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Abstract 

The Rhodes expansion sL of a semigroup S is the set of all <c -chains 

over S and sf is the subsemigoup of sL generated by sequences of the 

form (z), s E X. When S is the free semilattice on X, then S$ is the free 

right regular band. If S is a zero semigroup then •˜$, X = S - {0), is an 

inflation of a right zero semigroup. In fact, the variety ZR2 of inflations 

of right zero semigroups is the smallest variety properly containing 722 V 2 

where 722 is the variety of right zero semigroups and 2 is the variety of zero 

semigroups. Moreover if S is free in 2 on X then S$ is free in 722 v 2 on 
CI 

X, and if we apply the right Rhodes expansion on S i ,  we have (sf )R is free 

in R2 V C 2  V 2, where CZ is the variety of left zero semigroups. 
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Preface 

The purpose of this thesis is to survey applications of the Rhodes Expan- 

sion to the construction of free sernigroups. 

In Chapter 1, we give the necessary definition and background. This 

includes a discussion of semigroups and varieties. We state, without proof, 

some theorems and lemmas. For more detail we refer the reader to [2], [3], 

I71, PI, PI and [lo]. 

In Chapter 2, we discuss the ctefiniton of the Rhodes Expansion and its 

basic properties. Most of the results can be found in [I], [4] and [ll]. However 

the proof presented here for Theorem 2.16 is new. 

In Chapter 3, we provide the definition of Inflation of a Right Zero Semi- 

group. Some of the material in this chapter can be found in [6] .  However 

the material concerning free object is new. The results here were obtained 

in collaboration with my supervisor. 



Chapter 1 

Introduction 

We begin by presenting in this section some basic information concerning 

semigroups. Further information and proofs can be found in any of the basic 

standard texs, for example Clifford and Preston [3], Howie [7], Lallement [8], 

Petrich [9] ,[lo], Burria and Sankappanavar (21. 

Let S be a nonempty set with a binary operation . We say that S is a 

semigroup if is associative, that is for al l  x, y, z E S, (z . Y) z = x (ye r) .  

When convenie~t, we will write x - y simply as xy. 

A semigroup S is said to be a commutative semigroup if for all x, y E 

S, xy = ys. 

If a semigroup S has an element 1 such that for all x E S, zl = lx = z, 

then S is called a semigroup with identity and 1 is an identity element of S. 

Let S be a semigroup. Then S1 is the semigroup obtained from S by 



adjoining an identity if necessary, that is 

if S has an identity element 

( S u {I) otherwise 

where the multiplication of S is extended to S1 by defining 1s = $1 = s, for 

all s E S. 

If a semigroup S contains an element O such that XO = Ox = 0, for all 

x E S, then we say that S is a semigroup with zero and 0 is the pet0 element 

of S. 

A semigroup S is a right zero sernigroup if for all x, y E S xy = y, and a 

left zero sernigroup if for all x, y E S xy = s. 

A semigroup S is called a zero semigroup if for all x, y E S xy = c for 

some fixed element c E S. 

A semigroup S is called band if every element of S is idempotent. 

A nonempty subset T of a semigroup S is called a subsemigroup of S if 

f o r & x , y € T x y € T .  

Let A be a nonempty subset of a sernigroup S. The intersection of all 

subsemigroups of S containing A is the subsemigroup (A) generated by A. 

It is easily shown that (A) = (x E S:  3al,.-,a, E A with z = al . - - a , ) .  

Let A be a nonempty subset of a sernigroup S. Then A is called a 

left ( right ) ideal of S if SA E A (AS E A), and a j w o - s i d e d ,  or simply 

an ideal, if it is both a left and a right ideal of S. An ideal A of a semigroup 

S is called a minimal if for every ideal N of S with N C_ A then N = A. 

If 4 is a mapping from a semigroup S into a semigroup T, then 5, is a 

homomorphism if for all  x, y E S, +(xy) = 4s 5,y. If 4 is a homomorphism 



and one to one then it is called a monomorphism, and if it is both one to one 

and onto we call it an isomorphism. An isomorphism from S onto S is called 

an automorphism. A homomorphism is called an epimorphism if it is onto. 

Let S and T be semigroup. The direct product of S and T is the carte- 

sian product S x T together with the multiplication ( s ,  t ) ( s f ,  t') = (ss', tt'). 

A binary relation p on a set X is a set of ordered pairs (z, y) where x, y E 

X. We write spy if (x ,  y) f p. The equality relation on X, denoted by ix, 

is defined by : 

(s, y) f ix  if and only if x = y. 

Let B ( X )  be the set of all binary relations on X. If p, a E B ( X )  then 

p o a  = { ( x , y ) ~ X x X : ( 3 z ~ X ) ( z , z ) ~ p a n d ( z , y ) E ~ )  

Notation : p2 = p o p, p3 = p o p o p. 

If p E B(X) ,  then the dPmain and the range of p are defined by : 

dom(p) = ( x E X : ( 3 y € X ) ( x , y ) E p } ,  

ran(p) = (Y E X : (3% E X ) ( s , y )  E p).  

Let p be an any element of B(X) .  The inverse of p, denoted by p-* , is 

defined by: 

An equivalence relation R on a semigroup S is called left compatible if for 

all s, t ,  a E S ,  (s, t )  E R implies that (as, at) E R, and right compatible if for 

all s ,  t ,  a E S,  ( s ,  t )  E R implies that (sa, ta) E R. It is called compatible if it 



is both left and right compatible, that is for all s , t ,  s',tl E S, (s,t) E R and 

(s', t') E R implies that (ss', tt') E R. A left (right) compatible equivalence 

relation is called a left (right) congruence. A cornpat i ble equivalence relation 

is called a congruence. 

Theorem 1.1 Let p be a congruence on a semigroup S. Define a binary 

operation on the quotient set S / p  as follows: 

Then (SIP,  a )  is a semigroup. 

Theorem 1.2 Let I be an ideal of a semigroup S. Then 

is a congruence on S and S / p r  = {I) U {(x} : x E S - I ) .  

Let X be a nonempty set and X +  be the set of all nonempty finite words 

aiazaa. a, over the alphabet X. Define a binary operation on X +  by: 

With respect t o  this operation, X +  is a semigroup. 

Theorem 1.3 Let X be a nonempty set and S be a semigroup. 

If 4 : X --+ S is an arbitrary mapping then there ezists a unique homomor- 

phism + : X+ ---, S such that + I x  = 4. 



If S is a semigroup and a E S  then the principal left ideal generated by 

a is the smallest left ideal containing a ,  which is Sa U ( a )  = S1a. Similarly 

the principal right id& generated by a is the smallest right ideal containing 

a, that is US U ( a )  = as1. The principal ideal generated by a  is defined to 

be S1aS1. 

Let S be a semigroup. The equivalence relations L, R, 3 and 'H defined 

on S by 

a L b if and only if S1a = S1b, 

a 7Z b if and only if a s 1  = bS1, 

a 3 b if and only if S1aS1 = S1bS1 

x = C n R  

are called G r d  equivalence relations on S. 

The &-class (R-class, 'If-class, 3-class) containing the element a will be 

written La(%, Ha, J,). 

Lemma 1.4 Let S be a semigroup and a E S . Then Ha is a subgroup if and 

only if Ha contains an idempotent. 

Lemma 1.5 Let S be a semigroup and let a, b S .  Then 

a x  b @ f 3 z , y € S 1 )  xu= b, y b = a .  

a R b  # ( 3 u , v € S 1 ) a u = b ,  vb=a .  

a 3 b * (3z,y,u,u E S 1 )  xay = b, ubv= a. 

Let L, and & be the L and R-classes containing a. Then 



Clearly 5 is a partial order on the set of C and R-classes of S. 

Let s, t E S. Then we write 

s Sc t if and only if s E S1t. 

I f  s - t and t sL s, then s s ~ :  t .  We write s <c t if s SL t and s gc t. 
We write LL and <L: simply a s  < and < , respectively. 

The following is a simple but important observation concerning the relations 

L: and R. 

Lemma 1.6 For any semigroup S ,  L is a right congruence and R is a left 

congruence. 

A semigroup S is a right group if and only if it is isomorphic to the direct 

product of a right zero semigroup and a group. 

Lemma 1.7 Let S be a semigroup. Then the following statements are equiv- 

alent. 

(i) S is a right group. 

(ii) S is a union of groups and the set of all idempotents E ( S )  of S is a right 

zero semigroup. 

(iii) Ha is a subgroup ofS for all a E S ,  E ( S )  is a right zero semigroup and 

S N E(S) x Ha for all a E S .  

Let V be a class of semigroups. Let S be a semigroup in V, X be 

a nonempty set, and 4 : X ---+ S be a mapping. The pair (S,4) is a 

free object in Y (w X), or a relatively free object (in V) if for every T E V 

6 



and any mapping rl, : X + T there exists a unique homomorphism 4 : 
S ---+ T such that the following diagram commutes 

For example, by Theorem 1.3, ( X + ,  L )  where L is the embedding of X into 

X +  is a free object on the set X in the class of all semigroups. 

When we talk about a free object, the mapping L is often omitted. 

Let Xt be the free semigroup on X. A pair of elements x, y of X+ is 

called a ( semigroup ) identity to be written x = y. A semigroup S satisfies 

the identity x = y if for any homomorphism al, : X+ -+ S, we have $x = 

$Y 

Let F be a nonempty family of identities. The class V of all semigroups 

satisfying the family of identities F is called the variety of semigroups deter- 

mined by F, denoted by V = [F]. If F = {x = y ), we will write V = [a: = y]. 

For any variety V of semigroups wd any nonempty set X, there exists a 

free object in V on X. 

The following theorem is a special case of Birkhoff's Theorem (see [2]). 

Theorem 1.8 A class V ofsemigroups is a variety i f  and only if it is closed 

with respect to homomorphisms, subsemig~oups and direct products. 



The varieties of semigroups constitute a lattice (L, A, V) with respect to 

the following operations: 

Alternatively, 

U V V = {S : S is a homomorphic image of a subsemigroup of U x V 

for some U E U, V E V ) .  

Lemma 1.9 Let U, V be varieties of semigroups. Let FU(X) be a free object 

d n U .  If FU(X) E V for all 1x1 < oo then U V .  

Proof: Let u = v be any identity that holds in V. Let u = u(xl, . , x,), 
v = v(yl, . , ym). Let X = {xl, . , x,, yl, . . , y,} = {zl,. . . , zk). Write 

u = u(zl,~-.,zk),v = u(zl,-..,zk). Then FU(X) E V. Thus the identity 

u(zl, . , zk) = v(zl,. . , zk) holds in FU(X). 

Now let S f U, and al,..-,ak E S. Define 1C, : FU(X) -t S by: 

Since FU(X) is relatively free in U, II, defines a unique homomorphism 

FU(X) ---+ S. Therefore 

u(%~," .  ,zk) = v(%~,"' , ~ k )  - +( ~(%l,...,~k) ) = 1C1( v(31,..-,zk) ) 

* u(+z1, . , $~k) = v(1C1z1,. . , $~k) 
+ u(al, +. , ak) = v(a1, . , ak). 

Therefore u = v is an identity for S, that is u = v is an identity for U. 

Thus U V. a: 



Chapter 2 

Rhodes Expansion 

2.1 The Construction 

Let S be a semigroup and define sL to be the set of all Sc -chains over S, 

that is 

SL = { ( S . , . . . , S ~ )  ]si E S ,  sn jL sL ~ 1 ,  n 2 1 ) .  

Define a multiplication in S' by: 

It is easily verified that this is an associative operation so that (SL, . ) is a 
semigroup. Since each occurrence of is either <C or rc, we can now 

define a reduction of elements in SL as follows: 

If s = ( s n , . . . , s l )  E SC and s i + l  r s; for some 1 < i 5 n - 1, then an 

elementary reduction of s is defined to be: 



That is, cancelling the element which is =c -equivalent to its successor on 

the left. If s, t E sL and s is obtained from t by applying a finite number of 

elementary reductions, then we say that s comes from t by jeductio~. If we 

cannot perform an elementary reduction on t, then we say that t is i u e d u u .  

Thuss = (sn,..-,sl)isirreducibleifandonlyif s, < L  sn-1 <c . - .  <C sl. 

Clearly the process of reduction leads us to a unique irreducible element which 

we denote by Red(s). 

For convenience we will drop the subscript L and write 5,  <, and z instead 

of SL, ce,and GL. Also we will include the relations 5,  <, or when we 

are defining certain element of SL for wich we already know the order of its 

components. For instance, if s = (sk, sl, s,, s,, so) E sf with sk 5 sl 

sm < sn < so then we will write s = (sk < SI r sm < sn 5 so), and 

Red(s) = Red(sk 5 sr < sn 5 so). 

Lemma 2.1 Let s and t be any elements in sC. Then 

where . denotes the multiplication in sL. 



Definition 2.2 The Rhodes Expansion SC of a semigroup S is the set of 

all <r -chains over S, that is the set of all irreducible elements of S' together 

with the multiplication 

s * t  = Red(s . t )  for every s,t  E sC 

Where . denotes the multiplication in SC. This construction was introduced 

by J. Rhodes (see (41, chapter XII). The remainder of this and the next 

section is devoted to the basic properties of the Rhodes expansion, with the 

exception of Theorem 2.9, most result can be found in [l] and [4]. 

Lemma 2.3 Let S be a semigroup. Then 

2. The mapping s - Red(s) is an epimorphism of sC onto sL. 

3. The mapping qa : ( E ~ ,  . , xl) + X m  is an epimorphkm of sL onto 

S. 



Proof: 1. Let s, t, u be any elements in s'. Then 

s * (Red(t . u)) 

Red(s Red(t . u)) 

Red(Red(s) . RedRed(t . u)) (by Lemma 2.1) 

Red(Red(s) Red(t . u)) 

Red(s.(t.u)) (byLemma2.1) 

Red((s . t)  u) (associativity of s') 
Red(Red(s . t) Red(u)) (Lemma 2.1) 

Red(RedRed(s t) Red(u)) 

Red(Red(s . t) . u) (Lemma 2.1) 

(Red(s t)) * u 

(s * t) * u. 

Thus (SL, *) is a semigroup. 

2. Let s and t be two elements in SL. Then s cr Red(s), t c-r Red(t), 

and st  c-+ Red(st). By Lemma 2.1 and the Definition 2.2 : 

Thus s cr Red(s) is a homomorphism from S' into 

epimorphism since Red(s) = s for every s in 5'. 

1 

s'. This is also an 

3. Let s = (s,, , sl) and t = (t,, . . , tl) be two elements in s'. Then 

T]#(s) = s,, q,(t) = tm, and s * t = Red(s,tm, . ,sit,, t,, . . , tl). Since the 



reduction never changes the leftmost term of elements in SC7 then 

V * ( S  * t )  = v a R e d ( ~ n t m , .  . , sltm7 t,, . t l )  = ~ n t ,  = q s ( s )  * v 3 ( t ) .  Thus 7 ,  

is a homomorphism. Moreover T, is surjective since for every x ,  E S we can 

find a chain (3.) E sC such that b ( x n )  = x,. 

In the light of Lemma 2.3 we will denote the multiplication in both sL 
and SL by juxtaposition. 

Theorem 2.4 S' is generated b y  j -chains of length I ,  that is elements of 

the form (s) E sL, with s E S .  

ErPnf : Let ( x ,  < . < x l )  be any element in SL. 
For every i = 1,2 ,  - . , (n  - l), xi+l < xi,  and therefore we can find y;+l E S 

such that xi+l = y;+lx;. B y  induction on i we may conclude that x;+l = 

Yi+1Yi*..Y2Xl, for 1 5 i 5 n - 1. 

Thus 

= ( x ,  < -. . < 2 3  < x l )  

Definition 2.5 For any subset A of a semigroup S with S = (A), 

S: = ( (a )  : a E A). 

Theorem 2.8 Let A be a subset of a semigroup S with S = ( A ) .  Let 

s = (s, < < s l ) ,  and t = (tk < . . < t l )  be elements'in s:. 



* C  1 proof : 1. (+) Since s 5 t ,  then there exists u  = (urn, . , ul )  E ( S A )  

such that s = ut. Thus we have 

( s ,  < . . . < sl) = Red(urntk 5 . . . 5 vltk 5 tk < . < t l )  

By reading the sequences from right to left we obtain: sl = t l ,  . . . , sk,l = 

n 2 k and sk = uitk Z tk for some i,  1 5 i 5 m, that is sk r t k .  

(+=) Let s = ( s ,  < . . < s l )  = ( 2 , ) .  . . (XI), q = maximum integer with 

( x p ) .  ( x l )  = ( sk  < . < st). Then 

Let t  = (tk < < t l )  = ( y p ) - . - ( y l ) ,  u  E S be such that sk = utb and 

u = u, ...ul for some u; f A. Then 

2. This follows from (I) ,  since s r t  iff s < t and t 5 s. 

3. This follows from (1) and (2), since s < t iff s 5 t and t f s. 



The proof for S' follows, since we can put A = S. 

Example 

1. Let S be any left zero semigroup, that is for every a, b S, ab = a .  

Since a < b and 6 < a then sL = { ( a )  : a E S). 

2. S = { e 2 = e , f =  f,ef = f e =  f }. ThensC={(e) , ( f ) , ( f  < e ) } .  

Moreover the homomorphism 7, from S' onto S can be ilustrated as 

follows: 

( 4 .  7s 

The set {(f),(f,e)] is a right zero ideal in sC. 

3. Let S be a semigroup generated by {e, f )  which satisfies e2 = e, f 2  = 

f , e f =  f e = e g = g e =  f g = g f  = g , t h a t i s S = { e , f , e f =  f e=g} .  

Then 5' = {(e), (f), (g), (9, e), (g, f)} with multiplication table: 



The set {(g), (g7 f) ,  (g7 e)} is a right zero ideal. 

This example illustrates the fact that, in general, ~2 is 
semig *up of SL. 

a prop 

4. Let S be a semigroup generated by { e, f ,  y} which satisfies e2 = 

e,  f 2  = f, g2 = g ,  ef = fe, fg = gf, e g = g e ,  ejy = yje = jge = 

f e s  



2.2 Basic properties of the Rhodes Expan- 

sion 

Throughout this section S is a fixed semigroup generated by a subset A and 

let rl. : S: --, S be as defined in Lemma 2.3. 

Lemma 2.7 ifG is a group, then G~ G. 



Lemma 2.8 For every idempotent e in S, 71,"1(e) is always a right zero 

semigroup. 

Proof: Suppose s ,  t f q,-l(e), that is qS(s)  = q,(t) = e, and s, t have the 

form : 

s = (e ,  s,, . . . , s l )  

t = (e , t k , " ' , t l )  

Then st = (e,  s,, . - , s l )  (e,  tk ,  . , t l )  

= Red(e2, ,sle,e,tk,-.. ,tl) 

= ( Q k ,  " ' , t l )  

Moreover q;l(e) is a set of R- equivalent idempotents o f si .  

Theorem 2.9 If G is a subgroup of S then T = qrl(G)  is a right group and 

for any a E T, q,IH, : Ha ---+ G is an isomorphism. 

Proof: Let E ( T )  be the set of all idempotents of T. We have that e = 

(en, . . , el)  is an idempotent in T if and only if 

2 e2 = (en, en-*%, - - el%, en, -. e l )  = (en, - * , el) ,  

that is e t  = en. This can happen only if e, = 1 (since G is a group and 

en E G). Hence 

E(T)  = {( l )  U (1, - . . , e l )  : 1 is the identity of G). 

Therefore E(T) = ~ ' ( 1 )  is right zero. 

Let H,, a E T ,  be the 'H-class containing a(in T). We want to show that 



there exists e € E(T) such that e f Ha. Suppose a = (a,, -. , a l )  and let 

e = ( l , a , + - , a l ) .  Thena, E Gso that 

That is aRe and aLe. Thus e2 = e E Ha. According to Lemma 1.4, Ha is a 

group. Moreover T = UaETHa. Thus by Lemma 1.7 T is a right group. 

CIearly rls lHo is a homomorphism of Ha into G. 

Since qyl(l) is right zero then 7;' (1) n Ha is right zero. Therefore k e r ( ~ ,  

is right zero. Thus 

Therefore vs lHa is ane-hone. 

It remains to show that q,IH, is onto. 

Let e be the identity of Ha- (Note Ha = He). Let g E G and g' be such that 

%(d) = 9- 

CIaim g'e E Ha = He. 



On the other hand 

( 1 ,  en-1, - .  - , el)(g, en+. . . , e l )  = (9,  en+. . - , el)  

(9, en-1,. , el)(g-', en-1, - - .  , el)  = (1, en-1, - - . , el)  

Thus gelLe and gelRe, that is ge' E He. 

Also qs(gfe) = qag'qae = gl = g.  Therefore 7l8IHa is surjective. 

Thus vSIHa is an isomorphism. 

Corollary 2.10 If G is a subroup of S with identity 1 then 

Proof: This is an immediate consequence of Lemma 1.7 and Theorem 2.9. 

Definition 2.11 A semigroup S has unambiguous L-& if for every 

s , t , u f S w i t h s ~ t a n d s ~ u w e h a v e t ~ u  or u s t .  

Lemma 2.12 S: and sL have unambiguous Corder. 

Proof: Given s = (s ,  < . . . < s l ) ,  t = ( tk  < < t l ) ,  u = (ur < . . - < u l )  E 

~2 ( S C )  with s 5 t and s < u then by the Theorem 2.6 we have n > k,  s t  z 

t k ,  ~ k - l = t ~ - ~ , - - - , s l = t ~  a n d n > l ,  s ~ r z s l , ' ~ ~ - ~  = ~ l , ~ , . . - , s l  = u l .  

Therefore if k 5 I ,  then u 5 t.  

Repeating the Rhodes expansion produces nothing new : 

h 

Lemma 2.13 Let ( ~ 2 ) f  be the Rhodes Expansion of S: defied b y  

h 

( ~ 2 ) :  = ( ( ( a ) )  : a E A) 



CI h 

that is the subsemigroup of (sc)' generated b y  elements ( ( a ) )  E (sL)' ,  where 

a E A, then 

Proof: For any a; E A, 1 5 i 5 n, we have 

h 

* c  C Thus we may assume that any element of ( S A ) A  is of the form 

Red[Red(s,, . , s l )  5 Red(sn-1, . , s l )  5 . I: Red(s2, s l )  5 ( s l ) ]  

h 

Let 11 be the canonical morphism from (~fi)i into sf; defined by: 

s* A s ,  where 

s' = Red[Red(s,, . . - , sl) 5 Red(sn,l, . , s l )  5 5 Red(s2, s l )  5 ( s l ) ]  

and s = Red(sn,. , s l ) .  

From Theorem2.6 we havesk < sk-1 iff Red(sk,sh-1, , s l )  < Red(sk-1, . . , S I ) .  

Therefore the two chains s* and s have strict <c in the same positions. Hence 

if s = (a,  < -.. < a l )  then 



s* = ( ( a ,  < - - < al), (am-l < . . < al),  . . , ( a l ) ) .  Thus s* is uniquely 

determined by s. Therefore 7 is one-to-one. 

In contrast to Lemma 2.13, if we apply the dual construction of the 
A 

Rhodes expansion to the Rhodes expansion to obtain (sf)? then we may 

obtain something new. Indeed, N.R. Reilly showed in [ l l ]  that if S is the 

free sernilattice on a countably infinite set A of generators then the semi- 

are free in the (different) varieties that they generate. 

2.3 Construction of Free Right Regular Bands 

Definition 2.14 Let S be a semigroup. S is said to be a semilattice if S 

is commutative and every element of S is idempotent. Clearly the class S af 

semilattices is a variety defined by the identities x2 = x, x y  = yx. 

Definition 2.15 Let S be a semigroup. S is said to be a right regular band 

(respectively, regular band) if for every x, y, z E S, xyx = yx (respectively, 

xyzx = xyxzx). Left regular bands are defined dually. 

In order to "locate" these varieties in the lattice of varieties of all bands let 

7 = variety of all trivial semigroups = [x = y]  

LC2 = variety of all left zero semigroups = [xy = x] 

RZ = variety of all right zero semigroups = [xy = y] 

S = variety of all semilattices = [x2 = x, xy = yx] 



RB = L 2  V RZ = [x2 = x, xyr = xr] 

LNB = S v C Z  = [x2 = x, xyr = xryJ 

W B  = SVRZ = [x2 = x, ryx = yzx] 

NB = LNB V W B  = [x2 = x, xaby = xbay] 

LRB = [x2= x, xyx = xy] 

RRO = [x2 = x, zyx = yx] 

REB = [x2 = x, xyrx = xyxzx] 

The lattice of subvarieties of regular bands is shown in the following diagram. 

CRB RRB 

Diagram 2.1 : The lattice of proper varieties of bands 

The following result is a particular case of a result in (Reilly [ll]). Bow- 

ever the proof is entirely different. 



Theorem 2.16 Let S be the free semilattice on X, and define a mapping 

a : X -+ S$ by 02 = (I), for all z € X, then ( s $ , o )  is the free right 

regular band on X. 

Prooi: First we want to show that sf is a band, that is for every t E 

S f ,  t2 = t. 

Let t = (tn < -.. < ti) E Sf, ti E S. Then 

t2 = Red(tn2 5 . . < tltn < t, < . < t l )  

= Red(tn < . - 5 tltn < tn < . . < tl) (since tn2 = tn )  

= ( t , < . . . < t n )  

= t 

Thus for all t E 85, t2 = t and S$ is a band. 

Suppose t, u E S$ with t = (t,, . . , tl) and u = (urn,. . . , ul). Then 

and 

U ~ U  = Red(urntnurn 5 . - < ultnum < tnum 5 . . . 5 tlum < um < . . < ~ 1 )  

= Red(tnu, 5 . . 5 ultnurn < tnum 5 . 5 tlum < urn < . . < vl) 

(since S is a semilattice) 

= Red(tnurn 5 - . - < tlu, < urn < . < u l )  

Thus for every t,u E SL, u t u = t u and S i  is a right regular band. 

Now we want to show that sf is the free regular band on X. 

Let t = (t,, . . . , tl) be any element in sf. By the definition of S; , there 



exist x, E X, 1 < i 5 m, such that t = (2,) (XI). 

From the fact that S$ is a right regular band, we can delete the left most 

element of any two identical xi's until the reduced sequence obtained from 

this process contains distinct xi's- 

Thus we may assume that XI, .  . . , x, are distinct. It then follows that 

m = n, since (x,) . . (xl) is a sequence of length m and 

(x*). . ($1) = t = (tn, ' ' 3 tl). 

Let s; E X, i = 1,2, . . , n, be such that they are all distinct and t = 

(sn) . (~1 ) .  

We want to show that xi = si forall a, 1 5 i 5 n. Since t = (x,) . . (xl) = 

(a,,). . . (sl), then 

R e d ( x , ~ ~ ~ x ~ , ~ ~ ~ , x ~ x ~ , x l )  = Red(sn-. .s l , - . . ,s l) ,  that is 

By reading these two sequence from right to left, we have XI = sl, ~ 2 x 1  = 

8231. Since S is the free semilattice on X and ~ 2 x 1  = s2sl E S with xl = sl, 

then we conclude that 2 2  = s 2 .  Continuing this process we have x; = s; 

for all i. Thus every t = (t,, -. , tl) E S$ can be written uniquely as 

~ = ( x ~ ) . * * ( x ~ )  with t i  E X  and xi # ~ j  for all i #  j. 

Let ,kl be any mapping from X to any right regular band B. 

Define 7 : S$ * B by: r t  = (ptn).*.(Ptl)  for dl t = (t,,)-.-(t,) E S'j, 

where t = (t,) . ( t l )  is the unique representation of t a a product of 

distinct elements of the form (ti), ti E X. 



Clearly 7 is well defined. We want to show that 7 is a homomorphism. Let 

a ,  b E S$ be such that a = (t,) ( t l ) ,  6 = (urn) .  . (ul) .  

Case 1. ti # uj, 1s i 5 n, 1 5  j 5 m. Then 

and 

Case 2. C = {tl,...t,) n {ul , . . -  ,urn) # 0. 
We proceed by induction on ICI, that is the number of variables that appear 

in both a and b. Suppose that y(ab) = (ya)(yb), for all a,  b with ICI < k. 

Now consider a, b-with IC( = k + 1. Let t i  = uj E C. 

Then 



= ya'yb. 

where a* = ( tn )  . - ( t i+ l ) ( t i - l )  - ( t l )  and 

ab = Red((tn) . . ( t ~ ) ( u m ) .  . . (uj+l) ( t i ) (uj - l ) .  . ( ~ 1 ) )  

= Red{( tn)  . . ( t i + l ) ( t i - I ) .  . ( t ~ ) ( ~ r n )  ( ~ j + l ) ( t i ) ( ~ j - l ) .  . ( ~ 1 ) )  

(by right regularity of s;) 

Thus we have ab = a'b. By induction hypothesis y(a*b) = ya'yb. Therefore 

~ ( a b )  = ~ a y b .  

Since X generates sf, any homomorphism a : S$ -+ B which makes 

the above diagram commute must be such that aIx = yIx. Thus a = 7. 

Therefore y is unique and it is obvious that y o o = /3. Thus ($5, o) is the 

free right regular band on X. 



Chapter 3 

Inflations of Right Zero 

Semigroups 

3.1 The Variety ZRZ 

Clearly the class 2 of all zero semigroups is the variety of semigroups defined 

by the identity xy = uv. To give some idea as to where Z appears in the 

lattice L of varieties of semigroups, Diagram 3.1 presents a sublattice in L. 

Definition 3.1 A semigroup S is an inflation of a right zero semigroup M 

if 

(i) M is the minimum ideal S. 

(ii) M is a right zero semigroup. 

(iii) S / p M  is a zero semigroup. 



It is straightforward to show that any ideal in a semigroup S that is a 

right zero semigroup is necessarily contained in every other ideal. Thus the 

term "minimum" could be deleted from part (i). However we leave it for the 

sake of emphasis. 

The lattice of varieties of inflations of bands has been studied by Gerhard 
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Recall that p~ = M x MU Is or , equivalentIy, that p~ is the congruence 

on S defined by : 

{ a )  if a 4 M 
~ P M  = for all a E S .  

M otherwise 

Proposition 3.2 Let S E 2 and X = S - 10). Then S$ is an inflation 

o j  n right zero semigroup. 

P,wof: For every a ,  b E X ,  ab = 0 so that 

Since Sir = ( ( a )  : a E X )  we have 

S$ = { ( a ) ,  (0, a )  : a E X}. 

Let M = ( ( 0 ,  a )  : a E X). For all a, b E X, (0,  a)(O, li) = (0, b) E M ,  

Thus M is an ideal of Sf. Since for every (0, a) ,  (0, b) E M, (0,  a)(O, b)  = 

(0,  b ) ,  M is a right zero semigroup, moreover M is the minimum ideal of S?. 



Let a,  b E X .  Then 

Thus ~ $ 1 ~ ~  is a zero semigroup. Therefore sf is an inflation of a right zero 

semigroup. 

It is interesting to dote the following simple properties of 8:. 11 we apply the 

relation sR on ~ f y ,  then ( a )  sR ( b )  if and only if a = b. In fact (0, a )  s7: (b) 
and ( 0 ,  a )  <R ( 0 ,  b ) .  Also for any a ,  b E S$ 

* C  1 c$b # a  = xby and b = tau for suitable x ,  y, t ,  u E ( S x )  

-t 1 
.($ a = bg and b = au for suitable y ,  tt E ( S x )  

a R b  

Thus R = 3. 

Proposition 3.3 Let A;, i E I ,  be an inflation of n right zero s e m i p u p  

Mi. Let 

A = n A i  
iE I 

= (f : f : I -, UiEIAi such that f ( i )  E A;)  

If multiplication in A is defined b y  ( f g ) ( i )  = f (i) g ( i ) ,  i E I ,  then A is an 

inflation of a right zero semigroup. 



Proof: k t  M = { f  E A : f ( i )  f M; for all i ) .  Let f be any element of 

M and g  be any element of A. Then 

( j g ) ( i )  = f ( i )  g ( i )  E Mi (since Miis an ideal of Ai) 
--!+ 
€Mi  EAi 

Therefore j g  E M and M is an ideal of A. 

To see that M is a right zero semigroup, let f: g  be two elements in M. 

Then 

( f 9 ) ( 4  = f ( M i )  
ww 
€Mi €Mi 

= g ( i )  (since M; is right zero) 

Thus f g  = g  for every f , g  E M. 

Let N be an ideal of A and N S M. Let f be any element in M. 

Then for every g E N, gf = f, since M is a right zero semigroup while 

f  = g f  E N, since N is an ideal. Therefore M E N and M = N .  Then M 

is the minimum ideal of A. 

Let f, g  E A. Then f ( i ) ,  g ( i )  E Ai for every i E I. From the fact that 

A i / p ~ ,  is a zero semigroup, we have 

= Mi, (Vi E I )  

Thus ( f g ) ( i )  E Mi for every i E I. Therefore fg E M (by the definition 

of M). Hence 



Thus A/pnf is a zero semigroup. 

Proposition 3.4 Let S be an inflation of a right zero semip-oup. Let A 

be a homomorphic image o j  S. Then A is also an inflation of a riglit zero 

Proof: Let f be any homomorphism from S onto A. Let be the minimal 

ideal of S such that M is a right zero and S/pM is a zero semigroup. Let 

N = f ( M ) .  

Claim : N is an ideal of A. 

Let a be any elemint in N and I be any element in A. 

Since f maps S onto A and M onto N, there are ~ 1 , s ~  E S with st E M 

such that f (sl) = a and f (sZ) = x. 

Therefore 

ax = f ( ~ 1 )  f ( 4  

= f (s1sZ) (since f is a homomorphism) 

E N (since sl E M,s2 E S and s1s2 E M) 

Thus ax E f ( M )  = N and, by symmetry, N is an ideal of A. 

Let a, b be any elements in N. Since AT = f (M), there are x, 9 in M such 

that f(z)  = a and f(y) = b and 

ab = f (4 f (y)  

= f(xy) (since f is a homomorphism) 

= f (y) (since M is right zero) 

= b 



Thus N is right zero. 

Let P be an ideal of A such that P N .  Let a be any element in 

N, Then for every b f P, ba = a, since N is a right zero semigroup while 

a = ba E P, since P is an ideal. Therefore P = N and N is the minimum 

ideal of A. 

Let p, q be any elements in A and s, t be elements in S such that f (s) = p 

and f ( t )  = q. From the fact that S / P M  is a zero semigroup, we have st E M, 

therefore f(st) E N. On the other hand f ( s t )  = f(s) f ( t )  = pq. Thus for 

every elements p, q E A, pq E N and, by symmetry, AlpN is zero semigroup. 

Proposition 3.5 Let S be an inflation of a right zero semigroup and N be 

a subsemigroup of S. Then N is also an inflation of a right zero semigroup. 

Proof: Let M be the minimum ideal of S. Since S / p M  is a zero semigroup 

then for all a, b E S, we have ab E M. 

Therefore given c t~ IV then 2 E M, that is N n M # 0.  

h: NIIMisanidealofN. 

Let a be any element in N f l  M and x be any element in N. Then 

az E N (since N is a subsemigroup) and 

ax E A4 (since S / p p  is a zero semigroup) 

Thus az f N f t  M and, by symmetry, N n M is an ideal of N. 

: N n M is the miaimurn ideal of N. 

Let P be an ideal of N such that P S N f~ M. Let a be any element in P 

and 6 be any elemeat in N Tr A4. Then 

a6 f P (since P is an ideal) and 



ab = b (since a ,  b E M and M is a right zero) 

Therefore N n M 2 P. Thus N n M is the minimum ideal of N. It  is 

obvious that N n M is a right zero, since N n M C M .  We want to show 

that N/pNnM is a zero semigroup, that is for all a, b E N, ab E N n M .  Let 

a ,  b be elements in N .  Then 

ab E N (since N is a subsemigroup of S) and 

ab f M (since a, b f N 2 S and S/pM is a zero semigroup) 

Therefore ab E N f l  M. Thus NIPNnM is a zero semigroup. 

We can summarize these observations in a theorem as follows: 

Theorem 3.6 The class ZRZ of all inflations of right zero semigroups is 

a variety. 

Now we are looking for a basis of identities for Z R Z .  This gives an 

alternative proof of the fact that 122 is a variety. 

Theorem 3.7 ZRZ = [ x ( y r )  = yz] . 

Proof: Let S E Z'RZ. Then for all a ,  b f S ,  ab E M where M is an ideal 

and a right zero semigroup. Hence for all a, b, c, d E S we have (a b) (cd) = cd, 

and 



Therefore S satisfies the identity x(yz) = yz. Thus I722 C [ X ( ~ Z )  = yz]. 

Let V = [x(yz) = yr]. Let T E V and N = {a6 : a,  6 E T). Clearly N is 

an ideal of T .  

Claim : N is a right zero semigroup. 

For every n ,m E N with n = ab,m = cd where a, b,c,d E T we have 

as required. 

Suppose that L is an ideal of T and L C N. Then 

LN C L (since L is an ideal) and 

LN = N (since N is right zero) 

Thus N = L and N is the minimum ideal of T. 

Since for every a, b E T, 

then T is an inflation of a right zero semigroup that is, T E Z R 2 .  Thus 

2722 = [x(yz) = yz]. 

We now provide another basis for 1522. 

Theorem 3.8 Za2 = [(xy)(uv) = uv]. 



Proof: Let U = [(xy)(uv) = uv]. It is clear that U C_ 1722, since 

On the other hand, let S E Z R Z  and M be the minimum (right zero) ideal 

of S. Then for every a, b, c, d E S, we have ab, cd E M. Since M is a 

right zero, then (ab)(cd) = cd. Thus S E U = [ (xy) (uv)  = (uv)]. Therefore 

ZRZ = [(xy)(uv) = (uv)]. 

3.2 Free Objects 

Let X be a nonempty set and S be a semigroup defined by S = X U {0), with 

multiplication ab = 0, for all a, b E S. Let i : X ---+ S with i : x I--+ x. 

Theorem 3.9 (S,i) is the free semigroup on X in 2. 

Proof: Clearly S E 2. Let T be any zero semigroup and $ : X -+ T 

be any mapping. We want to show that there is a unique homomorphism 

,L? : S ---, T such that the diagram below is commutative. 



Define p : S -+ T by 

p ( x )  = $(x), Vx E X and 

P(O> = 0 

Since 

then ,8 is a homomorphism. Moreover P is unique, since every homomorphism 

a, : S ---+ T that makes the diagram commutative, = PIx, that is a, = P. 
Therefore (S, i) is the free semigroup on X in 2. . 

From the Definition 2.5 we have S$ = {(a), (0 ,a )  : a E X )  and if we set 

M = {(O,a)).Ex then S$ is an inflation of the right zero semigroup M. 

Thus S$ E T R Z .  In fact we can do better. From Evans [5], we have 

RZ V 2 = [xy = t y ]  and the following diagram is a sublattice of the lattice 

generated by RZ, CZ, S and 2. 



x y z  = x z  
x = x  2 

x = y  

Diagram 3.1 

The next results were obtained jointly with my supervisor. 

Theorem 3.10 Let X be a nonempty set and ( S ,  i) be the free object in 2 

on X .  Then S% is the free object in R2 v Z on X .  

proof: From the Definition 2.5 we have S$ = { ( a ) ,  (0, a )  : a E X ) .  If we set 

M = {(O,a)),  then M is the minimum right zero ideal of S$ Therefore for 

every y E s$, y E M or y $ M. 

If y E M then we have xy = y = zy.0n the other hand if y 4 M we have 

Thus S$ satisfies xy = z y .  



Let T be any element in 722 V 2. Let qh be any mapping from X into T. 

Let w E T. Define ,8 : S$ -+ T by 

Clearly @ is well defined. Let a and b be such that a E s$, b E X, then we 

have 

If a E s$,  b =  (O,c), then 

Thus @ is a homomorphism. Moreover ,8 is unique, since every homomor- 

phism u : S% --r T that makes the diagram commutative, alx = Pix, that 

is a = p. 
Thus S$ is the free object in RZ V 2 on X. 



By applying the right Rhodes expansion on S$ we have the following 

theorem: 

Theorem 3.11 (s$)* is the free object in 722 V CZ V 2 = [syz = tr]. 

Proof: The right Rhodes expansion of S$ has the form: 

C- 

*: ( ~ 2 ) ~  € [ x y z  = x z ] .  
T R  Let ( ( a ) ) ,  ( ( b ) ) ,  ( ( x )  > ( 0 ,  y ) )  and ( ( t )  > ( 0 ,  u ) )  be any elements in (Sx ) . 

Then 





- 
Thus 7 is a homomorphism. Since every homorphisrn a : (s$)* -+ T that 

makes the above diagram commutes olx = ?Ix, then 7 is unique. Therefore 
? 
(Sg)R is the free object in 'RZ V L2 V 2 = [xyz = xz]. 

Let G = X U M, where M = X x X, with multiplication defined by: 

It is easy to check that G is a semigroup. 

Lemma 3.12 (G,  L ) ,  where L : x H x, is a b e e  object in RZ V C 2  V 2 

on X. 

Proof: We need only to show that ( ~ 5 ) ~  z G. Let 4 be a mapping from 

G into ( ~ 5 ) ~  defined by : 



Then we have 

Thus 4 is a homomorphism. Clearly 4 is a bijection. Therefore 4 is an 
C- 

isomorphism. Thus (sf )* E G.  

By applying the left Rhodes expansion on G we have the following lemma: 

Lemma 3.13 G: 2 G .  

Proof: By the Definition 2.5 we hme 



Define a mapping 7  : G$ --+ G by 

By Lemma 2.3, 7  is an epimorphism, It remains to shcw that q is one-to- 

one. 

Clearly 7 1x is one-to-one and ~ ( a )  # ~ ( [ x ,  y] < y) for every a, x ,  y E X. 

Suppose r)([a, b] < b)  = ~ ( [ c ,  d] < d )  then [a, b] = [c, d] therefore a = c, b = d. 

Thus ([a, b] < b)  = ( [ c ,  d] < d).  Thus 7 is one-to-one. 

Furthermore, as a result of Theorem 2.13, if we apply the right Rhodes 

expansion on G ,  we have G$ 2 G .  

3.3 Free Objects in ZR2 

Since idations of right zero semigroups have arisen naturally in the study 

of Rhodes expansions it is interesting to determine the free objects in .ZRZ. 

Let X # 0 and M = X x X with right zero multiplication, that is 

(5, y ) ( s ,  t )  = ( s ,  t ) .  Let F = X U M with multiplication : 

Lemma 3.14 : F is an inflation of a right zero semigroup. 

proofi First we consider associativity. 



Case 1: x ,y ,z  E X .  Then 

-2: x =  ( t ,u)  E M, y , z E X .  Then 

Case x  a:E F, y =  ( s , t )  E M, z f  X .  Then 

x(yz)  = x ( t , z )  = ( t , z )  

(xy )z  = ( s ,  t ) z  = ( t ,  z). 

Case x,y EF, z  E M .  Then 

Thus F is a semigroup and clearly M is an ideal of F (by the definition of 

the multiplication in F). It is also clear that M is a right zero semigroup. 

Next we show that M is the minimum ideal of F. 

Suppose that N is an ideal of F with N E M. Let (2, y )  be any element in M. 

Then N ( x ,  y) = ( x ,  y), by the definition of multiplication. But N ( x ,  y )  E N ,  

since N  is an ideal. Therefore (s, y )  E N for every ( x ,  y) E M .  Thus M is 

the minimum ideal of F. 

Let X P M ,  y p ~  f F / ~ M .  Then 



= M (since xy E M) 

Therefore F/pM is a zero sernigroup and F is an inflation of a right zero 

sernigroup. 

Theorem 3.15 If z is  a mapping from X to F defined by z : x c-, x, then 

(F, 2) is free in ZRZ on X .  

Proo$: It is easily seen that X generates F. Let T be any inflation of a right 

zero sernigroup and II, be any mapping from X to T. 
x. 2 -.F 

Define a mapping P : F ---+ T by 

In order to establish that P is a homomorphism, we consider several cases. 

Case 1: x,y E X .  Then 



Case 2: x E X,  y = (u,v)  E M .  Then 

P(xY)  = P(Y) 
= P(u,v)  

= B(u)P(v). 

We know that P(u)/?(v) = P(x)(P(u)@(v)), since ,8(u)P(v) lies in the mini- 

mum ideal M' of T ,  and M' is a right zero. Therefore 

@(xd = P(z)(B tu)B(u)) 

= B(z)B(Y). 

-3: x = (u ,v)  E M, y E X .  Then 

B(zY) = B((v, 9 ) )  

= B(U)B(Y) 

= B(u)(BWP(y 1) 
= (B(u)P(v))P(Y) 

= B ( M Y > .  

mse 4: x = (p ,q ) ,  y = (s,t) f M .  Then 

B W  = NY) 
= P(s)/?(t) E the minimum ideal M' of T 

= G W W ) ( B ( s ) B ( t ) )  

= B(4Bfu) 

Thus ,8 is a homomorphism. 

Since X generates F, /9 is unique- Therefore (F, z) is the free inflation of a 
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right zero semigroup on X. 

The semigroup F as constructed above illustrates an interesting fact. 

Lemma 3.16 R 2  V ZC~ZRZ. 

Prod.  Clearly R 2  U 2 S ZR2. Therefore R2 V 2 E ZRZ.  

However F E 1722 and for any distinct elements a,  b, c E X ,  

ab = (a ,  b) # (c ,  b) = cb. 

Thus F @ R 2  v 2. 

Theorem 3.17 If V is a variety such that RZ V 2 C p V  C ZRZ,  then 

v = 2R2. 

Let S E V - ( R 2  V 2). Then S E ZRZ but S does not satisfy 

the identity xy = zy. Consequently there exist a,  b, c E S with ac # bc. 

This implies that 2 # c. Otherwise, since S is an inflation of a right zero 

semigroup we would have 

ac=  ac2 = c2 = bc2 = bc 

Which contradicts the choice of a,  b and c. We must also have either ac # c2 

or bc # 2. Without loss of generality we may assume that ac # c2. Then 

also aS # 2 since otherwise ac = a2c = c3 = c2. Similarly ac # ca, since 

otherwise 2 = acc = cac = ac. 

Now, if ac = aZ then we would have ac = a(ac) = a2c = acc = ac2 = c2 

which again contradicts the choice of a,  b and c. 

Thus we may assume that ac # a*. Summarizing we have elements a ,  b, c E S 

such that 



For my nonempty set X, let F I R Z ( X )  denote the free semigroup in 

ZR2 on X. By Lemma 1.9, it suffices to show that F I R Z ( X )  E V for all 

finite nonempty sets X. So let X = { X I ,  . , x,) and consider F I R Z ( X ) .  

1n ~ ( $ 1  = S x S x - - a  x S we will define U ~ , U ~ , . . . , U ,  SO that zi ui - 
(3 

defines an isomorphism of FIRZ(xl ,x2,  x,) onto U = (ul ,  u2, . * a ,  u,). 

Each uh can be thought of as an (":) long vector with components indexed 

by ((i, j ) ,  ( k ,  I ) )  where i < k or i = k and j < I ,  1 5 i, j, k ,  I _< n. We wish 

to show that if (i, j) # ( k ,  I )  then uiuj # ukul and also that U n U2 = O .  Let 

P = ( ( ( i ,  j ) , (k , I ) )  : where i < k or i = k and j < 1). 

Let 

o : P c-, {I, 2, - , (T)) be a bijection. 

Let 1 < 6 5 (:) and i ,  j, k,  l be such that a((i , j) ,  ( k ,  1 ) )  = 6. Let (uh)r 

denote the 6" component of uh. We define (ui)s, (uj)s ,  (uk)s and ( ~ 1 ) s  , in 

various cases aa follows : in all cases we define (u,)~ = c for m # i, j, k ,  I ,  

this guarantees that U n U2 = 0. 

Case I. j = 1. Then i # k so that we have the following subcases. 

Case I(i). j = 1 = i # k. Define 

Case I(ii). j  = I = k # i. Define 

(%)a = a, (uj)6 = (uk)6 = ( ~ 1 ) s  = c. 
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Case I(iii). i # j = 1 # k ,  i # k. Define 

Case 11. i = k. Then j # 1 so that we have the following subcases. 

Case II(i). i = k = j # I .  Define 

(ui)6 = (uj)6 = (uk)6 = a, (W)6 = c. 

Case II(ii). i = k = 1 # j .  Defme 

(%)6 = (uk)6 = (~1)6  = a, (uj)6 = c. 

Case II(iii). 1 # i = k # j ,  j  # 1 .  Define 

Case 111. i # k, j # 2 

Case III(i). k # i = j # 1, k = 1. Define 

(%)a = (uj)6 = a ,  (uk)6 = (W)6 = C. 

Case III(ii). k # i = j # I ,  k # I .  



CaaeIII(v). i # k ,  j # Z , i # j ,  k # l ,  i = l ,  j # k .  

( u i ) ~  = ( W ) S  = a, (uj)6 = (uk)6 = C* 

CaseIII(vi). i # k ,  j # l ,  i # j ,  k # l ,  i f l ,  j = k .  

( W ) 6  = ( ~ 1 ) s  = a,  (uj)6 = ( W ) b  = C. 

In all cases it follows immediately from (1) that ( U ~ U ~ ) ~  # (I LUS, 

if ( ( i , j ) ,  (k, I)) E P and a ( ( i ,  j ) ,  (k ,  I ) )  = 6 then (uiuj)8 # (ukul)~.  Therefore 

uiuj # U ~ U I .  

Since each component of u;, i = 1, . , n, is an element of S and S E ZRZ 

then U ; U , U ~  = UjUk. Therefore U = {u i )  U {uiuj )  and 

Now define II, : FIRZ(xl ,  - , x,) - U to be the unique homomor- 

phism such that $(xi)  = ui. Since U is generated by {u; : 1 5 i 5 n), 1C, is an 

epimorphisrn. Since Im$ = U and (Im$l = n + n2 = I F IRZ(x l ,  . , xn)l, 

rl) must be one - to - one. Therefore ?,b is an isomorphism. 

Therefore FIRZ(X)  E HSP{S),  that is F I R Z ( X )  E [S]. 

TheTefm v = 2RZ. 

Since 'RZ V 2 is a proper subvariety of ZRZ, it is interesting to consider 

the effect of the Rhodes expansion on free objects in ZRZ.  

Let F be as constructed above. 

Lemma 3.18 F$ 2 F 



Proof: From the Definition 2.5 we have 

If we set M f  = ( ([x,y], y )  : x,y E X ) then 

i. M' is the minimum ideal of F$ . 
ii. M' is a right 'zero sernigroup. 
... 
111. ~ % / ~ ~ t  is a zero sernigroup. 

Thus F$ is an idation of a right zero sernigroup. 

From Lemma 2.3 we have r p  is an epimorphism, hence we only need to show 

that V F  is one-bone. 

Clearly r ) ~  I is one- to-one and rp(x) # r ) ~ ( [ u ,  v ] ,  v )  for every x ,  u, v  E X .  

Suppose q ~ ( [ x ,  y], y) = ~ F ( [ u ,  v ] ,  v) then [x, y ]  = [u, v]  . Therefore x = u, y = 

v .  Thus ( [ x ,  y] , y ) = ([u, v ]  , v ) .  Therefore r ) r ] ~  is one- teone. 
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