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Abstract

Programming language design is explored from the viewpoint that support for program
manipulation is a fundamental guiding concern. Three general areas of language design are
identified as being of particular significance in terms of support for manipulation, namely the
mapping between concrete syntax and abstract syntax, the mapping between static seman-
tics (context-dependent syntax) and abstract syntax, and the mapping between equivalent
language constructs. Abstract syntax-tree nodes and their context-dependent relations are
the unifying concept in this realm.

A particular programming language, Acer, based on the typeful programming language
Quest, is designed and implemented to illustrate how support for manipulation is enhanced.
Acer is a general-purpose, imperative language with a full accompaniment of modern lan-
guage features, as well as a number of novel features (e.g., persistent storage). Its concrete
syntax is designed to meet strict requirements, e.g., every node gives rise to a token so that
it is visible for selection or annotation. Its abstract syntax is similarly strict and provides
node representations for all semantic objects. Hence, semantic relations are simply rela-
tions on nodes and scmantics-preserving transformations, such as folding and unfolding, are
supported as simple transformations of node structure.

Acer’s support for manipulation demonstrates the benefits of designing abstract syntax
first and treating concrete syntax as a particular way of viewing abstract syntax. It also
demonstrates that a concrete syntax can be designed which is both natural in appearance
and yet highly constrained. And, perhaps most importantly, it demonstrates that imperative
languages can support the same kinds of powerful transformations supported by functional

languages, e.g., all expressions can be folded.
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Chapter 1

The representation of language

1.1 Programming language design

This thesis explores programming language design from the viewpoint that support for pro-
gram manipulation is a fundamental guiding concern. A program, after all, is a structured
object which throughout its lifetime is the target of numerous manipulation activities, in-
cluding everything from initial construction to subsequent debugging and maintenance. As
such, the design of a program representation that facilitates manipulation is of primary
importance.

Consider, for instance, the design of a representation of natural numbers. Roman numer-
als provide an adequate representation but Arabic numerals provide a manipulable represen-
tation: they facilitate meaningful semantic manipulation (e.g., addition and multiplication
of numbers) via simple syntactic manipulation (e.g., combining the digits of numerals). For
a language of programs, as for a language of numbers, such a manipulable representation is
best.

[Huminating the path towards the design of more manipulable languages is the well-

recognized observation that a language exists at three levels of abstraction:
e meaningful semantic objects
e abstract syntactic objects
¢ concrete lexical objects

Accordingly, language design too takes places at three levels:

¢ Designing the set of possible semantic objects.
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e Designing the abstract syntax to represent the semantic objects.

¢ Designing the concrete syntax to encode the abstract syntax.

And since the decisions made at each level depend on decisions made at the previous level,
language design logically proceeds in a top-down manner.
The primary goal of a particular language design, then, is to represent a particular

semantics in the simplest and most flexible way. To further this goal:

e The complexity of the semantic objects should be kept to a minimum.
o The abstract syntax should mirror the structure of the semantic objects.

e The concrete syntax should mirror the structure of the abstract syntax.

Now the semantic objects of a programming language vary considerably depending on
whether the language is functional, imperative, relational, object-oriented, and so on. De-
spite that, there are techniques applicable to any programming language for representing
the semantic objects as syntactic objects and for encoding the syntactic objects as sequences
of symbols [AUT2,AUT3,AU77]. And the manipulation characteristics of the language are
strongly influenced by the nature of these techniques.

After all, the semantics of a program is derived from its syntactic structure, so meaningful
manipulation is best supported by directly manipulating this structure. And indeed, existing
high-level manipulation tools invariably represent programs as abstract syntax trees and
carry out manipulation in terms of these syntax trees. Examples of such systems are Mentor
(DGKLM84], PSG [BS86], and the Cornell Program Synthesizer [TR81,TR1181,Rep84,RT84,
RT89]. To advance these high-level manipulation tools, a well-designed language should
specify an abstract syntax that enhances a programmer’s ability to synthesize, analyze, and
transform programs.

The design of a lexical encoding of abstract syntax, although a secondary concern, is not
immaterial however, for abstract syntax can only be viewed in terms of a concrete encoding.
Nevertheless, an encoding is simply one possible view; many alternative views could be
defined for various different purposes. Only when underlying abstract syntactic structure is
emphasized is it possible to consider the provision of such alternative views.

Moreover, the advent of high-resolution bitmapped displays and high-quality typeset
printing provides exciting possibilities for producing more readable views. The notion of
literate programming [Knu84|, which advocates an integrated approach to program con-

struction and documentation, benefits greatly from these technological advances: various
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font cues, such as bold-face keywords and italic identifiers, can dramatically improve a pro-
gram’s readability.

In this light, a language designer, ignoring the inherent limitations of ASCII, should first
design the abstract syntax of a language and should only then design the portable ASCII view
of that syntax. The designer should then consider the possibility of defining more readable

views that make better use of improving display technologies. For example, a mathematical

expression encoded in ASCII as

sqrt ((sqr(x) + sqr(y) + sqr(z))/3)

could be more readably viewed using mathematical notation as

22 + y2? + 22
3

and could even be viewed as a syntax tree:

) a a wJ

V4

A program, then, is a syntactic object, not merely a sequence of ASCII symbols. This
perspective echoes the first sentence of [TRHS81], which states: “Programs are not text; they
are hierarchical compositions of computational structures ...”

[t is well-established that programs should be viewed abstractly as syntax trees consist-
ing of nodes. What is not so well-established is that this abstract view should be specified
during language design. Doing so ensures that different tools, and even different language
implementations, support the same abstract view and that tools can be integrated into a
unified supporting environment [DMS84]. Since high-level support tools invariably imple-
ment manipulation in terms of a syntactic representation, a standard abstract view should

clearly be specified as part of a language definition.
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The definition of DIANA [GWEBS3], an intermediate representation for Ada [Ada83],
demonstrates recognition of the fact that a standard abstract representation for programs
as data objects is an important goal. An example of its use is presented in [Ros85]. Unfor-
tunately, DIANA was designed almost as an afterthought; its design did not influence the
design of Ada. As a result, DIANA is complex because it must handle all the details of
Ada’s concrete syntax.

The emphasis on abstract syntax as the basis for manipulation can even be taken one
step further by insisting that all aspects of a programming language’s static semantics be
defined in terms of nodes and relations on nodes. As such, all static semantic objects are
represented as nodes and hence a program is just a set of related nodes. For instance, each
identifier node in a program will have a related node that represents its defining-occurrence
and each expression node will have a related node that represents its type. Dyck referred
this use of nodes for representing both programs and their derived semantic attributes as the
double-duty strategy [Dyc90]; he applies the strategy to define the complete static semantics
of ISO Pascal [ISO83], thereby demonstrating its feasibility. I used the strategy in earlier
work [Mer87] involving the source-to-source compilation of Modula-2 [Wir85}.

To clarify any misconceptions, the term static semantics draws a distinction between
semantic aspects that are static in nature, such as scoping and typing, and semantic as-
pects that are dynamic in nature, such as activations, continuations, allocations, and so on.
Although the distinction between static and dynamic semantics is clear, the distinction be-
tween static semantics and syntax is blurred. Both deal with constraints on node structure:
syntax deals with context-frce constraints and static semantics deals with context-dependent

constraints. For example, in the Pascal if-statement
IF condition THEN action

syntax constrains condition to be an expression, while static semantics constrains condition
to be of type Boolean. This blurring of static semantics and syntax is desirable because it
allows both notions to be handled uniformly through the representation of nodes.

In this thesis, “context-free” syntax is used to describe the tree relations specified by a
context-free grammar and “context-dependent” syntax is used to describe the static-semantic

relations derived from the tree relations. “Syntax” thus includes static semantics.
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1.2 The design of Acer

To bring substance to this exploration of language design, I will demonstrate the design of
a programming language called Acer. Like all language designs, the design of Acer begins
with requirements. In this case, Acer is to be a more manipulable version of Quest [Car89].
I chose Quest, a complex impcrative language with an elaborate type system, so that I
would encounter, with the design of Acer, all the technical problems involved in designing a
full-scale language. Furthermore, the richness of Quest’s semantic structure provides many
inherent manipulation opportunities and issucs not present in other contexts. As well, Quest
conforms to many of the design principles discussed in Chapter 4. Realize, however, that
the requirements for a programming language are often beyond the control of the language
designer. In this sense, the choice of Quest is an arbitrary one.

To demonstrate the manipulation advantages of Acer, I have implemented an environ-
ment for Acer, called PCAcer, consisting of a language-based editor and a compiler. This
environment, described in detail in Appendix B, was implemented using a GRAMPS-style
metaprogramming system [CI84], a tool that enables programmers to write high-level tools
and transformations in terms of an abstract representation of programs. In many ways,
designing a language that supports manipulation is synonymous with designing a language
that has a simple metaprogramming system. Details are presented in Chapter 5.

The remainder of the thesis is organized as follows. Chapter 2 presents an overview
of Acer, outlining its fecatures and how they support manipulation. Chapter 3 explores
techniques for specifying syntax, including a modified GRAMPS-style approach for specifying
context-free syntax as well as a relational approach for specifying context-dependent syntax.
Chapter 4 discusses manipulation principles for guiding language design, and explains how
they are applied to the design of Acer—these principles were also presented in [MDC92].
Chapter 5 describes Acer’s metaprogramming system and shows how it is used to facilitate
manipulation. Finally, Chapter 6 summarizes the results of the thesis, relating it to the work
of others and suggesting directions for further research.

Additional information is provided in the form of appendices. Appendix A gives a precise
specification of Acer, providing more detail than the overview of Chapter 2. Appendix B
1s the user’s manual for PCAcer, Acer’s language-based environment. Appendix C is the
implementor’s manual for Acer’s metaprogramming system and its environment. And Ap-

pendix D provides quick reference tables for Acer’s manipulation primitives and Acer’s type
system.
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Much effort has gone into the design and implementation of PCAcer in order to demon-
strate the efficacy and feasibility of the ideas presented. However, PCAcer is not intended
to be innovative and so is not described in the main body of the thesis. Readers are never-
theless urged to read the user’s manual of Appendix B to get a feel for how Acer’s semantic
and syntactic framework enhances the manipulation support provided by a programming
environment.

PCAcer is a simple, yet powerful, programming environment. It is a language-based
environment, according to the Dart taxonomy [DEFHS87], and an instance of an individual
model programming environment, in the terminology of [PK91). It uses the hybrid approach
to language-based editing described in [BS86], providing both textual and structural views

with easy conversion between the two.



Chapter 2
An introduction to Acer

This chapter presents an informal overview of Acer. It 1s intended as a more intuitive intro-
duction than the detailed definition in Appendix A. However, the reader is strongly urged
to consult Appendix A to clarify questions concerning syntax that might arise, particularly
section A.34, which summarizes Acer’s grammar. The grammar formalism itself is described
in Chapter 3. Appendix D provides quick reference tables.

Throughout this thesis, hyphenated terms, such as binding-list, defined-identifier, and
defining-occurrence, are used to refer to concepts with a particular Acer meaning, usually as
a syntactic element or attribute. It would be more precise to use instead the terms binding-
list construct, defined-identifier component, and defining-occurrence attribute. However, to

avoid being overly pedantic, this more precise terminology is used only if confusion would

arise in its absence.

2.1 Conceptual foundations

Before outlining Acer, consider the general categories of semantic object that are common
to programming languages and the implications of these categories on support for program
manipulation. Ideally, a language should support a simple and uniform model of semantic
objects and their corresponding syntactic representations, for this simplicity and uniformity

are key in supporting straightforward formal manipulation without a myriad of special cases.
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2.1.1 Value

In general, programs manipulate abstract entities, i.e., values, according to concrete repre-
sentations, i.e., as bits in memory. The details of the concrete representation are unimpor-
tant however, only abstract behavior matters. Therefore, the semantics of a programming
language is concerned primarily with values, not with particular representations of values.

However, when manipulating a program, it is often necessary to manipulate the values to
which the program refers. Hence, to support manipulation, it is desirable that there exist for
every value, a corresponding expression (i.e., a syntactic literal) to denote it. In other words,
each value should have a syntactic representation, so it can be expressed and manipulated
as part of a source program.

As a counter-example, consider the way records are supported in Pascal. A variable of a
record-type can be declared and the fields of that variable can be initialized via assignment,
but there is no concept of a record-literal, i.e., a syntactic expression that denotes a record
with particular values for its fields. Hence, although Pascal supports manipulation of records
as run-time values, it does not support manipulation of records as syntactic objects. Yet
supporting environments must often present run-time values in a human readable form, such
as when debugging a program, so the need for a syntactic representation for each class of
value inevitably arises.

With a well-designed expression syntax for literals, there is a blurred distinction between
a semantic value and a syntactic expression that denotes it. After all, a semantic value
must be represented in some particular way; when that representation closely mirrors the
structure of the semantic value, the semantic value and its representation are easily confused.
For example, drawing a distinction between the number ten and the numeral 10 may seem
like semantic nit-picking. But it is this distinction which allows semantic manipulation (e.g.,
the sum of two numbers) to be achieved by syntactic manipulation (e.g., by a formal process
involving adding the digits of the two numerals). It is also what allows the number ten to
be concretely represented as the base two numeral 1010 in memory.

To generalize, then, for any particular programming language, value is the ground-level
category of semantic object, and to support program manipulation, a corresponding category
of syntactic object should exist. The uniform treatment of abstract entities as values and
the provision of syntactic representations for those values is the best way to support the
syntactic manipulation of programs and the values they use. It is encouraging, therefore,
that the trend toward more expressive programming languages, which include a richer variety

of first-class values (e.g., Quest provides first-class functions and first-class modules), is also a
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trend toward enhanced support for program manipulation, provided syntax is appropriately

designed.

2.1.2 Type

Programming languages generally organize their value space according to type, giving rise to
the type-level category of semantic object. Since manipulating a program involves manip-
ulating the types to which the program refers, it is desirable if there exists for every type,
just as for every value, a corresponding expression (i.e., syntactic literal) to denote it.

When striving to achieve an expressive programming language, there may be a tempta-
tion to treat types as values, as does Poly [Har84], but this temptation should be avoided.
Program manipulation is best supported for programs with strong static constraints. This
should not hinder expressiveness though because dynamic typing can be supported within
the framework of a statically typed language [ACPP91,CF91].

To generalize, then, for any particular programming language, values, the ground-level
category of semantic object, are organized according to type, the type-level category of

semantic object. And, just as for values, a corresponding type-level category of syntactic
object should exist.

2.1.3 Kind

Just as programming languages organize their value space according to type, so too a pro-
gramming language can organize its type space according to kind, giving rise to a kind-level
category of semantic object and a corresponding kind-level category of syntactic object.
Quest has such a type system.

This thesis will demonstrate, however, that the inclusion of a syntactic representation for
kinds is unnecessary. Acer has a type system analogous to that of Quest, but Acer provides
only syntactic representations for values and types. The notion that types are typed is

retained, but the type of a type, in Acer, is a type rather than a kind. Manipulation is
enhanced by an economy of syntax.

2.1.4 Additional syntactic categories

In an ideal programming language, then, each category of semantic object gives rise to a
corresponding category of syntactic object. And to enhance manipulation of the semantic

objects, there should be a simple direct mapping between semantics and syntax. Thus, in
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an ideal programming language, a program’s semantic objects are mirrored by the structure
of its syntactic objects.

Now, because a programming language is used to specify values in terms of computa-
tions, the syntactic category for value (expression) will include additional syntactic classes
corresponding to various value-yielding semantic operations, e.g., function-calls, condition-
als, and so on. As well, because not all semantic operations are naturally value-yielding,
syntactic categories disjoint from value may also occur, such as the category statement in
Pascal. Nevertheless, in an expression-oriented language [vWMP*76 KR78], semantic oper-
ations that are not naturally value-yielding may be interpreted as yielding instead a special
type of value indicating a void result. Thus all semantic operations can be treated uniformly
as expressions, although some are evaluated purely for side-effect. This uniform treatment
enhances support for manipulation.

Another notion common to programming languages is the notion of scope: an identifier
is associated with a semantic object and is visible over some region in which it is used to
stand in place of that semantic object. Static scoping with nested block structure is widely
accepted as the preferred approach for dealing with scope.

According to the terminology used in this thesis, an identifier denoting a semantic object
(i.e., a value or type) can be introduced by either a binding or a declaration. The distinction
between the two is that a binding construct associates with its identifier a particular semantic
object, but a declaration specifies only the object’s type—the actual semantic object is then
associated with the identifier dynamically, either via parameter binding or via assignment.

To reiterate then, a binding construct initializes the identifier it introduces but a declaration

specifies only the identifier’s type.

2.1.5 Summary

To summarize the above, the semantic objects of a programming languages can be catego-
rized according to the ground-level category, which includes values; the type-level category,
which includes types; and the semantic-operation category, which includes computational
and scoping structures.

Accordingly, the syntactic objects of a programming language can be categorized accord-
ing to the value category, which includes value literals and value-yielding semantic operations;
the type category, which includes type literals and type-yielding semantic operations; the
binding category, which includes type- and value-bindings; the declaration category, which

includes type- and value-declarations; and the miscellaneous category, which includes all
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those syntactic objects that serve merely as components of semantically complete syntactic
objects (e.g., just as an argument-list serves merely as a component of a function-call and a
signature serves merely as a component of a function-type).

This conceptual framework is the basis for Acer’s design and mirrors the underlying

framework of many programming languages.

2.2 Onward

Acer’s design is based on that of Quest [Car89], an imperative, general-purpose, expression-
oriented language with an elaborate type system that supports type quantification and struc-
tural subtyping [CW85]. Like Quest, Acer features abstract types, polymorphism, single and
multiple “inheritance,” and garbage collection. Acer differs from Quest in significant ways,
however.

Most importantly, Quest has three levels of semantic objects (values, types, and kinds),
and Acer has only two (values and types) because kinds are represented as types. To under-
stand hcw this is possible one must realize that Quest’s subtyping rules induce a lattice on
types (i.e., a type hierarchy), and that a kind is simply a sublattice of this lattice. Intuitively,
kinds classify types just as types classify values. Thus, in Quest one says, “The type T is
an element of kind K.”

Now, a kind, being a sublattice, can always be denoted by its root type, i.e., the sublat-

tice’s maximum type. Therefore, in Acer, each of Quest’s three ways of specifying a kind is

replaced by a type as follows:

e Instead of providing the kind TYPE, which Quest uses to denote the whole type

lattice, Acer provides the any-type Any, which it uses to denote the root of the type
lattice.

e Instead of providing the power-kind POWER(T), which Quest uses to denote the
sublattice rooted at type T, Acer provides just T itself.

e And finally, instead of providing an operator-kind OPER () K, which Quest uses to
denote the sublattice rooted at a type-operator! Oper() T, where the type T is an
element of kind K, Acer provides just the type-operator itself (see 2.9).

'A type-operator is a function from types to types.



CHAPTER 2. AN INTRODUCTION TO ACER 12

Therefore, in Acer, type expressions are used to denote kinds. Also, since the kind of a
type expression is a type, it is as natural to refer to the type of a type expression as it is
to refer to the type of a value expression. Thus type expressions and value expressions are
jointly referred to as simply expressions. And we can speak of the type of an expression,
regardless of whether it denotes a type or a value. So, in Acer, when we say that a type T
is of type K we mean that T is a subtype of K.

Acer also includes a number of features not present in Quest. In particular, features for
supporting high-level iteration and accumulation are provided (see 2.16), as are features for
supporting high-level notations applicable to abstract-types (see 2.7).

Eliminating kinds from the syntax and introducing additional constructs significantly
alters Quest. Quest’s syntax is further altered in accordance with the GRAMPS approach
and the relational approach, as described in Chapter 3, and to conform with the design
principles described in Chapter 4. For example, in Acer, type and value expressions are to
be syntactically distinguishable. Therefore, a type-identifier must start with an upper-case
letter and a value-identifier must not. (An underscore is considered an upper-case letter.)

Besides letters and digits, a value-identifier may also be spelled using a combination of the

following:

P+ -/ <=>72\" |~

Here are some examples of type-identifiers:

Type T0 Base_Type

and here are some examples of value-identifiers:

value v_0 ++ \/ <=

As an additional font cue for distinguishing type-identifiers from value-identifiers, type-
identifiers are shown [talic and value-identifiers are shown slanted. Also, keywords are shown
bold to distinguish them from identifiers; comments, which start with a ‘%’ and end at the
end of the line, are shown in Roman; and character- and string-literals (see 2.8) are shown
in typewriter.

Acer’s syntax includes a number of unusual features. First of all, several constructs
contain unbalanced brackets (e.g., ‘(’, ‘{’, and ‘") that are balanced by the matching bracket
of a different construct. For example, a binding-list begins with a ‘{’ followed by a series of
binding constructs but no terminating ‘}.” However, a binding-list in context can appear only

as the initial component of a block, and a block provides the terminating ‘}.” Thus, although
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a construct out of context may have unbalanced brackets, brackets are always balanced for
constructs in context. The justification for this approach stems from the notion of avoiding
phrase ambiguity as discussed in section 4.3.

Another unusual aspect of Acer’s syntax, which closely mirrors that of Quest, is the fact
that all commas and semicolons are optional. Acer’s syntax is designed so that it i1s always
clear where a given construct ends and a new one begins; hence separators and terminators
are redundant. Throughout this thesis, commas and semicolons are generally included only
to separate or terminate constructs appearing on the same line; or when the example is
intended to indicate appropriate punctuation.

Acer’s scope rules follow the traditional style of nested block structure, but forward-
reference among declarations and bindings is generally permitted. This provides direct
support for recursion. Restrictions on forward-references to values prevents access to unini-
tialized values (see A.7.2). To begin this overview of Acer, consider the way value- and

type-identifiers are introduced at the top level, that is, with global scope.

2.3 Global identifier

The most basic Acer program consists simply of a fixed-value-binding, for example,

let pi be 3.14159

introduces a location named pi of type Real containing an approximate representation of the

mathematical value 7. Compiling? this binding produces the fixed-value-declaration
pi: Real

which is then globally visible to subsequent compilations.

An arbitrary number of global value-identifiers can be simultaneously introduced in the

form of a binding-list. For example, compiling the binding-list

{let x be y;
let y be 10;

produces two declarations:

x: Integer

20f course, compiling a binding produces object code in addition to producing a declaration.
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and

v : Integer

A binding-list begins with a left brace and the bindings are terminated by optional semi-
colons; there is no terminating right brace. Top-level binding-lists typically are used only for
introducing mutually dependent values, a situation that arises only infrequently. The above
values are not mutually dependent since y could be compiled separately before x.

A global type-identifier is introduced by a type-binding, for example,

let Color be Enumeration red, blue, green end

introduces an enumeration-type named Color. Unlike a fixed-value-binding, which must be
compiled to produce the declaration that becomes visible, a type-binding is directly visible
without prior compilation.

To understand the reason for the different handling of global types and values, realize
that Acer supports information hiding by introducing a global value-identifier with a decla-
ration, which indicates the identifier’s type but hides its implementation. Such a top-level
declaration, as we shall see in section 2.7, is analogous to a Modula-2 definition module
[Wir85]; the binding from which it is derived is analogous to a Modula-2 implementation
module. Thus, in Modula-2 terms, one could think of it as if compiling an implementation
module (a binding) automatically produces a definition module (a declaration).

Of course, in above example, there is little reason to hide the value associated with pi,
except maybe to hide the number of significant digits supported by the implementation of
Real. But then, the example is intended to be a simple one, not an example that shows
the need for information hiding. Had the binding introduced a function, the effect would
have been to declare a value-identifier with a function-type, thereby hiding the function’s

implementation.

Hiding of type implementations is supported in similar manner using type-declarations,
for example,

Color :: Any

A type-declaration indicates the kind of type bound to its identifier but hides the actual
implementation, which may be any subtype of the indicated type. However, hiding of a type
implementation occurs only in the context of a quantifier, which provides the operations that

apply to values of the hidden type (see 2.7 and A.20.3). Hence, top-level type-declarations
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are not supported. Type hiding will be discussed further with respect to type-declarations in
function signatures (see 2.6) and with respect to type-declarations in tuple-types (see 2.7).

To summarize then, each top-level value-identifier is introduced by a fixed-value-
declaration, for which there presumably exists a fixed-value-binding that provides the value’s
definition, i.e., its hidden implementation; and each top-level type-identifier is introduced
by a type-binding that provides the type’s definition. In this way, any value or type can be
introduced at the top level to make it globally visible.

Acer economizes on notation by avoiding special top-level constructs, such as modules,
interfaces, packages, and so on. Explicit imports and exports are also avoided. Acer simply
makes do with nested block structure and existing constructs, such as bindings and declara-

tions, which serve other roles in the language as well. Such economy simplifies manipulation.

2.4 Block

Binding-lists are more {requently used in conjunction with blocks so that bindings can be

introdurad local to an expression. A block consists of a binding-list and a body and is either

a type-block, e.g.,

{let T be Integer; T}

or value-block, e.g.,

{let x be 10; let y be 20; {x + y}}

depending on whether the body is a type or a value. Remember, type and value expressions
are to be syntactically distinguishable. Notice the use of a dyadic-method-call {x + y}, which
is similar in appearance to a block, to invoke the Integer addition operation. Method-calls
are discussed in detail in section 2.7.

A binding in a type-block’s binding-list must be a type-binding, but a binding in a
value-block’s binding-list may be a type-, fixed-value-, or variable-value-binding. A variable-

value-binding is directly analogous to a fixed-value-binding except for the additional var
indicator, e.g.,

let var x be 0

A variable-value-binding introduces an updatable location, initialized as indicated, which

may subsequently be modified by assignment, e.g.,
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{x becomes 10}

The syntax of an assignment expression mirrors that of a dyadic-method-call. The type of
an assignment expression is Void, the type of a value expression evaluated for side-effect;
the void-literal {} denotes the one value of type Void, and this is the value yielded by an
assignment.

When a value-block is evaluated, the bindings are evaluated first and the body is evaluated
in the context of those bindings to yield the result of the block. The bindings themselves

can be evaluated in any order that does not access uninitialized values. For example, in the

block

{let x be {();let y be g(); {x +y}}

either f or g can be evaluated first. Nevertheless, a left-to-right evaluation must be a correct
evaluation order as determined by dependency analysis (see A.7.2), and bindings may well

be evaluated in that order. For example, the block

{let x be h(y); let y be 42; {x + y}}

is incorrect because it cannot be evaluated left-to-right. So to put it another way, the depen-
dencies between bindings must be reflected in their left-to-right order, but when bindings do
not depend on one another, they can be evaluated in any order. This provides a measure of
freedom to the compiler implementor.

So that side-effects can be sequenced, Acer provides a compound-value, which is a list

of value expressions bracketed by begin end and separated by optional semicolons, for
example,

begin f(); g(); h() end

A compound-value is evaluated left-to-right yielding the value yielded by the last expres-
sion. If any evaluation raises an exception (see 2.12), the compound-value also raises that
exception. The empty compound-value is equivalent to the void-literal.

Acer supports local program transformations by providing blocks that can be introduced
local to any expression context. Ilence, new objects can be made visible over precisely the

region in which they are required. See section 4.9 for further discussion of this issue.
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2.5 Enumeration

Acer provides the enumeration-type construct for defining enumerations. For example, the

binding
let Color be Enumeration red, blue, green end

introduces an enumeration-type named Color. The values of type Color can be denoted using

literal-selection, e.g., Color.red. The commas separating the identifiers of an enumeration-

type are optional.

Enumeration-values are ordered and hence an ord-call construct is provided to determine
the ordinal position of an enumeration-value, e.g., ord ( Color.red) yields the Integer value 0.
In addition, given an ordinal position, the corresponding enumeration-value can be obtained
with a val-call, e.g., val (Color, 0) yields the value Color.red. Enumeration-values can also
be used in Acer’s variant-inspection as described in section 2.13.

Notice that the identifiers of an enumeration-type are not visible without the qualification
of a literal-selection. This enhances manipulation by keeping separate name spaces disjoint.

See section 4.8 for a discussion concerning the impact of scope rules on manipulation.

2.6 Function and function-call

A function in Acer is defined using a function-literal. For instance, a function named f can

be introduced by a binding containing a function-literal as

let { be function ( Type:: Any; value: Type) value end

where

(Type:: Any; value: Type)

is called the signature. The function denoted by f, which is the polymorphic identity function,
can then be called as

f (Integer, 10)

or equivalently as

f (let Type be Integer, let value be 10)
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to yield the Integer value 10. In general, an argument-list is similar to a binding-list except
that an argument-list comprises a list of arguments (i.e., expressions and bindings) that
begins with a left parenthesis and is separated by optional commas. Just as the left brace
of a binding-list is balanced by the right brace of a block, so too the left parenthesis of an
argument-list is balanced by the right parenthesis of a function-call.

When a function-call is evaluated, the arguments are bound to the declarations of the
function’s signature and then the function’s body is evaluated in the context of those bindings
to yield the result of the call.

As a bit of an aside, Acer provides is and isnot to test for value-identity. Therefore,

because f is the polymorphic identity function, the is-test
{xis { (TYPE (x), x)}

always yields true, regardless of the type of x. Hence, even
{fis f(TYPE(f), )}

is valid and yields true. Notice how the type-designation TYPE (x) is used to denote the

type of x. In general, a type-designation can be applied to any expression to denote the type
of that expression.

The type of a function-literal is a function-type. For example, the type of f (i.e., the
type denoted by TYPE (f)) is the function-type

Function (Type:: Any; value: Type) Type end

The result-type indicated by a function-type can be explicitly indicated in a function-literal.

For example, f above could be equivalently given as

let f be function ( Type :: Any; value: Type): Type value end

Notice how the initial lower-case or upper-case letter in function and Function distinguishes

a function-literal from a function-type, just as it distinguishes a value-identifier from a type-
identifier. This style is used often in Acer.

The use of type-declarations in signatures supports polymorphism. For example, the
function max in

let max be
function (BaseType :: Any
<:Function (a: BaseType; b: BaseType) Boolean end
x : Base Type
y : BaseType)

if {x < y} then y else x end
end
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defines a polymorphic function that takes four parameters, a base-type of type Any, a less-
than function that applies to values of the base-type, and two values of the base-type. The
function max yields the maximum of the two values of the base-type as determined by the
less-than function. Notice the use of Acer’s conditional expression (see A.23.3), which can

in general include elsif clauses, and also the use of a dyadic-method-call to call the less-than
function. Method-calls are described in the section 2.7.

The type of max is

Function (BaseType:: Any

<:Function (a:BaseType; b: Base Type) Boolean end
x : Base Type
v : Base Type)
Base Type
end

and the appearance of Base Type as the result-type demonstrates that the type of a function-

call can depend on its type parameters. For example, the function max could be called
as

max (Integer, integer.<, 10, 20)

or equivalently as

max (let BaseType be Integer
let < be integer.<
let x be 10
let y be 20)
to yield the Integer value 20. Notice how integer.< is used to select the less-than function
from the integer module. Section 2.7 explains how such modules are defined in terms of

tuples.

The function max could be applied to a different type of argument as well, e.g.,

max (Real, real.<, 1.2, 10.2)

yields the Real value 10.2.

A function cannot ascertain the actual types bound in a function-call to the type-
identifiers declared in its signature so ecach of these identifiers is considered to be an abstract-
type. In other words, a type is an abstract-type if it is introduced by a declaration. (Note
that the type bound to a type-parameter cannot be determined even at run-time since typing

in Acer is static, except for dynamics which are described in section 2.15.) The values of
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each abstract-type in a function signature, and the operations that apply to those values,
must be declared in the same signature; hence the signature quantifies the abstract-type (see
A.20.3). For example, in the function max the abstract-type BaseType is declared along
with two values of that type and a function applying to those values.

Recall that the introduction explained that in Acer each type expression has a type just
as each value expression has a type. Normally, for a concrete-type, such as a function-type
or an enumeration-type, a type expression is its own type. But for an abstract-type, such as
Base Type, its type is given by its type-declaration. (Here we see the double-duty strategy in
action.) At run-time, all that is known about a given abstract-type is that it is a subtype of
the indicated type. In the function max, the type of BaseType is Any and hence Base Type
is unrestricted. In other cases, the type of an abstract-type ts something other than Any
such as a function-type or an enumeration-type and hence is partially restricted. Specifying
such restrictions involves Acer’s subtyping rules, which will be described in section 2.14.

When a function-literal is evaluated, as opposed to when a function-call is evaluated, a
closure, i.e., the set of all values used by the literal, is computed. At run-time, a function-

value therefore contains both a reference to the instructions for evaluating the literal’s body

and a reference to the closure. For example,

let h be function (x: Integer)

{let var y be x
function ()

begin {y becomes {y + 1}}; y end
end}

end

defines a function h that returns a locally defined function with the updatable location y in

its closure. Note that y is allocated on the heap. The type of h is

Function (x : Integer) Function () Integer end end
and hence the type of h(0) is

Function () Integer end

Successive calls to the function yielded by h(0) yield succesive Integer values starting with
1.

Acer’s functions support manipulation by allowing any value expression to be abstracted
over (see 4.14). In addition, functions are first-class values and can thus be used just like

any other value: they can be passed as parameters, stored in data structures, and returned
from functions.
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Like Quest, Acer supports polymorphism through the use of explicit type-parameters, an
approach that is substantially different from approaches that infer the type-parameters from
the value-parameters. Such a type-inference approach is the basis for supporting polymor-
phism in ML [Mil78] (or see [Wik87, pages 378-420]). A more extensive approach, which
involves inferring not only the type-parameters but also the semantic operations associated
with the type-parameters, is described in [CW90]. Explicit polymorphism has the advantage
of being easier to define and support, but there are notational advantages to the type-
inference approach, terseness of notation being one of the primary advantages. A limited

form of type-inference is supported in Acer through the use of method-calls (see 2.7).

2.7 Tuple, method, and selection

The tuple is Acer’s primary data structuring mechanism and subsumes the conventional
notion of modules. A tuple-literal, like an argument-list, is a list of arguments separated
by optional commas. But in this case, the list is bracketed by tuple end. The type of a

tuple-lit=ral is a tuple-type, which is analogous to a signature except that the declarations

are bracketed by Tuple end. For example,

tuple 10, 10.0 end

has type

Tuple : Integer; : Real end

Notice that the defined-identifier of a declaration is optional so that a declaration can be
derived from an expression as well as from a binding. This supports the declaration of
anonymous parameters and anonymous data-structure components. Notice too that type-
and fixed-value-declarations are distinguished by the fact that a type-declaration uses two
colons rather than one. Thus the type-declaration :: Any is distinguishable from the fixed-

value-declaration : Any.

Tuples can introduce types as well as values, e.g.,

let t be
tuple
let Type be Integer
let value: Type be 0

let operation be function (x: Type): Type {x + 1} end
end
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which has type

Tuple

Type:: Any

value: Type

operation : Function (x: Type) Type end

end
Note how a binding explicitly indicates a type, as in the binding for value, to specify the
type of the derived declaration. The components of t are accessed using either type-selection
(e.g., t. Type) or value-selection (e.g., t.value and t.operation).
The type-selection t. Type is an abstract-type because the actual type used in the defini-

tion of t is inaccessible. For instance, we might have defined t as

let t be
tuple
let Type be Real
let value: Type be -10000.0
let operation be function (x: Type): Type {x + 10.0} end

end
In either case, t introduces an abstract-type t.Type of type Any, a single value t.value of
that type, and a single function t.operation that applies to values of that type. Thus the
tuple t acts as a module implementing an abstract-type and to support information hiding,
the abstract-type’s definition is inaccessible.

The reader may be unsettled that t.value might contain any type of value whatsoever.
This is of no concern, however, because each abstract-type is unique so t.value can only be
used as a value of t.Type. Hence, it can only be passed to the function t.operation by the
call t.operation (t.value) to yield another value of type t. Type.

Consider now an extended example in which we define an abstract-type for simple three-

dimensional vectors. Compiling the binding
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let vector be
tuple
let Type:: Any be Tuple x: Real; y : Real; z: Real end
let construct be
function (x: Real; y : Real; z: Real) : Type
tuple x, y, z end
end
let x be function (v: Type) : Real v.x end
let y be function (v: Type) : Real v.y end
let z be function (v: Type) : Real v.z end
let + be
function (vI: Type; v2: Type): Type
tuple {vl.x + v2.x}, {vlLy + v2.y}, {vl.z + v2.z} end
end
let - be
function (vi : Type; v2: Type): Type
tuple {vi.x - v2.x}, {vlLy - v2.y}, {vl.z - v2.z} end
end
let ~ be
function (v: Type): Type
tuple {~ v.x}, {~ v.y}, {~ v.z} end
end
end

produces the declaration

vector: Tuple
Type :: Any
construct : Function (x: Real; y : Real; z: Real) Type end
x:Function (v: Type) Real end

: Function (v: Type) Real end

:Function (v: Type) Real end

:Function (v1: Type; v2: Type) Type end

: Function (v1: Type; v2: Type) Type end

:Function (v: Type) Type end

end

IS

+

The abstract-type vector. Type allows us to illustrate several significant aspects of Acer.
First of all, notice that Acer cannot support overloading because the identifiers defined
by a tuple must be distinct. Since ‘-’ is used for subtraction of vector. Type values, a different
symbol, namely ‘~’, must be used for negation. Acer’s Integer and Real are also defined in
terms of abstract-types and so they too use ‘~’ for negation, which can be called using a unary-
method-call, e.g., {~ 10}. However, integer- and real-literals can still use the conventional

notation (e.g., =10 and -10.0) since in this case ‘=’ is considered part of the literal.
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Given the values vl and v2 of type vector. Type, which could be created as

let vl be vector.construct (-10, 20, -30)

and

let v2 be vector.construct (10, -20, 30)

we could add the two values using vector.+ (v1, v2). We could negate v1 using vector.” (v1).
Also, we could access the x coordinate of vI using vector.x (vl). These notations are rather
verbose so Acer provides method-calls as a short-hand notation for function-calls (see A.21).

A prefix-method-call is the most general form of method-call. It looks like a function-call
except that the function must be a value-identifier and the argument-list is preceded by a dot,
e.g., +.(vl, v2). The function-call equivalent of a given prefix-method-call is determined by
searching the operations associated with each successive argument that has an abstract-type.
Hence, +.(v1, v2) is equivalent to vector.+ (vl, v2) because the type of v1 is vector. Type and
vector provides a ‘+’ component. A dot is used in the syntax for prefix-method-calls so
that a prefix-method-call is distinct from a function-call and so that one is reminded that a
prefix-method-call involves value-sclection.

Acer defines both unary- and dyadic-method-calls in terms of prefix-method-calls, for
example, {~ v1} is equivalent to ~.(vl) and {vI - v2} is equivalent to -.(vI, v2). Also,
when value-selection is applied to a value with an abstract-type, it is treated as equivalent
to a prefix-method-call. By doing so, Acer allows values with abstract-types to support
the familiar dot-notation for selecting components. For example, the x coordinate of the
vector. Type value vl could be accessed using the (abstract) value-selection v1.x which is
equivalent by rewriting to the prefix-method-call x.(vl) which in turn is equivalent after
method-lookup to the function-call vector.x (vI).

To complete the discussion of method-calls, consider one last Acer construct that is
defined in terms of a prefix-method-call, namely an index expression. An index expression
such as a[i, j] is defined to be equivalent to index2.(a, I, j); hence any value with an abstract-
type can support the notation for subscripting. Notice that the method-name used in the
prefix-method-call is of the form indexn, where n indicates the number of indexing values,
which may be zero or arbitrarily many.

Abstract-types can also support assignable value-selection and indexing by using the
rule that if the prefix-method-call equivalent method.(arguments) of a given value-selection
or index has a Pointer or Reference type then the prefix-method-call equivalent is instead

method.(arguments)@. In other words, an abstract value-selection or index expression that
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yields a reference or pointer is automatically dereferenced and hence the resulting expression
may occur as the destination of an assignment. We shall see examples of this in the discussion
of pointer- and reference-types in section 2.10.

Acer’s tuples support manipulation by providing modules as first-class values: they can

be passed as parameters, stored in data structures, and returned from functions.

2.8 The standard abstract-types

Acer provides special syntactic support for five basic types, namely Integer, Real, Character,
String, and Boolean. Support for the first four types is provided in the form of literals. We
have already seen examples of integer- and real-literals. A character-literal is of the form ‘a’
and a string-literal is of the form "abc". No additional special support is provided for these
four types, each of which is defined in terms of an abstract-type encapsulated by a tuple.
Special syntactic support is also provided for the type Boolean, but not in the form of
literals since these are denoted as boolean.false and boolean.true, or simply as false and
true (see A.23). Syntactic support for Boolean values is provided in the form of short-circuit

evaluation constructs for evaluating ‘and’ and ‘or.” In particular, an andif-test

{x andif y}

is equivalent to

if x then y else false end

and similarly an orif-test

{x orif y}

1S equivalent to

if x then true else y end

Although the andif-test and orif-test have the appearance of a dyadic-method-call, they
cannot be implemented as such (by the boolean module, say) because both arguments would
be evaluated before the method were called.

Acer’s standard abstract-types receive no additional syntactic support. Acer attempts to
Provide general support for abstraction rather than attempting to provide specific support
for a number of special built-in abstractions. This is in keeping with providing support for

general manipulation.
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2.9 Type-operator and operator-call

Type-operators are functions from types to types that are evaluated statically, i.e., at

compile-time. For example, a type-operator can be introduced as

let Dyadic be
Operator (BaseType:: Any; ResultType:: Any)
Function ( : BaseType; : Base Type) Result Type end
end

This type-operator can then be called using an operator-call as

Dyadic (Integer, Boolean)

which denotes a type equivalent to

Function ( : Integer; : Integer) Boolean end
In this way, type-operators provide a convenient short-hand notation for complex type ex-
pressions.

Acer does not support recursive type-operators since type-evaluation, i.e., the rewriting
of every operator-call in terms of the definition of its type-operator, must be guaranteed to
terminate. For instance, suppose we wanted a type-operator BinaryTree that we could call
as BinaryTree (Real) or BinaryTree (vector. Type). Such a recursive type-operator might be

incorrectly presented as

let BinaryTree be
Operator (Base Type:: Any)
Tuple
x : Base Type
left Child : BinaryTree (Base Type)
rightChild : BinaryTree ( Base Type)
end
end

It should instead be defined in terms of a recursive type, €.g.,

let BinaryTree be
Operator (Base Type:: Any)
{let Type be
Tuple
x : Base Type
left Child : Type
rightChild : Type
end
Type}
end
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The power of type-operators lies not in the ability to use them as a short-hand notation
but in the ability to use them to define parametric abstract-types. For example, suppose we
wanted to define an abstract-type for paired-objects of the same arbitrary base-type. Such

an abstract-type is provided by the declaration

pair :
Tuple
Type :: Operator ( Base Type:: Any) Any end
construct :
Function (Base Type:: Any; x : Base Type; y : Base Type)
Type ( Base Type)
end

x : Function (Base Type:: Any; p: Type (Base Type)) BaseType end
y : Function (Base Type:: Any; p: Type (Base Type)) BaseType end
end

which could be implemented by the tuple

tuple
let Type be
Operator (BaseType:: Any)
Tuple x: Base Type; y : Base Type end
end
let construct be
function (BaseType:: Any; x: BaseType; y : Base Type)
: Type ( Base Type)
tuple x, y end
end
let x be function (Base Type:: Any: p: Type (BaseType)) p.x end
let y be function (BaseType:: Any; p: Type (BaseType)) p.y end
end

With the above declaration of pair visible, the function-call in

let pr be pair.construct (Integer, 10, 20)

yields a value of type

pair. Type (Integer)
The x component of the pair pr can then be selected using pair.x (Integer, pr). But this
Is very verbose, so method-calls are supported as a short-hand. Hence, the x component
of the pair pr can also be selected using the value-selection pr.x, which is equivalent to the
Prefix-method-call x.(pr) since the type of pr is an abstract-type. When a prefix-method-

call applies to an argument with an abstract-type given by an operator-call, as does pr with
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type pair. Type (Integer), the type arguments given in the operator-call are included as the
first arguments in the function-call equivalent of the prefix-method-call. Therefore x.(pr) is
equivalent to pair.x (Integer, pr). In this way, all forms of method-call, namely index, value-
selection, prefix-method-call, dyadic-method-call, and unary-method-call, are supported for
parametric abstract-types.

Type-operators enhance manipulation by supporting abstraction over type expressions,

Just as functions support abstraction over value expressions (see 4.14).

2.10 Pointer and reference

Acer provides two very similar types Pointer and Reference to support the modeling of
updatable locations. These two parametric abstract-types are introduced respectively by

the type-bindings

let Pointer be pointers. Type

and

let Reference be references. Type
Their modules are made available by the declarations

pointers:
Tuple
Type:: Operator (BaseType :: Any) Any end
new : Function ( BaseType:: Any; : Base Type)
Type (Base Type)
end
end

and
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references :
Tuple
Type :: Operator (Base Type :: Any) Any end
new : Function (Base Type :: Any; : Base Type)
Type ( Base Type)
end
create:
Function
(BaseType:: Any
fetch: Function () Base Type end
store : Function ( : Base Type) Void end)
Type ( Base Type)
end
end

Pointer-values model updatable locations in terms of memory addressing whereas reference-
values model updatable locations in terms of fetch/store functions.
A pointer-value p of type Pointer (Integer) can be created as

let p be pointers.new (Integer, 10)

We can then define q as

let ¢ be p

so that the dereference p@ and the dereference q@ yield the value at the same storage location.
Hence, the dereference p@ yields the value at the location pointed at by p. Such a dereference

can be used anywhere that a variable of the base-type can be used. For instance,

{p@ becomes 100}

updates the value at the location pointed at by p.
Acer provides a pointer-call construct, which can be used to determine the address of an

updatable location. Using this construct the pointer-value p could instead be created as

let p be {let var location be 10; pointer (location)}

Remember, Acer allocates the variable-value-bindings of a block on the heap rather than on
the stack, so the above does not produce a dangling stack reference.
References are created in an analogous manner, e.g., a reference-value r of type

Reference (Integer) can be created as

let r be references.new (Integer, 10)
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The value at the location referenced by r is yielded by the dereference r@ and we can use

{r@ becomes 100}

to update the value at the location referenced by r. Acer provides a reference-literal® con-

struct which could equivalently be used to create r as

let r be {let var location be 10; reference (location)}

From what has been described so far, pointers and references are equivalent. Their

difference lies in the references.create function. The original definition of r:

let r be references.new (Integer, 10)
is equivalent to

let r be {let var location be 10
references.create
(Integer
let fetch be function () Jocation end
let store be function (update: Integer)
{location becomes update}
end)}
Hence, a reference-value is implemented as a pair of functions, for fetching and storing the
referenced value—the fetch function is called when the dereference r@ is used to yield a
value and the store function is called when the dereference is used as the destination of an
assignment. Therefore, references provide high-level control over dereference and assignment.
For example, references could be used to record the number of assignments made to a
Particular reference, or to print out a message each time a reference is accessed.
To demonstrate a simple application of pointers and references we will show the imple-
mentation of an abstract-type for updatable paired-objects of the same arbitrary base-type.

The binding

3Unlike a pointer-call, a reference-literal is a literal and so can be the target of a delayed reference, thereby
Supporting recursive dependencies, see A.7.2.
p
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let pair be
tuple
let Type be
Operator (Base Type :: Any)
Tuple var x : Base Type; var y : Base Type end
end
let construct be
function (BaseType:: Any; x : Base Type; y : Base Type)
: Type (Base Type)
tuple let var x be x’[1], let var y be y’[1] end
end
let x be function (BaseType:: Any; p: Type (Base Type))
pointer (p.x)
end
let y be function (BaseType:: Any; p: Type (BaseType))

pointer (p.y)
end

end
can be compiled to produce a declaration that provides such a type.

As a bit of an aside, notice in the definition of the construct function the use of the
reused-value-identifier x’{1] to denote the outer definition of x in the signature, rather than
the inner definition of x in the tuple. The general form of this notation is x’[n] where n is
a non-negative integer-literal. This notation causes the search for the defining-occurrence of
X to skip over the first n matching defining-occurrences. Hence, the reused-value-identifier
x’[1] in the previous example refers to the outer definition of x rather than the inner one.
Acer also provides reused-type-identifiers.

Reused-identifiers are provided to access identifiers that are defined in an outer scope
and redefined in an inner scope, thereby ensuring that all identifiers remain visible. Reused-
1dentifiers are not intended to encourage the use of nested renaming, which should only occur
because the choice of identificr is forced. For example, nested reuse is forced if a tuple-literal
with a component named x is to be defined in a scope in which x is already visible, and if
the outer x must be used within that tuple.

To get back to our example of updatable pairs, recall that we earlier stated that if the
prefix-method-call equivalent of a value-selection (or an index expression, as we shall see in
the next section) has a Pointer or Reference type then the prefix-method-call equivalent is

automatically dereferenced. Therefore, with thePair defined as

let thePair be pair.construct (Integer, 10, 20)
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we could use thePair.x to yield 10 because the type of x.(thePair) is Pointer (Integer) and

so thePair.x is equivalent to x.(thePair)@. Furthermore, we could also use

{thePair.x becomes 100}

to update the x component of thePair. In this way, pointers and references, in conjunction
with value-selection (and index), provide support for modeling abstract-types with updatable
components.

Pointers and references support manipulation by allowing functions to abstract over up-

datable locations (see 4.14).

2.11 Array

Arrays in Acer are defined as a parametric abstract-type introduced by the binding

let Array be arrays. Type

The implementation of arrays is made available by the declaration

arrays:
Tuple
Type :: Operator (Base Type:: Any) Any end
error : Ezception ( Void)
length: Function (Base Type :: Any; : Type (BaseType))
Integer
end
index] :
Function (Base Type:: Any; : Type (Base Type); : Integer)
Pointer (Base Type)
end
new : Function (Base Type:: Any; : BaseType; : Integer)
Type (Base Type)
end
end

An array-value can be created by an array-literal, which is the only special syntactic

support provided for arrays. For example,

array 12, 23, 34 end

creates an array-value of type Array (Integer). The base-type of an array-literal can be given

explicitly as
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array 12, 23, 34 of Integer end

An array-value can also be created as

arrays.new (Real, 0.0, 10)

which creates an array-value with 10 elements, each of which contains the value 0.0.
For an array-value a of type Array (Base Type), the length of a is yielded by a.length and
the first element of a is yielded by a[0], which is equivalent to

index1.( Base Type, a, 0)@

Indexed arrays can be used in assignment, e.g.,
{a[i] becomes a[{i + 1}]}

The last element of a is yielded by

a[{a.length - 1}]

The exception arrays.error is raised when arrays.index] is called with an out-of-range sub-

script. We shall examine exceptions in the section that follows.

2.12 Exception and exception handling

In Acer, an exception is a special type of value that can be raised, along with a value of
some particular base-type, to terminate normal evaluation. An exception-value e based on
Integer can be defined as

let ¢ be exception (/Integer)

and is of type

Fzception (Integer)

This exception could be raised with an associated base-value as

raise e with 0 end

When this raise expression is evaluated, normal evaluation is interrupted and the exception
e, along with its associated value 0, is propagated back along the dynamic call chain until a

handler for e is reached. The type of a raisc expression is Raise, which is a special type that
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does not cause type-conflicts—an expression of type Raise does not yield a value but instead
always raises an exception and therefore cannot cause a type-conflict. This does not mean
that type-conflicts cannot occur within a raise expression, for the associated-value of a raise
expression must certainly be of the exception’s base-type, it simply means that the raise
expression itself does not cause type-conflicts, regardless of the context in which it appears.

Acer’s exceptions are different from those in other languages. In CLU [LAB*81] for
instance, exceptions are static entities and functions must explicitly indicate which exceptions
their evaluation may raise. This approach is not possible in Acer because exceptions are first-
class values.

Acer provides two global exceptions

exit: Frception ( Void)

and

fatal: Exception (String)

The exception exit is provided as a convenience, and may be raised using the short-hand

raise exit end

which is equivalent to

raise exit with {} end

because its base is Void. The exception fatal is special because if a program is terminated
by raising this exception, the associated string is printed as an error message.

Acer provides several constructs for handling exceptions. The simplest such construct, a
try-finally expression borrowed from Modula-3 [CDG*88], does not really handle exceptions
but rather allows one to specify evaluations to be carried out regardless of whether an
exception is raised. Consider trying to introduce two functions to be evaluated before and

after each evaluation of some value v, regardless of whether v raises an exception. Simply
using
begin before (); v; after () end

1S not enough because if the evaluation of v raises an exception then after is not evaluated.

Instead, a try-finally expression should be used as
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try
begin before (); v end
finally
after ()
end
so that before is evaluated before v and after is evaluated after v, even if the evaluation of
v raises an exception. A try-finally yields the result of its body, and if both the body and
the final-action raise exceptions, the exception raised by the final-action is raised; the value
vielded by the final-action is ignored. Hence the above can be used to replace a value v with
a traced equivalent that yiclds the same result as v. For instance, the function before could
print the message, “About to evaluate v.” and the function after could print the message,
“Finished evaluating v.” Such tracing could be used to implement a profiler [Ben87].
Acer provides the try expression for handling (trapping) exceptions. For example, the
integer module supplies an exception integer.error of type Fzception ( Void) which is raised

when a division by 0 is performed. Therefore,

try {x div y} then
when integer.error then 0

end
can be used to intercept the exception raised when y is 0. A try expression yields the value
of its body but if this evaluation raises an exception then the exception is compared against
the exceptions appearing in the when-condition(s)—if a match is found, the try expression
yields the value yielded by the evaluation of the consequent of the corresponding branch,
otherwise propagation of the exception continues. Hence the above try expression substitutes
the value 0 for {x div y} when y is 0.

In general, a try expression can have multiple when-branches, it can include an optional

default—branch, cach when-branch can have multiple exceptions, and cach when-branch can

include an optional defined-identifier, e.g.,

try body then
when exceptionl, exception2 with definedIdentifier then branchl;
when exception3, exceptiond then branch2
else defaultBranch
end

If the body of a try raises an exception that is not matched by any branch and a default-
branch is given then evaluation resumes with the default-branch thereby allowing unantici-

Pated or unimportant exceptions to be handled. The defined-identifier of a when-branch is
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bound to the value associated with the exception handled by that branch to make that value

available to the consequent. For example,

{let ¢ be exception (String)
try raise e with "Hello" end then
when e with result then result

end}

is a complicated way of yielding the value "Hello".
Acer’s only other construct that handles exceptions is a keep-trying expression, which is
also Acer’s only looping construct other than high-level iteration (see 2.16). A keep-trying

expression is very similar to a try expression , and has the general form

keep trying body then

when exceptionl, exception? with definedldentifier then branchl;
when exception3, exceptiond then branch2

else defaultBranch

end

When a keep-trying expression is evaluated, the body is evaluated repeatedly until an ex-
ception is raised. This exception is then handled by the branches or default-branch of the
keep-trying expression just as for a try expression. A keep-trying expression could be used

to define the integer factorial function as

let ! be
function (i: Integer)
{let var i be i’[1]
let var result be 1
keep trying
if {i < 1} then raise exit end
else
begin
{result becomes {result * i}}
{i becomes {i ~ 1}}
end
end
then when exit then result
end}
end

which could be called as t (10). Modula-3’s loop construct [CDG*88] is similar to Acer’s
keep-trying construct but is less general in that it handles only one particular exception, the

eXit-exception, rather than all possible exceptions.
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2.13 Variant

Acer provides discriminated unions in the form of the variant. A variant takes on different
structures depending on the value of its discriminating tag, which must be an enumeration-
value (or, as we shall see in section 2.14.3, an option-value). A particular variant v, based
on an enumeration-type E with value id, is created by a variant-literal, e.g.,

let v be

variant id of I with
(let x be 10, let y be 10.0)

which has type
Variant E of
when id then (x: Integer; y : Real)
end
The defining-occurrence of the tag of a variant-literal or an identifier in the when-condition
of a variant-type is determined by the literal-selection E.id.

The general form of a variant-type is
Variant EnumerationType of
when idl, id2 then ();
when id3, id4 then ()

else ()
end

Whereas the type of v is a variant-type with one alternative and an empty default-branch,
in general, a variant-type may specify the structure of each possible alternative; a default-
branch is used to specify the structure of any alternative not specified by the other branches.
Such variant-types are related according to Acer’s subtyping rules (see 2.14.5).

The tag of a variant cannot be changed and its components can be accessed only after its
type is narrowed to a tuple-type using a variant-inspection. For example, the x component
of v can be accessed using

inspect v then

when id with ¢t then t.x
end

The general form of a variant-inspection is

inspect v then

when idl, id2 with definedldentifier then branchl;
when id3, id4 then branch2

else defaultBranch

end
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When a variant-inspection is evaluated, the selector v is evaluated first and its tag component
is accessed to determine the matching branch. If the matching branch provides a defined-
identifier then the narrowed variant-value is bound as a tuple-value to that identifier. Hence,

in the preccding example, ¢t has type

Tuple : E; x: Integer; y: Real end
because v has type

Variant E of
when id then (x: Integer; y : Real)
end

Finally, the matching branch is evaluated to yield the result of the variant-inspection. An

empty default-branch in an inspection is equivalent to

raise fatal with "Inspection error." end
Variant-types could be used to define a lisp-like recursive type as

let Type be
Variant Enumeration nil, cons end of
when nil then ()
when cons then (car: Type; cdr: Type)
end
A variant-inspection can also be used as a Pascal-like case-statement if its selector is an
enumeration rather than a variant. Such a variant-inspection is evaluated exactly as before
except that the enumeration-value is examined directly rather than as the tag of a variant.
Just as with a variant, the value of the selector is bound to the defined-identifier of the

matching branch, although with an enumeration it has an enumeration-type rather than a

tuP]e-type (sec A.17.4).

2.14 Subtype

Up to this point issues involving subtyping have been carefully avoided, and yet subtyping
affords much of Acer’s flexibility. The question of subtyping is implicit in the question of
whether the arguments of a function-call conform to the signature of the called function.
FOrmal]y, one asks il an argument’s type T'1 is a subtype of a parameter’s type 7'2. There-
fore, the subtyping rules of a language determine the flexibility of its parameter-passing

mechanism.
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In Acer, whether T! is a subtype of a type T2 depends, of course, on the types that
T1 and T2 denote. The subtyping rules for the various classes of types are described in the

subsections that follow.

2.14.1 Tuple and single inheritance

The idea behind tuple subtyping is that when a tuple with certain components is expected,
a tuple with additional or more specific components is also permitted. For example, suppose
we have a function f which takes a tuple argument, e.g.,
let f be
function (t: Tuple x: Integer end)

t.x
end

The function f may be called with an extended tuple:

f (tuple 10, 20, 30 end)

to yield the value 10. Notice that the above tuple-literal does not provide a name for its first
component although in f this component is called x.

It is important to realize that every tuple-type is a subtype of Tuple end, which in turn
is a subtype of Any, the root of Acer’s subtype hierarchy. Therefore, the fewer components
a tuple-type specifies, the closer it is to the root of Acer’s subtype hierarchy and hence the
Mmore general it is considered to be.

Subtyping of tuple-types depends recursively on subtyping of components and so

Tuple : T end

is a subtype of

Tuple : T2 end
if 71 is a subtype of T2. For example, the function

let g be
function (t:Tuple x:Tuple y: Integer end end)
t.x.y
end

could be called as

g (tuple tuple 10, 20 end, 30, 40 end)
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where the type of the first component of the tuple argument is a subtype of the type of the
first component of the formal paramecter ¢ specified in g. Notice that we can say that the

tuple

tuple tuple 10, 20 end, 30, 40 end

is more specific than is required by g.
The subtyping rule for fixed-value tuple components also applies for type components.

For example, the tuple-type in

let 71 be Tuple Type:: Tuple end; value: Type end

i1s a subtype of the tuple-type in

let T2 be Tuple Type:: Any; value: Type end

Notice that an identifier introduced by a declaration of a tuple-type may also appear as an
applied-occurrence, as does the identifier Type in each of the declarations of value. These
identifiers are therefore involved in recursive subtyping, i.e., when determining whether 77
is a subtype of T2. In gencral, identifiers introduced by distinct declarations are unrelated
according to Acer’s subtyping rules, but during recursive subtyping of two tuple-types T
and T2, each occurrence of an identifier introduced by a declaration in T is assumed to
be equivalent to the identifier of the corresponding declaration in T2, This is why, during
recursive subtyping of T1 and T2, the type of the declaration of value in T1 is a subtype
of the type of the declaration of value in T2, even though, generally, two such distinct
declarations would be considered unrelated. (Of course if T is not a subtype of T2 for some
other reason, i.e., if cach had a third component but with different names, the assumption
would be proven false, as in the general case.)

The subtyping rule for fixed-value and type components of tuples does not apply for
variable-value components, which instead must have equivalent types. The necessity for this

Testriction can be seen in the following example. Suppose we have the tuple

let ¢ be

tuple
let var x be tuple let y be 0 end

end

from which we may extract the component t.x.y. Now suppose we pass ¢ to the function h:
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let h be
function (t: Tuple var x : Tuple end end)
{t.x becomes tuple end}
end
which replaces the x component of t with a tuple that does not have a y component. After the
call to h, the selection t.x.y would no longer be valid since there is no longer a y component.
But this fact is not reflected by the type of &. The call to h would be valid under the weaker
subtyping rule for fixed-value components but the stronger subtyping rule for variable-value
components prevents it.

Tuples in Acer are analogous to classes in object-oriented languages—both define the
encapsulation of abstract-types, and both define a class hierarchy. However, in most object-
oriented programming languages, such as C++ [Str86] and Eiffel [Mey88], a class is explicitly
declared to be a subclass of some other class (or of other classes, if multiple inheritance is
supported) and thereby inherits an interface and a default implementation; the interface can
be extended and the implementation can be changed. In Acer, a tuple-type is implicitly a
subtype of some other tuple-type by virtue of having a more specific declared structure; the
sharing of implementations must be explicitly programmed.

Implementation sharing in Acer is a simple matter, however, because a tuple can be

implemented as a copy of another. For example, suppose we have the global declaration

t: Tuple
Type:: Any
zero: Type
succ: Function (x: Type) Type end
end

We can then (automatically) produce the binding

let tt be tuple
let Type:: Any be t. Type
let zero: Type be t.zero
let succ: Function (x: Type) Type end be t.succ
end
which can be compiled to give a declaration with the same type as that of t. [n effect,
the implementation of ¢ is “inherited” by tt. Also, the implementation of t¢t can be sub-
Sequently modified just as can default implementations in object-oriented languages. And,

more importantly, even the type used by the implementation can be changed, e.g.,
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let ¢t be tuple
let Type:: Any be real Type
let zero: Type be 0.0
let succ be function (x: Type): Type {x + 1.0} end
end

2.14.2 Record and multiple inheritance

Acer’s tuples support a form of single “inheritance” —component order is significant so the
subtype rules for tuples induce a lattice in the form of a tree, i.e., a given tuple-type has at
most one direct parent in the lattice. With multiple inheritance, a type can have more than
one direct parent, and the type lattice is a directed acyclic graph.

Acer provides records to support a form of multiple “inheritance.” Records are exactly
analogous to tuples except that component order is not significant and hence every record

component must be named. Like tuples, records are created by record-literals, e.g.,

record let Type be Integer, let value: Type be 0 end

which have record-types, e.g.,

Record Type:: Any; value: Type end

Recall that during recursive subtyping of tuple-types we must consider the subtyping of
corresponding components. For tuple-types these components correspond positionally, but
for record-types corresponding components are instead determined by name. For example,
consider the record-types

{let X be Record x: Integer end
let XY be Record x: Integer; y : Integer end

let XZ be Record x: Integer; z: Integer end
let XYZ be Record x: Integer; y : Integer; z: Integer end

Acer’s subtype rules specify that both XY and XZ are subtypes of X, that XYZ is a
subtype of both XY and XZ, and that XY is unrelated to XZ. Other than the fact that
tuple subtyping is positional and record subtyping is by name, tuple and record subtyping

are completely analogous.

2.14.3 Enumeration and option

The idea behind enumeration subtyping is that when an enumeration-value of a given type

Is expected, an enumeration-value from an enumeration-type with fewer alternatives is also
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permitted. And because the values of an enumeration-type are ordered, an enumeration-
type El is a subtype of an enumeration-type E2 if the identifiers in E2 are a prefix of the
identifiers in E1. Therefore, given the types

{let Day be Enumeration mon, tue, wed, thu, fri, sat, sun end
let WeekDay be Enumeration mon, tue, wed, thu, fri end
let WeekEnd be Enumeration sat, sun end

we can say that WeekDay is a subtype of Day but WeekEnd is not related to either type.
Notice that Enumeration end is a subtype of all enumeration-types and the more values an
enumeration-type specifies, the closer that type is to Any, the root of the subtype hierarchy.

Acer’s subtyping rule for enumeration-types specifies that order is significant so Acer
also provides option-types, which are similar to enumeration-types except that order is not

significant. Therefore, given the option-types

{let Day be Option mon, tue, wed, thu, fri, sat, sun end

let WeekDay be Option mon, tue, wed, thu, fri end

let WeekEnd be Option sat, sun end
Acer specifies that WeekDay is a subtype of Day and also that WeekEnd is a subtype of
Day. Just as for tuples and records, the subtype relation on enumeration-types induces a
lattice in the form of a tree whereas the subtype relation on option-types induces a more
general lattice in which a type can have more than one direct parent.

Option-types are completely analogous to enumeration-types except for the subtyping

rule and the fact that the operations ord and val do not apply because of the lack of order.
Options support literal-selection, can be used as the base-type of a variant, and can be used

directly in a variant-inspection.

2.14.4 Function-type and type-operator

The idea behind function-subtyping is that when a function of a given type is expected a
function with more general arguments and a more specific result is permitted. Therefore,

the function-type

Function (: A7) RI end

is a subtype of

Function ( : A2) R2 end
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if R1 is a subtype of R2 and A2 is a subtype of A1.

Just as during recursive subtyping of tuples, during recursive subtyping of function-types
FI and F2, an occurrence of an identifier introduced by a declaration in the signature of F1
1s considered equivalent to the identifier of the corresponding declaration in the signature of

F2. For example,

Function (7':: Any; : T) T end

is a subtype of

Function (7T :: Tupleend; : T) T end

precisely because of this equivalence; the result-types otherwise denote distinct types.
Since type-operators are functions from types to types, the subtype relation on type-

operators is exactly analogous to that on functions.

2.14.5 Variant

Subtyping of variants makes use of the subtype relation defined for enumeration- and option-
types. A variant-type VI is a subtype of a variant-type V2 if first of all the base-type of
V1 is a subtype of the base-type of V2—intuitively, VI can only be a subtype of V2 if
there are the same or {ewer alternatives that VI can specify. If the base-types are correct
subtypes then VI is a subtype of V2 if each signature given in VI is a subsignature of the
corresponding signature in V2, where the subsignature relation is exactly analogous to the
subtype relation on tuple-types. Therefore, VI can be a subtype of V2 for two reasons,
firstly VI can specify the structure of fewer alternatives and secondly VI can specify an

extended or more specific structure for some alternatives. For example, the variant-type

Variant Enumeration nil end of
when nil then (newStuff : T)
end

1s a Subtype of

Variant Enumeration nil end of
when nil then ()
end

for the second reason, which in turn is a subtype of
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Variant Enumeration nil, cons end of
when nil then ()
when cons then (car: AtomType; cdr: T)
end

for the first reason.

2.14.6 Abstract-type

Acer has three forms of abstract-type. There are type-identifiers introduced by type-
declarations, for example, 7' and PT are abstract-types when introduced by declarations

In a signature as

(T :: Any; PT :: Operator (BaseType :: Any) Any end)
There are type-selections, for example, v. Type is an abstract-type when v is a tuple, record,
or dynamic (see 2.15) with a component named Type. And there are operator-calls, for
example, PT (Integer) is an abstract-type when PT is declared as above.

Every abstract-type is said to have a quantifier (see A.20.3), a concept closely related to
the universal and existential quantifiers of logic. For instance, a function acts as a universal
quantifier because it specifics a value for all possible parameter instantiations, whereas a tuple
acts as a existential quantifier because it specifies the existence of one particular instantiation.
For a type-identifier, the quantifier is the construct containing its declaration; this must be
a signature (e.g., the signature containing 7 and PT above), a tuple-type, a record-type,
or a dynamic-type (sece 2.15). For a type-selection, the quantifier is given by the base
(eg., v above). And for an operator-call, the quantifier is determined recursively from the
operator (e.g., from PT above). Intuitively, a quantifier encapsulates an abstract-type with
its associated values and operations, that is, its methods. In fact, the defining-occurrence of
the method-name of a prefix-method-call is determined by searching the quantifier of each
argument whose type is an abstract-type.

An abstract-type is abstract because its definition is hidden and hence cannot be used to
determine whether another type is a subtype of it. All that is known about an abstract-type
s that it is a subtype of its declared type. Therefore, an abstract-type is considered to be
a type unto itself—cach abstract-type is distinct from all others and has no subtypes. Two
abstract~types are equivalent only if they have the same quantifier, and for operator-calls,
only if corresponding parameters are also equivalent.

Because a quantifier can be a value, as in the case of type-selections, statically determining

if two quantifiers are the same requires a static equivalence relation for values. For example,
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vl.Type is a equivalent to v2. Type only if vI and v2 are equivalent. A detailed definition
of the static equivalence relation for values is left for the appendix (see A.20.3). Intuitively,
two value expressions are equivalent only if the expressions are fixed and can be shown to
always denote the same value.

To see why parameters must be equivalent when subtyping abstract-types, consider the
types PT (Integer) and PT (Any) where PT is declared as before. If the hidden definition
of PT is

Operator (Base Type :: Any) Function () BaseType end end
it would be valid to consider PT (Integer) a subtype of PT (Any) since

Function () Integer end

1s a subtype of

Function () Any end
However, if the hidden definition of PT is

Operator (Base Type :: Any) Function ( : Base Type) Any end end
it would not be valid to consider PT (Integer) a subtype of PT (Any) since

Function ( : Integer) Any end

1s not a subtype of

Function ( : Any) Any end
because Any is not a subtype of Integer. Therefore, in general, there is no fixed subtype
relationship between PT' (Integer) and PT (Any). Only when corresponding parameters are
€quivalent can a relationship exist.

Because an abstract-type is given a type by its declaration and because we can determine
whether this type is a subtype of some other type, we can, by transitivity, determine whether
an abstract-type is a subtype of a concrete-type, that is, a type that is not an abstract-type.
In general, if the declared type of an abstract-type, which must be a concrete-type, is a
subtype of some other concrete-type then the type implementing the abstract-type is also a
subtype of that concrete-type. Therefore we can say that an abstract-type is a subtype of a
concrete-type if its declared type is a subtype of that concrete-type.

This mechanism allows an abstract-type to partially reveal its definition by specifying
that its definition is a subtype of a given concrete-type. For example, given an abstract-type

declared as
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T :: Tuple x: Integer end

and a value declared as

v:T
it is valid to select the x component of v using v.x because although the type of v is T,
which is an abstract-type with no method named x, the type of the type of v (i.e., the kind

of v) is a tuple-type, which specifies that v is a tuple with an x component. Also, v can be

a passed to a function f declared as

f:Function ( : Tuple x: Any end) Void end

using the function-call f (v) because v is known to be a tuple with an x component of type
Integer.

To summarize the subtyping rules for abstract-types:

® An abstract-type T'1 is equivalent to an abstract-type T2 if the quantifier of 77 is

equivalent to the quantifier of 72 and corresponding parameters are equivalent.

o An abstract-type T is a subtype of a concrete-type 72 if the (declared) type of T7
1s a subtype of T2.

The first part reflects the fact that each declared abstract-type is distinct and the second
part reflects the fact that every abstract-type is known to be implemented by a type that is
a subtype of its declared type.

This completes the overview of Acer’s subtyping rules. A number of subtle points that,
are fully examined in Appendix A have been overlooked. However, these points are not

germane to the discussions that follow.

2.15 Dynamic

All the features of Acer described so far support static type-checking. To also provide
Support for dynamic type-checking, Acer provides a data structure similar to a tuple called

a dynamic. Like tuples, dynamics are created by dynamic-literals, e.g.,

dynamic let Type be Integer, let value: Type be 0 end

Which have dynamic-types, e.g.,
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Dynamic Type:: Any; value: Type end

Also, the subtyping rules for dynamic-types are the same those as for tuple-types. Type-
and value-selection also apply for dynamics. Dynamics differ from tuples, however, because
the first component of a dynamic must be a type and because a representation of this type
is actually stored as a run-time component of the dynamic-value. This type-tag component
can be examined at run-time using dynamic-inspection.

For example, the dynamic-value d in

let d be
dynamic
let Type be Integer
let value: Type be 0
end

could be inspected as

inspect d Then
when Integer with ¢ then t.value
end
to yield the value 0. A dynamic-inspection is similar in appearance to a variant-inspection
except Then (instead of then) is used to introduce the branch-list and the condition of each
when-branch specifies a type (instead of values).

When a dynamic-inspection is evaluated, the selector is evaluated first to determine the
type-tag of the resulting dynamic-value. This type is then compared to the types appearing
as the conditions of successive branches until a condition with a supertype is found. Note
that the subtyping rules used for dynamic-inspection are the same as the static subtyping
rules. In addition, a dynamic-inspection may provide an else part to specify a default-
branch. If the matching branch of a dynamic-inspection provides a defined-identifier then
the narrowed dynamic-value, which then takes on the form of a tuple-value, is bound to that
identifier. Finally, the consequent of the matching branch is evaluated to yield the result of
the inspection.

The defined-identifier of a type-when-branch of a dynamic-inspection is bound to a
dynamic-value whose type is narrowed to be tuple-type. This tuple-type has the same dec-
larations as the dynamic-type with the following exceptions: the initial type-declaration is
replaced by an anonymous fixed-valuc-declaration of type Any, and each applied-occurrence
of the defined-identifier of the initial type-declaration is replaced by a copy of the type-when-

branch’s condition. For example, in the dynamic inspection above, the selector d has type
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Dynamic Type:: Any; value: Type end

and since the condition of the matching branch is Integer, the type of t is

Tuple : Any; value: Integer end

There are restrictions on which types can be used as the tag of a dynamic. In particular,
the type-tag of a dynamic-literal may not depend on abstract-types that can be bound to
different definitions during program execution. For example, if this were allowed, consider

evaluating the block

{let var d be
dynamic
let Type:: Any be Integer
let value: Type be 1
end
let  be
function (7 :: Any; x: T)
{let result be
inspect d Then
when T with dt then dt.value
else x
end
begin
{d becomes
dynamic let Type be T; let value: Type be x end}
result
end}
end
tuple f (Real, 1.0), f (Character, ‘1) end}

The updatable variable d is used by the function f for two purposes. First, { inspects d
and if d has T as its type-tag then the value component of d, which then has type T, is
stored in result. Second, before yielding the value stored in result, [ assigns to d a dynamic-
value encapsulating 7’ and its value x. During the first call to f there is no problem (f
simply yields x) but during the second call, the dynamic-inspection succeeds because d then
contains a dynamic-valuc with 7 as its type-tag.t Therefore, during the second call, the
value component of the dynamic is stored in result, which is subsequently yielded by f.
But this value is yielded as a Character value even though it is actually the Real value 1.0

supplied to f during the first call.

4Remember, there is no way for the function to ascertain the type bound to T.
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The problem with abstract-types goes even beyond this because, as we will see shortly, a
dynamic-value can be stored in a file that is loaded by another program, or by a later run of
the same program. Therefore, even if an abstract-type is fixed during program execution it
can nevertheless be recompiled, thereby invalidating any stored dynamic-values that depend
on it. As a consequence, it may seem prudent to disallow completely abstract-types as
type-tags of dynamics. However, many basic types such as Integer, Real, and Character are
defined as abstract-types and it will most certainly be necessary to support dynamic-values
based on these. Therefore, an abstract-type is permitted as part of the type-tag of a dynamic
only when it can be statically shown to be bound to the same definition throughout a single
program execution, i.c., if it is a closed type (see A.14). The problem of an abstract-type’s
implementation changing, thereby invalidating stored dynamic-values based on it, is left as
an open problem.

Operations on dynamic-values are provided by the module dynamics which supports

copying, reading, and writing of dynamic-values:

dynamics :
Tuple
error : [xception ( Void)
copy : Function (: Dynamic Type:: Any; : Type end)
Dynamic Type:: Any; value: Type end
end
input : Function (filePath: String)
Dynamic Type:: Any; value: Type end
end
output : Function (filePath: String
: Dynamic Type:: Any; : Type end)
Void
end
end

For example, given the function g defined as

let g be
{let var x be 0
function ()
begin {x becomes {x + 1}}; x end
end}

We can create a dynamic copy h of g as follows:
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let h be
inspect
dynamics.copy
(dynamic
let Type be Function () Integer end
let value: Type be g
end)
Then when Function () Integer end with t then t.value
end

Given g and h as defined above, we could create the tuple

tuple {g() + g ()}, {h() + h()} end

which creates a tuple equivalent to

tuple 3, 3 end

Dynamic copying preserves the sharing and circularities within the object being copied. This
can be seen in the above cxample from the fact that even the closure of g is copied, not
shared between g and h.

The function g could also be copied using input and output as follows

let h be
inspect
begin
dynamics.output
("filename"
dynamic
let Type be Function () Integer end
let value: Type be g
end)
dynamics.input ("filename")
end
Then when Function () /nteger end with ¢ then t.value

end
Evaluating the above inspection involves storing a representation of g in the file "filename"
and then retrieving this representation, thereby producing a copy of g. The file "filename"
can even be retrieved by other programs or by subsequent executions of the same program,

80 dynamics provides support for persistent storage.
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2.16 Iterator and accumulator

Acer provides constructs for supporting high-level iteration and accumulation [Cam89]. Iter-
ators (i.e., sequence producers) and accumulators (i.e., sequence consumers) are tuples with

appropriate exception and function components.

An iterator-type is given in terms of a base-type as fterator (Base Type), where Iterator

is introduced by the global type-binding

let Iterator be
Operator (BaseType:: Any)
Tuple

done: Frception (Void)
produce : Function () BaseType end
terminate: Function () Void end

end

end

Since [terator is not an abstract-type, we can create an iterator-value with a tuple-literal that
has the required exception and function components. For example, the following function

creates an iterator that produces a sequence of integers in the specified range:

let range be
function (first: Integer; last: Integer) : Iterator (Integer)
tuple
let done be exception (Void)
let produce be
function ()
if {next > last} then raise done end
else
{let result be next
begin
{next becomes {next + 1}}
result
end}
end
end
let terminate be function () {} end
let var next be first
end
end

An iterator gencrates a sequence of values through repeated calls to its produce function,

Wwhich raises the done exception when the sequence is exhausted. An iterator is terminated
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by a call to its terminate function, which is called either because the done exception is raised
or because no further values are required. Iterators are typically used in conjunction with

Acer’s version of the for-loop called an iteration, e.g.,

for i in range (0, {a.length - 1}) do
{a[i] becomes 0.0}
end

As we shall see below, an iteration expression can also include an accumulator that consumes

the sequence of values to produce a single value.

An accumulator-type is given in terms of a base-type and a result-type as

Accumulator ( Base Type, Result Type)

where Accumulator is introduced by the global type-binding

let Accumulator be
Operator (Base Type:: Any; Result Type :: Any)
Tuple

done: Exception ( Void)

consume : Function (: Base Type) Void end
terminate : Function () Result Type end

end
end

Just like an iterator, an accumulator can be created by an appropriate tuple-literal. For

example, the following function creates an accumulator that adds up a sequence of values

let sum be
function (initial: Integer) : Accumulator (Integer, Integer)
tuple
let done be exception ( Void)
let consume be
function (i: Integer)
{result becomes {result + i}}
end
let terminate be function () result end
let var result be initial
end
end

An accumulator uses up a sequence of values through repeated calls to its consume func-

tion, which raises the done exception when the accumulation 1s complete. An accumulator
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is terminated by a call to its terminate function, which is called either because the done ex-
ception is raised or because there are no more sequence values. An accumulator’s terminate
function yields the result of the accumulation.

An accumulator can be used in an iteration expression as follows:

for i in range(1, 5) do
sum (0) i
end

which for the above definitions yields 15. In general, an iteration expression may introduce

several defined-identifiers and may contain a filter expression, e.g.,

for i in x; j in y andif filter (i, j) do accum body (i, j) end
which is defined to be equivalent to

{let iterl be x; let iter2 be y; let a be accum
keep trying
{let i be iterl.produce(); let j be iter2.produce ()
if filter (i, j) then a.consume (body (i, j)) end}
then
when iterl.done, iter2.done, a.done then
begin
iterl.terminate(); iter2.terminate (); a.terminate ()
end

end}

A missing accumulator is equivalent to discard which is globally declared as

discard :
Tuple
done: Exceplion ( Void)
consume : Function (: Any) Void end
terminate: Function () Void end
end

and is implemented as

let discard be
tuple
let done be exception ( Void)
let consume be function (: Any) {} end
let terminate be function () {} end
end
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A missing filter is equivalent to true.

Accumulators can also be used in Acer’s accumulation expression, e.g.,

sum(0) ([1, 2, 3, 4, 3])
which is defined, in general, to be equivalent to

{let a be sum(0)
try begin
a.consume (1)
a.consume (2)
a.consume (3)
a.consume (4)
a.consume (5)
a.terminate ()
end
then when a.donc then a.terminate ()

end}

. . . . o1 Wy »
Accumulation expressions are particularly useful as a notation for expressing “literals” of

abstract-types. For example,

list.construct (Integer) ({2, 3, 5, 7))

might be used to create an list of integers, i.e., a value of type

list. Type (Integer)

The definitions of Acer’s high-level iteration and accumulation constructs demonstrate
just how easily Acer’s syntax can be extended to provide convenient notations when such

Notations are deemed necessary or desirable.

2.17 Code-patch

The final feature we shall examine is the code-patch. A code-patch is similar in appearance
to a compound-value but is used to specify machine-dependent evaluation. For example, the

code-patch

code Integer; move(dl, d0); d0 end

might be used to move the contents of register d1 to register d0 and to yield the final value

of d0 as an Integer result. The code-patch
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code Pointer (Any); A7 end

might be used to yield the value of the stack-register A7 as a pointer.

A code-patch is a list of expressions. The first expression must be a type, which specifies
the type of value yielded by the code-patch. The remaining expressions are interpreted
as the data and instructions of some particular machine—the interpretation varies from
implementation to implementation. Typically, the final expression is used to specify the
effective-address of the value to be yielded, and the expressions between the first and the
last are used to specify the machine instructions to be executed.

Code-patches support manipulation by providing low-level access to features that would

otherwise be outside the domain of Acer, sce 4.15.

2.18 Summary

This completes our description of the typeful programming language Acer. Acer has been
carefully designed not only as a flexible high-level language but also as a language that di-
rectly supports program manipulation. In terms of syntax, Acer supports manipulation by
providing a concrete syntax that avoids syntactic ambiguity, including pairwise ambiguity
between grammar productions. In terms of semantics, Acer supports manipulation by pro-
viding a flexible abstract syntax that corresponds directly to the concrete syntax. These

topics will be addressed in detail in the chapters that follow.



Chapter 3

The representation of syntax

3.1 The nature of syntax

Language design is primarily concerned with semantics, which is described in terms of ab-
stract syntax; concrete syntax is largely irrelevant as it merely provides a view of abstract
syntax. The goal of language design is to represent meaning in the simplest and most flex-
ible way. Since programming languages represent algorithms, which must be translated by
computers and yet be readable to humans, a representation of programs is flexible only to
the extent to which it supports both machine and human manipulation. Also, programs are
not simply written and then read, as with natural language, programs are created and then
modified by maintenance activities. These activities are best carried out by manipulating
an abstract representation.

This chapter describes a GRAMPS-style approach [CI84] for representing context-free
syntax and a relational approach, inspired by NURN [Dyc90], for representing context-
dependent syntax. According to these approaches, syntactic objects are represented as the
interrelated nodes of a syntax tree. A GRAMPS-style grammar, as we will see, can be used
either to specify just abstract syntax or to specify both abstract syntax and concrete syntax.
A language can therefore be designed without regard to appearance. To further this goal, a
graphical view of nodes is presented as the basis for the design of pure abstract syntax.

During preliminary design, a language designer should ignore lexical concerns, such as
choice of symbols, and parsing concerns, such as choice of keywords and punctuation, and
should instead focus on the representation of meaning. Only when a suitable abstract syn-
tax has been designed should the design of concrete syntax begin. An ASCII view, being

Necessary for portability, should be considered during the design of concrete syntax but the
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limitations of ASCII must not restrict attempts to provide more readable views.
To demonstrate the representation techniques of this chapter in action, examples are

given in terms of Acer.

3.2 Context-free syntax

The fundamental semantic objects of Acer are classified into the categories type, value,
declaration, and binding (see A.2). In the abstract syntax such categories are specified using

a GRAMPS-style alternation rule as follows, in which || is used to separate alternatives:

(Declaration) ::= (TypeDeclaration) || {ValueDeclaration)

This rule is interpreted to mean that a declaration is either a type-declaration or a value-
declaration.

An alternation rule does not specify node structure, it specifies choice of structure; node
structure is specified by GRAMPS-style lexical, construction, or list rules. To be more exact
then, each lexical, construction, or list rule defines a node class whereas each alternation rule
defines a set of node classes, or node category. Every node belongs to a particular node class
and, depending on the kind rule that specifies its class, is either a lexeme, a construction, or

a list; each will be considered in turn.

3.2.1 Lexeme

Lexemes, along with childless lists and childless constructions, form the leaves of a syntax
tree. Typical lexemes in programming languages are identifiers, numbers, characters, and
strings. Lexemes are encoded as sequences of symbols but the details of this encoding are of
No concern during the design of abstract syntax.

Abstractly, a lexeme has a spelling that must conform to a regular expression written
in terms of a particular set of symbols. Although lexical rules are clearly in the domain of
concrete syntax, it is safe to assume that an ASCll-based concrete syntax will be provided.
Further discussion of lexical rules is deferred until section 3.4.1 when we deal with concrete
Syntax.

For now, assume that a lexeme’s spelling can be illustrated as a sequence of symbols

enclosed by a rectangular box. Examples of each of Acer’s six lexeme classes are

two Two f 2 [' 2.0 ‘2’ n"II"
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In Acer, the node class of each lexeme, that is, whether it is a value-identifier, type-identifier,

integer-literal, real-literal, character-literal, or string-literal, is obvious from its spelling.

3.2.2 Construction

Constructions are used to model semantic objects consisting of a fixed set of components. For
example, an Acer type-declaration consists of an optional type-identifier and a type. This
is specified by the following GRAMPS-style construction rule, which uses [ ]| to indicate
optionality:

(TypeDeclaration) ::= | (Definedldentifier: Typeldentifier) | (:Type)

A construction rule specifics a name for cach component—if an explicit component name is
omitted, the component name is implicitly taken to be the same as the node class name.
Accordingly, an Acer type-declaration consists of an optional defined-identifier, which must
be a type-identifier, and a type, which must be a type expression. Perhaps it is confusing
to use type as both a node class name and a component name but it seems natural to do so
when nodes represent types and when constructions have types as components.

Abstractly, a construction is the parent of a fixed number of named children nodes. These
children are ordered and so can be referenced either by name or by position, that is, as the
nth child.

Optional construction components are handled by the provision of empty nodes. Ev-
ery GRAMPS-style grammar must provide a construction rule that defines empty to be a
childless construction.! When a component is specified optional, a node of class empty is
permitted to appear in place of that component. Therefore, a construction component is
never missing, although it may be empty.

A construction node is illustrated as a labeled box connected to each of its children. An

example of an Acer type-declaration is

Type-
Declaration

Any-
Notice the empty node as the defined-identifier and the childless construction node of class

any-type as the type.

'In section 3.4.2 we shall see how the construction rule that defines empty can be used to specify a visible
oncrete representation for empty nodes.
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3.2.3 List

Lists are used to model semantic objects consisting of an arbitrary number of elements.
For example, an Acer signature consists of a series of declarations. This is specified by the

following GRAMPS-style list rule, which uses {{ } to indicate zero or more repetitions:

(Signature) ::= { (Declaration) [}

Abstractly, a list is the parent of zero or more children nodes. The children of a list
are ordered and can be referenced only by position—list children are not named as are
construction children.

A list node is illustrated as is a construction node, for example, an Acer signature is

lustrated as

Type-
Declaration

FixedValue-
Declaration

a_Value

3.3 Context-free relations

The membership of nodes in classes and categories determines the unary context-free rela-
tions of a language. The tree structure of nodes determines the ternary parent-position-child

relation, which can be described in terms of two binary relations as
e the parent relation, which relates a child node to its parent node;

e and the position relation, which relates a child node to its position with respect to its

parent.

The binary child-name relations, which relate a construction to its named child node, provide
an alternative description of a construction’s tree structure. Together, the membership
relations and the tree relations completely describe context-free syntax.

It is reassuring to realize that nodes are sufficient for representing the structure of syn-
tactic objects—complexity at this stage will only be compounded by the complexity of the
language we are to design. The importance of using a simple representation of abstract

Syntax cannot be over emphasized.



CHAPTER 3. THE REPRESENTATION OF SYNTAX 61

3.3.1 Context-free manipulation

Context-free syntax is manipulated by creating nodes and by attaching nodes to form syntax
trees. Creating new unattached nodes is a simple matter: an unattached lexeme is created
given an appropriate spelling; an unattached construction is created given the correct number
of unattached children, cach of the appropriate class; and an unattached list is created given
any number of unattached children of the appropriate class. When a construction or list is
created, its children become attached. (As a convenience, if an attached child is supplied,
its structure can be copied to yield an unattached child.)

Existing syntax trees are modified by altering the attachment of nodes. This can be done
in one of three ways: a child of a construction or list can be replaced by an unattached
node of the appropriate class, lcaving the replacement node attached and the replaced node
unattached; a list child can be deleted, leaving the child unattached and the list with one
less child; or an unattached node of the appropriate class can be inserted at any position of
a list, leaving the node attached and the list with one more child. Manipulation of nodes is
very straightforward indeed.

Manipulation is made easier by consistency. For example, every node in a tree has a
parent, except for the root, which is unattached. For consistency then, the parent of an
unattached node will be given by a special unattached node called the unattached empty
node. Therefore, every node has a parent and the unattached empty node is its own parent;
the unattached empty node is special because it is a parent and yet has no children.

Similarly, every node in a tree has a position with respect to its parent, except for the
root, so for consistency the position of an unattached node will be given by zero.

To support automated manipulation, a GRAMPS-style grammar can be used to generate
& metaprogramming system, an implementation of nodes as an abstract data-type in a host
Programming language. The manipulation of nodes by programs is then done according
to the notions that have just been described. In particular, a metaprogramming system
Provides facilities for creating nodes, for traversing nodes, and for editing nodes—a lexeme
s created given its spelling and a construction or list is created given its children; nodes are
traversed via the parent and child relations that connect them; and nodes are modified by
replacing, deleting, or inserting children. More details of Acer’s metaprogramming system
are given in Chapter 5 and Appendix C.

Before moving on to examine how programming language concepts such as scoping and
typing are represented as relations on nodes, let us examine how a GRAMPS-style grammar

Specifies concrete syntax.
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3.4 Concrete syntax

Concrete syntax provides a way of viewing nodes in terms of a particular set of symbols;
presumably ASCII will be used, if only to provide a portable view. Concrete syntax can be

specified by the same GRAMPS-style grammar used to specify abstract syntax.

3.4.1 Lexeme

The concrete syntax of a lexeme is specified by a regular expression that uses ||, [ ], { J},
and ([ ) to indicate choice, optionality, zero or more repetitions, and grouping, respectively.

For example, the concrete syntax of an Acer real-literal is specified as

(RealLiteral) ::=
[ - (#Digit) {[ (#Digit) } . (#Digit) { (#Digit) }
[CellE) -] (#Digit) { (#Digit) } |

A GRAMPS-style grammar provides character description rules, as is indicated by a ‘#’ in

the rule name, for naming regular expressions. For example, digit is defined as

(#Digit) == 0123456789

3.4.2 Construction

The concrete syntax of a construction is specified by the placement of tokens, that is, key-
words and punctuation. For example, the concrete syntax of an Acer type-declaration is

specified as

(TypeDeclaration) ::= [ (DefinedIdentifier: Typeldentifier) | :: (:Type)

Examples of Acer type-declarations are

:t Any T : Any Typel :: Type?2

Notice how an empty component disappears in the concrete view.

Tokens can be placed within the optional brackets of a construction-rule component
and are then printed only if the associated component is not empty. For example, Acer’s
conditional expression is defined as

(Conditional) ::=

(Branches: ConditionalBranchList)
[ else (Default Branch: Value) ] end
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so a conditional viewed graphically as

Conditional

.

Conditional-
BranchList

Conditional.
Branch

X

w |/

can be viewed in ASCII as

if x then y end

As an alternative treatment of empty nodes, a GRAMPS-style grammar can specify a
visible concrete syntax for empty nodes. An empty optional component is then made visible
by printing it as a keyword—optional tokens associated with that component are then also

printed. For example, Acer defines the concrete syntax of an empty node as

(Empty) := nothing

so the conditional in the previous example could be equivalently viewed as

if x then y else nothing end

3.4.3 List

The concrete syntax of a list, as that of a construction, is specified by the placement of

tokens. For example, the concrete syntax of an Acer signature is specified as

(Signature) ::= ( {{ {Declaration) JL:1)

A superscripted token following { } indicates that the token separates adjacent list elements;
a token enclosed by [[ ]| indicates that the token itself is optional. Accordingly, the decla-
rations of an Acer signature are separated by optional semicolons, for example, a signature

viewed as

(A_Type:: Any; a_Value: A_ Type)

could be equivalently viewed as

(A_Type:: Any a_Value: A_Type)
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All commas and semicolons are optional in Acer.

Depending on the purpose of a concrete syntax, there are many considerations to take into
account. For example, a concrete syntax must be readable, both to machines and humans.
These issues are discussed in Chapter 4. Let us move on now to examine context-dependent

syntax.

3.5 Context-dependent relations

The usual approach for defining context-dependent syntax involves using either an attribute
grammar, which maps program semantics to arbitrary data structures, or denotational se-
mantics, which maps program semantics to mathematical values and functions. In constrast,
the relational approach described here maps program semantics to nodes and node relations.
This is the essence of the double-duty strategy, i.e., nodes represent both context-free syntax
and context-dependent syntax.

Representing static semantic entities as nodes and only as nodes enhances support for
program manipulation. For instance, if the type of an expression is represented as a node,
this node can be used to introduce a new object of that type. On the other hand, if the type
were not represented as a node, how would one declare a variable to hold an expression of
that type? The double-duty strategy eliminates such problems.

Using the double-duty strategy, context-dependent syntax can be completely specified as
relations on nodes. The nature of these relations varies from language to language but three

relations dominate the definitions of most programming languages:

® defining-occurrence relates an identifier node to a corresponding identifier node used

to define the identifier for the current scope,
® type relates an expression node to the node that represents its type,

% and definition rclates a node to the node that represents its meaning according to

rewrite rules.

Each of these three relations is binary and can therefore be graphically represented much
like the parent relation. A context-dependent relation is graphically illustrated by connecting
the right side of the first node to the left side of the second node. If more than one sort
of context-dependent relation is to be illustrated in a single diagram then the relations are
labeled to distinguish them. For instance, the following illustrates that the integer-literal 2

has the type-identifier Integer as its type and that it has itself as its definition:
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Type

2 ) Integer

Definition

Each relation will be briefly described in the sections that follow. A more detailed

treatment of the relations is presented in section A.3.

3.5.1 Defining-occurrence

The defining-occurrence relation as it applies to

function (A_Type:: Any; a_Value: A_Type) tuple a_Value end end

15 illustrated as
Function-
Literal

Signature

Tuple-
Empty Literal
N

T)'Pe'. Fixed Val'ue- a Value
Declaration Declaration -

A_Type a_Value A_Type

An identifier that is its own defining-occurrence is called a defining-occurrence, every other
identifier is called an applied-occurrence. Notice that the left side of each defining-occurrence
is connected to the right side of each of its applied-occurrences—binary relations can be
interpreted in two dircctions.

The specification techniques of NURN could be used to definc formally the rules for
how each identifier comes to be related to its defining-occurrence. However, I am not so
much concerned with how relations are specified as 1 am with the nature of the relations
themselves. Acer is defined in terms of relations specified in English; NURN could be used
to formalize this definition but I have not done so. To reiterate, I am more concerned with
what is specified than with how it is specified.

To specify the defining-occurrence relation, a language designer describes how a syntax
tree is scarched during identifier-lookup (sce A.3.1). Defining scope in this way closely

mirrors the natural process of incremental identifier-lookup.
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3.5.2 Type

For some languages, particularly languages with name type-equivalence, the type relation
is simple because the syntax tree contains the necessary nodes for representing the type of
each expression. In general, however, a type can be derived from the syntax of an expression
and there may be no node representing it available in the syntax tree. In such languages, of
which Acer is one, derived nodes must be created to represent types.

To see how the need for derived nodes arises, consider the function-literal we saw previ-

ously

function (A_Type:: Any; a_Value: A_Type) tuple a_Value end end

The type of the tuple-literal in the body is given by a tuple-type as

Tuple : A_Type end

since the type of a_Value is given by A_ Type. This much is straightforward but how does the
type-identifier A_ Type refer back to its declaration in the signature of the function-literal?

The problem with a derived node is that it is not connected by context-free relations to
the tree from which it is derived; for it to refer to the nodes in that tree some mechanism
must be provided. I propose the notion of a denoter node, a childless construction node
that acts as a placeholder for its definition node and is permitted only in derived nodes. A
denoter acts as an anonymous identifier.

The following diagram shows how Acer, with the help of a type-denoter, defines the type

of the tuple-literal we saw in the previous example:
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Function-
Literal

Type-
Declaration

Empty

Tuple-
Literal

a_Value

FixedValue-
Declaration

A_Type T a_Value /-{ A_Type |

Tuple-
Type

i

i

Type-
Declaration

Definition J
TypeDenoter

\ Type J

i

Notice how the type-denoter in the declaration of the tuple-type is used to refer to the
type-identifier in the original syntax tree via its definition relation.

What makes a denoter special is the fact that its definition relation must be fixed at
creation time. Every other context-dependent relation can be derived from the context-free
relations whenever necessary. A denoter’s definition can be derived only when creating the
derived node that uses it. Conceptually, it is best to think of a denoter’s definition relation

as the context-dependent equivalent of an nth-child relation.

3.5.3 Definition

In many programming languages certain constructs are defined in terms of other constructs
according to rewrite rules. I call this the definition relation, which can be specified using
derived nodes to represent the result of cach rewrite. The definition relation applies to all
expression nodes—an expression is cither its own definition or there is some other node
that represents its definition. We have already seen the definition relation as it applies to
denoters. Another example is the definition of an Acer unary-method-call, which is defined

In terms of a prefix-method-call as
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Unary- Definition Prefix-
MethodCall MethodCall

+ +

Argument-
List
Value-
Denoter

Definition

Notice the use of a value-denoter to connect the derived node to the original syntax tree via
the definition relation.

Many other context-dependent relations are defined for programming languages but, just
as the defining-occurrence, type, and definition relations, they can be specified in terms of
relations on nodes. More complex context-dependent relations are handled by the provision
of derived nodes created to represent semantic objects; denoters are used to permit derived

nodes to reference other nodes.

3.5.4 Context-dependent manipulation

The context-dependent relations of a language are derived from the context-free relations so
context-dependent syntax is manipulated indirectly by manipulating the context-free syntax;
every change to the context-free relations is reflected by changes to the context-dependent
relations. Meaningful manipulation is guided by the information embodied in these context-
dependent relations, for example, finding all the applied-occurrences of a given identifier
or finding all the expressions of a given type. Therefore, to support such manipulation,

context-dependent relations must be automatically available.

3.6 Summary

This chapter has described techniques for representing semantic objects as nodes. Node
structure is the basis of meaningful program manipulation for both machines and humans.
In terms of machine manipulation, a metaprogramming system can be created to manipulate
programs according to an abstract data-type that implements nodes. In terms of human
manipulation, a language-based editor, like PCAcer described in Appendix B, can be created
to manipulate programs viewed conceptually as nodes. In either case, node structure is the
basis for manipulation.

To summarize, language design is the design of node structure and program manipulation

is the manipulation of node structure. By specifying a language in terms of node structure,
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a language designer specifies precisely the concepts programmers use to understand and

manipulate programs.



Chapter 4
Principles of language design

This chapter describes principles for guiding language design. These principles focus on
various manipulation issues and are also presented in [MDC92]. Their application to Acer,
in particular, is also discussed.

Each section that follows begins with a statement of principle followed by a discussion.
There are 15 principles in total: principles 1-6 deal with the relationship between concrete
and abstract syntax; principles 7-11 deal with properties of abstract syntax that significantly

affect manipulation; and principles 12-15 deal with program transformation.

4.1 Concrete syntax is just a view

Principle 1 A language definition should provide a standard abstract syntaz in one-to-one

correspondence with a standard concrete syntaz.

Meaningful program manipulation is best carried out in terms of an abstract repre-
sentation. Consequently, this first principle emphasizes abstract syntax as the conceptual
foundation of language—concrete syntax is seen as a way of viewing abstract syntax.

To see the importance of syntax consider the representation of positive integers. Roman
Numerals are an adequate representation, and are certainly better than unary numerals,
but Arabic numerals are by far superior. This is because Arabic numerals facilitate semantic
manipulation, such as addition and multiplication, through straightforward syntactic manip-
ulation. Thus, although Roman numerals provide an adequate representation, only Arabic
Numerals provide a manipulable representation.

For a language of programs, as for a language of numbers, supporting manipulation is a

70
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fundamental goal. Therefore, a programming language should define a manipulable represen-
tation. For Acer I chose to use a GRAMPS-style representation based on the simple notion
of nodes as discussed in Chapter 3. Using a GRAMPS-style grammar to define concrete
syntax and abstract syntax ensures conformance with the first principle; node structure is
designed first and concrete syntax is a view.

Emphasizing the manipulation characteristics of nodes and treating concrete syntax as a
way of viewing nodes helps put the relative importance of abstract syntax and concrete syntax
in a proper perspective. This should aid in guiding the design of programming languages that
are less like Roman numerals and more like Arabic numerals. Merely representing a program

is adequate but representing a program so as to facilitate its manipulation is preferable.

4.2 Ambiguity

Principle 2 The standard concrele syntax of a language should be defined by an unambigu-

ous context-free grammar.

Concrete syntax provides the means of viewing nodes. Thus, the natural criterion for
evaluating concrete syntax is readability. The above principle reflects the notion that a
concrete view is readable only if it unambiguously determines node structure.

It may be argued that a parser can use static analysis to disambiguate but this reveals
another weakness of the ambiguous grammar: an ambiguous context-free grammar expresses
a distinction that can only be resolved in the context-dependent syntax. I contend that a
context-free grammar should not express notions that are in the domain of context-dependent
syntax.

Consider the problems of supporting an abstract representation in the presence of syntac-
tic ambiguity. Static analysis must be used to disambiguate node structure so the structure
of a node (i.c., its node class) could be affected by changes to context. Therefore, node
structure would not be an invariant property affected by direct modification only, that is,
by replacing, inserting, or deleting children. Node structure would change depending on
context. This clearly is a major complication.

Furthermore, the ability to manipulate phrases—syntactically complete textual fragments
generated according to some grammar production—would also be complicated since an am-
biguous phrase must be parsed with respect to an appropriate context to determine correctly
its node structure. Since such an appropriate context is not always available, how should

phrases that cannot be disambiguated be handled? And indeed, program manipulation
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tools routinely manipulate phrases for which no context exists, so it is crucial that syntactic
structure can be determined without static analysis. Thus, it is best to simply avoid all
these difficulties, as I did for Acer, and define concrete syntax in terms of an unambiguous
context-free grammar.

Desirable ambiguities can be handled by semantic overloading, that is, by defining a
single overloaded context-free structure with various context-dependent interpretations (def-
initions). For example, in Acer, the value-selection x.y has one of two possible definitions.
First, if x has an abstract-type, such as vector. Type, the value selection x.y has the prefix-
method-call y.(x) as its definition. Otherwise, x must be an aggregate (a tuple, record, or
dynamic), in which case the value-selection x.y is its own definition. Overloading the seman-
tics of a value-selection thereby achieves the same effect as defining a value-selection and an
abstract-value-selection as two different classes of node that have the same concrete syntax.
Thus, avoiding context-free ambiguity gains much and loses little since semantic overloading
achieves the same effect.

Note that a language designer cannot simply define an ambiguous context-free syntax
and expect semantic overloading to resolve all ambiguities. He must design the syntax to
provide a syntactic way of distinguishing between various context-dependent interpretations.
For example, in Pascal, the syntax specifies that the parentheses of a function-call to a
parameterless function be omitted. As a result, an applied-occurrence of an identifier f
could stand for a function-call. Now if semantic overloading is to resolve this ambiguity, one
would like to be able to say that the definition of f is f () when f stands for a function-call,
and that the definition of f is f otherwise. Unfortunately this is invalid because Pascal’s
syntax does not permit a function-call with empty parentheses. Thus Pascal’s syntax does
not support the technique of semantic overloading, although the simple change of permitting

an empty parameter-list in a function-call would be sufficient to provide such support.

4.3 Phrase ambiguity

Principle 3 The standard concrete syntaz of a language should not contain phrase ambigu-
iies.

An unambiguous context-freec grammar can still contain what will be called phrase ambi-
guity, that is, syntactic ambiguity resulting from including in the grammar a rule that is an

alternation of all other rules. The principle might therefore be restated as, “The standard

concrete syntax of a language should contain a rule that is an alternation of all other rules.”
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(In Acer, this rule is called arbitrary, see A.5.3.) This, in combination with avoiding syntac-
tic ambiguity, is sufficient for avoiding phrase ambiguity. The restatement of the principle
also reflects the importance of being able to parse arbitrary phrases as well as complete
programs.

If a language avoids phrase ambiguity, as does Acer, then a parser, or a human reader,
can always determine the node structure of a printed representation, even for phrases out
of context. On the other hand, if a language is phrase ambiguous, as are all well known
programming languages, then a parser requires a start symbol as well. For example, a
Pascal parser cannot simply parse foo (arg), it must parse foo(arg) as an expression or
as a statement to determine whether it is a function-call or a procedure-call. (This could
be avoided by defining instead a single overloaded routine-call.) Thus, the presence of
phrase ambiguity complicates not only the implementation of manipulation tools, but also
the interface of the parser and hence the user interface of the manipulation tools.

Clearly phrase ambiguity is considered acceptable to most language designers but there
are considerable benefits in avoiding it. The ability to parse correctly any textual phrase
simplifies the textual entry of nodes; also having to specify intended structure is inconvenient,
at best. It is true, however, that avoiding phrase ambiguity severely restricts the choice of
concrete syntax but there are also costs, perhaps acceptable, in not doing so.

In favor of allowing phrase ambiguity is the argument that similar things should appear
similar [Mac87, page 46}, for example, a function-call should look like a procedure-call be-
cause they are both routines. However, in such cases it also generally makes sense to use
semantic overloading to capture the similarities. Furthermore, Acer function-calls are similar
in appearance to operator-calls and yet a parser can still distinguish them. For instance,
a function-call f (x) is distinguishable from an operator-call O (T') because, in general, a
function-call has a valuc as its first component and an operator-call has a type as its first
component. Therefore, avoiding phrase ambiguity does not imply that constructs cannot
appear similar.

In fact, constructs can appear similar as long as they can be distinguished by the syntactic
class of their components. For example, in Acer, a type-selection, a Value-selection, and a
literal-selection cach consists of a component, a dot, and second component. But a type-
selection such as x.T' consists of a value and a type-identifier, a value-selection such as x.v
consists of a value and a valuc-identificr, and a literal-selection such as Color.red consists
of a type and a valuc-identifier. Thus the three constructs are syntactically distinguishable

because type and value expressions are syntactically distinguishable. And ultimately, the
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syntactic categories for type and value are distinguishable simply because type- and value-
identifiers are distinguishable.

A consequence of avoiding phrase ambiguity is the requirement than an empty input
must give rise to an empty node. Therefore, to distinguish textually a childless list node
from an empty node, every list rule must contain at least one token. With the design of Acer
[ carried this requirement one step further: every construction rule also must contain at least
one token. Therefore, since lexical rules themselves specify tokens, every Acer lexical, list,
and construction node gives rise to at least one token in the textual representation. (Recall
that an Acer empty node can either be invisible or appear as the token nothing.) Because
of this syntactic property, it is possible to select any Acer node by simply pointing at one
of its tokens in the textual representation. This is particularly important for the interactive
manipulation of programs.

It may be argued that these restrictions on concrete syntax are too stringent, particularly
requiring all construction rules to contain tokens. Remember, however, that the restrictions
are intended to ensure various syntactic properties—the importance a language designer
places on these properties determines the importance of conforming. Furthermore, only the
standard concrete syntax need conform; alternative views can be specified freely. Also, Acer
demonstrates that conformance can in fact be easily achieved and that the resulting concrete

syntax is quite rcadable.

4.4 Comments

Principle 4 The positions of comments in a language should be defined in the concrete

grammar of the language.

Most modern Janguages treat comments as white space that is discarded during parsing.
However, it should be possible to preserve comments when a program is parsed [Gro89,
Kae88], so that a commented form can be regenerated from the node structure. Moreover,
since nodes can be modified in arbitrary ways, the original positions of comments may
also change. It is therefore important to consider how a parser associates an arbitrarily
Placed comment with a specific node in the parse tree, and where a pretty-printer writes
the comment associated with a node. In addition, if comments are used as annotations for
nodes, it is crucial that the association of comments with nodes is unchanged when a node
is printed and then parsed back in.

Comments play a central role in a number of situations. Not only do they serve as
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documentation, but they are frequently used as assertions or compiler directives (pragmas)
as well. A well-designed commenting facility provides the capability to annotate nodes with
arbitrary textual information. Tools can use this facility not only to receive tool-specific
information (e.g., switches for the compiler, assertions for the correctness-prover, formatting
hints for the pretty-printer, etc.) but also to produce parsable annotated listings (e.g., a
compiler listing, a profiled listing, a cross-referenced listing, etc.).

In Acer, the property that every node owns at least one token in the textual representation
provides a simple way of associating comments with nodes: each comment is associated with
the node that owns the preceding token. An Acer comment begins with a ‘4’ and continues
to the end of the line; several lines of comments may appear (see A.4.2.1). In this way, Acer
supports the textual annotation of nodes. Furthermore, because the rule for associating a
comment with a node is so simple, there is no need to complicate Acer’s grammar with a
specification of allowable comment placement.

However, because a node can own several tokens in the concrete representation it may be
desirable to specify in the grammar which particular token is to be annotated by a standard
unparser. Of course, a user would still be permitted to annotate any token owned by a node.
But when a node is printed, the annotations would associate with the one specified token.
Such comment placement is not actually specified for Acer because it is irrelevant; different,

implementations may choose different comment placement. The issue is a matter of taste.

4.5 Macros

Principle 5 Languages should neither include nor need texi-based macros.

Just as comments constitute a problem for program manipulation if the information
they represent is not encoded in the node structure, so too textual macros are a problem.
Because they define textual objects rather than syntactic objects, textual macros cannot be
manipulated syntactically and thus must be expanded before parsing proceeds. Information
about the use of macros is therefore lost, and cannot be reintroduced to print a modified
Program in terms of its original macros.

Macros provide a great deal of power but the fact that such power is provided in addition
to a language’s existing abstraction mechanisms seems to imply a language weakness. It is
interesting that C++ [Str86] eliminates much of C’s [KR78] need for macros by providing
for constant definitions and in-line functions. Although text-based macros are unacceptable,

a language designer may consider providing syntax-based macros, that is, macros that are
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parsed first and then expanded as nodes later. In this way, macros are defined as a feature
of the language itself and so appear in the abstract syntax. Acer simply avoids the use of

macros.

4.6 Incomplete phrases

Principle 6 A language should have a standard representation for syntactic placeholders.

Whereas a phrase is a complete expansion of some grammar production, an incomplete
phrase is only a partial expansion, that is, it contains non-terminal symbols. An incomplete
phrase can be expressed by substituting a placcholder or metavariable for each unexpanded
syntactic component.

Metavariables have a number of applications. The need for metavariables lies at the heart
of template-driven syntax editors [BS86,TR81], which facilitate program construction by the
expansion of placeholders. Furthermore, incomplete phrases can be viewed as patterns,
making them useful for pattern-matching and for specifying transformations [DGKLM84].

Acer supports syntactic placcholders without the inclusion of a special metavariable syn-
tax. A lexeme is concise enough to stand as its own placeholder (a metavariable would have
a syntax at lcast as complicated). A list may be empty, thereby acting as an appropriate
placeholder. And a construction acts as a placeholder when appropriate placeholders for
each of its components are provided.

Construction placcholders are the most complex case since such a placeholder must also
specify placeholders for each of its components. However, Acer’s syntax is such that a
placeholder for any construction component can be provided by either a lexeme, a childless
list, or an empty node. Thercfore, only two levels of placeholder need ever be provided so
Acer’s syntax, as it stands, provides adequate support for placeholders.

Moreover, the notion of metavariables (i.e., named placeholders) is supported by Acer’s
comment facility, which can be used to annotate placeholders as metavariables. For instance,
the following function-literal expresses a pattern

function () %*Signature

? %*Body
end

in which the signature is named ‘Signature’ and the body is named ‘Body.” Thus Acer’s
syntax need not be complicated with a special metavariable syntax, annotated placeholders

are sufficient.
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This concludes the discussion of principles concerning the relationship between concrete
and abstract syntax. In summary, the abstract syntax of a language should be designed
as a manipulable, node-based representation of the required semantic objects, and concrete
syntax should be designed as a phrase unambiguous view of annotated nodes. In addition,
careful consideration should be given to ensuring beneficial properties of the concrete syntax,

such as the requirement that every node gives rise to a least one token.

4.7 Semantic objects

Principle 7 All semantic objects should be representable as constructs in the language.

This most fundamental manipulation principle stems from the fact it is difficult to manip-
ulate that which cannot be represented. The implications of conforming to this principle (or
of not conforming) are thercfore far-recaching. Consider a typical example, a language that
requires every expression to have a type. Should it not follow that all types are expressible
in the language? A type is, after all, a semantic object so it too deserves to be represented
in the abstract syntax. It is then possible to provide a manipulation system that responds
to a query about the type of an expression node by producing the type node that represents
it, as does PCAcer.

Depending on a language designer’s perspective, the principle can be restated in various
ways. In terms of denotational semantics, it requires each semantic domain to correspond
to a syntactic domain. In terins of specifying semantics with attribute grammars [Knu68§),
it requires each node attribute to be a node, a basic value (such as an integer, charac-
ter or string), or a relation on nodes and basic values. In crude implementation terms, it
requires that basic values, along with data structures for representing nodes and for repre-
senting relations on nodes and basic values, be sufficient for representing, in a natural way,
context-dependent syntax. Common to all this is the need to minimize the complexity of
manipulating semantics in terms of syntax.

Acer conforms to the principle by ensuring that every identifier has a defining-occurrence,
that every expression node has a definition, that every expression has a type, and, most
importantly, that every defining-occurrence, definition, and type is actually represented as
a node—either as a node appearing in the original parsed syntax tree or as a node created
for that purpose (see A.3). Thus Acer goes one step beyond the statement of principle so
that not, only are all semantic objects representable as nodes but all semantic objects are, in

fact, so represented.
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4.7.1 Denotation and kind

As extensions of the definition relation and the type relation, Acer specifies a denotation
relation (see A.3.2) and a kind relation (see A.3.3). The denotation of a node is the final
node that results from repeated queries as to the definition of a node, the definition of that
definition, and so on. Similarly, the kind of an expression is the final node that results from
repeated queries as to the type of an expression, the type of that type, and so on.

In a correct Acer program the kind relation is equivalent to applying the type relation
twice because the type of an expression is a type and the type of a type must be a type that
is its own type. For the denotation relation, however, the definition relation must be applied
an arbitrary number of times to reach a node that is its own definition. This can even lead
to circularity. For example, in the following (incorrect) Acer program

{let x be y
let y be x

the definition of the y in the first binding is the y in the second binding, the definition of
that y is the x in the second binding, the definition of that x is the x in the first binding, the
definition of that x is the y in the first binding, and so on. An Acer manipulation system
must detect such invalid circularity (see discussion of implementation techniques in C.19);
for this example, the denotation of each identifier is given by the special value error (see

A.25).

4.7.2 First-class values

Another aspect of Acer’s design, which goes beyond the statement of principle, is that all
ground-level semantic objects are represented as first-class values. Functions, modules, and
exceptions are all first-class; cach is supported by a value-expression syntax for expressing
its literals and a type-expression syntax for expressing its types.

Such uniform treatment not only enhances program manipulation by eliminating the need
for special-purpose support, it enhances the ability of programs to manipulate ground-level
objects. For instance, in Modula-2 one cannot write a function that generates a module
based on the values of parameters, but in Acer one can write such a module-generating
function, Thus, including ground-level semantic objects as values supports both program
manipulation and the ability of programs to manipulate semantic objects. Indeed, it is
difficult to separate the notion of supporting program manipulation from the notion of a

Programming language supporting the manipulation of its semantic objects.
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4.8 Scoping

Principle 8 The scope rules of a language should be simple.

The notion of associating with a semantic object a name and thereafter referring to that
object by name is universal to all programming languages. Static scoping with nested block
structure is the standard manner in which this notion is syntactically represented. The notion
gives rise to the defining-occurrence relation, the primary means by which distant nodes in a
syntax tree come to be related. Since other relations rely heavily on the defining-occurrence
relation, it must be a simple relation that is easy to compute.

Acer specifies scoping in terms of two concepts (see A.3.1). First is the concept of the
name-layer. Certain classes of Acer node, such as binding-lists, signatures, and tuples,
contain constructs, such as bindings and declarations, that introduce defined-identifiers.
The name-layer of a node from such a class is the set of defined-identifiers introduced by its
immediate children. A name-layer may not contain duplicate spellings.

Name-layers are scarched during identifier-lookup, Acer’s second scoping concept.
Identifier-lookup involves a recursive traversal from child to parent in which at each step the
class of the parent, given that lookup is at the particular child, determines the name-layer(s)
that must be searched and whether lookup should terminate. By default, no name-layers
are searched and traversal continues with the parent.

Intuitively, Acer’s scope rules are specified in terms of searching, and the nature of this
search is very simple indeed. In Acer, the order of declarations and bindings does not af-
fect scope since scope is defined in terms of name-layers—a name-layer is a set of nodes,
and hence has no order (although it may be ordered according to spelling to speed search-
ing). Supporting arbitrary forward reference allows recursive dependencies to be naturally
expressed and does not complicate scoping. But it does imply the burden of dependency
analysis for detecting erroneous denotation and kind relations (see A.7.2). Thus Acer’s scope
rules are simple but dependency analysis is somewhat complex.

The approach to scoping in Acer may be contrasted with that in Quest, which requires
recursion to be explicitly specified with recursive binding constructs. For instance, in Acer,
the recursive factorial function can be defined as

let ! be function (x: Integer)
if {x <= 0} then 1 else {x * ! ({x -1})} end
end
Just like any other function. But in Quest, a special form of recursive value-binding must be

used:
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let rec ! be function (x: Integer)

if {x <=0} then 1 else {x * ! ({x - 1})} end

end
Similarly, in Quest, recursive type-bindings must be used to define recursive types. Since
the restrictions imposed by Acer’s dependency analysis are the same as those imposed by
Quest’s recursive bindings, it can be argued that Acer’s approach is simpler and more direct—
recursion does not require additional syntactic constructs which complicate manipulation.

The advice to language designers, then, is that scoping should be flexible enough to allow

recursion to be directly expressed and hence that order of definition or declaration should not
affect scope. After all, recursion is an essential programming language feature that should
not require special syntactic support. Of particular concern are constructs such as Pascal’s

forward-declarations, whose sole purpose is to circumvent a deficiency in the scoping.

4.9 Locality of objects

Principle 9 A language should allow an object to be declared local to the scope in which it

1s actually required.

One of the primary advantages of nested block structure is the ability to introduce objects
at a nesting level that makes them visible only over the region in which they are used. This
is beneficial for program manipulation because new objects can be introduced locally at the
point of modification, thereby limiting the arca affected by the change.

In terms of program manipulation, the ease of introducing a new variable is particularly
important because it is one of the most commonly performed modifications; variables that
act as temporary storage for a value must frequently be introduced into programs. Thus
Acer provides type- and value-blocks, which can be arbitrarily nested. For instance, suppose

we have the expression

{Ix*xx}+ {yxy}}/ {{x*x}-{y*yi})
We could optimize this expression as follows:
{let xx be {x * x}; let yybe {y * y}; {{xx+yy}/ {xx - yy}}}

Such a transformation is purely local, affecting nothing outside of the expression itself,
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4.10 Referring to objects

Principle 10 A language should allow references to existing objects to be easily introduced.

When a program is modified, it is frequently necessary to refer to a specific semantic
object at a given point in the program. Program manipulation is therefore simplified if new
references to such objects can be introduced without global changes to the program. With
nested block structure the objects visible at the defining point of some particular object
are generally visible where that object is visible. Therefore, nested block structure tends to
make objects visible where they are actually needed.

Acer’s nested block structure provides complete support for the principle. In fact, given a
node (representing a semantic object) and a target location, an Acer manipulation system can
automatically create a definition-copy-at (see A.5.2.2), a node representing the same object
as the original node but expressed in terms of the scope of the target location. Naturally,
a definition-copy-at is not possible for all node/target-location combinations, since objects
can be out of scope, but it is possible whenever it is sensible. More on this in the following
two sections.

Acer’s denoters also provide support for referring to existing objects, although this sup-
port is not directly available at the source-level. However, when writing a metaprogram, i.e.,
a program that manipulates Acer programs according to the node representation described
in Chapter 3, it is possible to create a denoter to an existing node and to use that denoter as
if it were an identifier referring to that node. For example, suppose a metaprogram created

two empty tuple-literal nodes:
Tuple-
Literal
Tuple-
Literal

A denoter to each of these nodes could then be created:
Value- Definition Tuple.
Denoter Literal
Value- Definition Tuple-
Denoter Literal

and each denoter could be inserted! as both the first child of its own tuple-litera] and the

Second child of the other tuple-literal:

"Note that when an attached node is inserted, it is copied, and that when a denoter is copied, a denoter
With the same definition as the original is created.
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Definition Tuple-

Literal

Tuple-

Literal

Value-
Denoter

Value-
Denoter

Value- Value-
Denoter Denoter

Definition

If either of these two tuple-literals is then to be inserted into a source program, in which

denoters are not permitted, definition-copy-at can be used to automatically express them as:

{let unnamed! be tuple unnamedl, unnamed2 end
let unnamed?2 be tuple unnamed2, unnamed! end
unnamed]l }
The result is a node with the semantic structure of the original but expressed without
denoters.
So Acer’s denoters allow programs to be expressed and manipulated without regard to
the normal limitations of scope. In addition, any object expressed in terms of denoters can

be automatically re-expressed using normal scoping rules.

4.11 Accidental information hiding

Principle 11 Names should only be hidden using information hiding consiructs specifically

designed for the purpose.

Nested block structure generally conforms with this principle; the only exception is the
unintentional hiding of a name when the name is reused for a different purpose in a nested
scope. This creates holes in the outer identifier’s scope.

One solution would be to disallow nested renaming, which is certainly possible for lan-
guages like Modula-2. llowever, in Acer, choice of identifier can affect subtyping, as with the
Names of the declarations of a tuple-type, so identifier choice cannot be arbitrarily restricted.
Therefore, Acer gets around the problem of unintentional hiding by providing a notation for
referring to the hidden identifiers, namely the reused-identifier. Acer’s definition-copy-at fa-
cility is possible precisely because reused-identifiers can be used to reference identifiers that

are hidden by renaming. For example, suppose we have the following function:

function (x: Integer)
tuple let x be ? end
end



CHAPTER 4. PRINCIPLES OF LANGUAGE DESIGN 83

and that we want to express the x in the signature in place of the ? in the tuple-literal.
Applying definition-copy-at with the x in the signature as the source and the 7 in the literal

as the target and replacing the ? with the result produces the following:

function (x: Integer)
tuple let x be x’[1) end
end

Note that Ada deals with the problem of unintentional hiding in two ways. First of
all, Ada allows identifiers to be overloaded, using various type restrictions to determine
the defining-occurrence referenced by a particular applied-occurrence. Unfortunately, this
solution does not work for homograms, i.e., identifiers that have indistinguishable types.
The second approach is to allow scopes to be named and to use qualification to reference
a particular defining-occurrence. However, not all scopes are named so during automated
manipulation arbitrary new scope identifiers must be introduced. This results in local trans-
formations that produce non-local changes. Furthermore, the problem of hiding may also

occur for the scope name. Ada’s approach is complex, thereby hindering manipulation.

4.12 Intentional information hiding

Principle 12 If an information-hiding construct makes visible the name of an object, it
should also make visible the names of the objects referenced in its definition, unless the

definition constitutes representation-dependent informalion.

The methodology of abstract data types requires the ability to hide representation-
dependent information, e.g., the implementation of a type or routine. Such information
hiding conflicts with the principle of ensuring that references to objects can be easily intro-
duced; but it does so precisely to prevent manipulation that depends on the hidden objects.
Information hiding is such an important aspect of software engineering that a programming
language must support it.

Acer supports information hiding with the provision of declarations, which specify the
type of an object but leave the definition unspecified. A declaration provides enough in-
formation to use the declared object without revealing its static definition. In addition,
unhiding definitions is also simple in Acer because a reference to a declaration can always
be replaced by a reference to a binding providing a definition.

Although most modern languages provide a special module construct, Acer does not, be-

cause modules are represented as tuples or records. Therefore, Acer does not encounter the
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problem of unintentional hiding that can result from the import/export rules that control
intermodule visibility. For example, in Modula-2, it is possible to export a variable with-
out exporting its type. Acer’s simple nested block structure ensures conformance with the
principle.

This concludes the discussion of principles relating to properties of the abstract syntax.
To summarize, then, semantic objects should be represented as nodes and these nodes should
be organized so that they can be named and made visible over the regions in which they
are needed. The visibility rules should be simple, should permit references to be introduced

easily, and should prevent unintentional hiding.

4.13 Unfolding

Principle 138 There should be a straightforward general way of replacing a call to a user-

defined routine with an equivalent in-line version of the routine body.

This principle reflects the importance of supporting semantics-preserving manipulation,
le., transformation. Arbitrary syntactic manipulation, within the constraints imposed by
context-free syntax, is supported by any language so the important question is whether
simple syntactic changes can be used to effect precise semantic changes. Surely the goal
of supporting program manipulation in general requires that the important special case of
transformation be supported in particular.

Unfolding a routine, a typical transformation performed during program optimization,
is only possible if the effects of calling a routine (e.g., parameter binding) can be achieved
at the calling point. Therefore, conforming with the principle ensures that a suitable in-line
equivalent is provided for each mechanism available to routines.

To seec how Acer supports unfolding consider a function-call with a function-literal as its

function, for example,

function (x: Integer; y : Integer) {x + y} end (10, 20)
Such a function-call can always be replaced by a value-block with a body given by the literal’s
body and a binding-list determined by the argument-list and the signature, for example,
{let x: Integer be 10; let y: Integer be 20; {x + y}}

Now, to provide complete support for unfolding, all that is still required is the ability to

express function-literals at their calling points. But this ability is provided, in conformance
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with the principle that references to existing objects should be easy to introduce, by Acer’s
definition-copy-at facility. Therefore, Acer provides complete support for unfolding.

Note that the static evaluation of an operator-call, i.e., determining the definition of an
operator-call, is essentially an unfolding transformation. For example, given Dyadic defined

as

let Dyadic be
Operator (Base Type :: Any; Resull Type:: Any)
Function ( : BaseType; : Base Type) Result Type end
end

unfolding the operator-call Dyadic (Integer, Boolean) results in:

{let BaseType be Integer
let ResultType be Boolean
Function ( : BaseType; : Base Type) Result Type end}

And this type is equivalent to the definition of the operator-call.

4.14 Folding

Principle 14 There should be a straightforward general way of replacing any expression

with an equivalent user-defined routine.

Folding, encapsulating cxpressions as parameterized routines, 1s a transformation of fun-
damental importance. It lies at the heart of abstraction. Whereas support for manipulation
1s often overlooked in language design, support for folding cannot be overlooked. However,
because support for abstraction usually provides support for folding, support for folding is
not often recognized as a relevant goal.

Acer supports folding of type and value expressions as follows. A type T' can be folded
as a type-operator used in type-call:
Operator () T end ()

And similarly a value v can be folded as a function-literal used in a function-call:

function () v end ()

However, for values, if v appears in a context requiring a reference or pointer to v rather

than just the value referenced by v, as does v in
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{v becomes something}

then v must be folded either as

{function () reference (v) end()@ becomes something}

or as

{function () pointer (v) end()@ becomes something}

The second form is permitted only if pointer (v) is valid (see A.30). Any Acer type or value
can be folded in these ways and hence anything that an expression can do a routine can do.

Folding in the form that has just been shown is, of course, of little direct use. The real
value of folding lies in the reuse of routines. The routines resulting from the folding above
are used but once.

To use a folded expression more than once it must be hoisted to a higher scope, certainly
higher than the call in which it is used. Parameterization is necessary whenever a routine
is hoisted beyond the scope of some object referenced in its body—that object must then
be passed as a parameter instead of simply being visible. Acer’s signatures support hoisting
by providing for both type and value parameters. Clearly, Acer’s support for polymorphism
provides better support for hoisting than do many programming languages.

As an example of hoisting, consider folding the applied-occurrence of x in the block

{let construct be
function (T ::Any; x: T; y: T)
tuple x, y end
end;
construct (Integer, 10, 20)}

which results in

{let construct be
function (T :: Any; x: T; y: T)
tuple function () x end (), y end
end;

)

construct (Integer, 10, 20)}

Hoisting the new function-literal up one level results in

{let construct be
function (7T ::Any; x: T;y: T)
{let unnamed be function () x end;
tuple unnamed (), y end}
end;
construct (Integer, 10, 20)}
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and hoisting it up three levels results in

{let unnamed be function (7 :: Any; x: T) x end;
let construct be
function (T Any; x: T;y: T)
tuple unnamed (T, x), y end}
end;
construct (Integer, 10, 20)}

The ability to parameterize over types affords great expressive power.

4.15 Low-level manipulation

Principle 15 A good target language should support both high-level manipulation and low-

level manipulation.

The single most important program manipulation activity is translation, a semantics-
preserving transformation from a high-level language to a low-level language better suited
for direct execution. In [Mer87], the implementation of a compiler as a series of source-to-
source transformations is explored. Using the source language (Modula-2) as the intermed;-
ate language, translation is carricd out by source-to-source transformations that gradually
replace high-level constructs with equivalent lower-level constructs until the assembly-level
is reached. The work in [Mer87] is related to [KH89] except that Modula-2 itself is used as
the intermediate language rather than a special-purpose intermediate language. Compilation
as a source-to-source transformation is also examined in [FM91] and in [LC87]. Ideally, a
language should provide limited access to the low-level language so that implementation-
dependent manipulation is possible [Tur82].

Acer provides a single construct for accessing low-level features, the code-patch, which is
treated as a value. Syntactically, a code-patch is a list of expressions. The first expression
must be a type to indicate the type of the code-patch. Any trailing expressions are interpreted
In an implementation dependent way as the data and instructions of some machine.

To achieve greater portability, the PCAcer compiler translates to an abstract machine
language, which is a simplified form of MC68000 code [Cas84]. Like an MC68000, there are
various registers. The contents of the d0 register, interpreted as an integer, can be accessed

by the following PCAcer code-patch.

code Integer; d0 end
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The first expression, of course, represents the code-patch’s type and the last expression, for

PCAcer, represents the effective-address of the code-patch’s value, register d0 in this case.
A PCAcer code-patch can also include machine instructions, which are bracketed by the

initial type and the final effective-address. For example, a function that moves the contents

of register d0 to register d1 could be defined as

let move_d0_to_dI be
function () code Void; move(d0, d1); #(0) end end
Notice that this code-patch reveals how the void-literal is represented in PCAcer, namely as
a machine zero.

With code-patches, every implementation of Acer provides a convenient notation for
expressing machine dependencies. Furthermore, since code-patches are represented in terms
of existing syntax, Acer’s context-free syntax is the same for all implementations. Only
the context-dependent interpretation of a code-patch’s trailing expressions changes from
implementation to implementation.

It should not be surprising that existing syntax can be so easily reused to represent the
semantic objects of another language. A programming language, after all, must be good at

representing objects.

4.16 Summary

This chapter has examined three general areas of language design that influence the natyre
of program manipulation. 1t has been stressed that the concrete syntax should serve as
an abstract syntax so that meaningful semantic manipulation can be carried out as simple
syntactic manipulation. Next, scoping and typing were explored, emphasizing important
Properties such as the ability to introduce easily references to objects. Finally, issues involy-
ing support for folding and unfolding were considered, issues which are the foundation for
Semantics-preserving transformations in general.

To achieve a uscful correspondence between semantic structure and syntactic structure,
the design of a target language should begin with a classification of its objects, e.g., variables,
types, values, expressions, statements, procedures, modules, and so on. Next, the attributes
associated with each class of object should be identified. Some of these will be defined
and others derived, e.g., a variable has a name and type that are defined and a storage
location that is derived. For each different class of object, a grammar production to represent

its defined attributes should be included in the abstract syntax. Statically scoped nested
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block structure should then be used to integrate the abstract syntax for the objects into a
framework in which all hiding is intentional rather than accidental. Finally, the abstract
syntax should be carefully augmented with keywords and punctuation to obtain a concrete

syntax with appropriate manipulation characteristics.



Chapter 5

The implementation of Acer

5.1 Implementing support for manipulation

In many ways, enhancing support for program manipulation is synonymous with simplifying
the metaprogramming system that implements the associated language. A metaprogram-
ming system, after all, implements an abstraction for manipulating target-language programs
as host-language data objects. Hence, language complexity is reflected directly by metapro-
gramming system complexity, wherein it impedes manipulation.

Of course, a degree of complexity is inherent in any language, so complexity is reduced not
by simply eliminating language features, although this too may be useful, but by rigorously
ensuring a uniformity of features. This is the general notion of orthogonality, that is, that
features should interact in systematic and predictable ways. In Chapter 4, detailed principles
were presented that elaborated on this notion and other ways of enhancing support for
Mmanipulation.

A good metaprogramming system acts as a unifying basis for the implementation of all
tools; independently designed tools may have conflicting views of the language. Certainly
the work on DIANA [GWEBS83] and the work on object-oriented metaprogramming systems
[MN8S] reflects this view. As does the work of Kurn on the G language [Kur91], which is a
high-level language for writing metaprograms.

A great deal of programming environment research has been focused on the design of
end-product tools, i.e., a programming environment consisting of an editor, a compiler, and
a debugger. In addition, much of this research deals with support for existing languages. As
a result, effort is expended supporting language features that could be better designed had

Support, for manipulation been considered, e.g., syntactic ambiguity incurs costs that can be

90
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avoided.

The approach advocated here is that particular attention should be focused on the one
tool used to implement all other tools, the metaprogramming system. Current research is
valuable from this perspective because it clarifies what a metaprogramming system must
provide to implement effectively an end product [DMS84].

What is the advantage of an approach that stresses the importance of a metaprogramming
system over that of the final environment it implements? First, it makes clear the feed-back
mechanism that should exist between environment design and language design—as the design
and implementation of basic manipulation support progresses problematic language features
are identified and redesigned. This synergy frees designers to spend their time designing
more powerful kinds of support rather than waste their time designing ingenious techniques
for supporting poorly designed features.

And second, the approach brings programmers back into the sphere of influence by pro-
viding an abstraction for implementing application-dependent manipulations, e.g., analyz-
ers to check for correctness, optimizers to make data-abstraction more efficient, formatters
to present data-abstractions more readably, transformers to implement new editing com-
mands, generators to construct automatically programs or program templates, and so on.
For a general-purpose language, which supports a wide variety of applications, the range of
application-dependent manipulations is potentially huge. And a sophisticated programmer,
already skilled at manipulating abstract values with programs, can readily use a metapro-

gramming system to write programs that manipulate programs.

5.2 Acer’s metaprogramming system

To demonstrate the feasibility of the metaprogramming approach, a metaprogramming sys-
tem for Acer, as well as a visual interactive editor and a compiler, have been implemented.
The implementation, which uses Turbo Pascal running under MS-DOS, is described in Ap-
pendix C; the user’s manual for the editor and compiler is described in Appendix B.
Ideally, however, rather than a Pascal host-language metaprogramming system for Acer,
an Acer host-language metaprogramming system for Acer should be provided. This unfor-
tunately involves a boot-strap step not yet undertaken, partly due to the memory limita-
tions imposed by MS-DOS. Nevertheless, the essential facilities of an Acer host-language
metaprogramming system for Acer will be described as if it actually exists. This should not

be considered misleading because the facilities of this system are supported by the Pascal
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host-language system described Appendix C. After all, both Pascal and Acer support data
abstraction and so the abstract node representation described in Chapter 3 can be supported
in either language.

However, because Acer supports useful mechanisms not available in Pascal, such as it-
erators and accumulators, symbolic value-identifiers, exceptions, and so on, the Acer host-
language metaprogramming system to be described contains features not directly available
in the Pascal host-language version. For example, the Acer host-language lexical analysis
and parsing functions make use of exceptions and also iterators and accumulators, but the
Pascal host-language versions have a less elegant interface (see C.12 and C.13). Such dif-
ferences highlight the advantages of Acer over Pascal, and since Appendix C gives a precise
description of the Pascal host-language metaprogramming system, the two versions can be
compared.

The interface to the Acer host-language metaprogramming system for Acer is provided
by the types TokenClass, Token, NodeClass, and Node, and the modules token, node, and
grammar. The types TokenClass and NodeClass are defined as option-types that categorize
tokens and nodes, respectively; the types Token and Node are abstract-types encapsulated
by the modules token and node, respectively. The module grammar provides generic access
to Acer’s grammar.

One of the great advantages of a GRAMPS-style metaprogramming system, as we shall
see in the sections that follow, is that much of its functionality is evident from the grammar.
Thus the grammar serves as documentation for specifying the facilities used to carry out,

manipulation.

5.3 Concrete syntax

Let us begin by looking at how concrete syntax is handled. Clearly, a metaprogramming
system must support the conversion of a stream of ASCII characters to a stream of tokens
and the conversion of that stream of tokens to a node. Conversely, it must also support the
conversion of a node to a stream of tokens and the conversion of that stream of tokens to a
stream of ASCII characters.

This section describes how the conversion between character streams and token streams
1S supported by the types TokenClass and Token and the module token. The section that
follows will deal with nodes and the conversion between tokens and nodes.

ASCII characters are supported, in Acer, by character-literals and the module character
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and since streams are supported as iterators, no additional support for characters is necessary.

5.3.1 Token

Acer tokens, on the other hand, are supported as follows. First, the type TokenClass is

defined as an option-type that contains the name of each class of token:

let TokenClass be Option an_accumulation, ..., a_when end

(Each token name is prefixed by a_ (or an.) to distinguish it from an Acer keyword.) And
second, the type Token is defined as an abstract-type:

let Token be token. Type
implemented by the module token:

token:
Tuple
Type: Any
class : Function (aToken: Type) TokenClass end
spelling : Function (aToken: Type) String end
x : Function (aToken: Type) Integer end
y : Function (aToken: Type) Integer end
make:
Tuple
an_accumulation: Function (x :Integer; y :Integer) Type end

a_valueldentifier:
Function (spelling :String; x :Integer; y :Integer) Type end
end
error :
Ezception (Tuple message: String; x : Integer; y Integer end)
analyze : Function (aCharacterStream: Iterator ( Character))
Iterator ( Type)
end
unAnalyze : Function (aTokenStream: Iterator ( Type))
Ilterator (Character)
end
end

This module indicates that each token ¢ of type Token has a class t.class, a spelling t.spelling,

& column position t.x, and a row position t.y.
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Each token is derived from a character stream, but the stream is not strictly linear for
it contains ASCII formatting characters that imply the existence of discrete lines. The first
character of a character stream, therefore, is at column 1 row 1; each subsequent character
occurs at increasing column position, except that a carriage-return sets the next column
position to 1 and a line-feed increments the next row position, leaving column position
unchanged. In this way, tokens can be considered to have column and row positions.

To create a token, make functions are provided, one for each class of token. If the token
is a lexical token, such as an identifier, the make function requires a spelling and a position,
otherwise, it requires only a position because the spelling can be deduced from the class.

Finally, to support conversion between character streams and token streams, the module
token provides the functions analyze and unAnalyze, as well as the exception error. The
function analyze requires a character iterator and yields a token iterator that raises error,
with an associated error message and position, when it cannot produce a valid token.

The inverse of analyze is provided by unAnalyze, which takes a formatted stream of to-
kens and yields a character strcam. The position information for tokens is used to generate
appropriate white space, i.c., spacing, indentation, and line-breaks. Determining token po-
sition is the responsibility of an unparser, which is provided by the abstraction for dealing
with nodes.

The module token could provide many other useful functions as well. For example, it
could provide a record named isa containing a recognizer for each class of token, e.g., instead
of writing {aToken.class is TokenClass.x} to determine whether aToken is of class x one
would write token.isa.x (aToken). Little would be gained by further elaborating on such

non-essential features so we shall move on now to the handling of context-free syntax.

5.4 Context-free syntax

The types NodeClass and Node and the module node, support the manipulation of nodes
much like the types TokenClass and Token and the module token support the manipulation
of tokens. The module grammar provides generic access to Acer’s abstract grammar. It ig

described first.

5.4.1 Grammar

The type NodeClass is defined as an option-type that contains the name of each class of

node:
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let NodeClass be

Option accumulation, accumulationList, ..., whenCondition end
The names are derived directly from Acer’s grammar, one for each lexical, construction, or
list rule. Remember that alternation rules define node categories not node classes.
The module grammar provides further information about Acer’s (abstract) grammar as

follows:
grammar:
Tuple
spelling : Function (aNodeClass : NodeClass) String end
lexeme: Set (NodeClass)
construction : Set (NodeClass)
list : Set (NodeClass)
abstract Type: Set (NodeClass)

whenBranch: Set (NodeClass)
error : Exception (String)
numberOfComponents:

Function (aConstruction: NodeClass) Integer end
nthComponentDomain:

Function (aConstruction: NodeClass; n: Integer)

Set (NodeClass)
end

nthComponentName:: ‘
Function (aConstruction: NodeClass; n: Integer) String end
baseDomain: Function (aList: NodeClass) Set (NodeClass) end

end

The spelling of a node class nc is yielded by grammar.spelling (nc). Whether nc is a
lexeme, construction, or list is determined by testing whether nc is a member of either
grammar.lexeme, grammar.construction, or grammar.list; it must be a member of precisely
Ome.

The set of node classes specified by an alternation rule a is yielded by grammar.a. For
a construction rule c, grammar.numberO[CompOHthS(C) yields the number of construction
components, grammar.nthComponentName (c, n) yields the name of the nth component,
and grammar.nthComponent Domain (c, n) yields the set of node classes that may appear as
the nth component—if this set includes NodeClass.empty, the component is optional. For a
list rule I, grammar.baseDomain (1) yiclds the set of node classes that may appear as children.

In this way, grammar provides all the information concerning Acer’s abstract grammar.

Note that the exception grarnmar.crror is raised with an error message if one of the above
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functions in incorrectly applied.

5.4.2 Node

The type Node and the module node provide support for the manipulation of nodes. The
type Node is defined as an abstract-type:

let Node be node. Type
implemented by the module node:

node:
Tuple

Type :: Any
theUnattachedEmptyNode: Type
class : Function (aNode : Type) NodeClass end
parent : Function (aNode: Type) Type end
position : Function (aNode : Type) Integer end
comment: Function (aNode: Type) Pointer (List (String)) end
length: Function (aNode: Type) [nteger end
error : Exception (String)
indexI : Function (aNode: Type; n: Integer) Type end
accumulator : Function (aNode : Type) Type end

=: Function (x: Type; y : Type) Boolean end
<:Function (x: Type; y : Type) Boolean end
make:Record ...end
construct : Function (aConstructionOrList : NodeClass)
Accumulator ( Type, Type)
end

isa: Record ...end
parse: Record ...end
unParse: Record . ..end
copy : Function (aNode: Type) Type end '
replace : Function (source: Type; destination: Type) Void end
exchange: Function (x: Type; y : Type) Void end
delete : Function (aNode: Type) Void end
insert : Function (destination: Type;

position : Integer;

element: Type) Void end

end



CHAPTER 5. THE IMPLEMENTATION OF ACER 97

Every node x has a class x.class, a parent x.parent, a position x.position, a comment
x.comment, and a length x.length, where the length of a lexeme is 0. The parent of an
unattached node is a special node of class empty called theUnattachedEmptyNode. (1t is
special because it is its own parent.) The position of an unattached node is 0.

For accessing the nth child of a node x, presumably a construction or list node with
at least n children, the notation x [n] is used. As a convenience, negative indexing selects
children in reverse order, e.g., x[-1] selects the last child.

A child of a construction x can also be selected using its component name c as x.c. Thus,
for each component name in the grammar, a function by that name is included in node.
(They are not all shown in the above.) Note that since different constructions can use the
same component names, each selector function may be correctly applied to more than one
class of node.

Two nodes x and y can be compared for structural equality using {x = y} and for lexi-
cographic order using {x < y}. Of course, #, <=, >, and >= can be provided as well.

IFor constructing nodes, various make functions are provided, one for each class of node:

make:
Record

accumulation:
Function (accumulator: Type; accumulationList: Type) Type end
accumulationList: Function () Type end

valueldentifier : Function (spelling : String) Type end
end

Each function has the same name as the class of node it constructs: for a construction, the
function requires a node for cach component; for a list, the function requires no components;
and for a lexeme, the function requires a spelling. Since only empty lists can be directly
constructed with make functions, a construct function is provided as well. This function,
given a construction or list node class, yields an accumulator that makes the specified class

of node. For example,

node.construct (NodeClass.nc) ([x, y, z])

Makes either a construction with three children or a list with three children. Whenever an
attached child is provided, it is automatically copied.
It is also convenient to have generic make functions. For example, node.make.identifier

Makes either a type-identifier or value-identifier, depending on the spelling; node.make.call
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makes either a function-call or operator-call, depending on the class of the first argument;
and node.make.selector makes either a type-selection, a value-selection, or a literal-selection,
depending on the class of each argument. Whenever several semantically similar constructs
are distinguishable by the structure of their components, a generic constructor is possible.
This possibility could be indicated in a GRAMPS-style grammar by grouping the constructs
as an alternation and using the name of that alternation as a constructor name. This is
possible with blocks for instance. But for declarations a generic constructor is not possible
because a fixed-value-declaration is indistinguishable from a variable-value-declaration given
only the component classes.

If any of the above functions are incorrectly applied, the exception node.error is raised
with an error message.

For easy recognition of nodes, node provides isa recognizers, one for each class and
category of node:

isa:
Record

accumulation: Function (aNode: Type) Boolean end
arbitrary : Function (aNode: Type) Boolean end

end

In general, for a node class nc, node.isa.nc (x) is equivalent to {x.class is NodeClass.nc} and

for a node category cat, node.isa.cat (x) is equivalent to:

{x.class member grammar.cat}

For parsing nodes, node provides various parse functions:

parse:

Record
error : Exceplion (Tuple message : String; x : Integer; y : Integer end)
tokens: Function () Accumulator ( Token, Type) end
string : Function (aString : String) Type end
strings : Function () Accumulator (String, Type) end

end

The exception node.parse.error is raised, along with an error message and a position, when
Parsing fails. The primary parsing function is tokens, which yields an accumulator that

consumes tokens to produce a node. It could be used as follows:
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for ¢ in token.analyze (aCharacterStream) do
node.parse.tokens () t
end

Many additional parsing functions are provided, e.g.,

node.parse.string ("let x be y")

parses a string argument to a node. All such additional functions can be defined in terms of
the tokens parse function.

For unparsing nodes, node provides various unparse functions:

unParse:
Record
tokens: Function (aNode: Type
theWidth: Integer
theMaximumDenoterWidth: Integer
printEmptyNodes : Boolean)
Iterator ( Token)
end

end

The primary unparsing function is tokens, which yields an iterator that produces tokens.
Such an iterator can be passed to token.unAnalyze to yield an iterator that produces char-
acters, which can then be printed as desired. In actual fact, the unparsing functions provided
will be more flexible than indicated here, e.g., the unparser described in C.13 is parameter-
ized to allow programmers to write customized formatting routines [Cam88]; it can even be
customized to print proportional characters. However, we shall not concern ourselves with
such details here.

For editing nodes, the functions copy, replace, delete, exchange, and insert are provided.
They behave as one would expect. If the second argument to replace or insert is attached,
it is automatically copied.

Numerous other useful functions are provided as well. For example, given a node x,
x.children yields an iterator that sequences through the children of x; x.descendants yields
an iterator that sequences pre-order through the descendants of x; x.root yields the root
node of x; and {x encloses y} yiclds true if y is a descendant of x. Although the possibilities
are endless, the functions already described are sufficient, they can define all these additional

functions. So let us move on now to examine how context-dependent syntax is manipulated.
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5.5 Context-dependent syntax
Support for context-dependent manipulation is provided by extending the module node:

node:
Tuple

type: Function (anExpression: Type) Type end
kind : Function (anExpression: Type) Type end
definition: Function (anExpression: Type) Type end
denotation: Function (anExpression: Type) Type end
definingOccurrence : Function (anldentifier: Type) Type end
attributeParent: Function (aNode: Type) Type end
==: Function (x: Type; y : Type) Boolean end
<<==:Function (x: Type; y : Type) Boolean end
abstractName : Function (anAbstract Type: Type) Type end
abstract Base : Function (anAbstractType: Type) Type end
quantifier : Function (anAbstractType: Type) Type end
definitionCopy : Function (aNode: Type; aLocation: Type;
theSubstitutions : Indez ( Type, Type))
Type
end

definitionCopyAt :

Function (aNode: Type; aLocation: Type) Type end
validate : Function (aNode: Type) Index ( Type, List (String)) end
global: Function (anldentifierSpelling : String) Type end

end

Most importantly, the semantic selector functions type, kind, definition, denotation, and
definingOccurrence are provided. Thus, every expression node x has a type x.type, a kind
x.kind, a definition x.definition, and a denotation x.denotation; every identifier node x has
a defining-occurrence x.definingOccurrence. Notice that the functions type and definition
already appear in node because they are also component names. Therefore, the meaning
of each existing function is further overloaded, e.g., the type of a node can be either a
component, as when the node is a declaration, or a semantic attribute, as when the node is
an expression.

The idea of an attribute-parent is that an unattached node y that is created by the
Mmetaprogramming system to act as the type or definition of some other node x will

have x as its attribute-parent. Thus, applying attributeParent to a node z yields either
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theUnattachedEmptyNode or the node x that has the root node y of z as its type or defini-
tion. A node that has theUnattachedEmptyNode as its attribute-parent is not an attribute,
a node that does not, is an attribute and cannot be edited. Of course, a node can be
an attribute of many nodes, but only the node for which it was created is considered its
attribute-parent. (See C.17 for a discussion of the implementation issues involved in the
notion of an attribute-parent.)

Subtyping and equivalence information is provided by <<== and ==. The expression
{x <<==y} yields true if the type x is a subtype of the type y. Similarly, the expression
{x ==y} yields true if the expression x is equivalent! to the expression y. Of course, the
functions ##, <<, >>, and >>== would also be provided to test for unrelatedness, proper
subtype, proper supertype, and supertype, respectively.

Additional semantic selectors, dealing with various semantic aspects of Acer as described
in Appendix A, are provided as well. IFor example, for a node x referring to an abstract-
type, x.abstractName yiclds the abstract-name, x.abstract Base yields the abstract-base, and
x.quantifier yields the quantifier. Semantic recognizers are also added to the isa recognizers,
e.g., node.isa.variableldentifier (x) yields true if x denotes a variable-identifier.

The ability to definition-copy a node is provided by the function definitionCopy. It takes
a node to be copied, a location node, and an index (see C.5) of substitutions. The purpose
of the location node is to specify that any identifier used in the definition-copy having a
defining-occurrence enclosed by the location should have its definition definition-copied-——
most often the location node will just be the parent of the first argument. The purpose of
the substitution index is to provide substitutions to be made during definition-copying. As
well, the substitution index is modified as a side-effect of definition-copy so that it maps each
node in the source to the node in the definition-copy that it gives rise to. These substitutions
can then be used in another call to defining-copy so that node sharing is achieved.

The function definitionCopyAt is somewhat simpler in that it takes just a node and
a location in terms of whose scope the node is to be expressed. The resulting node will
not contain denoters. The function definitionCopyAt could be used to make explicit the

definition of every empty node in aNode as follows:
for x in aNode.descendants andif node.isa.empty (x) do

{x replace {x.definition definitionCopyAt x}}
end

"Two types are equivalent if each is a subtype of the other; two values are equivalent according to the
Tules in A.20.4 relating quantifiers.
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The validate function is provided to check for context-dependent correctness. Given a
node, it yields an index that maps cach erroneous node to a list of error message strings. If
the yielded index is empty, the node is correct.

Many additional semantic facilities can be included in node. For example, the expression
node.global ("x") determines whether an identifier with the spelling "x" is globally visible;

it yields the same result as

node.make.identifier ("x").definingOccurrence

We have now seen enough metaprogramming facilities to write useful metaprograms.

5.6 Metaprogramming applications

5.6.1 Generating a meta-interface

When manipulating a program expressed in terms of a user-defined abstraction, it is neces-
sary to recognize and construct the notations introduced by that abstraction. In this section,
we shall see how to gencrate a meta-interface, i.e., a metaprogramming system interface to
an abstraction’s interface.

For instance, consider the following simple abstraction

simple :
Tuple
Type:: Any
value: Type
operation : Function (x: Type) Type end
end
To manipulate a program that uses this abstraction, it must be possible to recognize the
Particular nodes where the abstraction is used. For example, applied-occurrences of simple
must be identifiable. Also, because simple is a tuple, it must be possible to recognize applied-
instances of the selections simple. Type, simple.value, and simple.operation. And because
simple.operation is a function, it is frequently necessary to build a node representing a call

to it,

To address these considerations, the following meta-interface can be generated:
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let meta be
tuple
let simple be
tuple
let ! be node.global ("simple")
let a_Type be
tuple
let ! be
node.make.selection ('’[1], node.make.identifier ("Type"))
end
let value be
tuple
let ! be
node.make.selection ('’[1], node.make.identifier ("value"))
end
let operation be
tuple
let ! be
node.make.selection (1’[1], node.make.identifier ("operation"))
let makeCall be
function (x: Node)
node.make.call
({copy '}, node.construct (NodeClass. ArgumentList) ([x]))
end
end
end
end

It makes available the following notations. The selection meta.simple.! yields the defining-
occurrence of simple, which can be used to test for applied-occurrences of simple. The selec-
tions meta.simple.a_Type.!, meta.simple.value.!, and meta.simple.operation.! respectively
vield the selections simple. Type, simple.value, and simple.operation, which can be used to
test for applied-instances of each selection, e.g., using {x == meta.simple.value.!}. And the
selection meta.simple.operation.makeCall yields a function, which given a node, creates a
node representing a call to simple.operation with the given node as the argument.

In the discussion that follows, we shall see how to implement the Acer function,
makeMetalnterface, which generates a meta-interface using Acer’s host-language metapro-
gramming system. Additional examples of actual meta-interfaces are also presented.

The function makeMetalnterface is defined as:
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let makeMetalnterface be
function (x: Node)
extendMetalnterface
(x, makeTopMetalnterface (x.definedldentifier))

end

It requires a node argument x, which must be a top-level type-binding or fixed-value-

declaration; and yields the meta-interface created by makeTopMetalnterface and modified

by extendMetalnterface.

The basic form of a meta-interface, for a particular globally visible defining-occurrence

id, is indicated in the definition of makeTopMetalnterface:

let makeTopMetalnterface be
function (id: Node)
node.substitute
(node.parse.strings ()
([" let ? be
" tuple let ! be node.global(?) end "]))
([makeMetalnterfaceName (id)
node.make.stringLiteral (id.spelling)))

end

Two metaprogramming features must be explained to understand this function. First, the
call node.parse.strings () yields an accumulator that parses strings, which in the above is
used to express a node template. And second, the template is passed to node.substitute,
which yiclds an accumulator that replaces each successive 7 (or _) in the template with
each successive node it consumes. Thus, in the above template, the first 7 is replaced by
the identifier generated by makeMetalnterfaceName, and the second 7 is replaced by the
string-literal representing the spelling of id.

The function makeMetalnterfaceName is defined as:

let makeMetalnterfaceName be
function (id: Node)
inspect id.class then
when valueldentifier then {copy id}
when typeldentifier then
node.make.valucldentifier ({"a_" + id.spelling})
when empty then
node.make.valueldentifier
({"empty" + convert.integerToString (id.parent.position)})
end
end
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For a value-identifier, it yields a copy of id; for a type-identifier, it yields a value-identifier
that has the spelling of id but with a_ appended to the front. (And for an empty defined-
identifier, it yields a value-identifier that has the spelling empty but with the position of id’s
parent appended as a string.)

As concrete examples, makeTopMetalnterface applied to the module token yields:

let token be
tuple let ! be node.global ("token") end

Applied to the type TokenClass it yields:

let a_TokenClass be
tuple let ! be node.global ("TokenClass") end

These can be collected into a tuple called meta:

let meta be
tuple
let token be
tuple let ! be node.global ("token") end
let a_TokenClass be
tuple let ! be node.global ("TokenClass") end
end
which can then be compiled. As a consequence, meta.token. ! refers to the defining-occurrence
of the module token, and meta.a_TokenClass.! refers to the defining-occurrence of the type
TokenClass.
Of course, meta.id.! has little advantage over node.global ("id") but the advantage of

the meta-interface is more apparent when we consider how it is extended by the function

extendMetalnterface, which is defined as:
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let extendMetalnterface be
function (x: Node; thelnterface: Node)
begin
inspect x.class then
when typeBinding, typeDeclaration then
inspect x.kind.denotation.class then
when optionType, enumerationType then
extendForOptionOrEnumeration
(x.kind.denotation, thelnterface)
when operatorType then
extendForOperatorOrFunction
(x.kind.denotation, thelnterface)
end
when fixedValueDeclaration, variableValueDeclaration then
inspect x.kind.denotation.class then
when tupleType, record Type, dynamicType then
extendForAggregate (x.kind.denotation, thelnterface)
when functionType then
extendForOperatorOrFunction
(x.kind.dentotation, thelnterface)
end
end;
thelnterface
end
end

The extension depends on the class of x and the class of the denotation of the kind of x,
which must be a concrete-type or type-operator. We shall consider each case in turn in the
sections that follow. Note that the function extendMetalnterface is called recursively during

extension for aggregates and so is gencralized to handle all classes of declaration.

5.6.1.1 Extension for options or enumerations

An option-type or enumeration-type introduces a number of literals. To provide access to

these, the basic meta-interface is extended by:

let extendForOptionOrEnumeration be
function (theType: Node; thelnterface: Node)
for id in theType.children do
insert.(thelnterface.definition, -1,
makeSublnterface (id))
end
end
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which, for each identifier id in theType, uses makeSublnterface to generate an additional

component according to the template in:

let makeSublinterface be
function (id: Node)
node.substitute
(node.parse.strings ()
([" let 7 be
" tuple
" let ! be
" node.make.selection
: ({copy !'’[1]}, "
" node .make.identifier(?))
" end "))
([makeMetalnterfaceName (id)
node.make.stringLiteral (id.spelling)])
end

As a concrete example, for the identifier an_arbitrary in TokenClass, the function

makeSubInterface yields:

let an_arbitrary be

tuple
let ' be node.make.selection
({copy 1711},
node.make.identitifier ("an_arbitrary"))
end
Thus, ' holds a literal-selection with a base determined by the ! of its containing

meta-interface. llence, meta.a_NodcClass.an_arbitrary.! refers to the node representing

NodeClass.an_arbitrary.

5.6.1.2 Extension for operators and functions

A type-operator or function is frequently used in an operator-call or a function-call, so the

basic meta-interface can be extended with a function that creates such a call:

let extendForOperatorOrFunction be
function (theType: Node; thelnterface: Node)

insert.(thelnterface.definition, -1,
makeOperatorFunctionMetalnterface (theType));

end

This function inserts into the meta-interface the template constructed by
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let makeOperatorFunctionMetalnterface be
function (theType: Node)
modifyFunctionOperatorInterface
(node.parse.strings ()
([" let makeCall be

" function ()
" node.make.call
" ({copy '},
" node.construct
" (NodeClass.argumentList) ([1)))
" end "I,

theType)

end

The template is modified by

let modifyFunctionOperatorinterface be
function (thelnterface: Node; theType: Node)
{let theSignature be thelnterface.definition.signature;
let theAccumulationList be
theluterface.definition.body.arguments(2].accumulationList;
begin
for decl in theType.signature.children do
begin
insert.(theSignature, -1,
node.make.fixedValueDeclaration
(makelnterfaceName (decl.definedIdentifier),
node.make.identifier ("Node")));
insert.(theAccumulationList, -1,
makeMetalnterfaceName (decl.definedIdentifier))
end
end;
thelnterface
end}
end

Which inserts declarations into the signature and arguments into the accumulation-list,
As a concrete example, when applied to the type Array, the following function is included

along with 1:

let makeCall be
function (a_BaseType: Node)
node.make.call

({copy !}, .
node.construct (NodeClass.argumentList) ([a-BaseType]))

end
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Hence, the call

meta.a_Array.makeCall (node.make.identifier ("Integer"))

creates the node representing Array (Integer).

5.6.1.3 Extension for aggregates

An aggregate is frequently used in a type- or value-selection, so the basic meta-interface
can be extended, for each declaration in the aggregate, by a component that holds such a
selection:
let extendForAggregate be
function (theType: Node; thelnterface: Node)
for decl in theType.children
andif {not node.isa.empty (decl.definedIdentifier)} do
insert.(thelnterface.definition, -1,

extendMetalnterface

(decl, makeSublInterface (decl.definedldentifier)))
end
end

This function uses makeSublnterface as described earlier, and recursively extends each re-

sulting sub-interface using extendMetalnterface also described earlier.

As a result, when a meta-interface has been generated for the module node, the selection

meta.node.parse.string.! yields the node representing node.parse.string, and the call

meta.node.parse.string.makeCall
(node.make.stringLiteral ("1let x be 10"))

constructs the function-call node.parse.string ("1et x be 10").

5.6.1.4 Summary of the meta-interface

To summarize, a meta-interface provides access to the notations made available by global
identifiers. A global identifier v is available as meta.v.!; a global identifier T is available as
meta.a_T.!. Selections of the form v.v, v.T, and T.v, which are based on global identifiers,
are available as meta.v.v.!, meta.v.a_T.!, and meta.a_T.v.!, respectively. In the above
selections, v may itself be a value-selection making all possible selections available.

In addition, if any meta.a.! is of kind type-operator or function-type, the selection
meta.a.makeCall is a function that, given the appropriate number of node arguments, yields

a node representing a call to the type-operator or function.
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From this example we can see just how easily a metaprogramming system can be used
to automate the generation of programs. In the next section, we shall see how semantics-

preserving transformations can be easily implemented.

5.6.2 Program transformation

The examples considered in this section deal with manipulations that preserve semantics.
To begin with, consider how to optimize the use of the metaprogramming system’s func-
tion node.parse.string, which is frequently used to express node literals. This will serve to

demonstrate the general notion of static evaluation.

5.6.2.1 Optimizing data abstraction

The idea behind the optimizing transformation presented in this section is to replace each
call to node.parse.string that is applied to a string-literal argument, with the appropriate
calls to make and construct. After all, if the argument to the parser is statically known,

it can be statically parsed and the resulting node can be explicitly built using make and

construct calls. For example, the call

node.parse.string ("let x be tuple 10, 20 end")

constructs the node

let x be tuple 10, 20 end
But so does

node.make.fixed ValueBinding

(node.make.valueldentifier ("x"),

node.make.empty (),

node.construct (NodeClass.tupleLiteral)

([node.make.integerLiteral ("10"),
node.make.integerLiteral ("20")]))
Clearly, the first call is more readable while the second is more efficient. To reconcile the two
Notations, the transformation that follows facilitates the readability advantage of the first
approach while achieving the efficiency advantage of the second.
First, let us consider the implementation of a function that takes a node argument and

yields the metaprogramming system calls that construct the node argument. The function

literalize does exactly this:
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let literalize be
function (x: Node)
if {x.class member grammar.list} then
node.make.accumulation
(meta.node.construct.makeCall
(node.make.selection
({copy meta.a_NodeClass.!},
node.make.identifier (grammar.spelling (x.class)))),
for theChild in x.children do
node.construct (NodeClass.accumulationList)
literalize (theChild)
end)
else
node.make.call
(node.make.selection
({copy meta.node.make.!},
node.make.identifier (grammar.spelling (x.class))),
if {x.class member grammar.lexeme} then
node.construct (NodeClass.argumentList)
([node.make.stringLiteral (x.spelling)])
else
for theChild in x.children do

node.construct (NodeClass.argumentList)

literalize (theChild)
end
end)
end
end

111

If x is a list, it creates an accumulation that applies the accumulator created by the call
node.construct to the literalized form of each of the list’s children. Otherwise, it creates
a call to the appropriate node.make with either the string-literal spelling of the lexeme x
or the literalized children of the construction x. The function, given the fixed-value-binding

illustrated at the beginning of this section, generates precisely the expression, also illustrated

at the beginning of this section, that constructs the fixed-value-binding.

Now, given theNode in which to perform optimization, the follow expression does the

substitution:
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for theChild in theNode.descendants
andif {all true}
([node.isa.functionCall (theChild)
{meta.node.parse.string.! == theChild.function}
node.isa.stringLiteral (theChild.arguments[1])]) do
{theChild replace
literalize (node.parse.string (theChild.arguments[1].spelling))}
end
The expression {all true} yields an accumulator that acts as a short-circuit Boolean ‘and.’
Hence, the above iterates through all descendants of theNode that satisfy the condition
following the andif, which checks if theChild is a function-call, if the function of the call is
equivalent to node.parse.string, and if the one argument to that call is a string-literal. If these
hold, the body is applied—it replaces theChild with the literalized form of the node resulting
from the application of node.parse.string to the spelling of the string-literal argument.
That such a useful transformation can be so easily implemented certainly lends credence
to the claim that Acer is casy to manipulate. Furthermore, the fact that data abstraction
is easily optimized also supports the design of more powerful, yet efficient, abstractions.
For example, even the use of the node.parse.strings () accumulator in conjunction with the
node.substitute function to express node templates can be easily optimized. The use of tem-

plates for generating meta-interfaces was illustrated in the previous section. Such templates

can be optimized by the following:
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for theChild in theNode.descendants
andif {all true}
([node.isa.accumulation (theChild)
node.isa.functionCall (theChild.accumulator)
{meta.node.substitute.! == theChild.accumulator.function}
node.isa.accumulation (theChild.accumulator.arguments(1])
node.isa.functionCall
(theChild.accumulator.arguments[1].accumulator)
{meta.node.parse.strings.! ==
theChild.accumulator.arguments[1].accumulator.function}
for s in theChild.accumulator.arguments]1]
.accumulationList.children do
{all true}
node.isa.stringLiteral (s)
end|) do
{theChild replace
literalizeAndSubstitute
(theChild.accumulation List.children,
for s in theChild.accumulator.arguments(1]
.accurnulationList.children do
node.parse.strings () s.spelling
end)}
end

The above iterates through the descendants of theNode that satisfy the condition, which
tests if theChild is an accumulation, if the accumulator is a call to node.substitute, if the
one argument to that call is an accumulation, if that accumulation’s accumulator is a call to
node.parse.strings, and if every element of that accumulation is a string-literal. If this holds,
theChild is replaced by the result of literalizeAndSubstitute applied to the iterator that maps
through the substitutions and the node resulting from the application of node.parse.string ()
to the spellings of all the string-literals.

The function literalizeAndSubstitute can be implemented by modifying literalize as fol-

lows:

let literalizeAndSubstitute be
function (theSubstitutions: Iterator (Node); x: Node)
if {nodec.isa.identifier (x) andif
{{x.spelling = "?"} orif {x.spelling = "_"}}} then
theSubstitutions.produce ()
elsif . ..
else ...
end
end
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An additional iterator argument is included and the initial test is for the substitution case.
The rest of the function is implemented as before, except for the passing of the additional
iterator argument to the recursive calls.

Applying the above transformation to the expression

node.substitute
(node.parse.strings ()

([" let ? be "
" tuple "
" 10,
" 20 "
©ena )
([aNodc])

results in

node.make.fixed ValueBinding
(aNode,
node.make.empty (),
node.construct (NodeClass.tupleLiteral)
([node.make.integerLiteral ("10"),
node.make.integerLiteral ("20")]))

In gencral, the above transformation approach can be used to support any data abstrac-
tion that expresses literals in textual form. The textual form can be statically analyzed and
converted to a more cfficient form. Such is the expressive power that support for manipu-
lation affords. Furthermore, similar techniques can be used to support all manner of static

evaluation. For example, the following

for theChild in theNode.descendants
andif {all true}
([node.isa.functionCall (theChild.denotation)
{meta.integer.+.! == theChild.denotation.function}
node.isa.integerLiteral (theChild.denotation.arguments[1])
node.isa.integerLiteral (theChild.denotation.arguments[2])]) do
{theChild replace
node.make.integerLiteral
({convert.stringTolnteger (theChild.denotation.arguments[1].spelling) +
convert.stringTolnteger (theChild.denotation.arguments(2].spelling)} )}
end

statically evaluates integer.+ applied to integer-literal arguments. This kind of static evalu-

ation is applicable in a wide varicty of situations.
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5.6.3 Metaprograms as a command language

In a programming environment, such as the PCAcer environment described in Appendix B,
metaprograms can be used as interactive high-level editing commands. For example, suppose
a programmer wants to write an exhaustive variant-inspection for some particular selector
and that there are a large number of variants. Instead of manually writing the inspection,

he could use the following function to generate it:

let makelnspection be
function (theSelector: Node)
{let theKind be theSelector.kind.denotation;
inspect theKind.class then
when enumerationType, optionType then
node.make.variantInspection
(theSelector,
for id in theKind.children do
node.construct ( NodeClass.valueWhenBranchList)
node.make.valueWhenBranch
(node.construct ( NodeClass.whenCondition) ([id]),
node.make.empty (),
node.make.identifier (7))
end,
node.make.empty ())
else theUnattachedEmptyNode
end
end

After entering this function, a PCAcer command could be invoked so that the function is
compiled and applied to the sclected node of the window in which the command is invoked,
presumably the selector for which an inspection is to be generated. After the invocation, the
result could be made available in a newly create window.
Applied to the expression x.class, where x is of type Node, the above would yield the
variant-inspection:
inspect x.class then

when accumulation then ?
when accumulationlList then ?

when whenCondition then ?
end

In this way, high-level commands are constructed on the fly.
Now, suppose a programmer wishes to find all the applied-occurrences of some particular

identifier in a given node. He could write the following function:
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let findAppliedOccurrences be
function (id: Node; theTarget: Node)
for x in theTarget.descendants
andif {node.isa.identifier (x) andif {x.definingOccurrence == id}} do
node.construct (NodeClass.arbitraryList)
node.make.denoter (x)
end
end

which, given a defining-occurrence id and theTarget in which to search, constructs an
arbitrary-list of denoters to the applied-occurrences of id. It could be invoked by a PCAcer
command that applies the function to the selected node of the selected window and to the
selected node of the window in which the command is invoked. The result could then be

made available in a newly created window. From this, the programmer could see the en-
tire set of applicd-occurrences and by following the definition link of each denoter, he could
access each applied-occurrence in turn.

Certainly some of these kinds of commands will be a standard part of an environment
like PCAcer. The point is, however, that it is not the responsibility of environment designer
to provide an exhaustive set of useful commands. Instead, commands can be created on the
fly to suit the needs of individual programmers and the applications with which they work.
Such flexibility is not afforded by more conventional environments.

Only the imagination limits the commands that are possible. For example, the following

could be used just as the previous function, but to determine all expressions of a particular

type:

let findTypedValues be
function (theType: Node; theTarget: Node)
for x in theTarget.descendants
andif {node.isa.valuie (x) andif {x.type == theType}} do
node.construct ( NodeClass.arbitraryList)
node.make.denoter (x)
end
end

For instance, it could be used to find all expressions of type Node. The possibilities afforded

by a metaprogramming system arce unlimited.
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5.7 Summary

Looking at the implementation of PCAcer described in Appendix C, it may be surprising
that, with a metaprogramming system, implementing a transformation as complex as that
of a compiler is relatively trivial. After all, a compiler is typically a major undertaking, but
with so many general-purpose features being implemented as part of the metaprogramming
system, a compiler is very simple to implement indeed. For instance, the implementation of
the compiler used in PCAcer accounts for roughly 8% of the total implementation effort, in
terms of the number of lines of code, and even less when considered in terms of the amount
of time spent. Surely this demonstrates the efficacy of the metaprogramming approach.
Emphasis on metaprogramming systems, then, encourages the provision of general-
purpose implementation tools that can be used for much more than just translating programs
to object code. With so much effort going into the implementation of supporting environ-

ments, there should be more to show for that effort than just an end-product environment.



Chapter 6

Evaluation

6.1 A principled approach

It is well recognized that language design should proceed according to guiding principles.
The principles presented in Chapter 4 are intended to extend a language designer’s repertoire
of such guiding principles. Similar guidance has been offered in the past, either in the form
of pragmatic advice, such as Wirth’s advice in {Wir87] and Hoare’s advice in [Hoa87], or as
principles rooted in the semantician’s meta-principle of orthogonal language features. For

example, Harland [Har84], and also Tennent [Ten81], present the following:

e Principle of Procedural Abstraction: Any syntactic clause can be abstracted over, so it

may be repeatedly invoked.

e Principle of Completeness: All data types must be first-class citizens, that is, they can
be passed as parameters, assigned, stored as data-structure components, and returned

from functions.

e Principle of Declaration Correspondence: If a data type can be declared as a parameter,

it can be declared in-line and vice versa.

Certain]y Acer conforms to these principles, providing even first-class modules. As well, the
principles of Chapter 4 are a manipulation-oriented extension of these ideas.

Harland used the above principles to guide the design of Poly [Har84], and has made
many of the same decisions as made in Acer. However, Acer does not include types in the
value-space, as does Poly, instead treating types as static objects. I would argue that Poly’s

heavy use of dynamic typing is too powerful, leading to programs with weak static properties.

118
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Harland’s decision to go the way of dynamic typing stems partly from a perceived conflict
[Har84, page 115] between supporting both polymorphism and supporting static typing. But
Acer contradicts this perception, supporting polymorphism and static typing. As well, the
work in [ACPP91] shows how dynamic typing can be supported in the framework of an
otherwise statically typed language.

Another good source of principles for guiding language design is given in [Mac87], which
presents 16 principles and evaluates various well-known programming languages in terms
of their conformance to these principles. The principles are very general and are set in a
historical context; many are restatements of advice offered by Parnas, Dijkstra, Hoare, and
others, and are now well-entrenched in the minds of language designers. In contrast, the
principles of Chapter 4 arc more narrow in their focus, dealing primarily with manipulation

issues, and can be considered as corollaries of the general principles.

6.2 Transformational programming

It is important to emphasize that stressing support for manipulation is not the same as
advocating transformational programming, as in the work of Partsch [Par90]. Manipulation
is a more general term: transformation involves pure semantics-preserving manipulation
guided by a logical calculus [PS83,Pcp84], whereas manipulation involves all activities in
which programs are the target of interest.

Furthermore, Acer does not even address the problem of program specification, although
tuple-types do support the specification of abstract data-types and could be extended with
logical constructs, such as the pre- and post-conditions in the style used by Meyer for his
object-oriented language Eiffel [Mey88]. The issue of program specification is avoided because
significant technical problems must be overcome to make transformational programming a
generally applicable methodology. Automated support for proofs, in particular, are an open
problem.

This is not intended to demean the transformational approach, or the work on pro-
gram specification, but is intended to highlight the different perspective taken in this thesis.
Transformations are scen as just another vehicle in the quest to provide better support for
program synthesis, analysis, and maintenance. This is different from advocating the use of
transformations and specifications as a mathematically correct way of deriving an efficient
algorithm from a specification, or of verifying a logically complex notion of correctness.

Nevertheless, the approach to language design advocated in this thesis is supportive of the
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transformational approach to programming. It provides a flexible way in which to express

and implement transformations and a logical framework for the inclusion of specifications.

6.3 The style of semantic definition

In this thesis, a relational-style semantic definition, which maps programs to nodes and node
relations, was used to define Acer. This is quite different from using a denotational-style
semantic definition, which maps programs to mathematical values (and functions). Since
meaning must be represented in some particular way a choice must be made as to which
approach to use. Certainly a denotational-style definition is an appropriate choice. However,
since nodes are sufficient and natural for rigorously defining the structure of abstract syntax
there is no pressing need to provide both a denotation-style definition and a relational-style
definition. Moreover, I hold the view that node structure and its relations are the meaning
of a program.

Nodes, in fact, are the ideal conveyors of meaning. After all, nodes are the high-level
objects manipulated in a programming environment. And an abstract data-type to represent
nodes can be adequately supported in most modern programming languages.

To map the meaning of Acer programs to pure mathematical values would be cumber-
some. For instance, nodes easily represent such things as self-referencing types and data-

structures, e.g.,

Tuple-

Type
FixedValue-
Declaration

Type-

E

(Cemo )

\_ Definition

To describe such structures as pure mathematical values would certainly be less intuitive.
And if we are to treat programs as objects in their own right, objects that can be manipulated,
a node representation is more pragmatic.

An attribute-style semantic definition, which maps programs to data structures [Knu68§),
could be used to specify formally the semantic relations of Acer programs by specifying
nodes and relations instead of arbitrary data structures [HT85,HT86]. However, it would be
Just as suitable to specify formally Acer’s semantics using NURN relations as described in

[DYC90]. This would ensure conformance to the principle that all semantic entities should



CHAPTER 6. EVALUATION 121

be represented as nodes and node relations, not as arbitrary data structures. However, an
attribute-style definition is not inconsistent with the approach advocated in this thesis.

It is important to realize that this thesis has concentrated on defining Acer’s semantics by
specifying Acer’s supporting metaprogramming system. Thus, it is not so much concerned
with a particular style of formal definition [Pag81], as long as the behavior of the supporting

metaprogramming system is adequately specified.

6.4 On programming environments

The wealth of current research in programming environments has served as a motivating
stimulus for this thesis. Commonalities in the various approaches in such environments as
Mentor [DGKLMS84], PSG [BS86], CPS [TR81], and SbyS [Min90] directly support the view
that nodes must be the focal point; they are invariably the objects that are manipulated
in such environments. Minor echoes this view [Min90, page 47] when he says, “It would
be of great value if a canonical form for abstract grammar could be agreed upon, and the
structure of programming languages were defined in this notation.” It is hoped that the
GRAMPS-style node representation described in [CI84] and in this thesis will further the
goal of providing a standard abstract representation.

One danger of providing such a standard abstract represcntation is that there is al-
ways a temptation to make the representation increasingly complex to deal the multitude
of idiosyncratic features of various languages. This thesis has demonstrated that a simple
representation of nodes is adequate for handling the job of representing context-free and
context-dependent syntax. So the lesson is that languages should be defined according to a
simple abstract node representation.

The PCAcer language-based environment has not been described in detail in the body of
this thesis, but its design and implementation has influenced the design of Acer. After all, a
language design cannot be taken seriously unless it is fully implemented, for only by doing
so are various deficiencies revealed. The design of the PCAcer environment draws from the
approaches in the literature. In particular, PCAcer attempts to provide a compromise, much
like that advocated in [BS86], by supporting both a concrete textual view and an abstract
Node view. Hence, low-level manipulation that is conveniently expressed in terms of text can
be accomplished in that way, and high-level manipulation best expressed in terms of nodes s
expressed in terms of nodes. As well, the two types of view are easily interchanged, sharing

a common core of editing commands, e.g., select, delete, insert, copy, and so on.
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Realize, however, that PCAcer has not been designed so much to be innovative, but to
demonstrate how easily Acer can be supported. For instance, requiring all semantic objects
to be represented as nodes ensures a syntactic representation for precisely the values that
Acer programs manipulate. Hence, values, like programs, are viewed as nodes, and support
for their manipulation is unified under the guise of these nodes. This is what allows the
result of evaluating a program in PCAcer to be viewed as a node.

Other properties of Acer also help to support PCAcer’s implementation. For example,
the property that every node gives rise to at least one token in the concrete view facilitates
the direct selection of nodes by pointing at their tokens. As well, the property that every
type, definition, and defining-occurrence is represented as a node allows PCAcer to generate
nodes to respond to semantic queries. It is my view that the consequences of a particular
language design only become apparent when a supporting environment is implemented—even
the implementation of just a compiler is insufficient in this regard.

The notion of using metaprograms written in Acer as a command language for an Acer en-
vironment (see 5.6.3) is an innovative approach, which facilitates unlimited extensibility. Un-
fortunately, the memory limitations of PCAcer makes implementing an Acer host-language
metaprogramming system for Acer difficult. Therefore, the realization of this approach is

left as future work.

6.5 On Acer itself

Acer simplifies Quest’s syntax and its domain of semantic objects. For instance, kinds
are eliminated from the syntax. Also, Acer extends Quest with a number of innovative
constructs, such as the various forms of method-call. These constructs strengthen the argu-
ment, in [Car89] that Quest unifies the notions of polymorphism and “inheritance.” Indeed,
Acer’s method-calls provide an object-oriented style of method invocation, and defining
value-selection and indexing in terms of method-calls facilitates great expressiveness.

The implementation of Acer’s form of “inheritance” is interesting in that each object
Need not be tagged at run-time to indicate the applicable methods. The abstract-type
of each object is statically known, which determines the applicable methods. Thus Acer
extends Quest by providing a form of method-call, which is simply rewritten as a function-
call in which the called function is selected as a component of the data-structure (tuple
or record) determined by the static type of the target object. For example, if x has type

module. Type, the method-call method.(x) is equivalent to module.method (x), assuming of
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course that module declares an appropriate function named method. Thus the called method
is determined by the selection module.method and no run-time search of a method dictionary
is required.

Furthermore, module could implement its abstract values so that each x contains poten-
tially different function components. The call module.method (x) could then be implemented
to invoke the particular function associated with the x given in the call. This implements
the notion of virtual methods in which the called method is determined dynamically for each
object. Clearly the style of “inheritance” supported by Acer and Quest is extremely flexible.

Another innovative fcature of Acer are references, which can be used like pointers but are
implemented as fetch/store functions. They support the high-level modeling of updatable
locations. For instance, a reference could be used to model a location that does not even
exist in physical memory; a fetch could be implemented as a read from the file-system, and
a store could be implemented as a write to the file-system.

Iterators and accumulators are yet another feature of Acer not present in Quest. Their
design is based on the description in [Cam89]. Acer’s iterators and accumulators are im-
plemented as tuples with appropriate components rather than as a new type of semantic
object. As a result, they introduce minimal additional complexity while providing maximal
utility—iterators and accumulators can even be recursively defined. Also, the accumulation-
literal, which is an accumulator applied to literal arguments, has proved to be very useful for
supporting data constructors that take an arbitrary number of arguments, e.g., a list could
be constructed by list.construct (Base Type) ([x, y, 2))-

Acer’s abstraction mechanisms can be seen in a very favorable light. As Hilfinger [Hil83,
page 3| puts it, “Proper design of the abstraction facilities of a language not only increases
its utility to programmers, but can also simplify the language and reduce the language
designer’s temptation or need to provide all things to all programmers.” Acer reinforces this
view. For instance, Acer has a very small number of built-in types and most notations are
applicable for abstract data-types in general; even basic types such Integer and Real and
structured types such as Array are defined as abstractions. As a result, Acer’s definition
need not specify the propertics and operations of a large number of built-in types. This
certainly simplifies the language and at the same time supports extensibility via powerfuy]
abstraction mechanisms.

Folding is particularly well supported in Acer because functions can abstract over ar-

bitrary value expressions and typec-operators can abstract over arbitrary type expressions.
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Even variables can be folded as reference- or pointer-yielding functions. Quest does not pro-
vide the same level of support for folding because it does not include pointers or references
and because a function’s body cannot refer to non-local (free) variables. In Quest, non-local
variables must be contained by a tuple or some other data-structure to be accessible, but
in Acer, variables are allocated on the heap so dangling stack references are of no concern.
Moreover, an implementation of Acer could allocate particular variables directly on the stack,
as Quest does for all variables, when a reference or pointer to the variable is not required

and the variable is not referenced in a function body.

6.6 Future work on Acer

Implementing an Acer host-language metaprogramming system for Acer is the crucial next
step in the development of Acer. Such an application would serve to demonstrate Acer’s
performance characteristics (i.e., exccution efliciency and memory usage). It would also
highlight the advantages and disadvantages of programming with a typeful programming
language.

The reader might ask why such an implementation is not supported by PCAcer. The main
reason is the memory limitation imposed by MS-DOS, which limits the size of programs that
can be handled. Of course, various swapping techniques could be applied to make better use
of the limited memory space, but this would greatly complicate PCAcer’s already extensive
implementation, which consists of 36,000 lines of Pascal code. As well, for portability,
PCAcer translates Acer to an interpreted machine language, so execution speed would be
expectedly slow. Porting the implementation of PCAcer to a more powerful architecture and
translating to native machine code would facilitate further evaluation of Acer.

Another area for further work concerns the problems associated with persistent storage
as supported by Acer’s dynamics. The ability to store persistently abstractly typed values
has its implications on data abstraction because it implies that any value can be recursively
duplicated. This must be taken into account by the designer of an abstraction. For instance,
although the metaprogramming system module node provides theUnattachedEmpty Node as
the parent of all unattached nodes including itself, this node can be duplicated as yet, another

empty node that has itself as its parent. Therefore, to test whether a node x is attached or

Unattached, one should not test:

{x.parent is node.theUnattachedEmptyNode}
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one should test node.isa.empty (x.parent) because theUnattachedEmptyNode is not neces-
sarily unique. Hence, the declaration for theUnattachedEmptyNode should not be provided
to prevent the impression that it is a unique individual. But then, were it not for persistent
storage, theUnattached EmptyNode could very well be a unique individual.

The fact that persistent storage interacts with abstraction in such an unexpected way is
somewhat forboding. Unless some care is taken, certain abstractions could be crashed e.g.,
copying a value representing an open file may not be meaningful. Note that Quest restricts
persistent storage to values of concrete-types, but that stifles its usefulness. Moreover,
since Acer defines even basic types such as Integer as abstract-types, dynamics restricted to
concrete-types would be quite useless.

Another problem with persistent storage for values of abstract-types is that no test is
performed to ensure that the abstract-type has not been recompiled in terms of a different,
implementation type. Clearly such recompilation would invalidate all persistently stored
values based on that abstract-type.

But perhaps we should not be unduly concerned, after all, when a program can input a
function-value and call it, it can never be completely sure that it is not loading a ‘Trojan
horse.” Thus, persistent storage has its implications, take it or leave it.

Further rumination concerning the particular features included in Acer is also in order.
For instance, enumeration-types could be excluded in favor of option-types, and even tuple-
types could be excluded in favor of record-types. This would simplify the language but could
harm performance.

Another semantic issue that needs attention concerns the ability of a function-call to act
as a constructor, see A.7.2. A constructor, such as a tuple-literal or function-literal, supports

recursive definitions. For example,

let x be tuple x end

defines a recursive tuple. But, if we define a function makeTuple as

let makeTuple be function (x : Type) tuple x end end

We could not use it as

let x be makeTuple (x)

to define a recursive tuple, because x cannot be passed to a function until its definition is

completely determined.
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A solution to this problem would be to define a restricted type of function called a
constructor-function. Thus Acer would define a constructor-literal and a constructor-type

exactly analogous to a function-literal and a function-type. For example,

let makeTuple be constructor (x: Type) tuple x end end

which has type:

Constructor (x : Type) Tuple : Type end end

A constructor-literal would be restricted to have a body that denotes a constructor and
to treat each of its arguments as a delayed-occurrence (see A.7.2), i.e., as a reference to a
data-structure that is not yet completely defined. Acer’s subtyping rules would be extended
so that a constructor-type is considered to be a subtype of a function-type according to the
regular function subtyping rules, but not vice versa. A constructor-function could then be
used in a regular function-call, but in this case the arguments would be permitted to be

delayed-occurrences. It would then be valid to write

let x be makeTuple (x)

Constructor-values could be implemented so that a run-time constructor-value con-
tains an instance of the uninitialized data-structure that the constructor-literal creates. A
delayed-occurrence referring to a call to a constructor-function would duplicate this data-
structure, and when the constructor is finally called, this duplicate would be provided to the
constructor-function, in a register perhaps, and the constructor-function would initialize it.
Also, to support the notion that a constructor-type 1s a subtype of a function-type, when
a constructor-function is used as a regular function, the uninitialized data-structure would
not be provided as part of the call and the constructor-function would simply create the
data-structure itself. The importance of providing user-defined constructors is not clear at
this point in Acer’s evolution.

Constructor-functions, as described above, are related to the notion of lazy-evaluation:
both involve delaying the complete realization of a definition. However, lazy-evaluation is
more powerful (as is indicated by the lazy functional language Miranda [Tur86]) because
1t supports the definition of potentially infinite data-structures (e.g., the list of all primes).
Constructor-functions, on the other hand, can only support the definition of recursive data-
Structures. In Acer, lazy-evaluation must be explicit, i.e., in place of a particular value, a
function that yields the value should be used instead. In Miranda, such mechanisms are

implicit from context.
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6.7 Beyond Acer

Clearly Acer is but a step on the quest towards more manipulable languages. When inno-
vative language features and programming methodologies arise, they will have to be either
incorporated into a new language or meshed with an existing language. Acer provides a
conceptual framework for meshing with such innovations: new kinds of types and values,
and new kinds of computational structures, can easily be included in the existing framework
(e.g., just as the extension for constructor-functions is easily included.)

Beyond Acer, however, lies a vaste domain of unexplored territory, and the direction in
which to go is uncertain. For instance, what style of programming is best, object-oriented
programming, functional programming, or logic programming? And is it even reasonable to
ask such questions? After all, various styles of programming have different advantages and
disavantages.

The advice offered by this thesis, therefore, attempts to deal with fundamental manipu-
lation concerns that should be addressed regardless of the particular style of programming
language chosen. To this end, three general areas of language design that influence the na-
ture of program manipulation were identified in Chapter 4, namely the mapping between
concrete syntax and abstract syntax, the mapping between context-dependent syntax and
abstract syntax, and the mapping between equivalent language constructs. Abstract syntax-
tree nodes and their context-dependent relations, as described in Chapter 3, are the unifying
concept in this realm.

Reiterating the summary of Chapter 4, to achieve a useful correspondence between se-
mantic structure and syntactic structure the design of a language should begin with a clas-
sification of its entitics, c.g., variables, types, values, expressions, statements, procedures,
modules, etc. Next, the attributes associated with each class of entity should be identified.
Some of these will be defined and others derived, e.g., a variable has a name and type that
are defined and a storage location that is derived. For each different class of entity, a gram-
mar production to represent its defined attributes should be included in the abstract syntax.
Statically scoped nested block structure with modules should then be used to integrate the
abstract syntax for the semantic entities into a framework in which all hiding is intentiona]
rather than accidental. Finally, the abstract syntax should be carefully augmented with
keywords and punctuation to obtain a concrete syntax with appropriate manipulation char-
acteristics.

Also, to support transformation (i.e., semantics-preserving manipulation), the design of a
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language should, in general, support folding and unfolding; it should be possible to abstract
over any expression and it should be possible to rewrite any invocation in terms of its
definition. Meaningful manipulation can only be well-supported when such basic activities
are well-supported.

And most importantly, to ensure that manipulation is in fact well-supported, a metapro-
gramming system for the language should be constructed. All other support tools can then be
implemented in terms of the standard abstract view implemented by that metaprogramming

system.

6.8 Final words

If this thesis achicves only the goal of prompting language designers to consider support
for program manipulation in the design of their languages, it will have accomplished much.
Perhaps the design of Acer, as a framework for a manipulable imperative language, will be
seen in a positive light as well, but this is of lesser concern.

The fundamental advice to language designers is that they should specify and implement
a supporting metaprogramming system based on some reasonably simple concept of nodes.
If improved programming languages, methodologies, and environments are to meet the ever
increasing demand for better software, language designers must recognize that support for

pProgram manipulation is a vital concern.



Appendix A

The Acer definition manual

A.1 Introduction

This appendix describes the syntax and semantics of Acer, an imperative, general-purpose,
expression-oriented language with an elaborate type system that supports type quantifica-
tion, polymorphism, and structural subtyping. Acer’s design is based on that of the typeful
programming language Quest but there are significant differences because Acer’s design, as
discussed in Chapter 4, is guided by manipulation principles. In particular, Acer’s three-level
type system is supported by just two levels of syntactic object, types and values, rather than
by three levels of syntactic object, kinds, types, and values. Also, Acer provides constructs to
Support “object-oriented” programming as well as constructs to support high-level iteration
and accumulation.

Acer’s context-free syntax is specified in terms of GRAMPS-style nodes; its context-
dependent syntax is specified in terms of NURN-style node relations. A formal context-free
grammar is given but formal NURN relations are not. Instead, relations are described
informally, as is dynamic semantics.

The abstract properties of nodes, and the concepts that underlie GRAMPS and NURN,
are fully described in Chapter 3. Very briefly, a GRAMPS-style grammar has five classes
of rule, namely lexical, construction, list, alternation, and character description. Lexical,
construction, and list rules specify node classes, either lexeme classes, construction classes, or
list, classes; alternation rules specify sets of node classes (i.e., node categories); and character
description rules specify regular expressions for use in lexical rules.

Acer is defined in terms of nodes and relations on nodes because nodes, as the syntactic

Tepresentation of semantic objects, are the basis of all manipulation. When node structyre

129
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is well-defined, a semantic object is synonymous with its representation, just as the number
ten is synonymous with its representation as the numeral 10. Moreover, simple manipulation
can then produce meaningful semantic effects, just as combining the digits of two numerals
produces the sum of two numbers. Emphasis on nodes reflects the view that specifying how
constructs are abstractly represented and manipulated is as important as specifying what

they mean.

Nodes will often be illustrated using a graphical representation, e.g.,
Binding

]

FixedValue-
Declaration
b T

An oval represents a construction or list node of the indicated class. A box represents a

lexeme with the indicated spelling—the node class of a lexeme is implied by its spelling. A

connection between the top of one node and the bottom of another represents an instance
of the parent relation. Children are shown in left-to-right order to fully indicate the parent-
position-child relation.

Context-dependent relations will also be illustrated graphically, e.g.,

Defining-occurrence . Type
X X 7
Definition l Type

An unlabeled oval represents an unspecified node. A labeled connection from the right-side

of one node to the left-side of another represents a binary relation—a node’s position in the
relation is determined by the side that is connected. When a binary relation is interpreted
to mean that a node has another node as its attribute, the connections to the right of a
node lead to its attributes, e.g., the above indicates that an identifier x has as its defining-
occurrence some other identifier x, that it has as its type an unspecified node that is also
the type of its defining-occurrence, and that it is its own definition.

The remainder of this appendix is organized as follows. Section A.2 presents all of Acer’s
alternation rules, introducing the names of Acer’s node categories, node classes, and semantic
objects. Section A.3 outlines Acer’s primary context-dependent relations, namely defining-
Occurrence, definition, denotation, type, kind, and subtype. Section A.4 presents Acer’s

lexical and character description rules, including Acer’s technique of associating comments
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with nodes. And finally, sections A.5 through A.33 describe Acer’s construction and list

rules and discuss their associated relations and dynamic semantics.

A.2 The syntactic domains

An alternation rule defines and names a node category, that is, a set of node classes. Al-
ternation rules refer to node classes by name so a brief overview of Acer’s alternation rules

serves to introduce much of the terminology used in describing Acer.

Acer’s alternation rules give rise to a classification tree whose root is defined by Acer’s

most inclusive alternation rule

(Arbitrary) ::= (Argument) || (Declaration) || (Miscellaneous)

A discussion of the subcategories argument, declaration, and miscellaneous is presented in

the subsections that follow.
Several additional alternation rules are defined, namely block, denoter, identiﬁer, and

reused-identifier:
(Block) ::= (TypeBlock) || (ValueBlock)
(Denoter) ::= (TypeDenoter) || {ValueDenoter)
(Identifier) ::= (Typeldentifier) || { Valueldentifier)

(ReusedIdentifier) ::= (ReusedTypeldentifier) || (Reused Valueldentifier)

These rules do not fall neatly into Acer’s classification tree but since they are not used in
any other grammar rule they can be ignored. They merely provide convenient terminology,
that is, generic names for semantically analogous constructs.

The presence of arbitrary in Acer’s grammar is significant because Acer’s grammar com-
Pletely avoids syntactic ambiguity. This implies that a parser for every node class and
node category exists, and consequently that a parser for arbitrary exists. Therefore, Acer jg
Phrase unambiguous, that is, the node structure of any textual phrase can be unambiguously

determined.

A21 Argument

Of the disjoint categories argument, declaration, and miscellaneous, argument includes the

most of alternatives. It is defined as
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(Argument) := (Binding) || (Expression)

Binding and expression are grouped into a single category called argument because an
argument-list (sce A.15) can contain both bindings and expressions.

In general, a binding consists of an identifier, a type, and an expression. Its effect is
to bind the expression to the identifier so that the expression can be referred to by name.
(The type indicated by a binding is optional and is used to restrict the type of expression
that can be bound to the identifier; such restriction involves subtyping as described in
section A.3.4.) The similarity between bindings and expressions stems from the fact that in
a context permitting an argument, an expression is treated as an anonymous binding, that
1s, as a binding with no name.

Consider now the subcategories of binding and expression.

A.2.1.1 Binding

Binding is defined as

(Binding) ::= (TypeBinding) || (ValueBinding)

which mirrors the partitioning of Acer’s domain of semantic objects into the disjoint cate-

gories type and value.

A type-binding comes in only one form but a value-binding comes in one of two forms:

(ValueBinding) ::= (Fixed ValucBinding) || (VariableValueBinding)

Two forms of value-binding are present because the identifier of a variab]e-value-binding can
be rebound by assignment (see A.30.4) but the identifier of a fixed-value-binding cannot.
Thus Acer makes a distinction between a variable value-identifier and a fized value-identifier

(see A.6).

A.2.1.2 Expression

Expression is the general term that encompasses both types and values. It is defined as

(Expression) ::= (Type) || (Value)

The majority of Acer’s node classes are cxpressions.
y

Type is defined as
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(Type) = .
(AbstractType) || (ConcreteType) | (Reus'edTyl-)eIdentzﬁer) I
(TypeBlock) || (TypeDenoter) || {TypeDesignation) |

(TypeOperator)

for which the alternatives abstract-type and concrete-type are defined as

(AbstractType) = ‘
(OperatorCally || (Typeldentifier) || (TypeSelection)

(ConcreteType) ::=
(AnyType) | (DynamicType) || (EnumerationType) ||
(FunctionType) || (OptionType) || (RecordType) ||
(TupleType) || (VariantType)

Together these three rules introduce the node class names of all types.

Value is defined as

(Value) ::=
(Accumulation) || (AndIfTest) || (Assignment) | (CodePatch) ||
(CompoundValue) || (Conditiona]) || {Dereference) || .
(DyadicMethodCall) || (Dynamiclnspection) | (Fu'nctmnC-'a]l) I
(Index) || (IsTest) || (IsNotTest) || (Iteration) || (KeepTrying) |
(Literal) || (OrdCall) || (OrlfTest) || (PointerCfaH) I
(PrefixMethodCall) || (Raise) || (Try) || (TryFinally) ||
(UnaryMethodCall) || (ValCall) || (ValueBlock) || (ValueDenoter) ||

{

ValueSelection) || ( VariantInspection)

for which the alternative literal is defined as

(Literal) ::= o
(ArrayLiteral) || (CharacterLitcral) I (Dynamchltferal) I
(ExceptionLiteral) || (FunctionLiteral) I (Int?gertheral) I
(LiteralSelection) || (RealLiteral) || (RecordL1tera1).|| '
(ReferenceLiteral) || (Reused Valueldentifier) “ (StrmgL;tefa])'”
(TupleLiteral) || (Valueldentiﬁer) I (Varia,nttheral) | (VoidLiteral)

Together these two rules introduce the node class names of all values.

A.2.2 Declaration

The alternation rule for declaration, a category disjoint from argument and miSCellaneous’

closely mirrors that of binding:

(Declaration) ::= (TypeDeclaration) | (ValueDeclaration)



APPENDIX A. THE ACER DEFINITION MANUAL 134

Also, as with a binding, a type-declaration comes in only one form but a value-declaration
comes in one of two forms:

(ValueDeclaration) ::= .
(FixedValueDeclaration) || (VariableValueDeclaration)

In general, a declaration consists of an identifier and a type. It is similar to a binding
in the sense that it introduces a named expression of some type. The difference is that
the identifier of a declaration is bound to its expression dynamically, rather than statically.
Hence a binding includes a static definition (i.e., an expression) but a declaration does not.

Because their definitions are hidden, declarations support information hiding,.

A.2.3 Miscellaneous
The final disjoint category of arbitrary is miscellaneous:

(Miscellaneous) ::= . '

(Empty) || (AccumulationList) || (ArgumentL'ls.t) ( (Arrayngt) I

(BindingList) || (ConditionalBranch) | (ConditlonaIBranchLzst) I

(IndexList) || (IteratorElement) || (IteratorList) || (Slgnatu're) I

(TypeBranchList) || (TypeWhenBranch) || (VahfeBra'nchLlst) I

(ValueWhenBranch) || (VariantElement) || (VariantList) ||

(WhenCondition)
which introduces the names of Acer’s remaining node classes. These node classes represent
semantically incomplete constructs that are typically used as components of bindings, dec-
larations, or expressions to represent complete constructs. Therefore, there is no semantjc
significance to grouping constructs in the category miscellaneous.

This completes the description of Acer’s alternation rules and hence the overview of

Acer’s node categories and node classes. Before proceeding with detailed descriptions of

Acer’s various nodes, let us briefly consider general aspects of Acer’s context-dependent

relations.

A.3 Context-dependent relations

A fundamental principle guiding the design of Acer is that semantic objects should be repre-

sented as nodes and relations on nodes. Acer’s nodes have just been introduced so consider

oW the relations defined on these nodes.
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A.3.1 Scope

The primary means by which distant nodes in a program come to be related is through the
defining-occurrence relation, which relates an identifier to the point in the program were it is
defined. In context, an identifier can appear as either a defining-occurrence or as an applied-
occurrence. An identifier is a defining-occurrence if it appears as the defined-identifier of
a binding, declaration, iterator-element, type-when-branch, or value-when-branch, or if it
appears as an element of an enumeration-type or option-type; otherwise, it is an applied-
occurrence. The defining-occurrence of a defining-occurrence is of course that identifier
itself but the defining-occurrence of an applied-occurrence is an identifier node determined
according to scope rules, which we will now consider.

Acer’s scope rules are defined in terms of two concepts: name-layer and identiﬁeT-IOOkup.
A name-layer is a set of uniquely-spelled defining-occurrences and identifier-lookup is an
algorithm for searching name-layers given a spelling and a starting node.

Name-layers are derived from nodes as follows. Each enumeration- and option-type has
@ name-layer containing its identifiers. Each argument-list, binding-list, dynamic-literal,
record-literal, and tuple-literal has a name-layer containing the defined-identifiers of its bind-
ings. Each dynamic-type, record-type, signature, and tuple-type has a name-layer containing
the defined-identifiers of its declarations. Each iterator-list has a name-layer containing of
the defined-identifiers of its iterator-elements. And each type-when-branch and value-when-
branch has a name-layer containing its defined-identifier. In addition to these name-layers
is the global name-layer (see A.9), which is associated with the unattached empty node ang
Contains all globally visible identifiers.

Identifier-lookup, given a spelling and a start node x, proceeds as follows. At each step,
the node-class of the parent of z and position of x with respect to its parent determines which
Name-layer(s) are searched and whether lookup should continue. For example, when 7 ig a
declaration in a signature, the name-layer of that signature is searched; if an appropriately
spelled defining-occurrence is not found, identifier-lookup continues with the signature ag z.
For most node classes, no name-layers are searched and lookup continues with the parent
of 2 as z. Thus lookup typically involves a rootward traversal of the tree with searching of
Name-layers only at particular nodes along the way.

Name-layer searching is controlled by the following node classes: argument-list, binding-
list, dyadic-method-call, dynamic-literal, dynamic-type, empty, function~call, function-
litera) function-type, iteration, literal-selection, prefix-method-call, record-literal, record.

type, reused-type-identifier, reused-value-identifier, signature, type-block, type-operator,
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type-selection, tuple-literal, tuple-type, unary-method-call, value-block, value-selection,
variant-literal, and when-condition. For the sake of brevity, the details of how these node
classes affect identifier-lookup are described as each node class is described in sections A.5
through A.33.

One notable aspect of Acer’s scope rules is that scope is not affected by order of
definition—a name-layer is after all a set—so forward reference to declarations and bind-
ings is generally is acceptable, dependency analysis is used to determine invalid references

(see A.7.2).

A.3.2 Definition and denotation

Because expressions are frequently used to denote other expressions (e.g., pI might be used
to denote 3.14159), Acer provides the definition relation, which maps an expression node or
empty node to the expression node or empty node that represents its definition. Most ex-
pressions, except for the following, are simply their own definition: accumulation, and-if-test,
dyadic-method-call, empty, index, iteration, literal-selection, or-if-test, operator-call, prefix-
method-call, reused-type-identifier, reused-value-identifier, type-block, type-denoter, type-
designation, type-identifier, type-operator, unary-method-call, value-block, value-denoter,
value-identifier, and value-selection. The details of the definition relation are described ag
each relevant node class is described.

Since the definition of an expression is an expression, which in turn may have as itg

definition yet another expression, there is the possibility of invalid circular definitions. e g
, e.g.,
Binding

=

Definition

Definition

HOWever, in a correct program, repeated applications of the definition relation ultima,tely

Tesults in an expression that is its own definition.

Definition

Denotation

Thus Acer provides the denotation relation to map an expression node or empty node directly
to this ultimate definition—this relation detects circular definitions and yields the error

denotation in that case, e.g., either error or Error (see A.25), depending on whether the

€Xpression is a value or type.
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Note that bindings have a definition by virtue of having a component by that name (see

A7)

A.3.3 Type and kind

Because expressions are typed (e.g., 3.14159 has type Real), Acer provides the type relation,
which maps an expression node or empty node to the type node or empty node that represents
its type. The notion that values have types is quite conventional but the notion that types
have types is not. It stems from the fact that Acer supports a three-level type system in
which types are classified according to kind. The type of a value may be any class of type
but the type of a type must be a restricted form of type called a kind. A typeis a kind if it
denotes either a concrete-type or a concrete type-operator (see A.19), that is, a type-operator
with a body that is a kind. A kind is its own type.

Since the type of an expression is a type, which in turn may have as its type yet another

type, there is the possibility of invalid circular types, €.g.,
Declaration
~

T T

Type

However, in a correct Acer program two applications of the type relation must yield a kind:

Type Type

Kind Type

Thus Acer provides the kind relation to map an expression node or empty node directly to
this ultimate type—this relation detects when the type of a type 1s not a kind and yields the
error type in that case, e.g., Error (see A.25).

Note that every binding and declaration also has a type by virtue of having a component,

by that name (sce A.8).

A.3.4 Subtype

Acer defines a subtype relation on types to induce a lattice, that is, a subtype hierarchy. A
type T'is a subtype of a type 1" if the denotation of T is a subtype of the denotation of T,
or when T' is not a kind, if the type of T is a subtype of T". Subtype is defined in terms

denotations and since the denotation of a type is either a type-operator, an abstract-type,
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or a concrete-type, subtype is specifically defined for only these. Types of different node
classes are generally unrelated as subtypes. As with the other context-dependent relations,
the details of the subtype relation are described as each relevant node class is described.

The subtype relation is an ordering relation (i.e., a partial order) so type equivalence is
defined in terms of subtype—two types are equivalent when each is a subtype of the other.
Also, the inverse of the subtype relation is referred to as the supertype relation, that is, 7' is
a supertype of 77 if and only if 7" is a subtype of T'.

Because the subtype relation is an ordering relation we may speak of the mazimal type
of a set of types. The maximal type of a set of types is any type that is a supertype of al
the rest; the maximal type of an empty set is Void (see A.22). If a set of types does not
have a maximal type then the maximal type is Error (see A.25). Note that special subtype
rules apply for the types Error and Raise (sce A.24.2).

This concludes the overview of Acer’s primary context-dependent relations.

A.4 Lexical structure

This section presents a detailed description of Acer’s lexical structure, i.e., its ASCII encod-
ing. Every Acer program is represented as an abstract syntax tree, which can be encoded ag
stream of ASCII characters. The node structure of such a stream is determined by parsing,
that is, by analyzing the stream of characters to determine its tokens (lexical analysis), and

analyzing the stream of tokens to determine its nodes (syntax analysis).

A.4.1 The character set

Acer partitions the ASCII character set as follows:

(#LowercascLetter) ::=
alblicldjelfllglhliljlkll]lml]
nfloflpllglrfsitiullviiwlixlylz

(#UppercaseLetter) ::=
AIB|C|D|E|F|G|H|I|IIK|L|M]
NfOIPIQIR[ISITIUIVIWIXIYI[Z]-

(#SymbolicLetter) ::= ) i
Clas e+ n-n/0<t=t>uz N0
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(#Punctuation) ::=

(#Digit) :=0 (123456 7]8]9
(#DoubleQuote) = "

(#Tab) = ASCII 9

(#LineFeed) := ASCII 10

(#CarriageReturn) := ASCII 13

(#Space) ::= ASCII 32

(#Other) ::= ASCII 0-8, 11-12, 14-31, 127

If an extended ASCII is used (such as IBM extended ASCII), the additional characters
are, by default, included in other. However, if various characters from other produce desirable

graphic characters, they may instead be included in one of the first four groups.

A.4.2 Token

A lexical analyzer for Acer recognizes five sorts of token: comment, identifier, keyword,

punctuation, and lexical-literal. Each will be discussed in turn.

A.4.2.1 Comment

A comment-token begins with a ‘4’ and terminates at the end of the line (i.e., the next

Carriage-return or line-feed):

(Comment) ::= .
% { (#LowercaseLetter) || (#UppercaseLetter) || (#SymbolicLetter) ||
(#Punctuation) || (#Digit) || (#DoubleQuote) |

(#Tab) || (#Space) || (#Other) )
A comment-token annotates the non-comment-token preceding it. Thus every non-
comment-token has an associated annotation list consisting of the bodies of its trailing
comment-tokens, each stripped of its leading ‘4’. A syntax analyzer, when accepting tokens,

Maps each token to a particular node called its owner, i.e., the node whose grammar rule
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requires the token’s occurrence. When a token with annotations is accepted, the annotations
are inserted at the end of the annotation list of that owner node.

Since every Acer node, with the possible exception of empty nodes (see A.5.1), owns at
least one token in a lexical encoding, every Acer node can be annotated by annotating its
tokens. Thus Acer’s comment facility provides a concrete representation for nodes annotated
with lines of text. Note that the annotation list of a node (or token) is not itself a node—it
is a textual object consisting of lines of text.

Comments can be used in many different ways, for example, as documentation, as di-
rectives of various sorts, as cross-reference information, and so on. So that the role of each
annotation (i.e., each comment line) is specified, the first character in an annotation (i.e.,
the character after the ‘4’) determines its role.

Only the role of documentation is specified in this appendix: a space indicates documen-
tation. The use of comments for other roles has not been fully explored. Nevertheless, in the
future: a ‘$’ should be used to indicate a compiler directive, a ‘%’ should be used to indicate

a formatting dircctive, and a ‘!’ should be used to indicate an assertion.

A.4.2.2 Identifier

Acer provides two classes of identifier, one for denoting types and the other for denoting
values. A type-identifier consists of an initial uppercase letter followed by zero or more

lowercase letters, uppercase letters, and digits:

(Typeldentifier) ::=
(#UppercaseLetter) { (#LowercaseLetter) || (#UppercaseLetter) ||
(#Digit) }
A value-identifier is either alphabetic or symbolic, and hence consists of either an initial
lowercase letter followed by zero or more lowercase letters, uppercase letters, and digits, or

a sequence of one or more symbolic-letters:

(Valueldentifier) ::=
(#LowercaseLetter) { (#LowercaseLetter) || (#UppercaseLetter) I

(#Digit) I |
(#SymbolicLetter) {{ (#SymbolicLetter) |
Symbolic-letters in value-identifiers allow programmers to define their own operator symbols,

During parsing, each identifier-token gives rise to an identifier node containing the token’s

spelling, i.e., the owner node.
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The following tokens are used as keywords in Acer and cannot be used as identifiers:

Any andif array be
becomes begin Dynamic dynamic
do code Enumeration end

else elsif exception Function
finally for function if

in inspect is isnot
keep let nothing Operator
Option of ord orif
pointer Record raise record
reference Then Tuple TYPE
then try trying tuple
Variant val var variant
when with

The spellings of keyword-tokens are not stored in the syntax tree. Their sole purpose is to

direct parsing (reading) and the association of annotations—they play no role in semantics.

A.4.2.4 Punctuation
The following tokens are used as punctuation in Acer:
A (), . ;0[] (e
Each punctuation character constitutes a token.
As with keyword-tokens, the spellings of punctuation-tokens are not stored in the syntax
tree.

A.4.2,5 Lexical Literal

Acer provides lexical representations for integers, reals, characters and strings.

An integer-literal consists of an optional ‘-’ and a sequence of one or more digits:
(IntegerLiteral) .= [[ - || (#Digit) { (#Digit) }
A real-literal consists of an optional ‘=’, a sequence of one or more digits, a .’ another

sequence of one or more digits, and an optional trailing power indication, which is an ‘E’ or

¢ ? M . . R
€’, an optional ‘=’ and a sequence of one or more digits:
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(RealLiteral) ::= .
[ - 1| (#Digit) { (#Digit) } . (#Digit) { (#Digit) }
[ (el E)D -] (#Digit) { (#Digit) } |
During lexical analysis of real-literals an ‘e’ is automatically converted to an ‘E’.
A character-literal consists of a ‘7, any character except a line-feed or carriage-return,

¢y,

and a

(CharacterLiteral) ::=
“ ( (#LowercaseLetter) || (#UppercaseLetter) | (#SymbolicLetter) ||
(#Punctuation) || (#Digit) || (#Space) || (#DoubleQuote) ||
(#Other) ) °

A string-literal consists of a ‘", zero or more characters other than line-feed, carriage-
return or ‘"’ and a ‘"’
(StringLiteral) ::=

" { (#LowercaseLetter) || (#UppercaseLetter) || (#SymbolicLetter) ||
(#Punctuation) || (#Digit) || (#Space) || (#Other) }} "

During parsing, each lexical-token gives rise to a integer-literal, real-literal, character-
literal, or string-literal node containing the token’s spelling, i.e., the owner node. The spelling
of a character- or string-literal node does not include the delimiting single or double quotation
marks. Nevertheless, in the graphical representation these delimiting marks are illustrated

as part of the spelling so as to distinguish character- and string-literals from identifiers.

A.4.3 Delimiter

To prevent ambiguity, adjacent tokens in an Acer program can and sometimes must be
delimited by white-space (i.e., space, tab, carriage-return, or line-feed). Comments, punctu-
ations, character-literals, and string-literals are self delimiting and therefore need no further

delimitation. Symbolic value-identifiers need only be delimited from adjacent symbolic value-

‘=’. The remaining sorts of

identifiers and from integer- and real-literals if the identifier is
token—alphabetic value-identifier, type-identifier, keyword, integer-literal, and real-literal—

Mmust be delimited when adjacent.

A.4.4 Lexical alternatives

The viewing of nodes in this appendix, as has been the case throughout this thesis, is
enhanced with the use of proportional fonts and type cues. The following conventions are

followed:
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e Comments are Roman.

Keywords are bold.

Alphabetic value-identifiers are slanted.

o Type-identifiers are [ltalic.
e Character-literals, string-literals, and symbolic value-identifiers are typewriter.

This concludes the description of Acer’s ASCII encoding.

A.5 Special nodes

Recall that Acer’s design is guided by the view that it is as important to specifly how language
constructs are represented and manipulated as it is to specify what they mean. For the
manipulation of nodes, Acer provides four special node classes, namely empty, type-denoter,

value-denoter, and arbitrary-list. Each will be discussed in turn.

A.5.1 Empty

For representing a missing, optional, construction component, Acer provides empty, which

is defined to be a childless construction:

(Empty) ::= nothing
The following construction classes have optional components and may therefore contain
empty nodes: array-literal, conditional, dynamic-inspection, fixed-value-binding, fixed-value-
declaration, function-literal, iteration, keep-trying, raise, try, type-declaration, type-binding,
type-when-branch, value-when-branch, variable-value-binding, variable-value—declara,tion,
variant-inspection, and variant-type.

The context-dependent relations for an empty node are illustrated as

An empty node has a type and a definition, which are determined by the context in which

it appears. Therefore, the relations are described as each of the above construction classes

is described.
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In general, if an empty node is not its own definition, its type is given by that of its

definition:

Definition Type
Empty

Type

If an empty node is its own definition, its type is determined by its context:

Type
Gy

Definition

For an unattached empty node, and for an empty node appearing in an arbitrary-list,

the context-dependent relations illustrated as

Definition

|

Such an empty node is its own type and its own definition.

A.5.1.1 Printing empty nodes

Empty nodes are usually invisible in a lexical encoding. However, in Acer an empty node

can be treated as any other node by printing it as the keyword nothing. For example,

if x then y end

and

if x then y else nothing end

provide different views of the empty node representing the missing default-branch of the
conditional (see A.23.3). When an empty node is visibly printed, any associated optional
keywords are also printed, as is else above.

The reason for this unconventional treatment of empty nodes stems from the fact that
every Acer node, except for an empty node, produces at least one token in a lexical encoding.
Therefore, the above treatment of empty nodes eliminates the only exception to this general
rule while still providing for the conventional lexical encoding in which empty nodes are
invisible,

Empty nodes, like every other node, can be annotated. However, since annotations
associate with a node by annotating its tokens, an annotated empty node must be printed

as nothing to ensure that its annotations do not become reassociated with a different, node.
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A.5.1.2 The unattached empty node

The other use of empty nodes in Acer is to ensure that all nodes have a parent node, including
even unattached nodes. Therefore, Acer specifies that there exist a special empty node, called
the unattached empty node, which is the parent of all unattached nodes including itself. The

unattached empty node is unique among nodes in that it is a parent and yet has no children.

A.5.2 Denoter

Acer provides denoters to facilitate the syntactic representation of semantic objects derived
from existing nodes, that is, to represent types and definitions. To see how the need for

denoters arises consider the tuple-literal

tuple let x: 7" be y end

The type of this tuple-literal is

Tuple x: 7" end

but since this derived tuple-type docs not appear in the syntax tree containing the tuple-
literal, the appropriate defining-occurrence of T cannot be determined.
Denoters circumvent this problem by a supporting references to nodes that are unreach-

able via context. For example, the above situation is solved using a type-denoter:

Tuple- Type Tuple-
Literal /J \ Type

FixedValue- Fixed Vailue-
Binding Declaration
Y N =
- ype-
X 71 .y ‘ X C Denoter )]

Definition

A denoter can be thought of as an anonymous identifier with a predetermined defining-
occurrence. To be more precise, every denoter has a definition and stands in place of that
definition.

Acer has two classes of denoter:
(Denoter) = (TypeDenoter) || (ValueDenoter)

Where a type-denoter is defined as

(TypeDenoter) ::= {[]}
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and a value-denoter is defined as

(ValueDenoter) ::= {()}

The definition of a type-denoter must be empty or a type and the definition of a value-denoter
must be empty or a value. A denoter never has another denoter as its definition.

The context-dependent relations for a type-denoter are illustrated as

Type- Definition Type -
Denoter

Type

and those for a value-denoter are illustrated as

Value- Definition Type
Denoter

Type

In general, a denoter has a definition and its type is given by the type of that definition.
The graphical representation of a denoter illustrates its definition but usually nodes are

viewed in terms of a lexical encoding. Therefore, to enhance the readability of a denoter’s

lexical encoding, the definition of a denoter may be printed within the denoter’s brackets.

Thus the above tuple-type could be printed as

Tuple x: {[]} end

or as

Tuple x: {[T]} end

Since a denoter can recursively contain itself, it is not always possible to print its defini-

tion. For example, a recursive tuple-type illustrated as

FixedValue-
Declaration

Type-
Denoter

Mmust be lexically encoded as

& Definition

Tuple :{[]} end
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since printing its denoter leads to an infinite regression. Also, because definitions can be
shared, printing the definition of each denoter may result in a given node being printed an
arbitrary number of times. In general, the definition of a denoter should only be printed if
it is relatively small, for example, if it is an identifier.

A denoter should never appear in a user program since its definition cannot be determined
via context—a denoter should appear only in a derived node, in which case its definition is
determined so as to suit the role it plays in that node.

Because denoters should not appear in user programs, it would be reasonable for a parser
to simply reject denoters. However, the following adhoc approach is chosen instead. A
parser, when accepting a type- or value-denoter, assigns the unattached empty node as the
denoter’s definition, unless the denoter has a printed definition, in which case it assigns the
parsed type or value as the denoter’s definition. It is important to realize that in either case
the original intent of the denoter is likely lost; in the first case an empty definition is assigned
and in the second case a copy of the definition is assigned. Therefore, semantics will likely be
altered by printing and parsing when denoters are involved. This is of no concern however
since denoters should only appear in derived nodes, which are not typically parsed.

Essentially, a type-denoter is treated as if it were defined as

(TypeDenoter) ::= {[ [ (Definition:Type) ]| 1}

and a value-denoter is treated as if it were defined as

(ValueDenoter) ::= {( [ (Definition: Value) ]} )}

However, the definition component of a denoter is treated as a context-dependent relation,
instead of as a context-free relation as implied by the above grammar rules. This is to ensure

that the context-free relations specify a tree, instead of a more general graph.

A.5.2.1 Definition-copy

Denoters are closely involved in the notion of a definition-copy. Producing the definition-copy
of a node involves recursively copying the tree rooted at that node, including the definition
of each denoter, and substituting certain nodes with specified replacements. To see how the

need for definition-copy arises, consider determining the type of the function-call

(T, x)

Where x has type T and [ has type
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Function ( Type:: Any; value: Type) Tuple : Type end end
The type of the call is determined by copying the result-type of the function-type and

substituting 7 in place of each occurrence of Type:

Tuple : T end

Since T is not visible in this newly derived tuple-type, a type-denoter must be used:

Tuple :{[T]} end
where T is precisely the node 7' in the argument-list of the function-call.

In general, we shall speak of the definition-copy of node y with z’ for z, where z and
x’ can be any combination of signature, argument-list, dynamic-type, tuple-type, or record-
type. Producing such a definition-copy involves creating y’, a copy of the tree rooted at
y, in which each applied-occurrence of an identifier in the name-layer of z is replaced by a
denoter with a definition that, depending of the node class of ', is either the corresponding
expression in 2’ or the defined-identifier of the corresponding binding or declaration in z’.
Note that when y is an empty node or denoter, definition-copy instead copies the definition
of y.

When producing the definition-copy of a node, certain subnodes may be unaffected by
substitution, that is, certain nodes contain neither applied-occurrences of identifiers in the
name-layer of x nor applied-occurrences of identifiers that are copied. For such nodes,
definition-copy can substitute a denoter to the original node in place of a copy of that
node. This results in a more eflicient representation since fewer nodes are used to represent

the same object.

A.5.2.2 Definition-copy-at

Closely associated with the notion of a definition-copy is the notion of a definition-copy-
at. The definition-copy-at of a node also results in the creation of a new unattached node
that defines the same object as the original. However, for definition-copy, the new node js
unattached and so denoters are used to refer to nodes not accessible via context, whereas
for definition-copy-at, the new node is expressed in terms of the scope at some target node
l. Thus the definition-copy-at of a node y at a location [ involves producing a denoterless
definition-copy of y expressed in terms of the scope at [.

That the definition-copy-at can gencrally be produced demonstrates that objects ex-
Pressed using denoters can also be expressed without using denoters, given an appropriate

scope. For example, consider the recursive tuple-type
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Tuple :{(]} end

where the definition of the type-denoter is tuple-type itself. The definition-copy-at of this
tuple-type at the unattached empty node results in

{let Unnamed be Tuple : Unnamed end; Unnamed}

Note that the definition-copy-at of a node y at a target node ! cannot be produced for all
possible targets because the objects used by ¥ must be visible at /. Thus definition-copy-at

fails when attempting to express a node ‘outside of its scope.’

A.5.3 Arbitrary-list

The last of Acer’s special nodes is the arbitrary-list, which is defined to be a list of arbitrary

nodes by the list rule

(ArbitraryList) ::= arbitrary {{ [ (Arbitrary) ] ]} end

An arbitrary-list allows arbitrary nodes to be grouped as a syntactic unit. It has no semantic
significance and cannot appear in any Acer program. Arbitrary-lists, like denoters and the
unattached empty node, are a feature provided for manipulating Acer programs, rather than
for expressing Acer programs.

Note that the brackets delimiting elements in an arbitrary-list are necessary because the
elements are essentially out of context. In Acer, element delimiters in lists are generally
optional because it is always clear where one element ends and the next one begins. How-
ever, because an clement in an arbitrary-list can be a partial construct (i.e., miscellaneous),
delimitation is mandatory. For example, an arbitrary-list containing an array-list, which is

normally the first component of an array-literal (see A.31), appears as

arbitrary [array 1 2 3] end

Without delimitation it would appear as

arbitrary array 1 2 3 end

which would look as if the terminating end of the arbitrary-list is missing.

This concludes the discussion of Acer’s special node classes.
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A.6 Identifier

For referring to objects by name, Acer provides identifiers:

(Identifier) ::= (Typeldentifier) || (Valueldentifier)

where type-identifier is defined as

(Typeldentifier) ::=
(#UppercaseLetter) { (#LowercaselLetter) || (#UppercaseLetter) ||
(#Digit)

and value-identifier is defined as

(Valueldentifier) ::=
(#LowercaseLetter) { (#LowercaseLetter) || (#UppercaseLetter) ||
(#Digit) ] |
(#Symbol) { (#Symbol) |}

An identifier appears in context as either a defining-occurrence or an applied-occurrence.
It is a defining-occurrence if it appears as the defined-identifier of a binding, declaration,
itcrator-clement, type-when-branch, or value-when-branch, or if it appears as an element of
an enumecration- or option-type, i.e., if it appears in a defining-occurrence context; it is an
applied-occurrence otherwise.

Fach identifier has a unique defining-occurrence. A defining-occurrence is its own

defining-occurrence and an applied-occurrence has a defining-occurrence determined by

Defining-occurrence
C Defining-occurrence

The context-dependent relations for a defining-occurrence are described as each defining-

identifier-lookup:

occurrence context is described. Those for an applied-occurrence are given below.

The context-dependent relations for an applied-occurrence of a type-identifier are illys-
trated as

Defining-occurrence
T ’ Dcﬁnition. T ) Typcj ( )

C Defining-occurrence
Type

Those for an applied-occurrence of a value-identifier are illustrated either as
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Defining-occurrence

’ Definition ! Type
X X
\ C Defining-occurrence ) /

Type

or as

Defining-occurrence Type

X X {
LDeﬁninpoccurrence ) ]

Definition Type

depending on whether it is a fized-identifier or a variable-identifier, respectively. A value-
identificr is a variable-identifier if its defining-occurrence appears as the defined-identifier of
a variable-value-binding or a variable-value-declaration; it is a fixed-identifier otherwise.

In general, the type of an applied-occurrence is given by that of its defining-occurrence.
Also, the definition of an applied-occurrence is given directly by its defining-occurrence,
except for a variable-identifier, which act as its own definition. A variable-identifier acts as
its own definition because it can be modified by assignment (see A.30.4) and so potentially
denotes a different object each time it is evaluated; a fixed-identifier or type-identifier, on
the other hand, must denote a single object throughout its scope and so the identity of that
object is represented by the unique defining-occurrence.

The subtype rules for type-identifiers are described with respect to the subtype rules for
abstract-types (sce A.20).

A.6.1 Reused-identifier
In most statically-scoped languages there is the problem of name hiding due to the nested
reuse of names. For example, the outer definition of x in

{let x be 10; {x * {let x be 20; {x + x}}}}

18 not visible in the inner block, which also introduces an x.

For referring to identifiers hidden by reuse, Acer provides reused-identifiers:

(Reusedldentifier) ::= ,
(Reused Typeldentifier) || (RCUSCdVﬂvIUCIdCU“ﬁer)

A reused-type-identifier consists of an identifier and a depth-indicator:

(ReusedTypeldentifier) = '
(Identifier: Typeldentifier) * [ (Depthindicator:IntegerLiteral) ]
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as does a reused-value-identifier:

(ReusedValueldentifier) ::=
(Identifier: Valueldentifier) * [ (DepthlIndicator:IntegerLiteral) ]

The depth-indicator must be non-negative.

In general, the context-dependent relations for a reused-identifier are the same as those
for its identifier. Thus a reused-identifier is treated as an applied-occurrence that has a
defining-occurrence, a definition, and a type. Also, a reused-value-identifier is considered
to be either a fixed-identifier or variable-identifier depending on whether its identifier is a

fixed-identifier or variable-identifier.

A.6.2 Scope

Normally, when identifier-lookup begins at a regular identifier, searching terminates when a
matching defining-occurrence is found. However, when lookup begins at the identifier of a
reused-identifier, scarching terminates when the n 41 matching defining-occurrence is found,
where n is value of the depth-indicator. This way an identifier in an outer scope that is reused
in an inner scope can still be referenced in the inner scope. Thus the above example could
be expressed as

{let x be 10; {let x be 20; {x’[1] * {x + x}}}}

Without reused-identifiers it would not be possible to provide the definition-copy-at facility

since the scope of an object could have holes where the object is not visible.

A.7 Binding

For introducing named expressions, Acer provides bindings:
(Binding) ::= (TypeBinding) || (ValueBinding)
Type-bindings come in only one form but value-bindings come in one of two forms:
(ValueBinding) ::= (Fixed ValueBinding) || (VariableValueBinding)
Type-binding is defined as
(TypeBinding) ::=

let (Definedldentifier: Typeldentifier) [ :: (:Type) ]| be
(Definition: Type)
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fixed-value-binding is defined as

(FixedValueBinding) ::=
let (Definedldentifier:Valueldentifier) [ : (:Type) ]| be
(Definition: Value)

and variable-value-binding is defined as

(VariableValueBinding) ::=

let var [ (Definedldentifier: Valueldentifier) ]| [ : (:Type) ]| be
(Definition: Value)

The context-dependent relations for a type-binding are illustrated as

Type-
Binding

Type Type
T Empty

Defining-occurrence J Definition
Definition

The type of a type-binding must be a kind.

Similarly, the context-dependent relations for a fixed-value-binding are illustrated as

FixedValue-
Binding

Type Type
X Eety ((_—l:)—j@

Defining-occurrence J Definition
Definition

But the context-dependent relations for a variable-value-binding are slightly different:

VariableValue-
Binding

Type
Type

Definition Definition

Defining-occurrence

The defined-identifier of a variable-value-binding is its own definition because it is a variable-
identifier (see A.6).

The defined-identifier of a variable-value-binding is optional, but the same context-

dependent relations apply:

VariabieValue-
Binding

N ~
Type . Type
I Empty I Empty X
Definition Definition
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Anonymous variable-value-bindings are used to specify anonymous, variable, data-structure
components; anonymous, fixed, data-structure components are specified simply using ex-
pressions.

In general, a binding introduces a defined-identifier as the name for its definition. Also,
a binding optionally indicates the type of its definition; if a type is indicated, the type of the
definition must be a subtype of that type. We shall now consider the role bindings play in

scoping, which is followed by a discussion of how bindings are evaluated.

A.7.1 Scope

According to Acer’s grammar, the parent of a binding must be of class arbitrary-list,
argument-list, tuple-literal, binding-list, dynamic-literal, empty, or record-literal. The be-
havior of identifier-lookup with respect to a binding is determined by this class.

If the node class of a binding’s parent is arbitrary-list or empty, identifier-lookup searches
the name-layer consisting of just the binding’s defined-identifier; lookup continues only if the
defining-occurrence is not found.

If the node class of a binding’s parent is onc of the remaining possible classes, no scarch
is performed and lookup continues with the parent. But in this case, the binding contributes
its defined-identifier to the name-layer of its parent and lookup searches this name-layer
when it reaches the parent. Hence, regardless of a binding’s context, its defined-identifier is

visible within it.

A.7.2 Dependency analysis

Acer’s scope rules permit pathological bindings such as

let x be x

but the denotation relation detects these errors. Other situations, such as the binding-list
(see A.12)

{let x be y;

let y be {x + 1};
are erroncous because a correct evaluation is not possible. However, similar situations such

as

{let x be tuple y end;
let y be tuple x end;
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are not erroneous because, as we shall see, a correct evaluation is possible. Erroneous
dependencies are detected by dependency analysis.

Dependency analysis is primarily concerned with values, in particular, with evaluation
order of bindings during the initialization of a binding-list (see A.12), an argument-list (see
A.15), or an aggregate-literal (see A.14). (Types are not evaluated and all anomalous type
dependencies are detected by the definition and denotation relations.) For flexibility Acer
specifies that bindings may be evaluated in any order that does access uninitialized bindings.
Thus programmers should not assume a particular evaluation order. Nevertheless, Acer also
specifies that bindings must appear in an order that can be correctly evaluated left-to-right.
Thercfore, an implementation of Acer may choose to evaluate bindings either left-to-right or
in some other correct order.

Dependency analysis is based on the notion of direct references and indirect references.
A value-binding b is said to directly reference a value-binding &' if b contains an applied-
occurrence of the defined-identifier of ¥. (Containment includes applied-occurrences recur-
sively contained by denoters.) A value-binding b is said to indirectly reference a value-binding
b if b directly references b or any value-binding b” directly referenced by b indirectly refer-
ences V, i.e., the indirect references of b are the transitive closure of its direct references.

Using these notions, Acer defines a delayed-occurrence to be an applied-occurrence of a
valuc-identifier that occurs before or within the binding that introduces it, or before or within
a binding indircctly referenced by the binding that introduces it. A delayed-occurrence, then,
is simply an applicd-occurrence that occurs before its definition is complete. For example,
in the binding-list

{let f be function () y.z end;
let x be f();
let y be tuple let z be 10 end;
the applied-occurrence of f in the binding for x is a delayed-occurrence. (In fact, it is an
invalid delayed-occurrence, as we shall see in a moment.) Note that the applied-occurrence
of f is not a forward reference in the conventional sense.

Formally, a delayed-occurrence 7 is valid if the following two conditions hold for ;i and b,
the binding that introduces . First, the definition of b must denote a literal. And second, for
every z enclosing 7 but not enclosing b, either  must denote a literal or = must be enclosed
by a function-literal or type that does not also enclose b.

The use of delayed-occurrences is quite restricted.  To understand why delayed-

occurrences can be supported at all one must realize that a literal is either a constant (i.e.,
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a character-literal, integer-literal, literal-selection, real-literal, reused-value-identifier, string-
literal, value-identifier, or void-literal) or a constructor (i.e., an array-literal, dynamic-literal,
exception-literal, function-literal, record-literal, reference-literal, tuple-literal, or variant-
literal). A delayed-occurrence that references a constant is clearly valid and a delayed-
occurrence that references a constructor is valid because a constructor can be allocated in
advance and initialized later. Hence, a delayed-occurrence is supported as a reference to
either a constant or an uninitialized data structure.

To prevent access to components of uninitialized data structures, delayed-occurrences are
restricted to occur only within types and constructors. However, delayed-occurrences are per-
mitted anywhere within a function-literal’s body, even within non-literal expressions (as with
y.x above), because a function-literal is a constructor and any value referenced in its body
will not be accessed until the function is called; the restrictions on delayed-occurrences pre-
vent such calls until all values referenced by the function are fully defined. For example, the
call to f above is invalid precisely because the applied-occurrence f is a delayed-occurrence
enclosed by a non-literal value, the function-call f (). A delayed-occurrence enclosed by a
type is permitted because types are not evaluated and hence values enclosed by types are

not evaluated.

A.8 Declaration

For introducing named, hidden expressions, known only to have a type that is a subtype of

an indicated type, Acer provides declarations:

(Declaration) ::= (TypeDeclaration) || (ValueDeclaration)

For cach class of binding, there is a corresponding class of declaration. Hence, there is one

class of type-declaration and there are two classes of value-declaration:

(ValueDeclaration) ::= '
(FixedValueDeclaration) || (VariableValueDeclaration)

Every declaration consists of an optional defined-identifier and a type. Type-declaration

is defined as
(TypeDeclaration) ::= | (Definedldentifier: Typeldentifier) || :: (:Type)

Fixed-value-declaration is defined as



APPENDIX A. THE ACER DEFINITION MANUAL 157

(FixedValueDeclaration) ::=
[ (Definedldentifier: Valueldentifier) ]| = (:Type)

And variable-value-declaration is defined as

(VariableValueDeclaration) ::=
var [[ (DefinedIdentifier: Valueldentifier) ]| : (:Type)

The context-dependent relations for type-declarations are illustrated as

Type- Type-
Declaration Declaration

Type

T2

Defining-occurrence

The type of a type-declaration must be a kind because the type of a type must be a kind. A
type-identifier introduced by a type-declaration is considered to be an abstract-type and so
the subtype rules for such an identifier are described with respect to the subtype rules for
abstract-types (see A.20).

The context-dependent relations for fixed-value-declarations are analogous to those for

type-declarations:

Fixed Value- FixedValue-
Declaration Declaration

Type E 2 Type
X 7' Empty T
Definition Definition

Defining-occurrence

As are those for a variable-value-declaration:

VariableValue.
Declaration

VariableValue-
Declaration

Type

X

Defining-occurrence

In general, a declaration introduces a defined-identifier as the name for a hidden expres-
sion; only the type of this expression is given. A declaration specifies the type of a parameter
or data-structure component and hence its definition is determined dynamically, not stat.
ically, The defined-identifier of a declaration is known only to denote an expression with
a type that is a subtype of the indicated type and so it stands as its own definition. The
defined-identifier of a declaration is optional so that anonymous parameters or data-structure
Components can be specified.

Consider now the scope rules for declarations, which closely mirror those for bindings.
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A.8.1 Scope

According to Acer’s grammar, the parent of a declaration must be of class arbitrary-list,
dynamic-type, empty, record-type, signature, or tuple-type. The behavior of identifier-
lookup with respect to a declaration is determined by this class.

If the node class of a declaration’s parent is arbitrary-list or empty, identifier-lookup
searches the name-layer consisting of just the declaration’s defined-identifier; lookup proceeds
only if the defining-occurrence is not found.

If the node class of a declaration’s parent is one of the remaining possible classes, no
search is performed and lookup continues with the parent. But in this case, the declaration
contributes its defined-identifier to the name-layer of its parent and lookup searches this
name-layer when it reaches the parent. IHence, regardless of a declaration’s context, its

defined-identifier is visible within it.

A.8.2 Deriving a declaration from an argument

A declaration can be derived from an argument (a binding or expression) to represent the
argument’s type while hiding the argument’s definition. Expressions derive anonymous dec-
larations and bindings derive named declarations, except for variable-value-bindings with
an empty defined-identifier, which derive anonymous declarations instead. For example, the

arguments

let T1::7T2 be T3
let x: T bey

let var x: T be y
T1

X

let var be x

respectively derive the declarations

T1:{[T2]}

x:{[T]}

var x: {[7T]}

={[72]}

[T}

var : {[7T]}

The defined-identifier of a derived declaration is determined by the defined-identifier

of the argument, if it has one, and the type is determined by the deﬁnition—COpy of the

argument’s type with the defined-identifiers of the declarations for the defined-identifier of
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the bindings. The notion of derived declarations is used to specify the type of an aggregate-
literal (see A.14) and to specify the way in which a signature is derived from an argument-list

(sce A.15).

A.9 The global name-layer

Earlier it was mentioned that the unattached empty node has associated with it the global
name-layer. This name-layer is searched when identifier-lookup reaches the unattached
empty node, i.e., when lookup’s search node is unattached. If lookup fails to find the match-
ing defining-occurrence in the global name-layer, it terminates and yields the unattached
empty node. Hence, the defining-occurrence of an undefined applied-occurrence is given by
the unattached empty node.

A defining-occurrence is introduced into the global name-layer in one of two ways, de-

pending on whether it is a type or a value. Each will be considered in turn.

A.9.1 Global value-identifier

A global value-identifier is introduced through compilation. The simplest way to introduce
a global value is to compile a fixed-value-binding, which has the following effects. First, a
translation used to compute the binding’s definition (value), is produced and stored. And
second, a declaration of the value is produced and stored. Presumably every Acer environ-
ment will have access to a file system in which it can permanently store nodes, translations,
and other information.

The declaration produced by compilation is a fixed-value-declaration and consists of a
defined-identifier that is a copy of that of the binding, and a type that is a definition-copy-
at of the type of the binding at the unattached empty node, i.c., a definition-copy-at with
global scope. Storing the declaration has the effect of including its defined-identifier in the
global-name-layer.

For example, the binding
let x be tuple x end
can be compiled to produce the declaration

x:{let Unnamed be Tuple : Unnamed end; Unnamed}

The binding for x can also explicitly indicate the type of its derived declaration, c.g., the
binding
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let x:{let T be Tuple : T end; 7'} be tuple x end

can be compiled to produce the equivalent declaration

x:{let T be Tuple : T end; T}

After compiling either of the above two bindings for x, a declaration containing a defining-
occurrence spelled x becomes globally visible. An unattached identifier x will have as its
defining-occurrence the defined-identifier of that declaration.

Because each global value is introduced in the form of a declaration, it is not possible to
statically determine its definition. Its definition, which appears in the corresponding binding,
remains hidden. In fact, a corresponding binding need not even exist if a translation that
computes the value of a declaration can be produced in some way other than by compiling
a binding, perhaps using an assembler.

Essentially, a global value is treated as a top-level parameter. Its definition (i.e., its
implementation) can be changed as long as its definition’s type is a subtype of the type
indicated by its declaration. In this way, Acer supports information hiding and smart re-
compilation. (Smart recompilation is supported by the fact that if a previously compiled
binding is recompiled to produce a declaration with an equivalent type then bindings that

reference that declaration need not be recompiled.)

A.9.1.1 Mutually dependent values

Mutually-dependent, global value-identifiers are simultaneously introduced by compiling a
binding-list (see A.12)--such a binding-list may not contain variable-value-bindings. The
effect of compiling a binding-list is similar to that of compiling just a ﬁXed-Value-binding,
First, a translation used to compute the bindings’ definitions, is produced and stored. And
second, for each fixed-valuc-binding in the binding-list, a declaration of its value is produced,
just a before, and stored. Storing these declarations has the effect of including the defined-
identifiers in the global-name-layer. (The type-bindings do not become visible and can be
used only in within the binding-list.)

For example, compiling the binding-list

{let x be tuple 1 y end;
let y be tuple 1.0 x end;

Produces the declarations
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x:{let Unnamed be
Tuple : Integer; : Tuple :Real; :Unnamed end end;
Unnamed)
v :{let Unnamed be
Tuple : Real; :Tuple :Integer; :Unnamed end end;
Unnamed}

The defined-identifiers of the declarations (x and y) are included in the global name-layer.

A.9.2 Global type-identifiers

A global type-identifier is introduced by storing a type-binding. Storing a type-binding
makes it permanently available and includes its defined-identifier in the global name-layer.
(A fixed-value-binding or a valid binding-list can be stored too but this does not affect scope,
as it does for a type-binding or for a fixed-value-declaration.)

A type-binding is not compiled to produced a declaration, as with a fixed-value-binding,
because a type-declaration is useless unless it is quantified (see A.20.3), that is, unless values
of that type are also declared. An unattached type-binding is not automatically included in
the global name-layer because multiple unattached bindings for a given spelling can exist;
the one that is stored is singled out to have its defined-identifier in the global name-layer.

Global type-identifiers are no more than a convenience since each applied-occurrence of
such an identifier can be replaced by a definition-copy-at of its binding’s definition at the
location of the applied-occurrence. In other words, global types are not hidden but global
values are.

This completes the description how identifier’s are introduced with global scope.

A.10 Expression

How bindings and declarations are used to specify and make visible expressions has now

been described. But how expressions themselves are formed has not yet been described. The

remaining sections of this appendix do just that.

Recall that types and values are collectively known as expressions:

(Expression) := (Type) || (Value)

TYPe is defined as
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(Type) ==
(AbstractType) || (ConcreteType) || (ReusedTypeldentifier) ||
(TypeBlock) || { TypeDenoter) || (TypeDesignation) ||
(TypeOperator)

where abstract-type is defined as

(AbstractType) ::= '
(OperatorCall) || ( Typeldentifier) || (TypeSelection)

and a concrete-type is defined as

(ConcreteType) :=
(AnyType) || (DynamicType) || (EnumerationType) ||
(FunctionType) || {(OptionType) | {(RecordType) ||
(TupleType) || (VariantType)

Value is defined as

(Value) ::=
(Accumulation) || (AndIfTest) || (Assignment) || (CodePatch) ||
(CompoundValue) || (Conditional) || (Dereference) |
(DyadicMethodCall) || (Dynamiclnspection) || (FunctionCall) ||
(Index) || (IsTest) || (IsNotTest) || (Iteration) || (KeepTrying) ||
(Literal) || (OrdCall) || (OrIfTest) || (PointerCall) |
(PrefixMethodCall) || (Raise) || (Try) || (TryFinally) ||
(UnaryMethodCall) || (ValCall) || {ValueBlock) || {ValueDenoter) |
(ValueSclection) || ( VariantInspection)

where literal is defined as

(Literal) ©:= '
(ArrayLiteral) || (CharacterlLiteral) || (Dynamicth‘eral) I
(ExceptionLiteral) || (FunctionLiteral) || (IntegerLiteral) ||
(LiteralSclection) || { RealLiteral) || (RccordLiteral)']] '
(ReferenceLiteral) || (Reused Valueldentifier) || (StrmgLJter.al).“
(TupleLiteral) || { Valueldentifier) || (VariantLiteral) || (VoidLiteral)

Thesc are the various expression classes that are described in the sections that remain.

A.11 Type-designation

For denoting the type of an expression using just the expression itself, Acer provides a

type-designation:

(TypeDesignation) ::= TYPE ( (:Expression) )
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The context-dependent relations for a type-designation are illustrated as

Type- Type
Designation /

Definition

Since a type-designation is a type, its expression is not evaluated. Subtyping is not

defined on type-designations because a type-designation always denotes some other class of

type.

A.12 Block

For introducing bindings local to an expression context, Acer provides blocks. A block is

either a type-block or a value-block:

(Block) ::= (TypeBlock) || (ValueBlock)
A type-block consists of bindings and a body:

(TypeBlock) ::= (Bindings: BindingList) (Body:Type) }
as does a value-block:

(ValueBlock) := (Bindings: BindingList) (Body:Value) }
And a binding-list is defined as

(BindingList) := { {{ (Binding) }:1 [ ; ]

The bindings of a type-block may not contain value-bindings.

The context-dependent relations for a type-block are illustrated as

eﬁnino:]
Binding-
List

Those for a value-block are the same:

eﬁnilion
Binding-
List

Type

Type

Type

Type
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A.12.1 Scope

The name-layer of the bindings of a block is searched either when lookup, starting in the
body, reaches the block, or when lookup, starting in the binding-list, reaches the binding-list.
In other words, the bindings in a binding-list are visible in that list regardless of whether the
list is contained by a block; if it is contained by a block then the bindings are visible there

too.

A.12.2 Evaluation

When a value-block is evaluated, its binding-list is evaluated first and then its body is
evaluated in the context of those bindings. A value-block yields the value yielded by its
body. As discussed in section A.7.2, cven though a binding-list may be evaluated in any
order that does not result in invalid delayed-occurrences, a left-to-right order must be one
such correct order.

A type-block is not evaluated since it is a type. Subtype is not defined of type-blocks

since a type-block always denotes some other class of type.

A.13 Any

For denoting the root type of the type lattice, Acer provides an any-type, which is a childless

construction:

(AnyType) == Any
The context-dependent relations for an any-type are illustrated as

Type
(o

Type

Every type is a subtype of every any-type.

A.14 Aggregate

For constructing aggregate data structures, Acer provides three closely related data struc-
turing mechanisms: tuples, records, and dynamics. A tuple-value is constructed by a tuple-

literal:
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(TupleLiteral) ::= tuple { (Argument) }I'1 end
which has a tuple-type:

(TupleType) ::= Tuple { (Declaration) }li1 end
A record-value is constructed by a record-literal:

(RecordLiteral) ::= record { (Binding) }I'1 end

which has a record-type:

(RecordType) ::= Record { (Declaration) }L 1 end
And a dynamic-valuc is constructed by a dynamic-literal:

(DynamicLiteral) ::= dynamic { (Argument) }-1 end
which as a dynamic-type:

(DynamicType) ::= Dynamic { (Declaration) i1 end

The context-dependent relations for these constructs are illustrated as
Type

Definition

Type

Record-
Type

Definition

Tuple-
Literal

Definition

Definition

Type

Dynamic-
a Type '

For the non-empty case, cach argument in the aggregate-literal derives a corresponding

Dynamic-
Literal

Definition

declaration (sce A.8.2) in the aggregate-type.

Unlike tuples, which have ordered components, records have unordered components. For
this reason, every component of a record must have a name. Hence, a record-literal may not
contain anonymous variable-value-bindings and a record-type may not contain anonymous
declarations.

Dynamics are used to provide for dynamic type checking; at run-time the first component

of a dynamic (i.c., its tag) contains a representation of a type. Not every type can be used
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as the tag of a dynamic, however. Only a closed-type is permitted. A type is a closed-type
if it is possible to produce a definition-copy-at of that type at the unattached empty node,
that is, if it can be expressed with global scope. (Actually, abstract-types as closed-types are
not completely safe because the definition (implementation) of an abstract-type can change
from one run of a program to the next. But many basic types such as Integer (see A.26) are
provided as abstract-types and certainly these abstract-types must be supported.)

Because the first component of a dynamic must be a closed-type, the first argument of
a dynamic-literal must be a close-type or a type-binding that defines a closed-type. Also,
the first declaration of a dynamic-type must be a type-declaration with a type that is a
closed-type.

Operations for copying, rcading and writing dynamics are provided by the module

dynamics, which is visible as

dynamics :
Tuple
error: ['xception (Void)
copy : Function ( : Dynamic Type:: Any; : Type end)
Dynamic Type:: Any; value: Type end
end
input : Function (filePath: String)
Dynamic Type:: Any; value: Type end
end
output: Function (filePath: String
: Dynamic Type:: Any; @ Type end)
Void
end
end

A.14.1 Scope

Each aggregate-literal has a name-layer containing the defined-identifiers of its bindings,
which is scarched when identifier-lookup, starting in the literal, reaches the literal. Similarly,
each aggregate-type has a name-layer containing the defined-identifiers of its declarations,

which is scarched when identifier-lookup, starting in the type, reaches the type.

A.14.2 Evaluation

When an aggregate-literal is evaluated its arguments are evaluated in any order that does

not access uninitialized components. Dependency analysis (see A.7.2) is used to validate the
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order in which arguments appear in the aggregate-literal.
An aggregate-literal is a constructor and hence its storage may be allocated well in
advance of the evaluation of the literal. In this way, mutually-referential data structures can

be constructed.

A.14.3 Subtype

An aggregate-type A is a subtype of an aggregate-type A’ of the same class if for each

declaration d' in A’ there exists a corresponding declaration d in A such that:
o d and d' are the same class of declaration.

e The defined-identifiers of d and d have the same spelling or at least one of them is

cmpty.

e The definition-copy of the type of d with A’ for A is either equivalent to the type of &',

if d and &’ are variable-value-declarations, or is a subtype of the type of d' otherwise.

Corresponding declarations are determined positionally for tuple- and dynamic-types, and
by name for record-types. Note that a subtype A can have extra declarations, that is,

declarations that do not correspond to any declaration in the supertype A’

A.14.4 Component selection

The components of an aggregate can be accessed using either type-selection:

(TypeSelection) ::= (Base: Value) . (Selector: Typeldentifier)

or value-selection:

(ValueSelection) ::= (Base: Value) . (Selector: Valueldentifier)

The context-dependent relations for a type-selection are illustrated as

Definition

Type

Type-
Selection

The base of a type-sclection must be a quantifier (see A.20.3) and must have a kind of class

tuple-, record-, or dynamic-type.

Similarly, the context-dependent relations for a concrete value-selection are illustrated as
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Definition
Value- Type
Selection
X Type

If the kind of the base of a value-selection is an aggregate-type containing a declaration of an
identifier with the same spelling as the selector then the value-selection is called a concrete
value-selection and the above relations apply. Otherwise, the value-selection is called an
abstract value-sclection and the relations described in section A.21.4 apply.

In general, the type of a type- or value-selection is not given directly by the type of its
selector but is given by the definition-copy of the type of the selector with the following
substitutions: each applied-occurrence of an identifier appearing in the name-layer of the
kind of the basc (an aggregate-type) is replaced by a type- or value-selection that has a
denoter to the base as its base and has the applied-occurrence as its selector. This is called
resolving the type because it adds to the type the information about its quantifier (see

A.20.3). Thus for a tuple declared as

{: Tuple Type:: Any; value:: Type end

the type of t.value is t. Type, rather than simply Type.

A.14.4.1 Scope

When identifier-lookup begins at the selector of a type-selection, only the name-layer of
the kind of the base of that type-sclection is searched; lookup then terminates regardless
of whether a defining-occurrence is found. Similarly, when identifier-lookup begins at the
selector of a concrete value-selection, only the name-layer of the kind of the base of that

value-selection is scarched.

A.14.4.2 Evaluation

Since types are not evaluated, the base of a type-sclection is not evaluated. When a concrete

value-selection is evaluated, its base is evaluated and the named component is selected and

yielded.
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A.14.5 Dynamic-inspection

A dynamic-value can be narrowed to make its components accessible as the components of
a tuple. This is done using a dynamic-inspection:
(Dynamiclnspection) ::=

inspect (Selector: Value) (Branches: TypeBranchList)
[ else (DefaultBranch: Value) ]} end

where type-branch-list is defined as

(TypeBranchList) ::= Then { (TypeWhenBranch) il
and type-when-branch is defined as

(TypeWhenBranch) ::= .
when (Condition: Type) || with (DefinedIdentifier:Valueldentifier) ]
then (Consequent: Value)

The context-dependent relations for a dynamic-inspection are illustrated as

Definition

. Dynamic- '
s

Inspection

Type-
BranchList

Definition

“Inspection
failure”

The type of the consequent of cach branch and the type of the default-branch must be such

that one is a supertype of all the others; that type, the maximal type, is the inspection’s
type. The kind of the sclector must be of class dynamic-type, and the condition of each
branch must be a subtype of the type of the first declaration of that dynamic-type. No

branch may have a condition that is a subtype of the condition of a branch that precedes it:

this would be an unreachable branch.

The context-dependent relations for a type-when-branch are illustrated as

Type-
WhenBranch

i

occurrence
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They are identical when the defined-identifier is empty, except that an empty node does not
have a defining-occurrence. The type of the defined-identifier is derived by determining T', the
kind of the selector of the immediately enclosing dynamic-inspection. From 7', a dynamic-
type, a tuple-type is derived by producing 1", a definition-copy of T with no substitutions
but with the following changes: T’ is changed from a dynamic-type to a tuple-type; the ini-
tial declaration is changed from a type-declaration to an anonymous fixed-value-declaration
of type any-type; and each applied-occurrence of the defined-identifier of the initial type-
declaration is replaced by a type-denoter to the type-when-branch’s condition.

For example, when inspecting a value of kind

Dynamic Type :: Other Type; value: Type end

using a type-when-branch of the form

when T with x then x.value

the defined-identifier x has type

Tuple : Any; value:{[7]} end

where T is the condition of the type-when-branch. Notice how the value component of the
dynamic can be accessed as the value component of x. Notice too that the initial anonymous
component of the tuple contains the type-tag of the dynamic but because it has type any-
type it is essentially useless. (If a metaprogramming system for Acer were implemented in
Acer, the type for this first component could indicate that it is a node. It could then be

manipulated using the metaprogramming system.)

A.14.5.1 Scope

The only effect a dynamic-inspection has on scope is when identifier-lookup reaches a type-
when-branch from its consequent. The name-layer of the type-when-branch is then searched
and lookup continues if a defining-occurrence is not found. The name-layer of a type-when-

branch contains just its defincd-identifier.

A14.5.2 Evaluation

When a dynamic-inspection is evaluated, the selector is evaluated to yield a dynamic. The
tyPc-t,a,g of this dynamic is selected to yield 7', which is used to determine the appropriate

branch to evaluate. If there is no branch with a condition that is a supertype of T' then the
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default-branch is evaluated to yicld the result—evaluating an empty default-branch raises
an exception (see A.24.2). Otherwise, the first branch with a condition that is a supertype
of T is evaluated to yield the result.

When the type-when-branch of a dynamic-inspection is evaluated, the dynamic yiclded
by the selector is bound to the defined-identifier and the consequent is evaluated to yield the

result.

A.15 Argument-list and signature

Argument-lists and signatures are incomplete constructs that are used to specify parts of

expressions and their types. Argument-list is defined as

(ArgumentList) = ( { (Argument) JLRR.

and signaturc is defined as

(Signature) ::= ( { (Declaration) Bl

A signature can be derived from an argument-list in the same way that a tuple-type is

derived from a tuple-literal (see A.14).

A.15.1 Scope

When identifier-lookup reaches an argument-list its name-layer is searched. Similarly, when

identifier-lookup reaches a signature its name-layer is searched.

A.15.2 Subtype

The subtype relation for signatures, also called the subsignature relation, is the same as the

subtype relation for tuple-types (see A.14.1).

A.15.3 Conformance

Given an argument-list a and a signature s we may ask whether a conforms to 5. Ap
argument-list ¢ conforms to a signature $ if they have the same length and if for each
declaration d at position n in s, there exists a corresponding expression or binding b at

position n in a such that:
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e b and d have corresponding node classes, that is, if d is a type-declaration, b is a type
or type-binding; if d is a fixed-value-declaration, b is a value or fixed-value-binding;

and if d is a variable-value-declaration, b is a variable-value-binding,.

e The defined-identifiers of d and b (if it has one) have the same spelling or at least one

of them is empty.

e The definition-copy of the type of d with a for s is either equivalent to the type of b,

if d is a variable-value-declaration, or is a supertype of the type of b otherwise.

A.15.4 Evaluation

A signature is like a type and is not evaluated. An argument-list is like a binding-list and
is evaluated in any order that does not access uninitialized bindings—a left-to-right order

must be a correct evaluation order (see A.7.2).

A.16 Enumeration and option

For representing a finitc number of unstructured data elements, Acer provides enumerations

and options. An enumeration- or option-value is denoted using a literal-selection:
(LiteralSelection) ::= (Base:Type) . (Selector: Valueldentifier)

which has either an enumeration-type:
(EnumecrationType) ::= Enumeration { (Valueldentifier) }I -1 end

or an option type:

(OptionType) ::= Option { (Valueldentifier) - 1end

The context-dependent relations for literal-selection are illustrated as

Literal- N
Selection Definition

N
( ) - X
X Definition Type

The base of a literal-selection must denote an option- or enumeration-type that containsg the

Type

defining-occurrence of its selector.

The context-dependent relations for enumeration-type are illustrated as
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Type

Definition

Enumeration-
Type

Type

X

Definition

The same relations apply for option-type.

A.16.1 Scope

An enumecration- or option-type does not affect identifier-lookup but it does define a name-
layer consisting of its identifiers.
A literal-sclection affects identifier-lookup as follows. When lookup reaches a literal-

selection from its selector, the name-layer of the denotation of the base is searched and

lookup terminates, successful or not.

A.16.2 Subtype

An enumeration-type F is a subtype of an enumeration-type E' if for each identifier i at the
nth position in [, there is a corresponding identifier ¢/ with the same spelling at the nth
position in E'.

An option-type O is a subtype of an option-type O" if for each identifier 2 in O there is

an identifier ¢/ with the same spelling in O

The ordering of identifiers is significant for enumeration-types but not for option-types.

A.16.3 Evaluation

When a literal-selection is evaluated, its denoted value is yielded. A literal-selection is a

constant.

A.16.4 Conversion

For determining the ordinal position of an enumeration-value, Acer provides an ord-call:

(OrdCall) ::= ord ( (Base:Value) )

The context-dependent relations for ord-call are illustrated as
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Definition

Integer

The base must be an enumeration-value.

When an ord-call is evaluated, its base is evaluated first. The value yielded by the base
is converted to an Integer. The ordinal position of the first enumeration-value is 0 and
successive values have increasing ordinal positions.

For determining an enumeration-value given an enumeration-type and an ordinal position,

Acer provides a val-call:

(ValCall) ::= val ( (BaseType:Type) [ , ]| (Ordinal:Value) )

The context-dependent relations for a val-call are illustrated as

Definition

Val-
Call

N

D

The base-type must denote an enumeration-type and the ordinal must be an Integer.

Type

When a val-call is evaluated, the ordinal is evaluated to yield an [nteger, which is con-
verted to an enumeration-value and yiclded. If the ordinal is out of range, the following

exception is raised:

raise fatal with "Val-call out of range." end

A.17 Variant

For constructing varying data structures, Acer provides variants. A variant-value is con-

structed by a variant-literal:

(VariantLiteral) ::=
variant (Tag: Valueldentifier) of (BaseType:Type)
with (Arguments:ArgumentList) )

Which has a variant-type:
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(VariantType) ::=
Variant (Tag:Type) (Variants: Variant List)
[ else {Decfault:Signature) ]| end

where variant-list is defined as
(VariantList) ::= of { (VariantElement) }l:1

variant-element is defined as

(VariantElement) ::=
(Condition: WhenCondition) then (Consequent:Signature)

and when-condition is defined as

(WhenCondition) ::= when { (Value) 1]

The context-dependent relations for these constructs are illustrated as

Type
Definition Definition
Variant- Type Variant-
Literal Type
X Argument- Type- Variant- C Empty
List Denoter List
Definition

Definition

Signature
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The base-type of a variant-literal must denote an enumeration- or option-type containing

a defining-occurrence for the tag. The type of a variant-literal is a variant-type derived as

follows: the tag is the literal’s base-type, the default is empty, and the variant-list has a

single variant-clement, its condition is a copy of the literal’s tag and its consequent is the

signature derived from the literal’s argument-list (see A.15).

The tag of a variant-typc must denote an enumeration- or option-type T'. Each value

appearing in the when-condition of a variant-element must be a value-identifier defined in T

The when-conditions of a variant-type may contain at most one applied-occurrence of cach

identifier in 7. llence, for cach identifier 2 in T, there is a corresponding signature in the

variant-type—cither the signature of the variant-element containing an applied-occurrence

of 7 or the default signature.
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A.17.1 Scope

When identifier-lookup reaches a variant-literal from its tag, the name-layer of the denotation
of its base-type is searched. Lookup then terminates, successful or not.

When identifier-lookup reaches the when-condition of a variant-element, the name-layer
of the denotation of the tag of the immediately enclosing variant-type is searched. Lookup

then terminates.

A.17.2 Evaluation

When a variant-literal is evaluated, its arguments are evaluated in any order that does not
access uninitialized components (sce A.7.2). A variant-literal is a constructor and hence its

storage may be allocated well in advance of the evaluation of the literal.

A.17.3 Subtype

A variant-type V with a tag denoting T is a subtype of a variant-type V' with a tag denoting
T" if the following hold:

e T is a subtype of T".

e And for cach identifier i in T and ' in T’, where 7 and ¢’ have the same spelling, the

signature s associated with 7 in V is a subsignature (see A.15.2) of the signature o

associated with ¢/ in V'.

A.17.4 Variant-inspection

A variant-value must be narrowed to make its components accessible. This is done using a
variant-inspection:
(Variantinspection) ::=

inspect (Selector: Value) (Branches: ValueBranchList)
[ else (Default Branch: Value) ]| end

Where value-branch-list is defined as

(ValueBranchList) ::= then { (ValueWhenBranch) IAER

and value-when-branch is defined as
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(ValueWhenBranch) ::=
(Condition: WhenCondition)
[ with (DefinedIdentifier:Valueldentifier) ]| then
(Consequent: Value)
A variant-inspection can also be used as a multi-way branch based on an enumeration- or
option-value.

The context-dependent relations for a variant-inspection are illustrated as

Definition

)

Inspection

“Inspection
failure”

The type of the consequent of each branch and the type of the default-branch must be such
that one is a supertype of all the others; that type, the maximal-type, is the inspection’s
type. The kind of the selector must denote either an enumeration- or option-type E or a
variant-type with a tag that denotes an enumeration- or option-type E. The conditions of a
variant-inspection may contain at most one applied-occurrence of each identifier in F.

The context-dependent relations for a value-when-branch in the branches of a variant-

Inspection are illustrated as

Value-
WhenBranch
( W hen- ) .
Condition X @

Definition

Defining- Type

Occurrence

They are identical for an empty defined-identifier, except that an empty node does not have
a defining-occurrence. The type of the defined-identifier depends on the kind of the selector
T.

If T is a variant-type then the type of the defined-identifier of a value-when-branch is
derived follows. The set of signatures associated with the identifiers in the condition must
be such that one signature s is a supersignature (see A.15.2) of all the others. From g a

tuple-typc is derived by producing T’, a definition-copy of s with no substitutions but with
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the following changes: 7" is changed from a signature to a tuple-type; and an anonymous
fixed-value-declaration, with a type given by the variant-type’s tag, is inserted as the first

element. For example, the type of v in

when id with v then v.x
where the selector has type

Variant {{Enumeration id end]} of
when id then (7T :: Any; x: T)
end

Tuple :{[Enumeration id end]}; 7':: Any; x: 7" end
If 7' is an enumeration- or option-type then the type of the defined-identifier is derived
as follows. For an enumecration-type, the type of the defined-identifier is a copy of 7' that
includes only those identifiers with ordinal positions no bigger than that of the identifier with
the largest ordinal position in the condition. For an option-type, the type of the defined-

identifier is an option-type that includes only those identifiers appearing in the condition.

A.17.4.1 Scope

When identifier-lookup reaches a when-condition of a variant-inspection, one of two things
happens. If T, the kind of the selector, is a variant-type then the name-layer of the tag of
that variant-type is searched and lookup terminates, successful or not. Otherwise, T" must
denote an enumeration- or option-type; the name-layer of T'is then searched and lookup

terminates, successful or not.

A.17.4.2 Evaluation

When a variant-inspection is evaluated the selector 1s evaluated first. If it 1s a variant then
its tag is selected to yicld i. Otherwise, it is an enumeration or option which directly yields
i. From i the branch with an applied-occurrence of 7 is determined. If no applied-occurrence
appears, the default-branch is evaluated to yield the result—evaluating an empty default-
branch raises an exception (see A.24.2). Otherwise, the appropriate branch is evaluated to
yield the result.

When the value-when-branch of a variant-inspection is evaluated, the value yielded by
the selector is bound to the defined-identifier and the consequent is evaluated to yield the

result,.



APPENDIX A. THE ACER DEFINITION MANUAL 179

A.18 Function

For expressing a value in terms of a parameterized expression, Acer provides functions. A

function-value is constructed by a function-literal:

(FunctionLiteral) ::=
function (:Signature) [ : (ResultType:Type) || (Body:Value) end

which has a function-type:
(FunctionType) ::= Function (:Signature) (ResultType:Type) end

The context-dependent relations for these constructs are illustrated as

Type

Definition

Function- Type Function-
Literal Type
C Signature) C Empty ( ‘ Signature
Definition
Definition Type

The type of a function-literal’s body must be a subtype of the result-type. The signature of

a function-literal or function-type may not contain variable-value-declarations.

A.18.1 Scope

When identifier-lookup reaches a function-literal from either its result-type or its body, the
name-layer of the signature is searched. Similarly, when identifier-lookup reaches a function-

type from its result-type, the name-layer of the signature is searched.

A.18.2 Subtype

A function-type F is a subtype of a function-type F’ if:

o The signature of F' is a subtype of the signature (see A.15.2) of F' and they have the

same length.

® The definition-copy of the result-type of F' with the signature of F' for the signature
of F is a subtype of the result-type of /.
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A.18.3 Evaluation

When a function-literal is evaluated, a closure of the values used in the literal is computed.
That closure, along with the instructions for evaluating the literal’s body, represent the
function-value.

A function-literal is a constructor and hence its storage may be allocated well in advance

of the evaluation of the literal. In this way recursive functions can be constructed.

A.18.4 Function-call
For invoking a function, Acer provides a function-call:
(FunctionCall) ::= (Function: Value) (Arguments: ArgumentList) )

The context-dependent relations for a function-call are illustrated as

Definition

Function- Type

Call / N\
Argument-
List
Function-
Type

In general, the type of a function-call is derived by producing the definition-copy of the

function-type’s result-type with the argument-list for the signature. The argument-list must,

conform (see A.15.3) to the signature.

A.18.4.1 Scope

When identifier-lookup reaches a function-call from its function, the name-layer of the

argument-list is scarched.

A.18.4.2 Evaluation

When a function-call is evaluated, the arguments are evaluated (see A.7.2) and then the
function is evaluated to yicld the result. Evaluating a function involves evaluating its body

in the context of its closure and the arguments supplied by the call.
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A.19 Type-operator

For expressing a type in terms of a parameterized expression, Acer provides type-operators:

(TypeOperator) ::= Operator (:Signature) (Body:Type) end

There are no values with type-operators as their types.

The context-dependent relations for a type-operator depend on whether it is abstract or
concrete. A type-operator is a concrete type-operator if its body denotes either a concrete-
type or a concrete type-operator. Conversely, a type-operator 1s an abstract type-operator
if its body denotes either an abstract-type or an abstract type-operator. The distinction
between the two lies in the fact that a concrete type-operator is a kind but an abstract
type-operator is not.

The context-dependent relations for type-operators are illustrated as

Type
' Type- .

Operator Operator

Type

An abstract type-operator has a concrete type-operator as its type and a concrete type-
operator is its own type. The definition of a type-operator is Error if the type-operator
appears in the denotation of any node in its body, or if it appears in the denotation of any

node in those denotations, and so on. In other words, the definition of a type-operator is

Definition

Type

Type-

Error if it is recursive. The signature of a type-operator may not contain value-declarations.

A.19.1 Scope

When identifier-lookup reaches a type-operator from its body, the name-layer of the signature

1S scarched.

A.19.2 Subtype
A type-operator T is a subtype of a typc-operator 7" if:

o The signature of 7" is a subsignature (sce A.15.2) of the signature of T" and they have

the same length.
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e The definition-copy of the body of T with the signature of 7" for the signature of T is
a subtype of the body of T".

A.19.3 Operator-call

For invoking a type-operator, Acer provides an operator-call:

(OperatorCall) ::= (Operator: Type) (Arguments:ArgumentList) )

The kind of the operator must denote a type-operator and the argument-list must conform

to the signature of that type-operator.

The context-dependent relations for an operator-call are illustrated as

Definition

Operator-
Call

~

Argument-
List
Type-
Operator

In general, the type is derived by producing a definition-copy of the body of the type-operator
with the argument-list of the operator-call for the signature of the type-operator.
An operator-call is its own definition only if its operator does not denote a type-operator,

that is, if the operator denotes an abstract-type of kind type-operator. If the operator denotes

a type-operator, the definition relation is instead illustrated as

~

Definition

Argument-
List

Type-
Operator

N~

Signature ’

In general, the definition is derived from the type-operator in the same way that the type is

derived above. Because an operator-call with an operator that denotes an abstra.ct-type is

Operator-
Call

Denotation

its own definition, subtype is defined on it as we shall see in the following section.
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A.20 Abstract-type

Every type T denoting an abstract-type A (a type-identifier, type-selection, or operator-call)
has an abstract-name I, an abstract-base B, and a quantifier ). Each will be considered in

the subsections that follow.

A.20.1 Abstract-name
The abstract-name [ of an abstract-type A is determined as follows:
o If Ais a type-identifier, I is A itself.
o If Ais a type-selection, I is the defining-occurrence of the selector of A.
o If Ais an operator-call, [ is the abstract-name of the operator of A.
An abstract-name is a type-identifier that occurs as the defined-identifier of a type-

declaration in a signature or aggregate-type.

A.20.2 Abstract-base

The abstract-base B of an abstract-type A is determined as follows:
o If Ais a type-identifier or type-selection, B is A itself.
e If A is an operator-call, B is the abstract-base of the operator of A.

An abstract-basc is a type-identifier or type-sclection.

A.20.3 Quantifier

The quantifier Q of an abstract-type A is determined as follows:
e If Ais a type-identifier, Q) is the parent of the parent of A.
o If Ais a type-sclection, @ is the base of A.
o If A is an operator-call, @ is the quantifier of the operator of A.

A quantifier is a signature or aggregate-type, if B is a type-identifier; it is a value with an

aggregate-type as its kind, if B is a type-selection.
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To prevent an abstract-type from being used outside the scope of its quantifier, and to
ensure that the quantifier denotes the same value throughout its scope, Acer enforces the
following restriction. For every value x with a type T that denotes an abstract-type, the
quantifier ) of T' must be a valid quantifier with respect to . A quantifier Q) is valid with

respect to x if:
e () is a signature or aggregate-type,
e () is a fixed-identifier that does not have a defining-occurrence enclosed by z,

e () is a concrete value-selection with a selector that is a fixed-identifier and a base that

is a valid quantifier with respect to z,
e or (Q is a value-denoter with a definition that is a valid quantifier with respect to z.

If the quantificr of the type of x is not valid with respect to x then z is said to have an

invalid abstract-type. For example, the above restriction dictates that the selection

tuple let T be Integer; let x: T be 0 end.x
has an invalid abstract-type

{(tuple let T be Integer; let x: T be 0 end)}.T
because a tuple-literal is not a valid quantifier. Also, the block

{let t be tuple let T be Integer; let x: T be 0 end; t.x}
has an invalid abstract-type:

{(t)). T

: , .
because its contains the defining-occurrence of its type’s quantifier.
. , .
Quantifiers are used to define subtyping, and to define Acer’s various forms of method-

calling. Subtyping will be considered first.

A.20.4 Subtype

Subtype for abstract-types is defined as follows. A type-identifier or type-selection A is a
subtype of a type-identifier of type-selection A" if

@ the abstract-names of A and A’ have the same spelling,
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e and the quantifier of A is equivalent to the quantifier of A’.
An operator-call A is a subtype of an operator call A" if
e A and A’ have the same number of arguments,

® cach argument at position n in A is equivalent to the corresponding argument at

position n in A’,
e and the operator of A is a subtype of the operator of A’.

Equivalence for quantifiers is defined as follows. A quantifier denoting @Q is equivalent to

a quantifier denoting Q' if
e () and Q' are the same node,

e or  and Q' are value-selections with bases that are equivalent and selectors that are

spelled the same.

Notice that equivalence is defined on values as well as types. (The notion of static value-
equivalence could be extended. For example, two different integer-literal nodes could be
considered equivalent if they have the same spelling. This does not affect subtyping however

and will not be considered further.)

A.21 Method

As a convenient short-hand notation for function-calls Acer provides various classes of
method-call. To support method-calls, Acer defines the notion of a method as follows. Every
value z with a type that denotes an abstract-type A potentially has methods, that is, values

associated with the quantifier () of A.
If Q is a signature or aggregate-type, the names of the methods of z appear in the same
name-layer as the abstract-name I of A. For example, in the function-literal

function (7 :: Any; x: 7'; m: Function (: T') T end) m(x) end

X has a method named m.

If Q is a value, the names of the methods of z appear in the name-layer of the kind of

Q. For example, if ¢ is globally declared as

t:Tuple T:Any; x: T; m:Function (: T) T end end
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then the value-selection t.x has a method named m.

Hence, a value z has a method named m if an identifier with that spelling can be found
in the quantifier of its type. This method is denoted in context either as the identifier m,
if Q is a signature or aggregate-type, or as the value-selection Q.m, if @ is a value. This

identifier or value-selection is called the denoted method and is used to define the behavior

of method-calls.

A.21.1 Prefix-method-call

The most general form of method-call is the prefix-method-call, which consists of a method-

name and arguments:

(PrefixMethodCall) ::= )
(MethodName: Valueldentifier) . (Arguments:ArgumentList) )

Special scope rules apply for method-names.

A.21.1.1 Scope

When identificr-lookup reaches a prefix-method-call from its method-name, a method-search
is initiated. A method-search, given a series of arguments and the spelling s, considers each
successive valuc-argument z with an abstract-type A havinga quantifier Q. If @ is a signature
or aggregate-type, the name-layer of Q is searched, and if @ is a value, the name-layer of the
kind of Q is scarched. Hence, the first argument z with a method named s determines the
defining-occurrence of the method-name. This argument is called the method-owner.

For the method-name of a prcﬁx-method-ca]], method-search is applied to the argument-
list. Lookup terminates after the method-search, regardless of whether a method is found.

The unattached empty node is returned if no method is found.

A.21.1.2 Type and definition

The context-dependent relations for a prefix-method-call are illustrated as
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Type

Prefix- f Definition J Fanction-
MethodCall \; Call Trpe

m Argument- Valu.c— Argument-
List Selection List

Value Value m Value
Selection cnotcr Denoter
Definition
l Definition J

In general, the definition of a prefix-method-call is a function-call derived as follows. The

argument-list of the function-call is a definition-copy of that of the method-call, and the
function is the denoted method of the method-owner. Also, additional arguments are inserted
if the type of the method-owner denotes an operator-call A. In this case, definition-copies
of the arguments of A are inserted as the first arguments of the function-call. Furthermore,
if the operator of A denotes an operator-call, the arguments of that operator-call are also

copied and inserted, and so on until the abstract-base is reached.

Each of Acer’s remaining method-call classes is defined in terms of a prefix-method-call.

A.21.2 Unary-method-call

A unary-method-call consists of a method-name and an operand:

(UnaryMethodCall) ::=
{ (MethodName: Valueldentifier) (Operand: Value) }

The context-dependent relations for a unary-method-call are illustrated as

Type

Prefix-
MethodCall

Definition

Unary-
MethodCall

Argument-
m m ( List )
Value-
Denoter
Definition

The defining-occurrence of the method-name is determined just it is for the prefix-method-

Type

call.
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A.21.3 Dyadic-method-call

A dyadic-method-call consists of a first-operand, a method-name, and a second-operand:

(DyadicMethodCall) ::=
{ (FirstOperand: Value) (MethodName: Valueldentifier)

(SecondOperand: Value) }
The context-dependent relations for a dyadic-method-call are illustrated as

Type

Dyadic- [ Definition { Prefix- \ 1
MethodCall MethodCall Type
N N I - \
I rgument-
] e | e D

Value- Value-
Denoter Denoter
Definition

Definition

The defining-occurrence of the method-name is determined just it is for the prefix-method-

call.

A.21.4 Abstract value-selection

If the kind of the base of a value-selection z is not a aggregate-type T', or the selector does
not occur in the name-layer of T’ then z is called an abstract value-selection. In this case

the context-dependent relations are illustrated as

Type

Value- f Definition

Selection

Prefix-
MethodCall

Type

~
Argument-
m m List
Value-
Denoter
Definition

An abstract value-selection is treated as a unary-method-call. However, if the kind of the def-

inition is a reference- or pointer-type (see A.30) then the definition is instead the dereference

of the above definition. The defining-occurrence of the selector of an abstract value-selection

is determined as it is for the prefix-method-call.
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A.21.5 Index

An index consists of a base and indices:

(Index) ::= (Base: Value) (Indices:IndexList) ]
where index-list is defined as

(IndexList) ::= [ {{ (Value) L]

The context-dependent relations for an index are illustrated as

Type

Prefix-
MethodCall

Index- N —

f Definition

Index

0

Argument-
List
Value-
Denoter

The method-name of an index’s definition is of the form indexn, where n is the length of the

indices of z. If the index-list is not empty then definition-copies of the indices are inserted

Definition

after the initial argument in the prefix-method-call’s argument-list. Just as for the definition
of an abstract value-selection, if the kind of the definition of an index is a reference- or

pointer-type then the definition is instead a dereference of the above definition.

This completes the description of Acer’s method-calls.

A.22 Void

For representing the type of expressions evaluated for side-effect, Acer provides the type

Void, which is visible in the global name-layer as

let Void be void. Type
The module void is visible as
void:
Tuple
Type::Any
end
Any type equivalent to Void shall be called a void-type.

There is only a single value of type Void. It can be denoted by a void-literal:
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(VoidLiteral) ::= {}

The context-dependent relations for a void-literal are illustrated as

X Type .
Void-
Li:)elml VOld

Definition

A.23 Boolean

For representing Boolean truth values, Acer provides the type Boolean, which is visible in

the global name-layer as

let Boolean be boolean. Type
The module boolean is visible as

boolean :
Tuple
Type :: Enumeration false, true end
not : Function ( : Type) Type end
and: Function ( : Type; : Type) Type end
or: Function ( : Type; : Type) Type end
all: Function ( : Type) Accumulator ( Type, Type) end
some : Function ( : Type) Accumulator (Type, Type) end
<:Function ( : Type; : Type) Type end
<=:Function ( : Type; : Type) Type end
>:Function ( : Type; : Type) Type end
>=:Function ( : Type; : Type) Type end
=: Function ( : Type; : Type) Type end
#:Function ( : Type; : Type) Type end
end

The Boolean truth values are denoted as boolean.false and boolean.true. However, the global

declarations

false: Boolean

and

true: Boolean

are provided as synonyms.

Acer has several constructs involving Booleans.
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A.23.1 Identity

For testing identity (bitwise equality), Acer provides an is-test, consisting of a first-operand

and a second-operand:

(IsTest) ::= { (FirstOperand: Value) is (SecondOperand: Value) }

as well as an is-not-test:

(IsNotTest) ::=
{ (FirstOperand: Value) isnot (SecondOperand:Value) }

The context-dependent relations for these constructs are illustrated as

Definition

Is- ) Type

Test Boolean
Definition

et Boolean

J

The types of the two operands must be such that one is a subtype of the other.

A.23.2 Evaluation

When an is-test or an is-not-test is evaluated, its opcrands are cvaluated in arbitrary order.

The values yiclded are tested for identity to yield the appropriate result.

A.23.3 Conditional

For supporting branching on Boolean values, Acer provides a conditional, which consists of
branches and an optional default-branch:
(Conditional) ::=

(Branches: ConditionalBranchList)
[ else {DefaultBranch: Value) || end
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where conditional-branch-list is defined as
(ConditionalBranchList) ::= if {{ (ConditionalBranch) ]}elsif
and conditional-branch is defined as

(ConditionalBranch) ::= (Condition: Value) then (Consequent: Value)

The context-dependent relations for a conditional are illustrated as

Definition

) Type

Conditional
Conditional-
BranchList
Conditional-
Branch

Definition ( . :
Void-
mpt
Empty Literal

J L

The type of the condition of a conditional-branch must be Boolean. The types of the con-
sequents of the branches and the type of the default-branch must be such that one is a

supertype of all the others; that type, the maximal type, is the conditional’s type.

A.23.3.1 Evaluation

When a conditional is evaluated, each successive condition of the branches is evaluated until
for some branch b the condition yields true. The consequent of b is then evaluated to yield

the result. If no condition yields true, the default-branch is evaluated to yield the result.

A.23.4 Shortcircuit evaluation

For supporting short-circuit Boolean evaluation, Acer provides the and-if-test and the or-if-

test. An and-if-test consists of a first-opcrand and a second-operand:

(AndIfTest) ::=
{ (FirstOperand: Value) andif (SecondOperand: Value) }

as does and or-if-test:

(OrlfTest) ::= { (FirstOperand:Value) orif (SecondOperand: Value) }

The context-dependent relations for these constructs are illustrated as
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Type
AndIf- Definition Conditi |
onditiona
Test J \ Type

Value-

Conditional-
BranchList

!

Selection
Conditi i-
((COpiamon® boolean I fa]se—l

Value- Value-
Denoter Denoter
\_ Definition
\ Definition
Type
Definition
Orlf- Conditional

Type

Test J

Conditional- Value-
BranchList Denoter

Definition

Conditional-
Branch

Value- Value-
Denoter Selection

Definition ;ﬁ

boolean true

!

r

Thus each of these constructs is defined as the appropriate conditional, which evaluates the
second argument only when necessary.

Note that {all true} ([x, y]) is equivalent to {x andif y} and that {some true} ([x, y]) is
equivalent to {x orif y}. These accumulators can thus be used as iterated versions of andif

and orif.

A.24 Exception

For interrupting normal sequential evaluation, Acer provides exceptions. To support excep-

tions, the type Erception is visible in the global-name-layer as

let Fzception be exceptions. Type



<
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and the module exceptions is visible as

exceptions:
Tuple
Type:: Operator (BaseType:: Any) Any end
Raise:: Any
Error:: Any
end

Any type equivalent to Ezception (T') is called an exception-type with base-type T.

An exception-value is constructed by an exception-literal:

(ExceptionLitcral) ::= exception ( (BaseType:Type) )
The context-dependent relations for an exception-literal are illustrated as

Definition

Exception-
Literal

Operator-
Call

Frception

Argument-
List
Type-
Denoter

Definition

A.24.0.1 Evaluation

When an exception-literal is evaluated, the constructed exception-value is yielded. Anp
exception-literal is a constructor and hence its storage may be allocated well in advance

of the evaluation of the literal.

A.24.1 Standard exceptions

Acer provides two standard exceptions, exit and fatal, which are visible in the global name-
layer as

exit: Frception (Void)

fatal: Fxception (String)
The exit exception is provided simply as a convenience but the fatal expection is special:
when a program is terminated by raising fatal, the associated-value of fatal, which must be
a String (see A.29), is printed as an error message.

Consider now how exceptions are raised.
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A.24.2 Raise

An exception is raised by a raise, which consists an exception-value and an optional

associated-value:

(Raise) =
raise (ExceptionValue:Value)
[ with (AssociatedValue:Value) || end

The context-dependent relations for a raise are illustrated as

Definition

Type .
| Raise
Definition Void-

The type of the exception-value must denote an exception-type and the type of the

associated-value must be a subtype of the base-type.

A.24.2.1 Subtype

The type Raise is visible in the global name-layer as

let Raise be exceptions. Raise

It is a special type because it cannot cause type conflicts. It is considered equivalent to
every other type. Ilowever, when determining the maximal type of a set of types, as for the
branches of a conditional, it is considered the maximal type only if every type denotes Raise.

In other words, an expression has type Raise only if it always raises an exception,

A.24.2.2 Evaluation

A raise never yields a value. When a raise is evaluated, the exception-value is evaluated first
and then normal evaluation is suspended. Then the exception, with its assoclated-value,
propagates back through the dynamic evaluation chain until it is trapped by a suitable
handler.

Acer provides three constructs for trapping exceptions, namely try-finally, try, and keep-

trying. Each will be considered in turn.
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A.24.3 Try-finally

For specifying evaluations to be carried out regardless of whether an exception is raised,

Acer provides the try-finally, which consists of a body and a final-action:

(TryFinally) == try (Body:Value) finally (FinalAction: Value) end

The context-dependent relations for a try-finally are illustrated as

Definition

Try- ) Type
Finally /

A.24.3.1 Ewvaluation

When a try-finally is evaluated, its body is evaluated first and its final-action is evaluated
next, even if the body raises an exception. Then, if neither the body nor the final action raise
an exception, the try-finally yields the value yielded by its body. Otherwise, either the body,
the final-action, or both raise an exception. If the body raises an exception but the final-
action does not, the try-finally raises the exception raised by its body. Otherwise, if both
the body and the final-action raise exception, or just the final-action raises an exception, the
try-finally raises the exception raised by the final-action. In any case, the value yielded by

the final-action is discarded.

A.24.4 Try

For trapping exceptions raised by the evaluation of an expression, Acer provides the try,

which consists of a body, branches, and an optional default-branch:
(Try) ::=

try (Body:Value) (Branches: ValueBranchList)
[ else (DefaultBranch: Value) ]| end

A value-branch-list has the same form as for a variant-inspection (see A.17.4) but the seman-
tics of a value-when-branch in a try is different from the semantics of a value-when-branch

In a variant-inspection.

The context-dependent relations for a try are illustrated as
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Definition

Type
Try

Type
Value- -E t ” y
@ S —

The types of the consequents of the branches, the type of the body, and the type of the

default-branch must be such that one is a supertype of all the others; that type, the maximal
type, is the try’s type.
The context-dependent relations for a value-when-branch in the branches of a try are

llustrated as
Value-
WhenBranch
When-
Condition

Definition

Occurrence

They are identical for an empty defined-identifier, except that an empty node does not have
a defining-occurrence. The maximal type of the types of values in the condition must denote

an exception-type; the base-type of that type is the type of the defined-identifier.

A.24.4.1 Evaluation

When a try is evaluated, the body is evaluated first. If the body does not raise an exception,
the value yiclded by the body is yiclded. Otherwise, the raised exception is compared with the
value yielded by cach successive value in the conditions of the branches. If a match is found,
the associated-value of the exception is bound to the defined-identifier of the corresponding
branch and the consequent is evaluated to yield the result of the try. If not match is found,
the default-branch is evaluated to yield the result of the try. Evaluating an empty default-

branch reraises the exception raised by the body.

A.24.5 Keep-trying

For specifying evaluations to be carried out repeatedly, Acer provides the keep-trying, which
consists of a body, branches, and an optional default-branch:
(KeepTrying) ::=
keep trying (Body: Valuc) (Branches:ValueBranchList)
[ else (DefaultBranch: Value) ]| end
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A keep-trying is Acer’s only looping construct, other than high-level iteration.

The context-dependent relations for a keep-trying are illustrated as

Definition

Type
KeepTrying
N
Type R
( ) Value- Empty
t Ralse

The types of the consequents of the branches, and the type of the default-branch must be
such that one is a supertype of all the others; that type is the keep-trying’s type.

The context-dependent relations for a value-when-branch in the branches of a keep-trying

are the same as those for a try.

A.24.5.1 Evaluation

When a keep-trying is evaluated, the body is evaluated repeatedly until an exception is raised.
Thus the value(s) yielded by the body are discarded each time. When an exception is finally
raised, it is compared with the value yielded by each successive value in the conditions of
the branches. If a match is found, the associated-value of the exception is bound to the
defined-identifier of the corresponding branch and the consequent is evaluated to yield the
result of the keep-trying. If not match is found, the default-branch is evaluated to yield the

result of the keep-trying. Evaluating an empty default-branch reraises the exception raised

by the body.

A.25 Error

For representing the denotations of erroneous types and values, Acer provides the special

type Error and the special value error. The type Error is visible in the global name-layer ag

let Error be exceptions. lorror

(The module exceptions was introduced in section A.24.) The value error, the one value of

type Error, is visible in the global name-layer as

error: Error
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A.25.1 Subtype

The type Error, like the type Raise, it is considered equivalent to every other type. However,
when determining the maximal type of a set of types, as for the branches of a conditional,
it is considered the maximal type if any type denotes Error. (This is unlike the type Raise,

which is considered the maximal type only if every type denotes Raise.)

A.25.2 Evaluation

When a value that denotes error is evaluated, the fatal exception is raised as

raise fatal with "error" end

Thus although it is invalid for a program to contain expressions that denote error or Error, a

program containing such expressions can nevertheless be evaluated, although likely not with

the intended effect.

A.26 Integer
For representing integers, Acer provides integer-literals:

(IntegerLiteral) := (#Digit) { (#Digit) }

The context-dependent relations for an integer-literal are illustrated as

Definition )

The type Integer is visible as

Type

Integer

let Integer be integer. Type

and the module integer is visible as
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integer:
Tuple
Type :: Any
error : Ezxception (Void)
~:Function ( : Type) Type end
abs: Function ( : Type) Type end
+:Function ( : Type; : Type) Type end
-:Function ( : Type; : Type) Type end
*: Function ( : Type; : Type) Type end
mod : Function ( : Type; : Type) Type end
div : Function ( : Type; : Type) Type end
<:Function ( : Type; : Type) Boolean end
<=:Function ( : Type; : Type) Boolean end
>:Function ( : Type; : Type) Boolean end
>=:Function ( : Type; : Type) Boolean end
=: Function ( : Type; : Type) Boolean end
#:Function ( : Type; : Type) Boolean end
end

A.27 Real

For representing reals, Acer provides real-literals:

(RealLiteral) ::=
[ -] (#Digit) {{ (#Digit) } . (#Digit) { (#Digit) }
[(elE)[-] (#Digit) { (#Digit) } |

The context-dependent relations for a real-literal are illustrated as

2.0
Definition )

The type Real is visible as

T
A Real

let Real be real. Type

and the module real is visible as

200
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real :
Tuple
Type:: Any
error : Exception (Void)
~:Function ( : Type) Type end
abs:Function ( : Type) Type end
+:Function ( : Type; : Type) Type end
-:Function ( : Type; : Type) Type end
*: Function ( : Type; : Type) Type end
/ : Function ( : Type; : Type) Type end
~:Function ( : Type; : Type) Type end
<:Function ( : Type; : Type) Boolean end
<=:Function ( : Type; : Type) Boolean end
>:Function ( : Type; : Type) Boolean end
>=:Function ( : Type; : Type) Boolean end
=: Function (: Type; : Type) Boolean end
#:Function ( : Type; : Type) Boolean end
end

A.28 Character

For representing characters, Acer provides character-literals:

(CharacterLiteral) ::= .
“ ( (#LowercaseLetter) || (#Uppcrca,seLetter) [ (#Symbothetter) |

(#Punctuation) || (#Digit) | (#Space) || (#DoubleQuote) ||
(#Other) ) ’

The context-dependent relations for a character-literal are illustrated as

C ‘2 ) e Chamct,e?]

Definition

The type Characteris visible as

let Character be character. Type

and the module character is visible as
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character:
Tuple

Type :: Any

<:Function ( : Type; : Type) Boolean end
<=:Function ( : Type; : Type) Boolean end
>:Function ( : Type; : Type) Boolean end
>=:Function ( : Type; : Type) Boolean end
=:Function ( : Type; : Type) Boolean end
#:Function ( : Type; : Type) Boolean end

end

A.29 String
For representing strings, Acer provides string-literals:

(StringLiteral) ::=

" { (#Lowercaseletter) || (#UppercascLetter) || (#SymbolicLetter) ||
(#Punctuation) || (#Digit) || (#Space) || (#Other) |} "

The context-dependent relations for a string-literal are illustrated as

Type

String

1) I III
Definition )

The type String is visible as

let String be string. Type
and the module string is visible as

string :
Tuple
Type:: Any
error: Exception ( Void)
length : Function ( : Base Type) Integer end

index1 : Function ( : Type; : Integer) Character end
substring : Function ( : Type; : Integer; : Integer) Type end

+:Function ( : Type; : Type) Type end
<:Function ( : Type; : Type) Boolean end
<=:Function ( : Type; : Type) Boolean end
>:Function ( : Type; : Type) Boolean end
>=:Function ( : Type; : Type) Boolean end
=: Function ( : Type; : Type) Boolean end
#:Function ( : Type; : Type) Boolean end
end

202
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A.30 Locations and side-effects

For modeling updatable locations, Acer provides two similar notions, references and pointers.
Whereas references provide high-level support by modeling updatable locations in terms of
fetch and store functions, pointers provide low-level support by modeling updatable locations

in terms of memory addressing.

A.30.1 Reference

For determining a reference to a location, Acer provides a reference-literal:

(ReferenceLiteral) ::= reference ( (Base:Value) )

which has a reference-type. The type Reference is visible as

let Reference be references. Type
and the module references is visible as

references :
Tuple
Type :: Operator (BaseType:: Any) Any end
new :Function (Base Type:: Any; : BaseType)
Type (Base Type)
end
create:
Function
(Base Type:: Any
fetch: Function () BaseType end
store: Function ( : Base Type) Void end)
Type ( Base Type)
end
end

Any type equivalent to Reference (T) is called a reference-type with base-type 7.

The context-dependent relations for a reference-literal are illustrated as

Type Operator-
Call
Argument-
List

Definition

Reference-
Literal

Reference

Type-
Denoter
Definition
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The base of a reference-literal must be either a dereference, a variable-identifier, a value-
selection with a variable-identifier as its selector, an index that denotes a dereference, an
abstract value-selection that denotes a dereference, or a denoter with one of the above as its
definition. With the enforcement of these restrictions, the location referenced by the base of

a reference-literal can always be determined.

A.30.1.1 Evaluation

When a reference-literal is evaluated, its base is evaluated to yield the referenced location.
A reference-literal is a constructor and hence its storage may be allocated well in advance of
the evaluation of the literal. Hence, recursive references can be constructed.

A reference-literal yields a reference to an existing location but there are two ways in
which references to a new location can be constructed. First, a new reference can be con-
structed by calling references.new with a type and a value of that type. And second, a new
reference can be constructed by calling references.create with a fetch function and a store
function.

Regardless of how a reference is constructed, a reference consists of two functions: a fetch
function, which is called to yield the referenced value; and a store function, which is called
to update the referenced value. When a reference is constructed by a reference-literal or by
references.new, the fetch and store functions are created implicitly but when a reference is

constructed by references.create, the fetch and store functions are provided explicitly.

A.30.2 Pointer

For determining a pointer to a location, Acer provides a pointer-call:

(PointerCall) ::= pointer ( (Base:Value) )
which has a pointer-type. The type Pointer is visible as

let Pointer be pointers. Type
and the module pointers is visible as

pointers:
Tuple
Type:: Operator (Base Type:: Any) Any end
new :Function (Base Type:: Any; : Base Type)
Type (Base Type)
end
end
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Any type equivalent to Pointer (T') is called a pointer-type with base-type T'.

The context-dependent relations for a pointer-call are illustrated as

Type Operator-
Call

Definition

Pointer-
Call

P . t Argument-
ownter List
Type-
Denoter
Definition

The base of a pointer-call must be either a dereference with a base of type pointer-type, a
variable-identifier, a concrete value-selection with a variable-identifier as its selector, an index
that denotes a dereference with a base of type pointer-type, an abstract value-selection that
denotes a dereference with a base of type pointer-type, or a value-denoter with one of the
above as its definition. The base of a pointer call may also be either a fixed value-identifier,
a concrete value-selection with a fixed value-identifier as its selector, or a denoter with one

of these as its definition, but in this case it is considered unsafe.

A.30.2.1 Evaluation

When a pointer-call is evaluated, the base is evaluated to yield its address. This address is
yielded as the result of the call. Unlike a reference-literal, a pointer-call is not a constructor.

A pointer-call yields a pointer to an existing location but there is also a way in which
a pointer to a new location can be constructed, by calling pointers.new with a type and a

value of that type.

A.30.3 Dereference

For accessing references and pointers, Acer provides the dereference:

(Dereference) ::= (Base: Value) @

The context-dependent relations for a dereference are illustrated as
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Definition

Dereference

Type Operator-
Call

Argument-
List

k Type

The type of the base of a dereference must denote a pointer- or reference-type; the base-type

of that type is the type of the dereference.

A.30.3.1 Evaluation

When a dereference is evaluated one of two things happens, depending on whether the base
is reference or pointer. 1f the base is a pointer, the target location is accessed to yield the

result of the dereference. Otherwise, if the base is a reference, the reference’s fetch function

is called to yield the result of the dereference.

A dereference can also be used as the destination of an assignment, in which case, as we

shall see, its evaluation is carried out quite differently.

A.30.4 Assignment

For modifying the contents of a location, Acer provides the assignment, which consists of g

destination and a source:

(Assignment) ::= { (Destination:Va]ue) becomes (Source: Value) }

The context-dependent relations for an assignment are illustrated as

Definition

(_( Assiggillj\ ) e Void
O D

The type of the source must be a subtype of the type of the destination. The destination of

an assignment, like the base of a reference-literal, must be a dereference, a variable-identifier,
a concrete value-selection with a variable-identifier as its selector, an index that denotes a

dereference, an abstract value-selection that denotes a dereference, or a value-denoter with
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one of the above as its definition. In addition, the destination of an assignment, like the base
of a pointer-call, may also be a fixed-identifier, a concrete-value-selection with a selector that

is a fixed-identifier, or a value-denoter with one of these as its definition, but in this case the

assignment is unsafe.

A.30.4.1 Evaluation

When an assignment is evaluated, the source and destination are evaluated in arbitrary
order; the destination is evaluated to yield a reference or pointer to a location and the source
is evaluated to yield the value to be stored at that location. When the destination yields a
reference (i.c., when the destination denotes a dereferenced reference), the reference’s store
function is called with the value yiclded by the source. Otherwise, the destination yields a
pointer and the location addressed by that pointer is updated with the value yielded by the

source.

A.30.5 Compound-value
For speciflying sequential evaluation, Acer provides a compound-value:
(CompoundValue) ::= begin { (Value) i1 i1 end

The context-dependent relations for a compound-value are illustrated as

Definition

Compound-
Value

Type ( )

The type of the last value is the type of the compound-value. The type of an empty

compound-value is Void:

Type J__’—

Compound- d
} 4
Value V__-———O
Definition Void-
Literal

A.30.5.1 Evaluation

When a compound-value is evaluated, each successive value 1s evaluated in order. The valye
yielded by the last value is yielded by the compound-value. An empty compound-value yields

the void-value.
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A.31 Array

For constructing data structures with an arbitrary number of components, Acer provides the

array-literal:

(ArrayLiteral) ::= (Elements: ArrayList) [ of (BaseType:Type) ]| end

where array-list is defined as:

(ArrayList) ::= array { (Value) }{+]

An array-literal has an array-type. The type Array is visible as

let Array be arrays. Type
and the module arrays is visible as

arrays:
Tuple
Type :: Operator (Base Type:: Any) Any end
error : Exception ( Void)
length: Function ( Base Type :: Any; : Type (Base Type))
Integer
end
index1 :
Function (Base Type:: Any; : Type (Base Type); : Integer)
Pointer ( Base Type)
end

new : Function (Base Type:: Any; : BaseType; : Integer)
Type ( Base Type)
end
end

Any type equivalent to Array(7') shall be called an array-type with base-type T'.

The context-dependent relations for an array-literal are illustrated as

Type Operator-
Call

Argument-

T N

Type Definition / :

Definition

Array-
Literal
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The type of an array-literal is an array-type with the literal’s base-type as its base-type. The
types of the values in the elements must be such that one is a supertype of all the others;
that type, the maximal type, is the definition of the empty base-type. If the base-type is not
empty, the base-type must be a supertype of the maximal type. If the array-list is empty
the maximal type is Void.

A.31.1 Evaluation

When an array-literal is evaluated, its elements are evaluated in arbitrary order. An array-

literal is a constructor and hence its storage may be allocated well in advance of the evaluation

of the literal.

A.32 TIterator and accumulator

For supporting high-level iteration and accumulation, Acer provides the notion of iterators

and accumulators. An iterator is a sequence producer and an accumulator is a sequence

consumer.

A.32.1 Iterator

To support iterators the type Iterator is visible as

let /terator be
Operator (Base Type:: Any)
Tuple
done: Exception (Void)
produce : Function () Base Type end
terminate : Function () Void end
end
end

Thus, an iterator is any value z with a type that is a subtype of

Iterator (T)

where T is the base-type.

An iterator produces a sequence of values through repeated calls to its produce function.
When the iterator’s sequence of values is exhausted, a call to produce raises its done excep-
tion. The iterator is then terminated with a call to its terminate function. The iterator may

be terminated before the sequence is exhausted by calling its terminate function early.
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A.32.2 Accumulator
To support accumulators the type Accumulator is visible as

let Accumulator be
Operator (Base Type:: Any; ResultType:: Any)
Tuple
done : Exception ( Void)
consume : Function ( : Base Type) Void end
terminate : Function () ResultType end
end
end

Thus, an accumulator is any value @ with a type that is a subtype of

Accumulator (B, R)

where B is the base-type and R is the result-type. An accumulator consumes a sequence of
values through repeated calls to its consume function. When the accumulation is complete,
a call to consume will raise its done exception. An accumulator raises done only if it does
not wish to consume more values. An accumulator is terminated by a call to its terminate
function, which yiclds the result of the accumulation. The terminate function can be called
either because the accumulator has raised done or because the sequence of values has been

exhausted.
A declaration of the accumulator discard is visible in the global name-layer. Its corre-
sponding binding is defined as
let discard : Accumulator (Any, Void) be
tuple
exception ( Void)
function (: Any) {} end

function () {} end
end

A.32.3 Iteration

Iterators and accumulators are used in iterations, which consist of iterators, an optional
filter, an optional accumulator, and a body:
(Iteration) ::=

(Iterators:IteratorList) [ andif (Filter: Value) ]| do
[ (Accumulator: Value) ]| (Body: Value) end

An iterator-list is a list of iterator-elements:
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(IteratorList) ::= for {| (IteratorElement) L1
and an iterator-element consists of a defined-identifier and an iterator:

(IteratorElement) ::=
(Definedldentifier: Valueldentifier) in (Iterator:Value)

The context-dependent relations for an iteration are illustrated as

Type

Definition

Iterator-
List

{terator- .
Element Definition dlscal‘d
N
X boolean true
Definition
Defining-

Type

Occurrence

The iterator of an iterator-clement must have a type that is a subtype of

Iterator (T')
and the type of the defined-identifier is T'. The filter must be of type Boolean. The accumu-

lator must have a type that is a subtype of

Accumulalor (B, R)
The body must have a type that is a subtype of B. And the iteration has type R.

The definition of an iteration is derived so that an iteration of the form

for iin x; jin y andif f (i, j) do z g (i, j) end
Is equivalent to
{let il be x; let i2 be y; let a be z
keep trying

{let i be il.produce(); let j be i2.produce ()
if f (i, j) then a.consume (g (i, j)) end}

then
when il.done, i2.done, a.done then
begin
il.terminate(); i2.terminate(); a.terminate()
end
end}

Thus the definition of an iteration is a value-block with the appropriate bindings and body.
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A.32.3.1 Scope

An iterator-list has a name-layer containing the defined-identifier of each of its iterator-
elements. When identifier-lookup starts in the filter or body of an iteration, the name-layer

of the iterator-list is searched.

A.32.4 Accumulation

Accumulators are also used in accumulations, which consist of an accumulator and an

accumulation-list:
(Accumulation) ::= (Accumulator: Value) (Elements:AccumulationList) 1)

where an accumulation-list is a list of values:

(AccumulationList) ::= ([ {{ (Value) pt-1

The context-dependent relations for an accumulation are illustrated as

Accumulation

Type

Accumulation-
List

The accumulator’s type must be a subtype of

Definition

Accumulator (B, R)
The type of each element in the accumulation-list must be a subtype of B. And the type of

the accumulation is R.

The definition of an accumulation is derived so that an accumulation of the form

a([x, y])

is equivalent to

{let al be a
try begin
al.consume (x)
al.consume (y)
al.terminate()
end
then when al.done then al.terrninate ()

end}

Thus the definition of an accumulation is a value-block with the appropriate bindings and

body.
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A.33 Code-patch

For representing machine dependent evaluations, Acer provides the code-patch:

(CodePatch) ::= code { (Expression) J}li] end

The first expression must be a type.

The context-dependent relations for a code-patch are illustrated as

Definition

Code-
Patch

Type :

The first expression is the code-patch’s type. The type of an empty code-patch is Error:

Definition

Code- ) Type . N
( Patch ) E7 T01

The trailing expressions of a code-patch (i.e., every expression except the first) are used

to represent the data and instructions of some particular machine. Typically, the final ex-

pression is used to specify the effective-address of the value to be yielded, and the expressions
between the first and the last are used to specify the machine instructions to be executed.
Because the trailing expressions of a code-patch are interpreted in an implementation
dependent manner, the normal context-dependent relations for expressions do not apply for
the trailing expressions. Such expressions simply reuse Acer’s existing syntax to denote
something clse entirely. The advantage of introducing machine dependencies in this way
is that Acer provides the same context-free syntax for all implementations and yet also
provides a flexible syntax for expressing the data and instructions of a particular machine,

For example, the code-patch

code Integer; move(dl, d0); d0 end

might be used to move the contents of register dI to register d0 and to yield the final value

of d0 as an Integer result. And the code-patch

code Pointer (Any); A7 end

might be used to yield the value of the stack-register A7 as a pointer.
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A.34 The grammar

A.34.1 Declaration and binding

(FixedValueBinding) ::=
let (DefinedIdentifier:Valueldentifier) [ : (:Type) ]| be (Definition: Value)

(FixedValueDeclaration) ::= [[ (Definedldentifier: Valueldentifier) ]| : (: Type)

(TypeBinding) ::=
let (Definedldentificr: Typeldentifier) [ :: (:Type) ]| be (Definition:Type)

(TypeDeclaration) ::= [[ (DefinedIdentifier:Typeldentifier) ]| : : (:Type)

(VariableValueBinding) ::=
let var ([ (Definedldentifier:Valueldentifier) ]| [ : (:Type) ]| be (Definition: Value)

(VariableValueDeclaration) ::= var [[ (DefinedIdentifier: Valueldentifier) || : (:Type)

A.34.2 Type

(Type) ==
(AbstractType) || (ConcreteType) || (ReusedTypeldentifier) || (TypeBlock) ||
(TypeDenoter) || (TypeDesignation) || (TypeOperator)

(AbstractType) ::=
(OperatorCall) || (Typeldentifier) || ( TypeSelection)

(ConcreteType) :=
(AnyType) || (DynamicType) || (EnumerationType) || (FunctionType) ||
(OptionType) || (RecordType) || (TupleType) || (VariantType)

(AnyType) ::= Any
(DynamicType) ::= Dynamic { (Declaration) }1 i1 end
(EnumerationType) ::= Enumeration { (Valueldentifier) }I 1 end

(FunctionType) ::= Function (:Signature) (ResultType:Type) end
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(OperatorCall) ::= (Operator:Type) (Arguments:ArgumentList) )

(OptionType) ::= Option { (Valueldentifier) }I -1 end

(RecordType) ::= Record { (Declaration) 11 end

(Reused Typeldentifier) ::= (Identifier: Typeldentifier) * [ (Depthindicator:IntegerLiteral)
(TupleType) ::= Tuple { (Declaration) }1:1 end

(TypeBlock) ::= (Bindings: BindingList) (Body:Type) }

(TypeDenoter) ::= {[1}

(TypeDesignation) ::= TYPE ( (:Expression) )

(TypeOperator) ::= Operator (:Signature) (Body:Type) end

(TypeSelection) ::= (Base:Value) . (Selector: Typeldentifier)

(VariantType) ::=
Variant (Tag:Type) (Variants: VariantList) [ else (Default:Signature) || end

A.34.3 Value

(Value) ::=
(Accumulation) || (AndIfTest) || (Assignment) || (CodePatch) || {CompoundValue) ||
(Conditional) || (Dereference) || (DyadicMethodCall) || (Dynamiclnspection) ||
(FunctionCall) || (Index) || (IsTest) || (IsNotTest) || (Iteration) || (KeepTrying) ||
(Literal) || (OrdCall) || (OrlfTest) || (PointerCall) || (PrefixMethodCall) || (Raise) |
(Try) || (TryFinally) || (UnaryMethodCall) || (ValCall) || (ValueBlock) ||
{

ValueDenoter) || ( ValueSelection) || (VariantInspection)

(Literal) ::=
(ArrayLiteral) || (CharacterLiteral) | (DynamicLiteral) || (ExceptionLiteral) I
(FunctionLiteral) || (IntegerLiteral) | (LiteralSelection) || (RealLiteral) ||
(RecordLiteral) || (ReferenceLiteral) | (ReusedValucldentifier) || (StringLitera,I) I
(TupleLiteral) || (Valueldentifier) || {VariantLiteral) || {VoidLiteral)



APPENDIX A. THE ACER DEFINITION MANUAL 216

(Accumulation) ::= (Accumulator: Value) (Elements:AccumulationList) 1)

(AndIfTest) ::= { (FirstOperand: Value) andif (SecondOperand: Value) }

(ArrayLiteral) ::= (Elements: ArrayList) [ of (BaseType:Type) || end

(Assignment) ::= { (Destination: Value) becomes (Source: Value) }

(CodePatch) ::= code { (Expression) }l11 end

(CompoundValue) ::= begin { (Value) }+1 end

(Conditional) ::= (Branches:ConditionalBranchList) [[ else (DefaultBranch: Value) |] end
(Dereference) ::= (Base: Value) @

(DyadicMcthodCall) ::=
{ (FirstOperand: Value) (MethodName: Valueldentifier) (SecondOperand: Value) }

(Dynamiclnspection) ::=
inspect (Selector: Value) (Branches: TypeBranchList)
[ else (Default Branch: Value) || end

(DynamicLiteral) ::= dynamic { (Argument) M- 1end

(ExceptionLiteral) ::= exception ( (BaseType:Type) )

(FunctionCall) ::= (Function: Value) (Arguments:ArgumentList) )

(FunctionLiteral) ::= function (:Signature) [ : (ResultType:Type) ]| (Body: Value) end
(Index) ::= (Base: Value) (Indices:IndexList) ]

(IsNotTest) ::= { (FirstOperand: Value) isnot (SecondOperand: Value) }

(IsTest) ::= { (FirstOperand: Value) is (SecondOperand: Value) }

(Itcration) ::=
(Iterators:IteratorList) [ andif (Filter:Value) ]| do
[ (Accumulator: Value) ]| (Body:Value) end
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(KeepTrying) ::=
keep trying (Body:Value) (Branches: ValueBranchList)
[ else (DefaultBranch:Value) ]| end
(LiteralSelection) ::= (Base:Type) . (Selector:Valueldentifier)
(OrdCall) ::= ord ( (Base:Value) )
Orl{Test) ::= { (FirstOperand:Value) orif (SecondOperand:Value) }
PointerCall) ::= pointer ( (Basc: Value) )

PrefixMethodCall) ::= (MethodName:Valueldentifier) . (Arguments: ArgumentList) )

{
{
{
(Raise) ::= raise (ExceptionValue:Value) [ with (Associated Value: Value) || end
(RecordLiteral) ::= record { (Binding) }l+1 end

(ReferencelLiteral) ::= reference ( (Base:Value) )

(ReusedValueldentifier) ::= (Identifier: Valueldentifier) * [ (Depth[ndicator:IntegerLiteral) ]
{

Try) =
try (Body:Va,lue) (Branches: ValueBranchList) [[ else (Default Branch: Value) ]| end

(TryFinally) ::= try (Body: Value) finally (FinalAction:Value) end
(TupleLiteral) ::= tuple { (Argument) B ] end

(UnaryMethodCall) ::= { (MethodNa,me:Value[dcntiﬁer) (Operand: Value) }
(ValueBlock) ::= (Biudings: BindingList) (Body:Value) }

(ValCally ::= val ( (BaseType:Type) [ , ]| (Ordinal:Value) )
(ValueDenoter) ::= {()}

(ValueSelection) ::= (Base: Value) . (Selector: Valueldentifier)

(VariantInspection) ::=
inspect (Selector: Value) (Branches: ValueBranchList)
[ else (DefaultBranch: Value) ]| end

(VariantLiteral) ::=
variant (Tag:Valueldentifier) of (BaseType:Type) with <Argument53AFgUmentLjst> )

(VoidLiteral) ::= {}
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A.34.4 Miscellaneous

(Miscellaneous) ::=
(Empty) || (AccumulationList) || (ArgumentList) || (ArrayList) || (BindingList) ||
(ConditionalBranch) || (ConditionalBranchList) || {IndexList) || (IteratorElement) ||
(IteratorList) || (Signature) || (TypeBranchList) || (TypeWhenBranch) ||
(ValueBranchList) || (ValueWhenBranch) || (VariantElement) || (VariantList) ||
(WhenCondition)

(AccumulationList) = ([ { (Value) J1-}

(ArbitraryList) ::= arbitrary {{ [ (Arbitrary) 1 |} end
(ArgumentList) ::= ( { (Argument) J}l -1

(ArrayList) ::= array { (Value) ]}[ /1

(BindingList) ::= { {{ (Binding) JL:1[ ; ]

(ConditionalBranch) ::= (Condition: Value) then (Consequent: Value)
(ConditionalBranchList) ::= if { (ConditionalBranch) J}¢sif
(Empty) ::= nothing

(IndexList) ::= [ { (Value) JI+]

(IteratorElement) ::= (DefinedIdentificr: Valueldentifier) in (Iterator: Value)
(IteratorList) ::= for { (IteratorElement) J1+]

(Signature) ::= ( { (Declaration) }1+1)

(TypeBranchList) ::= Then { (TypeWhenBranch) J}l: ]

<TypeWhenBranch> =
when (Condition: Type) [ with (Definedldentifier: Valueldentifier) ||

then (Conscquent: Value)

(ValueBranchList) := then { (ValueWhenBranch) }1 1
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(ValueWhenBranch) ::=
(Condition: WhenCondition) [ with (Definedldentifier: Valueldentifier) ||

then (Consequent: Value)
(VariantElement) ::= (Condition: WhenCondition) then (Consequent:Signature)
(VariantList) ::= of { (VariantElement) }L+1

(WhenCondition) ::= when { (Value) }[ ]

A.34.5 Generic

(Arbitrary) ::= (Argument) || (Declaration) || (Miscellaneous)

(Argument) := (Binding) || { Expression)

(Binding) := (TypeBinding) || {ValueBinding)

(Block) ::= (TypeBlock) || (ValueBlock)

(Declaration) = (TypeDeclaration) || (ValueDeclaration)

(Denoter) ::= (TypeDenoter) || (ValueDenoter)

(Expression) ::= (Type) || {Value)

(Identifier) ::= (Typeldentifier) || (Valueldentifier)

(Reusedldentifier) ::= (ReusedTypeldentifier) || (ReusedValueldentifier)
(ValueDeclaration) ::= (Fixed ValucDeclaration) || { VariableValueDeclaration)

(ValueBinding) ::= (FixedValueBinding) || (VariableValueBinding)
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A.34.6 Lexeme

(CharacterLiteral) ::=
“ ([ (#LowercaseLetter) || (#UppercaseLetter) || (#SymbolicLetter) ||
(#Punctuation) || (#Digit) || (#Space) || (#DoubleQuote) || (#Other) )

(IntegerLiteral) ::= [ - ]) (#Digit) { (#Digit) }

(RealLiteral) ::=
[ - I (#Digit) { (#Digit) |} . (#Digit) { (#Digit) }
[(elE) -] (#Digit) { (#Digit) } ]

(StringLiteral) ::=
" {{ (#LowercascLetter) || (#UppercaseLetter) || (#SymbolicLetter) ||
(#Punctuation) || (#Digit) || (#Space) || (#Other) }} "

(Typeldentifier) ::=
(#UppercaseLetter) { (#LowercaseLetter) || (#UppercaseLetter) | (#Digit)

(Valueldentifier) ::=
(#LowercaseLetter) { (#LowercaseLetter) || (# UppercaseLetter) || (#Digit) } |
(#SymbolicLetter) { (#SymbolicLetter) }

A.34.7 Comment

(Comment) ::=
% { (#LowercaseLetter) || (#UppercaseLetter) || (#SymbolicLetter) ||
(#Punctuation) || (#Digit) | (#DoubleQuote) || (#Tab) || (#Space) || (#Other) I

A.34.8 Character description

(#LowercaseLetter) D=
allblicldfelflflglhllilillkI[l]m]
njlofpllglirfsiitfuflviwlix|ylz

(#UppercaseLetter) ::=
AIBIC|IDJE[F|GIH|I[JIKI|L|M]
N[OIPIQIRI[SITIUIVIWIX[Y][Z]-
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(#SymbolicLetter) ::=

IR EAE NN E
(#Punctuation) ::=

AU eI n<rie

(#Digit) == 0 | 1|23 4]5]6]7]8]9
(#DoubleQuote) ::= "

(#Tab) = ASCII 9

(#LineFeed) ::= ASCII 10

(#CarriageReturn) ::= ASCII 13

(#Space) := ASCII 32

(#Other) ::= ASCII 0-8, 11-12, 14-31, 127



Appendix B

The PCAcer manual

This appendix describes PCAcer, a mouse-driven interactive programming environment that
supports Acer on an MS-DOS system. PCAcer is designed to operate a three button mouse
and a.VGA monitor; color text mode, supporting 80 characters by 50 lines, is used.

The appendix includes the following:

Introductory information and conventions.

A description of the screen.

A general description of windows.

Ilow to edit with cach type of window.

How to work with multiple views.

How to store and compile programs.
e Ilow to query the semantics attributes.

A familiarity with the basics of MS-DOS is assumed.

B.1 Introduction

Throughout this manual the following conventions are used:

Keys to be pressed are shown as

[esc] enter

o
[\V]
[N}
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Mouse buttons to be pressed are shown as

Cwmo] [CoOm]

A mouse button can either be clicked, i.e., pressed and released, or held, i.e., pressed and

kept down.

Keys and mouse buttons to be shifted, controlled, or altered when pressed are shown as

Because PCAcer makes heavy use of color (e.g., for selecting and highlighting) it is
difficult to illustrate how an actual screen will look. A verbal description will therefore have

to be adequate.

The sixteen text colors provided by a VGA monitor are named as follows: black, blue,
green, cyan, red, magenta, brown, light gray, dark gray, light blue, light green, light cyan,
light red, light magenta, yellow, and white; only the first eight of these can be used as

background colors.

B.2 Parts of the screen

When the PCAcer environment starts, it creates a screen with:
e the main menu on at the top;
® a mouse cursor;
e and a work arca that displays various windows.

The main menu is shown in black text on a white background and any part of the work area,

not covered by a window is shown in black. The cursor blinks and takes on the text color at

its position.
Clicking while the cursor is on a main menu command invokes that command.
For example, to quit click on the quit command. Upon quitting, PCAcer stores

the contents and positions of all windows (except, as we shall see later, for windows that
own attributes). PCAcer reloads this information the next time 1t runs.

The other main menu commands will be described as they become relevant.
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B.3 Node windows and text windows

A window comprises a frame, which consists of four edges and four corners, and a body,
which views a portion of an object. There are two types of window, text and node. A text
window views lines of characters and a node window views an unparsed node. Both of these
are viewed as textual objects.

Every window has a selection, the particular focus of interest. For text, the selection is
a character or range of characters, and for node, the selection is a node or range of nodes.

Other than the nature of the selection, the different types of window are similar.

B.3.1 The banner

The banner, i.e., the top edge, of a text window appears as:

[5a8c] Empty  (1,1)§(1,1) 1x1 1e78 1747

and the banner of a node window appears as:

[5a8¢c] Empty  [5a8¢c| Empty 1x1 178 1747

In either case, the banner is displayed in cyan text on a blue background (except for the
banner of the selected window, which is shown in yellow text). The information on the
banner is interpreted as follows:

Every window has an associated owner node, which is indicated at the start of the banner
as the node’s hexadecimal identity number (i.e., its segment address) and the node’s class,
e.g., [518c] Empty. Similarly, the object viewed by each window has a maximum line length
and a specific number of lines, e.g., 1x1, and the portion In view is given as a range of
columns, e.g., 178, and a range of lines, e.g., 1747.

The difference between the banners of the two types of window naturally lies in how the
selection is specified. For text windows, the sclection is given as a start coordinate and an
end coordinate, e.g., (1,1)§(1,1). But for node windows, the selection point is given as a
node, e.g., [518c] Empty, or as range of nodes, e.g., [519¢] BindingList[23]. (Note that a

range of nodes is given in terms of a parent node and the positions of the selected children.

B.3.2 The body

The body of a window has a cyan background. The selection is highlighted by a white

background. For text windows, text is shown in blue, and for node windows, text is shown
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in various colors, e.g., keywords are black, type-identifiers are magenta, value-identifiers and
value lexemes are light blue, comments are red, and denoters are brown. A node window

presents a more readable view of programs.

B.3.3 The view indicators

The left and bottom edge of a window graphically indicate the view position and the view
portion relative to the object as a whole. For example, if the entire object is in view, both
the left and bottom edge are single line borders. However, if only half the lines are visible,
only half the left edge is a single border; the other half is a double edge border. And if the
viewed portion of the object is the middle portion, the single line portion of the left edge is
centered on the double line portion.

This same notion applies for the bottom edge, but in this case column position is indi-

cated.

B.4 The window stack

Windows in the work arca are arranged as a stack, higher windows cover lower windows.

Holding (W O O] anywhere on the screen causes the stack-list menu to appear. Re-

leasing the button causes the menu to disappear.

The stack-list menu shows, in order, all windows in the work area. The items of the menu

will look something as follows:

¢ [BCIE] FixedValueBinding ALx>» 1
[6CIE]  FixedValueBinding ALx>» 1
[5CTE] BindingList Ly > 2

o [5C4E]  ArbitraryList 3
4

$o  [5C2E]  Empty

A ¢ distinguishes a text window from a node window. (The selection point is not shown in
the stack-list menu so it cannot be used to distinguish the two in this case.) Ao distinguishes
a scrap window from an ordinary window. (More on this latter.) An identity number and a
node class, c.g., [5CI9E] FixedValueBinding, indicate the owner node.

Additional information is shown if the root of the owner is a meaningful top-level node,
i.e., a type-binding, fixed-value-binding, fixed-value-declaration, or binding-list. In this case,

the defined-identifier of the root, or the defined-identifier of the primary binding of the root,
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is shown, e.g., «x>. A A precedes the name if the root is not up-to-date with respect to
the version stored in the file system. More on all this later.

A final number is assigned to each window to indicate which windows provide different
views of the same root node. Numbers are assigned to nodes in a top-down fashion and a
window is assigned the same number as a window above 1t if their owners have the same
root. The largest number in the stack-list menu, therefore, indicates the number of disjoint

nodes.
The stack-list menu can be used to reorder windows. Holding |shift Hl O O | and drag-

ging the cursor to a particular line of the stack-list menu highlights that line. Releasing the

button makes the highlighted window become the top window.

B.5 Basic window commands

This section describes commands that apply to either type of window.

B.5.1 The selected window

One of the windows in the window stack is the selected window. It has a banner with

yellow text. A window is made the selected window by clicking on 1ts banner.

(Actually, the selected window is only relevant for one command right now, the definition-

copy command, which we will see later.)

B.5.2 Stack positioning

Window position within the stack is changed by the stack-list menu, or by clicking
on a window corner.

Clicking on one of the top two corners either makes the window become the

top window, or if it is alrcady the top window, makes the window below the top window

become the top window. This is an casy way to exchange two overlapping windows.

Clicking on one of the bottom two corners either makes the window become

the top window, or if its already the top window, make it become the bottom window. This

is an easy way to cycle through all windows.
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B.5.3 Resizing a window

Windows are resized by repositioning a corner. This is done by holding on any
corner, dragging the corner to its new position, and releasing the button. Assoon as

is pressed on a corner, an elastic window frame is displayed (in magenta on black). This
frame stretches and shrinks to reflect the position of the cursor.

The smallest window has a body of 2 characters by 2 lines. Including the frame, then,
the smallest window is 4 characters by 4 lines. When a window is resized and the selection

is not in view in the result, the view is corrected to bring it into view.

B.5.4 Moving a window

A window is moved by holding on any corner, dragging the window to a new
position, and releasing the button. As soon as 1s pressed on a corner, a window

frame. is displayed (in magenta on black). This frame moves to reflect the position of the

cursor.

B.5.5 Repositioning the view

The portion of the object in view can be changed by clicking mouse buttons on the left or

bottom edge.
The view is moved down in the object (i.e., the object is moved up) by clicking

on the left edge. The indicated line moves up to becomes the first line, unless it is already

the first line, in which case the lines move up by one.

The view is moved up (i,e,, the object is moved down) by Clicking on the left

edge. The first line moves down to the position of the indicated line, unless the first line is

indicated, in which case the lines move down by one.

The view can be completely repositioned by clicking on the left edge. The view

is then positioned so that the fraction of the object above and below the view is proportional
to the fraction of the left edge that is above and below the click point. Hence, clicking
at the top of the left edge repositions the view to the beginning of the object,.
Clicking at the bottom of the left edge repositions the view to the end of the
object.

Clicking , ’ or on the bottom edge has the corresponding

effect as on the left edge, except column position is affected.
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B.6 Window conversion

A new node window is created by clicking on the new command of the main menu.
The new window becomes both the top window and the selected window. It owns a new
empty node, which is also its selection point. (In node windows, an empty node is printed
as @ rather than as nothing.)

A node window is converted to a text window by pressing any printable key while the
cursor is on the window. (If a range of nodes is selected, the selection is reset to the parent
first.) The resulting text window contains a textual representation of the selected node,
which is also the owner. The selection starts out as the entire textual object so it can be

easily deleted and replaced.

Clicking on the right edge of a text window converts it back to a node window.
This is done by parsing the text to yield a node and replacing the owner with that node.

The resulting node window has the root node as its owner and the new replacement node as

its selection.

As will be explained next, the replaced node is inserted in the scrap node window and

the parsed text is inserted in the scrap text window.

B.7 Scrap windows

The PCAcer environment will, at all times, contain at least two windows, namely the scrap
text window and the scrap node window. A scrap window is distinguished from other
windows by the fact that its banner begins with a o .

The scrap windows are special in several ways. Firstly, they cannot be converted between
node and text, as can ordinary windows. And most importantly, all deletions are inserted
into the appropriate scrap window. For this reason, editing a scrap window can have rather
unexpected effects. For example, deleting from a scrap window has the effect of inserting
elsewhere in the same window. low this works shall become clear as the editing commands
for ordinary windows are described.

The contents of the scrap windows can be discarded simply by clicking on the

clear command of the main menu. This may become necessary as space limitations become

a problem.
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B.8 Editing text

An empty text window is created as follows: click the new command of the main menu;
move the cursor onto the new window; press to convert it to a text window; and click
!a]t HI O O |, while the cursor is still in the window, to delete all the text. The result is in

an empty text window with an irrelevant unattached node as its owner.

The purpose of a text window is to specify textually a replacement for its owner. In
the above case, the owner is irrelevant because it is unattached and empty, but in general,
the owner may be attached. In that case, a successful conversion of the text window to a
node window, by clicking or the right edge, results in the owner being replaced, in
context, by the newly parsed node.

If conversion to a node window is unsuccessful, a flashing yellow error message 1s displayed
on the bottom edge of the window. Conversion can fail because either the resulting node
cannot stand in place of the owner, or some token cannot be accepted by the parser. In the
later case, the offending text becomes the selection point and an error diagnostic is displayed.

When a window displays a flashing error message, no further operations can be performed
on that window until, while the cursor is on the window, a button is clicked or a key is pressed.

That click or press has the effect of removing the error message, and no other effect.

B.8.1 Selection

The primary operation on a text window is setting the selection.

Clicking , while the cursor is in the body of a text window, selects the character
at that position. Holding , dragging it, and releasing it selects a range of characters.

The selection is continuously modified on the screen to reflect the position of the cursor.
Another way of sclecting a range of characters, particularly useful when the range is not

entirely in view, is sclecting one end point by clicking and selecting the other end

point by clicking , A view modification can occur between the two selections. Hold-

ing and dragging it extends the selection, just as it does when dragging .

Textual selection can take on three different modes, character, token, and line. Ordinarily,

the selection mode is character. However, clicking on a character that is already
in the selection causes the selection mode to become token. As a result, the token at the

click point becomes selected. Tokens are determined by the same lexical analyzer used by

PCAcer’s parser.
Furthermore, clicking within the selection while in token mode causes the
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selection mode to become line. As a result, the line at the click point becomes selected.

Thus, double clicking selects a token and triple clicking selects a line.

Holding and dragging it while in token mode results in the selection being
extended by whole tokens. The same goes for line mode. The affect of ’ when

extending the selection point, is also affected by the selection mode. For example, triple

clicking at one point and clicking at another selects a range of complete

lines.

B.8.2 Textual entry

Pressing a printing character, while the cursor is on a text window, inserts the specified

character before the first character of the selection. Pressing breaks a line. (PCAcer

displays the line-ending character as a space so that it can be selected and even deleted.)

Pressing crases the character before the insertion point; at the beginning of a

line, it erases the line-ending character on the previous line, thereby joining the two.
Textual entry does not modify the selection, but the selection does revert to character

mode.

B.8.3 Delete
Selected text is deleted by clicking in the window body. Afterwards, the

selection, which remains in the same mode, is set as if where clicked at the position
of the first character of the original selection. For example, triple clicking and then
double clicking |alt HI 0O 0O | deletes two lines and leaves a line selected.

The entire range of lines affected by deletion is copied to the scrap text window. The

selection of the scrap text window then specifics precisely the range of affected characters

within those lines.

The scrap text window is not only a destination for deletions but also a source for

insertions, as we shall sce next.

B.8.4 Insert

The selected text of the scrap text window is inserted before the selection point of some

other text window by clicking |alt IlD (J M | on the body of that window. The selection

point of the window is set to the inserted text.
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For any text window (except the scrap window) clicking laltHl O O ] and then click-
ing |alt HE] [0 W | has no effect other than copying the selection to the scrap window and

changing the selection mode to character.

B.8.5 Yank
Clicking in a text window has the same effect as effect as clicking |alt HE O O

and then clicking [alt {1 O W ], except that the selection mode is unchanged. In other

words, a copy of the range of lines containing the selection is inserted in the scrap text

window and the appropriate characters within that range are selected.

A is usually followed by a command to change the selection followed by a

alt HD 0 M |to insert the yanked text.

B.8.6 Destructive delete

Clicking | ctrl HI 0O O lon a text window body deletes the selection without copying it to

the scrap text window. The deleted text is lost!

This command works as expected on the scrap text window.

B.8.7 Canceling a text window

Pressing while the cursor is on a text window cancels the window. That is, the text is

inserted in the scrap text window and the window is converted back to a node window.

B.9 Node editing

An empty node window is created by clicking the new command on the main menu. The

result is a node window that owns a new unattached empty node, which is also its selection

point.

Nodes are much richer objects than mere text. Ilence, node windows provide more

operations than text windows.

B.9.1 Selection

The selection mechanisms for nodes closely model those for text.
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Clicking , while the cursor is in the body of a node window, selects the node
that owns the token at or before the position of the cursor. (Since empty nodes are printed
as 0, all nodes are visible for selection via their tokens.) Holding , dragging it, and
releasing it selects a range of nodes. Such a range of nodes must have a common parent.
The selection is continuously modified on the screen to reflect the position of the cursor.
Dragging is not very useful for nodes because often tokens of the parent intervene between
the children and so if that token is selected, the whole parent is selected.

A better way of selecting a range of nodes, particularly useful when the range is not
entirely in view, is sclecting one end point by clicking and selecting the other end
point by clicking . A view modification can occur between the two selections. Hold-

ing and dragging it extends the selection, just as it does when dragging _

Node selection does ot take on different modes, as does textual selection.

B.9.2 Textual entry

Pressing a printing character while the cursor is on a node window, converts the node window
to a text window with the sclected node as the owner. Modification of the owner’s textual
form may then commence. Upon completion, a on the right edge converts the text
window back to a node window, replacing the owner in context. The replacement node, as

specified by the text, becomes the selection.

B.9.3 Delete
Selected nodes are deleted by clicking in the window body. Delete behaves

differently depending on the selection.

On the one hand, if a list child is sclected, or a range of list children are selected, the
children arc simply deleted. Afterwards, the selection becomes the next child, if there is one,
the previous child, if there is no next child, or the parent, if no children remain. In addition,
the deleted children arc inserted into a new arbitrary-list, which in turn is inserted at the
end of the arbitrary-list owned by the scrap node window. The selection of the scrap node
window is set to the range of nodes that were deleted.

On the other hand, if a construction child is selected, or a range of construction children
are selected, one of several possibilities occur. If a child is optional, it can be replaced by
an empty node. Otherwise, it must be replaced by a placeholder: for a component that is

a value, the identifier ? is used; for a component that is a type, the identifier _ is used;
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and for component that is a list, the appropriate empty list is used. Because the deletion
of a construction child has the effect of replacing it with a different node, after deletion, the
selection becomes the repalcement children. The deleted children are inserted in the scrap
node window just as for deleted list children.

It is meaningful to delete (or replace) an unattached node because this has the effect of

replacing it with an empty node in every window in which it occurs.

B.9.4 Insert

Clicking altHE] B O | on the body of a node window inserts a placeholder list element,

between the tokens on cither side of the click point. This new placeholder becomes the

selection.

An element can only be inserted into a list since a construction has a fixed number of

children. If a list element cannot be inserted at the click point, a warning beep is issued.

B.9.5 Replace

The selection of the scrap node window is inserted in place of the selection of an other node

window by clicking [alt [{O [0 B | on the body of that window. Again, replace behaves

differently depending on the selection.

On the one hand, if a list child is selected, or a range of list children are selected, the

children are deleted and the selected nodes of the scrap node window are inserted in their
place. If the inserted nodes do not conform as elements, no operation is performed and a
warning beep is issued. In addition, an error message diagnosing the problem appears at the
bottom edge of the window. This message 1s canceled by any button click or key press while
the cursor is on the window.

On the other hand, if a construction child is selected, or a range of construction children
are sclected, the children are replaced by the selected nodes of the scrap node window.
The range of nodes sclected in the scrap node window must match in number the range of
nodes selected in the target window, and each node must conform to the requirements of the
construction. Again, a beep and an error message are issued if this is not the case.

The deleted (replaced) nodes are copied to the scrap node window but the selection of

the scrap node window remains unchanged.
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B.9.6 Yank

Clicking on a node window body copies the range of selected nodes to the scrap

node window and sets the selection of the scrap node window to those nodes. A subsequent

insert uses these nodes.

Note that yank does not copy the definitions of denoters. In fact, yank substitutes an
any-type in place of each type-denoter and a void-literal in place of each value-denoter.

(High-level copying is provided by definition-copy.)

B.9.7 Destructive delete

Clicking | ctrl HI O O] on a node window body deletes the selection as before, but without
copying it to the scrap node window. The deleted nodes are lost!

This command works as expected on the scrap node window.

B.10 Multiple views

The stack-list can contain multiple views of the same node. We have already seen how to

alternate between a node view and a text view but such views can even coexist.

B.10.1 Simultaneous text views

Pressing on a node window creates a new text window on top of the existing node
window. Like the text window created by pressing [space], this text window has the selected
node (or the parent of the selected nodes) as its owner, and begins with everything selected.
But it occupies only the lower half of the area occupied by the node window and the node

window remains on the stack-list. (The text window is positioned so the whole frame of the

node window remains visible.)

B.10.2 Multiple node views

When is held on the top edge of a node window, an elastic window frame appears.

Dragging the mouse stretches and shrinks this frame to reflect the position of the cursor,
Releasing the button finishes the command. The result is a new node window, on top of the

original. It has the specified frame and the same owner and sclection as the original.



APPENDIX B. THE PCACER MANUAL 235

B.10.3 Multiple text views

Holding on the top edge of a text window has the corresponding effect as on a

node window. A new text window, on top the original, is created and it has the same owner

and selection as the original.

B.10.4 Subviews and node traversing

Holding on the top edge of a node window has the same effect as holding ’

except that the owner of the created node window is not the owner of the original window

but the selected node (or the parent of the selected nodes) of the original window.

The owner of a node window can be changed in one of three ways. Clicking on
the right edge sets the owner to be the root of the original owner. Clicking on the

right edge scts the owner to be the parent of the original owner. And clicking on
the right edge sets the owner to be the selected node (or the parent of the selected nodes).

Hence, one can zoom to the root, the parent, or the selection.

B.10.5 Closing windows

Clicking | alt H. O O ] on the top edge of a window closes the window. For a text window,

if it is the last view of the text, the text is inserted in the scrap text window. For both

types of window, if the owner is not owned, or contained by the owner, of any other window,
the node is inserted in the scrap node window, where it becomes the selection. Note that,
attempting to close the last view of a scrap window simply destroys is contents (much like

clear does).

B.10.6 Implications of multiple views on editing

Clearly, multiple views must be kept consistent because any changes in one window can
affect the views of others.

For multiple text windows, for example, any text entered in one will have to be reflected
in the others. Furthermore, if the selection of one window is deleted by an edit command in
another, the selection must even be updated. The same problems arise for node windows.
PCAcer keeps views consistent using the techniques that follow.

Because a text window is considered a node modification in progress, PCAcer restricts

operations that modify nodes that are being viewed as text. Clearly, such operations would
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be lost when the text is converted to a node and the owner is replaced by that node. There-
fore, one cannot dclete, insert, or replace any node that is the owner, or is enclosed by the
owner, of a text window. If such an operation is attempted, the offending text window is
brought to the top of the stack-list with an error message suggesting that it be updated, i.e.,
either discarded or converted a node. Similarly, one cannot create a text window for a node
that is the owner, or is enclosed by the owner, of some other text window.

To keep node windows consistent, any command that results in the deletion or replace-
ment of a node has the following cffects. If the node is simply deleted and not replaced by
anything, every node window with that nodes as its owner is set to own instead the parent
of that node. Otherwise, the deleted node is replaced by another node and so every node
window with the deleted nodes as its owner is set to own instead the replacement node.
Since deleted nodes are inserted into the scrap node window, any node window that retained
a view on a deleted node would provide merely a subview of the scrap node window.

Clearly, the sclection of each node window too, like the owner itself, must be kept con-
sistent with respect to the deletion, insertion, and replacement of nodes. This is done much
like it is for the owner.

Note that multiple views are possible even for the scrap windows. This may be confusing
however, because only the selection of the original window is used as the source for insertions
and there is nothing to distinguish the copy from the original, except that the copy can be

closed whereas attempting to close the original only deletes its contents.

B.11 Top-level nodes

There are four classes of node that are meaningful at the top level, i.e., as unattached nodes

without context:
e type-binding
o fixed-value-binding
¢ fixed-value-declaration
® binding-list

Each will be considered in turn.
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B.11.1 Top-level type-bindings

A type-binding is meaningful at the top level because it introduces a global type-identifier.
To make the type-identifier visible, however, the type-binding must first be stored in a file.
This is done by holding [shiftl’ﬁ W []on the node window that owns the type-binding,

which causes the node command menu to pop up. Dragging the mouse to select a command

and releasing the button invokes the command.

When store is invoked for a type-binding, a file containing the type-binding in compacted
form is created. The file is stored in the current directory, unless a previous version is present
in some search directory, in which case the file is stored in that directory. Because of the
limitation of MS-DOS file names, only the first eight characters of the binding’s defined-
identifier are used. For type-binding files the suffix is “.tb.’

Previous versions of the type-binding are renamed as backups, e.g., ‘*.tb’ becomes “*.bl)
“.tb1’ becomes ‘*.tbh2,” and ‘*.tb2’ is erased. Up to 9 backup versions could be maintained
in this way, although currently only two backups are maintained. If the current directory
contains a directory named ‘bak,” the backup versions are moved to that directory. Thijs
helps to keep working directories clear of various auxiliary files.

It is the presence of a type-binding file in the file system that makes the defined-identifier
globally visible. PCAcer automatically loads the files as necessary, maintaining a unique node
to represent the contents of each file. Therefore, when a type-binding is stored, it becomes
an attribute node. A node window indicates that the root of its owner is an attribute by the
symbol ©® at the beginning of its banner.

Attribute nodes are different from ordinary nodes because they should not and cannot
be modified. Consider what would happen if a stored type-binding could be modified. Some
other node may well map the defining-occurrence of a type-identifier to the defined-identifier
of that type-binding; after all, the defined-identifier is globally visible. A subsequent edjt
could then remove the defined-identifier from the type-binding, leaving the other node with
a type-identifier that maps to a now invalid defining-occurrence. Furthermore, since every
node potentially refers to the type-binding, the attributes of all nodes could be invalidated
by a single change to the type-binding. For these reasons, editing of attributes is prevented.

To modify a type-binding that has become an attribute, all that is necessary is to make

a copy, create a new window, and replace the node in the new window with the copy, e.g
£,

click on the type-binding, click on the window, click on the
new command, and click mm on the new window. The result is a copy of the

type-binding, which can be edited and then stored to replace the previous version, Storing
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the new version converts it to an attribute node; the old version reverts to being an ordinary

node.

B.11.2 Top-level fixed-value-bindings

A fixed-value-binding is meaningful at the top level because it can be compiled to produce
a fixed-value declaration, which introduces a global value-identifier. It can also be executed
to yield its definition. Furthermore, a fixed-value-binding can be stored just like a type-
binding to create a file containing the fixed-value-binding in compacted form. For a fixed-
value-binding, the file has suffix ‘.vb’ and previous versions are backed up, just as for a
type-binding.

Unlike a type-binding file, the presence of a fixed-value-binding file in the file system
does not make the defined-identifier globally visible. Compilation is necessary first. For
this reason, a fixed-value-binding does not become an attribute node when stored. PCAcer
never£he]ess keeps track of whether a fixed-value-binding is up-to-date with respect to its
stored version——if it is not, the stack-list menu displays a A in front of the binding’s identifier.

A fixed-value-binding is compiled by invoking compile in the node command menu. The
binding is stored, if it is not up-to-date; it is validated, i.e., checked for correctness; it is
translated to produce an assembler (“.a’) file; and the assembler file is assembled to produce
an object (“.0") file. In addition, a fixed-value-declaration is created, stored in a ‘.vd’ file, and
made the owner of a new node window; it is is an attribute node and its defined-identifier is
globally visible by virtue of the presence of the ‘.vd’ file.

Assembler files, object files, and fixed-value-declaration files are created with the same
base name as the fixed-value-binding file. They are stored in the current directory, unless
the current directory contains an ‘a’ directory, an ‘o’ directory, or a ‘vd’ directory, in which
case the file is stored in the directory that corresponds to its suffix.

Validation can be performed separately from compilation by invoking validate in the
node commands menu. If an error is found, an offending node is selected and an associated
diagnostic error message is produced on the bottom edge. Compilation proceeds only if
validation is successful.

PCAcer keeps track of dependencies between files so that files can be correctly maintained.
This information is stored in a dependency file associated with each binding file (“.tdp’ for
a type-binding, and ‘.vdp’ for a fixed-value-binding). These files are stored in the current
directory, unless the current directory contains a ‘dp’ directory, in which case they are stored

there instead. Dependency files are created as they are needed and contain essentially just
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the closure of the binding.

Because of dependencies, compiling a fixed-value-binding may require the compilation of
bindings it depends on. This is handled automatically and is of little concern to the user.
Any errors that arise are reported by a node window. PCAcer stores all top-level fixed-value-
bindings and binding-lists before compilation begins. The scrap windows are cleared to free
up space.

A fixed-value-binding is executed by invoking run in the node commands menu. The
binding is first compiled, if necessary; the required object (‘.0”) files are then linked to
produce an executable (*.axe’) file, which is stored in either the current directory or the ‘axe’
directory of the current directory; and finally, the executable file is loaded to begin execution.

Upon termination, the definition of the binding is yielded. This value, represented as a
node, is displayed in a new node window. PCAcer does not yet provide Acer programs with
the ability to perform terminal 1O so only side-effects to the file system are possible. Hence,
every-program should produce a result value.

Note that linking can be performed separately from execution by invoking link in the

node commands menu. The exccutable file is then created but it is not loaded and executed.

B.11.3 Top-level binding-lists

A binding-list is meaningful at the top level because it is used to compile mutually dependent
fixed-value-bindings. A top-level binding-list may only contain type- and ﬁxed-value-bindings
and must contain at least one fixed-value-binding; the first fixed-value-binding, then, is called
the primary binding. A binding-list is executed to yield the definition of the primary binding.

A binding-list is stored, just like a type- or fixed-value-binding. The result is the creation
of a *.vb’ file for cach fixed-value-binding in the binding-list. These files are stored just as for
individual fixed-value-bindings, including the maintenance of backups. The ‘.vb’ file for the
primary binding contains the binding-list; cach other file contains a reference to the primary
file. Any type-bindings are not stored separately. (As we shall see later, fetching any of the
files fetches the entire binding-list.)

A binding-list, like a fixed-value-binding, does not become an attribute node when stored
but PCAcer does keeps track of whether a binding-list is up-to-date with respect to its stored
version—if it is not, the stack-list menu displays a A in front the primary binding’s identifier.

A binding-list is compiled by invoking compile in the node command menu. It is stored,
if it is not up-to-date; it is validated, i.e., checked for correctness; it is translated to produce

an assembler (*.a") file; and the assembler file is assembled to produce an object (“.0") file.
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The assembler file and the object file are created only for the primary binding, although they
contain the code to evaluate all the bindings, but a fixed-value-declaration file is created for
each fixed-value-binding. The result of compilation is a window for each declaration.

Note that a dependency (‘.vdp’) file is created only for the primary binding, but it includes
the dependencies for all the bindings.

A binding-list is executed by invoking run in the node commands menu. The binding-list
is first compiled, if necessary; the required object (*.0’) files are then linked to produce an
executable (‘.axe’) file, which is stored in either the current directory or the ‘axe’ directory
of the current directory; and finally, the executable file is loaded to begin execution. Upon
termination, the definition of the primary binding is yielded. This value, represented as a

node, is displayed in a new node window.

B.12 Fetching files

Nodes and text can be fetched from the file system. Automatic fetching of type-bindings
and fixed-value-declarations, to resolve defining-occurrences, is performed when necessary.
To guide automatic fetching, the directories specified by the directory list of the MS-DOS

environment variable ACERINPUT are scarched. This variable is set something as follows:

set ACERINPUT=.;C:\acer\lib;.\vd;.\dp;.\o;.\axe;.\a

PCAcer also supports manual fetching and can fetch four different types of object: text
(i.e., a text file with a ‘.ace’ suffix containing an ASCII representation of a node), types (ie.,
a “.tb’ file), values (i.e., a “.vb’ file), and declarations (i.e., a ‘.vd’ file).

Fetch is invoked by holding on the fetch command of the main menu, dragging
the mouse to select the desired option of the pop-up menu, and releasing the button. The
screen then fills with a fetch menu. There are four different fctch menus, but they are all
very similar. The similarities are described first.

The title at the top indicates whether the menu is for fetching text, types, values, or
declarations. The next line displays the current drive and directory, as well as the other
drives that can be selected. This is followed by an alphabetized list of files and directories
in the current directory. Only files appropriate to the fetch menu are shown in the listing,
i.e., files with the appropriate suffix. Furthermore, for ‘.tb,” “.vb,” and ‘.vd’ files, the file is
examined to determine the full name of the contained node and this full name is displayed in
the listing. (Recall that file names use only the first eight characters of the deﬁncd-identiﬁer.)

At the bottom of the screen is a prompt for directly entering the name of the desired file.
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The file system can be navigated by clicking on a drive name to change the
current drive. Clicking on a directory in the listing changes the current directory
to the selected directory. (Directories are distinguished from files by color.) The listing

changes to reflect each change to the current drive and directory.

Selecting a file by clicking on its name in the listing loads that file. A new

window is created to hold its contents: either a text window, in the case of a ‘.ace’ file, or a
node window, otherwise. When a text window is created, it is immediately converted to a

node window, if possible.
Pressing cancels the fetch menu. The current drive and directory are restored upon

exiting a fetch menu.

B.12.1 Fetching text

The fetch text menu lists only directories and ‘.ace’ files in the current directory. However,
the name prompt at the bottom of the menu can be used to load any file, including ones

without a ‘.ace’ suffix, by typing in the full file name (and path, if desired). Pressing

then loads the file into a new text window.

B.12.2 Fetching types

The fetch type menu lists only directories and *.tb’ files in the current directory. A full name
can also be typed directly, in which case a corresponding file is searched according to the

search path of ACERINPUT. This is like asking for the defining-occurrence of the entered name.

B.12.3 Fetching values

The fetch value menu lists only directories and ‘.vb’ files in the current directory. A fyl]

name can also be typed directly, in which case a corresponding file is searched according to

the search path of ACERINPUT.
If the specified fixed-value-binding is part of a binding-list, the entire binding-list is

loaded.

B.12.4 Fetching declarations

The fetch declaration menu lists only directories and ‘.vd’ files in the current directory. A

full name can also be typed dircctly, in which case a corresponding file is searched according
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to the search path of ACERINPUT. This is like asking for the defining-occurrence of the entered

name.

Note that when the fetch declaration menu is invoked, if there is a ‘vd’ directory in the
current directory, that directory automatically becomes the current directory. This, after

all, is where declarations will be stored.

B.13 Restoring files

Recall that type-bindings, fixed-valuc-bindings, and binding-lists are backed up when they
are stored. A backup version can be restored. Restore is invoked by holding on
the restore command of the main menu, dragging the mouse to select the desired option of
the pop-up menu (either type or value), and releasing the button. The screen then fills with

the selected restore menu, which looks very much like a fetch menu.

B.13.1 Restoring types

The restore type menu lists only directories and ‘.tb’ files in the current directory for which
a backup exists (i.e., a “.tb1’ file). Usually the backup will exist in the ‘bak’ directory of the
current directory. A full name can also be typed directly, in which case a corresponding file
is searched according to the scarch path of ACERINPUT.

Restoring a type-binding has the following effect. First the current version of the type-
binding is fetched and loaded into a new window. Then the current version is deleted from
the file system. Next the backup versions are renamed, e.g., “*.tb1’ becomes “*tb,” and
“* th2’ becomes ‘*.tb1.” The result is that the backup version becomes the current version,
which is then also loaded into a new window. If the backup version exists in the ‘bak’

directory, it is moved to the current directory.

B.13.2 Restoring values

The restore value menu lists only directories and ‘.vb’ files in the current directory for which
a backup exists (i.e., a ‘.vbl’ file). A full name can also be typed directly, in which case a
corresponding file is searched according to the search path of ACERINPUT.

Restoring a fixed-value-binding has the following effect. First the current version of the
fixed-value-binding is fetched and loaded into a new window. Then the current version js

deleted from the file system. Next the backup versions are renamed, e.g., ‘“*.vb1’ becomes
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“*.vb,” and ‘*.vb2’ becomes ‘*.vbl.” The result is that the backup version becomes the
current version, which is then also loaded into a new window. If the backup version exists
in the ‘bak’ directory, it is moved to the current directory.

When the restored fixed-value-binding is part of a binding-list, the entire binding-list is
loaded and all the other fixed-value-bindings in the list are also restored, i.e., their backups

are renamed as for the primary binding.

B.14 Querying semantic attributes of nodes

The following semantic attributes can be queried by invoking the corresponding command of

the node command menu, which pops up when |shift {0 B O |is held on a node window:
defining-occurrence, definition, denotation, type, and kind. The query is applied to the

selection of the node window. As a result, a new node window is created to contain the node
yielded by the query—the root of the yielded node is the owner and the yielded node is the
sclection. If a query cannot be processed, an error message is displayed instead. Defining-
occurrence applies only for an identifier or reused-identifier and the others apply only for an
expression,

PCAcer may have to create new nodes in response to a query, just as it has to create a
declaration during compilation. Such a created node is an attribute node and so cannot be
modified. Furthermore, modifying the source node of an attribute node created in response to
a query results in the destruction of the attribute node and its window. This way, displayed
attributes are consistent with their source.

Note that the validate command of the node command menu can be applied to detect

errors in any node.

B.15 Re-expressing a node

A node can be re-expressed in a different context as follows. First, select the source node
and sclect its window’s banner to make it the selected window. Then select the destination
node, i.c., the node at which the source node is to be expressed. Finally, apply the definition-
copy command of the node command menu to the destination window. This replaces the
destination node with a node that expresses the same object as the selection of the selected

window.

Definition-copy is a high-level way of yanking a node and copying it to another context.
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It ensures that the copy refers to the same defining-occurrences in the new context as the
original does in its context. (Reused-identifiers may have to be introduced.) In addition, its
ensures that the copy is expressed without denoters. (To eliminate a denoter, its definition
is also copied, and blocks must be introduced when recursion is involved.)

Note that the source window cannot be the same as the destination window because a
window can have at most one selection. It is simple, however, to create a copy of the window

so that two selections are specified.

B.16 And so on

Clearly, many other operations can be provided, both for node windows and text windows.

However, the basics have been covered.



Appendix C

The implementation manual

This appendix describes the implementation of PCAcer and its supporting metaprogramming
system. It uses Turbo Pascal running under MS-DOS and consists of the following units

each of the indicated length:

Core 19 Access 1563
Utility 66 MPS 1408
Mouse 286 FileServer 1349
Manager 528 AST 4378
Index 1557 AST?2 1478
Sequence 406 Compile 2930
Line 188 Run 2142
Linebuffer 250 Link 1226
Grammar 1109 ObjectView 245
MPS1 2267 LineView 1021
Keywords 125 TokenLine 95
LexicalAnalyzer 529 TokenBuffer 426
Parser 1745 TokenView 1129
Unparser 2675 WindowStack 1196
Makers 853 NodeView 3577

As such, the implementation comprises more than 36,000 lines of code.

The remainder of the appendix is organized as follows. Each section documents the
purpose of a particular unit, discussing any interesting implementation techniques; the Turbo
Pascal interface appears first, followed by a discussion. The implementation section of each
unit is not listed due to the shear volume of code. In addition, repetitive parts of some units
are elided (i.e., as ...). Typically, each unit is described before the units that use it

A familiarity with the basics of (Turbo) Pascal and MS-DOS is assumed.

245
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C.1 Core

UNIT Core; INTERFACE {$F+,L-}
CONST MD = FALSE;

IMPLEMENTATION ...
END.

Core serves three purpose: it sets up the use of overlays in its implementation part! by
initializing an overlay buffer, its uses CRT and then Assigns Input and Qutput to what they
were before CRT changed them, and it provides the Boolean constant MD, which is set to
true when the system is to be debugged for memory use, e.g., to check for leakage.

Core is of no particular interest.

C.2 Utility

UNIT Utility; INTERFACE {$F+,0+,L-}

TYPE
STRING6 = STRING[6];
STRING11 = STRING[11];

PROCEDURE ErrorNoise;

FUNCTION Max(i, j : LONGINT) : LONGINT;

FUNCTION Min(i, j : LONGINT) : LONGINT;

FUNCTION IntegerString(x : WORD) : STRINGS;
FUNCTION LongIntegerString(x : LONGINT) : STRINGii;

IMPLEMENTATION
END.

Utility provides convenient functions used in a number of different modules. Again, it

1s of no particular interest.

'Overlays are Turbo Pascal’s way of {reeing up memory by loading only part of a program’s code at a

time.
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C.3 Mouse

UNIT Mouse; INTERFACE {$F+,L-}

TYPE
ActionType =
(NoAction, MovedLeft, MovedUp, MovedDown, MovedRight,
LeftButtonPressed, LeftButtonReleased, RightButtonPressed,

RightButtonReleased, MiddleButtonPressed, MiddleButtonReleased) ;

ShiftKeys = (Shift, Ctrl, Alt);

ShiftStateType = SET OF ShiftKeys;

EventType =

RECORD

theAction : ActionType;
theShiftState : ShiftStateType;
x, y : INTEGER

. END;

PROCEDURE Initialize;

PROCEDURE HideCursor;

PROCEDURE ShowCursor;

PROCEDURE MouseGotoXY(x, y : Byte);

PROCEDURE MouseGetXY(VAR x, y : Byte);
FUNCTION MousePressed : BOOLEAN;

PROCEDURE ResetMouse;

PROCEDURE ReadMouse(VAR theEvent : EventType);

IMPLEMENTATION
END.

247

Mouse provides an interface for a three button mouse. The mouse driver is started

by a call to Initialize. Associated with the driver is a screen cursor, which is made

visible or invisible using ShowCursor and HideCursor. The position of the cursor is read by

MouseGetXY and is set by MouseGotoXY. Naturally, movement of the mouse itself also sets

the position of the cursor. Whether a mouse button is being held down is determined by

MousePressed, which is analagous to the KeyPressed function provided by CRT,

The mouse driver records a buffer of mouse events, e.g., button presses and releases and

the position of the cursor and the shift-state of the keyboard at the time of the press or

release. The buffer is erased by ResetMouse. An event is read by ReadMouse.

In short, Mouse provides the minimal opcrations required to support the functionality of

a mouse as used in the PCAcer environment.
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C.4 Manager

UNIT Manager; INTERFACE {$F+,0+,L-}
TYPE ShortPointer = WORD;

FUNCTION AllocatePointer(SizeInBytes : WORD) : POINTER;
PROCEDURE DeallocatePointer(thePointer : POINTER; SizeInBytes : WORD);
FUNCTION AllocateShortPointer(SizeInBytes : WORD) : ShortPointer;

PROCEDURE DeallocateShortPointer
(theShortPointer : ShortPointer; SizeInBytes : WORD);

VAR FreeUnusedSpace : FUNCTION : BOOLEAN;

IMPLEMENTATION ...
END.

Manager is the centralized memory manager and must be used for all memory allocation.
Regular memory allocation is accomplished by AllocatePointer and DeallocatePointer

What is special about this unit is that it also provides a type called ShortPointer, which
can be used like a regular Pointer but occupies only two bytes, rather than the four bytes
occupied by a regular Pointer. To dereference a ShortPointer x, the notation PTR(x,0) -
is used, a built-in notation of Turbo Pascal.

The reason this is possible is because an MS-DOS 4 byte memory address stored in a
Pointer variable p consists of a 2 byte segment address SEG(p~) and a 2 byte offset address
OFS(p~). The physical hardware address is derived from the segment and offsct addresses
by the formula 16 * SEG(p~) + OFS(p~); segments are 16 byte chunks of memory. As a
result, the offset address of a Pointer can be normalized to within a range of 0 to 15, with
the rest of the offset included as the scgment address. As such, only 4 bits of the 16 bits of
a normalized Pointer’s offset address are actually required

AllocateShortPointer exploits this situation by allocating the requested amount of
memory on an cven segment boundary. Hence, AllocateShortPointer need yield only the
scgment address, since the offset address is 0. DeallocateShortPointer is used to free such
a ShortPointer.

To maintain the integrity of the allocation scheme, Manager must be used for all allo-
cations. Note also that very little memory is wasted, e.g., if a ShortPointer to 4 bytes
of memory is allocated, the remaining 12 bytes of the segment will be used to satisfy a re-

quest for a regular Pointer to 12 bytes of memory. (Actually, some memory may be wasted
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because memory requests are rounded up to the nearest multiple of four.)

The function variable FreeUnusedSpace can besetsothatifManagerruns(nn;ofspace
FreeUnusedSpace is called to free some memory. The function assigned to FreeUnusedSpace
should therefore attempt to free memory and should yield true only if successful. Also, the
new function should not simply replace the old function already stored in FreeUnusedSpace,
it should store the old function in a local variable and should call that function as part of
its effort to {ree up memory. In this way, a chain of functions is formed, each attempting to
free memory. (This is analogous to the idea of exit-procedures in Turbo Pascal.)

To summarize then, Manager provides ShortPointer y)thatxnenunyrconmnnpﬁon is

drastically reduced. A ShortPointer, after all, occupies half the space of a regular Pointer.

C.5 Index

UNIT Index; INTERFACE {$F+,0+,L-}

TYPE
T = ~ IndexRecord;
Link = ~ LinkRecord;
Iterator =
RECORD
theLink : Link;
KeySize, InformationSize : BYTE
END;
OrderingPredicate = FUNCTION (VAR x, y) : BOOLEAN;
IndexRecord =
RECORD
Less : OrderingPredicate;
KeySize, InformationSize : BYTE;
Elements : Link
END;
LinkRecord =
RECORD
Key : POINTER;
SiblingSegment : WORD;
SiblingOffset : BYTE;
CASE Leaf : BOOLEAN OF
TRUE: (Child : Link);
FALSE: (AssociatedInformation : POINTER)
END;

Processor = PROCEDURE (VAR x);
ProcessKeyAndInformation =
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PROCEDURE (VAR TheKey, AssociatedInformation);

FUNCTION Make(Less : OrderingPredicate;
KeySize, InformationSize : BYTE) : T;
FUNCTION Copy(TheIndex : T) : T;
PROCEDURE Clear(TheIndex : T);
PROCEDURE Free(TheIndex : T);

PROCEDURE Associate(VAR TheKey, AssociatedInformation; Thelndex : T);

FUNCTION ConditionalAssociate

(VAR TheKey, AssociatedInformation; TheIndex : T) : BOOLEAN;

PROCEDURE Include(VAR TheKey; Thelndex : T);
FUNCTION Conditionallnclude(VAR TheKey; TheIndex : T) : BOOLEAN;
FUNCTION Lookup(VAR TheKey; Thelndex : T;
VAR AssociatedInformation) : BOOLEAN;
FUNCTION Member (VAR TheKey; Thelndex : T) : BOOLEAN;
PROCEDURE Exclude(VAR TheKey; Thelndex : T);
FUNCTION ConditionalExclude(VAR TheKey; TheIndex : T) : BOOLEAN;
FUNCTION Union(Index1l, Index2 : T) : T;
PROCEDURE UnionAndSet(Index1, Index2 : T);
FUNCTION Intersection(Index1l, Index2 : T) : T;
PROCEDURE IntersectionAndSet(Indexl, Index2 : T);
FUNCTION Difference(Index1l, Index2 : T) : T;
PROCEDURE DifferenceAndSet(Index1, Index2 : T);
FUNCTION Empty(Indexl : T) : BOOLEAN;
FUNCTION Equal(Indexl, Index2 : T) : BOOLEAN;
FUNCTION Less(Index1l, Index2 : T) : BOOLEAN;
FUNCTION Disjoint(Index1, Index2 : T) : BOOLEAN;
FUNCTION Subset(Index1, Index2 : T) : BOOLEAN;
FUNCTION ProperSubset(Indexl, Index2 : T) : BOOLEAN;
PROCEDURE ScanKeys(TheIndex : T; Process : Processor);
PROCEDURE ScanKeysAndInformation
(TheIndex : T; Process : ProcessKeyAndInformation);
PROCEDURE ScanInformation(TheIndex : T; Process : Processor);
PROCEDURE GetIterator (VAR thelterator : Iterator; Thelndex : T);
FUNCTION NextKey(VAR thelterator : Iterator; VAR TheKey) : BOOLEAN;
FUNCTION NextKeyAndInformation
(VAR thelterator : Iterator;
VAR TheKey, TheInformation) : BOOLEAN;
FUNCTION NextInformation(VAR thelterator : Iterator;
VAR Thelnformation) : BOOLEAN;

PROCEDURE LeastKey(TheIndex : T; VAR Key);

PROCEDURE LeastKeyAndInformation(TheIndex : T; VAR Key, Information);

PROCEDURE LeastInformation(TheIndex : T; VAR Information);

IMPLEMENTATION
END.

250
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Index provides a versatile data structure for creating sets and mappings for any base type
for which a total order exists. In particular, it is used to create a mapping or association
between values of one type, keys, and values of some other (though not necessarily different)
type, associated information. If the associated information is absent, the mapping is just a
set. The data structuring mechanism of Index facilitates O (logn) insertion, deletion, and
searching, where n is the number of elements in the index.

An index is created by Make, which takes the following: an OrderingPredicate that
in turn takes values of the key type and must act like less-than; a KeySize that indicates
the size of keys and must be 4 or less; and an InformationSize that indicates the size of
information and must also be 4 or less—if InformationSize is 0, the created index is just
a set.

It is possible to produce a Copy of an index and to Clear an index of its elements. An
index is deallocated by Free. A key and its associated information are inserted into an
index by either Associate or ConditionalAssociate—ConditionalAssociate inserts the
information only if the key is not already present and yields true only if the information
is actually inserted. Include and Conditionallnclude work similarly, but no associated
information is provided with the key.

To determine the information associated with a key in an index, Lookup is used. It returns
true if the key is present, in which case the associated information is also set. Similarly,
Member determines if a key is in an index.

Exclude removes a key from an index and ConditionalExclude does the same, but it
returns true if the key was actually a member.

Various other sct-based operations are provided for combining and comparing indexes.
Their effect is evident from their names.

Scan functions are also provided. They apply a Processor function to all the keys and/or
information of an index. Also, the notion of Iteratorsis supported by GetIterator, which
initializes a record of type Iterator. This can then be used by one of the Next functions
to sequence through the elements. A Next function yields true only if there is a next key
and/or information.

Finally, the Least functions are provided for easy access to the lowest key and/or infor-
mation in an index. (Remember, an index is sorted according to its predicate.)

A word of caution is in order with the use of this unit. Its facilities are extremely versatile
but care must be taken in their use since there is no type checking to ensure that keys and

information arc associated with the right ‘type’ of index. This highlights a glaring weakness
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of Pascal. Certainly an Acer implementation would provide improved type safety.

C.6 Sequence

UNIT Sequence; INTERFACE {$F+,0+,L-}
USES Manager;

TYPE SequenceType = POINTER;

CONST MaxSequencelength = 65536;

FUNCTION Construct(theSequenceLength : WORD) : SequenceType;
PROCEDURE Destruct(VAR theSequence : SequenceType);
PROCEDURE Expand (VAR theSequence : SequenceType; Position, Amount : WORD);
PROCEDURE Contract(VAR theSequence : SequenceType;
Position, Amount : WORD);
PROCEDURE Insert(Source : SequenceType;
VAR Destination : SequenceType;
DestinationPosition : WORD);
PROCEDURE Replace(Source : SequenceType;
VAR Destination : SequenceType;
DestinationPosition, DestinationAmount : WORD);
FUNCTION Copy(theSequence : SequenceType) : SequenceType;

PROCEDURE SublInsert(Source : SequenceTlype;
SourcePosition, SourceAmount : WORD;

VAR Destination : SequenceType;
DestinationPosition : WORD);

PROCEDURE SubReplace(Source : SequenceType;
SourcePosition, SourceAmount : WORD;

VAR Destination : SequenceType;
DestinationPosition, DestinationAmount : WORD);

FUNCTION SubCopy(theSequence : SequenceType;
StartPosition, Amount : WORD) : SequenceType;

IMPLEMENTATION
END.

Sequence}nrnddesatypcfbrrepnsenﬁngsequenccsofbyte& Suchzxsequenceisaﬂocated
on cven segment boundary and is represented as a Pointer to the byuzaﬁerthelam;byte
hnthesequence.Tﬂuweﬁne,thelength(ﬁzisequenaas 1s 0FS(s”) and a Pointer to the nth
byte of s is PTR(SEG(s”), n-1).

A sequence can be Constructed, Destructed, Expanded at a given by position by a given
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amount, and Contracted at a given position by a given amount. Various Insert, Replace,

and Copy operations are provided as well.

A trick used in the implementation of Sequence is that the actual number of bytes
allocated to a sequence is always an even power of 2. Thus if a sequence has length n, it is

actually allocated as 2M'82"1 bytes. Thus sequences can often be Expanded or Contracted

without reallocation.

Sequence is used to implement a number of other units, including Line, LineBuffer,

TokenLine, and TokenBuffer

C.7 Line

UNIT Line; INTERFACE {$F+,0+,L-}

USES Manager, Sequence;

TYPE
LineType = SequenceType;
LinePointer = ~ LineType;
CharPointer = -~ CHAR;
StringPointer = ~ STRING;

CONST MaxLineLength = MaxSequencelength;

FUNCTION Construct(theLineLength : WORD) : LineType;
PROCEDURE Destruct (VAR theLine : LineType);
PROCEDURE Expand(VAR thelLine : LineType; Position, Amount : WORD);
PROCEDURE AppendElement(theCharacter : CHAR; VAR theline : LineType);
PROCEDURE Contract (VAR theLine : LineType; Position, Amount : WORD);
FUNCTION Length(theLine : LineType) : WORD;
FUNCTION ToString(theLine : LineType) : StringPointer;
FUNCTION NthElement(theLine : LineType; n : WORD) : CharPointer;
PROCEDURE Insert(Source : LineType;

VAR Destination : LineType;

DestinationPosition : WORD);
PROCEDURE Replace(Source : LineType;

VAR Destination : LineType;

DestinationPosition, DestinationAmount : WORD);

FUNCTION Copy(theLine : LineType) : LineType;

PROCEDURE SubInsert(Source : LineType;
SourcePosition, SourceAmount : WORD;

VAR Destination : LineType;
DestinationPosition : WORD);
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PROCEDURE SubReplace(Source : LineType;
SourcePosition, SourceAmount : WORD;

VAR Destination : LineType;
DestinationPosition, DestinationAmount : WORD);

FUNCTION SubCopy(theline : LineType;
StartPosition, Amount : WORD) : LineType;

IMPLEMENTATION ...
END.

Line provides a type for representing space-efficient strings. Such lines are implemented
using Sequence. A String of length n is represented as a sequence of bytes of length n 41,
where the first byte is the length of the string. In this way, a line can be treated as a regular
String using the conversion function ToString.

The same operations as those that apply to sequences are provided for lines, although
Line also provides the functions Length and NthElement to access, respectively, the length

and the nth character of a line. (Note that NthElement yields a pointer to the nth character.)

C.8 LineBuffer

UNIT LineBuffer; INTERFACE {$F+,0+,L-}

USES Line, Manager, Sequence;

TYPE
LineBufferType = SequenceType;
LineBufferPointer = ~ LineBufferType;
CONST

MaxLineBufferLength = MaxSequencelength DIV 4;
NullLineBuffer : LineBufferType = NIL;

FUNCTION Construct(theLineBufferLength : WORD) : LineBufferType;
PROCEDURE Destruct(VAR theLineBuffer : LineBufferType);
PROCEDURE Expand(VAR thelLineBuffer : LineBufferType;
Position, Amount : WORD);

PROCEDURE Contract(VAR theLineBuffer : LineBufferType;

Position, Amount : WORD);
FUNCTION Length(theLineBuffer : LineBufferType) : WORD;
FUNCTION NthElement(thelineBuffer : LineBufferType;

n : WORD) : LinePointer;

PROCEDURE Insert(Source : LineBufferType;
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VAR Destination : LineBufferType;
DestinationPosition : WORD);
PROCEDURE DestructiveInsert(VAR Source : LineBufferType;
VAR Destination : LineBufferType;
DestinationPosition : WORD);
PROCEDURE Replace(Source : LineBufferType;
VAR Destination : LineBufferType;
DestinationPosition, DestinationAmount : WORD);
FUNCTION Copy(theLineBuffer : LineBufferType) : LineBufferType;

PROCEDURE SubInsert(Source : LineBufferType;
SourcePosition, SourceAmount : WORD;

VAR Destination : LineBufferType;
DestinationPosition : WORD);

PROCEDURE SubReplace(Source : LineBufferType;
SourcePosition, SourceAmount : WORD;

VAR Destination : LineBufferType;
DestinationPosition, DestinationAmount : WORD);

FUNCTION SubCopy(theLineBuffer : LineBufferType;
) StartPosition, Amount : WORD) : LineBufferType;

IMPLEMENTATION
END.

LineBuffer provides a type for representing sequences of lines. It is hnpknnenuxluﬁng

Sequence and provides the same kinds of operations.

LineBuffer is used to represent the comments associated with nodes and the textual

objects that appear in PCAcer text windows.

C.9 Grammar

UNIT Grammar; INTERFACE {$F+,0+,L-}

TYPE
NodeClass =
(Empty,
Accumulation, ..., VoidLiteral,
AccumulationList, ..., WhenCondition,
CharacterLiteral, ..., Valueldentifier);
NodeClassSet = SET OF NodeClass;

CONST

AbstractType = [OperatorCall, Typeldentifier, TypeSelection];
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WhenBranch = [TypeWhenBranch, ValueWhenBranch];
MinConstructionType = Accumulation;
MaxConstructionType = VoidLiteral;
MinListedType = AccumulationList;
MaxListedType = WhenCondition;
MinLexicalType = CharacterLiteral;
MaxLexicalType = Valueldentifier;
ConstructionTypes = [MinConstructionType .. MaxConstructionType];
ListedTypes = [MinListedType .. MaxListedType];
LexicalTypes = [MinLexicalType .. MaxLexicalType];
NoChildConstructions =

[AnyType, Empty, VoidLiteral, TypeDenoter, ValueDenoter];

FourChildConstructions = [Iteration];

FUNCTION NodeClassString(k : NodeClass) : STRING;

FUNCTION ComponentCount(k : NodeClass) : INTEGER;

FUNCTION OptionaIComponentQ(k : NodeClass; n : INTEGER) : BOOLEAN;
FUNCTION NthComponentName(k : NodeClass; n : INTEGER) : STRING;

PROCEDURE NthComponentDomain
(k : NodeClass; n : INTEGER; VAR Result : NodeClassSet);

PROCEDURE BaseDomainOfListedType(k : NodeClass;
VAR Result : NodeClassSet);

IMPLEMENTATION
END.

Grammar defines the type NodeClass to classify nodes; constructions are first, followed
by lists, and finally lexemes. The set of node classes specified by each Acer alternation ryle
is given as a set constant named according to the alternation rule.

Additional functions are provided to give generic access to Acer’s abstract grammar.
NodeClassString yields the spelling of a node class. ComponentCount yields the number
of components defined by a construction class. OptionalComponentQ determines whether 4
particular component of a construction is optional, NthComponentName determines the name
and NthComponentDomain determines the set of node classes that may occur. ’

Similarly, BaseDomainOfListedType yields the set of node classes that may occur as 5

list element.

C.10 MPS1

UNIT MPS1; INTERFACE {$F+,0+,L-}
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USES Grammar, LineBuffer, Line, Manager, Sequence;

TYPE
Node_ = ShortPointer;
NodePointer = ~ NodeCell;
ElementPointer = ~ Node_;
EmptyRecord =
RECORD
END;
AccumulationRecord =
RECORD
AccumulatorOf, Elements0f : Node_;
Definition : Node_
END;

VoidLiteralRecord =
RECORD
END;
AccumulationListRecord =
RECORD
Elements : SequenceType
END;

WhenConditionRecord =
RECORD
Elements : SequenceType
END;
CharacterLiteralRecord =
RECORD
LexicalValue : StringPointer
END;

ValueldentifierRecord =
RECORD
LexicalValue : StringPointer;
DefiningOccurrence : Node_

END;
LargestVariant = IterationRecord;
FlagNumberType = 0..15;
NodeCell =

RECORD

Flags : SET OF FlagNumberType;
Position : WORD;

Parent : Node_;

Comment : LineBufferType;
CASE NodeType : NodeClass OF
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Grammar.Empty: (Empty : EmptyRecord);

ValueIdentifier: (Valueldentifier : ValueldentifierRecord)

END;
STRING4 = STRING[4];

VAR Print : PROCEDURE (x : Node_.);
theUnattachedEmptyNode : Node_;

FUNCTION TestFlag(FlagNumber : FlagNumberType; x : Node_) : BOOLEAN;
PROCEDURE SetFlag(FlagNumber : FlagNumberType; x : Node_ );
PROCEDURE ClearFlag(FlagNumber : FlagNumberType; x : Node_ );
FUNCTION AddressString(x : Node_) : STRING4;
FUNCTION ConstructCopy(x : Node_) : Node_;
FUNCTION DenoterlessCopy(x : Node_.) : Node_;
FUNCTION TestEquality(x, y : Node_) : BOOLEAN;
FUNCTION TestLess(x, y : Node_) : BOOLEAN;
PROCEDURE Attach(aParent : Node_; aPosition : INTEGER; aChild : Node_);
PROCEDURE Reattach(aParent : Node_; aPosition : INTEGER; aChild : Node_);
PROCEDURE Unattach(x : Node_);
FUNCTION GetNthChild(aParent : Node_; aPosition : INTEGER) : Node_;
FUNCTION GetComponent1(aConstruction : Node_) : Node_;
FUNCTION GetComponent2(aConstruction : Node_) : Node_;
FUNCTION GetComponent3(aConstruction : Node_) : Node_;
FUNCTION GetComponent4(aConstruction : Node_) : Node_;
FUNCTION Allocate(aNodeClass : NodeClass) : Node_;
PROCEDURE Destruct(VAR x : Node_);
PROCEDURE Deattribute(x : Node.);
FUNCTION Construct0O
(aNoChildConstruction : NodeClass;
aComment : LineBufferType) : Node_;
FUNCTION Constructl
(aOneChildConstruction : NodeClass;
x1 : Node_;
aComment : LineBufferType) : Node_;
FUNCTION Construct2
(aTwoChildConstruction : NodeClass;
x1, x2 : Node_;
aComment : LineBufferType) : Node_;
FUNCTION Construct3
(aThreeChildConstruction : NodeClass;
x1, x2, x3 : Node_;
aComment : LineBufferType) : Node_;
FUNCTION Construct4
(aFourChildConstruction : NodeClass;
x1, x2, x3, x4 : Node_;
aComment :@ LineBufferType) : Node_j;
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FUNCTION ConstructList(alList : NodeClass;

aComment : LineBufferType) : Node_;
PROCEDURE ExpandList(alist : Node_; aPosition, anAmount : INTEGER);
PROCEDURE AppendElement(aList, anElement : Node_);
FUNCTION SelectElement(aSequence : SequenceType;

n : WORD) : ElementPointer;
FUNCTION ConstructTypeldentifier(alexicalValue : STRING) : Node_;
FUNCTION ConstructValueldentifier(alexicalValue : STRING) : Node_:
FUNCTION ConstructIntegerLiteral(alexicalValue : STRING) : Node_;
FUNCTION ConstructRealliteral(alexicalValue : STRING) : Node_;
FUNCTION ConstructStringliteral(alexicalValue : STRING) : Node_;
FUNCTION ConstructCharacterLiteral(alLexicalValue : STRING) : Node_;
FUNCTION GetLexicalValue(alexeme : Node_.) : StringPointer;
FUNCTION GetlInteger(anIntegerLiteral : Node_) : LONGINT;
FUNCTION GetReal(aRealLiteral : Node_) : REAL;
FUNCTION GetCharacter(aCharacterLiteral : Node_) : CHAR;
PROCEDURE SetDefiningOccurrence(id, theDefiningOccurrence : Node_);
FUNCTION GetDefiningOccurrence(id : Node_) : Node_;
PROCEDURE SetDefinition(x, theDefinition : Node.);
FUNCTION GetDefinition(x : Node_) : Node_;
PROCEDURE SetSort(aValue, aType : Node_);
FUNCTION GetSort(aValue : Node_) : Node_;
PROCEDURE ShowNode(x : Node.);

CONST BaseSize = SizeOf(NodeCell) - SizeOf(LargestVariant);
VAR TouchMonitor : PROCEDURE (theRoot : Node_);

IMPLEMENTATION
END.

MPS1 provides primitive facilities for representing and manipulating nodes. However, it
is not intended for gencral use because its facilities are low-level. As such, it declares the
type Node_ with an underscore to represent low-level nodes.

A node, then, is simply a ShortPointer, which can be converted to a NodePointer using
NodePointer (PTR(theNode,0)). A NodePointer points at a NodeCell, which is a variant
record that includes the following: a set of 16 Flags, a Position, a Parent, a Comment, a tag
called NodeType, and a variant part for each possible node class. The head of the NodeCel1
record is common to all node classes and the tail is specific to each node class.

For cach node-class x, a variant ficld also named x is defined when NodeType is x; this
field is of a record type named xRecord, the components of which are class dependent. In
general, for a construction, a component of type Node_ is declared for each construction

component, with a name derived {rom the component name; for a list, a component of
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type SequenceType named Elements is declared; and for a lexeme, a component of type
StringPointer named LexicalValue is declared.

Additional components are declared in some xRecords to store the semantic attributes
defining-occurrence, type, and definition. They are named DefiningOccurrence, Sort, or
Definition, respectively. Identifiers have a DefiningOccurrence component and expres-
sions can, but do not necessarily, have a Sort component and a Definition component.

The following facilities are provided to support the manipulation of nodes. First, a low-
level print routine is provided by the procedure variable Print. It is originally set to the
procedure ShowNode, which simply displays the contents of a NodeCell record. However,
if Unparser is used, the original Print is replaced by a more sophisticated printer, which
prints a node and its children according to Acer’s concrete syntax.

The variable theUnattachedEmptyNode contains a special unattached empty node that
has itself as its parent. This node is the parent of every unattached node, including itsclf.

To reduce dependence on the particular data structure used in MPS1, various access
routines are provided. For example, TestFlag, SetFlag, and ClearFlag are used to access
the Flags field of a node.

AddressString yiclds a four-character hexadecimal representation of a node viewed as
a ShortPointer. The PCAcer environment uses these as node identity numbers.

ConstructCopy produces a copy of the entire tree rooted at the given node; when a
denoter is copied, a new denoter is crecated with the same node for its definition as the
original. DenoterlessCopy is similar but each copied type-denoter is replaced by an any-
type and each copied value-denoter is replaced by a void-literal.

Testing for structural equality and lexicographic order is supported by TestEquality
and TestLess.

The primitive functions Attach, Reattach, and Unattach are provided for building and
editing nodes. Attach takes a parent node, a position, and an unattached child and attaches
the child at the specified position of the parent. Reattach is the same but the child may
be attached, in which case it is removed {rom its context. And Unattach simply detaches a
child, i.e., it sets the position to 0 and the parent to theUnattachedEmptyNode.

GetNthChild selccts a child at a given position and the GetComponentn functions serve
the same purpose but only for construction nodes.

The ability to create and free nodes is provided by Allocate and Destruct. Note that
destructed nodes are not freed to the heap, they are stored for later reuse by Allocate.

Deattribute removes all semantic attributes associated with a node and any of its children.
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There are other ways than Allocate to construct a node. In particular, a construction
node can be created, given appropriate unattached children, using one of the Constructn
functions. Similarly, an empty list can be created by ConstructList; the Elements fields
of such a list can then be modified by ExpandList to permit children to be Attached.
ExpandList specifies the position at which to expand and by how much. As well, an element
can be appended to a list using AppendElement.

Elements of a list are accessed as follows. SelectElement, given the Elements field of a
list node and a position n, yields an ElementPointer, i.e., a pointer at a node. With this
function, the nth element of a list can be either assigned to or simply examined.

For constructing a lexeme from its spelling, various ConstructLexeme functions are pro-
vided. Also, for accessing the spelling of a lexeme, GetLexicalValue is provided. The special
functions GetInteger, GetReal, and GetCharacter are provided for accessing integer-, real-,
and character-literal values respectively.

Finally, functions for Getting and Setting the semantic attributes defining-occurrence,
definition, and type are provided.

MPS1 uses a number of implementation techniques that are of interest and must be un-
derstood to explain the purpose of TouchMonitor.

To begin with, one of the goals of MPS1 is to support the maintenance of valid semantic
attributes in the presence of editing. In general, whenever a node modification takes place, all
nodes within the tree will have invalid semantic attributes since they are all interdependent.
Therefore, one approach for maintaining attributes would be to simply traverse the entire
tree and remove all attributes. However, this would make a simple edit an operation that
takes O (n) time, where n is the number of nodes in the tree. This is unacceptable when
such an edit can be done in constant time in the absence of attributes.

The approach used in MPS1 has a more acceptable overhead. To outline the approach,
assume that every node has a flag, let’s call it ModifiedQ, which starts out as false. Then,
whenever an edit (e.g., Attach, Reattach, or Unattach) takes place at a given node, the
ModifiedQ of that node and every node from it to the root is set to true. The overhead
on editing is thus proportional to the depth of the tree. But, since syntax trees tend to get
wider rather than deeper, editing is essentially still a constant-time operation.

Whenever an attribute lookup is applied for a given node (e.g., GetSort), all parents of
the node are examined to see if any have a true ModifiedQ. If any are true, the stored
attribute is invalid and is discarded. The overhead on attribute lookup is therefore also

proportional to the depth of the node.
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ModifiedQ becomes false only when an attribute is stored at a node. In this case, the
tree is again traversed from the node to the root but on the way back down, for any node
with a true ModifiedQ, the ModifiedQ of each of its children is set to true and the node’s
own ModifiedQ is set to false. This downward propagation of flags continues until the
start node is reached. Thus, after an attribute is set for some node, every node between it
and the root will have a false ModifiedQ. Ilence, a subsequent lookup will simply return
the stored attribute. Of course, other nodes in the tree may still have a true ModifiedQs
but these flags will invalidate only the attributes within those subtrees and will also become
false when attributes are stored within those subtrees. The overhead on attribute storage
is potentially proportional to the number of nodes in the tree, but then the determination
of the attribute itself is typically the dominating time factor anyway.

With the above approach, the various Get functions yield only valid attributes, and can
discard any invalid attributes.

N(;W, another problem with attributes is that they are typically nodes that are automat-
ically created in response to a query. Ilence, when an edit is performed and an attribute is
no longer valid, what is to become of it? Turbo Pascal does not support garbage collection,?
so invalid attributes cannot simply continue to exist as they will eventually exhaust memory.
Thus invalid attributes should somehow be automatically reclaimed.

To this end, the NodeCell record is used in the following tricky way. If the Parent field
of a NodeCell is sct to theUnattachedEmptyNode, we know that the Position field must
be 0. Therefore, the Position field can be used for another purpose in this case. For this
reason, when an unattached node is Set to be the attribute of some node, the Position field
of the attribute is used to store the identity of the ‘attribute parent.” Because of this, when
the attribute of a node x is known to be invalid using the previous flagging technique and the
attribute node indicates x to be its attribute owner, the attribute node can be Destructed.

It is important to realize that although attributes can be shared by many nodes and
hence a Destructed attribute may still appear as an attribute of some other node this does
not cause a problem. After all, there is at most one attribute owner so an attribute will
only be Destructed once. In addition, a Destructed node is not actually rcturned to the
heap, so it is still valid to access its Position ficld to check for ownership, even if the node
is subsequently Allocated to serve a new purpose.

One final trick used in MPS1 is that the position of an unattached node can also be set

2Note that Acer does have garbage collection so attribute nodes may continue to exist until they become
garbage.
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to 1 (rather than 0). In this case, whenever part of that node is modified, the function
stored in TouchMonitor is applied to the root node. This is how the PCAcer environment
(and FileServer in particular) keeps track of whether a top-level fixed-value binding or

binding-list is modified with respect to the version stored in the file system.

C.11 Keywords

UNIT Keywords; INTERFACE {$F+,0+,L-}

PROCEDURE InstallKeyword(spelling : STRING; tokenCode : INTEGER);
FUNCTION FindKeyword(VAR spelling : STRING) : INTEGER;
PROCEDURE ShowKeywords;

IMPLEMENTATION ...
END.

Keywords provides a hash table in which keywords can be installed for efficient lookup.
InstallKeyword, given a spelling and the token-code of the keyword represented by the
spelling (i.e., the ORD of the TokenType as defined by LexicalAnalyzer.), installs the in-
formation in the hash table. A subscquent call to FindKeyword, with a particular spelling,
yields the token-code associated with that spelling, or 0 if the spelling is not in the hash
table.

ShowKeywords prints the contents of the hash table.

C.12 LexicalAnalyzer

UNIT LexicalAnalyzer; INTERFACE {$F+,0+,L-}

USES Grammar, Keywords, Line, LineBuffer, MPS1;

TYPE
TokenType =
(EOStoken,
DotToken, ..., CommaToken,
LetToken, ..., TryingToken,
IntegerLiteralToken, ..., StringliteralToken,
BadToken) ;

CharacterGenerator = PROCEDURE (VAR Ch : CHAR);
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ErrorHandler = PROCEDURE (x, y : WORD; Reason : STRING);

CONST
MinToken = EQOStoken;
MinPunctuationToken = DotToken;
MaxPunctuationToken = CommaToken;
MinKeywordToken = LetToken;
MaxKeywordToken = TryingToken;
MinLexicalToken IntegerLiteralToken;
MaxLexicalToken = StringlLiteralToken;
MaxToken = BadToken;
MaxTokenString = 26;

VAR TokenString : ARRAY [TokenType] OF STRING[MaxTokenString + 1];
CurrentLexeme : Node_;
CurrentToken : TokenType;
TokenPosition, TokenLine, CommentPosition : WORD;

PROCEDURE AcceptToken(token : TokenType; VAR Comment : LineBufferType) ;
PROCEDURE InitializelexicalAnalyzer

(NextChar : CharacterGenerator; Failure : ErrorHandler);
PROCEDURE FilelInitializeLexicalAnalyzer(VAR InputFile : TEXT);
PROCEDURE ParseFailure(str : STRING);

IMPLEMENTATION
END.

LexicalAnalyzersupportstheconverﬁon(ﬂ%lsmeanlofcharacknstoztﬁmeanloftoken&
TokenType is provided to classify tokens, which are grouped to reflect the categories punctu-
ation, keyword and lexeme. The spelling of each token is stored in the array TokenString.

LexicalAnalyzer is initialized to begin analysis either by calling the procedure
InitializeLexicalAnalyzer with a function that gencrates characters and a function that
handles errors, or by calling FileInitializelLexicalAnalyzer with a TEXT file. If a parser
detects an error during parsing, it can call ParseFailure to terminate analysis and produce
an error message associated with the CurrentToken.

Once analysis begins, the interface variables contain information about the most recently
analyzed token: CurrentToken contains the TokenType, CurrentLexeme contains a lexeme
if CurrentToken is a lexical token, TokenPosition contains the column position, TokenLine
contains the row position, and CommentPosition contains the column position at which the
first associated comment starts

A parser accepts a token by calling AcceptToken with the type of token expected; the
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associated comment is set and the interface variables are updated to reflect the new informa-
tion about the next token. If CurrentToken is not of the specified type, LexicalAnalyzer
calls the error handler function—for FileInitializeLexicalAnalyzer the error handler
writes an error message to standard output but a programmer supplied handler may do
what it pleases.

Recall from Chapter 5 that tokens have row and column positions by virtue of the fact
that the stream of characters from which they are derived contains ASCII formatting char-
acters that imply discrete lines of text. This position information is essential for producing

informative error messages.

C.13 Parser

UNIT Parser; INTERFACE {$F+,0+,L-}
USES LineBuffer, LexicalAnalyzer, MPS1;
TYPE Node = Node_;

FUNCTION Parse(VAR inputFile : TEXT) : Node;

PROCEDURE ParseLineBuffer(theLineBuffer : LineBufferType;
VAR ResultNode : Node;
VAR ErrorPositionX, ErrorPositionY : WORD;
VAR ErrorReason : STRING);

FUNCTION ParseStream(NextChar : CharacterGenerator;
Failure : ErrorHandler) : Node;

IMPLEMENTATION ...
END.

Parser provides three different parsing routines. Parse parses a node from a TEXT file;
ParseStream parses a node given a function that generates characters and a function that
handkmtuTorg;nuiParseLineBufferInusesa.nodefunnszineBuffer,itsetstheresuh&ng
node to ResultNode and if an error occurs, the error information (i.e., the position and error
message) is assigned to the remaining parameters. The three routines share a common
implementation.

There is nothing very interesting about the implementation of Parser.
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C.14 Unparser

UNIT Unparser; INTERFACE {$F+,0+,L-}

USES Index, Grammar, LexicalAnalyzer, Line, LineBuffer, MPS, MPS1;

TYPE
UnparseState =
RECORD
vPosition, hPosition : INTEGER;
Hold, Reserve : INTEGER;
CurrentNode : Nodse;
PreviousToken : TokenType;
BreakPending : BOOLEAN;
PendingHold : INTEGER;
CASE Fitting : BOOLEAN OF FALSE: (Narrow : BOOLEAN)
END;
Unparseltem = ~ UnparseltemCell;
UnparseltemCell =
RECORD

theToken : TokenType;
theOwner : Node;
hPosition : INTEGER;
NthCommentLine : WORD
END;
BreakPrinter = PROCEDURE (VAR state : UnparseState);
CommentLinePrinter = PROCEDURE (Nth : INTEGER; VAR state : UnparseState);
TokenPrinter = PROCEDURE (token : TokenType; VAR state : UnparseState);
NodeEmitter = PROCEDURE (x : Node; VAR state : UnparseState);

VAR LineWidth, DenoterCutOffWidth : INTEGER;
PrintEmptyNodes : BOOLEAN;
TheBreakPrinter : BreakPrinter;
TheCommentLinePrinter : CommentLinePrinter;
TheTokenPrinter : TokenPrinter;
TheNodeEmitter : NodeEmitter;
DelimitQ : ARRAY [TokenTypel OF SET OF TokenType;
ReserveForA : ARRAY [MinPunctuationToken..MaxKeywordToken] OF
1..MaxTokenString + 1;

CONST
IndentStep = 2;
HalfIndentStep = 1;

PROCEDURE OutputSyntagm(x : Node);
PROCEDURE PrintSyntagm(VAR f : TEXT; x : Node);
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FUNCTION FitNode(x : Node; VAR state : UnparseState) : BOOLEAN;

PROCEDURE EmitNode(x : Node; VAR state : UnparseState);

PROCEDURE Emit(VAR state : UnparseState);

PROCEDURE EmitComment(Comment : LineBufferType; VAR state : UnparseState);
PROCEDURE Break(VAR state : UnparseState);

IMPLEMENTATION ...
END.

Unparser provides facilities for pretty-printing nodes. Function parameters are used for
the fitting and printing.

A number of interface variables are declared. LineWidth is set to indicate the number of
columns in which the formatted output should fit. (The actual output may be wider when
there is insufficient space to print the node.) DenoterCutOffWidth is set to indicate the
maximum length of a denoter’s printed definition; if this length is exceeded, the definition is
not printed. PrintEmptyNodes is set to huhcauzwhetherenuﬂgrnodesshoukibe<pﬁntajas
the keyword nothing or should be invisible. The array DelimitQ, for each type of token t,
indicates the set of tokens that must be delimited by white space when they follow t. The
array ReserveForA, for each type of token t, indicates how must space should be reserved
at the end of a line in order that t will still fit.

The remaining interface variables are procedure variables for customizing the pretty
printer. Each takes a state parameter of type UnparseState, which includes the follow-
ing information. The current vertical and horizontal position vPosition and hPosition;
the Hold, i.e., the amount of indentation to appear after the next line-break; the Reserve,
i.c., the amount of space to be left unused at the end of the line; the CurrentNode that is
being printed or fitted; the PreviousToken that was printed or fitted; the PendingBreak,
i.e., whether a break is pending before the next token is printed; the PendingHold, i.e., the
hold that is in effect for the pending break; the Fitting flag, which indicates whether the
printer is testing if a node fits or is actually printing; and finally, if the printer is not fitting,
Narrow indicates whether the entire CurrentNode fits on the current line. (BreakPending
and PendingHold are used In conjunction with the printing of comment lines so that com-
ments appear as a block, i.e., each % character is lined up in a column).

TheBreakPrinter is used by Unparser to print a line-break and to set up the indentation
for the next line. Therefore, it should normally increment vPosition and set hPosition to
Hold. TheBreakPrinter is not called during fitting.

TheCommentLinePrinter is used by Unparser to print the nth comment-line of the

CurrentNode as indicated by state. Therefore, it should normally increment hPosition
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by the amount of space taken up by the % character and the comment-line itself. It is not
called during fitting. (A node that is commented is always printed as narrow.)

TheTokenPrinter is used by Unparser to fit and print tokens. Normally it increments
hPosition to indicate the amount of space used by the token and DelimitQ is consulted to
determine if space should precede the token. Only when Fitting is false in state, should
tokens actually be printed.

TheNodeEmitter over-rides the normal formatting of nodes. Initially TheNodeEmitter
is set to be the same as EmitNode. However, it can be replaced with a procedure that does
special formatting. This procedure can call EmitNode for cases to be handled as usual.

FitNode, Emit, EmitNode, EmitComment, and Break are used to implement node format-
ﬁng.'The(kmaﬂsofho“rUﬁsisdone\vﬂlnotbe(hmcﬁbed.Inﬁcad,atypkmlnodefonnatﬁng

routine is shown below:

. PROCEDURE EmitDyadicMethodCall(VAR state : UnparseState);

BEGIN
WITH state DO

BEGIN

EmitToken(LCurlyBracToken, state);

Hold := hPosition;

INC(Reserve,

System.Length
(GetLexicalValue(GetComponent2(CurrentNode))~) + 1);

TheNodeEmitter (GetComponenti{(CurrentNode), state);
DEC(Reserve,

System.Length
(GetLexicalValue(GetComponent2(CurrentNode))~) + 1);

TheNodeEmitter (GetComponent2(CurrentNode), state);

Break(state);
IF NOT Fitting OR (hPosition + Reserve < LineWidth) THEN

BEGIN
INC(Reserve, ReserveForA[RCurlyBracToken]);
TheNodeEmitter (GetComponent3{(CurrentNode), state);
DEC(Reserve, ReserveForA[RCurlyBracToken]);
EmitToken(RCurlyBracToken, state);
EmitComment (CommentOf (CurrentNode)~, state)

END

END
END;

A programmer wishing to customize the formatting of a particular class of node will typically
make a copy of such an existing routine and modify it. “

The pretty printer could easily be modified to fit and print proportional characters just
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by using hPosition to indicate point sizes rather than simply column position. In other
words, the units represented by hPosition, Hold, LineWidth, and so on, do not matter.
Note that the type UnparseltemCell is use by the unit TokenLine to represent lines of
tokens. Each such token has a TokenType, an owner node, and a starting hPosition. In
addition, if the token is a comment-line, NthCommentLine indicates which line of theOwner

the token stands for.

C.15 Makers

UNIT Makers; INTERFACE {$F+,0+,L-}

USES MPS;

FUNCTION MakeAccumulation(x1, x2 : Node) : Node;
éﬁﬁCTION MakeVoidLiteral : Node;

IMPLEMENTATION ...
END.

Makers provides functions for constructing each class of construction node from the appro-

priate number and type of children. (If an attached child is provided, a copy is automatically

produced.)

C.16 Access

UNIT Access; INTERFACE {$F+,0+,L-}
USES MPS;
FUNCTION AccumulationQ(x : Node) : BOOLEAN;

FUNCTION WhenConditionQ(x : Node) : BOOLEAN;
FUNCTION Accumulator0f(x : Node) : Node;

FUNCTION Variants0f(x : Node) : Node;

IMPLEMENTATION ..
END.
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Access provides two sets of functions: a recognizer for each class and category of node;
and a selector for each construction component name. The xQ functions yield true if their
argument node is of the corresponding class or category; the x0f functions yield the x

component of their construction argument.

C.17 MPS

UNIT MPS; INTERFACE {$F+,0+,L-}

USES Grammar, Keywords, MPS1, LineBuffer;

TYPE Node = Node_;
VAR theUnattachedEmptyNode : Node;

FUNCTION NodeType(x : Node) : NodeClass;

PROCEDURE ContextDomain(x : Node; VAR Result : NodeClassSet);
FUNCTION DeletableContextQ(x : Node) : BOOLEAN;
FUNCTION EmptyQ(x : Node) : BOOLEAN;

FUNCTION LexemeQ(x : Node) : BOOLEAN;

FUNCTION ListQ(x : Node) : BOOLEAN;

FUNCTION ConstructionQ(x : Node) : BOOLEAN;

FUNCTION AttributeQ(x : Node) : BOOLEAN;

FUNCTION Parent(x : Node) : Node;

FUNCTION AttributeParent(x : Node) : Node;

FUNCTION Root(x : Node) : Node;

FUNCTION AttributeRoot(x : Node) : Node;

FUNCTION Depth(x : Node) : WORD;

FUNCTION FirstLexeme(x : Node) : Node;

FUNCTION StructurallyEqualQ(x, y : Node) : BOOLEAN;
FUNCTION StructurallyLessQ(x, y : Node) : BOOLEAN;
FUNCTION EnclosesQ(x, y : Node) : BOOLEAN;

FUNCTION ImproperlyEnclosesQ(x, y : Node) : BOOLEAN;
FUNCTION AttributeEnclosesQ(x, y : Node) : BOOLEAN;

FUNCTION ContainsQ(theLeftNode, theRightNode,
theTargetNode : Node) : BOOLEAN;

FUNCTION Enclosing(AncestorDomain : NodeClassSet; x : Node) : Node;
FUNCTION CommonAncestor(x, y : Node) : Node;

FUNCTION CommentOf(x : Node) : LineBufferPointer;

PROCEDURE AppendComment(x : Node; Comment LineBufferType);
PROCEDURE ReplaceComment(x : Node; NewComment : LineBufferType);
FUNCTION FirstElement(list : Node) : Node;

FUNCTION NthElement(list : Node; n : INTEGER) : Node:
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IX C.

FirstComponent (aConstruction :

NthComponent (aConstruction :
FirstChild(aParent : Node)
NthChild(aParent : Node; n :
NumberOfChildrenOf (x : Node)
Position(x : Node) : INTEGER
Previous(x : Node) : Node;
Next(x : Node) : Node;
Copy(x : Node) : Node;
Replace(x1, x2 : Node);
ReplaceAndSet (VAR x1 : Node
Exchange(x1, x2 : Node);
Delete(x : Node);
Insert(list : Node; n :
TailInsert(list : Node;
Splice(list : Node; n :
Concat(elem, list : Node)
Append1(list, elem : Node)
Append(listl, list2 : Node)
SubList(list : Node; n1, n2
NullList(kind : NodeClass)
List1(kind : NodeClass; el
List2(kind : NodeClass; el,
List3(kind : NodeClass; el,
List4(kind : NodeClass; el,
List5(kind : NodeClass; el,
MakeLexeme(k : NodeClass; alL
MakeTypeldentifier(alexicalV
MakeValueIdentifier(alexical
MakeIntegerLiteral(alexicalV
MakeRealLiteral(aLexicalValu
MakeStringLiteral (alexicalVa
MakeCharacterLiteral(aLexica
String0f (aLexeme : Node) : S
IntegerOf (anIntegerLiteral :
RealOf (aRealLiteral : Node)
Character0Of (aCharacterLitera
BuildIntegerLiteral(x : LONG
BuildRealLiteral(x : REAL)
BuildCharacterLiteral(x :

INT
ele
INT

CH

ATION
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Node)
Node; n :

: Node;

INTEGER) : Node;

: Node;

INTEGER) : Node;
: INTEGER;

; X2 : Node);

EGER; elem :
m : Node);
EGER; SubList

Node) ;

: Node);

: Node;
: Node;

: Node;

: INTEGER) : Node;

: Node;
: Node)

: Node;

e2 : Node) : Node;

e2, e3 : Node) : Node;

e2, e3, e4 : Node) Node;
e2, e3, e4, o5 : Node)
exicalValue : STRING)
alue : STRING) : Node;
Value : STRING) : Node;
alue : STRING) : Node;

e : STRING) : Node;

lue : STRING) : Node;
1Value : STRING) : Node;

TRING;
Node)
: REAL;
1 : Node)
INT)

: LONGINT;

: CHAR;
: Node;

: Node;

AR) : Node;

MPS provides the primary metaprogramming system abstraction.

Node and the special node call theUnattachedEmptyNode.

271

: Node;
: Node;

It declares the type

NodeType determines the NodeClass of a node. ContextDomain determines the set of
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NodeClasses that may appear in the context at which the argument node is attached.
DeletableContextQ determines if its argument can be Deleted from its context. EmptyQ,
LexemeQ, ListQ, and ConstructionQ are recognizers that behave as implied by their names.

AttributeQ determines if a node is an attribute node. Recall that an unattached node
used as a semantic attribute has its position field specially marked to indicate its attribute
parent. Therefore, AttributeQ determines if the position field of the root of its argument is
so marked.

Parent determines the parent of a node; theUnattachedEmptyNode is yielded if the
argument node is unattached. Similarly, AttributeParent determines the attribute parent
of the root of the argument node and it too yields theUnattachedEmptyNode if AttributeQ
is false for its argument.

Root determines the root node of a node by repeated application of Parent until the
parent is empty. Similarly, AttributeRoot determines the attribute root of a node by
repeated application of AttributeParent until the AttributeParent is empty.

Depth determines the depth of a node with respect to its root. FirstLexeme de-
termines the first lexeme reached by an pre-order traversal. StructuallyEqualQ and
StructurallyLessQ test for structural equivalence and lexicographic order.

EnclosesQ determines whether the node x contains the node y as a descendant.
ImproperlyEnclosesQ does the same but yields true when x and y are the same node.
AttributeEnclosesQ determines if x can be reached from y by repeated applications of
AttributeParent.

ContainsQ determines if theLeftNode, theRightNode, or some node in between
ImproperlyEnclosesQ theTargetNode Therefore, theLeftNode and theRightNode must
be children of the same construction or list node and theLeftNode must appear before
theRightNode.

Enclosing applies Parent until the parent’s class is a member of AncestorDomain.
CommonAncestor determines the node with largest depth that has both x and y as a de-
scendant.

CommentOf yields a pointer to a line-buffer. This can be used both to access and to update
the comment field of a node. A line-buffer can be appended to the existing comment using
AppendComment. ReplaceComment replaces the comment and destroys the old comment.

FirstElement yields the first child of a list node, unless the list is empty, in which
case it yields theUnattachedEmptyNode. NthElement yiclds the nth child of a list node.

The argument n may be negative, in which case children are accessed right to left (i.c., the
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-1 child is the last child). FirstComponent and NthComponent behave similarly but for
constructions. And FirstChild and NthChild also behave similarly but apply for both lists
and constructions.

NumberOfChildren determines the number of children of a node; lexemes have 0 chil-
dren. Position determines the position of a node; an unattached node has position 0.
Previous and Next determine the previous or next node with respect to the context; they
yield theUnattachedEmptyNode when there is no previous or next node.

Copy creates a copy of a node, i.e., a node that is StructurallyEqualqQ but is unattached.

Replace replaces x1 in context with x2. The node x1 must be attached and if x2 is
attached it is copied. The class of x2 must be a member of the ContextDomain of x1.
ReplaceAndSet does the same thing but sets x1 to be x2.

Exchange exchanges two nodes in context. Each node’s class must be a member of the
other’s ContextDomain. Both nodes must be attached.

Delete deletes a node. The node must be attached and in a deletable context. Deleting
a node that is an optional construction component has the effect of replacing the node with
a new emptly node.

Insert inserts an element at the specified position of a list. Just as for NthChild, the
position may be negative to specifly right to left order. After the insertion the element will
be at the indicated position. Taillnsert is like Insert with n set to -1.

Splice inserts copies of the clements of the sublist at the indicated position of the list.
Concat creates a new list from an element and a list by including the element as the first
element of the list. Appendl is similar but the clement is put at the end. Append creates
a new combined list from two existing lists. Sublist crcates a new list from a subrange of
elements of an existing list.

NullList creates an empty list of the specified class and the Listn functions create lists
of the indicated length, given a class and appropriate elements.

MakeLexeme creates a lexeme of the given class and with the given spelling. Individual
MakeX functions for each class of lexeme are provided as well. String0f yields the spelling of
a lexeme. IntegerOf, RealOf, and Character0f yicld the Pascal value of an integer-, real-,
or character-literal, respectively. Similarly, BuildIntegerLiteral, BuildRealLiteral, and
BuildCharacterLiteral build the appropriate class of lexeme given its Pascal value.

This completes the interface for manipulating objects of Acer’s context-free syntax. All

these routines arc implemented in terms of the data structures provided by MPS1.
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C.18 FileServer

UNIT FileServer; INTERFACE {$F+,0+,L-}
USES Manager, Index, DOS, LineBuffer, MPS;
CONST BackupLevel = 2;

PROCEDURE Store(x : Node);

FUNCTION FetchDeclaration(Name : STRING) : Node;

FUNCTION FetchBinding(Name : STRING) : Node;

FUNCTION RestoreBinding(Name : STRING; VAR 01dBinding : Node)
PROCEDURE StoreClosure(Name : STRING; theClosure : Node);
FUNCTION FetchClosure(Name : STRING) : Node;

PROCEDURE StorelInstructions
(Name : STRING; thelnstructions, theClosure : Node);

: Node;

FUNCTION FetchInstructions (Name : STRING; theClosure : Node) : Node;

PROCEDURE StoreCode(theCluster : Node; theSize : WORD; theCode

: POINTER) ;

FUNCTION FetchCode(Name : STRING; VAR theCluster : Node) : ShortPointer;

PROCEDURE StoreExecutable(theCluster : Node;
theSize : WORD; theCode : POINTER);

FUNCTION FetchExecutable(Name : STRING;
VAR theCluster : Node) : ShortPointer;

FUNCTION FindBindingFile(IdentifierName : STRING;
VAR £ : FILE) : BOOLEAN;

FUNCTION BindingFileTime(IdentifierName : STRING) : LONGINT;

FUNCTION FindDeclarationFile(IdentifierName : STRING;
VAR f : FILE) : BOOLEAN;

FUNCTION DeclarationFileTime(IdentifierName : STRING) : LONGINT;

FUNCTION FindCodeFile(IdentifierName : STRING; VAR f : FILE) : BOOLEAN;

FUNCTION CodeFileTime(IdentifierName : STRING) : LONGINT;
FUNCTION FindInstructionFile(IdentifierName : STRING;

VAR £ : FILE) : BOOLEAN;
FUNCTION InstructionFileTime(IdentifierName : STRING) : LONGINT;
FUNCTION FindExecutableFile(IdentifierName : STRING;

VAR £ : FILE) : BOOLEAN;
FUNCTION ExecutableFileTime(IdentifierName : STRING) : LONGINT;
FUNCTION FindClosureFile(IdentifierName : STRING; VAR f : FILE)
FUNCTION ClosureFileTime(IdentifierName : STRING) : LONGINT;
FUNCTION FetchFullName(VAR f : FILE) : STRING;
PROCEDURE CheckPointNode(VAR f : FILE; theNode : Node);
FUNCTION RestoreNode(VAR f : FILE) : Node;
PROCEDURE CheckPointLineBuffer(VAR f : FILE;
theLineBuffer : LineBufferType);

FUNCTION RestoreLineBuffer (VAR f : FILE) : LineBufferType;
FUNCTION FileTime(VAR f) : LONGINT;

: BOOLEAN;

274
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FUNCTION HasBackup(Name : STRING) : BOOLEAN;

PROCEDURE WritePath(VAR theFile : FILE; theNode : Node);
FUNCTION ReadPath(VAR theFile : FILE; theNode : Node) : Node;
PROCEDURE ShowExternals;

VAR ConformingDeclarationQ : FUNCTION (di, d2 : Node) : BOOLEAN;

Externals : Index.T;
oDir, aDir, dpDir, axeDir, vdDir, bakdir : PathStr;

IMPLEMENTATION .
END.

FileServer provides high-level access to the file system for storing, fetching, backing up,
and restoring nodes and various associated objects. The following file-naming conventions
are followed. Fixed-value-bindings and top-level binding-lists are stored in “.vb’ files and
type-bindings are stored in “.tb’ files—the file name is derived from the first 8 character
of the binding’s name. Backups are stored in ‘.vbl,” “.tbl,” “.vb2’ and ‘.th?2’ files, where
the value of the constant BackupLevel indicates the number of backups to be maintained.
Closure information about fixed-value-bindings and binding-lists is stored in “vdp’ files and
closure information about type-bindings is stored in ‘.tdp’ files. Fixed-value-declarations are
stored in ‘.vd’ files. Assembler code is stored in ‘.a’ files. Linkables are stored in ‘.0’ files.
And executables are stored in ‘.axe’ files.

Searching for objects is guided by the MS-DOS environment variable ACERINPUT, which

should be set to be something as follows:

set ACERINPUT=.;C:\acer\lib;.\vd;.\dp;.\o;.\axe;.\a

Accordingly, the storing of declarations, closures, backups, executables, linkables, and as-
sembler code is such that if the current directory contains a ‘vd,” ‘dp,” ‘bak,’ ‘axe, ‘0.’ or

‘a,” respectively, the object is stored in that directory rather than the current directory

;
Furthermore, if a previous version of an object can be found in a directory other than the
current directory using the search path, the new version is stored in the same directory as
the previous version.

FileServer’s main procedure is Store, which takes a node x and stores it as follows.
Of course, the node x must be a valid top-level construct, that is, a ﬁxed-value-binding,

a binding-list containing a fixed-value-binding (the first one of which is called the primary

unit), a type-binding, or a fixed-value-declaration. How Store works depends on the class

of node.
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If x is a fixed-value-binding, the binding is stored in checkpointed form in a ‘.vb’ file.
The checkpointed form is a compacted syntactic representation, that is, the node’s class is
encoded as a byte which is followed by either the spelling, if it is a lexeme, or the number of
children and the children themselves, if it is a list or construction. Old versions of the ‘.vb’
file are backed up.

Similarly, if x is a binding-list, each fixed-value-binding is stored in checkpointed form in
a ‘.vb’ file. Actually, the file for the primary unit contains the checkpointed binding-list and
the files for the remaining fixed-value-bindings simply refer to the primary file.

If x is a type-binding, it is stored just like a fixed-value-binding but in a “.tb’ file. A
type-binding node becomes an attribute after it is stored. Old versions of the “.tb’ file are
backed up.

If x is a fixed-value-declaration, it is stored in a ‘.vd’ file. Just as for a type-binding, it
thereafter becomes an attribute node.

FileServer keeps an index, Externals, of mappings from StringPointers to type-
bindings and fixed-value-declarations currently in memory. Store therefore has the effect
of including additional associations in this index. FileServer also keeps track of whether
a fixed-value-binding or binding-list is modified with respect to its stored version: it uses
MPS1’s TouchMonitor facility for this.

FetchDeclaration, given the spelling of a value-identifier, searches for the fixed-valye-
declaration associated with that spelling, which it loads and returns as its result. If a
declaration cannot be found, theUnattachedEmptyNode is returned. The declaration is
either loaded from the file system or found in Externals.

Similarly, FetchBinding, given the spelling of a value-identifier, searches for the fixed-
value-binding (or the binding-list containing the fixed-value-binding) associated with that
spelling, which it then loads and returns as its result.

RestoreBinding is similar to FetchBinding but the “.vb’ or “.tb’ file(s) are removed after
loading and the backup versions are renamed so that the latest backup again becomes the
current version.

StoreClosure is given the spelling of an identifier and a closure, which is represented ag
an arbitrary-list of identifiers, and it stores the closure in checkpointed form in a ‘vdp’
or “.tdp’ file, depending on whether the spelling is that of a value-identifier or a type-
identifier. FetchClosure is the inverse in that, given a spelling, it loads the associated
closure; theUnattachedEmptyNode is returned if the closure is not stored.

StoreInstructions, given the spelling of a value-identifier, instructions represented as
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a code-patch, and a closure of the associated declaration file, stores the information in a ‘.a’
file. FetchInstructions, given a spelling and the closure, retrieves the instructions—the
closure is modified to reflect the closure stored in the ‘.a’ file.

StoreCode is given a cluster represented as either an value-identifier or an arbitrary-list
of value-identifiers, a size, and a Pointer at encoded instructions. Then, if the cluster is
a value-identifier, StoreCode stores the encoded instructions in a ‘.0’ file derived from the
value-identifier. Otherwise, if the cluster is an arbitrary-list of identifiers, a ‘.0’ file is created
for each identifier, although only the first file contains the actual code with the remaining
files simply referring back to the first file. (The notion of a cluster derives from the fact
that a binding-list usually contains several fixed-value-bindings for which ‘.o’ files must be
created, and all these ‘.0’ files are interdependent.) FetchCode, given the spelling of a value-
identifier, returns a ShortPointer to the encoded instructions associated with the identifier;
it also sets theCluster.

‘StoreExecutable and FetchExecutable are directly analogous to StoreCode and
FetchCode but they refer to ‘.axe’ files.

A series of functions are provided for Finding files and for determining the creation
FileTime for files. A pair of such functions is provided for bindings, declarations, code,
instructions, executables, and closures.

FetchFullName, given a File associated with a binding or declaration file, determines
the complete spelling of the object stored in that file. (PCAcer uses this feature to make file
names more readable.)

CheckPointNode checkpoints a node to a file and RestoreNode is its inverse. Similarly,
CheckPointLineBuffer checkpoints a line-buffer to a file and RestoreLineBuffer js its
inverse.

FileTime, given a file, returns its creation time.

HasBackup, given the spelling of a value- or type-identifier, determines if there is a ‘vbl’
or “.tb1’ associated with that spelling.

WritePath, given a file and a node, stores in the file the information about how to reach
the node from its root. This information 1s given in terms of a list of child positions that
must be selected starting at the root. ReadPath is the inverse of WritePath. (PCAcer uses
this feature to store the position of a node window’s selection).

Finally, ConformingDeclarationQ 15 used to determine if a stored declaration is com-
patible with the previous version so that the creation time of the previous version can be

used. The unit AST sets this variable with a function that tests whether the two declarations
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have equivalent types.

FileServer has a complex implementation but little would be gained by describing it in

detail.

C.19 AST

UNIT AST; INTERFACE {$F+,0+,L-}

USES Index, Access, Grammar, Makers, Line, LineBuffer, MPS, MPS1
Unparser, Parser;

FUNCTION ConstructorQ(x : Node) : BOOLEAN;

FUNCTION CompilationUnitQ(x : Node) : BOOLEAN;
FUNCTION PrimaryUnit0f(x : Node) : Node;

FUNCTION Global(id : STRING) : Node;

FUNCTION DefiningOccurrence0f(id : Node) : Node;
FUNCTION DefinitionOf(x : Node) : Node;

FUNCTION DenotationOf(x : Node) : Node;

FUNCTION TypeOf(x : Node) : Node;

FUNCTION KindOf(x : Node) : Node;

FUNCTION SubTypeQ(tl, t2 : Node) : BOOLEAN;

FUNCTION EquivalentTypeQ(t1, t2 : Node) : BOOLEAN;
FUNCTION MaxType(t1, t2 : Node) : Node;

FUNCTION SameValuesQ(vl, v2 : Node) : BOOLEAN;
FUNCTION SubSignatureQ(xl, x2 : Node) : BOOLEAN;
FUNCTION ValidArgumentsQ(theArguments, theSignature : Node) : BOOLEAN;
FUNCTION InvalidArgumentOf (theArguments, theSignature : Node) : Node;
FUNCTION TagMatch(x, id : Node) : Node;

FUNCTION AbstractBaseOf(theType : Node) : Node;
FUNCTION QuantifierOf(theType : Node) : Node;
FUNCTION VariableIdentifierQ(id : Node) : BOOLEAN;
FUNCTION RecursiveTypeOperatorQ(x : Node) : BOOLEAN;
FUNCTION DefinitionCopy(y, At : Node; Substitutions : Index.T) : Node;
FUNCTION DefinitionCopyAt(theNode, At : Node) : Node;
FUNCTION ClosureQf(theNode : Node) : Index.T;
FUNCTION MakeDenoter(x : Node) : Node;

FUNCTION ErrorTypeQ(theType : Node) : BOOLEAN;
FUNCTION VoidTypeQ(theType : Node) : BOOLEAN;
FUNCTION BooleanTypeQ(theType : Node) : BOOLEAN;
FUNCTION StringTypeQ(theType : Node) : BOOLEAN;
FUNCTION CharacterTypeQ(theType : Node) : BOOLEAN;
FUNCTION RealTypeQ(theType : Node) : BOOLEAN;
FUNCTION IntegerTypeQ(theType : Node) : BOOLEAN;
FUNCTION RaiseTypeQ(theType : Node) : BOOLEAN;
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FUNCTION ReferenceTypeQ(theType : Node) : BOOLEAN;
FUNCTION ReferenceBaseTypeOf(theType : Node) : Node;
FUNCTION PointerTypeQ(theType : Node) : BOOLEAN;
FUNCTION PointerBaseTypeOf (theType : Node) : Node;
FUNCTION ExceptionTypeQ(theType : Node) : BOOLEAN;
FUNCTION ExceptionBaseTypeOf(theType : Node) : Node;
FUNCTION ArrayTypeQ(theType : Node) : BOOLEAN;
FUNCTION ArrayBaseTypeOf(theType : Node) : Node;
FUNCTION AccumulatorTypeQ(theType : Node) : BOOLEAN;
FUNCTION AccumulatorBaseTypeOf(theType : Node) : Node;
FUNCTION AccumulatorResultTypeOf(theType : Node) : Node;
FUNCTION IteratorTypeQ(theType : Node) : BOOLEAN;
FUNCTION IteratorBaseTypeOf(theType : Node) : Node;

IMPLEMENTATION ...
END.

AST provides routines for manipulating Achs(Dntcxbdependentsyntax.Itsshnpkzin-
terface is an indication of the successful design ofaJshnpkzcontexhdependentsyntax for
Acer

ConstructorQ determines if x is a constructor. CompilationUnitQ determines if x is a
valid top-level construct. PrimaryUnit0f selects the first fixed-value-binding of a binding-
list.

Global, given the spelling of an identifier, uses FileServer to determine the fixed-value-
declaration or type-binding associated with that spelling.

DefiningOccurrence0f, Definition0f, Denotation0f, TypeOf, and KindOf select the
indicated semantic attribute.

SubtypeQ determines whether t1 is a subtype of t2. EquivalentTypeQ determines
whether t1 is a subtype of t2 and t2 is a subtype of t1. MaxType yields the largest type
(in terms of the partial order defined by SubtypeQ) of its two arguments—if either of jts
arguments is the error-type or the arguments are unrelated as subtypes it yields the error-
type; only if both arguments are the raise-type does it yicld the raise-type. SameValues(
determines if the value vi and the value v2 must always denote the same value at run-time.
subSignatureQ(k%GP”ﬁneSifthC ﬁgnatuuleisztsubﬂgnatunzofthesﬂgnatunzx?.

ValidArgumentsQ determines if the argument-list theArguments is valid with respect
to theSignature. InvalidArgumentOf yields the first argument of theArguments that is
invalid with respect to theSignature.

TagMatch, given a value-identifier and a variant-type or variant-inspection, yields the

branch associated with the identifier.
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AbstractBaseOf and QuantifierOf select the abstract-base and quantifier, respectively,
of an abstract-type.

VariableIdentierQ determines if id is introduced by a variable-value-declaration or
a variable-value-binding. RecursiveTypeOperatorQ determines if x is a recursive type-
operator. Recursive type-operators are invalid.

DefinitionCopy, given a node y to copy, a location At from which copying takes place
(usually the parent of y), and an index of substitutions to be made during copying, returns
a node that denotes the same object as the original; it is typically expressed using denoters.
DefinitionCopyAt, given a node y and a location At at which y is to be expressed, creates a
copy that denotes the same object as y but is expressed in terms of the scope at At without
the use of denoters. (Actually, DefinitionCopyAt produces a copy of the denoted object if
it cannot simply refer to the original.)

ClosureOf, given a node, yields an index representing the set of global identifiers used in
the node. MakeDenoter makes a denoter; it determines whether to make a type-denoter or
a value-denoter based on whether x is a type or a value. The remaining functions are simply
convenient recognizers and selectors for dealing with standard types that are known to AST.

Several tricky techniques are used to implement the features of AST. For example, to

determine that the denotation of x in

{let x be y; let y be x;

is error, Denotation0f must mark nodes so that recursive applications of Definition0f do
not lead to an infinite loop. Thus, before asking for the Definition0f a node, the node is
marked so that if it is reached again, Denotation0f detects the loop.

Determining the TypeOf x in the above case would also lead to an infinite loop so TypeOf

must mark nodes as well. However, TypeOf must also handle recursive types such as the

following:

let x be tuple x end

To handle such a case, when TypeOf is applied to a tuple-literal, it associates with the tuple-
literal the empty tuple-type Tuple end before proceeding to determine the type of each
argument in the literal. By doing so, when the TypeOf x is recursively determined, it turns
out to be the very tuple-type associated with the tuple-literal. After recursively determining
this, the tuple-type is modified by inserting an anonymous declaration with a type that refers

to the tuple-type using a type-denoter, e.g.,
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Tuple :{[]} end

All recursive types for constructors are handled in this way, that is, by associating with the
literal a partially determined type before proceeding to determined the types of the literal’s
components.

Note also that if TypeOf starts at the defined-identifier x, it cannot simply mark x so
that if x is reached again, a loop is detected because this is precisely what would happen:
the first x would be marked, then the type of the tuple-literal would be determined, which
would recursively request the type of x, which would now be marked. Thus for Type0f, a
node must be marked and reached twice before a loop is detected.

In Acer’s definition manual, subtyping is defined in terms of DefinitionCopy but this
is not an cfficient implementation strategy since it involves the creation of massive numbers
of nodes. Instead, AST keeps an index of substitutions that are in effect during subtyping so
that copying can be avoided.

Furthermore, SubType must be prevented from going into an infinite loop. For example,

during recursive subtyping of components of the two types T1 and T2 in

{let T1 be Tuple :T1 end;
let 72 be Tuple :72 end;

SubType goes into a loop. To circumvent this problem, Subtype assumes that the two tuple-
types are valid subtypes while recursively subtyping their components. As a result, instead
of going into a loop, SubType detects that the components are subtypes by assumption. Of
course, if subtyping fails for some other reason, the assumption will be proven invalid and is
nullified. Using these techniques, SubType can efficiently determine whether two types are

related as subtypes even for recursive types.

C.20 AST2

UNIT AST2; INTERFACE {$F+,0+,L-}

USES Index, MPS;

FUNCTION ClosedTypeQ(theType : Node) : BOOLEAN;
FUNCTION Validate(x : Node) : Index.T;

PROCEDURE FindFirstError
(x : Node; VAR ErrorNode : Node; VAR ErrorMessage : STRING);
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IMPLEMENTATION ..
END.

AST2 is provided for testing whether a node conforms with all context-dependent con-
straints. One of its main responsibilities is to detect invalid delayed-occurrences.

ClosedTypeQ determines whether a type can be expressed with global scope. 1t is used
to restrict the type used as a tag of a dynamic.

Validate, given a node, yields an index containing mappings from nodes to error mes-
sages. Validate detects all errors. Similarly, FindFirstError given a node, checks it for
errors but it yields the first erroneous node, along with its error message, that it finds.

No special implementation tricks are used in this unit.

C.21 Compile

UNIT Compile; INTERFACE {$F+,0+,L-}

USES Index, Access, Makers, Grammar, AST, LineBuffer, Line, Unparser
Parser, MPS, MPS1;

TYPE
Registers =
(AO, A1, A2, A3, A4, A5, A6, AT,
po, D1, D2, D3, D4, D5, D6, D7, NULL);
EffectiveAddressModes =
(Immediate, Direct, Indirect, MemoryIndirect, PreDecrement,

PostIncrement, Label_, Special);
InstructionKinds = (Lea, Jsr, Bz, Bnz, Bra, Rtd, Trap, Move, Lbl);

CONST
RegisterName : ARRAY [AO..NULL] OF STRING[5] =

(’aO’, ’al’, ’a2’, ’a3’, ’a4’, ’ab’, ’3.6’, ,37’,
»do’, ’d1’, ’d2’, ’d3’, ’d4’, ’d5’, ’d6’, ’d7’, ’NULL’);

HeaderSize = 5;

FUNCTION Translate(x : Node; theClosure : Node) : Node;

FUNCTION Linker(UnitName : STRING; VAR theCluster : Node) : Node;

FUNCTION AddressModeType(theEffectiveAddress : Node)
EffectiveAddressModes;

FUNCTION InstructionType(thelnstruction : Node) : InstructionKinds;

FUNCTION RegisterType(theRegister : Node) : Registers;

IMPLEMENTATION ...
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END.

Compile provides routines for translating a fixed-value-binding or binding-list to a code-
patch. For PCAcer, such a code-patch expresses a simple form of assembly language that
is executable on a simulated machine. It is a greatly simplified form of MC680x0 code.
Hence, the abstract machine provides registers AQ through A7 and DO through D7, and sup-
ports the address modes: Immediate, Direct, Indirect, MemoryIndirect, PreDecrement,
PostIncrement, Label, and Special. The machine provides only the instructions with the
names: Lea (load effective address), Jst (jump to subroutine), Bz (branch on zero), Bnz
(branch on not zero), Rtd (return from subroutine), Trap (call a numbered routine coded in
Turbo Pascal), and Move (move a four byte word from one place to another). All additional
operations, such as addition, are provided as traps to Pascal routines. They are set up by
assigning to the TrapProcedures array of the Run unit.

The details of the translation will not be described as they are fairly straightforward and
would require a complete description of the abstract machine and its instruction set. Only
the interface is described.

Translate, given a fixed-value-binding or bindinging-list and its closure, yields a code-
patch representing the translation. This translation can be stored in a ‘.a’ file.

Linker, given the spelling of a value-identifier, yields a code-patch that modifies the
associated translation to include the instructions for setting up the run-time closure required
to execute the instructions; theCluster of identifiers associated with the translation is set
as well. The resulting code-patch can then be encoded and stored as a ‘.0” file.

AddressModeType,InstructionType,and RegisterType are used by the unit Link to
analyze a code-patch so as to encode it in compacted form. The small number of instructions

allows for a very compact encoding of .0’ and ‘.axe’ files.

C.22 Run

UNIT Run; INTERFACE {$F+,0+,L-}
USES Dos, Manager, Compile;

CONST
HeaderSize = 5;
StackSize = 16 * 1024;
Number0fTraps = 50;
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TYPE
PointerPointer = ~ POINTER;
BytePointer = ~ BYTE;
ShortIntPointer = ~ SHORTINT;
IntegerPointer = = INTEGER;

WordPointer = ~ WORD;
LongIntPointer = ~ LONGINT;
RealPointer = ~ REAL;
AcerFlag = (Traced, Marked, Coded);
AcerValuePointer = ~ AcerValueType;
AcerValueType =
RECORD
Size : WORD;
Next : ShortPointer;
Flags : SET OF AcerFlag;
CASE WORD OF
0: (theBytes : ARRAY [0..65520] OF BYTE);
1: (theWords : ARRAY [0..32760] OF WORD);
2: (thePointers : ARRAY [0..16380] OF POINTER)

END;

VAR theRegisters : ARRAY [AO..D7] OF AcerValuePointer;
theProgramCounter : AcerValuePointer;
TrapProcedures : ARRAY [0..NumberOfTraps] OF PROCEDURE;
theStack : ShortPointer;

FUNCTION AllocateTraced(SizeInBytes : WORD) : ShortPointer;
FUNCTION AllocateUntraced(SizeInBytes : WORD) : ShortPointer;
FUNCTION AllocateCoded(SizeInBytes : WORD) : ShortPointer;
PROCEDURE Execute(theProgram : AcerValuePointer);

PROCEDURE Decode(theCode : ShortPointer);

PROCEDURE ReclaimMemory;

IMPLEMENTATION
END.

Run defines the run-time representation of Acer R
p programs and values; in fact, an Acer

program is an Acer value so their is just one representation. Thus an Acer value is rep

resented as an AcerValuePointer, which points at an AcerValueType,alcconiconﬁsﬁng

of the following: a Size indicating the number of bytes allocated to the record: a Next

ShortPointer, which points at another AcerValueType record (All values are linked as a

chain for the purpose of garbage collection.); a Flags field, which is explained below: and a

variant part that allows the rest of the record to be viewed as an array of bytes, words or

pointers.
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The Flags field of an AcerValueType is used as follows: if the rest of the record is an
array of AcerValuePointers, the Traced flag is set so that garbage collection will know that
it should trace the rest of the record. The Traced flag is not set when the rest of the record
encodes the bit representation of some value such as a string or a real. The Marked flag,
as the name suggests, is used during garbage collection. Finally, the Coded flag is used to
indicate that the rest of the record encodes machine instructions; this flag is necessary so that
dynamic-values that involve code are properly handled. (A record containing code contains
a reference to a node that in turn contains all the type-tags used by its dynamic-values.)

’TheAllocateXfuncﬁonsareusedtoaﬂocauzAcerValuePointersbutbecausetherecon
to which they point is segment aligned, only a ShortPointer is yielded.

Execute takes an AcerValuePointer, typically one that is yielded by the Loader function
of the Link unit, and runs it to completion.

Decode prints a readable representation of an AcerValueType record that represents
code. It is used for debugging.

ReclaimMemory reclaims all the memory used during the cxecution of an Acer program.
(In this implementation, no garbage collection is performed while a program is actually

executing. A practical implementation must include this.)

C.23 Link

UNIT Link; INTERFACE {$F+,0+,L-}

USES FileServer, Manager, Index, Access, Makers, Grammar, AST, LineBuffer
Line, Unparser, Parser, MPS1, Run, Compile, MPS;

PROCEDURE StoreEncodedInstructions(theCluster, thelnstructions : Node);
FUNCTION Loader(Name : STRING) : AcerValuePointer;
PROCEDURE WriteAcerValue{(theValue : AcerValuePointer; theType : Node);
FUNCTION AcerValueToNode(theValue : AcerValuePointer;

theType : Node) : Node;

IMPLEMENTATION ...
END.

Link serves several roles (and is perhaps badly named).
StoreEncodedInstructions,gh@nzichmterandzicodeﬂxnchrepnmenﬁnginﬂmucﬁonq

encodes the instructions in compact form and stores them in a ‘.0’ file using the FileServer
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unit.

Loader, given a value-identifier spelling, finds its ‘.0’ file and all the ‘.0’ files it depends
on. The information from these files are then loaded as an AcerValuePointer. The result
can then be Executed.

WriteAcerValue, given an Acer value and its type, prints to standard output the Acer
syntactic representation of that value. Similarly, AcerValueToNode, given an Acer value and
its type, converts the value to its representation as a node. This is the routine PCAcer uses

to produce the node that results from running a program.

C.24 ObjectView

UNIT ObjectView; INTERFACE {$F+,0+,L-}

USES Line, MPS;

TYPE
RectanglePointer = ~ Rectangle;
Rectangle =
OBJECT
x1, y1, dx, dy : WORD;
FUNCTION x2 : WORD;
FUNCTION y2 : WORD;
FUNCTION Contains(x, y : WORD) : BOOLEAN;
PROCEDURE Intersect(VAR Operand2, Result : Rectangle);
PROCEDURE Displace(DeltaX, DeltaY : INTEGER);
END;
T = ~ ObjectCell;
Iterator =
0BJECT
FUNCTION Next(VAR theViewedObject : T) : BOOLEAN; VIRTUAL;
PROCEDURE Reset; VIRTUAL;
END;
ObjectCell =
O0BJECT

theOwner : Node;

ViewBox : RectanglePointer;

theBanner : STRING;

theStatusLine : STRING;

x1, y1, x2, y2: WORD;

CONSTRUCTOR Construct(theNode : Node; theViewBox : RectanglePointer) ;
DESTRUCTOR Destruct; VIRTUAL; ’
FUNCTION Copy(theViewBox : RectanglePointer) : T; VIRTUAL;
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FUNCTION dx : WORD; VIRTUAL;

FUNCTION dy : WORD; VIRTUAL;

FUNCTION TextAt(x, y : WORD) : WORD; VIRTUAL;

FUNCTION CharacterAt(x, y : WORD) : CHAR;

FUNCTION AttributeAt(x, y : WORD) : BYTE;

FUNCTION Banner : StringPointer; VIRTUAL;

FUNCTION Owner : Node;

PROCEDURE CorrectView; VIRTUAL;

PROCEDURE Select(x, y WORD); VIRTUAL;

PROCEDURE ReSelect(x, y : WORD); VIRTUAL;

PROCEDURE Extend(x, y : WORD); VIRTUAL;

PROCEDURE Delete(VAR AffectedViews : Iterator); VIRTUAL;
PROCEDURE Destroy(VAR AffectedViews : Iterator); VIRTUAL;
PROCEDURE Insert(VAR AffectedViews : Iterator); VIRTUAL;
PROCEDURE Yank; VIRTUAL;

END;

IMPLEMENTATION ...
END.

ObjectView provides RectanglePointer and Rectangle to manipulate rectangular ob-
jects. A rectangle object has an upperJeﬂ;corner(xl,yl),alo“@rﬂightcorner(xzﬁyg)’a
width dx, and a height dy. One can test if a rectangle Contains a coordinate (x, ¥). One
can determine the Intersection of two rectangles, which is itself a rectangle. And one can
Displace a rectangle.

ThelnahlpurpomaofObjectView,howcver,B to represent the behavior that is common
to both text windows and node windows in the PCAcer environment. Thus a window s
represented as a ObjectCell, which has theOwner as its owner node; a ViewBox, which
is the area bounded by the window’s frame; theBanner and theStatusLine, which are
represented as a String; an upper-left corner at (x1, y1); and a lower-right corner at (x2,
y2). A window can be Constructed, Destructed, and Copied. The width and height of a
“dndowrauzghunlbydxzuuidy.CharacterAt,ghwnlacoonﬁnateintheViewBox,dekxnﬁncs
the character at the coordinate and similarly, AttributeAt determines the color attribute
at a given coordinate; the two are simultancously determined by TextAt. The variables
theBanner and theOwner should be access using Banner and Owner.

A window can be asked to CorrectView its ViewBox so that its selection point is in view.
A window can be Selected at a given coordinate and since selecting the selection of a text
window alters the selection mode, a window can be Reselected as well—this works just like
Select but resets the selection mode. The selection of a window can also be Extended,.

A window must also support the cditing commands Delete, Destroy, Insert, and Yank
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The first three take an Iterator argument that iterates through the sequence of other
windows that are also effected by the edit. Iterator is defined as an object with a Next
function for mapping through the sequence of windows and a Reset function for restarting

the iteration.

ObjectView does not implement useful bodies for most ObjectCell routines: the unit
) S

LineView and TokenView do this.

C.25 LineView

UNIT LineView; INTERFACE {$F+,0+,L-}

USES Line, LineBuffer, MPS, ObjectView;

TYPE
ModeType = (CharacterMode, TokenMode, LineMode);

T = ~ ObjectCell;
ObjectCell =
0BJECT (ObjectView.ObjectCell)
theLineBuffer : LineBufferType;
Mode : ModeType;
CONSTRUCTOR Construct(theNode : Node; theViewBox : RectanglePointer):
CONSTRUCTOR ArbitraryConstruct !
(theNode : Node;
InitialLineBuffer : LineBufferType;
theViewBox : RectanglePointer);
DESTRUCTOR Destruct; VIRTUAL;
FUNCTION Copy(theViewBox : RectanglePointer) : ObjectView.T; VIRTUAL:
FUNCTION dx : WORD; VIRTUAL; ’
FUNCTION dy : WORD; VIRTUAL;
FUNCTION TextAt(x, y : WORD) : WORD; VIRTUAL;
FUNCTION Banner : StringPointer; VIRTUAL;
PROCEDURE CorrectView; VIRTUAL;
PROCEDURE Select(x, y : WORD); VIRTUAL;
PROCEDURE Extend(x, y : WORD); VIRTUAL;
PROCEDURE Delete(VAR AffectedViews : Iterator); VIRTUAL;
PROCEDURE Destroy(VAR AffectedViews : Iterator); VIRTUAL;
PROCEDURE Insert(VAR AffectedViews : Iterator); VIRTUAL;
PROCEDURE Yank; VIRTUAL;
PROCEDURE EnterText(ch : CHAR; VAR AffectedViews : Iterator);
PROCEDURE BuildLineBuffer;

END;

VAR theScrapView : T;
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FUNCTION Linearize(theNode : Node; Width : WORD) : LineBufferType;

IMPLEMENTATION ...
END.

LineView extends the behavior of a window as defined by ObjectView. It implements
PCAcer text windows.

The type ModeType is defined to denote the three different sclection modes that a text
window supports. Like ObjectView, LineView defines T and ObjectCell, which inherit their
implementation from ObjectView. LineView extends an ObjectCell as follows.

A text window contains theLineBuffer to hold the buffer of text that it views. Mode
indicates the current selection mode. A text window can be constructed using Construct
“ﬁﬁchthenmesBuildLineBufferto1naketheappropﬁatelhm%buﬂbrf}onlthe(nvncrnodej
ArbitraryConstruct constructs a text window with a given line-buffer.

A text window defines the same operations as an ObjectView window. In addition
EnterText is provided for inserting a character at the selection point; it takes an itcrato;
that scquences through other windows that are affected by this insert. BuildLineBuffer js
provided to construct a line-buffer from the owner; it uses Linearize to format the owner

node.

The variable theScrapView is provided as a text window from which insertions are tak
§ ken

and to which deletions go.

C.26 TokenLine

UNIT TokenLine; INTERFACE {$F+,0+,L-}

USES Line, LexicalAnalyzer, MPS, Sequence;

TYPE
TokenLineType = SequenceType;
TokenLinePointer = ~ TokenLineType;
TokenRecord =
RECORD

theToken : TokenType;

theOwner, theEnclosingDenoter : Node;

thehPosition : WORD;

theString : StringPointer
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END;
TokenRecordPointer

~ TokenRecord;

CONST
MaxTokenLineLength = MaxSequenceLength DIV SizeOf(TokenRecord);

NullTokenLine : TokenLineType = NIL;

FUNCTION Construct(theTokenLineLength : WORD) : TokenLineType;

PROCEDURE Destruct(VAR theTokenLine : TokenLineType);

FUNCTION Length(theTokenLine : TokenLineType) : WORD;

FUNCTION NthElement(theTokenline : TokenLineType; n : WORD)
TokenRecordPointer;

PROCEDURE AppendElement
(NextToken : TokenType;
NextOwner, NextEnclosingDenoter : Node;
NexthPosition : WORD;
NextString : StringPointer;
VAR theTokenlLine : TokenLineType);

IMPLEMENTATION
END.

Just as the unit Line provides for lines of characters, the unit TokenLine provides for
lines of tokens, which are represented using the Sequence unit.

A token-line is created by Construct and {reced by Destruct. Its length is given by
Length and its clements are accessed by NthElement.

The(nﬂy(nheropcuuknlproﬁdedisAppendElement,whkﬂ1appendsa.TokenRecordto
a token-line. Such a TokenRecord consists of a Token, the token’s owner node, the token's

closest-containing denoter, the token’s column position, and the token’s spelling.

C.27 TokenBuffer

UNIT TokenBuffer; INTERFACE {$F+,0+,L-}

USES Grammar, TokenLine, Sequence, MPS;

TYPE
TokenBufferType = SequenceType;
TokenBufferPointer = ~ TokenBufferType;
CONST

MaxTokenBufferLength = MaxSequencelength DIV 4;
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NullTokenBuffer : TokenBufferType = NIL;

FUNCTION Tokenize(theNode : Node; Width : WORD) : TokenBufferType;
FUNCTION Construct(theTokenBufferLength : WORD) : TokenBufferType;
PROCEDURE Destruct(VAR theTokenBuffer : TokenBufferType);

PROCEDURE AppendElement
(NextTokenLine : TokenLineType;

VAR theTokenBuffer : TokenBufferType);
FUNCTION Length(theTokenBuffer : TokenBufferType) : WORD;
FUNCTION NthElement(theTokenBuffer : TokenBufferType; n : WORD)
TokenLinePointer;
FUNCTION NearestTokenRecord(theTokenBuffer : TokenBufferType;
VAR x, y : WORD)
: TokenRecordPointer;

PROCEDURE NearestTokenRecords
(theTokenBuffer : TokenBufferType;
x, y : WORD;
VAR theLeftTokenRecord,
theRightTokenRecord : TokenRecordPointer);

IMPLEMENTATION ...
END.

Just as the unit LineBuffer provides a type {or representing sequences of Lines. the "
3 > Uni

TokenBuffer provides a type for representing sequences of TokenLines. [t is implemented
. e

using the unit Sequence and provides the same kinds of operation.

In addition, it provides the function NearestTokenRecord,“&ﬁchtakesaJTokenBuffer
and a coordinate and yields a TokenRecordPointer to the TokenRecord necarest tq the
coordinate. Similarly, the procedure NearsetTokenRecords takes a TokenBuffer and a
coonﬁnauzandsctsUatheLeftTokenRecordznultheRightTokenRecord}xﬁntenstothetw@

TokenRecords on either side of the coordinate.

C.28 TokenView

UNIT TokenView; INTERFACE {$F+,0+,L-}

USES Access, Line, TokenBuffer, TokenLine, MPS, ObjectView, AST;

TYPE
T = ~ ObjectCell;
ObjectCell =

0BJECT (ObjectView.ObjectCell)
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theTokenBuffer : TokenBufferType;

theLeftNode, theRightNode, theEnclosingDenoter : Node;
theUnparseWidth : WORD;

CONSTRUCTOR Construct(theNode : Node; theViewBox : RectanglePointer);

DESTRUCTOR Destruct; VIRTUAL;

FUNCTION Copy(theViewBox
FUNCTION dx
FUNCTION dy
FUNCTION TextAt(x, y :
FUNCTION Banner

: RectanglePointer)
: WORD; VIRTUAL;

: WORD; VIRTUAL;

WORD) : WORD; VIRTUAL;
: StringPointer; VIRTUAL;

: ObjectView.T; VIRTUAL;

’
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PROCEDURE CorrectView; VIRTUAL;
PROCEDURE Select(x, y : WORD); VIRTUAL;
PROCEDURE Extend(x, y : WORD); VIRTUAL;
PROCEDURE Delete(VAR AffectedViews : Iterator); VIRTUAL:
PROCEDURE Destroy(VAR AffectedViews Iterator); VIRTUAi;
PROCEDURE Insert(VAR AffectedViews : Iterator); VIRTUAL;
PROCEDURE DefinitionCopyAt
(VAR AffectedViews : Iterator; theNode : Node); VIRTUAL:
PROCEDURE Yank; VIRTUAL; !
PROCEDURE CreateElement(x, y : WORD; VAR AffectedViews : Iterator);
VIRTUAL;
PROCEDURE BuildTokenBuffer;
PROCEDURE SetNodeSelection(Left, Right, EnclosingDenoter : Node) ;
END;

PROCEDURE MonitoredReplace
(theNode, theReplacementNode : Node;

VAR AffectedViews : Iterator);

PROCEDURE MonitoredDelete
(theLeftNode, theRightNode : Node;

VAR AffectedViews : Iterator);

VAR theScrapView : T;

IMPLEMENTATION
END.

TokenView extends the behavior of a window as defined by ObjectView. It implements
PCAcer node windows. Like ObjectView, TokenView defines T and ObjectCell, which in-
heﬁtthehinnﬂenuHNaﬁonfnnnObjectView.TokenViewextmuh;anObjectCellasfoHows,

A node window uses theTokenBuffer to hold a formatted version of its owner. For spec-
iﬁdngitssekxtknlpohﬂ‘h uses theLeftNode, theRightNode, and theEnclosingDenoter.
(Because the definition of a denoter may print a node that is also printed elsewhere, to com.
pletely specify the selected nodes of a node window, the enclosing denoter must be specified

as well.) The variable theUnparseWidth is set to indicate the width used to when formatting
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theTokenBuffer.

In addition to the regular operations provided by ObjectView windows, a node window
provides the following. The procedure CreateElement inserts an element into a list at the
given coordinate. The procedure BuildTokenBuffer makes a TokenBuffer by formatting

ﬂuzownernodetoszokenBuffer.z%ndthe;nocedunzSetNodeSelectionsetsthesekmﬁon

of a node window.

MonitoredReplace and MonitoredDelete are used in place of MPS’s Replace and Delete
so that their affects on window owners and selections can be maintained. For example, an
unattached node can be replaced using MonitoredReplace with the effect that if it is the
owner of any window then the owner is replaced.

The variable theScrapView is provided as the node window from which insertions are

taken and to which deletions go.

C."29 WindowStack

UNIT WindowStack; INTERFACE {$F+,0+,L-}
USES MPS, ObjectView, Line;

CONST
Rows = 50;
Columns = 80;

CONST
TopMenuLine : STRING[80] =
' New ® + ° Clear ’ + ’ Fetch ’ + ’ Restore ’ +

) ) y 3
+ Quit ’;

TYPE
Corner = (UpperLeft, UpperRight, LowerLeft, LowerRight);

Direction = (Left, Right, Up, Down) ;
Window = ~ WindowObject;
T = ~ DbjectCell;
WindowObject =
OBJECT
ParentStack : T;
ScreenBox, ViewBox : Rectangle;
ViewedObject : ObjectView.T;
theTopline, theBottomLine, theStatusLine : STRING[Columns - 2];
theLeftLine, theRightLine : STRING[Rows - 1];
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CONSTRUCTOR Construct(theParentStack : T; x1, y1, dx, dy : BYTE);
DESTRUCTOR Destruct; VIRTUAL;
PROCEDURE Reset;
FUNCTION TopLine : StringPointer;
FUNCTION BottomLine : StringPointer;
FUNCTION LeftLine : StringPointer;
FUNCTION RightLine : StringPointer;
FUNCTION TextAt(x, y : BYTE) : WORD;
FUNCTION CharacterAt(x, y : BYTE) : CHAR;
FUNCTION AttributeAt(x, y : BYTE) : BYTE;
PROCEDURE MoveViewDownward(dy : BYTE);
PROCEDURE MoveViewUpward(dy : BYTE);
PROCEDURE MoveViewLeftward(dx : BYTE);
PROCEDURE MoveViewRightward(dx : BYTE);
PROCEDURE RepositionViewY(Index : BYTE);
PROCEDURE RepositionViewX(Index : BYTE);
PROCEDURE CorrectView;
PROCEDURE MoveScreen(theCorner : Corner);
PROCEDURE MoveCorner(theCorner : Corner);
PROCEDURE Copy(theCorner : Corner);
FUNCTION I0Check : BOOLEAN;

END;

ObjectCell =

0BJECT
ErrorMessage : STRING[80];
theWindows : ARRAY [0..63] OF Window;
theBottom : BYTE;
SelectedWindow, ScrapTokenWindow, ScrapLineWindow : Window;
CONSTRUCTOR Construct;
DESTRUCTOR Destruct; VIRTUAL;
FUNCTION TopWindow : Window;
FUNCTION Length : BYTE;
FUNCTION NthElement(n : BYTE) : Window;
PROCEDURE CreateWindow(x1, y1, dx, dy : BYTE); VIRTUAL;
PROCEDURE DestroyWindow(w : Window); VIRTUAL;
PROCEDURE RedrawBox(VAR LastBox, CurrentBox : Rectangle);
PROCEDURE UndrawBox(VAR theRectangle : Rectangle);
PROCEDURE PutOnTopOrPutAtBottom(w : Window);
PROCEDURE PutOnTopOrPutBelowTop(w : Window);
PROCEDURE PutAbove(w1l, w2 : Window);
PROCEDURE PutBelow(wl, w2 : Window);
PROCEDURE SetSelectedWindow(w : Window);
FUNCTION TextAt(x, y : BYTE) : WORD;
FUNCTION WindowAt(x, y : BYTE) : Window;
PROCEDURE Refresh(w : Window);
PROCEDURE Redraw(VAR theRectangle : Rectangle);
PROCEDURE DoubleRedraw(VAR Rectanglel, Rectangle2 : Rectangle);

294
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END;
StackIterator =

OBJECT (Iterator)
theWindow : Window;
theOwner : Node;
CurrentWindow : BYTE;
CONSTRUCTOR Construct(w : Window);
FUNCTION Next(VAR theViewedObject : ObjectView.T) : BOOLEAN; VIRTUAL;
PROCEDURE Reset; VIRTUAL;

END;

PROCEDURE DrawBox(VAR theRectangle : Rectangle; TextAttribute : BYTE);
PROCEDURE MoveCornerHelper (w : Window; theCorner : Corner);

CONST CrtBox : Rectangle = (x1 : 1; y1 : 1; dx : Columns; dy : Rows);

IMPLEMENTATION
ENDi

WindowStack is used to specify the behavior of windows and stacks of windows indepen-
dent from the types of windows that may exist. It defines Rows and Columns as constants
representing the size of the display screcen. TopMenuLine contains the top line of text dis-
;ﬂayedinthef”jAcerenvhonnuHm.Cornerisdcﬁncdtoennuneunethctypesofcornen;and
Direction is defined to enumerate the types of directions. Window is defined as a pointer to
a WindowObject and T is defined as a pointer to an ObjectCell, which is used to represent
a stack of windows.

A WindowObject is defined as follows. It contains a ParentStack, that is, the stack in
which it occurs. It contains a ScreenBox, which is the rectangle containing the window
on the screen. It contains a ViewBox, which is the rectangle specifying which part of the
ViewedObject is displayed on the screen. And it contains theTopLine, theBottomLine,
theStatusLine, theLeftLine, and theRightLine to specify the appearance of the window’s
frame.

A window is Constructed given theParentStack, the upper-left corner, and its size. It
is destructed using Destruct. Reset is used to reset the appearance of the window’s frame,
in particular, to clear the status line. TopLine, BottomLine, LeftLine, and RightLine
should be used to access the appearance of the window’s frame. TextAt, CharacterAt, and
AttributeAt determine the appearance of a window’s body.

MoveViewDownward, MoveViewUpward, MoveViewLeftward, and MoveViewRightward,
modify theViewBox. RepositionViewY (RepositionViewX) modifies the position of

theViewBox relative to the amount of the frame above and below (to the left and to the
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right) of Index. CorrectView modifics theViewBox so that the window selection is in view.
MoveScreen modifies theScreenBox so as to move the window on the screen. MoveCorner
modifies the size of theViewBox and theScreenBox.

Finally, I0Check determines if an [O error has occurred and displays an error message
on the status line in that case.

windowStack defines ObjectCell to represent a stack of windows. A window stack
contains an ErrorMessage, which if it is not empty, is displayed in place of the TopMenuLine;
theWindows, which is an array of 64 Window objects; theBottom, which is the index of the last
array element to contain a valid window; and the SelectedWindow, the ScrapTokenWindow,
and the ScrapLineWindow to indicate these special windows.

A window stack can be Constructed and Destructed. The variable theWindows is not
usually accessed directly because the functions TopWindow, Length, and NthElement should
be used instead. A new window is created on the top of the stack by CreateWindow and a
window is removed from the stack by DestroyWindow.

A frame can be drawn to the screen using RedrawBox, which first removes the LastBox
and then draws the CurrentBox. UndrawBox removes a frame drawn to the screen.

PutOnTopOrPutAtBottom, PutOnTopOrPutBelowTop, PutAbove, and PutBelow rcorder
the windows on the stack. SetSelectedWindow sets the selected window of the stack. TextAt
yields the character and color attribute at a given coordinate of the window stack. WindowAt
yields the top-most window to appear at the given coordinate.

Refresh redraws to the screen the contents of the specified window. Redraw redraws
the specified portion of the window stack. Similarly, DoubleRedraw redraws the specified
portions of the window stack with any overlap being drawn only once.

A StackIterator object iterates through the windows of a window stack that are affected
by a modification to a node. A StackIteratoris Constructed given a window, which it uses
to set theWindow, and theOwner. Next sequences through those windows of the ParentStack
of theWindow that would be affected by an edit operation to theOwner node. This is the
Iterator that must passed to the various ObjectView edit operations.

The procedure DrawBox and MoveCornerHelper are auxiliary procedures that operate
independently of window stacks. The constant CrtBox defines the Rectangle that contains

the entire display screen.
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C.30 No

UNIT NodeView;

USES Line, LineBuffer, MPS, LineView, TokenView, ObjectView, WindowStack;

deView

INTERFACE {$F+,0+,L-}

TYPE
MenuTitles = ARRAY [0..Rows - 4] OF STRING[Columns - 4];
MenuAction = PROCEDURE (n : BYTE);
Window = ~ WindowObject;
WindowObject =

OBJECT (WindowStack.WindowObject)

CONSTRUCTOR TokenConstruct

CONSTRUCT

(theParentStack : WindowStack.T;
theRootNode : Node;

x1, y1, dx, dy : BYTE);

OR LineConstruct

(theParentStack : WindowStack.T;
theRootNode : Node;
theLineBuffer : LineBufferType;
x1, y1, dx, dy : BYTE);

CONSTRUCTOR FileConstruct

(theParentStack : WindowStack.T;
FileName : STRING;
x1, y1, dx, dy : BYTE);

DESTRUCTOR Destruct; VIRTUAL;

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

Toggle;

CancelToggle;
Select(x, y : BYTE);
ZoomCopy;

ZoomIn;

ZoomParent;

ZoomRoot;

Extend;

Delets;

Destroy;

Poke(x, y : BYTE);
Insert;

Yank;

EnterText(ch : CHAR);
FindDefiningOccurrence;
FindDefinition;
FindType;
FindDenotation;
FindKind;
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Validate;
DefinitionCopyAt;
Store;

Compile;

Link;

Run;

FUNCTION TimeStampOf(UnitName : STRING)
PROCEDURE PickWindowSpecifiedMenu;

END;
NodeWindowStack = ~
WindowStackObject =

0BJECT (WindowStack.ObjectCell)

CONSTRUCTOR Construct;
DESTRUCTOR Destruct; VIRTUAL;
PROCEDURE ResetScrapWindows;
PROCEDURE CreateTokenWindow (theRootNode : Node;
xt, y1, dx, dy : BYTE);

: LONGINT;

WindowStackObject;

PROCEDURE CreateLineWindow
(theRootNode : Node;
thelineBuffer : LineBufferType;
x1, y1, dx, dy : BYTE);
PROCEDURE CreateFileWindow(FileName : STRING; x1, y1, dx, dy
PROCEDURE CreateWindow(x1l, y1, dx, dy : BYTE); VIRTUAL;
PROCEDURE DestroyWindow(w : WindowStack.Window); VIRTUAL;
PROCEDURE Filelnput;
PROCEDURE Fetch(thePattern : STRING);
PROCEDURE Menu(VAR Titles : MenuTitles;
NumberOfEntries : BYTE;
Action : MenuAction);
PROCEDURE PickStackList;
PROCEDURE StoreValues;
END;

: BYTE);

VAR theWindowStack : WindowStackObject;

IMPLEMENTATION
END.

NodeView specializes the operations of WindowStack for windows based on LineView and
TokenView. The type WindowObject is specialized as follows.

Three constructor functions TokenConstruct, LineConstruct, and FileConstruct are
provided to create, respectively, a node window given a node, a text window given a node
and a line-buffer, and a text window given the name of a file. A window can be Destructed
as usual.

Toggle can be applied to a window to convert it from a node window to a text window
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or vice versa. CancelToggle converts a text window back to a node window, discarding the
text. Select sets the selection point.

ZoomCopy creates a new node window with the selection as its owner. ZoomIn sets
the owner to the selection. ZoomParent sets the owner to the parent of the owner. And
ZooomRoot sets the owner to the root of the owner.

Extend extends the selection by following the position of the mouse.

Delete invokes the window specific delete operation. Similarly, for Destroy, Insert, and
Yank. Poke has an effect only on a node window for which it is used to insert a placeholder
list element. EnterText inserts a character into a text window; when applied to a node
window, it has the same effect as Toggle.

The FindX routines apply only for node windows for which they determine the specified
semantic attribute of the selection point. A new window is created to hold the result.
Validate also applies only for node windows—it checks the correctness of the owner node
and an error message is displayed on the status line of the window in case of error.

DefinitionCopyAt can be applied to a node window and has the effect of using AST’s
DefinitionCopyAt to express the selected node of the selected window at the selection of
the window to which it is applied; it replaces the selection with the result of the copy. Store,
Compile, Link, and Run can be applied to node windows to produce the desired effected of
storing, compiling, linking, or running the owner node. TimeStampOf, given a global value-
identifier, determines the creation time associated with that identifier. It has the side-effect
of recompiling anything that is required to compile the owner of the window to which it is
applied.

Finally, PickWindowSpecifiedMenu invokes a popup menu. The menu contains different
operations depending on whether the window is a node window or a text window.

NodeView specializes window stacks as follows. ResetScrapWindows empties the con-
tents of both scrap windows. Four window-constructing procedures CreateTokenWindow,
CreateLineWindow, CreateFileWindow, and CreateWindow are provided. (CreateWindow
creates a window with an empty node as its owner.)

FileInput invokes the PCAcer menu for loading ‘.acc’ files, i.c., text files containing
Acer syntax. Fetch invokes the PCAcer menu for loading either “.tb,” “.vb,” ‘.vd,” “.tbh1, or
‘.vbl’ files.

Menu displays a popup menu, given the titles, the number of titles, and a procedure
that performs the operation associated with cach title. PickStackList displays PCAcer’s

stack-list menu.
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StoreValues stores every top-level fixed-value-binding and binding-list that is not up-
to-date with respect the the version stored in the file system. This operation is performed
by the PCAcer environment before any programs are compiled.

And finally, theWindowStack contains the one WindowStackObject used to represent
PCAcer’s environment.

The body of NodeView begins an input loop that continues until the quit command of the
PCAcer environment is invoked. As such, NodeView really acts as a program but because it
is defined as a unit, a program must be written that imports NodeView. This program can
then specify things such as how to overlay the various units, how big the stack should be,
and so on.

This finally completes the description of PCAcer’s implementation and that of its

metaprogramming system. Much detail has been left out, but perhaps not enough.



Appendix D
Quick reference

A table describing Acer’s context-dependent manipulation primitives is given below. The
metaprogramming system interface for these primitives is described in section 5.5, which
describes the Acer host-language version, and in sections C.19 and C.20, which describe the

Pascal host-language version. Tables summarizing Acer’s type-system follow.

D.1 Context-dependent manipulation primitives

[1 relation given yields reference

defining-occurrence id The corresponding identifier node that | 3.5.1, A.3.1
defines the identifier node id for its par-
ticular scope.

- —

type expr | The type node that represents the typeol | 3.5.2, A.3.3
the value or type expression expr.

kind expr | The type node that represents the kind | 4.7.1, A.3.3

(the type of the type) of the value or type
expression expr.

definition expr | The expression node that represents the | 3.5.3, A.3?
meaning of the value or type expression

expr as specified by Acer’s rewrite rules.

denotation expr | The expression node that results from | 4.7.1, A.3.2
rewriting the value or type expression
expr, rewriting the rewritten expression,
and so on, until the resulting expression
cannot be rewritten

definition-copy-at | exprl | The expression that results when the | A.5.2.2
vaulue or type expression exprl is re- | A5.2.1,4.10,
expressed in terms of the scope at expr2. | 4.11, 4.13

erpr?
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D.2 Identifier

type-identifier | Type | X | _ _type

value-identifier | value | x | 7 | "#$&*+-/<=>\"|"

D.3 Deriving declarations for named arguments

type fixed-value variable-value

binding |let T:: U be V|let x: T be y |let var x: T be y

declaration T::U x: T var x: T

D.4 Deriving declarations for anonymous arguments

type | fixed-value | variable-value

argument T X let var be x

declaration | :: U : T var : T

D.5 Component type equivalence

T::U U
x: T : T
var x: T | var L

D.6 Component subtype

C condition

T::Ul T: U2 Ur . U2
x: Tl x: T2 T C T2
var x: T1 |var x: T2 | T1 = T2

D.7 Special nodes

empty nothing

arbitrary-list | arbitrary [x] [T] [x then y] [nothing] end
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D.8 Concrete-type

literal type
tuple tuple Tuple
let T::U be V, T: U,
let x: T be z, x: T,
let var y: T be z, vary: T;
T, 2 Us
X, : T
let var be x var: T
end end
dynamic dynamic Dynamic
let T::U be V, T:U;
let x: T be z, x:T;
let var y: T be z, var y: T;
T, wUs
X, : T
let var be x var : T
end end
record record Record
let T::U be V, T:U,;
let x: 7T be z, x: T;
let var y: T be z vary: T
end end
variant variant x of 7" with Variant T of when x then
(let T::U be V, (T::U,;
let x: T be z, x: T,
let var y: T be z, vary: T;
T, = Uy
X, : T,
let var be x) var: T)
end end
function function (7" :: U, Function (7 :: U;
x: 71 x: T;
= U, = U,
: T) :T)
X T
end end
enumeration | Enumeration x, y end.x Enumeration x, y end
option Option x, y end.x Option x, y end
any Any
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D.9 Type-operator

abstract concrete

Operator (T :: U) T end | Operator (7 :: U) U end

D.10 Abstract-type

literal condition visible supertype
type-identifier T T::U U
type-selection | x.T x:Tuple T:: U end U
operator-call | O(T) | O::Operator ( :: U) V end Vv

D.11 Standard types

literal type implemented by
array x, y,z of 7" end Array (T) arrays
‘x’ Character character
error Error exceptions
exception (7T) Ezxception (T) exceptions
1 Integer integer
pointer (x) Pounter (T) pointers
raise e with x end Raise exceptions
1.0 Real real
reference (x) Reference (T) references
"xyz" String string
0 Void exceptions

D.12 Notation

value type
reuscd-identifier x’[1] ]
block {let x be y; f(x)} | {let T be U; O(T)}
denoter {(x)} {[T]}
type-designation TYPE (x) TYPE (T)
selection X.X x.T
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D.13 Iterator and accumulator
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let Ilterator be
Operator (BaseType:: Any)
Tuple
done: Fzception ( Void)
produce:
Function () BaseType end
terminate:
Function () Void end
end
end

let Accumulator be

Tuple
done: Ezception ( Void)
consume:

terminate:
Function () Result Type end
end

end

Operator (BaseType:: Any; ResultType :: Any)

Function (: BaseType) Void end

D.14 Subtype

subtype C supertype condition
Tuple 7::Ul; : T end Tuple T:: U2 end Ul c U2
Dynamic 7 :: Ul; : T end Dynamic 7T :: U2 end Ul C U2 |
Record x: T; T:: Ul end Record T:: U2 end Ul C U2
Variant Enumeration el end of | Variant Enumeration el, e2 end of | U7 C 2
when el then (T ::UI; : T) when el then (7 :: U2);
end when e2 then (: V)
end
Function ( :: T'1) Ul end Function ( :: T72) U2 end Ul C U2
Enumeration ¢l end Enumeration el, ¢2 end
Option el end Option €2, el end ]
T T T:U
T1 T2 T1::U
UC 712
x1.T x2.T xl = x2
O1(Tr1) 02 (T2) 01 = 02
T = T2
T Any
Error T
Razise T
T Error
T Raise
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D.15 Computation

function-call f(T, x)
unary-method-call {op x}
dyadic-method-call {x op y}

assignment {x becomes y}

is-test {xis y}
is-not-test {x isnot y}
and-if-test {x andif y}
or-if-test {x orif y}
index x[y] R
dereference xQ
ord-call ord (x)
val-call val (7, x)

compound-value

begin x; y; z end

code-patch code T x; y; z end
accumulation accumulator ([x, y, z])
iteration for element in iterator andif filter (element) do

accumulator body (element) end

conditional

if conditionl then consequentl
elsif condition2 then consequent?2
else default end

dynamic-inspection

inspect dynamicValue Then
when T with definedIdentifier then conscquentl;
when U then consequent?2
else default end

variant-inspection

inspect variant Value then
when x with definedldentifier then consequentl:
when y, z then consequent2
else default end

try

try body then
when cxceptionl with definedldentifierl do consequentl;
when exception2, exception3 do consequent?2
else default end

keep-trying

e —

keep trying loopBody then
when exception with definedldentifier do consequent
else default end

try-finally

try body finally finalAction end
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