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Abstract

The Rhodes expansion S€ of a semigroup S is the set of all <, -chains
over S and S% is the subsemigroup of S¢ generated by sequences of the
form (z), £ € X. When S is the free semilattice on X, then §% is the free
right regular band. If S is a zero semigroup then éﬁ, X =8 - {0}, is an
inflation of a right zero semigroup. In fact, the variety ZRZ of inflations
of right zero semigroups is the smallest variety properly containing RZ V Z
where RZ is the variety of right zero semigroups and Z is the variety of zero
semigroups. Moreover if S is free in Z on X then $% is free in RZ V Z on
X, and if we apply the right Rhodes expansion on $%, we have (§§)R is free

in RZV LZ V Z, where LZ is the variety of left zero semigroups.
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Preface

The purpose of this thesis is to survey applications of the Rhodes Expan-
sion to the construction of free semigroups.

In Chapter 1, we give the necessary definition and background. This
includes a discussion of semigroups and varietiés. We state, without proof,
some theorems and lemmas. For more detail we refer the reader to [2], [3],
[71, 8], [9] and [10].

In Chapter 2, we discuss the definiton of the Rhodes Expansion and its
basic properties. Most of the results can be found in {1], [4] and [11]. However
the proof presented here for Theorem 2.16 is new.

In Chapter 3, we provide the definition of Inflation of a Right Zero Semi-
group. Some of the material in this chapter can be found in [6]. However
the material concerning free object is new. The results here were obtained

in collaboration with my supervisor.
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Chapter 1
Introduction

We begin by presenting in this section some basic information concerning
semigroups. Further information and proofs can be found in any of the basic
standard texs, for example Clifford and Preston [3], Howie {7], Lallement [8],
Petrich [9],{10], Burris and Sankappanavar [2].

Let S be a nonempty set with a binary operation - . We say that S is a
semigroup if - is associative, that is for all z,y,z € S, (z-y) -z =z -(y- 2).
When convenient, we will write z-y simply as zy.

A semigroup S is said to be a commutative semigroup if for all z,y €

S, zy = y=x.
If a semigroup S has an element 1 such that forallz € S, z1 = 1z = z,

then S is called a semigroup with identity and 1 is an identity element of S.

Let S be a semigroup. Then S?! is the semigroup obtained from S by




adjoining an identity if necessary, that is

. { S if S has an identity element
S =

SU {1} otherwise

where the multiplication of S is extended to S! by defining 1s = sl = s, for
all s € S.

If a semigroup S contains an element 0 such that z0 = 0z = 0, for all
z € S, then we say that S is a semigroup with zero and 0 is the zero element
of S.

A semigroup S is a right zero semigroup if for all z,y € S zy = y,and a

left zero semigroup if for all z,y € S zy = z.

A semigroup S is called a zero semigroup if for all z,y € S zy = ¢ for

some fixed element ¢ € S.
A semigroup S is called band if every element of S is idempotent.
A nonempty subset T of a semigroup S is called a subsemigroup of S if

forall z,ye T zyeT.
Let A be a nonempty subset of a semigroup S. The intersection of all

subsemigroups of S containing A is the subsemigroup (A) generated by A.

It is easily shown that (A) = {z € S: Ja,, --,a, € A with 2 =a; - -a,}.
Let A be a nonempty subset of a semigroup S. Then A is called a
left ( right ) ideal of S if SA C A (AS C A), and a two-sided ideal, or simply
an ideal, if it is both a left and a right ideal of S. An ideal A of a semigroup
S is called a minimal ideal if for every ideal N of S with N C A then N = A.

If ¢ is a mapping from a semigroup S into a semigroup T, then ¢ is a

homomorphism if for all z,y € S, ¢(zy) = ¢z ¢y. If ¢ is a homomorphism




and one to one then it is called a monomorphism, and if it is both one to one

and onto we call it an isomorphism. An isomorphism from S onto S is called

an automorphism. A homomorphism is called an epimorphism if it is onto.
Let S and T be semigroups. The direct product of S and T is the carte-

sian product S x T together with the multiplication (s,t)(s’,t') = (s¢/, tt').
A binary relation p on a set X is a set of ordered pairs (z,y) where z,y €

X. We write zpy if (z,y) € p. The equality relation on X, denoted by iy,
is defined by :

(z,y) €ix ifand only if z = 3.
Let B(X) be the set of all binary relations on X: If p,0 € B(X) then
poa = {(z,y) € X x X :(3z € X)(z,2) € p and (2,y) € o}

Notation : p* =pop, p*=popop.
If p € B(X), then the domain and the range of p are defined by :

dom(p) = {z€ X:(Jy € X)(z,y) € p},
ran(p) = {y € X:(3z € X)(z,y) € p}.

Let p be an any element of B(X). The inverse of p, denoted by p7?, is
defined by:

p~t={(y,z) € X x X : (z,y) € p}.

An equivalence relation R on a semigroup S is called left compatible if for

all s,t,a € S, (s,t) € R implies that (as,at) € R, and right compatible if for

all s,t,a € S, (s,t) € R implies that (sa,ta) € R. It is called compatible if it
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is both left and right compatible, that is for all s,t,s',t' € S, (s,t) € R and
(s',t') € R implies that (ss',tt’) € R. A left (right) compatible equivalence

relation is called a left (right) congruence. A compatible equivalence relation

is called a congruence.

Theorem 1.1 Let p be a congruence on a semigroup S. Define a binary

aperation on the quotient set S/p as follows:
(ap) - (bp) = (ab)p.

Then (S/p,-) is a semigroup.

Theorem 1.2 Let I be an ideal of a semigroup S. Then
pr={I xI)Uis

is a congruence on S and Sfp; = {I}U{{z}:z €S- I}.

Let X be a nonempty set and X+ be the set of all nonempty finite words
@1a20a3---a, over the alphabet X. Define a binary operation on X* by:

(6102~ an)(bib -+ bm) = (@103~ Gnbiby - b).
With respect to this operation, X* is a semigroup.

Theorem 1.3 Let X be a nonempty set and S be a semigroup.
If $: X — S is an arbitrary mapping then there ezists a unique homomor-

phism ¢ : X+ — S such that P|x = ¢.



If S is a semigroup and a € S then the principal left ideal generated by

a is the smallest left ideal containing a, which is Sa U {a} = S!a. Similarly
the principal right ideal generated by a is the smallest right ideal containing

a, that is aS U {a} = aS!. The principal ideal generated by a is defined to
be S'aS*.
Let S be a semigroup. The equivalence relations £,R,J and H defined

on S by
a £ b if and only if Sla =S,

a R b if and only if aS! = bS?,
a J b if and only if S'aS! = S!8S!
H=LNR
are called Green'’s equivalence relations on S.
The L-class (R-class, H-class, J-class) containing the element a will be

written L,(Rq, H,, J,).
Lemma 1.4 Let S be a semigroup and a € S. Then H, is a subgroup if and

only if H, contains an idempotent.

Lemma 1.5 Let S be a semigroup and let a,b € S. Then

alb & (z,yeS) za=b, yb=a.
aRb & (u,veSYY)au=0>b, vb=a.
aJb & (3z,y,u,v€8S?) zay = b, ubv = a.

Let L, and R, be the £ and R-classes containing a. Then

Ly < Ly if S'a C S,
R, < R, if aS* C bS.



Clearly < is a partial order on the set of £ and R-classes of S.
Let s, € S. Then we write

s <. t if and only if s € S!¢.

Ifs<ctandt <. s, then s=ct. Wewrites <ct ifs < t and s #,t.
We write <, and <, simply as < and < , respectively.
The following is a simple but important observation concerning the relations

L and R.

Lemma 1.6 For any semigroup S, L is a right congruence and R is a left

congruence.

A semigroup S is a right group if and only if it is isomorphic to the direct

product of a right zero semigroup and a group.

Lemma 1.7 Let S be a semigroup. Then the following statements are equiv-

alent.
(i) S is a right group.

(ii) S is a union of groups and the set of all idempotents E(S) of S is a right

Z€ero semigroup.

(iii) H, is a subgroup of S for alla € S, E(S) is a right zero semigroup and
S~ E(S) x H, foralla € S.

Let V be a class of semigroups. Let S be a semigroup in V, X be
a nonempty set, and ¢ : X — S be a mapping. The pair (S,¢) is a
free object in V (on X), or a relatively free object (in V) if for every T € V

6



and any mapping ¥ : X — T there exists a unique homomorphism % :

S — T such that the following diagram commutes

X, ¢ S

<
<y

For example, by Theorem 1.3, (X*,:) where ¢ is the embedding of X into
X+ is a free object on the set X in the class of all semigroups.
When we talk about a free object, the mapping ¢ is often omitted.

Let X* be the free semigroup on X. A pair of elements z,y of X* is
called a ( semigroup ) identity to be written z =y. A semigroup S satisfies

the identity z = y if for any homomorphism ¥ : X* — S, we have ¥z =

Yy.

Let I' be a nonempty family of identities. The class V of all semigroups

satisfying the family of identities F is called the variety of semigroups deter-
mined by F, denoted by V = [F]. f F = {z = y}, we will write V = [z = y].
For any variety V of semigroups ard any nonempty set X, there exists a

free object in V on X.

The following theorem is a special case of Birkhoff’s Theorem (see [2]).

Theorem 1.8 A class V of semigroups is a variety if and only if it is closed

with respect to homomorphisms, subsemigroups and direct products.



The varieties of semigroups constitute a lattice (L, A, V) with respect to

the following operations:

Uny =uny
Uvy=n{WwW:welL Uycw}

Alternatively,

UVY = {S:S is a homomorphic image of a subsemigroup of U x V
for some U € U, V € V}.
Lemma 1.9 Let U,V be varieties of semigroups. Let FU(X) be a free object
inU. If FU(X) € V for all |X| < oo then UC V.

Proof: Let u = v be any identity that holds in V. Let u = u(zy,:- -, z,),
v =0y, Ym) Let X = {z1,- -, Tn,¥1, ", Ym} = {21, -, 2¢}. Write
u = u(z1, -, 2k),v = v(z1,---,2k). Then FU(X) € V. Thus the identity
u(z1y- -+, 2x) = v(2z1,---,2x) holds in FU(X).

Now let S € U, and ay,---,ax € S. Define ¢ : FU(X) — S by:

P(z)=ai 1 <1<k

Since FU(X) is relatively free in U, 9 defines a unique homomorphism

FU(X) — S. Therefore

'“(Zh' .. ,zk) = U(zh ces ,Zk)
= P( u(z1, -, 2k) ) = ¥( v(z1,--*,2k) )
= u(Yzy,---,P2x) = v(P21,---,P2)
= u(ay,---,ax) = v(ay,- -, a).
Therefore u = v is an identity for S, that is u = v is an identity for U.

Thus U CV. &



Chapter 2

Rhodes Expansion

2.1 The Construction
Let S be a semigroup and define S to be the set of all <. -chains over S,
that is
S¢={ (s, +"131) I8i €S, 90 < - S8y, n 21}
Define a multiplication in §¢ by:
(8ny -+ 381)(tmy =+ t1) = (Snlbmy =y S1tm, by - - y ).

It is easily verified that this is an associative operation so that (S¢,- )is a
semigroup. Since each occurrence of < is either <g or =, we can now
define a reduction of elements in S¢ as follows:

If s = (sp,--+,81) € S¢ and s;4; = s; for some 1 < i < n — 1, then an

elementary reduction of s is defined to be:

(sn, ce ey Sig1ySiyt ,31) —3 (s'ru crty Sitly Sia1y - ,81).

9



That is, cancelling the element which is =, -equivalent to its successor on
the left. If s,¢ € S¢ and s is obtained from ¢ by applying a finite number of
elementary reductions, then we say that s comes from ¢ by reduction. If we
cannot perform an elementary reduction on ¢, then we say that ¢ is irreducible.
Thus 8 = (8p,- -+, 81) isirreducibleif and only if s, <¢ 8p1 <¢ -+ <¢ s5.
Clearly the process of reduction leads us to a unique irreducible element which
we denote by Red(s).

For convenience we will drop the subscript £ and write <, <, and = instead
of <., <c¢,and =,. Also we will include the relations <, <, or = when we
are defining certain element of S¢ for wich we already know the order of its
components. For instance, if s = (sk, 81, 8m, Sn,8,) € S¢ with s < 8 =
Sm < 8n < 8, then we will write s = (sx < 8 = 8m < sp < 8,), and

Red(s) = Red(sk < 81 < 8 < 85).
Lemma 2.1 Let s and t be any elements in S¢. Then
Red(s - t) = Red( Red(s)- Red(t) ),

where - denotes the multiplication in S¢.

Proof: Let
$=(Tm1l EZm2 = = Tmry < Tm-t)l ELm-)2 = -0 < I = I2 =
=Ty,
=Y Y2 T  ETney <Yl S Y12 = < YN ZY2 =+ =

Y1s,) be elements of S¢. By Lemma 1.5, zi;yn £ Titym forall 1 < i <
m, 1 <j, k <r;. Hence
Red(s) = (xml < T(m-1)1 SO « 1711)

Red(t) = (ym < Yn-11 <+ < Y11)

10



Red(Red(s)Red(t)) = Red(zmiyn1 < Tm-11¥n1 < -+ < Tn¥n1 < Y <

Yin—ip < -+ < Yu)-

Red(st) = Red(Zm1yn1 = Tm2Un1 = = Tmrp¥n1 S Tim-1)1Yn1 =
T(m-1)2Ynl = -+ S T1Ynl = T12Yn1 = - = TinYnt S Y1 =
Yn2 = ETngy Y- EYn-12 = <Y =Yz =
=)
= Red(Zm1¥n1t < Ten-11¥n1 < < ZuYn1 S Y <o < yn1)
= Red(Red(s)Red(t)).

Definition 2.2 The Rhodes Expansion §¢ of a semigroup S is the set of

all <¢ -chains over S, that is the set of all irreducible elements of S¢ together

with the multiplication ‘
s*t= Red(s-t) for every s,t € §¢

Where - denotes the multiplication in S€. This construction was introduced
by J. Rhodes (see [4], chapter XII). The remainder of this and the next
section is devoted to the basic properties of the Rhodes expansion, with the

exception of Theorem 2.9, most result can be found in {1] and [4].

Lemma 2.3 Let S be a semigroup. Then
1. (S%,%) is a semigroup.
2. The mapping s — Red(s) is an epimorphism of S¢ onto S<.

8. The mapping 0, : (Tm,-+-,T1) — Tm is an epimorphism of S¢ onto

S.

11




Proof: 1. Let s,t,u be any elements in S¢. Then

s *(t*u)

s * (Red(t - u))

Red(s - Red(t - u))

Red(Red(s) - RedRed(t - u)) (by Lemma 2.1)
Red(Red(s) - Red(t - u))

Red(s-(t-u)) (by Lemma 2.1)
Red((s-t)-u) (associativity of §¢)
Red(Red(s - t) - Red(u)) (Lemma 2.1)
Red(RedRed(s - t) - Red(u))

Red(Red(s -t)-u) (Lemma 2.1)

(Red(s - t)) * u

(s*t)*u.

Thus (8%, *) is a semigroup.

2. Let s and t be two elements in S°. Then s — Red(s), t — Red(t),

and st — Red(st). By Lemma 2.1 and the Definition 2.2 :

Thus s — Red(s) is a homomorphism from S¢ into S€. This is also an

Red(s-t) = Red( Red(s)- Red(t) )

eSc esc
= Red(s) * Red(t)

epimorphism since Red(s) = s for every s in §¢.

3. Lets=(sp,---,81) and t = (tm,---,t1) be two elements in S¢. Then

15(8) = 85, N5(t) = tm, and s*t = Red(Sptm, -, 31tm,tm, -+ ,t1). Since the

12



reduction never changes the leftmost term of elements in S*, then
ns(8 xt) = n,Red(Sptm,- -+, S1tmytm, -+, t1) = Sntm = 1,(8) * 1,(t). Thus 7,
is a homomorphism. Moreover 7, is surjective since for every z, € S we can
find a chain (z,) € §¢ such that 7,(z,) = z,.

In the light of Lemma 2.3 we will denote the multiplication in both S¢

and S¢ by juxtaposition.

Theorem 2.4 S¢ is generated by < -chains of length 1, that is elements of
the form (s) € S¢, with s € S.

Proof : Let (z, < --- < z;) be any element in S¢.

For every ¢ =1,2,---,(n—1), zi4; < z;, and therefore we can find y;4, € S
such that z;4; = yi41zi. By induction on i we may conclude that z;4; =
YitrYi-Y2Ty, for 1 <i<n~1.

Thus

Red(y,, Yoy < - Sy < 1?1)

() (Un-1) -+ (32) - (1)

= Red(z, <:-- <z, < 11)
= Red(z,<---<z3<74)

= (zp < <z3< 1Y)
Definition 2.5 For any subset A of a semigroup S with S = (A),
S5 = ((a):a€ A).

Theorem 2.6 Let A be a subset of a semigroup S with S = (A). Let

S=(sa<--<s1),and t=(t <---<t;) be elements in 5.

13



1.s<t in 85 (S%) iff n2k, sk =tx in S, sp_g =tpoy, -, 8 =t
2.s=t in Sﬁ (gc) iff n=k, sk =t inS, spoy =tkq,-,5 = 1.
3 s<t in Sﬁ (SC) Fn>k sp=t inS, Sp_q =1tk-q, -+ ,5 = l1.

Proof : 1. (=) Since s < t, then there exists 4 = (tm,---,u;) € (§5)}

such that s = ut. Thus we have
(sp <+ <381) = Red(tumtpr <+ < it < e << ty)

By reading the sequences from right to left we obtain: s, = ¢,,---,8; =
ti_1, n >k and s = uity =t forsomei, 1 <i < m, that is s, = i;.
(¢=) Let s = (8 < -+ < 81) = (Tm) - (71), ¢ = maximum integer with

(zq) - -{(z1) = (8k < -~ < 81). Then
Red[(zm):+ (Tq41)] (k< <81) = (sa< -+ < 81)

Let t = (tx < --- < t1) = (¥p) -+ (1), u € S be such that sy = ut; and

u = u, - -u; for some u; € A. Then

(ur) - (u1) (yp) - (41)
Red((ur)---(w1) (yp)--- (1)) = (8kyther, -+, t1)

= (3ka Sk-1y°"" asl)

(SkE---Etk<tk_1<'°'<t1)

Therefore Red[(zm) - (zg41)(tr) -+ (w)l(¥p) -+~ (1) = (Zm) - (Zgp1)(8k <o < 81)

= (8p <+ < 8y)

2. This follows from (1), since s=t iff s <t and t < s.
3. This follows from (1) and (2), sinces <t iff s <t and t £ s.

14



The proof for S¢ follows, since we can put A = S.
Example

1. Let S be any left zero semigroup, that is for every a,b € S, ab = a.
Since a < b and b < a then §¢ = {(a): a € S}.

2 8={c=¢f = fief = fe=[}. Then §¢ = {(&), (/). (f < )}.

Moreover the homomorphism 7, from S onto S can be ilustrated as

(¢)e Ms . Xe
r; f

(f) (f~.<e)

follows:

The set {(f),(f,e)} is a right zero ideal in §%.

3. Let S be a semigroup generated by {e, f} which satisfies 2 = ¢, f* =
fef=fe=eg=ge= fg=gf =g, thatis S = {e, f,ef = fe = g}.
Then §¢ = {(e), (f), (9), (9, €), (g, f)} with multiplication table:

(e) (f) (9) (g9,¢) (g9,f)
(e) |(e (9,f) (9) (9.€¢) (9,f)
(f) 1(ge) (f) (9) (9.¢) (9,f)
(9) |(9.¢) (9,f) (9) (9.¢) (9,f)
(9:€) | (9:¢) (9,f) (9) (9:¢) (g:f)
(9,f) | (9:¢) (9,f) (9) (9,¢) (g,f)
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(f)e € —m :

~0

by
[y

~—
e

The set {(9),(g, f),(g,€e)} is a right zero ideal.
If A={e, f}. Then

S5 = ((9):a€4)
= {(e), ()
= {(e),(f),(g,e),(g,f)}

This example illustrates the fact that, in general, Sﬁ is a proper sub-

semigioup of S,

4. Let S be a semigroup generated by { e, f, ¢} which satisfies e? =
e, f2=1f, =9, ef = fe, fg=gf, cg=ge, efg=gfe = [ge =
feg

Then §¢
= {(e),(/),(9),(ef,e),(ef, £),(f9,9),(fg, ) (eg,€),(eq,9),(efg, [9),
(efg,e9),(efg,ef),(efg,ef,€),(efg,ef, f),(efg,e9,¢€),(efg,e9,9),
(efg, f9,f),(efg,f9:9)}

And the homomorphism 7, from $€ to S can be described as follows:

16



s

(e) (f) (9) T f r

[(eF. e)ef. ) [(eg.€)(eq,9) (9, f)(fg.9) ef € fg

(efg,f9) (efg,eq) (efg,ef) (efg,ef,¢€) \[/

(efg.ef.f) (cfg,ea.e) (efa,e9,9) ofs
! (eefg,)fg f’)?gf?, s

If A= {e, f,g} €S, then 85 =((e),(f),(9))
= {(e),(f),(9), (ef, f),(ef,¢€),(eg,¢€),(eg,9),(fg,f),(f9,9), (efg, fg, f),
(efg,f9,9),(efg,ef, f),(efg,ef,e),(efg,e9,¢€),(efg,e9,9)}-

2.2 Basic prdperties of the Rhodes Expan-
sion

Throughout this section S is a fixed semigroup generated by a subset A and

let n, : S¢ — S be as defined in Lemma 2.3.
Lemma 2.7 IfG is a group, then G¢ ~ G.

Proof: Note that G- = { (gny-*sq1) : € G, n>1}and gi =g; for
every ¢i, g; € G. Therefore

G’ = {(9):9:€G}
~ G

17



Lemma 2.8 For every idempotent e in S, 7,"1(e) is always a right zero

semzigroup.

Proof: Suppose s,t € n,71(e), that is 7,(s) = 7,(t) = e, and s,t have the.
form :
s=(e,8py*,51)
t= (e,tk,-'-,tl)
Then st = (e, Sn, ~,51) (& tg,-=t1)
= Red(e?,---,s16,€,tk, -+, 11)
= (€,tx,- -+, 1)

Moreover 7, !(e) is a set of R- equivalent idempotents of S&.

Theorem 2.9 If G is a subgroup of S then T = n71(G) is a right group and

for any a € T, n,|y, : H, — G is an isomorphism.

Proof: Let E(T) be the set of all idempotents of T. We have that e =

(én, -, €1) is an idempotent in T if and only if

e? = (€2, en-1€n,*,€1€n,€ny -, €1) = (€ny -, €1),

that is e2 = e,. This can happen only if e, = 1 (since G is a group and

en € G). Hence
E(T)={(1)U(1,en-1,---,€1) : 1 is the identity of G}.

Therefore E(T) = n;*(1) is right zero.
Let H,, a € T, be the H-class containing a(in T). We want to show that

18



there exists e € E(T) such that e € H,. Suppose a = (ap,---,a1) and let

e=(l,am-1,---,a1). Then a,, € G so that

a =

e =

a =

Il

€

That 1s aRe and ale.

ea
a(ay,',Gmoy,- -, 01)

ae

(a7 am-1, 501 )(@m, @1, -, 1)

Thus e? = e € H,. According to Lemma 1.4, H, is a

group. Moreover T = U,erH,. Thus by Lemma 1.7 T is a right group.

Clearly 7,|q, is 2 homomorphism of H, into G.

Since n;1(1) is right zero then 5, (1)N H, is right zero. Therefore ker(y,|x,)

is right zero. Thus

ker(n,ln,) = {1n,}

Therefore 7,]y, is ane-to-one.

It remains to show that 7,]y, is onto.

Let e be the identity of H,. (Note H, = H.). Let ¢ € G and ¢’ be such that

1.(9') = g.

Qliimgle €H, = H.,.

Lete = (11eu—11”

g =(99m-1,---
Then

',81)

g'e = (g’gm"l’""ghlaen—l,"',el)

= (gaen—la"'

> 81)

L(1,en-1,---,€1) =e (by Theorem 2.6)
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On the other hand

(11 €n-1y""" )el)(gaen-h et 161) = (gven—h e ,81)

(g, €n-1y""", 61)(g_la€n—1, s ,61) = (1a€n—1, Tty 81)

Thus ge’Le and ge'Re, that is ge’ € H,.
Also n,(g'e) = 1,¢’n,e = g1 = g. Therefore 5,|x, is surjective.

Thus 7,|g, is an isomorphism.
Corollary 2.10 If G is a subroup of S with identity 1 then
n;'(G) 2n;'(1) x G.
Proof: This is an immediate consequence of Lemma 1.7 and Theorem 2.9.

Definition 2.11 A semigroup S has unambiguous L-order if for every

s,t,u€ Swiths<tand s<uwehavet<u or u<t.
Lemma 2.12 S% and S¢ have unambiguous L-order.

Proof: Given s = (s, <+ <81), t=(tp <---<t), u=(w <---<u) €
Sﬁ (SC) with s < t and s < u then by the Theorem 2.6 we have n > k, s; =
tky Sk1 = tg-1,--yS1 =t and n > 1, 8 =y, 811 = U-1, -, 31 = U).
Therefore if k£ < [, then u < ¢.

Repeating the Rhodes expansion produces nothing new :
Lemma 2.13 Let (S5)% be the Rhodes Ezpansion of S5 defined by

——

(55)5 = (((a) s a € A)
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that is the subsemigroup of (S€)° generated by elements ((a)) € (S£)¢, where
a € A, then

——

(55)5 ~ S5
Proof: For any a; € A, 1 <i < n, we have

((an)) -~ ((a2))((a1)) = ((an))---((a3)) {((a2))((a1))}
= ((an))---((as)) Red((az)(a1),(a1))
((an)) - -~ ((a3)) Red[Red(aza1,a1),(a1)]

= Red[Red(aﬂ c0G1,8p_1°""Q1y°"" ’al)s
Red(aﬂ—l rr0a1,Q8p-2" "al)"' )

Red(azay, a1), (a1)]
Thus we may assume that any element of (@:ﬁ)ﬁ is of the form

Red[Red(8n,+-,81) < Red(Sp-1,:--,81) < -+ < Red(s2,81) < (81))

——

Let 7 be the canonical morphism from (55)4 into 8% defined by:
s" — s, where

s* = Red[Red(s,, --,81) < Red(sp-1,+++,51) < +++ < Red(s2,51) < (1))
and s = Red(sy,---,3$1)

From Theorem 2.6 we have s, < sk iff Red(sk, Sk-1,+-+,91) < Red(8k-1,--, 1)
Therefore the two chains s* and s have strict <. in the same positions. Hence

if s=(am <-:-- < a;) then



s = ((am < --- < a1),(@m-1 < --- < a1),--+,(a1)). Thus s* is uniquely
determined by s. Therefore 7 is one-to-one.

In contrast to Lemma 2.13, if we apply the dual construction of the
Rhodes expansion to the Rhodes expansion to obtain (§§)§ then we may
obtain something new. Indeed, N.R. Reilly showed in [11] that if S is the

free semilattice on a countably infinite set A of generators then the semi-

groups

——

85 (595 ((59DD%,

are free in the (different) varieties that they generate.

2.3 Construction of Free Right Regular Bands

Definition 2.14 Let S be a semigroup. S is said to be a semilattice if S

is commutative and every element of S is idempotent. Clearly the class § of

2

semilattices is a variety defined by the identities z° = z, zy = yz.

Definition 2.15 Let S be a semigroup. S is said to be a right regular band

(respectively, regular band) if for every z,y,z € S, zyz = yz (respectively,
zyzz = ryzzz). Left regular bands are defined dually.

In order to "locate” these varieties in the lattice of varieties of all bands let
T = variety of all trivial semigroups = [z = y]
LZ = variety of all left zero semigroups = [zy = z]
RZ = variety of all right zero semigroups = [zy = y]

S = variety of all semilattices = [z? = z, zy = yz]
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RB=LZVRZ =[z* =z, zyz = z2]
LNB=SVLZ =[z?=z, zyz = zzy]
RNB=SVRZ =[z?=z, zyz = yzz]
NB=LNBYRNB = [z? = z, zaby = zbay]
LRB = [2? = z, zyz = zy]

RRB = [2? = z, zyz = yz]

REB = [z = z, zyzz = zyzz1]

The lattice of subvarieties of regular bands is shown in the following diagram.

LRB RRB

LNB RNB

LZ | RZ

T
Diagram 2.1 : The lattice of proper varieties of bands

The following result is a particular case of a result in (Reilly [11}). How-

ever the proof is entirely different.
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Theorem 2.16 Let S be the free semilattice on X, and define a mapping
c: X — Sf’v by oz = (z), for all z € X, then (Sﬁ,a) is the free right

reqular band on X.

Proof: First we want to show that §% is a band, that is for every ¢t €
Sﬁ, 2=t
Let t=(ta<---<t1) €8%, t;€S. Then
t2 = Red(t,’<---<tit.<ta < -+ <ty)
= Red(tp, < -+ Stitn <ty <-+-<t) (since t,?=t,)
= (t“< ...<t“)
= 1

Thus for all t € §%, t2 =t and §% is a band.
Suppose t,u € 8% with t = (ts,---,%) and u = (um,---,u1). Then

tu = Red(tptum <+ S titm S up <+ < uy)
and
utu = Red(upmtpum <+ < Uptnlm < ol < -0 S bl < Um < -0+ < Uy)
= Red(tpum < -+ S Uitplm < tally <+ < htup < Um < -+ < Uy)

(since S is a semilattice)

= Red(t"UmS'.'Stlum<um<"'<u1)

Thus for every t,u € $%, utu=1uand S% is a right regular band.
Now we want to show that §% is the free regular band on X.

Let t = (tp,---,t1) be any element in Qf,:( By the definition of éﬁ, there
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exist ¢; € X, 1 <i < m,suchthat t =(z,)---(z1)-

From the fact that S% is a right regular band, we can delete the left most
element of any two identical z;’s until the reduced sequence obtained from
this process contains distinct z;’s.

Thus we may assume that =z,,---,z,, are distinct. It then follows that
m = n, since (zp)---(z;) is a sequence of length m and

(Zm) -+ (z1) =t = (tn,---, 1)
Let s; € X,z = 1,2,---,n, be such that they are all distinct and ¢

() (51)
We want to show that z; =s; forall ¢, 1 <i < n. Since t = (z,)---(21) =

(8n)--(s1), then

I

Red(z -2y, ,2221,21) = Red(sp---31,---,91), that is

(xn...xly...’xl) (311"'31,"',31)-

By reading these two sequence from right to left, we have z;, = s,, 222, =
8281. Since S is the free semilattice on X and z;z, = 5,8, € S with z, = s,,
then we conclude that z, = s;. Continuing this process we have z; = s;
for all i. Thus every t = (tn,---,%1) € S% can be written uniquely as
t=(zp)---(z1) with z; € X and z; # z; for all ¢ # ;.
Let B be any mapping from X to any right regular band B.

Define v: §%4 — B by: vt = (Bt,)---(Bt;) forallt =(t,)--- (1) € 5%,
where t = (¢,)---(%;) is the unique representation of ¢ as a product of

distinct elements of the form (¢;), t; € X.
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Xe g . éf\,
Y
B
‘B
Clearly v is well defined. We want to show that v is a homomorphism. Let

a,b € 8% be such that a = (t,)---(t1), b= (um)--- (u1).
Casel. t;#uj, 1<i<n,1<j<m. Then

ab

Red(t,) - - (t1)(um) - -~ (u1)
= (ta) - (t2)(thm) -+~ (w1)

and

v(ab) = B(ta)--- (Bt) (Bum)

LAY
o -

Ya ~b

(Bu1)

s

= ~yayb

Case 2. C = {t1,---ta}N{us,---,un} #0.

We proceed by induction on |C|, that is the number of variables that appear
in both a and b. Suppose that vy(ab) = (ya)(yb), for all a,b with |C| < k.
Now consider a,b-with |C| =k +1. Let t; = u; € C.

Then

vavb = (Bta)- - (Btis1)(Bti) -+ - (Btr)(Bum) - - (Bujpr)(BE:)(Buj-1) - - (Bw)
= (Btn)--- (Btiy1)(Bti=1) -+ - (B81)(Bum) - - - (Butj41)(Bti)(Buj-1) - - - (Bua)
(since B is a right regular band)
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= ~avb.
where a* = (tn)-*- (ti41)(ti=1) - -*{t1) and
ab = Red{(tn)---(t1)(um)- - (1) (t)(uj-1) - - (1)}
= Red{(tn) - (tixr)(tiz1) - {t1)(um) -~ = {j1) (t:) (uj-1) - - (1) }
(by right regularity of §%)

Thus we have ab = a*b. By induction hypothesis vy(a*b) = ya*yb. Therefore
7(ab) = yayb.

Since X generates 5&, any homomorphism « : Sﬁ — B which makes
the above diagram commute must be such that a|x = v|x. Thus a = 4.
Therefore v is unique and it is obvious that ¥ 0 o0 = 8. Thus (5%, 0) is the

free right regular band on X.
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Chapter 3

Inflations of Right Zero

Semigroups

3.1 The Variety ITRZ

Clearly the class Z of all zero semigroups is the variety of semigroups defined
by the identity zy = uv. To give some idea as to where Z appears in the

lattice L of varieties of semigroups, Diagram 3.1 presents a sublattice in L.

Definition 3.1 A semigroup S is an inflation of a right zero semigroup M

if

(i) M is the minimum ideal S.
(i1) M is a right zero semigroup.

(iii) S/pnm is a zero semigroup.
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It is straightforward to show that any ideal in a semigroup S that is a
right zero semigroup is necessarily contained in every other ideal. Thus the
term "minimum” could be deleted from part (i). However we leave it for the

sake of emphasis.

The lattice of varieties of inflations of bands has been studied by Gerhard
(6]
Recall that ppy = M x MU Is or, equivalently, that pys is the congruence
on S defined by :

al i M
apy = {}] af for all a € S.
M  otherwise

Proposition 3.2 Let S€ Z and X =S — {0}. Then S% is an inflation

of a right zero semigroup.
Proof: For every a,b€ X, ab= 0 so that

(a)(®) = (0,d), (a)(0,d)=1(0,0),
(a)(0,8) = (0,b), (0,b)(a)=(0,a).

Since §% = ((a): a € X) we have
8% = {(a),(0,a) : a € X}.
Let M = {(0,e) : a € X}. For all a,b € X, (0,4)(0,b) = (0,) € M,
(0,a)(8) = (0,b), (b)(0,a)=(0,a).

Thus M is an ideal of §%. Since for every (0,a),(0,b) € M, (0,a)(0,b) =

(0,b), M is a right zero semigroup, moreover M is the minimum ideal of éﬁ
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Let a,b€ X. Then

apm bpy = abpy
= (0,0)pm
= M

0

]

Thus 8% /pa is a zero semigroup. Therefore $% is an inflation of a right zero
semigroup.

It is interesting to riote the following simple properties of Qﬁ If we apply the
relation <g on §%, then (a) <z (b) if and only if a = b. In fact (0,a) <g ()
and (0,a) < (0,b). Also for any a,b€ S%

c¢Jb & a=zbyand b=tau for suitable z,y,1,u € (§%)"

& a= by and b=au for suitable y,u € (5%)"

& aRb

Thus R =J.

Proposition 3.3 Let A;, i € I, be an inflation of a right zero semigroup

M;. Let

A = J[A
iel
= {f: f:I— UA; such that f(z) € A;}

If multiplication in A is defined by (fg)(¢) = f(i) g(2), ¢ € I, then A is an

inflation of a right zero semigroup.
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Proof: Let M = {f € A: f(i) € M; for all i}. Let f be any element of
M and g be any element of A. Then
(fg)3) = f(i)g(t) € M; (since M;is an ideal of A;)
i~

€M, €Ai
Therefore fg € M and M is an ideal of A.

To see that M is a right zero semigroup, let f, g be two elements in M.

Then
(f9)(3) = f(3)9(2)

N N o?
EM; eM;

= ¢(z) (since M; is right zero)

Thus fg = g for every f,g € M.
Let N be an ideal of Aand N C M. Let f be any element in M.

Then for every g € N, gf = f, since M is a right zero semigroup while
f =g¢f € N, since N is an ideal. Therefore M C N and M = N. Then M

is the minimum ideal of A.
Let f,g € A. Then f(i),g(i) € A; for every ¢ € I. From the fact that
A;/pm; is a zero semigroup, we have
(f9)@)pm = f(i)pm; 9(2)pm,
= M, (Viel)
Thus (fg)(i) € M; for every i € I. Therefore fg € M (by the definition
of M). Hence
fom 9pm = fopm
= M
= 0
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Thus A/pps is a zero semigroup.

Proposition 3.4 Let S be an inflation of a right zero semigroup. Lel A
be a homomorphic image of S. Then A is also an inflation of a right zero

semigroup.

Proof: Let f be any homomorphism from S onto A. Let M be the minimal
ideal of S such that M is a right zero and S/par is a zero semigroup. Let
N = f(M).

Claim : N is an ideal of A.

Let a be any element in N and z be any element in A.

Since f maps S onto A and M onto N, there are s;,s, € S with s, € M
such that f(s;) =a and f(s;) = =.

Therefore

@ = f(s1) f(s2)
= f(s152) (since [ is a homomorphism)
€ N (since s; € M,s; € S and 5153 € M)
Thus ax € f(M) = N and, by symmetry, N is an ideal of A.

Let a,b be any elements in N. Since N = f(M), there are z,y in M such
that f(z) = a and f(y) = b and

ab = f(z) f(y)
= f(zy) (since f is a homomorphism)
= f(y) (since M is right zero)

= b
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Thus N is right zero.

Let P be an ideal of A such that P C N. Let a be any element in
N. Then for every b€ P, ba = a, since N is a right zero semigroup while
a = ba € P, since P is an ideal. Therefore P = N and N is the minimum
ideal of A.

Let p, q be any elements in A and s,¢ be elements in S such that f(s) =p
and f(t) = q. From the fact that S/pys is a zero semigroup, we have st € M,
therefore f(st) € N. On the other hand f(st) = f(s) f(t) = pg. Thus for
every elements p,q € A, pg € N and, by symmetry, A/py is zero semigroup.

Proposition 3.5 Let S be an inflation of a right zero semigroup and N be

a subsemigroup of S. Then N is also an inflation of a right zero semigroup.

Proof: Let M be the minimum ideal of S. Since S/pjs is a zero semigroup
then for all a,b € S, we have abe M.
Therefore given ¢ € N then ¢ € M, that is NN M # §.

Claim: NN M is an ideal of N.
Let a be any element in NN M and z be any element in N. Then

ar € N (since N is a subsemigroup) and

ax € M (since S/pp is a zero semigroup)

Thus ax € NN M and, by symmetry, N\ M is an ideal of N.

Claim : NN M is the minimum ideal of V.

Let P be an ideal of N such that P C NN M. Let a be any element in P
and b be any element in N N M. Then

ab € P (since P is an ideal) and
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ab = b (since a,b€ M and M is a right zero)

Therefore NN M C P. Thus N N M is the minimum ideal of N. It is
obvious that N N M is a right zero, since NN M C M. We want to show
that N/pnnm is a zero semigroup, that is for all a,be N, abe NN M. Let

a, b be elements in N. Then

ab € N (since N is a subsemigroup of S) and

ab € M (sincea,be N C S and S/pu is a zero semigroup)

Therefore abe NN M. Thus N/pnnp is a zero semigroup.

We can summarize these observations in a theorem as follows:

Theorem 3.6 The class IRZ of all inflations of right zero semigroups is

a variely.

Now we are looking for a basis of identities for ZRZ. This gives an
alternative proof of the fact that ZRZ is a variety.

Theorem 3.7 IRZ = [z(yz) = yz].

Proof: Let S € TRZ. Then for all a,b € S, ab € M where M is an ideal
and a right zero semigroup. Hence for all a,b,¢,d € S we have (ab)(cd) = cd,

and

a(bc) = a(be)(be)
= (abc)(be)

= be
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Therefore S satisfies the identity z(yz) = yz. Thus IRZ C [z(yz) = y=z].
Let V = [z(yz) = yz]. Let T € V and N = {ab: a,b € T}. Clearly N is

an ideal of T'.

Claim : N is a right zero semigroup.

For every n,m € N with n = ab,m = cd where a,b,c,d € T we have

nm = (ab)(cd)
= cd
= m
as required.
Suppose that L is an ideal of T and L C N. Then
LN C L (since L is an ideal) and
LN = N (since N is right zero)

Thus N = L and N is the minimum ideal of T.

Since for every a,b€ T,

apnbpy = abpy
= N

0,

then T is an inflation of a right zero semigroup that is, T € ZRZ. Thus
IRZ = [z(yz) = yz].
We now provide another basis for IR Z.

Theorem 3.8 IRZ = [(zy)(uv) = uv).
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Proof: Let U = [(zy)(uv) = uv]. It is clear that &{ C IR Z, since

z(yz) = z(yz)(yz2)
= (z(y2))(y2)

= yz

On the other hand, let S € TRZ and M be the minimum (right zero) ideal
of S. Then for every a,b,c,d € S, we have ab,cd € M. Since M is a
right zero, then (ab)(cd) = cd. Thus S € U = [(zy)(uv) = (uv)]. Therefore
IRZ = [(zy)(wv) = (wo)].

3.2 Free Objects

Let X be a nonempty set and S be a semigroup defined by S = X U {0}, with

multiplication ab=0, for all a,b€ S. Let :: X — S with¢: 2 2.
Theorem 3.9 (S,1) is the free semigroup on X in Z.

Proof: Clearly S € Z. Let T be any zero semigroup and 3 : X — T
be any mapping. We want to show that there is a unique homomorphism
B : S — T such that the diagram below is commutative.

X ? «S
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Define 3: S — T by

B(z) = ¢(z), Yz € X and

p0) = 0
Since
B(zy) = p(0)
= 0
= P(z)P(y)

then 3 is a homomorphism. Moreover 3 is unique, since every homomorphism
o : S — T that makes the diagram commutative, a|x = f|x, thatisa = £.
Therefore (S, ?) is the free semigroup on X in Z.

From the Definition 2.5 we have §$% = {(a),(0,a) : @ € X} and if we set
M = {(0,a)}aex then §% is an inflation of the right zero semigroup M.
Thus §4 € TRZ. In fact we can do better. From Evans [5), we have
RZV Z = [zry = zy] and the following diagram is a sublattice of the lattice

generated by RZ,LZ,S and Z.
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Tyzt =2:czyt
"Iy =z°Y

TYz =12

T =Yy

Diagram 3.1
The next results were obtained jointly with my supervisor.

Theorem 3.10 Let X be a nonempty set and (S, 1) be the free object in Z
on X. Then Qﬁ is the free object in RZV Z on X.

Proof: From the Definition 2.5 we have §% = {(a),(0,8) : a € X}. If we set
M = {(0,a)}, then M is the minimum right zero ideal of §%. Therefore for
evernyéf\r, yeEMoryd M.
If y € M then we have zy = y = zy.0n the other hand if y ¢ M we have
(z)(y) = (0,9)
(0,a)(y) = (0,y)

Thus §% satisfies zy = zy.
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*T € [oy = 23]

Let T be any element in RZ V Z. Let ¢ be any mapping from X into T.
Let w € T. Define 8: 8% — T by

B(z) = Yz (z€X)
.B(O,a) = w('»ba)

Clearly 8 is well defined. Let a and b be such that a € Qﬁ, b€ X, then we

have

Bla(b)) = B(0,5) = wyb
B(a)B(b) = * » wipb = wijb.

IfaeS%, b=(0,c), then

B((a)(b)) = B(0,c) = wipe
B(a)B(b) = * » wipe.

Thus S is a homomorphism. Moreover 4 is unique, since every homomor-
phism o : §§ — T that makes the diagram commutative, a|x = §|x, that
isa = 4.

Thus éﬁ’ is the free object in RZV Z on X.
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By applying the right Rhodes expansion on §% we have the following

theorem:
Theorem 3.11 (S%)% is the free object in RZV L2V Z = [zyz = z2].
Proof: The right Rhodes expansion of Sf( has the form:

(5%)* = (((a)):a € X)
= {((a)),((a) >= (0,b)) : ¢,b € X}.
claim: (§§)R € [zyz = z2]. .

Let ((a)), ((8)), ((z) > (0,y)) and ((t) > (0,u)) be any elements in (S8%)®.
Then

a)(b))
0,6)),
a)(z) 2 (a)(0,3))

((a) 2
= ((a) >
((a))((z) > (0,y)) = ((a) >

((a))((b))

((z) > (0,9))((a)) =

((z) > (0,9))((t) > (O,u)) =

8
N’
~~ e T e T N ~~ o~ — L T e N e N Y
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Thus, by considering the above pattern, (§%)R satisfies the identity zyz =
&c

zz. Therefore (S%)* € REVLZV Z = [zyz = zz].
Let T be any element in [zyz = zz] and 1 be any mapping from X into T.

X — (§4)"

v
T € [zyz = z2]
Define v : (§§)R — T by:

7((e)) = a,
7((a) > (0,8)) = tpayb

Clearly « is well defined.
Claim: < is a homomorphism.
For every (()), ((8)), ((z) > (0,)), ((t) > (0,u)) in (§§) we have

1(((@))((8))) = 7((a) > (0,5))
= taypb
= v((a))r((5))
1(((@)(2) > (0,9))) = ((a) > (0,3))
= tYayy
1((@((z) > (0,y)) = vapayy
= tayy since yYa,pz, Py € T
1(((2) > (0,9))((2))) = (=) > (0,a))



= Pza
1((2) > (0,9))1((a)) = vzypyya

= Pzda

7(((z) > (0,9))((2) > (0,»))) = 7((z) > (0,u))
= Yzpu

7(() > (0,9))7((t) > (0,u)) = Pzyptyu
= Pryu

Thus v is a homomorphism. Since every homorphism o : (@ )® — T that
makes the above diagram commutes o|x = v|x, then v is unique. Therefore
(§§)R is the free object in RZV LZV Z = [zyz = z2].

Let G = X UM, where M = X x X, with multiplication defined by:

ab=[a,b] [a,blc=a, ]
[a,b][c,d] = [a,d] a[b,c] = [a, ]

It is easy to check that G is a semigroup.

Lemma 3.12 (G,.), where ¢ : £ — z, is a free object in REV LZV Z
on X.

Proof: We need only to show that (§§)R ~ G. Let ¢ be a mapping from
ac

G into (S§)* defined by :

g¢a = ((a)),
¢la,b] = ((a)>(0,0)).
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Then we have

$(ab) = dla,b]
= ((a) > (0,b))
= agb.
$(alb,c]) = dla, ]
= ((a) > (0,¢))
= ¢adlb,d].
#([b,cla) = ¢b,q]
= ((b) > (0,a))
= ¢[b,c)da.
#(la,b)lc,d])) = gla,d]
= ((a) > (0,d))
= ¢la, b]gfc, d].

Thus ¢ is a homomorphism. Clearly ¢ is a bijection. Therefore ¢ is an
isomorphism. Thus (§%4)® ~ G.

By applying the left Rhodes expansion on G we have the following lemma:
Lemma 3.13 G£ ~ G.

Proof: By the Definition 2.5 we have

Gt = ((@):zeX)
= {(z),([r,9] <y):z,y € X}.
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Define a mapping 7 : éfg —+ G by

n(a) = a,
n([a,b] < b) = [a,b].

By Lemma 2.3, 7 is an epimorphism. It remains to show that 5 is one-to-
one.
Clearly n|x is one-to-one and n(a) # n([z,y] < y) for every a,z,y € X.
Suppose 7([a,b] < b) = ([c,d] < d) then [a, b] = [c, d] therefore a = ¢, b= d.
Thus ([, b] < b) = ([c,d] < d). Thus 7 is one-to-one.

Furthermore, as a result of Theorem 2.13, if we apply the right Rhodes

expansion on G, we have G§ ~ G.

3.3 Free Objects in IRZ

Since inflations of right zero semigroups have arisen naturally in the study
of Rhodes expansions it is interesting to determine the free objects in TRZ.

Let X # 0 and M = X x X with right zero multiplication, that is
(z,y)(s,t) = (s,t). Let F = X U M with multiplication :

(z,y) fz,ye X
TY=4 y ifyeM
(v,y) ifz=(u,v),ye X

Lemma 3.14 : F is an inflation of a right zero semigroup.

Proof: First we consider associativity.
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Case 1;: z,y,z € X. Then

z(y2) = 2(y,2) = (y,2)

(zy)z = (z,9)z = (y,2).
Case 2: z=(t,u) € M, y,2 € X. Then

z(yz) = (tu)(y,2) =(y,2)

(zy)z = (u,¥)z = (v,2).
Cased: z€F, y=(s,t) €M, z€ X. Then

z(yz) = z(t,z)=(t,2)

(zy)z = (s,t)z=(1,2).
Case 4: r,y€eF, 2z € M. Then
z(yz) = rz=2
(zy)z = =z.

Thus F is a semigroup and clearly M is an ideal of F (by the definition of
the multiplication in F). It is also clear that M is a right zero semigroup.
Next we show that M is the minimum ideal of F.

Suppose that N is an ideal of F with N C M. Let (z,y) be any element in M.
Then N(z,y) = (z,y), by the definition of multiplication. But N(z,y) € N,
since N is an ideal. Therefore (z,y) € N for every (z,y) € M. Thus M is
the minimum ideal of F.

Let zpp,ypom € F/ppr. Then

TPMYPM = ZTYPM

45



= M (since zy € M)
0

Therefore F/par is a zero semigroup and F is an inflation of a right zero
semigroup.

Theorem 3.15 If 1 is @ mapping from X to F defined by : z —— z, then
(F,z2) is free in IRZ on X.

Proof: It is easily seen that X generates F. Let T be any inflation of a right

zero semigroup and 3 be any mapping from X to T.

X, 2 . oF

Define a mapping 8 : F — T by

B(z) = ¥P(z) Vz € X and
Blz,y) = B(z)B(y).

i

In order to establish that 8 is a homomorphism, we consider several cases.

Case1: z,y € X. Then
zy = (z,y)and
B(zy) = B((z,))
B(z)B(y)-

46



Cage2: z€ X, y=(u,v) € M. Then
B(zy) = B(y)
= ﬂ(u1v)
= B(u)B(v).

We know that B(u)B(v) = B(z)(B(u)B(v)), since f(u)B(v) lies in the mini-
mum ideal M’ of T, and M’ is a right zero. Therefore

B(zy) = B(z)(B(u)B(v))
= B(z)B(y)-
caseJ: z = (u,v) € M, y € X. Then
B(zy) = B((v,y))

= B(v)B(y)
= B(u)(B(v)B(y))
= (B(u)B(v))B(y)
= B(z)B(y).
case 4: = =(p,q), y=(s,t) € M. Then
Blzy) = Bly)

= B(s)B(t) € the minimum ideal M’ of T

= (B(r)B(2))(B(s)B(1))

= B(=)B(y)

Thus B is a homomorphism.
Since X generates F, f is unique. Therefore (F,1) is the free inflation of a
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right zero semigroup on X.

The semigroup F as constructed above illustrates an interesting fact.
Lemma 3.16 RZV ZC IRZ.

Proof: Clearly RZU Z CIRZ. Therefore RZV Z CIRZ.
However F € IR Z and for any distinct elements a,b,c € X,

ab = (a,b) # (c,b) = cb.
Thus FgRZV Z.

Theorem 3.17 IfV is a variety such that RZ V ZC4V C IRZ, then
V=IRZ.

Proof: Let S € V- (RZV Z). Then S € ITRZ but S does not satisfy
the identity zy = zy. Consequently there exist a,b,c € S with ac # bc.
This implies that ¢ # c. Otherwise, since S is an inflation of a right zero

semigroup we would have

ac=ac® = c* = bc? = bc

Which contradicts the choice of a,b and c. We must also have either ac # ¢?
or bc # c®. Without loss of generality we may assume that ac # ¢*. Then
also a? # ¢ since otherwise ac = a’c = @ = ¢*. Similarly ac # ca, since
otherwise ¢ = acc = cac = ac.

Now, if ac = a? then we would have ac = a(ac) = a’c = acc = ac® = ¢?
which again contradicts the choice of a,b and c.

Thus we may assume that ac # a®. Summarizing we have elements a,b,c € S

such that
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ca#ac#tbe, actc? #a% ac#a® F#ec. (1)

For any nonempty set X, let FIRZ(X) denote the free semigroup in
IRZ on X. By Lemma 1.9, it suffices to show that FIRZ(X) € V for all
finite nonempty sets X. So let X = {z,,---,z,} and consider FIRZ(X).

ﬂ2 .
Ian s(3) = Sx8x---x8 we will define u;,u,,---,u, so that z; — u;

(%)

defines an isomorphism of FIRZ(z,,z,,---,2,) onto U = (u1,uz,-++,uy,).

Each u, can be thought of as an (";) long vector with components indexed

by ((,7),(k,1)) wherei < kori=kand j <l, 1 <1i,j,k,1 <n. We wish
to show that if (i,7) # (k,!) then u;u; # uxu; and also that UNU? = . Let

P ={((i,7),(k,1)): wherei< kori=kandj<I}.
Let
a:P — {1,2 (":)} be a bijection.

Let 1 < & < (%) and ,5,k,1 be such that a((i,5), (k,1)) = 6. Let (un)s
denote the §'* component of u,. We define (u;)s, (u;)s, (ux)s and ()5 , in
various cases as follows : in all cases we define (um)s = ¢ for m # 1,3, k,1,
this guarantees that U N U? = .

Case I j = I. Then s # k so that we have the following subcases.

Case I(i). j =1=1 # k. Define

(s = (u3)s = (w)s = ¢, (ur)s =a.
Case I(ii). j =1=k # 1. Define
(4)s = a, (u3)s = (wk)s = (w)s = c.
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Case I(ili). 1 #j5=1#k, t# k. Define
(ui)s = a, (w)s =5, (uj)s=(w)s=c.

Case II. ¢ = k. Then j # I so that we have the following subcases.
Case II(i). ¢ = k= j # l. Define

(ui)s = (u;)s = (w)s = a, (w)s =c.
Case I1(ii). i =k =1+ j. Define

(u)s = (ur)s = (w)s = a, (u;)s =c.
Case I(iii). [#i=Fk#37, j# 1 Define

(u)s = (u5)s = (we)s = a, (w)s =c.

Case IIl. i #k, j #1
Case III(i). k#£i=3j#1, k=1 Define

(ui)s = (u;)s = a, (ui)s = (w)s =c.
Case III(ii). k#i=j#1, k£L

(u)s = (45)s = (w)s = ¢, (uk)s = a.
Case II(iii). i £k, j#AI=Fk i#j, i#l

(4)s = (ur)s = (w)s = ¢, (wi)s = a.
Case III(iv). i;ek, AL it k£l i=1, j=Fk

(ui)s = (w)s = a, (uj)s = (ur)s = c.
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Case II(v). ik, j#Likj k#l i=1, j#k.
(ui)s = (w)s = a, (u;)s = (ur)s = c.

Case II(vi). i#k, j £, i#j, k£l i#l j=F
()s = (w)s = @, (u;)s = (ui)s = c.

In all cases it follows immediately from (1) that (u;u;)s # (usui)s. Thus,
if ((4,7),(k, 1)) € P and a((, ), (k,1)) = é then (usu;)s # (usui)s. Therefore
Uu; # ugyl.

Since each component of u;, t = 1,---,n, is an element of S and S € IRZ

then u;ujux = ujus. Therefore U = {u;} U {u;u;} and

IUI = I{ul’ Ug, - '1un}| + I{u,-u_.,- : 1,] = 1’2’..."_}'

= n+n?

Now define v : FIRZ(zy,-++,z,) ——+ U to be the unique homomor-
phism such that (z;) = u;. Since U is generated by {u;: 1 < i < n}, ¢isan
epimorphism. Since Imy = U and |Imy| = n +n? = |FIRZ(z,,---,z,)],
¥ must be one - to - one. Therefore 1 is an isomorphism.

Therefore FIRZ(X) € HSP{S}, that is FIRZ(X) € [S].
Therefore V = IRZ.
Since RZ V Z is a proper subvariety of ZRZ, it is interesting to consider

the effect of the Rhodes expansion on free objects in TR Z.
Let F be as constructed above.

Lemma 3.18 4 ~ F
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Proof: From the Definition 2.5 we have

F$ = ((2) :z€X)
= {(a:),([:c,y],y):a:,yGX}

If weset M' = { ([z,y],y): 2,y € X } then
i. M'is the minimum ideal of F§.

ii. M’ is a right zero semigroup.

iii. F%/ppm is a zero semigroup.
Thus F% is an inflation of a right zero semigroup.
From Lemma 2.3 we have nr is an epimorphism, hence we only need to show
that nr is one-to-one.
Clearly nr|((z)} is one-to-one and nr(z) # nr([u,v], v) for every z,u,v € X.
Suppose nr([z,y],¥) = 77([u, v}, v) then [z,y] = [u, v]. Therefore z = u,y =

v. Thus ([z,y],¥) = ([u,v],v). Therefore ng is one-to-one.
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