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ABSTRACT 

The problem of exhibiting graphs whose group is some given 

permutation group is exarnined, and the known answers for certain 

classes of groups are detailed. In the case of cyclic groups, 

the (negative) answer has been demonstrated by using a class of graphs 

here called circulants. This sarne class has also been shown to 

contain all graphs with transitive groups of prime degree. Here, by 

introducing a new class of graphs called 2-circulants, a partial 

characterization is made of graphs whose groups are 

transitive permutation groups of degree 2p for any prime p. Cayley 

graphs are also investigated and some aspects of this type of con

struction are related to the problem at hand. Included in this work 

is a corrected version of the published result limiting the exist

ence of graphs with transitive abelian groups, and some additional 

information relevant to the cases already mentioned. Finally, a 

sununary of the status of the problem is presented, including a 

statement of some relevant theorems not here proven in detail. 
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CHAPTER 1 

INTRODUCTION 

The study of the theory of graphs, both as a mathematical 

discipline, and as an important aid to many other fields, dates 

to Euler's well-known 1736 generalization of the problem of the 

bridges of Konigsberg. Nineteenth century investigators included 

Kirchoff and Cayley who studied them in connection with electrical 

networks and chemical isomers, respectively. Modern students of 

the theory have also been concerned with applications to Psychology, 

Economies, Sociology, Computer Design, and Neurology. 

Consonant with the position of graph theory at the (historical) 

foundation of Topology, much of the work in the field has been 

concerned with such topological properties as connectivity, trans

versibility, colourability, and the existence of various kinds of 

subgraphs. Comparatively less information has been derived concerning 

algebraic properties, among them the relationship between graphs 

and groups. 

In examining this latter question, this paper will follow the 

terminology of Harary [17) in graph theory and of Wielandt [45] for 
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permutation groups. Details of this notation are given in Appendix I. 

Thus the word "graph" is here limited to loopless, undirected 

structures of points and lines having no multiple lines between any 

two given points. As a starting point to the discussion, the group 

of a graph is defined. 

Definition 1.1 The (automorphism) group of a graph X, 

denoted O(x) is the group of permutations on the vertices of X which 

preserve the incidence relation. 

The abject of this thesis is to examine various results obtained 

to date which are pertinent to a question raised by Konig [24] in 

1936: "When cana given abstract group be represented as the group 

of a graph, and if possible how can the graph be constructed?" 

As stated, this question was first answered by Frucht [15], who. later 

[14] gave the answer in the form: "To any abstract group of order 

h > 1 belongs a cubical graph with at most [2h (2 + log h) log 2] 

vertices." 

Frucht's result was further extended by Sabidussi [32] and 

Izbicki [28] who showed that one could also stipulate for the required 

graph any one of: arbitrary connectivity and/or chromatic number, 

regularity for an arbitrary degree, or the posession of a spanning 

subgraph homeomorphic to an arbitrary graph. Indeed, the constructions 

employed produced an infinite class of graphs in each category. 

As stated then, it is evident that K.ënig's question was not 

very restrictive. However, if one modifies the statement so that it 



requires a permutation group to be given and isomorphism as per

mutation groups (rather than abstractly) between this and the auto

morphism group of the constructed graph, then the problem is very 

restrictive indeed and as Kagno [23] and,Imrich [20,21] have shown, 

the answer in this case is often negative. 

If a permutation group is intransitive, it can be regarded as 

3 

a subgroup of the direct product (subdirect product) of its transitive 

constituents. (Hall [16] p.63) Several researchers have thus 

restricted their examination to vertex-transitive or point symmetric 

graphs, among them Sabidussi [33,34], Nowitz [28], Chao [11], Turner 

[38], and others. 

Harary [17] thus poses the related problem of enumerating the 

(point)-symmetric graphs. Turner [38] solved this problem for 

point-symmetric graphs on p points, p a prime, and part of 

this work, together with some consequential results forms Chapter 2 

of this thesis. Sorne of this work is extended in chapter 3; the 

results on 2p points being examined in particular. Chapter 4 

extends these results by examining Cayley graphs and an important 

theorem of Sabidussi is given together with some consequences relative 

to chapters 2 and 3. Chapter 5 deals with abelian groups and mentions 

some other results derived from the work of chapter 4. Finally, 

chapter 6 summarizes the status of Konig's question and provides a 

review of sorr.e additional related work without going into great 

detail. As already mentioned, Appendix I is concerned with notation; 



Appendix II contains the statements of several group-theoretic 

theorems used in the text of this thesis. 
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CHAPTER 2 

CIRCULANTS 

The results of this section are derived from the work of 

Elspas' group at the Stanford Research _ Institute [13]. Their concern 

was with cellular interconnection patterns in the organization and 

fabrication of logical networks for computer systems. They examined 

a class of graphs which they terrned "Star .Polygon Graphs" in con

nection with this work, and these became the vehicle whereby the 

point-syrnrnetric graphs Qn a prime nurnber of points were characterized. 

As in their work, for convenience, these graphs will be referred to 

as PPS graphs. 

These results on PPS graphs were first reported by Turner [38], 

and these characterize the corresponding passive, or undirected 

switching systems. Alspach [2], working independently, published 

the corresponding result for tournaments, and it is in the forrn of 

directed graphs that the work has found application to active 

switching system design. ~f Stone [36]) Here a few changes in 

terminology are made: 

Definition 2.1 A graph X on n points is said to be a circulant 

5 
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if the points of X rnay be numbered v 0 ,v1 , ••• ,vn-l such that 

[vi vj] EX iff [vi+k vj+k] EX for k = 1,2, ••• ,n-l. Here, as 

in all subsequent sirnilar situations, the subscript addition 

is taken modulo the order of X. 

The fact that, under this definition, the adjacency set of any 

point is determined by that of v
0 gives rise to the following: 

Definition 2.2 The symbol of a circulant Xis the set 

It is possible to characterize circulants by a particular sub

group of their autornorphisrn group. 

6 

Theorern 2.1 A graph X on rn points is a circulant iff Z s a'(X). 
rn 

Proof: If Xis a circulant, then the cycle P=(v
0 

v
1 
..• vrn_1) 

is an autornorphisn, of X for [ v. v.] EX iff [ v. 
1 

v. 
1

] EX since 
l. J 1.+ J+ 

Xis a circulant. The latter line equals [p(v.) p(v.)]. 
l. J 

On the other hand if z S a'(X), number the points of X so that 
rn 

Now [v. v.]EX•iff [pk(v.) pk(v.)] = [v. k V. k]EX 
l. J l. J 1.+ J+ 

(for each k) since pECi{X). But this last staternent is just the definition 

of a circulant, which cornpletes the proof. 

Corollary 2.1.1 If X is a graph on rn points (rn>2) and 

z Sa (X) then D < u{X) where D denotes the dihedral rn rn rn 

group of degree m. 

Proof: By the theorern, z s C<(X) 
rn irnplies X is a circulant. 



, 
Now the permutation O on 

automorphism of X for 

X defined by O(v.) = v. 
. l. -J. 

is an 

[V. V.] EX iff 
l. J 

[v v .. ]e:x iff 
0 J-J. 

[v . v .] = [o(v.) O(v.)]EX. Also, o has order 2 and if pis 
-J -J. J l. 

7 

as in the theorem, then op(v.) = O(v. 
1

) = v . 
1 

= p-1o(v.) and 
l. J.+ -J.- l. 

so <p,o> = D • 
m 

We are now in a position to give a class of groups for which 

Konig's question must be answered in the negative. 

Corollary 2.1.2 (Kagno [23]) There is no graph on m points 

with O (X) = Z for m > 2. 
m 

Proof: This is immediate from the previous corollary, for once 

D ::: ~X) we have that û(X) is at least not regular. 
m 

Indeed we have even more, if zm ::: O(x) where I xi = m > 2, then 

a(x) is nonabelian. We could then ask if there are graph with 

specified transitive abelian groups. The solution to this question is 

given in chapter 5; suffice it to say for now that generally the 

answer is no! We return to our characterization of PPS graphs. 

Theorem 2.2 A graph X on a prime number of points is PPS 

iff it is a circulant. 

Proof: If X is a p-point circulant, we have already observed 

that Z < O(x) and so 
m 

X is point-symmetric for if 

and pis as in Theorem 1 then 
j-i 

p (V.) = V., 
l. J 

V., V. EX 
l. J 



r ~· . 

on the other hand, if X is PPS then since a(X) is transitive, 

it contains a p-cycle p. {ApJ?endix II-11 

and by Theorem l Xis a circulant. 

Now- <p> == Z S a(X) 
p 

In order to enumerate the PPS graphs, it is necessary to have 

some way of knowing when two such graphs are isomorphic. Although 

the question of enumeration will not be persued here,the latter 

problem is interesting in itself,for in general it is a very difficult 

one but here the symbol is the device which makes a decision possible. 

Definition 2.3 If X and x' are p-point circulants with cor-

responding symbols s and S ... , we say s is equivalent to 

s' (Sr---5') if there exists an integer q
7 

1 S q S p;l., such that 

q•s == {qs. 
l. 

s.ES} == S,. with the indicated multiplication done 
l. 

within H = 
p 

Z* 
p 

{l, p-1} 

It is obvious what theorem we wish to prove at this point; how

ever, the route to that proof is somewhat indirect. 

Definition 2.4 If X is any graph with points v0 v1 .•• vm-l 

we define the adjacency matrix A = (a .. ) 
l.J 

if [v. 
1 

v. 
1

]EX and a .. == 0 otherwise. 
].- J- l.J 

of X by a .. = 1 
l.J 

8 

Lemma 2.3.1 Two PPS graphs X and x' are isomorphic iff their 

respective adjacency matrices A and A,. have the same eigenvahres. 

Proof: If X~ x' then where p is a permutation 

matrix [10) and consequently A and A' have the same eigenvalues. 



, 
' 

conversely, we already know that X and X ,. are circulants. 

The adjacency matrix of such a graph is of the form 

A= 

9 

in which each row is a cyclic shift of the previous one. Under 

the name of circulant matrices, these have been investigated by 

Ablow and Brenner [l] and their eiqenvalues are explicitly given by 

k k(m-1) 
a.k = a

11 
+ a

12
w + ••. + almw where w is a primitive m -th 

root of unity and k = 0,1, ..• ,m-l. 

Here, we are assuming that + ••• + 

is an eigenvalue of A,. as well as of A. Hence there is an 

integer k, l ~ k ~ p-1, with 

Since the primitive roots of unity are linearly independant over 

the rationals (van der Waerden [41]) we have, equating coefficients 

that 
,. 

alj =al [(j-l)k + 1]· 
,. 

Now, if we map X to X by 

vj + vjk' we have that [v~ vj]EX iff 
,. 

= J. iff 

al (jk+l} = l iff and so 

The next theorem is the one earlier hinted at, and which allows 

the enumeration of the PPS graphs. 
,. 

Theorem 2.3 Two circulants X and X are isomorphic iff their 

,. 
respective symbols S and S are equivalent. 



Proof: If S ~ S~ then there is an integer q, l ~ q ~ p;l 

with q•S = S: As in the lemma, the mapping defined by 

v ... • v. is an isomorphism of X',. with X. 
]. iq 

,. 
If S rj, S,. and A, A are the adjacency matrices of X and 

X" wi th w a primitive p-th root of uni ty, then 

is an eigenvalue of A. 
, 

Those of A 

are ,. (p-l)k 
+ ••• + a1pw for l < k ~ p-1. Since the 

k 
w are all the primitive p-th roots of unity and are linearly 

independent over the rationals, an eigenvalue 
,,. 

of A could 

equal Œ only if Moreover, since 

a = a ls 1 (p+2-s) fors 

= al [ (j-l)k+l]" 

E::.!. =2, ... , 2 and similarly for the 

This latter equation holds iff we have that [v~ 
,,.] ,. 

V, E:X 
J 

iff 

which holds iff S,,. = kS. Since we have assumed 

s rj, S,,. however, we have that X and X,. are not isomorphic. 

Further light will be thrown on the ideas of this section in 

Chapter 4. In the meantime, we pursue a similar course for graphs 

on 2p points. 

10 
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CHAPTER 3 

2 CIR,CULANTS 

The observation made in the previous chapter that the automorphism 

group of a circulant contains the dihedral group D prompts the 
m 

search for graphs having dihedral groups (isomorphic to D ) 
m 

as 

regular automorphism groups. This is approached by examining graphs 

consisting of two isomorphic m-point subcirculants joined together in 

a circulant fashion. 

Definition 3.1 A 2-circulant X is a graph on 2m points, where 

these can be labeled and 

in such a way that 

1). = {vo .} 
,1 

and are isomorphic subcirculants 

of X with symbols and respectiv:ely. 

2) • [vo •. vl , ] EX 1· ff [ ] \.J d ,L ,J vO,i+t vl,j+t EX vt an 

3). there exists an automorplùsm Œ on X mapping Wi to w0 . 



The la,bell.tng of X ca.n a,lwa,ys be chosen in such a wa.y that 

~Cv
110

1 ~ v
010

• From thls point on, unless otherwise stated, cr 

will be assumed to have this property. It ts worth noting that cr 

is not necessarily unique. Moreover, since w
0 
~ w

1 
we have that 

Xis completely determined when the adjacency set of v
010 

and the 

automorphism cr are known. This prompts the following: 

Definition 3.2 The symbol S = {R, cr, F} of a 2-circulant X 

12 

on 2m points consists of the inner symbol R, which is the symbol 

of, say, the subcirculant w0, the automorphism cr and 

the outer symbol F = {j : [v0 , 0 v1 ,j]e:x}. 

It is important to note that even if R
0 

= R
1 

whence w
0 

- w
1 

(read w
0 

and w
1 

are congruent) cr does not necessarily act like the 

identity on the second coordinates of the subscripts. If it did 

we would have v
1 

. ] e:x 
,J 

iff which 

says je:F iff -je:F, a condition for which there is as yet no 

guarantee. However, when R = R we will say that Xis of a 1 

tYI?e l. Lf X cannot be represented as a type 1 2-circu:Lant we 

will say that it has type 2. 

Example 3.1 If F = ~, then X is disconnected and w0 and w1 

are components. (If in addition R =~,Xis trivial) 
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{1}, F = ~' 

Example 3.2 

X is of type 1. 

v.J. ,.J. 

Figure 3.1 

If R = ~' Xis bipartite 

vO,l 

Figure 3.2 

R = ~ F = {o -1} and 

X is of type 1. 

This example demonstrates more, namely that 2m-cycles are 

bipartite 2~circulants, hence obviously of type 1. A later 

theorem will show that 2m-point circulants are all type 1 

2-circulants. The converse is false. 



Example 3.3 Not all type l 2-circulants are circulants. 

vO,l 

R = {l} F = {O} and 

X is of type 1. 

v0,3 

Figure 3.3 

This graph is nota circulant because of the two degree three 

circulants on eight points, one has girth 3 and the other is 

not planar. 

Example 3.4 The 6-point graph with the same symbol as the 

14 

graph of example 3.3 is a circulant, contrary to the statement of 

Turner [38]. 

R = {1} F = {O} 

X is of type 1. 

vO,l 

Figure 3.4 



If X is renumbered according to V -+ V 
1,0 3 

and we obtain 

and X is a circulant with 

symbol s = {2,3}. 

Before proceding, two more observa,ti.ons are in order. First, 

since each of w
0

,w
1 

is point-symmetric we may choose v
110 

to be 

any point of w
1 

we wish, so we may always assume that if F t ~ 

then 0 E F, i.e. is chosen so that 

or X is disconnected. 

Secondly, if X is of type 1 and not disconnected then X 

has girth three or four. (The four-cycle [v
010 

v 0 ,i vl,i v
110

]EX 

for any- i e: R.l 

Example 3.5 Petersen's graph is a 2-circulant which does not 

15 

have type 1 since it has girth 5 and is also not a circulant because 

all the degree three circulants on 10 points have girth 4. 
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R = h} Xis not of type 1 

F = {O} 

Figure 3.6 

We now state the precise relationship between 2-circulants and 

circulants. 

Theorem 3.l Every circulant on 2m points is a type 1 2-circulant. 

Proof: Suppose X is a circulant with sybbol s and points 

Renumber the points according to v2.-+ vo. 
l. , l. 

and v 2i+l-+ vl,i i = 0,1, ••• ,m-l. Then we have [v
010 

v 0 ,i]EX 

[v1 ,k vl,j+k]EX Vk. Hence X has two congruent m-point 

subcirculants with symbol R = {i: 2iES}. 

Next, iff 

iff 

iff Ivo,k vl,j+k]EX Vk. Hence X is a type 1 2-circulant with 

symbol S,.={R,F} where f = {j: 2j+l ES}. 
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As shown in exa.m~le 3.3, the converse is false. However, 

there is a partial converse which specifies exactly how rnuch syrnrnetry 

in F is necessary to allow us to rewrite a type 1 2-circulant as 

a circulant. 

Theorern 3.2 A type 1 2-circulant X on 2m points is a 

circulant iff it can be written with symbol S~ = {R,cr,F} where 

jEF iff -(j+l)EF. 

Proof: Let X be a type 1 2-circulant written so as to have 

syrnbol S~~{R,~,F} such that jEF iff -(j+l)EF. Renurnber the 

points of X according to v 0,i-+v2i and v1 ,j-+v2j+l and let 

S={2i: iER} LJ {2i+l:iEF} 

So, when renurnbered, vertices having subscripts of the sarne 

parity are joined in circulant fashion. 

Case II iff 

iff [v2t v 2j+2t+l]EX Vt. Moreover [v0 , 0 v1 ,j]EX iff j€F 

iff -(j+l)EF by hypothesis. This takes place iff [v
010 

vl,-(j+l)]EX 

iff [ ] X iff vO,j vl,-1 E iff 

[v2j+2t v2(t-l)+l]EX Vt iff [v2j+1+(2t-1) v2t-l]EX Vt. 

Case II gives the result for verticesof opposite subscript parity. 

It has now becorne evident that the set S defined above is the 

syrnbol for X written as a circulant. 



18 
On the other hand, if X is a type 1 2-circulant with symbol 

s=-{R.,0,1;} whose points may be renumbered so as to rewrite X 

as a circulant with symbol S ... , we renumber X again from this 

circulant nurnbering by Theorem 3.1 and obtain it once more as 

a 2-circulant with symbol S" = {R.~ ,9' ... ,F ... }. 

[v v2, l]EX iff 
0 J+ 

(since X is a circulant) iff [ ] vO,O vl,-(j+l) EX 

iff -(j+l) EF... as asserted. 

In view of the above, one might question example 3.4 where 

.~ = {o}. It would seem that Theorem 3.2 requires that -lEF also, 

whereas we have shown the graph of that example to be a circulant. 

However, if the graph of that example as written in circulant not

ation were renumbered by Theorem 3.1 we would obtain it once more 

in 2-circulant fashion; this time with F={l} so that j=-(j+l) 

(modulo 3). 

The graph of example 3.4 

rewritten to show compliance 

with Theorem 3.2. 
vO,J. 

Figure 3. "J 



The above discussion makes the following result obvious, and 

in view of examples 3.4 and 3.3 it is stated without proof. 

Corollary 3.2.l If X is a 2m-point type 1 2-circulant with 

symbol S = { {l},~,{o}} then X is also a circulant iff 

m is odd. 

The time has now corne to return to the main stream of the 

discussion and show the analogous result to that of Theorem 2.1, 

characterizing 2-circulants in terms of a particular subgroup of 

O(X). Unfortunately, in the general case, the characterization 

is notas neat as one would like. 

Lemma 3.3.1 If X is a 2m-point graph and O(x) contains 

a regular group D generated by elements s and t with 

2 m s = t = 1, then X is a 2-circulant. 

Proof: t is a regular permutation of order m and degree 

2m, sois necessarily a product of exactly two disjoint 

m-cycles. If we number the points of X so that 

obtain that X has two m-point subcirculants w
0 

and w
1

. 

19 

Now <t> has index 2 in D and sois normal, though intransitive. 

Hence, D is imprimitive and the orbits of <t> forma 

complete block system for D (see Appendix II-2) That is, 

w
0 

and w
1 

are blocks of D and since D is transitive, 

s must interchange and so those are isomorphic. 
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Indeed, it is clearly possible to specify that numbering so 

that and it is now evident that X is a 

2-circulant. 

If X is of type 1 and we define s: x+x by s (v
0 

. ) = v
1 

. 
, J ,-J 

and s (v
1 

. ) = v
0 

. 
, J ,-J 

for O < j :Sm-1, then since 2 . s =- 1 

and Dm :SO(W
0

) we see that s is acting as an automorphism on the 

3econd coordinates as it interchanges w
0 

and w
1

• In addition, 

[v
010 

v1 ,j]€X iff [v
110 

vO,-j]êX since X is a 2-circulant. 

Therefore, s is in fact an automorphism of X. 

This discussion, together witn._ the lernrna inplies the following: 

Theorem 3.3 X is a type l 2m-point 2-circulant iff Q'(X) 

contains a regular dihedral subgroup D~ D • 
m 

Proof: If X is as given, we know irnrnediately that a(x) 

contains the automorphism t ~ (v
010 

v 0 , 1 ... vO,m-l) 

(v1 , 0 v 1 , 1 ... vl,m-l) and the automorphism s of the 

discussion above. Clearly 2 m 
s = t = 1. Moreover, we have 

for example that sts (v O,i> = st (vl,-i> = s (vl,~+ll = v 0,i-l = 

-1 
t (v .) so that D = <s,t> is dihedral. 

o,i 

On the other hand, if in Lemma 3.3.l 
-1 

we know that sts = t , 

then -1 
ts cv

0 
. ) = st (v

0 
. ) 

,l. ,l. 
and if we write for convenience 
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this becomes V = V l,.6(i)+l 1,.6(i-1) which 

is to say .6' (il = ,6(i-1)-1. We have at once _,.s(l) = -1, and 

by recursion .6Ü) = -i so that the element s has in fact 

the definition s(v
0 

.) = v1 . and likewise s(v
1 

.} = v
0 

.. 
,1. ,-1. ,1. ,-1. 

It is obvious then that X is of type 1. 

We give a slight generalization of Theorem 3.3 in the evept 

that m = p a prime. 

Corollary 3.3.1 A 2p point graph Xis a type 1 2-circulant 

iff ax) contains a regular subgroup. 

Proof: The only groups of order 2p are cyclic and dihedral 

(see Appendix II-3). In either case, by Theorems 2.1 and 3.1 

or by Theorem 3.3, X is a type 1 2-circulant. The converse 

follows from Theorem 3.3. 

Example 3.6 (Watkins) Let X bé the type 1 2m-point 

2-circulant defined by S={ {1}, s,{0,-1,2}} for Ir66 and sas in 

Theorem 3. 3. 

Figure 3.8 

vo,2 

The graph X of 

example 3.6 for m=6 



Figure 3.9 

The subgraph of X on v
010 

and its' neighbours 

The set H of neighbours of v
010 

contains only the lines 

[v0 , 1 v1 , 0], [v1 , 0 v
11

_1] and [v110 v
11

_1]. If cfieO(X) fixes 

v
010 

and is not the identity, it must interchange v
110 

~ith 
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vl,-l and v
011 

with Y:o,..,...1 ;f;i:xi:ng vl, 2 . Now vJ.,l is adjacent to v.l,O 

but not to vl,-1 so must move; say cfi(vl,1) = z. Since vl,l 

is adjacent to the fixed point vl,2' so is z. Moreover, z is 

also adjacent to vl,-1 since -vl,l is adjacent to 

adjacency sets of vl,2 and vl,-1 are {vl,1 vl,3 

Hence <P 

Z = v
010 

which is impossible. 

fixes the entire adjacency set of 

v1,o· The 

v0,2 v0,3 vo,o} 

and so 
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since the graph is a 2-circulant <p fixes all of x. We canclude 

that O(X) is regular and hence actually equals the grpup D~D 
m 

of Theorem 3.3.1. If mE{3,4,5} the result does not hold, a fact 

which will be proven later. In the meantime, it is possible to 

prove the analogues of several results of the previous chapter. 

Theorem 3.4 X is a type 2 2p-point 2-circulant iff the 

automorphism cr of Defintion 3.1 is of the form (1) cr(v
0 

.) = v
1 

. 
,1. ,q1. 

and (2) cr(v1 .) = v
0 

. where q cannot be 1 or -1. 
,J ,qJ 

Proof: Let X be a type 2 2p-point 2-circulant. We can 

assume that the subcirculants of X are neither complete nor 

trivial since each of these cases results in the graph having 

type 1. Hence by our Theorem 2.3 and Theorem 7.3 of [29] the 

automorphism cr of definition 3.1 must have the form 

cr (v
0 

. ) = v
1 

. 
, J ,rJ 

and cr (v
1 

. ) 
,J 

= V O,qj 

show that q = r. Now [v
0 0 

v
1 

.]EX 
. , , J 

for q,r E !\>• We now 

iff [cr(v010 ) cr(v1 ,j)] = [vl,O vO,qj]EX. Hence [v0 ,k vl,j+k]EX 

iff [ ] ~ vl k vO ·+ k EX vk. ,q ,qJ q (as k runs through 1,2,3, ••• p-1 

so does qk). Hence [cr(vo k) cr(vl '+k>] = [vl- k vo . k]EX , ,J ,r ,qJ+q 

iff [vl,qk vO,qj+qk]EX 't/k = 1,2, ••. ,p-1. Hence, •_if q-r 'f; 0 

either lrl = p-1 or jFj = p. I.n thQ- former case, we may 

assume [v0 . v1 .]fX for each i. Hence · {cr(v0 .) cr(v
1 

.)] = 
,1. ,1. ,J. ,1. 



= [v1 . v0 .]~X cantradicting !FI= p-1. In the latter, . ,rJ... ,q_J... 

X may be rewritten as a type l 2-circulant by the mapping 

v1 . • v
1 

. v
0

. • v0 . which is contrary to hypothesis. 
, J ,qJ , l. , l. 

Hence there exists a q satisfiying (l) and (2). Certainly 

q t ±1 for then X would have type l. 
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On the other hand, if 0 has the indicated form on the 2p-point 

2-circulant X, then X cannot have type 1 by the proof of 

Theorem 3.3. 

Corollary 3.4.1 If X is a type 2 2p point 2-circulant then 

a (X) contains a subgroup C isomorphic to the dihedral group DP. 

Proof: Let a be the automorphism on X discussed in Theorem 

3.4. For every odd n an{vo .) = vl n· 
,1. ,q l. 

and n 
a (vl .) = vo n· 

,1. ,q l. 

we have by the preceding theorem that qn t ±1 for any odd n. 

Hence there exists an even m such that 
m a (v

0 
. ) = v

0 
. 

,1. ,-1. 

and m a (v
1 

. ) = v
1 

.. 
,J ,-J 

Let and form C = <T,t> 

where t = (v
010 

v011 ••• vO,p-l) (v110 v111 •• v1 ,p_1). Clearly 

T2 = tp = 1 and TtT = (vo,o vo,-1··-vo,1> (vl,O v1,-1···v1,1> = 

-1 
= t so that C is dihedral. 

We have now shown that every 2p-point 2-circulant X has a 

dihedral subgroup in a (X) • Types l and 2 are distinguished by the 

fact that in the former case this subgroup is reguiar and in the 

latter it is not. In addition, in the type 2-case F is invariant 



under multiplication by -1. · 

Corollary 3.4.2 If X is a ty~e 2 2~-,J?oint 2-circulant 

then jEF iff -jEF. 
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Example 3.7 Petersens Graph (Figure 3.6) could be written with 

symbol S={{l}, 2, {o}} and here cr is s.t.CJ(v1 ,j) = v0 ,2j 

a (v
0 

.. ) = 
• J 

as asserted above . 

vl,l 
Figure 3-10 

v.J., o 



a (X} 

v0,4 

V O ,2 .,_ __________ _ 

Figure 3-11 cr2 
(X} 

The figures show the compliance of Petersen's graph with 

Theorem 3.4 and Corollary 3.4.1. Clearly 4 a = l. 

Definition 3.3 If X, x' are 2p~point 2-circulants with 

symbols s = {R,O~F} and s' = {R',cr,F'} we say that sis 

eguivalent to S 
, 

(S ~ s') in case there are integers qëZ* 
p 

and xëZ such that q•s' = {qR',cr,qF'+x} = s where 
)? 

qR' = {qr: , '} , { , •• f, cp '} r E:R , qF + X = qF +x C. and the indicated 

multiplication is within .Zp• 
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Notice that the definition requires that the same cr be found in 

each of (X) and (X'). In the following we will assume, that in 

the type l case cris the involution of Theorem 3.3 or has the form 

given in Theorem 3.4 for k the smallest possible q for which 

the Theorem holds. We obtain the following analogue of Turner's 

theorem. 



Theorem 3.5 Two 2p-point 2-circulant X and x> are 

isornorphic iff they have equivalent symbols. 

Proof: If S ~ s' where S and s' are the symbols of 

X and x' respectively, then there are integersq,XEZ* p 

such that S = {qR',a,qF'+x}. Define f: X>+ X by: 

f(v0' .) = v 0 . and f(v1' .) = v1 .. In the proof of 
1 1 ,q1 ,J ,qJ+X 

lernrna 2.3.l we showed that such an f wil rnap to w
0 

and w' 
1 

to as an isornorphisrn. Moreover, [v;,O vi,j]EX 

iff jEF' iff qj +XE F iff [v V ] -0,0 l,qj+x -

[f(v;,o> f(v{,j)]EX and hence f is an isornorphisrn of x 

with x'. 

On the other hand, if X and x' are isornorphic 2-circulants 

with syrnbols s = {R,a,F} and s' = {R',a>,F'} on 2p points 

then a(X) ~ O(x'). In particular the dihedral subgroup 

(D of Theorern 3.3 or C of Theorern 3.4) of a(x') is mapped 

to a dihedral subgroup of ~(X) having the same properties. 

Hence X and x' have the sarne type and in the type 2 case 

the constant k of Theorern 3.4 relating R
0 

to R
1 

and 

R; to R{ must be the same nurnber. In either case, this 

irnplies that a= a' as required if the symbols are to be 

equivalent. 

Moveover, the blocks of <a~ t'> ::: ü (X') are rnapped to blacks 

27 
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of such a subgroup of a (X} and since w' w' O' l 1 
and w

0 
and 

w
1 

are the ohly p-point blacks involved, we can assume that 

the isomorphism on x' maps w' 
0 

to and w{_ 

Hence, since R', R{_, Rand R
1 

are the symbols of the sub

circulants w~, w{_, w
0 

and w
1 

respectively, we have that 

there are integers q, q' E zi with qR' = R and q'RÎ = R
1 

(by Theorem 2.3). We have already mentioned that for some 

* kEZ · kR' = R' and kR = R 
·P l l 

and these equations give the 

relationship q'k = k q. (When X has type 1 use k = -1) 

R • k 

q , 
q 

k 
R' .... R' 

1 
Figure 3-12 

Since multiplication modulo p is commutative kqR' = qkR' 

so that q, can be chosen to equal q and the respective 
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subcirculants are related by the same constant q. Lf the 

isomorphism we are examining sends [v~,o v;_
1

a3 to 

[vo,o v1,01 have jE:F,. iff [v~,o v;_ .] e:x 
,. 

iff we 
,J 

[ V O O V 1 . ] E:X iff qjE:F. If [v~,o vi,o] goes to any 
I ,q] 

other [v
010 

v1 ,x] then merely re-label X with symbol 

s
1 

= {R,O,F-x} after applying q and the theorem now follows. 
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CHAPTER 4 

CAYLEY GRAPHS 

The time has came to examine more general aspects of the relation

ship between groups and graphs in order to provide needed tools to 

consider classes of groups other than those of the first two chapters. 

The basic machinery was provided by Sabidussi [33] and forms this 

chapter through Theorem 4.2. A number of important consequences are 

also detailed. 

The constructions of Frucht [14,15] produced graphs with semi

regular automorphism groups. The purpose here is to show that the 

latter fact implies that the graph is of the given construction. 

We begin with a lemma on disconnected graphs. 

Lemma 4.1.1 Let X be a graph with O(X) semi-regular. 

Then if X is disconnected it has exactly two isomorphic corn-

porients x
1 

and x
2 

such that O (X
1

) = IJ (X
2

) = { l}. 

Proof: Let the components of X be X. 
l. 

i=l,2, ... ,n. At least 



two of the X. must be isomorphic. Otherwise, <f> 1 X. ECl(X. } 
l.. l.. l.. 

for every c/>e:O(X), i=l,2, ••• ,m, and since a(x) =l VxEX, 
X 

(J(X);t{l}' at least one of the a (¾)t{l} for l ::: k ::: m. 

xE¾ and cpx = x otherwise. Clearly cpE(J(X) but violates the 

semi-regularity. So, we can assume that x
1 
~ X 2· 

If X bas more than two components and 1P is an isomorphism 

of x
1 

onto x
2

, then cf>.!': X -+ X given by cp,.·x = <f>x for 

.,. ;..1 
cp ·x = iJ) X for and 

,+. ,. 
'I' X= X otherwise also 

provides an automorphism of X which violates semiregularity. 

and define c/>": X -+ X:' by cp"x = cp
1

x if xEXl and <f>"x=x 

if xEX
2

. The same contradiction is reached and this establishes 

the lemma. 

We next establish two results related to the degrees of the points 

of graphs having acx) semi-regular. 

Lemma 4.1. 2 Let X be a graph with IJ(X} semi-regular and 

choose any xcie. There exist at most two lines of X which 

are similar and incident with x. 

Proof: Let ei = [x,xi]EX for i=0,1,2,, •• ,m be similar. Then 

34>.E (X) with e. = <f>.e
0 

for i = 1,2. By semi-regularity 
l.. l.. l.. 



(1) ~ix = xi and (2) ~ixO = x for i = 1,2. Now by (2) 

~1=~2 and so by (1) x1=x2 so that e1=e
2

• 
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Lemma 4.1. 3 Let X be a line-symrnetric graph with more than 

one line and tJ (X) semrregular. Then X is cyclically 

connected. 

Proof: Suppose the contrary and let x be a cutpoint of X. 

Now line-symmetric graphs must eitherbe point-symmetric or 

bipartite. (Harary [17] 14.12) 

In the first case, by point-symmetry, every point is a cutpoint 

which is obviously impossible. In the second, every line is 

incident with a cutpoint. If there is more than one cutpoint 

and a line joining two, we are back to the first case. Assume 

then that a pair of cutpoints is joined by a 2-path. By line 

symmetry, each endpoint that is nota cutpoint is on such a 

path, and a complete bipartite graph having no cutpoints results, 

a contradiction. Hence there is only one such cutpoint and 

every line is incident with it so X is a star, which does 

not have O(X) semi-regular, and we again reach a contradiction. 

As a consequence of these lemmas, it is now possible to show 

that the possible line-symmetric graphs having O(X) semi-regular 

are severely restricted. 

Theorem 4.1 Let X be a nontrivial line-symmetric graph 

having ,;'(X) semi-regular. Then X is a 1-path. 

Proof: If X has the given properties and more than one iine 
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then by Lemma 4.1.1 it is connected, for otherwise acx
1
)~ax

2
)={1} 

contradicts the assumption that X is line-symmetric. Lemma 

4.1.3 then implies that X is cyclically connected so that 

deg x ~ 2 VxEX. However, Lemma 4.1.2 states that deg x ~ 2. 

It follows that X is then a cycle, which as we have observed 

in Corollary 2.1.l does not have semi-regular automorphism 

group. Hence, X has only one line, sois a 1-path. 

The next step is to introduce the tool whereby graphs with 

certain properties have been constructed: 

Definition 4.1 Given a group G with H c G - {l}, the 

Cayley graph (group-graph) of G with respect to H is the 

graph xG,H such that: v(xG,H) = G and E(xG,H) = 

{[a,ab]: aEG bEH}. 

Now if the graph so formed is connected, then for any g, g~ 

there is a path g g
1 

g
2 

g
3 
.•• gn g,. from g to g". Now since 

as a product of the 

Since every product 
-1 -.. 

g g can be written 

h., 
]. 

we have that H generates G. Ob. 

the other hand, if <H>=G then clearly every such path exists 

and is connected. We have proven the following: 

Lemma 4.2.l is connected iff <H>=G. 

We are leading up to a characterization of all graphs X with 



regular subgroups contained in O(X) , a property which appeared in 

both Chapters 2 and 3. The following lemma provides most of the 

information: 

Lemma 4.2.2 Given a graph X, a necessary and sufficient 

condition for the existence of a group G and an H c; G with 

X~ xG,H is that 2(X) contain a regular subgroup G
0

• In 

that case G = G • 
0 
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Proof: If define n: G -+ a(x > G,H by: Cng) g' = gg'. 

Clearly n is 1:1 and so lrm ni = 1 Gj · Also, it is quite 

apparent that Im n acts transitively on V(X) = V (XG,H) = G. 

On the other hand, if GO s a(x) is regular, we choose an 

aEX, numbering it's adjacency set A={a. 
l. 

i=l,2, ••• ,n} and 

the unique automorphisms H=fo. 
1 

i=l, ••• ,n} so that a.. (a) = a .• 
l. l. 

For any xEX, let <p be the automorphism s.·t. <I> a=x. 
X X 

By 

reqularity, every element of is a cf> • 
X 

Form 

define the map EX -+ X by E<p =x. 
Go,H X 

Now [<f>x <p a.]EXG H imp1ies that 
X l. 0' 

[x <f> a.] 
X l. 

= [cf> a <p a. )EX since [a a.] EX. Hence E preserves incidence. 
X X l. l. 

-1 -1 
Conversely, if [x Y]EX, then <px [x y] = [a cf> y]EX and so 

X 

-1 
for 1 i Hence [x y] E: I<f> cf>"CC ] <Px Y = a. = a.a ~ Sn. = 

l. l. X X l.. 



and [ <I> <I> .a. ] E::XG H so that E:: is onto. Since E:: is 
X X l.. Q' 

obviously 1: 1, it is an isomorphism of 

Theorem 4. 2 (Sabidussi [33]) If X is a graph having a (X) 

regular, X is either trivial of order 2 or X is 

isomorphic to the Cayley graph of a(x) with respect to a 

set H of generators of O{x). 

Proof: If X is disconnected Lemma 4.1.1 applies. In this 

case, the point-symmetry of X is incompatible with 

a(x
1

} ~ acx2) = {l} unless X is trivial with two points. 

If X is connected, the theorem follows immediately by 

Lemmas 4.2.1 and 4.2.2. 

There are several application to the work of Chapters 2 and 3. 

Corollary 4.2.1 If X is a connected graph on a prime number 

of points, then X is a PPS graph iff it is a Cayley graph. 

Proof: By Theorem 2.2 X is PPS iff it is a circulant. By 

Theorem 2.1 X is a circulant iff Z ~O(X). Since Z 
p p 

is regular, by Lemma 4.2.2 this is iff X is a Cayley graph. 

Corollary 4.2.2 If X is a connected graph on 2p points, 

then X is a 2-circulant iff it is a Cayley graph. 

Proof: As above, this is a consequence of Lemma 4.2.2 together 

with Theorem 3.3.2. 

It is also possible to settle the question raised in example 

3.6, namely the nonexistence of any graph X having a regular 
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dihedral group D ~ D equalling 
m O(X) for m=3,4,or5. By 

Sab.idussi' s theorem we may assume such an X would be connected 

and a Cayley graph with respect to a set H of generators of 2(X). 

We mayas well note here that H can always be taken to 

satisfy: uE:H 
-1 

~ u E:H since [x xh] and denote the 

same edge of xG,H" 

Suppose then, that H(=H-1
).=..D generates D. Then H must 

contain some element not in <t>. If there is exactly one such 

element, in our notation we may assume X is a type 1 2-circulant 

with F={O}. The mapping <j,: X-+ X given by <j, (v i . ) = vi . 
'J ,-J 

is clearly in O(X) but fixes bath and v
110

, violating 

regularity. If there are two, say j and k and j-k is odd, 

X can be renumbered sa as to have F={i,-i} in which case the 

same mapping <j, as above is also in 2(X) violating regularity. 

If j-k is even, X .can be renumbered so that F={-(i+l) ,i} and 

in that case X is a circulant by Theorem 3. 2 and O (X) is not 

regular. D
3 

at once 

for here we must have k6 , whence O(X) = s
6 

which is not regular. 

We have then that thd.s eliminates 

If m=4 or 5 we can appiy the above argument to the complement 

of F. The following theorem has now been established: 

Theorem 4.3 To every dihedral group D of degree 2m m ~ 6 

where D ~ D there corresponds a (Cayley) graph X whose 
m G,H 

group equals D. For m < 6 no such graphs exist. 
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By making use of the ideas of this chapter we may also return 

to Chapter 2 and extend those results to 9raphs which. are both 

point and line-symmetric or just "symmetric". In Theorem 4.4, 

sufficiency was demonstrated by Turner [38] who also conjectured 

necessity. The theorem was first proven by Chao Ill] using methods 

developed in [10]. The proof given here is a much simpler one 

provided by Berggren [6] and is more algebraic in nature. 

Theorem 4.4 (Chao, Berggren) A regular graph. X of degree n 

on p points is symmetric iff n is an even diviser of p-1 

ar.d X = XZ H where H 
p' 

order n. 

is the unique subgroup of Z* of 
p 
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Proof: If H is the subgroup of Z* of order n p (containing ""'11 

and we form X= XZ H' indentifing the points as v0 ,v1 , ... ,vp-l 
p' 

where [v. v.]EX iff j-iEH, then clearly H is the symbol 
]. J 

for X written as a circulant. Moreover, the transformations 

of O(x) which is transitive on the lines of X, so that a{x) 

is also line-symmetric, hence symmetric. Clearly n must be 

an even diviser of p-1. 

On the other hand if X is as given and O{X) is doubly 

transitive then X=k 
p 

and X= Xz H 
p' 

with IHI = p-1. If 

O{X) is not doubly transitive, then by Burnside's Theorem 



. 
(see 7.3 of [29]) we may suppose that the points of X are 

the elements of z 
p 

and that a {X) S {T : ae:Z* a,b p be:Z} = S 
p 

where T b{x) = ax+b. As usual, we identify 0,.1,2, ••• ,p-1 a, 

with 

Since O(X) is transitive on the vertices of X, we have 

pl I O{x) la; since :FÇ,:::{T be:Z} is the subgroup of order p . l,b p 

3.8 

in S, we have KsO(x). Now certainly R={ae:Z*: T 
0

e:a(x)} s z* 
p a, p 

Now for each i, j e:Z we have T
1 

.. . e: {X) so [ v. v.] e:x 
p ,-1.-J l. J 

iff [v . v .]e:x whence T e:G so that -le:H and 
-1. -J -1,0 is 

even. Now û(X) = {T. 
0

: ae:H} so that the adjacency set A 
O a, 

of O is given by A=Hc
1

+ ••• +Hcr. 

If r ::: 2 then there is a T a,b 
E: a(X) with T 

a,b (Cl) = 0 

and T (0) = Ck for 1 < k S r. This implies b = C a,b k 

and 0 = ac
1

+b so ac1 = -ck or -ac1 = ck. But -1,aE:H 

so -ae:H and Hc
1 = He 

k 
$howing that r = 1 and n = IH 1, 

an even diviser of p-1. 

We have shown that the lines of X are {[v v ]} so a a+hc l· 

if we map 
-1 

a+ ac1 we induce a map of X te X .. where 

the points of the latter are identified with those of z 
p 



and the lines are {fa a+h]} for asz and hsH. 
p 
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Certainly 

atx·~> = atx) for ax ,.> :::: a (X) and s.ince ac.,(> ~ a<x>. 

A generalization of Theorem 4.4 to graphs of a composite order 

is not available since the theorem of Burnside is specific toper

mutation groups of prime degree. 

In concluding this chapter it should be noted that while in 

general a point-syrnmetric graph X is nota Cayley graph, there is 

a sense in which some "integral multiple" of X is a Cayley graph. 

The following provides a summary (without any proofs) of the paper 

of Sabidussi [34] which introduced the concept. 

Definition 4.2 Let X be a graph and N a set of order n, 

a cardinal. The graph nX is given by V(nX) = V(X) x N and 

E(nX) = {[(x,a) (y,S)]: a,SsN, [x,y]sE(X)}. 

Theorem 4.5 Let X be a connected point-symmetric graph, G 

a transitive subgroup of Ci(X). Then there is a cardinal n 

~ t. nX is a Cayley graph of G. If G is finite, n can 

be chosen- as a factor of the order of G. 

Definition 4.3 Let X be a connected point-symmetric graph. 

By the deviation of X is meant the smallest cardinal n 

s .t • nX is a Cayley graph. 

He then went on to give a number of results concerning deviation. 

In general, it is a difficult functionto calculate and Sabidussi was 

content to prove that there are graphs with arbitrarily large 



.finite deviation. The next chapter provides a very important 

application of Cayley graphs to the case of Abelian 9roups. 

4Q 



41 

CHAPTER 5 

ABELIAN GROUPS 

The existe.nce or nonexistence of graphs corresponding to cyclic 

and dihedral groups has now been completely detailed, and the time 

has corne to turn attention to other classes of groups, first the 

abelian ones. 

Basing their work on that of Chapter 4, both Chao [9], and 

Sabidussi [34] thought they had proven the nonexistence of transitive 

abelian automorphism groups as the groups of graphs for !xi > 2. 

What they did prove forms Theorem 5.1. The proofs contained a 

similar error, first pointed out by McAndrew [26] who stated the 

limit !xi ::': 5. The first proof of the result was 

published by Imrich who established it for !xi::': 8 [20] and later 

[21] completed it to the form presented here. The complete result 

is here presented in full under one title for the first time, and 

a gap in Imrich 1·s proof when lxl=5 is pointed out. 



Theorem 5.l (Chao, Sabidussi) If X i~ a nontrivial graph 

with transitive abelian automorphism group, then a (X} is 

the direct product of cyclic groups of order 2. 
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Proof: Such a group is necessarily regular. (see Appendix II-10) 

By Theorem 4.2 we may assume X is connected and using the 

same notation as in the proof of Lemma 4.2.2, we take up from 

the point where we observed that every element of a(x) is a 

cp • 
X 

Since by Theorem 4.2 the a. generate 
1 

a{X), a line [x,y] 

= [cp (a) cp (a) ]EX iff 3a s •t. a <P = cp and this is the 
X y V VX y 

case exactly when 
-1 

cj) a]EX. 
y 

Hence the function ~:X+ X defined by 
-1 

~cj) (a) = c/) (a) Ve/) E Ci(X) 
X X X 

is an automorphism of X. From ~(a) = a, it then follows by 

the regularity of C<(X) that cj) 
2 = i Ve/) E O(X). So, in the 

X X 

abelian group a(x) every nonidentity element has order 2 

and the stated result follows by PrÜfers first theorem (see 

Appendix II-11) . 

Corollary 5.1.1 There is no graph with more than two vertices 

and having regular primitive automorphism group. 

Proof: Every such group is cyclic. (see Appendix II-6) 

The Corollary now follows immediately from either of Theorems 

5.1 or 2.1. 

Reconsidering the group û(X) of Theorem 4.2, it is possible 



to obtain yet another restriction on graphs having ahelian transitive 

automorphism groups. The set A={av: vsrJ was a generating system 

for a'(X). It therefore contains a maximal independent subsy-stem 

B, which is still a generating system of a(X1. That is, every 

element of u{X) 

where a E:B. v. 
]. 

can be written in the fonn 1/J = a ex a ••• ex (*) 
v1 v2 v3 vk 

If jBj = m, it is clearly possible to represent each 1/J as a 

vector of length m in ,-thich the components v 
1

, ... , vk appearing 

in the fonn (*) are one and the others are zero. 

Moreover since the mapping 1/J + x is clearly invertible, we 
X 
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may view these (0,1) -vectors of length m as unique representations 

of the vertices of X. Also, as noted in the proof of Theorem 4.2 

[x,y]E:X exactly when 3a. E:A 
]. 

s • t . a. (x) = y 
]. 

so that the 

a EB ,S. A determine a subgraph Y of X acording to the rule: 
v. 

]. 

There is a line [x,y]EY iff the vectors for the points differ 

in exactly one component. 

Such a graph is known as a m-dimensional cube K and since 
m 

B generates u(X), K spans the points of x. 
m 

Also ac K ) 
m 

m > 2 is not regular so K. c X. The following result is now 
m 

established: 

Theorem 5.2 To every graph X having transitive abelian 

for 



automorphism group, there corresponds an m-dirninsional cube 

which is a proper spanning subgraph of x. 

The above result rnay now be used to prove the main theorem 

of this section. 

Theorem 5.3 For every natural nurnber n different from 2,3 

or 4 there exists a graph X of order 2n with transitive 

abelian a(x) 
n 

isomorphic ta the direct product .rr
1
c. For 

1= 2 

n = 2,3,4 no such graphs exist. 
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Proof: The result is immediate for n = 1,2. If X is a graph 
n n 

with a{x) ~ig
1

c
2

, then also a(.,.X) ~i~1c2 so that by Theorem 

5.2 both X and -X contain a proper spanning m-dimensional 

subcube. Since X can have at most half of all possible 

lines, attention may be restricted in the case n = 3 .to 

graphs with at most 14 lines and in the case n = 4 to graphs 

with at rnost 60 lines. 

ln the case that n = 3 the requirement that X have a proper 

spanning 3-subcube (which has twelve lines) together with the 

transitivity of a(x) implies that X is regular of degree 

3 + k > 14 for some k, which is impossible. 

In the case that n = 4, one must introduce at most 28 lines 

into the 4 cube to obtain X, or at rnost 3 lines at every point 

of the cube. As in the theorem of Sabidussi, select a part

icular point a~X and let the neighbours of a in k
4 

be H= 

~ : ~a= x are identified with the 
X X 



xe:x by S,abidussi.' s Theorem. Now, at most three new- lines of the 

form [a,~.] 
l. 

l:::i:-::3 are introduced in K
4

, where the z. 
l. 

are products of two or more of the a.: 
l. 

a. (al = a., again by the 
l. l. 

above, for since tn._e cube spans X and is connected, thepoints 

adjacent. to a in K
4 

generate all of atxl. 

Now an automorphism <j) of a_(x) mapping H to itself can be 

considered as an automorphism of X fixing a so that a(x) 

-4_5 

is not regular if there exists a nontrivial <j) leaving H invariant. 

For any <j)e:,aC:J(X) ) then, let <j) H denote the induced permutation 

on H and let a factor of an element ge:a(x) denote an element 

a. 
1 

in the unique representation of g, with the 

identified with the a .. 
l. 

a. 
1 

of course 

If only one edge is introduced, we can assume that it connects 

a with or but in any case the transposition 

(a
1 

a
2

) generates the desired npntrivial automorphism of U(X). 

In the two-edge case, if one of the z is 
i 

we reduce 

to the one-edge case. If neither is of this form we consider several 

cases: 

Case I ~ and z 
2 

each have two factors. If they have a 

common factor, say z 1 = al a2 and z 2 = a 2a 3 the the desired 



Case 2 :<\ has two factors, z 2 three. If they have two 

factors in common, say z
1 

= a
1

_ a
2 

l.'f they have one in common take z
1 

= a
1 

a
2 

z - a a a and 
2 - 2 3 4 

two edge case. Otherwise there are four more possibilities. 

Case 4 All the z. have two factors. 
l. 

If does not appear 

as a factor 

If all four of the a. appear there are essentially two 
l. 

possibilities: z = ala2 z = a2a3 :.:: = a3a4 when 
1 ·2 3 

</J = (ala4) (a2a3) or z = ala2 z = ala3 z = ala4 H ·1 2 3 

whence </JH = (a3 a4). 

Case 5 \ = ala2a3 and z z have two factors. The table 2' 3 

gives the possible choices for z z and the </J which may be 
2' 3 H 

Case 6 z1 and z2 have three factors, z ,
3 

has 2. Again 

assume z1 = a 1a 2a 3 and tabulate the other possibilities 

-_46 

used 



Case 7 If all the 

and 

·z. have three factors, say 
,l. 

take 

n 
In order to show existence of graphs with Û(X) ~.rr

1
cc

2
). 

l.= l. 

for n ~ 5, we consider the product of n such cyclic groups 

of order 2 with the generators 

H of G defined as follows: 

Now for any a.c:G the mapping 

is an automorphism of XG,H 0 

a. 1 Si Sn and a subset 
l. 

cp a: x + ax for xc:V (X ) = G,H 

We follow our usual procedure 

G 

and identify each cpx with X and view G as a(xG,H). It 

remains to be shown that G is regular, i.e. that there are 

no nontrivial automorphisms cp of G fixing H. 

Figure 5.1 
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The point a
1 

a 2 has uniq_ue degree and so i.s fixed. Of 

the degree four points adjacent to only a a 
n-1 n-2 

has a 

-48 

single degree two point in it's adjacency set and sois fiKed. This 

forces, 

and Then 

to be fixed. Suppose some 

~ interchanges 'l'H 

~H interchanges 

and a 
n 

and hence and which is impossible when 

or n > S. Hence and a a 
n n-1 are fixed. Now 

also and are fixed, forcing the n-4 

triangles joining a
2 

to to be fixed, which completes the 

proof whenever n > S. 

and ~H can be extended to a nontrivial automorphism of G fixing 

H, contrary to the claim of Imrich whose proof contains errors 

through this section. 

A large number of possibilities remain however, for here only 

6 points have been added to H whereas up to 10 could be added. 



CHAPTER 6 

Non-Abeltan Case, a Summary. Conclusions 

In order to complete this paper, an exarnination of the known 

results for non-abelian groups in general is necessary. The available 

information has been provided by Watkins and Nowitz [28,42,43,44], 

and what is given here is only a surnmary of their work (with the 

proofs omitted) since little would be gained by repeating all their 

arguments here. · Also unlike the approach of Chapters 2 and 3 in which 

classes of graphs were constructed to completely categorize some 

classes of groups, here only the existence or nonexistence of graphs 

with certain regular non-abelian groups is considered. In general 

then we wish to know whether a group G belongs to 

Class I: there exists a graph X with a(x) = G and acts 

regularly, or to 

Class II: for each H(=H-
1

) with <H> = G there exists a nontrival 

group automorphism ~ of G with ~(H) = Hand ~ # 1. 



As rernarked previously, such ~Ea'(G) which fix H have a 

natural interpretation as autornorphisrns of X which fix the G,H 

vertex identified with the identity. Hence, we imrnediately have the 

following: 

Theorern 6.1 Class I and Class II are disjoint. 

The next result, and several more like it are similar in spirit 

to some of the material of Chapter 3, classifying groups as they 

do by their generat~rs. 

Theorem 6.2 If G is a non-abelian group, the following are 

equivalent: 

A. There exists a non-identity automorphisrn ~ of G with 

-1 = X ~(X)= X or ~ (x) VxEG 

B. Gis generated by a
1

, ••• ,ar,b where 

(i) 

(ii) A = <a.> 
l. 

is abelian 

(l.·1·1·) ak2 ~ 1 f k l r or sorne = , ••• ,r 

(iv) a
1 

is of order 2m for some m 

(v} 

so· 

Clearly then, groups satisfying B are in class II, and we note 

that if A is cyclic, Gis dicyclic of order 4m and if 

also 
n 

m = 2 , G is a generalized quaternion group, each of 

which must then be in class II, a fact first shown by Nowitz [28]. 
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The next theorem completely disposes of the case of the non-abelian 

groups of order 3 p for an odd prime p. (The fact that the 

two given sets of generating relations provide all such groups 

is proven for example by Hall [16, pp 50 - 52]) 

Theorem 6.3 If p is an odd prime and 

elements a,b, and c where either 
2 

G 
l? 

is generated by 

(1) p p b-lab -- ap+J. a = b = l; or 

(2} ap = bp = cp = J. i ab= bac; ac = ca; be = cb; p :".. 5, 

then G ·p is in class I. If in case (2) p = 3, G· 
·p is in class 

II. 

In his initial paper on the subject, Watkins [42] also showed 

Class I is closed under direct product. 

Theorern 6.4 If and are in Class I and neither equals 

c
2

, then G
1 

x G
2 

is in Class I. 

The remaining results of this section were the product of joint 

effort by Watkins and Nowitz [43,44]. 

Theorem 6.5 If the group G is given by r s G = <a,b: a =b =l; 

b-lab = ak> where this gives the entire multiplication table 

for G (so that IGI= rs, (r,k)=l and k 5 =1(mod r}) then G is 

in class II under each of the following conditions: 

(1} k - 1 (mod r) (abelian groups) 

(2} s = 2, r = 3,4,5 and k = -l(mod r) (dihedral groups) 

(3) s = 4 and k = -l(mod r) (generalized dicyclic group) 

(4} 8 2 5 G = <a,b: a = b = 1, bab =a> 



Otherwise, G is in class I. 

It is typical of the intr1cacy of KÔnig's question that 

although (1) through (3) have already been demonstrated, the proof 

of the last two assertions alone is quite lengthy, this being the 

main reason that these results are presented here without proof. 

These same authors present two more general results: 
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Theorem 6.6 Let the non-abelian group G1 be a cyclic extension 

of a group G with [G
1

:G] ~ 5. If G is in class I, sois 

Theorem 6.7 Let G be a non-abelian cyclic extension of an 

abelian group L, and suppose (IGI, 6) = l. Then G is in 

class I. 

In the language of this chapter we note that in chapter 2 we 

showed that C is always in Class II, in Theorm 4.3 that the 
m 

dihedral groups D ~ D are in Class II for m < 5 m and in Class I 

otherwise. It is also clear that the imprimitive subgroup E of 

Theorem 3.4 is not in class I, because it is not regular. The work 

of chapter 5 demonstrated that abelian groups are in Class I if they 
n 

are a direct product .IT1 (c2). i ~.5 and in Class II otherwise. 
1= 1 

This is essentially where Konig's question stands today, 

although there are some extensions to the work done here which have 

not yet been mentioned. For instance, with suitable modifications, 

the results of chapter 2 can be shown also to hold for directed 



§3 

graphs (see Hanminger [18,19]) and in particular for tournaments. 

(see Alspach [2,3] Astie [4], Berggren [7], and Moon [27].l An 

important exception is that the dihedral group is not contained in 

the automorphism group of a tournament so that in general the results 

of Chapter 3 will not be available in this case. However it does 

seem that by modifying the definition of a 2-circulant, the work of 

Chapter 3 could be extended to consider "k-circulants", with the 

caveat that less is known about groups of degree np for n > 2. 

Finally, we mention two conjectures which if correct would plug 

a few "gaps" in the characterizations presented here. The first is 

due to Watkins [42] and arises in connection with the material 

summarized in this chapter. 

Conjecture 1 Every finite group is either in Class I or in 

Class II. 

The second asserts that the characterization begun in chapter 

3 can be completed in the same manner as that of chapter 2. 

Conjecture 2 A graph X on 2p points is 2PPS iff it is a 

2-circulant. 



Ü(X) 

[v w] 

z 
m 

D 
m 

A:::B 

A ~B 

Z* 
p 

H" p 

k r 

S rv S,. 

A~B 
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APPENDIX I (Notation) 

The order of a group, gra~h or set. 

The automorphism group of a graph X. 

Aline or edge in a graph X joining v 
and w. We write [v w]EX when this is 
not ambiguous or [v,w]EE{X) if additional 
clarification is necessary. 

A cyclic permutation group generated by an 
m-cycle. (not used abstractly) 

The group of symmetries of the m-gon. 
(not used abstractly) 

A is a subgroup of B. 

A is a normal subgroup of B. 

The group of the nonzero elements of Zp 
under multiplication. 

z; / {l,p-1} 

The two graphs are congruent, i.e. one is 
a copy of the other. 

The group generated by a1 , .•• ,an. 

a divides b 

The complete graph on n points. 

S is equivalent to S .... 

A is isomorphic to B. (Used for groups 
or graphs) 

An automorphism of X restricted to a 
subgraph ~-



Imn 

s n 

T 
a,b 

(a,b) 

a (X) 
X 

(-X) 

The Cayley graph of G with respect to H. 

The image of a function n. 

The symmetric group on n points. 

A function defined by T b(x) = ax + b a, 
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The greatest common diviser of a and b. 

The subgroupa(x) which fixes the point x. 

The complement of X. 



APPENDIX II 

Definitions From Graph Theory The term graph was implicitly defined 
in the introduction. The following refer to certain characteristics, 
types and properties of, or associated with, graphs. 

Order The number of points in a graph. 

Degree (of a point) The number of lines incident with a point. 

Girth The length of a shortest cycle in a graph. 

Regular of degree n Every point has degree n. When n=3 Xis cubic. 

Connected Between any two points of a graph, there exists a path 
in the graph. 

Connectivity The least number of points whose removal results in 
a disconnected graph. 

Cyclically connected - of connectivity two. 

Component A maximal connected subgraph of a graph. 

Cutpoint A point whose removal increases the number of components 
in a graph. 

Trivial Graph Has one or more points but no lines. 

Bipartite Graph The points of the graph rnay be seperated into two 
sets so that each set induces a trivial subgraph of the graph. 

Star A bipartite graph with all lines incident with one point. 

Line Graph Has points representing the lines of an original graph 
with lines Joining the points which represent incident lines of the 
original graph. 

Spanning Subgraph A subgraph containing all the points of the graph. 

Similar I.ines There exists a </>E dX) mapping one line to the other. 

The definition of a graph may be modified so as to give 

direction to the lines. The resultant structure is a directed graph 



and its' lines are called ~- If every pair of points is joined by 

exactly one arc we call the graph a tournament. 

Definitions and Theorems on Permutation Groups and Abstract Groups. 
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The autornorphism group of a graph is defined in the introduction. 

The following terms and results are used freely in the text of this 

thesis and are provided here for reference. 

Order The nurnber of elements in a group. The least power of a 
permutation which yields the identity. 

Degree The size of the object set on which a particular permuation 
group acts (nontrivially) 

Orbit Set of all points to which somefixed point can be mapped by G. 

Transitive A group G is transitive on a set nif for every 
pair of points a,bsQ 3~EG with ~(a) = b. 

Theorem AII-1 (Wielandt [45] p.8) In each permutation group 

whose order is divisible by a given prime nurnber p, there are 

elements whose cycle decomposition contains a p-cycle. 

Semiregular Group For every kEQ the subgroup of G which fixes 
k is trivial. 

Regular Group Any transitive semiregular group. Equivalently, a 
transitive group whose order and degree are the same. 

Regular Permutation All cycles have the same length. 

Black 
\f~EG 

A subset 1" 
<f> (!Y ) equal s 1" 

of the abject set of G having the property that 
or is disjoint with 1/J. 

Primitive Group Has only one-point and !ni-point blacks. 

Imprimitive Group Has nontrivial blacks, the totality of those 
conjugate to one particular black being referred to as a complete 
block system. 

Theorern AII-2 (Wielandt [45] p.13) If the transitive permutation 

group G contains an intransitive permutation subgroup different 



from 1, then G is imprimitive and the orbits of N forma 

complete block system for G. 
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Dihedral Group Any group G = <s,t> where s
2 

= tm = 1 and sts = t-1 . 

It is important to note that here dihedral groups are defined 

abstractly and the groups 

specific dihedral groups. 

D are included but refer to certain 
m 

Theorem AII-3 (Rotman [30] p. 92) Any group of order 2p is 

either cyclic or dihedral. 

Theorem AII-4 (Wielandt [45] p. 12) The length of a block of 

a transitive group G divides the degree of G. 

Theorem AII-5 Gvielandt [45] p. 8) In each transitive group 

of degree n > 1 there is an element of degree n. 

Theorem AII-6 Every regular primitive permutation group is 

cyclic. 

Proof: By AII-5 G contains an element t of degree n = !ni 
which must be regular, so of order n also. Now l<t>I = n 

and <t> S G but IGI = n by regularity so <t> = G and 

G is cyclic. 

Theorem AII-7 (Wielandt [45] p. 94) A primitive group of degree 

n = 2p (p prime) is singly transitive only if n is of the 

2 
n = a + 1 forrn for an odd positive integer a. 

Theorem AII-8 (Scott [35]) In the above theorem, if a> 3, 

a is nota prime. 



AII--9 Wielandt' s construction I 45 p. 94J of a uniprimi tive 

group of degree 10. 

"Let 
n 

G = s be the symetric group on n =Ü,2, ••• ,s}. In 

addition, let n be the set of the 10 unordered pairs {a,b} 

with a,bE:s-2 and a ,f. b. To each gE:G we assign in a one-to-one 

manner a permutation g on n by {a,b}g = {ag,bg}. In this 

way we have represented G faithfully as a permutation group 

G or n. G is not doubly transitive for there is no gE:G 

wfùch fixes {1,2} and takes {1,3} into {4,5}. On the other 

hand, G is primitive since G{l, 2} is maximal in G. Il 

Theorern AII-10 (Wielandt {45] p. 9} Every Abelian group 

G transitive on n is regular. 
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Theorem AII-11 (Kurosh [25] V .1 p. 173) Every primary group 

in whi.ch the orders of the group elements are bounded is a 

direct sum of cyclic groups. 

Direct Product of two groups A and B has elernents (a.,b.) 
l. l. 
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