end  

index1 : 
Funct ion  (Base Type:: A n y ;  : Type (Base Type); : Integer) 

Pointer (Base Type) 
end  

new : Funct ion  (13aseType:: A n y ;  : Base Type; : Integer) 
Type (Base Type) 

end 
end  

An array-value can be created by an array-literal, which is the only special syntactic 

Support providctl for arrays. For example, 

array  12, 23,  34 end 

creates an  array-valne of type A rl-uy (Integer).  The base-type of an  array-literal can be given 

explicitly as  
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array 12, 23, 34 of Integer end 

An array-value can also be created as 

arrays.new (Real, 0.0, 10) 

which creates an array-value with 10 elements, each of which contains the value 0.0. 

For an  array-value a of type Array (BaseTpe) ,  the length of a is ~ i e l d e d  by a.length and 

the first element of a is yielded by a [o], which is equivalent to  

index1 .( Base Type, a, 0)Q 

Indexed arrays can be used in assignment, e.g., 

{a [i] becomes a [{i + 1 ) I )  

The la.st elemcnt of a is yielded by 

The  exception arrays.error is raised when arrays.indexl is called with an  out-of-range sub- 

script. We shall examine exceptions in the section that  follows. 

2 12 Exception and exception handling 

let c be exception (Integer) 

and is of type 

Exception (Integer) 

This exception could be la.iscd with an associated base-value as 

raise e with 0 end 

When this raise expression is evaluated, normal evaluation is interrupted and  the exception 

e, along with its value 0,  is back along the dynamic call chain until a 

handler for e is reached. The  type of a raise expression is Raise, which is a special type tha t  
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does not cause type-conflicts-an expression of type Raise does not yield a value but instead 

always raises an exception and therefore cannot cause a type-conflict. This does not mean 

that type-conflicts cannot occur within a raise expression, for the associated-value of a raise 

expression must certainly be of the exception's base-type, it simply means that the raise 

expression itself does not cause type-conflicts, regardless of the context in which it appears. 

Acer's exceptions are different from those in other languages. In CLU [LAB+81] for 

instance, exceptions are static entitics and functions must explicitly indicate which exceptions 

their evaluation may raise. This approach is not ~oss ib le  in Acer because exceptions are first- 

class values. 

Accr provides two global exceptions 

exit : Except ion ( V o i d )  

and 

fatal : Excepl ion (String) 

The exception exit is provided as a convenience, and may be raised using the short-hand 

raise exit end 

which is equivalent to 

raise exit with { )  end 

because its base is Void. The exceplion fatal is special because i f  a program is terminated 

by raising this exception, the associated string is printed as an error message. 

Acer provides several coristructs for handling exceptions. The simplest such construct, a 

try-finally expression borrowed from Modula-3 [ cDG+s~] ,  does not really handle exceptions 

but rather allows one to specify evaluations to be carried out regardless of whether an 

exception is raised. Consider trying to introduce two functions to  be evaluated before and 

after each evaluation of some value v, regardless of whether v raises an exception. Simply 

using 

begin before 0; v; after ( )  end 

is not enough because if the evaluation of v raises an exception then after is not evaluated. 

Instead, a try-fi nally expression should be used as 
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t r y  
begin before (); v end 

finally 
after ( ) 

end 

SO tha t  before is evaluated before v and after is evaluated after v, even if the evaluation of 

v raises an exception. A try-finally yields the result of its body, and if both the body and 

the final-action raise exceptions, the exception raised by the final-action is raised; the value 

yielded by the final-action is ignored. Hence the above can be used to  replace a value v with 

a traced equivale~it tha t  yields the same result as v. For instance, the function before could 

print the message, "About to eva.luate v." and the function after could print the message, 

"Finished evaluating v." Such tracing could be used to  implement a profiler [Ben87]. 

Acer provides the try expression for handling (trapping) exceptions. For example, the 

integer module supplies an exception integer.error of type Exception ( void) which is raised 

when a division by 0 is performed. Therefore, 

t r y  {x div y} then  
when integer.error then 0 

end 

can be used to  intercept the exception raised when y is 0. A try expression yields the value 

of its body but i f  this evaluation raises an exception then the exception is compared against 

the exceptions appeari~lg in the wllen-condition(s)-if a match is found, the t ry expression 

yields the value yielded by the evaluation of the consequent of the corresponding branch, 

otherwise propagation of the exception continues. Hence the above t ry expression substitutes 

the value o for { x  div y )  when y is O. 

In  general, a try expression can have multiple when-branches, it can include a n  optional 

default-branch, each when-branch can have multiple exceptions, and each when-branch can 

include an optional defined-identifier, e.g., 

t r y  body then  
when exceptionl, exception2 with definedIdentifier then branchl;  
when exception3, exception4 then branch2 
else default Branch 
end 
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bound to  the value associated with the exception handled by that  branch to  make tha t  value 

available to  the consequent . For example, 

{let e be exception (String) 
try raise e with "Hello" end then 
when e with result then result 
end} 

is a complicated way of yielding the value "Hello". 

Acer's only other construct that  handles exceptions is a keep-trying expression, which is 

also Acer's only looping construct other than high-level iteration (see 2.16). A keep-trying 

expression is very similar to  a try expression , and has the general form 

keep trying body then 
when exception 1 ,  exception:! with definedlden tifier then branch1 ; 
when exccption3, except,io114 then branch2 
else dcfa i l l t  Bra llch 

end 

When a keep-tryi~ig expression is evaluated, the body is evaluated repeatedly until an ex- 

ception is raised. This exception is then handled by the branches or default-branch of the 

keep-trying expression just as for a try expression. A keep-trying expression could be used 

to define the integer factorial function a.s 

let ! be 
function ( i  : Integer) 

{let var i be i J  [1]  
let var result be 1 
keep trying 

if { i  < 1) then raise exit end 
else 
begin 

{result becomes {result * i ) )  
{ i  becomes { i  - 1 ) )  

end 
end 

then when exit then rcsult 
end} 

end 

which could be called as ! ( I ) .  Modola-3's loop construct [CDGf88] is similar t o  Acer's 

keep-trying construct b11t is less general in that  it handles only one particular exception, the 

exit-exception, rather tllan all exceptions. 
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2.13 Variant 

Acer provides discriminated unions in the form of the variant. A variant takes on different 

structures depending on the value of its discriminating tag, which must be an  enumeration- 

value (or, as  we shall see in section 2.14.3, an option-value). A particular variant v, based 

on an  enumeration-type E with value id, is created by a variant-literal, e.g., 

let v be 
variant id of E with 

(let x be 10, let y be 10.0) 

which has type 

Variant E of 
when id then (x : I i z teger;  y : IEenl) 

end 

The defining-occurrence of the tag of a variant-literal or an identifier in the when-condition 

of a variant-type is determined by the literal-selection E.id. 

The  general form of a variant-type is 

Variant E n u m e i ~ a t i o n  Type of 
when i d l ,  id2 then (); 
when id3, id4 then ( )  

else ( )  
end 

Whereas the type of v is a variant-type with one alternative and an empty default-branch, 

in general, a variant-type may specify the structure of each possible alternative; a default- 

branch is used to  specify the structure of any alternative not specified by the other branches. 

The  tag of a va,ria,nt cannot be changed and its components can be accessed only after i ts 

type is narrowed to a tuplc-type using a variant-inspection. For example, the x component 

of v can be accessed using 

inspect v then 
when id with 1 then t.x 
end 

The  general form of a variant-inspection is 

inspect v then 
when i d l ,  id2 with definedldentifier then branchl; 
when id3, id4 then branch2 
else defaul tBranch 
end 
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When a variant-inspection is evaluated, the selector v is evaluated first and its tag component 

is accessed to determine the matching branch. If the matching branch provides a defined- 

identifier then the narrowed variant-value is bound as a tuple-value to that identifier. Hence, 

in the preceding example, t has type 

Tuple : E; x : I n t e g e r ;  y : R e a l  end 

because v has type 

Variant E of 
when id then (x : I n t e g e r ;  y : R e a l )  

end 

Finally, the matching branch is  evaluated to yield the result of the variant-inspection. An 

empty default-brand1 in an inspectio~~ is equivalent to 

raise fatal with "Inspect ion error. " end 

Variant-types could be used to define a lisp-like recursive type as 

let T y p e  be 
Variant Enumeration nil, cons end of 

when nil then ( )  
when cons then (car:  T y p e ;  cdr:  T y p e )  

end 

A variant-inspcction can also be as a Pascal-like case-statement if its selector is an 

enumeration rather than a variant. Such a variant-inspection is evaluated exactly as before 

except that the enumeration-value is examined directly rather than as the tag of a variant. 

Just as with a variant, the Value of the selector is bound to the defined-identifier of the 

matching branclr, although with an enumeration it has an enumeration-type rather than a 

tuple-type (see A.17.4) .  

2.14 Subtype 
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In Acer, whether T1 is a subtype of a type T2 depends, of course, on the types that 

T1 and '7'2 denote. The subtyping rules for the various classes of types are described in the 

subsections that follow. 

2.14.1 Tuple and single inheritance 

The idea behind tuple subtyping is that when a tuple with certain components is expected, 

a tuple with additional or more specific components is also ~ e r m i t t e d .  For example, suppose 

we have a function f which takes a tuple argument, e.g., 

le t  f b e  
funct ion  ( t  : T u p l e  x : Integer e n d )  

t.x 
e n d  

The function f may he called with an extended tuple: 

f ( t u p l e  10, 20, 30 e n d )  

to yield the value 10. Notice that tile above tuple-literal does not provide a name for its first 

component although in f this component is called x. 

It is important to realize that every tuple-type is a subtype of T u p l e  e n d ,  which in turn 

is a subtype of A n y ,  the root of Acer's subtype hierarchy. Therefore, the fewer components 

a tuple-type specifies, the closer it is to the root of Acer's subtype hierarchy and hence the 

more general it is considered to be. 

Subtyping of tuple-types depends recursively on subtyping of components and so 

T u p l e  : TI e n d  

is a subtype of 

T u p l e  : T2 e n d  

if TI is a subtype of 72 For example, the function 

let  ,g b e  
funct ion  ( t  : T u p l e  x : T u p l e  y : Integer e n d  e n d )  

t.x.y 
e n d  

could be called as 

g ( t u p l e  t u p l e  10, 20 e n d ,  30, 40 e n d )  
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where the type of the first coml~onent of the tuple argument is a subtype of the type of the 

first component of the formal parameter t specified in g. Notice that we can say that  the 

tuple 

tuple tuple 10, 20 end, 30, 40 end 

is more specific than is required by g. 

The subtyping rule for fixed-value tuple components also applies for type components. 

For example, the tuple-type in 

let TI be Tuple Type :: Tuple end; value: Type end 

is a subtype of the tuple-type in 

let T2 be Tuple Type :: Any; value : Type end 

let t be 
tuple 

let var x be tuple let y be 0 end 
end 
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let h be 
function ( t  : Tuple var x : Tuple end end) 

{t.x becomes tuple end) 
end 

which replaces the x componerlt of t with a tuple that  does not have a y component. After the 

call to  h, the selection t.x.y would no longer be valid since there is no longer a y component. 

But this fact is not reflected by the type of t. The  call t o  h would be valid under the  weaker 

subtyping rule for fixed-value components but the stronger subtyping rule for variable-value 

components prevents it. 

Tuples in Acer are  analogous to classes in object-oriented languages-both define the 

encapsulation of abstract-types, and both define a class hierarchy. However, in most object- 

oriented progran~ming languages, such as C++ [Str86] and Eiffel [Mey8817 a class is explicitly 

declared to  be a subclass of some other class (or of other classes, if multiple inheritance is 

supported) and thereby inherits an interface and a default implementation; the interface can 

be extended and the implementation can be changed. In Acer, a tuple-type is implicitly a 

subtype of some other tuple-type by virtue of having a more specific declared structure; the 

sharing of implementations must be explicitly programmed. 

Implementation sharing in Accr is a simple matter, however, because a tuple can be 

implcmerrtctl as a copy of anotllcr. For example, suppose we have the global declaration 

t : Tuple 
Type :: Any 
zero : Type 
succ : Function (x : Type) Type end 

end 

We can then (automatically) the binding 

let t t  be tuple 
let 7'ype :: Any be t .  Type 
let zero: Type be t.zero 
let succ: Function ( x :  Type) Type end be t.succ 

end 

which can be to  give a declaration with the same type as tha t  of t. In effect, 

the implementation of t is "ir1heritcd7' by tt. Also, the implementation of t t  can be sub- 

Squen t ly  just as can default implementations in object-oriented languages. And, 

more importarltly, evcll tile type rlsed by the irn~lementation can be changed, e.g., 
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let t t  b e  tuple  
let Type :: Any be  real. Type 
let zero: Type be  0.0 
let succ be  function ( x :  Type) : Type {x + 1.0) end 

end 

2.14.2 Record and multiple inheritance 

Acer's tuples support a form of single "inheritancev-component order is significant so the 

subtype rules for tuples induce a lattice in the form of a tree, i.e., a given tuple-type has a t  

most one direct parent in the lattice. With multiple inheritance, a type can have more than  

one direct parent, and the type lattice is a directed acyclic graph. 

Acer provides records to support a form of multiple "inheritance." Records are  exactly 

analogous to  tuples except that  component order is not significant and hence every record 

component must be named. Like tuples, records are created by record-literals, e.g., 

record let Type be  Inieger, let value: Type be  0 end 

which have record-typcs, e.g., 

Record Type :: Any; value : Type end 

2014.3 Enumeration and option 

The idea behind subtyping is that when an en~merat ion-value of a given type 

is expected, an crlumeration-va]ue from an enumeration-type with fewer alternatives is also 
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permitted. And because the values of an enumeration-type are ordered, an enumeration- 

type El is a subtype of an enumeration-type E2 if the identifiers in E2 are a prefix of the 

identifiers in El .  Therefore, given the types 

{let Day be Enumeration rnon, tue, wed, thu, fri, sat, sun end 
let WeekDay be Enumeration mon, tue, wed, thu, fri end 
let WeekEnd be Enumeration sat, sun end 

we can say that WeekDay is a subtype of Day but WeekEnd is not related to either type. 

Notice that Enumeration end is a subtype of all enumeration-types and the more values an 

enumeration-type specifies, the closer that type is to Any, the root of the subtype hierarchy. 

Acer's subtyping rule for cnumcration-types specifies that order is significant so Acer 

also provides option-types, whicll are similar to enumeration-types except that order is not 

significant. Therefore, given the option-types 

{let Day be Option rnon, tne,  wed, thu, fri, sat, sun end 
let WeekDny be Option man, tue, wed, thu, fri end 
let WeekEnd be Option sat, s u n  end 

2.14.4 Function-type and type-operator 

Function ( : A  1 ) R l  end 

is a subtype of 

Function ( : A 2 )  R2 end 
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if R1 is a subtype of R2 and A 2  is a subtype of A l .  

Just as  during recursive subtyping of tuples, during recursive subtyping of function-types 

F1 and F2, an occurrence of an identifier introduced by a declaration in the signature of F1 

is considered equivalent to  the identifier of the corresponding declaration in the signature of 

F2. For example, 

Function ( T  :: Any; : T) T  end 

is a subtype of 

Function ( T  :: Tuple end; : T )  T end 

precisely because of this equivalence; the result-types otherwise denote distinct types. 

Since type-opcrators are functions from types to types, the subtype relation on type- 

operators is exactly analogous to that on functions. 

2.14.5 Variant 

Variant Enumeration nil end of 
when nil then ( r ~ c w S t u f f  : T) 
end 

is a subtype of 

Variant Enumeration nil end of 
when nil then () 

end 
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Variant Enumeration nil, cons end of 
when nil then ( )  
when cons then (car :  AtomType; cdr:  T) 

end 

for the first reason. 

Acer has three forms of abstract-type. There are type-identifiers introduced by type- 

declarations, for example, T and PT are abstract-types when introduced by declarations 

in a signature as 

( T :: Any; PT :: Operator  (Base Type :: Any) Any end)  

There are type-sclcctions, for example, v. Type is an abstract-type when v is a tuple, record, 

or dynamic (see 2.1 5 )  wit11 a component named Type. And there are operator-calls, for 

example, PT (lr~tegel-) is all abstract-type when P T  is d~clared as above- 

Every abstract-type is said to have a quantijer (see A.20.3), a concept closely related to 

the universal arid existential quantific.rs of logic. For instance, a function acts as a universal 

quantifier because i t  specifies a value for all possible parameter instantiations, whereas a tuple 

acts as a existential quantifier because it specifies the existence of one particular instantiation. 

For a type-identifier, the quantifier is the construct containing its declaration; this must be 

a signature (e.g., the signature containing T and P7' above), a tu~ le - type ,  a record-type, 

Or a dynamic-type (see 2.15). fir a type-selection, the quantifier is given by the base 

(eag., v above). And for an opcrator-call, the quantifier is determined recursively from the 

Operator (e.g., from PT above). Intuitively, a quantifier encapsulates an abstract-type with 

its associated values and operations, that is, its methods. In fact, the defining-occurrence of 

the method-name of a prefix-method-call is determined by searching the quantifier of each 

argument whose type is an abstract-type. 

An abstract-type is abstract because its definition is hidden and hence cannot be used to 

determine whether anotller type is a srlbtype of it. All that is known about an abstract-type 

is that it is a sulltypc of its declared type. Therefore, an abstract-type is considered to be 

a type unto itself--each abstract-type is distinct from all others and has no subtypes. Two 

abstract-types arc quivalel l t  only i f  they have the same quantifier, and for operator-calls, 

if corresponding parameters are also equivalent. 

Because a quantifier can be a value, as in the case of t~~e-se lec t ions ,  statically determining 

if two quantifiers are the same requires a static equivalence relation for values. For example, 
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v l .  Type is a equivalent to  v2. Type only if v l  and v2 are equivalent. A detailed definition 

of the static equivalence relation for values is left for the appendix (see A.20.3). Intuitively, 

two value expressions are equivalent only if the expressions are  fixed and can be shown to 

always denote the same value. 

To see why parameters must be equivalent when subtyping abstract- types, consider the 

types P T  (Integer) and PT (Any) where P T  is declared as before. If the hidden definition 

of P T  is 

Operator  (BaseType :: Any) Function () BaseType end end 

it would be valid to  consider P T  (Integer) a subtype of P T  (Any) since 

Function ( )  h t e g e r  end 

is a subtype of 

Function ( )  Any end 

However, i f  the hidden definition of P T  is 

Operator  (Base ripe :: Any) Function ( : Base Type) Any end end 

Function ( : Integer) Any end 

is not a subtype of 

Function ( : Any) Any end 
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T :: Tuple x : Integer end 

and a value declared as 

it is valid to  select the x component of v using v.x because although the type of v is T, 

which is an  abstract-type with no method named X, the type of the type of v (i.e., the kind 

of V )  is a tuple-type, which specifies that  v is a tuple with an x component. Also, v can be 

a passed to  a function f dcclarcd as 

f : Function ( : Tuple x : Any end) Void end 

using the function-call f ( v )  becatlse v is known to be a tuple with an  x component of type 

Integer. 

To sumnlarizc the subtyping rules for abstract-types: 

An abstract-type TI is equiva,Icnt to an abstract-type T2 if the quantifier of TI is 

equivalent to thc  quantifier of 7'2 and corresponding parameters are equivalent. 

2.15 Dynamic 

dynamic let Type be Integer, let value: Type be 0 end 

which have dynamic-types, e.g., 
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Dynamic Type :: Any; value : Type end 

Also, the subtyping rules for dynamic-types are the same those as for tuple-types. Type- 

and value-selection also apply for dynamics. Dynamics differ from tuples, however, because 

the first component of a dynamic must be a type and because a representation of this type 

is actually stored as a run-time component of the dynamic-value. This type-tag component 

can be examined a t  run-time using dynamic-inspection. 

For example, the dynamic-value d in 

let d be 
dynamic 

let Type be I n t e g e r  
let value: Type be 0 

end 

could be inspected as 

inspect d Then 
when I n t e g e r  with t then t.valuc 
end 

to yield the value 0. A dynanlic-insptrctior~ is similar in appearance to  a variant-inspection 

except Then (instead of then) is used to introduce the branch-list and the condition of each 

when-branch specifies a type (instead of values). 

When a dyna~nic-inspection is evaluated, the selector is evaluated first to  determine the 

type-tag of t l ~ e  resulting dynamic-value. This type is then compared t o  the types appearing 

as the conditions of succcssivc branches until a condition with a supertype is found. Note 

that the subtyping rules used for dynamic-inspection are the same as the static subtyping 

rules. In addition, a dynalnic-inspection may provide an else part to  specify a default- 

branch. If the rnatchillg branch of a dynamic-inspection provides a defined-identifier then 

the narrowed dynnmic-vallle, which then takes on the form of a tuple-value, is bound t o  tha t  

identifier. Finally, the consequerlt of the matching branch is evaluated to  yield the result of 

the inspection. 

The  dcfrlcd-idmtifirr of a type-when-branch of a dynamic-inspection is bound t o  a 

dynamic-valur wl lose  type i s  llal.rowed to be tuple-type. This tuple-type has the same dec- 

laratiolls as tllc dyIlalnic-~ype with the following exceptions: the initial type-declaration is 

replaced by all anonylnolls fixed-value-declaration of type Any, and each applied-occurrence 

of the defined-identifier of the iIlit,ial type-declaration is replaced by a copy of the type-when- 

branch's condition. I.'or example, i n  the dynamic inspection above, the selector d has type 
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Dynamic Type :: Any; value : Type end 

and since the condition of the matching branch is Integer, the type of t is 

Tuple : Any; value: lnteger end 

There are restrictions on which types can be used as the tag of a dynamic. In particular, 

the type-tag of a dynamic-literal may not depend on abstract-types tha t  can be  bound t o  

different definitions during program execution. For example, i f  this were allowed, consider 

evaluating the block 

{let var d be  
dynamic 

let Type :: Any be Integer 
let value: Type be 1 

end 
let f be 

function ( T :: Any; x : T ) 
{let result be 

inspect d Then 
when T with dt then dt.value 

else x 
end 

begin 
{d becomes 

dynamic let Type be  l'; let value: Type be x end) 
result 

end) 
end 

tuple f (Real, 1.0), f (C/~aracter ,  '1') end) 

The updatable variable d is  used by the function f for two purposes. First, f inspects d 

and i f  d llas 7' i ~ s  its type-tag t11m the value component of d, which then has type T, is 

Stored in result. Sccorld, before yielding the value stored in result, f assigns to  d a dynarnic- 

value encapsula t i~~g 7' alld its value x. During the first call to f there is no problem (f 

simply yields x) but  dnl*ing the second call, the dynamic-inspection succeeds because d then 

contains a dynamic-value with T as its type-tag. Therefore, during the second call, the 

value componcnt of ttle dynamic is stored in result, which is subsequently yielded by f 

But this is as a C/Laracter value even though it is actually the  Real value 1.0 

to  f during t l ~ e  first call. 

- 
4 

Remember, there is no way for the function to ascertain the type bound to  T. 
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The problem with abstract-types goes even beyond this because, as we will see shortly, a 

dynamic-value can be stored in a file that is loaded by another program, or by a later run of 

the same program. Therefore, even if an abstract-type is fixed during program execution it 

can nevertheless be recompiled, thereby invalidating any stored dynamic-values that  depend 

on it. As a consequence, it may seem prudent to disallow completely abstract-types as 

type-tags of dynamics. However, many basic types such as Integer, Real, and Character are 

defined as abstract-types and it will most certainly be necessary to  support dynamic-values 

based on these. Therefore, an abstract-type is permitted as part of the type-tag of a dynamic 

only when it can be statically shown to be bound to the same definition throughout a single 

program execution, i.e., if it is a closed t y p e  (see A.14). The problem of an abstract-type's 

implementation changing, tllercby invalidating stored dynamic-values based on it ,  is left as 

an open problem. 

Operations on dyna.mic-values arc provided by the module dynamics which supports 

copying, reading, and writing of dyna.mic-values: 

dynamics : 
Tuple 

error : Exception ( Void) 
copy : Function ( : Dynamic Type :: Any; : Type end) 

Dynamic Type :: Any; value : Type end 
end 

input : Function (filepath: String) 
Dynamic T y p e  :: Any; value : Type end 

end 
output : Function (filcl'ath: St~ ing  

: Dynamic Type :: Any; : Type end)  
Void 

end 
end 

For example, given the function g defined as 

let g b e  
{let var x be  0 
function ( )  

begin {x becomes {x + 1 ) ) ;  x end 
end)  

we can create a dynamic copy h of g as follows: 
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let h be 
inspect 

dynamics. copy 
(dynamic 

let T y p e  be Function () I n t e g e r  end 
let value: T y p e  be g 

end) 
Then when Function () I n t e g e r  end with t then t.va.lue 
end 

Given g and h as defined above, we  could create the tuple 

which creates a tuple equivalent to 

tuple 3, 3 end 

Dynamic copying preserves the sharing and circularities within the object being copied. This 

can be seen in the above example from the fact that even the closure of g is copied, not 

shared between g arid 1 1 .  

The furictioli ,g could also be copied using input and output as  follows 

let h be 
inspect 

begin 
dyna.mics.output 

("filename" 
dynamic 

let T y p e  be Function ( )  I n t e g e r  end 
let value : T y p e  be g 

end) 
dynamics.inpu t ("filename") 

end 
Then when Function ( )  l n t , e y e r  end with t then t.value 
end 

dynamics provides sul,port for persistent storage. 
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2.16 Iterator and accumulator 

Acer provides constructs for supporting high-level iteration and accumulation [Cam89]. Iter- 

ators (i.e., sequence producers) and accumulators (i.e., sequence consumers) are tuples with 

appropriate exception and function components. 

An iterator-type is given in terms of a base-type as Iterator (Base Type), where Iterator 

is introduced by the global type-binding 

let Iterator be 
Operator (Base Type :: Any) 

Tuple 
done : Exception ( Void) 
produce : Function () Base Type end 
termir~ate : Function ( )  Void end 

end 
end 

Since Iterator is not an  abstract-type, we can create an iterator-value with a tuple-literal tha t  

has the required exception and function components. For example, the following function 

creates an iterator that  produces a sequence of integers in the specified range: 

let range be 
function ( f i s t  : Integer-; last : Integel-) : lterator (Integer) 

tuple 
let done be exception ( Void) 
let produce be 

function () 
if {next  > last) then raise done end 
else 

{let result be next 
begin 

{next  becomes {next + 1 ) )  
rcs11lt 

end) 
end 

end 
let terminate be function ( )  { )  end 
let var next be first 

end 
end 

A n  iterator gcllcratcs a sequellcc of values through repeated calls to  i ts prodljce function, 

which raises t,lIe cxceptioll when the sequence is exhausted. An iterator is terminated 



CHAPTER 2. AN INTRODIICTION T O  ACER 53 

by a call to  its terminate function, which is called either because the done exception is raised 

or because no further values are required. Iterators are typically used in conjunction with 

Acer's version of the for-loop called an  iteration, e.g., 

for i in range(0, {a.length - 1))  do 
{ a  [i] becomes 0.0) 

end 

AS we shall see below, an iteration expression can also include an  accumulator tha t  consumes 

the sequence of values to  produce a single value. 

An accumulator-type is given in terms of a base-type and a result-type as 

Accuinulator (Base Type, Result Type) 

where Accuinulator is introduccd by the global type-binding 

let Accumulator be  
Operator  ( Base Type :: Any; Result Type :: Any) 

Tuple 
done : Exception ( Void) 
consume : Function (: Base Type) Void end 
terminate : Function () IiesullType end 

end 
end 

let sum be  
function (initial: I t ~ t r ~ e r )  : Accsm~~lator(Integer,  Integer) 

tuple  
let done b e  exception ( Void) 
let consume be  

function (i : Integer) 
{resz~lt becomes {result + i ) )  

end 
let terntinate be  function ( )  result end 
let var result b e  initial 

end 
end 
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is terminated by a call to  its terminate function, which is called either because the done ex- 

ception is raised or because there are no more sequence values. An accumulator's terminate 

function yields the result of the accumulation. 

An accumulator can be used in an iteration expression as follows: 

for i in range (1, 5) do  
sum (0) i 

end 

which for the above definitions yields 15. In general, an  iteration expression may introduce 

several defined-identifiers and may contain a filter expression, e.g., 

for i in x; j in y andif filtcr (i, j) do  accum body (i, j) end 

which is defined to be equivalent to 

{let i terl  be  x;  let itcr.2 be  y ;  let a be  accum 
keep trying 

{let i be  iterl.produce 0; let j be  iter2.produce ( )  
if filter. (i, j) then a. consume (bo& (i, j)) end) 

then  
when itcr.1 .done, iter2.done, a.done then 
begin 

iterl .  terminate 0; itcr.2.te1minate (); a. terminate ( )  
end 

end)  

discard : 
Tuple 

done : l<xception ( Void) 
consume : Function (: Any) Void end 
terminate : Function ( )  Void end 

end 

and is implemented as 

let discard be  
tuple  

let done b e  exception ( Void) 
let consume be  function (: Any) { )  end 
let tcrminatc be  function ( )  {)  end 

end 
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A missing filter is equivalent to  true. 

Accumulators can also be used in Acer's accumulation expression, e.g., 

which is defined, in general, to be equivalent to  

{let  a b e  sum (0) 
t ry beg in  

a.consume (1) 
a.consume (2) 
a. consume (3) 
a. consume ( 4 )  
a. consume (5) 
a .  tcrrnina te  ( )  

e n d  
t h e n  w h e n  a.tlonc t h e n  a.fcr.mir~a tc ( )  

e n d )  

Accumulation expressions are particul;lrly useful as a notation for expressing "literals" of 

abstract-types. For example, 

1ist.constrlict (Integer) ([2, 3,  5, 71) 

might be used to create an list of integers, i.e., a value of type 

list. Type ( Integer) 

The  defirlitions of Acer's high-level iteration and accumulation constructs demonstrate 

just how easily AccrYs syrltax can be extended to  povide  convenient notations when such 

notations are  deemed necessary or desirable. 

c o d e  Integer; move(d1, do);  do e n d  

might be to move tIlc cnlltcllts of register d l  to register do and to  yield the final value 

do as an lnteyer result. The  code-patch 
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code Pointer (Any); A 7  end 

might be used to  yield the value of the stack-register A 7  as a pointer. 

A code-patch is a list of expressions. The  first expression must be a type, which specifies 

the type of value yielded by the code-patch. The  remaining expressions are interpreted 

as the da t a  and instructions of some particular m a c h i n e t h e  interpretation varies from 

implementation to implementation. Typically, the final expression is used to  specify the 

effective-address of the value to be yielded, and the expressions between the first and the 

last are  used to  specify the machine instructions to  be executed. 

Code-patches support rnar~i~ula t ion  by providing low-level access t o  features tha t  would 

otherwise be outsitlc the domaill of  A c c ~ ,  scc 4.15. 

2.18 Summary 

This completes our description of the typcful programming language Acer- Acer has been 

carefully designed riot or~ly as a flcxihle high-level language but also as a language tha t  di- 

rectly supports program manipulation. In terms of syntax, Acer supports manipulation by 

Providing a concrete syntax that  avoids syntactic ambiguity, including pairwise ambiguity 

between grammar productions. In tcrms of semantics, Acer supports manipulation by pro- 

viding a flexible abstract syntax that  corresponds directly to the concrete syntax. These 

topics will be addressed in detail in the chapters that follow. 



Chapter 3 

The representation of syntax 

3.1 The nature of syntax 
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limitations of ASCII must not restrict attempts to  provide more readable views. 

To demonstrate the representation techniques of this chapter in action, examples are  

given in terms of Acer. 

3.2 Context-free syntax 

The fundamental semantic objects of Acer are  classified into the categories type, value, 

declaration, and binding (see A.2).  In the abstract syntax such categories are  specified using 

a GRAMPS-style alternation rule as follows, in which ) I  is used to  separate alternatives: 

(Declaration) ::= (TypeDeclara.tion) 1) (ValueDeclaration) 

This rule is intrrpseted to  mpan tha t  a declaration is either a type-declaration or a value- 

declaration. 

An alternation rule does not specify node structure, it specifies choice of structure; node 

structure is specified by GRAMlIS-style lexical, construction, or list rules. TO be more exact 

then, each Icxical, const,ructiorl, or list rule defines a node class whereas each alternation rule 

defines a set of node classes, or node category. Every node belongs to  a particular node class 

and, depending on the kind rule that  specifies its class, is either a lexeme, a construction, or 

a list; each will be considered in turn. 
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In Acer, the node class of each lexeme, that  is, whether it is a value-identifier, type-identifier, 

integer-literal, real-literal, character-literal, or string-literal, is obvious from its spelling. 

3.2.2 Construction 

Constructions are  used to model semantic objects consisting of a fixed set of components. For 

example, an Acer type-declaration consists of an optional type-identifier and a type. This 

is specified by the following CRAMPS-style construction rule, which uses [[ I] t o  indicate 

optionality: 

(TypeDecLmt,ion) ::= [[ (Definedlden tifier: Typeldentifier) I (:Type) 

A construction rule specific.s a, name for each component-if an explicit component name is 

omitted, the cornponcnt name is implicitly taken to  be the same as the node class name. 

Accordingly, an Acer type-decla.ration consists of an optional defined-identifier, which must 

be a type-identifier, and a, type, which must be a type expression. Perhaps it is confusing 

to use type as  both a nodc class name and a component name but it seems natural to  do so 

when nodes represcmt types and when constructions have types as components. 

Abstractly, a construction is the parent of a fixed number of named childrennodes. These 

children are ordered and so can be referenced either by name or by position, tha t  is, as  the 

nth child. 

Optional construction components are handled by the provision of empty nodes. EV- 

cry CRAMPS-style grammar must provide a construction rule tha t  defines empty to  be a 

childless construction.' When a component is specified optional, a node of class empty is 

Permitted to appear in of that conlponent. Therefore, a construction component is 

never missing, altlio~igh it may be empty. 

A construction nodc is illustrated as a labeled box connected to  each of its children. An 

example of an Acer type-declaration is 

E m p t y  c3 
%'-type as the type. 



CHAPTER 3. TlfE REPl2ESENTA'TlON OF' SYNTAX 

3.2.3 List 

Lists are used to model semantic objects consisting of an arbitrary number of elements. 

For example, an Acer signature consists of a series of declarations. This is specified by the 

following GRAMPS-style list rule, which uses 1 to indicate zero or more repetitions: 

(Signature) ::= (Declaration) 1 

Abstractly, a list is the parent of zero or more children nodes. The children of a list 

are ordered and can be referenced only by position-list children are not named as are 

construction children. 

A list node is illustrated as is a construction node, for example, an Acer signature is 

illustrated as 

Signature a 
T y p e -  

Declarat ion 

b- % 7 

3.3 Context-free relations 

the parent relation, which relates a child node to its parent node; 

and the position relation, which relates a child node to its position with respect to its 

parer1 t . 
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3.3.1 Context-free manipulation 

Context-free syntax is manipulated by creating nodes and by attaching nodes to  form syntax 

trees. Creating new unattached nodes is a simple matter: an  unattached lexeme is created 

given a n  appropriate spelling; an unattached construction is created given the correct number 

of unattached children, each of the appropriate class; and an unattached list is created given 

any number of unattached children of the appropriate class. When a construction or list is 

created, its children become attached. (As a convenience, i f  an  attached child is supplied, 

its structure can be copied to  ~ i e l d  an unattached child.) 

Existing syntax trees are modified by altering the attachment of nodes. This can be done 

in one of three ways: a child of a construction or list can be replaced by a n  unattached 

node of the appropriate class, leaving the replacement node attached and the replaced node 

unattached; a list child can be deleted, leaving the child unattached and the list with one 

less child; or an u~iattaclied nodc of tile appropriate class can be inserted a t  any position of 

a list, leavir~g the riode attached and the list with one more child. Manipulation of nodes is 

very straightforward indeed. 

Manipulation is lnade easier by consistency. For example, every node in a tree has a 

parent, except for the root, wllich is unattached. For consistency then, the Parent of a n  

unattached node will be giver) by a special unattached node called the unattached empty 

node. Therefore, every node has a parent and the unattached empty node is its own parent; 

the unattached empty node is special because it is a parent and yet has no children. 

Similarly, every nodc in a tree has a position with respect to  its parent, except for the 

root, so for consistency the position of an unattached node will be given by zero. 

TO support automated manipulation, a G R A M P S - S ~ ~ ] ~  granlmar can be used t o  generate 

a m e t a p r o g r ~ m m i n ~  system, an implementation of nodes as an  abstract data-type in a host 

Programming language. The  manipulation of nodes by programs is then done according 

to the notions that  have just been described. In particular, a meta~rogramming system 

Provides facilities for creating nodes, for traversing nodes, and for editing nodes-a Iexeme 

is created given its spelling and a corlstruction or list is created given its children; nodes are 

traversed via the parent and  cllild that connect them; and nodes are  modified by 

dcletillg, or i~lst.rtillg cllildren. More details of Acer's metaprogramrning system 

"re given in Chapter 5 and Appendix C. 

Before moving on to examine how programming language concepts such as scoping and 

are  rcpreserltcd as relations on nodes, Ict us examine how a GRAMPS-style grammar 

concrete syntax. 
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3.4 Concrete syntax 

Concrete syntax provides a way of viewing nodes in terms of a   articular set of symbols; 

presumably ASCII will be used, i f  only to provide a   or table view. Concrete syntax can be 

specified by the same GRAMPS-style grammar used to specify abstract syntax. 

3.4.1 Lexeme 

The concrete syntax of a lexeme is specified by a regular expression that uses 1 1 ,  [[ I], D, 
and (I D to indicate choice, optionality, zero or more repetitions, and grouping, respectively. 

For example, the concrete syntax of an Acer real-literal is specified as 

A GRAMPS-style gra.mmar provides character description rules, as is indicated by a '#' in 

the rule name, for naming regular expressions. For example, digit is &fined as 

3.4.2 Construction 

Examples of Accr type-dcclara.tions are 

:: Any T :: Any Type 1 :: T y p e 2  

Notice how an empty component disappears in the concrete view. 

Tokens can be within the optional brackets of a construction-rule component 

and are then only i f  the associated component is not empty. For example, Acer's 

conditional expression is defined as 

(Conditional) ::= 

(Branches: ConditionalBranch List) 
[[ else (Default Branch: Value) I] end 
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so a conditional viewed graphically as 

B r a n c h  

can be viewed in ASCII as 

if x then y end 

As an alternative t rcatme~lt  of empty nodes, a GRAMPS-style grammar can specify a 

visible concrete syntax for empty nodes. An empty optional component is then made visible 

by printing it as a keyword-optional tokens associated with tha t  component are then also 

printed. For example, Acer dcfiries the concrete syntax of an empty node as 

(Empty) ::= nothing 

so the conditional in the previous example could be equivalently viewed as 

if x then y else nothing end 

3.4.3 List 

The  concrete syntax of a list, as tlia,t of a construction, is specified by the placement of 

tokens. For example, the concrete syntax of an Acer signature is specified as 

(Signature) ::= ( (Decla.ration) ) I  ; 1 ) 

A superscripted tolien followi~lg ) indicates that the token separates adjacent list elements; 

a token enclosed by [[ ]] indicates that  the token itself is optional. Accordingly, the decla- 

rations of an Acer signature arc separated by optional semicolons, for example, a signature 

viewed as 

( A -  T y p e  :: Any; a- Value : A- T y p e )  

could be equivalc~itly viewed as 

( A -  T y p e  :: Any a.- Value : A- 7 y p e )  
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All commas and semicolons are optional in Acer. 

Depending on the purpose of a concrete syntax, there are many considerations to  take into 

account. For example, a concrete syntax must be readable, both to  machines and humans. 

These issues are discussed in Chapter 4 .  Let us move on now to  examine context-dependent 

syntax. 

3.5 Context-dependent relations 

The usual approach for defining context-dependent syntax involves using either a n  attribute 

grammar, which maps program semantics to  arbitrary data  structures, or denotational se- 

mantics, which maps program semantics to  mathematical values and functions. In constrast, 

the relational approach described here maps program semantics to  nodes and node relations. 

This is the essence of the double-duty strategy, i.e., nodes represent both context-free syntax 

and context-dependent syntax. 

Representing static semantic entities as nodes and only as nodes enhances support for 

program manipulation. For instance, i f  tlrc type of an expression is represented as a node, 

this node can be uscd to introduce a new object of that type. On the other hand, if the type 

were not represented as a node, how would one declare a variable to hold an  expression of 

that  type? The  double-duty strategy eliminates such problems. 

Using the double-duty strategy, context-dependent syntax can be completely specified as 

relations on nodes. The nature of these relations varies from language to language but three 

relations dominate the definitions of most ~ r o ~ r a m m i n g  languages: 

defining-occurrence relates an identifier node to a corresponding identifier node used 

to  define the identifier for the current scope, 

t y p e  relates an  expression node to the node that represents its type, 

and definition relates a node to  the node that  represents its meaning according to  

rewrite rules. 

Each of thesc tllrcc relntiorrs is hinary and can therefore be graphically represented much 

like the parent relation. A c o n t e ~ t - d e p ~ n d e n t  relation is graphically illustrated by connecting 

the right side of tile first rlodc to tlrc left side of the second node. If more than one sort 

of context-dcpendellt relation is to be illustrated in a single diagram then the relations are 

labeled to  distinguislr ttlem. For instance, the following illustrates tha t  the integer-literal 2 

has the type-identifier Inlege7> as its type and that  it has itself as its definition: 
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2 Integer 
Definition 

Each relation will be briefly described in the sections tha t  follow. A more detailed 

treatment of the relations is presented in section A.3. 

The  defining-occurrence relation as it applies to 

function (A-  Type  :: Any; a- Value : A,  T y p e )  tuple a,Value end end 

is illustrated as 

Signature (-1 (---&TI Literal 

An identifier tha t  is its own defining-occurrence is called a defining-occurrence, every other 

identifier is called an applied-occurrence. Notice that the left side of each defining-occurrence 

is connected to the right side of each of its applied-occurrences-binary relations can be 

interpreted in two dircctions. 

The  specification techniques of NUItN could be used to define formally the rules for 

what is specified than with how it is specified. 

mirrors the natural process of incremental identifier-lookup. 
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3.5.2 Type 

For some languages, ~ a r t i c u l a r ] ~  languages with name type-equivalence, the type relation 

is simple because the syntax tree contains the necessary nodes for representing the type of 

each expression. In general, however, a type can be derived from the syntax of an  expression 

and there may be no node representing it available in the syntax tree. In such languages, of 

which Acer is one, derived nodes must be created to represent types. 

To see how the need for derived nodes arises, consider the function-literal we saw previ- 

ously 

f u n c t i o n  ( A -  T y p e  :: A n y ;  a- Value : A- T y p e )  t u p l e  a- Value e n d  e n d  

The  type of the tuple-literal in the body is given by a tuple-type as 

T u p l e  : A- T y p e  e n d  

since the type of a- Value is given by A -  Type .  This much is straightforward but how does the 

type-identifier A-  T y p e  refer back to  its declaration in the signature of the function-literal? 

The  problem with a derived node is that  it is not connected by context-free relations to  

the tree from which it is derived; for it to refer to  the nodes in tha t  tree some mechanism 

must be provided. I propose the notion of a denoter node, a childless construction node 

that  acts as a placeholder for its definition node and is permitted only in derived nodes. A 

denotcr acts as an anonymous identifier. 

The  following diagram shows how Accr, with the help of a t ~ ~ e - d e n o t e r ,  defines the type 

of the tuple-literal we saw in the previous example: 
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Signature ( )  (Emlll) Literal 

Type-  
Declaration 

Notice how the type-dcnoter in the declaration of the tuple-type is used to  refer to  the 

typeidentifier i l l  the original syntax tree via its definition relation. 

What  makes a dcnoter special is the fact that its definition relation must be fixed a t  

creation time. Every other context-dependent relation can be derived from the context-free 

relations whenever necessary. A dcnotcr's definition can be derived only when creating the 

derived node that  uses it. Conceptually, it is best to think of a denoter's definition relation 

as the con text-dependent equivalent of an nth-child relation. 

3.5.3 Definition 

In many programming languages certain constructs are defined in terms of other constructs 

according to  rewrite rules. I call this the definition relation, which can be specified using 

derived nodes to represent the result of each rewrite. The definition relation applies to  all 

expression nodes-an expression is either its own definition or there is some other node 

that rcpresents its definition. We llave already seen the definition relation as it applies to 

denoters. Anotllrr cxarrlple is the defirlitioll of an Acer unary-method-call, which is defined 

in terms of a prefix-method-call as 



CIlAPTEIt  3. TI1E RE=I-'RESENTATION O F  SYNTAX 

Prefix- 
Methodca l l  

Value- 
Denoter X 

Definition J 

Notice the use of a value-denoter t o  connect the derived node t o  the original syntax tree via 

the definition relation. 

Many other context-dependent relations are defined for programming languages but ,  just 

as the defining-occurrence, type, and definition relations, they can be specified in terms of 

relations on nodes. More complex context-dependent relations are handled by the provision 

of derived nodes created to reprcsellt semantic objects; dcnoters are used to permit derived 

nodes to reference other nodes. 

The  context-dependent relations of a language are derived from the context-free relations SO 

context-dependent syntax is manipulated indirectly by manipulating the context - f rees~ntax;  

evcry change to the context-free relations is reflected by changes to  the context-dependent 

relations. Meaningful manipulation is by the information embodied in these context- 

dependent relations, for example, finding all the applied-occurrences of a given identifier 

or finding all the expressions of a given type. Therefore, to  support such manipulation, 

context-dependent relations must be automatically available- 

3.6 Summary 

This chapter has described tcclllliqllrs for representing semantic objects as nodes. Node 

s tructr~re is  tllc Ijasis of  lncallilrgful program manipulation for both machines and  humans. 

In terms of macliine mallipulation, a metaprogramming system can be ~ r e a t e d  to  manipulate 

Programs according to an abstract data-type that implements nodes. In terms of human 

manipulation, a l a n g l l a g e - l ~ a s e ~  editor, like PCAcer described in Appendix B, can be created 

to manipulatJe programs view(.d conccptllally as nodes. In either case, node structure is the 

basis for manipul  n t '  loll. 

TO summarize, languagc design is tlie design of node structure and program manipulation 

is the manipulation of lrodc structure. By specifying a language in terms of node structure, 
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a language designer specifies precisely the concepts programmers use to understand and 

manipulate programs. 



Chapter 4 

Principles of language design 

This chapter describes principles for guiding language design. These principles focus on 

various manipulation issues and are also presented in [MDC92]. Their application to Acer, 

in particular, is also discussed. 

Each section that follows begins with a statement of principle folhved by a discussion. 

There are 15 principles in total: prillciples 1-6 deal with the relationship between concrete 

and abstract syntax; principles 7--11 (leal wit11 properties of abstract syntax that significantly 

affect manipulation; and principles 12-15 deal with program tran~formation. 

4.1 Concrete syntax is just a view 

Principle 1 A language definition should provide a standard abstract syntax i n  one-to-one 

correspondence with a stcindarrl concrete syntax. 

Meaningful program manipulation is best carried out in terms of an abstract repre- 

sentation. Consequently, this first principle emphasizes abstract syntax as the conceptual 

foundation of languagcconcret,e syntax is seen as a way of viewing abstract syntax. 

To see the importance of syntax consider the representation of positive integers. Roman 

numerals are an adequate representation, and are certainly better than unary numerals, 

but Arabic n m m l s  iil.e by far  superior. This is because Arabic numerals facilitate semantic 

manipulation, such as additioll arid multiplication, through straightforward syntactic manip- 

ulation. Thus, although Ilornan numerals provide an adequate representation, only Arabic 

numerals provide a manipulable representation. 

For a la~lguage of programs, as for a language of numbers, s u ~ ~ o r t i n g  manipulation is a 
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fundamental goal. Therefore, a ~rogramming language should define a manipulable represen- 

tation. For Acer I chose to use a GRAMPS-style representation based on the simple notion 

of nodes as discussed in Chapter 3. Using a GRAMPS-style grammar to  define concrete 

syntax and abstract syntax ensures conformance with the first principle; node structure is 

designed first and concrete syntax is a view. 

Emphasizing the manipulation characteristics of nodes and treating concrete syntax as a 

way of viewing nodes helps put the relative importanceof abstract syntax and concrete syntax 

in a proper perspective. This should aid in guiding the design of programming languages that 

are less like Roman numerals and more like Arabic numerals. Merely representing a program 

is adequate but representing a program so as to facilitate its manipulation is preferable. 

4.2 Ambiguity 

Principle 2 T h e  s tandard  cor~cre te  s yn tax  of a language .hould be defined b y  a n  unamb igu -  

o u s  context-fr-ee g r a m m a r .  

Concrete syntax provides the means of viewing nodes. Thus, the natural criterion for 

evaluating concrete syntax is readability. The above ~rinciple reflects the notion that a 

concrete view is readable only i f  it unambiguously determines node structure. 

It may be argued that a parser can use static analysis to disambiguate but this reveals 

another weakness of the anlbigrlous grammar: an ambiguous context-free grammar expresses 

a distinction that can only be resolved in the context-dependent syntax. I contend that a 

context-free grammar should not express notions that are in the domain of context-dependent 

syntax. 

Consider the problcn~s of supporting an abstract representation in the Presence of syntac- 

tic ambiguity. Static analysis 1mlst be used to disambiguate node structure so the structure 

of a node (i.e., its node class) c o ~ l d  he affected by changes to context. Therefore, node 

structure would not 1~ all invariant property affected by direct modification only, that is, 

by replacing, inserting, or deleting children. Node structure would change depending on 

context. This clearly is a major complication. 

Furthermore, the ability to manipulate phrases-syntacticall~ complete textual fragments 

generated according to some grammar p r o d u c t i o n - ~ ~ ~ I d  also be complicated since an am- 

biguous phrase must be parsed with respect to an appropriate context to determine correctly 

its node structure. Since sucll an appropriate context is not always available, how should 

phrases that callnot be disambiguated be handled? And indeed, program manipulation 
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tools routinely manipulate phrases for which no context exists, so it is crucial tha t  syntactic 

structure can be determined without static analysis. Thus, it is best t o  simply avoid all 

these difficulties, as I did for Acer, and define concrete syntax in terms of an unambiguous 

context-free grammar. 

Desirable ambiguities can be handled by semantic overloading, that  is, by defining a 

single overloaded context-free structure with various context-dependent interpretations (def- 

initions). For example, in Acer, the value-selection x.y has one of two possible definitions. 

First, if x has an  abstract-type, such as vector. Type, the value selection x.y has the prefix- 

method-call y.(x) as its definition. Otherwise, x must be an  aggregate ( a  tuple, record, or 

dynamic), in which case the value-selection x.y is its own definition. Overloading the seman- 

tics of a value-selection thereby achieves the same effect as defining a value-selection and a n  

abstract-value-selection as two different classes of node that  have the same concrete syntax. 

Thus, avoiding context-free ambiguity gains much and loses little since semantic overloading 

achieves the same effect. 

Note that  a language designer cannot simply define an  ambiguous context-free syntax 

and expect semantic overloading to resolve all ambiguities. He must design the syntax to  

provide a syntactic way of distinguishing between various context-dependent interpretations. 

For example, in Pascal, the syntax specifies that the parentheses of a function-call t o  a 

parameterless function be omitted. As a result, an applied-occurrence of an identifier f 

could stand for a function-call. NOW i f  semantic overloading is to resolve this ambiguity, one 

would like to be able to say tllat the definition o f f  is f () when f stands for a function-call, 

and that  the definitioll of f is f otllerwise. unfortunately this is invalid because Pascal's 

syntax does not permit a function-call with empty parentheses. Thus Pascal's syntax does 

not support the tcc l l~ l i~ l lc  of  semantic overloading, although the simple change of permitting 

an empty parameter-list in a function-call would be sufficient to provide such support. 

4.3 Phrase ambiguity 



CHAPTER 4 .  P R l N C l P L E S  O F  L A N G U A G E  DESIGN 7 3 

(In Acer, this rule is called arbitrary, see A.5.3.) This, in combination with avoiding syntac- 

tic ambiguity, is sufficient for avoiding phrase ambiguity. The  restatement of the principle 

also reflects the importance of being able to parse arbitrary phrases as well as  complete 

programs. 

If a language avoids phrase ambiguity, as does Acer, then a parser, or a human reader, 

can always determine the node structure of a printed representation, even for phrases out 

of context. On the other hand, if a language is phrase ambiguous, as are  all well known 

programming languages, then a parser requires a start  symbol as well. For example, a 

Pascal parser cannot simply parse foo (arg),  it must parse foe (arg)  as an  expression or 

as a statement to determine whether it is a function-call or a procedure-call. (This could 

be avoided by defining instead a single overloaded routine-call.) Thus, the presence of 

phrase ambiguity complicates not ollly the implementation of manipulation tools, but also 

the interface of the parser and hence tile user interface of the manipulation tools. 

Clearly phrase ambiguity is considered acceptable to most language designers but there 

are considerable benefits in avoiding it. The  ability t h  parse correctly any textual phrase 

simplifies the textual entry of nodes; also having to  specify intended structure is inconvenient 

a t  best. It is true, however, tIlat avoidirlg phrase ambiguity severely restricts the choice of 

concrete syntax but there are also costs, ~ e r h a p s  acceptable, in not doing so. 

117 favor of allowing phrase ambiguity is the argument that  similar things should appear 

similar [Mac87, page 461, for example, a function-call should look like a procedure-call be- 

cause they are  both routines. IIowever, in such cases it also generally makes sense to  use 

semantic overloading to  capture the sinlilarities. Furthermore, Acer function-calls are  similar 

in appearance to  operator-calls and yet a parser can still distinguish them. For instance, 

a function-call f (x )  is distinguishabIc from an operator-call 0 ( T )  because, in general, a 

function-call has n value as its h s t  component and an operator-call has a type as its first 

component. Therefore, avoiding phrase ambiguity does not imply tha t  constructs cannot 

appear similar. 

In fact, constructs can appear similar as long as they can be distinguished by the syntactic 

class of their components. For example, in Acer, a type-selection, a value-selection, and a 

literal-selection each consists of a component, a dot,  and second component. But  a type- 

selection such as x. T consists of a value and a typeidentifier, a value-selection such as x.v  

consists of a value and a va]llc-idcntifier, and a literal-selection such as Color.red consists 

of a type and a va lue- idcnt i f i~~ .  Tllus the three constructs are syntactically distinguishable 

because type and va],lc expressions are syntactically distinguishable. And ultimately, the 
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syntactic categories for type and value are distinguishable simply because type- and value- 

identifiers are  distinguishable. 

A consequence of avoiding ~ h r a s e  ambiguity is the requirement than an  empty input 

must give rise to  an  empty node. Therefore, to  distinguish textually a childless list node 

from an empty node, every list rule must contain a t  least one token. With the design of Acer 

I carried this requirement one step further: every construction rule also must contain a t  least 

one token. Therefore, since lexical rules themselves specify tokens, every Acer lexical, list, 

and construction node gives rise to a t  least one token in the textual representation. (Recall 

that an  Acer empty node can either be invisible or appear as the token nothing.) Because 

of this syntactic property, it is possible to  select any Acer node by simply pointing a t  one 

of its tokens in the textual representation. This is particularly important for the interactive 

manipulation of programs. 

It may be argued tllat these restrictions on concrete syntax are too stringent, particularly 

requiring all construction rules to contain tokens. Remember, however, tha t  the restrictions 

are intended to  ensure various syntactic p-operties-the importance a language designer 

places on these properties determines the importance of conforming. Furthermore, only the 

standard concrete syntax need conform; alternative views can be specified freely. Also, Acer 

demonstrates tha t  conformance can in fact be easily achieved and that  the resulting concrete 

syntax is quite readable. 

4.4 Comments 

Most modern langllages treat comments as white space that  is discarded during parsing. 

However, it should be possiI,]e to preserve comments when a Program is parsed [Gro89, 

I h 9 B ] ,  so tliat a corrlnlcllted form can be regenerated from the node structure. Moreover, 

since nodes can be i n  arbitrary ways, the original positions of comments may 

also change. It is t1lerefol.e irnportallt to consider how a parser associates an  arbitrarily 

placed comment with a specific rlode in the parse tree, and where a pretty-printer writes 

the comment associated with a node. In addition, if comments are used as  annotations for 

nodes, it is tilat the association of comments with nodes is unchanged when a node 

is printed and then parsed hack in. 

Comments play central role in a number of situations. Not only do they serve as 
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documentation, but they are  frequently used as assertions or compiler directives ( ~ r a ~ m a s )  

as well. A well-designed commenting facility provides the capability to  annotate nodes with 

arbitrary textual information. Tools can use this facility not only to  receive tool-specific 

information (e.g., switches for the compiler, assertions for the correctness-prover, formatting 

hints for the pretty-printer, etc.) but also to produce parsable annotated listings (e.g., a 

compiler listing, a profiled listing, a cross-referenced listing, etc.). 

In Acer, the property that  every node owns a t  least one token in the textual representation 

provides a simple way of associating comments with nodes: each comment is associated with 

the node tha t  owns the preceding token. An Acer comment begins with a '%' and continues 

to  the end of the line; several lines of comments may appear (see A.4.2.1). In this way, Acer 

supports the textual annotation of nodes. Furthermore, because the rule for associating a 

comment with a node is so simple, there is no need to complicate Acer's grammar with a 

specification of allowable comment placement. 

TIowever, because a node can own several tokens in the concrete representation it may be 

desirable to specify in the grammar which particular token is to  be annotated by a standard 

unparser, Of course, a 13SCr would still be permitted to annotate any token ~ w n e d  by a node. 

But when a node is printed, the annotations would associate with the one specified token. 

Such comment placement is not actually specified for Acer because it is irrelevant; different 

implementations may choose different comment placement. The  issue is a matter of taste. 

4.5 Macros 

Just as comments constitute a, problem for program manipulation if the information 

they represent is not encoded in the node structure, so too textual macros are a problem. 

Because they define textual objects rather than syntactic objects, textual macros cannot be 

manipulated syntactically and thus must be expanded before parsing proceeds. Information 

about the use of macros is therefore lost, and cannot be reintroduced to  print a modified 
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parsed first and then expanded as nodes later. In this way, macros are defined as a feature 

of the language itself and so appear in the abstract syntax. Acer simply avoids the use of 

macros. 

4.6 Incomplete phrases 

Principle 6 A language should have a standard representation for syntactic placeholders. 

Whereas a phrase is a complete exparision of some grammar production, an incomplete 

phrase is only a partial expansion, that is, it contains non-terminal symbols. An incomplete 

phrase can be expressed by suhstituti~lg a placeholder or metavariable for each unexpanded 

syntactic component. 

Metavariables have a number of applications. The need for metavariables lies a t  the heart 

of template-driven syntax editors [BSs6,TR81], which facilitate program construction by the 

expansion of placeholders. Furtllermore, incomplete phrases can be viewed as patterns, 

making them useful for pattern-matching and for specifying t r ~ n ~ f o r m a t i o n s  [DGKLMM]. 

Acer supports syntactic placcholdcrs without the inclusion of a special metavariable syn- 

tax. A lexemc is concise enough to stand as its own placeholder (a  metavariable would have 

a syntax a t  lcast as complicated). A list may be empty, thereby acting as an appropriate 

placeliolder. And a construction acts as a  laceh holder when appropriate placeholders for 

function ( )  %*Signa.ture 
? %*Body 

end 

in which the sigllatllrr is lranlcd 'Signature7 and the body is mmed 'Body.' Thus Acer's 
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This concludes the discussion of principles concerning the relationship between concrete 

and abstract syntax. In summary, the abstract syntax of a language should be designed 

as a manipulable, node-based representation of the required semantic objects, and concrete 

syntax should be designed as a ~ h r a s e  unambiguous view of annotated nodes. In addition, 

careful consideration should be given to ensuring beneficial properties of the concrete syntax, 

such as the requirement that  every node gives rise to a least one token. 

4.7 Semantic objects 

Principle 7 All semantic objects should be representable as constructs in the language. 
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4.7.1 Denotation and kind 

As extensions of the definition relation and the type relation, Acer specifies a denotation 

relation (see A.3.2) and a kind relation (see A.3.3). The  denotation of a node is the final 

node tha t  results from repeated queries as to  the definition of a node, the definition of tha t  

definition, and so on. Similarly, the kind of an expression is the final node tha t  results from 

repeated queries as to  the type of an expression, the type of that  type, and so on. 

In a correct Acer program the kind relation is equivalent to  applying the type relation 

twice because the type of an expression is a type and the type of a type must be a type tha t  

is its own type. For the denotation relation, however, the definition relation must be applied 

an arbitrary nulll1wr of tilrles to reach a node that is its own definition. This can even lead 

to  circularity. For cxample, i l l  thc  following (incorrect) Acer program 

{let x be y 
let y be x 

the definition of the y in the first binding is the y in the second binding, the definition of 

that  y is the x in the secolld binding, the definition of that x is the x in the first binding, the 

definition of tha t  x is the y in the first binding, and so on. An Acer manipulation system 

must detect such invalid circularity (see discussion of implementation techniques in C.19); 

for this example, the denotation of each identifier is given by the special value error (see 

A.25).  

4.7.2 First-class values 
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4.8 Scoping 

Principle 8 The scope rules of a language should be simple. 

The  notion of associating with a semantic object a name and thereafter referring to  tha t  

object by name is universal to all programming languages. Static scoping with nested block 

structure is the standard manner in which this notion is syntactically represented. The  notion 

gives rise t o  the defining-occurrence relation, the primary means by which distant nodes in a 

syntax tree come to  be related. Since other relations rely heavily on the defining-occurrence 

relation, it must be a simple relation that  is easy to compute. 

Acer specifies scoping in terms of two concepts (see A.3.1). First is the concept of the 

name-layer. Certain classes of Accr node, such as binding-lists, signatures, and tuples, 

contain constructs, such as bindings and declarations, that  introduce defined-identifiers. 

The  name-layer of a node from such a class is the set of defined-identifiers introduced by its 

immediate children. A name-layer may not contain duplicate spellings. 

Name-layers are  scarclled during identifier-lookup, Acer's second scoping concept. 

Identifier-lookup involves a recursive traversal from child to  parent in which a t  each step the 

class of the parent, given that  lookup is a t  the particular child, determines the name-layer(s) 

that  must be searched arid whet~ler lookup should terminate. By default, no name-layers 

are searched and traversal continues with the parent. 

Intuitively, Acer's scope rules are  specified in terms of searching, and the nature of this 

search is very simple indeed. I n  Accr, the order of declarations and bindings does not af- 

fect scope since scope is defined i n  terms of name-layers-a name-layer is a set of nodes, 

and hence has no order (although it may be ordered according to  spelling to  speed search- 

ing). Supporting arbitrary forward reference allows recursive dependencies to  be naturally 

expressed and does not complicate sroping. Rut it does imply the burden of dependency 

analysis for detecting crroneo,ls denotation and kind relations (see A.7.2). Thus Acer's scope 

rules are simple but dependency analysis is somewhat complex. 

The  approach to  scoping i n  Acer may be contrasted with tha t  in Quest, which requires 

recursion to  be cxp]icitly specified wit11 recursive binding constructs- For instance, in Acer, 

the recursive factorial function can be defined as 
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let rec ! be function (x: Integer) 
if {x <= 0 )  then 1 else {x * ! ({x - 1 ) ) )  end 

end 

Similarly, in Quest, recursive type-bindings must be used to define recursive types. Since 

the restrictions imposed by Acer's dependency analysis are the same as those imposed by 

Quest's recursive bindings, it can be argued that Acer's approach is simpler and more direct- 

recursion does not require additional syntactic constructs which complicate manipulation. 

The advice to language designers, then, is that scoping should be flexible enough to allow 

recursion to be directly expressed and hence that order of definition or declaration should not 

affect scope. After all, recursion is an essential programming language feature that  should 

not require special syntactic support. Of particular concern are constructs such as Pascal's 

forward-declarations, whose sole purpose is to circumvent a deficiency in the scoping. 

4.9 Locality of objects 

((1. * x> + {y * Y } }  l {{x * x} - {y * y)}} 

w e  could optimize tlris expression as follows: 

{let xx be {x * x); let yy be {y * y } ;  {{xx + YY} fxx - YY})) 
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4.10 Referring to objects 

Principle 10 A language should allow references to  existing objects to  be easily introduced. 

When a program is modified, it is frequently necessary to  refer to  a specific semantic 

object a t  a given point in the program. Program manipulation is therefore simplified if new 

references to such objects can be introduced without global changes to  the program. With 

nested block structure the objects visible a t  the defining point of some particular object 

are generally visible where that  object is visible. Therefore, nested block structure tends to  

make objects visible where they are actually needed. 

Acer's nested block strncture provides complete support for the principle. In fact, given a 

node (representing a scma~lt~icohject) and a target location, an Acer manipulation system can 

automatically create a definition-copy-at (see A.5.2.2), a node representing the same object 

as the original node but expressed in terms of the scope of the target location. Naturally, 

a definition-copy-at is not for all nodeltarget-location combinations, since objects 

can be out of scope, but it is I,ossible whenever it is sensible. More on this in the following 

two sections. 

Acer's dcliotcrs also provide support for referring to  existing objects, although this sup- 

port is not directly available a t  the source-level. However, when writing a metaprogram, i.e., 

a program that  manipulates Acer programs according to  the node representation described 

in Chapter 3,  it is possible to  create a denoter to  an existing node and to  use tha t  denoter as  

if it were an idelltifier refwring to that  node. For example, suppose a metaprogram created 

two empty tuple-literal nodes: 

Tuple -  
Li teral  c3 

A denoter to  each of these nodes could then be created: 

Definition Tup le -  

Li trral  

Value- Definition Top le -  

Denoter  Literal 

and each denoter be inserted1 as both the first child of its own tuple-literal and the 

Second child of the other tuple-literal: 

'Note that  when all attached node is inserted, it is copied, and that when a denoh is copied, a denoter 
with the sarne definition as the original is created. 
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Value- Value- 
Denoter Y 

Definition 

If either of these two tuple-literals is then to be inserted into a source program, in which 

denoters are not permitted, definition-copy-at can be used to  automatically express them as: 

{let unnamedl be tuple unnamedl, unnamed2 end 
let unnamed2 be tupIe unnamed2, unnamedl end 
unnamedl ) 

The result is a node with the scrnarltic structure of the original but expressed without 

denoters. 

So Acer's dcrloters allow prograxns to be expressed and manipulated without regard to  

the normal l i~nitations of scope. 1x1 addition, any object expressed in terms of denoters can 

be automatically re-expressed using normal scoping rules- 

4.11 Accidental information hiding 

Principle 11 Narlxes sho& only be hidden using information hiding constructs specifically 

designed for the purpose. 

function (x : Integer) 
tuple let x be ? end 

end 
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and that we want to express the x in the signature in place of the ? in the tuple-literal. 

Applying definition-copy-at with the x in the signature as the source and the ? in the literal 

as  the target and replacing the ? with the result produces the following: 

function (x : Integer) 
tuple let x be x'[l] end 

end 

Note tha t  Ada deals with the problem of unintentional hiding in two ways. First of 

all, Ada allows identifiers to  be overloaded, using various type restrictions t o  determine 

the defining-occurrence referenced by a particular applied-occurrence. Unfortunately, this 

solution does not work for homograms, i.e., identifiers that  have indistinguishable types. 

The  second approach is to allow scopes to  be named and to  use qualification to  reference 

a particular defining-occurrence. IIowever, not all scopes are named so during automated 

manipulation arbitrary new scope identifiers must be introduced. This results in local trans- 

formations that  produce nor)-local changes. Furthermore, the problem of hiding may also 

occur for the scope name. Ada's approach is complex, thereby hindering manipulation. 

4- 12 Intentional informat ion hiding 

Principle 12 If an information-hiding construct makes visible the name of an object, it 

should also make visible the names of the objects referenced in its definition, unless the 

definition constitutes representation-dependent information. 
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problem of unintentional hiding that can result from the import/export rules tha t  control 

intermodule visibility. For example, in Modula-2, it is possible t o  export a variable with- 

out exporting its type. Acer's simple nested block structure ensures conformance with the 

principle. 

This concludes the discussion of principles relating to  properties of the abstract syntax. 

To summarize, then, semantic objects should be represented as nodes and these nodes should 

be organized so tha t  they can be named and made visible over the regions in which they 

are needed. The  visibility rules should be simple, should permit references to  be introduced 

easily, and should prevent unintentional hiding. 

4.13 Unfolding 

Principle 13 7'here should be a straightforward general way of replacing a call to a user- 

defined routine with an equivalent in-line version of the routine body. 

function (x : Integer; y : Integer) {x + y} end (10, 20) 

Now, to  provide support for unfolding, all that  is still required is the ability to  

express function-literals a t  their calling points. But this ability is provided, in conformance 
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with the principle that references to existing objects should be easy to  introduce, by Acer's 

definition-copy-at facility. Therefore, Acer provides complete support for unfolding 

Note that the static evaluation of an operator-call, i.e., determining the definition of an 

operator-call, is essentially an unfolding transformation. For example, given Dyadic defined 

as 

let Dyadic be 
Operator (Base Type :: Any; Result Type :: Any) 

Function ( : BaseType; : BaseType) Result Type end 
end 

unfolding the operator-call Dyadic (Integer, Boolean) results in: 

{let Base Type be Integer 
let Result T y p e  be Boolean 
Function ( : WaseType; : Base Type) Result Type end) 

And this type is equivalent to the definition of the operator-call. 

4.14 Folding 

Principle 14 There should be a st~.ai~lztforward general way of replacing any expression 

with an equivalent user-defined routine. 

Folding, encapsulating expressions as parameterized routines, is a transformation of fun- 

damen tal importance. It lies at the lieart of abstraction. Whereas support for manipulation 

is often overlooked in language design, support for folding cannot be overlooked. However, 

because support for abstmction usually provides support for folding, support for folding is 

not often recognized as a relevant goal. 

Acer supports folding of type and value expressions as follows- A type T can be folded 

as a type-operator used in type-call: 

Operator ( )  T end ( )  

And similarly a value v can be folded as a function-literal used in a function-call: 

function () v end () 

However, for values, if v appears in a context requiring a reference or pointer to v rather 

than just the value rcfcrenccd by v, as does v in 
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{v b e c o m e s  something) 

then v must be folded either as 

{ func t ion  () re ference  ( v )  e n d ( ) @  b e c o m e s  something) 

{funct ion  ( )  p o i n t e r  ( v )  e n d ( ) @  b e c o m e s  something) 

The  second form is permitted only i f  p o i n t e r  ( v )  is valid (see A.30). Any Acer type or value 

can be folded in these ways and hence anything that  an  expression can do a routine can do. 

Folding in the form that  has just been shown is, of course, of little direct use. The  real 

value of folding lies in the reuse of routines. The  routines resulting from the folding above 

are used but once. 

To use a folded expression more than once it must be hoisted to  a higher scope, certainly 

higher than the call in which it is used. Parameterization is necessary whenever a routine 

is hoisted beyond the scope of  some object referenced in its body-that object must then 

be passed as a parametcr instcad of simply being visible. Acer's signatures support hoisting 

by providing for both type alld value parameters. Clearly, Acer's support for ~ o l ~ m o r p h i s m  

provides better support for hoisting than do many ~rogramming languages. 

As an  example of Iloisting, consider folding the applied-occurrence of X in the block 

{let  construct b e  
f u n c t i o n  ( T :: A n y ;  x : T; y : T)  

t u p l e  x, y e n d  
e n d ;  

construct (Integer, 10, 20)) 

which results in 

{let  construct b e  
f u n c t i o n  ( T :: A n y ;  x : 7'; y : T )  

t u p l e  f u n c t i o n  () x e n d  (), y e n d  
e n d ;  

construct (Integer, 10, 'LO))  

Hoisting the new function-literal up  one level results in 

{let  construct b e  
f u n c t i o n  ( 7' :: A n y ;  x : T; y : T)  

{let  unnamed b e  func t ion  ( )  x e n d ;  
t u p l e  unnamed (), y e n d }  

e n d ;  
construct (Integer, 10, 20)) 
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and hoisting it up  three levels results in 

{let unnamed be  function ( T  :: Any; x :  T) x end; 
let construct b e  

function ( T :: Any; x : T; y : T)  
tuple  unnamed ( T, x), y end) 

end; 
construct (Integer, 10, 20)) 

The  ability to  parameterize over types affords great expressive power. 

4.15 Low-level manipulation 

code Integer; do end 
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The first expression, of course, represents the code-patch's type and the last expression, for 

PC Acer, represents the effective-address of the code-patch's value, register do in this case. 

A PCAcer code-patch can also include machine instructions, which are bracketed by the 

initial type and the final effective-address. For example, a function that moves the contents 

of register do to register d l  could be defined as 

let move-do- to-dl be 
function () code Void; move(d0, d l  ); # (0) end end 

Notice that this code-patch reveals how the void-literal is represented in PCAcer, namely as 

a machine zero. 

With code-patches, every i~n~lementa t ion  of Acer provides a convenient notation for 

expressing machine dependencies. Furthermore, since code-~atches are represented in terms 

of existing syntax, Acer's context-free syntax is the same for all implementations. Only 

the context-dependent interpretatiot~ of a code-patch's trailing ex~ressions changes from 

implementation to implenienta tion. 

It should not be surprising that existing syntax can be so easily reused to represent the 

semantic objects of another language. A programming language, after all, must be good a t  

representing objects. 

4.16 Summary 
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block structure should then be used to integrate the abstract syntax for the objects into a 

framework in wllich all hiding is intentional rather than accidental. Finally, the abstract 

syntax should be carefully augmented with keywords and punctuation to  obtain a concrete 

syntax with appropriate manipulation characteristics. 



Chapter 5 

The implementation of Acer 

5.1 Implementing support for manipulation 
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avoided. 

The approach advocated here is that   articular attention should be focused on the one 

tool used to implement all other tools, the metaprogramming system. Current research is 

valuable from this perspective because it clarifies what a metaprogramming system must 

provide to  implement effectively an end product [DMS84]. 

What is the advantage of an approach that stresses the importance of a rne tapr~gra rnmin~  

system over that of the final environment it implements? First, it makes clear the feed-back 

mechanism that should exist between environment design and language design-as the design 

and implementation of basic manipulation support progresses problematic language features 

are identified and redesigned. This synergy frees designers to  spend their time designing 

more powerful kinds of support rather than waste their time designing ingenious techniques 

for supporting poorly designed features. 

And second, the approach brings programmers back into the sphere of influence by pro- 

viding an abstraction for implementing application-dependent manipulations, e.g., analyz- 

ers to check for correctlless, optimizers to make data-abstraction more efficient, formatters 

to present data-abstractions more readably, transformers to implement new editing corn- 

mands, generators to construct automatically programs or program templates, and so on. 

For a general-purpose language, which supports a wide variety of applications, the range of 

application-dependent manipulations is potentially huge. And a sophisticated programmer, 

already skilled a t  manipulating values with programs, can readily use a metapro- 

gramming systcm to write programs that manipulate programs- 

5.2 Acer's metaprogramming system 
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host-language system described Appendix C. After all, both Pascal and Acer support da t a  

abstraction and so the abstract node representation described in Chapter 3 can be supported 

in either language. 

IIowever, because Acer supports useful mechanisms not available in Pascal, such as it- 

erators and accumulators, symbolic value-identifiers, exceptions, and so on, the Acer host- 

language metaprograrnming system to be described contains features not directly available 

in the Pascal host-language version. For example, the Acer host-language lexical analysis 

and parsing functions make use of exceptions and also iterators and accumulators, but  the 

Pascal host-language versions have a less elegant interface (see C.12 and C.13). Such dif- 

ferences highlight the advantages of Acer over Pascal, and since Appendix C gives a precise 

description of the 13ascal host-language metaprogramming system, the two versions can be 

compared. 

The  interface to  the Acer host-language rrietaprogramming system for Acer is provided 

by thc types Tokenclass, Token, Nodeclass, and Node, and the modules token, node, and 

grammar. The  types Tokenclass and NodeClass are defined as option-types tha t  categorize 

tokens and nodes, respectively; the types Token and Node are a b s t r a c t - t ~ ~ e s  encapsulated 

by the modules token and node, respectively. The  module grammar provides generic access 

to Acer's grammar. 

One of the great a d v a n t a p  of  a CRAMPS-style metaprogramming system, as  we shall 

see in the sections that follow, is that  much of its functionality is evident from the grammar. 

Thus the grammar serves as doculnentation for specifying the facilities used to  carry out 

manipulation. 

5.3 Concrete syntax 



and since streams are supported as iterators, no additional support for characters is necessary. 

5.3.1 Token 

Acer tokens, on the other hand, are supported as  follows. First, the type TokenClass is 

defined as an  option-type tklat contains the name of each class of token: 

let TokenClass be Option an-accumulation, . . . , a-when end 

(Each token name is prefixed by a- (or an-) to distinguish it from an Acer keyword.) And 

second, the type Token is defined as an abstract-type: 

let Token be t,okcn. Tgpe 

implemented by the niodulc token: 

token : 
Tuple 

Type : A rzy 
class : Function ( a m e n  : Type) TokenClass end 
spelling : Function (aToken : Type) String end 
x : Function (a  Token : Type) Integer end 
y : Function (aToken : Type) Integer end 
ma kc : 

Tuple 
an-accumulation : Function (x  :Integer; y :Integer) Type end 
. . .  
a-valuelden tifier : 

Function (spelling :String; x :Integer; y :Integer) Type end 
end 

error : 
Exception (Tuple m e s s a s  : String; x : Integer; y : Integer end) 

analyze : Function (aCharacterStrcam: Iterator (Character)) 
Iterator ( Type) 

end 
unAna[yze : Function (aTokenStream: Iterator ( T Y P ~ ) )  

It erator ( Cf~nracter) 
end 

end 
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Each token is derived from a character stream, but the stream is not strictly linear for 

it contains ASCII formatting characters that  imply the existence of discrete lines. The  first 

character of a character stream, therefore, is a t  column 1 row 1; each subsequent character 

occurs a t  increasing column position, except that  a carriage-return sets the next column 

position to  1 and a line-feed increments the next row position, leaving column position 

unchanged. In this way, tokens can be considered to have column and row positions. 

To create a token, make functions are provided, one for each class of token. If the token 

is a lexical token, such as an identifier, the make function requires a spelling and a position, 

otherwise, it requires only a position because the spelling can be deduced from the class. 

Finally, to support conversion between character streams and token streams, the module 

token provides the functions analyze and unAnalyze, as well as the exception error. The 

function analyze requires a cllaracter iterator and yields a token iterator tha t  raises error, 

with an  associated error message and position, when it cannot produce a valid token. 

The  inverse of analyze is provided by unAnalyze, which takes a formatted stream of to- 

kens and yields a cllarncter strc.an1. The  position information for tokens is used to  generate 

appropriate white space, i.e., spitting, indentation, and line-breaks. Determining token 

sition is the responsibility of an unparser, which is provided by the abstraction for dealing 

with nodes. 

The  module token could provide many other useful functions as well. For example, it 

could provide a record named isa containing a recognizer for each class of token, e.g., instead 

of writing {aToken.class is ~ ~ k ~ n C / n s s . x }  to determine whether aToken is of class x one 

would write t o k ~ n . i s s . ~  (aToken). Little would be gained by further elaborating on such 

non-essential features so we sl lal l  move on now to the handling of context-free syntax. 

5.4 Context-free syntax 

5.4.1 Grammar 

The type Nodeclass is defined as an option-type that contains the name of each class of 

node: 
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let NodeClass be 
Option accumulation, accumulationList, . . . , whenCondition end 

The names are derived directly from Acer's grammar, one for each lexical, construction, or 

list rule. Remember that alternation rules define node categories not node classes. 

The module gramma- provides further information about Acer's (abstract) grammar as 

follows: 

grammar : 
Tuple 

spelling : Function (aNodeClass : NodeClass) String end 
lexeme : Set (NodeClass) 
constrllct,ion : Sei (NodeCla'lass) 
list : Set ( NodeClass) 
abstract Type : Sei (NodcClass) 
. . . 
whenBranch : Set (Node Class) 
error : Exception (String) 
nurnber0fCornponents : 

Function (aconstruction : Nodeclass) Integer end 
nthCornponentDomain: 

Function (aConstruction : NodeClass; n : Integer) 
Set (Node Class) 

end 
nthCornponentNarnc : 

Function (aConstructioo : NodeClnss; n : Integer) String end 
baseDomnin : Function (aList : NodeClass) Set (NodeClass) end 

end 

The spelling of a node class nc is yielded by grammar-spelling (nc). Whether nc is a 

one. 

Components, grammar.nth~omponenlName (c, n) yields the name the nth component, 

and grammar. n tlj ComponentDomain ( C, 11)  yields the set of node classes that  may appear as 

the nth component-if t}lis set includes Node Class empty, the component is optional. For a 
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functions in incorrectly applied. 

5.4.2 Node 

The type Node and tile module node provide support for the manipulation of nodes. The 

type Node is defined as an abstract-type: 

let Node b e  node. Type 

implemented by the module node: 

node : 
Tuple 

Type :: Any 
theUnatta.chedEmptWvNode : Type 
c1a.s~ : Function (aNode : Type) NodeClass end 
parent : Function (aNode : Type) Type end 
position : Function (aNode : Type) Integer end 
cornr~~cnl:  Function (aNode : Type) Pointer (List (String)) end 
length : Function (&'ode : Type) Integer end 
error : Exception (String) 
index1 : Function (aNode : Type; n : Integer) Type end 
accumulator: Function (aNode : Type) Type end 
. . .  
= : Function ( x  : Type; y : Type) Boolean end 
< : Function (x : Type; y : Type) Boolean end 
make : Record . . . end 
constroct : Function (aConstructionOrList : NodeClass) 

Accum~~lnior ( Type, Type) 
end 

isa: Record . . . end 
parse : Record . . . end 
unPa.rse : Record . . . end 
copy : Function (aNode : Type) Type end 
replace : Function (sollrce : Type; destination : Type) Void end 
exchange : Function ( x  : T y p e ;  y : Type) Void end 
dcletc : Function (aNode : Type) Void end 
insert : Function (destination : Type; 

position : Integer; 
element: Type) Void end 

. . .  
end 
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Every node x has a class x.class, a parent x.parent, a position x.position, a comment 

x.comment, and a length x.length, where the length of a lexeme is 0. The parent of an 

unattached node is a special node of class empty called theUnattachedEmptyNode. (It is 

special because it is its own parent.) The position of an unattached node is 0. 

For accessing the nth child of a node x,  res sum ably a construction or list node with 

a t  least n children, the notation x [n] is used. As a convenience, negative indexing selects 

children in reverse order, e.g., x[-1] selects the last child. 

A child of a construction x can also be selected using its component name c as X.C. Thus, 

for each component name in the grammar, a function by that name is included in node. 

(They are not all shown in the above.) Note that since different constructions can use the 

same component names, each selector frlllction may be correctly applied to more than one 

class of node. 

Two nodes x and y can be compared for structural equality using {x = y) and for lexi- 

cographic order using {x < y).  Of course, #, <=, >, and >= can be provided as well. 

For constructing nodes, va.rious make functions are provided, one for each class of node: 

ma.ke : 
Record 

accumulation : 
Function (accumulator: T y p e ;  a.ccumulationList : T y p e )  T y p e  end 

accumulationList : Function ( )  T y p e  end 

valueldentifier : Function (spelling : S t r i n g )  T y p e  end 
end 

Each function has the same name as t,he class of node it constructs: for a construction, the 

function requires a ]lode for each component; for a list, the function requires no components; 

and for a lexcmc, the function rcqllires a spelling. Since only empty lists can be directly 

constructed with make functions, a construct function is ~rovided as well. This function, 

given a construction or list node class, yields an accumulator that makes the specified class 

of node. For example, 

makes either a constrrlction wit}] three children or a list with three children. Whenever an 

attached child is provided, it is automatically copied. 

It is also convenient to have g e n e r i c  make functions. For example, node.make.identifier 

makes either a type-identifier or value-identifier, depending on the spelling; node.make.cal1 
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makes either a function-call or operator-call, depending on the class of the first argument; 

and node.make.selector makes either a type-selection, a value-selection, or a literal-selection, 

depending on the class of each argument. Whenever several semantically similar constructs 

are distinguishable by the structure of their components, a generic constructor is possible. 

This possibility could be indicated in a GRAMPS-style grammar by grouping the constructs 

as an  alternation and using the name of that alternation as a constructor name. This is 

possible with blocks for instance. But for declarations a generic constructor is not possible 

because a fixed-value-declaration is indistinguishable from a variable-value-declaration given 

only the component classes. 

If any of the above functions are incorrectly applied, the exception node.error is raised 

with an error message. 

For easy recognition of nodes, node provides isa recognizers, one for each class and 

category of node: 

isa : 
Record 

accumzllation : Function (a.Node : Type) Boolean end 
. . .  
arbitrary : Function (aNode : Type) Boolean end 
. . .  

end 

In general, for a node class nc, node.isa.nc ( x )  is equivalent to {x.class is N0deClass.n~) and 

for a node category cat, node.isa.cat ( x )  is equivalent to: 

{x.cla.ss member grammar.ca.t ) 

For parsing nodes, node provides various parse functions: 

parse : 
Record 

error : Exception (Tuple message : String; x : Integer; y : Integer end)  
tokens : Function ( )  Accumulator (Token, Type) end 
string : Function (aString : String) Type end 
strings: Function ( )  Accumulator(String, Type) end 
. . . 

end 

The exception node.parsc.errol- is raised, along with an  ~ ~ r o r  message and a position, when 

Parsing fails. The  prilnary parsing function is tokens, which yields an  accumulator tha t  

consumes tokcns to produce a. node. It could be used as follows: 
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for t in token.ana1yze (a~haracterstream) do 
node.parse.tokens () t 

end 

Many additional parsing functions are provided, e.g., 

node.parse.string ( " l e t  x be y")  

parses a string argument to  a node. All such additional functions can be defined in terms of 

the tokens parse function. 

For unparsing nodes, node ~ r o v i d e s  various unparse functions: 

un Parse : 
Record 

tokens : Function (aNode : Type 
tllcWidt11: Integer 
theA/laxirr~~imDenoterWidth : Integer 
printEr~~ptyNodes : Boolean) 

Iterator ( Token)  
end 

. . . 
end 
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5.5 Context-dependent syntax 

Support for context-dependent manipulation is provided by extending the module node: 

node : 
Tuple 

. . .  
type : Function (anExpression : Type) Type end 
kind : Function (anExpression : Type) Type end 
definition : Function (anExpression : Type) Type end 
denotation : Function (anExpression : Type) Type end 
definingoccurrence : Function (an Identifier : Type) Type end 
attrib~ltcl'arcnt : Function (aNode : Type) Type end 
== : Function (x  : Type; y : Type) Boolean end 
<<== : Function ( x  : Type; y : Type) Boolean end 
abstractNamc: Function (anAbstractType: Type) Type end 
abstractBase : Function (anA bstract Type : Type) Type end 
quantifier : Function (anAbstract Type : Type) Type end 
definitioncopy : Function (aNode : Type; aLocation : Type; 

thesubstit utions : Index ( Type, Type)) 
Type 

end 
definitionCopyAt : 

Function (aNode : Type; aLocation : Type) Type end 
vaGdate : Function (aNode : Type) Index (Type, List (String)) end 
global : Function (anldentifierSpe1ling : String) Type end 
. . .  

end 

Most importantly, the semantic selector functions type, kind, definition, denotation, and 

definingOccurrence arc provided. Thus, every expression node x has a type x.type, a kind 

x.kind, a definition x.definition, a,nd a denotation x.denotation; every identifier node x has 

already appear in node because they are a.lso component names. Therefore, the meaning 

of each existing function is further overloaded, e.g., the type of a node can be either a 

component, a.s when the node is a declaration, or a semantic attribute, as when the node is 
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theUnattachedEmptyNode or the node x that has the root node y of z as its type or  defini- 

tion. A node tha t  has theUnattachedEm~tyNode as its attribute-parent is not a n  attribute, 

a node that  does not, is an  attribute and cannot be edited. Of course, a node can be 

an attribute of many nodes, but only the node for which it was created is considered its 

attribute-parent. (See C.17 for a discussion of the implementation issues involved in the 

notion of an  attribute-parent.) 

Subtyping and equivalence information is ~ rov ided  by <<== and ==. The  expression 

{x  <<== y )  yields true if the type x is a subtype of the type y. Similarly, the expression 

{x  == y )  yields true if the expression x is equivalent1 to  the expression y. Of course, the 

functions ##, <<, >>, and >>== would also be provided to  test for unrelatedness, proper 

subtype, proper supertype, and supertype, respectively. 

Additional semantic selectors, dealing with various semantic aspects of Acer as described 

in Appendix A ,  are provided as well. For example, for a node x referring to  an abstract- 

type, x.abstract Name yields the abstract-name, x.abstract Base yields the abstract-base, and 

x.quantifier yields the quantifier. Semantic recognizers are also added to  the isa recognizers, 

e.g., node.isa.variable1dentifier (x )  yields true i f  x denotes a variable-identifier. 

The  ability to  definition-copy a node is provided by the function definitioncopy. It takes 

a node to  be copied, a location node, and an index (see C.5) of substitutions- The  purpose 

of the location node is to specify that  any identifier used in the definition-copy having a 

defining-occurrence enclosed by the location should have its definition definition-copied- 

most often the locatio~l node will just be the parent of the first argument. The  purpose of 

the substitution index is to provide substitutions to be made during definition-copying. As 

well, the substitution index is modified as a side-effect of definition-COPY so that  it maps each 

node in the source to  the node in the defillition-copy that it gives rise to. These substitutions 

can then be used in another call to defining-copy so that node sharing is achieved. 

The  function definitionCoPyAt is somewhat simpler in that  it takes just a node and 

a location in terms of whose scope the node is to be expressed. The  resulting node will 

not contain dcnoters. The  function dcfinitionCopyAt could be used to  make explicit the 

definition of every empty node in aNode as follows: 

for x in aNode.descendants andif node.isa.empty ( x )  do 
{x replace {x. definition definitionCopyAt x )  ) 

end 
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The validate function is provided to check for context-dependent correctness. Given a 

node, it yields an index that maps each erroneous node to a list of error message strings. If 

the yielded index is empty, the node is correct. 

Many additional semantic facilities can be included in node. For example, the expression 

nodeglobal ( "x" ) determines whether an identifier with the spelling "x" is globally visible; 

it yields the same result as 

We have now seen enough metaprogramming facilities to write useful metaprograms. 

5.6 Metaprogramming applications 

5.6.1 Generating a meta-interface 

When manipulatilig a program expressed in terms of a user-defined abstraction, it is neces- 

sary to recognize a.nd construct the nota.tions introduced by that abstraction. In this section, 

we shall see how to gencra.te a. metn-interface, i.e., a meta~rogramming system interface to 

an abstraction's interface. 

For instance, consider the following simple abstraction 

simple : 
Tuple 

Type :: Any 
value: Type 
operation : Function (x  : Type) Type end 

end 

TO manipulate a program that uses this abstraction, it must be possible to  recognize the 

Particular nodes where the abstraction is used. For example, applied-occurrences of simple 

must be identifiable. Also, because simple is a tuple, it must be possible to  recognize applied- 

instances of the selections simple. %pel sirnple.value, and simde-o~erat ion.  And because 

shple.oper-ation is a furlctior~, it is frequently necessary to build a node representing a call 

to it. 

TO address these considerations, the following meta-interface can be generated: 
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let meta be 
tuple 

let simple be 
tuple 

let ! be node.global ("simple")  
let a-Type be 

tuple 
let ! be 

node.make.se/ection ( ! '[I], node.make.identifier ("Type")) 
end 

let value be 
tuple 

let ! be 
node. make.sc/ertion ( ! '[I], node.make.iden tifier ("va lue") )  

end 
let operation be 

tuple 
let ! be 

node.make.selection ( ! '[I], node.make.identifier ( "operat  i o n u ) )  
let makecall  be 

function (x : Node) 
node.makc.call 

({copy ! }, node.construct (NodeClass.ArgumentList) ([x])) 
end 

end 
end 

end 

It makes available thc  following notations. The selection meta.simple. ! yields the defining- 

test for applied-instances of each selectio~i, e.g., using {x == meta.simple.value. ! ). And the 

In the discussion that  follows, we shall see how to  implement the Acer function, 

The  function makcMet,alntcrface is defined as: 
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let makeA4etalnterface be 
function ( x  : Node) 

extendMetaln terface 
(x, makeTopMetalnterface (x. definedldentifier)) 

end 

It requires a node argument x, which must be a top-level type-binding or fixed-value- 

declaration; and yields the meta-interface created by makeTopMetalnterface and modified 

The basic form of a meta-interface, for a particular globally visible defining-occurrence 

id, is indicated in the definition of makeTopMetalnterface: 

let makeTopMctalnterface be 
function ( id :  Node) 

node.su bstitute 
(nodc.parse.strings ( )  

(1" l e t  ? be I t  

" t u p l e  l e t  ! be n ~ d e . ~ l o b a l ( ? )  end " I ) )  
( [makeMetalntcrfa ceName (id) 

node.make.stringLitera1 (id.spelling)]) 
end 

call node.parse.strings ( )  yields an accumula,tor that parses strings, which in the above is 

each successive 11otle it consumes. Thus, in the above template, the first ? is replaced by 

string-literal representing the spelling of id. 

The function ma.keMeta1ntcrfa.ceNa.me is defined as: 

let makeA4eta111terfaceNamc be 
function (id : Node) 

inspect id.class then 
when valueldentifier then {copy id) 
when typeldcntifier then 

nodc.make. valddentifier ({"a_" + id.spelling}) 
when empty then 

node.make. valldder~tifier 
({"empty" + convcrt.integ.erToString (id.parent.position)}) 

end 
end 
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For a value-identifier, it yields a copy of id; for a type-identifier, it yields a value-identifier 

that  has the spelling of id but with a- appended to  the front. (And for an  empty defined- 

identifier, it yields a value-identifier that has the spelling empty but with the position of id's 

parent appended as a string.) 

As concrete examples, makeTopMetalnterface applied to  the module token yields: 

let token be 
tuple let ! be n ~ d e . ~ I o b a l ( " t o k e n " )  end 

Applied to  the type TokenClass it yields: 

let a-Token Class be 
tuple let ! be n ~ d e . ~ l o b a l  ( " ~ o k e n c l a s s " )  end 

These can be collected into a tuple called meta: 

let meta be 
tuple 

let toke11 be 
tuple let ! be node.globa1 (" token")  end 

let a-TokenClass be 
tuple let ! be node.globa1 ( "Tokenclass") end 

end 

which can then be compiled. As a consequence, meta.token. ! refers to  the defining-occurrence 

of the module token, and mcta.a-TokenClass. ! refers to  the defining-occurrence of the type 

Token Class. 

Of course, meta.id. ! has little advantage over node.gIobal (" id")  but  the advantage of 

the rneta-interface is more apparent when we consider how it is extended by the function 

e~tendMetalnterface, which is defined as: 
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let extendMetalnterface be 
function (x : Node; thelnterface: Node) 

begin 
inspect x.class then 

when typeBinding, typeDeclaration then 
inspect x.kind.denotation.c1ass then 

when optionType, enumeration Type then 
extendF'orOption OrEnumeration 

(x.kind. denotation, thelnterface) 
when operatorType then 

extendF~rO~eratorOrFunction 
(x. kind. denotation, t helnterface) 

end 
when fixedValrlcllcclarat,ion, variableValueDeclaration then 

inspect x. kir~d.denot,ation.class then 
when t upleType, record'ljlpe, dynamicType then 

ext endForAggrcgate (x. kind. denotation, t heln t erface) 
when function Type then 

extendForOperatorOrFunction 
(x.kind.dentotation, thelnterface) 

end 
end; 

theln terface 
end 

end 

The extension depends on the class of x and the class of the denotation of the kind of X, 

which must be a concrete-type or type-operator. We shall consider each case in turn in the 

sections that  follow. Note that  the function extendhletalnterfac is called recursively during 

extension for aggregates and so is to handle all classes of declaration. 

5.6.1.1 Extension for options or enumerations 

An option-type or ellumeratioll-typc i~~ t roduces  a number of literals. To provide access to 

these, the basic rneta-interface is extended by: 

let extendF~rO~tionOrEnumeration be 
function (theType : Node; thelnterface: Node) 

for id in theType.childrcr~ do 
i~~~crt.(tllelntcrface.dcfir~ition, -1, 

makcSrlblnterface ( id))  
end 

end 
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which, for each identifier id in theType, uses makesublnterface to  generate an  additional 

component according to  the template in: 

let makesublnterface be 
function ( id :  Node) 

node.su bs tit ute 
(node.parse.strings () 

([" l e t  ? be  I 1  

" t u p l e  I 1  

I 1  l e t  ! be I 1  

# I  node.make.se1ect ion I I 

I I ((copy ! ' Ell), I 1  

II n o d e . m & e . i d e n t i f i e r ( ? ) )  " 
1 1  end "1)) 

([ma keA4etalnterfaceName (id) 
node.make.stringLitcra1 (id.spelling)]) 

end 

As a concrete exa,mple, for the identifier an-arbitrary in TokenClass, the function 

makesublnterface yields: 

let an-arbitrary be 
tuple 

let ! be node.make.selection 

({copy !'[11}, 
nodc.make.iden titiher ( " a n - a r b i t r a r y  "))  

end 

5.6.1.2 Extension for operators and functions 

let e~tendForO~eratorOrFunction be 
function (theType : Node; thelnterface: Node) 

insert.(thelnterface.definition, -1, 
makeOperatorFunctionMetalntcrface (theType));  

end 

This function illserts illto tile rneta-interface the template constructed by 
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let makeOperatorFunctionMetalnterface be 
function ( t heType  : Node) 

modifyFunctionOperatorlnterface 
(node.parse.strings ( )  

( ["  let makecall be I1 

" function ( )  I1 

II node.make.cal1 II 

I  I  ((copy !), 
I1 

II node. construct #I 

#I  (~ode~las~.argumentlist)([1))) " 

I1 end " I ) ) ,  
theType)  

end 
T h e  template is modified by 

let modifyjiFunctionOperatorlrl terface be 
function (thelnterface : Node; theType : Node) 

{let thesignature be theIn terface.definition.signature; 
let theAccum~11ationList be 

the111 terface.dcfi1~itio11. body.arguments[2].accumu~ationList; 
begin 

for dccl in t l 1 e 7 ~ ~ ~ e . s i ~ n a  t umchildren do 
begin 

insert.( theSignature, -1, 
node.make. fixed ValueDeclaration 

(makelnterfaceName (deddefinedldentif ier),  
node.make.identifier  ode"))); 

i~~sert.(thcAcc~lml~lationList, -1, 
tnakeAleta It~terfaceNarne ( decl. definedIden tifier)) 

end 
end; 

thelnterface 
end) 

end 

As a concrete example, when applied to  the type Array, the following function is included 

along with ! : 

let makecall  be 
function (a-RaseT-vpe : Node) 

nodc.ma ke. call 

( { c0p.v ' 1, 
node. construct ( ~ o c l e C l n s s . a r ~ ~ ~ m e n t L i s t )  ( [a -UaseT~pe]  )) 

end 



Hence, the call 

meta.aArray.makeCal1 (node.make.iden tifier ( I '  I n t  ege r " ) )  

creates the node representing Array (Integer). 

5.6.1.3 Extension for aggregates 

An aggregate is frequently used in a type- or value-selection, so the basic meta-interface 

can be extended, for each declaration in the aggregate, by a component tha t  holds such a 

selection: 

let ext en dF'orAggregate b e 
function (thcType : Node; thelnterface : Node) 

for dccl in the7'ypc~.cl1ildrcn 
andif {not node.is;l.emptv (decl. definedldentifier)) do  

ir~sert .(  thcln terface. defii~ition, - 1, 
exter1tlMcta111terface 

(decl, make.Sublnterface (decLdefined1dentifier))) 
end 

end 

This function uses makeSublnterface as described earlier, and recursively extends each re- 

sulting sub-interface using ex-tcndMetalntcrface also described earlier. 

As a result, when a mcta-interfacc has been generated for the module node, the selection 

meta.node.parse.string. ! the node representing node.parse.string, and the call 

meta.node.pa.rse.string.makeCal1 
(node.make.string1,iteral ( " l e t  x be 10")) 

5.6.1.4 Summary of the  ineta-interface 
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From this example we can see just how easily a metaprogramming system can be used 

to  automate the generation of programs. In the next section, we shall see how semantics- 

preserving transformations can be easily implemented. 

5.6.2 Program transformation 

The examples considered in this section deal with manipulations tha t  preserve semantics. 

To begin with, consider how to optimize the use of the metaprogramming system's func- 

tion node.parse.stri~~g, which is frequently used to express node literals. This will serve to  

demonstrate the general notion of static evaluation. 

5.6.2.1 Optimizing data abstraction 

The idea behind the optimizing transformation presented in this section is to  replace each 

call to  nodc.parse.string that  is apl?lied to a stringliteral argument, with the appropriate 

calls to  make and construct. After all, i f  the argument to the parser is statically known, 

it can be statically parsed and the resulting node can be explicitly built using make  and 

construct calls. For example, the call 

node.parse.st,ring("let x be  t u p l e  10,  20 end") 

constructs the node 

let x be tuple 10, 20 end 

But so does 

node.ma.ke.fixed ValueBinding 
(nodemake. va.lueldentifier ( "x" ), 
nodemakeempty  0, 
node.construct ( ~ o d e ~ l n s s . t u ~ l e l , i t e r a ~ )  

([node.make.integerLiteral ("Io"),  
r~ode.make.integerl,itcra1("20")])) 

Clearly, the first ca,ll is Inore rcada,b]e while the second is more efficient. To reconcile the two 

while achieving the cficiency advantage of the second. 

literalize does exactly this: 
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le t  literalize be 
funct ion  ( x  : Node) 

if {x. class member grammar.list ) t h e n  
node.make.accumulation 

(meta.node.construct.makeCall 
(node.make.se1ection 

({copy meta.a-NodeClass. ! ), 
node.make.identifier (grammar.spelling (x. class)))), 

for  thechild in  xchildren d o  
node. construct (NodeClass.accumulation List) 
literalize (thechild) 

e n d )  
else 
node. make. call 

(nodema ke.selection 
({copy meta. nodemake. ! ), 
node.make.identifier (grammar.spelling (x. class))), 

if {xclass member g-rammar. lexeme) t h e n  
node.construct (NodeClass.argumentList) 

([node. ma ke.st ring-Literal (x.spelling)]) 
else 
for  thechild in x.children d o  

node.construct (~odeClnss .ar~umentLis t )  
literalize ( theChild) 

e n d  
e n d )  

e n d  
e n d  

node.construct to the lit,eralized form of each of the list's children. Otherwise, it creates 

or the literalized children of the construction x. The function, given the fixed-value-binding 

at the beginning of this section, that constructs the fixed-value-binding. 

Now, given theNode in which to perform optimization, the follow expression does the 

substitution: 
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f o r  thechild i n  theNode.descendants 
a n d i f  {all true) 

([node.isa.functionCall ( thechild) 
{meta.n~de.~arse.string. ! == theChild.function) 
node.isa.stringLitera1 ( theChild.arguments[l])]) d o  

{ thechild replace 
literalize (n0de.parse.s tring ( t hechild. arguments[l] .spelling))) 

e n d  

The  expression {all true) yields an accumulator that  acts as a short-circuit Boolean 'and.' 

Hence, the above iterates through all descendants of theNode that  satisfy the condition 

following the andi f ,  which checks if thechild is a function-call, if the function of the call is 

equivalent to  node.parse.string, arid i f  the one argument to that  call is a string-literal. If these 

hold, the body is applied-it replaces tllcChild with the literalized form of the node resulting 

from the application of node.parse.string to the spelling of the string-literal argument. 

That  such a uscful transfor~nat,ion can bc so easily implemented certainly lends credence 

to the claim tha t  Acer is easy to manipulate. Furthermore, the fact that  da ta  abstraction 

is easily optimized a.lso supports the design of more powerful, yet efficient, abstractions. 

For example, even the use of the n~de .~a r se . s t r i ngs  () accumulator in conjunction with the 

node.substitute function to express *lode templates can be easily optimized. The  use of tem- 

plates for generating meta-interfaces was illustrated in the previous  tion on. Such templates 

can be optimized hy tllc following: 
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for thechild in theNodc.descendants 
andif {all true} 

([node.isa.accumulation (theChild) 
node.isa. function Call ( theChild. accumulator) 
{meta.node.substitute. ! == theChild.accumulator.function} 
node.isa.accumulation ( theChild.accumulator.arguments[l]) 
node.isa. function Call 

(theChild.accumulator.arguments[l] .accumulator) 
{meta.node.parse.strings. ! == 
theChild.accumulator.argumcnts[l].accumulator.function} 

for s in theChild.accumulator.arguments[l] 
.accumulation List. children do 

{all true} 
node.isa.strir~gl,itcral (s)  

end]) do 
{thechild replace 
1iteralizeAndSu bstit ute 

( theChild.accumulation List.children, 
for s in t8heChild.accr~rnulator.arguments[l] 

.accurntilationList.children do 
node.parse.strings ( )  s.spclling 

end)} 
end 

The above iterates through the descendants of theNode that satisfy the condition, which 

tests if thechild is a n  accumula,tion, if the accumulator is a call to node.substitute, if the 

one argument to that call is an  acc~~mulation, if that accumulation's accumulator is a call to 

thechild is replaced by tile result of jjteralizeAr~dSub~titllte applied to the iterator that maps 

to the spellings of all the string-literals. 

lows 

let JitcralizeAndSubstitute be 
function (thcSubstitutjons : ~tcrntor (Node); x : Node) 

if {notlc.isa.idcl~tifier (x )  andif 
{ { x . ~ p d i n g  = u ? " )  orif {a.spelling = I ~ - ~ ~ } } }  then 

theSu bstit u t i~ns .~roducc  ( )  
elsif . . . 
else . . . 
end 

end 
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An additional iterator argument is included and the initial test is for the substitution case. 

The  rest of the function is implemented as before, except for the passing of the additional 

iterator argument to  the recursive calls. 

Applying the above transformation to the expression 

node.substitute 
(node. parse.strings ( ) 

([I' l e t  ? b e  " 

t u p l e  " 
II 10 ,  " 
I1 20 " 
#I end " I ) )  

([a Node]) 

results in 

node.rnake. fixed ValueBinding 
(aNode, 
node.make.empty (), 
node.construct (NodeC1ass.t upleliteral) 

([node.make.integerl,iteral ( "  10" ), 
node.make.integerl,iteral("20")])) 

In general, the ahove transfor,nation approach can be used to  support any da t a  abstrac- 

tion that  expresses literals in textual form. The  textual form can be statically analyzed and 

converted to  a more efficient form. Such is the expressive power that  support for manipu- 

evaluation. For example, the following 

for thechild in t11eNode.descendants 
andif {all true} 

([node.isa.fiinctionCall (tld'hild.denotation) 
{mcta.integer+. ! == tlre~hild.denotation.function} 
node.isa.integerLitera1 (the~hild.denotation.arguments[l]) 
node.isa.integerLitera/(theChild.denotation.arg~ments[2])]) do 

{thechild replace 
node.make.intcgerliteral 

({corrvert.stringTolntegcr (thc~hild.denotation.argurnents[l].spellin~) + 
cor~vert.stringTointeger (thc~hild.denotation.argriments[2].s~ellin~)})} 

end 

statically evalrlatjcs illtjegcl:+ applied to integer-literal arguments. This kind of static evalu- 

ation is applicable i n  a wide variety of situations. 
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5.6.3 Metaprograms as a command language 

In a programming environment, such as the PCAcer environment described in Appendix B, 

metaprograms can be used as interactive high-level editing commands. For example, suppose 

a programmer wants to  write an exhaustive variant-inspection for some particular selector 

and that  there are a large number of variants. Instead of manually writing the inspection, 

he could use the following function to  generate it: 

let makelnspection be 
function (theselector : Node) 

{let thelr'ind be theselector. kind. denotation; 
inspect theli'ind.class then 

when enumerationType, optionType then 
node.make. variantlnspcction 

( t heSelec t or, 
for id in thelr'ind.children do 

node.construct (Node Class. valuewhen BranchList) 
node.make.va1ueWhenBranch 

(r~~dc.constrrrct  ( NodeClass. whencondition) ([id]), 
node.ma ke.ernpty (), 
node.make.identifier (?)) 

end, 
node.make.emp ty ())  

else theUnattachedEmptyNode 
end 

end 

After entering this function, a PCAccr command could be invoked SO tha t  the function is 

presumably the selector for which an inspection is to be generated. After the invocation, the 

result could be made available in a newly crea.te window. 

Applied to  the expression x.cla.ss, where x is of type Node, the &ove would yield the 

variant-inspection 

inspect x.class then 
when accl~rnrilation then ? 

when accum~rlationl,ist then ? 
. . .  
when whenCondition then ? 

end 

In this way, high-level commands are constructed on the fly. 
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let findApplied Occurrences be 
function (id : Node; theTarget : Node) 

for x in theTarget.descendants 
andif {node.isa.identifier (x)  andif {x.definingOccurrence == id ) )  do 

node.construct (NodeC1ass.arbitraryList) 
node. make. denoter ( x )  

end 
end 

which, given a defining-occurrence id and theTarget in which t o  search, constructs an  

arbitrary-list of denoters to the applied-occurrences of id. It could be invoked by a PCAcer 

command tha t  applies the function to the selected node of the selected window and to  the 

selected node of thc window in which the command is invoked. The  result could then be 

made available in a newly crc:ated window. From this, the programmer could see the en- 

tire set of applied-occurrences and by following the definition link of each denoter, he could 

access each applied-occurrence in turn. 

Certainly some of these kinds of commands will be a standard part  of an  environment 

like PCAccr. The  point is, however, that  it is not the responsibility of environment designer 

to  provide an  exhaustive set of useful commands. Instead, commands can be created on the 

fly to  suit the needs of individual programmers and the applications with which they work. 

Such flexibility is not afforded by more conventional environments. 

Only the imagination limits the commands that are possible. For example, the following 

could be used just as the previous function, but to  determine all expressions of a particular 

let findT'yped Val~les be 
function (the'ljipe: Node; tl~e'l'argct : Node) 

for x in t11e'l'arget.dcsccndan tjs 
andif {node.isa. value ( x  ) andif {x. type == t h e T ~ ~ e )  do 

node.construct  ode ~1nss.arbitraryList) 
nodcmake. denoter (x)  

end 
end 

by a rnctaprogra,mrning system arc unlimited. 
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Summary 

Looking a t  the implementation of PCAcer described in Appendix C, it may be surprising 

that,  with a metaprogramming system, implementing a transformation as complex as that 

of a compiler is relatively trivial. After all, a compiler is typically a major undertaking, but 

with so many general-purpose features being implemented as part of the metaprogramming 

system, a compiler is very simple to implement indeed. For instance, the implementation of 

the compiler used in PCAcer accounts for roughly 8% of the total implementation effort, in 

terms of the number of lines of code, and even less when considered in terms of the amount 

of time spent. Surely this demonstrates the efficacy of the metaprogramming approach. 

Emphasis on metaprogramming systems, then, encourages the provision of general- 

purpose implementation tools t t ~ a t  can be used for much more than just translating programs 

to object code. With so mucll effort going into the implementation of supporting environ- 

ments, there sllould be more to show for that effort than just an end-product environment. 
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Evaluation 

6.1 A principled approach 

It is well recognized tllat language design should proceed according to  guiding principles. 

The  principles presented in Ch;tpter 4 are intended to extend a language designer's repertoire 

of such guiding principles. Sirrlilar guidance has been offered in the past, either in the form 

of pragmatic advice, such as Wirth's advice in [Wir87] and H0are7s advice in [Hoa87], or as  

principles rooted in the semantician7s meta-principle of orthogonal language features. For 

example, Harland [Har84], and also Tennent [Ten811 , present the following: 

Principle of I'roccdural Abstraction: Any syntactic clause can be abstracted over, so it 

may be repeatedly invoked. 

Principle of Completeness: All data types must be first-class citizens, that is, they can 

be passed as parameters, assigned, stored as data-structure components, and returned 

from functions. 

Principle of Declaration Correspondence: I f  a data type can be declared as a parameter, 

it can be declared in-line and vice versa. 
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Harland's decision to  go the way of dynamic typing stems partly from a perceived conflict 

[Har84, page 1151 between supporting both polymorphism and supporting static typing. But 

Acer contradicts this perception, supporting polymorphism and static typing. As well, the 

work in [ACPPSl] shows how dynamic typing can be supported in the framework of an 

otherwise statically typed language. 

Another good source of principles for guiding language design is given in [Mac87], which 

presents 16 principles and evaluates various well-known programming languages in terms 

of their conformance to these principles. The principles are very general and are  set in a 

historical context; many are restatements of advice offered by Parnas, Dijkstra, Iioare, and 

others, and are now well-entrenched in the minds of language designers. In contrast, the 

principles of Chapter 4 arc more narrow in thcir focus, dealing primarily with manipulation 

issues, and can be considcrcd as corollaries of the general principles. 

6.2 Transformational programming 



transformational approach to programming. It provides a flexible way in which to  express 

and implement transformations and a logical framework for the inclusion of specifications. 

6.3 The style of semantic definition 

In this thesis, a relational-style semantic definition, which maps programs to nodes and node 

relations, was used to define Acer. This is quite different from using a denotational-style 

semantic definition, which maps programs to mathematical values (and functions). Since 

meaning must be represented in some  articular way a choice must be made as to which 

approach to use. Certainly a denotational-style definition is an appropriate choice. However, 

since nodes are sufficient and natural for rigorously defining the structure of abstract syntax 

there is no pressing nccd to provide both a denotation-style definition and a relational-style 

definition. Moreover, I hold the view that node structure and its relations are the meaning 

of a program. 

Nodes, in fact, are the ideal conveyors of meaning. After all, nodes are the high-level 

objects manipulated in a programming environment. And an abstract data-type to  represent 

nodes can be adequately supported in most modern programming languages. 

To map the meaning of Arer programs to pure mathematical values would be cumber- 

some. For instance, nodes easily represent such things as self-referencing types and data- 

structures, e.g., 
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be represented as nodes and node relations, not as arbitrary data structures. However, an 

attribute-style definition is not inconsistent with the approach advocated in this thesis. 

It is important to realize that this thesis has concentrated on defining Acer's semantics by 

specifying Acer's supporting metaprogramming system. Thus, it is not so much concerned 

with a particular style of forma] definition [Pag81], as long as the behavior of the supporting 

metaprogramming system is adequately specified. 

6.4 On programming environments 
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Realize, however, that PCAcer has not been designed so much to  be innovative, but to  

demonstrate how easily Acer can be supported. For instance, requiring all semantic objects 

to be represented as nodes ensures a syntactic representation for precisely the values that 

Acer programs manipulate. Hence, values, like programs, are viewed as nodes, and support 

for their manipulation is unified under the guise of these nodes. This is what allows the 

result of evaluating a program in PCAcer to be viewed as a node. 

Other properties of Acer also help to support PCAcer's implementation. For example, 

the property that every node gives rise to a t  least one token in the concrete view facilitates 

the direct selection of nodes by p in t ing  at their tokens. AS well, the property that  every 

type, definition, and defining-occurrence is represented as a node allows PCAcer to  generate 

nodes to respond to scrnarltic queries. It is my view that the consequences of a particular 

language design only become apparent when a supporting envkonment is implemented-even 

the implementation of just a compiler is insuficient in this regard. 

The notion of using rnetaprograms written in Acer as a command language for an Acer en- 

vironment (see 5.6.3) is an innovative approach, which facilitates unlimited extensibility. Un. 

fortunately, the memory limitations of PCAcer makes implementing an Acer host-language 

metaprogramming system for Acer difficult. Therefore, the realization of this approach is 

left as future work. 

6.5 O n  Acer itself 
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course that module declares an appropriate function named method. Thus the called method 

is determined by the selection module.method and no run-time search of a method dictionary 

is required. 

Furthermore, module could implement its abstract values so that each x contains poten- 

tially different function components. The call module.method (x) could then be implemented 

to invoke the particular function associated with the x given in the call. This implements 

the notion of virtz~al methods in which the called method is determined dynamically for each 

object. Clearly the style of "inheritance" supported by Acer and Quest is extremely flexible. 

Another innovative feature of Acer are references, which can be used like pointers but are 

implemented as fetch/store functions. They support the high-level modeling of updatable 

locations. For instance, a reference could be used to model a ~ocation that does not even 

exist in physical memory; a fetch could be implemented as a read from the file-system, and 

a store could be implemented as a write to the file-system- 

Iterators and accumulators are yet another feature of Acer not present in Quest. Their 

design is based on the description in [Carn89]. Acer's iterators and accumulators are im- 

plemented as tuples with appropriate components rather than as a new type of semantic 

object. As a result, they introduce minimal additional complexity while providing maximal 

utility-iterators and accumulators can even be recursively defined. Also, the a ~ ~ ~ m u I a t i ~ ~ -  

literal, which is an accumu]a.tor applied to literal arguments, has proved to be very useful for 

supporting data constructors that take an arbitrary number of arguments, e.g., a list could 

be constructed by list.constr-uct (LlnseType) ([x, y, z]). 

Acer's abstraction mccllaaisms can be seen in a very favorable light. As Hilfinger [Hi183, 

Page 31 puts it, "Proper desigrl of thc abstraction facilities of a language not only increases 

its utility to programmers, but can also simplify the language and reduce the language 

designer's tempttition or need to provide all things to all programmers." Acer reinforces this 

view. For instance, Accr has a very small number of built-in types and most notations are 

applicable for abstract data-types in pneral ;  even basic types such Integer and Real and 

Structured types sucll as Array are defined as abstractions. As a result, Acer's definition 

need not specify the propertics and operations of a large number of built-in types. This 

certainly simplifies the language and a t  the same time s u ~ ~ o r t s  extensibility via powerful 

abstraction mechanisms. 

Folding is particularly well supported in Acer because functions can abstract over ar- 

bitrary value cxpressioas and type-operators can abstract over arbitrary type expressions. 
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Even variables can be folded as reference- or pointer-yielding functions. Quest does not pro- 

vide the same level of support for folding because it does not include pointers or references 

and because a function's body cannot refer to non-local (free) variables. In Quest, non-local 

variables must be contained by a tuple or some other data-structure t o  be accessible, bu t  

in Acer, variables are allocated on the heap so dangling stack references are  of no concern. 

Moreover, an  implementation of Acer could allocate particular variables directly on the stack, 

as Quest does for all variables, when a reference or pointer to  the variable is not required 

and the variable is not referenced in a function body. 

6.6 Future work on Acer 
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one should test node.isa.empty (x.parent) because theUnattachedEmptyNode is not neces- 

sarily unique. Ilence, the declaration for theUnattachedEmptyNode should not be provided 

to  prevent the impression that  it is a unique individual. But then, were it not for persistent 

storage, theUnattachedEmptyNode could very well be a unique individual. 

The  fact tha t  persistent storage interacts with abstraction in such an unexpected way is 

somewhat forboding. Unless some care is taken, certain abstractions could be crashed e.g., 

copying a value representing an  open file may not be meaningful. Note tha t  Quest restricts 

persistent storage to  values of concrete- types, but that  stifles its usefulness. Moreover, 

since Acer defines even basic types such as Integer as abstract-types, dynamics restricted to 

concrete-types would be quite useless. 

Another problern wit11 l,ersist,ent storage for values of a b s t r a c t - t ~ ~ e s  is tha t  no test is 

performed to  ensure t,Ilat, the abstract-type has not been recompiled in terms of a different 

implementation type. Clearly such recompilation would invalidate all persistently stored 

values based on that  abstract-type. 

But perhaps we should not be unduly concerned, after all, when a program can input a 

function-value and call it, it can never be completely sure that it is not loading a 'Trojan 

horse.' Thus, persistent st,oragc has its implications, take it or leave it. 

Further rumination c o ~ l c e r ~ ~ i ~ g  the particular features included in Acer is also in order. 

For instance, enumerat.ion-typcs could be excluded in favor of o ~ t i o n - t y ~ e s ,  and even tuple- 

types could be excluded in favor of record-types. This would simplify the language but could 

harm performance. 

Another semantic issue that  needs attention concerns the ability of a function-call to  act 

as a constructor, see A.7.2. A constructor, such as a tuple-literal or function-literal, Supports 

recursive definitions. For example, 

let x be tuple x end 

let makeTr~plo be function (x : Type) tuple x end end 

we could not use it as 

let x be makeT~~p1e  ( x )  
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A solution to  this would be to  define a restricted type of function called a 

constructor-function. Thus Acer would define a constructor-literal and a constructor-type 

exactly analogous to a function-literal and a function-type. For example, 

let makeTuple be constructor ( x :  Type) tuple x end end 

which has type: 

Constructor ( x :  Type) Tuple : Type end end 

A constructor-literal would be restricted to  have a body that  denotes a constructor and 

to  treat each of its arguments as a delayed-occurrence (see A.7.2), i.e., as a reference t o  a 

data-structure tha t  is not yet completely defined. Acer's subtyping rules would be extended 

SO tha t  a constructor-type is considered to be a subtype of a function-type according to  the 

regular function subtyping rules, but not vice versa. A constructor-function could then be 

used in a regular function-call, but in this case the arguments would be permitted to  be 

delayed-occurrences. It would then be valid to write 

let x be makeTuple (x) 
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6.7 Beyond Acer 

Clearly Acer is but a step on the quest towards more manipulable languages. When inno- 

vative language features and programming methodologies arise, they will have t o  be either 

incorporated into a new language or meshed with an existing language. Acer provides a 

conceptual framework for meshing with such innovations: new kinds of types and values, 

and new kinds of computatiorlal structures, can easily be included in the existing framework 

(e.g., just as  the extension for constructor-functions is easily included.) 

Beyond Acer, however, lies a vaste domain of unexplored territory, and the direction i n  

which to  go is uncertain. For instance, what style of programming is best, object-oriented 

programming, functional programming, or logic ~rogramming? And is it even reasonable to  

ask such questions? After all, various styles of programming have different advantages and 



language should, in general, support folding and unfolding; it should be possible to abstract 

over any expression and it should be possible to rewrite any invocation in terms of its 

definition. Meaningful manipulation can only be well-supported when such basic activities 

are well-supported. 

Arid most importantly, to ensure that manipulation is in fact well-supported, a metapro- 

gramming system for the language should be constructed. ,411 other support tools can then be 

implemented in terms of the standard abstract view implemented by that metaprogramming 

System. 

6.8 Final words 

If this thesis achicvcs only the goal of prompting language designers to consider support 

for program manipulatioll i l l  the. design of their languages, it will have accomplished much. 

P e r h a p  the dcsigri of Acer, as a framework for a manipulable imperative language, will be 

seen in a positive light as well, but this is of lesser concern. 

The fundamental advice to language designers is that they should specify and implement 

a supporting mctaprogramming system based on some reasonably simple concept of nodes. 

If improved programming languages, methodologies, and environments are to  meet the ever 

increasing demand for better software, language designers must recognize that support for 

Program manipulation is a vital concern. 



Appendix A 

The Acer definition manual 

A.1 Introduction 
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is well-defined, a semantic object is synonymous with its representation, just as the number 

ten is synonymous wit11 its representation as the numeral 10. Moreover, simple manipulation 

can then produce meaningful semantic effects, just as combining the digits of two numerals 

produces the sum of two numbers. Emphasis on nodes reflects the view tha t  specifying how 

constructs are abstractly represented and manipulated is as important as specifying what 

they mean. 

Nodes will often be illustrated using a graphical representation, e.g., 

An oval represents a construction 

lexeme with the indicated spelling .-the node class of a lexeme is implied by its spelling. A 

X X 

Definition T y p e  

An unlabeled oval represents an unspecified node. A l d ~ l e d  connection from the right-side 

of one node to  the left-side of another represents a binary relation-a node's position in the 

relation is determined by the side that is connected. When a binary relation is interpreted 

to mean that a node has another node as its attribute, the connections t o  the right of a 

node lead to  its attributes, e.g., the above indicates that  an identifier x has as its defining- 

occurrence some other identifier x, that  it has as its type an unspecified node tha t  is also 

the type of its defining-orrllrrence, and that it is its own definition. 

The of tllis appendix is organized as follows. Section A.2 Presents all of Acerys 

alternation introducing tllc names of Acer's node categories, node classes, and semantic 

objects. Section A.3 olltlilles Accr's primary context-dependent relations, namely defining- 

occurrence, dc:finition, denotation, type, kind, and subtype- A.4 presents Acerys 

lexical and character description rules, including Acer's technique of associating conlments 
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with nodes. And finally, sections A.5 through A.33 describe Acer's construction and list 

rules and discuss their associated relations and dynamic semantics. 

A.2 The syntactic domains 

An alternation rule defines and names a node category, that  is, a set of node classes. Al- 

ternation rules refer to  node classes by name so a brief overview of Acer's alternation rules 

serves to  introduce much of the terminology used in describing Acer. 

Acer's alternation rules give rise to a classification tree whose root is defined by Accr's 

most inclusive alternation rule 

(Arbitrary) ::= (Aqpmen t )  I/ (Declaration) )I (Miscellaneous) 

(Block) ::= (TypeBlock) 1) (ValueBlock) 

(Dcnoter) ::= (fipcDcnoter) I( (ValrleDenoter) 

(Idcn tificr) ::= (rl'ypeIdentificr) ( 1  ( Valueldentifier) 

(Reusedlden tifier) ::= ( ~ ~ u s e d ~ ~ ~ e l d e n  tifier) I/ (Reusedvalueldentifier) 

These rules do not fa]] neat]y into Acer's classification tree but since they are  not used in 

any other grammar rule they can be ignored. They merely provide convenient terminology, 

that is, generic names for semantically analogous constructs. 

The  presence of arbi(.rary i n  Accr's grammar is significant because Acer's grammar corn- 

pletely avoids syntactic alnhig~lity. This implies that a Parser for every node class and 

node category exists, alld consccluc~ltly that a parser for arbitrary exists. Therefore, Acer is 

phrase unambignolls, t.]rat, is, the node structure of any textual phrase can be unambiguously 

determined. 

A.2.1 Argument 
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(Argument) ::= (Binding) I /  (Expression) 

Binding and expression are grouped into a single category called argument because an 

argument-list (see A.15) can contain both bindings and expressions. 

In general, a binding consists of an identifier, a type, and an expression. Its effect is 

to  bind the expression to the identifier so that the expression can be referred t o  by name. 

(The type indicated by a binding is optional and is used to  restrict the type of expression 

tha t  can be bound to the identifier; such restriction involves subtyping as described i n  

section A.3.4.) The  silnilarity between bindings and expressions stems from the fact that in 

a context permitting an argument, an expression is treated as an  anonymous binding, that 

is, as a binding with no namc. 

Consider now the subcategories of binding and expression. 

A.2.1.1 Binding 

Binding is defined as 

which mirrors the partitioning of Acer's domain of semantic objects into the disjoint cate- 

gories type and value. 

A type-binding comes i n  only one form but a value-binding comes in one of two forms: 

(Expression) ::= (Type) ( 1  ( Value) 

The majority of Accr7s node classcs are expressions. 

Type is defined as 
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(Type)  ::= 

(Abstract Type) 11 ( ConcreteType) 11 ( ReusedTypeIdentifier) 11 
(TypeBlock) 1) (T~peDeno te r )  1 1  (TypeDesignation) 1 1  
(Typeoperator)  

for which the alternatives abstract-type and concrete-type are defined as 

(AbstractType) ::= 

( OperatorCall) 1 1  ( ~ ~ p c l d e n t i f i  er) 1 1  (Typeselection) 

(ConcreteType) ::= 

(AnyType) 1 1  (DynamicType) 11 (EnumerationType) 1 1  
(R~nc t ion  Type) 1 1  (OptionType) 11 (RecordT~pe)  11 
(TupleTypc) ( 1  (VariantType) 

Together these three rules introduce the node class names of all types. 

Value is defined as 

(Value) ::= 

(Accumulation) 1 1  ( AndIfTest ) /I ( ~ s s i ~ n m e n t )  I/ (Codepatch) )I 
(Compoundvalue) 11 (Conditional) / I  (Dereference) 11 
(DyadicMcthodCall) 1 1  ( ~ ~ n a m i c l n s p e c t i o n )  1 1  (FunctionCall) 11 
(Index) 1 1  (IsTcst) 1 1  (IsNotTest) 11 (Iteration) 11 (IieepTrying) ( 1  
(Literal) ( 1  (OrdCall) I( (OrlfI'est) I/ (Pointercall) 11 
( PrefixMethod~al l)  / I  (Ilaisc) 1 1  (Try) 11 ( TryFinally) 1 1  
(UnaryMethodCall) /I (VdCall) I/ (ValueBlock) 11 (ValueDenoter) ( 1  
( ValueSclection) ( 1  ( Variant inspection) 

for which the alternative literal is defined as 

these two rules introduce the node class names of all values. 

A.2.2 ~ e c l a r a t  ion 

(Declaration) ::= ('l:ypeDeclara tion) /I ( ValueDeclaration) 
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Also, as with a binding, a type-declaration comes in only one form but a value-declaration 

comes in one of two forms: 

( ValueDeclaration) ::= 
(Fixed Value~eclaration) 1 1  ( Varia bleValueDeclaration) 

In general, a declaration consists of an identifier and a type. It is similar to  a binding 

in the sense that it introduces a named expression of some type. The difference is that 

the identifier of a declaration is bound to its expression dynamically, rather than statically. 

Hence a binding includes a static definition (i.e., an expression) but a declaration does not. 

Because their definitions are hidden, declarations support information hiding. 

A.2.3 Miscellaneous 

The final disjoint category of a.rbitrary is miscellaneous: 

(Miscclla.neous) ::= 

(Empty) 11 (Accum~~la,tionList) 11  (ArgumentList) I/ (ArrayList) ( 1  
(BindingList) 1 1  (ConditionalBranch) I/ (ConditionalBranchList) 11 
(IndexList) 11 (IteratorElement) 1 1  (IteratorList) 11 (Signature) 11 
(TypeBranchList) I] (TypeWhenBranch) 11 (ValueBranchList) 1 1  
(Value W h e n ~ l a n c h )  1 1  (Variant Element) 11 (Variant List) 1 1  
( When Condit ion) 

As3 Context-dependent relations 
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A.3.1 Scope 



type-selection, tuple-literal, tuple-type, unary-method-call, value-block, ~a lue - se l ec t io~ ,  

variant-literal, and when-condition. For the sake of brevity, the details of how these node 

classes affect identifier-lookup are described as each node class is described in sections A.5 

through A.33. 

One notable aspect of Acer's scope rules is that scope is not affected by order of 

definition-a name-layer is after all a set-so forward reference to  declarations and bind- 

ings is generally is acceptable, dependency analysis is used to determine invalid references 

(see A.7.2). 

A.3.2 Definition and denotation 

Because expressiorls are frequently used to denote other expressions (e.g., pi might be used 

method-call, reused-type-identifier, reused-value-identifier, type-block, type-denoter, type- 

v d l ~ e - i d e n t i f i ~ ~ ,  and vnlllc-sclection. The details of the definition relation are  described as 

Defini t ion J 
D e f i n ~ t i o n  

However, in a correct program, applications of the definition relation ultimately 

results in an  explcssion that, is its own definition. 
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Note tha t  bindings have a definition by virtue of having a component by tha t  name (see 

A.7). 

A.3.3 Type and kind 

Because expressions are typed (e.g., 3.14159 has type Real), Acer provides the type relation, 

which maps an expression node or empty node to the type node or empty node tha t  represents 

its type. The that values have types is quite conventional but  the notion tha t  types 

have types is not. ~t stems from the fact that Acer supports a three-level type system in 

which types are classified according to kind. The type of a value may be any class of type 

but the type of a type must be a restricted form of type called a kind. A type is a kind if it 

denotes either a concrete-type or a concrete type-operator (see A-19), tha t  is, a type-operator 

with a body tha t  is a kind. A kind is its own type. 

Since the type of an exprcjsiolr is a type, which in turn may have as its type yet another 

type, there is the possibility of  invalid circular types, e.g.7 

K i n d  

by tha t  name (see A.8). 

A.3.4 Subtype 
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or a concrete-type, subtype is specifically defined for only these. Types of different node 

classes are  generally unrelated as subtypes. As with the other context-dependent relations, 

the details of the subtype relation are described as each relevant node class is described. 

The  subtype relation is an ordering relation (i.e., a partial order) so type equivalence is 

defined in terms of subtype-two types are equivalent when each is a subtype of the other. 

Also, the inverse of the subtype relation is referred to  as the supertype relation, tha t  is, is 

a supertype of T' if  and only i f  T' is a subtype of T .  

Because the subtype relation is an ordering relation we may speak of the maximal type 

of a set of types. The  maximal type of a set of types is any type tha t  is a supertype of all 

the rest; the maxima] type of an empty set is Void (see A.22). If a set of types does not 

have a maximal typc tIlen the ~naximal  typc is Error (see A.25). Note tha t  special subtype 

rules apply for the types Error and Raise (see A.24.2). 

This concludes the overview of Acer's primary context-dependent relations. 

A.4 Lexical structure 

A.4.1 The character set 

Acer partitions the ASCII character set as follows: 
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(#Tab) ::= ASCII 9 

(#LineFeed) ::= ASCII 10 

(#Carriagelleturn) ::= ASCII 13 

(#Space) ::= ASCII 32 

(#Other) ::= ASCII 0-8, 11-12, 14-31, 127 

If an  extended ASCII is used (such as IBM extended ASCII), the additional characters 

are, by default, included in other. ]-rowever, if various characters from other produce desirable 

graphic characters, they may instead be included in one of the first four groups. 

A.4.2 Token 

A lexical analyzer for Accr recognizes five sorts of token: comment, identifier, keyword, 

Punctuation, and lexical-literal. Each will be discussed in turn. 

A.4.2.1 Comment 

A comment-token begins with a '%' and terminates a t  the end of the line (i.e., the next 

carriage-return or line-feed): 

( Cornmen t ) : : = 
% ([ (#LowercaseLetter) I/ (#UppercaseLetter) 11 (#SymbolicLetter) 11 

(#Ponctllation) 1 1  (#Digit) 1 1  (#DoubleQuote) 1 1  
( # f i b )  1 1  (#Space) 1 1  (#Other) 1 

comment-tokens, each stripped of its leading '%'. A syntax analyzer, when accepting tokens, 
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requires the token's occurrence. When a token with annotations is accepted, the annotations 

are inserted a t  the end of the annotation list of that  owner node. 

Since every Acer node, with the possible exception of empty nodes (see A.5.1), owns a t  

least one token in a lexical encoding, every Acer node can be annotated by annotating its 

tokens. Thus Acer's comment facility ~ r o v i d e s  a concrete representation for nodes annotated 

with lines of text. Note that  the annotation list of a node (or token) is not itself a node-it 

is a textual object consisting of lines of text. 

Comments can be used in many different ways, for example, as documentation, as  di- 

rectives of various sorts, as cross-reference information, and so on. So tha t  the role of each 

annotation (i.e., each comment line) is specified, the first character in an  annotation (i.e., 

the character after the '%') determines its role. 

Only the role of documentation is specified in this appendix: a space indicates documen- 

tation. The  use of comments for other roles has not been fully explored. Nevertheless, in the 

future: a '$' should be used to indicate a compiler directive, a '%' should be used to  indicate 

a formatting directive, and a ' ! ' should be used to indicate an assertion. 

A.4.2.2 Identifier 

Acer provides two classes of identifier, one for denoting types and the other for denoting 

values. A type-identifier consists of an initial uppercase letter f o h v e d  by zero or more 

lowercase letters, uppercase letters, and digits: 

(Typeldentifier) ::= 

(#  Uppercasc1,ct ter) (T (#l,owercasel,et ter) 11 (# UppercaseLet ter) )I 
(#Digit) D 

A value-identifier is either alphabetic or symbolic, and hence consists of either an initial 

lowercase letter followed by zero or more lowercase letters, uppercase letters, and digits, or 

a sequence of one or more symbolic-letters: 

( Valuelden t ifier.) : : = 

(#Lowercasel,etter) (T (#LorvcrcaseLetter) I/ (#UppercaseLetter) 11 
(#J%W D II 

(#Symbolicl,ct ter) (T (#S.yrnbolicLctter) 1 
Symbolic-letters in value-identifiers allow programmers to  define their own operator symbols. 

! During parsing, each id(:ntifi(lr-token gives rise to an identifier node containing the token's 

Spelling, i.e., the owncr node. 
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A.4.2.3 Keyword 

The  following tokens are used as keywords in Acer and cannot be used as identifiers: 

Any 
becomes 
do  
else 
finally 
in 
keep 
Option 
pointer 
reference 
then  
Variant 
when 

andif 
begin 
code 
elsif 
for 
inspect 
let 
of 
Record 
Then 
t r y  
val 
with 

array 
Dynamic 
Enumeration 
except ion 
function 
is 
nothing 
or d 
raise 
Tuple 
trying 
var 

be  
dynamic 
end 
Function 
if 
isnot 
Operator  
orif 
record 
T Y P E  
tuple 
variant 

The  spellings of keyword-tokens are not stored in the syntax tree. Their sole purpose is to  

direct parsing (reading) and the association of annotations-they play no role in semantics. 

A.4.2.4 Punctuation 

The following tokens are used as punctuation in Acer: 

Each punctua.tion character constitutes a token. 

As with keyword-tokens, the spellings of punctuation-tokens are not stored in the syntax 

tree. 

A.4.2.5 Lexical Literal 

Acer provides lexical reprcscnt;ttions for integers, reals, characters and strings. 

An integer-literal consists of an optional '-' and a sequence of one or more digits: 

A real-literal consists of an optional '-', a sequence of one or more digits, a ' .  ', another 

sequence of one or more digits, and an optional trailing power indication, which is a n  'E' or 
6 7 
e , an  optional '-', and a sequerlce of one or more digits: 
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( Real Literal) ::= 

[[ - ]I (#Digit) ([ (#Digit) ) . (#Digit) (I (#Digit) 
[[ fl e ll E D fl - I] (#Digit) ff (#Digit) Ill 

During lexical analysis of real-literals an  'e' is automatically converted to  an 'E' .  

A character-literal consists of a '", any character except a line-feed or carriage-return, 

and a ' ' ': 

A string-literal consists of a '"', zero or more characters other than line-feed, carria,ge- 

return or ' I t ' ,  a.nd a '"': 

(StringLiteral) ::= 

" { (#LowercascLet ter) /I (#  llppercaseLet ter) 11 (#SymbolicLetter) ( 1  
(#Punctuation) 11 (#Digit) /I (#Space) 1 1  (#Other) ) I' 

During parsing, each lexical-token gives rise to  a integer-literal, real-literal, character- 

literal, or string-literal node containing the token's spelling, i.e., the owner node. The  spelling 

of a character- or string-literal node does not include the delimiting single or double quotation 

marks. Nevertheless, in the graphical representation these delimiting marks are  illustrated 

as part of the spelling so as to  distinguish character- and string-literals from identifiers. 

A.4.3 Delimiter 

To prevent ambiguity, adjacent tokens in an Acer program can and sometimes must be 

delimited by white-space (i.e., space, tab, carriage-return, or line-feed). Comments, punctu- 

ations, character-literals, and string-litcrals are self delimiting and therefore need no further 

delirnitatio~l. Symbolic value-identifiers need only be delimited from adjacent symbolic value- 

identifiers and from integer- and rcal-literals i f  the identifier is '-'. The  remaining sorts of 

token-alphabetic vallle-idcnt,ificr, type-identifier, keyword, integer-literal, and real-literal- 

must be delimited when adjacent. 

A.4.4 Lexical alternatives 
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rn Comments are Roman. 

rn Keywords are bold. 

rn Alphabetic value-identifiers are slanted. 

rn Type-identifiers are  Italic. 

Character-literals, string-literals, and symbolic value-identifiers are typewriter. 

This concludes the description of Acer's ASCII encoding. 

A.5 Special nodes 

Recall tha t  Acer's design is goidcd by tlle view that it is as important to  specify how language 

constructs are represented and 1nallipulated as it is to specify what they mean. For the 

manipulation of nodes, Acer four special node classes, namely empty, type-denoter, 

d u e - d e n o t e r ,  and arbitrary-list. Each will be discussed in turn. 

A.5.1 Empty 

For representing a missing, optional, construction component, Acer provides empty, which 

is defined to be a childlcss construction: 

(Empty) ::= nothing 

The following construction classes have optional components and may therefore contain 

empty nodes: array-literal, conditional, dynamic-inspection, fixed-value-binding, fixed-value- 

declaration, function-literal, itel.atioo, teep-trying, raise, try, t ~ ~ e - d e c l a r a t i o n ,  type-binding, 

type-when-hl-a~irh, ~ a l u c - ~ l ~ ( : ~ ~ - b r a l l ~ ] l ,  varial,le-value-binding, variable-value-declaration, 

variant-inspection, and variant-type. 

The  context-dependrot relations for an empty node are illustrated as 

An empty nodc llas a type alld a definition, which are determined by the context in 

it appears. TIlerefore, the relations arc described as each of the above construction classes 

is described. 
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In general, i f  an  empty node is not its own definition, its type is given by tha t  of its 

definition: 

If an empty node is its own definition, its type is determined by its context: 

Defini t ion 

For an unattached empty node, and for an empty node appearing in an arbitrary-list, 

the context-dependent relations illustrated as 

Such an empty node is its own type a ~ i d  its own definition. 

A.5.1.1 Printing empty nodes 

if x then y end 

and 

if x then y else nothing end 

keywords are also printed, as is else above. 

The reason for this uncollverltional treatment of empty nodes stems from the fact tha t  
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A.5.1.2 The unattached empty node 

The other use of empty nodes in Acer is to ensure that  all nodes have a parent node, including 

even unattached nodes. Therefore, Acer specifies that there exist a special empty node, called 

the unatiached empty node, which is the parent of all unattached nodes including itself. The 

unattached empty node is unique among nodes in that  it is a parent and yet has no children. 

A.5.2 Denoter 

Acer provides denotess to  facilitate the syntactic representation of semantic objects derived 

from existing nodes, tha t  is, to represent types and definitions. To see how the need for 

denoters arises consider the tuple-literal 

tuple let x - :  T be y end 

The type of this tuple-literal is 

Tuple x- :  T end 

Tuple- 
Litrral 

C J 

Detinilion 

A denoter can he thought of as an anonymoos identifier with a predetermined defining- 

occurrence. To be more ewry  dcnoter has a definition and stands in place of that 

definition. 

Acer has two classes of denoter: 

where a type-de~lot,er is defi~icd as 
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and a value-denoter is defined as 

(ValueDenoter) ::= (0) 

The definition of a type-denoter must be empty or a type and the definition of a value-denoter 

must be empty or a value. A denoter never has another denoter as its definition. 

The  context-dependent relations for a type-denoter are illustrated as 

and those for a value-denoter are illustrated as 

In general, a denoter tias a dcfillition and its type is given by the type of that definition. 

The  graphical r e p r e ~ e n t a t i ~ l l  of a denoter illustrates its definition but usually nodes are 

viewed in terms of a lexical encoding. Therefore, to enhance the readability of a d e n ~ t e ~ ' ~  

lexical encoding, the definition of a denoter may be ~ r i n t e d  within the denoter's brackets. 

Thus the above tuple-type could be printed as 

Tuple x : {[I) end 

Tuple x : {[TI) end 

Since a denoter can recursively colltain itself, it is not always possible to  print its defini- 

tion. For example, a ~.ccursivc tuple-type illustrated as 

Declaration 

1 

T y p e -  
Denoter 

Definition 

must be lexica.lly encoded as 

Tuple : { [ I )  end 



APPENDIX A. T H E  ACER DEFINITION MANUAL 

since printing its dcrioter leads to an infinite regression. Also, because definitions can be 

shared, printing the definition of each denoter may result in a given node being printed an 

arbitrary number of times. In ,general, the definition of a denoter should only be printed if 

it is relatively small, for example, if it is an identifier. 

A denoter should never appear in a user program since its definition cannot be determined 

via context-a denoter should appear only in a derived node, in which case i ts definition is 

determined so as to  suit the role it  lays in that  node. 

Because denoters should not appear in user programs, it would be reasonable for a parser 

to  simply reject denoters. I-Iowever, the following adhoc approach is chosen instead. A 

parser, when accepting a type- or value-denoter, assigns the unattached empty node as the 

dcnoter's definition, unless tllc dcnoter has a ~ r i n t e d  definition, in which case it assigns the 

parsed type or value as the dcnoter's definition. It is important to  realize tha t  in either case 

the original intent of the denoter is likely lost; in the first case an  empty definition is assigned 

and in the second case a copy of dcfini t io~~ is assigned. Therefore, semantics will likely be 

altered by printing and passing when der~oters are involved. This is of no concern however 

since denoters should only a.1,pea.r ill  derived nodes, which are not typically parsed. 

Essentially, a type-dcnoter is treated as if it wcre defined as 

( TypeDenoter) ::= { [ [[ (Definition: Type) I] I 1 

and a value-denotes is trea,t,ed as i f  it wcre defined as 

Dcnoters are closely involved i l l  tile notion of a definition-copy. Producing the definition-copy 

of a node involves recilrsively copying the tree rooted a t  that node, including the definition 

of each denoter, and substitllting certain nodes with specified replacements. To see how the 

need for definition-copy al.ises, consider determining the type of the function-call 

where x has type 7' and f has type 
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Function ( Type :: Any; value : Type) Tuple : Type end end 

The type of the call is determined by copying the result-type of the function-type and 

substituting T in place of each occurrence of Type: 

Tuple : 7' end 

Since T is not visible in this newly derived tuple-type, a type-denoter must be used: 

Tuple : { [ T I )  end 

where T is precisely the node T in the argument-list of the function-call. 

In  general, we shall speak of the definition-copy of node y with x' for x ,  where x and 

x' can be any co1nhinatio11 of signature, argument-list, dynamic-type, tuple-type, or record- 

type. Producing such a dcfinitio~l-copy involves creating ?,", a copy of the tree rooted a t  

y, in which each appli(;d-occ,lrrence of an identifier in the name-layer of x is replaced by a 

denoter with a definition that ,  depending of the node class of x', is either the corresponding 

expression in X' or the defi~led-identifier of the corresponding binding or  declaration in 

Note that  when y is all empty node or denoter, definition-copy instead copies the definition 

of y. 

When producing the defillition-col~y of a node, certain subnodes may be unaffected by 

substitution, that  is, certain 1lodcs contain ncither applied-occurrences of identifiers in the 

namelayer of x nor applietl-occllrrellces of identifiers that  are copied. For such nodes, 

definition-copy can substitute a denotcr to the original node in place of a copy of tha t  

node. This results in a Inore efficient representation since fewer nodes are used to  represent 

the same object. 

Closely associated wi th  the notion of a definition-copy is the notion of a de5nition-copy- 

at. 'The definition-copy-at of a llode also results in the creation of a new unattached 

that defines the same object as the original. However, for definition-copy, the new node is 

unattached and so dcnoters arc used to refer to nodes not accessible via context, whereas 

for d ~ f i ~ i t i o ~ - ~ ~ ~ ~ - ~ t ,  the new node is expressed in terms of the scope a t  some target node 

1. Thus the dcfillition-copy-at of a node y a t  a location 1 involves producing a denoterless 

definition-copy of y exprc:sscd in terms of the scope a t  1. 

That  the definitioll-ropy-at can generally be produced demonstrates tha t  objects ex- 

Pressed l l s i l l~  dcllot.css ciln ala) be expressed without using denoters, given an appropriate 

Scope. For cxanlple, collsider the recursive tuple-type 
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Tuple : { [ I )  end 

where the definition of the type-denoter is tuple-type itself. The  definition-copy-at of this 

tuple-type a t  the unattached empty node results in 

{let Unnamed be Tuple : Unnamed end; Unnamed)  

Note that  the definition-copy-at of a node y a t  a target node 1 cannot be produced for all 

possible targets because the objects used by y must be visible a t  I .  Thus definition-copy-at 

fails when attempting to  express a node 'outside of its scope.' 

The 1a.st of Acer's special nodes is the arbitrary-list, which is defined to  be a list of arbitrary 

nodes by the list rulc 

(Arbi traryLis t )  ::= arbitrary C (Arbi trary)  1 1 end 

arbitrary [array 1 2 31 end 

Without delimit itti011 it woultl appear as 
I 

arbitrary array 1 2 3 end 

which would look as  i f  the terminating end of the arbitrary-list is missing. 

This concludes tlie discussion of Acer's special node classes. 
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A.6 Identifier 

For referring to  objects by name, Acer provides identifiers: 

(Idcn tifier) ::= (Typeldcntifier) 1 1  ( Valueldentifier) 

where type-identifier is defined as 

( Typelder~tifier) : := 

( # UppercascLet ter) { (#  LowercaselA ter) 1 1  ( #  UppercaseLet ter) / I  
(#Digit) D 

and value-identifier is defined as 

( Valueldentificr) ::= 

( # LowcrcaseLet ter) Ij (#Lo~m-caseLct ter) / I  ( # UppercaseLet ter) 1 1  
(#lIigit) 1 11 

(#Symbol) (I (#S*yi~lbol) 1 
An identifier appears in context as citller a defining-occurrence or an  applied-occurrence. 

It is a defi~lirlg-occurr(:~~c(: i f  it al,l,ears as thc defined-identifier of a binding, declaration, 

iterator-clement, type-wherl-),ra~lc}l, value-when-branch, or i f  it appears as an element of 

an enumeration- or option-typc, i.e., i f  it appears in a defining-occurrence context; it is an 

applied-occurrence otherwise. 

Each identifier has a ull ique defining-occurrence. A defining-occurrence is its own 

defining-occl~rrcnce and  an al,l,lied-occ~lrrcnce has a defining-occl~rr*n~* determined by 

iden tifier-lookup: 
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T y p e  

) 
Defining-occurrence 

Definition T y p e  

depending on whether it is a fixed-identifier or a variable-identifier, respectively. A value- 

identifier is a variable-identifier i f  its defining-occurrence appears as the defined-identifier of 

a variable-value-billding or a variaI11c-value-declaration; it is a fixed-identifier otherwise. 

In general, the type of an applied-occurrence is given by that  of its defining-occurrence. 

Also, the definition of an applied-occurrence is given directly by its defining-occurrence, 

except for a variablc-identifier, wllich act as its own definition. A variable-identifier acts as 

its own definition because it car1 be modified by assignment (see A.30.4) and so potentially 

denotes a different objoct eacll time. it is cvaluatcd; a fixed-identifier or type-identifier, on 

the other hand, must &note a singlc object throughout its scope and so the identity of tha t  

object is rcprese~~tecl by t l ~ c  u ~ ~ i q u c  defining-occurrence. 

The  subtype rules for typc-idc1ltific:rs arc described with respect to  the subtype rules for 

abstract-types (see A.20). 

{let x be 10; {x  * {let x be 'LO; {x + x ) ) ) }  

is riot visible i n  the inner block, wllic]l also introduces an X. 

For referring to  idcllt,ificrs hidden by reuse, Acer ~ rov ides  reused-identifiers: 

A reused-type- col lsists of a11 itlcn ti ficr and a depth-indicator: 



as does a reused-value-identifier: 

( ReusedValueIdentificr) :: = 
(Identifier: Valueldentifier) ' [ (DepthIndicator:IntegerLiteral) I 

The  depth-indicator must be non-negative. 

In general, the context-dependent relations for a reused-identifier are  the same as those 

for its identifier. Thus a reused-identifier is treated as an  applied-occurrence tha t  has a 

defining-occurrence, a definition, and a type. Also, a reused-value-identifier is considered 

to be either a fixed-identifier or variable-identifier depending on whether its identifier is a 

fixed-iden tifier or  variable-identifier. 

A.6.2 Scope 

Normally, when idcrltific.r-lookul) 1)egins a t  a regular identifier, searching terminates when a 

matching defir~i~ig-occurrc~~ce is found. IIowevcr, when lookup begins a t  the identifier of a 

reused-identifier, scarchi~lg t,errninat,es when the IZ+ 1 matching defining-occurrence is found, 

where n is value of the dcpth-indicator. This way an identifier in an outer scope tha t  is reused 

in an inner scope can still bc rcfcrerlccd in the inner scope. Thus the above example could 

be expressed as 

{let x be 10; {let x be 20; {x'  [1] * {x + x.1 11) 

A.7 Binding 

(Binding) ::= (T.ypc13i~lding.) I( ( ~ a l u c ~ i n d i n g )  

Type-bindings come i l l  ollly O I ~ C  forln but valw-bindings come in one of two forms: 
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fixed-value-binding is defined as 

( FixedValueRinding) : := 
let (Defincdldentificr: Valueldentifier) [[ : (: Type) I] be 

(Definition: Value) 

and variable-value-binding is defined as 

( Variable Value Bin ding) : : = 
let var [[ (Defined1dentifier:Valueldentifier) I] [[ : (:Type) ]] be 

(Definition: Value) 

The  context-dependent relations for a type-binding are illustrated as 

, 

Definition 

Definition 

The type of a type-billding must be a kind. 

Similarly, the c ~ ~ l t o t t - d c ~ c n ~ l c ~ t  relations for a fixed-value-binding are illustrated as  

Definition 

But the context-dependent reIa,t,iorls for a, varia.ble-value-binding are slightly different: 

I dependent relations apply: 

Definition Drfinilion 
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Anonymous variable-value-bindings are used to  specify anonymous, variable, data-structure 

components; anonymous, fixed, data-structure components are specified simply using ex- 

pressions. 

In general, a binding introduces a defined-identifier as the name for its definition. Also, 

a binding optionally indicates the type of its definition; if a type is indicated, the type of the 

definition must be a subtype of that  type. We shall now consider the role bindings play in 

scoping, which is followed by a discussion of how bindings are  evaluated. 

A.7.1 Scope 

According to  Accr's gralnm;lr, t l ~ c  parent of a binding must be of class arbitrary-list, 

argument-list, tuplc-lit,c.ral, I>in(ling-list, dynamic-literal, empty, or record-literal. The  be- 

havior of identifier-lookup wit11 respect to a binding is determined by this class. 

If  the node class of a binding's parent is arbitrary-list or empty, identifier-lookup searches 

the name-layer consisti~lg of  jllst the ljinding's defined-identifier; lookup continues only i f  the 

defining-occurrence is not found. 

If the node class of a binding's parcllt is one of the remaining possible classes, no search 

is perfornlcd and lookul, contirlucs wit11 tile parcnt. But in this case, the binding contributes 

its defined-identifier to tllc Ilatll(.-lfiyer of its parent and lookup searches this name-layel 

when it reacllcs tlre 1,arerlt. II(ylce, rcgartllcss of a binding's context, its defined-identifier is 

visible witl~in it. 

A.7.2 Dependency analysis 

Accr's scope rules permit pathological bindings such as 

l e t  x b e  x 

{let  x b e  t u p l e  y e n d ;  
l e t  y b e  t u p l e  x e n d ;  
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are not erroneous because, as we shall see, a correct evaluation is possible. Erroneous 

dependencies are detected by dependency analysis. 

Dependency analysis is primarily concerned with values, in particular, with evaluation 

order of bindings during the initialization of a binding-list (see A.12), an argument-list (see 

A.15), or an  aggregate-literal (see A.14). (Types are not evaluated and all anomalous type 

dependencies are detected by the definition and denotation relations.) For flexibility Acer 

specifies tha t  bindings may be evaluated in any order that  does access uninitialized bindings. 

Thus programmers should not assume a particular evaluation order. Nevertheless, Acer also 

specifies that  bindings must appear in an  order that  can be correctly evaluated left-to-right. 

Therefore, an  implementatiorl of Acer may choose to  evaluate bindings either left-to-right or 

in some other correct order. 

Dependency analysis is based on the notion of direct references and indirect references. 

A value-binding 6 is said to (lirectly reference a value-binding b' if b contains an  applied- 

occul-rcncc of t he dcfirled-j(len ti fjc~. of 6'. (Containment includes applied-occurrences recur- 

sively contained by dc~loters.) A vallle-binding b is said to indirectly reference a va1ue-binding 

b' i f  b directly refercnccs 6' or  ally value-binding b" directly referenced by b indirectly refer- 

ences b', i.e., the indirect refercIlces of b are the transitive closure of its direct references. 

Using these notions, Acer defines a delayed-occurrence to be an applied-occurrence of a 

value-identifier tha t  occurs before or within the binding that introduces i t ,  or before or  within 

a binding indirectly rchre1lcecl by thc binding that introduces it. A delayed-occurrence, then, 

is simply an aPl~lictl-occur.r~n(-(~ that occurs before its definition is complete. For example, 

in the binding-list 

(let f be function ( )  y.z end; 
let x be f 0; 
let y be tuple let z be 10 end; 

the applied-occurrence of f in the binding for x is a delayed-occurrence. (In fact, it is an 

invalid dc layed-oc .c , l~~c~l~e ,  as we sllall see in a moment.) Note tha t  the a ~ ~ l i e d - o c c u r r e n c ~  

of f is not a forward ref~rcllce i l l  the co~lventional sense. 

F'orma]lyl a (lc]nycy-orcllrrcnrc i is valid if the following two conditions hold for i and b, 

the binding t,llal, illtrot]llccs i. ITirst, the definition of b must denote a literal. And second, for 

every r i but, lrot ellclosing b, either x must denote a literal or x must be  enclosed 

by a function-literal or type that  docs not also enclose b. 

The ose of dclayrd-occorrcnce~ is quite restricted. To understand why delayed- 
. . 

Occurrerlces can ]Ic supl ,or t~d  a t  all one must realize that a literal 1s a t h e r  a constant (i.e., 
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a character-literal, integer-literal, literal-selection, real-literal, reused-value-identifier, string- 

literal, value-identifier, or void-literal) or a constructor (i.e., an array-literal, dynamic-literal, 

exception-literal, function-literal, record-literal, reference-literal, tuple-literal, or variant- 

literal). A delayed-occurrence that  references a constant is clearly valid and a delayed- 

occurrence tha t  references a constructor is valid because a constructor can be allocated in 

advance and initialized later. IIence, a delayed-occurrence is supported as a reference to  

either a constant or an uninitialized data  structure. 

To prevent access to components of uninitialized da ta  structures, delayed-occurrences are  

restricted to  occur only within types and constructors. However, delayed-occurrences are per- 

mitted anywhere within a function-literal's body, even within non-literal expressions (as with 

y.x above), bccausc a f~lllction-litcral is a constructor and any value referenced in its body 

will not be accesscd ulltil t]lc frlllct ion is callcd; the restrictions on delayed-occurrences pre- 

vent such calls until all values rcfcrenccd by the function are fully d&ned. For example, the 

call to  f above is irlvalid because the applied-occurrence f is a delayed-occurrence 

enclosed by a non-literal value, t]le function-call f 0. A delayed-occurrence enclosed by a 

type is permitted because types arc ]lot evaluated and hence values enclosed by types are 

not evaluated. 

A.8 Declaration 

For introducing ~larned, hidden expressions, known only to  have a type tha t  is a subtype of 

an indicated type, Acer provides declarations: 
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(Fixed ValueDeclaration) : := 
[[ (Definedldentifier: Valueldentifier) I] : (: Type)  

And variable-value-declaration is defined as 

( VariableValueDeclaration) ::= 
var [[ (Definedlden tifier : Valueldentifier) ]] : (: Type) 

The  context-dependent relations for type-declarations are illustrated as 

Type-  
Declaration C 

Definilion 

The type of a type-declaratiorl must be a kind because the type of a type must be a kind. A 

abstract-types (see A.20). 

The  context-dcpcrldcnt, relations for fixed-value-declarations are analogous to  those for 

Fixedvalue-  
Declaration 

As are those for a va.riable-va.lue-declaration: 

Definition Definition 

Defin~ng-ocrurrenre 

In gcncral, a dcclalat,ion inll.odnccs a defined-identifier as the name for a hidden expres- 

sion; only the type of this exllrcssion is given. A declaration specifies the type of a parameter 

1 or data-strllcture coml lonc~~ t  and hence its definition is determined dynamically, not stat- 
1 
I ically. The  defined-idelltifier of a, declaration is known only to denote a n  expression with 

I a type that is a srllrtypc of tilc indicated type and so it stands as its own definition. ~h~ 

I defined-identifier of a declaration is optional so that anonymous parameters or  data-structure 
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A.8.1 Scope 

According to Acer's grammar, the parent of a declaration must be of class arbitrary-list, 

dynamic-type, empty, record-type, signature, or tuple-type. The  behavior of identifier- 

lookup with respect to  a declaration is determined by this class. 

If the node class of a declaration's parent is arbitrary-list or  empty, identifier-lookup 

searches the name-layer consisting of just the declaration's defined-identifier; lookup proceeds 

only if the defining-occurrence is not found. 

If the node class of a declaration's parent is one of the remaining possible classes, no 

search is performed and lookup continues with the parent. But in this case, the declaration 

con tributes its defined-identifier to the name-layer of its parent and lookup searches this 

name-layer when it reaches tile parent. IIence, regardless of a declaration's context, its 

defined-identifier is visible within it. 

A.8.2 Deriving a declaration from an argument 

let T1 :: 7'2 be T3 
let x :  7' be y 
let var x : 7' be y 
T 1 
x  
let var be x 

respectively derive the declarations 

var x  : {[TI} 
:: {[7'2]} 
: {P'I) 
var : {[TI} 

of the argument, i f  it tias olle, and the type is determined by the definition-copy of the 
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the bindings. The  notion of derived declarations is used to  specify the type of an  aggregate- 

literal (see A.14) and to specify the way in which a signature is derived from an  argument-list 

(see A.15). 

A.9 The global name-layer 

Earlier it was mentioned tha t  the unattached empty node has associated with it the global 

name-layer. This name-layer is searched whcn identifier-lookup reaches the unattached 

empty node, i.e., whcn lookup's search node is unattached. If lookup fails t o  find the match- 

ing defining-occurrence in the global name-layer, it terminates and yields the unattached 

empty node. IIcllce, the cl(sfi~~irl~-occurrcncc of an undefined applied-occurrence is by 

the unattaclied empty notlc. 

A defining-occurrcncc is introduced into the global name- l a~e r  in one of two ways, de- 

pending on whether it is a type or a value. Each will be considered in turn. 

A.9.1 Global value-ident ifier 

let x be tuple A- end 

Can he compiled to product the declaration 
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let x: {let T be Tuple : T end; T} be tuple x end 

can be compiled to  produce the equivalent declaration 

x : {let T be Tuple : T end; T )  

After compiling either of the above two bindings for x, a declaration containing a defining- 

occurrence spelled x becomes globally visible. An unattached identifier x will have as its 

defining-occurrence the defined-identifier of that  declaration. 

Because each global value is introduced in the form of a declaration, it is not possible to 

statically determine its definition. Its definition, which appears in the corresponding binding, 

remains hidden. In fact, a corresponding binding need not even exist if a translation that 

computes the value of a declaration can be produced in some way other than  by compiling 

A.9.1.1 Mutually dependent values 

{let x be tuple 1 y end; 
let y be tuple 1.0 x end; 

Produces t11c declarations 
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x : {le t  Unnamed b e  
T u p l e  : Integer; : T u p l e  :Real; :Unnamed e n d  e n d ;  

Unnamed) 
y : {let  Unnamed b e  

T u p l e  : Real; : T u p l e  :Integer; : Unnamed e n d  e n d ;  
Unnamed) 

The  defined-identifiers of the declarations (x and y)  are included in the global name-layer. 

A.9.2 Global type-identifiers 

A global type-identifier is introduced by storing a type-binding. Storing a type-binding 

makes it permanently availal>l(; and includes its defined-identifier in the global name-layer. 

(A  fixed-value-binding or a valid binding-list can be stored too but this does not affect scope, 

as it does for a t y p e - h i n d i ~ l ~  or for a fixed-value-declaration.) 

A type-birldi~~g is not conlt,ilcd to a declaration, as with a fixed-value-binding, 

because a type-declaratior~ is ~lscless u ~ ~ l e s s  it is quantified (see A.20.3), tha t  is, unless values 

of that  type are also d(>c]ar(yI. A11 Ilnattachcd type-binding is not automatically included i n  

the global name-layer because ~ l l , l l t i~ Ie  unattached bindings for a given spelling can exist; 

the one tha t  is stored is silrglcd out to have its defined-identifier in the global name-layer. 

Global type-identifiers are no more than a convenience since each app1ied-occurrence of 

such an identifier can be by a dcfinition-ropy-at of its binding's definition a t  the 

location of the appl icd-ocalrr<~~~ce.  111 otlrcr words, global types are not hidden but  global 

values are. 

This cornplctcs the cIcscril)tioli how identifier's are introduced with global scope. 

A.10 Expression 

Type is defined a.s 
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(Type) ::= 

(AbstractType) 1 1  (ConcreteType) 1 1  (ReusedTypeldentifier) 1 1  
(TypeBlock) ( 1  (TypeDenoter) 1) (TypeDesignation) 1) 
( TypeOpcrator) 

where abstract-type is defined as 

(Abstract Type) ::= 

( OperatorCall) 11 ( Typelden tifier) 1 1  ( Typeselection) 

and a concrete-type is defined as 

Value is defined a.s 

(Value) ::= 

(Accomolation) 1 1  ( AndlfTest) 1 1  (Assignment) 11 ( Codepatch) 11 
(CompoundValuc) /I (Conditional) 1) (Dcrcference) ) I  
(DyadicM.lelhodCa11) /I (1~~r1amic111spection) 1 1  (FunctionCall) I/ 
(Index) 1 1  ( ls ' l i~t)  1 1  (1sNotTesl) 1 1  (ltcralion) 11 (1ieepTrying) I( 
(lJilcral) I/ (OrdCall) I/ (01-lfkst)  /I (PointerCall) )I 
(P~clixA.lcthodCaI1) I (Raisc) I/ (Try) 1 1  (TryFinally) 1 1  
( UnaryMrthodCall) 1 1  ( VaICaIl) /I ( ValoeOlock) I (  ( ValueDenoter) (1 
( ValrrcSclcction) 1 1  ( variant inspection) 

where literal is defi~led as 

These are tllc variolls caps~yjsioll classes that are described in the sections that remain. 
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The context-dependent relations for a type-designation are illustrated as 

Since a type-designation is a type, its expression is not evaluated. Subtyping is not 

defined on type -dc~ i~na t ions  because a type-designation always denotes some other class of 

type. 

A.12 Block 

For introducing bindings local to an expression context, Acer provides blocks. A block is 

either a type-block or a value-block: 

(B lock )  ::= ('Type1310ck) 1 1  (Valucnlock) 

A type-block consists of bindings and a body: 

as docs a va,luc-block: 

The bindings of a type-block may not, contain value-bindings. 

The  ~ ~ n t e ~ t - d c ~ o r ~ d e n t  relations for a type-block are illustrated as 

I Those for a value-block arc the same: 
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A.12.1 Scope 

The name-layer of the bindings of a block is searched either when lookup, starting in the 

body, reaches the block, or when lookup, starting in the binding-list, reaches the binding-list. 

In other words, the bindings in a binding-list are visible in that  list regardless of whether the 

list is contained by a block; if it is contained by a block then the bindings are visible there 

too. 

A.12.2 Evaluation 

When a value-block is evaluated, its binding-list is evaluated first and then its body is 
evaluated in the context of those bintli~lgs. A value-block yields the value yielded by its 

body. As discussed in A.7.2, even though a binding-list may be evaluated in any 

order tha t  does not rcslllt i n  invalid dclayed-occurrences, a left-to-right order must be one 

such correct order. 

A type-block is not evaluated since it is a type. Subtype is not defined of type-blocks 

since a type-block always denotes some other class of type. 

A.13 Any 

For denoting the root type of  the type lattice, Acer provides an any-type, which is a childless 

construction: 

Every type is a subtype of every any-type. 

A.14 Aggregate 

For coostnlcting a,ggrega(,c dn,ta st.ructun:s, Acer provides three closely related data  struc- 

turing mecllarlisms: tuples, records, and dynamics. A tu~le-va lue  is constructed by a tuple- 

literal: 
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(TupleLiteral) ::= tuple ([ (Argument)  ][ 1 end 

which has a tuple-type: 

(TupleType)  ::= Tuple (Dcclaration) )[ ; 1 end 

A record-value is constructed by a record-literal: 

(RecordLiteral) ::= record fl (Binding) )[ 1 end 

which has a record-type: 

(RecordType) ::= Record (I (~ec larat ion)  ]I ' I end 

And a dynamic-valuo is constructed by a dynamic-literal: 

( I lynarni~l~i t r~l -A)  ::= dynamic { (Argirrnent) . I end 

which as a dynaniic-type: 

(DynamicrI'ype) ::= Dynamic (I (Declaration) ][ ; 1 end 

The context-dependent rela,tions for these constructs are illustrated as 

Definition 

Record- 
Literal ) T y p e  

Definition Definition 
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as the tag of a dynamic, however. Only a c losed - t ype  is permitted. A type is a closed-type 

if it is possible to produce a definition-copy-at of that  type a t  the umttached empty node, 

tha t  is, if it can be expressed with global scope. (Actually, abstract-types as closed-types are 

not completely sa.fe because the definition (implementation) of an  abstract-type can change 

from one run of a program to  the next. But many basic types such as I n t e g e r  (see A.26) are 

provided as abstract-types and certainly these abstract-types must be supported.) 

Because the first component of a dynamic must be a closed-type, the first argument of 

a dynamic-literal must be a close-type or a type-binding tha t  defines a closed-type. Also, 

the first declaration of a dynamic-type must be a type-declaration with a type tha t  is a 

closed-type. 

Operations for copying, reading and writing dynamics are provided by the module 

dynamics, which is visible a.s 

dynarnlcs : 
Tuple 

error : I3xcept ion ( Void) 
copy : Function ( : Dynaimic T y p e  :: Any; : T y p e  end) 

Dynamic T y p e  :: Any; value : T y p e  end 
end 

input : Function (filel'a tll : String) 
Dynamic T y p e  :: Any; value : T y p e  end 

end 
o11 tput : Function ( filcPa t,h: St ring 

: Dynamic T y p e  :: Any; : T y p e  end) 
Void 

end 
end 

A.14.2 Evaluation 
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order in which arguments appear in the aggregate-literal. 

An aggregate-literal is a constructor and hence its storage may be allocated well in 

advance of the evaluation of the literal. In this way, mutually-referential da t a  structures can 

be constructed. 

A.14.3 Subtype 

An aggregate-type A is a subtype of an aggregate-type A' of the same class if for each 

declaration d' in A', there exists a corresponding declaration d in A such that:  

d and d' are  the same class of declaration. 

The  defincd-identificrs of cl and d' have the same spelling or a t  least one of them is 

empty. 

The  definition-copy of the type of d with A' for A is either equivalent to  the type of 8 ,  

if d and d' are variable-value-declarations, or is a subtype of the type of dl otherwise. 

A.14.4 Component selection 

The components of an aggregate can be accessed using either type-selection: 

(TypeSelcction) ::= (Base: V a l ~ c )  . (Selector: Q ~ e l d e n t i f i e r )  

or value-selection: 

( ValueSclcct ion) ::= (Base: Valm) . (Selector: ValueMen tif cr) 

The  c ~ n t c x t - d e ~ e n d e l l t  relations for a type-selection are illustrated as 

Definllton 

Type- 
Selection 

The base of a tyl,c-sclccti()ll rllllst l ~ c  a qrlant,ificr (see A.20.3) and must have a kind of ,-lass 

tuple-, record-, or tlynarnic-type. 

Similarly, the rontcxt-deprndcnt relations for a concrete value-sclcction are  illustrated as 
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Definition 

value- T y p e  
Selection 

If the kind of the base of a value-selection is an aggregate-type containing a declaration of an 

identifier with the salme spelling as the selector then the value-selection is called a c o n c r e t e  

value-selection and the above relations apply. Otherwise, the value-selection is called an 

abs t rac t  value-selection and the relations described in section A.21.4 apply. 

In general, the type of a type- or value-selection is not given directly by the type of its 

selector but is given by the definition-copy of the type of the selector with the following 

~ubst i tut ions:  each applicd-occu~rc~lce of an identifier appearing in the name-layer of the 

kind of the base (an aggregntc-type) is replaced by a type- or value-selection tha t  has a 

dcrlotcr to  the base as its it1lc.l Ilas the applied-occurrence as its selector. This is called 

reso lv ing  the type because it adds to the type the information about its quantifier (see 

A.20.3). Thus for a tuple dcclarcd as 

t : Tuple T y p e  :: Any; value :: T y p e  end 
I 

I 
the type of t.valuc is t,. T y p r ,  rather than simply Type.  

A.14.4.1 Scope 

A.14.4.2 Evaluation 
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A dynamic-value can be narrowed to  make its components accessible as the components of 

a tuple. This is done using a dynamic-inspection: 

(Dynarn i~ lns~ec t ion )  ::= 
inspect (Selector: Value) (Branches: TypeBranch List) 

[[ else (Default Branch: Value) I] end 

where type-branch-list is d e f i ~ ~ e d  as 

(TypeBraochList) ::= Then { (TypeWhenBranch) J I  ' 1 

and type-when-bra.nch is defined as 

(TypcWhcnBrancl~) ::= 

when (Condition: 7'.ypc) [[ with (Dcfinedlden tifier: ValueMen tifier) I] 
then ( C o n ~ e ~ ~ ~ e n t :  Villr~e) 

The  context-tlcpc~~dent for a dynamic-inspection are illustrated as 

Defini t ion 

K i n d  

D y  narnic- 

"inspection 
failure" 

The type of the c o ~ ~ s q r l r l l t  of each hrallch and the type of the default-branch must be such 

that one is a supcltyp(> of all tllc others; that type, the maximal type7 is the inspcctionYs 

type. The  hind of  t l ~ c  selector must 1x2 of class dynamic-type, and the condition of each 

branch must be a sllbtype of the type of  the first dechration of that  dynamic-type. 

branch ma,y lla,vc a, colldition that is a subtype of the condition of a branch tha t  precedes i t ;  

this would be an unwachable branch. 

The  contcat-dcpcndrot rclatio~1s for a type-when-branch are illustrated as 

(3 Defini t ion (I3 
Defining. T y p e  T u p l e -  

occurrence  T y p e  
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They are identical when the defined-identifier is empty, except that  an  empty node does not 

have a defining-occurrence. The  type of the defined-identifier is derived by determining T ,  the 

kind of the selector of the immediately enclosing dynamic-inspection. From T ,  a dynamic- 

type, a tup le type  is derived by producing T', a definition-copy of T with no substitutions 

but with the following changes: T' is changed from a dynamic-type to  a tuple-type; the ini- 

tial declaration is changed from a type-declaration to  an  anonymous fixed-value-declaration 

of type any-type; and each applied-occurrence of the defined-identifier of the initial type- 

declaration is replaced by a type-denoter to the type-when-branch's condition. 

For example, when inspecting a value of kind 

using a type-when-hranch of the form 

w h e n  T w i t h  x t h e n  x.value 

the defined-identifier x has type 

T u p l e  : A n y ;  value : {['l']) e n d  

A.14.5.1 S c o p e  

A.14.5.2 E v a l u a t i o n  
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default-branch is evaluated to yicld the result-valuating an empty default-branch raises 

an exception (see A.24.2).  Otlierwise, the first branch with a condition tha t  is a supertype 

of T is evaluated to yield the result. 

When the type-whcn-branch of a dynamic-inspection is evaluated, the dynamic yielded 

by the selector is bound to  the defined-identifier and the consequent is evaluated to  yield the 

result . 

A.15 Argument-list and signature 

Argument-lists and signatures are incomplete constructs tha t  are used to  specify parts of 

expressions and their types. Argument-list is defined as 

arid signature is dcfilrcd as 

(Signature) ::= ( ( l ~ c ~ l a r a t ~ i o o )  11 ' ) 

A signature can he (Ierived from an argument-list in the same way tha t  a tuple-type is  

derived from a tuple-literal (sce A.14). 

A.15.1 Scope 

When identifier-lookup reaches an a rprne~l t - l i s t  its name-layer is searched. Similarly, when 

identifier-lootup reaclles a sigllaturc its name-layer is searched. 

A.15.3 Conformance 

Given an  argrllncnt-list a an( l  a signature s we may ask whether a conf0l.m~ t o  s.  A n  

argument-list a conforIns to ir signature s if  they have the same length and  i f  for each 

declaration d at  posit,ion i n  , there exists a corresponding expression or binding b at 

Position n in a such that :  
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b and d have corresporiding node classes, that  is, if d is a type-declaration, b is a type 

or type-binding; if d is a fixed-value-declaration, b is a value or fixed-value-binding; 

and i f  d is a variable-value-declaration, b is a variable-value-binding. 

The  defined-identifiers of d and b ( i f  it has one) have the same spelling or a t  least one 

of them is empty. 

The  definition-copy of the type of d with a for s is either equivalent to  the type of b, 

if d is a variable-value-declaration, or is a supertype of the type of b otherwise. 

A.15.4 Evaluation 

A signature is like a type and  is ,101 evaluated. An argument-list is like a binding-list and 

is evaluated in any order that  docs not access uninitialized bindings-a left-to-right order 

must be a correct evaluation order (see A.7.2). 

A.16 Enumeration and option 

For representing a. finite nulnber of unstructured data  elements, Acer provides enumerations 

and options. An enumeration- or option-value is denoted using a literal-selection: 

(IJiteralSelection) ::= (Base: Type) . (Selector : ~alueMentifier) 

which has either an criulncration-typc: 

or an option type: 

(OptionTvpe) ::= Option (~alueldent i f ier)  )[ 1 end 

I The  contcxt-dependent rc]atiolls for literal-selection are illustrated as  

Literal- 
Select ion Definition 

The base of a litcral-selcction must denote an option- or enumeration-type tha t  contains the 

defining-occurrence of its selector. 

The  context,-dclwmdcnt for cnumeration-type are illustrated as 
I 

I 
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Definition R 

>+$ 
Definition 

The  same relations apply for option-type. 

A.16.1 Scope 

An enumeration- or option-type does not affect identifier-lookup but it does define a name- 

layer consisting of its identifiers. 

A literal-selection affects idc~~tifier-lookup as follows. When lookup reaches a literal- 

selection from its selector, the narne-layer of the denotation of the base is searched and  

lookup terminates, successful or not. 

A.16.2 Subtype 

An enumeration-type E js a sllbtype of an enumeration-type E' if for each identifier i a t  the 

nth position in E ,  tliere i s  a corresporldillg identifier i' with the same spelling a t  the nth 

position in Et. 

An option-type 0 is a srllll,ype of all option-type 0' if for each identifier i in 0 there is 

an identifier it with the same spclling in 0 ' .  

The  ordering of idclltificrs is significant for enumeration-types but not for option-types. 

A.16.4 Conversion 

(OrdCall) ::= ord ( (ljase: Valt~c) ) 

r 7 1 he col l ter t -dcl~cl l (~cnt  i -eIat io~l~ for ord-call are illustrated as 
I 
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Definit ion 

Integer t 
The base must be an enumeration-value. 

When an ord-call is evaluated, its base is evaluated first. The  value yielded by the base 

is converted to  an Irztqer. The ordinal position of the first enumeration-value is 0 and 

successive values have increasing ordinal positions. 

For determining an enumeration-value given an enumeration-type and an ordinal position, 

Acer provides a val-call: 

The  context-dcpendcrlt relations for a val-call are illustrated as 

Defini t ion 

23 
The  base type  niust dcnotc' an cnllrrrc:ratio~l-type and the ordinal must be a n  Integer 

When a val-call is evaluated, the ordinal is evaluated to yield an Integer, which is con- 

exception is raised: 

raise fatal with "Val-call out of range. " end 

A.17 Variant 

(VariantLitcral) ::= 

variant (Tag: ~aluclddcntificr) of (13ascType: Type) 
with ( ~ ~ ~ r r n c n t s : A ~ ~ r r ~ ~ e n t I J i s t )  ) 

which has a varia.11t-typ~: 
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( Variant Type) : : = 
Variant (Tag: Type) (Variants: Variant List) 

[[ else (Dcfa,ult:Signa ture) ]] end 

where variant-list is defined as 

variant-element is defined as 

( Variant Element) : := 

(Condition: WhenCondition) then (Consequent:Signature) 

and when-condition is dcfinetl as 

( Wher~Condit~ion) ::= when fl (Value) 2 1 

The  context-depcndcnt relations for these constructs are illustrated as 

T y p e  

Def ini t ion Def ini t ion 

Variant-  Variant- 
1,ileral T y p e  

\ -l 
A r g u m e n t -  x 

List 

Def ini t ion 
Variant- S i g n a t u r e  

S i g n a t u r e  255 
a defining-ocrl l r~cl~cc~ fi,r tllr t a g  'rhe typr  of a variant-literal is a variant-type derived as 

signature derived fro1~1 the literal's argument-list (see A.15).  

The  tag of a variant-type must dcnote an enumeration- or option-type T .  Each value 

The ~ l ~ c n - c o ~ l d i t , i o l r ~  of a v ~ i a n t - t y p ~  may contain a t  most one applied-occurrence of each 

~ a r i ~ ~ t - t ~ ~ ~ - ~ i t l ~ ~ ~  tho signat~lre of the variant-element containing an applied-occurrence 

of i or thc  dofault signature. 
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A.17.1 Scope 

When identifier-lookup reaches a variant-literal from its tag, the name-layer of the denotation 

of its base-type is searched. Lookup then terminates, successful or not. 

When identifier-lookup rcaches the when-condition of a variant-element, the namelayer  

of the denotation of the tag of the immediately enclosing variant-type is searched. Lookup 

then terminates. 

A.17.2 Evaluation 

When a variant-literal is evaluated, its arguments are evaluated in any order tha t  does not 

access uninitializcd components (see A.7.2). A variant-literal is a constructor and hence its 

storage may be allocated well in atlvancc of the evaluation of the literal. 

A.17.3 Subtype 

A variant-type V with a, ta,g denoting T is a subtype of a variant-type V' with a tag denoting 

T' if the following hold: 

T is a subtype of T' 

And for cacll idclltifier i i l l  T and if i n  T', where i and i' have the same spelling, the 

signattlre s ; ~ s s ~ ~ i ~ t , ~ d  willl i i n  V is a subsignatore (see A.15.2) of the signature st 

associated with i' in V'. 

A varia~lt-value must I,c na7.r*olucd to makc its components accessible. This is done us ing  a 

variant-inspection: 

(Variant,lnspcction) ::= 

inspect (Sclccto,-: Value) (Branches: ~alueBranchList) 
[[ else (DefaultZ3ranch: Vallle) I] end 

where value-branch-list is defined as 
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(ValueWhenBranch) ::= 

(Condition: When Condition) 
[[ with (Definedldentifier: Valueldentifier) then 

(Consequent: Value) 

A variant-inspection can also be used as a multi-way branch based on an  enumeration- or 

option-value. 

The  context-dependent relations for a variant-inspection are illustrated as  

Definition 

Kind 

C i i '  
Definition 

K a i ~ e  

The  type of the ronscqllent of each branch and the type of the default-branch must be  such 

that  one is a suprrtypc of  all the otllrrs; that type, the maximal-type, is the 

type. The  kind of the selector nlust, &note either an enumeration- or option-type or , 
variant-type with a tag tllat denotes all enumeration- or option-type E. The conditions of 

variant-inspect,ion may colltaill a t  most one applied-occurrence of each identifier in E.  

The  context-del>cn(lcIlt rclntions for a value-when-branch in the branches of a variant- 

inspection arc illustrated as 

W h e n -  
Condition 

Definition 

Defining- 

O c c u r r e n c e  - 

be stl& that one siglla,tllre s is a supersignature (SM A-15.2) of the others. From a 
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the following changes: T' is changed from a signature to a tuple-type; and an anonymous 

fixed-value-declaration, with a type given by the variant-type's tag, is inserted as the first 

element. For example, the type of v in 

w h e n  id w i t h  v t h e n  v.x 

where the selector has type 

V a r i a n t  { [ E n u m e r a t i o n  id end] )  of 
w h e n  id t h e n  ( T  : :Any ;  x: T) 

end 

is 

T u p l e  : { [Enumera t ion  id e n d ] ) ;  7' :: Any;  x : 7' e n d  

If 7' is an  enumcratiori- or optio11-type thcn the type of the defined-identifier is derived 

as follows. For an enumeration-type, tlie type of the defined-identifier is a copy of T that 

includes only those identifiers with ordinal positions no bigger than  tha t  of the  identifier with 

the largest ordinal position in the condition. For an  option-type, the type of the defined- 

identifier is an option-type tha t  incllldes only those identifiers appearing in the  condition. 

A.17.4.1 S c o p e  

When identifier-lookup reaches a when-condition of a variant-inspection, one of two things 

happens. If T, the kind of the selector, is a variant-type then the name-layer of the tag of 

that  variant-type is searched and lookup terminates, successful or not. Otherwise, T must 

denote an  enumeration- or option-type; the name-layer of T is then searched and lookup 

terminates, successful or not. 

A.17.4.2 E v a l u a t i o n  
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A.18 Function 

For expressing a value in terms of a ~arameter ized expression, Acer provides functions. A 

function-value is constructed by a function-literal: 

(FunctionLiteral) ::= 
function (:Signature) [[ : (Resu1tType:Type) 1] (Body:Value) end 

which has a function-type: 

(FunctionType) ::= Function (:Signature) (Result Type: Type) end 

The context-dependent relations for these constructs are illustrated as 

T y p e  

Definition 

r 
f Definition 1 

\ 3 
Signature Empty  Signature 

Definition 

Definition T y p e  

The type of a function-litera1's body must be a subtype of the result-type. The  signature of 

a function-literal or furlct,ion-type may not contain variable-value-declarations. 

A.18.1 Scope 

When identifier-lookllp reaches a function-literal from either its result-type or its body, the 

name-layer of the signature is sca.rched. Similarly, when identifier-lookup reaches a function- 

type from its result-type, the name-layer of the signature is searched. 

A.18.2 Subtype 

A function-type F is a s u 1 1 t ~ ~ c  of a function-type F' if: 

same length. 

The  definition-copy of the result-type of F with the signature of F' for the signature 

of F is a subtype of the rcsult-type of F'. 
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A.18.3 Evaluation 

When a function-literal is evaluated, a closure of the values used in the literal is computed. 

That  closure, along with the instructions for evaluating the literal's body, represent the 

function-value. 

A function-literal is a constructor and hence its storage may be allocated well in advance 

of the evaluation of the literal. In this wa.y recursive functions can be constructed. 

For invoking a function, Acer provides a function-call: 

(FunctionCalI) ::= (filnction: Value) (Arguments:ArgumentList) ) 

The  context-dependent relations for a function-call are illustrated as 

Definition 

m 

Signature 0 

A.18.4.1 Scope 

When identificr-loo~or, a function-call from its fllnction, the name-layer of the 

argument-list is searched. 

A.18.4.2 Evaluation 

When a function-call is evaluated, the arguments are evaluated (see A.7.2) and then the 

function is evalllnicd to the result. Evaluating a function involves evaluating its body 

in the context of its closure and the arguments supplied by the call. 
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For expressing a type in terms of a parameterized expression, Acer provides type-operators: 

(Typeoperator)  ::= Operator (:Signature) (l3ody:Type) end 

There are  no values with type-operators as their types. 

The  context-dependent relations for a type-operator depend on whether it is abstract or 

concrete. A typc-operator is a concrete type-operator if its body denotes either a concrete- 

type or a concrete type-operator. Conversely, a type-operator is an  abstract type-operator 

if its body denotes either an abstract-type or an  abstract type-operator. The  distinction 

between the two lies in thc fact that a concrete type-operator is a kind but an abstract 

type-operator is not. 

The  context-dependent relations for type-operators are illustrated as 

'Type 

Definition Definition 

T Y  PC- T y p e  Type-  
Operator Operator 

) r 
Signature Signature 

T y p e  

A.19.1 Scope 

~h~ of 7" is a sobsignature (see A.15.2)  of the signature of T and they have 

the same length. 
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The definition-copy of the body of T with the signature of TI for the signature of T is 

a subtype of the body of TI. 

For invoking a type-operator, Acer provides an  operator-call: 

The  kind of the operator must denote a type-operator and the argument-list must conform 

to the signature of that  type-operator. 

The  context-dependent relations for an operator-call are illustrated as 

Definition - 
Operator- J T y p e  

Call 

Signature a 
In general, the type is derived by producing a definition-copy of the body of the type-operator 

with the argr~mcnt-list of the opcrator-call for the signature of the type-operator. 

a type-operator, the definition relation is instead illustrated as 

Definition 

Argument- 

I- 
Signature 

In general, the dcfinitioll is derived from the type-operator in the same way t,hat the type is 

derived above. Becallsc a,n operntor-call with an operator that denotes an  abstra,ct-type is 



APPEND1,Y A .  T H E  ACER DEFINITION M A N U A L  

Every type T denoting an abstract-type A ( a  type-identifier, type-selection, or operator-call) 

has an abstract-name I, an abstract-base B, and a quantifier Q .  Each will be considered in 

the subsections tha t  follow. 

A.20.1 Abstract-name 

The abstract-name I of an abstract-type A is determined as follows: 

0 If A is a type-identifier, I is A itself. 

If A is a type-selection, I is the defining-occurrence of the selector of A. 

If A is an operator-call, 1 is the abstract-name of the operator of A. 

An abstract-name is a type-identifier that occurs as the defined-identifier of a type- 

declaration in a, signature or aggregate- type. 

A.20.2 Abstract-base 

The abstract-base B of an abstract-type A is determined as follows: 

If A is a type-identifier or type-selection, B is A itself. 

If A is an  operator-call, B is the abstract-base of the operator of A. 

A-20.3 Quantifier 

The quantifier Q of an abst,ract-typc: A is determined as follows: 

If A is a type-identifier, Q is the parent of the parent of A. 

If A is a typc-sclcctioll, Q is the base of A .  

If A is a11 ollcrator-ra]l, & is the of the operator of A. 

A quantifier is a signatrlre or aggregate-type, i f  B is a type-identifier; it is a value with an 

aggregate-type a.s its kind, i f  B is a type-selection. 
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To prevent an  abstract-type from being used outside the scope of its quantifier, and to  

ensure tha t  the quantifier denotes the same value throughout its scope, Acer enforces the 

following restriction. For every value x with a type T that  denotes an  abstract-type, the 

quantifier Q of T must be a valid quantifier with respect to  X. A quantifier Q is valid with 

respect to  x if: 

Q is a signature or aggregate-type, 

Q is a fixed-identifier that  does not have a defining-occurrence enclosed by x ,  

Q is a concrete value-selection with a selector that is a fixed-identifier and a base that 

is a valid quantifier with respect to x,  

or Q is a value-denot,er with a defirlitiori that is a valid quantifier with respect to  z. 

If the quantifier of the type of x is not valid with respect to  x then x is said to  have an 

invalid abstract-tgp. exanlple, tlie above restriction dictates tha t  the selection 

tuple let T be Integer; let x: T be 0 end.x 

has an  invalid abstract-type 

{(tuple let T be Intqer; let x : 7' be 0 end)). T 

because a tuple-literal is not a valid quantifier. Also, the block 

{let t be tuple let T be Integer; let x :  T be 0 end; t.x) 

has an invalid abstract-type: 

A.20.4 Subtype 

the abstract-namcs of A and A' have the same spelling, 



A P P E N D I X  A .  T H E  ACER DEFINITION MANUAL 

and the quantifier of A is equivalent to  the quantifier of A'. 

An operator-call A is a subtype of an operator call A' if 

A and A' have the same number of arguments, 

each argument a t  position n in A is equivalent to  the corresponding argument a t  

position n in A', 

and the operator of A is a subtype of the operator of A'. 

Equivalence for quantifiers is defined as follows. A quantifier denoting Q is equivalent to  

a quantifier denoting Q' i f  

Q and Q' are the same node, 

or  Q and Q' a,rc value-selections with bases that  are equjvalent a.nd selectors that  a re  

spelled the sa.me. 

Notice tha t  equivalence is defined on values as well as types. (The notion of static value- 

equivalence could he extended. For example, two different integer-literal nodes could be 

considered equivalent i f  they llave the same spelling. This does not affect subtyping however 

and will not be considered further.) 

A.21 Method 

function ( 7' :: Any; x: 7'; m :  Function ( : T) T end) m (x) end 

t : Tuple T : Any; x : 7'; rn : Function ( : T) T end end 
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then the value-selection t.x has a method named m. 

Hence, a value a: has a method named m if an identifier with tha t  spelling can be found 

in the quantifier of its type. This method is denoted in context either as the identifier m, 

if Q is a signature or aggregate-type, or as the value-selection Q.m, i f  Q is a value. This 

identifier or value-selection is called the denoted method and is used to  define the behavior 

of method-calls. 

The  most general form of method-call is the prefix-method-call, which consists of a method- 

name and arguments: 

( PrefixMethodCall) ::= 

(MethodName: Vallleldcntifier) . (Argumcnts:Argument List) ) 

Special scope rules apply for method-names. 

A.21.1.1 Scope 

A.21.1.2 Type and definition 

The  context-dependent relations for a prefix-method-call are illustrated as 
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Defini t ion 

M e t h o d c a l l  

Def ini t ion J 

\ \ 
m Argurnenl-  Value-  A r g u m e n t -  

Lis t  Se lect ion List  

k \ 

In general, the definition of a prefix-method-call is a function-call derived as follows. The 

argument-list of the function-call is a definition-copy of that  of the method-call, and the 

Value-  Value-  
S e l e c t i o n  D e n o t e r  

A unary-method-call corlsists of a method-name and an operand: 

( UnaryMcthodCall)  ::= 

(McthodNamc:  Valucldcnt,ifier) (Operand: Value)  1 

m 

The  context-dependent relations for a unary-method-call are illustrated as 

Value-  
D e n o t e r  

T 
\ 

X 

Tun.  

Def ini t ion 

Value-  
D e n o t e r  X 

Defini t ion J 

The of the method-name is determined just it is for the ~ r e f i x - ~ e t h ~ d -  

call. 
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A.21.3 Dyadic-met hod-call 

A dyadic-method-call consists of a first-operand, a method-name, and a second-operand: 

(DyadicMethodCall) ::= 
C (First Operand: Value) (MethodName: Valueldentifier) 

(Second Operand: Value) 1 

The  context-dependent relations for a dyadic-method-call are illustrated as 

T v o e  

Pref ix-  
M e t h o d c a l l  

L 

D e n o t e r  D e n o t e r  

Def ini t ion 
Def ini t ion 

The defining-occurrence of the method-name is determined just it is for the prefix-method- 

call. 

A.21.4 Abstract value-selection 

If the kind of the base of a value-selection x is not a aggregate-type T ,  or the selector does 

not occur i n  the name-layer of T then x is called an abstract value-selection. In this case 

the context-dependent rela,tions are illustrated as 

T y p e  

Value-  Def ini t ion Prefix- 

Select ion M e t h o d C a l  
I 

Value-  
D e n o t e r  X 

Defini t ion J 

An abstract vallle-sc]ection is treated as a unary-method-call. Irowever, i f  the kind of the def- 

is determined as it is for the prefix-nletllod-call. 
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A.21.5 Index 

An index consists of a base and indices: 

(Index) ::= (Bme:  Value) (Indices: IndexList) I 

where index-list is defined as 

(IndexList) ::= [ (I (Value) 2 I 

The context-dependent relations for an index are illustrated as 

I 

Value- 
Denoter 

Definition 

Void 

let Void b e  void. Type 

The module void is visible as 

void : 
Tuple 
Type : : A n y  

end 
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The context-dependent relations for a void-literal are illustrated as 

Void- Type  
Literal \ Void 

Definition J 

A.23 Boolean 

For representing Boolean truth values, Acer provides the type Boolean, which is visible in 

the global name-layer as 

let Boolean be boolean. Type 

The module boolean is visible a.s 

boolean : 
Tuple 

7'ype :: E~lumeration false, t m e  end 
no t :  Function ( : Type) T y p e  end 
a n d :  Function ( : Type; : Type) Type end 
or- : Function ( : Type; : Type) Type end 
all : Function ( : Type) ~ccumulator.( Type, Type) end 
some : Function ( : Type) Accumulator (Type, Type) end 
< : Function ( : Type; : Type) Type end 
<= : Function ( : Type; : l'ype) T y p e  end 
> : Function ( : 7kpe; : Type) Type end 
>= : Function ( : Type; : Type) Type end 
= :  Function ( : Type; : Type) Ty p e  end 
# : Function ( : Type; : Type) Type end 

end 

false : Iloolenn 

and 

true : Boolean 

are provided as synonyms. 

Acer ha.s several constructs involving Bookans. 
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A.23.1 Identity 

For testing identity (bitwise equality), Acer provides an is-test, consisting of a first-operand 

and a second-operand: 

(IsTest) ::= ( (First Operand: Value) is (SecondOperand: Value) ) 

as well as an is-not-test: 

(IsNot Test) ::= 

C (First Operand: Value) isnot (SecondOperand: Value) ) 

The context-dependent relations for these constructs are illustrated as 

Definition 

Boolean 

Definition 
\ 

Boolean 

The types of the two operands must be such that one is a subtype of the other. 

A.23.2 Evaluation 

A.23.3 Conditional 

For supporting banclling on Uoolean valucs, Acer provides a conditional, which consists of 

branches and a n  optional default-brarlch: 

(Conditional) ::= 

(Branches: ConditionalBranch l i s t )  
[[ else (Default Branch: Value) I] end 
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where conditional-branch-list is defined as 

( ConditionalBranch List) ::= if { ( ConditionalBranch) 

and conditional-branch is defined as 

(ConditionalBranch) ::= (Condition: Value) then (Consequent: Value) 

The  context-dependent relations for a conditional are  illustrated as 

Definition 

Conditional 

I 
Definition 

Empty  
Void- 

Literal C 

The type of the colidition of a conditional-branch must be Boolean. The  types of the con- 

sequents of the branches and the type of the default-branch must be such tha t  one is a 

supertype of all the others; that type, the maximal type, is the conditional's type. 

A.23.3.1 Evaluation 

When a conditional is evaluated, each successive condition of the branches is evaluated 

for some bran& b the contlitiorl yields true. The consequent of b is then evaluated to  yield 

the result. If no conditiorl yielcls true, the default-branch is evaluated to  yield the  result. 

A.23.4 Shortcircuit evaluation 

For supporting sIlort-circllit 13ooIcall evaluation, Acer provides the and-if-test and the ~ r - i f -  

test. An and-if-test consists of a first-operand and a second-operand: 

(AndlfTest) ::= 

( (First Operand: Value) andif (Secondoperand: Value) ) 

as does and or-if-test: 

(Orlf7'est) ::= { (First Oprrand: Valne) orif (Secondoperand: Value) ) 

The  c o n t e ~ t - t l e ~ c n d c ~ ~ t  relations for these constructs are illustrated as 
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Definition 

Conditional- ( )  (-) (-) 
BranchList Selection 

Conditional- ( )  )I 
( value-  ), ( Value- ), 

Denoter Denoter 

Definition I 

Orlf -  Definition 
Test  

Conditional 

(Value-), (-1 
Denoter Selection 

L 
Definition 

boolean 

A.24 Exception 

For interrupting rlormal sequclltial evaluation. Acer provides exceptions. To support excep- 

tions, the type Exception is visible in the g1oba.l-name-layer as 

let Exception be  exceptions. Type 
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and the module exceptions is visible as 

exceptions : 
Tuple 

Type :: Operator ( BaseType :: Any) Any end 
Raise :: Any 
Error :: Any 

end 

Any type equivalent to Exception (T) is called an exception-type with base-type T. 

An exception-value is constructed by an exception-literal: 

(ExceptionLitcraI) ::= exception ( (RaseType:Type) ) 

The context-depcnclclrt, rclatiol~s for an exception-literal are illustrated as 

Definition 

Exception- Oprrator- 

Literal Call 

Denoter 

A.24.0.1 Evaluation 

When an exception-literal is evaluated, the constructed exception-value is yielded. 

exception-literal is a constructor and hence its storage may be allocated well in advance 

of the evaluation of the literal. 

A.24.1 Standard exceptions 

exit : Exception ( Void) 
fatal: Exception (String) 
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A.24.2 Raise 

An exception is raised by a raise, which consists an exception-value and an optional 

associated-value: 

(Raise) ::= 

raise (Exception Value: Value) 
[[ with (AssociatedValue: Value) I] end 

The  context-dependent relations for a raise are illustrated as 

Definition 

Raise 

'I 
Void- 

E m p l y  Literal 

The type of the exceptio~l-value must denote an exception-type and the type of the 

associated-value must be a subtype of the base-type. 

A.24.2.1 Subtype 

The type Raise is visible in the global name-layer as 

let Raise be exceptions. Raise 

It is a special type because it canllot cause type conflicts. It is considered equivalent to  

every other type. IIowcvcr, ~ h c n  determining the maximal type of a set of types, as for the 

branches of a conditional, it is considcrcd the maximal type only if every type denotes Raise. 

In other words, an  expressioIl llas type Raise only i f  it always raises an exception. 

A.24.2.2 Evaluation 

A raise never yields a When a raise is evaluated, the exception-value is evaluated first 

and tllen normal evaluatioll is s~lspendcd. Then the exception, with its a ~ s o c i a t e d - ~ ~ ] ~ ~ ,  

propagates back througl~ the dynamic evaluation chain until it is trapped by a suitable 

handler. 

Acer provides three constructs for trapping exceptions, namely try-finally, try, and keep- 

trying. Each will be  considered in turn. 
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A.24.3 Try-finally 

For specifying evaluations to  be carried out regardless of whether an exception is raised, 

Acer provides the try-finally, which consists of a body and a final-action: 

(TryFinally) ::= try (Body: Value) finally (FinalAction: Value) end 

The  context-dependent relations for a try-finally are illustrated as 

Definition 

T r y -  

Finally 

A.24.3.1 Evaluation 

When a try-finally is evaluated, its body is evaluated first and its final-action is evaluated 

next, even if the body raises an exception. Then, i f  neither the body nor the final action raise 

an exception, the try-finally yields the value yielded by its body. Otherwise, either the  body, 

the final-action, or both raise an exception. If the body raises an exception but the final- 

action does not, the try-finally raises the exception raised by its body- Otherwise, if both 

the body and the final-actiorl raise exception, or just the final-action raises an  exception, the 

try-finally raises the exception raised by the final-action. In any case, the value yielded by 

the final-action is discarded. 

A.24.4 Try 

For trapping exceptions raised by the evaluation of an expression, Acer provides the try, 

which consists of a body, branches, and an optional default-branch: 

(Try)  ::= 

try (Body: Value) (Branches: ValueBranchList) 
[[ else (Defa,ultBranch: Value) I] end 

A va]ue-branch-list has the sanlc form as for a variant-inspection (see A.17.4) but the seman- 

tics of a va lue-w~len-~~ranc~l  i n  a try is different from the semantics of a value-when-branch 

in a variant-inspection. 
r 7 I he context-(jrpc1ldclrt relations for a try are illustrated as 
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Definition 

BranchList Raise 
Definition 

The  types of the consequents of the branches, the type of the body, and the type of the 

default-branch must be such that one is a supertype of all the others; that  type, the maximal 

type, is the try's type. 

The  context-dependent relations for a value-when-branch in the branches of a t ry  are  

illustrated as 

(Value-) 
WhenDranch 

Defining- 

Occurrence 

They are identical for an empty defined-identifier, except that  an  empty node does not have 

a defining-occurrence. The  maximal type of the types of values in the condition must denote 

an exception-type; the hase-typ(~ of that type is the type of the defined-identifier. 

A.24.4.1 Evaluation 

For specifying evaluations to be carried out repeatedly, Acer provides the keep-trying, which 

consists of a body, and an optional default-branch: 

(Keep Trying) : : = 
keep trying ( B o b :  Value) (Brariches: ValueBranchList) 

[[ else (Defa ultHranch: Value) I] end 
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A keep-trying is Acer's only looping construct, other than high-level iteration. 

The  context-dependent relations for a keep-trying are illustrated as 

Definition 

Raise 

The types of the corlsequents of the branches, and the type of the default-branch must be 

such that  one is a supertype of all the others; that type is the keep-trying's type. 

The  context-dcpelldcIlt rcIa.tions for a value-when-branch in the branches of a keep-trying 

are the same as those for a try. 

A.24.5.1 Evaluation 

When a keep-trying is cvalllatcd, the body is evaluated repeatedly until an  exception is raised. 

Thus the value(s) yielded by the body are discarded each time. When a n  exception is finally 

raised, it is compared witll the value yielded by each successive value in the conditions of 

the branches. If a match is found, the associated-value of the exception is bound to the 

defined-identifier of  the corresponding branch and the consequent is evaluated to  yield the 

result of the keeptrying. I f  not match is found, the default-branch is evaluated t o  yield the 

result of the keep-trying. Evaluating an empty default-branch reraises the  exception raised 

by the body. 

A.25 Error 

let Error be excep lions. Erro I .  

error : Errol- 
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A.25.1 Subtype 

The  type Error, like the type Raise, it is considered equivalent to  every other type. However, 

when determining the maximal type of a set of types, as for the branches of a conditional, 

it is considered the maximal type if any type denotes Error. (This is unlike the type Raise, 

which is considered the maximal type only if every type denotes Raise.) 

A.25.2 Evaluation 

When a value that  denotes error is evaluated, the fatal exception is raised as 

raise fatal with " e r r o r "  end 

Thus although it is invalid for a program to contain expressions that  denote error or Error, a 

program containing such expressions can nevertheless be evaluated, although likely not with 

the intended effect. 

A.26 Integer 

For representing integers, Accr provides integer-literals: 

The  context-dependent relations for an  integer-literal are illustrated as 

Integer 
Definition 

The type Inlcger is visible as 

let Integer be integer. Type 

and the module integer is visible as 
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in t eger : 
Tuple 

T y p e  :: Any 
error : E x c e p t i o n  ( V o i d )  
" : Function ( : T y p e )  T y p e  end 
abs : Function ( : T y p e )  T y p e  end 
+ : Function ( : T y p e ;  : T y p e )  T y p e  end 
- : Function ( : T y p e ;  : T y p e )  T y p e  end 
* : Function ( : T y p e ;  : T y p e )  T y p e  end 
mod:  Function ( : T y p e ;  : T y p e )  T y p e  end 
div : Function ( : T y p e ;  : T y p e )  T y p e  end 
< : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 
<= : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 
> : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 
>= : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 
= : Function ( : T y p e ;  : T y p e )  Boo lean  end 
It : Function ( : T y p e ;  : T y p e )  13001ean end 

end 

A.27 Real 

For representing reals, Acer provides real-literals: 

The  context-dependent relations for a real-literal are illustrated as 

The  type R e d  is visible as 

let l k a l  be  real. T y p e  

and the module real is visible as 
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real : 
Tuple 

Type :: Any 
error : Exception ( Void) 
" : Function ( : Type) Type end 
abs : Function ( : Type) Type end 
+ : Function ( : l'ype; : Type) Type end 
- : Function ( : Type; : Type) Type end 
* : Function ( : Type; : Type) Type end 
/ : Function ( : Type; : Type) Type end 

: Function ( : Type; : Type) Type end 
< : Function ( : Type; : Type) Boolean end 
<= : Function ( : Type; : Type) Boolean end 
> : Function ( : Type; : Type) Boolean end 
>= : Function ( : Type; : Type) Boolean end 
= : Function ( : Type; : Type) Boolean end 
# : Function ( : 7'ppe; : Type) B o o l m n  end 

end 

A.28 Character 

For representing characters, Awr provides character-literals: 

The  ~~ntcxl , - t lcpel ldc.~l t  for a character-literal are illustrated as 

The type Character is visible as 

let Character be character. Type 

and the module character is visible as 
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character : 
Tuple 

T y p e  :: Any 
< : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 
<= : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 
> : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 
>= : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 
= : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 
# : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 

end 

A.29 String 

For represeriting strings, ACCI- provides string-li terals: 

The  con text-dependent relations for a string-li teral are illustrated as 

The  type S t i - ing  is visible as 

let S t r i n g  b e  string. T y p e  

and the module string is visible as 

string : 
Tuple 

T y p e  :: Any 

I error : E x c e p t i o n  ( V o i d )  
length : Function ( : B a s e  T y p e )  Integel-  end 

I index1 :Function ( : T y p e ;  : I n t e g e r )  C h a r a c t e r  end 
substring : Function ( : T y p e ;  : In teger ;  : I n t e g e r )  T y p e  end 
+ : Function ( : T y p e ;  : T y p e )  T y p e  end 
< : Function ( : T ~ l p e ;  : T y p e )  B o o l e a n  end 
<= : Function ( : T y p e ;  : T y p e )  Boo lean  end 
> : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 

I 
I 
I 

>= : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 
= : Function ( : T y p e ;  : T y p e )  B o o l e a n  end 
# : Function ( : T y p e ;  : T y p e )  13oolean end 

end 
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A.30 Locations and side-effects 

For modeling updatable locations, Acer provides two similar notions, references and pointers. 

Whereas references provide high-level support by modeling updatable locations in terms of 

fetch and store functions, pointers provide low-level support by modeling updatable locations 

in terms of memory addressing. 

A.30.1 Reference 

For determining a reference to a location, Acer provides a reference-literal: 

(ReferenceLitera]) ::= reference ( (Base: Value) 

which has a referencetype. The  type Iiefel-ence is visible as 

let Re fel-encc be referer~ces. T y p e  

and the modulo references is visible as 

references : 
Tuple 

T y p e  :: Operator ( B a s e  Type  :: Any) Any end 
new :Function ( B a s e  T y p e  :: Any; : B a s e  T y p e )  

T y p e  ( B a s e  T y p e )  
end 

create : 
Function 

( B a s e  T y p e  :: Any 
fetch : Function ( )  B a s e  T y p e  end 
store : Function ( : B a s e  T y p e )  Void end) 

T y p e  ( B a s e  T y p  e )  
end 

end 

Any typo equivalent to 12der-c.,lce ( T )  is called a reference-type with base-type T .  

Definition 
P 

Type-  
Denoter X 

Definition J 
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The  base of a reference-literal must be either a dereference, a variable-identifier, a value- 

selection with a variable-identifier as its selector, an  index tha t  denotes a dereference, an 

abstract value-selection that deriotes a dereference, or a denoter with one of the above as its 

definition. With the enforcement of these restrictions, the location referenced by the base of 

a reference-literal can always be determined. 

A.30.1.1 Evaluation 

When a reference-literal is evaluated, its base is evaluated to  yield the referenced location. 

A reference-literal is a constructor and hence its storage may be allocated well in advance of 

the evaluation of the literal. IIence, recursive references can be constructed. 

A reference-literal yieItIs a reference to  an existing location but there are  two ways i n  

which references to a new location can be constructed. First, a new reference can be con- 

structed by calling references.new with a type and a value of that  type. And second, a new 

reference can be constructed by calling references.create with a fetch function and a store 

function. 

Regardless of how a rcferencc is constructed, a reference consists of two functions: a fetch 

function, which is called to yield the referenced value; and a store function, which is called 

to update the referenced value. When a reference is constructed by a reference-literal or by 

references.new, the fetch and store functions are created implicitly but when a reference is 

constructed by references.create, the fetch and store functions are provided explicitly. 

A.30.2 Pointer 

For determining a to  a ]ocat,ion, Acer ~>rovides a pointer-call: 

(Pointercall) ::= pointer ( (~ase :Va lue )  ) 

which has a pointer-type. The  type Pointer is visible as 

let Pointer be pointers. Type 

and the module pointers is visible as 

pointers : 
Tuple 

Type :: Operator ( B a s  Type :: Any) Any end 
new :Function (Base Type :: Any; : Base Type) 

Type (Base Type) 
end 

end 



APPENDIX A. THE ACER DEFINITION MANUAL 

Any type equivalent to Pointer  (T) is called a pointer-type with base-type T. 

The  context-dependent relations for a pointer-call are illustrated as 

Definition 

Pointer- 
Call 

Argument-  */ (-) 
1 Definition 1 

The  base of a pointer-ca]] must be either a dereference with a base of type pointer-type, a 

variable-iderltificr, a concrct,e value-selection with a variable-identifier as its selector, an index 

that  denotes a dcrefcrencc with a base of type pointer-type, an  abstract value-selection that 

denotes a dereference with a base of type pointer-type, or a value-denoter with one of the 

above as its definition. The base of a pointer call may also be either a fixed va1ue-identifier, 

a concrete value-selection with a fixed value-identifier as its selector, or a denoter with one 

of these as its definition, but in this case it is considered unsafe. 

A.30.2.1 Evaluation 

A.30.3 Dereference 

For accessing references a,nd Acer provides the dereference: 

(Dereference) : := (Base: Value) (D 

The  ~ o n t c x t - d e ~ e n d e n t  for a dereference are illustrated as 
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T y p e  Operator- 
Call 

I 

Argurnent- 

The  type of the base of a dereference must denote a pointer- or reference-type; the base-type 

of that  type is the type of the dereference. 

A.30.3.1 Evaluation 

When a dcrefcrcncc is eva]u;tt,cd one of two things happens, depending on whether the base 

is reference or pointor. I f  the base is a pointer, the target location is accessed to  yield the 

result of the derefcrence. Otherwise, i f  the base is a reference, the reference's fetch function 

is called to  yield the result of the dereference. 

A dereference can also be used as the destination of an assignment, in which case, as we 

shall see, its evaluation is carried out quite differently. 

A.30.4 Assignment 

For modifying the cont,cllts of it location, Acer ~ rov ides  the assignment, which consists of a 

destination and a source: 

(Assignment) ::= { (Destinalion:Va!ue) becomes (Source:Value) ) 

The context-dependent relations for an assignment are illustrated as 

Definition 

Void I 

The  type of the source must be a subty j~c  of the 

an assignment, like the base of a reference-literal. 

type of the destination. The  destination of 

must be a dereference, a variableidentifier, 

a concrete valuc-selection with a variable-identifier as its selector, an  index tha t  denotes a 

dercfcrence, an abstract value-selcction that denotes a dereference, or a value-denoter with 
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one of the above as its definition. In addition, the destination of an  assignment, like the base 

of a pointer-call, may also be a fixed-identifier, a concrete-value-selection with a selector tha t  

is a fixed-identifier, or a value-denoter with one of these as its definition, but in this case the 

assignment is unsafe. 

A.30.4.1 Evaluation 

When an  assignment is evaluated, the source and destination are evaluated in arbitrary 

order; the destination is evaluated to yield a reference or pointer to  a location and the source 

is evaluated to yield the value to be stored a t  that location. When the destination yields a 

reference (i.e., when the destination denotes a dereferenced reference), the reference's store 

function is called wit11 tile value yielded by the source. Otherwise, the destination yields a 

pointer and the location addressed by that pointer is updated with the value yielded by the 

source. 

For specifying sequential evalllation, Acer provides a compound-value: 

( Compo~~ndValue)  ::= begin (I (Value) ' I end 

The  context-dependent relations for a compound-value are illustrated as 

Definition 

The type of the Inst vi~hlc is tile type of the compound-value. The  type of an  empty 

compound-valuc is Void: 

k(7) Literal 

-4.30.5.1 Evaluation 

Wherl a compound-va]ue is each successive value is evaluated in order. The value 

yielded by the last value is yielded by the compound-value. An empty compound-value y;,lds 

the void-value. 
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A.31 Array 

For constructing da ta  structures with an arbitrary number of components, Acer provides the 

array-literal: 

(ArrayLitcral) ::= (E1ements:ArrayList) [[ o f  (BaseType:Type) I] end 

where array-list is defined as: 

(ArrayList) ::= array fl (Value) )[ . 1 

An array-literal has an array-type. The type Array is visible as 

let Array b e  arrays. Type 

and the module arrays is visible as 

arrays : 
Tup le  

Type :: Operator  (Base Type :: A n y )  A n y  end 
error : Except ion ( Void) 
length : Function (Base T y p e  :: A n y ;  : Type (Base Type)) 

In t  eyer 
end 

index1 : 
Function (Base l h p e : :  A n y ;  : Type (Base Type); : Integer) 

Pointer (Base T y p e )  
end 

new : Function (,!?(~se l h p e : :  A n y ;  : Base Type; : Integer) 
Type (Base Typ e )  

end 
end 

A n y  type equivalent to Army (7')  shall be called an array-type with base-type T. 

The  ~ o n t e x t - d e p e ~ ~ d ~ ~ ~ t  for an array-literal are illustrated as 

Definition 
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The type of an array-literal is an array-type with the literal's base-type as its base-type. The  

types of the values in the elements must be such that  one is a supertype of all the others; 

that  type, the maximal type, is the definition of the empty base-type. If the base-type is not 

empty, the base-type must be a supertype of the maximal type. If the array-list is empty 

the maximal type is Void. 

A.31.1 Evaluation 

When an  array-literal is evaluated, its elements are evaluated in arbitrary order. An array- 

literal is a constructor and hence its storage may be allocated well in advance of the evaluation 

of the literal. 

A.32 Iterator and accumulator 

For supporting higll-level itcrat,iori and accumulation, Acer provides the notion of iterators 

and accumulators. A11 iterator is a sequence producer and an accumulator is a sequence 

consumer. 

A.32.1 Iterator 

To support iterators the type Iterator is visible as 

let Iterntor b e  
Operator  (Base  Type :: Any) 

Tuple 
done : Exception ( Void) 
produce : Function ( )  Base Type end 
termina.te : Function ( )  Void end 

end 
end 

Thus, an iterator is any value r with a type that is a subtype of 

Iterator ('1') 

where T is the base-type. 

A n  iterator I>roduces a seclucnce of values through repeated calls to  its produce function. 

When the iterator's seqoence of values is exhausted, a call to  produce raises its done excep- 

1 tion. The iterator is then terminated with a call to  its terminate function. The  iterator may 

be terminated before t l lr  sequence is exhausted by calling its terminate function early. 
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A.32.2 Accumulator 

To support accumulators the type Accumulator is visible as 

let Accumulator be  
Operator  (Rase Type :: Any; Result Type :: Any) 

Tuple 
done : Exception ( Void) 
consume : Function ( : Base Type) Void end 
terminate : Function () Result Type end 

end 
end 

Thus, an accumulator is any value a wit11 a type that  is a subtype of 

where B is the base-type arid 12 is the result-type. An accumulator consumes a sequence of 

values through repeated calls to its consume function. When the accumulation is complete, 

a call to consume will raise its done exception. An accumulator raises done only i f  it does 

not wish to  consume Inore values. An accumulator is terminated by a call to  its terminate 

function, which yields tile result of the accumulation. The  terminate function can be called 

either because the accumulator has raised done or because the sequence of values has been 

exhausted. 

A declaration of tile acclrmulator discard is visible in the global name-layer. Its corre- 

sponding binding is defined as 

let discard :Accuinulator (Any, Void) be  
tuple 

exception ( Void) 
function ( : Any) { )  end 
function ( )  {)  end 

end 

A.32.3 Iteration 

Iterators and are used in iterations, which consist of iterators, an  optional 

filter, an optional accumulator, and a body: 

(Iteration) ::= 
(Itcrators:lteratorl,ist) [[ andif (Filter: Value) I] do 

[[ (Accumrllator: Value) I] (13ody: Value) end 

An iterator-list is a list of iterator-elements: 
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(IteratorList) ::= for (IteratorElement) ; 1 

and an  iterator-element consists of a defined-identifier and an iterator: 

(IteratorElemen t )  ::= 
(Definedlden tifier : Valueldentifier) in ( I t  erator: Value) 

The  context-dependent relations for an iteration are illustrated as 

$+--=--I &re, 
Definition 

Defining- 

Occurrence 

The iterator of a n  iterator-clement must have a type that is a subtype of 

Iterator ( T )  

and the type of the defined-identifier is 1'. T h e  filter must be of type Boolean. The  accumu- 

lator must havc a type tha.t is a subtype of 

Accumulator ( B ,  R)  

The body must havc a type tllat is a subtype of B. And the iteration has type R. 

The definition of an iteration is derived so that an iteration of the form 

for i in x; j in y andif f ( i ,  j) do z g (i, j )  end 

is equivalent to 

{let i l  be x; let i2 be y ;  let a be z 
keep trying 

{let i be i l  .produce 0; let j be i2.produce ( )  
if f ( i ,  j )  then a.consnme ( g  ( i ,  j ) )  end) 

then 
when ;].done, iZ.done, a.done then 
begin 

i l . terminate();  i2.terrnina.te(); a.terminate() 
end 

end) 
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A.32.3.1 Scope 

An iterator-list llas a name-layer containing the defined-identifier of each of its iterator- 

elements. When identifier-lookup starts in the filter or body of an iteration, the name-layer 

of the iterator-list is searched. 

A.32.4 Accumulation 

Accumulators are also used in accumulations, which consist of an  accumulator and an 

accumulation-list : 

(Accumulation) ::= ( ~ c c n m u l a  tor: Value) (E lemen t s :Accum~~la t ion~ i s t )  ] ) 

where an accumulation-list is a list of values: 

(AccumulationList) ::= ( [ fl (Value) . 1 

The  context-dependent relations for an accumulation are illustrated as 

T y p e  

A c c u r n u l a t i o n  

A c c u r n u l a t i o n -  (--) (-z) 
The  accumulator's type must be a subtype of 

Accumulator (B, R) 

The  type of each element in the a.ccumulation-list must be a subtype of B. And the type of 

the accumulation is R. 

The  definition of an a,ccumula.tion is derived so that an accumulation of the form 

is equivalent to 

{let a1 be a 
try begin 

a1 .com~irne (x) 
a I.consume ( y )  
a l .  termillate ( )  

end 
tlleI1 wllell al.done then a 1 .  tcrlninate ( )  

end) 

Thus the definition of an accumulation is a value-block with the appropriate bindings and 

body. 
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For representing machine dependent evaluations, Acer provides the code-patch: 

(CodePatch) ::= code (Expression) )[ ; 1 end 

The first expression must be a type. 

The  context-dependent relations for a code-patch are illustrated as 

Definition 
/ \ 

The first expression is tllc code-patcll's type. The  type of an empty code -~a tch  is Error: 

Definition , 

Error 

code Integer; movc(dl ,  d o ) ;  dO end 

might be used to  move the contents of register d l  to  register dO a.nd to yield the fi rial value 

of dO as an  Integer rcsult. And the code-patch 

code Poinler (Any);  A 7 end 

might be used to yield the value of the stack-register A 7 as a pointer. 
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A.34 The grammar 

A.34.1 Declaration and binding 

(Fixed ValueBinding) ::= 

let (Definedldentifier: Valueldentifier) [[ : ( : T y p e )  I] be (Definition: Value) 

(Fixed ValueDeclaration) ::= [[ (Definedlden tifier : Valueldentifier) I] : (: T y p e )  

( TypeBinding ) : := 

let (Definedlden tifier: Typeldentifier) [[ : : ( : T y p e )  1 be  (Definition: T y p e )  

( TypeDecla.ration) ::= [[ ( Definedlden tifier : T-ypeldentifier) I] : : (: T y p e )  

( VariableValueBinding) ::= 

let var [[ (Defincdlden tifier: ~ah~c lden t i f i e r )  I] [[ : (: T y p e )  I] be (Definition: v a h e )  

( VariableValueDeclara tion) ::= var [[ (Definedldentifier: Valueldentifier) I] : (: Type) 

A.34.2 Type 

( T y p e )  ::= 

(AbstractType)  I( (Concrctefl'ypcj 11 (IZcusedTypeldentifier) 1 1  (TypeBlock)  ) /  

( QpcDenoter)  1 1  ( 7 ~ y p ~ c s i g n n t  ion) )/ (~.ypcOperator) 

( A n y T y p e )  ::= Any 

( D y n a m i c ~ y p e )  ::= Dynamic {[ (Declnra,tion) ; I end 

(Enurnerat ion~ypc)  ::= Enumeration ([ ( Valneldentifier) I 1 end 

( F u n c t i o n ~ y p e )  ::= Function (:Signiit,nrc) (licsul17'.ype:Type) end 
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(Operatorcall) ::= (0perator:Type)  (Arguments:ArgumentList) ) 

(Opt ionType)  ::= Option a (Valueldentifier) D[ 1 end 

(RecordType) ::= Record { (Declaration) )[ ; 1 end 

( R e u ~ e d T y ~ e l d e n t i f i e r )  ::= (lden tifier: Typeldentifier) ' [ (Depth1ndicator:lntegerLiteral) ] 

( T u p l e T y ~ e )  ::= Tuple a (Declaration) )[ ; 1 end 

( TypeBlock)  ::= (Bindings: BindingList) (Body :  T y p e )  1 

(TypeDcsignation) ::= T Y P E  ( (:Expression) ) 

(Typeoperator)  ::= Operator (:Signa.ture) ( l3ody:Type)  end 

( TypcSelection) : := (Base: Valrle) . (Selector: T-ypeldentifier ) 

( Variant T y p e )  : : = 

Variant (Tag: T y p e )  (Variants: var iant lh t )  [[ else (Defau1t:Signature) I] end 

A.34.3 Value 

(Literal) ::= 

(ArrayLitcral) 1 1  (~hamcter1,iteral) 1 1  (D.ynamicLiteral) 1 1  (ficeptionLitera1) 1 1  
(FunctionLit,ern/) 1 1  ( ~ n t c ~ e r l ~ i t e r a l )  1 1  (LitcralSelection) 1 1  (RealLiteral) 1 1  
(Record Literal) ]I (~eferenceLitera1) 1 1  (RellsedValuelden tifier) I (StringLiteral) 1 1  
( TupleLiteral) 11 ( ~alueltlentif ier) I /  (Variant Literal) 1 1  (VoidLitera.1) 
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(Accumulation) ::= (Accumulator: Value) (E1ements:Accumulation List) I ) 

(Andl fTes t )  ::= ( (First Operand: Value) andif (Secondoperand: Value) ) 

(ArrayLiteral) ::= (E1ements:ArrayList) [[ of (l3aseType:Type) 1 end 

(Assignment) ::= ( (Destination:Value) becomes (Source: Value) ) 

( CodePatch) ::= code a (Expression) )[ ; 1 end 

(CompoundValue) ::= begin (Value) ' 1 end 

(Conditional) ::= (Branclles: ConditionalUranch List) [[ else (Default Branch: Value) I] end 

(Dcreference) ::= (Basc:: Valr~e)  Q 

(DyadicMethodCall) ::= 

C (First Operand: Value) (MethodName: Valueldentifier) (Second Operand: Value) ) 

(Dyr~amiclnspection) ::= 

inspect (Selector: V;ll~le) (~rnnclres:  TyId?ranchList)  

[[ else (I lc faul t l~ranch:  Value) ]] end 

(DynamicLiteral) ::= dynamic { (Argument)  )[ 1 end 

(ExceptionI,itera,l) ::= exception ( (BaseType: Type )  ) 

( Index)  ::= (Base: Value) (1ndices:lndexList) 1 

(1sNot ~ e s t )  ::= ( Operand: V d u e )  isnot (SecondOperand: Value) ) 

( IsTest ) : := { (First Operand: Va,lue) is (Second Operand: Value) 1 

( I t  era t ion) : : = 

(Iterators:lterator.~ist) [[ andif (Fi1tcr:Value) I] do 

[[ (Accumnlator: Value) I] (Body :  Value) end 
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(Keep Trying) : : = 

keep trying (Body:  Value) (Branches: ValueBranchList) 

[[ else (Default Branch: Value) I] end 

( LiteralSelection) ::= (Base: Type )  . (Selector: Valueldentifier) 

(OrdCall) ::= ord ( (Base:VaIue) ) 

(Orl fTes t )  ::= ( (First Operand: Value) orif (Secondoperand: Value) ) 

(PointerCall) ::= pointer ( (Base:Value) ) 

(Raise) ::= raise ( ~ x c c ~ t i o n ~ a l u e :  V a l ~ ~ e )  [[ with (AssociatcdValue: Value) I] end 

(RecordLiteral) ::= record ij (Binding) 1 1 end 

(RefercnceLitera.1) ::= reference ( (Base: Va.lue) 

( T r y )  ::= 

try (Body:  Value) (Branches: ~alucBranch1~ist) [[ else (DefaultBranch: Value) ]] end 

(TryFinally) ::= try (Body:  Value) finally (FinalAction: Value) end 

(TuplcLiteral) ::= tuple ( A ~ g ~ r n e n t )  11 I end 

( UnaryMethodCaII) ::= { (M(;tlrodNarne: Vah~efdcntifier) (Operand: Value) ) 

( VaheBlocli) ::= (13irldings:BindingList) (Body:  Value) ) 

(Va,lCall) ::= val ( ( ~ ~ s e T - y p e : ' [ j r p e )  [[ , ]] (0rdina.l:Value) ) 

( ValueDenoter) ::= (0) 

( ValueSclcction) ::= (Ijase: Vall~e)  . (Selector: ValueIdentifier) 

(Variant inspection) ::= 

inspect Value) (Branches: ValueBranchList) 

[[ else ( D e f a ~ ~ l t  Branch: Value) ]] end 
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A.34.4 Miscellaneous 

(Miscellaneous) ::= 

( E m p t y )  1 1  (AccumulationList) 11 (ArgumentList)  11 (ArrayList) 1) (BindingList) 11 
(ConditionalBranch) I /  (ConditionalBranchList) 11 (IndexList) 1 )  (IteratorElement) 1 1  
(IteratorList) 1 1  (Signature) 1 1  (TypeBranchList) 1 1  (TypeWhenBranch) 1 1  
(ValueBranchList) 11 (ValueWhenBranch) 1 1  (VariantElement) 1 1  (VariantList) 1 1  
( When  Condition) 

(AccumulationList) ::= ( [ { (Value) )[ * 1 

(ArbitraryList) ::= arbitrary ([ [ (Arbitrary) I ) end 

(ArgumentList)  ::= ( (I (Argument)  I)[ 1 

(ArrayList) ::= array ([ (Value) I)[ 

(BindingList) ::= .C ([ (Binding) )[ ; 1 [[ ; ]] 

(ConditionalUrarlclI) ::= (condition: Valnc) then (Consequent: Value) 

(Condil ionalBra~~chl~is t)  ::= if (ConditionalBranch) 

( E m p t y )  ::= nothing 

( I n d ~ x l ~ i s t )  ::= I: fl (Value)  I)[ * 1 

(1teratorEk:ment) ::= (Dofin(;dldentificr: Valueldentifier) in (Iterator: Value) 

(IteratorList) ::= for a (1teratorElement) )[ ' I 

(Signature) ::= ( (I (~eclaratiorr) )[ ' I ) 

( Type  When  Bran c11) : : = 

when (Condif ion: Typcj  [[ with (Defi11c.d lden tilicr: Valneldcntifier) I] 
then (Cor l~cc~l~cnt :  Valr~e) 
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(Value When Branch) ::= 

(Condition: WhenCondition) [[ with (Definedldentifier: Valueldentifier) ]] 

then (Consequent: Value) 

(Variant Element) ::= (Condition: WhenCondition) then (Consequent:Signat ure) 

( VariantList) ::= of (I (Variant Element) )I ' 1 

(WhenCondition) ::= when (I (Value) )I 1 

A.34.5 Generic 

(Arbitrary) ::= (Argument)  1 1  (Declaration) 1 1  (h4iscellaneous) 

(Argument)  ::= (Binding) 11 (Expression) 

(Binding) ::= ( TypeUindirg ) ( 1  ( ValucBinding ) 

(Block)  ::= ( TypeBlock) 11 ( Valuel3lock) 

(Declaration) ::= (TypcDec]aration) 11 (ValueDeclaration) 

(Denoter) ::= (7'ypeDcnotcr) 11 (ValueDenoter) 

(Expression) ::= (T-ypc) 1 1  (Value) 

(Identifier) ::= (TYPeldentjfier) 11 ( Val~ielden tifier) 

(Rcusedlden tifier) ::= ( ~ , c u s ~ d ~ ~ p c l d e n t i f i c r )  11 (Reused ValueMentifier) 

( Valuellcclarat io11) ::= (Fixc(j~a1ocDeclaration) 11 ( VariableVal~eDcclaration) 

( ValueBinding) ::= (Fixed \/'alrleRindir~g) 1 1  ( Varia bleValueBinding) 
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A.34.6 Lexeme 

( RealLit eral) ::= 

[[ - 1 (#Digit)  (I (#Digit)  I) . (#Digit) (I (#Digit) 1 
6 e II E D [[ - II (#Digit) (I (#Digit) D 11 

(StringLiteral) ::= 

" ([ (#Lowcrcase~ct  ter) 1 1  ( #  UppercaseLet ter) 1 )  (#SymbolicLetter) 11 
(#Punctuation) 1 1  (#Digit) 11 (#Space) 1 1  (#Other)  I) " 

(Typeldentif ier) ::= 

(#  UppercaseLetter) (I (#LowercaseLetter) )I (#UppercaseLetter) 1) (#Digit)  1 

( Valuelden t ifier ) : : = 

(#Lowercase~et ter)  { (#~owercaseLetter) 1 1  (#UppercaseLetter) 1 1  (#Digit)  I) 1 1  
(#SymbolicLet ter) (I (#SyrnboliclJet ter) 1 

A.34.7 Comment 

(Comment)  ::= 

% (I (#Lowercasel,ctt,c~.) 1 1  (#UppercaseLett,er) 1 1  (#SymbolicLetter) 1 1  
(#Punctuation) 1 1  (#Digit) )I (#DoobkQoote)  11 (#Tab)  I/ (#Space) 11 (#Other)  1 

A.34.8 Character description 
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( # T a b )  ::= ASCII 9 

(#LineFeed) ::= ASCII 10 

(#CarriageRetul-n) ::= ASCII 13 

(#Space)  ::= ASCII 32 

( #Other )  ::= ASCII 0-8, 11-12, 14-31, 127 



Appendix B 

The PCAcer manual 

Introductory information and conventions. 

A description of the screen. 

A genera.1 description of windows. 

IIow to  edit with ea.ch type of window. 

How to  work with multiple views. 

IIow to  store and compile programs. 

IIOW to  query the sema.ntics attributes. 

A familiarity with hasics of MS-DOS is assumed. 

B.1 Introduction 

Throughout this manual the following conventions are used: 

Keys to  be ~ r e s s e d  are shown as 
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Mouse buttons to  be pressed are shown as 

A mouse button can either be clicked, i.e., pressed and released, or held, i.e., pressed and 

kept down. 

Keys and mouse buttons to be shifted, controlled, or altered when pressed are shown as 

Because PCAcer makes heavy use of color (e.g., for selecting and highlighting) it is 

difficult to  illustrate how an actual screen will look. A verbal description will therefore have 

to  be adequate. 

T h e  sixteen text colors provided by a V G A  monitor are named as follows: black, blue, 

green, cyan, red, magenta, brown, light gray, dark gray, light blue, light green, light cyan, 

light red, light magenta,  ello ow, and white; or lb the first eight of these can be used as 

background colors. 

B.2 Parts of the screen 

the main menu on a t  the top; 

a mouse cursor; 

and a work area that displays various windows. 

The  main men11 is sllowll i n  black text on a white background and any part  of the  work area 

not covered by a wirldow is shown in black. The cursor blinks and takes on the text color a t  
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B.3 Node windows and text windows 

A window comprises a frame, which consists of four edges and four corners, and a body, 

which views a portion of an object. There are two types of window, text and node. A text 

window views lines of characters and a node window views an unparsed node. Both of these 

are viewed as textual objects. 

Every window has a selection, the particular focus of interest. For text,  the selection is 

a character or range of characters, and for node, the selection is a node or range of nodes. 

Other than the nature of the selection, the different types of window are similar. 

B.3.1 The banner 

The banner, i.e., the top edge, of a text window appears as: 

[5a8c] Empty (1 ( 1  I ) 1 x 1 1-78 1147 

and the banner of a node window appears as: 

[5a8c] Empty [5a,8c] Empty 1 x 1 1-78 11.17 

In either case, the banner is displayed in cyan text on a blue background (except for the 

banner of the selected window, whicll is shown in yellow text).  The  information on the 

banner is intcrprcted as follows: 

Every window has all associated owner node, which is indicated a t  the s tar t  of the banner 

as the node's hexadccirnal identity number (i.e., its segment address) and the node's 

e.g., [518c] Empty. Similarly, the object viewed by each window has a maximum line length 

and a specific number of lines, e.g., I x l ,  arid the portion in view is given as a range of 

columns, e.g., 1-78, and a range of lines, e.g., 11.17. 

The  difference between the banners of the two types of wirldow naturally lies in how the 

selection is specified. I:or text windows, the selection is given as a start  coordinate and an 

end coordinate, e.g., (1,1)•˜(1,1). But for node windows, the selection point is given as a 

node, e.g., [518c] Empty, or as range of nodes, e.g., [519c] BindingList[2++3]. (Note tha t  a 

range of nodes is givrn in terms of a parent node and the positions of the selected children. 

B.3.2 The body 

The body of window has a cyan background. The  selection is highlighted by a white 

background. For text, windows, text is shown in blue, and for node windows, text is shown 
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in various colors, e.g., keywords are black, type-identifiers are magenta, value-identifiers and 

value lexemes are light blue, comments are red, and denoters are brown. A node window 

presents a more readable view of programs. 

B.3.3 The view indicators 

The  left and bottom edge of a window graphically indicate the view position and the view 

portion relative to  the object as a whole. For example, if the entire object is in view, both 

the left and bottom edge are single line borders. Ilowever, if only half the lines are  visible, 

only half the left edge is a single border; the other half is a double edge border. And if the 

viewed portion of the object is the middle portion, the single line portion of the left edge is 

centered on the double line portion. 

This same notion applies for the bottom edge, but in this case column position is indi- 

cated. 

B.4 The window stack 

Windows in the work area are arranged as a stack, higher windows cover lower windows. 

Holding I shift Hm 0 1 anywhere on the screen causes the stack-list menu to appea r  Re- 

leasing the button causes the menu to disappear. 

The  stack-list menu shows, in order, all wi~ldows in the work area. The  items of the menu 

will look something as follows: 

0 [5C9E] FixedValueBinding A < x >  1 
[5C9E] FixedValueBinding A < x >  1 
[5C7E] RindingList <Y> 2 

o [5C4E] ArbitraxyList 3 
00 [5C2E] Empty 4 

A 0 distirlgnisllcs a text, window from a node window. (The selection point is not shown i n  

the stack-list menu so it callllot bc used to distinguish the two in this case.) A D distinguishes 

a scrap wirldow frorn an ordinary window. (More on this latter.) An identity number and a 

node class, e.g., [5C9E] ~ixedValueBinding, indicate the owner node. 

Additional information is shown if the root of the owner is a meaningful top-level nodc, 

i.e., a type-binding, fixed-value-binding, fixed-value-dechration, or binding-list. In this case, 

the defined-idelltificr of tllc root, or the defined-identifier of the pi-imary binding of the root, 
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is shown, e.g., <x>. A A precedes the name if the root is not up-to-date with respect to  

the version stored in the file system. More on all this later. 

A final number is assigned to  each window to  indicate which windows provide different 

views of the same root node. Numbers are assigned to nodes in a top-down fashion and a 

window is assigned the same number as a window above it if their owners have the same 

root. The  largest number in the stack-list menu, therefore, indicates the number of disjoint 

nodes. 

The  stack-list menu can be used to reorder windows. Holding [shift HH I and drag- 

ging the cursor to a particular line of the stack-list menu highlights that  line. Releasing the 

button makes the highlighted window become the top window. 

B.5 Basic window commands 

This section describes commands that apply to either type of window. 

B.5.1 T h e  selected window 

One of the windows in the window stack is the selected window. It has a banner with 

yellow text. A window is made the selected window by clicking /.I on its banner. 

(Actually, the selected window is only relevant for one command right now, the definition- 

copy command, which we will see later.) 

B.5.2 Stack positioning 

Window posit,ion witllin t l ~ c  stack is changed by the stack-list menu, or by clicking -1 
on a window corner. 

Clicking -1 011 one of the top two corners either makes the window become the 

top window, or i f  it is already the top window, makes the window below the top window 

become the top window. This is an easy way to exchange two overlapping windows. 

Clicking -1 011 olle of the bottom two corners either makes the window become 

the top window, or i f  its already the top window, make it become the bottom window. This 

is an easy way to cycle tliroligh all windows. 
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B.5.3 Resizing a window 

Windows are resized by repositioning a corner. This is done by holding -1 on any 

corner, dragging the corner to its new position, and releasing the button. As soon as 1- 
is pressed on a corner, an elastic window frame is displayed (in magenta on black). This 

frame stretches and shrinks to reflect the position of the cursor. 

The  smallest window has a body of 2 characters by 2 lines. Including the frame, then, 

the smallest window is 4 characters by 4 lines. When a window is resized and the selection 

is not in view in the result, the view is corrected to bring it into view. 

B.5.4 Moving a window 

position, and rcleasillg the button. As soon as -1 is pressed on a corner, a window 

fra,rne. is displayed ( i n  magenta, on black). This frame moves to  reflect the position of the 

cursor. 

B.5.5 Repositioning the view 

The portion of the ol,ject in view can be changed by clicking mouse buttons on the left or 

bottom cdge. 

The  view is rnoved down i l l  the objcct (i.c., the objcct is moved up) by clicking -1 

the first line, in which case the lines move up by one. 

The  view is moved up (i.e., thc object is moved down) by clicking -1 on the left 

cdge. The  first line moves down to the position of the indicated line, unless the first line is 

indicated, in which casc the lines rnove down 1 1 ~  one. 

The view Carl bc complctc]y repositioned by clicking 1-1 on the left edge. T h e  view 

is then posit,iorlcd so tha t  the fraction of the object above and below the view is proportional 

b.1 at the top of the left cdge repositions the view to  the beginning of the object. 

Clicking -1 a t  the bottom of the left edge repositions the view t o  the end of the 

object. 

Clickilrg m m l ,  lo], or -1 011 the bottom edge has the corresponding 

effect as the left c.xcept coluriin position is affected. 
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B.6 Window conversion 

A new node window is created by clicking I.] on the new command of the main menu. 

The  new window becomes both the top window and the selected window. It  owns a new 

empty node, which is also its selection point. (In node windows, a n  empty node is printed 

as 0 rather than as nothing.) 

A node window is converted to a text window by pressing any printable key while the 

cursor is on the window. (If a range of nodes is selected, the selection is reset t o  the parent 

first.) The  resulting text window contains a textual representation of the selected node, 

I which is also the owner. The  selection starts out as the entire textual object so it can be 

easily deleted and replaced. 

Clicking /O[3 on the right edge of a text window converts it back to  a node window. 

This is done by parsing the text to yield a node and replacing the owner with tha t  node. 

The  resulting node window has the root node as its owner and the new replacement node as 

its selection. 

As will be exp]airled next, the replaced node is inserted in the scrap node window and 

the parsed text is inserted in the scrap text window. 

B.7 Scrap windows 

The PCAcer enviroIllrlerlt will, a t  a11 tirnrs, contain a t  least two windows, namely the scrap 

text wirldow the scrap node window. A scrap window is distinguished from other 

windows by the fact that  its banner begins with a . 

The scrap windows are special in several ways. Firstly, they cannot be converted between 

node and text, as can ordirlary windows. And most importantly, all deletions are  inserted 

into the appropriate scrap window. For this reason, editing a scrap window can have rather 

unexpected effects. For example, deleting from a scrap window has the effect of inserting 

i n  tile same window. IIow this works shall become clear as the editing commands 

for ordinary wirldows are described. 

TIle corltcrlts of tllc scrap windows ran be discarded simply by clicking [=I on the 

clear of the main menu. This may become necessary as space limitations become 

a problem. 
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Editing text 

An empty text window is created as follows: click the new command of the main menu; 

move the cursor onto the new window; press Ispace1 to convert it to  a text window; and click - m m ,  while the cursor is still in the window, to delete all the text. The  result is in 

an  empty text window with an  irrelevant unattached node as its owner. 

The  purpose of a text window is to specify textually a replacement for its owner. In 

the above case, the owner is irrelevant because it is unattached and empty, but in general, 

the owner may be attached. In that  case, a successful conversion of the text window to  a 

node window, by clicking -1 or the right edge, results in the owner being replaced, in 

context, by the nowly parsed node. 

When a window displays a flashing error message, no further operations can be performed 

on that  window until, while the cursor is on the window, a button is clicked or a key is pressed. 

That  click or press has the effect of removing the error message, and no other effect. 

B.8.1 Selection 

The primary operation on a text window is setting the selection. 

Clicking -1, the cursor is in the body of a text window, selects the character 

a t  tha t  position. FIolding / . I ,  dragging it, and releasing it selects a range of characters. 

The  selection is continuously modified on the screen to  reflect the position of the cursor. 

Another way of selecting a, range of characters, particularly useful when the range is not 

entirely in  view, is sclcctilig one end point by clicking -1 and selecting the other end 

point by P I .  1. view modification can occur between the two selections. Hold- 

ing -] and dragging it extends the selection, just as it does when dragging -1. 
Textua] selection can take on three different modes, character, token, and line. Ordinarily, 

the selection Inode is character, ilowevcr, clicking 1. / on a chara,cter tha t  is d ready  

i n  the selection causes the selection mode to become token. As a result, the token a t  the 

click point becomes selected. Tokens are determined by the same lexical analyzer used by 

PCAcer's parser. 

Furthermore, clicking 1.1 within the selection while in token mode causes the 
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selection mode to  become line. As a result, the line a t  the click point becomes selected. 

Thus, double clicking selects a token and triple clicking selects a line. 

Holding -1 and dragging it while in token mode results in the selection being 

extended by whole tokens. The  same goes for line mode. The  affect of 1-1, when 

extending the selection point, is also affected by the selection mode. For example, triple 

clicking -1 a t  orone point and clicking -1 a t  another selects a range of complete 

lines. 

B.8.2 Textualentry 

Pressing a printing character, while the cursor is on a text window, inserts the specified 

character before the first character of the selection. Pressing lenter] breaks a line. (PCAcer 

displays the line-ending charact,er as a space so that  it can be selected and even deleted.) 

Pressing backspace erases the character before thc insertion point,; a t  the beginning of a m 
line, it erases the line-c~lding character on the previous line, thereby joining the two. 

Textual entry does not modify thc selection, but the selection does revert to  character 

mode. 

B.8.3 Delete 

Selected text is dclcted by clicking PH.1 in the window body. Afterwards, the 

selection, whicll remains in tile same mode, is set as if -1 where clicked a t  the position 

of the first character of the original selection. For example, triple clicking I.] and then 

double clicking p m  deletes two lines and leaves a line selected. 

The  entire range of lines affected by deletion is copied to  the scrap text window. 

selection of the scrap text window then specifics precisely the range of affected characters 

within those lines. 

The  scrap text wiIldow is not only a destination for deletions but also a source for 

insertions, as we shall see next. 

B.8.4 Insert 

The selected text of the scrap text window is inserted before the selection point of some 

other text, window by clicking on the body of that  window. The  selectioll 

point of the window is sct to the inserted text. 
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For any text window (except the scrap window) clicking malt-1 and then click- 

ing pH-] has no effect other than copying the selection to  the scrap window and 

changing the selection mode to character. 

B.8.5 Yank 

Clicking in a text window has the same effect as effect as clicking [ a l t H m ]  
and then clicking E H j ] ,  except that  the selection mode is unchanged. In other 

words, a copy of the range of lines containing the selection is inserted in the scrap text 

I window and the appropriate characters within that range are selected. 

I alt HU 0 I to  insert the yanked text. 

B.8.6 Destructive delete 

Clicking I c t r l H . m  on a text window body deletes the selection without copying it to  

the scrap text window. The  deleted text is lost! 

This comma~ld  works as expected on the scrap text window. 

B.8.7 Canceling a text window 

Pressing while the cursor is on a text window cancels the window. That  is, the text is 

inserted in the scrap text window and the window is converted back to  a node window. 

B.9 Node editing 

An empty node window is created by clicking the new command on the main menu. The 

result is a node wirldow tha,t owns a new unattached empty node, which is also its selection 

point. 

Nodes are nluch richer objects than mere text. Hence, node windows provide more 

operations tha.11 text windows. 

B.9.1 Selection 

The selection mechanisms for nodes closely model those for text.  
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Clicking /.I, while the cursor is in the body of a node window, selects the node 

that  owns the token a t  or before the position of the cursor. (Since empty nodes are  printed 

as 0, all nodes are visible for selection via their tokens.) Holding I., dragging it ,  and 

releasing it selects a range of nodes. Such a range of nodes must have a common parent. 

The  selection is contirluously modified on the screen to  reflect the position of the cursor. 

Dragging is not very useful for nodes because often tokens of the parent intervene between 

the children and so if that token is selected, the whole parent is selected. 

A better way of selecting a range of nodes, particularly useful when the range is not 

entirely in view, is selecting one end point by clicking -1 and selecting the other end 

point by clicliing m]. A view modification can occur between the two selections. Hold- 

ing and dragging it cxtc~ids the selection, just as it does when dragging -1. 
Node selectiori does not take OII  diffcrcnt modes, as does textual selection. 

B.9.2 Textual entry 

Pressing a printing character while the cursor is on a node window, converts the node window 

to  a text window the selected node as the owner. Modification of the owner's textual 

form may then commence. Upon completion, a on the right edge converts the text 

window back to a node wirltlow, replacing the owner in context. The  replacement node, as 

specified by the text, becomes the selection. 

B.9.3 Delete 

Selected nodes arc deleted by clicking in the window body. Delete behaves 

differently depending on the selection. 

On the one lland, i f  a list child is selected, or a range of list children are  selected, the 

children arc sinlply dclctc:d. Afterwards, the selection becomes the next child, if there is one, 

the previous if there is 110 next child, or the parent, if no children remain. In addition, 

the deleted children are inserted into a new arbitrary-list, which in turn is inserted a t  the 

end of the arbitrary-list owned by the scrap node window. The  selection of the scrap node 

window is set to the range of nodes that were deleted. 

On the other hand, if a construction child is selected, or a range of construction children 

are selected, orlc of possibilities occur. If a child is optional, it can be replaced by 

an empty rrotlc. Ot)lerwisc, it 111ust be replaced by a placeholder: for a component that  is 

a value, the identifier ? is used; for a component that  is a type, the identifier - is 
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and for component that  is a list, the appropriate empty list is used. Because the deletion 

of a construction child has the effect of replacing it with a different node, after deletion, the 

selection becomes the repalcement children. The  deleted children are inserted in the scrap 

node window just as for deleted list children. 

It is meaningful to delete (or replace) an unattached node because this has the effect of 

replacing it with an  empty node in every window in which it occurs. 

B.9.4 Insert 

i Clicking on the body of a node window inserts a placeholder list element 

between the tokens on either side of the click point. This new placeholder becomes the 

selection. 

A n  element can only be inserted into a list since a construction has a fixed number of 

children. If a list element cannot be inserted a t  the click point, a warning beep is issued. 

B.9.5 Replace 

The  selection of the scrap node window is inserted in place of the selection of an  other node 

window by clicking m m  on the body of that  window. Again, replace behaves 

differently depending on the selection. 

Or1 the one h a n d ,  i f  a list child is selected, or a range of list children are  selected, the 

childrcn are deleted and the selected nodes of the scrap node window are inserted i n  their 

place. If the inserted Ilodcs do not conform as elements, no operation is performed and a 

warning beep is issued. In addition, an error message diagnosing the problem appears a t  the 

bottom edge of the window. This message is canceled by any button click or key press while 

the cursor is on the window. 

On the other hand, i f  a construction child is selected, or a range of construction 

are  selected, the children are replaced by the selected nodes of the scrap node window. 

The  range of nodes in the scrap node window must match in number the range of 

nodes selected in the target window, and each node must conform to  the requirements of the 

construction. Again, a beep and an error message are issued if this is not the case. 

The  deleted (replaced) nodes are copied to the scrap node window but the selection of 

the scrap node window remains unchanged. 
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B.9.6 Yank 

Clicking on a node window body copies the range of selected nodes to  the scrap 

node window and sets the selection of the scrap node window to  those nodes. A subsequent 

insert uses these nodes. 

Note tha t  yank does not copy the definitions of denoters. In fact, yank substitutes an 

any-type in place of each type-denoter and a void-literal in place of each value-denoter. 

(High-level copying is provided by definition-COPY.) 

I B.9.7 Destructive delete 

Clicking I ctrl H m  1 on a node window body deletes the selection as before, but without 

copying it to  the scrap node window. The deleted nodes are lost! 

This command works as expected on the scrap node window. 

B.10 Multiple views 

The stack-list can contain multiple views of the same node. We have already seen how to 

alternate between a node view and a text view but such views can even coexist. 

B.10.1 Simultaneous text views 

node window rema.ins visible.) 

B.10.2 Multiple node views 

When l o ]  is lleld on tile top edge of a node window, an elastic window frame appears. 

Dragging the nlollsc stretches and shrinks this frame to  reflect the position of the cursor. 

Releasing the brltl,on fi~lislres the command. The result is a new node window, on top of the 

original. ~t tlas the specified frame and the same owner and selection as the original. 
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B.10.3 Multiple text views 

Holding -1 on the top edge of a text window has the corresponding effect as on a 

node window. A new text window, on top the original, is created and it has the same owner 

and selection as the original. 

B.10.4 Subviews and node traversing 

Holding -1 on the top edge of a node window has the same effect as holding lo], 
except tha t  the owner of the created node window is not the owner of the original window 

1 but the selected node (or the parent of the selected nodes) of the original window. 

The  owner of a *lode wi~ldow can be changed in one of three ways. Clicking /.I on 

the right edge sets tllc owner to bc the root of the original owner. Clicking -1 on the 

right edge scts t l ~ e  owner to be tlic parent of the original owner. And clicking -1 on 

the right edge sets the owner to he the selected node (or the parent of the selected nodes). 

Hence, one can zoom to  the root, the parent, or the  tion. on. 

B.10.5 Closing windows 

types of window, i f  the owner is not owned, or contained by the owner, of any other window, 

the node is inserted i n  the scrap node window, where it becomes the selection. Note that 

attempting to  close the last view of a scrap window simply destroys is contents (much like 

clear does). 

B.10.6 Implications of multiple views on editing 
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be lost when the text is converted to a node and the owner is replaced by tha t  node. There- 

fore, one cannot delete, insert, or replace any node that  is the owner, or is enclosed by the 

owner, of a text window. If such an  operation is attempted, the offending text window is 

brought to the top of the stack-list with an error message suggesting that  it be updated, i.e., 

either discarded or converted a node. Similarly, one cannot create a text window for a node 

tha t  is the owner, or is enclosed by the owner, of some other text window. 

'I'o keep node windows consistent, any command that  results in the deletion or replace- 

ment of a node has the following effects. If the node is simply deleted and not replaced by 

anything, every node window with that nodes as its owner is set to own instead the parent 

of that, node. Otherwise, the deleted node is replaced by another node and so every node 

window with the deleted nodes as its owner is set to own instead the replacement nodc. 

Since deleted nodes arc illscrted into the scrap node window, any node window tha t  retained 

a view on a deleted node would provide merely a subview of the scrap node window. 

Clearly, the selection of each node window too, like the owner itself, must be kept con- 

sistent with respect to the deletion, insertion, and replacement of nodes. This is done 

like it is for the owner. 

Note that  views are possible even for the scrap windows. This may be confusing 

however, because only the selection of the original window is used as the source for insertions 

and there is nothing t,o distinguish the copy from the original, except tha t  the copy can be 

closed whereas atteInpting to close the original only deletes its contents. 

B.11 Top-level nodes 

There are four classes of node that a.re meanillgful a t  the top level, i.e., as unattached nodes 

without context: 

0 type-binding 

binding-list 

Each will be considered in turn. 
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B . l l . l  Top-level type-bindings 

A type-binding is meaningful a t  the top level because it introduces a global type-identifier. 

To make the type-identifier visible, however, the type-binding must first be stored in a file. 

This is done by holding [shift HO . I on the node window tha t  owns the type-binding, 

which causes the node command menu to  pop up. Dragging the mouse t o  select a command 

and releasing the button invokes the command. 

When store is invoked for a type-binding, a file containing the type-binding in compacted 

form is created. The  file is stored in the current directory, unless a previous version is present 

in some search directory, in which case the file is stored in that  directory. Because of the 

limitation of MS-DOS file names, only the first eight characters of the binding's defined- 

identifier are  used. For type-binding files the suffix is '.tb.' 

Previous versions of the t y p b i n d i o g  are renamed as backups, e.g., '*.tb' becomes '*.tbl,? 

' . tb l '  becomes '*.tb2,' and '*.tb2' is erased. Up to 9 backup versions could be maintained 

in this way, although currently only two backups are maintained. If the current directory 

contains a directory named 'hak,' the backup versions are moved to  tha t  directory.  hi^ 

helps to  keep working directories clear of various auxiliary files. 

It is the presence of a type-billding file in the file system that  makes the defined-identifier 

globally visible. PCAccr automatically loads the files as necessary, maintaining a unique node 

to  represent the contcllts of each file. Therefore, when a type-binding is stored, it becomes 

an  attribute node. A node window indicates that the root of its owner is an attribute by the 

symbol a a t  the beginning of its banner. 

Attribute nodes are differerlt from ordinary nodes because they should not and cannot 

be modified. Consider wllat would happen i f  a stored type-bir~ding could be modified. Some 

other node may we]] rllaT:, tile defining-occurrence of a type-identifier to  the defined-identifier 

of that type-binding; after all, the defined-identifier is globally visible. A subsequent edit 

could then remove the defined-identifier from the type-binding, leaving the other node with 

a type-iderltifier that maps to a now invalid defining-occurrence. Furthermore, since every 

node potentia]ly refers to the type-binding, the attributes of all nodes could be invalidated 

by a sing]c ,-llange to tile type-binding. For these reasons, editing of attributes is prevented. 

To modify a type-l1inding tllat has become an attribute, all that  is necessary is to  

a copy, create a Ilcw window, and replace the ]lode in the new window with the copy, e.g - 7 

click /.I On type-binding, click / O l  On the window, click -1 on the 

type-bindirIg, can be edited and then stored to  replace the previous version. storing 
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the new version converts it to an attribute node; the old version reverts to  being an  ordinary 

node. 

B.11.2 Top-level fixed-value-bindings 

A f i~ed-va l~e-b inding  is meaningful a t  the top level because it can be compi led  to  produce 

a fixed-value declaration, which introduces a global value-identifier. It can also be executed 

to  yield its definition. Furthermore, a fixed-value-binding can be s tored  just like a type- 

binding to create a file containing the fixed-value-binding in compacted form. For a fixed- 

1 value-binding, the file has suffix '.vb' and previous versions are  backed up, just as for a 
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the closure of the binding. 

Recause of dependencies, compiling a fixed-value-binding may require the compilation of 

bindings it depends on. This is handled automatically and is of little concern t o  the user. 

Any errors tha t  arise are reported by a node window. PCAcer stores all top-level fixed-value- 

bindings and binding-lists before compilation begins. The  scrap windows are cleared to  free 

up space. 

A fixed-value-binding is executed by invoking run in the node commands menu. The 

binding is first compiled, if necessary; the required object ('a') files are then linked to 

produce an executable ('.axe7) file, which is stored in either the current directory or the 

1 directory of the current directory; and finally, the executable file is loaded to  begin execution. 

Upon termination, tile definition of the binding is yielded. This value, represented as a 

node, is displayed in a new node window. PCAcer does not yet provide Acer programs with 

the ability to  perform terminal 10 so O I I I Y  side-effects to the fi le system are possible. Hence, 

every- program should produce a result value- 

Note that lirlking can be performed separately from execution by invoking link i n  the 

node commands menu. 'rile executable file is then created but it is not loaded and executed. 

B. 11.3 Top-level binding-lists 
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The assembler file and the object file are created only for the primary binding, although they 

contain the code to  evaluate all the bindings, but a fixed-value-declaration file is created for 

each fixed-value-binding. The result of compilation is a window for each declaration. 

Note tha t  a dependency ('.vdp') file is created only for the primary binding, but it includes 

the dependencies for all the bindings. 

A binding-list is executed by invoking run in the node commands menu. The  binding-list 

is first compiled, if necessary; the required object ('.07) files are then linked to  produce an  

executable ('.axe') file, which is stored in either the current directory or the 'axe' directory 

I 
of the current directory; and finally, the executable file is loaded to  begin execution. Upon 

termination, the definition of the primary binding is yielded. This value, represented as a 

node, is displayed in a new node window. 

B.12 Fetching files 
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The file system can be navigated by clicking -1 on a drive name to  change the 

current drive. Clicking I.1 on a directory in the listing changes the current directory 

to  the selected directory. (Directories are distinguished from files by color.) The  listing 

changes to  reflect each change to the current drive and directory. 

Selecting a file by clicking -1 on its name in the listing loads tha t  file. A new 

window is created to hold its contents: either a text window, in the case of a '.ace7 file, or a 

node window, otherwise. When a text window is created, it is immediately converted to  a 

node window, if possible. 

Pressing lest cancels the fetch menu. The current drive and directory are restored upon 

I exiting a fetch menu. 

B.12.1 Fetching text 

The fetch text Incnu lists only dircctorics and '.ace' files in the current directory. However, 

the name prompt a t  the bottom of the menu can be used to load any file, including ones 

without a '.ace7 sullix, by typing in the full file name (and path, if desired). Pressing F l  
then loads the file into a ncw text window. 

B.12.2 Fetching types 

B.12.3 Fetching values 

The fetch menu lists only directories and '.vb' files in the current directory. A full 

name can also typed (lircctly, in which case a corresponding file is searched according to 

the search path of ACERINPUT. 

If  the fixc:tl-va]ue-billtling is part of a binding-list, the entire binding-list is 

loaded. 

B.12.4 Fetching declarations 
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to  the search path of ACERINPUT. This is like asking for the defining-occurrence of the entered 

name. 

Note tha t  when the fetch declaration menu is invoked, if there is a 'vd' directory in the 

current directory, that  directory automatically becomes the current directory. This, after 

all, is where declarations will be stored. 

B.13 Restoringfiles 

Recall that  type-bindings, fixed-value-bindings, and binding-lists are backed up  when they 

are  stored. A backop version can be restored. Restore is invoked by holding -1 on 

the restore command of the main menu, dragging the mouse t o  select the desired option of 

the pop-up menu (either type or value), and releasing the button. The  screen then fills with 

the selected restore menu, which looks very much like a fetch menu. 

B.13.1 Restoring types 

The restore type menu lists only directories and '.tb' files in the current directory for which 

a backup exists (i.e., a ' . tbl '  file). Usually the backup will exist in the 'bak' directory of the 

current directory. A full name can also be typed directly, in which case a corresponding file 

is searched according to the search pat11 of ACERINPUT. 

Restoring a type-binding has the following effect. First the current version of the type- 

binding is fetched and  loa(ied into a new window. Then the current version is deleted from 

the file system. Next the backup versions are renamed, e.g., '*. tbl '  becomes '*.tb,' and 

'*.tb2' becolnes '*.tbl. '  r Y h r  result is that  the backup version becomes the current version, 

which is then also loaded into a new window. If the backup version exists in the 'bak7 

directory, it is lnovcd to the current directory. 

B.13.2 Restoring values 

The restol.e menu lists only directories and '.vb' files in the current directory for which 

a backup exists (iae., a ' .vbl' file). A full name can also be typed directly, in which case a 

corresponding f i l e  is searched according to the search path of ACERINPUT. 

Restoring a fixed-value-binding has the following effect. First the current version of the 

fixed-value-binding is fetched arid loaded into a new window. Then the current version is  

deleted from the file system. Next the backup versions are renamed, e.g., '*.vbl' becomes 
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'*.vb,' and '*.vb2' becomes '*.vbl.' The  result is that  the backup version becomes the 

current version, which is then also loaded into a new window. If the  backup version exists 

in the 'bak' directory, it is moved to  the current directory. 

When the restored fixed-value-binding is part  of a binding-list, the entire binding-list is 

loaded and all the other fixed-value-bindings in the list are also restored, i.e., their backups 

are renamed as for the primary binding. 

B.14 Querying semantic attributes of nodes 

The following semantic attributes can be queried by invoking the corresponding command of 

the node command menu, which pops up when IshifTH-1 is held on a node window: 

defining-occurrence, definition, denotation, type, and kind. The  query is applied to  the 

selection of the node window. As a result, a new node window is created to  conta,in the node 

selection. If a query cannot be processed, a,n error message is displayed instead. Defining- 

expression. 

PCAcer may have to  create new nodes in response to a query, just as it has to create a 

declaration during cornpilation. Such a created node is an attribute node and so cannot be 

a query results i n  the destruction of the attribute node and its window. This way, displayed 

attributes are consistent with their source. 

Note that  t]le validate command of the node command menu can be applied to  detect 

errors in any node. 

B.15 Re-expressing a node 

A node can be re-cxpresscd in a different context as follows. First, select the source node 

and select its window's banner to make it the selected window. Then select the destination 

i.e., tile node a t  which the source nodc is to  be expressed. Finally, apply the definilion- 

copy comnland of the ]lode colnmand menu to  the destination window. This replaces the 

dcstirlation rlodc with a node that expresses the same object as the selection of the selected 

window. 

Dcfinition-copy is a Iiigll-lcvcl way of yanking a node and copying it to  another context. 
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It ensures that  the copy refers to the same dcfining-occurrences in the new context as the 

original does in its context. (Reused-identifiers may have to be introduced.) In addition, its 

ensures tha t  the copy is expressed without dcnoters. (To eliminate a denoter, its definition 

is also copied, and blocks must be introduced when recursion is involved.) 

Note tha t  the source window cannot be the same as the  destination window because a 

window can have a t  most one selection. It is simple, however, to create a copy of the window 

so that  two selections are specified. 

And so on 

Clearly, many othcr operations can be provided, both for node windows and text windows. 

IIowevcr. the basics have been covered. 



Appendix C 

The implementation manual 

each of the indicated length: 

Core 
Utility 
Mouse 
Manager 
Index 
Sequence 
Line 
Linebuffer 
Grammar 
MPS1 
Keywords 
LexicalAnalyzcr 
Parser 
Unparscr 
Makers 

Access 
MPS 
Fileserver 
AST 
AST2 
Compile 
Run 
Link 
Objectview 
LineView 
TokcnLine 
TokenBuffer 
Tokenview 
Windowstack 
NodeView 

As such, the implcmenta.tion comprises more than 36,000 lines o 

3577 

f code. 

The of the appendix is organized as follows. Each section documents the 

purpose of unit, discussing any interesting implementation techniques; the Turbo 

Pascal interface appears first, followed by a discussion. The implementation section of eacll 

unit is n d  listed due to the shcar volume of code. In addition, repetitive parts of some units 

are  elided (i.e., as . . . ). Typically, each unit is described before the units tha t  use i t .  

A familiarity with the basics of (Turbo) Pascal and MS-DOS is assumed. 
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C . l  Core 

UNIT Core ; INTERFACE ($F+ ,L-1 

CONST MD = FALSE; 

IMPLEMENTATION . . .  
END. 

C.2 Utility 

UNIT Utility; INTERFACE ($F+ , o+, L-1 

TYPE 
STRING6 = STRING [61 ; 
STRING11 = STRING C111 ; 

PROCEDURE ErrorNoise; 
FUNCTION Max(i, j : LONGINT) : LONGINT; 
FUNCTION Min(i, j : LONGINTI : LONGINT; 
FUNCTION Integer~tring(x : WORD) : STRING6; 

FUNCTION Longlntegerstring(x : LONGINTI : STRING11 ; 

IMPLEMENTATION . . .  
END. 

U t i l i t y  provides converlie~lt functions used in a number of different modules. Again, it 

is of no particular interest. 

'Overlays ;tre Tnrt)o 1);tscal's way of freeing u p  nlemory by loading only part of a program's code at a 

time. 
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C.3 Mouse 

UNIT Mouse ; INTERFACE ($F+, L-1 

TYPE 
ActionType = 

(NoAction, MovedLeft, MovedUp, MovedDown, MovedRight, 
LeftButtonPressed, LeftButtonReleased, RightButtonPressed, 
RightButtonReleased, MiddleButtonPressed, MiddleButtonReleased) ; 

ShiftKeys = (Shift, Ctrl, Alt) ; 
ShiftStateType = SET OF ShiftKeys; 
EventType = 
RECORD 

theAction : ActionType; 
theshiftstate : Shif tStateType; 
x, y : INTEGER 

END; 

PROCEDURE Initialize; 
PROCEDURE Hidecursor; 
PROCEDURE Showcursor; 
PROCEDURE MouseGotoXY(x, y : Byte); 
PROCEDURE MouseGetXY (VAR X ,  y : Byte) ; 
FUNCTION Mousepressed : BOOLEAN; 
PROCEDURE ResetMouse; 
PROCEDURE ReadMouse (VAR theEvent : Event Type) ; 

IMPLEMENTATION 
END. 

Mouse provides interface for a three button mouse. The  mouse driver is started 

by a call to Initialize. Associated with the driver is a screen cursor, which is made 

visible or invisible using ShovCursor and Hidecursor. The position of the cursor is read by 

MouseGetXY is set by ~ouseGotoXY. Naturally, movement of the mouse itself also sets 

the of the cursor. Whctller a mouse button is being held down is determined by 

MousePressed, wllicll is analagous to the Keypressed function provided by CRT. 

The mouse driver a buffer of mouse events, e.g., button presses and releases and 

the of tile cursor and the shift-stat(. of the keyboard a t  the time of the press or 

release. ~ 1 , ~  buffer is erased by ResetMouse. A n  event is read by ReadMouse. 

In short, Mouse provides the minimal operations required to support the  functionality of 

a mouse as used i n  thc PCAccr environment. 
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C.4 Manager 

UNIT Manager; INTERFACE ($F+, O+ ,L-1 

TYPE ShortPointer = WORD; 

FUNCTION AllocatePointer(Size1nBytes : WORD) : POINTER; 
PROCEDURE Deallocate~ointer(thePointer : POINTER; SizeInBytes : WORD) ; 
FUNCTION ~llocate~hort~ointer(Size1nBytes : WORD) : ShortPointer; 
PROCEDURE DeallocateShortPointer 

(theshortpointer : ShortPointer; SizeInBytes : WORD); 

VAR FreeUnusedSpace : FUNCTION : BOOLEAN; 

IMPLEMENTATION . . .  
END. 
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because memory requests are rounded up to the nearest multiple of four.) 

The  function variable FreeUnusedSpace can be set so tha.t if Manager runs out of space, 

FreeUnusedSpace is callcd to free some memory. The function assigned to  FreeUnusedSpace 

should therefore attempt to free memory and should yield true only if successful. Also, the 

new function should not simply replace the old function already stored in FreeUnusedSpace, 

it should store the old function in a local variable and should call tha t  function as part  of 

its effort to free up memory. In this way, a chain of functions is formed, each attempting to 

free memory. (This is analogous to the idea of exit-procedures in Turbo Pascal.) 

To summarize then, Manager provides ShortPointer SO tha t  memory consumptjon is 

drastically reduced. A ShortPointer, after all, occupies half the space of a regular Pointer. 

C.5 Index 

UNIT Index ; INTERFACE ($F+ , o+, L-1 

TYPE 
T = - IndexRecord; 
Link = LinkRecord; 
Iterator = 
RECORD 
theLink : Link; 
KeySize, Informationsize : BYTE 

END ; 
OrderingPredicate = FUNCTION (VAR x, y) : BOOLEAN; 
IndexRecord = 
RECORD 
Less : OrderingPredicate; 
KeySize, Informationsize : BYTE; 
Elements : Link 

END ; 
LinkRecord = 
RECORD 
Key : POINTER; 
Siblingsegment : WORD; 
Siblingof f set : BYTE; 
CASE Leaf : BOOLEAN OF 
TRUE: (Child :  ink) ; 
FALSE: (~ssociatedInf ormat ion : POINTER) 

END ; 
Processor = PROCEDURE (VAR x); 
ProcessKeyAndInformation = 
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PROCEDURE (VAR ~ h e ~ e y  , ~ssociatedhf ormat ion) ; 

FUNCTION Make(Less : OrderingPredicate; 
KeySize, Informationsize : BYTE) : T; 

FUNCTION Copy(The1ndex : T) : T; 
PROCEDURE Clear (TheIndex : T) ; 
PROCEDURE Free (TheIndex : T) ; 
PROCEDURE Associate(VAR TheKey, AssociatedInformation; TheIndex : T); 
FUNCTION ConditionalAssociate 

(VAR TheKey, AssociatedInformation; TheIndex : T) : BOOLEAN; 
PROCEDURE Include (VAR TheKey ; TheIndex : T) ; 
FUNCTION ConditionalInclude(VAR TheKey; TheIndex : T) : BOOLEAN; 
FUNCTION Lookup(VAR TheKey; TheIndex : T; 

VAR ~ssociatedInformation) : BOOLEAN; 
FUNCTION Member(VAR TheKey; TheIndex : T) : BOOLEAN; 
PROCEDURE Exclude(VAR TheKey; TheIndex : TI; 
FUNCTION ConditionalExclude(VAR TheKey; TheIndex : T) : BOOLEAN; 
FUNCTION Union(Index1, Index2 : T) : T; 
PROCEDURE UnionAndSet (Indexl , Index2 : T) ; 
FUNCTION Intersection(Index1, Index2 : T) : T; 
PROCEDURE IntersectionAndSet (Indexl , Index2 : T) ; 
FUNCTION Diff erence(Index1, Index2 : T) : T; 
PROCEDURE Dif f erenceAndSet (Index1 , Index2 : T) ; 
FUNCTION Empty(Index1 : T) : BOOLEAN; 
FUNCTION Equal(Index1, Index2 : T) : BOOLEAN; 
FUNCTION Less(Index1, Index2 : T) : BOOLEAN; 
FUNCTION Disjoint(Index1, Index2 : T) : BOOLEAN; 
FUNCTION Subset(Index1, Index2 : T) : BOOLEAN; 
FUNCTION Propersubset(Index1, Index2 : T) : BOOLEAN; 
PROCEDURE ScanKeys (TheIndex : T; Process : Processor) ; 

PROCEDURE ScanKeysAndInformation 
(TheIndex : T; Process : ~rocessKeyAndInformation); 

PROCEDURE Scan~nformation(TheIndex : T; Process : Processor); 
PROCEDURE GetIterator(VAR theIterator : Iterator; TheIndex : T); 
FUNCTION NextKey(VAR theIterator : Iterator; VAR TheKey) : BOOLEAN; 

FUNCTION Ne~tKe~~ndInformation 
(VAR theIterator : Iterator; 
VAR TheKey, ~he~nformation) : BOOLEAN; 

FUNCTION Next~nf ormat ion(VAR theIterator : Iterator ; 
VAR TheInformation) : BOOLEAN; 

PROCEDURE LeastKey(The1ndex : T; VAR Key) ; 
PROCEDURE ~east~e~~nd~nformation(TheIndex : T; VAR Key, Information); 
PROCEDURE ~ ~ ~ ~ t ~ ~ f o r m a t i o n ( T h e I n d e ~  : T; VAR Information); 

IMPLEMENTATION . . .  
END. 
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Index provides a versatile data  structure for creating sets and mappings for any base type 

for which a total order exists. In particular, it is used to create a mapping or association 

between values of one type, keys, and values of some other (though not necessarily different) 

type, associated information. If the associated information is absent, the mapping is just a 

set. The  da ta  structuring mechanism of Index facilitates 0 (log n )  insertion, deletion, and  

searching, where n is the number of elements in the index. 

An index is created by Make, which takes the following: an  Orde r ingPred ica t e  that 

in turn takes values of the key type and must act like less-than; a KeySize tha t  indicates 

the size of keys and must be 4 or less; and an In fo rma t ions i ze  that  indicates the size of 

information and must also be 4 or less-if In fo rma t ions i ze  is 0, the created index is just 

a set. 

It is possible to protlucc a Copy of an index and to C l e a r  an index of its elements. A n  

index is deallocatcd by Free.  A kcy and its associated information are inserted into an 

index by either ~ s s o c i a t e  or ~onditionalAsso~iate-Conditi~nalAssociate inserts the 

information only i f  tile key is not already present and yields t r u e  only if the information 

is actually inserted. Inc lude  and ~ o n d i t i o n a l I n c l u d e  work similarly, but no associated 

information is provided wit11 the key. 

To determine the inforll latio~~ associated with a key in an index, Lookup is used. It returns 

t r u e  i f  the key is prescllt, i n  which case the associated information is also set. Similarly, 

Member determines if a key is in an index. 

Exclude removes a kcy from an index and Condit ionalExclude does the same, bu t  it 

returns t r u e  if the key was actually a ~nember.  

Various other set-based operations are provided for combinirlg and comparing indexes. 

Their effect is cvidcnt from their names. 

Scan functiolls are also provided. They apply a P roces so r  function to  all the keys and/or 

information of an index. Also, the notion of I t e r a t o r s  is supported by G e t I t e r a t o r ,  which 

initializes a of type I t e r a t o r .  This can then be used by one of the Next furlctions 

to sequence through the A Next function yields t r u e  only if there is a next key 

and/or information. 

Finally, the Leas t  functions are provided for easy access to  the lowest key andlor  infor- 

mation i n  an index. (1tcmc,nber, an index is sorted according t o  its predicate.) 

A word of caution is  i n  order with the use of this unit. Its facilities arc extremely versatile 

but care mllst be takell ill their use since there is no type checking to  ensure tha t  keys and 

information are associated with the right 'type' of index. This highlights a glaring weakness 
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of Pascal. Certainly an Acer implementation would provide improved type safety. 

C.6 Sequence 

UNIT Sequence ; INTERFACE ($F+ ,O+, L-1 

USES Manager ; 

TYPE SequenceType = POINTER; 

CONST MaxSequenceLength = 65536; 

FUNCTION Construct  (theSequenceLength : WORD) : SequenceType ; 
PROCEDURE Destruct(VAR thesequence : SequenceType); 
PROCEDURE Expand(VAR thesequence : SequenceType; P o s i t i o n ,  Amount : WORD);  
PROCEDURE Contract(VAR thesequence : SequenceType; 

P o s i t i o n ,  Amount : WORD) ; 
PROCEDURE I n s e r t ( S o u r c e  : SequenceType; 

VAR Des t ina t ion  : SequenceType; 
Des t ina t ionPos i t  ion  : WORD) ; 

PROCEDURE Replace(Source : SequenceType; 
VAR Des t ina t ion  : SequenceType; 
~ e s t i n a t i o n P o s i t i o n ,  DestinationAmount : WORD); 

FUNCTION Copy (thesequence : sequenceType) : SequenceType ; 

PROCEDURE SubInser t (Source  : SequenceType; 
SourcePosi t ion,  SourceAmount : WORD; 
VAR Des t ina t ion  : SequenceType; 
~ e s t i n a t i o n p o s i t i o n  : WORD) ; 

PROCEDURE SubReplace (~ource  : SequenceType; 
sourcePos i t ion ,  SourceAmount : WORD; 
VAR Des t ina t ion  : SequenceType; 
~ e s t i n a t i o n P o s i t i o n ,  DestinationAmount : WORD); 

FUNCTION Subcopy (thesequence : SequenceType ; 
s t a r t p o s i t i o n ,  Amount : WORD) : SequenceType; 

IMPLEMENTATION . . .  
END. 
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amount,  and contracted a t  a given position by a given amount. Various Insert, Replace, 

and Copy operations are ~ rov ided  as well. 

A trick used in the implementation of Sequence is tha t  the actual number of bytes 

allocated to  a sequence is always an even power of 2. Thus if a sequence has length n,  it is 

actually allocated as 2r1"g2 nl bytes. Thus sequences can often be Expanded or Contracted 

without reallocation. 

Sequence is used to implement a number of other units, including Line, LineBuffer, 

TokenLine, and TokenBuf f er. 

C.7 Line 

UNIT Line ; INTERFACE C$F+, O+ ,L-) 

USES Manager, Sequence; 

TYPE 
LineType = SequenceType; 
LinePointer = LineType; 
CharPointer = - CHAR; 
StringPointer = STRING; 

CONST MaxLineLength = ~ax~e~uenceLength; 

FUNCTION Construct (theLine Length : WORD) : LineType ; 
PROCEDURE Destruct (VAR theLine : ~ineType) ; 

PROCEDURE Expand(VAR theLine : LineType; Position, Amount : WORD); 
PROCEDURE AppendElement(theChara~ter : CHAR; VAR theLine : LineType); 
PROCEDURE  contract(^^^ theLine : LineType; Position, Amount : WORD); 
FUNCTION Length(theLine : ~ine~ype) : WORD ; 

FUNCTION ToString(theLine : ~ine~ype) : StringPointer; 

FUNCTION NthElement(theLine : LineType; n : WORD) : CharPointer; 

PROCEDURE Insert(Source : LineType; 
VAR Destination : LineType; 
~~~tinationPositi0n : WORD); 

PROCEDURE Replace(Source : LineType; 
VAR Destination : LineType; 
ch st in at ion Po sit ion, DestinationAmount : WORD); 

FUNCTION Copy(theLine : ~ine~ype) : LineType; 

PROCEDURE Sub~nsert (Source : LineType ; 
SourcePosition, SourceAmount : WORD; 
VAR Destination : LineType; 
DestinationPosit ion : WORD) ; 



A P P E N D I X  C. T H E  1MPIJGMEN?'A7'ION M A N U A L  

PROCEDURE SubReplace(Source : LineType; 
SourcePosition, SourceAmount : WORD; 
VAR Destination : LineType; 
DestinationPosition, DestinationAmount : WORD); 

FUNCTION SubCopy(theLine : LineType; 
StartPosition, Amount : WORD) : LineType; 

IMPLEMENTATION . . .  
END. 

LineBuffer 

UNIT LineBuf f er ; INTERFACE ($F+, o+, L-1 

USES Line, Manager, Sequence; 

TYPE 
LineBufferType = SequenceType; 
LineBufferPointer = LineBufferType; 

CONST 
MaxLineBufferLength = MaxSequenceLength DIV 4; 
NullLineBuffer : LineBufferType = NIL; 

FUNCTION Construct(theLine~ufferLength : WORD) : LineBufferType; 
PROCEDURE Destruct (VAR theLineBuf f er : LineBuf f er~ype) ; 
PROCEDURE Expand(VAR theLineBuffer : LineBufferType; 

Position, Amount : WORD) ; 
PROCEDURE Contract(VAR theLineBuffer : LineBufferType; 

position, Amount : WORD); 

FUNCTION Length(theLineBuffer : LineBufferType) : WORD; 
FUNCTION ~th~lement(theLineB~ffer : LineBufferType; 

n : WORD) : LinePointer; 
PROCEDURE Insert(Source : LineBufferType; 
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VAR Destination : LineBufferType; 
DestinationPosit ion : WORD) ; 

PROCEDURE DestructiveInsert(VAR Source : LineBufferType; 
VAR Destination : LineBufferType; 
DestinationPosition : WORD) ; 

PROCEDURE Replace(Source : LineBufferType; 
VAR Destination : LineBufferType; 
DestinationPosition, DestinationAmount : WORD); 

FUNCTION Copy(theLineBuffer : LineBufferType) : LineBufferType; 
PROCEDURE SubInsert(Source : LineBufferType; 

SourcePosition, SourceAmount : WORD; 
VAR Destination : LineBufferType; 
DestinationPosition : WORD); 

PROCEDURE SubReplace(Source : LineBufferType; 
Sourceposition, SourceAmount : WORD; 
VAR Destination : LineBuf f erType ; 
DestinationPosition, DestinationAmount : WORD); 

FUNCTION SubCopy(theLineBuffer : LineBufferType; 
StartPosition, Amount : WORD) : LineBufferType; 

IMPLEMENTATION . . .  
END. 

LineBuff er a type for representing sequences of lines. It is implemented using 

Sequence and provides the same kinds of operations. 

LineBuff er is used to represent the com~nerits associated with nodes and the textual 

objects that  appear in PCAccr text windows. 

C.9 Grammar 

UNIT Grammar; INTERFACE ($F+, O+ ,L-1 

TYPE 
NodeClass = 

(Empty, 
Acc~mulation, . . . ,  VoidLiteral, 
AccumulationList, . . . ,  Whencondition, 
Charactex-Literal, . . . ,  ValueIdentifier); 

Nodeclassset = SET OF NodeClass; 



APPENDIX C. TI-IE Ih4PLEMENTATION M A N U A L  

WhenBranch = [TypeWhenBranch, ValueWhenBranch]; 
MinConstructionType = Accumulation; 
MaxConstructionType = VoidLiteral; 
MinListedType = AccumulationList; 
MaxListedType = WhenCondit ion; 
MinLexicalType = CharacterLiteral; 
MaxLexicalType = ValueIdentifier; 
ConstructionTypes = [MinConstructionType . .  MaxConstr~ctionT~pe]; 
ListedTypes = [MinListedType . . MaxListed~ype] ; 
LexicalTypes = [MinLexicalType . . MaxLexical~ype] ; 
NoChildConstructions = 

[AnyType, Empty, VoidLiteral, TypeDenoter, ValueDenoter] ; 

FourChildConstructions = [Iteration] ; 

FUNCTION NodeClassString(k : ~ode~lass) : STRING; 
FUNCTION ComponentCount(k : ~ode~lass) : INTEGER; 
FUNCTION OptionalComponentq(k : NodeClass; n : INTEGER) : BOOLEAN; 
FUNCTION NthComponentName(k : NodeClass; n : INTEGER) : STRING; 

PROCEDURE NthComponentDomain 
(k : Nodeclass; n : INTEGER; VAR Result : Nodeclassset); 

PROCEDURE Base~omain~f~istedType(k : NodeClass; 
VAR Result : NodeClassSet) ; 

IMPLEMENTATION . . .  
END. 

C.10 MPSl 

UNIT MPS1; INTERFACE ($F+ ,o+,L-) 
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USES Grammar, LineBuffer, Line, Manager, Sequence; 

TYPE 
Node- = ShortPointer; 
NodePointer = - Nodecell; 
ElementPointer = Node-; 
EmptyRecord = 
RECORD 
END ; 

Accumulat ionRecord = 
RECORD 
AccumulatorOf, ElementsOf : Node-; 
Definition : Node- 

END ; 

VoidLiteralRecord = 
RECORD 
END; 

AccumulationListRecord = 
RECORD 
Elements : SequenceType 

END ; 
. . . 
WhenConditionRecord = 
RECORD 
Elements : SequenceType 

END ; 
CharacterLiteralRecord = 
RECORD 
Lexicalvalue : StringPointer 

END ; 
. . . 
ValueIdent if ier~e cord = 
RECORD 

Lexicalvalue : StringPointer; 
Definingoccurrence : Node- 

END ; 
Largestvariant = IterationRecord; 
FlagNumberType = 0. .15; 
Nodecell = 
RECORD 
Flags : SET OF FlagNumberType; 
Position : WORD ; 
Parent : Node-; 
Comment : LineBufferType; 
CASE NodeType : Nodeclass OF 
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Grammar. Empty : (Empty : EmptyRecord) ; 
. . . 
ValueIdentifier: (ValueIdentifier : ValueIdentifierRecord) 

END ; 
STRING4 = STRING C41 ; 

VAR Print : PROCEDURE (x : Node-); 
theUnattachedEmptyNode : Node-; 

FUNCTION TestFlag(F1agNumber : FlagNumberType ; x : Node-) : BOOLEAN; 
PROCEDURE SetFlag(F1agNumber : FlagNumberType; x : Node-); 
PROCEDURE ClearFlag(F1agNumber : FlagNumberType; x : Node-); 
FUNCTION AddressString(x : Node-) : STRING4; 
FUNCTION ConstructCopy(x : Node-) : Node-; 
FUNCTION DenoterlessCopy(x : Node-) : Node-; 
FUNCTION TestEquality(x, y : Node-) : BOOLEAN; 
FUNCTION TestLess(x, y : Node-) : BOOLEAN; 
PROCEDURE Attach(aParent : Node-; aPosition : INTEGER; aChild : Node-); 
PROCEDURE Reattach(aParent : Node-; aPosition : INTEGER; aChild : Node-) ; 
PROCEDURE Unatt ach (x : Node- ) ; 
FUNCTION GetNthChild(aParent : Node-; aPosition : INTEGER) : Node-; 
FUNCTION GetComponentl(aConstructi~n :  ode-) : Node-; 
FUNCTION GetComponent2(aConstruction : Node-) : Node-; 
FUNCTION GetComponent3(aConstruction : Node-) : Node-; 
FUNCTION GetComPonent4(a~onstruction : Node-) : Node-; 
FUNCTION Allocate(aNodeClass :  odec class) : Node- ; 
PROCEDURE Destruct (VAR x : Node-) ; 
PROCEDURE Deattribute(x : Node-) ; 
FUNCTION Construct0 

(aNoChildConstruction : Nodeclass ; 
aComment : LineBuff erType) : Node-; 

FUNCTION Construct1 
(aOneChildConstruction : Nodeclass ; 

xl : Node-; 
aComent : LineBuf f erType) : Node- ; 

FUNCTION Construct2 
(a~uo~hild~onstructi~n : Nodeclass; 
xl, x2 : Node-; 
acoment : Line~uff erType) : Node- ; 

FUNCTION Construct3 
(a~hree~hildconstru~ti on : Nodeclass ; 
XI, ~ 2 ,  x3 : Node-; 
acoment : Line~ufferType) : Node-; 

FUNCTION Construct4 
( a ~ o u r ~ h i ~ d C o n s t r ~ ~ t i ~ n  : Nodeclass; 
XI, ~ 2 ,  ~ 3 ,  x4 : Node-; 
acomment : ~ineBuff erType) : Node- ; 
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FUNCTION ConstructList(aList : Nodeclass; 
aComment : LineBuff erType) : Node-; 

PROCEDURE ExpandList(aList : Node-; aPosition, anAmount : INTEGER); 
PROCEDURE ~~~endElement(aList, anElement : Node-); 
FUNCTION ~elect~lement(aSequence : SequenceType; 

n : WORD) : ElementPointer; 
FUNCTION ~onstructTypeIdentifier(aLexicalValue : STRING) : Node-; 
FUNCTION ConstructValueIdent if ier(aLexicalVa1ue : STRING) : Node- ; 
FUNCTION ~onstructIntegerLiteral(aLexicalValue : STRING) : Node,; 
FUNCTION ~onstructRealLiteral(aLexicalValue : STRING) : Node-; 
FUNCTION ~onstructStringLiteral(aLexicalValue : STRING) : Node-; 
FUNCTION ~ons t ruc tCharac t e rL i t e r a1  (aLexicalValue : STRING) : Node- ; 
FUNCTION GetLexicalValue(aLexeme : Node-) : StringPointer; 
FUNCTION GetInteger(anIntegerLitera1 : Node-) : LONGINT; 
FUNCTION GetReal(aRealLitera1 : Node-) : REAL; 
FUNCTION ~etCharacter(aCharacterLitera1 : Node-) : CHAR; 
PROCEDURE ~etDefiningOccurrence(id, theDefiningOccurrence : Node-); 
FUNCTION Get~efiningOccurrence(id : Node-) : Node-; 
PROCEDURE ~ e t ~ e f  inition(x, theDef init ion : Node-) ; 
FUNCTION Get~efinition(x : i ode-) : Node-; 
PROCEDURE setsort (aValue, aType : Node,) ; 
FUNCTION Getsort (aValue : g ode-) : Node- ; 
PROCEDURE ShowNode (x : Node-) ; 

CONST Basesize = ~ize~f(~odeCell) - SizeOf(LargestVariant); 

IMPLEMENTATION . . .  
END. 

type Node- wit11 all underscore to represent low-level nodes. 

A node, then, is s i ~ r ~ ~ l y  a ShortPointer, which can be convertcd to  a NodePointer using 

NodePointer(PTR(theNode,O)). A NodePointer points a t  a Nodecell, which is a variant 

record that incl~ldes the following: a sct of 16 Flags, a Position, a Parent, a Comment, a tag 

NodeType, alld a variant part for each possible node class. Thc  head of the Nodecell 

record is comrrlorl to all node classes and thc tail is specific to each node class. 

Ipor each r~ocle-class x,  a variant field also named x is defined when NodeType is x; this 

field is of a, record type r ~ a ~ ~ ~ e t l  xRecord, the components of which are class dependent. I n  

general, for a construction, a component of type Node- is declared for each construction 

component, with a name clorivcd from the component name; for a list, a component of 
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type SequenceType named Elements is declared; and for a lexeme, a component of type 

S t r i n g P o i n t e r  named Lex ica lva lue  is declared. 

Additional components are declared in some xRecords to  store the semantic attributes 

defining-occurrence, type, and definition. They are named Def i n ingoccur rence ,  S o r t ,  or 

D e f i n i t i o n ,  respectively. Identifiers have a Def i n ingoccur rence  component and expres- 

sions can, but  do not necessarily, have a S o r t  component and a D e f i n i t i o n  component. 

The  following facilities are provided to  support the manipulation of nodes. First, a low- 

level print routine is provided by the procedure variable P r i n t .  It is originally set t o  the 

procedure ShowNode, which simply displays the contents of a NodeCell record. However, 

if Unparser is used, the original P r i n t  is replaced by a more sophisticated printer, which 

prints a node and its children according to Acer's concrete syntax. 

The  variable theUnattachedEmptyNode contains a special unattached empty node that 

has itself as its parent. This node is the parc.nt of every unattached node, including itself. 

To reduce dependence on the particular da ta  structure used in MPSI, various access 

routines are provided. For example, Tes tF lag ,  Se tFlag ,  and C l e a r F l a g  are  used to  access 

the F l a g s  field of a node. 

A d d r e s s s t r i n g  yields a four-character hexadecimal representation of a node viewed as 

a Shor tPo in t e r .  The  PCAcer erivironment uses these as node identity numbers. 

ConstructCopy produces a copy of the entire tree rooted a t  the given node; when a 

denoter is copied, a new denoter is created with the same node for its definition as the 

original. DenoterlessCopy is similar but, each copied type-denoter is replaced by an  any- 

type and each copied value-denoter is replaced by a void-literal. 

Testing for structural equality and lexicographic order is supported by T e s t E q u a l i t y  

and Tes tLess .  

The  functions At tach ,  Rea t t ach ,  and Unat tach are provided for building and 

editing nodes. At tach  takes a parent node, a position, and an unattached child and attaches 

the child a t  the specified position of the parent. Rea t t ach  is the same but  the child may 

be attached, in which case it is rcmovcd from its context. And Unat tach  simply detaches a 

child, i.e., it sets the position to 0 and the parent to theUnattachedEmptyNode. 

GetNthChild selccts a child a t  a given position arid the GetComponentn functions serve 

the same purpose but only for constructiori nodes. 

The  ability to create and free nodes is provided by A l l o c a t e  and Des t ruc t .  Note tha t  

destructed nodes are not freed to the hcap,  they are stored for later reuse by A l l o c a t e .  

D e a t t r i b u t e  removes all serrian tic attributes associated with a node and any of its children. 
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There are other ways than A l l o c a t e  to  construct a node. In particular, a construction 

node can be created, given appropriate unattached children, using one of the Cons t ruc tn  

functions. Similarly, an empty list can be created by C o n s t r u c t L i s t ;  the  Elements fields 

of such a list can then be modified by ExpandList to  permit children to  be Attached. 

ExpandList specifies the position a t  which t o  expand and by how much. As well, an element 

can be appended to a list using AppendElement. 

Elements of a list are accessed as follows. Se lec tElement ,  given the  Elements field of a 

list node and a position n, yields an ElementPointer ,  i.e., a pointer a t  a node. With this 

function, the nth element of a list can be either assigned t o  or simply examined. 

For constructing a kxeme from its spelling, various ConstructLexeme functions are pro- 

vided. Also, for accessing the spelling of a lexeme, GetLexicalValue is provided. T h e  special 

functions Ge t In t ege r ,  GetReal,  a.nd Ge tcha rac t e r  are provided for accessing integer-, real-, 

and  character-literal values respectively. 

Finally, functions for Getting and Set t ing the semantic attributes defining-occurrence, 

definition, arid type are provided. 

M P S ~  uses a number of implementation techniques that  are of interest and must be un- 

derstood to  explain the purpose of TouchMonitor. 

To begin with, one of the goals of MPSl is to  support the maintenance of valid semantic 

attributes in the presence of editing. In general, whenever a node modification takes place, all 

nodes within the tree will have invalid semantic attributes since they are all interdependent. 

Therefore, one approach for mainta.ining attributes would be to simply traverse the entire 

tree and remove all attributes. IIowevcr, this would make a simple edit an operation tha t  

takes 0 ( n )  time, where 11 is the number of nodes in the tree. This is unacceptable when 

such an edit can be done in constant time in the absence of attributes. 

The  approach used in MPSl has a more acceptable overhead. To outline the approach, 

assume tha t  every node has a flag, let's call it Modif iedQ, which starts out as f a l s e .  Then, 

whenever a n  edit (e.g., Attach,  Rea t tach ,  or Unat tach)  takes p h c e  a,t a given node, the 

ModifiedQ of that, node and every node from it to the root is set to  t r u e .  The  overhead 

on editing is thus proportional to the dopth of the trcc. Rut ,  since syntax trees tend t o  get 

wider rather than deeper, editi~ig is essentially still a constmt-time operation. 

Whenever an  attribute lookup is applicd for a given node (e.g., G e t s o r t ) ,  all pa.rents of 

the node are exan~ined to scc i f  any have a t r u e  ModifiedQ. If any are t r u e ,  the stored 

attribute is invalid and is discarded. The  ovcrhcad on attribute lookup is therefore also 

proportional to the depth of the node. 
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Modif iedQ becomes f a l s e  only when an  attribute is stored a t  a node. In this case, the 

tree is again traversed from the node to the root but on the way back down, for any node 

with a t r u e  Modif iedQ, the Modif i e d Q  of each of its children is set to  t r u e  and the node's 

own Modif iedQ is set to  f a l s e .  This downward propagation of flags continues until the 

start  node is reached. Thus, after an attribute is set for some node, every node between it 

and the root will have a f a l s e  ModifiedQ. IIence, a subsequent lookup will simply return 

the stored attribute. Of course, other nodes in the tree may still have a t r u e  ModifiedQs 

but these flags will invalidate only the attributes within those subtrees and will also become 

f a l s e  when attributes are stored within those subtrees. The  overhead on attribute storage 

is potentially proportional to the number of nodes in the tree, but then the determination 

of the attribute itself is typically the dominating time factor anyway. 

With the above approach, the various Get functions yield only valid attributes, and can 

discard any invalid attributes. 

Now, another problem with attributes is that  they are typically nodes tha t  are automat- 

ically created in response to a query. IIence, when an edit is performed and an attribute is 

no longer valid, wllat is to become of it? Turbo Pascal does not support garbage collection,2 

so invalid attributes cannot simply continuc to exist as they will eventually exhaust memory. 

Thus invalid attributes sl~ould somchow be automatically reclaimed. 

To this end, tile Nodecel l  rccord is used in the following tricky way. If the P a r e n t  field 

of a Nodecel l  is set to theUnattachedEmptyNode, we know that  the P o s i t i o n  field must 

be 0. Therefore, thc P o s i t i o n  field can bc used for another purpose in this case. For this 

reason, when an urlattached node is S e t  to be the attribute of some node, the P o s i t i o n  field 

of the attribute is used to store the identity of the 'attribute parent.' Because of this, when 

the attribute of a node x is known to be invalid using the previous flagging technique and the 

attributIe node illdicat,es x to bc its attribute owner, the attribute node can be  Des t ruc ted .  

It is importallt to realize that although attributes can be shared by many nodes and 

hence a Destructed attribute may still appear as an attribute of some other node this does 

not cause a problem. Aftcr all, there is a t  most one attribute owner so an  attribute will 

only be Des t ruc ted  once. In addition, a Des t ruc ted  node is not actually returned to  tile 

heap, so it is still valid to access its P o s i t i o n  field to check for ownership, even i f  the node 

is subsequently ~ l l o c a t e d  to serve a new purpose. 

One final trick used in MPSl is that the position of an unattached node can also be set 

'Note tha t  Acer does have garbage collection so at tr ibute ~ iodes  may continue to exist until they bccolnc 
garbage. 
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to  1 (rather than 0). In this case, whenever part of that  node is modified, the function 

stored in TouchMonitor is applied to the root node. This is how the PCAcer environment 

(and Fileserver in particular) keeps track of whether a top-level fixed-value binding or 

binding-list is modified with respect to the version stored in the file system. 

C.11 Keywords 

UNIT Keywords; INTERFACE ($F+,O+,L-) 

PROCEDURE InstallKeyword(spelling : STRING; tokencode : INTEGER); 
FUNCTION FindKeyword(VAR spelling : STRING) : INTEGER; 
PROCEDURE ShowKeywords; 

IMPLEMENTATION 
END. 

Keywords provides a has11 table in which keywords can be installed for efficient lookup. 

InstallKeyword, given a spelling and the token-code of the keyword represented by the 

spelling (i.e., the ORD of the TokenType as defined by LexicalAnalyzer.), installs the in- 

formation in the hash table. A subsequent call to  FindKeyword, with a particular spelling, 

yields the token-code associated with that spelling, or 0 if  the spelling is not in the hash 

table. 

ShowKeywords prillts the contents of the hash table. 

C .  12 LexicalAnalyzer 

UNIT LexicalAnalyzer; INTERFACE {$F+ ,O+ ,L-1 

USES Grammar, Keywords, Line, LineBuffer, MPS1; 

TYPE 
TokenType = 

(EOStoken, 
DotToken, . . . ,  CommaToken, 
LetToken, . . . ,  TryingToken, 
IntegerLiteralToken, . . . ,  StringLiteralToken, 
BadToken) ; 

CharacterGenerator = PROCEDURE (VAR Ch : CHAR); 



APPENDIX  C. T H E  IMPLEA4ENTATION M A N U A L  

CONST 
MinToken = EOStoken; 
MinPunctuationToken = DotToken; 
MaxPunctuationToken = CommaToken; 
MinKeywordToken = LetToken; 
MaxKeywordToken = TryingToken; 
MinLexicalToken = IntegerLiteralToken; 
MaxLexicalToken = StringLiteralToken; 
MaxToken = BadToken; 
MaxTokenString = 26; 

VAR Tokenstring : ARRAY [TokenTypel OF STRINGIMaxTokenString + 11; 
CurrentLexeme : Node-; 
CurrentToken : TokenType; 
TokenPosition, TokenLine, CommentPosition : WORD; 

PROCEDURE ~cceptToken(token : TokenType; VAR Comment : LineBufferType); 
PROCEDURE InitializeLexicalAnalyzer 

(Nextchar : CharacterGenerator; Failure : ErrorHandler); 
PROCEDURE ~ile~nitializeLexicalAnalyzer(VAR InputFile : TEXT); 
PROCEDURE ~arse~ailure(str : STRING); 

IMPLEMENTATION . . .  
END. 

LexicalAnalyzer supports the conversion of a stream of characters to a stream of tokens. 

TokenType is provided to classify tokens, which are grouped to reflect the categories punctu- 

ation, keyword and lexc~nc. The  spelling of each token is stored in the array Tokenstring. 

LexicalAnalyzer is initialized to begin analysis either by calling the procedure 

InitializeLexicalAnalyzer with a function that  generates characters and a function that 

llandlcs errors, or by calling FileInitializeLexicalAnalyzer with a TEXT file. If a parser 

detects an error during parsing, it can call ParseFailure to terminate analysis and produce 

an error rrlessage associated with the CurrentToken. 

Once analysis begins, the interface variables contain information about the most recently 

analyzed t,oken: Current Token contains the TokenType, Current Lexeme contains a lexeme 

i f  CurrentToken is a lexical token, TokenPos it ion contains the column position, TokenLine 

contains the row position, and CommentPosition cor~tains the column position a t  which the 

first associated cornrncnt starts. 

i\ parser accepts a token by calling AcceptToken with the type of token expected; the 
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associated comment is set and the interface variables are updated to  reflect the new informa- 

tion about the next token. If CurrentToken is not of the specified type, LexicalAnalyzer 

calls the error handler function-for FileInitializeLexicalAnalyzer the error handler 

writes an error message to  standard output but a programmer supplied handler may do 

what it pleases. 

Recall from Chapter 5 that  tokens have row and column positions by virtue of the fact 

tha t  the stream of characters from which they are derived contains ASCII formatting char- 

acters tha t  imply discrete lines of text. This position information is essential for producing 

informative error messages. 

Parser 

UNIT Parser; INTERFACE ($F+, 0+, L-) 

USES LineBuffer, LexicalAnalyzer, MPS1; 

TYPE Node = Node-; 

FUNCTION Parse(VAR inputFile : TEXT) : Node; 
PROCEDURE ~arse~ineBuffer(theLineBuffer : LineBufferType; 

VAR ResultNode : Node; 
VAR ErrorPositionX, ErrorPositionY : WORD; 
VAR ErrorReason : STRING); 

FUNCTION ParseStream(NextChar : CharacterGenerat or; 
Failure : ErrorHandler) : Node; 

IMPLEMENTATION . . .  
END. 

Parser provides three different parsing routines. Parse parses a node from a TEXT file; 

Parsestream parses a node given a function that  generates characters and a function tha t  

handles errors; and ParseLineBuffer parses a node from a LineBuffer, it sets the res,llting 

node to  ResultNode and if an error occurs, the error information (i.e., the position and error 

message) is assigned to the remaining parameters. The  three routines share a common 

implementation. 

There is nothing very intcscstilig about the irnplcmentation of Parser. 
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C.14 Unparser 

UNIT Unparser ; INTERFACE {$F+, O+ ,L-3 

USES Index, Grammar, LexicalAnalyzer, Line, LineBuffer, MPS, MPS1; 

TYPE 
UnparseState = 

RECORD 
vposition, hPosition : INTEGER; 
Hold, Reserve : INTEGER; 
CurrentNode : Node; 
PreviousToken : TokenType; 
Breakpending : BOOLEAN; 
PendingHold : INTEGER; 
CASE Fitting : BOOLEAN OF FALSE: (Narrow : BOOLEAN) 

END; 
UnparseItem = - UnparseItemCell; 
UnparseItemCell = 
RECORD 
theToken : TokenType; 
theowner : Node; 
hPosition : INTEGER; 
NthCommentLine : WORD 

END ; 
BreakPrinter = PROCEDURE (VAR state : UnparseState); 
CommentLineprinter = PROCEDURE (Nth : INTEGER; VAR state : UnparseState) ; 
Tokenprinter = PROCEDURE (token : TokenType; VAR state : UnparseState) ; 
NodeEmitter = PROCEDURE (X : Node; VAR state : UnparseState); 

VAR Linewidth, DenoterCutOffWidth : INTEGER; 
PrintEmptyNodes : BOOLEAN; 
TheBreakPrinter : BreakPrinter; 
TheCommentLinePrinter : CommentLinePrinter; 
TheTokenPrinter : Tokenprinter; 
TheNodeEmitter : NodeEmitter; 
Delimit9 : ARRAY C~okenTypel OF SET OF TokenType; 
ReserveForA : ARRAY CMinPunctuationToken..MaxKeywordToken] OF 

l..MaxTokenString + 1; 

CONST 
Indentstep = 2; 
HalfIndentStep = 1; 

PROCEDURE Outputsyntagm(x : Node); 
PROCEDURE ~rint~yntagm(VAR f : TEXT; x : Node); 
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FUNCTION FitNode(x : Node; VAR s t a t e  : UnparseState) : BOOLEAN; 
PROCEDURE EmitNode(x : Node; VAR s t a t e  : UnparseState); 
PROCEDURE Emit (VAR s t a t e  : UnparseState) ; 
PROCEDURE EmitComment(Comment : LineBufferType; VAR s t a t e  : UnparseState);  
PROCEDURE Break(VAR s t a t e  : Unparsestate);  

IMPLEMENTATION . . .  
END. 

Unparser provides facilities for pretty-printing nodes. Function parameters are  used for 

the fitting and printing. 

A number of interface variables are declared. Linewidth is set to  indicate the number of 

columns in which the formatted output should fit. (The actual output may be wider when 

there is insuficicnt space to print the ~lodc.) DenoterCutOffWidth is set to illdicate the 

maximum length of a denoter's printed definition; if this length is exceeded, the definition is 

not printed. printEmptyNodes is set to indicate whether empty nodes should be printed as 

the keyword or should be invisible. The  array Del imi tQ,  for each type of token t ,  

indicates the set of tokens that must be delimited by white space when they follow t .  The 

The remaining interface variables are procedure variables for customizing the pretty 

printer. Each takes a state parameter of type UnparseState ,  which includes the follow- 

ing information. The  current vertical and horizontal position v P o s i t i o n  and h P o s i t i o n ;  

the  old, iec., the amount of indentation to appear after the next line-break; the Reserve, 

i.e., the amount of space to be left unused a t  the end of the line; the CurrentNode that i s  

being printed or fitted; the PreviousToken that  was printed or fitted; the PendingBreak, 

i.e., whct.hcr a break is pcndirig before the next token is printed; the PendingHold, i-e., the 

hold that  is i n  for the pendi~lg break; the F i t t i n g  flag, which indicates whctllcr the 

printer is testillg i f  a node fits or is actually printing; and finally, if the printer is not fitting, 

Narrow indicates wlretl~er the entire CurrentNode fits on the current line. (Breakpending 

arrd PendingHold are used in conjunction with the printing of comment lines so that  corn- 

ments appear as a block, i.e., each % character is lined lip in a column). 

TheBre&Printer is used by Unparser to print a linebreak and to set up the indentation 

for the next line. ?'herc4ore, it should normally increment v P o s i t i o n  and set h P o s l t i o n  to 



by the amount of space taken up by the % character and the comment-line itself. It is not 

called during fitting. (A  node that is commented is always printed as narrow.) 

TheTokenPrinter is used by Unparser to  fit and print tokens. Normally it increments 

hposition to  indicate the amount of space used by the token and Delimit9 is consulted to  

determine if space should precede the token. Only when Fitting is false in state, should 

tokens actually be printed. 

TheNodeEmitter over-rides the normal formatting of nodes. Initially TheNodeEmitter 

is set to  be the same as EmitNode. However, it can be replaced with a procedure tha t  does 

special formatting. This procedure can call EmitNode for cases to  be handled as usual. 

FitNode, Emit, EmitNode, Emitcomment, and Break are used to  implement node format- 

ting. The  details of how this is done will not be described. Instea,d, a typical node formatting 

routine is shown below: 

PROCEDURE ~mit~~adicMethodCal1 (VAR state : UnparseState) ; 

BEGIN 
WITH state DO 
BEGIN 
h i t ~ o k e n  (LCurlyBracToken, state) ; 
 old := hposition; 

INC(Reserve, 
System.Length 

(~et~exical~alue(GetComponent2(~urrent~ode))-) + 1) ; 
~h~~ode~rnitter(~etComponentl(Current~ode), state); 
DEC(Reserve, 

System.Length 
(Get~exicalvalue (GetComponent2(~urrent~ode) ) -)  + 1) ; 

TheNode~mitt er (Get Component2 (Current~ode) , st ate) ; 
~reak(state1; 
IF NOT Fitting OR (hPosition + Reserve < Linewidth) THEN 
BEGIN 
~NC(Reserve, ReserveForA CRCurly~racToken] ) ; 
~h~Node~mitter(~etComponent3(Current~ode), state) ; 
 reserve, ReserveForA CRCurly~racToken] ) ; 
hi tToken(RCur lyBracToken,  state) ; 
hitcomment (commentof (Current~ode) -, state) 
END 

END 
END ; 

A programmer wistiing to customize the forrna,tting of a particular cla,ss of node will 

make a copy of such an e x i s t i ~ ~ g  routine arid modify it. 
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by using hPosition to  indicate point sizes rather than simply column position. In other 

words, the units represented by hPosit ion, Hold, Linewidth, and so on, do not matter.  

Note that  the type UnparseItemCell is use by the unit TokenLine to  represent lines of 

tokens. Each such token has a TokenType, an owner node, and a starting hPosition. In 

addition, if the token is a comment-line, NthCommentLine indicates which line of theowner 

the token stands for. 

C.15 Makers 

UNIT Makers; INTERFACE ($F+,o+,L-) 

USES MPS; 

FUNCTION ~ake~ccumulation(x1, x2 : Node) : Node; 
. . . 
FUNCTION MakeVoidLiteral : Node; 

IMPLEMENTATION . . .  
END. 

Makers provides functio~rs for constructing each class of construction node from the a,ppro- 

priate numbcr and type of children. ( I f  an attached child is provided, a copy is automatically 

produced.) 

C.16 Access 

UNIT Access ; INTERFACE ($F+, O+ ,L-) 

USES MPS; 

FUNCTION Accumulationq (x : Node) : BOOLEAN; 
. . . 
FUNCTION ~hen~onditionq(x : Node) : BOOLEAN; 
FUNCTION ~ccumulator~f(x : Node) : Node; 

FUNCTION ~ariantsof (x : Node) : Node; 

IMPLEMENTATION . . .  
END. 
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Access provides two sets of functions: a recognizer for each class and category of node; 

and a selector for each construction component name. The  xQ functions yield true i f  their 

argument node is of the corresponding class or category; the xOf functions yield the x 

component of their construction argument. 

C.17 MPS 

UNIT MPS; INTERFACE {$F+, O+ ,L-) 

USES Grammar, Keywords, MPS1, LineBuffer; 

TYPE Node = Node-; 

VAR theUnattachedEmptyNode : Node; 

FUNCTION NodeType(x : Node) : Nodeclass; 
PROCEDURE ~ontext~omain(x : Node; VAR Result : Nodeclassset); 
FUNCTION DeletableContextq(~ : Node) : BOOLEAN; 
FUNCTION EmptyQ(x : Node) : BOOLEAN; 
FUNCTION Lexemeq(x :  ode) : BOOLEAN; 
FUNCTION Listq(x :  ode) : BOOLEAN; 
FUNCTION ~onstructionq (x : Node) : BOOLEAN; 
FUNCTION Attributeq(x : Node) : BOOLEAN; 
FUNCTION Parent (x : Node) : Node; 
FUNCTION ~ttribute~arent(x :  ode) : Node; 
FUNCTION Root(x :  ode) : Node; 
FUNCTION AttributeRoot(x :  ode) : Node; 
FUNCTION Depth(x : Node) : WORD; 
FUNCTION FirstLexeme(x :  ode) : Node; 
FUNCTION ~tructurally~qualQ (x , y : Node) : BOOLEAN ; 
FUNCTION ~tructurally~essq (x, Y : Node) : BOOLEAN; 

FUNCTION EnclosesQ(x, y : Node) : BOOLEAN; 
FUNCTION 1mproperlY~ncl~~e~q(~, y : Node) : BOOLEAN; 
FUNCTION ~ttribute~ncloses q (x, y : Node) : BOOLEAN; 
FUNCTION ~ontainsq(theLeftN~de, theRightNode, 

theTargetNode : Node) : BOOLEAN; 

FUNCTION ~nclosin~(AncestorDomain : Nodeclassset; x : Node) : Node; 
FUNCTION ~ommon~ncestor(~, : Node) : Node; 
FUNCTION ~ommentOf(x : Node) : LineBufferPointer; 
PROCEDURE ~ppend~omment (x : Node; hnment : LineBuff erType) ; 
PROCEDURE ~e~lace~omment (X : Node ; Newcomment : LineBuff erType) ; 
FUNCTION ~irstElement(1ist : Node) : Node; 
FUNCTION ~thElernent(1ist : Node; n : INTEGER) : Node; 
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FUNCTION FirstComponent(aConstruction : Node) : Node; 
FUNCTION NthComponent(aConstruction : Node; n : INTEGER) : Node; 
FUNCTION FirstChild(aParent : Node) : Node; 
FUNCTION NthChild(aParent : Node; n : INTEGER) : Node; 
FUNCTION NumberOfChildrenOf(x : Node) : INTEGER; 
FUNCTION Position(x : Node) : INTEGER; 
FUNCTION Previous(x : Node) : Node; 
FUNCTION Next(x : Node) : Node; 
FUNCTION Copy(x : Node) : Node; 
PROCEDURE Replace(x1, x2 : Node) ; 
PROCEDURE ReplaceAndSet(VAR xl : Node; x2 : Node); 
PROCEDURE Exchange (xl , x2 : Node) ; 
PROCEDURE Delete(x : Node) ; 
PROCEDURE Insert(1ist : Node; n : INTEGER; elem : Node); 
PROCEDURE TailInsert (list : Node; elem : Node) ; 
PROCEDURE Splice(1ist : Node; n : INTEGER; SubList : Node); 
FUNCTION Concat(elem, list : Node) : Node; 
FUNCTION Appendl(list, elem : Node) : Node; 
FUNCTION Append(list1, list2 : Node) : Node; 
FUNCTION ~ubList(1ist : Node; nl, n2 : INTEGER) : Node; 
FUNCTION NullList (kind : NodeClass) : Node ; 
FUNCTION Listl(kind : NodeClass; el : Node) : Node; 
FUNCTION List2(kind : NodeClass; el, e2 : Node) : Node; 
FUNCTION List3(kind : NodeClass; el, 62, e3 : Node) : Node; 
FUNCTION List4(kind : NodeClass; el, e2, 83, e4 : Node) : Node; 
FUNCTION List5(kind : NodeClass; el, e2, e3, e4, e5 : Node) : Node; 
FUNCTION Make~exeme(k : NodeClass; aLexicalValue : STRING) : Node; 
FUNCTION ~ a k e ~ ~ ~ e ~ d e n t i f  ier (aLexicalValue : STRING) : Node; 
FUNCTION Makevalue~dent if i er (aLexicalValue : STRING) : Node ; 
FUNCTION Make~nte~erLiteral (aLexicalValue : STRING) : Node ; 
FUNCTION Make~ealLiteral(aLexi~alvalue : STRING) : Node; 
FUNCTION Make~trin~Literal(aLexicalValue : STRING) : Node; 
FUNCTION Make~haracter~iteral (aLexicalValue : STRING) : Node ; 
FUNCTION Stringof (aLexeme : s ode) : STRING; 
FUNCTION lntegerOf(anIntegerLiteral : Node) : LONGINT; 

FUNCTION Realof (aRealLitera1 : Node) : REAL ; 
FUNCTION ~haracter~f(aCharacterLiteral : Node) : CHAR; 
FUNCTION BuildlntegerLiteral(x : LONGINT) : Node; 

FUNCTION ~ u i l d ~ e a l ~ i t  eral ( x : REAL) : Node ; 
FUNCTION Build~haracterLit eral (X : CHAR) : Node ; 

IMPLEMENTATION . .  
END. 

MPS the primary metaprogramming system abstraction. It declares the type 

Node and tl-lc special node call theUnattachedEmpty~ode. 

NodeType determines the Nodeclass of a node. ContextDomain determines the set of 
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Nodeclasses that  may appear in the context a t  which the argument node is attached. 

DeletableContextQ determines if its argument can be Dele ted  from its context. EmptyQ, 

LexemeQ, ListQ,  and Cons t ruc t ionQ are recognizers that  behave as implied by their names. 

A t t r i b u t e 4  determines if a node is an  attribute node. Recall tha t  an  unattached node 

used as a semantic attribute has its position field specially marked t o  indicate i ts attribute 

parent. Therefore, A t t r i b u t e q  determines if the position field of the root of its argument is 

so marked. 

Pa ren t  determines the parent of a node; theUnattachedEmptyNode is yielded i f  the 

argument node is unattached. Similarly, A t t r i b u t e P a r e n t  determines the  attribute parent 

of the root of the argument node and it too yields theUnattachedErnptyNode if A t t r i b u t e Q  

is f a l s e  for its argument. 

~ o o t  determines the root node of a node by repeated application of P a r e n t  until the 

parent is empty. Similarly, At t r ibu teRoot  determines the attribute root of a node by 

repeated application of A t t r i b u t  eParent  until the A t t r i b u t e P a r e n t  is empty. 

Depth determines the depth of a node with respect to  its root. F i r s tLexeme de- 

termines the first lexeme rcached b~ an pre-order traversal. S t r u c t u a l l y E q u a l ~  and 

StructurallyLessQ tcst for structural equivalence and lexicographic order. 

EnclosesQ dct,crmines whether the node x contains the node y as a descendant. 

ImproperlyEnclosesQ does the same but yields t r u e  when x and y are  the same node. 

AttributeEnc1osesQ determines if x can be reached from y by repeated applications of 

A t t r i b u t  eParent .  

Conta insQ deterlnines if theLeftNode, theRightNode, or some node in between 

ImproperlyEnclosesQ theTargetNode Therefore, theLeftNode and theRightNode milst 

be cklildren of tile same constructiori or list node and theLeftNode must appear before 

theRightNode. 

Enclosing applies Parent  until the parent's class is a member of AncestorDomain. 

CommonAncestor determines the node with largest depth that  has both x and y as a de- 

scendan t . 
Commentof a pointer to  a line-buffer. This can be used both to  access and to  update 

the comment field of a node. A line-buffer can be appended to the existing comment us ing  

Appendcomment. ~ e ~ l a c e C o m m e n t  replaces the comment and destroys the old comment. 

Firs tElement  yields the first child of a list node, unless the list is empty, i n  which 

case it the~nat tachedEmptyNode.  NthElement yields the nth child of a list node. 

argument n may be negative, in which case children are accessed right to  left (i.e., the 
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-1 child is the last child). Firstcomponent and NthComponent behave similarly but for 

constructions. And Firstchild arid NthChild also behave similarly but apply for both lists 

and constructions. 

Numberofchildren determines the number of children of a node; lexemes have 0 

dren. Position determines the position of a node; an  unattached node has position 0. 

Previous and Next determine the previous or next node with respect to  the context; they 

theUnattachedEmptyNode when there is no previous or next node. 

COPY creates a copy of a node, i.e., a node that  is StructurallyEqualQ but is unattached. 

Replace replaces xl in context with ~ 2 .  The node xl must be attached and i f  x2 is 

attached it is copied. The  class of x2 must be a member of the ContextDomain of xi. 

ReplaceAndSet does the same thing but sets xl to be x2. 

Exchange ex.clianges two nodes ~ I I  context. Each node's class must be a member of the 

other's contextDomain. Both nodes must be attached. 

delete deletes a node. The node must be attached and in a deletable context. Deleting 

a node that is an optional construction component has the effect of replacing the node with 

a new empty node. 

Insert inserts an  element a t  the specified position of a list. Just as for NthChild, the 

poGt,ion may be to specify right to left order. After the insertion the element will 

be at the indicated ps i t ion .  TailInsert is like Insert with n set to  -1. 

Splice inserts copies of the elements of the sublist a t  the indicated position of the list. 

Concat creates a new list from an element and a list by including the element as the first 

element of the list. Append1 is similar but the element is put a t  the end. Append creates 

a new combined list from two existing lists. Sublist creates a new list from a subrange of 

elements of an existing list. 

NullList creates an empty list of the specified class and the Listn functions create lists 

of the indicated length, given a class and a1)propriate elements. 

MakeLexeme creates a lexerne of the given class and with the given spelling. Irldividual 

MakeX functions for each class of kxcme are provided as well. StringOf yields the spelling of 

a Iexeme. Integerof, RealOf, and Characterof yield the Pascal value of an  integer-, 

or character-litcral, respectively. Similarly, BuildIntegerLiteral, BuildRealLiteral, and 

BuildcharacterLiteral build the appropriate class of lexeme given its Pascal value. 

This comp]ctes the interface for manipulating objects of Acer's context-free syntax. ~ 1 1  

these rout,ines arc implemented in terms of the da ta  structures provided by M P S ~ .  
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C.18 FileServer 

UNIT FileServer; INTERFACE ($F+,o+,L-) 

USES Manager, Index, DOS, LineBuffer, MPS; 

CONST BackupLevel = 2; 

PROCEDURE Store(x : Node) ; 
FUNCTION FetchDeclaration(Name : STRING) : Node; 
FUNCTION ~etchBinding(Name : STRING) : Node; 
FUNCTION RestoreBinding(Name : STRING; VAR OldBinding : Node) : Node; 
PROCEDURE ~toreClosure(Name : STRING; theclosure : Node); 
FUNCTION ~etch~losure (Name : STRING) : Node; 
PROCEDURE StoreInstructions 

(Name : STRING; theInstructions, theclosure : Node); 
FUNCTION ~etch~nstructions(Name : STRING; theclosure : Node) : Node; 
PROCEDURE ~toreCode(theC1uster : Node; thesize : WORD; thecode : POINTER); 
FUNCTION FetchCode(Name : STRING; VAR thecluster : Node) : ShortPointer; 
PROCEDURE ~tore~xecutable(theCluster : Node; 

thesize : WORD; thecode : POINTER); 
FUNCTION Fetch~xecutable(Name : STRING; 

VAR thecluster : Node) : ShortPointer; 
FUNCTION FindBindingFile(IdentifierName : STRING; 

VAR f : FILE) : BOOLEAN; 
FUNCTION ~indin~FileTime(1dentifierName : STRING) : LONGINT; 
FUNCTION ~ind~eclarat ionFi le (Ident if ierName : STRING; 

VAR f : FILE) : BOOLEAN; 

FUNCTION ~eclaration~ile~ime(1dentif ierName : STRING) : LONGINT; 
FUNCTION Find~ode~ile(1dentifierName : STRING; VAR f : FILE) : BOOLEAN; 
FUNCTION code~ile~ime(1dentifierName : STRING) : LONGINT; 
FUNCTION ~ i ~ d ~ n s t r u c t  ionFi le (Ident if ierName : STRING ; 

VAR f : FILE) : BOOLEAN; 

FUNCTION ~nstruction~ileTime(IdentifierName : STRING) : LONGINT; 
FUNCTION FindExecutableFi1 e (Identif ierName : STRING; 

VAR f : FILE) : BOOLEAN; 

FUNCTION Executable~ileTime(1dentifierName : STRING) : LONGINT; 
FUNCTION FindclosureFile(IdentifierName : STRING; VAR f : FILE) : BOOLEAN; 
FUNCTION closureFileTime(1dentifierName : STRING) : LONGINT; 
FUNCTION FetchFull~ame(VAR f : FILE) : STRING; 
PROCEDURE ~heck~oint~ode(VAR f : FILE; theNode : Node); 
FUNCTION ~estore~ode(VAR f : FILE) : Node; 
PROCEDURE cheCkpoint~ineBuf f er(VAR f : FILE; 

theLineBuf f er : LineBuff erType) ; 
FUNCTION ~estoreLineBuf f er (VAR f : FILE) : LineBuf f erType ; 
FUNCTION ~ileTime (VAR f ) : LONGINT; 
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FUNCTION HasBackup(Name : STRING) : BOOLEAN; 
PROCEDURE WritePath(VAR theFile : FILE; theNode : Node); 
FUNCTION ReadPath(VAR theFile : FILE; theNode : Node) : Node; 
PROCEDURE ShowExternals; 

VAR conformingDeclarationQ : FUNCTION (dl, d2 : Node) : BOOLEAN; 
Externals : 1ndex.T; 
oDir, aDir, dpDir, axeDir, vdDir, bakdir : PathStr; 

IMPLEMENTATION . . .  
END. 

Fileserver provides high-level access to the file system for storing, fetching, backing up, 

and restoring nodes and various associated ol~jects.  The following file-naming conventions 

are followed. Fixed-value-bindings and top-level binding-lists are  stored in '.vb' files and 

type-bindings are stored in ' . tb7 files-the file name is derived from the first 8 character 

of the binding's name. Backups are stored in ' .vbl, '  ' . tbl , '  '.vb2,' and '.tb2' files, Where 

the value of the constant BackupLevel indicates the number of backups to  be maintained. 

Closure information about fixed-value-bindings and binding-lists is stored in L.vdp' files and 

closure irlfornlation about type-bindings is stored in '.tdp' files. Fixed-value-declarations are  

stored i n  i.vd' files. Assembler code is stored in '.a' files. Linkables are  stored i n  L.o' files. 

Arid executab]es are stored in '.axe' files. 

Searching for is guided by the MS-DOS environment variable ACERINPUT, whicll 

should be set to be something as follows: 

Accordingly, the storirlg of declarations, closures, backups, executables, linkables, and  as- 

sembler codc is sllcll tllat i f  the current directory contains a 'vd,' 'dp,' 'bak,' 'axe,' lo,' or 

'a,7 respectively, the object is stored in that  directory rather than the current directory. 

Furthermorc, if a version of an object can be found in a directory other than the 

current directory using the search path, the new version is stored in the same directorr as 

thc previous version. 
Fileserver's main procedure is Store, which takes a node x and stores it as follows. 

Of course, tile node x most be a valid top-level construct, that  is, a fixed-vaIue-binding, 

a binding-]ist cont,airiing a fixed-value-hinding ( the first one of which is called the  primary 

a type-binding, or a fixed-value-declaration. HOW Store works depends on the class 

of node. 
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If x is a fixed-value-binding, the binding is stored in checkpointed form in a '.vb7 file. 

The  checkpointed form is a compacted syntactic representation, that  is, the node's class is 

encoded as a byte which is followed by either the spelling, if it is a lexeme, or the number of 

children and the children themselves, if it is a list or construction. Old versions of the '.vb' 

file are backed up. 

Similarly, if x is a binding-list, each fixed-value-binding is stored in checkpointed form i n  

a '.vb' file. Actually, the file for the primary unit contains the checkpointed binding-list and 

the files for the remaining fi xed-value-bindings simply refer to  the primary file. 

~f x is a type-binding, it is stored just like a fixed-value-binding but i n  a ( . tbl  file. A 
type-binding node becomes an attribute after it is stored. Old versions of the ' .tbl file are 

backed up. 

If x is a fixed-value-declaration, it is stored in a '.vdl file. Just as for a type-binding, it 

thereafter becomes an attribute node. 

P i l e s e r v e r  keeps an index, E x t e r n a l s ,  of mappings from S t r i n g P o i n t e r s  to  type- 

bindings and fixed-value-declaratio~ls currently in memory. S t o r e  therefore has the effect 

of including additional associations in this index. F i l e s e r v e r  also keeps track of whether 

a fixed-va]ue-binding or binding-list is modified with respect to its stored version; it uses 

MpS17s TouchMonitor facility for this. 

FetchDeclarat ion,  given the spelling of a value-identifier, searches for the fixed-va]ue- 

declaratioll associated with that spelling, which it loads and returns as its result. ~f a 
declaration cannot be found, theUnattachedEmptyNode is returned. The  declaratiorl i s  

either loaded from the file system or found in Ex te rna l s .  

Similarly, FetchBinding, given the spelling of a value-identifier, searches for the fixed.. 

va.lue-binding (or the binding-list containing the fixed-value-binding) associated with that 

spelling, whic]l it then loads and returns as its result. 

RestoreBinding is similar to FetchBinding but the '.vbl or ' .tbl file(s) are removed after 

loading and  tile backup versions are renamed so that  the latest backup again becomes the 

current version. 

StoreClosure is given the spelling of an identifier and a closure, which is represented as 

an arbitrary-]ist of identifiers, and it stores the closure in checkpointed form i n  a l.vdp) 

or ' .tdpl file, depending on whether the spelling is that  of a value-identifier or a type- 

identifier. Fe t chc losu re  is the illverse in that ,  given a spelling, it loads the associated 

t h e ~ n a t t a c h e d h p t y N o d e  is r e t u r d  i f  the closure is not stored. 

~ t ~ ~ ~ ~ ~ ~ t r u c t i o n s ,  given the sl)ellillg of a value-identifier, instructions wpresented as 
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a code-patch, and a closure of the associated declaration file, stores the information in a '.a' 

file. F e t c h I n s t r u c t i o n s ,  given a spelling and the closure, retrieves the instructions-the 

is modified to  reflect the closure stored in the '.a' file. 

S torecode  is given a cluster represented as either an  value-identifier or  an  arbitrary-list, 

value-identifier~, a size, and a P o i n t e r  a t  encoded instructions. Then, if the cluster is  

a value-identifier, S torecode  stores the encoded instructions in a '.o' file derived from the 

valuc-identifier. Otherwise, if the cluster is an arbitrary-list of identifiers, a '.o' file is created 

for each identifier, although only the first file contains the actual code with the remaining 

files simp]y referring back to the first file. (The notion of a cluster derives from the fact 

that a binding-list usually contains several fixed-value-bindings for which '.07 files must be 

created, and all these '.o' files are interdependent.) Fetchcode,  given the spelling of a 

identifier, returns a S h o r t P o i n t e r  to  the encoded instructions associated with the identifier; 

it also sets t h e c l u s t e r .  

> t o r e ~ x e c u t a b l e  and FetchExecutable  are directly analogous to  S torecode  and 

Fetchcode but they refer to '.axe' files. 

A of fullctions are provided for Finding files and for determining tile creation 

FileTime for files. A pair of such functions is provided for bindings, declarations, rode, 

instructions, executablcs, and c h u r e s -  

FetchFullName, given a F i l e  associated with a binding or declaration file, determines 

the complete spelling of the object stored in that  file. (PCAcer uses this feature to make file 

names more readable.) 

CheckPointNode cllcckpoints a node to  a file and RestoreNode is its inverse. Similarly, 

CheckPointLineBuff e r  checkpoints a line-buffer to  a file and RestoreLineBuffer  is its 

inverse. 

Fi leTime,  given  a file, returns its creation time. 

HasBackup, given the spelling of a vahle- or typeidentifier, determines if tlrere is a L .vbl '  

or ' . tb l '  with that spelling. 

Writepath, given a file and a node, stores i l l  the file the information about how to  reach 

the llode frorn its root. l'his informat'ion is given in terms of a list of child positiolls that 

be selected star t i~ig a t  t l ~ e  root. Readpath is the inverse of Wri tepa th .  (PCAccr uses 

this feature to store the position of a node window's selection). 

Finally, conf o r m i n g ~ e c l a r a t i o n q  is used to determine i f  a stored declaration is 

patible with the previous version so that  the creation time of the previous version can be 

used. The unit AST sets this variable with a function that  tests whether the two declarations 
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have equivalent types. 

Fileserver has a complex implementation but little would be gained by describing it i n  

detail. 

AST 

UNIT AST; INTERFACE ($F+ ,o+ ,L-) 

USES Index, Access, Grammar, Makers, Line, LineBuffer, MPS, MPS~, 
Unparser, Parser; 

FUNCTION ConstructorQ(x : Node) : BOOLEAN; 
FUNCTION ~ompilationUnitQ(x : Node) : BOOLEAN; 
FUNCTION ~rimaryUnitOf(x : Node) : Node; 
FUNCTION Global(id : STRING) : Node; 
FUNCTION DefiningOccurrenceOf(id : Node) : Node; 

FUNCTION DefinitionOf(x :  ode) : Node; 
FUNCTION ~enotationof (x :   ode) : Node; 
FUNCTION Typeof (x : t ode) : Node; 
FUNCTION KindOf(x :  ode) : Node; 
FUNCTION SubTypeQ(tl, t2 : Node) : BOOLEAN; 
FUNCTION ~~uivalent~ypeQ(t 1, t2 : Node) : BOOLEAN; 

FUNCTION MaxType(t1, t2 : Node) : Node; 

FUNCTION ~ameValuesQ(v1, v2 : Node) : BOOLEAN; 
FUNCTION SubSignatureQ (xl , x2 :  ode) : BOOLEAN ; 
FUNCTION ~alid~rgumentsQ(theArguments, thesignature : Node) : BOOLEAN; 
FUNCTION Invalid~rgurnentOf(theArguments, thesignature : Node) : Node; 
FUNCTION TagMatch(x, id :  ode) : Node; 

FUNCTION ~bstract~aseOf(theType : Node) : Node; 
FUNCTION Quantifierof (theType : Node) : Node; 
FUNCTION VariableIdentif ierQ (id : Node) : BOOLEAN; 
FUNCTION ~ecursive~~~eOperatorQ(x : Node) : BOOLEAN; 
FUNCTION ~efinitionCopy(y, At : Node; Substitutions : 1ndex.T) : Node; 
FUNCTION Def inition~opyAt (theNode, At : Node) : Node; 
FUNCTION ~losureOf (theNode : Node) : Index. T; 
FUNCTION ~akeDenoter(x :  ode) : Node; 
FUNCTION ErrorT~peQ (theType : Node) : BOOLEAN; 
FUNCTION ~oid~~~eQ(theType : Node) : BOOLEAN; 
FUNCTION ~oolean~~peQ(theType : Node) : BOOLEAN; 
FUNCTION ~trin~~ypeQ(theType : Node) : BOOLEAN; 
FUNCTION ~haracter~ypeQ(theType : Node) : BOOLEAN; 
FUNCTION ~eal~~~eQ(theType : Node) : BOOLEAN; 
FUNCTION IntegerTypeQ(theType : Node) : BOOLEAN; 
FUNCTION RaiseTypeq (theType : Node) : BOOLEAN; 
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FUNCTION ReferenceTypeQ(theType : Node) : BOOLEAN; 
FUNCTION ReferenceBaseTypeOf (theType : Node) : Node; 
FUNCTION PointerTypeq(theType : Node) : BOOLEAN; 
FUNCTION ~ointerBaseTypeOf(theType : Node) : Node; 
FUNCTION ~xce~tionTypeQ(theType : Node) : BOOLEAN; 
FUNCTION ~ x c e ~ t  ionBaseType Of (theType : Node) : Node ; 
FUNCTION ArrayTypeQ(theType : Node) : BOOLEAN; 
FUNCTION ~rra~BaseTypeOf (t heType : Node) : Node ; 
FUNCTION AccumulatorTypeq ( theType : Node) : BOOLEAN; 
FUNCTION ~ccumulatorBaseTypeOf (theType : Node) : Node; 
FUNCTION ~ccumulatorResultTypeOf(theType : Node) : Node; 
FUNCTION ~teratorTypeq(theType : Node) : BOOLEAN; 
FUNCTION ~teratorBaseTypeOf(theType : Node) : Node; 

IMPLEMENTATION . . .  
END. 

AST routinrs for manipulating Accr's context-dependent syntax. l ts simple i n -  

terface is an illdicatior~ of the s~cccssful  design of a simple c0ntext-dependent syntax for 

Accr 

ConstructorQ determines i f  x is a constructor. CompilationUnitQ determines if is a 

valid top-lcve] construct. PrimaryUnitOf selects the first fixed-value-binding of a binding- 

list. 

Global, givell the spelling of an identifier, uses Fileserver to  determine the fixed-valUe- 

declaration or type-birlding associated with that  spelling. 

Def iningoCcurrenceOf, Def init ionof, Denotationof, Typeof, and KindOf select the 

indicated semantic attribute. 

SubtypeQ determines whether tl is a subtype of t2. EquivalentTy~e~ determines 

ti is a subtype of t2 and t2 is a subtype of ti. MaxType yields the largest type 

( i n  terms of the order defined by SubtypeQ) of its two arguments-if either of its 

arguments is the error-type or the argllments are unrelated as subtypes it yields the error- 

type; o n l y  i f  tlot,ll arguments are the raise-type does it yield the raise-type. SaeValues~ 

determines i f  the value VI and the value v2 must always denote the same value a t  run-time. 

SubSignatureQ deterlnines i f  the signature xi is a subsignature of the signatllre x2. 

~ ~ l i d ~ ~ ~ ~ ~ ~ ~ t s Q  determines i f  the a~gument-list  theArguments is valid with respect 

to  thesignature. 1nvalidArgumentOf yields the first argument of theArguments that  i s  

invalid with respect to thesignature. 

TagMatch, given a value-idmtificr and a variant-type or variant-inspection, yirlds the 

branch associated with the idcntificr. 
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AbstractBaseOf and Quant  if i e r 0 f  select the abstract-base and quantifier, respectively, 

of an abstract-type. 

va r i ab l e Iden t i e rQ  determines i f  i d  is introduced by a variable-value-declaration or 

a variable-value-binding. RecursiveTypeOperatorQ determines if x is a recursive type- 

operator. Recursive type-operators are invalid. 

Def i n i t i o n c o p y ,  given a node y to copy, a location A t  from which copying takes 

the parent of y) ,  and an index of substitutions to be made during copying, returns 

a node that  denotes the same object as the original; it is typically expressed using denoters. 

Def in i t ionCopyAt,  given a node y and a location A t  a t  which y is to  be expressed, creates a 

copy that  denotes the same object as y but is expressed in terms of the scope a t  ~t without 

the use of denoters. (Actually, Def ini t ionCopyAt produces a copy of the denoted object if 

it cannot simply refer to the original.) 

Closureof ,  given a node, yields an index representing the set of global identifiers used i n  

the%nodc. MakeDenoter makes a denoter; it determines whether to  make a type-denotcr or 

a valne-denoter based on whether x is a type or a value. The  remaining functions are  

convenient recognizers and selectors for dealing with standard types tha t  are  known to AST. 

Several tricky techniques are used to implement the features of AST. For example, to 

determine that  the denotation of x in 

{let x be y ;  let y be x; 

let x be tuple x end 
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Tuple :{[I)  end 

~ 1 1  recursive types for constructors are handled in this way, that  is, by associating with the 

literal a partially determined type before proceeding to  determined the types of the literal's 

components. 

Note also that  if TypeOf starts a t  the defined-identifier x, it cannot simply x. so 

that if x. is reached again, a loop is detected because this is precisely what would happen: 

the first x would be marked, then the type of the tuple-literal would be determined, which 

would recursively request the type of X, which would now be marked. Thus for Typeof, a 

node must be marked and reached twice before a loop is detected. 

In Acer's definition manual, subtyping is defined in terms of Definitioncopy but this 

is not an efficient implementation strategy since it involves the creation of massive numbers 

of Ilodes. Instead, AST keeps an index of substitutions that are in effect during subtyping so 

that  copying can be avoided. 

Furthermore, SubType must be prevented from going into an infinite loop. For example, 

during subtyping of components of the two types TI and T2 in 

{let TI be Tuple :TI  end; 
let T2 be Tuple : T2 end; 

USES Index, MPS; 

FUNCTION closed~ypeq(theType : Node) : BOOLEAN; 
FUNCTION validate(x : Node) : 1ndex.T; 
PROCEDURE FindFirstError 

(x : Node; VAR ErrorNode : Node; VAR ErrorMessage : STRING); 
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IMPLEMENTATION 
END. 

AST2 is provided for testing whether a node conforms with all context-depcndent con- 

straints. Orle of its main responsibilities is to detect invalid delayed-occurrences. 

ClosedTypeQ determines whether a type can be expressed with global scope. It is used 

to the type used as a tag of a dynamic. 

Validate, given a node, yields a n  index containing mappings from nodes to  error mes- 

sages. Validate detects all errors. Similarly, FindFirstError given a node, checks it for 

errors but it yields the first erroneous node, along with its error message, tha t  it finds. 

N~ special implementation tricks are used in this unit. 

C.21 Compile 

UNIT Compile; INTERFACE ($F+,O+,L-) 

USES Index, Access, Makers, Grammar, AST, LineBuffer, Line, Unparser, 
Parser, MPS, MPSI; 

TYPE 
Registers = 

(AO, Al, A2, A3, A4, A59 A69 A73 

DO, DI, ~ 2 ,  ~ 3 ,  D4, D5, D6, D7, NULL); 
EffectiveAddressModes = 

(Immediate, Direct, Indirect, MemoryIndirect, PreDecrement, 
PostIncrement , Label-, Special) ; 

InstructionKinds = (Lea, Jsr, Bz, Bnz, Bra, Rtd, Trap, Move, Lbl) ; 

FUNCTION Translate(x : Node; theclosure : Node) : Node; 
FUNCTION ~inker(UnitNme : STRING; VAR thecluster : Node) : Node; 
FUNCTION ~ddress~ode~ype(theEffectiveAddress : Node) : 

~ffectiveAddressModes; 
FUNCTION ~nstructionType(theInstruction : Node) : InstructionKinds; 
FUNCTION ~ e ~ i s t e r ~ y p e  (theRegister : Node) : Registers ; 

IMPLEMENTATION . . .  
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E N D .  

Compile provides routines for translating a fixed-value-binding or binding-list to  a code- 

For PCAcer, such a code-patch expresses a simple form of assembly language that  

is executable on a simulated machine. It is a greatly simplified form of MC68OxO code. 

Hence, the abstract machine provides registers A0 through A 7  and DO through D7, and sup- 

ports the address modes: Immediate, D i r e c t ,  I n d i r e c t ,  MemoryIndirect,  PreDecrement, 

PostIncrement ,  Label ,  and S p e c i a l .  The machine provides only the instructions with the 

names: Lea (load effective address), J s r  (jump to  subroutine), Bz (branch on zero), Bnz 

(branch on not zero), Rtd (return from subroutine), Trap (call a numbered routine coded i n  

Turbo Pascal), and Move (move a four byte word from one place to  another). All additiolla] 

operations, such as addition, are providcd as traps to Pascal routines. They are set up  by 

assigning to the Trapprocedures  array of the Run unit. 

T h e  det,ails of the translation will not be described as they are  fairly straightforward and 

would req,lire a complete description of the abstract machine and its instruction set. Only 

the interface is described. 

T rans l a t e ,  given a fixed-value-binding or hindingirig-list and its closure, yields codc- 

representing the translation. This translation can be stored in a '.a' file. 

L inker ,  given the spelling of a value-identifier, yields a code-patch tha t  modifies the 

translation to include the instructions for setting UP the run-time closure 

to the instructions; t h e c l u s t e r  of identifiers associated with the translation is set 

as well. resulting code-patch can then be encoded and stored as a '.o' file. 

AddressModeType, Ins t ruc t ionType ,  and Regis te rType  are used by the unit Link to 

analyze a codc-patch so as to encode it l  in compacted form. The  small number of instructions 

allows for a very colnpact encoding of '.o' and '.axe' files. 

C.22 Run 

UNIT Run; INTERFACE ($F+, 0+, L-1 

USES Dos, Manager, Compile; 

CONST 
Headersize = 5 ;  
Stacksize = 16 * 1024; 
NumberOfTraps = 50; 
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TYPE 
PointerPointer = POINTER; 
BytePointer = BYTE; 
ShortIntPointer = - SHORTINT; 
IntegerPointer = - INTEGER; 
WordPointer = ^ WORD; 
LongIntPointer = - LONGINT; 
RealPointer = ^ REAL; 
AcerFlag = (Traced, Marked, Coded) ; 
AcerValuePointer = AcerValueType; 
AcerValueType = 
RECORD 
Size : WORD; 
Next : ShortPointer; 
Flags : SET OF AcerFlag; 
CASE WORD OF 
0: (theBytes : ARRAY [O. .655201 OF BYTE) ; 
1: (thewords : ARRAY LO. .327601 OF WORD) ; 
2: (thepointers : ARRAY LO. .I63801 OF POINTER) 

END ; 

VAR theRegisters : ARRAY [AO. . D71 OF AcerValuePointer ; 
theprogramcounter : AcerValuePointer; 
Trapprocedures : ARRAY LO. . NumberOfTraps] OF PROCEDURE; 
thestack : ShortPointer; 

FUNCTION ~llocate~raced(Size1nBytes : WORD) : ShortPointer; 
FUNCTION ~llocate~ntraced(Size1nBytes : WORD) : ShortPointer; 
FUNCTION ~llocate~oded(Size1nBytes : WORD) : ShortPointer; 
PROCEDURE Execute(thePr0gram : AcerValuePointer); 
PROCEDURE Decode (thecode : ShortPointer) ; 
PROCEDURE ReclaimMemory ; 

IMPLEMENTATION 
END. 

Run defines t]le run-time representation of Acer programs and values; in fact, an  Acer 

program is Accr value so their is just one representation. Thus an  Acer value is  rep- 

resented as an ~cerValuePointer, which points a t  an AcerValueType, a record consisting 

of the following: a Size indicating the number of bytes allocated to the record; Next 

chain for the purpose of garbage collection.); a Flags field, which is explained below; and a 

pointers. 
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The Flags field of an AcerValueType is used as follows: if the rest of the record is an 

array of AcerValuePointers, the Traced flag is set so tha t  garbage collection will know tha t  

it should trace the rest of the record. The Traced flag is not set when the rest of the record 

encodes the bit representation of some value such as a string or a real. The  Marked flag, 

as the name suggests, is used during garbage collection. Finally, the Coded flag is used to  

indicate tha t  the rest of the record encodes machine instructions; this flag is necessary so that 

dynamic-vaIues that  involve code are properly handled. (A  record containing code contains 

a reference to  a node that in turn contains all the type-tags used by its dynamic-values.) 

The AllocateX functions are used to allocate AcerValuePointers but because the record 

to which they point is segment aligned, only a ShortPointer is yielded. 

Execute takes an AcerValuePointer, typically one that  is yielded by the Loader frlrlction 

of the Link unit, and runs it to completion. 

Decode prints a readable rcprcs~ntation of an  AcerValueType record that represents 

code. It is used for d~bugg i~ lg .  

ReclaimMemory rcclaims all the memory I I S C ~  during the execution of an Acer program. 

(In this imp]enrcntation, no garbage collection is performed while a program is actually 

executing. A practical implementation must include this.) 

C.23 Link 

UNIT Link; INTERFACE ($F+,o+,L-1 

PROCEDURE storeEncodedInst ructions (theclust er , theInstructions : Node) ; 
FUNCTION Loader (Name : STRING) : AcerValuePointer ; 
PROCEDURE write~cer~alue(theVa1ue : AcerValuePointer; theType : Node); 
FUNCTION ~cer~alue~oNode(theVa1ue : AcerValuePointer; 

theType : Node) : Node; 

IMPLEMENTATION . . .  
END. 

Link serves several roles (and is perhaps badly named). 

~t~~e~ncodedInstructions, given a c h t c r  and a code-patch representing instructions, 

encodes the instructions in compact form and stores them in a '.o' file using the Fileserver 
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unit. 

Loader ,  given a value-identifier spelling, finds its '.o' file and all the '.o' files it depends 

on. The  information from these files are then loaded as an A c e r V a l u e P o i n t e r .  The  result 

can then be ~ x e c u t e d .  

wr-teAcerValue, given an Acer value and its type, prints to  standard output the Acer 

syntactic representation of that value. Similarly, AcerValueToNode, given an  Acer value 

its type, converts the value to its representation as a node. This is the routine PCAcer uses 

t,o produce the node that, results from running a program. 

C.24 ObjectView 

UNIT ObjectView; INTERFACE ($F+,O+,L-) 

USES Line ,  MPS; 

TYPE 
RectanglePointer  = Rectangle;  
Rectangle = 

OBJECT 
x i ,  y l ,  dx,  dy : WORD; 
FUNCTION x2 : WORD; 
FUNCTION y2 : WORD; 
FUNCTION ~ o n t a i n s ( x ,  y : WORD) : BOOLEAN; 
PROCEDURE ~ntersect (VAR Operand2, Resu l t  : Rectang le ) ;  
PROCEDURE ~ i s p l a c e ( D e l t a X ,  DeltaY : INTEGER); 

END ; 
T = - ObjectCel l ;  
I t e r a t o r  = 

OBJECT 
FUNCTION Next(VAR theviewedobject  : TI : BOOLEAN; VIRTUAL; 
PROCEDURE Reset ;  VIRTUAL; 

END ; 
ObjectCel l  = 

OBJECT 
theowner : Node; 
ViewBox : RectanglePointer ;  

theBanner : STRING; 
theS ta tusLine  : STRING ; 

x l ,  y l ,  x2,  y2 : WORD; 
CONSTRUCTOR Construct  (theNode : Node ; theViewBox : RectanglePointer)  ; 
DESTRUCTOR Des t ruc t ;  VIRTUAL; 
FUNCTION Copy(theViewBox : Rectanglepointer)  : T ;  VIRTUAL; 
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FUNCTION dx : WORD; VIRTUAL; 
FUNCTION dy : WORD; VIRTUAL; 
FUNCTION TextAt(x, y : WORD) : WORD; VIRTUAL; 
FUNCTION CharacterAt(x, y : WORD) : CHAR; 
FUNCTION ~ t t r i b u t e A t ( x ,  y : WORD) : BYTE; 
FUNCTION Banner : Str ingPointer ;  VIRTUAL; 
FUNCTION Owner : Node; 
PROCEDURE CorrectView; VIRTUAL; 
PROCEDURE Selec t (x ,  y : WORD); VIRTUAL; 
PROCEDURE ReSelect(x, y : WORD); VIRTUAL; 
PROCEDURE Extend(x, y : WORD); VIRTUAL; 
PROCEDURE Delete(VAR AffectedViews : I t e r a t o r ) ;  VIRTUAL; 
PROCEDURE Destroy(VAR Af f ectedviews : I t e r a t o r )  ; VIRTUAL; 
PROCEDURE Insert(VAR AffectedViews : I t e r a t o r ) ;  VIRTUAL; 
PROCEDURE Yank; VIRTUAL; 

END ; 

IMPLEMENTATION . . .  
END. 

Objectview Rec tang lepo in t e r  and Rectangle  to  manipulate rectangular 

jects. A rectangle object has an upper-left corner ( x l ,  y l ) ,  a lower-right corner ( ~ 2 ,  y2) ,  a 

width dx, and a heigllt dy. One can test i f  a rectangle Conta ins  a coordinate (I, y ) .  one 
can determine the ~ n t e r s e c t i o n  of two rectangles, which is itself a rectangle. And one can 

Di sp lace  a rectangle. 

r 1 , he purpose of objectview,  however, is to represent the behavior tha t  is common 

to both tes t  wintlows and node windows in the PCAcer environment. Thus a window is 

rel"csentcd as a O b j e c t c e l l ,  which has theowner as its owner node; a ViewBox, which 

is the area bollrlded by the window's frame; theBanner  and t h e s t a t u s l i n e ,  which are  

represented as a S t r i n g ;  an upper-left corner a t  (11, y l ) ;  and a lower-right corrler (x2, 

y2).  A window can be cons t ruc t ed ,  Des t ruc ted ,  and Copied. The  width and height of a 

wirldow are given by dx and dy. CharacterAt,  given a coordinate in the ViewBox, determines 

the character a t  the coordinate and similarly, A t t r i b u t e A t  determines the color attribllte 

a given coordinate; the two are simultaneously determined by TextAt.  variables 

theBanner and theowner should be access using Banner and Owner. 

A window can be asked to Correctview its ViewBox so that  its selection point is i n  

A window can be s e l e c t e d  a t  a given coordinate and since selecting the selection of a text, 

window alters the selection mode, a window can be Rese lec ted  as well--this works just like 

S e l e c t  but resrts the selcctiori mode. 'rhe selection of a window can also be Extended. 

i\ window must also support the editing commands De le t e ,  Destroy,  I n s e r t ,  and  Yank. 
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The first three take an Iterator argument that  iterates through the sequence of other 

windows that  are also effected by the edit. Iterator is defined as an  object with a Next 

function for mapping through the sequence of windows and a Reset function for restarting 

the iteration. 

Objectview does not implement useful bodies for most ObjectCell routines; the units 

Lineview and ~ o k e n ~ i e w  do this. 

UNIT Lineview; INTERFACE ($F+,O+,L-) 

USES Line, LineBuffer, MPS, Objectview; 

TYPE 
ModeType = (CharacterMode, TokenMode, LineMode); 
T = ObjectCell; 
Ob j ectCell = 
OBJECT (Obj ectView. Objectcell) 
theLineBuffer : LineBufferType; 
Mode : ModeType; 
CONSTRUCTOR ~onstruct(theNode : Node; theViewBox : RectanglePointer); 
CONSTRUCTOR ArbitraryConstruct 

(theNode : Node; 
InitialLineBuffer : LineBufferType; 
theViewBox : RectanglePointer); 

DESTRUCTOR Destruct; VIRTUAL; 
FUNCTION Copy(theViewB0x : RectanglePointer) : 0bjectView.T; VIRTUAL; 
FUNCTION dx : WORD; VIRTUAL; 
FUNCTION dy : WORD; VIRTUAL; 
FUNCTION ~extAt(x, Y : WORD) : WORD; VIRTUAL; 
FUNCTION Banner : Stringpointer; VIRTUAL; 
PROCEDURE Correctview; VIRTUAL; 
PROCEDURE ~elect(x, y : WORD); VIRTUAL; 
PROCEDURE ~xtend(x, y : WORD) ; VIRTUAL; 
PROCEDURE ~elete(VAR Affectedviews : Iterator); VIRTUAL; 
PROCEDURE ~estroy(VAR AffectedViews : Iterator); VIRTUAL; 
PROCEDURE ~nsert(VAR AffectedViews : Iterator); VIRTUAL; 
PROCEDURE Yank; VIRTUAL; 
PROCEDURE ~nterText(ch : CHAR; VAR AffectedViews : Iterator); 
PROCEDURE BuildLineBuffer; 

END ; 

VAR thescrapview : T; 
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FUNCTION Linearize(theNode : Node; Width : WORD) : LineBufferType; 

IMPLEMENTATION . . .  
END. 

Lineview extends the behavior of a window as defined by ObjectView. It implements 

PCAcer text windows. 

The type ModeType is defined to denote the three different selection modes tllat a text 

window supports. Like ObjectView, LineView defines T and O b j e c t c e l l ,  which inherit their 

implementation from Ob j e c t V i  ew. LineView extends an  Ob j e c t C e l l  as follows. 

A text window contains t h e L i n e B u f f e r  to hold the buffer of text tha t  it views. Mode 

indicates the current selection mode. A text window can he constructed llsing Construct ,  

which tilen uses Bui ldLineBuff  e r  to  make the appropriate line-buffer from the owner node. 

~ ~ h i t ~ ~ ~ ~ C o n s t r ~ ~ t  cons t ru~t~s  a text window with a given linebuffer.  

A text window defines the same operations as an ObjectView window. In addition, 
EnterText is provided for inserting a character a t  the selection point; it takes an  iterator 

that scqucnces through other windows that are affected by this insert. Bui ldLineBuffer  i s  

provided to a line-buffcr from the owner; it uses L i n e a r i z e  to  format the owner 

node. 

Tile variable t h e s c r a p v i e w  is provided as a text window from which insertions are  taken 

ant] to  which deletions go. 

C.26 TokenLine 

UNIT TokenLine ; INTERFACE {$F+, O +  , L-) 

USES Line,  LexicalAnalyzer,  MPS, Sequence; 

TYPE 
TokenLineType = SequenceType; 
TokenLinePointer = TokenLineType; 
TokenRecord = 

RECORD 
theToken : TokenType; 
theowner, theEnclosingDenoter : Node; 
thehpos i t ion  : WORD; 
t h e s t r i n g  : St r ingPoin te r  
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END ; 
TokenRecordPointer = TokenRecord; 

CONST 
MaxTokenLineLength = MaxSequenceLength DIV SizeOf(TokenRecord); 
NullTokenLine : TokenLineType = NIL; 

FUNCTION Construct(theTokenLineLength : WORD) : TokenLineTy~~; 
PROCEDURE Destruct(VAR theTokenLine : TokenLineType); 
FUNCTION Length(theT0kenLine : TokenLineType) : WORD; 
FUNCTION NthElement(theT0kenLine : TokenLineType; n : WORD) : 

TokenRecordPointer; 
PROCEDURE AppendElement 

(NextToken : TokenType; 
Nextowner, NextEnclosingDenoter : Node; 
NexthPosition : WORD ; 
Nextstring : StringPointer; 
VAR theTokenLine : TokenLineType) ; 

IMPLEMENTATION . . .  
END. 

TokenBuffer 

UNIT TokenBuf f er ; INTERFACE ($F+, O+ , L-) 

USES Grammar, TokenLine, Sequence, MPS; 

TYPE 
TokenBufferType = SequenceType; 
TokenBufferPointer = - T~kenBufferTy~e; 

CONST 
MaxTokenBufferLength = MaxSequenceLength DIV 4; 
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NullTokenBuffer : TokenBufferType = NIL; 

FUNCTION Tokenize(theNode : Node; Width : WORD) : TokenBufferType; 
FUNCTION Construct(theTokenBufferLength : WORD) : TokenBufferT~p~; 
PROCEDURE Destruct (VAR theTokenBuf f er : TokenBuf f erType) ; 
PROCEDURE AppendElement 

(NextTokenLine : TokenLineType; 
VAR theTokenBuffer : TokenBufferType); 

FUNCTION Length(theT0kenBuffer : TokenBufferType) : WORD; 
FUNCTION NthElement(theTokenBuffer : TokenBufferType; n : WORD) : 

TokenLinePointer; 
FUNCTION ~earestTokenRecord(theTokenBuffer : TokenBufferType; 

VAR x, y : WORD) 
: TokenRecordPointer; 

PROCEDURE NearestTokenRecords 
(theTokenBuffer : TokenBufferType; 
x, y : WORD; 
VAR theLeftTokenRecord, 

theRightTokenRecord : TokenRecordPointer); 

IMPLEMENTATION . . .  
END. 

UNIT Tokenview; INTERFACE ($F+,O+,L-) 

USES Access, Line, Tokeduff er, TokenLine, MPS, Objectview, AST; 

TYPE 
T = - Objectcell; 
Ob jectCell = 
OBJECT (Obj ectView. Objectcell) 
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theTokenBuffer : TokenBufferType; 
theLeftNode, theRightNode, theEnclosingDenoter : Node; 
theUnparseWidth : WORD; 
CONSTRUCTOR Construct(theNode : Node; theViewBox : RectanglePo 
DESTRUCTOR Destruct; VIRTUAL; 
FUNCTION Copy(theViewBox : RectanglePointer) : 0bjectView.T; v 
FUNCTION dx : WORD; VIRTUAL; 
FUNCTION dy : WORD; VIRTUAL; 
FUNCTION TextAt(x, y : WORD) : WORD; VIRTUAL; 
FUNCTION Banner : StringPointer; VIRTUAL; 
PROCEDURE Correctview; VIRTUAL; 
PROCEDURE Select (x, y : WORD) ; VIRTUAL; 
PROCEDURE Extend(x, y : WORD); VIRTUAL; 
PROCEDURE Delete(VAR AffectedViews : Iterator); VIRTUAL; 
PROCEDURE Destroy(VAR AffectedViews : Iterator); VIRTUAL; 
PROCEDURE Insert(VAR AffectedViews : Iterator); VIRTUAL; 
PROCEDURE DefinitionCopyAt 

inter) ; 

IRTUAL; 

(VAR Aff ectedviews : Iterator; theNode : Node) ; VIRTUAL; 
PROCEDURE Yank; VIRTUAL; 
PROCEDURE ~reateElement(x, y : WORD; VAR AffectedViews : Iterator); 
VIRTUAL ; 
PROCEDURE BuildTokenBuffer; 
PROCEDURE ~et~odeSelection(Left, Right, EnclosingDenoter : Node); 

END ; 

PROCEDURE MonitoredReplace 
(theNode, theReplacementNode : Node; 
VAR AffectedViews : Iterator); 

PROCEDURE MonitoredDelete 
(theLeftNode, theRightNode : Node; 
VAR AffectedViews : Iterator); 

VAR thescrapview : T; 

IMPLEMENTATION . . .  
END. 

Tokenview extenrls the behavior of a window as defined by Ob j ectview. It implerncnts 

~ c A ~ ~ ~  windows. Like Objectview, TokenView defines T and Objectcell, whicfl i n -  

herit tlIeir implementation from Objectview. TokenView extends an Objectcell as follows. 

i\ node willdow ~ s c s  theTokenBuffer to  hold a formatted version of its owner  For spec- 

i fy ing  its selection point it uses theLeftNode, theRightNode, and t h e E n ~ l o s i n ~ ~ ~ ~ ~ ~ ~ ~ .  

( 1 3 ~ ~ ~ ~ ~ ~  tile definition of a denoter may print a node that  is also printed elsewhere, to 

plctely specify the selected nodes of a node window, the enclosing denoter must be specified 

as The theUnparseWidth is set to indicate the width used to  when format t ing  
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theTokenBuffer .  

In to the regular operations provided by ObjectView windows, a node window 

provides the following. The  procedure Crea teElement  inserts an  element into a list a t  the 

given coordinate. The  procedure BuildTokenBuff e r  makes a TokenBuff er by formatting 

the owner node to a TokenBuf f e r .  And the procedure S e t N o d e S e l e c t i o n  sets the selection 

of a node window. 

~ ~ ~ i t o r e d R e p l a ~ e  and Moni to redDele te  are used in place of MPS's R e p l a c e  and D e l e t e  

so that their affects on window owners and selections can be maintained. For example, a n  

unattached node can be replaced using Moni to redReplace  with the effect that i f  it is the 

owrler of any window then the owner is replaced. 

 he variable t h e s c r a p v i e w  is provided as the node window frorn which insertions are 

taken and to which deletions go. 

C.29 WindowStack 

UNIT WindowStack; INTERFACE ($F+ , O +  ,L-) 

USES MPS, ObjectView, Line;  

C 0 NST 
Rows = 50; 

Columns = 80; 

CONST 
TopMenuLine : S T R I N G C ~ O ]  = 

J New 1 + 1 Clear  ' + ' Fetch ' + ' Restore ' + 
I + ' Q u i t  I ;  

TYPE 
Corner = (UpperLeft, UpperRight, LowerLeft, LowerRight); 
Di rec t ion  = ( L e f t ,  Right ,  Up, Down) ; 
Window = ' Windowobject; 
T = - O b j e c t c e l l ;  
WindowObj e c t  = 

OBJECT 
Paren t s tack  : T; 
ScreenBox, ViewBox : Rectangle;  
Viewedobject : ObjectView .T; 
theTopLine, theBottomLine, theStatusLine : S T R I N G [ C ~ ~ ~ ~  
theLef tLine,  theRightLine : STRINGCROWS - 11;  
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CONSTRUCTOR Construct(theParentStack : T; xi, y1, dx, dy : BYTE) ; 
DESTRUCTOR Destruct; VIRTUAL; 
PROCEDURE Reset; 
FUNCTION TopLine : StringPointer; 
FUNCTION BottomLine : StringPointer; 
FUNCTION LeftLine : StringPointer; 
FUNCTION RightLine : StringPointer; 
FUNCTION TextAt(x, y : BYTE) : WORD; 
FUNCTION CharacterAt(x, y : BYTE) : CHAR; 
FUNCTION AttributeAt(x, y : BYTE) : BYTE; 
PROCEDURE MoveViewDownward(dy : BYTE); 
PROCEDURE MoveViewUpward(dy : BYTE); 
PROCEDURE MoveViewLeftward(dx : BYTE); 
PROCEDURE MoveViewRightward (dx : BYTE) ; 
PROCEDURE RepositionViewY(1ndex : BYTE); 
PROCEDURE RepositionViewX(1ndex : BYTE); 
PROCEDURE Correctview; 
PROCEDURE MoveScreen(theCorner : Corner); 
PROCEDURE MoveCorner(theCorner : Corner); 
PROCEDURE Copy (thecorner : Corner) ; 
FUNCTION IOCheck : BOOLEAN; 

END ; 
Obj ectCell = 
OBJECT 
ErrorMessage : STRING [801 ; 
thewindows : ARRAY [O . .63] OF Window; 
theBottom : BYTE; 
SelectedWindow, ScrapTokenWindow, ScrapLineWindow : Window; 
CONSTRUCTOR Construct; 
DESTRUCTOR Destruct; VIRTUAL; 
FUNCTION Topwindow : Window; 
FUNCTION Length : BYTE; 
FUNCTION NthElementh : BYTE) : Window; 
PROCEDURE CreateWindow(x1, yl, dx, dy : BYTE); VIRTUAL; 
PROCEDURE DestroyWindow(w : Window); VIRTUAL; 
PROCEDURE RedrawBox(VAR LastBox, CurrentBox : Rectangle); 
PROCEDURE UndrawBox(VAR theRectangle : Rectangle) ; 
PROCEDURE PutOnTopOrPutAtBottom(w : Window); 
PROCEDURE PutOnTopOrPutBelowTop(w : Window); 
PROCEDURE PutAbove(w1, w2 : Window); 
PROCEDURE PutBelow(w1, w2 : Window); 
PROCEDURE SetSelectedWindow(w : Window); 
FUNCTION TextAt(x, y : BYTE) : WORD; 
FUNCTION WindowAt(x, y : BYTE) : Window; 
PROCEDURE Refresh(w : Window); 
PROCEDURE Redraw(VAR theRectangle : Rectangle); 
PROCEDURE DoubleRedraw (VAR Rectangle 1, Rectangle2 : Rectangle) ; 
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END ; 
S t a c k I t e r a t o r  = 

OBJECT ( I t  e r a t o r )  
thewindow : Window; 
theowner : Node; 
Currentwindow : BYTE; 
CONSTRUCTOR Construct(w : Window); 
FUNCTION Next(VAR theviewedobject  : 0bjectView.T) : BOOLEAN; VIRTUAL; 
PROCEDURE Reset ;  VIRTUAL; 

END ; 

PROCEDURE DrawBox(VAR theRectangle : Rectangle;  Tex tAt t r ibu te  : BYTE) ; 
PROCEDURE MoveCornerHelper(w : Window; thecorner  : Corner) ;  

CONST CrtBox : Rectangle = ( x l  : 1 ;  y l  : 1; dx : Columns; dy : Rows); 

IMPLEMENTATION . . .  
END. 

Windowstack is used to specify the behavior of windows and stacks of windows indepen- 

dent from the types of windows tha t  may exist. It defines Rows and Columns as constants 

representing the size of the display screen. TopMenuLine contains the top  line of text dis- 

played in the PCAcer environment. Corner  is defined to enumerate the types of corners arid 

D i r e c t i o n  is defined to enumerate the types of directions. Window is defined as  a pointer to 

a windowobject  and T is defined as a pointer to  an O b j e c t c e l l ,  which is used to  represent 

a stack of windows. 

A Windowobject is defined as follows. It contains a P a r e n t s t a c k ,  tha.t is, the sta.ck i n  

which it occurs. It contains a ScreenBox, w11icl.l is the rectangle containing the window 

on the screen. It contains a ViewBox, wliicli is the rectangle specifying which part, of the 

ViewedObj e c t  is displayed 011 the scrcen. And it contains theTopLine ,  theBot tomLine,  

t h e s t a t u s l i n e ,  t h e L e f t L i n e ,  and t h e R i g h t L i n e  to specify the appearance of the window's 

frame. 

A window is c o n s t r u c t e d  give11 t h e p a r e n t s t a c k ,  the upper-left corner, and its size. It 

is destructed using D e s t r u c t .  R e s e t  is uscd to reset the appearance of the window's frame, 

i n  particular, to clear the status line. TopLine,  BottomLine,  L e f t L i n e ,  and R i g h t L i n e  

be uscd to acccss the appearance of the window's Cram.. Tex tAt ,  C h a r a c t e r A t ,  and 

~oveViewDownward, Moveviewupward, MoveViewLeftward, and MoveViewRightward, 

modify theViewBox. Reposit ionViewY (Reposit ionViewX) modifies the  positiorl of 

theViewBox relative to the arnount of tJhe frame above a.nd below ( to  the left and to  ttle 
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right) of Index. Correc tv iew modifies theViewBox so that  the window selection is in view. 

~ o v e ~ c r e e n  modifies theScreenBox so as to move the window on the screen. Movecorner 

modifies the size of theViewBox and theScreenBox. 

Finally, IOCheck determines if an I 0  error has occurred and displays an error message 

on the status line in tha t  case. 

Windowstack defines O b j e c t c e l l  to  represent a stack of windows. A window stack 

contains an ErrorMessage, which if it is not empty, is displayed in place of the TopMenuLine; 

thewindows, which is a n  array of 64 Window objects; theBottom, which is the index of the last 

array element to contain a valid window; and the SelectedWindow, the ScrapTokenWindow, 

and the ScrapLineWindow to indicate these special windows. 

A window stack can be Constructed and Des t ruc ted .  The  variable thewindows is not 

usually accessed directly because the functions Topwindow, Length, and NthElement should 

be used instead. A new window is created on the top of the stack by Createwindow a 

is removed from the stack by Destroywindow. 

A frame can be drawn to the screen using RedrawBox, which first removes the  LastBox 

and then draws the CurrentBox. UndrawBox removes a frame drawn to the screen. 

putOnTopOrPutAtBottom, PutOnTopOrPutBelowTop, PutAbove, and PutBelow reorder 

the windows on the stack. SetSelectedWindow sets the selected window of the stack. TextAt 

yields the character and color attribute a t  a given coordinate of the window stack. WindowAt 

yields the top-most window to  appear a t  the given coordinate. 

Ref resh  redraws to the screen the coriterits of the specified window. Redraw redraws 

the specified portion of the window stack. Similarly, DoubleRedraw redraws the specified 

portions of the window stack with any overlap being drawn only once. 

A S t a c k I t e r a t o r  object iterates through the windows of a window stack tha t  are affected 

by a modification to a node. A S t a c k I t e r a t o r  is Cons t ruc ted  given a window, which it uses 

to  set thewindow, and theowner.  Next sequences through those windows of the  P a r e n t s t a c k  

of thewindow tha t  would be affcctcd by an edit operation to theowner node. This is the 

I t e r a t o r  that  must passed to the various Objectview edit operations. 

The procedure DrawBox alid MoveCornerHelper are auxiliary procedures tha t  operate 

independently of window stacks. The  constant CrtBox defines the Rec tang le  that, corltains 

the entire display screen. 
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C.30 NodeView 

UNIT NodeView; INTERFACE ($F+,O+,L-) 

USES Line, LineBuffer, MPS, Lineview, Tokenview, Objectview, WindowStack; 

TYPE 
MenuTitles = ARRAY LO. .Rows - 41 OF STRING[Columns - 43 ; 
MenuAction = PROCEDURE (n : BYTE); 
Window = Windowobject; 
WindowOb j ect = 

OBJECT (WindowStack.Window0bject) 
CONSTRUCTOR Tokenconstruct 

(theparentstack : WindowStack.T; 
theRootNode : Node; 
XI, yl, dx, dy : BYTE); 

CONSTRUCTOR Lineconstruct 
(theparentstack : WindowStack. T ; 
theRootNode : Node; 
theLineBuffer : LineBufferType; 
Xl, yl, dx, dy : BYTE); 

CONSTRUCTOR Fileconstruct 
(theparentstack : Wind0wStack.T; 
FileName : STRING; 
XI, yl, dx, dy : BYTE); 

DESTRUCTOR Destruct; VIRTUAL; 
PROCEDURE Toggle; 
PROCEDURE CancelToggle; 
PROCEDURE Select (x, y : BYTE) ; 
PROCEDURE Zoomcopy; 
PROCEDURE ZoomIn; 
PROCEDURE Zoomparent; 
PROCEDURE ZoomRoot; 
PROCEDURE Extend; 
PROCEDURE Delete; 
PROCEDURE Destroy; 
PROCEDURE Poke(x, y : BYTE) ; 
PROCEDURE Insert; 
PROCEDURE Yank; 
PROCEDURE EnterText (ch : CHAR) ; 
PROCEDURE FindDefiningOccurrence; 
PROCEDURE FindDefinition; 
PROCEDURE FindType; 
PROCEDURE FindDenotation; 
PROCEDURE FindKind; 
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PROCEDURE Validate; 
PROCEDURE DefinitionCopyAt; 
PROCEDURE Store; 
PROCEDURE Compile; 
PROCEDURE Link ; 
PROCEDURE Run; 
FUNCTION TimeStampOf(UnitName : STRING) : LONGINT; 
PROCEDURE PickWindowSpecifiedMenu; 

END ; 
NodeWindowStack = - WindowStackObject; 
WindowStackObj ect = 

OBJECT (WindowStack.ObjectCel1) 
CONSTRUCTOR Construct; 
DESTRUCTOR Destruct; VIRTUAL; 
PROCEDURE Resetscrapwindows; 
PROCEDURE CreateTokenWindow(theRootNode : Node; 

xl, yl, dx, dy : BYTE); 
PROCEDURE CreateLineWindow 

(theRootNode : Node; 
theLineBuffer : LineBufferType; 
XI, yl, dx, dy : BYTE); 

PROCEDURE CreateFileWindow(Fi1eName : STRING; xl, yl, dx, dy : BYTE); 
PROCEDURE CreateWindow(x1, yl, dx, dy : BYTE); VIRTUAL; 
PROCEDURE DestroyWindow(w : WindowStack.Window); VIRTUAL; 
PROCEDURE FileInput; 
PROCEDURE Fetch(thePattern : STRING) ; 
PROCEDURE Menu(VAR Titles : MenuTitles; 

NumberOfEntries : BYTE; 
Action : MenuAction); 

PROCEDURE PickStackList ; 
PROCEDURE StoreValues; 

END ; 

VAR thewindowstack : WindowStackObject; 

IMPLEMENTATION . . .  
END. 

Nodeview specializes the opc3ratjions of Windowstack for windows based on Lineview and 

Tokenview. The type WindowOb j ect is spccialized as follows. 

Thrce con~t ruc t~or  functior~s Tokenconstruct, Lineconstruct, and Fileconstruct are 

provided to crcate, rcspcctively, a nodc window given a node, a text window given a rlode 

and a line-buffer, and a text window given tlic name of a file. A window can be Destructed 

as usual. 

Toggle can bc applied to a window to convert it from a nodc window to  a text window 
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or vice versa. CancelToggle converts a text window back to a node window, discarding the 

text. S e l e c t  sets the selection point. 

Zoomcopy creates a new node window with the selection as its owner. ZoomIn sets 

the owner to  the selection. Zoomparent sets the owner to the parent of the owner. And 

ZooomRoot sets the owner to  the root of the owner. 

Extend extends the selection by following the position of the mouse. 

D e l e t e  invokes the window specific delete operation. Similarly, for Des t roy ,  I n s e r t ,  and 

Yank. Poke has an effect only on a node window for which it is used to  insert a placeholder 

list element. EnterText  inserts a character into a text window; when applied t o  a node 

window, it has the same effect as Toggle. 

The  FindX routines apply only for node windows for which they determine the specified 

attribute of the se lec t io~~ point. A new window is created to  hold the result. 

V a l i d a t e  also applies only for node windows-it checks the correctness of the owner node 

and an  error message is displayed on the status line of the window in case of error. 

Def ini t ionCopyAt can be applied to a node window and has the effect of using A S T ' ~  

DefinitionCopyAt to  express the selected node of the selected window a t  the selection of 

the window to  which it is applied; it replaces the selection with the result of the copy. S t o r e ,  

Compile, Link, and Run can be applicd to node windows to produce the desired effected of 

storing, compiling, linking, or running the owner node. TimeStampOf, given a global value- 

identifier, det,ermines the creation time associated with that  identifier. It has the side-cffcct 

of anything tjhat is required to compile the owner of the window to  w1lickl it, is 

applied. 

Finally, PickWindowSpeclf iedMenu invokes a popup menu. The  nicnu contains different 

operatiorls depending o n  whether the window is a node window or a text window. 

Nodeview specializes window stacks as follows. Resetscrapwindows empties the con- 

tents of both scrap windows. Four window-constructing procedures CreateTokenWindow, 

createLineWindow, Crea t  eFileWindow, and Crea t  eW indow are provided. (Createwlndow 

creates a window wit,h an empty node as its owner.) 

F i l e I n p u t  invokes the PCAcer IIICIIU for loading '.ace' files, i.e., text files corltairling 

Acer syntax. Fe tch  itlvokes the PCAccr menu for loading either '.tb,' '.vb,' '.vd,' ' . tb] ,' or 

' .vbl '  files. 

Menu displays a popup menu, given the titles, the number of titles, and a procedure 

that the operation associated with each title. P i ckS tackLi s t  displays PCAccr's 

stack-list menu. 
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S t o r e v a l u e s  stores every top-level fixed-value-binding and binding-list tha t  is not up- 

to-date with respect the the version stored in the file system. This operation is performed 

by the PCAcer environment before any programs are compiled. 

And finally, thewindowstack  contains the one WindowStackObject used to  represent 

PCAcer's environment. 

The  body of NodeView begins an  input loop tha t  continues until the quit command of the  

PCAcer environment is invoked. As such, NodeView really acts as a program but  because it 

is defined as a unit, a program must be written tha t  imports NodeView. This program call 

then specify things such as how to  overlay the various units, how big the stack should be, 

and so on. 

This finally completes the description of I'CAcer's implementation and tllat of its 

metaprogramming system. Much detail has been left out,  but perhaps not enough. 
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Quick reference 

A table describing Acer's context-dependent manipulation primitives is given below. The 

mctaprogrammi~lg system interface for these primitives is described in sectiorl 5.5, which 

describes the Acer host-language version, and in sections C.19 and C.20, which describe the 

Pascal host-language version. 'l'a.bles summarizing Acer's type-system follow. 

D. 1 Context-dependent manipulation primitives 

relation 

defining-occurrence 

kind 

definition 

given 

id  

expr 

expr 

exy r  

expr 

expr 1 

exp  1.2 

yields reference 

The corresponding identifier node that  3.5.1, A.3.1 
defines the identifier node id for its par- 
ticular scope. 
The  type node tha t  represents the type of 3.5.2, A.3.3 
the value or type expression expr. 

The type node that  represents the kind 4.7.1, A.3.3 
(t,he type of the type) of the value or type 
expression expr. 
r 7 I he expression node that  represents the 3.5.3, A.3.2 
meaning of the value or type expression 
expr as specified by Acer's rewrite rules. 
r 3 I he expression node that  results from 4.7.1, A.3.2 
rewriting the value or type expression 
e x p ;  rewriting the rewritten expression, 
and so on, until the resulting cxpression I 

ot, lw r c t w r u l .  
The  expression tha t  results when the 12.5.2.2, 
vaulue or t,ype expression exprl  is rc- 1 A.5.2.1, 1.10, 
exlwesscd in terms of the scope a t  e ~ y r 2 .  / 4 . I  1, 4.13 
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D.2 Identifier 

D .3 Deriving declarations for named arguments 

type-identifier 

value-identifier 

I binding 

I declaration 

T y p e  

value 

T:: U 

variable-value 

let var x  : T be y 

var x :  T 

X 

x  

D .4 Deriving declarations for anonymous arguments 

I type I fixed-value / variable-value I 

- 

? 

- type  

! #$&*+-/<=>\- I " 

( declaration I :: U I : 7' 1 var : 7' 1 
argument 

D.5 Component type equivalence 

T 

D.6 Component subtype 

- - 

condition 

I 1 

x  

7':: U 

x :  T 
var x :  T 

let var be x  

:: U 

: 7' 

var : T 

D.7 Special nodes 

x :  TI 

v a r x :  TI 

nothing 
I 

arbitrary-list 1 arbitrary [x] [TI [x then y ]  [nothing] end 

x :  7'2 

var x :  1'2 

T l  c 7'2 

7'1 = 7'2' 
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D.8 Concrete-type 

tuple 

dynamic 

record 

variant 

furiction 

enumeration 

literal 

tuple 
let T :: U b e  V, 
let x : T be  z, 
let var y : T be  z, 

T, 
x' , 
let var be  x 

end 

dynamic 
let T :: lJ b e  V, 
let x :  7' be  z, 
let var y : T be  z, 
T, 
x' , 
let var be x 

end 

record 
let 7' :: U be  V, 
let x :  T be  z, 
let var y : T be  z 

end 

variant x of 7' with 
(let T :: U be  V, 
let x :  7' be  z, 

let var y : T  be  z, 
T, 
x', 

let var be  x) 
end 

function ('I' :: U; 
x : 7'; 
:: u; 
: T )  

x 
end 

Enumeration x, y end.x 

Option x, y e11d.x 

Tuple 
T :: U; 
x :  T; 
var y : T; 
:: u; 
: T; 
var : T 

end 

Dynamic 
T  :: U; 
x :  T; 
var y : T; 
:: U; 
: T; 
var : 7' 

end 

Record 
T :: U ;  
x :  T; 
v a r y :  T 

end 

Variant T of when x then  
( T : :  U; 
x :  7'; 
var y : T; 
:: U; 
: 5"; 
var : T)  

end 

Function (7':: U; 
x :  T; 
:: U;  
: T )  

T  
end 

Enumeration x, y end 

Option x, y end 
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I literal condition I visible supertype 

abstract 

Operator ( T :: U )  T end 

concrete 

Operator ( T  :: U )  U end 

type-identifier 1 T I T::  U  

I operator-call 1 0 ( T )  I 0 :: Operator ( :: U )  V end I V 

U 

type-selection / x. 7' 1 x : Tuple T :: U  end 

D.11 Standard types 

I 
U  

literal I implemented by 

r 'x' I Character I character 

r error Error I exceptions 

I n t e r  (x) 1 Pointer ( T )  I pointers 

exception ( T )  

1 

Exception ( T)  

Integer 

raise e with x end 

1 .O 

D.12 Notation 

exceptions 

in t cger 

reference (x )  

llxyzll 

{ > 

Raise 

Real 

exceptions 

real 

Reference ( T )  

String 

Void 

reused-idcn tificr 

block 

dcnoter 

type-designatio~~ 

selection 

references 

st ring 

exceptions 

value 

x'[l] 

{let x be y ;  f (x ) )  

{ (x )  > 
T Y P E  (x)  

x. x 

type 

T'PI 

{let T be U;  0 (7')) 

{[TI) 
T Y P E  (7') 

x. T 
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D.13 Iterator and accumulator 

let Iterator be 
Operator (Base Type :: Any) 

Tuple 
done : Exception ( Void) 
produce : 

Function () Base Type end 
terminate : 

Function () Void end 
end 

end 

D.14 Subtype 

let Accumulator be 
Operator (Base Type :: Any; Result Type :: Any) 

Tuple 
done : Exception ( Void) 
consume : 

Function (: Base Type) Void end 
terminate : 

Function () Result Type end 
end 

end 

subtype C supertype 

Tuple 7' :: U l ;  : T end I Tuple T :: U2 end 

~ ~ n a m i c  T :: U l ;  : T end I Dynamic 7' :: U2 end 

Record x :  7'; T :: Ul end 

Variant Enumeration el end of 
when el then ( T : :  U l ;  : T )  

end 

Function ( :: T I )  U1 end 

Record T :: U2 end 

Variant Enumeration e l ,  e2 end of 
when el then ( T  :: U2); 
when e2 then (: V )  

end 

Function ( :: 7'2) U2 end 

Enumeration el end 

Option el end 

7' 

7'1 

Raise I T 

Enumeration e l ,  e2 end 

Option e2, el end 

T 

7'2 

x l .  7' x2. T 

condi tiori 

u1 5 U2 

u1 5 u 2  

Ul 5 u 2  

Ul 5 u 2  

'I' 

7' 

- 

T : :  u 
7'1 :: u 
U 5 7'2 

xl = x-2 

0 1  = 0 2  
7'1 = T2 

Error 

Raise 
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D.15 Computation 

I function-call 

assignment 
- 

{x becomes y )  

I is-test 

I is-not-test 

I and-if-test 

I or-if-test 

I index 

( dcreference 

I ord-call ord ( x )  

I V ~ I - C ~ I I  va1 (7:  x) 
begin x ;  y ;  z end 

code T; x; y ;  z end 

accumzilator ( [ x ,  y, z ] )  

I compound-value 

I code-patch 

I accumulation 

iteration for element in iterator andif filter (element) do 
accumulator bod-y (element) end 

if condition1 then consequent1 
elsif condition2 then consequent2 
else default end 

inspect dynamicvalue Then 
when 7' with dcfinedrdentifier then consequent 1 ; 
when U then consequent2 

I conditional 

else default end 
- 

inspect variant Value then 
when x with definedlden tifier then consequent1 ; 
when y ,  z then conseqlient2 
else default end 

try t r y  bod-y then 
when exception1 with dcfinedldentifierl do consequent 1 ; 
when exccption2, exception3 do consequent2 
else default end 

keep trying loop13ody then 
when except,ion with dcfinedldentifier do consequent 
else default end 

I try-finally t ry  hod-y finally finalAction end 
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