
ACER: MANIPULATION PRINCIPLES
APPLIED TO LANGUAGE DESIGN

IGlriardus Antonius Theodorus Merks

13.Sc. Siniori Fraser University, 1986

h4 .S~. Simon Fraser University, 1987

A 'I'I1I:SIS SUBMITTED I N PARTIAL FULFILLMENT

O F 1'111.: REQUIREMENTS FOR T H E DEGREE O F

DOCTOR OF PIIILOSOPIIY

in the School

of

Computing Science

@ 13duald1is Antonius Thcodorus Merks 1992

SIMON FRASER UNIVERSITY

April 1992

All rights reserved. This work may not be

rcproduccd in wholc or i n part, by photocopy

or other means, without the permission of tlrc author.

APPROVAL

Name: Eduardus Antonius Theodorus Merks

Degree: Doctor of Philosophy

Title of thesis: Acer: Manipulation Principles Applied To Language Design

Examining Committee: Dr. J. J . Weinkam, Professor

Chair

Date Approved:

-

Dr. R.D. Cameron, Associate Professor

Senior Supervisor

Dr. F.W. Burton, Professor

~ o m m i t t k e Mdmher,

Dr. R.F. Hobson, Associate Professor

Commi t,tee Member

- -

Dr. A.H. Dixon, Senior Lecturer

SFU Examiner

Dr. G.V. Cormack, Associate Professor

External Examiner, University of Waterloo

April 14, 1992

PARTIAL COPYRIGHT LICENSE

I hereby g r a n t t o Slmon F rase r U n l v e r s l t y the r i g h t t o lend

my t h e s i s , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o t t h e Simon F rase r U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r

s i n g l e cop ies o n l y f o r such users o r I n response t o a reques t f rom the

l i b r a r y o f any o t h e r u n i v e r s i t y , o r o t h e r educa t i ona l 1 n s t i) u t ion, on

i t s own beha l f o r f o r one o f I t s users . I f u r t h e r agree t h a t permiss ion

f o r m u l t i p l e copy ing o f t h l s work f o r s c h o l a r l y purposes may be g ran ted

by me o r t h e Dean o f Graduate S tud ies . I t i s understood t h a t copy ing

o r publication o f t h i s work f o r f l n a n c l a l g a i n s h a l l no t be a1 lowed

w i t h o u t my w r i t t e n permiss ion .

T i t l e o f Thes is /Pro jec t /Ex tended Essay

Acer : M a n i p u l a t i o n P r i n c i p l e s li lied t o Language Des ign .

Author :

(s i g n a t u r e)

E d u a r d u s A.T. Merks

(name

A ~ r i l 1 4 . 1992

(d a t e)

Abstract

Programming language design is explored from the viewpoint that support for program

manipulation is a fundamental guiding concern. Three general areas of language design are

identified as being of particular significance in terms of support for manipulation, namely the

mapping between concrete syntax and abstract syntax, the mapping between static seman-

tics (context-dependent syntax) and abstract syntax, and the mapping between equivalent

language constructs. Abstract syntax-tree nodes and their context-dependent relations are

the unifying concept in this realm.

A particular programming language, Acer, based on the typeful programming language

Quest, is designed and implemented to illustrate how support for manipulation is enhanced.

Acer is a general-purpose, imperative language with a full accompaniment of modern lan-

guage features, as well as a number of novel features (e.g., persistent storage). Its concrete

syntax is designed to meet strict requirements, e.g,, every node gives rise to a token so that

it is visible for selection or annotation. Its abstract syntax is similarly strict and provides

node representations for all semantic objects. Hence, semantic relations are simply rela-

tions on nodes and semantics-preserving transformations, such as folding and unfolding, are

supported as simple transformations of node structure.

Acer's support for manipulation demonstrates the benefits of designing abstract syntax

first and treating concrete syntax as a particular way of viewing abstract syntax. It also

demonstrates that a concrete syntax can be designed which is both natural in appearance

and yet highly constrained. And, perhaps most importantly, it demonstrates that imperative

languages can support the same kinds of powerful transformations supported by functional

languages, e.g., all expressions can be folded.

Acknowledgements

A thesis cannot be written without the support of others, and this thesis is no exception.

I gratefully acknowledge the cor~tributions of the following people: Rob Cameron for his

guidance and f i ~ ~ a ~ i c i a l support over many years; Michael Dyck for his attention to detail

and his constructive comnlcntary; my family for their encouragement; Larry Thiele for being

there; IIoward IIamil ton and Andrew Kurn for their helpful advice; the examining committee

for their time, and the many other people a t Simon Fraser University with whom I have had

the pleasure of sharing the past ten years.

For the financial contribution toward research and research facilities, and toward my

graduate work i l l particular, Simon Fraser University, the British Columbia Advanced Sys-

tems Institue, and the Natural Sciences and Engineering Research Council of Canada also

deserve recognition.

Contents

Abstract

Acknowledgements

1 The representation of language

. 1 .I Programming langtla.ge design

. 1.2 The design of Acer

2 An introduction to Acer

2.1 Conceptual foundations .
2.1.1 Value .

2.1.2 Type .
2.1.3 Kiud .

2.1.4 Adtlitiona.1 s y n t x t i c ca.tegories .

2.1.5 Surnniary .

. 2.2 Onward

2.3 Global identifier .
. 2.4 Block

. 2.5 Enumeration

2.6 Function arid functiorl-call .

2.7 Tuple, method, and selection .
2.8 The standard abstra.ct-types .
2.9 Type-operator and operator-call .
2.10 Pointer and reference .
2.11 Array .
2.12 Exception and exception handling .
2.13 Variant .

. 2.14 Subtype 38

. 2.14.1 Tuple and single inheritance 39

. 2.14.2 Record and multiple inheritance 42

. 2.14.3 Enumeration and option 42

. 2.14.4 Function-type and type-operator 43
. 2.14.5 Variant 44

. 2.14.6 Abstract-type 45
. 2.15 Dynamic 47

. 2.16 Iterator and accumulator 52
. 2.17 Code-patch 55

. 2.18 Summary 56

3 The representation of syntax 57

3.1 The nature of syntax . 57

3.2 Context-free syntax . 58

. 3.2.1 Lcxeme 58

. 3.2.2 Construction 59

. 3.2.3 List 60

. 3.3 Context-free relatiorls 60

. 3.3.1 Context-free manipulation 61

. 3.4 Concrcte syntax 62

. 3.4.1 Lexeme 62

. 3.4.2 Construction 62

. 3.4.3 List 63

. 3.5 Context-dependent relations 64

. 3.5.1 Defining-occurrence 65

. 3.5.2 Type 66

. 3.5.3 Definition 67

. 3.5.4 Co~ltext-dependent manipulation 68

. 3.6 Summary 68

4 Principles of language design 70

4.1 Concrete syr~tax is just a view . 70

4.2 Ambiguity . 71

4.3 Phrase ambiguity . 72

. 4.4 Comments

4.5 Macros .
. 4.6 Incomplete phrases

. 4.7 Semantic objects

. 4.7.1 Denotation and kind

. 4.7.2 First-class values

. 4.8 Scoping

. 4.9 Locality of objects

. 4.10 Referring to objects

4.1 1 Accidental information hiding .
4.12 Intentional information hiding .

. 4.1 3 Unfolding

. 4.14 Folding

. 4.15 LOW-level manipulation

. 4.16 Summary

5 The implementation of Acer

5.1 Implementirig support for manipulation .
. 5.2 Acer's meta. programming system

. 5.3 Concrete syntax

. 5.3.1 Token

. 5.4 Context-free syntax

. 5.4.1 Grammar

. 5.4.2 Node

. 5.5 Context-dependent synta.x

. 5.6 Metaprogra~nrnin~ applica. tions

. 5.6.1 Genera.ting a meta.-intcrfa.cc

5.6.2 Program transformation .
5.6.3 Mctaprograms as a. comma.nd language

. 5.7 Summary

6 Evaluation

6.1 A principled approach .

6.2 Transforniational programming .
6.3 The style of semantic definition .

. 6.4 On programming environments 121
. 6.5 On Acer itself 122

. 6.6 Future work on Acer 124
. 6.7 Beyond Acer 127
. 6.8 Final words 128

A The Acer definition manual 129

. A.l lntroduction 129

. A.2 The syntactic domains 131

. A.2.1 Argument 131

. A.2.2 Dechration 133

. A.2.3 Miscellaneous 134

. A.3 Context-dependcnt relations 134

. A.3.1 Scope 135

. A.3.2 Defi~~itioli and dellota.tion 136

. A.3.3 Type and kind 137

A.3.4 Subtype . 137

. A.4 Lexical structure 138

. A.4.1 The character set 138

. A.1.2 Token 139

. A.4.3 Delimiter 142

. A.4.4 Lcsica.I altcrna. tivcs 142

. A.5 Special nodes 143

. A.5.1 Empty 143

. A.5.2 Denoter 145

. A.5.3 Arbitrary-list 149

. A.6 Identifier 150

. A.6.1 RCUS~CI-identifier 151

. A.6.2 Scope 152

. A.7 Binding 152

. A.7.1 Scope 154

. A.7.2 Dependency analysis 154

A.8 Declaration . 156

A.8.1 Scope . 158

. A.8.2 Deriving a declaration from an argument 158

. A.9 The global name-layer 159

. A.9.1 Global value-identifier 159

. A.9.2 Global type-identifiers 161

. (1.10 Expression 161

. . A 1 1 Type-designation 162

. A.12Block. 163

. A.12.1 Scope 164

. A.12.2 Evaluation 164

. A.13Any 164

. A.14 Aggregate 164

. A.14.1 Scope 166

. A.14.2 Evaluation 166

. A.14.3 Subtype 167

. A . 14.4 Component selection 167

. A.14.5 Ilynanlic-inspcctio~ 169

. A.15 Argument-list a. rid siglla. ture 171

. A.15.1 Scope 171

. A.15.2 Subtype 171

. A.15.3 Conformance 171

. A.15.4 Evaluation 172

. A . 16 Enu~ncration and option 172

. A.16.1 Scope 173

. A.16.2 Subtype 173

. A . 16.3 Evaluation 173

. A . 16.4 Conversion 173

. A.17 Variant 174

. A.17.1 Scope 176

. A.17.2 Evaluation 176

. A.17.3 Subtype 176

. A.17.4 Va.ria.nt-inspection 176

. A.lS Functio~i 179

. A.18.l Scope 179

. A.18.2 Subtype 179

. A.18.3 Evaluation 180

. A.18.4 Function-call 180

. A.19 Type-operator 181

. A.19.1 Scope 181

A.19 .2Subtype . 181

. A.19.3 Operator-call 182

. A.20 Abstract-type 183

. A.20.1 Abstract-name 183

. A.20.2 Abstract-base 183

. A.20.3Quantif ier 183

. A.20.4 Subtype 184

. A.21Metliod 185

. A.21.1 Prefix-method-call 186

. A.21.2 Unary-mctliod-call 187

. A.2 1.3 Dyadic-metllod-call 188

. A.2 1.4 A b s t r x t value-selection 188

. A.21.5 Index 189

. A.22 Void 189

. A.23 Boolean 190

. A.23.1 Identity 191

. A.23.2 Evaluation 191

. A.23.3 Conditional 191

. A.23.4 Shortcircuit evaluation 192

. A.24 Exception 193

. A.24.1 Standard exceptions 194

. A.24.2 Raise 195

. A.24.3 Try-firlally 196

. A.24.4 Try 196

. A . 24.5 Keep- trying 197

. A . 2 5 E r r o r . 198

. A.25.1 Subtype 199

. A.25.2 Eva.luation 199

. A . 2 6 I n t c g c r . 199

. A.27 Real 200

. A.28 Character 201

. A.29 String 202

. A.30 Locations and side-effects 203

. A.30.1 Reference 203

. ,430.2 Pointer 204

. A.30.3 Dereference 205

. A.30.4Assignment 206

. A.30.5 Compound-value 207

. A.31 Array 208

. A.31.1 Evaluation 209

. A.32 Iterator and a.ccurnula.tor 209

. A.32.1 Iterator 209

. A.32.2 Accumulator 210

. A.32.3 Iteration 210

. A.32.4 Accumulation 212
. A.33 Code-patch 213

. A.34Thegrammar 214

. A.34.1 Declaration and binding 214

. A.34.2 Type 214

. A.34.3 Value 215

. A.34.4 Miscellaneous 218

. A.34.5 Generic 219

A.34.6Lexernc . 220

. A.34.7 Cornment 220

. A.34.8 Character description 220

B The PCAcer manual 222

B.l Introduction . 222

B.2 Parts of the screen . 223

B.3 Node windows and text wirldows . 224

B.3.1 The ba.nner . 224

B.3.2 T h e b o d y . 224

B.3.3 The view indicators . 225

B.4 The window stack . 225

. B.5 Basic window commands 226
. B.5.1 The selected window 226

. B.5.2 Stack positioning 226

. B.5.3 Resizing a window 227

. B.5.4 Moving a window 227

. B.5.5 Repositioning the view 227

. B.6 Window conversion 228

. B.7 Scrap windows 228

. B.8 Edit ingtext 229

. B.8.1 Selection 229

. B.8.2 Textual entry 230

. R.8.3 Delete 230

. B.8.4 Insert 230

. B.8.5 Yank 231

. B.8.6 Destructivedelete 231

. B.8.7 Canceling a text window 231
. B.9 Node editing 231

. 13.9.1 Selection 231

. B.9.2 Textual entry 232

. B.9.3 Dclete 232

. B.9.4 Insert 233

. B.9.5 Replace 233

. B.9.6 Yank 234

. B.9.7 Dcs t r~~ct ivcdeIc te 234

. B.10 h4ultiple vicws 234

. B.10.1 Simultaneous text, views 234

. B.10.2 Multiple node views 234

. B.10.3 Multiple text views 235

. B.10.4 Subviews and node traversing 235

. 13.1 0.5 Closing windows 235

B.1O.G Implications of multiple views on editing 235

. B . l l Top-level nodes 236

. B.11.1 TOP-level type-billdings 237

B.11.2 ?'op-lcvel fixed-value-hi~~dir~gs . 238

xii

. B.11.3 Top-level binding-lists 239

. B.12 Fetching files 240

. B.12.1 Fetching text 241

. B.12.2 Fetching types 241

. B.12.3 Fetching values 241

. B.12.4 Fetching declarations 241

. B.13 Restoring files 242

. B.13.1 Restoring types 242

. B.13.2 Restoring values 242

. B.14 Querying semantic attributes of nodes 243

. B.15 Re-expressing a node 243

. B.16Andsoon 244

C The implementation manual 245

. C.l Core 246

. C.2 Utility 246

. C.3 Mouse 247

. C.4 Manager 248

. C.5 Index 249

. C.6 Sequence 252

. C.7 Line 253

. C.8 LineBuffer 254

. C.9 Grammar 255

. C.10 MPSl 256

. C . l l Keywords 263

. C.12 LexicalAnalyzer 263

. C.13 Parser 265

C.14 Unparser . 266

. C.15 Makers 269

. C.16 Access 269

. C.17 MPS 270

. C.18 FileServer 274

C.19 AST . 278

C.20AST2 . 281

. C.21 Compile

C.22Run .
C.23Link .

. C.24 Objectview

. C.25 Lineview

. C.26 TokenLine

. C.27 TokenBuffer

. C.28 Tokenview

. C.29 Windowstack
. C.30 NodeView

D Quick reference 301

. D.l Context-dependent manipulation primitives 301

. D.2 Identifier 302

. D.3 Deriving declarations for named arguments 302

. D.4 Deriving dccla.rations for arlonylnous arguments 302

. D.5 Component type qu iva l e~ lce 302

. D.6 Component subtype 302

. D.7 Special nodes 302

. D.8 Concrete- type 303

. D.9 Type-operator 304

. D.10 Abstract-type 304

. D. l l Standard typcs 304

. D.12 Notation 304

D.13 Iterator and accum~llator . 305

. D.14 Subtype 305

D.15 Computation . 306

Chapter 1

The representation of language

1.1 Programming language design

This thesis explores progra~nlning language design from the viewpoint tha t support for pro-

gram manipulation is a fundalncntal guiding concern. A program, after all, is a structured

object which throughout its lifetime is the target of numerous manipulation activities, in-

cluding everything from initial construction to subsequent debugging and maintenance. As

such, the design of a program representation that facilitates manipulation is of primary

importance.

Consider, for instance, the design of a representation of natural numbers. Roman numer-

als provide an adequate representation but Arabic numerals provide a manipulable represen-

tation: they facilitate meaningful semarltic manipulation (e.g., addition and multiplication

of numbers) via simple syntactic manipulation (e.g., combining the digits of numerals). For

a language of programs, as for a language of numbers, such a manipulable representation is

best.

Illuminating the path towards the d&gn of more mariipulable languages is the well-

recognized observation that a language exists a t three levels of abstraction:

r meaningful semantic objects

r abstract syntactic objects

r concrete lexical objects

Accordingly, language dcsig~l too takes pla.ces a t three levels:

r Designing the set of possible semantic objects.

C H A P T E R I . T H E REPRESENTATION OF LANGUAGE

Designing the abstract syntax to represent the semantic objects.

0 Designing the concrete syntax to encode the abstract syntax.

And since the decisions made a t each level depend on decisions made a t the previous level,

language design logically proceeds in a top-down manner.

The primary goal of a particular language design, then, is t o represent a particular

semantics in the simplest and most flexible way. To further this goal:

T h e complexity of the semantic objects should be kept t o a minimum.

0 The abstract syntax should mirror the structure of the semantic objects.

The concrete syntax should mirror the structure of the abstract syntax.

Now the semantic objects of a programming language vary considerably depending on

whether the language is functional, imperative, relational, object-oriented, and so on. De-

spite tha t , there are techniques applicable to any programming language for representing

the semantic objects as syrltactic objects and for encoding the syntactic objects as sequences

of symbols [AU72,AU73,A~77]. Alld the manipulation characteristics of the language are

strongly influenced by the nature of these techniques.

After all, the semantics of a program is derived from its syntactic structure, so meaningful

manipulation is best supported by directly manipulating this structure. And indeed, existing

high-level manipulation tools invariably represent programs as abstract syntax trees and

carry out manipulation in terms of these syntax trees. Examples of such systems are Mentor

[DGKLMS4], PSG [BSSG], and the Cornell Program Synthesizer [TR8l,TRIISl,RepS4,RT84,
RT891. To advance these higklevel manipulation tools, a well-designed language should

specify an abstract syntax that enhances a programmer's ability t o synthesize, analyze, and

transform programs.

The design of a lexical encoding of abstract syntax, although a secondary concern, is not

immaterial however, for abstract syntax can only be viewed in terms of a concrete encoding.

Nevertheless, an encoding is simply one possible view; many alternative views could be

defined for various different purposes. Only when underlying abstract syntactic structure is

emphasized is it possible to consider the provision of such alternative views.

Moreover, the advent of high-resolution bitmapped displays and high-quality typeset

printing provides exciting possibilities for producing more readable views. T h e notion of

literate programming [KnuS4], which advocates an integrated approach to program con-

struction and documentation, benefits greatly from these technological advances: various

C H A P T E R 1. T H E REPRESENTATION OF LANGUAGE 3

font cues, such as bold-face keywords and italic identifiers, can dramatically improve a pro-

gram's readability.

In this light, a language designer, ignoring the inherent limitations of ASCII, should first

design the abstract syntax of a language and should only then design the portable ASCII view

of that syntax. The designer should then consider the possibility of defining more readable

views that make better use of improving display technologies. For example, a mathematical

expression encoded in ASCII as

could be more readably viewed using mathematical notation as

and could even be viewed as a syntax tree:

square- (7

A program, then, is a syntactic ol~jcct, not merely a sequence of ASCII symbols. This

perspective echoes the first scrltence of [TRIISl], which states: "Programs are not text; they

are hierarchical compositions of computational structures . . ."

It is well-established that programs should be viewed abstractly as syntax trees consist-

ing of nodes. What is not so wcll-established is that this abstract view should be specified

during 1angua.g~ design. Doing so erlsurcs that different tools, and even different language

implementations, support the same a.bstract view and that tools can be integrated into a

unified supporting environment [DMSSll]. Since high-level support tools invariably imple-

ment manipulation in terms of a syntactic representation, a standaad abstract view should

clearly be specified as part of a language definition.

C H A P T E R 1 . T H E REPRESENTA'l'ION O F L A N G U A G E 4

The definition of DIANA [GWEB83], an intermediate representation for Ada [Ada83],

demonstrates recognition of the fact that a standard abstract representation for programs

as da t a objects is an important goal. An example of its use is presented in [Ros85]. Unfor-

tunately, DIANA was designed almost as an afterthought; i ts design did not influence the

design of Ada. As a result, DIANA is complex because it must handle all the details of

Ada's concrete syntax.

The emphasis on abstract syntax as the basis for manipulation can even be taken one

step further by insisting that all aspects of a programming language's static semantics be

defined in terms of nodes and relations on nodes. As such, all static semantic objects are

represented as nodes and hence a program is just a set of related nodes. For instance, each

identifier node in a program will have a related node that represents its defining-occurrence

and each expression node will have a related node tha t represents its type. Dyck referred

this use of nodes for representing both programs and their derived semantic attributes as the

double-duty strategy [Dyc90]; he applies the strategy to define the complete static semantics

of I S 0 Pascal [ISOS3], thereby demonstrating its feasibility. I used the strategy in earlier

work [Mer87] involving the source-to-source compilation of Modula-2 [Wir85].

To clarify any misconceptions, the term static semantics draws a distinction between

semantic aspects tha t are static in nature, such as scoping and typing, and semantic as-

pects tha t are dynamic in nature, such as activations, continuations, allocations, and so on.

Although the distinction between static and dynamic semantics is clear, the distinction be-

tween static semantics and syntax is blurred. Both deal with constraints on node structure:

syntax deals with context-free constraints and static semantics deals with context-dependent

constraints. For example, in the Pascal if-statement

IF condition THEN action

syntax constrains condition to be an expression, while static semantics constrains condition

to be of type Boolean. This blurring of static semantics and syntax is desirable because it

allows both notions to be llandlod uniformly through the representation of nodes.

In this thesis, "contcxt-free" syntax is used to describe the tree relations specified by a

context-free grammar and "coiltext-depcndelfl syntax is used t o describe the static-semantic

relations derived from the tree relatio~ls. "Syntax" thus includes static semantics.

CHAPTER 1. THE REPI tESEN' l i lT lON OF LANGUAGE

The design of Acer

TO bring substance to this exploration of language design, I will demonstrate the design of

a programming language called Acer. Like all language designs, the design of Acer begins

with requirements. In this case, Accr is to be a more manipulable version of Quest [Car89].

I chose Quest, a complex imperative language with a n elaborate type system, so tha t I

would encounter, with the design of Acer, all the technical problems involved in designing a

full-scale language. Furthermore, the richness of Quest's semantic structure provides many

inherent manipulation opportunities and issues not present in other contexts. As well, Quest

conforms to many of the design principles discussed in Chapter 4. Realize, however, that

the requirements for a programming la~lguage are often beyond the control of the language

designer. In this scnse, the ctloicc of Qucst is an arbitrary one.

TO demonstrate the manipulation advantages of Acer, I have implemented an environ-

ment for Acer, called PCAcer, collsisting of a language-based editor and a compiler. This

environment, described in detail in Appendix B, was implemented using a GRAMPS-style

metaprogramming system [Clsil], a tool tha t enables programmers t o write high-level tools

and transformations i l l terms of an abstract representation of programs. In many ways,

designing a l a ~ ~ g u a ~ e tllat supports manipulation is synonymous with designing a language

tha t has a simple metaprogramming system. Details are presented in Chapter 5 .

The remainder of the tllesis is organized as follows. Chapter 2 presents an overview

of Acer, outlining its features and how they support manipulation. Chapter 3 explores

techniques for specifying syntax, including a modified GRAMPS-style approach for specifying

context-free syntax as well as a relational approach for specifying context-dependent syntax.

Chapter 4 discusses manipulation principles for guiding language design, and explains how

they are applied to the design of Acer-these principles were also presented in [MDC92].

Chapter 5 describes Acer's mctaprogram1~~ir~g system and shows how it is used to facilitate

manipulation. Finally, Chapter 6 summarizes the results of the thesis, relating it to the work

of others and suggesting directions for further research.

Additional information is provided in the form of appendices. Appendix A gives a precise

specification of Acer, providing morc detail than the overview of Chapter 2. Appendix B

is the user's manual for PCAcer, Acer's language-based environment. Appendix C is the

implementor's nmnual for Acer's rnctaprogramming system and its environment. And Ap-

pendix D provides quick reference tables for Acer's manipulation primitives and Acer's type

system.

C H A P T E R 1 . T I I E REPRESEN7'ATION OF LANGUAGE 6

Much effort has gone into the design and implementation of PCAcer in order to demon-

strate the efficacy and feasibility of the ideas presented. However, PCAcer is not intended

t o be innovative and so is not described in the main body of the thesis. Readers are never-

theless urged to read the user's manual of Appendix B to get a feel for how Acer's semantic

and syntactic framework enhances the manipulation support provided by a programming

environment.

PCAcer is a simple, yet powerful, programming environment. It is a language-based

environment, according to the Dart taxonomy [DEFH87], and an instance of an individual

model programming environment, in the terminology of [PK91]. It uses the hybrid approach

to language-based editing described in [RS86], providing both textual and structural views

with easy conversion between the two.

Chapter 2

introduction Acer

This chapter presents an informal overview of Acer. It is intended as a more intuitive intro-

duction than the detailed definition in Appendix A. However, the reader is strongly urged

to consult Appendix A to clarify questions concerning syntax tha t might arise, particularly

section A.34, which summarizes Acer's grammar. The grammar formalism itself is described

in Chapter 3. Appendix D provides quick reference tables.

Throughout this thesis, hyphenated terms, such as binding-list, defined-identifier, and

defining-occurrcnce, are used to refer to concepts with a particular Acer meaning, usually as

a syntactic element or attribute. It would be more precise t o use instead the terms binding-

list construct, defined-identifier component, and defining-occurrence attribute. However, to

avoid being overly pedantic, this more precise terminology is used only if confusion would

arise in its absence.

2.1 Conceptual foundations

Before outlining Acer, consider the general categories of semantic object t ha t are common

to programming languages and the implications of these categories on support for program

manipulation. Ideally, a language should support a simple and uniform model of semantic

objects and their corresponding syrltactic representations, for this simplicity and uniformity

are key in supporting straightforward formal manipulation without a myriad of special cases.

CHAPTER 2. A N INTltODUCTlON TO ACER

2.1.1 Value

In general, programs manipulate abstract entities, i.e., values, according to concrete repre-

sentations, i.e., as bits in memory. The details of the concrete representation are unimpor-

tant however, only abstract behavior matters. Therefore, the semantics of a programming

language is concerned primarily with values, not with particular representations of values.

However, when manipulating a program, it is often necessary to manipulate the values to

which the program refers. Hence, to support manipulation, it is desirable that there exist for

every value, a corresponding expression (i.e., a syntactic literal) to denote it. In other words,

each value should have a syntactic representation, so it can be expressed and manipulated

as part of a source program.

As a counter-exa~nple, co~~sider the way records are supported in Pascal. A variable of a

record-type can be declared and the fields of that variable can be initialized via assignment,

but there is no concept of a record-literal, i.e., a syntactic expression that denotes a record

with particular values for its fields. IIence, although Pascal supports manipulation of records

as run-time values, it does not support manipulation of records as syntactic objects. Yet

supporting environments must often present run-time values in a human readable form, such

as when debugging a program, so the need for a syntactic representation for each class of

value inevitably arises.

With a well-designed expression syntax for literals, there is a blurred distinction between

a semantic value and a syntactic expression that denotes it. After all, a semantic value

must be represented in some particular way; when that representation closely mirrors the

structure of the semantic value, the semantic value and its representation are easily confused.

For example, drawing a distinction between the number ten and the numeral 10 may seem

like semantic nit-picking. Rut it is this distinction which allows semantic manipulation (e.g.,

the sum of two numbers) to be achieved by syntactic manipulation (e.g., by a formal process

involving adding the digits of the two numerals). It is also what allows the number ten to

be concretely represented as the base two numeral 1010 in memory.

To generalize, then, for any particular programming language, value is the ground-level

category of semantic object, and to support program manipulation, a corresponding category

of syntactic object should exist. The uniform treatment of abstract entities as values and

the provision of syntactic representations for those values is the best way to support the

syntactic manipulation of programs and the values they use. It is encouraging, therefore,

that the trend toward more expressive programming languages, which include a richer variety

of first-class values (e.g., Quest provides first-class functions and first-class modules), is also a

CHAPTER 2. AN INTRODIICY'ION TO ACER 9

trend toward enhanced support for program manipulation, provided syntax is appropriately

designed.

2.1.2 Type

Programming languages generally organize their value space according t o type, giving rise to

the type-level category of semantic object. Since manipulating a program involves manip-

ulating the types to which the program refers, it is desirable if there exists for every type,

just as for every value, a corresponding expression (i.e., syntactic literal) to denote it.

When striving to achieve an expressive programming language, there may be a tempta-

tion to treat types as values, as docs Poly [Har84], but this temptation should be avoided.

Prograrn manipulation is best supported for programs with strong static constraints. This

should riot hinder expressiveness though because dynamic typing can be supported within

the framework of a statically typed language [ACPP91,CF91].

To generalize, then, for any particular programming language, values, the ground-level

category of semantic object, are organized according to type, the type-level category of

semantic object. And, just as for values, a corresponding type-level category of syntactic

object should exist.

2.1.3 Kind

Just as programming languages organize their value space according t o type, so too a pro-

gramming language can organize its type space according to kind, giving rise to a kind-level

category of semantic object and a corresponding kind-level category of syntactic object.

Quest has such a type system.

This thesis will demonstrate, however, that the inclusion of a syntactic representation for

kinds is unnecessary. Acer has a type system analogous to tha t of Quest, but Acer provides

only syntactic representations for values and types. The notion tha t types are typed is

retained, but the type of a type, i t1 Acer, is a type rather than a kind. Manipulation is

enhanced by an economy of syntax.

2.1.4 Additional syntactic categories

In an ideal programming language, then, each category of semantic object gives rise to a

corresponding category of syntactic object. And to enhance manipulation of the semantic

objects, there should be a simple direct mapping between semantics and syntax. Thus, in

CHAPTER 2. AN INTRODUCTION TO ACER 10

an ideal programming language, a ~rograrn 's semantic objects are mirrored by the structure

of its syntactic objects.

Now, because a programming language is used t o specify values in terms of computa-

tions, the syntactic category for value (expression) will include additional syntactic classes

corresponding to various value-yielding semantic operations, e.g., function-calls, condition-

als, and so on. As well, because not all semantic operations are naturally value-yielding,

syntactic categories disjoint from value may also occur, such as the category statement in

Pascal. Nevertheless, in an expression-oriented language [vWMP+76,KR78], semantic oper-

ations tha t are not naturally value-yielding may be interpreted as yielding instead a special

type of value indicating a void result. Thus all semantic operations can be treated uniformly

as expressions, although some are evaluated purely for side-effect. This uniform treatment

enhances support for manipulation.

Another notion common to programming languages is the notion of scope: an identifier

is associated with a semantic object and is visible over some region in which it is used to

stand in place of that semantic object. Static scoping with nested block structure is widely

accepteA as the preferred approach for dealing with scope.

According to the terminology used in this thesis, an identifier denoting a semantic object

(i.e., a value or type) can be introduced by either a binding or a declaration. The distinction

between the two is that a binding construct associates with its identifier a particular semantic

object, but a declaration specifies only the object's type-the actual semantic object is then

associated with the identifier dynamically, either via parameter binding or via assignment.

To reiterate then, a binding construct initializes the identifier it introduces but a declaration

specifies only the identifier's type.

2.1.5 Summary

To summarize the above, the semantic objects of a programming languages can be catego-

rized according to the ground-level category, which includes values; the type-level category,

which includes types; and the semantic-operation category, which includes computational

and scoping structures.

Accordingly, the syntactic objects of a programming language can be categorized accord-

ing t o the value category, which includes value literals and value-yielding semantic operations;

the type category, which includes type literals and type-yielding semantic operations; the

binding category, which includes type- and value-bindings; the declaration category, which

includes type- and value-declarations; and the miscellaneous category, which includes all

CHAPTER 2. AN INTRODUCT1ON TO ACER 11

those syntactic objects tha t serve merely as components of semantically complete syntactic

objects (e.g., just as an argument-list serves merely as a component of a function-call and a

signature serves merely as a component of a function-type).

This conceptual framework is the basis for Acer's design and mirrors the underlying

framework of many programming languages.

2.2 Onward

Acer's design is based on that of Quest [Car89], an imperative, general-purpose, expression-

oriented language with an elaborate type system tha t supports type quantification and struc-

tural subtyping [CWS5]. Like Quest, Acer features abstract types, polymorphism, single and

multiple "inheritance," and garbage collection. Acer differs from Quest in significant ways,

however.

Most importantly, Quest has three levels of semantic objects (values, types, and kinds),

and Acer has only two (values and types) because kinds are represented as types. To under-

stand h ~ w this is possible one must realize that Quest's subtyping rules induce a lattice on

types (i.e., a type hierarchy), and that a kind is simply a sublattice of this lattice. Intuitively,

kinds classify types just as types classify values. Thus, in Quest one says, "The type T is

an element of kind I<.''

Now, a kind, being a sublattice, can always be denoted by its root type, i.e., the sublat-

tice's maximum type. Therefore, in Acer, each of Quest's three ways of specifying a kind is

replaced by a type as follows:

Instead of providing the kind TYPE, which Quest uses to denote the whole type

lattice, Acer provides the a.ny-type Any, which it uses to denote the root of the type

lattice.

Instead of providing the ~ower-k ind P O W E R (T) , which Quest uses to denote the

sublattice rooted a t type T, Accr provides just T itself.

0 And finally, instead of providing an operator-kind O P E R () K , which Quest uses to

denote the sublattice rooted a t a type-operator1 Oper () T, where the type T is an

element of kind Ii, Acer provides just the type-operator itself (see 2.9).

'A type-operator is a function from types to types.

C H A P T E R 2. AN INTlIODUCY'ION T O A C E R 12

Therefore, in Acer, type expressions are used to denote kinds. Also, since the kind of a

type expression is a type, it is as natural to refer to the type of a type expression as it is

to refer to the type of a value expression. Thus type expressions and value expressions are

jointly referred to as simply expressions. And we can speak of the type of an expression,

regardless of whether it denotes a type or a value. So, in Acer, when we say tha t a type T

is of type I< we mean tha t T is a subtype of I<.

Acer also includes a number of features not present in Quest. In particular, features for

supporting high-level iteration and accumulation are provided (see 2.16), as are features for

supporting high-level notations applicable to abstract-types (see 2.7).

Eliminating kinds from the syntax and introducing additional constructs significantly

alters Quest. Quest's syntax is further altered in accordance with the GRAMPS approach

and the relational approach, as described in Chapter 3, and t o conform with the design

principles described in Chapter 4 . For example, in Acer, type and value expressions are to

be syntactically distinguishable. Therefore, a type-identifier must start with an upper-case

letter and a value-identifier must not. (An underscore is considered a n upper-case letter.)

Besides letters and digits, a value-identifier may also be spelled using a combination of the

following:

Here are some examples of type-identifiers:

Base- Type

and here are some examples of va.lue-identifiers:

value V- 0 ++ \ / <=

As an additional font cue for distinguishing type-identifiers from value-identifiers, type-

identifiers are shown Italic and value-identifiers are shown slanted. Also, keywords are shown

bold to distinguish them from identifiers; comments, which start with a '%' and end a t the

end of the line, arc shown in Itoman; and character- and string-literals (see 2.8) are shown

in typewriter.

Acer's syntax includes a number of unusual features. First of all, several constructs

contain unbalanced brackets (e.g., '(', '{', and '[') tha t are balanced by the matching bracket

of a different construct. For example, a binding-list begins with a '{' followed by a series of

binding constructs but no terminating ').' However, a binding-list in context can appear only

as the initial component of a block, and a block provides the terminating 0.' Thus, although

C H A P T E R 2. AN INTRODUCTION T O A C E R 13

a construct out of context may have unbalanced brackets, brackets are always balanced for

constructs in context. The justification for this approach stems from the notion of avoiding

phrase ambiguity as discussed in section 4.3.

Another unusual aspect of Acer's syntax, which closely mirrors that of Quest, is the fact

that all commas and semicolons are optional. Acer's syntax is designed so that it is always

clear where a given construct ends and a new one begins; hence separators and terminators

are redundant. Throughout this thesis, commas and semicolons are generally included only

to separate or terminate constructs appearing on the same line; or when the example is

intended to indicate appropriate punctuation.

Acer's scope rules follow the traditional style of nested block structure, but forward-

reference among declarations and bindings is generally permitted. This provides direct

support for recursion. Restrictions on forward-references to values prevents access to unini-

tialized values (see A.7.2). To begin this overview of Acer, consider the way value- and

type-identifiers are introduced a t the top level, that is, with global scope.

2.3 Global identifier

The most basic Acer program consists simply of a fixed-value-binding, for example,

let pi be 3.14159

introduces a location named pi of type Real containing an approximate representation of the

mathematical value n. Compiling2 this binding produces the fixed-value-declaration

pi : Real

which is then globally visible to subsequent compilations.

An arbitrary number of global value-identifiers can be simultaneously introduced in the

form of a binding-list. For example, compiling the binding-list

{let x be y ;
let y be 10;

produces two declarations:

x : Integer

'Of course, compiling a binding produces object code in addition t o producing a declaration

CHAPTER 2. A N INTRODCIC'I'ION TO ACER

and

y : Integer

A binding-list begins with a left brace and the bindings are terminated by optional semi-

colons; there is no terminating right brace. Top-level binding-lists typically are used only for

introducing mutually dependent values, a situation that arises only infrequently. The above

values are not mutually dependent since y could be compiled separately before x.

A global type-identifier is introduced by a type-binding, for example,

let Color be Enumeration red, blue, green end

introduces an enumeration-type named Color. Unlike a fixed-value-binding, which must be

compiled to produce the declaration that becomes visible, a type-binding is directly visible

without prior compilation.

To understand the reason for the different handling of global types and values, realize

that Acer supports information hiding by introducing a global value-identifier with a decla-

ration, x~rhich indicates the identifier's type but hides its implementation. Such a top-level

declaration, as we shall see in section 2.7, is analogous to a Modula-2 definition module

[Wir85]; the binding from whicl.1 it is derived is analogous to a Modula-2 implementation

module. Thus, in Modula-2 terms, one could think of it as if compiling an implementation

module (a binding) automatically produces a definition module (a declaration).

Of course, in above exa.mple, there is little reason to hide the value associated with pi,

except maybe to hide the number of significant digits supported by the implementation of

Real. But then, the example is intended to be a simple one, not an example that shows

the need for information hiding. Had the binding introduced a function, the effect would

have been to declare a value-identifier with a function-type, thereby hiding the function's

implementation.

Hiding of type implementat,ions is supported in similar manner using type-declarations,

for example,

Color :: Any

A type-declaration indicates the kind of type bound to its identifier but hides the actual

implementation, which may be any subtype of the indicated type. However, hiding of a type

implementation occurs only i l l the context of a quantifier, which provides the operations that

apply to values of the hidden type (see 2.7 and A.20.3). Hence, top-level type-declarations

CHAPTER 2. AN INTRODUCTlON TO ACER 15

are not supported. Type hiding will be discussed further with respect to type-declarations in

function signatures (see 2.6) and with respect to type-declarations in tuple-types (see 2.7).

To summarize then, each top-level value-identifier is introduced by a fixed-value-

declaration, for which there presumably exists a fixed-value-binding tha t provides the value's

definition, i.e., its hidden implementation; and each top-level type-identifier is introduced

by a type-binding tha t provides the type's definition. In this way, any value or type can be

introduced a t the top level to make it globally visible.

Acer economizes on notation by avoiding special top-level constructs, such as modules,

interfaces, packages, and so on. Explicit imports and exports a re also avoided. Acer simply

makes do with nested block structure and existing constructs, such as bindings and declara-

tions, which serve other roles in the language as well. Such economy simplifies manipulation.

2.4 Block

Binding-lists are mow frcqucntly used in conjunction with blocks so tha t bindings can be

introduwd local to an expression. A block consists of a binding-list and a body and is either

a type-block, e.g.,

{let T be I n t e g e r ; T)

or value-block, e.g.,

{let x be 10; let y be 20; {x + Y))

depending on whetl~er the body is a type or a value. Remember, type and value expressions

are to be syntactically distinguishable. Notice the use of a dyadic-method-call {x + y) , which

is similar in appearance to a block, to invoke the I n t e g e r addition operation. Method-calls

are discussed in detail in section 2.7.

A binding in a type-block's binding-list must be a type-binding, bu t a binding in a

value-block's binding-list may be a type-, fixed-value-, or variable-value-binding. A variable-

value-binding is directly analogous to a fixed-value-binding except for the additional var

indicator, e.g.,

let var x be 0

A variable-value-binding introduces an updatable location, initialized as indicated, which

may subsequently be modified by assignment, e.g.,

CHAPTER 2. AN lNTRODUCTION TO ACER

{x becomes 10)

The syntax of an assignment expression mirrors tha t of a dyadic-method-call. T h e type of

a n assignment expression is Void, the type of a value expression evaluated for side-effect;

the void-literal {) denotes the one value of type Void, and this is the value yielded by an

assignment.

When a value-block is evaluated, the bindings are evaluated first and the body is evaluated

in the context of those bindings to yield the result of the block. The bindings themselves

can be evaluated in any order tha t does not access uninitialized values. For example, in the

block

{let x be f (); let y be g 0; {x + y))

either f or g can be evaluated first. Nevertheless, a left-to-right evaluation must be a correct

evaluation order as determined by dependency analysis (see A.7.2), and bindings may well

be evaluated in tha t order. For example, the block

{let x be h (y); let y be 42; {x + y))

is incorrect because it cannot be evaluated left-to-right. So to put it another way, the depen-

dencies between bindings must be reflected in their left-to-right order, but when bindings do

not depend on one another, they can be evaluated in any order. This provides a measure of

freedom to the compiler implementor.

So that side-effects can be sequenced, Acer provides a compound-value, which is a list

of value expressions bracketed by begin end and separated by optional semicolons, for

example,

begin f 0; g (); h () end

A compound-value is evaluated left-to-right ~ i e ld ing the value yielded by the last expres-

sion. If any evaluation raises an exception (see 2.12), the compound-value also raises tha t

exception. The empty compound-value is equivalent t o the void-literal.

Acer supports local program transformations by providing blocks tha t can be introduced

local to any expression context. IIcnce, new objects can be made visible over precisely the

region in which they are required. See section 4.9 for further discussion of this issue.

CHAPTER 2. A N IN'I'RODUCTION T O ACER

2.5 Enumeration

Acer provides the enumeration-type construct for defining enumerations. For example, the

binding

let Color be Enumeration red, blue, green end

introduces an enumeration-type named Color. The values of type Color can be denoted using

literal-selection, e.g., Color.red. The commas separating the identifiers of a n enumeration-

type are optional.

Enumeration-values are ordered and hence an ord-call construct is provided t o determine

the ordinal position of an enumeration-value, e.g., ord (Color.red) yields the Integer value 0.

In addition, given an ordinal position, the corresponding enumeration-value can be obtained

with a val-call, e.g., val (Color, 0) yields the value Color.red. Enumeration-values can also

be used in Acer's variant-irispcction as dcscribed in section 2.13.

Notice that the identifiers of an enumeration-type are not visible without the qualification

of a literal-selection. This enhances manipulation by keeping separate name spaces disjoint.

See section 4.8 for a discussion concerning the impact of scope rules on manipulation.

2.6 Function and function-call

A function in Acer is defined using a function-literal. For insta.nce, a function named f can

be introduced by a binding containing a function-literal as

let f b e function (Type :: Any; value : Type) value end

where

(Type :: Any; value : Type)

is called the signature. Thc function denoted by f, which is the polymorphic identity function,

can then be called as

f (Integer, 10)

or equivalently as

f (let Type b e Integer, let value be 10)

CHAPTER 2. AN INTRODUCTION T O ACER 18

to yield the Integer value 10. In general, an argument-list is similar to a binding-list except

that an argument-list comprises a list of arguments (i.e., expressions and bindings) that

begins with a left parenthesis and is separated by optional commas. Just as the left brace

of a binding-list is balanced by the right brace of a block, so too the left parenthesis of an

argument-list is balanced by the right parenthesis of a function-call.

When a function-call is evaluated, the arguments are bound to the declarations of the

function's signature and then the function's body is evaluated in the context of those bindings

to yield the result of the call.

As a bit of an aside, Acer provides is and isnot to test for value-identity. Therefore,

because f is the polymorphic identity function, the is-test

{X is f (TYPE (x) , x))

always yields true, regardless of the type of x. Hence, even

{f is f (TYPE (f) , f))

is valid and yields true. Notice how the type-designation T Y P E (x) is used to denote the

type of x. In general, a type-designation can be applied to any expression to denote the type

of that expression.

The type of a function-literal is a function-type. For example, the type of f (i.e., the

type denoted by TYPE (f)) is the function-type

Function (Type :: Any; value : Type) Type end

The result-type indicated by a function-type can be explicitly indicated in a function-literal.

For example, f above could be equivalently given as

let f be function (Type :: Any; value : Type) : Type value end

Notice how the initial lower-case or upper-case letter in function and Function distinguishes

a function-literal from a function-type, just as it distinguishes a value-identifier from a type-

identifier. This style is used often in Acer.

The use of type-declarations in signatures supports polymorphism. For example, the

function max in

let max b e
function (BnseType :: Any

< : Function (a : Base Type; b : Base Type) Boolean end
x : BaseType
y : Base Type)

if {x < y) then y else x end
end

CHAPTER 2. AN INTRODUCTION TO ACER 19

defines a polymorphic function that takes four parameters, a base-type of type A n y , a less-

than function that applies to values of the base-type, and two values of the base-type. The

function m a x yields the maximum of the two values of the base-type as determined by the

less-than function. Notice the use of Acer's conditional expression (see A.23.3) , which can

in general include e l s i f clauses, and also the use of a dyadic-method-call to call the less-than

function. Method-calls are described in the section 2.7.

The type of rnax is

Function (B a s e Type :: A n y
< : Func t ion (a :Base Type; b : Base T y p e) Boolean e n d
x : Base Type
y : Base Type)

Base Type
end

and the appearance of BaseType as the result-type demonstrates that the type of a function-

call can depend on its type parameters. For example, the function rnax could be called

rnax (In teger , integer.<, 10, 20)

or equivalently as

rnax (l e t BaseType be Integer
l e t < be integer.<
l e t x be 10
l e t y b e '20)

to yield the Integer value 20. Notice how integer.< is used to select the less-than function

from the integer module. Sectiori 2.7 explains how such modules are defined in terms of

tuples.

The function rnax could be applied to a different type of argument as well, e.g.,

rnax (Rea l , real.<, 1.2, 10.2)

yields the Real value 10.2.

A function cannot ascertain the actual types bound in a function-call to the type-

identifiers declared in its signature so each of these identifiers is considered to be an abstract-

type. In other words, a type is an abstract-type if it is introduced by a declaration. (Note

that the type bound to a type-parameter cannot be determined even a t run-time since typing

in Acer is static, except for dynamics which are described in section 2.15.) The values of

CHAPTER 2. A N INTRODUC'I'ION T O ACER 2 0

each abstract-type in a function signature, and the operations that apply to those values,

must be declared in the same signature; hence the signature quantifies the abstract-type (see

A.20.3). For example, in the function max the abstract-type Base Type is declared along

with two values of that type and a function applying to those values.

Recall that the introduction explained that in Acer each type expression has a type just

as each value expression has a type. Normally, for a concrete-type, such as a function-type

or an enumeration-type, a type expression is its own type. But for an abstract-type, such as

Base Type, its type is given by its type-declaration. (Here we see the double-duty strategy in

action.) At run-time, all that is known about a given abstract-type is that it is a subtype of

the indicated type. In the function max, the type of BaseType is Any and hence BaseType

is unrestricted. In other cases, the type of an abstract-type is something other than Any

such as a function-type or an enumeration-type and hence is partially restricted. Specifying

such restrictions involves Acer's subtyping rules, which will be described in section 2.14.

When a function-literal is evaluated, as opposed to when a function-call is evaluated, a

closure, i.e., the set of all values used by the literal, is computed. At run-time, a function-

value therefore contains both a reference to the instructions for evaluating the literal's body

and a reference to the closure. For example,

let h be function (x : Integer)
{let var y be x
function ()

begin {Y becomes {y + I}}; y end
end)

end

defines a function h that returns a locally defined function with the updatable location y in

its closure. Note that y is allocated on the heap. The type of h is

Function (x : Integer) Function () Integer end end

and hence the type of h (0) is

Function () Integer end

Successive calls to the function yielded by h (0) yield succesive Integer values starting with

1.

Acer's functions support manipulation by allowing any value expression to be abstracted

over (see 4.14). In addition, functions are first-class va.lues and can thus be used just like

any other value: they can be ~ a s s e d as parameters, stored in da ta structures, and returned

from functions.

CHAPTER 2. AN INTRODUCTION TO ACER 2 1

Like Quest, Acer supports polymorphism through the use of explicit type-parameters, an

approach that is substantially different from approaches that infer the type-parameters from

the value-parameters. Such a type-inference approach is the basis for supporting polymor-

phism in ML [Mi1781 (or see [Wik87, pages 378-4201). A more extensive approach, which

involves inferring not only the type-parameters but also the semantic operations associated

with the type-parameters, is described in [CW90]. Explicit polymorphism has the advantage

of being easier to define and support, but there are notational advantages to the type-

inference approach, terseness of notation being one of the primary advantages. A limited

form of type-inference is supported in Acer through the use of method-calls (see 2.7).

2.7 Tuple, method, and selection

The tuple is Acer's primary data structuring mechanism and subsumes the conventional

notion of modules. A tuple-literal, like an argument-list, is a list of arguments separated

by optional commas. But in this case, the list is bracketed by tuple end. The type of a

tuple-litoral is a tuple-type, which is analogous to a signature except that the declarations

are bracketed by Tuple end. For example,

tuple 10, 10.0 end

has type

Tuple : I n t e g e r ; : R e a l end

Notice that the defined-identifier of a declaration is optional SO that a declaration can be

derived from an expression as well as from a binding. This supports the declaration of

anonymous parameters arid anonymous data-structure components. Notice too that type-

and fixed-value-declarations are distinguished by the fact that a type-declaration uses two

colons rather than one. Thus the type-declaration ::Any is distinguishable from the fixed-

value-declaration : Any.

Tuples can introduce types as well as values, e.g.,

let t be
tuple

let T y p e be I n t e g e r
let value: T y p e be 0
let operation be function (x : T y p e) : T y p e {x + 1) end

end

CHAPTER 2. AN INTRODUCrL'ION T O ACER

which has type

Tuple
Type :: Any
value: Type
operation : Function (x : Type) Type end

end

Note how a binding explicitly indicates a type, as in the binding for value, t o specify the

type of the derived declaration. The components of t are accessed using either type-selection

(e.g., t. Type) or value-selection (e.g., t. value and t.operation).

The type-selection t . Type is an abstract-type because the actual type used in the defini-

tion of t is inaccessible. For instance, we might have defined t as

let t be
tuple

let Type be Real
let value: Type be -10000.0
let opera.tion be function (x : Type) : Type {x + 10.0) end

end

In either case, t introduces an abstract-type t.Type of type Any, a single value t.value of

that type, and a single function t.opera.tion tha t applies to values of tha t type. Thus the

tuple t acts as a module implementing an abstract-type and to support information hiding,

the abstract-type's definition is inaccessible.

The reader may be unsettled that t.value might contain any type of value whatsoever.

This is of no concern, however, because each abstract-type is unique so t.value can only be

used as a value of t. Type. Hence, it can only be passed to the function t.operation by the

call t.operation (t.va.lue) to yield another value of type t. Type.

Consider now an extended example in which we define a n abstract-type for simple three-

dimensional vectors. Compiling the binding

CHAPTER 2. AN INTRODUCTION TO ACER

let vector be
tuple

let Type :: Any be Tuple x : Real; y : Real; z : Real end
let construct be

function (x : Real; y : Real; z : Real) : Type
tuple x, y, z end

end
let x be function (v : Type) : Real v.x end
let y be function (v : Type) : Real v.y end
let z be function (v : Type) : Real v.z end
let + be

function (vl : Type; v2 : Type) : Type
tuple {vl .x + ~ 2 . ~ 1 , {vl .y + ~ 2 . ~ 1 , {vl .z + v2.z) end

end
let - be

function (v l : Type; v2 : Type) : Type
tuple (v1.x - v2.x), (v1.y - ~ 2 . ~ 1 , (v1.z - v2.z) end

end
let " be

function (v : Type) : Type
tuple { " v.x), { " v.y), {" v.z) end

end
end

produces the declaration

vector : Tuple
Type :: Any
construct : Function (x : Real; y : Real; z : Real) Type end
x : Function (v : Type) Real end
y : Function (v : Type) Real end
z : Function (v : Type) Real end
+ : Function (vl : Type; v2 : Type) Type end
- : Function (vl : Type; v2 : Type) Type end
" : Function (v : Type) Type end

end

The abstract- type vector. Type allows us to illustrate several significant aspects of Acer.

First of all, notice that Accr cannot support overloading because the identifiers defined

by a tuple must be distinct. Since '-' is used for subtraction of vector. Type values, a different

symbol, namely '"', must be used for negation. Acer's Integer and Real are also defined in

terms of abstract-types and so they too use '"' for negation, which can be called using a unary-

method-call, e.g., {" 10). However, integer- and real-literals can still use the conventional

notation (e.g., -10 and -10.0) since in this case '-' is considered part of the literal.

CHAPTER 2. AN INTl201~UCTION TO ACER

Given the values vl and v2 of type vector. Type, which could be created as

let vl be vector.construct (-10, 20, -30)

and

let v2 be vector.construct (10, -20, 30)

we could add the two values using vector.+ (v l , v2). We could negate v l using vector." (v l) .

Also, we could access the x coordinate of v l using vect0r.x (v l) . These notations are rather

verbose so Acer provides method-calls as a short-hand notation for function-calls (see A.21).

A prefix-method-call is the most general form of method-call. It looks like a function-call

except that the function must be a value-identifier and the argument-list is preceded by a dot,

e.g., + . (v l , v2). The function-call equivalent of a given prefix-method-call is determined by

searching the operations associated with each successive argument tha t has an abstract-type.

Hence, +.(vl , v2) is equivalent to vector.+ (v l , v2) because the type of v l is vector. Type and

vector provides a '+' component. A dot is used in the syntax for prefix-method-calls so

that a prefix-method-call is distinct from a function-call and SO tha t one is reminded that a

prefix-method-call involves value-selection.

Acer defines both unary- arid dyadic-method-calls in terms of prefix-method-calls, for

example, {" vl) is equivalent t o ".(vl) and {vl - v2) is equivalent t o - . (vl , v2). Also,

when value-selection is applied to a value with a n abstract-type, it is treated as equivalent

to a prefix-method-call. By doing so, Acer allows values with abstract-types t o support

the familiar dot-notation for selecting components. For example, the x coordinate of the

vector. Type value vl could be accessed using the (abstract) value-selection v1.x which is

equivalent by rewriting to the prefix-method-call x . (v l) which in turn is equivalent after

method-lookup to the function-call vect0r.x (v l).

To complete the discussion of method-calls, consider one last Acer construct tha t is

defined in terms of a prefix-method-call, namely an index expression. An index expression

such as a[;, j] is defined to be equivalent to index2.(a, i, j) ; hence any value with an abstract-

type can support the notation for subscripting. Notice tha t the method-name used in the

prefix-method-call is of the form indexn, where n indicates the number of indexing values,

which may be zero or arbitrarily many.

Abstract-types can also support assignable value-selection and indexing by using the

rule that if the prefi x-method-call equivalent method.(arguments) of a given value-selection

or index has a Pointer or Reference type then the prefix-method-call equivalent is instead

method.(argurnents)~. In other words, an abstract value-selection or index expression that

CHAPTER 2. AN IN'I'RODUCTION TO ACER 2 5

yields a reference or pointer is automatically dereferenced and hence the resulting expression

may occur as the destination of an assignment. We shall see examples of this in the discussion

of pointer- and reference- types in section 2.1 0.

Acer's tuples support manipulation by providing modules as first-class values: they can

be passed as parameters, stored in da ta structures, and returned from functions.

2.8 The standard abstract-types

Acer provides special syntactic support for five basic types, namely Integer, Real, Character,

String, and Boolean. Support for the first four types is provided in the form of literals. We

have already seen examples of integer- and real-literals. A character-literal is of the form 'a'

and a string-literal is of the form "abc". No additional special support is provided for these

four types, each of which is defined in tcrms of an abstract-type encapsulated by a tuple.

Special syntactic support is also ~ rov ided for the type Boolean, but not in the form of

literals since these are denoted as boolean.false and boolean.true, or simply as false and

true (see A.23). Syntactic support for Boolean values is ~ r o v i d e d in the form of short-circuit

evaluation constructs for evaluating 'and' and 'or.' In particular, a n andif-test

is equivalent to

if x then y else false end

and si~nilarly an orif-test

is equivalent to

if x then true else y end

Although the andif-test and orif-test have the appearance of a d~adic-method-call , they

cannot be implemented as such (by the boolean module, say) because both arguments would

be evaluated before the mcthod were called.

Acer's standard abstract-types receive no additional syntactic support. Acer attempts to

Provide general support for abstraction rather than attempting to provide specific support

for a mlmbcr of special built-in abstractions. This is in keeping with providing support for

general manipulation.

CHAPTER 2. AN INTRODUCTlON TO ACER

2.9 Type-operator and operator-call

Type-operators are functions from types to types tha t are evaluated statically, i.e., a t

compile-time. For example, a type-operator can be introduced as

let Dyadic be
Operator (Base Type :: Any; Result Type :: Any)

Function (: Base Type; : BaseType) Result Type end
end

This type-operator can then be called using an operator-call as

Dyadic (lnteger, Boolean)

which denotes a type equivalent to

Function (: Integer; : Integer) Boolean end

In this way, type-operators provide a convenient short-hand notation for complex type ex-

pressions.

Acer does not support recursive type-operators since type-evaluation, i.e-, the rewriting

of every operator-call in terms of the definition of its type-operator, must be guaranteed to

terminate. For instance, suppose we wanted a type-operator BinaryTree tha t we could call

as Binary Tree (Real) or Binary Tree (vector. Type). Such a recursive type-operator might be

incorrectly presented as

let Binary Tree be
Operator (Base Type :: Any)

Tuple
x : Base 7Spe
lcft Child : Binary Tree (Base Type)
right Child : Binary Tree (Base Type)

end
end

It should instead be defined in terms of a recursive type,

let Binary Tree be
Operator (BnseType :: Any)

{let Type be
Tuple
x : Base Type
lcft Child : T y p e
rig11 t Child : Type

end
Type)

end

CHAPTER 2. AN IN7'ltODUCTION TO ACER 2 7

The power of type-operators lies not in the ability to use them as a short-hand notation

but in the ability to use them to define parametric abstract-types. For example, suppose we

wanted to define an abstract-type for ~aired-objects of the same arbitrary base-type. Such

an abstract-type is provided by the declaration

pair :
Tuple

Type :: Opera tor (Base Type :: Any) Any end
construct :

Function (Base Type :: Any; x : Base Type; y : Base Type)
Type (Base Type)

end
x : Function (Base Type :: Any; p : Type (Base Type)) Base Type end
y : Function (BaseType :: Any; p : Type (BaseType)) Base Type end

end

which could be implernentcd by the tuple

tup le
let Type b e

Opera tor (Base Tgpe :: Any)
Tuple x : Base Type; y : Base Type end

end
let constr~lct b e

function (Base Type :: Any; x : Base Type; y : Base Type)
: Type (Base Type)

tuple x, y end
end

let x b e function (Base Type :: Any; p : Type (Base Type)) p.x end
let y b e function (BaseType ::Any; p : Type (BaseType)) p.y end

end

With the above declaration of pail- visible, the function-call in

let pr b e pa.ir.construct (Integer, 10, 20)

yields a value of type

pair. Type (Integer)

The x compor~~nt of the pair pr can then be selected using pair.x(Integer, pr). But this

of the pair pr can also be seled,ed using the value-selection pr.x, which is equivalent to the

~ r e f i x - m e t h ~ d - ~ ~ l l x.(pr) since the type of pr is an abstract-type. When a prefix-method-

call applies to an argument with an abstract-type given by an operator-call, as does pr with

C H A P T E R 2. A N INTRODUCTION T O ACER 2 8

type pair. Type (Integer), the type arguments given in the operator-call are included as the

first arguments in the function-call equivalent of the prefix-method-call. Therefore x . (~ r) is

equivalent to pair.^ (Integer, pr) . In this way, all forms of method-call, namely index, value-

selection, prefix-method-call, dyadic-method-call, and unary-method-call, are supported for

parametric abstract-types.

Type-operators enhance manipulation by supporting abstraction over type expressions,

just as functions support abstraction over value expressions (see 4.14).

2.10 Pointer and reference

Acer provides two very similar types Pointer and Reference to support the modeling of

updatable locations. These two parametric abstract-types are introduced respectively by

the type-bindings

let Pointer be pointers. Type

and

let Reference be references. Type

Their modules arc: made availa.ble by the dcclarations

p o i ~ ~ t e r s :

Tuple
Type :: Operator (Base Type :: Any) Any end
new : Function (Base Type :: Any; : Base Type)

Type (Base Type)
end

end

and

CHAPTER 2. AN INTRODUCTION TO ACER

references :
Tuple

Type :: Operator (Base Type :: Any) Any end
new : Function (Base Type :: Any; : Base Type)

Type (Base Type)
end

create :
Function

(Base Type :: Any
fetch : Function () Base Type end
store : Function (: Base Type) Void end)

Type (Base Type)
end

end

Pointer-values model updatable locations in terms of memory addressing whereas reference-

values model updatable locations in terms of fetchlstore functions.

A pointer-value p of type Pointer (Integer) can be created as

let p be pointemnew (Integer, 10)

We can then define q as

let q be p

so tha t the dereference po and the dereference qO yield the value a t the same storage location.

Hence, the dereference pa yields the value a t the location pointed a t by p. Such a dereference

can be used anywhere tha t a variable of the base-type can be used. For instance,

{pa becomes 100)

updates the value a t the location pointed a t by p.

Acer provides a pointer-call construct, which can be used to determine the address of an

updatable location. Using this construct the pointer-value p could instead be created as

let p be {let var loca,tinn be 10; pointer (location)}

Remember, Acer allocates the variahl(:-vali,e-bindings of a block on the heap rather than on

the stack, so the above does lot produce a dangling stack reference.

References are created in an analogous manner, e.g., a reference-value r of type

Reference (Integer) can be created as

let r be rcferences.new (Integer, 10)

C H A P T E R 2. A N INTIIOII UC'I'ION T O A CER 3 0

The value a t the location referenced by r is yielded by the dereference r(D and we can use

{ra b e c o m e s 100)

to update the value a t the location referenced by r. Acer provides a reference-literal3 con-

struct which could equivalently be used to create r as

l e t r be {let var location b e 10; reference(1ocation))

From what has been described so far, ~ o i n t e r s and references are equivalent. Their

difference lies in the references.create function. The original definition of r :

l e t r b e references.ncw (Integer, 10)

is equivalent to

l e t r b e {let v a r location b e 10
references. crea t e

(Integer
l e t fetch b e func t ion () location e n d
l e t store b e func t ion (update : Integer)

{location b e c o m e s update)

e n d) 1
Hence, a refercnce-value is implemented as a pair of functions, for fetching and storing the

referenced value-the fetch function is called when the dereference rQ is used to yield a

value and the store function is called when the dereference is used as the destination of an

assignment. Therefore, references provide high-level control over d ~ r ~ f e r e n c e and assignment.

For example, references could be used to record the number of assignments made to a

Particular reference, or to print out a message each time a reference is ~ c c ~ s s e d .

To demonstrate a simple application of pointers and references we will show the imple-

mentation of an abstract-type for updatable paired-objects of the me arbitrary base-type.

The binding

3Unlike a pointer-call, a reference-literal is a literal and SO can be the target of ade la~edre fe rence , thereby
Supporting recursive dependencies, see A.7.2.

CHAPTER 2. AN 1NTRODClCTION TO ACER

let pair be
tuple

let Type be
Operator (Base Type :: Any)

Tuple var x : Base Type; var y : Base Type end
end

let construct be
function (Base Type :: Any; x : Base Type; y : Base Type)

: Type (Base Type)
tuple let var x be x ' [I] , let var y be y ' [l] end

end
let x be function (Base Type :: Any; p : Type (Base Type))

pointer (P.x)
end

let y be function (Base Type :: Any; p : Type (BaseType))
pointer (p .y)

end
end

can be compiled to produce a declaration that ~ r o v i d e s such a type.

As a bit of an aside, notice in the definition of the construct function the use of the

reused-value-identifier x ' [l] to denote the outer definition of x in the signature, rather than

the inner definition of x in the tuple. The p n e r a l form of this notation is x ' [n] where n is

a nori-negative integer-literal. This notation causes the search for the defining-occurrence of

x to skip over the first 72 matching defining-occurrences. Hence, the reused-value-identifier

x l [l] in the previous example refers to the outer definition of x rather than the inner one.

Acer also provides reuscd-type-idc~itificrs.

Reused-identifiers are provided to access identifiers that are defined in an outer scope

and redefined in an inner scope, thereby ensuring that all identifiers remain visible. Reused-

identifiers are not intended to encourage the use of nested renaming, which should only occur

because the choice of identifier is forced. For example, nested reuse is forced if a tuple-literal

with a cornporlc~~t riarllcd x is to be defined in a scope in which x is already visible, and i f

the outer x must be used within that tuple.

To get back to our example of updatable airs, recall that we earlier stated tha t if the

prefix-method-call equivalent of a value-selection (or an index expression, as we shall see in

the next section) has a Pointer or Reference type then the prefix-method-call equivalent is

automatically dereferenced. Therefore, with thepair defined as

let thepair be pair.const,ruct (Inlegel; 10, 20)

CHAPTER 2. AN INTRODUCTION T O ACER 3 2

we could use thePair.x to yield 10 because the type of x.(thePair) is Pointer (Integer) and

SO thePair.x is equivalent to x.(thePair)Q. Furthermore, we could also use

{thePair.x b e c o m e s 100)

to update the x component of thepair. In this way, pointers and references, in conjunction

with value-selection (and index), provide support for modeling abstract-types with updatable

components.

Pointers and references support manipulation by allowing functions to abstract over up-

datable locations (see 4.14).

2.11 Array

Arrays in Acer are defined as a parametric abstract-type introduced by the binding

l e t Array b e arrays. Type

The implementation of arrays is rna.dc available by the declaration

arrays :
Tuple

Type :: O p e r a t o r (Base T y p e :: A n y) A n y end
error : Exception (Void)
length : Funct ion (Base Type :: A n y ; : Type (Base Type))

Integer
end

index1 :
Funct ion (Base Type:: A n y ; : Type (Base Type); : Integer)

Pointer (Base Type)
end

new : Funct ion (13aseType:: A n y ; : Base Type; : Integer)
Type (Base Type)

end
end

An array-value can be created by an array-literal, which is the only special syntactic

Support providctl for arrays. For example,

array 12, 23, 34 end

creates an array-valne of type A rl-uy (Integer). The base-type of an array-literal can be given

explicitly as

CHAPTER 2. AN INTRODIIC'I'ION TO ACER

array 12, 23, 34 of Integer end

An array-value can also be created as

arrays.new (Real, 0.0, 10)

which creates an array-value with 10 elements, each of which contains the value 0.0.

For an array-value a of type Array (BaseTpe) , the length of a is ~ i e l d e d by a.length and

the first element of a is yielded by a [o], which is equivalent to

index1 .(Base Type, a, 0)Q

Indexed arrays can be used in assignment, e.g.,

{a [i] becomes a [{i + 1) I)

The la.st elemcnt of a is yielded by

The exception arrays.error is raised when arrays.indexl is called with an out-of-range sub-

script. We shall examine exceptions in the section that follows.

2 12 Exception and exception handling

let c be exception (Integer)

and is of type

Exception (Integer)

This exception could be la.iscd with an associated base-value as

raise e with 0 end

When this raise expression is evaluated, normal evaluation is interrupted and the exception

e, along with its value 0, is back along the dynamic call chain until a

handler for e is reached. The type of a raise expression is Raise, which is a special type tha t

CHAPTER 2. AN INTRODUCTION TO ACER 3 4

does not cause type-conflicts-an expression of type Raise does not yield a value but instead

always raises an exception and therefore cannot cause a type-conflict. This does not mean

that type-conflicts cannot occur within a raise expression, for the associated-value of a raise

expression must certainly be of the exception's base-type, it simply means that the raise

expression itself does not cause type-conflicts, regardless of the context in which it appears.

Acer's exceptions are different from those in other languages. In CLU [LAB+81] for

instance, exceptions are static entitics and functions must explicitly indicate which exceptions

their evaluation may raise. This approach is not ~oss ib le in Acer because exceptions are first-

class values.

Accr provides two global exceptions

exit : Except ion (V o i d)

and

fatal : Excepl ion (String)

The exception exit is provided as a convenience, and may be raised using the short-hand

raise exit end

which is equivalent to

raise exit with {) end

because its base is Void. The exceplion fatal is special because i f a program is terminated

by raising this exception, the associated string is printed as an error message.

Acer provides several coristructs for handling exceptions. The simplest such construct, a

try-finally expression borrowed from Modula-3 [cDG+s~] , does not really handle exceptions

but rather allows one to specify evaluations to be carried out regardless of whether an

exception is raised. Consider trying to introduce two functions to be evaluated before and

after each evaluation of some value v, regardless of whether v raises an exception. Simply

using

begin before 0; v; after () end

is not enough because if the evaluation of v raises an exception then after is not evaluated.

Instead, a try-fi nally expression should be used as

CHAPTER 2. AN INTRODUCTION T O ACER

t r y
begin before (); v end

finally
after ()

end

SO tha t before is evaluated before v and after is evaluated after v, even if the evaluation of

v raises an exception. A try-finally yields the result of its body, and if both the body and

the final-action raise exceptions, the exception raised by the final-action is raised; the value

yielded by the final-action is ignored. Hence the above can be used to replace a value v with

a traced equivale~it tha t yields the same result as v. For instance, the function before could

print the message, "About to eva.luate v." and the function after could print the message,

"Finished evaluating v." Such tracing could be used to implement a profiler [Ben87].

Acer provides the try expression for handling (trapping) exceptions. For example, the

integer module supplies an exception integer.error of type Exception (void) which is raised

when a division by 0 is performed. Therefore,

t r y {x div y} then
when integer.error then 0

end

can be used to intercept the exception raised when y is 0. A try expression yields the value

of its body but i f this evaluation raises an exception then the exception is compared against

the exceptions appeari~lg in the wllen-condition(s)-if a match is found, the t ry expression

yields the value yielded by the evaluation of the consequent of the corresponding branch,

otherwise propagation of the exception continues. Hence the above t ry expression substitutes

the value o for { x div y) when y is O.

In general, a try expression can have multiple when-branches, it can include a n optional

default-branch, each when-branch can have multiple exceptions, and each when-branch can

include an optional defined-identifier, e.g.,

t r y body then
when exceptionl, exception2 with definedIdentifier then branchl;
when exception3, exception4 then branch2
else default Branch
end

CHAPTER 2. AN INTROIILICTION T O ACER 36

bound to the value associated with the exception handled by that branch to make tha t value

available to the consequent . For example,

{let e be exception (String)
try raise e with "Hello" end then
when e with result then result
end}

is a complicated way of yielding the value "Hello".

Acer's only other construct that handles exceptions is a keep-trying expression, which is

also Acer's only looping construct other than high-level iteration (see 2.16). A keep-trying

expression is very similar to a try expression , and has the general form

keep trying body then
when exception 1 , exception:! with definedlden tifier then branch1 ;
when exccption3, except,io114 then branch2
else dcfa i l l t Bra llch

end

When a keep-tryi~ig expression is evaluated, the body is evaluated repeatedly until an ex-

ception is raised. This exception is then handled by the branches or default-branch of the

keep-trying expression just as for a try expression. A keep-trying expression could be used

to define the integer factorial function a.s

let ! be
function (i : Integer)

{let var i be i J [1]
let var result be 1
keep trying

if { i < 1) then raise exit end
else
begin

{result becomes {result * i))
{ i becomes { i - 1))

end
end

then when exit then rcsult
end}

end

which could be called as ! (I) . Modola-3's loop construct [CDGf88] is similar t o Acer's

keep-trying construct b11t is less general in that it handles only one particular exception, the

exit-exception, rather tllan all exceptions.

CHAPTER 2. AN INTRODUCTION TO ACER

2.13 Variant

Acer provides discriminated unions in the form of the variant. A variant takes on different

structures depending on the value of its discriminating tag, which must be an enumeration-

value (or, as we shall see in section 2.14.3, an option-value). A particular variant v, based

on an enumeration-type E with value id, is created by a variant-literal, e.g.,

let v be
variant id of E with

(let x be 10, let y be 10.0)

which has type

Variant E of
when id then (x : I i z teger; y : IEenl)

end

The defining-occurrence of the tag of a variant-literal or an identifier in the when-condition

of a variant-type is determined by the literal-selection E.id.

The general form of a variant-type is

Variant E n u m e i ~ a t i o n Type of
when i d l , id2 then ();
when id3, id4 then ()

else ()
end

Whereas the type of v is a variant-type with one alternative and an empty default-branch,

in general, a variant-type may specify the structure of each possible alternative; a default-

branch is used to specify the structure of any alternative not specified by the other branches.

The tag of a va,ria,nt cannot be changed and its components can be accessed only after i ts

type is narrowed to a tuplc-type using a variant-inspection. For example, the x component

of v can be accessed using

inspect v then
when id with 1 then t.x
end

The general form of a variant-inspection is

inspect v then
when i d l , id2 with definedldentifier then branchl;
when id3, id4 then branch2
else defaul tBranch
end

C H A P T E R 2. A N JNTROIIUCTJON T O A C E R 3 8

When a variant-inspection is evaluated, the selector v is evaluated first and its tag component

is accessed to determine the matching branch. If the matching branch provides a defined-

identifier then the narrowed variant-value is bound as a tuple-value to that identifier. Hence,

in the preceding example, t has type

Tuple : E; x : I n t e g e r ; y : R e a l end

because v has type

Variant E of
when id then (x : I n t e g e r ; y : R e a l)

end

Finally, the matching branch is evaluated to yield the result of the variant-inspection. An

empty default-brand1 in an inspectio~~ is equivalent to

raise fatal with "Inspect ion error. " end

Variant-types could be used to define a lisp-like recursive type as

let T y p e be
Variant Enumeration nil, cons end of

when nil then ()
when cons then (car: T y p e ; cdr: T y p e)

end

A variant-inspcction can also be as a Pascal-like case-statement if its selector is an

enumeration rather than a variant. Such a variant-inspection is evaluated exactly as before

except that the enumeration-value is examined directly rather than as the tag of a variant.

Just as with a variant, the Value of the selector is bound to the defined-identifier of the

matching branclr, although with an enumeration it has an enumeration-type rather than a

tuple-type (see A.17.4) .

2.14 Subtype

C H A P T E R 2. A N IN'I 'RODUCTION 7'0 A C E R 39

In Acer, whether T1 is a subtype of a type T2 depends, of course, on the types that

T1 and '7'2 denote. The subtyping rules for the various classes of types are described in the

subsections that follow.

2.14.1 Tuple and single inheritance

The idea behind tuple subtyping is that when a tuple with certain components is expected,

a tuple with additional or more specific components is also ~ e r m i t t e d . For example, suppose

we have a function f which takes a tuple argument, e.g.,

le t f b e
funct ion (t : T u p l e x : Integer e n d)

t.x
e n d

The function f may he called with an extended tuple:

f (t u p l e 10, 20, 30 e n d)

to yield the value 10. Notice that tile above tuple-literal does not provide a name for its first

component although in f this component is called x.

It is important to realize that every tuple-type is a subtype of T u p l e e n d , which in turn

is a subtype of A n y , the root of Acer's subtype hierarchy. Therefore, the fewer components

a tuple-type specifies, the closer it is to the root of Acer's subtype hierarchy and hence the

more general it is considered to be.

Subtyping of tuple-types depends recursively on subtyping of components and so

T u p l e : TI e n d

is a subtype of

T u p l e : T2 e n d

if TI is a subtype of 72 For example, the function

let ,g b e
funct ion (t : T u p l e x : T u p l e y : Integer e n d e n d)

t.x.y
e n d

could be called as

g (t u p l e t u p l e 10, 20 e n d , 30, 40 e n d)

CHAPTER 2. AN INTRODUCTION TO ACER 4 o

where the type of the first coml~onent of the tuple argument is a subtype of the type of the

first component of the formal parameter t specified in g. Notice that we can say that the

tuple

tuple tuple 10, 20 end, 30, 40 end

is more specific than is required by g.

The subtyping rule for fixed-value tuple components also applies for type components.

For example, the tuple-type in

let TI be Tuple Type :: Tuple end; value: Type end

is a subtype of the tuple-type in

let T2 be Tuple Type :: Any; value : Type end

let t be
tuple

let var x be tuple let y be 0 end
end

CHAPTER 2. AN INTRODUCTION TO ACER

let h be
function (t : Tuple var x : Tuple end end)

{t.x becomes tuple end)
end

which replaces the x componerlt of t with a tuple that does not have a y component. After the

call to h, the selection t.x.y would no longer be valid since there is no longer a y component.

But this fact is not reflected by the type of t. The call t o h would be valid under the weaker

subtyping rule for fixed-value components but the stronger subtyping rule for variable-value

components prevents it.

Tuples in Acer are analogous to classes in object-oriented languages-both define the

encapsulation of abstract-types, and both define a class hierarchy. However, in most object-

oriented progran~ming languages, such as C++ [Str86] and Eiffel [Mey8817 a class is explicitly

declared to be a subclass of some other class (or of other classes, if multiple inheritance is

supported) and thereby inherits an interface and a default implementation; the interface can

be extended and the implementation can be changed. In Acer, a tuple-type is implicitly a

subtype of some other tuple-type by virtue of having a more specific declared structure; the

sharing of implementations must be explicitly programmed.

Implementation sharing in Accr is a simple matter, however, because a tuple can be

implcmerrtctl as a copy of anotllcr. For example, suppose we have the global declaration

t : Tuple
Type :: Any
zero : Type
succ : Function (x : Type) Type end

end

We can then (automatically) the binding

let t t be tuple
let 7'ype :: Any be t . Type
let zero: Type be t.zero
let succ: Function (x : Type) Type end be t.succ

end

which can be to give a declaration with the same type as tha t of t. In effect,

the implementation of t is "ir1heritcd7' by tt. Also, the implementation of t t can be sub-

Squen t ly just as can default implementations in object-oriented languages. And,

more importarltly, evcll tile type rlsed by the irn~lementation can be changed, e.g.,

CHAPTER 2. AN 1NTRODUCTION TO ACER

let t t b e tuple
let Type :: Any be real. Type
let zero: Type be 0.0
let succ be function (x : Type) : Type {x + 1.0) end

end

2.14.2 Record and multiple inheritance

Acer's tuples support a form of single "inheritancev-component order is significant so the

subtype rules for tuples induce a lattice in the form of a tree, i.e., a given tuple-type has a t

most one direct parent in the lattice. With multiple inheritance, a type can have more than

one direct parent, and the type lattice is a directed acyclic graph.

Acer provides records to support a form of multiple "inheritance." Records are exactly

analogous to tuples except that component order is not significant and hence every record

component must be named. Like tuples, records are created by record-literals, e.g.,

record let Type be Inieger, let value: Type be 0 end

which have record-typcs, e.g.,

Record Type :: Any; value : Type end

2014.3 Enumeration and option

The idea behind subtyping is that when an en~merat ion-value of a given type

is expected, an crlumeration-va]ue from an enumeration-type with fewer alternatives is also

CHAPTER 2. AN INTRODUCTION TO ACER 43

permitted. And because the values of an enumeration-type are ordered, an enumeration-

type El is a subtype of an enumeration-type E2 if the identifiers in E2 are a prefix of the

identifiers in El . Therefore, given the types

{let Day be Enumeration rnon, tue, wed, thu, fri, sat, sun end
let WeekDay be Enumeration mon, tue, wed, thu, fri end
let WeekEnd be Enumeration sat, sun end

we can say that WeekDay is a subtype of Day but WeekEnd is not related to either type.

Notice that Enumeration end is a subtype of all enumeration-types and the more values an

enumeration-type specifies, the closer that type is to Any, the root of the subtype hierarchy.

Acer's subtyping rule for cnumcration-types specifies that order is significant so Acer

also provides option-types, whicll are similar to enumeration-types except that order is not

significant. Therefore, given the option-types

{let Day be Option rnon, tne, wed, thu, fri, sat, sun end
let WeekDny be Option man, tue, wed, thu, fri end
let WeekEnd be Option sat, s u n end

2.14.4 Function-type and type-operator

Function (: A 1) R l end

is a subtype of

Function (: A 2) R2 end

CIIAPTER 2. AN INTRODUCTION TO ACER

if R1 is a subtype of R2 and A 2 is a subtype of A l .

Just as during recursive subtyping of tuples, during recursive subtyping of function-types

F1 and F2, an occurrence of an identifier introduced by a declaration in the signature of F1

is considered equivalent to the identifier of the corresponding declaration in the signature of

F2. For example,

Function (T :: Any; : T) T end

is a subtype of

Function (T :: Tuple end; : T) T end

precisely because of this equivalence; the result-types otherwise denote distinct types.

Since type-opcrators are functions from types to types, the subtype relation on type-

operators is exactly analogous to that on functions.

2.14.5 Variant

Variant Enumeration nil end of
when nil then (r ~ c w S t u f f : T)
end

is a subtype of

Variant Enumeration nil end of
when nil then ()

end

CHAPTER 2. AN INTRODUCI'ION TO ACER

Variant Enumeration nil, cons end of
when nil then ()
when cons then (car : AtomType; cdr: T)

end

for the first reason.

Acer has three forms of abstract-type. There are type-identifiers introduced by type-

declarations, for example, T and PT are abstract-types when introduced by declarations

in a signature as

(T :: Any; PT :: Operator (Base Type :: Any) Any end)

There are type-sclcctions, for example, v. Type is an abstract-type when v is a tuple, record,

or dynamic (see 2.1 5) wit11 a component named Type. And there are operator-calls, for

example, PT (lr~tegel-) is all abstract-type when P T is d~clared as above-

Every abstract-type is said to have a quantijer (see A.20.3), a concept closely related to

the universal arid existential quantific.rs of logic. For instance, a function acts as a universal

quantifier because i t specifies a value for all possible parameter instantiations, whereas a tuple

acts as a existential quantifier because it specifies the existence of one particular instantiation.

For a type-identifier, the quantifier is the construct containing its declaration; this must be

a signature (e.g., the signature containing T and P7' above), a tu~ le - type , a record-type,

Or a dynamic-type (see 2.15). fir a type-selection, the quantifier is given by the base

(eag., v above). And for an opcrator-call, the quantifier is determined recursively from the

Operator (e.g., from PT above). Intuitively, a quantifier encapsulates an abstract-type with

its associated values and operations, that is, its methods. In fact, the defining-occurrence of

the method-name of a prefix-method-call is determined by searching the quantifier of each

argument whose type is an abstract-type.

An abstract-type is abstract because its definition is hidden and hence cannot be used to

determine whether anotller type is a srlbtype of it. All that is known about an abstract-type

is that it is a sulltypc of its declared type. Therefore, an abstract-type is considered to be

a type unto itself--each abstract-type is distinct from all others and has no subtypes. Two

abstract-types arc quivalel l t only i f they have the same quantifier, and for operator-calls,

if corresponding parameters are also equivalent.

Because a quantifier can be a value, as in the case of t~~e-se lec t ions , statically determining

if two quantifiers are the same requires a static equivalence relation for values. For example,

CHAPTER 2. AN lNTRODliCTION T O ACER 46

v l . Type is a equivalent to v2. Type only if v l and v2 are equivalent. A detailed definition

of the static equivalence relation for values is left for the appendix (see A.20.3). Intuitively,

two value expressions are equivalent only if the expressions are fixed and can be shown to

always denote the same value.

To see why parameters must be equivalent when subtyping abstract- types, consider the

types P T (Integer) and PT (Any) where P T is declared as before. If the hidden definition

of P T is

Operator (BaseType :: Any) Function () BaseType end end

it would be valid to consider P T (Integer) a subtype of P T (Any) since

Function () h t e g e r end

is a subtype of

Function () Any end

However, i f the hidden definition of P T is

Operator (Base ripe :: Any) Function (: Base Type) Any end end

Function (: Integer) Any end

is not a subtype of

Function (: Any) Any end

CHAPTER 2. AN 1NrI'ROL)IICT1ON T O ACER

T :: Tuple x : Integer end

and a value declared as

it is valid to select the x component of v using v.x because although the type of v is T,

which is an abstract-type with no method named X, the type of the type of v (i.e., the kind

of V) is a tuple-type, which specifies that v is a tuple with an x component. Also, v can be

a passed to a function f dcclarcd as

f : Function (: Tuple x : Any end) Void end

using the function-call f (v) becatlse v is known to be a tuple with an x component of type

Integer.

To sumnlarizc the subtyping rules for abstract-types:

An abstract-type TI is equiva,Icnt to an abstract-type T2 if the quantifier of TI is

equivalent to thc quantifier of 7'2 and corresponding parameters are equivalent.

2.15 Dynamic

dynamic let Type be Integer, let value: Type be 0 end

which have dynamic-types, e.g.,

CHAPTER 2. AN INTRODUCTION TO ACER

Dynamic Type :: Any; value : Type end

Also, the subtyping rules for dynamic-types are the same those as for tuple-types. Type-

and value-selection also apply for dynamics. Dynamics differ from tuples, however, because

the first component of a dynamic must be a type and because a representation of this type

is actually stored as a run-time component of the dynamic-value. This type-tag component

can be examined a t run-time using dynamic-inspection.

For example, the dynamic-value d in

let d be
dynamic

let Type be I n t e g e r
let value: Type be 0

end

could be inspected as

inspect d Then
when I n t e g e r with t then t.valuc
end

to yield the value 0. A dynanlic-insptrctior~ is similar in appearance to a variant-inspection

except Then (instead of then) is used to introduce the branch-list and the condition of each

when-branch specifies a type (instead of values).

When a dyna~nic-inspection is evaluated, the selector is evaluated first to determine the

type-tag of t l ~ e resulting dynamic-value. This type is then compared t o the types appearing

as the conditions of succcssivc branches until a condition with a supertype is found. Note

that the subtyping rules used for dynamic-inspection are the same as the static subtyping

rules. In addition, a dynalnic-inspection may provide an else part to specify a default-

branch. If the rnatchillg branch of a dynamic-inspection provides a defined-identifier then

the narrowed dynnmic-vallle, which then takes on the form of a tuple-value, is bound t o tha t

identifier. Finally, the consequerlt of the matching branch is evaluated to yield the result of

the inspection.

The dcfrlcd-idmtifirr of a type-when-branch of a dynamic-inspection is bound t o a

dynamic-valur wl lose type i s llal.rowed to be tuple-type. This tuple-type has the same dec-

laratiolls as tllc dyIlalnic-~ype with the following exceptions: the initial type-declaration is

replaced by all anonylnolls fixed-value-declaration of type Any, and each applied-occurrence

of the defined-identifier of the iIlit,ial type-declaration is replaced by a copy of the type-when-

branch's condition. I.'or example, i n the dynamic inspection above, the selector d has type

CHAPTER 2. AN lNrl'ltOD UC'TION 'TO A CER

Dynamic Type :: Any; value : Type end

and since the condition of the matching branch is Integer, the type of t is

Tuple : Any; value: lnteger end

There are restrictions on which types can be used as the tag of a dynamic. In particular,

the type-tag of a dynamic-literal may not depend on abstract-types tha t can be bound t o

different definitions during program execution. For example, i f this were allowed, consider

evaluating the block

{let var d be
dynamic

let Type :: Any be Integer
let value: Type be 1

end
let f be

function (T :: Any; x : T)
{let result be

inspect d Then
when T with dt then dt.value

else x
end

begin
{d becomes

dynamic let Type be l'; let value: Type be x end)
result

end)
end

tuple f (Real, 1.0), f (C/~aracter , '1') end)

The updatable variable d is used by the function f for two purposes. First, f inspects d

and i f d llas 7' i ~ s its type-tag t11m the value component of d, which then has type T, is

Stored in result. Sccorld, before yielding the value stored in result, f assigns to d a dynarnic-

value encapsula t i~~g 7' alld its value x. During the first call to f there is no problem (f

simply yields x) but dnl*ing the second call, the dynamic-inspection succeeds because d then

contains a dynamic-value with T as its type-tag. Therefore, during the second call, the

value componcnt of ttle dynamic is stored in result, which is subsequently yielded by f

But this is as a C/Laracter value even though it is actually the Real value 1.0

to f during t l ~ e first call.

-
4

Remember, there is no way for the function to ascertain the type bound to T.

CHAPTER 2. AN INTRODUCTlON TO ACER

The problem with abstract-types goes even beyond this because, as we will see shortly, a

dynamic-value can be stored in a file that is loaded by another program, or by a later run of

the same program. Therefore, even if an abstract-type is fixed during program execution it

can nevertheless be recompiled, thereby invalidating any stored dynamic-values that depend

on it. As a consequence, it may seem prudent to disallow completely abstract-types as

type-tags of dynamics. However, many basic types such as Integer, Real, and Character are

defined as abstract-types and it will most certainly be necessary to support dynamic-values

based on these. Therefore, an abstract-type is permitted as part of the type-tag of a dynamic

only when it can be statically shown to be bound to the same definition throughout a single

program execution, i.e., if it is a closed t y p e (see A.14). The problem of an abstract-type's

implementation changing, tllercby invalidating stored dynamic-values based on it , is left as

an open problem.

Operations on dyna.mic-values arc provided by the module dynamics which supports

copying, reading, and writing of dyna.mic-values:

dynamics :
Tuple

error : Exception (Void)
copy : Function (: Dynamic Type :: Any; : Type end)

Dynamic Type :: Any; value : Type end
end

input : Function (filepath: String)
Dynamic T y p e :: Any; value : Type end

end
output : Function (filcl'ath: St~ ing

: Dynamic Type :: Any; : Type end)
Void

end
end

For example, given the function g defined as

let g b e
{let var x be 0
function ()

begin {x becomes {x + 1)) ; x end
end)

we can create a dynamic copy h of g as follows:

CHAPTER 2. AN INTRODUCTION TO ACER

let h be
inspect

dynamics. copy
(dynamic

let T y p e be Function () I n t e g e r end
let value: T y p e be g

end)
Then when Function () I n t e g e r end with t then t.va.lue
end

Given g and h as defined above, we could create the tuple

which creates a tuple equivalent to

tuple 3, 3 end

Dynamic copying preserves the sharing and circularities within the object being copied. This

can be seen in the above example from the fact that even the closure of g is copied, not

shared between g arid 1 1 .

The furictioli ,g could also be copied using input and output as follows

let h be
inspect

begin
dyna.mics.output

("filename"
dynamic

let T y p e be Function () I n t e g e r end
let value : T y p e be g

end)
dynamics.inpu t ("filename")

end
Then when Function () l n t , e y e r end with t then t.value
end

dynamics provides sul,port for persistent storage.

CIIAPTER 2. AN IN?'ROL)UC?'ION TO ACER

2.16 Iterator and accumulator

Acer provides constructs for supporting high-level iteration and accumulation [Cam89]. Iter-

ators (i.e., sequence producers) and accumulators (i.e., sequence consumers) are tuples with

appropriate exception and function components.

An iterator-type is given in terms of a base-type as Iterator (Base Type), where Iterator

is introduced by the global type-binding

let Iterator be
Operator (Base Type :: Any)

Tuple
done : Exception (Void)
produce : Function () Base Type end
termir~ate : Function () Void end

end
end

Since Iterator is not an abstract-type, we can create an iterator-value with a tuple-literal tha t

has the required exception and function components. For example, the following function

creates an iterator that produces a sequence of integers in the specified range:

let range be
function (f i s t : Integer-; last : Integel-) : lterator (Integer)

tuple
let done be exception (Void)
let produce be

function ()
if {next > last) then raise done end
else

{let result be next
begin

{next becomes {next + 1))
rcs11lt

end)
end

end
let terminate be function () {) end
let var next be first

end
end

A n iterator gcllcratcs a sequellcc of values through repeated calls to i ts prodljce function,

which raises t,lIe cxceptioll when the sequence is exhausted. An iterator is terminated

CHAPTER 2. AN INTRODIICTION T O ACER 53

by a call to its terminate function, which is called either because the done exception is raised

or because no further values are required. Iterators are typically used in conjunction with

Acer's version of the for-loop called an iteration, e.g.,

for i in range(0, {a.length - 1)) do
{ a [i] becomes 0.0)

end

AS we shall see below, an iteration expression can also include an accumulator tha t consumes

the sequence of values to produce a single value.

An accumulator-type is given in terms of a base-type and a result-type as

Accuinulator (Base Type, Result Type)

where Accuinulator is introduccd by the global type-binding

let Accumulator be
Operator (Base Type :: Any; Result Type :: Any)

Tuple
done : Exception (Void)
consume : Function (: Base Type) Void end
terminate : Function () IiesullType end

end
end

let sum be
function (initial: I t ~ t r ~ e r) : Accsm~~lator(Integer, Integer)

tuple
let done b e exception (Void)
let consume be

function (i : Integer)
{resz~lt becomes {result + i))

end
let terntinate be function () result end
let var result b e initial

end
end

CHAPTER 2. AN INTRODUCTION TO ACER 5 4

is terminated by a call to its terminate function, which is called either because the done ex-

ception is raised or because there are no more sequence values. An accumulator's terminate

function yields the result of the accumulation.

An accumulator can be used in an iteration expression as follows:

for i in range (1, 5) do
sum (0) i

end

which for the above definitions yields 15. In general, an iteration expression may introduce

several defined-identifiers and may contain a filter expression, e.g.,

for i in x; j in y andif filtcr (i, j) do accum body (i, j) end

which is defined to be equivalent to

{let i terl be x; let itcr.2 be y ; let a be accum
keep trying

{let i be iterl.produce 0; let j be iter2.produce ()
if filter. (i, j) then a. consume (bo& (i, j)) end)

then
when itcr.1 .done, iter2.done, a.done then
begin

iterl . terminate 0; itcr.2.te1minate (); a. terminate ()
end

end)

discard :
Tuple

done : l<xception (Void)
consume : Function (: Any) Void end
terminate : Function () Void end

end

and is implemented as

let discard be
tuple

let done b e exception (Void)
let consume be function (: Any) {) end
let tcrminatc be function () {) end

end

CHAPTER 2. AN INTIZODUCTlON T O ACER

A missing filter is equivalent to true.

Accumulators can also be used in Acer's accumulation expression, e.g.,

which is defined, in general, to be equivalent to

{let a b e sum (0)
t ry beg in

a.consume (1)
a.consume (2)
a. consume (3)
a. consume (4)
a. consume (5)
a . tcrrnina te ()

e n d
t h e n w h e n a.tlonc t h e n a.fcr.mir~a tc ()

e n d)

Accumulation expressions are particul;lrly useful as a notation for expressing "literals" of

abstract-types. For example,

1ist.constrlict (Integer) ([2, 3, 5, 71)

might be used to create an list of integers, i.e., a value of type

list. Type (Integer)

The defirlitions of Acer's high-level iteration and accumulation constructs demonstrate

just how easily AccrYs syrltax can be extended to povide convenient notations when such

notations are deemed necessary or desirable.

c o d e Integer; move(d1, do); do e n d

might be to move tIlc cnlltcllts of register d l to register do and to yield the final value

do as an lnteyer result. The code-patch

CIIA PTER 2. A N INTI2ODUCTION 7'0 A CER

code Pointer (Any); A 7 end

might be used to yield the value of the stack-register A 7 as a pointer.

A code-patch is a list of expressions. The first expression must be a type, which specifies

the type of value yielded by the code-patch. The remaining expressions are interpreted

as the da t a and instructions of some particular m a c h i n e t h e interpretation varies from

implementation to implementation. Typically, the final expression is used to specify the

effective-address of the value to be yielded, and the expressions between the first and the

last are used to specify the machine instructions to be executed.

Code-patches support rnar~i~ula t ion by providing low-level access t o features tha t would

otherwise be outsitlc the domaill of A c c ~ , scc 4.15.

2.18 Summary

This completes our description of the typcful programming language Acer- Acer has been

carefully designed riot or~ly as a flcxihle high-level language but also as a language tha t di-

rectly supports program manipulation. In terms of syntax, Acer supports manipulation by

Providing a concrete syntax that avoids syntactic ambiguity, including pairwise ambiguity

between grammar productions. In tcrms of semantics, Acer supports manipulation by pro-

viding a flexible abstract syntax that corresponds directly to the concrete syntax. These

topics will be addressed in detail in the chapters that follow.

Chapter 3

The representation of syntax

3.1 The nature of syntax

CHAPTER 3. T I I E R E P R E S E N T A T I O N O F S Y N T A X

limitations of ASCII must not restrict attempts to provide more readable views.

To demonstrate the representation techniques of this chapter in action, examples are

given in terms of Acer.

3.2 Context-free syntax

The fundamental semantic objects of Acer are classified into the categories type, value,

declaration, and binding (see A.2). In the abstract syntax such categories are specified using

a GRAMPS-style alternation rule as follows, in which) I is used to separate alternatives:

(Declaration) ::= (TypeDeclara.tion) 1) (ValueDeclaration)

This rule is intrrpseted to mpan tha t a declaration is either a type-declaration or a value-

declaration.

An alternation rule does not specify node structure, it specifies choice of structure; node

structure is specified by GRAMlIS-style lexical, construction, or list rules. TO be more exact

then, each Icxical, const,ructiorl, or list rule defines a node class whereas each alternation rule

defines a set of node classes, or node category. Every node belongs to a particular node class

and, depending on the kind rule that specifies its class, is either a lexeme, a construction, or

a list; each will be considered in turn.

CHAPTER 3. T H E REPRESENTATION OF SYNTAX 5 9

In Acer, the node class of each lexeme, that is, whether it is a value-identifier, type-identifier,

integer-literal, real-literal, character-literal, or string-literal, is obvious from its spelling.

3.2.2 Construction

Constructions are used to model semantic objects consisting of a fixed set of components. For

example, an Acer type-declaration consists of an optional type-identifier and a type. This

is specified by the following CRAMPS-style construction rule, which uses [[I] t o indicate

optionality:

(TypeDecLmt,ion) ::= [[(Definedlden tifier: Typeldentifier) I (:Type)

A construction rule specific.s a, name for each component-if an explicit component name is

omitted, the cornponcnt name is implicitly taken to be the same as the node class name.

Accordingly, an Acer type-decla.ration consists of an optional defined-identifier, which must

be a type-identifier, and a, type, which must be a type expression. Perhaps it is confusing

to use type as both a nodc class name and a component name but it seems natural to do so

when nodes represcmt types and when constructions have types as components.

Abstractly, a construction is the parent of a fixed number of named childrennodes. These

children are ordered and so can be referenced either by name or by position, tha t is, as the

nth child.

Optional construction components are handled by the provision of empty nodes. EV-

cry CRAMPS-style grammar must provide a construction rule tha t defines empty to be a

childless construction.' When a component is specified optional, a node of class empty is

Permitted to appear in of that conlponent. Therefore, a construction component is

never missing, altlio~igh it may be empty.

A construction nodc is illustrated as a labeled box connected to each of its children. An

example of an Acer type-declaration is

E m p t y c3
%'-type as the type.

CHAPTER 3. TlfE REPl2ESENTA'TlON OF' SYNTAX

3.2.3 List

Lists are used to model semantic objects consisting of an arbitrary number of elements.

For example, an Acer signature consists of a series of declarations. This is specified by the

following GRAMPS-style list rule, which uses 1 to indicate zero or more repetitions:

(Signature) ::= (Declaration) 1

Abstractly, a list is the parent of zero or more children nodes. The children of a list

are ordered and can be referenced only by position-list children are not named as are

construction children.

A list node is illustrated as is a construction node, for example, an Acer signature is

illustrated as

Signature a
T y p e -

Declarat ion

b- % 7

3.3 Context-free relations

the parent relation, which relates a child node to its parent node;

and the position relation, which relates a child node to its position with respect to its

parer1 t .

C H A P T E R 3. T H E REPRESENTATION OF S Y N T A X

3.3.1 Context-free manipulation

Context-free syntax is manipulated by creating nodes and by attaching nodes to form syntax

trees. Creating new unattached nodes is a simple matter: an unattached lexeme is created

given a n appropriate spelling; an unattached construction is created given the correct number

of unattached children, each of the appropriate class; and an unattached list is created given

any number of unattached children of the appropriate class. When a construction or list is

created, its children become attached. (As a convenience, i f an attached child is supplied,

its structure can be copied to ~ i e l d an unattached child.)

Existing syntax trees are modified by altering the attachment of nodes. This can be done

in one of three ways: a child of a construction or list can be replaced by a n unattached

node of the appropriate class, leaving the replacement node attached and the replaced node

unattached; a list child can be deleted, leaving the child unattached and the list with one

less child; or an u~iattaclied nodc of tile appropriate class can be inserted a t any position of

a list, leavir~g the riode attached and the list with one more child. Manipulation of nodes is

very straightforward indeed.

Manipulation is lnade easier by consistency. For example, every node in a tree has a

parent, except for the root, wllich is unattached. For consistency then, the Parent of a n

unattached node will be giver) by a special unattached node called the unattached empty

node. Therefore, every node has a parent and the unattached empty node is its own parent;

the unattached empty node is special because it is a parent and yet has no children.

Similarly, every nodc in a tree has a position with respect to its parent, except for the

root, so for consistency the position of an unattached node will be given by zero.

TO support automated manipulation, a G R A M P S - S ~ ~] ~ granlmar can be used t o generate

a m e t a p r o g r ~ m m i n ~ system, an implementation of nodes as an abstract data-type in a host

Programming language. The manipulation of nodes by programs is then done according

to the notions that have just been described. In particular, a meta~rogramming system

Provides facilities for creating nodes, for traversing nodes, and for editing nodes-a Iexeme

is created given its spelling and a corlstruction or list is created given its children; nodes are

traversed via the parent and cllild that connect them; and nodes are modified by

dcletillg, or i~lst.rtillg cllildren. More details of Acer's metaprogramrning system

"re given in Chapter 5 and Appendix C.

Before moving on to examine how programming language concepts such as scoping and

are rcpreserltcd as relations on nodes, Ict us examine how a GRAMPS-style grammar

concrete syntax.

CHAPTER 3. THE REIJRESENTA'I'ION O F SYNTAX

3.4 Concrete syntax

Concrete syntax provides a way of viewing nodes in terms of a articular set of symbols;

presumably ASCII will be used, i f only to provide a or table view. Concrete syntax can be

specified by the same GRAMPS-style grammar used to specify abstract syntax.

3.4.1 Lexeme

The concrete syntax of a lexeme is specified by a regular expression that uses 1 1 , [[I], D,
and (I D to indicate choice, optionality, zero or more repetitions, and grouping, respectively.

For example, the concrete syntax of an Acer real-literal is specified as

A GRAMPS-style gra.mmar provides character description rules, as is indicated by a '#' in

the rule name, for naming regular expressions. For example, digit is &fined as

3.4.2 Construction

Examples of Accr type-dcclara.tions are

:: Any T :: Any Type 1 :: T y p e 2

Notice how an empty component disappears in the concrete view.

Tokens can be within the optional brackets of a construction-rule component

and are then only i f the associated component is not empty. For example, Acer's

conditional expression is defined as

(Conditional) ::=

(Branches: ConditionalBranch List)
[[else (Default Branch: Value) I] end

C H A P T E R 3. T H E R E P I E S I L N T A T I O N O F S Y N T A X

so a conditional viewed graphically as

B r a n c h

can be viewed in ASCII as

if x then y end

As an alternative t rcatme~lt of empty nodes, a GRAMPS-style grammar can specify a

visible concrete syntax for empty nodes. An empty optional component is then made visible

by printing it as a keyword-optional tokens associated with tha t component are then also

printed. For example, Acer dcfiries the concrete syntax of an empty node as

(Empty) ::= nothing

so the conditional in the previous example could be equivalently viewed as

if x then y else nothing end

3.4.3 List

The concrete syntax of a list, as tlia,t of a construction, is specified by the placement of

tokens. For example, the concrete syntax of an Acer signature is specified as

(Signature) ::= ((Decla.ration)) I ; 1)

A superscripted tolien followi~lg) indicates that the token separates adjacent list elements;

a token enclosed by [[]] indicates that the token itself is optional. Accordingly, the decla-

rations of an Acer signature arc separated by optional semicolons, for example, a signature

viewed as

(A - T y p e :: Any; a- Value : A- T y p e)

could be equivalc~itly viewed as

(A - T y p e :: Any a.- Value : A- 7 y p e)

CIIAPTER 3. THE REPRESENTATION OF SYNTAX

All commas and semicolons are optional in Acer.

Depending on the purpose of a concrete syntax, there are many considerations to take into

account. For example, a concrete syntax must be readable, both to machines and humans.

These issues are discussed in Chapter 4 . Let us move on now to examine context-dependent

syntax.

3.5 Context-dependent relations

The usual approach for defining context-dependent syntax involves using either a n attribute

grammar, which maps program semantics to arbitrary data structures, or denotational se-

mantics, which maps program semantics to mathematical values and functions. In constrast,

the relational approach described here maps program semantics to nodes and node relations.

This is the essence of the double-duty strategy, i.e., nodes represent both context-free syntax

and context-dependent syntax.

Representing static semantic entities as nodes and only as nodes enhances support for

program manipulation. For instance, i f tlrc type of an expression is represented as a node,

this node can be uscd to introduce a new object of that type. On the other hand, if the type

were not represented as a node, how would one declare a variable to hold an expression of

that type? The double-duty strategy eliminates such problems.

Using the double-duty strategy, context-dependent syntax can be completely specified as

relations on nodes. The nature of these relations varies from language to language but three

relations dominate the definitions of most ~ r o ~ r a m m i n g languages:

defining-occurrence relates an identifier node to a corresponding identifier node used

to define the identifier for the current scope,

t y p e relates an expression node to the node that represents its type,

and definition relates a node to the node that represents its meaning according to

rewrite rules.

Each of thesc tllrcc relntiorrs is hinary and can therefore be graphically represented much

like the parent relation. A c o n t e ~ t - d e p ~ n d e n t relation is graphically illustrated by connecting

the right side of tile first rlodc to tlrc left side of the second node. If more than one sort

of context-dcpendellt relation is to be illustrated in a single diagram then the relations are

labeled to distinguislr ttlem. For instance, the following illustrates tha t the integer-literal 2

has the type-identifier Inlege7> as its type and that it has itself as its definition:

C H A P T E R 3. THE R E P R E S E N T A T l O N O F S Y N T A X

2 Integer
Definition

Each relation will be briefly described in the sections tha t follow. A more detailed

treatment of the relations is presented in section A.3.

The defining-occurrence relation as it applies to

function (A- Type :: Any; a- Value : A, T y p e) tuple a,Value end end

is illustrated as

Signature (-1 (---&TI Literal

An identifier tha t is its own defining-occurrence is called a defining-occurrence, every other

identifier is called an applied-occurrence. Notice that the left side of each defining-occurrence

is connected to the right side of each of its applied-occurrences-binary relations can be

interpreted in two dircctions.

The specification techniques of NUItN could be used to define formally the rules for

what is specified than with how it is specified.

mirrors the natural process of incremental identifier-lookup.

CIIAP7'13R 3. THE REPRESENZ'ATION O F SYNTAX

3.5.2 Type

For some languages, ~ a r t i c u l a r] ~ languages with name type-equivalence, the type relation

is simple because the syntax tree contains the necessary nodes for representing the type of

each expression. In general, however, a type can be derived from the syntax of an expression

and there may be no node representing it available in the syntax tree. In such languages, of

which Acer is one, derived nodes must be created to represent types.

To see how the need for derived nodes arises, consider the function-literal we saw previ-

ously

f u n c t i o n (A - T y p e :: A n y ; a- Value : A- T y p e) t u p l e a- Value e n d e n d

The type of the tuple-literal in the body is given by a tuple-type as

T u p l e : A- T y p e e n d

since the type of a- Value is given by A - Type . This much is straightforward but how does the

type-identifier A- T y p e refer back to its declaration in the signature of the function-literal?

The problem with a derived node is that it is not connected by context-free relations to

the tree from which it is derived; for it to refer to the nodes in tha t tree some mechanism

must be provided. I propose the notion of a denoter node, a childless construction node

that acts as a placeholder for its definition node and is permitted only in derived nodes. A

denotcr acts as an anonymous identifier.

The following diagram shows how Accr, with the help of a t ~ ~ e - d e n o t e r , defines the type

of the tuple-literal we saw in the previous example:

C I I A P T E R 3. T H E R E P R E S E N T A T I O N OF S Y N T A X

Signature () (Emlll) Literal

Type-
Declaration

Notice how the type-dcnoter in the declaration of the tuple-type is used to refer to the

typeidentifier i l l the original syntax tree via its definition relation.

What makes a dcnoter special is the fact that its definition relation must be fixed a t

creation time. Every other context-dependent relation can be derived from the context-free

relations whenever necessary. A dcnotcr's definition can be derived only when creating the

derived node that uses it. Conceptually, it is best to think of a denoter's definition relation

as the con text-dependent equivalent of an nth-child relation.

3.5.3 Definition

In many programming languages certain constructs are defined in terms of other constructs

according to rewrite rules. I call this the definition relation, which can be specified using

derived nodes to represent the result of each rewrite. The definition relation applies to all

expression nodes-an expression is either its own definition or there is some other node

that rcpresents its definition. We llave already seen the definition relation as it applies to

denoters. Anotllrr cxarrlple is the defirlitioll of an Acer unary-method-call, which is defined

in terms of a prefix-method-call as

CIlAPTEIt 3. TI1E RE=I-'RESENTATION O F SYNTAX

Prefix-
Methodca l l

Value-
Denoter X

Definition J

Notice the use of a value-denoter t o connect the derived node t o the original syntax tree via

the definition relation.

Many other context-dependent relations are defined for programming languages but , just

as the defining-occurrence, type, and definition relations, they can be specified in terms of

relations on nodes. More complex context-dependent relations are handled by the provision

of derived nodes created to reprcsellt semantic objects; dcnoters are used to permit derived

nodes to reference other nodes.

The context-dependent relations of a language are derived from the context-free relations SO

context-dependent syntax is manipulated indirectly by manipulating the context - f rees~ntax;

evcry change to the context-free relations is reflected by changes to the context-dependent

relations. Meaningful manipulation is by the information embodied in these context-

dependent relations, for example, finding all the applied-occurrences of a given identifier

or finding all the expressions of a given type. Therefore, to support such manipulation,

context-dependent relations must be automatically available-

3.6 Summary

This chapter has described tcclllliqllrs for representing semantic objects as nodes. Node

s tructr~re is tllc Ijasis of lncallilrgful program manipulation for both machines and humans.

In terms of macliine mallipulation, a metaprogramming system can be ~ r e a t e d to manipulate

Programs according to an abstract data-type that implements nodes. In terms of human

manipulation, a l a n g l l a g e - l ~ a s e ~ editor, like PCAcer described in Appendix B, can be created

to manipulatJe programs view(.d conccptllally as nodes. In either case, node structure is the

basis for manipul n t ' loll.

TO summarize, languagc design is tlie design of node structure and program manipulation

is the manipulation of lrodc structure. By specifying a language in terms of node structure,

CllAPTER 3. 7'IIE REPIlESEN?il'l'lON OF SYNTAX'

a language designer specifies precisely the concepts programmers use to understand and

manipulate programs.

Chapter 4

Principles of language design

This chapter describes principles for guiding language design. These principles focus on

various manipulation issues and are also presented in [MDC92]. Their application to Acer,

in particular, is also discussed.

Each section that follows begins with a statement of principle folhved by a discussion.

There are 15 principles in total: prillciples 1-6 deal with the relationship between concrete

and abstract syntax; principles 7--11 (leal wit11 properties of abstract syntax that significantly

affect manipulation; and principles 12-15 deal with program tran~formation.

4.1 Concrete syntax is just a view

Principle 1 A language definition should provide a standard abstract syntax i n one-to-one

correspondence with a stcindarrl concrete syntax.

Meaningful program manipulation is best carried out in terms of an abstract repre-

sentation. Consequently, this first principle emphasizes abstract syntax as the conceptual

foundation of languagcconcret,e syntax is seen as a way of viewing abstract syntax.

To see the importance of syntax consider the representation of positive integers. Roman

numerals are an adequate representation, and are certainly better than unary numerals,

but Arabic n m m l s iil.e by far superior. This is because Arabic numerals facilitate semantic

manipulation, such as additioll arid multiplication, through straightforward syntactic manip-

ulation. Thus, although Ilornan numerals provide an adequate representation, only Arabic

numerals provide a manipulable representation.

For a la~lguage of programs, as for a language of numbers, s u ~ ~ o r t i n g manipulation is a

C H A P T E R 4 . PIUNCIPLES 01: L A N G U A G E DESlGN

fundamental goal. Therefore, a ~rogramming language should define a manipulable represen-

tation. For Acer I chose to use a GRAMPS-style representation based on the simple notion

of nodes as discussed in Chapter 3. Using a GRAMPS-style grammar to define concrete

syntax and abstract syntax ensures conformance with the first principle; node structure is

designed first and concrete syntax is a view.

Emphasizing the manipulation characteristics of nodes and treating concrete syntax as a

way of viewing nodes helps put the relative importanceof abstract syntax and concrete syntax

in a proper perspective. This should aid in guiding the design of programming languages that

are less like Roman numerals and more like Arabic numerals. Merely representing a program

is adequate but representing a program so as to facilitate its manipulation is preferable.

4.2 Ambiguity

Principle 2 T h e s tandard cor~cre te s yn tax of a language .hould be defined b y a n unamb igu -

o u s context-fr-ee g r a m m a r .

Concrete syntax provides the means of viewing nodes. Thus, the natural criterion for

evaluating concrete syntax is readability. The above ~rinciple reflects the notion that a

concrete view is readable only i f it unambiguously determines node structure.

It may be argued that a parser can use static analysis to disambiguate but this reveals

another weakness of the anlbigrlous grammar: an ambiguous context-free grammar expresses

a distinction that can only be resolved in the context-dependent syntax. I contend that a

context-free grammar should not express notions that are in the domain of context-dependent

syntax.

Consider the problcn~s of supporting an abstract representation in the Presence of syntac-

tic ambiguity. Static analysis 1mlst be used to disambiguate node structure so the structure

of a node (i.e., its node class) c o ~ l d he affected by changes to context. Therefore, node

structure would not 1~ all invariant property affected by direct modification only, that is,

by replacing, inserting, or deleting children. Node structure would change depending on

context. This clearly is a major complication.

Furthermore, the ability to manipulate phrases-syntacticall~ complete textual fragments

generated according to some grammar p r o d u c t i o n - ~ ~ ~ I d also be complicated since an am-

biguous phrase must be parsed with respect to an appropriate context to determine correctly

its node structure. Since sucll an appropriate context is not always available, how should

phrases that callnot be disambiguated be handled? And indeed, program manipulation

C H A P T E R 4 . P R l N C l P L E S O F L A N G U A G E DESIGN 7 2

tools routinely manipulate phrases for which no context exists, so it is crucial tha t syntactic

structure can be determined without static analysis. Thus, it is best t o simply avoid all

these difficulties, as I did for Acer, and define concrete syntax in terms of an unambiguous

context-free grammar.

Desirable ambiguities can be handled by semantic overloading, that is, by defining a

single overloaded context-free structure with various context-dependent interpretations (def-

initions). For example, in Acer, the value-selection x.y has one of two possible definitions.

First, if x has an abstract-type, such as vector. Type, the value selection x.y has the prefix-

method-call y.(x) as its definition. Otherwise, x must be an aggregate (a tuple, record, or

dynamic), in which case the value-selection x.y is its own definition. Overloading the seman-

tics of a value-selection thereby achieves the same effect as defining a value-selection and a n

abstract-value-selection as two different classes of node that have the same concrete syntax.

Thus, avoiding context-free ambiguity gains much and loses little since semantic overloading

achieves the same effect.

Note that a language designer cannot simply define an ambiguous context-free syntax

and expect semantic overloading to resolve all ambiguities. He must design the syntax to

provide a syntactic way of distinguishing between various context-dependent interpretations.

For example, in Pascal, the syntax specifies that the parentheses of a function-call t o a

parameterless function be omitted. As a result, an applied-occurrence of an identifier f

could stand for a function-call. NOW i f semantic overloading is to resolve this ambiguity, one

would like to be able to say tllat the definition o f f is f () when f stands for a function-call,

and that the definitioll of f is f otllerwise. unfortunately this is invalid because Pascal's

syntax does not permit a function-call with empty parentheses. Thus Pascal's syntax does

not support the tcc l l~ l i~ l lc of semantic overloading, although the simple change of permitting

an empty parameter-list in a function-call would be sufficient to provide such support.

4.3 Phrase ambiguity

CHAPTER 4 . P R l N C l P L E S O F L A N G U A G E DESIGN 7 3

(In Acer, this rule is called arbitrary, see A.5.3.) This, in combination with avoiding syntac-

tic ambiguity, is sufficient for avoiding phrase ambiguity. The restatement of the principle

also reflects the importance of being able to parse arbitrary phrases as well as complete

programs.

If a language avoids phrase ambiguity, as does Acer, then a parser, or a human reader,

can always determine the node structure of a printed representation, even for phrases out

of context. On the other hand, if a language is phrase ambiguous, as are all well known

programming languages, then a parser requires a start symbol as well. For example, a

Pascal parser cannot simply parse foo (arg), it must parse foe (arg) as an expression or

as a statement to determine whether it is a function-call or a procedure-call. (This could

be avoided by defining instead a single overloaded routine-call.) Thus, the presence of

phrase ambiguity complicates not ollly the implementation of manipulation tools, but also

the interface of the parser and hence tile user interface of the manipulation tools.

Clearly phrase ambiguity is considered acceptable to most language designers but there

are considerable benefits in avoiding it. The ability t h parse correctly any textual phrase

simplifies the textual entry of nodes; also having to specify intended structure is inconvenient

a t best. It is true, however, tIlat avoidirlg phrase ambiguity severely restricts the choice of

concrete syntax but there are also costs, ~ e r h a p s acceptable, in not doing so.

117 favor of allowing phrase ambiguity is the argument that similar things should appear

similar [Mac87, page 461, for example, a function-call should look like a procedure-call be-

cause they are both routines. IIowever, in such cases it also generally makes sense to use

semantic overloading to capture the sinlilarities. Furthermore, Acer function-calls are similar

in appearance to operator-calls and yet a parser can still distinguish them. For instance,

a function-call f (x) is distinguishabIc from an operator-call 0 (T) because, in general, a

function-call has n value as its h s t component and an operator-call has a type as its first

component. Therefore, avoiding phrase ambiguity does not imply tha t constructs cannot

appear similar.

In fact, constructs can appear similar as long as they can be distinguished by the syntactic

class of their components. For example, in Acer, a type-selection, a value-selection, and a

literal-selection each consists of a component, a dot, and second component. But a type-

selection such as x. T consists of a value and a typeidentifier, a value-selection such as x.v

consists of a value and a va]llc-idcntifier, and a literal-selection such as Color.red consists

of a type and a va lue- idcnt i f i~~ . Tllus the three constructs are syntactically distinguishable

because type and va],lc expressions are syntactically distinguishable. And ultimately, the

C I I A P T E R 4 . I-'lUNCIPLES OF LANGUAGE DESIGN 74

syntactic categories for type and value are distinguishable simply because type- and value-

identifiers are distinguishable.

A consequence of avoiding ~ h r a s e ambiguity is the requirement than an empty input

must give rise to an empty node. Therefore, to distinguish textually a childless list node

from an empty node, every list rule must contain a t least one token. With the design of Acer

I carried this requirement one step further: every construction rule also must contain a t least

one token. Therefore, since lexical rules themselves specify tokens, every Acer lexical, list,

and construction node gives rise to a t least one token in the textual representation. (Recall

that an Acer empty node can either be invisible or appear as the token nothing.) Because

of this syntactic property, it is possible to select any Acer node by simply pointing a t one

of its tokens in the textual representation. This is particularly important for the interactive

manipulation of programs.

It may be argued tllat these restrictions on concrete syntax are too stringent, particularly

requiring all construction rules to contain tokens. Remember, however, tha t the restrictions

are intended to ensure various syntactic p-operties-the importance a language designer

places on these properties determines the importance of conforming. Furthermore, only the

standard concrete syntax need conform; alternative views can be specified freely. Also, Acer

demonstrates tha t conformance can in fact be easily achieved and that the resulting concrete

syntax is quite readable.

4.4 Comments

Most modern langllages treat comments as white space that is discarded during parsing.

However, it should be possiI,]e to preserve comments when a Program is parsed [Gro89,

I h 9 B] , so tliat a corrlnlcllted form can be regenerated from the node structure. Moreover,

since nodes can be i n arbitrary ways, the original positions of comments may

also change. It is t1lerefol.e irnportallt to consider how a parser associates an arbitrarily

placed comment with a specific rlode in the parse tree, and where a pretty-printer writes

the comment associated with a node. In addition, if comments are used as annotations for

nodes, it is tilat the association of comments with nodes is unchanged when a node

is printed and then parsed hack in.

Comments play central role in a number of situations. Not only do they serve as

C H A P T E R 4. PRINCIPLES OF L A N G U A G E DESIGN 75

documentation, but they are frequently used as assertions or compiler directives (~ r a ~ m a s)

as well. A well-designed commenting facility provides the capability to annotate nodes with

arbitrary textual information. Tools can use this facility not only to receive tool-specific

information (e.g., switches for the compiler, assertions for the correctness-prover, formatting

hints for the pretty-printer, etc.) but also to produce parsable annotated listings (e.g., a

compiler listing, a profiled listing, a cross-referenced listing, etc.).

In Acer, the property that every node owns a t least one token in the textual representation

provides a simple way of associating comments with nodes: each comment is associated with

the node tha t owns the preceding token. An Acer comment begins with a '%' and continues

to the end of the line; several lines of comments may appear (see A.4.2.1). In this way, Acer

supports the textual annotation of nodes. Furthermore, because the rule for associating a

comment with a node is so simple, there is no need to complicate Acer's grammar with a

specification of allowable comment placement.

TIowever, because a node can own several tokens in the concrete representation it may be

desirable to specify in the grammar which particular token is to be annotated by a standard

unparser, Of course, a 13SCr would still be permitted to annotate any token ~ w n e d by a node.

But when a node is printed, the annotations would associate with the one specified token.

Such comment placement is not actually specified for Acer because it is irrelevant; different

implementations may choose different comment placement. The issue is a matter of taste.

4.5 Macros

Just as comments constitute a, problem for program manipulation if the information

they represent is not encoded in the node structure, so too textual macros are a problem.

Because they define textual objects rather than syntactic objects, textual macros cannot be

manipulated syntactically and thus must be expanded before parsing proceeds. Information

about the use of macros is therefore lost, and cannot be reintroduced to print a modified

CIIAPTER 4. PRINCIPLES OF LANGUAGE DESIGN 7 6

parsed first and then expanded as nodes later. In this way, macros are defined as a feature

of the language itself and so appear in the abstract syntax. Acer simply avoids the use of

macros.

4.6 Incomplete phrases

Principle 6 A language should have a standard representation for syntactic placeholders.

Whereas a phrase is a complete exparision of some grammar production, an incomplete

phrase is only a partial expansion, that is, it contains non-terminal symbols. An incomplete

phrase can be expressed by suhstituti~lg a placeholder or metavariable for each unexpanded

syntactic component.

Metavariables have a number of applications. The need for metavariables lies a t the heart

of template-driven syntax editors [BSs6,TR81], which facilitate program construction by the

expansion of placeholders. Furtllermore, incomplete phrases can be viewed as patterns,

making them useful for pattern-matching and for specifying t r ~ n ~ f o r m a t i o n s [DGKLMM].

Acer supports syntactic placcholdcrs without the inclusion of a special metavariable syn-

tax. A lexemc is concise enough to stand as its own placeholder (a metavariable would have

a syntax a t lcast as complicated). A list may be empty, thereby acting as an appropriate

placeliolder. And a construction acts as a laceh holder when appropriate placeholders for

function () %*Signa.ture
? %*Body

end

in which the sigllatllrr is lranlcd 'Signature7 and the body is mmed 'Body.' Thus Acer's

CHAPTER 4. l1R1NCIPI,ES O F LANGUAGE DESIGN

This concludes the discussion of principles concerning the relationship between concrete

and abstract syntax. In summary, the abstract syntax of a language should be designed

as a manipulable, node-based representation of the required semantic objects, and concrete

syntax should be designed as a ~ h r a s e unambiguous view of annotated nodes. In addition,

careful consideration should be given to ensuring beneficial properties of the concrete syntax,

such as the requirement that every node gives rise to a least one token.

4.7 Semantic objects

Principle 7 All semantic objects should be representable as constructs in the language.

CHAPTER 4. PRINCIPLES O F LANGUAGE DESIGN

4.7.1 Denotation and kind

As extensions of the definition relation and the type relation, Acer specifies a denotation

relation (see A.3.2) and a kind relation (see A.3.3). The denotation of a node is the final

node tha t results from repeated queries as to the definition of a node, the definition of tha t

definition, and so on. Similarly, the kind of an expression is the final node tha t results from

repeated queries as to the type of an expression, the type of that type, and so on.

In a correct Acer program the kind relation is equivalent to applying the type relation

twice because the type of an expression is a type and the type of a type must be a type tha t

is its own type. For the denotation relation, however, the definition relation must be applied

an arbitrary nulll1wr of tilrles to reach a node that is its own definition. This can even lead

to circularity. For cxample, i l l thc following (incorrect) Acer program

{let x be y
let y be x

the definition of the y in the first binding is the y in the second binding, the definition of

that y is the x in the secolld binding, the definition of that x is the x in the first binding, the

definition of tha t x is the y in the first binding, and so on. An Acer manipulation system

must detect such invalid circularity (see discussion of implementation techniques in C.19);

for this example, the denotation of each identifier is given by the special value error (see

A.25).

4.7.2 First-class values

CHAPTER 4. PRlNCIPLES OF LANGUAGE DESIGN

4.8 Scoping

Principle 8 The scope rules of a language should be simple.

The notion of associating with a semantic object a name and thereafter referring to tha t

object by name is universal to all programming languages. Static scoping with nested block

structure is the standard manner in which this notion is syntactically represented. The notion

gives rise t o the defining-occurrence relation, the primary means by which distant nodes in a

syntax tree come to be related. Since other relations rely heavily on the defining-occurrence

relation, it must be a simple relation that is easy to compute.

Acer specifies scoping in terms of two concepts (see A.3.1). First is the concept of the

name-layer. Certain classes of Accr node, such as binding-lists, signatures, and tuples,

contain constructs, such as bindings and declarations, that introduce defined-identifiers.

The name-layer of a node from such a class is the set of defined-identifiers introduced by its

immediate children. A name-layer may not contain duplicate spellings.

Name-layers are scarclled during identifier-lookup, Acer's second scoping concept.

Identifier-lookup involves a recursive traversal from child to parent in which a t each step the

class of the parent, given that lookup is a t the particular child, determines the name-layer(s)

that must be searched arid whet~ler lookup should terminate. By default, no name-layers

are searched and traversal continues with the parent.

Intuitively, Acer's scope rules are specified in terms of searching, and the nature of this

search is very simple indeed. I n Accr, the order of declarations and bindings does not af-

fect scope since scope is defined i n terms of name-layers-a name-layer is a set of nodes,

and hence has no order (although it may be ordered according to spelling to speed search-

ing). Supporting arbitrary forward reference allows recursive dependencies to be naturally

expressed and does not complicate sroping. Rut it does imply the burden of dependency

analysis for detecting crroneo,ls denotation and kind relations (see A.7.2). Thus Acer's scope

rules are simple but dependency analysis is somewhat complex.

The approach to scoping i n Acer may be contrasted with tha t in Quest, which requires

recursion to be cxp]icitly specified wit11 recursive binding constructs- For instance, in Acer,

the recursive factorial function can be defined as

C H A P T E R 4 . PRINCIPLES OF LANGUAGE DESIGN

let rec ! be function (x: Integer)
if {x <= 0) then 1 else {x * ! ({x - 1))) end

end

Similarly, in Quest, recursive type-bindings must be used to define recursive types. Since

the restrictions imposed by Acer's dependency analysis are the same as those imposed by

Quest's recursive bindings, it can be argued that Acer's approach is simpler and more direct-

recursion does not require additional syntactic constructs which complicate manipulation.

The advice to language designers, then, is that scoping should be flexible enough to allow

recursion to be directly expressed and hence that order of definition or declaration should not

affect scope. After all, recursion is an essential programming language feature that should

not require special syntactic support. Of particular concern are constructs such as Pascal's

forward-declarations, whose sole purpose is to circumvent a deficiency in the scoping.

4.9 Locality of objects

((1. * x> + {y * Y } } l {{x * x} - {y * y)}}

w e could optimize tlris expression as follows:

{let xx be {x * x); let yy be {y * y } ; {{xx + YY} fxx - YY}))

CHAPTER 4. PRlNClPLES OF LANGUAGE DESIGN

4.10 Referring to objects

Principle 10 A language should allow references to existing objects to be easily introduced.

When a program is modified, it is frequently necessary to refer to a specific semantic

object a t a given point in the program. Program manipulation is therefore simplified if new

references to such objects can be introduced without global changes to the program. With

nested block structure the objects visible a t the defining point of some particular object

are generally visible where that object is visible. Therefore, nested block structure tends to

make objects visible where they are actually needed.

Acer's nested block strncture provides complete support for the principle. In fact, given a

node (representing a scma~lt~icohject) and a target location, an Acer manipulation system can

automatically create a definition-copy-at (see A.5.2.2), a node representing the same object

as the original node but expressed in terms of the scope of the target location. Naturally,

a definition-copy-at is not for all nodeltarget-location combinations, since objects

can be out of scope, but it is I,ossible whenever it is sensible. More on this in the following

two sections.

Acer's dcliotcrs also provide support for referring to existing objects, although this sup-

port is not directly available a t the source-level. However, when writing a metaprogram, i.e.,

a program that manipulates Acer programs according to the node representation described

in Chapter 3, it is possible to create a denoter to an existing node and to use tha t denoter as

if it were an idelltifier refwring to that node. For example, suppose a metaprogram created

two empty tuple-literal nodes:

Tuple -
Li teral c3

A denoter to each of these nodes could then be created:

Definition Tup le -

Li trral

Value- Definition Top le -

Denoter Literal

and each denoter be inserted1 as both the first child of its own tuple-literal and the

Second child of the other tuple-literal:

'Note that when all attached node is inserted, it is copied, and that when a denoh is copied, a denoter
with the sarne definition as the original is created.

CI-IAP'TER 4 . I-'ItINCIPLES O F L A N G U A G E DESIGN

Value- Value-
Denoter Y

Definition

If either of these two tuple-literals is then to be inserted into a source program, in which

denoters are not permitted, definition-copy-at can be used to automatically express them as:

{let unnamedl be tuple unnamedl, unnamed2 end
let unnamed2 be tupIe unnamed2, unnamedl end
unnamedl)

The result is a node with the scrnarltic structure of the original but expressed without

denoters.

So Acer's dcrloters allow prograxns to be expressed and manipulated without regard to

the normal l i~nitations of scope. 1x1 addition, any object expressed in terms of denoters can

be automatically re-expressed using normal scoping rules-

4.11 Accidental information hiding

Principle 11 Narlxes sho& only be hidden using information hiding constructs specifically

designed for the purpose.

function (x : Integer)
tuple let x be ? end

end

C H A P T E R 4 . PRINCIPLES OF LANGUAGE DESIGN 8 3

and that we want to express the x in the signature in place of the ? in the tuple-literal.

Applying definition-copy-at with the x in the signature as the source and the ? in the literal

as the target and replacing the ? with the result produces the following:

function (x : Integer)
tuple let x be x'[l] end

end

Note tha t Ada deals with the problem of unintentional hiding in two ways. First of

all, Ada allows identifiers to be overloaded, using various type restrictions t o determine

the defining-occurrence referenced by a particular applied-occurrence. Unfortunately, this

solution does not work for homograms, i.e., identifiers that have indistinguishable types.

The second approach is to allow scopes to be named and to use qualification to reference

a particular defining-occurrence. IIowever, not all scopes are named so during automated

manipulation arbitrary new scope identifiers must be introduced. This results in local trans-

formations that produce nor)-local changes. Furthermore, the problem of hiding may also

occur for the scope name. Ada's approach is complex, thereby hindering manipulation.

4- 12 Intentional informat ion hiding

Principle 12 If an information-hiding construct makes visible the name of an object, it

should also make visible the names of the objects referenced in its definition, unless the

definition constitutes representation-dependent information.

CHAPTER 4 . PRlNClP1,ES OF L A N G U A G E DESIGN

problem of unintentional hiding that can result from the import/export rules tha t control

intermodule visibility. For example, in Modula-2, it is possible t o export a variable with-

out exporting its type. Acer's simple nested block structure ensures conformance with the

principle.

This concludes the discussion of principles relating to properties of the abstract syntax.

To summarize, then, semantic objects should be represented as nodes and these nodes should

be organized so tha t they can be named and made visible over the regions in which they

are needed. The visibility rules should be simple, should permit references to be introduced

easily, and should prevent unintentional hiding.

4.13 Unfolding

Principle 13 7'here should be a straightforward general way of replacing a call to a user-

defined routine with an equivalent in-line version of the routine body.

function (x : Integer; y : Integer) {x + y} end (10, 20)

Now, to provide support for unfolding, all that is still required is the ability to

express function-literals a t their calling points. But this ability is provided, in conformance

C H A P T E R 4. PRINCIPLES OF LANGUAGE DESIGN 8 5

with the principle that references to existing objects should be easy to introduce, by Acer's

definition-copy-at facility. Therefore, Acer provides complete support for unfolding

Note that the static evaluation of an operator-call, i.e., determining the definition of an

operator-call, is essentially an unfolding transformation. For example, given Dyadic defined

as

let Dyadic be
Operator (Base Type :: Any; Result Type :: Any)

Function (: BaseType; : BaseType) Result Type end
end

unfolding the operator-call Dyadic (Integer, Boolean) results in:

{let Base Type be Integer
let Result T y p e be Boolean
Function (: WaseType; : Base Type) Result Type end)

And this type is equivalent to the definition of the operator-call.

4.14 Folding

Principle 14 There should be a st~.ai~lztforward general way of replacing any expression

with an equivalent user-defined routine.

Folding, encapsulating expressions as parameterized routines, is a transformation of fun-

damen tal importance. It lies at the lieart of abstraction. Whereas support for manipulation

is often overlooked in language design, support for folding cannot be overlooked. However,

because support for abstmction usually provides support for folding, support for folding is

not often recognized as a relevant goal.

Acer supports folding of type and value expressions as follows- A type T can be folded

as a type-operator used in type-call:

Operator () T end ()

And similarly a value v can be folded as a function-literal used in a function-call:

function () v end ()

However, for values, if v appears in a context requiring a reference or pointer to v rather

than just the value rcfcrenccd by v, as does v in

C H A P T E R 4. P R l N C I P L E S O F L A N G U A G E DESIGN

{v b e c o m e s something)

then v must be folded either as

{ func t ion () re ference (v) e n d () @ b e c o m e s something)

{funct ion () p o i n t e r (v) e n d () @ b e c o m e s something)

The second form is permitted only i f p o i n t e r (v) is valid (see A.30). Any Acer type or value

can be folded in these ways and hence anything that an expression can do a routine can do.

Folding in the form that has just been shown is, of course, of little direct use. The real

value of folding lies in the reuse of routines. The routines resulting from the folding above

are used but once.

To use a folded expression more than once it must be hoisted to a higher scope, certainly

higher than the call in which it is used. Parameterization is necessary whenever a routine

is hoisted beyond the scope of some object referenced in its body-that object must then

be passed as a parametcr instcad of simply being visible. Acer's signatures support hoisting

by providing for both type alld value parameters. Clearly, Acer's support for ~ o l ~ m o r p h i s m

provides better support for hoisting than do many ~rogramming languages.

As an example of Iloisting, consider folding the applied-occurrence of X in the block

{let construct b e
f u n c t i o n (T :: A n y ; x : T; y : T)

t u p l e x, y e n d
e n d ;

construct (Integer, 10, 20))

which results in

{let construct b e
f u n c t i o n (T :: A n y ; x : 7'; y : T)

t u p l e f u n c t i o n () x e n d (), y e n d
e n d ;

construct (Integer, 10, 'LO))

Hoisting the new function-literal up one level results in

{let construct b e
f u n c t i o n (7' :: A n y ; x : T; y : T)

{let unnamed b e func t ion () x e n d ;
t u p l e unnamed (), y e n d }

e n d ;
construct (Integer, 10, 20))

C H A P T E R 4 . PI t INClPLES O F L A N G U A G E DESIGN

and hoisting it up three levels results in

{let unnamed be function (T :: Any; x : T) x end;
let construct b e

function (T :: Any; x : T; y : T)
tuple unnamed (T, x), y end)

end;
construct (Integer, 10, 20))

The ability to parameterize over types affords great expressive power.

4.15 Low-level manipulation

code Integer; do end

C H A P T E R 4. PRINCIPLES OF L A N G U A G E DESIGN

The first expression, of course, represents the code-patch's type and the last expression, for

PC Acer, represents the effective-address of the code-patch's value, register do in this case.

A PCAcer code-patch can also include machine instructions, which are bracketed by the

initial type and the final effective-address. For example, a function that moves the contents

of register do to register d l could be defined as

let move-do- to-dl be
function () code Void; move(d0, d l); # (0) end end

Notice that this code-patch reveals how the void-literal is represented in PCAcer, namely as

a machine zero.

With code-patches, every i~n~lementa t ion of Acer provides a convenient notation for

expressing machine dependencies. Furthermore, since code-~atches are represented in terms

of existing syntax, Acer's context-free syntax is the same for all implementations. Only

the context-dependent interpretatiot~ of a code-patch's trailing ex~ressions changes from

implementation to implenienta tion.

It should not be surprising that existing syntax can be so easily reused to represent the

semantic objects of another language. A programming language, after all, must be good a t

representing objects.

4.16 Summary

C H A P T E R 4 . PRINCIPLES OF LANGUAGE DESlGN 89

block structure should then be used to integrate the abstract syntax for the objects into a

framework in wllich all hiding is intentional rather than accidental. Finally, the abstract

syntax should be carefully augmented with keywords and punctuation to obtain a concrete

syntax with appropriate manipulation characteristics.

Chapter 5

The implementation of Acer

5.1 Implementing support for manipulation

CHAPTER 5. TIIE IMPLEMENTATION O F ACER

avoided.

The approach advocated here is that articular attention should be focused on the one

tool used to implement all other tools, the metaprogramming system. Current research is

valuable from this perspective because it clarifies what a metaprogramming system must

provide to implement effectively an end product [DMS84].

What is the advantage of an approach that stresses the importance of a rne tapr~gra rnmin~

system over that of the final environment it implements? First, it makes clear the feed-back

mechanism that should exist between environment design and language design-as the design

and implementation of basic manipulation support progresses problematic language features

are identified and redesigned. This synergy frees designers to spend their time designing

more powerful kinds of support rather than waste their time designing ingenious techniques

for supporting poorly designed features.

And second, the approach brings programmers back into the sphere of influence by pro-

viding an abstraction for implementing application-dependent manipulations, e.g., analyz-

ers to check for correctlless, optimizers to make data-abstraction more efficient, formatters

to present data-abstractions more readably, transformers to implement new editing corn-

mands, generators to construct automatically programs or program templates, and so on.

For a general-purpose language, which supports a wide variety of applications, the range of

application-dependent manipulations is potentially huge. And a sophisticated programmer,

already skilled a t manipulating values with programs, can readily use a metapro-

gramming systcm to write programs that manipulate programs-

5.2 Acer's metaprogramming system

CHAPTER 5. TfIE Ih/!PLEh4ENTATION OF ACER 9 2

host-language system described Appendix C. After all, both Pascal and Acer support da t a

abstraction and so the abstract node representation described in Chapter 3 can be supported

in either language.

IIowever, because Acer supports useful mechanisms not available in Pascal, such as it-

erators and accumulators, symbolic value-identifiers, exceptions, and so on, the Acer host-

language metaprograrnming system to be described contains features not directly available

in the Pascal host-language version. For example, the Acer host-language lexical analysis

and parsing functions make use of exceptions and also iterators and accumulators, but the

Pascal host-language versions have a less elegant interface (see C.12 and C.13). Such dif-

ferences highlight the advantages of Acer over Pascal, and since Appendix C gives a precise

description of the 13ascal host-language metaprogramming system, the two versions can be

compared.

The interface to the Acer host-language rrietaprogramming system for Acer is provided

by thc types Tokenclass, Token, Nodeclass, and Node, and the modules token, node, and

grammar. The types Tokenclass and NodeClass are defined as option-types tha t categorize

tokens and nodes, respectively; the types Token and Node are a b s t r a c t - t ~ ~ e s encapsulated

by the modules token and node, respectively. The module grammar provides generic access

to Acer's grammar.

One of the great a d v a n t a p of a CRAMPS-style metaprogramming system, as we shall

see in the sections that follow, is that much of its functionality is evident from the grammar.

Thus the grammar serves as doculnentation for specifying the facilities used to carry out

manipulation.

5.3 Concrete syntax

and since streams are supported as iterators, no additional support for characters is necessary.

5.3.1 Token

Acer tokens, on the other hand, are supported as follows. First, the type TokenClass is

defined as an option-type tklat contains the name of each class of token:

let TokenClass be Option an-accumulation, . . . , a-when end

(Each token name is prefixed by a- (or an-) to distinguish it from an Acer keyword.) And

second, the type Token is defined as an abstract-type:

let Token be t,okcn. Tgpe

implemented by the niodulc token:

token :
Tuple

Type : A rzy
class : Function (a m e n : Type) TokenClass end
spelling : Function (aToken : Type) String end
x : Function (a Token : Type) Integer end
y : Function (aToken : Type) Integer end
ma kc :

Tuple
an-accumulation : Function (x :Integer; y :Integer) Type end
. . .
a-valuelden tifier :

Function (spelling :String; x :Integer; y :Integer) Type end
end

error :
Exception (Tuple m e s s a s : String; x : Integer; y : Integer end)

analyze : Function (aCharacterStrcam: Iterator (Character))
Iterator (Type)

end
unAna[yze : Function (aTokenStream: Iterator (T Y P ~))

It erator (Cf~nracter)
end

end

CHAPTER 5 . TllE IA4PLEA4ENTATlON O F ACER 9 4

Each token is derived from a character stream, but the stream is not strictly linear for

it contains ASCII formatting characters that imply the existence of discrete lines. The first

character of a character stream, therefore, is a t column 1 row 1; each subsequent character

occurs a t increasing column position, except that a carriage-return sets the next column

position to 1 and a line-feed increments the next row position, leaving column position

unchanged. In this way, tokens can be considered to have column and row positions.

To create a token, make functions are provided, one for each class of token. If the token

is a lexical token, such as an identifier, the make function requires a spelling and a position,

otherwise, it requires only a position because the spelling can be deduced from the class.

Finally, to support conversion between character streams and token streams, the module

token provides the functions analyze and unAnalyze, as well as the exception error. The

function analyze requires a cllaracter iterator and yields a token iterator tha t raises error,

with an associated error message and position, when it cannot produce a valid token.

The inverse of analyze is provided by unAnalyze, which takes a formatted stream of to-

kens and yields a cllarncter strc.an1. The position information for tokens is used to generate

appropriate white space, i.e., spitting, indentation, and line-breaks. Determining token

sition is the responsibility of an unparser, which is provided by the abstraction for dealing

with nodes.

The module token could provide many other useful functions as well. For example, it

could provide a record named isa containing a recognizer for each class of token, e.g., instead

of writing {aToken.class is ~ ~ k ~ n C / n s s . x } to determine whether aToken is of class x one

would write t o k ~ n . i s s . ~ (aToken). Little would be gained by further elaborating on such

non-essential features so we sl lal l move on now to the handling of context-free syntax.

5.4 Context-free syntax

5.4.1 Grammar

The type Nodeclass is defined as an option-type that contains the name of each class of

node:

CHAPTER 5. TIiE IMPLEA4ENTATION O F A CER

let NodeClass be
Option accumulation, accumulationList, . . . , whenCondition end

The names are derived directly from Acer's grammar, one for each lexical, construction, or

list rule. Remember that alternation rules define node categories not node classes.

The module gramma- provides further information about Acer's (abstract) grammar as

follows:

grammar :
Tuple

spelling : Function (aNodeClass : NodeClass) String end
lexeme : Set (NodeClass)
constrllct,ion : Sei (NodeCla'lass)
list : Set (NodeClass)
abstract Type : Sei (NodcClass)
. . .
whenBranch : Set (Node Class)
error : Exception (String)
nurnber0fCornponents :

Function (aconstruction : Nodeclass) Integer end
nthCornponentDomain:

Function (aConstruction : NodeClass; n : Integer)
Set (Node Class)

end
nthCornponentNarnc :

Function (aConstructioo : NodeClnss; n : Integer) String end
baseDomnin : Function (aList : NodeClass) Set (NodeClass) end

end

The spelling of a node class nc is yielded by grammar-spelling (nc). Whether nc is a

one.

Components, grammar.nth~omponenlName (c, n) yields the name the nth component,

and grammar. n tlj ComponentDomain (C, 11) yields the set of node classes that may appear as

the nth component-if t}lis set includes Node Class empty, the component is optional. For a

CHAPTER 5. TtIE IMPLEMENTATION OF ACER

functions in incorrectly applied.

5.4.2 Node

The type Node and tile module node provide support for the manipulation of nodes. The

type Node is defined as an abstract-type:

let Node b e node. Type

implemented by the module node:

node :
Tuple

Type :: Any
theUnatta.chedEmptWvNode : Type
c1a.s~ : Function (aNode : Type) NodeClass end
parent : Function (aNode : Type) Type end
position : Function (aNode : Type) Integer end
cornr~~cnl: Function (aNode : Type) Pointer (List (String)) end
length : Function (&'ode : Type) Integer end
error : Exception (String)
index1 : Function (aNode : Type; n : Integer) Type end
accumulator: Function (aNode : Type) Type end
. . .
= : Function (x : Type; y : Type) Boolean end
< : Function (x : Type; y : Type) Boolean end
make : Record . . . end
constroct : Function (aConstructionOrList : NodeClass)

Accum~~lnior (Type, Type)
end

isa: Record . . . end
parse : Record . . . end
unPa.rse : Record . . . end
copy : Function (aNode : Type) Type end
replace : Function (sollrce : Type; destination : Type) Void end
exchange : Function (x : T y p e ; y : Type) Void end
dcletc : Function (aNode : Type) Void end
insert : Function (destination : Type;

position : Integer;
element: Type) Void end

. . .
end

CHAPTER 5. THE IMPLEMENTATION O F ACER

Every node x has a class x.class, a parent x.parent, a position x.position, a comment

x.comment, and a length x.length, where the length of a lexeme is 0. The parent of an

unattached node is a special node of class empty called theUnattachedEmptyNode. (It is

special because it is its own parent.) The position of an unattached node is 0.

For accessing the nth child of a node x, res sum ably a construction or list node with

a t least n children, the notation x [n] is used. As a convenience, negative indexing selects

children in reverse order, e.g., x[-1] selects the last child.

A child of a construction x can also be selected using its component name c as X.C. Thus,

for each component name in the grammar, a function by that name is included in node.

(They are not all shown in the above.) Note that since different constructions can use the

same component names, each selector frlllction may be correctly applied to more than one

class of node.

Two nodes x and y can be compared for structural equality using {x = y) and for lexi-

cographic order using {x < y). Of course, #, <=, >, and >= can be provided as well.

For constructing nodes, va.rious make functions are provided, one for each class of node:

ma.ke :
Record

accumulation :
Function (accumulator: T y p e ; a.ccumulationList : T y p e) T y p e end

accumulationList : Function () T y p e end

valueldentifier : Function (spelling : S t r i n g) T y p e end
end

Each function has the same name as t,he class of node it constructs: for a construction, the

function requires a]lode for each component; for a list, the function requires no components;

and for a lexcmc, the function rcqllires a spelling. Since only empty lists can be directly

constructed with make functions, a construct function is ~rovided as well. This function,

given a construction or list node class, yields an accumulator that makes the specified class

of node. For example,

makes either a constrrlction wit}] three children or a list with three children. Whenever an

attached child is provided, it is automatically copied.

It is also convenient to have g e n e r i c make functions. For example, node.make.identifier

makes either a type-identifier or value-identifier, depending on the spelling; node.make.cal1

CHAPTER 5. T11E Ih4PLEh4ENTATION O F ACER 98

makes either a function-call or operator-call, depending on the class of the first argument;

and node.make.selector makes either a type-selection, a value-selection, or a literal-selection,

depending on the class of each argument. Whenever several semantically similar constructs

are distinguishable by the structure of their components, a generic constructor is possible.

This possibility could be indicated in a GRAMPS-style grammar by grouping the constructs

as an alternation and using the name of that alternation as a constructor name. This is

possible with blocks for instance. But for declarations a generic constructor is not possible

because a fixed-value-declaration is indistinguishable from a variable-value-declaration given

only the component classes.

If any of the above functions are incorrectly applied, the exception node.error is raised

with an error message.

For easy recognition of nodes, node provides isa recognizers, one for each class and

category of node:

isa :
Record

accumzllation : Function (a.Node : Type) Boolean end
. . .
arbitrary : Function (aNode : Type) Boolean end
. . .

end

In general, for a node class nc, node.isa.nc (x) is equivalent to {x.class is N0deClass.n~) and

for a node category cat, node.isa.cat (x) is equivalent to:

{x.cla.ss member grammar.ca.t)

For parsing nodes, node provides various parse functions:

parse :
Record

error : Exception (Tuple message : String; x : Integer; y : Integer end)
tokens : Function () Accumulator (Token, Type) end
string : Function (aString : String) Type end
strings: Function () Accumulator(String, Type) end
. . .

end

The exception node.parsc.errol- is raised, along with an ~ ~ r o r message and a position, when

Parsing fails. The prilnary parsing function is tokens, which yields an accumulator tha t

consumes tokcns to produce a. node. It could be used as follows:

CHAPTER 5 . THE IMPLEA4ENTATION OF ACER

for t in token.ana1yze (a~haracterstream) do
node.parse.tokens () t

end

Many additional parsing functions are provided, e.g.,

node.parse.string (" l e t x be y")

parses a string argument to a node. All such additional functions can be defined in terms of

the tokens parse function.

For unparsing nodes, node ~ r o v i d e s various unparse functions:

un Parse :
Record

tokens : Function (aNode : Type
tllcWidt11: Integer
theA/laxirr~~imDenoterWidth : Integer
printEr~~ptyNodes : Boolean)

Iterator (Token)
end

. . .
end

CHAPTER 5. THE IMPLEMENTATION O F ACER

5.5 Context-dependent syntax

Support for context-dependent manipulation is provided by extending the module node:

node :
Tuple

. . .
type : Function (anExpression : Type) Type end
kind : Function (anExpression : Type) Type end
definition : Function (anExpression : Type) Type end
denotation : Function (anExpression : Type) Type end
definingoccurrence : Function (an Identifier : Type) Type end
attrib~ltcl'arcnt : Function (aNode : Type) Type end
== : Function (x : Type; y : Type) Boolean end
<<== : Function (x : Type; y : Type) Boolean end
abstractNamc: Function (anAbstractType: Type) Type end
abstractBase : Function (anA bstract Type : Type) Type end
quantifier : Function (anAbstract Type : Type) Type end
definitioncopy : Function (aNode : Type; aLocation : Type;

thesubstit utions : Index (Type, Type))
Type

end
definitionCopyAt :

Function (aNode : Type; aLocation : Type) Type end
vaGdate : Function (aNode : Type) Index (Type, List (String)) end
global : Function (anldentifierSpe1ling : String) Type end
. . .

end

Most importantly, the semantic selector functions type, kind, definition, denotation, and

definingOccurrence arc provided. Thus, every expression node x has a type x.type, a kind

x.kind, a definition x.definition, a,nd a denotation x.denotation; every identifier node x has

already appear in node because they are a.lso component names. Therefore, the meaning

of each existing function is further overloaded, e.g., the type of a node can be either a

component, a.s when the node is a declaration, or a semantic attribute, as when the node is

CHAPTER 5. THE IA4PLEA4ENTAl'lON O F ACER 101

theUnattachedEmptyNode or the node x that has the root node y of z as its type or defini-

tion. A node tha t has theUnattachedEm~tyNode as its attribute-parent is not a n attribute,

a node that does not, is an attribute and cannot be edited. Of course, a node can be

an attribute of many nodes, but only the node for which it was created is considered its

attribute-parent. (See C.17 for a discussion of the implementation issues involved in the

notion of an attribute-parent.)

Subtyping and equivalence information is ~ rov ided by <<== and ==. The expression

{x <<== y) yields true if the type x is a subtype of the type y. Similarly, the expression

{x == y) yields true if the expression x is equivalent1 to the expression y. Of course, the

functions ##, <<, >>, and >>== would also be provided to test for unrelatedness, proper

subtype, proper supertype, and supertype, respectively.

Additional semantic selectors, dealing with various semantic aspects of Acer as described

in Appendix A , are provided as well. For example, for a node x referring to an abstract-

type, x.abstract Name yields the abstract-name, x.abstract Base yields the abstract-base, and

x.quantifier yields the quantifier. Semantic recognizers are also added to the isa recognizers,

e.g., node.isa.variable1dentifier (x) yields true i f x denotes a variable-identifier.

The ability to definition-copy a node is provided by the function definitioncopy. It takes

a node to be copied, a location node, and an index (see C.5) of substitutions- The purpose

of the location node is to specify that any identifier used in the definition-copy having a

defining-occurrence enclosed by the location should have its definition definition-copied-

most often the locatio~l node will just be the parent of the first argument. The purpose of

the substitution index is to provide substitutions to be made during definition-copying. As

well, the substitution index is modified as a side-effect of definition-COPY so that it maps each

node in the source to the node in the defillition-copy that it gives rise to. These substitutions

can then be used in another call to defining-copy so that node sharing is achieved.

The function definitionCoPyAt is somewhat simpler in that it takes just a node and

a location in terms of whose scope the node is to be expressed. The resulting node will

not contain dcnoters. The function dcfinitionCopyAt could be used to make explicit the

definition of every empty node in aNode as follows:

for x in aNode.descendants andif node.isa.empty (x) do
{x replace {x. definition definitionCopyAt x))

end

C H A P T E R 5. T H E IMP1,EMENTATION OF A C E R

The validate function is provided to check for context-dependent correctness. Given a

node, it yields an index that maps each erroneous node to a list of error message strings. If

the yielded index is empty, the node is correct.

Many additional semantic facilities can be included in node. For example, the expression

nodeglobal ("x") determines whether an identifier with the spelling "x" is globally visible;

it yields the same result as

We have now seen enough metaprogramming facilities to write useful metaprograms.

5.6 Metaprogramming applications

5.6.1 Generating a meta-interface

When manipulatilig a program expressed in terms of a user-defined abstraction, it is neces-

sary to recognize a.nd construct the nota.tions introduced by that abstraction. In this section,

we shall see how to gencra.te a. metn-interface, i.e., a meta~rogramming system interface to

an abstraction's interface.

For instance, consider the following simple abstraction

simple :
Tuple

Type :: Any
value: Type
operation : Function (x : Type) Type end

end

TO manipulate a program that uses this abstraction, it must be possible to recognize the

Particular nodes where the abstraction is used. For example, applied-occurrences of simple

must be identifiable. Also, because simple is a tuple, it must be possible to recognize applied-

instances of the selections simple. %pel sirnple.value, and simde-o~erat ion. And because

shple.oper-ation is a furlctior~, it is frequently necessary to build a node representing a call

to it.

TO address these considerations, the following meta-interface can be generated:

CHAPTER 5. THE lA4PLEA/lENTAl'ION O F A CER

let meta be
tuple

let simple be
tuple

let ! be node.global ("simple")
let a-Type be

tuple
let ! be

node.make.se/ection (! '[I], node.make.identifier ("Type"))
end

let value be
tuple

let ! be
node. make.sc/ertion (! '[I], node.make.iden tifier ("va lue"))

end
let operation be

tuple
let ! be

node.make.selection (! '[I], node.make.identifier ("operat i o n u))
let makecall be

function (x : Node)
node.makc.call

({copy ! }, node.construct (NodeClass.ArgumentList) ([x]))
end

end
end

end

It makes available thc following notations. The selection meta.simple. ! yields the defining-

test for applied-instances of each selectio~i, e.g., using {x == meta.simple.value. !). And the

In the discussion that follows, we shall see how to implement the Acer function,

The function makcMet,alntcrface is defined as:

CHAPTER 5 . T11E IMPLEA/fENTATION OF ACER

let makeA4etalnterface be
function (x : Node)

extendMetaln terface
(x, makeTopMetalnterface (x. definedldentifier))

end

It requires a node argument x, which must be a top-level type-binding or fixed-value-

declaration; and yields the meta-interface created by makeTopMetalnterface and modified

The basic form of a meta-interface, for a particular globally visible defining-occurrence

id, is indicated in the definition of makeTopMetalnterface:

let makeTopMctalnterface be
function (id : Node)

node.su bstitute
(nodc.parse.strings ()

(1" l e t ? be I t

" t u p l e l e t ! be n ~ d e . ~ l o b a l (?) end " I))
([makeMetalntcrfa ceName (id)

node.make.stringLitera1 (id.spelling)])
end

call node.parse.strings () yields an accumula,tor that parses strings, which in the above is

each successive 11otle it consumes. Thus, in the above template, the first ? is replaced by

string-literal representing the spelling of id.

The function ma.keMeta1ntcrfa.ceNa.me is defined as:

let makeA4eta111terfaceNamc be
function (id : Node)

inspect id.class then
when valueldentifier then {copy id)
when typeldcntifier then

nodc.make. valddentifier ({"a_" + id.spelling})
when empty then

node.make. valldder~tifier
({"empty" + convcrt.integ.erToString (id.parent.position)})

end
end

CHAPTER 5. THE IMPLEMENTATION O F ACER 105

For a value-identifier, it yields a copy of id; for a type-identifier, it yields a value-identifier

that has the spelling of id but with a- appended to the front. (And for an empty defined-

identifier, it yields a value-identifier that has the spelling empty but with the position of id's

parent appended as a string.)

As concrete examples, makeTopMetalnterface applied to the module token yields:

let token be
tuple let ! be n ~ d e . ~ I o b a l (" t o k e n ") end

Applied to the type TokenClass it yields:

let a-Token Class be
tuple let ! be n ~ d e . ~ l o b a l (" ~ o k e n c l a s s ") end

These can be collected into a tuple called meta:

let meta be
tuple

let toke11 be
tuple let ! be node.globa1 (" token") end

let a-TokenClass be
tuple let ! be node.globa1 ("Tokenclass") end

end

which can then be compiled. As a consequence, meta.token. ! refers to the defining-occurrence

of the module token, and mcta.a-TokenClass. ! refers to the defining-occurrence of the type

Token Class.

Of course, meta.id. ! has little advantage over node.gIobal (" id") but the advantage of

the rneta-interface is more apparent when we consider how it is extended by the function

e~tendMetalnterface, which is defined as:

CHAPTER 5 . TI113 lMPI,EMENTATION O F ACER

let extendMetalnterface be
function (x : Node; thelnterface: Node)

begin
inspect x.class then

when typeBinding, typeDeclaration then
inspect x.kind.denotation.c1ass then

when optionType, enumeration Type then
extendF'orOption OrEnumeration

(x.kind. denotation, thelnterface)
when operatorType then

extendF~rO~eratorOrFunction
(x. kind. denotation, t helnterface)

end
when fixedValrlcllcclarat,ion, variableValueDeclaration then

inspect x. kir~d.denot,ation.class then
when t upleType, record'ljlpe, dynamicType then

ext endForAggrcgate (x. kind. denotation, t heln t erface)
when function Type then

extendForOperatorOrFunction
(x.kind.dentotation, thelnterface)

end
end;

theln terface
end

end

The extension depends on the class of x and the class of the denotation of the kind of X,

which must be a concrete-type or type-operator. We shall consider each case in turn in the

sections that follow. Note that the function extendhletalnterfac is called recursively during

extension for aggregates and so is to handle all classes of declaration.

5.6.1.1 Extension for options or enumerations

An option-type or ellumeratioll-typc i~~ t roduces a number of literals. To provide access to

these, the basic rneta-interface is extended by:

let extendF~rO~tionOrEnumeration be
function (theType : Node; thelnterface: Node)

for id in theType.childrcr~ do
i~~~crt.(tllelntcrface.dcfir~ition, -1,

makcSrlblnterface (id))
end

end

C H A P T E R 5. T H E I M P L E M E N T A T I O N O F A C E R 107

which, for each identifier id in theType, uses makesublnterface to generate an additional

component according to the template in:

let makesublnterface be
function (id : Node)

node.su bs tit ute
(node.parse.strings ()

([" l e t ? be I 1

" t u p l e I 1

I 1 l e t ! be I 1

I node.make.se1ect ion I I

I I ((copy ! ' Ell), I 1

II n o d e . m & e . i d e n t i f i e r (?)) "
1 1 end "1))

([ma keA4etalnterfaceName (id)
node.make.stringLitcra1 (id.spelling)])

end

As a concrete exa,mple, for the identifier an-arbitrary in TokenClass, the function

makesublnterface yields:

let an-arbitrary be
tuple

let ! be node.make.selection

({copy !'[11},
nodc.make.iden titiher (" a n - a r b i t r a r y "))

end

5.6.1.2 Extension for operators and functions

let e~tendForO~eratorOrFunction be
function (theType : Node; thelnterface: Node)

insert.(thelnterface.definition, -1,
makeOperatorFunctionMetalntcrface (theType));

end

This function illserts illto tile rneta-interface the template constructed by

C H A P T E R 5. TI IE 1MPLEMENTATlON OF A C E R

let makeOperatorFunctionMetalnterface be
function (t heType : Node)

modifyFunctionOperatorlnterface
(node.parse.strings ()

([" let makecall be I1

" function () I1

II node.make.cal1 II

I I ((copy !),
I1

II node. construct #I

#I (~ode~las~.argumentlist)([1))) "

I1 end " I)) ,
theType)

end
T h e template is modified by

let modifyjiFunctionOperatorlrl terface be
function (thelnterface : Node; theType : Node)

{let thesignature be theIn terface.definition.signature;
let theAccum~11ationList be

the111 terface.dcfi1~itio11. body.arguments[2].accumu~ationList;
begin

for dccl in t l 1 e 7 ~ ~ ~ e . s i ~ n a t umchildren do
begin

insert.(theSignature, -1,
node.make. fixed ValueDeclaration

(makelnterfaceName (deddefinedldentif ier),
node.make.identifier ode")));

i~~sert.(thcAcc~lml~lationList, -1,
tnakeAleta It~terfaceNarne (decl. definedIden tifier))

end
end;

thelnterface
end)

end

As a concrete example, when applied to the type Array, the following function is included

along with ! :

let makecall be
function (a-RaseT-vpe : Node)

nodc.ma ke. call

({ c0p.v ' 1,
node. construct (~ o c l e C l n s s . a r ~ ~ ~ m e n t L i s t) ([a -UaseT~pe]))

end

Hence, the call

meta.aArray.makeCal1 (node.make.iden tifier (I ' I n t ege r "))

creates the node representing Array (Integer).

5.6.1.3 Extension for aggregates

An aggregate is frequently used in a type- or value-selection, so the basic meta-interface

can be extended, for each declaration in the aggregate, by a component tha t holds such a

selection:

let ext en dF'orAggregate b e
function (thcType : Node; thelnterface : Node)

for dccl in the7'ypc~.cl1ildrcn
andif {not node.is;l.emptv (decl. definedldentifier)) do

ir~sert .(thcln terface. defii~ition, - 1,
exter1tlMcta111terface

(decl, make.Sublnterface (decLdefined1dentifier)))
end

end

This function uses makeSublnterface as described earlier, and recursively extends each re-

sulting sub-interface using ex-tcndMetalntcrface also described earlier.

As a result, when a mcta-interfacc has been generated for the module node, the selection

meta.node.parse.string. ! the node representing node.parse.string, and the call

meta.node.pa.rse.string.makeCal1
(node.make.string1,iteral (" l e t x be 10"))

5.6.1.4 Summary of the ineta-interface

C H A P T E R 5. T l I E IMPLEMENTATION OF ACER

From this example we can see just how easily a metaprogramming system can be used

to automate the generation of programs. In the next section, we shall see how semantics-

preserving transformations can be easily implemented.

5.6.2 Program transformation

The examples considered in this section deal with manipulations tha t preserve semantics.

To begin with, consider how to optimize the use of the metaprogramming system's func-

tion node.parse.stri~~g, which is frequently used to express node literals. This will serve to

demonstrate the general notion of static evaluation.

5.6.2.1 Optimizing data abstraction

The idea behind the optimizing transformation presented in this section is to replace each

call to nodc.parse.string that is apl?lied to a stringliteral argument, with the appropriate

calls to make and construct. After all, i f the argument to the parser is statically known,

it can be statically parsed and the resulting node can be explicitly built using make and

construct calls. For example, the call

node.parse.st,ring("let x be t u p l e 10, 20 end")

constructs the node

let x be tuple 10, 20 end

But so does

node.ma.ke.fixed ValueBinding
(nodemake. va.lueldentifier ("x"),
nodemakeempty 0,
node.construct (~ o d e ~ l n s s . t u ~ l e l , i t e r a ~)

([node.make.integerLiteral ("Io"),
r~ode.make.integerl,itcra1("20")]))

Clearly, the first ca,ll is Inore rcada,b]e while the second is more efficient. To reconcile the two

while achieving the cficiency advantage of the second.

literalize does exactly this:

CHAPTER 5. THE 1MPLEMENTATION O F ACER

le t literalize be
funct ion (x : Node)

if {x. class member grammar.list) t h e n
node.make.accumulation

(meta.node.construct.makeCall
(node.make.se1ection

({copy meta.a-NodeClass. !),
node.make.identifier (grammar.spelling (x. class)))),

for thechild in xchildren d o
node. construct (NodeClass.accumulation List)
literalize (thechild)

e n d)
else
node. make. call

(nodema ke.selection
({copy meta. nodemake. !),
node.make.identifier (grammar.spelling (x. class))),

if {xclass member g-rammar. lexeme) t h e n
node.construct (NodeClass.argumentList)

([node. ma ke.st ring-Literal (x.spelling)])
else
for thechild in x.children d o

node.construct (~odeClnss .ar~umentLis t)
literalize (theChild)

e n d
e n d)

e n d
e n d

node.construct to the lit,eralized form of each of the list's children. Otherwise, it creates

or the literalized children of the construction x. The function, given the fixed-value-binding

at the beginning of this section, that constructs the fixed-value-binding.

Now, given theNode in which to perform optimization, the follow expression does the

substitution:

CHAPTER 5. 7'FII:' lMP1,EAilENTATION O F ACER

f o r thechild i n theNode.descendants
a n d i f {all true)

([node.isa.functionCall (thechild)
{meta.n~de.~arse.string. ! == theChild.function)
node.isa.stringLitera1 (theChild.arguments[l])]) d o

{ thechild replace
literalize (n0de.parse.s tring (t hechild. arguments[l] .spelling)))

e n d

The expression {all true) yields an accumulator that acts as a short-circuit Boolean 'and.'

Hence, the above iterates through all descendants of theNode that satisfy the condition

following the andi f , which checks if thechild is a function-call, if the function of the call is

equivalent to node.parse.string, arid i f the one argument to that call is a string-literal. If these

hold, the body is applied-it replaces tllcChild with the literalized form of the node resulting

from the application of node.parse.string to the spelling of the string-literal argument.

That such a uscful transfor~nat,ion can bc so easily implemented certainly lends credence

to the claim tha t Acer is easy to manipulate. Furthermore, the fact that da ta abstraction

is easily optimized a.lso supports the design of more powerful, yet efficient, abstractions.

For example, even the use of the n~de .~a r se . s t r i ngs () accumulator in conjunction with the

node.substitute function to express *lode templates can be easily optimized. The use of tem-

plates for generating meta-interfaces was illustrated in the previous tion on. Such templates

can be optimized hy tllc following:

CHAPTER 5 . THE IMPLEA4ENTATlON OF ACER

for thechild in theNodc.descendants
andif {all true}

([node.isa.accumulation (theChild)
node.isa. function Call (theChild. accumulator)
{meta.node.substitute. ! == theChild.accumulator.function}
node.isa.accumulation (theChild.accumulator.arguments[l])
node.isa. function Call

(theChild.accumulator.arguments[l] .accumulator)
{meta.node.parse.strings. ! ==
theChild.accumulator.argumcnts[l].accumulator.function}

for s in theChild.accumulator.arguments[l]
.accumulation List. children do

{all true}
node.isa.strir~gl,itcral (s)

end]) do
{thechild replace
1iteralizeAndSu bstit ute

(theChild.accumulation List.children,
for s in t8heChild.accr~rnulator.arguments[l]

.accurntilationList.children do
node.parse.strings () s.spclling

end)}
end

The above iterates through the descendants of theNode that satisfy the condition, which

tests if thechild is a n accumula,tion, if the accumulator is a call to node.substitute, if the

one argument to that call is an acc~~mulation, if that accumulation's accumulator is a call to

thechild is replaced by tile result of jjteralizeAr~dSub~titllte applied to the iterator that maps

to the spellings of all the string-literals.

lows

let JitcralizeAndSubstitute be
function (thcSubstitutjons : ~tcrntor (Node); x : Node)

if {notlc.isa.idcl~tifier (x) andif
{ { x . ~ p d i n g = u ? ") orif {a.spelling = I ~ - ~ ~ } } } then

theSu bstit u t i~ns .~roducc ()
elsif . . .
else . . .
end

end

CHAPTER 5. THE Ih4PLEMENTATION O F ACER 114

An additional iterator argument is included and the initial test is for the substitution case.

The rest of the function is implemented as before, except for the passing of the additional

iterator argument to the recursive calls.

Applying the above transformation to the expression

node.substitute
(node. parse.strings ()

([I' l e t ? b e "

t u p l e "
II 10 , "
I1 20 "
#I end " I))

([a Node])

results in

node.rnake. fixed ValueBinding
(aNode,
node.make.empty (),
node.construct (NodeC1ass.t upleliteral)

([node.make.integerl,iteral (" 10"),
node.make.integerl,iteral("20")]))

In general, the ahove transfor,nation approach can be used to support any da t a abstrac-

tion that expresses literals in textual form. The textual form can be statically analyzed and

converted to a more efficient form. Such is the expressive power that support for manipu-

evaluation. For example, the following

for thechild in t11eNode.descendants
andif {all true}

([node.isa.fiinctionCall (tld'hild.denotation)
{mcta.integer+. ! == tlre~hild.denotation.function}
node.isa.integerLitera1 (the~hild.denotation.arguments[l])
node.isa.integerLitera/(theChild.denotation.arg~ments[2])]) do

{thechild replace
node.make.intcgerliteral

({corrvert.stringTolntegcr (thc~hild.denotation.argurnents[l].spellin~) +
cor~vert.stringTointeger (thc~hild.denotation.argriments[2].s~ellin~)})}

end

statically evalrlatjcs illtjegcl:+ applied to integer-literal arguments. This kind of static evalu-

ation is applicable i n a wide variety of situations.

CHAPTER 5. TIIE IMP1,EMENTATlON O F ACER

5.6.3 Metaprograms as a command language

In a programming environment, such as the PCAcer environment described in Appendix B,

metaprograms can be used as interactive high-level editing commands. For example, suppose

a programmer wants to write an exhaustive variant-inspection for some particular selector

and that there are a large number of variants. Instead of manually writing the inspection,

he could use the following function to generate it:

let makelnspection be
function (theselector : Node)

{let thelr'ind be theselector. kind. denotation;
inspect theli'ind.class then

when enumerationType, optionType then
node.make. variantlnspcction

(t heSelec t or,
for id in thelr'ind.children do

node.construct (Node Class. valuewhen BranchList)
node.make.va1ueWhenBranch

(r~~dc.constrrrct (NodeClass. whencondition) ([id]),
node.ma ke.ernpty (),
node.make.identifier (?))

end,
node.make.emp ty ())

else theUnattachedEmptyNode
end

end

After entering this function, a PCAccr command could be invoked SO tha t the function is

presumably the selector for which an inspection is to be generated. After the invocation, the

result could be made available in a newly crea.te window.

Applied to the expression x.cla.ss, where x is of type Node, the &ove would yield the

variant-inspection

inspect x.class then
when accl~rnrilation then ?

when accum~rlationl,ist then ?
. . .
when whenCondition then ?

end

In this way, high-level commands are constructed on the fly.

CHAPTER 5. THE IMPLEMENTATION O F ACER

let findApplied Occurrences be
function (id : Node; theTarget : Node)

for x in theTarget.descendants
andif {node.isa.identifier (x) andif {x.definingOccurrence == id)) do

node.construct (NodeC1ass.arbitraryList)
node. make. denoter (x)

end
end

which, given a defining-occurrence id and theTarget in which t o search, constructs an

arbitrary-list of denoters to the applied-occurrences of id. It could be invoked by a PCAcer

command tha t applies the function to the selected node of the selected window and to the

selected node of thc window in which the command is invoked. The result could then be

made available in a newly crc:ated window. From this, the programmer could see the en-

tire set of applied-occurrences and by following the definition link of each denoter, he could

access each applied-occurrence in turn.

Certainly some of these kinds of commands will be a standard part of an environment

like PCAccr. The point is, however, that it is not the responsibility of environment designer

to provide an exhaustive set of useful commands. Instead, commands can be created on the

fly to suit the needs of individual programmers and the applications with which they work.

Such flexibility is not afforded by more conventional environments.

Only the imagination limits the commands that are possible. For example, the following

could be used just as the previous function, but to determine all expressions of a particular

let findT'yped Val~les be
function (the'ljipe: Node; tl~e'l'argct : Node)

for x in t11e'l'arget.dcsccndan tjs
andif {node.isa. value (x) andif {x. type == t h e T ~ ~ e) do

node.construct ode ~1nss.arbitraryList)
nodcmake. denoter (x)

end
end

by a rnctaprogra,mrning system arc unlimited.

C I I A P T E R 5 . T I I E 1R/IPlJEMENTA7'I0N O F A C E R

Summary

Looking a t the implementation of PCAcer described in Appendix C, it may be surprising

that, with a metaprogramming system, implementing a transformation as complex as that

of a compiler is relatively trivial. After all, a compiler is typically a major undertaking, but

with so many general-purpose features being implemented as part of the metaprogramming

system, a compiler is very simple to implement indeed. For instance, the implementation of

the compiler used in PCAcer accounts for roughly 8% of the total implementation effort, in

terms of the number of lines of code, and even less when considered in terms of the amount

of time spent. Surely this demonstrates the efficacy of the metaprogramming approach.

Emphasis on metaprogramming systems, then, encourages the provision of general-

purpose implementation tools t t ~ a t can be used for much more than just translating programs

to object code. With so mucll effort going into the implementation of supporting environ-

ments, there sllould be more to show for that effort than just an end-product environment.

Chapter 6

Evaluation

6.1 A principled approach

It is well recognized tllat language design should proceed according to guiding principles.

The principles presented in Ch;tpter 4 are intended to extend a language designer's repertoire

of such guiding principles. Sirrlilar guidance has been offered in the past, either in the form

of pragmatic advice, such as Wirth's advice in [Wir87] and H0are7s advice in [Hoa87], or as

principles rooted in the semantician7s meta-principle of orthogonal language features. For

example, Harland [Har84], and also Tennent [Ten811 , present the following:

Principle of I'roccdural Abstraction: Any syntactic clause can be abstracted over, so it

may be repeatedly invoked.

Principle of Completeness: All data types must be first-class citizens, that is, they can

be passed as parameters, assigned, stored as data-structure components, and returned

from functions.

Principle of Declaration Correspondence: I f a data type can be declared as a parameter,

it can be declared in-line and vice versa.

CHAPTER 6. EVALUATION 119

Harland's decision to go the way of dynamic typing stems partly from a perceived conflict

[Har84, page 1151 between supporting both polymorphism and supporting static typing. But

Acer contradicts this perception, supporting polymorphism and static typing. As well, the

work in [ACPPSl] shows how dynamic typing can be supported in the framework of an

otherwise statically typed language.

Another good source of principles for guiding language design is given in [Mac87], which

presents 16 principles and evaluates various well-known programming languages in terms

of their conformance to these principles. The principles are very general and are set in a

historical context; many are restatements of advice offered by Parnas, Dijkstra, Iioare, and

others, and are now well-entrenched in the minds of language designers. In contrast, the

principles of Chapter 4 arc more narrow in thcir focus, dealing primarily with manipulation

issues, and can be considcrcd as corollaries of the general principles.

6.2 Transformational programming

transformational approach to programming. It provides a flexible way in which to express

and implement transformations and a logical framework for the inclusion of specifications.

6.3 The style of semantic definition

In this thesis, a relational-style semantic definition, which maps programs to nodes and node

relations, was used to define Acer. This is quite different from using a denotational-style

semantic definition, which maps programs to mathematical values (and functions). Since

meaning must be represented in some articular way a choice must be made as to which

approach to use. Certainly a denotational-style definition is an appropriate choice. However,

since nodes are sufficient and natural for rigorously defining the structure of abstract syntax

there is no pressing nccd to provide both a denotation-style definition and a relational-style

definition. Moreover, I hold the view that node structure and its relations are the meaning

of a program.

Nodes, in fact, are the ideal conveyors of meaning. After all, nodes are the high-level

objects manipulated in a programming environment. And an abstract data-type to represent

nodes can be adequately supported in most modern programming languages.

To map the meaning of Arer programs to pure mathematical values would be cumber-

some. For instance, nodes easily represent such things as self-referencing types and data-

structures, e.g.,

CHAPTER 6. EVALUATION

be represented as nodes and node relations, not as arbitrary data structures. However, an

attribute-style definition is not inconsistent with the approach advocated in this thesis.

It is important to realize that this thesis has concentrated on defining Acer's semantics by

specifying Acer's supporting metaprogramming system. Thus, it is not so much concerned

with a particular style of forma] definition [Pag81], as long as the behavior of the supporting

metaprogramming system is adequately specified.

6.4 On programming environments

CHAPTER 6. EVALUATION 122

Realize, however, that PCAcer has not been designed so much to be innovative, but to

demonstrate how easily Acer can be supported. For instance, requiring all semantic objects

to be represented as nodes ensures a syntactic representation for precisely the values that

Acer programs manipulate. Hence, values, like programs, are viewed as nodes, and support

for their manipulation is unified under the guise of these nodes. This is what allows the

result of evaluating a program in PCAcer to be viewed as a node.

Other properties of Acer also help to support PCAcer's implementation. For example,

the property that every node gives rise to a t least one token in the concrete view facilitates

the direct selection of nodes by p in t ing at their tokens. AS well, the property that every

type, definition, and defining-occurrence is represented as a node allows PCAcer to generate

nodes to respond to scrnarltic queries. It is my view that the consequences of a particular

language design only become apparent when a supporting envkonment is implemented-even

the implementation of just a compiler is insuficient in this regard.

The notion of using rnetaprograms written in Acer as a command language for an Acer en-

vironment (see 5.6.3) is an innovative approach, which facilitates unlimited extensibility. Un.

fortunately, the memory limitations of PCAcer makes implementing an Acer host-language

metaprogramming system for Acer difficult. Therefore, the realization of this approach is

left as future work.

6.5 O n Acer itself

CHAPTER 6. EVALUATION

course that module declares an appropriate function named method. Thus the called method

is determined by the selection module.method and no run-time search of a method dictionary

is required.

Furthermore, module could implement its abstract values so that each x contains poten-

tially different function components. The call module.method (x) could then be implemented

to invoke the particular function associated with the x given in the call. This implements

the notion of virtz~al methods in which the called method is determined dynamically for each

object. Clearly the style of "inheritance" supported by Acer and Quest is extremely flexible.

Another innovative feature of Acer are references, which can be used like pointers but are

implemented as fetch/store functions. They support the high-level modeling of updatable

locations. For instance, a reference could be used to model a ~ocation that does not even

exist in physical memory; a fetch could be implemented as a read from the file-system, and

a store could be implemented as a write to the file-system-

Iterators and accumulators are yet another feature of Acer not present in Quest. Their

design is based on the description in [Carn89]. Acer's iterators and accumulators are im-

plemented as tuples with appropriate components rather than as a new type of semantic

object. As a result, they introduce minimal additional complexity while providing maximal

utility-iterators and accumulators can even be recursively defined. Also, the a ~ ~ ~ m u I a t i ~ ~ -

literal, which is an accumu]a.tor applied to literal arguments, has proved to be very useful for

supporting data constructors that take an arbitrary number of arguments, e.g., a list could

be constructed by list.constr-uct (LlnseType) ([x, y, z]).

Acer's abstraction mccllaaisms can be seen in a very favorable light. As Hilfinger [Hi183,

Page 31 puts it, "Proper desigrl of thc abstraction facilities of a language not only increases

its utility to programmers, but can also simplify the language and reduce the language

designer's tempttition or need to provide all things to all programmers." Acer reinforces this

view. For instance, Accr has a very small number of built-in types and most notations are

applicable for abstract data-types in pneral ; even basic types such Integer and Real and

Structured types sucll as Array are defined as abstractions. As a result, Acer's definition

need not specify the propertics and operations of a large number of built-in types. This

certainly simplifies the language and a t the same time s u ~ ~ o r t s extensibility via powerful

abstraction mechanisms.

Folding is particularly well supported in Acer because functions can abstract over ar-

bitrary value cxpressioas and type-operators can abstract over arbitrary type expressions.

CHAPTER 6. EVALUATlON

Even variables can be folded as reference- or pointer-yielding functions. Quest does not pro-

vide the same level of support for folding because it does not include pointers or references

and because a function's body cannot refer to non-local (free) variables. In Quest, non-local

variables must be contained by a tuple or some other data-structure t o be accessible, bu t

in Acer, variables are allocated on the heap so dangling stack references are of no concern.

Moreover, an implementation of Acer could allocate particular variables directly on the stack,

as Quest does for all variables, when a reference or pointer to the variable is not required

and the variable is not referenced in a function body.

6.6 Future work on Acer

CHAPTER 6. EVA L UA'I'ION

one should test node.isa.empty (x.parent) because theUnattachedEmptyNode is not neces-

sarily unique. Ilence, the declaration for theUnattachedEmptyNode should not be provided

to prevent the impression that it is a unique individual. But then, were it not for persistent

storage, theUnattachedEmptyNode could very well be a unique individual.

The fact tha t persistent storage interacts with abstraction in such an unexpected way is

somewhat forboding. Unless some care is taken, certain abstractions could be crashed e.g.,

copying a value representing an open file may not be meaningful. Note tha t Quest restricts

persistent storage to values of concrete- types, but that stifles its usefulness. Moreover,

since Acer defines even basic types such as Integer as abstract-types, dynamics restricted to

concrete-types would be quite useless.

Another problern wit11 l,ersist,ent storage for values of a b s t r a c t - t ~ ~ e s is tha t no test is

performed to ensure t,Ilat, the abstract-type has not been recompiled in terms of a different

implementation type. Clearly such recompilation would invalidate all persistently stored

values based on that abstract-type.

But perhaps we should not be unduly concerned, after all, when a program can input a

function-value and call it, it can never be completely sure that it is not loading a 'Trojan

horse.' Thus, persistent st,oragc has its implications, take it or leave it.

Further rumination c o ~ l c e r ~ ~ i ~ g the particular features included in Acer is also in order.

For instance, enumerat.ion-typcs could be excluded in favor of o ~ t i o n - t y ~ e s , and even tuple-

types could be excluded in favor of record-types. This would simplify the language but could

harm performance.

Another semantic issue that needs attention concerns the ability of a function-call to act

as a constructor, see A.7.2. A constructor, such as a tuple-literal or function-literal, Supports

recursive definitions. For example,

let x be tuple x end

let makeTr~plo be function (x : Type) tuple x end end

we could not use it as

let x be makeT~~p1e (x)

CHAPTER 6. EVALUATION 126

A solution to this would be to define a restricted type of function called a

constructor-function. Thus Acer would define a constructor-literal and a constructor-type

exactly analogous to a function-literal and a function-type. For example,

let makeTuple be constructor (x : Type) tuple x end end

which has type:

Constructor (x : Type) Tuple : Type end end

A constructor-literal would be restricted to have a body that denotes a constructor and

to treat each of its arguments as a delayed-occurrence (see A.7.2), i.e., as a reference t o a

data-structure tha t is not yet completely defined. Acer's subtyping rules would be extended

SO tha t a constructor-type is considered to be a subtype of a function-type according to the

regular function subtyping rules, but not vice versa. A constructor-function could then be

used in a regular function-call, but in this case the arguments would be permitted to be

delayed-occurrences. It would then be valid to write

let x be makeTuple (x)

C H A P T E R 6. E V A L U A T l O N

6.7 Beyond Acer

Clearly Acer is but a step on the quest towards more manipulable languages. When inno-

vative language features and programming methodologies arise, they will have t o be either

incorporated into a new language or meshed with an existing language. Acer provides a

conceptual framework for meshing with such innovations: new kinds of types and values,

and new kinds of computatiorlal structures, can easily be included in the existing framework

(e.g., just as the extension for constructor-functions is easily included.)

Beyond Acer, however, lies a vaste domain of unexplored territory, and the direction i n

which to go is uncertain. For instance, what style of programming is best, object-oriented

programming, functional programming, or logic ~rogramming? And is it even reasonable to

ask such questions? After all, various styles of programming have different advantages and

language should, in general, support folding and unfolding; it should be possible to abstract

over any expression and it should be possible to rewrite any invocation in terms of its

definition. Meaningful manipulation can only be well-supported when such basic activities

are well-supported.

Arid most importantly, to ensure that manipulation is in fact well-supported, a metapro-

gramming system for the language should be constructed. ,411 other support tools can then be

implemented in terms of the standard abstract view implemented by that metaprogramming

System.

6.8 Final words

If this thesis achicvcs only the goal of prompting language designers to consider support

for program manipulatioll i l l the. design of their languages, it will have accomplished much.

P e r h a p the dcsigri of Acer, as a framework for a manipulable imperative language, will be

seen in a positive light as well, but this is of lesser concern.

The fundamental advice to language designers is that they should specify and implement

a supporting mctaprogramming system based on some reasonably simple concept of nodes.

If improved programming languages, methodologies, and environments are to meet the ever

increasing demand for better software, language designers must recognize that support for

Program manipulation is a vital concern.

Appendix A

The Acer definition manual

A.1 Introduction

A P P E N D I X A. THE: ACER DEFINITION M A N U A L 130

is well-defined, a semantic object is synonymous with its representation, just as the number

ten is synonymous wit11 its representation as the numeral 10. Moreover, simple manipulation

can then produce meaningful semantic effects, just as combining the digits of two numerals

produces the sum of two numbers. Emphasis on nodes reflects the view tha t specifying how

constructs are abstractly represented and manipulated is as important as specifying what

they mean.

Nodes will often be illustrated using a graphical representation, e.g.,

An oval represents a construction

lexeme with the indicated spelling .-the node class of a lexeme is implied by its spelling. A

X X

Definition T y p e

An unlabeled oval represents an unspecified node. A l d ~ l e d connection from the right-side

of one node to the left-side of another represents a binary relation-a node's position in the

relation is determined by the side that is connected. When a binary relation is interpreted

to mean that a node has another node as its attribute, the connections t o the right of a

node lead to its attributes, e.g., the above indicates that an identifier x has as its defining-

occurrence some other identifier x, that it has as its type an unspecified node tha t is also

the type of its defining-orrllrrence, and that it is its own definition.

The of tllis appendix is organized as follows. Section A.2 Presents all of Acerys

alternation introducing tllc names of Acer's node categories, node classes, and semantic

objects. Section A.3 olltlilles Accr's primary context-dependent relations, namely defining-

occurrence, dc:finition, denotation, type, kind, and subtype- A.4 presents Acerys

lexical and character description rules, including Acer's technique of associating conlments

APPENDIX A. TIIE ACE12 DEFINITION MANUAL

with nodes. And finally, sections A.5 through A.33 describe Acer's construction and list

rules and discuss their associated relations and dynamic semantics.

A.2 The syntactic domains

An alternation rule defines and names a node category, that is, a set of node classes. Al-

ternation rules refer to node classes by name so a brief overview of Acer's alternation rules

serves to introduce much of the terminology used in describing Acer.

Acer's alternation rules give rise to a classification tree whose root is defined by Accr's

most inclusive alternation rule

(Arbitrary) ::= (Aqpmen t) I/ (Declaration))I (Miscellaneous)

(Block) ::= (TypeBlock) 1) (ValueBlock)

(Dcnoter) ::= (fipcDcnoter) I((ValrleDenoter)

(Idcn tificr) ::= (rl'ypeIdentificr) (1 (Valueldentifier)

(Reusedlden tifier) ::= (~ ~ u s e d ~ ~ ~ e l d e n tifier) I/ (Reusedvalueldentifier)

These rules do not fa]] neat]y into Acer's classification tree but since they are not used in

any other grammar rule they can be ignored. They merely provide convenient terminology,

that is, generic names for semantically analogous constructs.

The presence of arbi(.rary i n Accr's grammar is significant because Acer's grammar corn-

pletely avoids syntactic alnhig~lity. This implies that a Parser for every node class and

node category exists, alld consccluc~ltly that a parser for arbitrary exists. Therefore, Acer is

phrase unambignolls, t.]rat, is, the node structure of any textual phrase can be unambiguously

determined.

A.2.1 Argument

APPENDIX A. THE ACER DEFINIl'ION MANUAL

(Argument) ::= (Binding) I / (Expression)

Binding and expression are grouped into a single category called argument because an

argument-list (see A.15) can contain both bindings and expressions.

In general, a binding consists of an identifier, a type, and an expression. Its effect is

to bind the expression to the identifier so that the expression can be referred t o by name.

(The type indicated by a binding is optional and is used to restrict the type of expression

tha t can be bound to the identifier; such restriction involves subtyping as described i n

section A.3.4.) The silnilarity between bindings and expressions stems from the fact that in

a context permitting an argument, an expression is treated as an anonymous binding, that

is, as a binding with no namc.

Consider now the subcategories of binding and expression.

A.2.1.1 Binding

Binding is defined as

which mirrors the partitioning of Acer's domain of semantic objects into the disjoint cate-

gories type and value.

A type-binding comes i n only one form but a value-binding comes in one of two forms:

(Expression) ::= (Type) (1 (Value)

The majority of Accr7s node classcs are expressions.

Type is defined as

APPENDIX A. THE ACER DEFINITION MANUAL

(Type) ::=

(Abstract Type) 11 (ConcreteType) 11 (ReusedTypeIdentifier) 11
(TypeBlock) 1) (T~peDeno te r) 1 1 (TypeDesignation) 1 1
(Typeoperator)

for which the alternatives abstract-type and concrete-type are defined as

(AbstractType) ::=

(OperatorCall) 1 1 (~ ~ p c l d e n t i f i er) 1 1 (Typeselection)

(ConcreteType) ::=

(AnyType) 1 1 (DynamicType) 11 (EnumerationType) 1 1
(R~nc t ion Type) 1 1 (OptionType) 11 (RecordT~pe) 11
(TupleTypc) (1 (VariantType)

Together these three rules introduce the node class names of all types.

Value is defined as

(Value) ::=

(Accumulation) 1 1 (AndIfTest) /I (~ s s i ~ n m e n t) I/ (Codepatch))I
(Compoundvalue) 11 (Conditional) / I (Dereference) 11
(DyadicMcthodCall) 1 1 (~ ~ n a m i c l n s p e c t i o n) 1 1 (FunctionCall) 11
(Index) 1 1 (IsTcst) 1 1 (IsNotTest) 11 (Iteration) 11 (IieepTrying) (1
(Literal) (1 (OrdCall) I((OrlfI'est) I/ (Pointercall) 11
(PrefixMethod~al l) / I (Ilaisc) 1 1 (Try) 11 (TryFinally) 1 1
(UnaryMethodCall) /I (VdCall) I/ (ValueBlock) 11 (ValueDenoter) (1
(ValueSclection) (1 (Variant inspection)

for which the alternative literal is defined as

these two rules introduce the node class names of all values.

A.2.2 ~ e c l a r a t ion

(Declaration) ::= ('l:ypeDeclara tion) /I (ValueDeclaration)

APPENDIX A. THE ACER DEFlNITlON h4ANUAL 134

Also, as with a binding, a type-declaration comes in only one form but a value-declaration

comes in one of two forms:

(ValueDeclaration) ::=
(Fixed Value~eclaration) 1 1 (Varia bleValueDeclaration)

In general, a declaration consists of an identifier and a type. It is similar to a binding

in the sense that it introduces a named expression of some type. The difference is that

the identifier of a declaration is bound to its expression dynamically, rather than statically.

Hence a binding includes a static definition (i.e., an expression) but a declaration does not.

Because their definitions are hidden, declarations support information hiding.

A.2.3 Miscellaneous

The final disjoint category of a.rbitrary is miscellaneous:

(Miscclla.neous) ::=

(Empty) 11 (Accum~~la,tionList) 11 (ArgumentList) I/ (ArrayList) (1
(BindingList) 1 1 (ConditionalBranch) I/ (ConditionalBranchList) 11
(IndexList) 11 (IteratorElement) 1 1 (IteratorList) 11 (Signature) 11
(TypeBranchList) I] (TypeWhenBranch) 11 (ValueBranchList) 1 1
(Value W h e n ~ l a n c h) 1 1 (Variant Element) 11 (Variant List) 1 1
(When Condit ion)

As3 Context-dependent relations

APPENDIX A. T H E ACER DEFlNlTlON M A N U A L

A.3.1 Scope

type-selection, tuple-literal, tuple-type, unary-method-call, value-block, ~a lue - se l ec t io~ ,

variant-literal, and when-condition. For the sake of brevity, the details of how these node

classes affect identifier-lookup are described as each node class is described in sections A.5

through A.33.

One notable aspect of Acer's scope rules is that scope is not affected by order of

definition-a name-layer is after all a set-so forward reference to declarations and bind-

ings is generally is acceptable, dependency analysis is used to determine invalid references

(see A.7.2).

A.3.2 Definition and denotation

Because expressiorls are frequently used to denote other expressions (e.g., pi might be used

method-call, reused-type-identifier, reused-value-identifier, type-block, type-denoter, type-

v d l ~ e - i d e n t i f i ~ ~ , and vnlllc-sclection. The details of the definition relation are described as

Defini t ion J
D e f i n ~ t i o n

However, in a correct program, applications of the definition relation ultimately

results in an explcssion that, is its own definition.

APPENDIX A . T H E ACER DEFlNlTTON M A N U A L 137

Note tha t bindings have a definition by virtue of having a component by tha t name (see

A.7).

A.3.3 Type and kind

Because expressions are typed (e.g., 3.14159 has type Real), Acer provides the type relation,

which maps an expression node or empty node to the type node or empty node tha t represents

its type. The that values have types is quite conventional but the notion tha t types

have types is not. ~t stems from the fact that Acer supports a three-level type system in

which types are classified according to kind. The type of a value may be any class of type

but the type of a type must be a restricted form of type called a kind. A type is a kind if it

denotes either a concrete-type or a concrete type-operator (see A-19), tha t is, a type-operator

with a body tha t is a kind. A kind is its own type.

Since the type of an exprcjsiolr is a type, which in turn may have as its type yet another

type, there is the possibility of invalid circular types, e.g.7

K i n d

by tha t name (see A.8).

A.3.4 Subtype

APPENDIX A. TlIE ACER DEFINlTlON MANUAL 138

or a concrete-type, subtype is specifically defined for only these. Types of different node

classes are generally unrelated as subtypes. As with the other context-dependent relations,

the details of the subtype relation are described as each relevant node class is described.

The subtype relation is an ordering relation (i.e., a partial order) so type equivalence is

defined in terms of subtype-two types are equivalent when each is a subtype of the other.

Also, the inverse of the subtype relation is referred to as the supertype relation, tha t is, is

a supertype of T' if and only i f T' is a subtype of T .

Because the subtype relation is an ordering relation we may speak of the maximal type

of a set of types. The maximal type of a set of types is any type tha t is a supertype of all

the rest; the maxima] type of an empty set is Void (see A.22). If a set of types does not

have a maximal typc tIlen the ~naximal typc is Error (see A.25). Note tha t special subtype

rules apply for the types Error and Raise (see A.24.2).

This concludes the overview of Acer's primary context-dependent relations.

A.4 Lexical structure

A.4.1 The character set

Acer partitions the ASCII character set as follows:

APPENDIX A. THE ACER DEFINITION MANUAL

(#Tab) ::= ASCII 9

(#LineFeed) ::= ASCII 10

(#Carriagelleturn) ::= ASCII 13

(#Space) ::= ASCII 32

(#Other) ::= ASCII 0-8, 11-12, 14-31, 127

If an extended ASCII is used (such as IBM extended ASCII), the additional characters

are, by default, included in other.]-rowever, if various characters from other produce desirable

graphic characters, they may instead be included in one of the first four groups.

A.4.2 Token

A lexical analyzer for Accr recognizes five sorts of token: comment, identifier, keyword,

Punctuation, and lexical-literal. Each will be discussed in turn.

A.4.2.1 Comment

A comment-token begins with a '%' and terminates a t the end of the line (i.e., the next

carriage-return or line-feed):

(Cornmen t) : : =
% ([(#LowercaseLetter) I/ (#UppercaseLetter) 11 (#SymbolicLetter) 11

(#Ponctllation) 1 1 (#Digit) 1 1 (#DoubleQuote) 1 1
(# f i b) 1 1 (#Space) 1 1 (#Other) 1

comment-tokens, each stripped of its leading '%'. A syntax analyzer, when accepting tokens,

APPENDIX A. THE ACER DEFINITION MANUAL 140

requires the token's occurrence. When a token with annotations is accepted, the annotations

are inserted a t the end of the annotation list of that owner node.

Since every Acer node, with the possible exception of empty nodes (see A.5.1), owns a t

least one token in a lexical encoding, every Acer node can be annotated by annotating its

tokens. Thus Acer's comment facility ~ r o v i d e s a concrete representation for nodes annotated

with lines of text. Note that the annotation list of a node (or token) is not itself a node-it

is a textual object consisting of lines of text.

Comments can be used in many different ways, for example, as documentation, as di-

rectives of various sorts, as cross-reference information, and so on. So tha t the role of each

annotation (i.e., each comment line) is specified, the first character in an annotation (i.e.,

the character after the '%') determines its role.

Only the role of documentation is specified in this appendix: a space indicates documen-

tation. The use of comments for other roles has not been fully explored. Nevertheless, in the

future: a '$' should be used to indicate a compiler directive, a '%' should be used to indicate

a formatting directive, and a ' ! ' should be used to indicate an assertion.

A.4.2.2 Identifier

Acer provides two classes of identifier, one for denoting types and the other for denoting

values. A type-identifier consists of an initial uppercase letter f o h v e d by zero or more

lowercase letters, uppercase letters, and digits:

(Typeldentifier) ::=

(# Uppercasc1,ct ter) (T (#l,owercasel,et ter) 11 (# UppercaseLet ter))I
(#Digit) D

A value-identifier is either alphabetic or symbolic, and hence consists of either an initial

lowercase letter followed by zero or more lowercase letters, uppercase letters, and digits, or

a sequence of one or more symbolic-letters:

(Valuelden t ifier.) : : =

(#Lowercasel,etter) (T (#LorvcrcaseLetter) I/ (#UppercaseLetter) 11
(#J%W D II

(#Symbolicl,ct ter) (T (#S.yrnbolicLctter) 1
Symbolic-letters in value-identifiers allow programmers to define their own operator symbols.

! During parsing, each id(:ntifi(lr-token gives rise to an identifier node containing the token's

Spelling, i.e., the owncr node.

APPENDIX A. T H E A C E R DEFINITION M A N U A L

A.4.2.3 Keyword

The following tokens are used as keywords in Acer and cannot be used as identifiers:

Any
becomes
do
else
finally
in
keep
Option
pointer
reference
then
Variant
when

andif
begin
code
elsif
for
inspect
let
of
Record
Then
t r y
val
with

array
Dynamic
Enumeration
except ion
function
is
nothing
or d
raise
Tuple
trying
var

be
dynamic
end
Function
if
isnot
Operator
orif
record
T Y P E
tuple
variant

The spellings of keyword-tokens are not stored in the syntax tree. Their sole purpose is to

direct parsing (reading) and the association of annotations-they play no role in semantics.

A.4.2.4 Punctuation

The following tokens are used as punctuation in Acer:

Each punctua.tion character constitutes a token.

As with keyword-tokens, the spellings of punctuation-tokens are not stored in the syntax

tree.

A.4.2.5 Lexical Literal

Acer provides lexical reprcscnt;ttions for integers, reals, characters and strings.

An integer-literal consists of an optional '-' and a sequence of one or more digits:

A real-literal consists of an optional '-', a sequence of one or more digits, a ' . ', another

sequence of one or more digits, and an optional trailing power indication, which is a n 'E' or
6 7
e , an optional '-', and a sequerlce of one or more digits:

APPENDIX A. THE ACER DEFINITION MANUAL

(Real Literal) ::=

[[-]I (#Digit) ([(#Digit)) . (#Digit) (I (#Digit)
[[fl e ll E D fl - I] (#Digit) ff (#Digit) Ill

During lexical analysis of real-literals an 'e' is automatically converted to an 'E' .

A character-literal consists of a '", any character except a line-feed or carriage-return,

and a ' ' ':

A string-literal consists of a '"', zero or more characters other than line-feed, carria,ge-

return or ' I t ' , a.nd a '"':

(StringLiteral) ::=

" { (#LowercascLet ter) /I (# llppercaseLet ter) 11 (#SymbolicLetter) (1
(#Punctuation) 11 (#Digit) /I (#Space) 1 1 (#Other)) I'

During parsing, each lexical-token gives rise to a integer-literal, real-literal, character-

literal, or string-literal node containing the token's spelling, i.e., the owner node. The spelling

of a character- or string-literal node does not include the delimiting single or double quotation

marks. Nevertheless, in the graphical representation these delimiting marks are illustrated

as part of the spelling so as to distinguish character- and string-literals from identifiers.

A.4.3 Delimiter

To prevent ambiguity, adjacent tokens in an Acer program can and sometimes must be

delimited by white-space (i.e., space, tab, carriage-return, or line-feed). Comments, punctu-

ations, character-literals, and string-litcrals are self delimiting and therefore need no further

delirnitatio~l. Symbolic value-identifiers need only be delimited from adjacent symbolic value-

identifiers and from integer- and rcal-literals i f the identifier is '-'. The remaining sorts of

token-alphabetic vallle-idcnt,ificr, type-identifier, keyword, integer-literal, and real-literal-

must be delimited when adjacent.

A.4.4 Lexical alternatives

APPENDIX A. TIIE ACER L>EI.'INl?'ION h4ANUAL

rn Comments are Roman.

rn Keywords are bold.

rn Alphabetic value-identifiers are slanted.

rn Type-identifiers are Italic.

Character-literals, string-literals, and symbolic value-identifiers are typewriter.

This concludes the description of Acer's ASCII encoding.

A.5 Special nodes

Recall tha t Acer's design is goidcd by tlle view that it is as important to specify how language

constructs are represented and 1nallipulated as it is to specify what they mean. For the

manipulation of nodes, Acer four special node classes, namely empty, type-denoter,

d u e - d e n o t e r , and arbitrary-list. Each will be discussed in turn.

A.5.1 Empty

For representing a missing, optional, construction component, Acer provides empty, which

is defined to be a childlcss construction:

(Empty) ::= nothing

The following construction classes have optional components and may therefore contain

empty nodes: array-literal, conditional, dynamic-inspection, fixed-value-binding, fixed-value-

declaration, function-literal, itel.atioo, teep-trying, raise, try, t ~ ~ e - d e c l a r a t i o n , type-binding,

type-when-hl-a~irh, ~ a l u c - ~ l ~ (: ~ ~ - b r a l l ~] l , varial,le-value-binding, variable-value-declaration,

variant-inspection, and variant-type.

The context-dependrot relations for an empty node are illustrated as

An empty nodc llas a type alld a definition, which are determined by the context in

it appears. TIlerefore, the relations arc described as each of the above construction classes

is described.

A P P E N D I X A. THE A CEIZ DEFINITION M A N U A L 144

In general, i f an empty node is not its own definition, its type is given by tha t of its

definition:

If an empty node is its own definition, its type is determined by its context:

Defini t ion

For an unattached empty node, and for an empty node appearing in an arbitrary-list,

the context-dependent relations illustrated as

Such an empty node is its own type a ~ i d its own definition.

A.5.1.1 Printing empty nodes

if x then y end

and

if x then y else nothing end

keywords are also printed, as is else above.

The reason for this uncollverltional treatment of empty nodes stems from the fact tha t

APPEND1,Y A. THE A C E R D E F l N l T l O N M A N U A L

A.5.1.2 The unattached empty node

The other use of empty nodes in Acer is to ensure that all nodes have a parent node, including

even unattached nodes. Therefore, Acer specifies that there exist a special empty node, called

the unatiached empty node, which is the parent of all unattached nodes including itself. The

unattached empty node is unique among nodes in that it is a parent and yet has no children.

A.5.2 Denoter

Acer provides denotess to facilitate the syntactic representation of semantic objects derived

from existing nodes, tha t is, to represent types and definitions. To see how the need for

denoters arises consider the tuple-literal

tuple let x - : T be y end

The type of this tuple-literal is

Tuple x- : T end

Tuple-
Litrral

C J

Detinilion

A denoter can he thought of as an anonymoos identifier with a predetermined defining-

occurrence. To be more ewry dcnoter has a definition and stands in place of that

definition.

Acer has two classes of denoter:

where a type-de~lot,er is defi~icd as

APPENDIX A. TIIE ACE12 UEFlNlTION MANUAL

and a value-denoter is defined as

(ValueDenoter) ::= (0)

The definition of a type-denoter must be empty or a type and the definition of a value-denoter

must be empty or a value. A denoter never has another denoter as its definition.

The context-dependent relations for a type-denoter are illustrated as

and those for a value-denoter are illustrated as

In general, a denoter tias a dcfillition and its type is given by the type of that definition.

The graphical r e p r e ~ e n t a t i ~ l l of a denoter illustrates its definition but usually nodes are

viewed in terms of a lexical encoding. Therefore, to enhance the readability of a d e n ~ t e ~ ' ~

lexical encoding, the definition of a denoter may be ~ r i n t e d within the denoter's brackets.

Thus the above tuple-type could be printed as

Tuple x : {[I) end

Tuple x : {[TI) end

Since a denoter can recursively colltain itself, it is not always possible to print its defini-

tion. For example, a ~.ccursivc tuple-type illustrated as

Declaration

1

T y p e -
Denoter

Definition

must be lexica.lly encoded as

Tuple : { [I) end

APPENDIX A. T H E ACER DEFINITION MANUAL

since printing its dcrioter leads to an infinite regression. Also, because definitions can be

shared, printing the definition of each denoter may result in a given node being printed an

arbitrary number of times. In ,general, the definition of a denoter should only be printed if

it is relatively small, for example, if it is an identifier.

A denoter should never appear in a user program since its definition cannot be determined

via context-a denoter should appear only in a derived node, in which case i ts definition is

determined so as to suit the role it lays in that node.

Because denoters should not appear in user programs, it would be reasonable for a parser

to simply reject denoters. I-Iowever, the following adhoc approach is chosen instead. A

parser, when accepting a type- or value-denoter, assigns the unattached empty node as the

dcnoter's definition, unless tllc dcnoter has a ~ r i n t e d definition, in which case it assigns the

parsed type or value as the dcnoter's definition. It is important to realize tha t in either case

the original intent of the denoter is likely lost; in the first case an empty definition is assigned

and in the second case a copy of dcfini t io~~ is assigned. Therefore, semantics will likely be

altered by printing and passing when der~oters are involved. This is of no concern however

since denoters should only a.1,pea.r ill derived nodes, which are not typically parsed.

Essentially, a type-dcnoter is treated as if it wcre defined as

(TypeDenoter) ::= { [[[(Definition: Type) I] I 1

and a value-denotes is trea,t,ed as i f it wcre defined as

Dcnoters are closely involved i l l tile notion of a definition-copy. Producing the definition-copy

of a node involves recilrsively copying the tree rooted a t that node, including the definition

of each denoter, and substitllting certain nodes with specified replacements. To see how the

need for definition-copy al.ises, consider determining the type of the function-call

where x has type 7' and f has type

A P P E N D I X A. T H E A C E R DEFINITION A4ANUAL

Function (Type :: Any; value : Type) Tuple : Type end end

The type of the call is determined by copying the result-type of the function-type and

substituting T in place of each occurrence of Type:

Tuple : 7' end

Since T is not visible in this newly derived tuple-type, a type-denoter must be used:

Tuple : { [T I) end

where T is precisely the node T in the argument-list of the function-call.

In general, we shall speak of the definition-copy of node y with x' for x , where x and

x' can be any co1nhinatio11 of signature, argument-list, dynamic-type, tuple-type, or record-

type. Producing such a dcfinitio~l-copy involves creating ?,", a copy of the tree rooted a t

y, in which each appli(;d-occ,lrrence of an identifier in the name-layer of x is replaced by a

denoter with a definition that , depending of the node class of x', is either the corresponding

expression in X' or the defi~led-identifier of the corresponding binding or declaration in

Note that when y is all empty node or denoter, definition-copy instead copies the definition

of y.

When producing the defillition-col~y of a node, certain subnodes may be unaffected by

substitution, that is, certain 1lodcs contain ncither applied-occurrences of identifiers in the

namelayer of x nor applietl-occllrrellces of identifiers that are copied. For such nodes,

definition-copy can substitute a denotcr to the original node in place of a copy of tha t

node. This results in a Inore efficient representation since fewer nodes are used to represent

the same object.

Closely associated wi th the notion of a definition-copy is the notion of a de5nition-copy-

at. 'The definition-copy-at of a llode also results in the creation of a new unattached

that defines the same object as the original. However, for definition-copy, the new node is

unattached and so dcnoters arc used to refer to nodes not accessible via context, whereas

for d ~ f i ~ i t i o ~ - ~ ~ ~ ~ - ~ t , the new node is expressed in terms of the scope a t some target node

1. Thus the dcfillition-copy-at of a node y a t a location 1 involves producing a denoterless

definition-copy of y exprc:sscd in terms of the scope a t 1.

That the definitioll-ropy-at can generally be produced demonstrates tha t objects ex-

Pressed l l s i l l~ dcllot.css ciln ala) be expressed without using denoters, given an appropriate

Scope. For cxanlple, collsider the recursive tuple-type

A P P E N D I X A . T I I E ACER DEE'INITION M A N U A L

Tuple : { [I) end

where the definition of the type-denoter is tuple-type itself. The definition-copy-at of this

tuple-type a t the unattached empty node results in

{let Unnamed be Tuple : Unnamed end; Unnamed)

Note that the definition-copy-at of a node y a t a target node 1 cannot be produced for all

possible targets because the objects used by y must be visible a t I . Thus definition-copy-at

fails when attempting to express a node 'outside of its scope.'

The 1a.st of Acer's special nodes is the arbitrary-list, which is defined to be a list of arbitrary

nodes by the list rulc

(Arbi traryLis t) ::= arbitrary C (Arbi trary) 1 1 end

arbitrary [array 1 2 31 end

Without delimit itti011 it woultl appear as
I

arbitrary array 1 2 3 end

which would look as i f the terminating end of the arbitrary-list is missing.

This concludes tlie discussion of Acer's special node classes.

APPENDIX A . THE ACElZ lII.~FINITION MANUAL

A.6 Identifier

For referring to objects by name, Acer provides identifiers:

(Idcn tifier) ::= (Typeldcntifier) 1 1 (Valueldentifier)

where type-identifier is defined as

(Typelder~tifier) : :=

(# UppercascLet ter) { (# LowercaselA ter) 1 1 (# UppercaseLet ter) / I
(#Digit) D

and value-identifier is defined as

(Valueldentificr) ::=

(# LowcrcaseLet ter) Ij (#Lo~m-caseLct ter) / I (# UppercaseLet ter) 1 1
(#lIigit) 1 11

(#Symbol) (I (#S*yi~lbol) 1
An identifier appears in context as citller a defining-occurrence or an applied-occurrence.

It is a defi~lirlg-occurr(:~~c(: i f it al,l,ears as thc defined-identifier of a binding, declaration,

iterator-clement, type-wherl-),ra~lc}l, value-when-branch, or i f it appears as an element of

an enumeration- or option-typc, i.e., i f it appears in a defining-occurrence context; it is an

applied-occurrence otherwise.

Each identifier has a ull ique defining-occurrence. A defining-occurrence is its own

defining-occl~rrcnce and an al,l,lied-occ~lrrcnce has a defining-occl~rr*n~* determined by

iden tifier-lookup:

APPENDIX A. ?'HE ACER DEF'lN17'10N M A N U A L

T y p e

)
Defining-occurrence

Definition T y p e

depending on whether it is a fixed-identifier or a variable-identifier, respectively. A value-

identifier is a variable-identifier i f its defining-occurrence appears as the defined-identifier of

a variable-value-billding or a variaI11c-value-declaration; it is a fixed-identifier otherwise.

In general, the type of an applied-occurrence is given by that of its defining-occurrence.

Also, the definition of an applied-occurrence is given directly by its defining-occurrence,

except for a variablc-identifier, wllich act as its own definition. A variable-identifier acts as

its own definition because it car1 be modified by assignment (see A.30.4) and so potentially

denotes a different objoct eacll time. it is cvaluatcd; a fixed-identifier or type-identifier, on

the other hand, must ¬e a singlc object throughout its scope and so the identity of tha t

object is rcprese~~tecl by t l ~ c u ~ ~ i q u c defining-occurrence.

The subtype rules for typc-idc1ltific:rs arc described with respect to the subtype rules for

abstract-types (see A.20).

{let x be 10; {x * {let x be 'LO; {x + x))) }

is riot visible i n the inner block, wllic]l also introduces an X.

For referring to idcllt,ificrs hidden by reuse, Acer ~ rov ides reused-identifiers:

A reused-type- col lsists of a11 itlcn ti ficr and a depth-indicator:

as does a reused-value-identifier:

(ReusedValueIdentificr) :: =
(Identifier: Valueldentifier) ' [(DepthIndicator:IntegerLiteral) I

The depth-indicator must be non-negative.

In general, the context-dependent relations for a reused-identifier are the same as those

for its identifier. Thus a reused-identifier is treated as an applied-occurrence tha t has a

defining-occurrence, a definition, and a type. Also, a reused-value-identifier is considered

to be either a fixed-identifier or variable-identifier depending on whether its identifier is a

fixed-iden tifier or variable-identifier.

A.6.2 Scope

Normally, when idcrltific.r-lookul) 1)egins a t a regular identifier, searching terminates when a

matching defir~i~ig-occurrc~~ce is found. IIowevcr, when lookup begins a t the identifier of a

reused-identifier, scarchi~lg t,errninat,es when the IZ+ 1 matching defining-occurrence is found,

where n is value of the dcpth-indicator. This way an identifier in an outer scope tha t is reused

in an inner scope can still bc rcfcrerlccd in the inner scope. Thus the above example could

be expressed as

{let x be 10; {let x be 20; {x' [1] * {x + x.1 11)

A.7 Binding

(Binding) ::= (T.ypc13i~lding.) I((~ a l u c ~ i n d i n g)

Type-bindings come i l l ollly O I ~ C forln but valw-bindings come in one of two forms:

APPENDIX A. THE ACER DEFJNITION MANUAL

fixed-value-binding is defined as

(FixedValueRinding) : :=
let (Defincdldentificr: Valueldentifier) [[: (: Type) I] be

(Definition: Value)

and variable-value-binding is defined as

(Variable Value Bin ding) : : =
let var [[(Defined1dentifier:Valueldentifier) I] [[: (:Type)]] be

(Definition: Value)

The context-dependent relations for a type-binding are illustrated as

,

Definition

Definition

The type of a type-billding must be a kind.

Similarly, the c ~ ~ l t o t t - d c ~ c n ~ l c ~ t relations for a fixed-value-binding are illustrated as

Definition

But the context-dependent reIa,t,iorls for a, varia.ble-value-binding are slightly different:

I dependent relations apply:

Definition Drfinilion

A P P E N D I X A. T I I E A C E R DL:'FINIl'ION M A N U A L 154

Anonymous variable-value-bindings are used to specify anonymous, variable, data-structure

components; anonymous, fixed, data-structure components are specified simply using ex-

pressions.

In general, a binding introduces a defined-identifier as the name for its definition. Also,

a binding optionally indicates the type of its definition; if a type is indicated, the type of the

definition must be a subtype of that type. We shall now consider the role bindings play in

scoping, which is followed by a discussion of how bindings are evaluated.

A.7.1 Scope

According to Accr's gralnm;lr, t l ~ c parent of a binding must be of class arbitrary-list,

argument-list, tuplc-lit,c.ral, I>in(ling-list, dynamic-literal, empty, or record-literal. The be-

havior of identifier-lookup wit11 respect to a binding is determined by this class.

If the node class of a binding's parent is arbitrary-list or empty, identifier-lookup searches

the name-layer consisti~lg of jllst the ljinding's defined-identifier; lookup continues only i f the

defining-occurrence is not found.

If the node class of a binding's parcllt is one of the remaining possible classes, no search

is perfornlcd and lookul, contirlucs wit11 tile parcnt. But in this case, the binding contributes

its defined-identifier to tllc Ilatll(.-lfiyer of its parent and lookup searches this name-layel

when it reacllcs tlre 1,arerlt. II(ylce, rcgartllcss of a binding's context, its defined-identifier is

visible witl~in it.

A.7.2 Dependency analysis

Accr's scope rules permit pathological bindings such as

l e t x b e x

{let x b e t u p l e y e n d ;
l e t y b e t u p l e x e n d ;

APPENDIX A . TllE A CEII. IIEFINITION A4ANUAL 155

are not erroneous because, as we shall see, a correct evaluation is possible. Erroneous

dependencies are detected by dependency analysis.

Dependency analysis is primarily concerned with values, in particular, with evaluation

order of bindings during the initialization of a binding-list (see A.12), an argument-list (see

A.15), or an aggregate-literal (see A.14). (Types are not evaluated and all anomalous type

dependencies are detected by the definition and denotation relations.) For flexibility Acer

specifies tha t bindings may be evaluated in any order that does access uninitialized bindings.

Thus programmers should not assume a particular evaluation order. Nevertheless, Acer also

specifies that bindings must appear in an order that can be correctly evaluated left-to-right.

Therefore, an implementatiorl of Acer may choose to evaluate bindings either left-to-right or

in some other correct order.

Dependency analysis is based on the notion of direct references and indirect references.

A value-binding 6 is said to (lirectly reference a value-binding b' if b contains an applied-

occul-rcncc of t he dcfirled-j(len ti fjc~. of 6'. (Containment includes applied-occurrences recur-

sively contained by dc~loters.) A vallle-binding b is said to indirectly reference a va1ue-binding

b' i f b directly refercnccs 6' or ally value-binding b" directly referenced by b indirectly refer-

ences b', i.e., the indirect refercIlces of b are the transitive closure of its direct references.

Using these notions, Acer defines a delayed-occurrence to be an applied-occurrence of a

value-identifier tha t occurs before or within the binding that introduces i t , or before or within

a binding indirectly rchre1lcecl by thc binding that introduces it. A delayed-occurrence, then,

is simply an aPl~lictl-occur.r~n(-(~ that occurs before its definition is complete. For example,

in the binding-list

(let f be function () y.z end;
let x be f 0;
let y be tuple let z be 10 end;

the applied-occurrence of f in the binding for x is a delayed-occurrence. (In fact, it is an

invalid dc layed-oc .c , l~~c~l~e , as we sllall see in a moment.) Note tha t the a ~ ~ l i e d - o c c u r r e n c ~

of f is not a forward ref~rcllce i l l the co~lventional sense.

F'orma]lyl a (lc]nycy-orcllrrcnrc i is valid if the following two conditions hold for i and b,

the binding t,llal, illtrot]llccs i. ITirst, the definition of b must denote a literal. And second, for

every r i but, lrot ellclosing b, either x must denote a literal or x must be enclosed

by a function-literal or type that docs not also enclose b.

The ose of dclayrd-occorrcnce~ is quite restricted. To understand why delayed-
. .

Occurrerlces can]Ic supl ,or t~d a t all one must realize that a literal 1s a t h e r a constant (i.e.,

A P P E N D I X A. 7'1111i ACER IIEF'INITION M A N U A L 156

a character-literal, integer-literal, literal-selection, real-literal, reused-value-identifier, string-

literal, value-identifier, or void-literal) or a constructor (i.e., an array-literal, dynamic-literal,

exception-literal, function-literal, record-literal, reference-literal, tuple-literal, or variant-

literal). A delayed-occurrence that references a constant is clearly valid and a delayed-

occurrence tha t references a constructor is valid because a constructor can be allocated in

advance and initialized later. IIence, a delayed-occurrence is supported as a reference to

either a constant or an uninitialized data structure.

To prevent access to components of uninitialized da ta structures, delayed-occurrences are

restricted to occur only within types and constructors. However, delayed-occurrences are per-

mitted anywhere within a function-literal's body, even within non-literal expressions (as with

y.x above), bccausc a f~lllction-litcral is a constructor and any value referenced in its body

will not be accesscd ulltil t]lc frlllct ion is callcd; the restrictions on delayed-occurrences pre-

vent such calls until all values rcfcrenccd by the function are fully d&ned. For example, the

call to f above is irlvalid because the applied-occurrence f is a delayed-occurrence

enclosed by a non-literal value, t]le function-call f 0. A delayed-occurrence enclosed by a

type is permitted because types arc]lot evaluated and hence values enclosed by types are

not evaluated.

A.8 Declaration

For introducing ~larned, hidden expressions, known only to have a type tha t is a subtype of

an indicated type, Acer provides declarations:

Al'PENDlX A. '1'11E ACIilZ DEFlNlTION MANUAL

(Fixed ValueDeclaration) : :=
[[(Definedldentifier: Valueldentifier) I] : (: Type)

And variable-value-declaration is defined as

(VariableValueDeclaration) ::=
var [[(Definedlden tifier : Valueldentifier)]] : (: Type)

The context-dependent relations for type-declarations are illustrated as

Type-
Declaration C

Definilion

The type of a type-declaratiorl must be a kind because the type of a type must be a kind. A

abstract-types (see A.20).

The context-dcpcrldcnt, relations for fixed-value-declarations are analogous to those for

Fixedvalue-
Declaration

As are those for a va.riable-va.lue-declaration:

Definition Definition

Defin~ng-ocrurrenre

In gcncral, a dcclalat,ion inll.odnccs a defined-identifier as the name for a hidden expres-

sion; only the type of this exllrcssion is given. A declaration specifies the type of a parameter

1 or data-strllcture coml lonc~~ t and hence its definition is determined dynamically, not stat-
1
I ically. The defined-idelltifier of a, declaration is known only to denote a n expression with

I a type that is a srllrtypc of tilc indicated type and so it stands as its own definition. ~h~

I defined-identifier of a declaration is optional so that anonymous parameters or data-structure

APPENDIX A. T H E ACE12 DEFINITION A4ANUA L

A.8.1 Scope

According to Acer's grammar, the parent of a declaration must be of class arbitrary-list,

dynamic-type, empty, record-type, signature, or tuple-type. The behavior of identifier-

lookup with respect to a declaration is determined by this class.

If the node class of a declaration's parent is arbitrary-list or empty, identifier-lookup

searches the name-layer consisting of just the declaration's defined-identifier; lookup proceeds

only if the defining-occurrence is not found.

If the node class of a declaration's parent is one of the remaining possible classes, no

search is performed and lookup continues with the parent. But in this case, the declaration

con tributes its defined-identifier to the name-layer of its parent and lookup searches this

name-layer when it reaches tile parent. IIence, regardless of a declaration's context, its

defined-identifier is visible within it.

A.8.2 Deriving a declaration from an argument

let T1 :: 7'2 be T3
let x : 7' be y
let var x : 7' be y
T 1
x
let var be x

respectively derive the declarations

var x : {[TI}
:: {[7'2]}
: {P'I)
var : {[TI}

of the argument, i f it tias olle, and the type is determined by the definition-copy of the

A P P E N D I X A. T I I E ACI3R DEI.'INIl'ION h 4 A N U A L 159

the bindings. The notion of derived declarations is used to specify the type of an aggregate-

literal (see A.14) and to specify the way in which a signature is derived from an argument-list

(see A.15).

A.9 The global name-layer

Earlier it was mentioned tha t the unattached empty node has associated with it the global

name-layer. This name-layer is searched whcn identifier-lookup reaches the unattached

empty node, i.e., whcn lookup's search node is unattached. If lookup fails t o find the match-

ing defining-occurrence in the global name-layer, it terminates and yields the unattached

empty node. IIcllce, the cl(sfi~~irl~-occurrcncc of an undefined applied-occurrence is by

the unattaclied empty notlc.

A defining-occurrcncc is introduced into the global name- l a~e r in one of two ways, de-

pending on whether it is a type or a value. Each will be considered in turn.

A.9.1 Global value-ident ifier

let x be tuple A- end

Can he compiled to product the declaration

A P P E N D I X A . 7'11E A C E R D E F I N I T l O N M A N U A L

let x: {let T be Tuple : T end; T} be tuple x end

can be compiled to produce the equivalent declaration

x : {let T be Tuple : T end; T)

After compiling either of the above two bindings for x, a declaration containing a defining-

occurrence spelled x becomes globally visible. An unattached identifier x will have as its

defining-occurrence the defined-identifier of that declaration.

Because each global value is introduced in the form of a declaration, it is not possible to

statically determine its definition. Its definition, which appears in the corresponding binding,

remains hidden. In fact, a corresponding binding need not even exist if a translation that

computes the value of a declaration can be produced in some way other than by compiling

A.9.1.1 Mutually dependent values

{let x be tuple 1 y end;
let y be tuple 1.0 x end;

Produces t11c declarations

APPENDIX A. 7'1-IE ACER DEI~INITION MANUAL

x : {le t Unnamed b e
T u p l e : Integer; : T u p l e :Real; :Unnamed e n d e n d ;

Unnamed)
y : {let Unnamed b e

T u p l e : Real; : T u p l e :Integer; : Unnamed e n d e n d ;
Unnamed)

The defined-identifiers of the declarations (x and y) are included in the global name-layer.

A.9.2 Global type-identifiers

A global type-identifier is introduced by storing a type-binding. Storing a type-binding

makes it permanently availal>l(; and includes its defined-identifier in the global name-layer.

(A fixed-value-binding or a valid binding-list can be stored too but this does not affect scope,

as it does for a t y p e - h i n d i ~ l ~ or for a fixed-value-declaration.)

A type-birldi~~g is not conlt,ilcd to a declaration, as with a fixed-value-binding,

because a type-declaratior~ is ~lscless u ~ ~ l e s s it is quantified (see A.20.3), tha t is, unless values

of that type are also d(>c]ar(yI. A11 Ilnattachcd type-binding is not automatically included i n

the global name-layer because ~ l l , l l t i~ Ie unattached bindings for a given spelling can exist;

the one tha t is stored is silrglcd out to have its defined-identifier in the global name-layer.

Global type-identifiers are no more than a convenience since each app1ied-occurrence of

such an identifier can be by a dcfinition-ropy-at of its binding's definition a t the

location of the appl icd-ocalrr<~~~ce. 111 otlrcr words, global types are not hidden but global

values are.

This cornplctcs the cIcscril)tioli how identifier's are introduced with global scope.

A.10 Expression

Type is defined a.s

APPENDlX A. T11E ACEIl DEl+'lN11'1ON MANUAL

(Type) ::=

(AbstractType) 1 1 (ConcreteType) 1 1 (ReusedTypeldentifier) 1 1
(TypeBlock) (1 (TypeDenoter) 1) (TypeDesignation) 1)
(TypeOpcrator)

where abstract-type is defined as

(Abstract Type) ::=

(OperatorCall) 11 (Typelden tifier) 1 1 (Typeselection)

and a concrete-type is defined as

Value is defined a.s

(Value) ::=

(Accomolation) 1 1 (AndlfTest) 1 1 (Assignment) 11 (Codepatch) 11
(CompoundValuc) /I (Conditional) 1) (Dcrcference)) I
(DyadicM.lelhodCa11) /I (1~~r1amic111spection) 1 1 (FunctionCall) I/
(Index) 1 1 (ls ' l i~t) 1 1 (1sNotTesl) 1 1 (ltcralion) 11 (1ieepTrying) I(
(lJilcral) I/ (OrdCall) I/ (01-lfkst) /I (PointerCall))I
(P~clixA.lcthodCaI1) I (Raisc) I/ (Try) 1 1 (TryFinally) 1 1
(UnaryMrthodCall) 1 1 (VaICaIl) /I (ValoeOlock) I ((ValueDenoter) (1
(ValrrcSclcction) 1 1 (variant inspection)

where literal is defi~led as

These are tllc variolls caps~yjsioll classes that are described in the sections that remain.

APPENDIX A. THE ACER DEFINITION MANUAL

The context-dependent relations for a type-designation are illustrated as

Since a type-designation is a type, its expression is not evaluated. Subtyping is not

defined on type -dc~ i~na t ions because a type-designation always denotes some other class of

type.

A.12 Block

For introducing bindings local to an expression context, Acer provides blocks. A block is

either a type-block or a value-block:

(B lock) ::= ('Type1310ck) 1 1 (Valucnlock)

A type-block consists of bindings and a body:

as docs a va,luc-block:

The bindings of a type-block may not, contain value-bindings.

The ~ ~ n t e ~ t - d c ~ o r ~ d e n t relations for a type-block are illustrated as

I Those for a value-block arc the same:

APPENDIX A. T H E ACER DEFINITION MANUAL

A.12.1 Scope

The name-layer of the bindings of a block is searched either when lookup, starting in the

body, reaches the block, or when lookup, starting in the binding-list, reaches the binding-list.

In other words, the bindings in a binding-list are visible in that list regardless of whether the

list is contained by a block; if it is contained by a block then the bindings are visible there

too.

A.12.2 Evaluation

When a value-block is evaluated, its binding-list is evaluated first and then its body is
evaluated in the context of those bintli~lgs. A value-block yields the value yielded by its

body. As discussed in A.7.2, even though a binding-list may be evaluated in any

order tha t does not rcslllt i n invalid dclayed-occurrences, a left-to-right order must be one

such correct order.

A type-block is not evaluated since it is a type. Subtype is not defined of type-blocks

since a type-block always denotes some other class of type.

A.13 Any

For denoting the root type of the type lattice, Acer provides an any-type, which is a childless

construction:

Every type is a subtype of every any-type.

A.14 Aggregate

For coostnlcting a,ggrega(,c dn,ta st.ructun:s, Acer provides three closely related data struc-

turing mecllarlisms: tuples, records, and dynamics. A tu~le-va lue is constructed by a tuple-

literal:

APPENDIX A. '1'11E A C E R 1IEII'INI'I'ION MANUAL

(TupleLiteral) ::= tuple ([(Argument)][1 end

which has a tuple-type:

(TupleType) ::= Tuple (Dcclaration))[; 1 end

A record-value is constructed by a record-literal:

(RecordLiteral) ::= record fl (Binding))[1 end

which has a record-type:

(RecordType) ::= Record (I (~ec larat ion)]I ' I end

And a dynamic-valuo is constructed by a dynamic-literal:

(I lynarni~l~i t r~l -A) ::= dynamic { (Argirrnent) . I end

which as a dynaniic-type:

(DynamicrI'ype) ::= Dynamic (I (Declaration)][; 1 end

The context-dependent rela,tions for these constructs are illustrated as

Definition

Record-
Literal) T y p e

Definition Definition

A P P E N D I X A. THE ACER IlEI.'INI?'ION hdANUAL 166

as the tag of a dynamic, however. Only a c losed - t ype is permitted. A type is a closed-type

if it is possible to produce a definition-copy-at of that type a t the umttached empty node,

tha t is, if it can be expressed with global scope. (Actually, abstract-types as closed-types are

not completely sa.fe because the definition (implementation) of an abstract-type can change

from one run of a program to the next. But many basic types such as I n t e g e r (see A.26) are

provided as abstract-types and certainly these abstract-types must be supported.)

Because the first component of a dynamic must be a closed-type, the first argument of

a dynamic-literal must be a close-type or a type-binding tha t defines a closed-type. Also,

the first declaration of a dynamic-type must be a type-declaration with a type tha t is a

closed-type.

Operations for copying, reading and writing dynamics are provided by the module

dynamics, which is visible a.s

dynarnlcs :
Tuple

error : I3xcept ion (Void)
copy : Function (: Dynaimic T y p e :: Any; : T y p e end)

Dynamic T y p e :: Any; value : T y p e end
end

input : Function (filel'a tll : String)
Dynamic T y p e :: Any; value : T y p e end

end
o11 tput : Function (filcPa t,h: St ring

: Dynamic T y p e :: Any; : T y p e end)
Void

end
end

A.14.2 Evaluation

APPENDIX A. THE ACE12 DEF'INI'I'ION MANUAL

order in which arguments appear in the aggregate-literal.

An aggregate-literal is a constructor and hence its storage may be allocated well in

advance of the evaluation of the literal. In this way, mutually-referential da t a structures can

be constructed.

A.14.3 Subtype

An aggregate-type A is a subtype of an aggregate-type A' of the same class if for each

declaration d' in A', there exists a corresponding declaration d in A such that:

d and d' are the same class of declaration.

The defincd-identificrs of cl and d' have the same spelling or a t least one of them is

empty.

The definition-copy of the type of d with A' for A is either equivalent to the type of 8 ,

if d and d' are variable-value-declarations, or is a subtype of the type of dl otherwise.

A.14.4 Component selection

The components of an aggregate can be accessed using either type-selection:

(TypeSelcction) ::= (Base: V a l ~ c) . (Selector: Q ~ e l d e n t i f i e r)

or value-selection:

(ValueSclcct ion) ::= (Base: Valm) . (Selector: ValueMen tif cr)

The c ~ n t c x t - d e ~ e n d e l l t relations for a type-selection are illustrated as

Definllton

Type-
Selection

The base of a tyl,c-sclccti()ll rllllst l ~ c a qrlant,ificr (see A.20.3) and must have a kind of ,-lass

tuple-, record-, or tlynarnic-type.

Similarly, the rontcxt-deprndcnt relations for a concrete value-sclcction are illustrated as

APPENDIX ' A. T l I E ACElt DEE'INITION M A N U A L

Definition

value- T y p e
Selection

If the kind of the base of a value-selection is an aggregate-type containing a declaration of an

identifier with the salme spelling as the selector then the value-selection is called a c o n c r e t e

value-selection and the above relations apply. Otherwise, the value-selection is called an

abs t rac t value-selection and the relations described in section A.21.4 apply.

In general, the type of a type- or value-selection is not given directly by the type of its

selector but is given by the definition-copy of the type of the selector with the following

~ubst i tut ions: each applicd-occu~rc~lce of an identifier appearing in the name-layer of the

kind of the base (an aggregntc-type) is replaced by a type- or value-selection tha t has a

dcrlotcr to the base as its it1lc.l Ilas the applied-occurrence as its selector. This is called

reso lv ing the type because it adds to the type the information about its quantifier (see

A.20.3). Thus for a tuple dcclarcd as

t : Tuple T y p e :: Any; value :: T y p e end
I

I
the type of t.valuc is t,. T y p r , rather than simply Type.

A.14.4.1 Scope

A.14.4.2 Evaluation

APPENDIX A. TliE ACER DEFINITION MANUAL 169

A dynamic-value can be narrowed to make its components accessible as the components of

a tuple. This is done using a dynamic-inspection:

(Dynarn i~ lns~ec t ion) ::=
inspect (Selector: Value) (Branches: TypeBranch List)

[[else (Default Branch: Value) I] end

where type-branch-list is d e f i ~ ~ e d as

(TypeBraochList) ::= Then { (TypeWhenBranch) J I ' 1

and type-when-bra.nch is defined as

(TypcWhcnBrancl~) ::=

when (Condition: 7'.ypc) [[with (Dcfinedlden tifier: ValueMen tifier) I]
then (C o n ~ e ~ ~ ~ e n t : Villr~e)

The context-tlcpc~~dent for a dynamic-inspection are illustrated as

Defini t ion

K i n d

D y narnic-

"inspection
failure"

The type of the c o ~ ~ s q r l r l l t of each hrallch and the type of the default-branch must be such

that one is a supcltyp(> of all tllc others; that type, the maximal type7 is the inspcctionYs

type. The hind of t l ~ c selector must 1x2 of class dynamic-type, and the condition of each

branch must be a sllbtype of the type of the first dechration of that dynamic-type.

branch ma,y lla,vc a, colldition that is a subtype of the condition of a branch tha t precedes i t ;

this would be an unwachable branch.

The contcat-dcpcndrot rclatio~1s for a type-when-branch are illustrated as

(3 Defini t ion (I3
Defining. T y p e T u p l e -

occurrence T y p e

APPENDIX A. T H E ACER DEFINlTION M A N U A L 170

They are identical when the defined-identifier is empty, except that an empty node does not

have a defining-occurrence. The type of the defined-identifier is derived by determining T , the

kind of the selector of the immediately enclosing dynamic-inspection. From T , a dynamic-

type, a tup le type is derived by producing T', a definition-copy of T with no substitutions

but with the following changes: T' is changed from a dynamic-type to a tuple-type; the ini-

tial declaration is changed from a type-declaration to an anonymous fixed-value-declaration

of type any-type; and each applied-occurrence of the defined-identifier of the initial type-

declaration is replaced by a type-denoter to the type-when-branch's condition.

For example, when inspecting a value of kind

using a type-when-hranch of the form

w h e n T w i t h x t h e n x.value

the defined-identifier x has type

T u p l e : A n y ; value : {['l']) e n d

A.14.5.1 S c o p e

A.14.5.2 E v a l u a t i o n

APPENDIX A. '1'11E ACER DEI.'INITlON AlANUAL 171

default-branch is evaluated to yicld the result-valuating an empty default-branch raises

an exception (see A.24.2). Otlierwise, the first branch with a condition tha t is a supertype

of T is evaluated to yield the result.

When the type-whcn-branch of a dynamic-inspection is evaluated, the dynamic yielded

by the selector is bound to the defined-identifier and the consequent is evaluated to yield the

result .

A.15 Argument-list and signature

Argument-lists and signatures are incomplete constructs tha t are used to specify parts of

expressions and their types. Argument-list is defined as

arid signature is dcfilrcd as

(Signature) ::= ((l ~ c ~ l a r a t ~ i o o) 11 ')

A signature can he (Ierived from an argument-list in the same way tha t a tuple-type is

derived from a tuple-literal (sce A.14).

A.15.1 Scope

When identifier-lookup reaches an a rprne~l t - l i s t its name-layer is searched. Similarly, when

identifier-lootup reaclles a sigllaturc its name-layer is searched.

A.15.3 Conformance

Given an argrllncnt-list a an(l a signature s we may ask whether a conf0l.m~ t o s. A n

argument-list a conforIns to ir signature s if they have the same length and i f for each

declaration d at posit,ion i n , there exists a corresponding expression or binding b at

Position n in a such that :

APPENDIX A. TIIE A CER lll3FINITION MANUAL 172

b and d have corresporiding node classes, that is, if d is a type-declaration, b is a type

or type-binding; if d is a fixed-value-declaration, b is a value or fixed-value-binding;

and i f d is a variable-value-declaration, b is a variable-value-binding.

The defined-identifiers of d and b (i f it has one) have the same spelling or a t least one

of them is empty.

The definition-copy of the type of d with a for s is either equivalent to the type of b,

if d is a variable-value-declaration, or is a supertype of the type of b otherwise.

A.15.4 Evaluation

A signature is like a type and is ,101 evaluated. An argument-list is like a binding-list and

is evaluated in any order that docs not access uninitialized bindings-a left-to-right order

must be a correct evaluation order (see A.7.2).

A.16 Enumeration and option

For representing a. finite nulnber of unstructured data elements, Acer provides enumerations

and options. An enumeration- or option-value is denoted using a literal-selection:

(IJiteralSelection) ::= (Base: Type) . (Selector : ~alueMentifier)

which has either an criulncration-typc:

or an option type:

(OptionTvpe) ::= Option (~alueldent i f ier))[1 end

I The contcxt-dependent rc]atiolls for literal-selection are illustrated as

Literal-
Select ion Definition

The base of a litcral-selcction must denote an option- or enumeration-type tha t contains the

defining-occurrence of its selector.

The context,-dclwmdcnt for cnumeration-type are illustrated as
I

I

APPENDIX A. TllE ACER IIEFINITION A4ANUAL

Definition R

>+$
Definition

The same relations apply for option-type.

A.16.1 Scope

An enumeration- or option-type does not affect identifier-lookup but it does define a name-

layer consisting of its identifiers.

A literal-selection affects idc~~tifier-lookup as follows. When lookup reaches a literal-

selection from its selector, the narne-layer of the denotation of the base is searched and

lookup terminates, successful or not.

A.16.2 Subtype

An enumeration-type E js a sllbtype of an enumeration-type E' if for each identifier i a t the

nth position in E , tliere i s a corresporldillg identifier i' with the same spelling a t the nth

position in Et.

An option-type 0 is a srllll,ype of all option-type 0' if for each identifier i in 0 there is

an identifier it with the same spclling in 0 ' .

The ordering of idclltificrs is significant for enumeration-types but not for option-types.

A.16.4 Conversion

(OrdCall) ::= ord ((ljase: Valt~c))

r 7 1 he col l ter t -dcl~cl l (~cnt i -eIat io~l~ for ord-call are illustrated as
I

APPENDIX A. T H E A C E R DEFINITION M A N U A L

Definit ion

Integer t
The base must be an enumeration-value.

When an ord-call is evaluated, its base is evaluated first. The value yielded by the base

is converted to an Irztqer. The ordinal position of the first enumeration-value is 0 and

successive values have increasing ordinal positions.

For determining an enumeration-value given an enumeration-type and an ordinal position,

Acer provides a val-call:

The context-dcpendcrlt relations for a val-call are illustrated as

Defini t ion

23
The base type niust dcnotc' an cnllrrrc:ratio~l-type and the ordinal must be a n Integer

When a val-call is evaluated, the ordinal is evaluated to yield an Integer, which is con-

exception is raised:

raise fatal with "Val-call out of range. " end

A.17 Variant

(VariantLitcral) ::=

variant (Tag: ~aluclddcntificr) of (13ascType: Type)
with (~ ~ ~ r r n c n t s : A ~ ~ r r ~ ~ e n t I J i s t))

which has a varia.11t-typ~:

APPENDIX A. TIIE ACER DEFINITION MANUAL

(Variant Type) : : =
Variant (Tag: Type) (Variants: Variant List)

[[else (Dcfa,ult:Signa ture)]] end

where variant-list is defined as

variant-element is defined as

(Variant Element) : :=

(Condition: WhenCondition) then (Consequent:Signature)

and when-condition is dcfinetl as

(Wher~Condit~ion) ::= when fl (Value) 2 1

The context-depcndcnt relations for these constructs are illustrated as

T y p e

Def ini t ion Def ini t ion

Variant- Variant-
1,ileral T y p e

\ -l
A r g u m e n t - x

List

Def ini t ion
Variant- S i g n a t u r e

S i g n a t u r e 255
a defining-ocrl l r~cl~cc~ fi,r tllr t a g 'rhe typr of a variant-literal is a variant-type derived as

signature derived fro1~1 the literal's argument-list (see A.15).

The tag of a variant-type must dcnote an enumeration- or option-type T . Each value

The ~ l ~ c n - c o ~ l d i t , i o l r ~ of a v ~ i a n t - t y p ~ may contain a t most one applied-occurrence of each

~ a r i ~ ~ t - t ~ ~ ~ - ~ i t l ~ ~ ~ tho signat~lre of the variant-element containing an applied-occurrence

of i or thc dofault signature.

APPENDIX A. T l l E ACER IIEI.'INITlON MANUAL

A.17.1 Scope

When identifier-lookup reaches a variant-literal from its tag, the name-layer of the denotation

of its base-type is searched. Lookup then terminates, successful or not.

When identifier-lookup rcaches the when-condition of a variant-element, the namelayer

of the denotation of the tag of the immediately enclosing variant-type is searched. Lookup

then terminates.

A.17.2 Evaluation

When a variant-literal is evaluated, its arguments are evaluated in any order tha t does not

access uninitializcd components (see A.7.2). A variant-literal is a constructor and hence its

storage may be allocated well in atlvancc of the evaluation of the literal.

A.17.3 Subtype

A variant-type V with a, ta,g denoting T is a subtype of a variant-type V' with a tag denoting

T' if the following hold:

T is a subtype of T'

And for cacll idclltifier i i l l T and if i n T', where i and i' have the same spelling, the

signattlre s ; ~ s s ~ ~ i ~ t , ~ d willl i i n V is a subsignatore (see A.15.2) of the signature st

associated with i' in V'.

A varia~lt-value must I,c na7.r*olucd to makc its components accessible. This is done us ing a

variant-inspection:

(Variant,lnspcction) ::=

inspect (Sclccto,-: Value) (Branches: ~alueBranchList)
[[else (DefaultZ3ranch: Vallle) I] end

where value-branch-list is defined as

APPENDIX A. THE ACER DEFlNITION MANUAL

(ValueWhenBranch) ::=

(Condition: When Condition)
[[with (Definedldentifier: Valueldentifier) then

(Consequent: Value)

A variant-inspection can also be used as a multi-way branch based on an enumeration- or

option-value.

The context-dependent relations for a variant-inspection are illustrated as

Definition

Kind

C i i '
Definition

K a i ~ e

The type of the ronscqllent of each branch and the type of the default-branch must be such

that one is a suprrtypc of all the otllrrs; that type, the maximal-type, is the

type. The kind of the selector nlust, ¬e either an enumeration- or option-type or ,
variant-type with a tag tllat denotes all enumeration- or option-type E. The conditions of

variant-inspect,ion may colltaill a t most one applied-occurrence of each identifier in E.

The context-del>cn(lcIlt rclntions for a value-when-branch in the branches of a variant-

inspection arc illustrated as

W h e n -
Condition

Definition

Defining-

O c c u r r e n c e -

be stl& that one siglla,tllre s is a supersignature (SM A-15.2) of the others. From a

APPENDIX A. THE ACER DEI71N11'1ON MANUAL

the following changes: T' is changed from a signature to a tuple-type; and an anonymous

fixed-value-declaration, with a type given by the variant-type's tag, is inserted as the first

element. For example, the type of v in

w h e n id w i t h v t h e n v.x

where the selector has type

V a r i a n t { [E n u m e r a t i o n id end]) of
w h e n id t h e n (T : :Any ; x: T)

end

is

T u p l e : { [Enumera t ion id e n d]) ; 7' :: Any; x : 7' e n d

If 7' is an enumcratiori- or optio11-type thcn the type of the defined-identifier is derived

as follows. For an enumeration-type, tlie type of the defined-identifier is a copy of T that

includes only those identifiers with ordinal positions no bigger than tha t of the identifier with

the largest ordinal position in the condition. For an option-type, the type of the defined-

identifier is an option-type tha t incllldes only those identifiers appearing in the condition.

A.17.4.1 S c o p e

When identifier-lookup reaches a when-condition of a variant-inspection, one of two things

happens. If T, the kind of the selector, is a variant-type then the name-layer of the tag of

that variant-type is searched and lookup terminates, successful or not. Otherwise, T must

denote an enumeration- or option-type; the name-layer of T is then searched and lookup

terminates, successful or not.

A.17.4.2 E v a l u a t i o n

APPENDIX A . 7'1-115 A CER DEF'INITION MANUAL

A.18 Function

For expressing a value in terms of a ~arameter ized expression, Acer provides functions. A

function-value is constructed by a function-literal:

(FunctionLiteral) ::=
function (:Signature) [[: (Resu1tType:Type) 1] (Body:Value) end

which has a function-type:

(FunctionType) ::= Function (:Signature) (Result Type: Type) end

The context-dependent relations for these constructs are illustrated as

T y p e

Definition

r
f Definition 1

\ 3
Signature Empty Signature

Definition

Definition T y p e

The type of a function-litera1's body must be a subtype of the result-type. The signature of

a function-literal or furlct,ion-type may not contain variable-value-declarations.

A.18.1 Scope

When identifier-lookllp reaches a function-literal from either its result-type or its body, the

name-layer of the signature is sca.rched. Similarly, when identifier-lookup reaches a function-

type from its result-type, the name-layer of the signature is searched.

A.18.2 Subtype

A function-type F is a s u 1 1 t ~ ~ c of a function-type F' if:

same length.

The definition-copy of the result-type of F with the signature of F' for the signature

of F is a subtype of the rcsult-type of F'.

APPENDlX A. TllE ACER DEFINITION MANUAL

A.18.3 Evaluation

When a function-literal is evaluated, a closure of the values used in the literal is computed.

That closure, along with the instructions for evaluating the literal's body, represent the

function-value.

A function-literal is a constructor and hence its storage may be allocated well in advance

of the evaluation of the literal. In this wa.y recursive functions can be constructed.

For invoking a function, Acer provides a function-call:

(FunctionCalI) ::= (filnction: Value) (Arguments:ArgumentList))

The context-dependent relations for a function-call are illustrated as

Definition

m

Signature 0

A.18.4.1 Scope

When identificr-loo~or, a function-call from its fllnction, the name-layer of the

argument-list is searched.

A.18.4.2 Evaluation

When a function-call is evaluated, the arguments are evaluated (see A.7.2) and then the

function is evalllnicd to the result. Evaluating a function involves evaluating its body

in the context of its closure and the arguments supplied by the call.

APPENDIX A . 7'11E ACE12 lIEI.'INITlON MANUAL

For expressing a type in terms of a parameterized expression, Acer provides type-operators:

(Typeoperator) ::= Operator (:Signature) (l3ody:Type) end

There are no values with type-operators as their types.

The context-dependent relations for a type-operator depend on whether it is abstract or

concrete. A typc-operator is a concrete type-operator if its body denotes either a concrete-

type or a concrete type-operator. Conversely, a type-operator is an abstract type-operator

if its body denotes either an abstract-type or an abstract type-operator. The distinction

between the two lies in thc fact that a concrete type-operator is a kind but an abstract

type-operator is not.

The context-dependent relations for type-operators are illustrated as

'Type

Definition Definition

T Y PC- T y p e Type-
Operator Operator

) r
Signature Signature

T y p e

A.19.1 Scope

~h~ of 7" is a sobsignature (see A.15.2) of the signature of T and they have

the same length.

APPENDIX A. THE ACER DEFINITION MANUAL 182

The definition-copy of the body of T with the signature of TI for the signature of T is

a subtype of the body of TI.

For invoking a type-operator, Acer provides an operator-call:

The kind of the operator must denote a type-operator and the argument-list must conform

to the signature of that type-operator.

The context-dependent relations for an operator-call are illustrated as

Definition -
Operator- J T y p e

Call

Signature a
In general, the type is derived by producing a definition-copy of the body of the type-operator

with the argr~mcnt-list of the opcrator-call for the signature of the type-operator.

a type-operator, the definition relation is instead illustrated as

Definition

Argument-

I-
Signature

In general, the dcfinitioll is derived from the type-operator in the same way t,hat the type is

derived above. Becallsc a,n operntor-call with an operator that denotes an abstra,ct-type is

APPEND1,Y A . T H E ACER DEFINITION M A N U A L

Every type T denoting an abstract-type A (a type-identifier, type-selection, or operator-call)

has an abstract-name I, an abstract-base B, and a quantifier Q . Each will be considered in

the subsections tha t follow.

A.20.1 Abstract-name

The abstract-name I of an abstract-type A is determined as follows:

0 If A is a type-identifier, I is A itself.

If A is a type-selection, I is the defining-occurrence of the selector of A.

If A is an operator-call, 1 is the abstract-name of the operator of A.

An abstract-name is a type-identifier that occurs as the defined-identifier of a type-

declaration in a, signature or aggregate- type.

A.20.2 Abstract-base

The abstract-base B of an abstract-type A is determined as follows:

If A is a type-identifier or type-selection, B is A itself.

If A is an operator-call, B is the abstract-base of the operator of A.

A-20.3 Quantifier

The quantifier Q of an abst,ract-typc: A is determined as follows:

If A is a type-identifier, Q is the parent of the parent of A.

If A is a typc-sclcctioll, Q is the base of A .

If A is a11 ollcrator-ra]l, & is the of the operator of A.

A quantifier is a signatrlre or aggregate-type, i f B is a type-identifier; it is a value with an

aggregate-type a.s its kind, i f B is a type-selection.

A P P E N D I X A. T f f E A C E R D E F I N f T I O N M A N U A L 184

To prevent an abstract-type from being used outside the scope of its quantifier, and to

ensure tha t the quantifier denotes the same value throughout its scope, Acer enforces the

following restriction. For every value x with a type T that denotes an abstract-type, the

quantifier Q of T must be a valid quantifier with respect to X. A quantifier Q is valid with

respect to x if:

Q is a signature or aggregate-type,

Q is a fixed-identifier that does not have a defining-occurrence enclosed by x ,

Q is a concrete value-selection with a selector that is a fixed-identifier and a base that

is a valid quantifier with respect to x,

or Q is a value-denot,er with a defirlitiori that is a valid quantifier with respect to z.

If the quantifier of the type of x is not valid with respect to x then x is said to have an

invalid abstract-tgp. exanlple, tlie above restriction dictates tha t the selection

tuple let T be Integer; let x: T be 0 end.x

has an invalid abstract-type

{(tuple let T be Intqer; let x : 7' be 0 end)). T

because a tuple-literal is not a valid quantifier. Also, the block

{let t be tuple let T be Integer; let x : T be 0 end; t.x)

has an invalid abstract-type:

A.20.4 Subtype

the abstract-namcs of A and A' have the same spelling,

A P P E N D I X A . T H E ACER DEFINITION MANUAL

and the quantifier of A is equivalent to the quantifier of A'.

An operator-call A is a subtype of an operator call A' if

A and A' have the same number of arguments,

each argument a t position n in A is equivalent to the corresponding argument a t

position n in A',

and the operator of A is a subtype of the operator of A'.

Equivalence for quantifiers is defined as follows. A quantifier denoting Q is equivalent to

a quantifier denoting Q' i f

Q and Q' are the same node,

or Q and Q' a,rc value-selections with bases that are equjvalent a.nd selectors that a re

spelled the sa.me.

Notice tha t equivalence is defined on values as well as types. (The notion of static value-

equivalence could he extended. For example, two different integer-literal nodes could be

considered equivalent i f they llave the same spelling. This does not affect subtyping however

and will not be considered further.)

A.21 Method

function (7' :: Any; x: 7'; m : Function (: T) T end) m (x) end

t : Tuple T : Any; x : 7'; rn : Function (: T) T end end

APPENDIX A . T H E ACEIZ DEFINITION MANUAL

then the value-selection t.x has a method named m.

Hence, a value a: has a method named m if an identifier with tha t spelling can be found

in the quantifier of its type. This method is denoted in context either as the identifier m,

if Q is a signature or aggregate-type, or as the value-selection Q.m, i f Q is a value. This

identifier or value-selection is called the denoted method and is used to define the behavior

of method-calls.

The most general form of method-call is the prefix-method-call, which consists of a method-

name and arguments:

(PrefixMethodCall) ::=

(MethodName: Vallleldcntifier) . (Argumcnts:Argument List))

Special scope rules apply for method-names.

A.21.1.1 Scope

A.21.1.2 Type and definition

The context-dependent relations for a prefix-method-call are illustrated as

A P P E N D I X A. T I I E A C E R DEFINITION M A N U A L

Defini t ion

M e t h o d c a l l

Def ini t ion J

\ \
m Argurnenl- Value- A r g u m e n t -

Lis t Se lect ion List

k \

In general, the definition of a prefix-method-call is a function-call derived as follows. The

argument-list of the function-call is a definition-copy of that of the method-call, and the

Value- Value-
S e l e c t i o n D e n o t e r

A unary-method-call corlsists of a method-name and an operand:

(UnaryMcthodCall) ::=

(McthodNamc: Valucldcnt,ifier) (Operand: Value) 1

m

The context-dependent relations for a unary-method-call are illustrated as

Value-
D e n o t e r

T
\

X

Tun.

Def ini t ion

Value-
D e n o t e r X

Defini t ion J

The of the method-name is determined just it is for the ~ r e f i x - ~ e t h ~ d -

call.

APPENDIX A. THE A CEII. DEFINITION MANUAL

A.21.3 Dyadic-met hod-call

A dyadic-method-call consists of a first-operand, a method-name, and a second-operand:

(DyadicMethodCall) ::=
C (First Operand: Value) (MethodName: Valueldentifier)

(Second Operand: Value) 1

The context-dependent relations for a dyadic-method-call are illustrated as

T v o e

Pref ix-
M e t h o d c a l l

L

D e n o t e r D e n o t e r

Def ini t ion
Def ini t ion

The defining-occurrence of the method-name is determined just it is for the prefix-method-

call.

A.21.4 Abstract value-selection

If the kind of the base of a value-selection x is not a aggregate-type T , or the selector does

not occur i n the name-layer of T then x is called an abstract value-selection. In this case

the context-dependent rela,tions are illustrated as

T y p e

Value- Def ini t ion Prefix-

Select ion M e t h o d C a l
I

Value-
D e n o t e r X

Defini t ion J

An abstract vallle-sc]ection is treated as a unary-method-call. Irowever, i f the kind of the def-

is determined as it is for the prefix-nletllod-call.

APPENDIX A. THE ACER DEFINITION MANUAL

A.21.5 Index

An index consists of a base and indices:

(Index) ::= (Bme: Value) (Indices: IndexList) I

where index-list is defined as

(IndexList) ::= [(I (Value) 2 I

The context-dependent relations for an index are illustrated as

I

Value-
Denoter

Definition

Void

let Void b e void. Type

The module void is visible as

void :
Tuple
Type : : A n y

end

APPENDIX A. TllE ACE12 IIEFINITION A4ANUAL

The context-dependent relations for a void-literal are illustrated as

Void- Type
Literal \ Void

Definition J

A.23 Boolean

For representing Boolean truth values, Acer provides the type Boolean, which is visible in

the global name-layer as

let Boolean be boolean. Type

The module boolean is visible a.s

boolean :
Tuple

7'ype :: E~lumeration false, t m e end
no t : Function (: Type) T y p e end
a n d : Function (: Type; : Type) Type end
or- : Function (: Type; : Type) Type end
all : Function (: Type) ~ccumulator.(Type, Type) end
some : Function (: Type) Accumulator (Type, Type) end
< : Function (: Type; : Type) Type end
<= : Function (: Type; : l'ype) T y p e end
> : Function (: 7kpe; : Type) Type end
>= : Function (: Type; : Type) Type end
= : Function (: Type; : Type) Ty p e end
: Function (: Type; : Type) Type end

end

false : Iloolenn

and

true : Boolean

are provided as synonyms.

Acer ha.s several constructs involving Bookans.

APPENDIX A. TIIE ACER DEFINITZON MANUAL

A.23.1 Identity

For testing identity (bitwise equality), Acer provides an is-test, consisting of a first-operand

and a second-operand:

(IsTest) ::= ((First Operand: Value) is (SecondOperand: Value))

as well as an is-not-test:

(IsNot Test) ::=

C (First Operand: Value) isnot (SecondOperand: Value))

The context-dependent relations for these constructs are illustrated as

Definition

Boolean

Definition
\

Boolean

The types of the two operands must be such that one is a subtype of the other.

A.23.2 Evaluation

A.23.3 Conditional

For supporting banclling on Uoolean valucs, Acer provides a conditional, which consists of

branches and a n optional default-brarlch:

(Conditional) ::=

(Branches: ConditionalBranch l i s t)
[[else (Default Branch: Value) I] end

APPENDIX A. ?'HE ACElZ DEFZNITION MANUAL

where conditional-branch-list is defined as

(ConditionalBranch List) ::= if { (ConditionalBranch)

and conditional-branch is defined as

(ConditionalBranch) ::= (Condition: Value) then (Consequent: Value)

The context-dependent relations for a conditional are illustrated as

Definition

Conditional

I
Definition

Empty
Void-

Literal C

The type of the colidition of a conditional-branch must be Boolean. The types of the con-

sequents of the branches and the type of the default-branch must be such tha t one is a

supertype of all the others; that type, the maximal type, is the conditional's type.

A.23.3.1 Evaluation

When a conditional is evaluated, each successive condition of the branches is evaluated

for some bran& b the contlitiorl yields true. The consequent of b is then evaluated to yield

the result. If no conditiorl yielcls true, the default-branch is evaluated to yield the result.

A.23.4 Shortcircuit evaluation

For supporting sIlort-circllit 13ooIcall evaluation, Acer provides the and-if-test and the ~ r - i f -

test. An and-if-test consists of a first-operand and a second-operand:

(AndlfTest) ::=

((First Operand: Value) andif (Secondoperand: Value))

as does and or-if-test:

(Orlf7'est) ::= { (First Oprrand: Valne) orif (Secondoperand: Value))

The c o n t e ~ t - t l e ~ c n d c ~ ~ t relations for these constructs are illustrated as

APPENDIX A . T H E A C E R DEFlNITION MANUAL

Definition

Conditional- () (-) (-)
BranchList Selection

Conditional- ())I
(value-), (Value-),

Denoter Denoter

Definition I

Orlf - Definition
Test

Conditional

(Value-), (-1
Denoter Selection

L
Definition

boolean

A.24 Exception

For interrupting rlormal sequclltial evaluation. Acer provides exceptions. To support excep-

tions, the type Exception is visible in the g1oba.l-name-layer as

let Exception be exceptions. Type

APPENDIX A. THE ACER IIEFINITION MANUAL

and the module exceptions is visible as

exceptions :
Tuple

Type :: Operator (BaseType :: Any) Any end
Raise :: Any
Error :: Any

end

Any type equivalent to Exception (T) is called an exception-type with base-type T.

An exception-value is constructed by an exception-literal:

(ExceptionLitcraI) ::= exception ((RaseType:Type))

The context-depcnclclrt, rclatiol~s for an exception-literal are illustrated as

Definition

Exception- Oprrator-

Literal Call

Denoter

A.24.0.1 Evaluation

When an exception-literal is evaluated, the constructed exception-value is yielded.

exception-literal is a constructor and hence its storage may be allocated well in advance

of the evaluation of the literal.

A.24.1 Standard exceptions

exit : Exception (Void)
fatal: Exception (String)

APPENDIX A. THE A CEII. DEFINITION h4ANUAL

A.24.2 Raise

An exception is raised by a raise, which consists an exception-value and an optional

associated-value:

(Raise) ::=

raise (Exception Value: Value)
[[with (AssociatedValue: Value) I] end

The context-dependent relations for a raise are illustrated as

Definition

Raise

'I
Void-

E m p l y Literal

The type of the exceptio~l-value must denote an exception-type and the type of the

associated-value must be a subtype of the base-type.

A.24.2.1 Subtype

The type Raise is visible in the global name-layer as

let Raise be exceptions. Raise

It is a special type because it canllot cause type conflicts. It is considered equivalent to

every other type. IIowcvcr, ~ h c n determining the maximal type of a set of types, as for the

branches of a conditional, it is considcrcd the maximal type only if every type denotes Raise.

In other words, an expressioIl llas type Raise only i f it always raises an exception.

A.24.2.2 Evaluation

A raise never yields a When a raise is evaluated, the exception-value is evaluated first

and tllen normal evaluatioll is s~lspendcd. Then the exception, with its a ~ s o c i a t e d - ~ ~] ~ ~ ,

propagates back througl~ the dynamic evaluation chain until it is trapped by a suitable

handler.

Acer provides three constructs for trapping exceptions, namely try-finally, try, and keep-

trying. Each will be considered in turn.

APPENDIX A. TllE ACER DEFINITION MANUAL

A.24.3 Try-finally

For specifying evaluations to be carried out regardless of whether an exception is raised,

Acer provides the try-finally, which consists of a body and a final-action:

(TryFinally) ::= try (Body: Value) finally (FinalAction: Value) end

The context-dependent relations for a try-finally are illustrated as

Definition

T r y -

Finally

A.24.3.1 Evaluation

When a try-finally is evaluated, its body is evaluated first and its final-action is evaluated

next, even if the body raises an exception. Then, i f neither the body nor the final action raise

an exception, the try-finally yields the value yielded by its body. Otherwise, either the body,

the final-action, or both raise an exception. If the body raises an exception but the final-

action does not, the try-finally raises the exception raised by its body- Otherwise, if both

the body and the final-actiorl raise exception, or just the final-action raises an exception, the

try-finally raises the exception raised by the final-action. In any case, the value yielded by

the final-action is discarded.

A.24.4 Try

For trapping exceptions raised by the evaluation of an expression, Acer provides the try,

which consists of a body, branches, and an optional default-branch:

(Try) ::=

try (Body: Value) (Branches: ValueBranchList)
[[else (Defa,ultBranch: Value) I] end

A va]ue-branch-list has the sanlc form as for a variant-inspection (see A.17.4) but the seman-

tics of a va lue-w~len-~~ranc~l i n a try is different from the semantics of a value-when-branch

in a variant-inspection.
r 7 I he context-(jrpc1ldclrt relations for a try are illustrated as

APPENDIX A. TIIE ACEli IlEFIN1l'ION MANUAL

Definition

BranchList Raise
Definition

The types of the consequents of the branches, the type of the body, and the type of the

default-branch must be such that one is a supertype of all the others; that type, the maximal

type, is the try's type.

The context-dependent relations for a value-when-branch in the branches of a t ry are

illustrated as

(Value-)
WhenDranch

Defining-

Occurrence

They are identical for an empty defined-identifier, except that an empty node does not have

a defining-occurrence. The maximal type of the types of values in the condition must denote

an exception-type; the hase-typ(~ of that type is the type of the defined-identifier.

A.24.4.1 Evaluation

For specifying evaluations to be carried out repeatedly, Acer provides the keep-trying, which

consists of a body, and an optional default-branch:

(Keep Trying) : : =
keep trying (B o b : Value) (Brariches: ValueBranchList)

[[else (Defa ultHranch: Value) I] end

APPENDIX A. THE ACER DEFINITION h4ANUAL

A keep-trying is Acer's only looping construct, other than high-level iteration.

The context-dependent relations for a keep-trying are illustrated as

Definition

Raise

The types of the corlsequents of the branches, and the type of the default-branch must be

such that one is a supertype of all the others; that type is the keep-trying's type.

The context-dcpelldcIlt rcIa.tions for a value-when-branch in the branches of a keep-trying

are the same as those for a try.

A.24.5.1 Evaluation

When a keep-trying is cvalllatcd, the body is evaluated repeatedly until an exception is raised.

Thus the value(s) yielded by the body are discarded each time. When a n exception is finally

raised, it is compared witll the value yielded by each successive value in the conditions of

the branches. If a match is found, the associated-value of the exception is bound to the

defined-identifier of the corresponding branch and the consequent is evaluated to yield the

result of the keeptrying. I f not match is found, the default-branch is evaluated t o yield the

result of the keep-trying. Evaluating an empty default-branch reraises the exception raised

by the body.

A.25 Error

let Error be excep lions. Erro I .

error : Errol-

APPENDIX A. THE ACER IIEFINITION MANUAL

A.25.1 Subtype

The type Error, like the type Raise, it is considered equivalent to every other type. However,

when determining the maximal type of a set of types, as for the branches of a conditional,

it is considered the maximal type if any type denotes Error. (This is unlike the type Raise,

which is considered the maximal type only if every type denotes Raise.)

A.25.2 Evaluation

When a value that denotes error is evaluated, the fatal exception is raised as

raise fatal with " e r r o r " end

Thus although it is invalid for a program to contain expressions that denote error or Error, a

program containing such expressions can nevertheless be evaluated, although likely not with

the intended effect.

A.26 Integer

For representing integers, Accr provides integer-literals:

The context-dependent relations for an integer-literal are illustrated as

Integer
Definition

The type Inlcger is visible as

let Integer be integer. Type

and the module integer is visible as

APPENDIX A. TIIE A CER DEFINITION MANUAL

in t eger :
Tuple

T y p e :: Any
error : E x c e p t i o n (V o i d)
" : Function (: T y p e) T y p e end
abs : Function (: T y p e) T y p e end
+ : Function (: T y p e ; : T y p e) T y p e end
- : Function (: T y p e ; : T y p e) T y p e end
* : Function (: T y p e ; : T y p e) T y p e end
mod: Function (: T y p e ; : T y p e) T y p e end
div : Function (: T y p e ; : T y p e) T y p e end
< : Function (: T y p e ; : T y p e) B o o l e a n end
<= : Function (: T y p e ; : T y p e) B o o l e a n end
> : Function (: T y p e ; : T y p e) B o o l e a n end
>= : Function (: T y p e ; : T y p e) B o o l e a n end
= : Function (: T y p e ; : T y p e) Boo lean end
It : Function (: T y p e ; : T y p e) 13001ean end

end

A.27 Real

For representing reals, Acer provides real-literals:

The context-dependent relations for a real-literal are illustrated as

The type R e d is visible as

let l k a l be real. T y p e

and the module real is visible as

APPENDIX A. THE ACER DEFINITION MANUAL

real :
Tuple

Type :: Any
error : Exception (Void)
" : Function (: Type) Type end
abs : Function (: Type) Type end
+ : Function (: l'ype; : Type) Type end
- : Function (: Type; : Type) Type end
* : Function (: Type; : Type) Type end
/ : Function (: Type; : Type) Type end

: Function (: Type; : Type) Type end
< : Function (: Type; : Type) Boolean end
<= : Function (: Type; : Type) Boolean end
> : Function (: Type; : Type) Boolean end
>= : Function (: Type; : Type) Boolean end
= : Function (: Type; : Type) Boolean end
: Function (: 7'ppe; : Type) B o o l m n end

end

A.28 Character

For representing characters, Awr provides character-literals:

The ~~ntcxl , - t lcpel ldc.~l t for a character-literal are illustrated as

The type Character is visible as

let Character be character. Type

and the module character is visible as

A P P E N D I X A. T H E ACER D E F I N I T I O N MANUAL

character :
Tuple

T y p e :: Any
< : Function (: T y p e ; : T y p e) B o o l e a n end
<= : Function (: T y p e ; : T y p e) B o o l e a n end
> : Function (: T y p e ; : T y p e) B o o l e a n end
>= : Function (: T y p e ; : T y p e) B o o l e a n end
= : Function (: T y p e ; : T y p e) B o o l e a n end
: Function (: T y p e ; : T y p e) B o o l e a n end

end

A.29 String

For represeriting strings, ACCI- provides string-li terals:

The con text-dependent relations for a string-li teral are illustrated as

The type S t i - ing is visible as

let S t r i n g b e string. T y p e

and the module string is visible as

string :
Tuple

T y p e :: Any

I error : E x c e p t i o n (V o i d)
length : Function (: B a s e T y p e) Integel- end

I index1 :Function (: T y p e ; : I n t e g e r) C h a r a c t e r end
substring : Function (: T y p e ; : In teger ; : I n t e g e r) T y p e end
+ : Function (: T y p e ; : T y p e) T y p e end
< : Function (: T ~ l p e ; : T y p e) B o o l e a n end
<= : Function (: T y p e ; : T y p e) Boo lean end
> : Function (: T y p e ; : T y p e) B o o l e a n end

I
I
I

>= : Function (: T y p e ; : T y p e) B o o l e a n end
= : Function (: T y p e ; : T y p e) B o o l e a n end
: Function (: T y p e ; : T y p e) 13oolean end

end

A P P E N D I X A . TliE ACER DEFINI7'10N M A N U A L

A.30 Locations and side-effects

For modeling updatable locations, Acer provides two similar notions, references and pointers.

Whereas references provide high-level support by modeling updatable locations in terms of

fetch and store functions, pointers provide low-level support by modeling updatable locations

in terms of memory addressing.

A.30.1 Reference

For determining a reference to a location, Acer provides a reference-literal:

(ReferenceLitera]) ::= reference ((Base: Value)

which has a referencetype. The type Iiefel-ence is visible as

let Re fel-encc be referer~ces. T y p e

and the modulo references is visible as

references :
Tuple

T y p e :: Operator (B a s e Type :: Any) Any end
new :Function (B a s e T y p e :: Any; : B a s e T y p e)

T y p e (B a s e T y p e)
end

create :
Function

(B a s e T y p e :: Any
fetch : Function () B a s e T y p e end
store : Function (: B a s e T y p e) Void end)

T y p e (B a s e T y p e)
end

end

Any typo equivalent to 12der-c.,lce (T) is called a reference-type with base-type T .

Definition
P

Type-
Denoter X

Definition J

APPENDIX A. THE ACER DEFINITION A4ANUA L 2 04

The base of a reference-literal must be either a dereference, a variable-identifier, a value-

selection with a variable-identifier as its selector, an index tha t denotes a dereference, an

abstract value-selection that deriotes a dereference, or a denoter with one of the above as its

definition. With the enforcement of these restrictions, the location referenced by the base of

a reference-literal can always be determined.

A.30.1.1 Evaluation

When a reference-literal is evaluated, its base is evaluated to yield the referenced location.

A reference-literal is a constructor and hence its storage may be allocated well in advance of

the evaluation of the literal. IIence, recursive references can be constructed.

A reference-literal yieItIs a reference to an existing location but there are two ways i n

which references to a new location can be constructed. First, a new reference can be con-

structed by calling references.new with a type and a value of that type. And second, a new

reference can be constructed by calling references.create with a fetch function and a store

function.

Regardless of how a rcferencc is constructed, a reference consists of two functions: a fetch

function, which is called to yield the referenced value; and a store function, which is called

to update the referenced value. When a reference is constructed by a reference-literal or by

references.new, the fetch and store functions are created implicitly but when a reference is

constructed by references.create, the fetch and store functions are provided explicitly.

A.30.2 Pointer

For determining a to a]ocat,ion, Acer ~>rovides a pointer-call:

(Pointercall) ::= pointer ((~ase :Va lue))

which has a pointer-type. The type Pointer is visible as

let Pointer be pointers. Type

and the module pointers is visible as

pointers :
Tuple

Type :: Operator (B a s Type :: Any) Any end
new :Function (Base Type :: Any; : Base Type)

Type (Base Type)
end

end

APPENDIX A. THE ACER DEFINITION MANUAL

Any type equivalent to Pointer (T) is called a pointer-type with base-type T.

The context-dependent relations for a pointer-call are illustrated as

Definition

Pointer-
Call

Argument- */ (-)
1 Definition 1

The base of a pointer-ca]] must be either a dereference with a base of type pointer-type, a

variable-iderltificr, a concrct,e value-selection with a variable-identifier as its selector, an index

that denotes a dcrefcrencc with a base of type pointer-type, an abstract value-selection that

denotes a dereference with a base of type pointer-type, or a value-denoter with one of the

above as its definition. The base of a pointer call may also be either a fixed va1ue-identifier,

a concrete value-selection with a fixed value-identifier as its selector, or a denoter with one

of these as its definition, but in this case it is considered unsafe.

A.30.2.1 Evaluation

A.30.3 Dereference

For accessing references a,nd Acer provides the dereference:

(Dereference) : := (Base: Value) (D

The ~ o n t c x t - d e ~ e n d e n t for a dereference are illustrated as

APPENDIX A. THE ACER DEFINITION h4ANUAL

T y p e Operator-
Call

I

Argurnent-

The type of the base of a dereference must denote a pointer- or reference-type; the base-type

of that type is the type of the dereference.

A.30.3.1 Evaluation

When a dcrefcrcncc is eva]u;tt,cd one of two things happens, depending on whether the base

is reference or pointor. I f the base is a pointer, the target location is accessed to yield the

result of the derefcrence. Otherwise, i f the base is a reference, the reference's fetch function

is called to yield the result of the dereference.

A dereference can also be used as the destination of an assignment, in which case, as we

shall see, its evaluation is carried out quite differently.

A.30.4 Assignment

For modifying the cont,cllts of it location, Acer ~ rov ides the assignment, which consists of a

destination and a source:

(Assignment) ::= { (Destinalion:Va!ue) becomes (Source:Value))

The context-dependent relations for an assignment are illustrated as

Definition

Void I

The type of the source must be a subty j~c of the

an assignment, like the base of a reference-literal.

type of the destination. The destination of

must be a dereference, a variableidentifier,

a concrete valuc-selection with a variable-identifier as its selector, an index tha t denotes a

dercfcrence, an abstract value-selcction that denotes a dereference, or a value-denoter with

APPENDIX A. T H E ACER DEF'INITION h4ANUAL 207

one of the above as its definition. In addition, the destination of an assignment, like the base

of a pointer-call, may also be a fixed-identifier, a concrete-value-selection with a selector tha t

is a fixed-identifier, or a value-denoter with one of these as its definition, but in this case the

assignment is unsafe.

A.30.4.1 Evaluation

When an assignment is evaluated, the source and destination are evaluated in arbitrary

order; the destination is evaluated to yield a reference or pointer to a location and the source

is evaluated to yield the value to be stored a t that location. When the destination yields a

reference (i.e., when the destination denotes a dereferenced reference), the reference's store

function is called wit11 tile value yielded by the source. Otherwise, the destination yields a

pointer and the location addressed by that pointer is updated with the value yielded by the

source.

For specifying sequential evalllation, Acer provides a compound-value:

(Compo~~ndValue) ::= begin (I (Value) ' I end

The context-dependent relations for a compound-value are illustrated as

Definition

The type of the Inst vi~hlc is tile type of the compound-value. The type of an empty

compound-valuc is Void:

k(7) Literal

-4.30.5.1 Evaluation

Wherl a compound-va]ue is each successive value is evaluated in order. The value

yielded by the last value is yielded by the compound-value. An empty compound-value y;,lds

the void-value.

APPENDIX A. TIIE ACER I)EI.'INITION MANUAL

A.31 Array

For constructing da ta structures with an arbitrary number of components, Acer provides the

array-literal:

(ArrayLitcral) ::= (E1ements:ArrayList) [[o f (BaseType:Type) I] end

where array-list is defined as:

(ArrayList) ::= array fl (Value))[. 1

An array-literal has an array-type. The type Array is visible as

let Array b e arrays. Type

and the module arrays is visible as

arrays :
Tup le

Type :: Operator (Base Type :: A n y) A n y end
error : Except ion (Void)
length : Function (Base T y p e :: A n y ; : Type (Base Type))

In t eyer
end

index1 :
Function (Base l h p e : : A n y ; : Type (Base Type); : Integer)

Pointer (Base T y p e)
end

new : Function (,!?(~se l h p e : : A n y ; : Base Type; : Integer)
Type (Base Typ e)

end
end

A n y type equivalent to Army (7') shall be called an array-type with base-type T.

The ~ o n t e x t - d e p e ~ ~ d ~ ~ ~ t for an array-literal are illustrated as

Definition

APPENDlX A. T H E A C E R DEFINITION M A N U A L

The type of an array-literal is an array-type with the literal's base-type as its base-type. The

types of the values in the elements must be such that one is a supertype of all the others;

that type, the maximal type, is the definition of the empty base-type. If the base-type is not

empty, the base-type must be a supertype of the maximal type. If the array-list is empty

the maximal type is Void.

A.31.1 Evaluation

When an array-literal is evaluated, its elements are evaluated in arbitrary order. An array-

literal is a constructor and hence its storage may be allocated well in advance of the evaluation

of the literal.

A.32 Iterator and accumulator

For supporting higll-level itcrat,iori and accumulation, Acer provides the notion of iterators

and accumulators. A11 iterator is a sequence producer and an accumulator is a sequence

consumer.

A.32.1 Iterator

To support iterators the type Iterator is visible as

let Iterntor b e
Operator (Base Type :: Any)

Tuple
done : Exception (Void)
produce : Function () Base Type end
termina.te : Function () Void end

end
end

Thus, an iterator is any value r with a type that is a subtype of

Iterator ('1')

where T is the base-type.

A n iterator I>roduces a seclucnce of values through repeated calls to its produce function.

When the iterator's seqoence of values is exhausted, a call to produce raises its done excep-

1 tion. The iterator is then terminated with a call to its terminate function. The iterator may

be terminated before t l lr sequence is exhausted by calling its terminate function early.

APPENDIX A. T11E A CE12 DEFINITION MANUAL

A.32.2 Accumulator

To support accumulators the type Accumulator is visible as

let Accumulator be
Operator (Rase Type :: Any; Result Type :: Any)

Tuple
done : Exception (Void)
consume : Function (: Base Type) Void end
terminate : Function () Result Type end

end
end

Thus, an accumulator is any value a wit11 a type that is a subtype of

where B is the base-type arid 12 is the result-type. An accumulator consumes a sequence of

values through repeated calls to its consume function. When the accumulation is complete,

a call to consume will raise its done exception. An accumulator raises done only i f it does

not wish to consume Inore values. An accumulator is terminated by a call to its terminate

function, which yields tile result of the accumulation. The terminate function can be called

either because the accumulator has raised done or because the sequence of values has been

exhausted.

A declaration of tile acclrmulator discard is visible in the global name-layer. Its corre-

sponding binding is defined as

let discard :Accuinulator (Any, Void) be
tuple

exception (Void)
function (: Any) {) end
function () {) end

end

A.32.3 Iteration

Iterators and are used in iterations, which consist of iterators, an optional

filter, an optional accumulator, and a body:

(Iteration) ::=
(Itcrators:lteratorl,ist) [[andif (Filter: Value) I] do

[[(Accumrllator: Value) I] (13ody: Value) end

An iterator-list is a list of iterator-elements:

APPENDIX A . TliE ACE12 DEFINITION IvfANUAL

(IteratorList) ::= for (IteratorElement) ; 1

and an iterator-element consists of a defined-identifier and an iterator:

(IteratorElemen t) ::=
(Definedlden tifier : Valueldentifier) in (I t erator: Value)

The context-dependent relations for an iteration are illustrated as

$+--=--I &re,
Definition

Defining-

Occurrence

The iterator of a n iterator-clement must have a type that is a subtype of

Iterator (T)

and the type of the defined-identifier is 1'. T h e filter must be of type Boolean. The accumu-

lator must havc a type tha.t is a subtype of

Accumulator (B , R)

The body must havc a type tllat is a subtype of B. And the iteration has type R.

The definition of an iteration is derived so that an iteration of the form

for i in x; j in y andif f (i , j) do z g (i, j) end

is equivalent to

{let i l be x; let i2 be y ; let a be z
keep trying

{let i be i l .produce 0; let j be i2.produce ()
if f (i , j) then a.consnme (g (i , j)) end)

then
when ;].done, iZ.done, a.done then
begin

i l . terminate(); i2.terrnina.te(); a.terminate()
end

end)

APPENDIX A. THE ACER DEFINITION MANUAL

A.32.3.1 Scope

An iterator-list llas a name-layer containing the defined-identifier of each of its iterator-

elements. When identifier-lookup starts in the filter or body of an iteration, the name-layer

of the iterator-list is searched.

A.32.4 Accumulation

Accumulators are also used in accumulations, which consist of an accumulator and an

accumulation-list :

(Accumulation) ::= (~ c c n m u l a tor: Value) (E lemen t s :Accum~~la t ion~ i s t)])

where an accumulation-list is a list of values:

(AccumulationList) ::= ([fl (Value) . 1

The context-dependent relations for an accumulation are illustrated as

T y p e

A c c u r n u l a t i o n

A c c u r n u l a t i o n - (--) (-z)
The accumulator's type must be a subtype of

Accumulator (B, R)

The type of each element in the a.ccumulation-list must be a subtype of B. And the type of

the accumulation is R.

The definition of an a,ccumula.tion is derived so that an accumulation of the form

is equivalent to

{let a1 be a
try begin

a1 .com~irne (x)
a I.consume (y)
a l . termillate ()

end
tlleI1 wllell al.done then a 1 . tcrlninate ()

end)

Thus the definition of an accumulation is a value-block with the appropriate bindings and

body.

APPENDIX A . T11E ACER DEFlN17'10N MANUAL

For representing machine dependent evaluations, Acer provides the code-patch:

(CodePatch) ::= code (Expression))[; 1 end

The first expression must be a type.

The context-dependent relations for a code-patch are illustrated as

Definition
/ \

The first expression is tllc code-patcll's type. The type of an empty code -~a tch is Error:

Definition ,

Error

code Integer; movc(dl , d o) ; dO end

might be used to move the contents of register d l to register dO a.nd to yield the fi rial value

of dO as an Integer rcsult. And the code-patch

code Poinler (Any); A 7 end

might be used to yield the value of the stack-register A 7 as a pointer.

APPENDIX A . T l l E ACER DEFlNlTlON MANUAL

A.34 The grammar

A.34.1 Declaration and binding

(Fixed ValueBinding) ::=

let (Definedldentifier: Valueldentifier) [[: (: T y p e) I] be (Definition: Value)

(Fixed ValueDeclaration) ::= [[(Definedlden tifier : Valueldentifier) I] : (: T y p e)

(TypeBinding) : :=

let (Definedlden tifier: Typeldentifier) [[: : (: T y p e) 1 be (Definition: T y p e)

(TypeDecla.ration) ::= [[(Definedlden tifier : T-ypeldentifier) I] : : (: T y p e)

(VariableValueBinding) ::=

let var [[(Defincdlden tifier: ~ah~c lden t i f i e r) I] [[: (: T y p e) I] be (Definition: v a h e)

(VariableValueDeclara tion) ::= var [[(Definedldentifier: Valueldentifier) I] : (: Type)

A.34.2 Type

(T y p e) ::=

(AbstractType) I((Concrctefl'ypcj 11 (IZcusedTypeldentifier) 1 1 (TypeBlock)) /

(QpcDenoter) 1 1 (7 ~ y p ~ c s i g n n t ion))/ (~.ypcOperator)

(A n y T y p e) ::= Any

(D y n a m i c ~ y p e) ::= Dynamic {[(Declnra,tion) ; I end

(Enurnerat ion~ypc) ::= Enumeration ([(Valneldentifier) I 1 end

(F u n c t i o n ~ y p e) ::= Function (:Signiit,nrc) (licsul17'.ype:Type) end

APPENDIX A . T H E A C E R DEFINITION MANUAL

(Operatorcall) ::= (0perator:Type) (Arguments:ArgumentList))

(Opt ionType) ::= Option a (Valueldentifier) D[1 end

(RecordType) ::= Record { (Declaration))[; 1 end

(R e u ~ e d T y ~ e l d e n t i f i e r) ::= (lden tifier: Typeldentifier) ' [(Depth1ndicator:lntegerLiteral)]

(T u p l e T y ~ e) ::= Tuple a (Declaration))[; 1 end

(TypeBlock) ::= (Bindings: BindingList) (Body : T y p e) 1

(TypeDcsignation) ::= T Y P E ((:Expression))

(Typeoperator) ::= Operator (:Signa.ture) (l3ody:Type) end

(TypcSelection) : := (Base: Valrle) . (Selector: T-ypeldentifier)

(Variant T y p e) : : =

Variant (Tag: T y p e) (Variants: var iant lh t) [[else (Defau1t:Signature) I] end

A.34.3 Value

(Literal) ::=

(ArrayLitcral) 1 1 (~hamcter1,iteral) 1 1 (D.ynamicLiteral) 1 1 (ficeptionLitera1) 1 1
(FunctionLit,ern/) 1 1 (~ n t c ~ e r l ~ i t e r a l) 1 1 (LitcralSelection) 1 1 (RealLiteral) 1 1
(Record Literal)]I (~eferenceLitera1) 1 1 (RellsedValuelden tifier) I (StringLiteral) 1 1
(TupleLiteral) 11 (~alueltlentif ier) I / (Variant Literal) 1 1 (VoidLitera.1)

APPENDIX A . T H E A C E R DEFlNlTlON MANUAL

(Accumulation) ::= (Accumulator: Value) (E1ements:Accumulation List) I)

(Andl fTes t) ::= ((First Operand: Value) andif (Secondoperand: Value))

(ArrayLiteral) ::= (E1ements:ArrayList) [[of (l3aseType:Type) 1 end

(Assignment) ::= ((Destination:Value) becomes (Source: Value))

(CodePatch) ::= code a (Expression))[; 1 end

(CompoundValue) ::= begin (Value) ' 1 end

(Conditional) ::= (Branclles: ConditionalUranch List) [[else (Default Branch: Value) I] end

(Dcreference) ::= (Basc:: Valr~e) Q

(DyadicMethodCall) ::=

C (First Operand: Value) (MethodName: Valueldentifier) (Second Operand: Value))

(Dyr~amiclnspection) ::=

inspect (Selector: V;ll~le) (~rnnclres: TyId?ranchList)

[[else (I lc faul t l~ranch: Value)]] end

(DynamicLiteral) ::= dynamic { (Argument))[1 end

(ExceptionI,itera,l) ::= exception ((BaseType: Type))

(Index) ::= (Base: Value) (1ndices:lndexList) 1

(1sNot ~ e s t) ::= (Operand: V d u e) isnot (SecondOperand: Value))

(IsTest) : := { (First Operand: Va,lue) is (Second Operand: Value) 1

(I t era t ion) : : =

(Iterators:lterator.~ist) [[andif (Fi1tcr:Value) I] do

[[(Accumnlator: Value) I] (Body : Value) end

APPENDIX A. THE A C E R DEFINfTION MANUAL

(Keep Trying) : : =

keep trying (Body: Value) (Branches: ValueBranchList)

[[else (Default Branch: Value) I] end

(LiteralSelection) ::= (Base: Type) . (Selector: Valueldentifier)

(OrdCall) ::= ord ((Base:VaIue))

(Orl fTes t) ::= ((First Operand: Value) orif (Secondoperand: Value))

(PointerCall) ::= pointer ((Base:Value))

(Raise) ::= raise (~ x c c ~ t i o n ~ a l u e : V a l ~ ~ e) [[with (AssociatcdValue: Value) I] end

(RecordLiteral) ::= record ij (Binding) 1 1 end

(RefercnceLitera.1) ::= reference ((Base: Va.lue)

(T r y) ::=

try (Body: Value) (Branches: ~alucBranch1~ist) [[else (DefaultBranch: Value)]] end

(TryFinally) ::= try (Body: Value) finally (FinalAction: Value) end

(TuplcLiteral) ::= tuple (A ~ g ~ r n e n t) 11 I end

(UnaryMethodCaII) ::= { (M(;tlrodNarne: Vah~efdcntifier) (Operand: Value))

(VaheBlocli) ::= (13irldings:BindingList) (Body: Value))

(Va,lCall) ::= val ((~ ~ s e T - y p e : ' [j r p e) [[,]] (0rdina.l:Value))

(ValueDenoter) ::= (0)

(ValueSclcction) ::= (Ijase: Vall~e) . (Selector: ValueIdentifier)

(Variant inspection) ::=

inspect Value) (Branches: ValueBranchList)

[[else (D e f a ~ ~ l t Branch: Value)]] end

APPENDIX A . T H E A C E R DEFINITION MANUAL

A.34.4 Miscellaneous

(Miscellaneous) ::=

(E m p t y) 1 1 (AccumulationList) 11 (ArgumentList) 11 (ArrayList) 1) (BindingList) 11
(ConditionalBranch) I / (ConditionalBranchList) 11 (IndexList) 1) (IteratorElement) 1 1
(IteratorList) 1 1 (Signature) 1 1 (TypeBranchList) 1 1 (TypeWhenBranch) 1 1
(ValueBranchList) 11 (ValueWhenBranch) 1 1 (VariantElement) 1 1 (VariantList) 1 1
(When Condition)

(AccumulationList) ::= ([{ (Value))[* 1

(ArbitraryList) ::= arbitrary ([[(Arbitrary) I) end

(ArgumentList) ::= ((I (Argument) I)[1

(ArrayList) ::= array ([(Value) I)[

(BindingList) ::= .C ([(Binding))[; 1 [[;]]

(ConditionalUrarlclI) ::= (condition: Valnc) then (Consequent: Value)

(Condil ionalBra~~chl~is t) ::= if (ConditionalBranch)

(E m p t y) ::= nothing

(I n d ~ x l ~ i s t) ::= I: fl (Value) I)[* 1

(1teratorEk:ment) ::= (Dofin(;dldentificr: Valueldentifier) in (Iterator: Value)

(IteratorList) ::= for a (1teratorElement))[' I

(Signature) ::= ((I (~eclaratiorr))[' I)

(Type When Bran c11) : : =

when (Condif ion: Typcj [[with (Defi11c.d lden tilicr: Valneldcntifier) I]
then (Cor l~cc~l~cnt : Valr~e)

APPENDIX A . T11E ACE13 DEFINI7'10N MANUAL

(Value When Branch) ::=

(Condition: WhenCondition) [[with (Definedldentifier: Valueldentifier)]]

then (Consequent: Value)

(Variant Element) ::= (Condition: WhenCondition) then (Consequent:Signat ure)

(VariantList) ::= of (I (Variant Element))I ' 1

(WhenCondition) ::= when (I (Value))I 1

A.34.5 Generic

(Arbitrary) ::= (Argument) 1 1 (Declaration) 1 1 (h4iscellaneous)

(Argument) ::= (Binding) 11 (Expression)

(Binding) ::= (TypeUindirg) (1 (ValucBinding)

(Block) ::= (TypeBlock) 11 (Valuel3lock)

(Declaration) ::= (TypcDec]aration) 11 (ValueDeclaration)

(Denoter) ::= (7'ypeDcnotcr) 11 (ValueDenoter)

(Expression) ::= (T-ypc) 1 1 (Value)

(Identifier) ::= (TYPeldentjfier) 11 (Val~ielden tifier)

(Rcusedlden tifier) ::= (~ , c u s ~ d ~ ~ p c l d e n t i f i c r) 11 (Reused ValueMentifier)

(Valuellcclarat io11) ::= (Fixc(j~a1ocDeclaration) 11 (VariableVal~eDcclaration)

(ValueBinding) ::= (Fixed \/'alrleRindir~g) 1 1 (Varia bleValueBinding)

APPENDIX A. T H E A C E R DEFINITION h4ANUAL

A.34.6 Lexeme

(RealLit eral) ::=

[[- 1 (#Digit) (I (#Digit) I) . (#Digit) (I (#Digit) 1
6 e II E D [[- II (#Digit) (I (#Digit) D 11

(StringLiteral) ::=

" ([(#Lowcrcase~ct ter) 1 1 (# UppercaseLet ter) 1) (#SymbolicLetter) 11
(#Punctuation) 1 1 (#Digit) 11 (#Space) 1 1 (#Other) I) "

(Typeldentif ier) ::=

(# UppercaseLetter) (I (#LowercaseLetter))I (#UppercaseLetter) 1) (#Digit) 1

(Valuelden t ifier) : : =

(#Lowercase~et ter) { (#~owercaseLetter) 1 1 (#UppercaseLetter) 1 1 (#Digit) I) 1 1
(#SymbolicLet ter) (I (#SyrnboliclJet ter) 1

A.34.7 Comment

(Comment) ::=

% (I (#Lowercasel,ctt,c~.) 1 1 (#UppercaseLett,er) 1 1 (#SymbolicLetter) 1 1
(#Punctuation) 1 1 (#Digit))I (#DoobkQoote) 11 (#Tab) I/ (#Space) 11 (#Other) 1

A.34.8 Character description

APPENDIX A . T H E ACER DEFINITION M A N I I A L

(# T a b) ::= ASCII 9

(#LineFeed) ::= ASCII 10

(#CarriageRetul-n) ::= ASCII 13

(#Space) ::= ASCII 32

(#Other) ::= ASCII 0-8, 11-12, 14-31, 127

Appendix B

The PCAcer manual

Introductory information and conventions.

A description of the screen.

A genera.1 description of windows.

IIow to edit with ea.ch type of window.

How to work with multiple views.

IIow to store and compile programs.

IIOW to query the sema.ntics attributes.

A familiarity with hasics of MS-DOS is assumed.

B.1 Introduction

Throughout this manual the following conventions are used:

Keys to be ~ r e s s e d are shown as

APPENDIX B. T I I E P C A C E R M A N U A L

Mouse buttons to be pressed are shown as

A mouse button can either be clicked, i.e., pressed and released, or held, i.e., pressed and

kept down.

Keys and mouse buttons to be shifted, controlled, or altered when pressed are shown as

Because PCAcer makes heavy use of color (e.g., for selecting and highlighting) it is

difficult to illustrate how an actual screen will look. A verbal description will therefore have

to be adequate.

T h e sixteen text colors provided by a V G A monitor are named as follows: black, blue,

green, cyan, red, magenta, brown, light gray, dark gray, light blue, light green, light cyan,

light red, light magenta, ello ow, and white; or lb the first eight of these can be used as

background colors.

B.2 Parts of the screen

the main menu on a t the top;

a mouse cursor;

and a work area that displays various windows.

The main men11 is sllowll i n black text on a white background and any part of the work area

not covered by a wirldow is shown in black. The cursor blinks and takes on the text color a t

APPENDIX B. T H E PCACER M A N U A L

B.3 Node windows and text windows

A window comprises a frame, which consists of four edges and four corners, and a body,

which views a portion of an object. There are two types of window, text and node. A text

window views lines of characters and a node window views an unparsed node. Both of these

are viewed as textual objects.

Every window has a selection, the particular focus of interest. For text, the selection is

a character or range of characters, and for node, the selection is a node or range of nodes.

Other than the nature of the selection, the different types of window are similar.

B.3.1 The banner

The banner, i.e., the top edge, of a text window appears as:

[5a8c] Empty (1 (1 I) 1 x 1 1-78 1147

and the banner of a node window appears as:

[5a8c] Empty [5a,8c] Empty 1 x 1 1-78 11.17

In either case, the banner is displayed in cyan text on a blue background (except for the

banner of the selected window, whicll is shown in yellow text). The information on the

banner is intcrprcted as follows:

Every window has all associated owner node, which is indicated a t the s tar t of the banner

as the node's hexadccirnal identity number (i.e., its segment address) and the node's

e.g., [518c] Empty. Similarly, the object viewed by each window has a maximum line length

and a specific number of lines, e.g., I x l , arid the portion in view is given as a range of

columns, e.g., 1-78, and a range of lines, e.g., 11.17.

The difference between the banners of the two types of wirldow naturally lies in how the

selection is specified. I:or text windows, the selection is given as a start coordinate and an

end coordinate, e.g., (1,1)•˜(1,1). But for node windows, the selection point is given as a

node, e.g., [518c] Empty, or as range of nodes, e.g., [519c] BindingList[2++3]. (Note tha t a

range of nodes is givrn in terms of a parent node and the positions of the selected children.

B.3.2 The body

The body of window has a cyan background. The selection is highlighted by a white

background. For text, windows, text is shown in blue, and for node windows, text is shown

APPENDIX B. T H E P C A C E R M A N U A L 225

in various colors, e.g., keywords are black, type-identifiers are magenta, value-identifiers and

value lexemes are light blue, comments are red, and denoters are brown. A node window

presents a more readable view of programs.

B.3.3 The view indicators

The left and bottom edge of a window graphically indicate the view position and the view

portion relative to the object as a whole. For example, if the entire object is in view, both

the left and bottom edge are single line borders. Ilowever, if only half the lines are visible,

only half the left edge is a single border; the other half is a double edge border. And if the

viewed portion of the object is the middle portion, the single line portion of the left edge is

centered on the double line portion.

This same notion applies for the bottom edge, but in this case column position is indi-

cated.

B.4 The window stack

Windows in the work area are arranged as a stack, higher windows cover lower windows.

Holding I shift Hm 0 1 anywhere on the screen causes the stack-list menu to appea r Re-

leasing the button causes the menu to disappear.

The stack-list menu shows, in order, all wi~ldows in the work area. The items of the menu

will look something as follows:

0 [5C9E] FixedValueBinding A < x > 1
[5C9E] FixedValueBinding A < x > 1
[5C7E] RindingList <Y> 2

o [5C4E] ArbitraxyList 3
00 [5C2E] Empty 4

A 0 distirlgnisllcs a text, window from a node window. (The selection point is not shown i n

the stack-list menu so it callllot bc used to distinguish the two in this case.) A D distinguishes

a scrap wirldow frorn an ordinary window. (More on this latter.) An identity number and a

node class, e.g., [5C9E] ~ixedValueBinding, indicate the owner node.

Additional information is shown if the root of the owner is a meaningful top-level nodc,

i.e., a type-binding, fixed-value-binding, fixed-value-dechration, or binding-list. In this case,

the defined-idelltificr of tllc root, or the defined-identifier of the pi-imary binding of the root,

APPENDIX B. T H E PCACER M A N U A L 226

is shown, e.g., <x>. A A precedes the name if the root is not up-to-date with respect to

the version stored in the file system. More on all this later.

A final number is assigned to each window to indicate which windows provide different

views of the same root node. Numbers are assigned to nodes in a top-down fashion and a

window is assigned the same number as a window above it if their owners have the same

root. The largest number in the stack-list menu, therefore, indicates the number of disjoint

nodes.

The stack-list menu can be used to reorder windows. Holding [shift HH I and drag-

ging the cursor to a particular line of the stack-list menu highlights that line. Releasing the

button makes the highlighted window become the top window.

B.5 Basic window commands

This section describes commands that apply to either type of window.

B.5.1 T h e selected window

One of the windows in the window stack is the selected window. It has a banner with

yellow text. A window is made the selected window by clicking /.I on its banner.

(Actually, the selected window is only relevant for one command right now, the definition-

copy command, which we will see later.)

B.5.2 Stack positioning

Window posit,ion witllin t l ~ c stack is changed by the stack-list menu, or by clicking -1
on a window corner.

Clicking -1 011 one of the top two corners either makes the window become the

top window, or i f it is already the top window, makes the window below the top window

become the top window. This is an easy way to exchange two overlapping windows.

Clicking -1 011 olle of the bottom two corners either makes the window become

the top window, or i f its already the top window, make it become the bottom window. This

is an easy way to cycle tliroligh all windows.

APPENDIX B. THE PCACER MANIIA L

B.5.3 Resizing a window

Windows are resized by repositioning a corner. This is done by holding -1 on any

corner, dragging the corner to its new position, and releasing the button. As soon as 1-
is pressed on a corner, an elastic window frame is displayed (in magenta on black). This

frame stretches and shrinks to reflect the position of the cursor.

The smallest window has a body of 2 characters by 2 lines. Including the frame, then,

the smallest window is 4 characters by 4 lines. When a window is resized and the selection

is not in view in the result, the view is corrected to bring it into view.

B.5.4 Moving a window

position, and rcleasillg the button. As soon as -1 is pressed on a corner, a window

fra,rne. is displayed (i n magenta, on black). This frame moves to reflect the position of the

cursor.

B.5.5 Repositioning the view

The portion of the ol,ject in view can be changed by clicking mouse buttons on the left or

bottom cdge.

The view is rnoved down i l l the objcct (i.c., the objcct is moved up) by clicking -1

the first line, in which case the lines move up by one.

The view is moved up (i.e., thc object is moved down) by clicking -1 on the left

cdge. The first line moves down to the position of the indicated line, unless the first line is

indicated, in which casc the lines rnove down 1 1 ~ one.

The view Carl bc complctc]y repositioned by clicking 1-1 on the left edge. T h e view

is then posit,iorlcd so tha t the fraction of the object above and below the view is proportional

b.1 at the top of the left cdge repositions the view to the beginning of the object.

Clicking -1 a t the bottom of the left edge repositions the view t o the end of the

object.

Clickilrg m m l , lo], or -1 011 the bottom edge has the corresponding

effect as the left c.xcept coluriin position is affected.

A P P E N D I X B. THE P C A C E R M A N U A L

B.6 Window conversion

A new node window is created by clicking I.] on the new command of the main menu.

The new window becomes both the top window and the selected window. It owns a new

empty node, which is also its selection point. (In node windows, a n empty node is printed

as 0 rather than as nothing.)

A node window is converted to a text window by pressing any printable key while the

cursor is on the window. (If a range of nodes is selected, the selection is reset t o the parent

first.) The resulting text window contains a textual representation of the selected node,

I which is also the owner. The selection starts out as the entire textual object so it can be

easily deleted and replaced.

Clicking /O[3 on the right edge of a text window converts it back to a node window.

This is done by parsing the text to yield a node and replacing the owner with tha t node.

The resulting node window has the root node as its owner and the new replacement node as

its selection.

As will be exp]airled next, the replaced node is inserted in the scrap node window and

the parsed text is inserted in the scrap text window.

B.7 Scrap windows

The PCAcer enviroIllrlerlt will, a t a11 tirnrs, contain a t least two windows, namely the scrap

text wirldow the scrap node window. A scrap window is distinguished from other

windows by the fact that its banner begins with a .

The scrap windows are special in several ways. Firstly, they cannot be converted between

node and text, as can ordirlary windows. And most importantly, all deletions are inserted

into the appropriate scrap window. For this reason, editing a scrap window can have rather

unexpected effects. For example, deleting from a scrap window has the effect of inserting

i n tile same window. IIow this works shall become clear as the editing commands

for ordinary wirldows are described.

TIle corltcrlts of tllc scrap windows ran be discarded simply by clicking [=I on the

clear of the main menu. This may become necessary as space limitations become

a problem.

APPENDIX B. THE PCACER h4ANUA1,

Editing text

An empty text window is created as follows: click the new command of the main menu;

move the cursor onto the new window; press Ispace1 to convert it to a text window; and click - m m , while the cursor is still in the window, to delete all the text. The result is in

an empty text window with an irrelevant unattached node as its owner.

The purpose of a text window is to specify textually a replacement for its owner. In

the above case, the owner is irrelevant because it is unattached and empty, but in general,

the owner may be attached. In that case, a successful conversion of the text window to a

node window, by clicking -1 or the right edge, results in the owner being replaced, in

context, by the nowly parsed node.

When a window displays a flashing error message, no further operations can be performed

on that window until, while the cursor is on the window, a button is clicked or a key is pressed.

That click or press has the effect of removing the error message, and no other effect.

B.8.1 Selection

The primary operation on a text window is setting the selection.

Clicking -1, the cursor is in the body of a text window, selects the character

a t tha t position. FIolding / . I , dragging it, and releasing it selects a range of characters.

The selection is continuously modified on the screen to reflect the position of the cursor.

Another way of selecting a, range of characters, particularly useful when the range is not

entirely in view, is sclcctilig one end point by clicking -1 and selecting the other end

point by P I . 1. view modification can occur between the two selections. Hold-

ing -] and dragging it extends the selection, just as it does when dragging -1.
Textua] selection can take on three different modes, character, token, and line. Ordinarily,

the selection Inode is character, ilowevcr, clicking 1. / on a chara,cter tha t is d ready

i n the selection causes the selection mode to become token. As a result, the token a t the

click point becomes selected. Tokens are determined by the same lexical analyzer used by

PCAcer's parser.

Furthermore, clicking 1.1 within the selection while in token mode causes the

APPENDZX B. 1'11E PCACER M A N U A L 230

selection mode to become line. As a result, the line a t the click point becomes selected.

Thus, double clicking selects a token and triple clicking selects a line.

Holding -1 and dragging it while in token mode results in the selection being

extended by whole tokens. The same goes for line mode. The affect of 1-1, when

extending the selection point, is also affected by the selection mode. For example, triple

clicking -1 a t orone point and clicking -1 a t another selects a range of complete

lines.

B.8.2 Textualentry

Pressing a printing character, while the cursor is on a text window, inserts the specified

character before the first character of the selection. Pressing lenter] breaks a line. (PCAcer

displays the line-ending charact,er as a space so that it can be selected and even deleted.)

Pressing backspace erases the character before thc insertion point,; a t the beginning of a m
line, it erases the line-c~lding character on the previous line, thereby joining the two.

Textual entry does not modify thc selection, but the selection does revert to character

mode.

B.8.3 Delete

Selected text is dclcted by clicking PH.1 in the window body. Afterwards, the

selection, whicll remains in tile same mode, is set as if -1 where clicked a t the position

of the first character of the original selection. For example, triple clicking I.] and then

double clicking p m deletes two lines and leaves a line selected.

The entire range of lines affected by deletion is copied to the scrap text window.

selection of the scrap text window then specifics precisely the range of affected characters

within those lines.

The scrap text wiIldow is not only a destination for deletions but also a source for

insertions, as we shall see next.

B.8.4 Insert

The selected text of the scrap text window is inserted before the selection point of some

other text, window by clicking on the body of that window. The selectioll

point of the window is sct to the inserted text.

APPENDIX B. T11E P C A C E R M A N U A L 231

For any text window (except the scrap window) clicking malt-1 and then click-

ing pH-] has no effect other than copying the selection to the scrap window and

changing the selection mode to character.

B.8.5 Yank

Clicking in a text window has the same effect as effect as clicking [a l t H m]
and then clicking E H j] , except that the selection mode is unchanged. In other

words, a copy of the range of lines containing the selection is inserted in the scrap text

I window and the appropriate characters within that range are selected.

I alt HU 0 I to insert the yanked text.

B.8.6 Destructive delete

Clicking I c t r l H . m on a text window body deletes the selection without copying it to

the scrap text window. The deleted text is lost!

This comma~ld works as expected on the scrap text window.

B.8.7 Canceling a text window

Pressing while the cursor is on a text window cancels the window. That is, the text is

inserted in the scrap text window and the window is converted back to a node window.

B.9 Node editing

An empty node window is created by clicking the new command on the main menu. The

result is a node wirldow tha,t owns a new unattached empty node, which is also its selection

point.

Nodes are nluch richer objects than mere text. Hence, node windows provide more

operations tha.11 text windows.

B.9.1 Selection

The selection mechanisms for nodes closely model those for text.

A P P E N D I X B. T I I E P C A C E R M A N U A L 232

Clicking /.I, while the cursor is in the body of a node window, selects the node

that owns the token a t or before the position of the cursor. (Since empty nodes are printed

as 0, all nodes are visible for selection via their tokens.) Holding I., dragging it , and

releasing it selects a range of nodes. Such a range of nodes must have a common parent.

The selection is contirluously modified on the screen to reflect the position of the cursor.

Dragging is not very useful for nodes because often tokens of the parent intervene between

the children and so if that token is selected, the whole parent is selected.

A better way of selecting a range of nodes, particularly useful when the range is not

entirely in view, is selecting one end point by clicking -1 and selecting the other end

point by clicliing m]. A view modification can occur between the two selections. Hold-

ing and dragging it cxtc~ids the selection, just as it does when dragging -1.
Node selectiori does not take OII diffcrcnt modes, as does textual selection.

B.9.2 Textual entry

Pressing a printing character while the cursor is on a node window, converts the node window

to a text window the selected node as the owner. Modification of the owner's textual

form may then commence. Upon completion, a on the right edge converts the text

window back to a node wirltlow, replacing the owner in context. The replacement node, as

specified by the text, becomes the selection.

B.9.3 Delete

Selected nodes arc deleted by clicking in the window body. Delete behaves

differently depending on the selection.

On the one lland, i f a list child is selected, or a range of list children are selected, the

children arc sinlply dclctc:d. Afterwards, the selection becomes the next child, if there is one,

the previous if there is 110 next child, or the parent, if no children remain. In addition,

the deleted children are inserted into a new arbitrary-list, which in turn is inserted a t the

end of the arbitrary-list owned by the scrap node window. The selection of the scrap node

window is set to the range of nodes that were deleted.

On the other hand, if a construction child is selected, or a range of construction children

are selected, orlc of possibilities occur. If a child is optional, it can be replaced by

an empty rrotlc. Ot)lerwisc, it 111ust be replaced by a placeholder: for a component that is

a value, the identifier ? is used; for a component that is a type, the identifier - is

A P P E N D I X B. T H E P C A C E R M A N U A L 233

and for component that is a list, the appropriate empty list is used. Because the deletion

of a construction child has the effect of replacing it with a different node, after deletion, the

selection becomes the repalcement children. The deleted children are inserted in the scrap

node window just as for deleted list children.

It is meaningful to delete (or replace) an unattached node because this has the effect of

replacing it with an empty node in every window in which it occurs.

B.9.4 Insert

i Clicking on the body of a node window inserts a placeholder list element

between the tokens on either side of the click point. This new placeholder becomes the

selection.

A n element can only be inserted into a list since a construction has a fixed number of

children. If a list element cannot be inserted a t the click point, a warning beep is issued.

B.9.5 Replace

The selection of the scrap node window is inserted in place of the selection of an other node

window by clicking m m on the body of that window. Again, replace behaves

differently depending on the selection.

Or1 the one h a n d , i f a list child is selected, or a range of list children are selected, the

childrcn are deleted and the selected nodes of the scrap node window are inserted i n their

place. If the inserted Ilodcs do not conform as elements, no operation is performed and a

warning beep is issued. In addition, an error message diagnosing the problem appears a t the

bottom edge of the window. This message is canceled by any button click or key press while

the cursor is on the window.

On the other hand, i f a construction child is selected, or a range of construction

are selected, the children are replaced by the selected nodes of the scrap node window.

The range of nodes in the scrap node window must match in number the range of

nodes selected in the target window, and each node must conform to the requirements of the

construction. Again, a beep and an error message are issued if this is not the case.

The deleted (replaced) nodes are copied to the scrap node window but the selection of

the scrap node window remains unchanged.

A P P E N D I X B. T H E P C A C E R M A N U A L

B.9.6 Yank

Clicking on a node window body copies the range of selected nodes to the scrap

node window and sets the selection of the scrap node window to those nodes. A subsequent

insert uses these nodes.

Note tha t yank does not copy the definitions of denoters. In fact, yank substitutes an

any-type in place of each type-denoter and a void-literal in place of each value-denoter.

(High-level copying is provided by definition-COPY.)

I B.9.7 Destructive delete

Clicking I ctrl H m 1 on a node window body deletes the selection as before, but without

copying it to the scrap node window. The deleted nodes are lost!

This command works as expected on the scrap node window.

B.10 Multiple views

The stack-list can contain multiple views of the same node. We have already seen how to

alternate between a node view and a text view but such views can even coexist.

B.10.1 Simultaneous text views

node window rema.ins visible.)

B.10.2 Multiple node views

When l o] is lleld on tile top edge of a node window, an elastic window frame appears.

Dragging the nlollsc stretches and shrinks this frame to reflect the position of the cursor.

Releasing the brltl,on fi~lislres the command. The result is a new node window, on top of the

original. ~t tlas the specified frame and the same owner and selection as the original.

APPENDIX B. TI lE PCACER A4ANUAL

B.10.3 Multiple text views

Holding -1 on the top edge of a text window has the corresponding effect as on a

node window. A new text window, on top the original, is created and it has the same owner

and selection as the original.

B.10.4 Subviews and node traversing

Holding -1 on the top edge of a node window has the same effect as holding lo],
except tha t the owner of the created node window is not the owner of the original window

1 but the selected node (or the parent of the selected nodes) of the original window.

The owner of a *lode wi~ldow can be changed in one of three ways. Clicking /.I on

the right edge sets tllc owner to bc the root of the original owner. Clicking -1 on the

right edge scts t l ~ e owner to be tlic parent of the original owner. And clicking -1 on

the right edge sets the owner to he the selected node (or the parent of the selected nodes).

Hence, one can zoom to the root, the parent, or the tion. on.

B.10.5 Closing windows

types of window, i f the owner is not owned, or contained by the owner, of any other window,

the node is inserted i n the scrap node window, where it becomes the selection. Note that

attempting to close the last view of a scrap window simply destroys is contents (much like

clear does).

B.10.6 Implications of multiple views on editing

APPENDIX B. TIIE P C A C E R A4ANUAL 236

be lost when the text is converted to a node and the owner is replaced by tha t node. There-

fore, one cannot delete, insert, or replace any node that is the owner, or is enclosed by the

owner, of a text window. If such an operation is attempted, the offending text window is

brought to the top of the stack-list with an error message suggesting that it be updated, i.e.,

either discarded or converted a node. Similarly, one cannot create a text window for a node

tha t is the owner, or is enclosed by the owner, of some other text window.

'I'o keep node windows consistent, any command that results in the deletion or replace-

ment of a node has the following effects. If the node is simply deleted and not replaced by

anything, every node window with that nodes as its owner is set to own instead the parent

of that, node. Otherwise, the deleted node is replaced by another node and so every node

window with the deleted nodes as its owner is set to own instead the replacement nodc.

Since deleted nodes arc illscrted into the scrap node window, any node window tha t retained

a view on a deleted node would provide merely a subview of the scrap node window.

Clearly, the selection of each node window too, like the owner itself, must be kept con-

sistent with respect to the deletion, insertion, and replacement of nodes. This is done

like it is for the owner.

Note that views are possible even for the scrap windows. This may be confusing

however, because only the selection of the original window is used as the source for insertions

and there is nothing t,o distinguish the copy from the original, except tha t the copy can be

closed whereas atteInpting to close the original only deletes its contents.

B.11 Top-level nodes

There are four classes of node that a.re meanillgful a t the top level, i.e., as unattached nodes

without context:

0 type-binding

binding-list

Each will be considered in turn.

A P P E N D I X B. T H E P C A C E R M A N U A L

B . l l . l Top-level type-bindings

A type-binding is meaningful a t the top level because it introduces a global type-identifier.

To make the type-identifier visible, however, the type-binding must first be stored in a file.

This is done by holding [shift HO . I on the node window tha t owns the type-binding,

which causes the node command menu to pop up. Dragging the mouse t o select a command

and releasing the button invokes the command.

When store is invoked for a type-binding, a file containing the type-binding in compacted

form is created. The file is stored in the current directory, unless a previous version is present

in some search directory, in which case the file is stored in that directory. Because of the

limitation of MS-DOS file names, only the first eight characters of the binding's defined-

identifier are used. For type-binding files the suffix is '.tb.'

Previous versions of the t y p b i n d i o g are renamed as backups, e.g., '*.tb' becomes '*.tbl,?

' . tb l ' becomes '*.tb2,' and '*.tb2' is erased. Up to 9 backup versions could be maintained

in this way, although currently only two backups are maintained. If the current directory

contains a directory named 'hak,' the backup versions are moved to tha t directory. hi^

helps to keep working directories clear of various auxiliary files.

It is the presence of a type-billding file in the file system that makes the defined-identifier

globally visible. PCAccr automatically loads the files as necessary, maintaining a unique node

to represent the contcllts of each file. Therefore, when a type-binding is stored, it becomes

an attribute node. A node window indicates that the root of its owner is an attribute by the

symbol a a t the beginning of its banner.

Attribute nodes are differerlt from ordinary nodes because they should not and cannot

be modified. Consider wllat would happen i f a stored type-bir~ding could be modified. Some

other node may we]] rllaT:, tile defining-occurrence of a type-identifier to the defined-identifier

of that type-binding; after all, the defined-identifier is globally visible. A subsequent edit

could then remove the defined-identifier from the type-binding, leaving the other node with

a type-iderltifier that maps to a now invalid defining-occurrence. Furthermore, since every

node potentia]ly refers to the type-binding, the attributes of all nodes could be invalidated

by a sing]c ,-llange to tile type-binding. For these reasons, editing of attributes is prevented.

To modify a type-l1inding tllat has become an attribute, all that is necessary is to

a copy, create a Ilcw window, and replace the]lode in the new window with the copy, e.g - 7

click /.I On type-binding, click / O l On the window, click -1 on the

type-bindirIg, can be edited and then stored to replace the previous version. storing

APPENDIX B. 7'111.: PCACER A4ANUAL 238

the new version converts it to an attribute node; the old version reverts to being an ordinary

node.

B.11.2 Top-level fixed-value-bindings

A f i~ed-va l~e-b inding is meaningful a t the top level because it can be compi led to produce

a fixed-value declaration, which introduces a global value-identifier. It can also be executed

to yield its definition. Furthermore, a fixed-value-binding can be s tored just like a type-

binding to create a file containing the fixed-value-binding in compacted form. For a fixed-

1 value-binding, the file has suffix '.vb' and previous versions are backed up, just as for a

APPENDIX B. T H E PCACER MANUAL

the closure of the binding.

Recause of dependencies, compiling a fixed-value-binding may require the compilation of

bindings it depends on. This is handled automatically and is of little concern t o the user.

Any errors tha t arise are reported by a node window. PCAcer stores all top-level fixed-value-

bindings and binding-lists before compilation begins. The scrap windows are cleared to free

up space.

A fixed-value-binding is executed by invoking run in the node commands menu. The

binding is first compiled, if necessary; the required object ('a') files are then linked to

produce an executable ('.axe7) file, which is stored in either the current directory or the

1 directory of the current directory; and finally, the executable file is loaded to begin execution.

Upon termination, tile definition of the binding is yielded. This value, represented as a

node, is displayed in a new node window. PCAcer does not yet provide Acer programs with

the ability to perform terminal 10 so O I I I Y side-effects to the fi le system are possible. Hence,

every- program should produce a result value-

Note that lirlking can be performed separately from execution by invoking link i n the

node commands menu. 'rile executable file is then created but it is not loaded and executed.

B. 11.3 Top-level binding-lists

A P P E N D I X B. T H E P C A C E R M A N U A L 240

The assembler file and the object file are created only for the primary binding, although they

contain the code to evaluate all the bindings, but a fixed-value-declaration file is created for

each fixed-value-binding. The result of compilation is a window for each declaration.

Note tha t a dependency ('.vdp') file is created only for the primary binding, but it includes

the dependencies for all the bindings.

A binding-list is executed by invoking run in the node commands menu. The binding-list

is first compiled, if necessary; the required object ('.07) files are then linked to produce an

executable ('.axe') file, which is stored in either the current directory or the 'axe' directory

I
of the current directory; and finally, the executable file is loaded to begin execution. Upon

termination, the definition of the primary binding is yielded. This value, represented as a

node, is displayed in a new node window.

B.12 Fetching files

APPENDIX B. T I I E P C A C E R M A N U A L 24 1

The file system can be navigated by clicking -1 on a drive name to change the

current drive. Clicking I.1 on a directory in the listing changes the current directory

to the selected directory. (Directories are distinguished from files by color.) The listing

changes to reflect each change to the current drive and directory.

Selecting a file by clicking -1 on its name in the listing loads tha t file. A new

window is created to hold its contents: either a text window, in the case of a '.ace7 file, or a

node window, otherwise. When a text window is created, it is immediately converted to a

node window, if possible.

Pressing lest cancels the fetch menu. The current drive and directory are restored upon

I exiting a fetch menu.

B.12.1 Fetching text

The fetch text Incnu lists only dircctorics and '.ace' files in the current directory. However,

the name prompt a t the bottom of the menu can be used to load any file, including ones

without a '.ace7 sullix, by typing in the full file name (and path, if desired). Pressing F l
then loads the file into a ncw text window.

B.12.2 Fetching types

B.12.3 Fetching values

The fetch menu lists only directories and '.vb' files in the current directory. A full

name can also typed (lircctly, in which case a corresponding file is searched according to

the search path of ACERINPUT.

If the fixc:tl-va]ue-billtling is part of a binding-list, the entire binding-list is

loaded.

B.12.4 Fetching declarations

APPENDIX B. T I I E P C A C E R M A N U A L 242

to the search path of ACERINPUT. This is like asking for the defining-occurrence of the entered

name.

Note tha t when the fetch declaration menu is invoked, if there is a 'vd' directory in the

current directory, that directory automatically becomes the current directory. This, after

all, is where declarations will be stored.

B.13 Restoringfiles

Recall that type-bindings, fixed-value-bindings, and binding-lists are backed up when they

are stored. A backop version can be restored. Restore is invoked by holding -1 on

the restore command of the main menu, dragging the mouse t o select the desired option of

the pop-up menu (either type or value), and releasing the button. The screen then fills with

the selected restore menu, which looks very much like a fetch menu.

B.13.1 Restoring types

The restore type menu lists only directories and '.tb' files in the current directory for which

a backup exists (i.e., a ' . tbl ' file). Usually the backup will exist in the 'bak' directory of the

current directory. A full name can also be typed directly, in which case a corresponding file

is searched according to the search pat11 of ACERINPUT.

Restoring a type-binding has the following effect. First the current version of the type-

binding is fetched and loa(ied into a new window. Then the current version is deleted from

the file system. Next the backup versions are renamed, e.g., '*. tbl ' becomes '*.tb,' and

'*.tb2' becolnes '*.tbl. ' r Y h r result is that the backup version becomes the current version,

which is then also loaded into a new window. If the backup version exists in the 'bak7

directory, it is lnovcd to the current directory.

B.13.2 Restoring values

The restol.e menu lists only directories and '.vb' files in the current directory for which

a backup exists (iae., a ' .vbl' file). A full name can also be typed directly, in which case a

corresponding f i l e is searched according to the search path of ACERINPUT.

Restoring a fixed-value-binding has the following effect. First the current version of the

fixed-value-binding is fetched arid loaded into a new window. Then the current version is

deleted from the file system. Next the backup versions are renamed, e.g., '*.vbl' becomes

APPENDIX B. THE PCACER MANUAL 243

'*.vb,' and '*.vb2' becomes '*.vbl.' The result is that the backup version becomes the

current version, which is then also loaded into a new window. If the backup version exists

in the 'bak' directory, it is moved to the current directory.

When the restored fixed-value-binding is part of a binding-list, the entire binding-list is

loaded and all the other fixed-value-bindings in the list are also restored, i.e., their backups

are renamed as for the primary binding.

B.14 Querying semantic attributes of nodes

The following semantic attributes can be queried by invoking the corresponding command of

the node command menu, which pops up when IshifTH-1 is held on a node window:

defining-occurrence, definition, denotation, type, and kind. The query is applied to the

selection of the node window. As a result, a new node window is created to conta,in the node

selection. If a query cannot be processed, a,n error message is displayed instead. Defining-

expression.

PCAcer may have to create new nodes in response to a query, just as it has to create a

declaration during cornpilation. Such a created node is an attribute node and so cannot be

a query results i n the destruction of the attribute node and its window. This way, displayed

attributes are consistent with their source.

Note that t]le validate command of the node command menu can be applied to detect

errors in any node.

B.15 Re-expressing a node

A node can be re-cxpresscd in a different context as follows. First, select the source node

and select its window's banner to make it the selected window. Then select the destination

i.e., tile node a t which the source nodc is to be expressed. Finally, apply the definilion-

copy comnland of the]lode colnmand menu to the destination window. This replaces the

dcstirlation rlodc with a node that expresses the same object as the selection of the selected

window.

Dcfinition-copy is a Iiigll-lcvcl way of yanking a node and copying it to another context.

APPENDIX B. THE I'CACEIZ AilANUA L 244

It ensures that the copy refers to the same dcfining-occurrences in the new context as the

original does in its context. (Reused-identifiers may have to be introduced.) In addition, its

ensures tha t the copy is expressed without dcnoters. (To eliminate a denoter, its definition

is also copied, and blocks must be introduced when recursion is involved.)

Note tha t the source window cannot be the same as the destination window because a

window can have a t most one selection. It is simple, however, to create a copy of the window

so that two selections are specified.

And so on

Clearly, many othcr operations can be provided, both for node windows and text windows.

IIowevcr. the basics have been covered.

Appendix C

The implementation manual

each of the indicated length:

Core
Utility
Mouse
Manager
Index
Sequence
Line
Linebuffer
Grammar
MPS1
Keywords
LexicalAnalyzcr
Parser
Unparscr
Makers

Access
MPS
Fileserver
AST
AST2
Compile
Run
Link
Objectview
LineView
TokcnLine
TokenBuffer
Tokenview
Windowstack
NodeView

As such, the implcmenta.tion comprises more than 36,000 lines o

3577

f code.

The of the appendix is organized as follows. Each section documents the

purpose of unit, discussing any interesting implementation techniques; the Turbo

Pascal interface appears first, followed by a discussion. The implementation section of eacll

unit is n d listed due to the shcar volume of code. In addition, repetitive parts of some units

are elided (i.e., as . . .). Typically, each unit is described before the units tha t use i t .

A familiarity with the basics of (Turbo) Pascal and MS-DOS is assumed.

A P P E N D I X C. T l l E IMPLEA/ lENTATlON h4AN U A L

C . l Core

UNIT Core ; INTERFACE ($F+ ,L-1

CONST MD = FALSE;

IMPLEMENTATION . . .
END.

C.2 Utility

UNIT Utility; INTERFACE ($F+ , o+, L-1

TYPE
STRING6 = STRING [61 ;
STRING11 = STRING C111 ;

PROCEDURE ErrorNoise;
FUNCTION Max(i, j : LONGINT) : LONGINT;
FUNCTION Min(i, j : LONGINTI : LONGINT;
FUNCTION Integer~tring(x : WORD) : STRING6;

FUNCTION Longlntegerstring(x : LONGINTI : STRING11 ;

IMPLEMENTATION . . .
END.

U t i l i t y provides converlie~lt functions used in a number of different modules. Again, it

is of no particular interest.

'Overlays ;tre Tnrt)o 1);tscal's way of freeing u p nlemory by loading only part of a program's code at a

time.

A P P E N D I X C. T H E I M P L E M E N T A T I O N M A N U A L

C.3 Mouse

UNIT Mouse ; INTERFACE ($F+, L-1

TYPE
ActionType =

(NoAction, MovedLeft, MovedUp, MovedDown, MovedRight,
LeftButtonPressed, LeftButtonReleased, RightButtonPressed,
RightButtonReleased, MiddleButtonPressed, MiddleButtonReleased) ;

ShiftKeys = (Shift, Ctrl, Alt) ;
ShiftStateType = SET OF ShiftKeys;
EventType =
RECORD

theAction : ActionType;
theshiftstate : Shif tStateType;
x, y : INTEGER

END;

PROCEDURE Initialize;
PROCEDURE Hidecursor;
PROCEDURE Showcursor;
PROCEDURE MouseGotoXY(x, y : Byte);
PROCEDURE MouseGetXY (VAR X , y : Byte) ;
FUNCTION Mousepressed : BOOLEAN;
PROCEDURE ResetMouse;
PROCEDURE ReadMouse (VAR theEvent : Event Type) ;

IMPLEMENTATION
END.

Mouse provides interface for a three button mouse. The mouse driver is started

by a call to Initialize. Associated with the driver is a screen cursor, which is made

visible or invisible using ShovCursor and Hidecursor. The position of the cursor is read by

MouseGetXY is set by ~ouseGotoXY. Naturally, movement of the mouse itself also sets

the of the cursor. Whctller a mouse button is being held down is determined by

MousePressed, wllicll is analagous to the Keypressed function provided by CRT.

The mouse driver a buffer of mouse events, e.g., button presses and releases and

the of tile cursor and the shift-stat(. of the keyboard a t the time of the press or

release. ~ 1 , ~ buffer is erased by ResetMouse. A n event is read by ReadMouse.

In short, Mouse provides the minimal operations required to support the functionality of

a mouse as used i n thc PCAccr environment.

APPENDIX C. T H E IMPLEMENTATION M A N U A L

C.4 Manager

UNIT Manager; INTERFACE ($F+, O+ ,L-1

TYPE ShortPointer = WORD;

FUNCTION AllocatePointer(Size1nBytes : WORD) : POINTER;
PROCEDURE Deallocate~ointer(thePointer : POINTER; SizeInBytes : WORD) ;
FUNCTION ~llocate~hort~ointer(Size1nBytes : WORD) : ShortPointer;
PROCEDURE DeallocateShortPointer

(theshortpointer : ShortPointer; SizeInBytes : WORD);

VAR FreeUnusedSpace : FUNCTION : BOOLEAN;

IMPLEMENTATION . . .
END.

APPENDIX C. T H E IMPLEMENTATION M A N U A L

because memory requests are rounded up to the nearest multiple of four.)

The function variable FreeUnusedSpace can be set so tha.t if Manager runs out of space,

FreeUnusedSpace is callcd to free some memory. The function assigned to FreeUnusedSpace

should therefore attempt to free memory and should yield true only if successful. Also, the

new function should not simply replace the old function already stored in FreeUnusedSpace,

it should store the old function in a local variable and should call tha t function as part of

its effort to free up memory. In this way, a chain of functions is formed, each attempting to

free memory. (This is analogous to the idea of exit-procedures in Turbo Pascal.)

To summarize then, Manager provides ShortPointer SO tha t memory consumptjon is

drastically reduced. A ShortPointer, after all, occupies half the space of a regular Pointer.

C.5 Index

UNIT Index ; INTERFACE ($F+ , o+, L-1

TYPE
T = - IndexRecord;
Link = LinkRecord;
Iterator =
RECORD
theLink : Link;
KeySize, Informationsize : BYTE

END ;
OrderingPredicate = FUNCTION (VAR x, y) : BOOLEAN;
IndexRecord =
RECORD
Less : OrderingPredicate;
KeySize, Informationsize : BYTE;
Elements : Link

END ;
LinkRecord =
RECORD
Key : POINTER;
Siblingsegment : WORD;
Siblingof f set : BYTE;
CASE Leaf : BOOLEAN OF
TRUE: (Child : ink) ;
FALSE: (~ssociatedInf ormat ion : POINTER)

END ;
Processor = PROCEDURE (VAR x);
ProcessKeyAndInformation =

APPENDIX C. T H E IMPLEA4ENTATION A4ANUAL

PROCEDURE (VAR ~ h e ~ e y , ~ssociatedhf ormat ion) ;

FUNCTION Make(Less : OrderingPredicate;
KeySize, Informationsize : BYTE) : T;

FUNCTION Copy(The1ndex : T) : T;
PROCEDURE Clear (TheIndex : T) ;
PROCEDURE Free (TheIndex : T) ;
PROCEDURE Associate(VAR TheKey, AssociatedInformation; TheIndex : T);
FUNCTION ConditionalAssociate

(VAR TheKey, AssociatedInformation; TheIndex : T) : BOOLEAN;
PROCEDURE Include (VAR TheKey ; TheIndex : T) ;
FUNCTION ConditionalInclude(VAR TheKey; TheIndex : T) : BOOLEAN;
FUNCTION Lookup(VAR TheKey; TheIndex : T;

VAR ~ssociatedInformation) : BOOLEAN;
FUNCTION Member(VAR TheKey; TheIndex : T) : BOOLEAN;
PROCEDURE Exclude(VAR TheKey; TheIndex : TI;
FUNCTION ConditionalExclude(VAR TheKey; TheIndex : T) : BOOLEAN;
FUNCTION Union(Index1, Index2 : T) : T;
PROCEDURE UnionAndSet (Indexl , Index2 : T) ;
FUNCTION Intersection(Index1, Index2 : T) : T;
PROCEDURE IntersectionAndSet (Indexl , Index2 : T) ;
FUNCTION Diff erence(Index1, Index2 : T) : T;
PROCEDURE Dif f erenceAndSet (Index1 , Index2 : T) ;
FUNCTION Empty(Index1 : T) : BOOLEAN;
FUNCTION Equal(Index1, Index2 : T) : BOOLEAN;
FUNCTION Less(Index1, Index2 : T) : BOOLEAN;
FUNCTION Disjoint(Index1, Index2 : T) : BOOLEAN;
FUNCTION Subset(Index1, Index2 : T) : BOOLEAN;
FUNCTION Propersubset(Index1, Index2 : T) : BOOLEAN;
PROCEDURE ScanKeys (TheIndex : T; Process : Processor) ;

PROCEDURE ScanKeysAndInformation
(TheIndex : T; Process : ~rocessKeyAndInformation);

PROCEDURE Scan~nformation(TheIndex : T; Process : Processor);
PROCEDURE GetIterator(VAR theIterator : Iterator; TheIndex : T);
FUNCTION NextKey(VAR theIterator : Iterator; VAR TheKey) : BOOLEAN;

FUNCTION Ne~tKe~~ndInformation
(VAR theIterator : Iterator;
VAR TheKey, ~he~nformation) : BOOLEAN;

FUNCTION Next~nf ormat ion(VAR theIterator : Iterator ;
VAR TheInformation) : BOOLEAN;

PROCEDURE LeastKey(The1ndex : T; VAR Key) ;
PROCEDURE ~east~e~~nd~nformation(TheIndex : T; VAR Key, Information);
PROCEDURE ~ ~ ~ ~ t ~ ~ f o r m a t i o n (T h e I n d e ~ : T; VAR Information);

IMPLEMENTATION . . .
END.

A P P E N D I X C. T H E 1MPLEA.IENTATION M A N U A L 25 1

Index provides a versatile data structure for creating sets and mappings for any base type

for which a total order exists. In particular, it is used to create a mapping or association

between values of one type, keys, and values of some other (though not necessarily different)

type, associated information. If the associated information is absent, the mapping is just a

set. The da ta structuring mechanism of Index facilitates 0 (log n) insertion, deletion, and

searching, where n is the number of elements in the index.

An index is created by Make, which takes the following: an Orde r ingPred ica t e that

in turn takes values of the key type and must act like less-than; a KeySize tha t indicates

the size of keys and must be 4 or less; and an In fo rma t ions i ze that indicates the size of

information and must also be 4 or less-if In fo rma t ions i ze is 0, the created index is just

a set.

It is possible to protlucc a Copy of an index and to C l e a r an index of its elements. A n

index is deallocatcd by Free. A kcy and its associated information are inserted into an

index by either ~ s s o c i a t e or ~onditionalAsso~iate-Conditi~nalAssociate inserts the

information only i f tile key is not already present and yields t r u e only if the information

is actually inserted. Inc lude and ~ o n d i t i o n a l I n c l u d e work similarly, but no associated

information is provided wit11 the key.

To determine the inforll latio~~ associated with a key in an index, Lookup is used. It returns

t r u e i f the key is prescllt, i n which case the associated information is also set. Similarly,

Member determines if a key is in an index.

Exclude removes a kcy from an index and Condit ionalExclude does the same, bu t it

returns t r u e if the key was actually a ~nember.

Various other set-based operations are provided for combinirlg and comparing indexes.

Their effect is cvidcnt from their names.

Scan functiolls are also provided. They apply a P roces so r function to all the keys and/or

information of an index. Also, the notion of I t e r a t o r s is supported by G e t I t e r a t o r , which

initializes a of type I t e r a t o r . This can then be used by one of the Next furlctions

to sequence through the A Next function yields t r u e only if there is a next key

and/or information.

Finally, the Leas t functions are provided for easy access to the lowest key andlor infor-

mation i n an index. (1tcmc,nber, an index is sorted according t o its predicate.)

A word of caution is i n order with the use of this unit. Its facilities arc extremely versatile

but care mllst be takell ill their use since there is no type checking to ensure tha t keys and

information are associated with the right 'type' of index. This highlights a glaring weakness

APPENDIX C. T H E IhfPLEML'NTATION M A N U A L

of Pascal. Certainly an Acer implementation would provide improved type safety.

C.6 Sequence

UNIT Sequence ; INTERFACE ($F+ ,O+, L-1

USES Manager ;

TYPE SequenceType = POINTER;

CONST MaxSequenceLength = 65536;

FUNCTION Construct (theSequenceLength : WORD) : SequenceType ;
PROCEDURE Destruct(VAR thesequence : SequenceType);
PROCEDURE Expand(VAR thesequence : SequenceType; P o s i t i o n , Amount : WORD);
PROCEDURE Contract(VAR thesequence : SequenceType;

P o s i t i o n , Amount : WORD) ;
PROCEDURE I n s e r t (S o u r c e : SequenceType;

VAR Des t ina t ion : SequenceType;
Des t ina t ionPos i t ion : WORD) ;

PROCEDURE Replace(Source : SequenceType;
VAR Des t ina t ion : SequenceType;
~ e s t i n a t i o n P o s i t i o n , DestinationAmount : WORD);

FUNCTION Copy (thesequence : sequenceType) : SequenceType ;

PROCEDURE SubInser t (Source : SequenceType;
SourcePosi t ion, SourceAmount : WORD;
VAR Des t ina t ion : SequenceType;
~ e s t i n a t i o n p o s i t i o n : WORD) ;

PROCEDURE SubReplace (~ource : SequenceType;
sourcePos i t ion , SourceAmount : WORD;
VAR Des t ina t ion : SequenceType;
~ e s t i n a t i o n P o s i t i o n , DestinationAmount : WORD);

FUNCTION Subcopy (thesequence : SequenceType ;
s t a r t p o s i t i o n , Amount : WORD) : SequenceType;

IMPLEMENTATION . . .
END.

APPENDIX C. T I I E IMPLEA4ENTATION M A N U A L

amount, and contracted a t a given position by a given amount. Various Insert, Replace,

and Copy operations are ~ rov ided as well.

A trick used in the implementation of Sequence is tha t the actual number of bytes

allocated to a sequence is always an even power of 2. Thus if a sequence has length n, it is

actually allocated as 2r1"g2 nl bytes. Thus sequences can often be Expanded or Contracted

without reallocation.

Sequence is used to implement a number of other units, including Line, LineBuffer,

TokenLine, and TokenBuf f er.

C.7 Line

UNIT Line ; INTERFACE C$F+, O+ ,L-)

USES Manager, Sequence;

TYPE
LineType = SequenceType;
LinePointer = LineType;
CharPointer = - CHAR;
StringPointer = STRING;

CONST MaxLineLength = ~ax~e~uenceLength;

FUNCTION Construct (theLine Length : WORD) : LineType ;
PROCEDURE Destruct (VAR theLine : ~ineType) ;

PROCEDURE Expand(VAR theLine : LineType; Position, Amount : WORD);
PROCEDURE AppendElement(theChara~ter : CHAR; VAR theLine : LineType);
PROCEDURE contract(^^^ theLine : LineType; Position, Amount : WORD);
FUNCTION Length(theLine : ~ine~ype) : WORD ;

FUNCTION ToString(theLine : ~ine~ype) : StringPointer;

FUNCTION NthElement(theLine : LineType; n : WORD) : CharPointer;

PROCEDURE Insert(Source : LineType;
VAR Destination : LineType;
~~~tinationPositi0n : WORD); 

PROCEDURE Replace(Source : LineType; 
VAR Destination : LineType; 
ch st in at ion Po sit ion, DestinationAmount : WORD); 

FUNCTION Copy(theLine : ~ine~ype) : LineType; 

PROCEDURE Sub~nsert (Source : LineType ; 
SourcePosition, SourceAmount : WORD; 
VAR Destination : LineType; 
DestinationPosit ion : WORD) ; 



A P P E N D I X  C. T H E  1MPIJGMEN?'A7'ION M A N U A L  

PROCEDURE SubReplace(Source : LineType; 
SourcePosition, SourceAmount : WORD; 
VAR Destination : LineType; 
DestinationPosition, DestinationAmount : WORD); 

FUNCTION SubCopy(theLine : LineType; 
StartPosition, Amount : WORD) : LineType; 

IMPLEMENTATION . . .  
END. 

LineBuffer 

UNIT LineBuf f er ; INTERFACE ($F+, o+, L-1 

USES Line, Manager, Sequence; 

TYPE 
LineBufferType = SequenceType; 
LineBufferPointer = LineBufferType; 

CONST 
MaxLineBufferLength = MaxSequenceLength DIV 4; 
NullLineBuffer : LineBufferType = NIL; 

FUNCTION Construct(theLine~ufferLength : WORD) : LineBufferType; 
PROCEDURE Destruct (VAR theLineBuf f er : LineBuf f er~ype) ; 
PROCEDURE Expand(VAR theLineBuffer : LineBufferType; 

Position, Amount : WORD) ; 
PROCEDURE Contract(VAR theLineBuffer : LineBufferType; 

position, Amount : WORD); 

FUNCTION Length(theLineBuffer : LineBufferType) : WORD; 
FUNCTION ~th~lement(theLineB~ffer : LineBufferType; 

n : WORD) : LinePointer; 
PROCEDURE Insert(Source : LineBufferType; 



A P P E N D I X  C. T H E  IMPLEMENrI'AT1ON M A N U A L  

VAR Destination : LineBufferType; 
DestinationPosit ion : WORD) ; 

PROCEDURE DestructiveInsert(VAR Source : LineBufferType; 
VAR Destination : LineBufferType; 
DestinationPosition : WORD) ; 

PROCEDURE Replace(Source : LineBufferType; 
VAR Destination : LineBufferType; 
DestinationPosition, DestinationAmount : WORD); 

FUNCTION Copy(theLineBuffer : LineBufferType) : LineBufferType; 
PROCEDURE SubInsert(Source : LineBufferType; 

SourcePosition, SourceAmount : WORD; 
VAR Destination : LineBufferType; 
DestinationPosition : WORD); 

PROCEDURE SubReplace(Source : LineBufferType; 
Sourceposition, SourceAmount : WORD; 
VAR Destination : LineBuf f erType ; 
DestinationPosition, DestinationAmount : WORD); 

FUNCTION SubCopy(theLineBuffer : LineBufferType; 
StartPosition, Amount : WORD) : LineBufferType; 

IMPLEMENTATION . . .  
END. 

LineBuff er a type for representing sequences of lines. It is implemented using 

Sequence and provides the same kinds of operations. 

LineBuff er is used to represent the com~nerits associated with nodes and the textual 

objects that  appear in PCAccr text windows. 

C.9 Grammar 

UNIT Grammar; INTERFACE ($F+, O+ ,L-1 

TYPE 
NodeClass = 

(Empty, 
Acc~mulation, . . . ,  VoidLiteral, 
AccumulationList, . . . ,  Whencondition, 
Charactex-Literal, . . . ,  ValueIdentifier); 

Nodeclassset = SET OF NodeClass; 



APPENDIX C. TI-IE Ih4PLEMENTATION M A N U A L  

WhenBranch = [TypeWhenBranch, ValueWhenBranch]; 
MinConstructionType = Accumulation; 
MaxConstructionType = VoidLiteral; 
MinListedType = AccumulationList; 
MaxListedType = WhenCondit ion; 
MinLexicalType = CharacterLiteral; 
MaxLexicalType = ValueIdentifier; 
ConstructionTypes = [MinConstructionType . .  MaxConstr~ctionT~pe]; 
ListedTypes = [MinListedType . . MaxListed~ype] ; 
LexicalTypes = [MinLexicalType . . MaxLexical~ype] ; 
NoChildConstructions = 

[AnyType, Empty, VoidLiteral, TypeDenoter, ValueDenoter] ; 

FourChildConstructions = [Iteration] ; 

FUNCTION NodeClassString(k : ~ode~lass) : STRING; 
FUNCTION ComponentCount(k : ~ode~lass) : INTEGER; 
FUNCTION OptionalComponentq(k : NodeClass; n : INTEGER) : BOOLEAN; 
FUNCTION NthComponentName(k : NodeClass; n : INTEGER) : STRING; 

PROCEDURE NthComponentDomain 
(k : Nodeclass; n : INTEGER; VAR Result : Nodeclassset); 

PROCEDURE Base~omain~f~istedType(k : NodeClass; 
VAR Result : NodeClassSet) ; 

IMPLEMENTATION . . .  
END. 

C.10 MPSl 

UNIT MPS1; INTERFACE ($F+ ,o+,L-) 



A P P E N D I X  C. T H E  IMPLEA/ IENlATION M A N U A L  

USES Grammar, LineBuffer, Line, Manager, Sequence; 

TYPE 
Node- = ShortPointer; 
NodePointer = - Nodecell; 
ElementPointer = Node-; 
EmptyRecord = 
RECORD 
END ; 

Accumulat ionRecord = 
RECORD 
AccumulatorOf, ElementsOf : Node-; 
Definition : Node- 

END ; 

VoidLiteralRecord = 
RECORD 
END; 

AccumulationListRecord = 
RECORD 
Elements : SequenceType 

END ; 
. . . 
WhenConditionRecord = 
RECORD 
Elements : SequenceType 

END ; 
CharacterLiteralRecord = 
RECORD 
Lexicalvalue : StringPointer 

END ; 
. . . 
ValueIdent if ier~e cord = 
RECORD 

Lexicalvalue : StringPointer; 
Definingoccurrence : Node- 

END ; 
Largestvariant = IterationRecord; 
FlagNumberType = 0. .15; 
Nodecell = 
RECORD 
Flags : SET OF FlagNumberType; 
Position : WORD ; 
Parent : Node-; 
Comment : LineBufferType; 
CASE NodeType : Nodeclass OF 



A PPENDLY C. T H E  IA4PLEMENTATION M A N U A L  

Grammar. Empty : (Empty : EmptyRecord) ; 
. . . 
ValueIdentifier: (ValueIdentifier : ValueIdentifierRecord) 

END ; 
STRING4 = STRING C41 ; 

VAR Print : PROCEDURE (x : Node-); 
theUnattachedEmptyNode : Node-; 

FUNCTION TestFlag(F1agNumber : FlagNumberType ; x : Node-) : BOOLEAN; 
PROCEDURE SetFlag(F1agNumber : FlagNumberType; x : Node-); 
PROCEDURE ClearFlag(F1agNumber : FlagNumberType; x : Node-); 
FUNCTION AddressString(x : Node-) : STRING4; 
FUNCTION ConstructCopy(x : Node-) : Node-; 
FUNCTION DenoterlessCopy(x : Node-) : Node-; 
FUNCTION TestEquality(x, y : Node-) : BOOLEAN; 
FUNCTION TestLess(x, y : Node-) : BOOLEAN; 
PROCEDURE Attach(aParent : Node-; aPosition : INTEGER; aChild : Node-); 
PROCEDURE Reattach(aParent : Node-; aPosition : INTEGER; aChild : Node-) ; 
PROCEDURE Unatt ach (x : Node- ) ; 
FUNCTION GetNthChild(aParent : Node-; aPosition : INTEGER) : Node-; 
FUNCTION GetComponentl(aConstructi~n :  ode-) : Node-; 
FUNCTION GetComponent2(aConstruction : Node-) : Node-; 
FUNCTION GetComponent3(aConstruction : Node-) : Node-; 
FUNCTION GetComPonent4(a~onstruction : Node-) : Node-; 
FUNCTION Allocate(aNodeClass :  odec class) : Node- ; 
PROCEDURE Destruct (VAR x : Node-) ; 
PROCEDURE Deattribute(x : Node-) ; 
FUNCTION Construct0 

(aNoChildConstruction : Nodeclass ; 
aComment : LineBuff erType) : Node-; 

FUNCTION Construct1 
(aOneChildConstruction : Nodeclass ; 

xl : Node-; 
aComent : LineBuf f erType) : Node- ; 

FUNCTION Construct2 
(a~uo~hild~onstructi~n : Nodeclass; 
xl, x2 : Node-; 
acoment : Line~uff erType) : Node- ; 

FUNCTION Construct3 
(a~hree~hildconstru~ti on : Nodeclass ; 
XI, ~ 2 ,  x3 : Node-; 
acoment : Line~ufferType) : Node-; 

FUNCTION Construct4 
( a ~ o u r ~ h i ~ d C o n s t r ~ ~ t i ~ n  : Nodeclass; 
XI, ~ 2 ,  ~ 3 ,  x4 : Node-; 
acomment : ~ineBuff erType) : Node- ; 



A P P E N D I X  C. T I I E  I M P L E M E N T A T I O N  M A N U A L  

FUNCTION ConstructList(aList : Nodeclass; 
aComment : LineBuff erType) : Node-; 

PROCEDURE ExpandList(aList : Node-; aPosition, anAmount : INTEGER); 
PROCEDURE ~~~endElement(aList, anElement : Node-); 
FUNCTION ~elect~lement(aSequence : SequenceType; 

n : WORD) : ElementPointer; 
FUNCTION ~onstructTypeIdentifier(aLexicalValue : STRING) : Node-; 
FUNCTION ConstructValueIdent if ier(aLexicalVa1ue : STRING) : Node- ; 
FUNCTION ~onstructIntegerLiteral(aLexicalValue : STRING) : Node,; 
FUNCTION ~onstructRealLiteral(aLexicalValue : STRING) : Node-; 
FUNCTION ~onstructStringLiteral(aLexicalValue : STRING) : Node-; 
FUNCTION ~ons t ruc tCharac t e rL i t e r a1  (aLexicalValue : STRING) : Node- ; 
FUNCTION GetLexicalValue(aLexeme : Node-) : StringPointer; 
FUNCTION GetInteger(anIntegerLitera1 : Node-) : LONGINT; 
FUNCTION GetReal(aRealLitera1 : Node-) : REAL; 
FUNCTION ~etCharacter(aCharacterLitera1 : Node-) : CHAR; 
PROCEDURE ~etDefiningOccurrence(id, theDefiningOccurrence : Node-); 
FUNCTION Get~efiningOccurrence(id : Node-) : Node-; 
PROCEDURE ~ e t ~ e f  inition(x, theDef init ion : Node-) ; 
FUNCTION Get~efinition(x : i ode-) : Node-; 
PROCEDURE setsort (aValue, aType : Node,) ; 
FUNCTION Getsort (aValue : g ode-) : Node- ; 
PROCEDURE ShowNode (x : Node-) ; 

CONST Basesize = ~ize~f(~odeCell) - SizeOf(LargestVariant); 

IMPLEMENTATION . . .  
END. 

type Node- wit11 all underscore to represent low-level nodes. 

A node, then, is s i ~ r ~ ~ l y  a ShortPointer, which can be convertcd to  a NodePointer using 

NodePointer(PTR(theNode,O)). A NodePointer points a t  a Nodecell, which is a variant 

record that incl~ldes the following: a sct of 16 Flags, a Position, a Parent, a Comment, a tag 

NodeType, alld a variant part for each possible node class. Thc  head of the Nodecell 

record is comrrlorl to all node classes and thc tail is specific to each node class. 

Ipor each r~ocle-class x,  a variant field also named x is defined when NodeType is x; this 

field is of a, record type r ~ a ~ ~ ~ e t l  xRecord, the components of which are class dependent. I n  

general, for a construction, a component of type Node- is declared for each construction 

component, with a name clorivcd from the component name; for a list, a component of 



APPENDIX C. T l l E  lh4PLEA~lENTATION M A N U A L  260 

type SequenceType named Elements is declared; and for a lexeme, a component of type 

S t r i n g P o i n t e r  named Lex ica lva lue  is declared. 

Additional components are declared in some xRecords to  store the semantic attributes 

defining-occurrence, type, and definition. They are named Def i n ingoccur rence ,  S o r t ,  or 

D e f i n i t i o n ,  respectively. Identifiers have a Def i n ingoccur rence  component and expres- 

sions can, but  do not necessarily, have a S o r t  component and a D e f i n i t i o n  component. 

The  following facilities are provided to  support the manipulation of nodes. First, a low- 

level print routine is provided by the procedure variable P r i n t .  It is originally set t o  the 

procedure ShowNode, which simply displays the contents of a NodeCell record. However, 

if Unparser is used, the original P r i n t  is replaced by a more sophisticated printer, which 

prints a node and its children according to Acer's concrete syntax. 

The  variable theUnattachedEmptyNode contains a special unattached empty node that 

has itself as its parent. This node is the parc.nt of every unattached node, including itself. 

To reduce dependence on the particular da ta  structure used in MPSI, various access 

routines are provided. For example, Tes tF lag ,  Se tFlag ,  and C l e a r F l a g  are  used to  access 

the F l a g s  field of a node. 

A d d r e s s s t r i n g  yields a four-character hexadecimal representation of a node viewed as 

a Shor tPo in t e r .  The  PCAcer erivironment uses these as node identity numbers. 

ConstructCopy produces a copy of the entire tree rooted a t  the given node; when a 

denoter is copied, a new denoter is created with the same node for its definition as the 

original. DenoterlessCopy is similar but, each copied type-denoter is replaced by an  any- 

type and each copied value-denoter is replaced by a void-literal. 

Testing for structural equality and lexicographic order is supported by T e s t E q u a l i t y  

and Tes tLess .  

The  functions At tach ,  Rea t t ach ,  and Unat tach are provided for building and 

editing nodes. At tach  takes a parent node, a position, and an unattached child and attaches 

the child a t  the specified position of the parent. Rea t t ach  is the same but  the child may 

be attached, in which case it is rcmovcd from its context. And Unat tach  simply detaches a 

child, i.e., it sets the position to 0 and the parent to theUnattachedEmptyNode. 

GetNthChild selccts a child a t  a given position arid the GetComponentn functions serve 

the same purpose but only for constructiori nodes. 

The  ability to create and free nodes is provided by A l l o c a t e  and Des t ruc t .  Note tha t  

destructed nodes are not freed to the hcap,  they are stored for later reuse by A l l o c a t e .  

D e a t t r i b u t e  removes all serrian tic attributes associated with a node and any of its children. 



APPENDlX  C. T I i E  IMPLEMENTATION M A N I I A  L 261 

There are other ways than A l l o c a t e  to  construct a node. In particular, a construction 

node can be created, given appropriate unattached children, using one of the Cons t ruc tn  

functions. Similarly, an empty list can be created by C o n s t r u c t L i s t ;  the  Elements fields 

of such a list can then be modified by ExpandList to  permit children to  be Attached. 

ExpandList specifies the position a t  which t o  expand and by how much. As well, an element 

can be appended to a list using AppendElement. 

Elements of a list are accessed as follows. Se lec tElement ,  given the  Elements field of a 

list node and a position n, yields an ElementPointer ,  i.e., a pointer a t  a node. With this 

function, the nth element of a list can be either assigned t o  or simply examined. 

For constructing a kxeme from its spelling, various ConstructLexeme functions are pro- 

vided. Also, for accessing the spelling of a lexeme, GetLexicalValue is provided. T h e  special 

functions Ge t In t ege r ,  GetReal,  a.nd Ge tcha rac t e r  are provided for accessing integer-, real-, 

and  character-literal values respectively. 

Finally, functions for Getting and Set t ing the semantic attributes defining-occurrence, 

definition, arid type are provided. 

M P S ~  uses a number of implementation techniques that  are of interest and must be un- 

derstood to  explain the purpose of TouchMonitor. 

To begin with, one of the goals of MPSl is to  support the maintenance of valid semantic 

attributes in the presence of editing. In general, whenever a node modification takes place, all 

nodes within the tree will have invalid semantic attributes since they are all interdependent. 

Therefore, one approach for mainta.ining attributes would be to simply traverse the entire 

tree and remove all attributes. IIowevcr, this would make a simple edit an operation tha t  

takes 0 ( n )  time, where 11 is the number of nodes in the tree. This is unacceptable when 

such an edit can be done in constant time in the absence of attributes. 

The  approach used in MPSl has a more acceptable overhead. To outline the approach, 

assume tha t  every node has a flag, let's call it Modif iedQ, which starts out as f a l s e .  Then, 

whenever a n  edit (e.g., Attach,  Rea t tach ,  or Unat tach)  takes p h c e  a,t a given node, the 

ModifiedQ of that, node and every node from it to the root is set to  t r u e .  The  overhead 

on editing is thus proportional to the dopth of the trcc. Rut ,  since syntax trees tend t o  get 

wider rather than deeper, editi~ig is essentially still a constmt-time operation. 

Whenever an  attribute lookup is applicd for a given node (e.g., G e t s o r t ) ,  all pa.rents of 

the node are exan~ined to scc i f  any have a t r u e  ModifiedQ. If any are t r u e ,  the stored 

attribute is invalid and is discarded. The  ovcrhcad on attribute lookup is therefore also 

proportional to the depth of the node. 



A P P E N D l X  C. T H E  Ih4PLEA4ENTATION M A N U A L  262 

Modif iedQ becomes f a l s e  only when an  attribute is stored a t  a node. In this case, the 

tree is again traversed from the node to the root but on the way back down, for any node 

with a t r u e  Modif iedQ, the Modif i e d Q  of each of its children is set to  t r u e  and the node's 

own Modif iedQ is set to  f a l s e .  This downward propagation of flags continues until the 

start  node is reached. Thus, after an attribute is set for some node, every node between it 

and the root will have a f a l s e  ModifiedQ. IIence, a subsequent lookup will simply return 

the stored attribute. Of course, other nodes in the tree may still have a t r u e  ModifiedQs 

but these flags will invalidate only the attributes within those subtrees and will also become 

f a l s e  when attributes are stored within those subtrees. The  overhead on attribute storage 

is potentially proportional to the number of nodes in the tree, but then the determination 

of the attribute itself is typically the dominating time factor anyway. 

With the above approach, the various Get functions yield only valid attributes, and can 

discard any invalid attributes. 

Now, another problem with attributes is that  they are typically nodes tha t  are automat- 

ically created in response to a query. IIence, when an edit is performed and an attribute is 

no longer valid, wllat is to become of it? Turbo Pascal does not support garbage collection,2 

so invalid attributes cannot simply continuc to exist as they will eventually exhaust memory. 

Thus invalid attributes sl~ould somchow be automatically reclaimed. 

To this end, tile Nodecel l  rccord is used in the following tricky way. If the P a r e n t  field 

of a Nodecel l  is set to theUnattachedEmptyNode, we know that  the P o s i t i o n  field must 

be 0. Therefore, thc P o s i t i o n  field can bc used for another purpose in this case. For this 

reason, when an urlattached node is S e t  to be the attribute of some node, the P o s i t i o n  field 

of the attribute is used to store the identity of the 'attribute parent.' Because of this, when 

the attribute of a node x is known to be invalid using the previous flagging technique and the 

attributIe node illdicat,es x to bc its attribute owner, the attribute node can be  Des t ruc ted .  

It is importallt to realize that although attributes can be shared by many nodes and 

hence a Destructed attribute may still appear as an attribute of some other node this does 

not cause a problem. Aftcr all, there is a t  most one attribute owner so an  attribute will 

only be Des t ruc ted  once. In addition, a Des t ruc ted  node is not actually returned to  tile 

heap, so it is still valid to access its P o s i t i o n  field to check for ownership, even i f  the node 

is subsequently ~ l l o c a t e d  to serve a new purpose. 

One final trick used in MPSl is that the position of an unattached node can also be set 

'Note tha t  Acer does have garbage collection so at tr ibute ~ iodes  may continue to exist until they bccolnc 
garbage. 



A P P E N D I X  C. T H E  IMPLEAdENTATION M A N U A L  263 

to  1 (rather than 0). In this case, whenever part of that  node is modified, the function 

stored in TouchMonitor is applied to the root node. This is how the PCAcer environment 

(and Fileserver in particular) keeps track of whether a top-level fixed-value binding or 

binding-list is modified with respect to the version stored in the file system. 

C.11 Keywords 

UNIT Keywords; INTERFACE ($F+,O+,L-) 

PROCEDURE InstallKeyword(spelling : STRING; tokencode : INTEGER); 
FUNCTION FindKeyword(VAR spelling : STRING) : INTEGER; 
PROCEDURE ShowKeywords; 

IMPLEMENTATION 
END. 

Keywords provides a has11 table in which keywords can be installed for efficient lookup. 

InstallKeyword, given a spelling and the token-code of the keyword represented by the 

spelling (i.e., the ORD of the TokenType as defined by LexicalAnalyzer.), installs the in- 

formation in the hash table. A subsequent call to  FindKeyword, with a particular spelling, 

yields the token-code associated with that spelling, or 0 if  the spelling is not in the hash 

table. 

ShowKeywords prillts the contents of the hash table. 

C .  12 LexicalAnalyzer 

UNIT LexicalAnalyzer; INTERFACE {$F+ ,O+ ,L-1 

USES Grammar, Keywords, Line, LineBuffer, MPS1; 

TYPE 
TokenType = 

(EOStoken, 
DotToken, . . . ,  CommaToken, 
LetToken, . . . ,  TryingToken, 
IntegerLiteralToken, . . . ,  StringLiteralToken, 
BadToken) ; 

CharacterGenerator = PROCEDURE (VAR Ch : CHAR); 



APPENDIX  C. T H E  IMPLEA4ENTATION M A N U A L  

CONST 
MinToken = EOStoken; 
MinPunctuationToken = DotToken; 
MaxPunctuationToken = CommaToken; 
MinKeywordToken = LetToken; 
MaxKeywordToken = TryingToken; 
MinLexicalToken = IntegerLiteralToken; 
MaxLexicalToken = StringLiteralToken; 
MaxToken = BadToken; 
MaxTokenString = 26; 

VAR Tokenstring : ARRAY [TokenTypel OF STRINGIMaxTokenString + 11; 
CurrentLexeme : Node-; 
CurrentToken : TokenType; 
TokenPosition, TokenLine, CommentPosition : WORD; 

PROCEDURE ~cceptToken(token : TokenType; VAR Comment : LineBufferType); 
PROCEDURE InitializeLexicalAnalyzer 

(Nextchar : CharacterGenerator; Failure : ErrorHandler); 
PROCEDURE ~ile~nitializeLexicalAnalyzer(VAR InputFile : TEXT); 
PROCEDURE ~arse~ailure(str : STRING); 

IMPLEMENTATION . . .  
END. 

LexicalAnalyzer supports the conversion of a stream of characters to a stream of tokens. 

TokenType is provided to classify tokens, which are grouped to reflect the categories punctu- 

ation, keyword and lexc~nc. The  spelling of each token is stored in the array Tokenstring. 

LexicalAnalyzer is initialized to begin analysis either by calling the procedure 

InitializeLexicalAnalyzer with a function that  generates characters and a function that 

llandlcs errors, or by calling FileInitializeLexicalAnalyzer with a TEXT file. If a parser 

detects an error during parsing, it can call ParseFailure to terminate analysis and produce 

an error rrlessage associated with the CurrentToken. 

Once analysis begins, the interface variables contain information about the most recently 

analyzed t,oken: Current Token contains the TokenType, Current Lexeme contains a lexeme 

i f  CurrentToken is a lexical token, TokenPos it ion contains the column position, TokenLine 

contains the row position, and CommentPosition cor~tains the column position a t  which the 

first associated cornrncnt starts. 

i\ parser accepts a token by calling AcceptToken with the type of token expected; the 



APPENDIX C. T H E  Ih fPIJEhfENTATION M A N U A L  265 

associated comment is set and the interface variables are updated to  reflect the new informa- 

tion about the next token. If CurrentToken is not of the specified type, LexicalAnalyzer 

calls the error handler function-for FileInitializeLexicalAnalyzer the error handler 

writes an error message to  standard output but a programmer supplied handler may do 

what it pleases. 

Recall from Chapter 5 that  tokens have row and column positions by virtue of the fact 

tha t  the stream of characters from which they are derived contains ASCII formatting char- 

acters tha t  imply discrete lines of text. This position information is essential for producing 

informative error messages. 

Parser 

UNIT Parser; INTERFACE ($F+, 0+, L-) 

USES LineBuffer, LexicalAnalyzer, MPS1; 

TYPE Node = Node-; 

FUNCTION Parse(VAR inputFile : TEXT) : Node; 
PROCEDURE ~arse~ineBuffer(theLineBuffer : LineBufferType; 

VAR ResultNode : Node; 
VAR ErrorPositionX, ErrorPositionY : WORD; 
VAR ErrorReason : STRING); 

FUNCTION ParseStream(NextChar : CharacterGenerat or; 
Failure : ErrorHandler) : Node; 

IMPLEMENTATION . . .  
END. 

Parser provides three different parsing routines. Parse parses a node from a TEXT file; 

Parsestream parses a node given a function that  generates characters and a function tha t  

handles errors; and ParseLineBuffer parses a node from a LineBuffer, it sets the res,llting 

node to  ResultNode and if an error occurs, the error information (i.e., the position and error 

message) is assigned to the remaining parameters. The  three routines share a common 

implementation. 

There is nothing very intcscstilig about the irnplcmentation of Parser. 



APPENDIX C. 7'HE IMPLl3A4EN7'Al'ION A4ANUA L 

C.14 Unparser 

UNIT Unparser ; INTERFACE {$F+, O+ ,L-3 

USES Index, Grammar, LexicalAnalyzer, Line, LineBuffer, MPS, MPS1; 

TYPE 
UnparseState = 

RECORD 
vposition, hPosition : INTEGER; 
Hold, Reserve : INTEGER; 
CurrentNode : Node; 
PreviousToken : TokenType; 
Breakpending : BOOLEAN; 
PendingHold : INTEGER; 
CASE Fitting : BOOLEAN OF FALSE: (Narrow : BOOLEAN) 

END; 
UnparseItem = - UnparseItemCell; 
UnparseItemCell = 
RECORD 
theToken : TokenType; 
theowner : Node; 
hPosition : INTEGER; 
NthCommentLine : WORD 

END ; 
BreakPrinter = PROCEDURE (VAR state : UnparseState); 
CommentLineprinter = PROCEDURE (Nth : INTEGER; VAR state : UnparseState) ; 
Tokenprinter = PROCEDURE (token : TokenType; VAR state : UnparseState) ; 
NodeEmitter = PROCEDURE (X : Node; VAR state : UnparseState); 

VAR Linewidth, DenoterCutOffWidth : INTEGER; 
PrintEmptyNodes : BOOLEAN; 
TheBreakPrinter : BreakPrinter; 
TheCommentLinePrinter : CommentLinePrinter; 
TheTokenPrinter : Tokenprinter; 
TheNodeEmitter : NodeEmitter; 
Delimit9 : ARRAY C~okenTypel OF SET OF TokenType; 
ReserveForA : ARRAY CMinPunctuationToken..MaxKeywordToken] OF 

l..MaxTokenString + 1; 

CONST 
Indentstep = 2; 
HalfIndentStep = 1; 

PROCEDURE Outputsyntagm(x : Node); 
PROCEDURE ~rint~yntagm(VAR f : TEXT; x : Node); 



A P P E N D I X  C. T I I E  I M P L E M E N T A T I O N  M A N U A L  

FUNCTION FitNode(x : Node; VAR s t a t e  : UnparseState) : BOOLEAN; 
PROCEDURE EmitNode(x : Node; VAR s t a t e  : UnparseState); 
PROCEDURE Emit (VAR s t a t e  : UnparseState) ; 
PROCEDURE EmitComment(Comment : LineBufferType; VAR s t a t e  : UnparseState);  
PROCEDURE Break(VAR s t a t e  : Unparsestate);  

IMPLEMENTATION . . .  
END. 

Unparser provides facilities for pretty-printing nodes. Function parameters are  used for 

the fitting and printing. 

A number of interface variables are declared. Linewidth is set to  indicate the number of 

columns in which the formatted output should fit. (The actual output may be wider when 

there is insuficicnt space to print the ~lodc.) DenoterCutOffWidth is set to illdicate the 

maximum length of a denoter's printed definition; if this length is exceeded, the definition is 

not printed. printEmptyNodes is set to indicate whether empty nodes should be printed as 

the keyword or should be invisible. The  array Del imi tQ,  for each type of token t ,  

indicates the set of tokens that must be delimited by white space when they follow t .  The 

The remaining interface variables are procedure variables for customizing the pretty 

printer. Each takes a state parameter of type UnparseState ,  which includes the follow- 

ing information. The  current vertical and horizontal position v P o s i t i o n  and h P o s i t i o n ;  

the  old, iec., the amount of indentation to appear after the next line-break; the Reserve, 

i.e., the amount of space to be left unused a t  the end of the line; the CurrentNode that i s  

being printed or fitted; the PreviousToken that  was printed or fitted; the PendingBreak, 

i.e., whct.hcr a break is pcndirig before the next token is printed; the PendingHold, i-e., the 

hold that  is i n  for the pendi~lg break; the F i t t i n g  flag, which indicates whctllcr the 

printer is testillg i f  a node fits or is actually printing; and finally, if the printer is not fitting, 

Narrow indicates wlretl~er the entire CurrentNode fits on the current line. (Breakpending 

arrd PendingHold are used in conjunction with the printing of comment lines so that  corn- 

ments appear as a block, i.e., each % character is lined lip in a column). 

TheBre&Printer is used by Unparser to print a linebreak and to set up the indentation 

for the next line. ?'herc4ore, it should normally increment v P o s i t i o n  and set h P o s l t i o n  to 



by the amount of space taken up by the % character and the comment-line itself. It is not 

called during fitting. (A  node that is commented is always printed as narrow.) 

TheTokenPrinter is used by Unparser to  fit and print tokens. Normally it increments 

hposition to  indicate the amount of space used by the token and Delimit9 is consulted to  

determine if space should precede the token. Only when Fitting is false in state, should 

tokens actually be printed. 

TheNodeEmitter over-rides the normal formatting of nodes. Initially TheNodeEmitter 

is set to  be the same as EmitNode. However, it can be replaced with a procedure tha t  does 

special formatting. This procedure can call EmitNode for cases to  be handled as usual. 

FitNode, Emit, EmitNode, Emitcomment, and Break are used to  implement node format- 

ting. The  details of how this is done will not be described. Instea,d, a typical node formatting 

routine is shown below: 

PROCEDURE ~mit~~adicMethodCal1 (VAR state : UnparseState) ; 

BEGIN 
WITH state DO 
BEGIN 
h i t ~ o k e n  (LCurlyBracToken, state) ; 
 old := hposition; 

INC(Reserve, 
System.Length 

(~et~exical~alue(GetComponent2(~urrent~ode))-) + 1) ; 
~h~~ode~rnitter(~etComponentl(Current~ode), state); 
DEC(Reserve, 

System.Length 
(Get~exicalvalue (GetComponent2(~urrent~ode) ) -)  + 1) ; 

TheNode~mitt er (Get Component2 (Current~ode) , st ate) ; 
~reak(state1; 
IF NOT Fitting OR (hPosition + Reserve < Linewidth) THEN 
BEGIN 
~NC(Reserve, ReserveForA CRCurly~racToken] ) ; 
~h~Node~mitter(~etComponent3(Current~ode), state) ; 
 reserve, ReserveForA CRCurly~racToken] ) ; 
hi tToken(RCur lyBracToken,  state) ; 
hitcomment (commentof (Current~ode) -, state) 
END 

END 
END ; 

A programmer wistiing to customize the forrna,tting of a particular cla,ss of node will 

make a copy of such an e x i s t i ~ ~ g  routine arid modify it. 



A P P E N D I X  C. T H E  I M P L E M E N T A T l O N  A4ANUAL 269 

by using hPosition to  indicate point sizes rather than simply column position. In other 

words, the units represented by hPosit ion, Hold, Linewidth, and so on, do not matter.  

Note that  the type UnparseItemCell is use by the unit TokenLine to  represent lines of 

tokens. Each such token has a TokenType, an owner node, and a starting hPosition. In 

addition, if the token is a comment-line, NthCommentLine indicates which line of theowner 

the token stands for. 

C.15 Makers 

UNIT Makers; INTERFACE ($F+,o+,L-) 

USES MPS; 

FUNCTION ~ake~ccumulation(x1, x2 : Node) : Node; 
. . . 
FUNCTION MakeVoidLiteral : Node; 

IMPLEMENTATION . . .  
END. 

Makers provides functio~rs for constructing each class of construction node from the a,ppro- 

priate numbcr and type of children. ( I f  an attached child is provided, a copy is automatically 

produced.) 

C.16 Access 

UNIT Access ; INTERFACE ($F+, O+ ,L-) 

USES MPS; 

FUNCTION Accumulationq (x : Node) : BOOLEAN; 
. . . 
FUNCTION ~hen~onditionq(x : Node) : BOOLEAN; 
FUNCTION ~ccumulator~f(x : Node) : Node; 

FUNCTION ~ariantsof (x : Node) : Node; 

IMPLEMENTATION . . .  
END. 



A P P E N D I X  C. 7'1-115 IMPLEMEN7'A7'10N M A N U A L  2 70 

Access provides two sets of functions: a recognizer for each class and category of node; 

and a selector for each construction component name. The  xQ functions yield true i f  their 

argument node is of the corresponding class or category; the xOf functions yield the x 

component of their construction argument. 

C.17 MPS 

UNIT MPS; INTERFACE {$F+, O+ ,L-) 

USES Grammar, Keywords, MPS1, LineBuffer; 

TYPE Node = Node-; 

VAR theUnattachedEmptyNode : Node; 

FUNCTION NodeType(x : Node) : Nodeclass; 
PROCEDURE ~ontext~omain(x : Node; VAR Result : Nodeclassset); 
FUNCTION DeletableContextq(~ : Node) : BOOLEAN; 
FUNCTION EmptyQ(x : Node) : BOOLEAN; 
FUNCTION Lexemeq(x :  ode) : BOOLEAN; 
FUNCTION Listq(x :  ode) : BOOLEAN; 
FUNCTION ~onstructionq (x : Node) : BOOLEAN; 
FUNCTION Attributeq(x : Node) : BOOLEAN; 
FUNCTION Parent (x : Node) : Node; 
FUNCTION ~ttribute~arent(x :  ode) : Node; 
FUNCTION Root(x :  ode) : Node; 
FUNCTION AttributeRoot(x :  ode) : Node; 
FUNCTION Depth(x : Node) : WORD; 
FUNCTION FirstLexeme(x :  ode) : Node; 
FUNCTION ~tructurally~qualQ (x , y : Node) : BOOLEAN ; 
FUNCTION ~tructurally~essq (x, Y : Node) : BOOLEAN; 

FUNCTION EnclosesQ(x, y : Node) : BOOLEAN; 
FUNCTION 1mproperlY~ncl~~e~q(~, y : Node) : BOOLEAN; 
FUNCTION ~ttribute~ncloses q (x, y : Node) : BOOLEAN; 
FUNCTION ~ontainsq(theLeftN~de, theRightNode, 

theTargetNode : Node) : BOOLEAN; 

FUNCTION ~nclosin~(AncestorDomain : Nodeclassset; x : Node) : Node; 
FUNCTION ~ommon~ncestor(~, : Node) : Node; 
FUNCTION ~ommentOf(x : Node) : LineBufferPointer; 
PROCEDURE ~ppend~omment (x : Node; hnment : LineBuff erType) ; 
PROCEDURE ~e~lace~omment (X : Node ; Newcomment : LineBuff erType) ; 
FUNCTION ~irstElement(1ist : Node) : Node; 
FUNCTION ~thElernent(1ist : Node; n : INTEGER) : Node; 



APPENDIX C. ?'HE IA4PLEMENTATION M A N U A L  

FUNCTION FirstComponent(aConstruction : Node) : Node; 
FUNCTION NthComponent(aConstruction : Node; n : INTEGER) : Node; 
FUNCTION FirstChild(aParent : Node) : Node; 
FUNCTION NthChild(aParent : Node; n : INTEGER) : Node; 
FUNCTION NumberOfChildrenOf(x : Node) : INTEGER; 
FUNCTION Position(x : Node) : INTEGER; 
FUNCTION Previous(x : Node) : Node; 
FUNCTION Next(x : Node) : Node; 
FUNCTION Copy(x : Node) : Node; 
PROCEDURE Replace(x1, x2 : Node) ; 
PROCEDURE ReplaceAndSet(VAR xl : Node; x2 : Node); 
PROCEDURE Exchange (xl , x2 : Node) ; 
PROCEDURE Delete(x : Node) ; 
PROCEDURE Insert(1ist : Node; n : INTEGER; elem : Node); 
PROCEDURE TailInsert (list : Node; elem : Node) ; 
PROCEDURE Splice(1ist : Node; n : INTEGER; SubList : Node); 
FUNCTION Concat(elem, list : Node) : Node; 
FUNCTION Appendl(list, elem : Node) : Node; 
FUNCTION Append(list1, list2 : Node) : Node; 
FUNCTION ~ubList(1ist : Node; nl, n2 : INTEGER) : Node; 
FUNCTION NullList (kind : NodeClass) : Node ; 
FUNCTION Listl(kind : NodeClass; el : Node) : Node; 
FUNCTION List2(kind : NodeClass; el, e2 : Node) : Node; 
FUNCTION List3(kind : NodeClass; el, 62, e3 : Node) : Node; 
FUNCTION List4(kind : NodeClass; el, e2, 83, e4 : Node) : Node; 
FUNCTION List5(kind : NodeClass; el, e2, e3, e4, e5 : Node) : Node; 
FUNCTION Make~exeme(k : NodeClass; aLexicalValue : STRING) : Node; 
FUNCTION ~ a k e ~ ~ ~ e ~ d e n t i f  ier (aLexicalValue : STRING) : Node; 
FUNCTION Makevalue~dent if i er (aLexicalValue : STRING) : Node ; 
FUNCTION Make~nte~erLiteral (aLexicalValue : STRING) : Node ; 
FUNCTION Make~ealLiteral(aLexi~alvalue : STRING) : Node; 
FUNCTION Make~trin~Literal(aLexicalValue : STRING) : Node; 
FUNCTION Make~haracter~iteral (aLexicalValue : STRING) : Node ; 
FUNCTION Stringof (aLexeme : s ode) : STRING; 
FUNCTION lntegerOf(anIntegerLiteral : Node) : LONGINT; 

FUNCTION Realof (aRealLitera1 : Node) : REAL ; 
FUNCTION ~haracter~f(aCharacterLiteral : Node) : CHAR; 
FUNCTION BuildlntegerLiteral(x : LONGINT) : Node; 

FUNCTION ~ u i l d ~ e a l ~ i t  eral ( x : REAL) : Node ; 
FUNCTION Build~haracterLit eral (X : CHAR) : Node ; 

IMPLEMENTATION . .  
END. 

MPS the primary metaprogramming system abstraction. It declares the type 

Node and tl-lc special node call theUnattachedEmpty~ode. 

NodeType determines the Nodeclass of a node. ContextDomain determines the set of 



APPENDIX C. T H E  IMPLEMENTATION M A N U A L  

Nodeclasses that  may appear in the context a t  which the argument node is attached. 

DeletableContextQ determines if its argument can be Dele ted  from its context. EmptyQ, 

LexemeQ, ListQ,  and Cons t ruc t ionQ are recognizers that  behave as implied by their names. 

A t t r i b u t e 4  determines if a node is an  attribute node. Recall tha t  an  unattached node 

used as a semantic attribute has its position field specially marked t o  indicate i ts attribute 

parent. Therefore, A t t r i b u t e q  determines if the position field of the root of its argument is 

so marked. 

Pa ren t  determines the parent of a node; theUnattachedEmptyNode is yielded i f  the 

argument node is unattached. Similarly, A t t r i b u t e P a r e n t  determines the  attribute parent 

of the root of the argument node and it too yields theUnattachedErnptyNode if A t t r i b u t e Q  

is f a l s e  for its argument. 

~ o o t  determines the root node of a node by repeated application of P a r e n t  until the 

parent is empty. Similarly, At t r ibu teRoot  determines the attribute root of a node by 

repeated application of A t t r i b u t  eParent  until the A t t r i b u t e P a r e n t  is empty. 

Depth determines the depth of a node with respect to  its root. F i r s tLexeme de- 

termines the first lexeme rcached b~ an pre-order traversal. S t r u c t u a l l y E q u a l ~  and 

StructurallyLessQ tcst for structural equivalence and lexicographic order. 

EnclosesQ dct,crmines whether the node x contains the node y as a descendant. 

ImproperlyEnclosesQ does the same but yields t r u e  when x and y are  the same node. 

AttributeEnc1osesQ determines if x can be reached from y by repeated applications of 

A t t r i b u t  eParent .  

Conta insQ deterlnines if theLeftNode, theRightNode, or some node in between 

ImproperlyEnclosesQ theTargetNode Therefore, theLeftNode and theRightNode milst 

be cklildren of tile same constructiori or list node and theLeftNode must appear before 

theRightNode. 

Enclosing applies Parent  until the parent's class is a member of AncestorDomain. 

CommonAncestor determines the node with largest depth that  has both x and y as a de- 

scendan t . 
Commentof a pointer to  a line-buffer. This can be used both to  access and to  update 

the comment field of a node. A line-buffer can be appended to the existing comment us ing  

Appendcomment. ~ e ~ l a c e C o m m e n t  replaces the comment and destroys the old comment. 

Firs tElement  yields the first child of a list node, unless the list is empty, i n  which 

case it the~nat tachedEmptyNode.  NthElement yields the nth child of a list node. 

argument n may be negative, in which case children are accessed right to  left (i.e., the 



APPENDIX  C. T H E  lMPLEMEN7'ATlON M A N U A L  

-1 child is the last child). Firstcomponent and NthComponent behave similarly but for 

constructions. And Firstchild arid NthChild also behave similarly but apply for both lists 

and constructions. 

Numberofchildren determines the number of children of a node; lexemes have 0 

dren. Position determines the position of a node; an  unattached node has position 0. 

Previous and Next determine the previous or next node with respect to  the context; they 

theUnattachedEmptyNode when there is no previous or next node. 

COPY creates a copy of a node, i.e., a node that  is StructurallyEqualQ but is unattached. 

Replace replaces xl in context with ~ 2 .  The node xl must be attached and i f  x2 is 

attached it is copied. The  class of x2 must be a member of the ContextDomain of xi. 

ReplaceAndSet does the same thing but sets xl to be x2. 

Exchange ex.clianges two nodes ~ I I  context. Each node's class must be a member of the 

other's contextDomain. Both nodes must be attached. 

delete deletes a node. The node must be attached and in a deletable context. Deleting 

a node that is an optional construction component has the effect of replacing the node with 

a new empty node. 

Insert inserts an  element a t  the specified position of a list. Just as for NthChild, the 

poGt,ion may be to specify right to left order. After the insertion the element will 

be at the indicated ps i t ion .  TailInsert is like Insert with n set to  -1. 

Splice inserts copies of the elements of the sublist a t  the indicated position of the list. 

Concat creates a new list from an element and a list by including the element as the first 

element of the list. Append1 is similar but the element is put a t  the end. Append creates 

a new combined list from two existing lists. Sublist creates a new list from a subrange of 

elements of an existing list. 

NullList creates an empty list of the specified class and the Listn functions create lists 

of the indicated length, given a class and a1)propriate elements. 

MakeLexeme creates a lexerne of the given class and with the given spelling. Irldividual 

MakeX functions for each class of kxcme are provided as well. StringOf yields the spelling of 

a Iexeme. Integerof, RealOf, and Characterof yield the Pascal value of an  integer-, 

or character-litcral, respectively. Similarly, BuildIntegerLiteral, BuildRealLiteral, and 

BuildcharacterLiteral build the appropriate class of lexeme given its Pascal value. 

This comp]ctes the interface for manipulating objects of Acer's context-free syntax. ~ 1 1  

these rout,ines arc implemented in terms of the da ta  structures provided by M P S ~ .  



A P P E N D I X  C. T I f E  IMPLEA/IEN?'ATlON M A N U A L  

C.18 FileServer 

UNIT FileServer; INTERFACE ($F+,o+,L-) 

USES Manager, Index, DOS, LineBuffer, MPS; 

CONST BackupLevel = 2; 

PROCEDURE Store(x : Node) ; 
FUNCTION FetchDeclaration(Name : STRING) : Node; 
FUNCTION ~etchBinding(Name : STRING) : Node; 
FUNCTION RestoreBinding(Name : STRING; VAR OldBinding : Node) : Node; 
PROCEDURE ~toreClosure(Name : STRING; theclosure : Node); 
FUNCTION ~etch~losure (Name : STRING) : Node; 
PROCEDURE StoreInstructions 

(Name : STRING; theInstructions, theclosure : Node); 
FUNCTION ~etch~nstructions(Name : STRING; theclosure : Node) : Node; 
PROCEDURE ~toreCode(theC1uster : Node; thesize : WORD; thecode : POINTER); 
FUNCTION FetchCode(Name : STRING; VAR thecluster : Node) : ShortPointer; 
PROCEDURE ~tore~xecutable(theCluster : Node; 

thesize : WORD; thecode : POINTER); 
FUNCTION Fetch~xecutable(Name : STRING; 

VAR thecluster : Node) : ShortPointer; 
FUNCTION FindBindingFile(IdentifierName : STRING; 

VAR f : FILE) : BOOLEAN; 
FUNCTION ~indin~FileTime(1dentifierName : STRING) : LONGINT; 
FUNCTION ~ind~eclarat ionFi le (Ident if ierName : STRING; 

VAR f : FILE) : BOOLEAN; 

FUNCTION ~eclaration~ile~ime(1dentif ierName : STRING) : LONGINT; 
FUNCTION Find~ode~ile(1dentifierName : STRING; VAR f : FILE) : BOOLEAN; 
FUNCTION code~ile~ime(1dentifierName : STRING) : LONGINT; 
FUNCTION ~ i ~ d ~ n s t r u c t  ionFi le (Ident if ierName : STRING ; 

VAR f : FILE) : BOOLEAN; 

FUNCTION ~nstruction~ileTime(IdentifierName : STRING) : LONGINT; 
FUNCTION FindExecutableFi1 e (Identif ierName : STRING; 

VAR f : FILE) : BOOLEAN; 

FUNCTION Executable~ileTime(1dentifierName : STRING) : LONGINT; 
FUNCTION FindclosureFile(IdentifierName : STRING; VAR f : FILE) : BOOLEAN; 
FUNCTION closureFileTime(1dentifierName : STRING) : LONGINT; 
FUNCTION FetchFull~ame(VAR f : FILE) : STRING; 
PROCEDURE ~heck~oint~ode(VAR f : FILE; theNode : Node); 
FUNCTION ~estore~ode(VAR f : FILE) : Node; 
PROCEDURE cheCkpoint~ineBuf f er(VAR f : FILE; 

theLineBuf f er : LineBuff erType) ; 
FUNCTION ~estoreLineBuf f er (VAR f : FILE) : LineBuf f erType ; 
FUNCTION ~ileTime (VAR f ) : LONGINT; 



A P P E N D I X  C. T H E  I M P L E M E N T A T I O N  M A N U A L  

FUNCTION HasBackup(Name : STRING) : BOOLEAN; 
PROCEDURE WritePath(VAR theFile : FILE; theNode : Node); 
FUNCTION ReadPath(VAR theFile : FILE; theNode : Node) : Node; 
PROCEDURE ShowExternals; 

VAR conformingDeclarationQ : FUNCTION (dl, d2 : Node) : BOOLEAN; 
Externals : 1ndex.T; 
oDir, aDir, dpDir, axeDir, vdDir, bakdir : PathStr; 

IMPLEMENTATION . . .  
END. 

Fileserver provides high-level access to the file system for storing, fetching, backing up, 

and restoring nodes and various associated ol~jects.  The following file-naming conventions 

are followed. Fixed-value-bindings and top-level binding-lists are  stored in '.vb' files and 

type-bindings are stored in ' . tb7 files-the file name is derived from the first 8 character 

of the binding's name. Backups are stored in ' .vbl, '  ' . tbl , '  '.vb2,' and '.tb2' files, Where 

the value of the constant BackupLevel indicates the number of backups to  be maintained. 

Closure information about fixed-value-bindings and binding-lists is stored in L.vdp' files and 

closure irlfornlation about type-bindings is stored in '.tdp' files. Fixed-value-declarations are  

stored i n  i.vd' files. Assembler code is stored in '.a' files. Linkables are  stored i n  L.o' files. 

Arid executab]es are stored in '.axe' files. 

Searching for is guided by the MS-DOS environment variable ACERINPUT, whicll 

should be set to be something as follows: 

Accordingly, the storirlg of declarations, closures, backups, executables, linkables, and  as- 

sembler codc is sllcll tllat i f  the current directory contains a 'vd,' 'dp,' 'bak,' 'axe,' lo,' or 

'a,7 respectively, the object is stored in that  directory rather than the current directory. 

Furthermorc, if a version of an object can be found in a directory other than the 

current directory using the search path, the new version is stored in the same directorr as 

thc previous version. 
Fileserver's main procedure is Store, which takes a node x and stores it as follows. 

Of course, tile node x most be a valid top-level construct, that  is, a fixed-vaIue-binding, 

a binding-]ist cont,airiing a fixed-value-hinding ( the first one of which is called the  primary 

a type-binding, or a fixed-value-declaration. HOW Store works depends on the class 

of node. 



APPENDIX C. THE IMPLEMENTATION MANUAL 

If x is a fixed-value-binding, the binding is stored in checkpointed form in a '.vb7 file. 

The  checkpointed form is a compacted syntactic representation, that  is, the node's class is 

encoded as a byte which is followed by either the spelling, if it is a lexeme, or the number of 

children and the children themselves, if it is a list or construction. Old versions of the '.vb' 

file are backed up. 

Similarly, if x is a binding-list, each fixed-value-binding is stored in checkpointed form i n  

a '.vb' file. Actually, the file for the primary unit contains the checkpointed binding-list and 

the files for the remaining fi xed-value-bindings simply refer to  the primary file. 

~f x is a type-binding, it is stored just like a fixed-value-binding but i n  a ( . tbl  file. A 
type-binding node becomes an attribute after it is stored. Old versions of the ' .tbl file are 

backed up. 

If x is a fixed-value-declaration, it is stored in a '.vdl file. Just as for a type-binding, it 

thereafter becomes an attribute node. 

P i l e s e r v e r  keeps an index, E x t e r n a l s ,  of mappings from S t r i n g P o i n t e r s  to  type- 

bindings and fixed-value-declaratio~ls currently in memory. S t o r e  therefore has the effect 

of including additional associations in this index. F i l e s e r v e r  also keeps track of whether 

a fixed-va]ue-binding or binding-list is modified with respect to its stored version; it uses 

MpS17s TouchMonitor facility for this. 

FetchDeclarat ion,  given the spelling of a value-identifier, searches for the fixed-va]ue- 

declaratioll associated with that spelling, which it loads and returns as its result. ~f a 
declaration cannot be found, theUnattachedEmptyNode is returned. The  declaratiorl i s  

either loaded from the file system or found in Ex te rna l s .  

Similarly, FetchBinding, given the spelling of a value-identifier, searches for the fixed.. 

va.lue-binding (or the binding-list containing the fixed-value-binding) associated with that 

spelling, whic]l it then loads and returns as its result. 

RestoreBinding is similar to FetchBinding but the '.vbl or ' .tbl file(s) are removed after 

loading and  tile backup versions are renamed so that  the latest backup again becomes the 

current version. 

StoreClosure is given the spelling of an identifier and a closure, which is represented as 

an arbitrary-]ist of identifiers, and it stores the closure in checkpointed form i n  a l.vdp) 

or ' .tdpl file, depending on whether the spelling is that  of a value-identifier or a type- 

identifier. Fe t chc losu re  is the illverse in that ,  given a spelling, it loads the associated 

t h e ~ n a t t a c h e d h p t y N o d e  is r e t u r d  i f  the closure is not stored. 

~ t ~ ~ ~ ~ ~ ~ t r u c t i o n s ,  given the sl)ellillg of a value-identifier, instructions wpresented as 



APPENDZX C. T H E  IMPLEhdENTATION M A N U A L  

a code-patch, and a closure of the associated declaration file, stores the information in a '.a' 

file. F e t c h I n s t r u c t i o n s ,  given a spelling and the closure, retrieves the instructions-the 

is modified to  reflect the closure stored in the '.a' file. 

S torecode  is given a cluster represented as either an  value-identifier or  an  arbitrary-list, 

value-identifier~, a size, and a P o i n t e r  a t  encoded instructions. Then, if the cluster is  

a value-identifier, S torecode  stores the encoded instructions in a '.o' file derived from the 

valuc-identifier. Otherwise, if the cluster is an arbitrary-list of identifiers, a '.o' file is created 

for each identifier, although only the first file contains the actual code with the remaining 

files simp]y referring back to the first file. (The notion of a cluster derives from the fact 

that a binding-list usually contains several fixed-value-bindings for which '.07 files must be 

created, and all these '.o' files are interdependent.) Fetchcode,  given the spelling of a 

identifier, returns a S h o r t P o i n t e r  to  the encoded instructions associated with the identifier; 

it also sets t h e c l u s t e r .  

> t o r e ~ x e c u t a b l e  and FetchExecutable  are directly analogous to  S torecode  and 

Fetchcode but they refer to '.axe' files. 

A of fullctions are provided for Finding files and for determining tile creation 

FileTime for files. A pair of such functions is provided for bindings, declarations, rode, 

instructions, executablcs, and c h u r e s -  

FetchFullName, given a F i l e  associated with a binding or declaration file, determines 

the complete spelling of the object stored in that  file. (PCAcer uses this feature to make file 

names more readable.) 

CheckPointNode cllcckpoints a node to  a file and RestoreNode is its inverse. Similarly, 

CheckPointLineBuff e r  checkpoints a line-buffer to  a file and RestoreLineBuffer  is its 

inverse. 

Fi leTime,  given  a file, returns its creation time. 

HasBackup, given the spelling of a vahle- or typeidentifier, determines if tlrere is a L .vbl '  

or ' . tb l '  with that spelling. 

Writepath, given a file and a node, stores i l l  the file the information about how to  reach 

the llode frorn its root. l'his informat'ion is given in terms of a list of child positiolls that 

be selected star t i~ig a t  t l ~ e  root. Readpath is the inverse of Wri tepa th .  (PCAccr uses 

this feature to store the position of a node window's selection). 

Finally, conf o r m i n g ~ e c l a r a t i o n q  is used to determine i f  a stored declaration is 

patible with the previous version so that  the creation time of the previous version can be 

used. The unit AST sets this variable with a function that  tests whether the two declarations 



A P P E N D I X  C. T H E  I M P L E M E N T A T I O N  M A N U A L  2 78 

have equivalent types. 

Fileserver has a complex implementation but little would be gained by describing it i n  

detail. 

AST 

UNIT AST; INTERFACE ($F+ ,o+ ,L-) 

USES Index, Access, Grammar, Makers, Line, LineBuffer, MPS, MPS~, 
Unparser, Parser; 

FUNCTION ConstructorQ(x : Node) : BOOLEAN; 
FUNCTION ~ompilationUnitQ(x : Node) : BOOLEAN; 
FUNCTION ~rimaryUnitOf(x : Node) : Node; 
FUNCTION Global(id : STRING) : Node; 
FUNCTION DefiningOccurrenceOf(id : Node) : Node; 

FUNCTION DefinitionOf(x :  ode) : Node; 
FUNCTION ~enotationof (x :   ode) : Node; 
FUNCTION Typeof (x : t ode) : Node; 
FUNCTION KindOf(x :  ode) : Node; 
FUNCTION SubTypeQ(tl, t2 : Node) : BOOLEAN; 
FUNCTION ~~uivalent~ypeQ(t 1, t2 : Node) : BOOLEAN; 

FUNCTION MaxType(t1, t2 : Node) : Node; 

FUNCTION ~ameValuesQ(v1, v2 : Node) : BOOLEAN; 
FUNCTION SubSignatureQ (xl , x2 :  ode) : BOOLEAN ; 
FUNCTION ~alid~rgumentsQ(theArguments, thesignature : Node) : BOOLEAN; 
FUNCTION Invalid~rgurnentOf(theArguments, thesignature : Node) : Node; 
FUNCTION TagMatch(x, id :  ode) : Node; 

FUNCTION ~bstract~aseOf(theType : Node) : Node; 
FUNCTION Quantifierof (theType : Node) : Node; 
FUNCTION VariableIdentif ierQ (id : Node) : BOOLEAN; 
FUNCTION ~ecursive~~~eOperatorQ(x : Node) : BOOLEAN; 
FUNCTION ~efinitionCopy(y, At : Node; Substitutions : 1ndex.T) : Node; 
FUNCTION Def inition~opyAt (theNode, At : Node) : Node; 
FUNCTION ~losureOf (theNode : Node) : Index. T; 
FUNCTION ~akeDenoter(x :  ode) : Node; 
FUNCTION ErrorT~peQ (theType : Node) : BOOLEAN; 
FUNCTION ~oid~~~eQ(theType : Node) : BOOLEAN; 
FUNCTION ~oolean~~peQ(theType : Node) : BOOLEAN; 
FUNCTION ~trin~~ypeQ(theType : Node) : BOOLEAN; 
FUNCTION ~haracter~ypeQ(theType : Node) : BOOLEAN; 
FUNCTION ~eal~~~eQ(theType : Node) : BOOLEAN; 
FUNCTION IntegerTypeQ(theType : Node) : BOOLEAN; 
FUNCTION RaiseTypeq (theType : Node) : BOOLEAN; 



A P P E N D I X  C. T H E  IMPLEMEN7'ATlON M A N U A L  

FUNCTION ReferenceTypeQ(theType : Node) : BOOLEAN; 
FUNCTION ReferenceBaseTypeOf (theType : Node) : Node; 
FUNCTION PointerTypeq(theType : Node) : BOOLEAN; 
FUNCTION ~ointerBaseTypeOf(theType : Node) : Node; 
FUNCTION ~xce~tionTypeQ(theType : Node) : BOOLEAN; 
FUNCTION ~ x c e ~ t  ionBaseType Of (theType : Node) : Node ; 
FUNCTION ArrayTypeQ(theType : Node) : BOOLEAN; 
FUNCTION ~rra~BaseTypeOf (t heType : Node) : Node ; 
FUNCTION AccumulatorTypeq ( theType : Node) : BOOLEAN; 
FUNCTION ~ccumulatorBaseTypeOf (theType : Node) : Node; 
FUNCTION ~ccumulatorResultTypeOf(theType : Node) : Node; 
FUNCTION ~teratorTypeq(theType : Node) : BOOLEAN; 
FUNCTION ~teratorBaseTypeOf(theType : Node) : Node; 

IMPLEMENTATION . . .  
END. 

AST routinrs for manipulating Accr's context-dependent syntax. l ts simple i n -  

terface is an illdicatior~ of the s~cccssful  design of a simple c0ntext-dependent syntax for 

Accr 

ConstructorQ determines i f  x is a constructor. CompilationUnitQ determines if is a 

valid top-lcve] construct. PrimaryUnitOf selects the first fixed-value-binding of a binding- 

list. 

Global, givell the spelling of an identifier, uses Fileserver to  determine the fixed-valUe- 

declaration or type-birlding associated with that  spelling. 

Def iningoCcurrenceOf, Def init ionof, Denotationof, Typeof, and KindOf select the 

indicated semantic attribute. 

SubtypeQ determines whether tl is a subtype of t2. EquivalentTy~e~ determines 

ti is a subtype of t2 and t2 is a subtype of ti. MaxType yields the largest type 

( i n  terms of the order defined by SubtypeQ) of its two arguments-if either of its 

arguments is the error-type or the argllments are unrelated as subtypes it yields the error- 

type; o n l y  i f  tlot,ll arguments are the raise-type does it yield the raise-type. SaeValues~ 

determines i f  the value VI and the value v2 must always denote the same value a t  run-time. 

SubSignatureQ deterlnines i f  the signature xi is a subsignature of the signatllre x2. 

~ ~ l i d ~ ~ ~ ~ ~ ~ ~ t s Q  determines i f  the a~gument-list  theArguments is valid with respect 

to  thesignature. 1nvalidArgumentOf yields the first argument of theArguments that  i s  

invalid with respect to thesignature. 

TagMatch, given a value-idmtificr and a variant-type or variant-inspection, yirlds the 

branch associated with the idcntificr. 



A P P E N D I X  C. T H E  1MPLEhlENTATION M A N U A L  

AbstractBaseOf and Quant  if i e r 0 f  select the abstract-base and quantifier, respectively, 

of an abstract-type. 

va r i ab l e Iden t i e rQ  determines i f  i d  is introduced by a variable-value-declaration or 

a variable-value-binding. RecursiveTypeOperatorQ determines if x is a recursive type- 

operator. Recursive type-operators are invalid. 

Def i n i t i o n c o p y ,  given a node y to copy, a location A t  from which copying takes 

the parent of y) ,  and an index of substitutions to be made during copying, returns 

a node that  denotes the same object as the original; it is typically expressed using denoters. 

Def in i t ionCopyAt,  given a node y and a location A t  a t  which y is to  be expressed, creates a 

copy that  denotes the same object as y but is expressed in terms of the scope a t  ~t without 

the use of denoters. (Actually, Def ini t ionCopyAt produces a copy of the denoted object if 

it cannot simply refer to the original.) 

Closureof ,  given a node, yields an index representing the set of global identifiers used i n  

the%nodc. MakeDenoter makes a denoter; it determines whether to  make a type-denotcr or 

a valne-denoter based on whether x is a type or a value. The  remaining functions are  

convenient recognizers and selectors for dealing with standard types tha t  are  known to AST. 

Several tricky techniques are used to implement the features of AST. For example, to 

determine that  the denotation of x in 

{let x be y ;  let y be x; 

let x be tuple x end 



APPENDIX C. T H E  IMPLEMENTATION M A N U A L  

Tuple :{[I)  end 

~ 1 1  recursive types for constructors are handled in this way, that  is, by associating with the 

literal a partially determined type before proceeding to  determined the types of the literal's 

components. 

Note also that  if TypeOf starts a t  the defined-identifier x, it cannot simply x. so 

that if x. is reached again, a loop is detected because this is precisely what would happen: 

the first x would be marked, then the type of the tuple-literal would be determined, which 

would recursively request the type of X, which would now be marked. Thus for Typeof, a 

node must be marked and reached twice before a loop is detected. 

In Acer's definition manual, subtyping is defined in terms of Definitioncopy but this 

is not an efficient implementation strategy since it involves the creation of massive numbers 

of Ilodes. Instead, AST keeps an index of substitutions that are in effect during subtyping so 

that  copying can be avoided. 

Furthermore, SubType must be prevented from going into an infinite loop. For example, 

during subtyping of components of the two types TI and T2 in 

{let TI be Tuple :TI  end; 
let T2 be Tuple : T2 end; 

USES Index, MPS; 

FUNCTION closed~ypeq(theType : Node) : BOOLEAN; 
FUNCTION validate(x : Node) : 1ndex.T; 
PROCEDURE FindFirstError 

(x : Node; VAR ErrorNode : Node; VAR ErrorMessage : STRING); 



APPENDIX C. T H E  IMPLEMENTATION M A N U A L  

IMPLEMENTATION 
END. 

AST2 is provided for testing whether a node conforms with all context-depcndent con- 

straints. Orle of its main responsibilities is to detect invalid delayed-occurrences. 

ClosedTypeQ determines whether a type can be expressed with global scope. It is used 

to the type used as a tag of a dynamic. 

Validate, given a node, yields a n  index containing mappings from nodes to  error mes- 

sages. Validate detects all errors. Similarly, FindFirstError given a node, checks it for 

errors but it yields the first erroneous node, along with its error message, tha t  it finds. 

N~ special implementation tricks are used in this unit. 

C.21 Compile 

UNIT Compile; INTERFACE ($F+,O+,L-) 

USES Index, Access, Makers, Grammar, AST, LineBuffer, Line, Unparser, 
Parser, MPS, MPSI; 

TYPE 
Registers = 

(AO, Al, A2, A3, A4, A59 A69 A73 

DO, DI, ~ 2 ,  ~ 3 ,  D4, D5, D6, D7, NULL); 
EffectiveAddressModes = 

(Immediate, Direct, Indirect, MemoryIndirect, PreDecrement, 
PostIncrement , Label-, Special) ; 

InstructionKinds = (Lea, Jsr, Bz, Bnz, Bra, Rtd, Trap, Move, Lbl) ; 

FUNCTION Translate(x : Node; theclosure : Node) : Node; 
FUNCTION ~inker(UnitNme : STRING; VAR thecluster : Node) : Node; 
FUNCTION ~ddress~ode~ype(theEffectiveAddress : Node) : 

~ffectiveAddressModes; 
FUNCTION ~nstructionType(theInstruction : Node) : InstructionKinds; 
FUNCTION ~ e ~ i s t e r ~ y p e  (theRegister : Node) : Registers ; 

IMPLEMENTATION . . .  



A P P E N D I X  C. T H E  I M P L E M E N T A T I O N  M A N U A I ,  

E N D .  

Compile provides routines for translating a fixed-value-binding or binding-list to  a code- 

For PCAcer, such a code-patch expresses a simple form of assembly language that  

is executable on a simulated machine. It is a greatly simplified form of MC68OxO code. 

Hence, the abstract machine provides registers A0 through A 7  and DO through D7, and sup- 

ports the address modes: Immediate, D i r e c t ,  I n d i r e c t ,  MemoryIndirect,  PreDecrement, 

PostIncrement ,  Label ,  and S p e c i a l .  The machine provides only the instructions with the 

names: Lea (load effective address), J s r  (jump to  subroutine), Bz (branch on zero), Bnz 

(branch on not zero), Rtd (return from subroutine), Trap (call a numbered routine coded i n  

Turbo Pascal), and Move (move a four byte word from one place to  another). All additiolla] 

operations, such as addition, are providcd as traps to Pascal routines. They are set up  by 

assigning to the Trapprocedures  array of the Run unit. 

T h e  det,ails of the translation will not be described as they are  fairly straightforward and 

would req,lire a complete description of the abstract machine and its instruction set. Only 

the interface is described. 

T rans l a t e ,  given a fixed-value-binding or hindingirig-list and its closure, yields codc- 

representing the translation. This translation can be stored in a '.a' file. 

L inker ,  given the spelling of a value-identifier, yields a code-patch tha t  modifies the 

translation to include the instructions for setting UP the run-time closure 

to the instructions; t h e c l u s t e r  of identifiers associated with the translation is set 

as well. resulting code-patch can then be encoded and stored as a '.o' file. 

AddressModeType, Ins t ruc t ionType ,  and Regis te rType  are used by the unit Link to 

analyze a codc-patch so as to encode it l  in compacted form. The  small number of instructions 

allows for a very colnpact encoding of '.o' and '.axe' files. 

C.22 Run 

UNIT Run; INTERFACE ($F+, 0+, L-1 

USES Dos, Manager, Compile; 

CONST 
Headersize = 5 ;  
Stacksize = 16 * 1024; 
NumberOfTraps = 50; 



A P P E N D I X  C. T I I E  Ih4Pl~Eh4ENTA?'ION M A N U A L  

TYPE 
PointerPointer = POINTER; 
BytePointer = BYTE; 
ShortIntPointer = - SHORTINT; 
IntegerPointer = - INTEGER; 
WordPointer = ^ WORD; 
LongIntPointer = - LONGINT; 
RealPointer = ^ REAL; 
AcerFlag = (Traced, Marked, Coded) ; 
AcerValuePointer = AcerValueType; 
AcerValueType = 
RECORD 
Size : WORD; 
Next : ShortPointer; 
Flags : SET OF AcerFlag; 
CASE WORD OF 
0: (theBytes : ARRAY [O. .655201 OF BYTE) ; 
1: (thewords : ARRAY LO. .327601 OF WORD) ; 
2: (thepointers : ARRAY LO. .I63801 OF POINTER) 

END ; 

VAR theRegisters : ARRAY [AO. . D71 OF AcerValuePointer ; 
theprogramcounter : AcerValuePointer; 
Trapprocedures : ARRAY LO. . NumberOfTraps] OF PROCEDURE; 
thestack : ShortPointer; 

FUNCTION ~llocate~raced(Size1nBytes : WORD) : ShortPointer; 
FUNCTION ~llocate~ntraced(Size1nBytes : WORD) : ShortPointer; 
FUNCTION ~llocate~oded(Size1nBytes : WORD) : ShortPointer; 
PROCEDURE Execute(thePr0gram : AcerValuePointer); 
PROCEDURE Decode (thecode : ShortPointer) ; 
PROCEDURE ReclaimMemory ; 

IMPLEMENTATION 
END. 

Run defines t]le run-time representation of Acer programs and values; in fact, an  Acer 

program is Accr value so their is just one representation. Thus an  Acer value is  rep- 

resented as an ~cerValuePointer, which points a t  an AcerValueType, a record consisting 

of the following: a Size indicating the number of bytes allocated to the record; Next 

chain for the purpose of garbage collection.); a Flags field, which is explained below; and a 

pointers. 



APPENDIX C. T H E  IMPLEMENTATION M A N U A L  

The Flags field of an AcerValueType is used as follows: if the rest of the record is an 

array of AcerValuePointers, the Traced flag is set so tha t  garbage collection will know tha t  

it should trace the rest of the record. The Traced flag is not set when the rest of the record 

encodes the bit representation of some value such as a string or a real. The  Marked flag, 

as the name suggests, is used during garbage collection. Finally, the Coded flag is used to  

indicate tha t  the rest of the record encodes machine instructions; this flag is necessary so that 

dynamic-vaIues that  involve code are properly handled. (A  record containing code contains 

a reference to  a node that in turn contains all the type-tags used by its dynamic-values.) 

The AllocateX functions are used to allocate AcerValuePointers but because the record 

to which they point is segment aligned, only a ShortPointer is yielded. 

Execute takes an AcerValuePointer, typically one that  is yielded by the Loader frlrlction 

of the Link unit, and runs it to completion. 

Decode prints a readable rcprcs~ntation of an  AcerValueType record that represents 

code. It is used for d~bugg i~ lg .  

ReclaimMemory rcclaims all the memory I I S C ~  during the execution of an Acer program. 

(In this imp]enrcntation, no garbage collection is performed while a program is actually 

executing. A practical implementation must include this.) 

C.23 Link 

UNIT Link; INTERFACE ($F+,o+,L-1 

PROCEDURE storeEncodedInst ructions (theclust er , theInstructions : Node) ; 
FUNCTION Loader (Name : STRING) : AcerValuePointer ; 
PROCEDURE write~cer~alue(theVa1ue : AcerValuePointer; theType : Node); 
FUNCTION ~cer~alue~oNode(theVa1ue : AcerValuePointer; 

theType : Node) : Node; 

IMPLEMENTATION . . .  
END. 

Link serves several roles (and is perhaps badly named). 

~t~~e~ncodedInstructions, given a c h t c r  and a code-patch representing instructions, 

encodes the instructions in compact form and stores them in a '.o' file using the Fileserver 



APPENDIX C. T H E  IMPLEh4ENTATION M A N U A L  

unit. 

Loader ,  given a value-identifier spelling, finds its '.o' file and all the '.o' files it depends 

on. The  information from these files are then loaded as an A c e r V a l u e P o i n t e r .  The  result 

can then be ~ x e c u t e d .  

wr-teAcerValue, given an Acer value and its type, prints to  standard output the Acer 

syntactic representation of that value. Similarly, AcerValueToNode, given an  Acer value 

its type, converts the value to its representation as a node. This is the routine PCAcer uses 

t,o produce the node that, results from running a program. 

C.24 ObjectView 

UNIT ObjectView; INTERFACE ($F+,O+,L-) 

USES Line ,  MPS; 

TYPE 
RectanglePointer  = Rectangle;  
Rectangle = 

OBJECT 
x i ,  y l ,  dx,  dy : WORD; 
FUNCTION x2 : WORD; 
FUNCTION y2 : WORD; 
FUNCTION ~ o n t a i n s ( x ,  y : WORD) : BOOLEAN; 
PROCEDURE ~ntersect (VAR Operand2, Resu l t  : Rectang le ) ;  
PROCEDURE ~ i s p l a c e ( D e l t a X ,  DeltaY : INTEGER); 

END ; 
T = - ObjectCel l ;  
I t e r a t o r  = 

OBJECT 
FUNCTION Next(VAR theviewedobject  : TI : BOOLEAN; VIRTUAL; 
PROCEDURE Reset ;  VIRTUAL; 

END ; 
ObjectCel l  = 

OBJECT 
theowner : Node; 
ViewBox : RectanglePointer ;  

theBanner : STRING; 
theS ta tusLine  : STRING ; 

x l ,  y l ,  x2,  y2 : WORD; 
CONSTRUCTOR Construct  (theNode : Node ; theViewBox : RectanglePointer)  ; 
DESTRUCTOR Des t ruc t ;  VIRTUAL; 
FUNCTION Copy(theViewBox : Rectanglepointer)  : T ;  VIRTUAL; 



A P P E N D I X  C. T H E  I M P L E M E N T A T I O N  h1ANUAL 

FUNCTION dx : WORD; VIRTUAL; 
FUNCTION dy : WORD; VIRTUAL; 
FUNCTION TextAt(x, y : WORD) : WORD; VIRTUAL; 
FUNCTION CharacterAt(x, y : WORD) : CHAR; 
FUNCTION ~ t t r i b u t e A t ( x ,  y : WORD) : BYTE; 
FUNCTION Banner : Str ingPointer ;  VIRTUAL; 
FUNCTION Owner : Node; 
PROCEDURE CorrectView; VIRTUAL; 
PROCEDURE Selec t (x ,  y : WORD); VIRTUAL; 
PROCEDURE ReSelect(x, y : WORD); VIRTUAL; 
PROCEDURE Extend(x, y : WORD); VIRTUAL; 
PROCEDURE Delete(VAR AffectedViews : I t e r a t o r ) ;  VIRTUAL; 
PROCEDURE Destroy(VAR Af f ectedviews : I t e r a t o r )  ; VIRTUAL; 
PROCEDURE Insert(VAR AffectedViews : I t e r a t o r ) ;  VIRTUAL; 
PROCEDURE Yank; VIRTUAL; 

END ; 

IMPLEMENTATION . . .  
END. 

Objectview Rec tang lepo in t e r  and Rectangle  to  manipulate rectangular 

jects. A rectangle object has an upper-left corner ( x l ,  y l ) ,  a lower-right corner ( ~ 2 ,  y2) ,  a 

width dx, and a heigllt dy. One can test i f  a rectangle Conta ins  a coordinate (I, y ) .  one 
can determine the ~ n t e r s e c t i o n  of two rectangles, which is itself a rectangle. And one can 

Di sp lace  a rectangle. 

r 1 , he purpose of objectview,  however, is to represent the behavior tha t  is common 

to both tes t  wintlows and node windows in the PCAcer environment. Thus a window is 

rel"csentcd as a O b j e c t c e l l ,  which has theowner as its owner node; a ViewBox, which 

is the area bollrlded by the window's frame; theBanner  and t h e s t a t u s l i n e ,  which are  

represented as a S t r i n g ;  an upper-left corner a t  (11, y l ) ;  and a lower-right corrler (x2, 

y2).  A window can be cons t ruc t ed ,  Des t ruc ted ,  and Copied. The  width and height of a 

wirldow are given by dx and dy. CharacterAt,  given a coordinate in the ViewBox, determines 

the character a t  the coordinate and similarly, A t t r i b u t e A t  determines the color attribllte 

a given coordinate; the two are simultaneously determined by TextAt.  variables 

theBanner and theowner should be access using Banner and Owner. 

A window can be asked to Correctview its ViewBox so that  its selection point is i n  

A window can be s e l e c t e d  a t  a given coordinate and since selecting the selection of a text, 

window alters the selection mode, a window can be Rese lec ted  as well--this works just like 

S e l e c t  but resrts the selcctiori mode. 'rhe selection of a window can also be Extended. 

i\ window must also support the editing commands De le t e ,  Destroy,  I n s e r t ,  and  Yank. 



APPENDIX C. 7'1-11.: IMPLEMENTATION M A N U A L  288 

The first three take an Iterator argument that  iterates through the sequence of other 

windows that  are also effected by the edit. Iterator is defined as an  object with a Next 

function for mapping through the sequence of windows and a Reset function for restarting 

the iteration. 

Objectview does not implement useful bodies for most ObjectCell routines; the units 

Lineview and ~ o k e n ~ i e w  do this. 

UNIT Lineview; INTERFACE ($F+,O+,L-) 

USES Line, LineBuffer, MPS, Objectview; 

TYPE 
ModeType = (CharacterMode, TokenMode, LineMode); 
T = ObjectCell; 
Ob j ectCell = 
OBJECT (Obj ectView. Objectcell) 
theLineBuffer : LineBufferType; 
Mode : ModeType; 
CONSTRUCTOR ~onstruct(theNode : Node; theViewBox : RectanglePointer); 
CONSTRUCTOR ArbitraryConstruct 

(theNode : Node; 
InitialLineBuffer : LineBufferType; 
theViewBox : RectanglePointer); 

DESTRUCTOR Destruct; VIRTUAL; 
FUNCTION Copy(theViewB0x : RectanglePointer) : 0bjectView.T; VIRTUAL; 
FUNCTION dx : WORD; VIRTUAL; 
FUNCTION dy : WORD; VIRTUAL; 
FUNCTION ~extAt(x, Y : WORD) : WORD; VIRTUAL; 
FUNCTION Banner : Stringpointer; VIRTUAL; 
PROCEDURE Correctview; VIRTUAL; 
PROCEDURE ~elect(x, y : WORD); VIRTUAL; 
PROCEDURE ~xtend(x, y : WORD) ; VIRTUAL; 
PROCEDURE ~elete(VAR Affectedviews : Iterator); VIRTUAL; 
PROCEDURE ~estroy(VAR AffectedViews : Iterator); VIRTUAL; 
PROCEDURE ~nsert(VAR AffectedViews : Iterator); VIRTUAL; 
PROCEDURE Yank; VIRTUAL; 
PROCEDURE ~nterText(ch : CHAR; VAR AffectedViews : Iterator); 
PROCEDURE BuildLineBuffer; 

END ; 

VAR thescrapview : T; 



A P P E N D I X  C. T I I E  lA!lPLEA/lENTATION M A N U A L  

FUNCTION Linearize(theNode : Node; Width : WORD) : LineBufferType; 

IMPLEMENTATION . . .  
END. 

Lineview extends the behavior of a window as defined by ObjectView. It implements 

PCAcer text windows. 

The type ModeType is defined to denote the three different selection modes tllat a text 

window supports. Like ObjectView, LineView defines T and O b j e c t c e l l ,  which inherit their 

implementation from Ob j e c t V i  ew. LineView extends an  Ob j e c t C e l l  as follows. 

A text window contains t h e L i n e B u f f e r  to hold the buffer of text tha t  it views. Mode 

indicates the current selection mode. A text window can he constructed llsing Construct ,  

which tilen uses Bui ldLineBuff  e r  to  make the appropriate line-buffer from the owner node. 

~ ~ h i t ~ ~ ~ ~ C o n s t r ~ ~ t  cons t ru~t~s  a text window with a given linebuffer.  

A text window defines the same operations as an ObjectView window. In addition, 
EnterText is provided for inserting a character a t  the selection point; it takes an  iterator 

that scqucnces through other windows that are affected by this insert. Bui ldLineBuffer  i s  

provided to a line-buffcr from the owner; it uses L i n e a r i z e  to  format the owner 

node. 

Tile variable t h e s c r a p v i e w  is provided as a text window from which insertions are  taken 

ant] to  which deletions go. 

C.26 TokenLine 

UNIT TokenLine ; INTERFACE {$F+, O +  , L-) 

USES Line,  LexicalAnalyzer,  MPS, Sequence; 

TYPE 
TokenLineType = SequenceType; 
TokenLinePointer = TokenLineType; 
TokenRecord = 

RECORD 
theToken : TokenType; 
theowner, theEnclosingDenoter : Node; 
thehpos i t ion  : WORD; 
t h e s t r i n g  : St r ingPoin te r  



A P P E N D I X  C. T H E  IMI-'LEMEN?ilTlON A4ANUA L 

END ; 
TokenRecordPointer = TokenRecord; 

CONST 
MaxTokenLineLength = MaxSequenceLength DIV SizeOf(TokenRecord); 
NullTokenLine : TokenLineType = NIL; 

FUNCTION Construct(theTokenLineLength : WORD) : TokenLineTy~~; 
PROCEDURE Destruct(VAR theTokenLine : TokenLineType); 
FUNCTION Length(theT0kenLine : TokenLineType) : WORD; 
FUNCTION NthElement(theT0kenLine : TokenLineType; n : WORD) : 

TokenRecordPointer; 
PROCEDURE AppendElement 

(NextToken : TokenType; 
Nextowner, NextEnclosingDenoter : Node; 
NexthPosition : WORD ; 
Nextstring : StringPointer; 
VAR theTokenLine : TokenLineType) ; 

IMPLEMENTATION . . .  
END. 

TokenBuffer 

UNIT TokenBuf f er ; INTERFACE ($F+, O+ , L-) 

USES Grammar, TokenLine, Sequence, MPS; 

TYPE 
TokenBufferType = SequenceType; 
TokenBufferPointer = - T~kenBufferTy~e; 

CONST 
MaxTokenBufferLength = MaxSequenceLength DIV 4; 



APPENDIX C. TElE Ih4PLEh4ENTATION M A N U A L  

NullTokenBuffer : TokenBufferType = NIL; 

FUNCTION Tokenize(theNode : Node; Width : WORD) : TokenBufferType; 
FUNCTION Construct(theTokenBufferLength : WORD) : TokenBufferT~p~; 
PROCEDURE Destruct (VAR theTokenBuf f er : TokenBuf f erType) ; 
PROCEDURE AppendElement 

(NextTokenLine : TokenLineType; 
VAR theTokenBuffer : TokenBufferType); 

FUNCTION Length(theT0kenBuffer : TokenBufferType) : WORD; 
FUNCTION NthElement(theTokenBuffer : TokenBufferType; n : WORD) : 

TokenLinePointer; 
FUNCTION ~earestTokenRecord(theTokenBuffer : TokenBufferType; 

VAR x, y : WORD) 
: TokenRecordPointer; 

PROCEDURE NearestTokenRecords 
(theTokenBuffer : TokenBufferType; 
x, y : WORD; 
VAR theLeftTokenRecord, 

theRightTokenRecord : TokenRecordPointer); 

IMPLEMENTATION . . .  
END. 

UNIT Tokenview; INTERFACE ($F+,O+,L-) 

USES Access, Line, Tokeduff er, TokenLine, MPS, Objectview, AST; 

TYPE 
T = - Objectcell; 
Ob jectCell = 
OBJECT (Obj ectView. Objectcell) 



A P P E N D I X  C. T H E  IMPLEA!fENrl'ATION M A N U A L  

theTokenBuffer : TokenBufferType; 
theLeftNode, theRightNode, theEnclosingDenoter : Node; 
theUnparseWidth : WORD; 
CONSTRUCTOR Construct(theNode : Node; theViewBox : RectanglePo 
DESTRUCTOR Destruct; VIRTUAL; 
FUNCTION Copy(theViewBox : RectanglePointer) : 0bjectView.T; v 
FUNCTION dx : WORD; VIRTUAL; 
FUNCTION dy : WORD; VIRTUAL; 
FUNCTION TextAt(x, y : WORD) : WORD; VIRTUAL; 
FUNCTION Banner : StringPointer; VIRTUAL; 
PROCEDURE Correctview; VIRTUAL; 
PROCEDURE Select (x, y : WORD) ; VIRTUAL; 
PROCEDURE Extend(x, y : WORD); VIRTUAL; 
PROCEDURE Delete(VAR AffectedViews : Iterator); VIRTUAL; 
PROCEDURE Destroy(VAR AffectedViews : Iterator); VIRTUAL; 
PROCEDURE Insert(VAR AffectedViews : Iterator); VIRTUAL; 
PROCEDURE DefinitionCopyAt 

inter) ; 

IRTUAL; 

(VAR Aff ectedviews : Iterator; theNode : Node) ; VIRTUAL; 
PROCEDURE Yank; VIRTUAL; 
PROCEDURE ~reateElement(x, y : WORD; VAR AffectedViews : Iterator); 
VIRTUAL ; 
PROCEDURE BuildTokenBuffer; 
PROCEDURE ~et~odeSelection(Left, Right, EnclosingDenoter : Node); 

END ; 

PROCEDURE MonitoredReplace 
(theNode, theReplacementNode : Node; 
VAR AffectedViews : Iterator); 

PROCEDURE MonitoredDelete 
(theLeftNode, theRightNode : Node; 
VAR AffectedViews : Iterator); 

VAR thescrapview : T; 

IMPLEMENTATION . . .  
END. 

Tokenview extenrls the behavior of a window as defined by Ob j ectview. It implerncnts 

~ c A ~ ~ ~  windows. Like Objectview, TokenView defines T and Objectcell, whicfl i n -  

herit tlIeir implementation from Objectview. TokenView extends an Objectcell as follows. 

i\ node willdow ~ s c s  theTokenBuffer to  hold a formatted version of its owner  For spec- 

i fy ing  its selection point it uses theLeftNode, theRightNode, and t h e E n ~ l o s i n ~ ~ ~ ~ ~ ~ ~ ~ .  

( 1 3 ~ ~ ~ ~ ~ ~  tile definition of a denoter may print a node that  is also printed elsewhere, to 

plctely specify the selected nodes of a node window, the enclosing denoter must be specified 

as The theUnparseWidth is set to indicate the width used to  when format t ing  



APPENDIX C. T l i E  IMPLEMENTATION M A N U A L  293 

theTokenBuffer .  

In to the regular operations provided by ObjectView windows, a node window 

provides the following. The  procedure Crea teElement  inserts an  element into a list a t  the 

given coordinate. The  procedure BuildTokenBuff e r  makes a TokenBuff er by formatting 

the owner node to a TokenBuf f e r .  And the procedure S e t N o d e S e l e c t i o n  sets the selection 

of a node window. 

~ ~ ~ i t o r e d R e p l a ~ e  and Moni to redDele te  are used in place of MPS's R e p l a c e  and D e l e t e  

so that their affects on window owners and selections can be maintained. For example, a n  

unattached node can be replaced using Moni to redReplace  with the effect that i f  it is the 

owrler of any window then the owner is replaced. 

 he variable t h e s c r a p v i e w  is provided as the node window frorn which insertions are 

taken and to which deletions go. 

C.29 WindowStack 

UNIT WindowStack; INTERFACE ($F+ , O +  ,L-) 

USES MPS, ObjectView, Line;  

C 0 NST 
Rows = 50; 

Columns = 80; 

CONST 
TopMenuLine : S T R I N G C ~ O ]  = 

J New 1 + 1 Clear  ' + ' Fetch ' + ' Restore ' + 
I + ' Q u i t  I ;  

TYPE 
Corner = (UpperLeft, UpperRight, LowerLeft, LowerRight); 
Di rec t ion  = ( L e f t ,  Right ,  Up, Down) ; 
Window = ' Windowobject; 
T = - O b j e c t c e l l ;  
WindowObj e c t  = 

OBJECT 
Paren t s tack  : T; 
ScreenBox, ViewBox : Rectangle;  
Viewedobject : ObjectView .T; 
theTopLine, theBottomLine, theStatusLine : S T R I N G [ C ~ ~ ~ ~  
theLef tLine,  theRightLine : STRINGCROWS - 11;  



A P P E N D I X  C. THE lMPLEA4EN'rATION M A N U A L  

CONSTRUCTOR Construct(theParentStack : T; xi, y1, dx, dy : BYTE) ; 
DESTRUCTOR Destruct; VIRTUAL; 
PROCEDURE Reset; 
FUNCTION TopLine : StringPointer; 
FUNCTION BottomLine : StringPointer; 
FUNCTION LeftLine : StringPointer; 
FUNCTION RightLine : StringPointer; 
FUNCTION TextAt(x, y : BYTE) : WORD; 
FUNCTION CharacterAt(x, y : BYTE) : CHAR; 
FUNCTION AttributeAt(x, y : BYTE) : BYTE; 
PROCEDURE MoveViewDownward(dy : BYTE); 
PROCEDURE MoveViewUpward(dy : BYTE); 
PROCEDURE MoveViewLeftward(dx : BYTE); 
PROCEDURE MoveViewRightward (dx : BYTE) ; 
PROCEDURE RepositionViewY(1ndex : BYTE); 
PROCEDURE RepositionViewX(1ndex : BYTE); 
PROCEDURE Correctview; 
PROCEDURE MoveScreen(theCorner : Corner); 
PROCEDURE MoveCorner(theCorner : Corner); 
PROCEDURE Copy (thecorner : Corner) ; 
FUNCTION IOCheck : BOOLEAN; 

END ; 
Obj ectCell = 
OBJECT 
ErrorMessage : STRING [801 ; 
thewindows : ARRAY [O . .63] OF Window; 
theBottom : BYTE; 
SelectedWindow, ScrapTokenWindow, ScrapLineWindow : Window; 
CONSTRUCTOR Construct; 
DESTRUCTOR Destruct; VIRTUAL; 
FUNCTION Topwindow : Window; 
FUNCTION Length : BYTE; 
FUNCTION NthElementh : BYTE) : Window; 
PROCEDURE CreateWindow(x1, yl, dx, dy : BYTE); VIRTUAL; 
PROCEDURE DestroyWindow(w : Window); VIRTUAL; 
PROCEDURE RedrawBox(VAR LastBox, CurrentBox : Rectangle); 
PROCEDURE UndrawBox(VAR theRectangle : Rectangle) ; 
PROCEDURE PutOnTopOrPutAtBottom(w : Window); 
PROCEDURE PutOnTopOrPutBelowTop(w : Window); 
PROCEDURE PutAbove(w1, w2 : Window); 
PROCEDURE PutBelow(w1, w2 : Window); 
PROCEDURE SetSelectedWindow(w : Window); 
FUNCTION TextAt(x, y : BYTE) : WORD; 
FUNCTION WindowAt(x, y : BYTE) : Window; 
PROCEDURE Refresh(w : Window); 
PROCEDURE Redraw(VAR theRectangle : Rectangle); 
PROCEDURE DoubleRedraw (VAR Rectangle 1, Rectangle2 : Rectangle) ; 



APPENDIX C. 7'1-112 lMPLIS'A4EN'I'A7'10N hlANUAL 

END ; 
S t a c k I t e r a t o r  = 

OBJECT ( I t  e r a t o r )  
thewindow : Window; 
theowner : Node; 
Currentwindow : BYTE; 
CONSTRUCTOR Construct(w : Window); 
FUNCTION Next(VAR theviewedobject  : 0bjectView.T) : BOOLEAN; VIRTUAL; 
PROCEDURE Reset ;  VIRTUAL; 

END ; 

PROCEDURE DrawBox(VAR theRectangle : Rectangle;  Tex tAt t r ibu te  : BYTE) ; 
PROCEDURE MoveCornerHelper(w : Window; thecorner  : Corner) ;  

CONST CrtBox : Rectangle = ( x l  : 1 ;  y l  : 1; dx : Columns; dy : Rows); 

IMPLEMENTATION . . .  
END. 

Windowstack is used to specify the behavior of windows and stacks of windows indepen- 

dent from the types of windows tha t  may exist. It defines Rows and Columns as constants 

representing the size of the display screen. TopMenuLine contains the top  line of text dis- 

played in the PCAcer environment. Corner  is defined to enumerate the types of corners arid 

D i r e c t i o n  is defined to enumerate the types of directions. Window is defined as  a pointer to 

a windowobject  and T is defined as a pointer to  an O b j e c t c e l l ,  which is used to  represent 

a stack of windows. 

A Windowobject is defined as follows. It contains a P a r e n t s t a c k ,  tha.t is, the sta.ck i n  

which it occurs. It contains a ScreenBox, w11icl.l is the rectangle containing the window 

on the screen. It contains a ViewBox, wliicli is the rectangle specifying which part, of the 

ViewedObj e c t  is displayed 011 the scrcen. And it contains theTopLine ,  theBot tomLine,  

t h e s t a t u s l i n e ,  t h e L e f t L i n e ,  and t h e R i g h t L i n e  to specify the appearance of the window's 

frame. 

A window is c o n s t r u c t e d  give11 t h e p a r e n t s t a c k ,  the upper-left corner, and its size. It 

is destructed using D e s t r u c t .  R e s e t  is uscd to reset the appearance of the window's frame, 

i n  particular, to clear the status line. TopLine,  BottomLine,  L e f t L i n e ,  and R i g h t L i n e  

be uscd to acccss the appearance of the window's Cram.. Tex tAt ,  C h a r a c t e r A t ,  and 

~oveViewDownward, Moveviewupward, MoveViewLeftward, and MoveViewRightward, 

modify theViewBox. Reposit ionViewY (Reposit ionViewX) modifies the  positiorl of 

theViewBox relative to the arnount of tJhe frame above a.nd below ( to  the left and to  ttle 



APPENDIX C. THE IMPLEMENTATION MANUAL 296 

right) of Index. Correc tv iew modifies theViewBox so that  the window selection is in view. 

~ o v e ~ c r e e n  modifies theScreenBox so as to move the window on the screen. Movecorner 

modifies the size of theViewBox and theScreenBox. 

Finally, IOCheck determines if an I 0  error has occurred and displays an error message 

on the status line in tha t  case. 

Windowstack defines O b j e c t c e l l  to  represent a stack of windows. A window stack 

contains an ErrorMessage, which if it is not empty, is displayed in place of the TopMenuLine; 

thewindows, which is a n  array of 64 Window objects; theBottom, which is the index of the last 

array element to contain a valid window; and the SelectedWindow, the ScrapTokenWindow, 

and the ScrapLineWindow to indicate these special windows. 

A window stack can be Constructed and Des t ruc ted .  The  variable thewindows is not 

usually accessed directly because the functions Topwindow, Length, and NthElement should 

be used instead. A new window is created on the top of the stack by Createwindow a 

is removed from the stack by Destroywindow. 

A frame can be drawn to the screen using RedrawBox, which first removes the  LastBox 

and then draws the CurrentBox. UndrawBox removes a frame drawn to the screen. 

putOnTopOrPutAtBottom, PutOnTopOrPutBelowTop, PutAbove, and PutBelow reorder 

the windows on the stack. SetSelectedWindow sets the selected window of the stack. TextAt 

yields the character and color attribute a t  a given coordinate of the window stack. WindowAt 

yields the top-most window to  appear a t  the given coordinate. 

Ref resh  redraws to the screen the coriterits of the specified window. Redraw redraws 

the specified portion of the window stack. Similarly, DoubleRedraw redraws the specified 

portions of the window stack with any overlap being drawn only once. 

A S t a c k I t e r a t o r  object iterates through the windows of a window stack tha t  are affected 

by a modification to a node. A S t a c k I t e r a t o r  is Cons t ruc ted  given a window, which it uses 

to  set thewindow, and theowner.  Next sequences through those windows of the  P a r e n t s t a c k  

of thewindow tha t  would be affcctcd by an edit operation to theowner node. This is the 

I t e r a t o r  that  must passed to the various Objectview edit operations. 

The procedure DrawBox alid MoveCornerHelper are auxiliary procedures tha t  operate 

independently of window stacks. The  constant CrtBox defines the Rec tang le  that, corltains 

the entire display screen. 



APPENDIX C. THE I M P L E M E N T A T l O N  M A N U A L  

C.30 NodeView 

UNIT NodeView; INTERFACE ($F+,O+,L-) 

USES Line, LineBuffer, MPS, Lineview, Tokenview, Objectview, WindowStack; 

TYPE 
MenuTitles = ARRAY LO. .Rows - 41 OF STRING[Columns - 43 ; 
MenuAction = PROCEDURE (n : BYTE); 
Window = Windowobject; 
WindowOb j ect = 

OBJECT (WindowStack.Window0bject) 
CONSTRUCTOR Tokenconstruct 

(theparentstack : WindowStack.T; 
theRootNode : Node; 
XI, yl, dx, dy : BYTE); 

CONSTRUCTOR Lineconstruct 
(theparentstack : WindowStack. T ; 
theRootNode : Node; 
theLineBuffer : LineBufferType; 
Xl, yl, dx, dy : BYTE); 

CONSTRUCTOR Fileconstruct 
(theparentstack : Wind0wStack.T; 
FileName : STRING; 
XI, yl, dx, dy : BYTE); 

DESTRUCTOR Destruct; VIRTUAL; 
PROCEDURE Toggle; 
PROCEDURE CancelToggle; 
PROCEDURE Select (x, y : BYTE) ; 
PROCEDURE Zoomcopy; 
PROCEDURE ZoomIn; 
PROCEDURE Zoomparent; 
PROCEDURE ZoomRoot; 
PROCEDURE Extend; 
PROCEDURE Delete; 
PROCEDURE Destroy; 
PROCEDURE Poke(x, y : BYTE) ; 
PROCEDURE Insert; 
PROCEDURE Yank; 
PROCEDURE EnterText (ch : CHAR) ; 
PROCEDURE FindDefiningOccurrence; 
PROCEDURE FindDefinition; 
PROCEDURE FindType; 
PROCEDURE FindDenotation; 
PROCEDURE FindKind; 



A P P E N D I X  C. T H E  IMPLEA~ll3N'Z'ATlON A4ANUAL 

PROCEDURE Validate; 
PROCEDURE DefinitionCopyAt; 
PROCEDURE Store; 
PROCEDURE Compile; 
PROCEDURE Link ; 
PROCEDURE Run; 
FUNCTION TimeStampOf(UnitName : STRING) : LONGINT; 
PROCEDURE PickWindowSpecifiedMenu; 

END ; 
NodeWindowStack = - WindowStackObject; 
WindowStackObj ect = 

OBJECT (WindowStack.ObjectCel1) 
CONSTRUCTOR Construct; 
DESTRUCTOR Destruct; VIRTUAL; 
PROCEDURE Resetscrapwindows; 
PROCEDURE CreateTokenWindow(theRootNode : Node; 

xl, yl, dx, dy : BYTE); 
PROCEDURE CreateLineWindow 

(theRootNode : Node; 
theLineBuffer : LineBufferType; 
XI, yl, dx, dy : BYTE); 

PROCEDURE CreateFileWindow(Fi1eName : STRING; xl, yl, dx, dy : BYTE); 
PROCEDURE CreateWindow(x1, yl, dx, dy : BYTE); VIRTUAL; 
PROCEDURE DestroyWindow(w : WindowStack.Window); VIRTUAL; 
PROCEDURE FileInput; 
PROCEDURE Fetch(thePattern : STRING) ; 
PROCEDURE Menu(VAR Titles : MenuTitles; 

NumberOfEntries : BYTE; 
Action : MenuAction); 

PROCEDURE PickStackList ; 
PROCEDURE StoreValues; 

END ; 

VAR thewindowstack : WindowStackObject; 

IMPLEMENTATION . . .  
END. 

Nodeview specializes the opc3ratjions of Windowstack for windows based on Lineview and 

Tokenview. The type WindowOb j ect is spccialized as follows. 

Thrce con~t ruc t~or  functior~s Tokenconstruct, Lineconstruct, and Fileconstruct are 

provided to crcate, rcspcctively, a nodc window given a node, a text window given a rlode 

and a line-buffer, and a text window given tlic name of a file. A window can be Destructed 

as usual. 

Toggle can bc applied to a window to convert it from a nodc window to  a text window 



APPENDIX C. THE IMPLEMENTATION M A N U A L  299 

or vice versa. CancelToggle converts a text window back to a node window, discarding the 

text. S e l e c t  sets the selection point. 

Zoomcopy creates a new node window with the selection as its owner. ZoomIn sets 

the owner to  the selection. Zoomparent sets the owner to the parent of the owner. And 

ZooomRoot sets the owner to  the root of the owner. 

Extend extends the selection by following the position of the mouse. 

D e l e t e  invokes the window specific delete operation. Similarly, for Des t roy ,  I n s e r t ,  and 

Yank. Poke has an effect only on a node window for which it is used to  insert a placeholder 

list element. EnterText  inserts a character into a text window; when applied t o  a node 

window, it has the same effect as Toggle. 

The  FindX routines apply only for node windows for which they determine the specified 

attribute of the se lec t io~~ point. A new window is created to  hold the result. 

V a l i d a t e  also applies only for node windows-it checks the correctness of the owner node 

and an  error message is displayed on the status line of the window in case of error. 

Def ini t ionCopyAt can be applied to a node window and has the effect of using A S T ' ~  

DefinitionCopyAt to  express the selected node of the selected window a t  the selection of 

the window to  which it is applied; it replaces the selection with the result of the copy. S t o r e ,  

Compile, Link, and Run can be applicd to node windows to produce the desired effected of 

storing, compiling, linking, or running the owner node. TimeStampOf, given a global value- 

identifier, det,ermines the creation time associated with that  identifier. It has the side-cffcct 

of anything tjhat is required to compile the owner of the window to  w1lickl it, is 

applied. 

Finally, PickWindowSpeclf iedMenu invokes a popup menu. The  nicnu contains different 

operatiorls depending o n  whether the window is a node window or a text window. 

Nodeview specializes window stacks as follows. Resetscrapwindows empties the con- 

tents of both scrap windows. Four window-constructing procedures CreateTokenWindow, 

createLineWindow, Crea t  eFileWindow, and Crea t  eW indow are provided. (Createwlndow 

creates a window wit,h an empty node as its owner.) 

F i l e I n p u t  invokes the PCAcer IIICIIU for loading '.ace' files, i.e., text files corltairling 

Acer syntax. Fe tch  itlvokes the PCAccr menu for loading either '.tb,' '.vb,' '.vd,' ' . tb] ,' or 

' .vbl '  files. 

Menu displays a popup menu, given the titles, the number of titles, and a procedure 

that the operation associated with each title. P i ckS tackLi s t  displays PCAccr's 

stack-list menu. 



A P P E N D I X  C. TI-lE IMPLEMEIL'TATION M A N U A L  300 

S t o r e v a l u e s  stores every top-level fixed-value-binding and binding-list tha t  is not up- 

to-date with respect the the version stored in the file system. This operation is performed 

by the PCAcer environment before any programs are compiled. 

And finally, thewindowstack  contains the one WindowStackObject used to  represent 

PCAcer's environment. 

The  body of NodeView begins an  input loop tha t  continues until the quit command of the  

PCAcer environment is invoked. As such, NodeView really acts as a program but  because it 

is defined as a unit, a program must be written tha t  imports NodeView. This program call 

then specify things such as how to  overlay the various units, how big the stack should be, 

and so on. 

This finally completes the description of I'CAcer's implementation and tllat of its 

metaprogramming system. Much detail has been left out,  but perhaps not enough. 



Appendix D 

Quick reference 

A table describing Acer's context-dependent manipulation primitives is given below. The 

mctaprogrammi~lg system interface for these primitives is described in sectiorl 5.5, which 

describes the Acer host-language version, and in sections C.19 and C.20, which describe the 

Pascal host-language version. 'l'a.bles summarizing Acer's type-system follow. 

D. 1 Context-dependent manipulation primitives 

relation 

defining-occurrence 

kind 

definition 

given 

id  

expr 

expr 

exy r  

expr 

expr 1 

exp  1.2 

yields reference 

The corresponding identifier node that  3.5.1, A.3.1 
defines the identifier node id for its par- 
ticular scope. 
The  type node tha t  represents the type of 3.5.2, A.3.3 
the value or type expression expr. 

The type node that  represents the kind 4.7.1, A.3.3 
(t,he type of the type) of the value or type 
expression expr. 
r 7 I he expression node that  represents the 3.5.3, A.3.2 
meaning of the value or type expression 
expr as specified by Acer's rewrite rules. 
r 3 I he expression node that  results from 4.7.1, A.3.2 
rewriting the value or type expression 
e x p ;  rewriting the rewritten expression, 
and so on, until the resulting cxpression I 

ot, lw r c t w r u l .  
The  expression tha t  results when the 12.5.2.2, 
vaulue or t,ype expression exprl  is rc- 1 A.5.2.1, 1.10, 
exlwesscd in terms of the scope a t  e ~ y r 2 .  / 4 . I  1, 4.13 



A P P E N D I X  D. QUICK REFERENCE 

D.2 Identifier 

D .3 Deriving declarations for named arguments 

type-identifier 

value-identifier 

I binding 

I declaration 

T y p e  

value 

T:: U 

variable-value 

let var x  : T be y 

var x :  T 

X 

x  

D .4 Deriving declarations for anonymous arguments 

I type I fixed-value / variable-value I 

- 

? 

- type  

! #$&*+-/<=>\- I " 

( declaration I :: U I : 7' 1 var : 7' 1 
argument 

D.5 Component type equivalence 

T 

D.6 Component subtype 

- - 

condition 

I 1 

x  

7':: U 

x :  T 
var x :  T 

let var be x  

:: U 

: 7' 

var : T 

D.7 Special nodes 

x :  TI 

v a r x :  TI 

nothing 
I 

arbitrary-list 1 arbitrary [x] [TI [x then y ]  [nothing] end 

x :  7'2 

var x :  1'2 

T l  c 7'2 

7'1 = 7'2' 



APPENDIX D. QUICK IWFERENCE 

D.8 Concrete-type 

tuple 

dynamic 

record 

variant 

furiction 

enumeration 

literal 

tuple 
let T :: U b e  V, 
let x : T be  z, 
let var y : T be  z, 

T, 
x' , 
let var be  x 

end 

dynamic 
let T :: lJ b e  V, 
let x :  7' be  z, 
let var y : T be  z, 
T, 
x' , 
let var be x 

end 

record 
let 7' :: U be  V, 
let x :  T be  z, 
let var y : T be  z 

end 

variant x of 7' with 
(let T :: U be  V, 
let x :  7' be  z, 

let var y : T  be  z, 
T, 
x', 

let var be  x) 
end 

function ('I' :: U; 
x : 7'; 
:: u; 
: T )  

x 
end 

Enumeration x, y end.x 

Option x, y e11d.x 

Tuple 
T :: U; 
x :  T; 
var y : T; 
:: u; 
: T; 
var : T 

end 

Dynamic 
T  :: U; 
x :  T; 
var y : T; 
:: U; 
: T; 
var : 7' 

end 

Record 
T :: U ;  
x :  T; 
v a r y :  T 

end 

Variant T of when x then  
( T : :  U; 
x :  7'; 
var y : T; 
:: U; 
: 5"; 
var : T)  

end 

Function (7':: U; 
x :  T; 
:: U;  
: T )  

T  
end 

Enumeration x, y end 

Option x, y end 



APPENDIX D. QUICK REFERENCE 

I literal condition I visible supertype 

abstract 

Operator ( T :: U )  T end 

concrete 

Operator ( T  :: U )  U end 

type-identifier 1 T I T::  U  

I operator-call 1 0 ( T )  I 0 :: Operator ( :: U )  V end I V 

U 

type-selection / x. 7' 1 x : Tuple T :: U  end 

D.11 Standard types 

I 
U  

literal I implemented by 

r 'x' I Character I character 

r error Error I exceptions 

I n t e r  (x) 1 Pointer ( T )  I pointers 

exception ( T )  

1 

Exception ( T)  

Integer 

raise e with x end 

1 .O 

D.12 Notation 

exceptions 

in t cger 

reference (x )  

llxyzll 

{ > 

Raise 

Real 

exceptions 

real 

Reference ( T )  

String 

Void 

reused-idcn tificr 

block 

dcnoter 

type-designatio~~ 

selection 

references 

st ring 

exceptions 

value 

x'[l] 

{let x be y ;  f (x ) )  

{ (x )  > 
T Y P E  (x)  

x. x 

type 

T'PI 

{let T be U;  0 (7')) 

{[TI) 
T Y P E  (7') 

x. T 



A P P E N D I X  D. QUICK REFERENCE 

D.13 Iterator and accumulator 

let Iterator be 
Operator (Base Type :: Any) 

Tuple 
done : Exception ( Void) 
produce : 

Function () Base Type end 
terminate : 

Function () Void end 
end 

end 

D.14 Subtype 

let Accumulator be 
Operator (Base Type :: Any; Result Type :: Any) 

Tuple 
done : Exception ( Void) 
consume : 

Function (: Base Type) Void end 
terminate : 

Function () Result Type end 
end 

end 

subtype C supertype 

Tuple 7' :: U l ;  : T end I Tuple T :: U2 end 

~ ~ n a m i c  T :: U l ;  : T end I Dynamic 7' :: U2 end 

Record x :  7'; T :: Ul end 

Variant Enumeration el end of 
when el then ( T : :  U l ;  : T )  

end 

Function ( :: T I )  U1 end 

Record T :: U2 end 

Variant Enumeration e l ,  e2 end of 
when el then ( T  :: U2); 
when e2 then (: V )  

end 

Function ( :: 7'2) U2 end 

Enumeration el end 

Option el end 

7' 

7'1 

Raise I T 

Enumeration e l ,  e2 end 

Option e2, el end 

T 

7'2 

x l .  7' x2. T 

condi tiori 

u1 5 U2 

u1 5 u 2  

Ul 5 u 2  

Ul 5 u 2  

'I' 

7' 

- 

T : :  u 
7'1 :: u 
U 5 7'2 

xl = x-2 

0 1  = 0 2  
7'1 = T2 

Error 

Raise 



APPENDIX D. QUICK R W E R E N C I ;  

D.15 Computation 

I function-call 

assignment 
- 

{x becomes y )  

I is-test 

I is-not-test 

I and-if-test 

I or-if-test 

I index 

( dcreference 

I ord-call ord ( x )  

I V ~ I - C ~ I I  va1 (7:  x) 
begin x ;  y ;  z end 

code T; x; y ;  z end 

accumzilator ( [ x ,  y, z ] )  

I compound-value 

I code-patch 

I accumulation 

iteration for element in iterator andif filter (element) do 
accumulator bod-y (element) end 

if condition1 then consequent1 
elsif condition2 then consequent2 
else default end 

inspect dynamicvalue Then 
when 7' with dcfinedrdentifier then consequent 1 ; 
when U then consequent2 

I conditional 

else default end 
- 

inspect variant Value then 
when x with definedlden tifier then consequent1 ; 
when y ,  z then conseqlient2 
else default end 

try t r y  bod-y then 
when exception1 with dcfinedldentifierl do consequent 1 ; 
when exccption2, exception3 do consequent2 
else default end 

keep trying loop13ody then 
when except,ion with dcfinedldentifier do consequent 
else default end 

I try-finally t ry  hod-y finally finalAction end 



Bibliography 

[ACPPSI] 

[Ada831 

[A U72] 

[A U73] 

[A17771 

[Ben871 

[BSSG] 

[Cam 8 81 

[Cam891 

Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic 

typing in a statically typed language. ACM Transactions on Progmmming 

Languages and Systems, 13(2):237-268, April 1991. 

United States Departnlcnt of Defense. Reference Manual for the Ada Program- 

ming Language, February 1983. ANSIIMIL-STD-1815A- 1983. 

Alfred V. Aho and Jeffrey D. Ullnlan. The Theory of Parsing, Translation and  

Compiling, volume 1: Parsing of Series in Automatic Computation. Prentice- 

]{all, Englewood Cliffs, New Jersey, 1972. 

Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation 

and Compiling, volume 2: Compiling of Series in Automatic Computation. 

~reritice-IIall, Englewood Cliffs, New Jersey, 1973. 

Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Series 

i n  Computer Science and Information Processing. Addison-Wesley, Ileading, 

Massachusetts, 1977. 

Jon 13entlcy. l'rogrammirlg pearls-profilers. Communzcations of the A CM, 

30(7):587-592, July 1987. 

Rolf Balllke and Gregor S~ielting. 'l'he PSG system: From formal langllage 

definitions to interactive programming environ~nents. AC'M Transactions on 

Progiwnn~ii~g Lunguuges and Systems, 8(4):547-576, October 1986. 

11. D. Cameron. An abstract prettyprinter. IEEE Software, 5(6):61-67, NoveIn- 

bcr 1988. 

R. I). Carncron. l%cient high-level iteration with accumulators. A CAI Trans- 

actions on Programming Lnnguages and Systcms, 11(2):194-211, April 1989. 

307 



BIBLIOGRAPHY 308 

Luca Cardelli. Typeful programming. Technical Report 45, Digital Systems 

Research Center, Palo Alto, California, May 1989. 

Barbara A. Cassel, editor. MC68020 32-Bit Microprocessor User's Manual. 

Prentice-Hall, Englewood Cliffs, New Jersey, 1984. 

Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, 

and Greg Nelson. Modula-3 Report. Digital Systems Research Center, Palo 

Alto, California, August 1988. 

Robert Cartwright and Mike Fagan. Soft typing. In Proceedings of the ACM 

SIGPLAN 91 Conference on Programming Language Design and Implementa- 

tion, pagcs 278-3492. SIGPLAN, June 1991. 

R. I). Cameron arid M. R. Ito. Grammar-based definition of metaprogramming 

systems. AChf Transactions on Programming Languages and Systems, fj(1):20- 

54, January 1984. 

L. Cardclli and P. Wegner. On understanding types, da t a  abstraction, 

polymorpliism. A CAf Computing Surveys, 17(4):472-522, December 1985. 

G.V. Cormack and A.K. Wright. Type-dependent parameter inference. In 

Proceedinqs of (Ire ACM SIGPLAN 90 Conference on Programming Lunglrage 

Desiqn and Irnple~rzentation, pages 127-136. SIGPLAN, June 1990. 

S.A. 1t.J. Ellison, P.1-I. Feiler, and A.N. Habermann. Software develop- 

melit er~vironrnerits. 1EEE Conzpute~, 20(11):18-28, November 1987. 

[1)MS84] N. h4. Dclisle, D. E. Menicosy, and M .  D. Schwartz. Viewing a programnlirlg 

environment as a single tool. SIGI'LA N Not ices, 1 9(5):49-56, May 1984. 

[ D Y ~ ~ O ]  J.  Michael Dyck. Syntactic manipulation systems for context-dependent I a n -  

guagcs. Master's thesis, School of Computing Science, Simon F'ra,scr University, 

August 1990. 



Pascal Fradet and Daniel Le M&ayer. Compilation of a functional language by 

program transformation. A CM Transactions on Programming Languages and 

Systems, 13(2):237-268, April 1991. 

Peter Grogono. Comments, assertions, and pragmas. SIGPLAN Notices, 

24(3):79-84, March 1989. 

Gerhard Goos, William A. Wulf, Arthur Evans, Jr . ,  and Kenneth J .  Butler. 

DIANA: An Intermediate Language for Ada, volume 161 of Lecture Notes in 

Computer Science. Springer-Verlag, Berlin, 1983. 

David M. IIarland. Polymorphic Programming Languages: Design an(! Im- 

plementation. Scries in Computers and Their Applications. Ellis IIorwood, 

Chichcster, 1984. 

Paul N. IIilfinger. Abstractzon hfechanisms and Language Design. ACM Dis- 

tingrlished Dissertations. The MIT Press, Cambridge, Massachusetts, 1983. 

C. A. 11. IIoare. Hints on programming language design. In Ellis IIorowitz, 

editor, Progmrnming Languages: A Grund Tour, Computer Software Engineer- 

ing Scrics, pages 31-40. Computer Science Press, Rockville, Maryland, third 

edition, 1987. 

s~~~~~ IIorwitz a r ~ d  Tim Tietelbaum. Relations and attributes: A symbiot,ic 

basis for editing. In Proceedings of the ACh! SIGPLAN 85 Sympo.+llpn on 

Lanylagr Iswes in Progmmming Environments, pages 93-106. SICPIAN, ~ , ~ l ~  

1985. 

S. IIorwitz and T. Teitelbaum. Generating editing environments based on 

and attributes. ACh4 Transactions on Proglnmming Languages and 

Systems, 8(4):577-608, October 1986. 

Specification for computer programming language Pascal. I S 0  7185, 1983. 

J .  Iiaclbling. Programming languages should not have comment statc- 

mcnts. SIGPLAN Notices, 23(10):59-60, October 1988. 

lti<hard Kclsey and Paul IIudak. Realistic compilation by program transfor- 

mation. Proceedings of the Sixteenth Annual ACM Symposium on I'rincples of 

Prog~-ainming Languages, pages 281-292, January 1989. 



Donald E. Knuth. Semantics of context-free languages. Mathematical Systems 

Theory, 2(2):127-145, 1968. 

Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97- 

111, 1984. 

Brian W.  Kernighan and Dennis M. Ritchie. The C Programming I,anguage. 

Prentice-Hall, Englcwood Cliffs, New Jersey, 1978. 

Andrew Kurn. The G Programming Language. PhD thesis, Sirnor] Frascr 

University, December 1991. 

B. Liskov, R. Atkinson, T. Bloom, E. MOSS, J.  C. Schaffert, R. Scheifler, and 

A. Snyder. CLU Reference Manual, volume 114 of Lecture Notes in Computer 

Science. Springer-Verlag, Berlin, 1981. 

Xing Liu and Patrick Conley. Program translation by manipulating abstract 

syrltax trees. 111 C++ W o k ~ h o p ,  pages 345-360. USENIX Association, Novem- 

ber 1987. 

Bruce J .  MacLennan. Principles of Programming Languages: Design, 

ation, and Implrmentntion. IIolt, Rinehart and Winston, New York, second 

edition, 1987. 

E. A.  T. Merks, J .  M. Ilyck, and R. D. Cameron. Language design for pro- 

grain manipuIatiol~. IEEE Transnctions on Software Engineering, ] 8(1): 19 33, 

January 1992. 

Edrlardrls A.'I'. Morks. Compilation using multiple source-to-source stages. 

Master's t,]lcsis, School of Computing Science, Simon Fraser University, April 

1987. 

]jcrfjand Meycr. Object-or~ented Software Construction. Series in Complltcr 

Science. ~rent icc-IIal l ,  Englewood Cliffs, New Jersey, 1988. 

Rollirl Milner. The standard MI, core language. Technical Report Internal 

I<eport CSIt-168-84, 1Sdinhurgh University, 1978. 

Stcn Miniir. On Structure-Oriented Editing. Doctoral dissertation, Department 

of Computer Science, Lund University, 1990. 



BIBLIOGRAPHY 31 1 

Ole Lehrmann Madseri and Claus Norgaard. An object-oriented metaprogram- 

ming system. In B. Shiver ,  editor, Proceedzngs of the 21st Annual IIal"aiz 

International Conference: Software Track, pages 406-415. IEEE Computer So- 

ciety, January 1988. 

F. G. Pagan. Formal Specification of Progmmming Language: A Panoramic 

Primer. Prentice-IIall, Englewood Cliffs, New Jcrsey, 1981. 

Helmut A. Partsch, editor. Specification and Transformation of Programs: A 

Formal Approach to Software Development. Texts and Monograptls i n  Corn- 

puter Science. Springer-Verlag, Berlin, 1990. 

Peter Pepper, editor. Program Transformation and Programmzng Envil-on- 

ments, volume 8 of NATO ASI Serzes F: Computer and Systems Sciences. 

Springer-Verlag, Berlin, 1984. 

Dcwaync E. Perry and Gail E. Kaiser. Models of software development en- 

viron1ncnt.s. IISlSE Transactions on Software Engineerrng, SE-17(3):283-295, 

March 1991. 

11. Partscll alld R.  Steinbruggen. Program transformation systems. AChf  Corn- 

pl~iir~g Surv~ys ,  15(3):l99- 336, September 1983. 

'rIlomas W. Ilcps. Generating Language-Based Environments. ACM Distin- 

guisllcd I>issertat,ions. The MIT Press, Cambridge, Massachusetts, 1984. 

D. S. I<osenblum. A methodology for the design of Ada transformation tJools 

i n  a DIANA environrncnt. IEEE Software, 2(2):24-33, March 1985. 

T. R(>pS anti T. 'l'citelbaum. The Syntliesizcr Generator. SIGPLAN No[ices, 

19(5):42 48, May 1984. 

W. ]{cl,s and T. rl'citc~lbaum. Tlre Syntlteszzcr Generator: A Systerrl for 

ConstrlLctzng Language-Based Editors. Springer-Verlag, New York, 1'389. 

BjarIlc Sfroustrup. 7'hr C++ Progmmming Language. Series in Compdcr  

Scic~Ilcc. Addison-Wesley, Rcading, h/lassachusetts, 1986. 

R. I). 'I'cn~ient. PI-incpks 01 l-'rogramming Languages. International Series i n  

Computer Sciencc. Pren t ice-IIa11, Englewood Cliffs, New Jcrsey, 198 1. 



BIBLIOGRA PHY 312 

[T ~8 1 ] Tim Teitelbaum and Thomas W. Reps. The Cornell Program Syntliesizer: 

A syntax-directed programming environment. Communzcations of the A CM, 

24(9):563-573, September 1981. 

[TRlI81] Tim Teitelbaum, Thomas Reps, and Susan IIorwitz. The  why and wherefore of 

the Cornell Program Synthesizer. SIGPLA N Notlces, 16(6):8-16, Junc 198 1. 

['l'u r 8 21 T .  N. Turba. A facility for the downward extension of a high-level language. 

SIGPLAN Notices, 17(6):127-133, September 1982. 

[Tu r 8 61 D. A. Turner. An overview of Miranda. SIGPLA N Notices, 21 (1 2): 158-166, 

Ilecemhcr 1986. 

[vWMP+76] A.  van Wijngaardcn, 13. J .  Mailloux, J. E. L .  Peck, C. 11. A.  Koster, M. Sintzoff, 

C. 1 1 .  Lindscy, I,. G .  I,. T. Meertens, and R. G. Fisker, editors. Revised I<epol./ 

on fhc. Alg0~~1li~iiic Language Algol 68. Springer-Verlag, Berlin, 1976. 

[Wik87] Akc Wikstrijln. Functional P~ogramming Using Standard MI,. Series i l l  Corn- 

puter Scicncc. Prerltice-Hall, Englewood Cliffs, New Jersey, 1987. 

[Wir85] Niklaus Wirt 11. Progrn~rz~nzng in Modula-2. Texts and Monographs in Computer 

~ ~ i ~ ~ ~ ~ ~ ~ .  ~ p ~ i ~ ~ ~ ~ - V c r l a g ,  Berlin, third corrected edition, 1985. 

[Wir87] Niklaus Wirtll. On the design of programming languages. In Ellis I-Iorowitz, 

edit,or, Pl-og~nlnn,lrzg Lo1rguagc.s: A Grand TOUT, Computer Software E r ~ ~ i ~ l e e r -  

i l l g  Srrirs, pages 23-30. Computer Science Press, Rockvillc, Maryland, third 

cdition. 1'387. 


