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Abstract 

Let a l ,  . . . , a9 be non-zero integers and n any integer. Suppose that 

a1 + . . . + as n (mod 2) 

and 

(ai,aj) = l  for 1 < i <  j 5 9 .  

In this thesis we will prove that 

(i) if each of the aj's are not all of the same sign, then the cubic equation 

has prime solutions satisfying pj  << n1I3 + max{laj and 

(ii) if all a j  are positive and n >> max{laj then the cubic equation is soluble in primes 

Pj. 

This result is motivated from the 2002 result for k = 2 by S.K.K. Choi and J. Liu. To 

prove the results we will use the well-known Hardy-Littlewood Circle method, which we 

will outline in the thesis. Lastly, we will make a note on possible generalizations of this 

particular problem. 

Keywords: Circle method, Number Theory, Goldbach's Conjecture, 

Waring's Problem, Diophantine Equations 
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Chapter 1 

Introduction 

1.1 The Goldbach- Waring Problem 

1.1.1 Goldbach's Conjecture 

The f is t  known instance of the Goldbach's problem appeared in 1742 in the correspondence 

between Goldbach and Euler. It is stated as follows: 

Goldbach's Conjecture. Every even number n > 4 is  the s u m  of two primes, and every 

odd integer n 2 7 i s  the s u m  of three primes. 

The even and odd numbers of prime numbers required are respectively referred to as the 

binary and the ternary Goldbach's conjecture. 

Several authors took a variety of approaches to tackle the binary Goldbach's conjecture. 

Although none of the results have been able to prove the binary case completely, the closest 

to date was obtained by J. R. Chen [5] in 1973, using ideas from sieve methods with careful 

analysis and treatment of the error terms. 

Theorem 1 (Chen, 1973 [ 5 ] ) .  Every suficiently large even integer n can be represented in 
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the form n = p + P2, where P2 i s  a positive integer with at most two distinct prime factors. 

In the case of the ternary Goldbach's conjecture, the first significant contribution was 

due to Hardy and Littlewood in 1923 [13][14], by using what is now known as the Hardy- 

Littlewood method, or the Circle method, which we will discuss in the next chapter. Their 

result depended on the Generalized Riemann Hypothesis (GRH). In 1937, I. M. Vinogradov 

used an improved version of the Circle method to remove the dependence on GRH. 

Theorem 2 (Vinogradov, 1937 [30]). Every suficiently large odd integer is the sum of three 

primes. 

It is noted that this result holds only for sufficiently large value of n. One needs to check 

up to a given no either numerically or by other methods for the proof to hold for all n > 7. 

During this writing, the most current improvement is due to Liu and Wang [24], which says 

the Ternary Goldbach holds for n 2 However, at the time of this writing, to check 

up to is still far from realistic to be verified by computation. 

It is important to note that under GRH, Theorem 2 will hold for n > 7. 

1.1.2 Waring's Problem 

The motivation for Waring's problem stems from Lagrange's four squares theorem in 1770, 

which states that every positive integer is the sum of four squares. Also in 1770, Waring 

proposed a generalized version of the four squares problem, which is referred to as Waring's 

problem. 

Waring's Problem. For every integer k 2 2, there exists a n  integer s = s ( k ) ,  which de- 

pends o n  k ,  such that every natural number n is  the s u m  of at  most s k- th  powers of natural 

numbers. 
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A question was naturally raised: for any given k, if such an s exists, what would be the 

least positive integer s? It was conjectured to be s 5 2% 1, and was first proven by Hilbert 

using a very intricate combinatorial argument. Later, Hardy and Littlewood gave a much 

simpler proof for all powers k using their newly developed circle method. 

If Waring's problem was rephrased so to allow it to be true only when n is suficiently 

large, it turns out we can decrease the number of terms (decrease s) for Waring's problem to 

hold. One can find the most recent results in Kumchev and Tolev's expository paper [20]. 

1.1.3 The Waring-Goldbach Problem 

Given the two problems listed above, for a given k 2 1 a natural question to ask would be, 

for sufficiently large n what would be the least s = s(k) such that the equation 

holds for primes pl, . . . , pa. 

This is known as the Waring-Goldbach Problem and was first settled by Vinogradov [29] 

and Hua [17]. Over the years various authors proposed different variants of the problem, 

and some were solved while others are still open. One particular question was raised by 

Baker [2], which asked: if we have a s fixed integers a l l  . . . , a,, for sufficiently large n > no 

with (n, a l l . .  . ,a,) = 1, is the equation 

soluble in primes pl, . . . , p,? 

Tsang and Liu made progress for the linear case k = 1 with s = 3 [22] and the quadratic 

case k = 2 with s = 5 [21]. Later, Choi and Liu [7] and Choi, Liu, and Tsang [8] studied 

the same problem but with the addition of a technical condition that requires the integers 

a l ,  . . . ,a, to be pairwise co-prime. In other words, 
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With this condition much of the numerical computations can be reduced significantly. In 

particular, we avoid the use of Siege1 zeros and the Deuring-Heilbronn phenomenon (the 

interested reader may refer to [7]). 

Choi and Kumchev also studied the linear case k = 1 by taking a different approach, 

finding mean-value estimates to Dirichlet polynomials [6], which can improve the estimates 

for the major arc. 

1.2 Our Specific Problem 

For any integer n we will consider the cubic equation 

where pj  are prime variables and the coefficients a j  are non-zero integers. Either pj  = 2 for 

some j or 

a1 + . . - + a 9  = n (mod 2). ( 1.2) 

We also suppose 

(a$, aj)  = 1, (n, a l ,  . . . , a9) = 1, (1.3) 

and denote D = max(2, laj ( ,1  5 j 5 9). Our two main results are: 

Theorem 3. Suppose (1.2) and (1.3) holds. If al ,  . . . , a9 are not all of the same sign, then 

(1.1) has solutions in primes pj, satisfying 

pj  << n1I3 + D~O+' ,  

where the implied constant depends only on E .  

Theorem 4. Suppose (1.2) and (1.3) hold. If a l ,  . . . , a9 are all positive, then (1.1) is soluble 

whenever 

n >> D61+', 
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where the implied constant depends only on E .  

We will prove these theorems using the circle method. The idea will be elaborated in 

Chapter 2. We will reiterate that similar to the paper [7], by imposing a stronger condition 

(1.3) than just the natural condition (1.2) we need not deal with the possible existence of 

the Siege1 zero and so the Deuring-Heilbronn phenomenon can be avoided, thus in contrast 

to [21] or [22] we can avoid much of the heavy numerical computations. 

1.3 The Hardy-Littlewood Circle Method 

The following were excerpted from several sources, most notably from Heath-Brown [ I l l ,  

and from Vaughan [28]. 

The idea started when Hardy and Ramanujan were working on problems involving par- 

tition functions and sums of squares (ca. 1919). Later, Hardy and Littlewood used these 

same ideas to prove Waring's problem. In 1937, Vinogradov refined the arguments Hardy 

and Littlewood used by introducing exponential sums to replace the need to "count points 

on the arc of the unit circle." 

To put more in rigorous terms, let r(n) be the number of solutions to the given Dio- 

phantine equation. Consider the generating function 

F(a) = C r(n)e(an), 
T 

where e(x) := exp(2~ix). By the Fourier coefficient formula, we have 

1 

r(o) = 1 ~ ( a ) d a .  

If the coefficient r(n) satisfy some arithmetic conditions the behaviour of F(n) will be 

determined by an appropriate rational approximation alq to a, with small values of q 

usually producing large values of F(cu). When cu lies in an interval [alq - a, alq + a] with 

q small, a 'major arc,' one hopes to estimate F(a) asymptoticly, while if the corresponding 

q is large, for the 'minor arcs,' one hopes that F (a )  will be small, at least on average. 
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To use this method, one uses the circle method by means of various mean-value estimates. 

Inequalities from Hua and Weyl (both are in Vaughan [28]) give very good estimates for the 

minor arc, while the major arc uses information given from zeros of Dirichlet L-functions to 

break the problem into the singular series and the singular integral. We would show that 

the singular series has a constant contribution, while we can derive an asymptotic formula 

from the singular integral, and that it dominates the minor arc. 



Chapter 2 

Applying the Circle Method to our 

Problem 

2.1 Preamble 

We consider the prime solutions of the cubic diophantine equation (1.1), 

with integers a l ,  . . . , a9 and n satisfying conditions (1.2) and (1.3) 

We let N be a large parameter and set M so that 

for some h e d  constant 0 < C < 1. 

Let r ( n )  be the weighted number of prime solutions of (1.1), 

Thus, r ( n )  is a weighted count of the number of representations of n as a sum of the form 

(1.1) but in a restricted range. 



CHAPTER 2. APPLYING THE CIRCLE METHOD TO OUR PROBLEM 8 

Our aim is to ultimately show that r(n) > 0, but we can do better in the sense that we 

can derive an asymptotic formula. 

We begin by defining a cubic exponential sum over primes, 

Sj (a) := (log p)e(ajp3a). 
M<lajIp3<N 

Our method utilizes the orthogonality of the exponential integral 

which is an important tool to count the number of solutions to any given additive equation. 

Let S(a) = Sl (a)  . . . Sg(a). Since Sj (a) is a trigonometric polynomial, we can calculate 

r(n) by the Fourier coefficient formula, 

and so 

Let E > 0 be any fixed real number and 

N 
We pick c > 0 such that Q = - satisfies 2P < Q. Here, D = max(2, lull,. . . , lagl}. 

PLC 
We need Dirichlet's Theorem on rational approximation (as in Hardy and Wright [15]). 
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Theorem 2.1.1 (Dirichlet). Given any real number a and any positive integer Q ,  there 

exist integers a and q with 0 < q 5 Q such that 

Then from Theorem 2.1.1, each a E [1 /Q,  1 + 1/Q] may be re-written in the form 

for some integers a and q, with 1 5 a 5 q 5 Q and (a ,  q )  = 1. We denote m ( q ,  a )  to be the 

set of a satisfying (2.4) and define the major arcs ZJJI and the minor arc m as follows: 

Proposition 2.1.1. The major arcs m ( q ,  a )  are mutually disjoint. 

Proof. If a lq  # a'lq', it follows from 2 P  < Q that q + q' 5 2 P  < Q.  Then 

Hence, m ( q ,  a )  and m ( q ' ,  a') are disjoint. 13 

In view of Proposition 2.1.1, we can split r ( n )  into its major and minor arcs, 

As mentioned in Chapter 2, we expect that the contribution of the major arc would be 

dominant and that of the minor arc is negligible. 

Definition 2.1.1. A Dirichlet character mod q is a complex function x4(n) : Z t C such 

that 

for all m, n if (q,  n) = 1, and x4(n) = 0 i f  (9 ,  n) # 1. 
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From the definition, for any Dirichlet character x mod q, we define the cubic character 

sum to be 

where xo is the principal character modulo q. If XI , .  . . , x g  are Dirichlet character modulo 

a, we write 

and 

Note that the functions B(q, XO, . . . , xo) and A(q) depend on al ,  . . . , a9 and n which is fixed 

throughout, but for the sake of conciseness, we suppress this fact in our notation. 

We also d e h e  F(q,  x i , .  . . , x g )  to be a summation similar to B(q, XI , .  . . , xg), 

D e h e  

B(n,x) = C ~ ( q ) ,  (2.10) 
412 

and later we will show that B(n, oo) exists and it is called the singular series. 

Denote 

3 N(q) := #{(nl,. . . , ng) E iZ9 : 1 5 ni < q, alnl + + agn; = n), (2.11) 

3 N(q) := #{(nl, . . . , ng) E iZ9 : 1 5 ni I q, (n, q) = 1, alnl + - - .  + agni 5 n (mod q)}. 

(2.12) 

By convention, we will denote the Euler Totient by +(n), the number of divisors by 

d(n), and the number of distinct prime factors to be w(n). p,pl,pz,. . . be always denote 

prime numbers, and cl, cz, . . . will always denote some unspecified but computable positive 

constants. 
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2.2 Treatment of the Major Arcs 

2.2.1 Some Preliminary Lemmas 

For each XI , .  . . , x g  (mod q), re-write F(q, X I , .  . . , xg) as 

Note that 

a g h ;  -71)) = { q i f a l h : + . . . + a g h g = n  (modq), 

9 0 otherwise. 

Thus 

where C denotes the sum over hl , .  . . , hg satisfying 1 5 hl, .  . . , hg 5 q, (hj, q) = 1 and 

(4 
9 

C a, h j  = n (mod q). In the case where = - - . = x g  = xo (mod q), we get 
j=1 

In other words, we have 

For any prime p, let s(p) := 1 + A(p). Notice that 
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We have an analogous result for F(q, X I , .  . . , xg), 

Lemma 2.2.1. Both A(q) and F(q) are multiplicative functions of q. 

Proof. Let (q1,qz) = 1 and q = 9192. We write k = klq2 + k2ql. Then 

When kl, k2 run over the reduced residue systems modulo ql and q2 respectively, k will run 

over the reduced residue system modulo q. So 

For F(q), in view of (2.15), the argument for N(q) is essentially the same as the one for 

4 9 ) .  0 

2.2.2 Estimation of the Character Sums 

Lemma 2.2.2. Let x (mod pa) be any non-principal character and a! > 0 ,  we have the 

following 
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(a) If x is primitive, a > 1 and pla, then Cx(a) = 0. 

(b) If x is principal (mod pt), p jl a, and t > 8 + max(8, a) ,  where 8 = 1 if p = 3, and 

8 = 2 i fp  # 3, then Cxxo(a) = 0. 

(c) IC,(a)l 2 3 ( 3 , P ) ( a , ~ ~ ) ~ / ~ P " / ~ .  

Proof. (a) Let a' = alp. Write k = u + vpa-l for 1 < u < pa-' and 1 5 v 5 p. Then 

Since the inner-sum over v is exactly zero, we have that Cx(a) = 0. 

(b) For 1 5 h 5 pt, write h = u + vpt-e, where 1 5 u < pt-e, 1 < v 5 pe. Since 

t - 8 2 max(8, a), we have h3 - u3 + 3u2vpt-e (mod pt) and h - u (mod pa). Then we get 

If (u,p) > 1, then xxO(u) = 0. On the other hand, if (u,p) = 1, then the inner-sum over v 

will equal to zero. In either case, Cxxo (a) = 0, as required. 

(c) If x is primitive and pJa, then Cx(a) = 0 from part (a). If p + a, we have 

If x3 1 (mod pa) and p # 2, then (X - 1) (x2 + X + 1) -- 0 (mod pa). Completing the 

square on the above quadratic polynomial yields 

(X + T ) ~  - 22 + 1 = 0 (mod pa), 
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where 2 .Z -- 1 (mod pa). This is equivalent to 

(2X + 1)2 = -3 (mod pa). 

On the other hand, if (;) # 1, there is only one solution to z3 -- 1 (mod pa). Hence, 

(2.18) will give 

k3=h3 (mod pa) 

If (2) = 1, we will get two incongruent solutions, namely 

X 3 2(1 f b) (mod p), 

where b2 -- -3 (mod p). 

Denote crl = 2(1+ b) (mod p), and o 2  = 2(1 - b) (mod p). If n3 -- m3 (mod p), then 

n -- m, crlm, or o2m (mod p). Thus from (2.18), 

If p # 3 and cr 2 1, denote f (X)  := x3 - 1. Then we have f l (X) = 3x2 .  The solutions 

to f l (X) = 3 x 2  -- 0 (mod p), or X = 0 (mod p) is clearly different from the solutions to 

x3 - 1 3 0 (mod p). It follows that f l (X) = 0 (mod p) and f (X)  0 (mod p) share no 

common root. We need a Theorem of Hensel's (pg. 33 of Hua [16] or in Apostol [I]) and 

another theorem regarding the number of solutions to polynomial congruences (pg. 32 of 

Hua [16]). 

Theorem 2.2.1 (Hensel). Let f (X) = a,Xn + . . . + a lX  + a0 and f l (X) = nanxn-' + 
. - + 2a2X + al. If f (X) = 0 and f f (X)  G 0 (mod p) have no common solution, then 

the two congruences, f (X) z 0 (mod pa) and f (X) = 0 (mod p) have the same number of 

solutions. 
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Theorem 2.2.2. Let p be a prime number. The number of solutions (including repeated 

ones) to the congruence 

does not exceed n. 

We will continue proving Lemma 2.2.2 (c). 

In view of Theorem 2.2.1, the number of solutions to f (X) = x3 - 1 = 0 (mod pa) is 

the same as f (X) = x3 - 1 - 0 (mod p). So by Theorem 2.2.2, the number of solutions is 

at most 3. 

By the same argument as above and from (2.18) we have 

Now, we know that if p = 1 (mod 3), ie., when (;) = 1, there are - - cubes (that is, 
3 

there are at most 3 solutions to x3 = a (mod p)), and if p = 2 (mod 3), ie., (:) = -1, 

there are p - 1 cubes (there is exactly one solution to x3 - a (mod p)). 

The cubic residues have the form of 13, 23, . . . , (p - I ) ~ ,  and the two possible forms of a 

cubic nonresidues are b 13, b . 23, . . . , b - (p - 1)3 and b2 13, b2 . 231 . . . , b2 . (p - I ) ~ ,  and b 

is not a cubic residue with (b,p) = 1. For the cubic residues, after substituting n H ?in we 

have 

and so I ~ ~ ( a ~ ) 1  = ICx(l)l. 

Similarly, for the first type of cubic non-residues (ie. of the form ba3), after substituting 

n H iin we have 
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so we have I ~ ~ ( b a ~ ) (  = JCx(b)( and I ~ ~ ( b ~ a ~ ) (  = ICx(b2)1. Therefore, we can rewrite (2.18) 

into its cubic residues and nonresidues as 

For the first term, 

$ ( P * > I ~ X ( ~ ~ > I ~ / ~  5 3$(pa)pa, 

ie., IG',(a3) l 2  5 Spa, 

ie., (cX (a3) 1 5 3p0/2. 

The other two terms can be shown similarly, 

Hence, Cx(a) I 3pa/2 = 3(a, pa)1/2pff/2. 

Now, consider the case when pa (a. Write k = alpa. Then 

On the other hand, 

0 1/2 a/2 and so lC,(a)l 1 3 ( a , p  ) P + 

Lastly, consider the case when pwJla, with 0 < w < a, and a = a'pw. For 1 < n 5 pa, 

write k = u + upa-", where 0 < u < pffPW and 0 < v 5 pw. Then k runs through the 
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complete reduced residue system mod pa. So after the substitution we get 

Let X* (mod pv) be a primitive character which induces X. If r/ > a - w then 

If r/ 5 a - w then 

and so 

with xo(mod pa-W). Since p + a', we can use the bound proven in the first case and obtain 

Hence, 

ICx(a) 1 < pW . 3p(a-W)/2 = 3(a, pa)1/2pa/2. 

This completes the proof of Lemma 2.2.2 (c). 
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Lemma 2.2.3. Let xj (mod rj) with j = 1, . . . , 9  be primitive characters, xo be the principal 

character (mod q), and ro = lcm[rl, . . . , rg]. Then 

Proof. Lemma 2.2.2 (c) asserts that for any character x (mod pa) with a > 0, we have 

Therefore, for character XI, .  . . , x g  (mod pa) and from (2.8) 

where in the last inequality we have used the condition (1.3) that (ai, aj)  = 1; in fact, 

Since jB(q, X I , .  . . , xg)l is multiplicative, 

where we used the fact that 3"(~) 5 d(q) from Hardy and Wright [15]. Thus, we have 

Since 

taking q = rok obtains 

because d(q) << qt, for some E > 0. 
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2.2.3 Building the Asymptotic Formula 

Lemma 2.2.4. Let tm be the major arcs defined i n  (2.5). Then we have 

where A > 0 is  some constant and 

Proof. For j = 1, .  . . ,9, set 

and 

where 

1 i f x = x o ,  
bX := 

0 otherwise. 

Note that when q 5 P and M < lajlp3 I N,  we have (q,p) = 1, and so Wj(xjxo,X) = 

Wj (xj, A) for primitive characters xj . 
By introducing Dirichlet characters, we can rewrite the exponential sum Sj(a) as 

(see for example, (2) $26, [9]) where T, and Uj is to denote the first and second term, respec- 

tively. The first and second term can be re-interpreted as the explicit formula for finding 

zeros of the Dirichlet L-functions over the principal and primitive characters, respectively. 
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Substituting into the major arc integral gives 

where I,, is the contribution from those products with v pieces of Uj and 9 - v pieces of T,, 

We expect that Tj will contribute to the main term while Uj will be negligible. In fact, we 

will show that I. gives the main term while I1,. . . , Ig will contribute to the error term. 

In view of (2.22), we can reduce the characters in Ig into primitive characters, 

where xo is the principal character modulo q and r o  = lcm[rl, . . . , rg]. As mentioned previ- 

\I,/ = 

ously, since q 5 P and M < lajlp3 I N, we have (q,p) = 1, and so Wj(xjxo, A) = Wj(xj, A) 

, , ... C B ( q , ~ 1 , . , ~ 9 )  l/(qQ) 
49(d [l/(qQ) 

wi(x1, A) . . - Wg(x9, A)e(-nA)dA 
qlP xi (mod q) xg (mod q) 

for the primitive characters xj above. Consequently, by Lemma 2.2.3 we obtain 
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We have the bound 

-1/3+c -1/3+c rg3+' = 1cm[rl1.. . , rg]-3+E < r1 . . - rg  1 

which can be shown by elementary means. 

We define the L2 norm and sup-norm estimates for Wj.  

and 

where c* is over all the primitive characters modulo r. We expect Kj will be 
X (mod r )  

considerably smaller than J j  due to the cancellation in the integral. 

Lemma 2.2.5. (i) For any  fixed A > 0, we have 

(ii) For any fixed A > 0,  we have 

J j  <<A N;/~L-*. 

The proof of Lemma 2.2.5 will be given in section 3.2.5. 
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Using these estimates and Cauchy's inequality, we obtain 

For the other I,, we need an estimate for &. 

Lemma 2.2.6. We have 

and 
112 

Hj := I& (A) 12dA} <  la^ 1-'l3. 

Proof. The proof for (2.28) is trivial. For (2.29), we have 

where t = [t] + { t ) ,  [t] and { t )  is the integral and fractional parts of t ,  respectively. 

The second term of the right-hand side of (2.30) can be bounded by using integration 
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The first term of the right-hand side of (2.31) is << 1, while the second term can be bounded, 

For the first term of the right-hand side of (2.30), after substitution becomes 

Hence, 

We also have the elementary bound 

Therefore, in view of (2.32) and (2.33), 

V,(X)<N,. 'I3 min { 1,- + (1 + I*IN).  

We can substitute y ( X )  into Hj, 

provided that Nj > P ~ . ~ .  
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For v = 8,. . . , I ,  we use Cauchy's inequality and Lemma 3.2.6 to obtain 

Therefore, it follows that 

In view of (3.20), it remains to compute the main term lo .  Substituting (2.30) into I. 

yields 

For the error term, by (2.32) and Lemma 2.2.3 with ro = 1 (because x here are principal), 

we have 
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So by Holder's inequality, 

Using (2.36) the last bound becomes 

The other error terms in (2.36) can be treated similarly and they are << la1 . . . a 9 1 - 1 / 3 ~ 2 / 3 .  

We can extend the integral in the main term of (2.36) to [- 1/2,1/2]; by Lemma 2.2.3 

and (2.32), the resulting error is 

where we have used (2.3). Thus (2.36) becomes 

Therefore, Lemma 2.2.4 follows from (2.21), (2.34), and (2.37). 

This completes the proof of Lemma 3.2.4. 

2.2.4 The Singular Series and Singular Integrals 

In this section, we study the singular series and singular integrals. 
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Lemma 2.2.7. For j = 1 , .  . . ,9, let xj (mod paj) be primitive characters and take a = 

max{al,. . . , as). For any t 2 a and for the function B(pt, ~ 1 x 0 , .  . . , ~ 9 x 0 )  with xo is 

modulo pt, we have the following: 

(b) B(pt) = 0 if t > 9 + max{9, a) ,  where 9 = 1 if p # 3 and 9 = 2 if p = 3, 
7 )  

(c) x + ( P ~ ) - ~ B ( P ~ )  = 4 @ q ) - 9 ~ ( ~ q )  for any q 2 a .  
u=a  

Proof. (a) Without loss of generality, assume a = a1 > 1. By comparing (2.7) and (2.9) it 
5 

suffices to show that n Cxjxo(ajh) = 0 for each h divisible by p. However, since XI (mod 
j=1 

pa) is primitive, Lemma 2.2.2 (a) asserts that CxIxo (al h) = 0. This proves (a). 

(b) This follows directly from (2.4) with q = pt and Lemma 2.2.2 (b), since by (1.3), p 

does not divide some a j  h. 

P" P" 

(e) Rewrite the sum in B(pu) as - x. The first sum is exactly F(pu). When we 
h=l  h=l 

p l h  
set h = ph', we can factor p out of each Cx, and so the second sum is precisely p g ~ ( p u - l )  

when v 2 max{a + 1,2). So 

for v 2 a + 1. The validity of this relation for v = 1, a = 0 can be verified directly. By 

summing both sides for v = a + 1, . . . , q and using (a) we obtain (c). 0 

Corollary 2.2.1. 

(a) A(pa) = 0 for primes p # 3, a > 2 and A(3&) = 0 for a 2 4. 

(b) P ~ + ( P ~ ) - ~ N ( P ~ )  = p+(p)-'N(p) for primes P # 3,q > 1. 

(c) 37)+(37))-9~(317) = 33+(33)-9~(33) for rl 2 3. 
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Proof. To prove (a), take = . . . = x g  = xo and cr = 0, as in Lemma 2.2.4. Then by 

(2.14) and (2.8), we see that A(pu) = @(pu)-g ~ ( p " )  and N(pu) = p-" F(pu). The corollary 

follows from Lemma 3.4 (b) and (c) since 8 = 1 if p # 3 and 8 = 3 if p = 3. 0 

Lemma 2.2.8. We have IA(n,p)l < c ~ ~ - ~ / ~  for all p { a1 - - - ag, and p # 3, for some 

constant cl . 

Proof. From Lemma 2.2.2 (c), with k = 1, .  . . , p  - 1, for each character sum with the 

principal character, 

Then 

Lemma 2.2.9. (i) For x > 0 and some constant c2 > 0, 

So the singular series 6 ( n )  := B(n,  ca) is absolutely convergent. 

(ii) We have B(n) >> (log log D)-C for some constant c > 0. 

Proof. (i) Let a = (log(x + 2))-'. From Lemma 2.2.4 and Corollary 2.2.1 (a), we have 
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because xu << 1. 

From Lemma 2.2.8, 

for some constant cl > 0. Similarly, for plal . . . as, by (1.3), 

for some constant cz > 0. (i) then follows from (2.38), (2.39) and (2.40). 

(ii) From (2.15) and (1.3), we have N(p) = p8 + 0(p7). It  follows from Lemma 2.2.8 that 

for some large constant c > cl, 

Therefore, (ii) follows from the well-known estimate 

Lemma 2.2.10. Suppose (1.3) and either 

(i) aj 's are not all of the same sign and N > Clnl, for some constant C; or  

(ii) all aj 's are positive and n = N .  
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Then  we have 

Proof. We derive the following inequalities: 

alml+-+a9m9=n n-(alml+...+asms)=O (mod lagl) 
M<laj Imj<N M<laj Imj<N,j=l, ..., 8 

where a s s  - 1 (mod lag 1 ) .  
To establish inequalities in the other direction, we first consider case (ii) in which all 

aj 's  are positive and n = N. If M < a j m j  < N/9 for j = 1,.  . . ,8, then 

It follows that 

C C 1 >> 
~8 

12 
a l m l  +...+ agmg=n lal . . .  agl' n - ( a l m ~ + - + a ~ m ~ ) = O  (mod a g )  

M<a,mj<N, j=1, ..., 9 M<ajmj<N/9 ,  j=1, ..., 8 

Case (i) can be treated similarly, and so we have 
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Therefore, 

from which the desired result follows. 

2.2.5 The proof of Lemma 3.2.5 

In this section, we prove the estimates to Kj and J j  in Lemma 2.2.5. 

Proof of Lemma 2.2.5. Define 

Note that 

By a dyadic argument: For 1 5 R 5 P, if 
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then 

It follows that by the definition of K j  in (2.25)' we have 

112 

Kj << Lmax C r-'I3+' 
R I P  

T N R  

because N 2 ~ l ~ + ' l a j l  and by (2.42). 

Thus to establish (2.25) it suffices to show that for any fixed A > 0, 

holds for R < P .  

We will need Gallagher's lemma (Lemma 1 in [lo]). 

Lemma 2.2.11 (Gallagher). Let 
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be an absolutely convergent exponential sum, and c(v) be arbitrary complex numbers. Also, 

le tb=B/T,  wi thO<B< 1. Then 

In view of Gallagher's Lemma, we have 

where X = max(t, M)/laj(,  and Y = min(t + rQ, N)/lajl. 

Let Dl , .  . . , Dlo be positive numbers such that 

M:'~ << Dl D2 . . - Dlo << N;I3' and D, 5 N:15, for v = 6, . . . , l o .  

We also let 

I logn i f v = l ,  

a ,(n):= 1 i f l < v < 5 ,  

p(n) i f 6 < v < 1 0 .  

We define the following functions of a complex variable s: 

10 
au(n)x(n) F(s ,  X) := n f j  (s, x). 

nwDi 
nS ' 

v=l 

We will state Heath-Brown's identity (see 54 of Choi [7]) for k = 5, which says that 

where C(s) is the Riemam zeta-function, and 
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The reason why we choose k = 5 is that the identity with k 5 4 will give weaker results, 

and when k 2 6 it produces the same estimate as the case k = 5. Equating coefficients of 

the Dirichlet series on both sides provides an identity for -A(m). Also, for m 5 the 

coefficient of mPS in -(Cf/C)(s)(l - ~ ( s ) ~ ( s ) ) ~  is zero. Thus, 

Applying this identity to the inner sum in (2.45), 

by the dyadic argument again, we find that (2.46) is a linear combination of o ( L ~ O )  terms, 

each of which is of the form 

where D denotes the vector (Dl, .  . . , Dlo). We need Perron's summation formula (see 

Lemma 3.12 in [27] for example). 

00 

Theorem 2.2.3 (Perron's formula). Let f (s) = C 5 be a Dirichlet series that is abso- 
n=l ns 

lutely convergent for Re(s) > 1. For x not an integer and a > 1, we have 

By using Perron's formula and then shifting the contour to the left, the above u(u; D)  
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where T is a parameter satisfying 2 < T < The integral on the two horizontal 

segments above can be easily estimated as 

uU << max JF(of iT ,x) I -<< max 
T 

<< - 1/21u<l+l/L T 1 / 2 1 u ~ l + l / ~  T ' 

on using the trivial estimate 

u=l 

Thus, 

Note that for any 0 < 0 < 1, 

where in the last step we used M - rQ 5 t < N and rQ < 2RQ 5 2PQ << ML 

fact that 

(2.47) 

(2.48) 

C ,  and the 

For x = xo (mod l ) ,  (2.46) becomes 

by (2.48) with r = 1. This contributes to (2.45) acceptably. 

For x # xo (mod I), we have dx = 0 in (2.46). Then one can see that 

The integral can be easily estimated by (2.48) as << Y1I6 - << la 3 . I - ~ / ~ M - ~ / ~ R Q .  On 

the other hand, one has trivially 
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Together with the two upper bounds yields 

Taking T = Nil3 and TO = N/QR, we see that 

Consequently, from (2.46), 

+ max 

Hence from (2.45), 

Taking square-root, and summing over primitive characters  mod r )  and then summing 



CHAPTER 2. APPLYING THE CIRCLE METHOD T O  OUR PROBLEM 36 

over r N R, 

,ri'(x, X)12dX) ' I 2  
r-R x (mod r )  

L1•‹ 
l a j l l / 6 ~ l / 3  

r-R x (mod r )  

Thus to prove (2.43) it suffices to show that the estimate c*r IF ( : + i q X )  ldu< 
r-R x (mod r )  

holds for R < P and 0 < TI < To, and the estimate 

* lTZ I F  (: + iu7 X )  I d u  << (N5:: T2Lc (2.51) 
r-R x (mod r )  

holds for R 5 P and To < T2 5 T .  

To prove (2.50) and (2.51) we need the following two lemmas. 

Lemma 2.2.12. For any P >  1, T > 1, a n d k = 0 , 1 ,  

* 
1L(li) (i + i t ,  X )  14dt << p 2 ~ ( 1 o B  P T ) ~ ( ~ + ' ) .  

r5P x (mod r )  

Lemma 2.2.13. For any P > 1, T 2 1 and any complex numbers a,, 

The proofs for Lemma 2.2.12 and Lemma 2.2.13 can be found in [25], Chapters 2 and 3, 

respectively. 

Proposition 2.2.1. If there exist natural numbers Dk ,  Dl ,  with 1 < k ,  1 5 5,  such that their 

product DkDl > p4I3, then the estimate (2.50) holds. 
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Proof. Without loss of generality, suppose that 1 = 1, Dl = logn and k = 2, D2 = 1. 

Arguing exactly as in the proof of Proposition 1 in Zhan [31], we find for f l ,  

and so 

x * r l f l ( ; + i t , X ) 1 4 d t  
T-R x (mod r )  

Interchanging order of summation and using Lemma 2.2.13, 

< L 4  lpl<~j1/~ ~ I X  P-'L:"C c*Jp+I ~ ~ ' ( ~ + i u ~ ~ ) / ~ d u d t + ~ ~ ~ ~ ~ ~  
r-R x (mod r )  (P/2)+t 

since 0 5 TI 5 To. The inequality holds for f2 as well, with an extra power of log N. 

Using 2.2.13 and Holder's inequality, we obtain 

x c*c I&+it,X)Idt 
r-R x (mod r )  

<(c c*r 
T-R x (mod r )  

.(c T-R x (mod C*L; r )  

X ( C  r-R x (mod c*L: T )  
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by the definition of To and the condition of the proposition. 

Proposition 2.2.2. Let V = {1,2 , .  . . ,101. If V can be divided into two disjoint subsets 

Vl and V2 such that 

then the estimate (2.50) holds. 

Proof. Denote 

Also, for k = 1,2, let 

where bk(n) is a convolution of the coefficients ak(n) ,  with the property that bk(n) << dc(n), 

for some constant c > 0. Applying Lemma 2.2.13 and the fact that 

we have 

2 x x * r ( F ( i + i t , X ) I d t  << llx x * / 2 T 0 1 F k  ( i + i t , X ) ) d t  (2.52) 
rwR x (mod r )  k=l r-R x (mod r )  To 

If S1, S2 < N:'~P-~I"', then the above becomes 

l / l O - €  From the proof of the proposition an estimate P << N j  would suffice. 
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Now we can finish proving (2 .50 ) .  In view of Proposition 2.2.2 we may assume 

Therefore, by the pigeon-hole principle, there exists at most one Dk, with 1 < k 5 10 

such that Dk > N:/15. If exists, denote it by Dk,, otherwise, take Dk, = 1. Reorder the 

remaining Dk as follows: 

Dk, 2 Dkz 2 . . . 2 DkB, where B = 9 or 10. 

Find an integer 1 5 I < B - 1 such that 

fi Dk < NJi15, but n Dk,, 2 N:"' 
h - 

h=O h=O 

Denote 
1 B 

S 1 : = n D k h ,  and S 2 : = n D k h .  

We therefore have 

The two sets Sl and S z  satisfy the conditions of Proposition . Hence (2 .50)  is proved. 

We can now prove (3 .26) .  We have 

Jj  << L max J j  ( R ) ,  
RIP 

where J j ( R )  is defined similarly to J j  except that the sum is over r N R .  The estimation of 

J j ( R )  falls naturally into two cases depending on R is small or large. For R > L ~ ,  where C 

is some positive constant, one can use the machinery that was already developed for Kj  in 

Lemma 2.2.5.  We will prove this in Lemma 2.2.14. While for R 5 L ~ ,  one uses the classical 

zero-density estimate and zero-free region of the Dirichlet L-functions, as we will show in 

Lemma 2.2.15. 

We first establish the following result for large R .  
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Lemma 2.2.14. There exists a constant c = c(A) > 0 such that when LC < R 5 P ,  

for all A > 0, where the implied constant depends at most on A. 

Proof. To prove this result, it suffices to show that 

max I Wj (x, A) I << R'/~-'N;'~L-~, 
r-R x (mod r )  

holds for LC < R 5 P and arbitrary A. From (2.42), it is more convenient to use J W ( ~ ,  A)[  

in place of I W(X, A) I with difference O(N;/~). 

Following the proof of (2.25), recall (2.47), 

Using Riemann-Stieljes integration, integration by parts on w~(x ,  A), and then re-arranging 

the terms, ~ j ( ~ ,  A) will be a linear combination of O(LlO) terms, each of which is of the 

form 

By taking T = N:I3 and changing variables in the inner integral, we deduce from the 

above that 

where the maximum is taken over all D = (Dl, .  . . , Dlo). Since 
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by Lemma 4.4 and Lemma 4.3 in [27], the inner integral in (2.55) can be estimated as 

<<  in { ( t + l ) 1 2 7  Nj min (t+6najXv( Nj 

} { l 2  if I t  5 

M ~ < V I N ~  if To < It1 < T,  

(2.56) 

where To = 8nN/(RQ). Here, the choice of To is to ensure that J t  +4najXul > It 112 whenever 

It1 > T o  In fact, 

It therefore follows from (2.55) and (2.56) that the lemma (more precisely, (2.54)) is a 

consequence of the following two estimates: For 0 < TI 5 To, we have 

* I F  (i + it, X )  1 dt << R ~ / ~ - ' N ~ / ~ ( T ~  3 + (2.57) 
TNR x (mod T )  

while for To < T2 < T,  we have 

x x * ~ I ~ ( i + i t , ~ ) I d t * : ~ ~ / ~ - ~ ~ ~ / ~ ~ 2 ~ - ~ .  3 

TNR x (mod T )  

Both (2.57) and (2.58) are be deduced from the left-hand side of (2.53). For example, by 

taking To = TI we can see from (2.52) that 

provided LC < R 5 P = ( N / D ) ~ I ~ ~ - '  with a sufficiently large c. Here, LC < R guarantees 

that the LC in (2.53) is dominated by the quantity on the right-hand side. This establishes 

(2.57). Similarly, we can prove (2.58) by taking To = T2. Lemma 2.2.14 now follows. 0 

Lemma 2.2.15. Let c > 0 be arbitrary. For R 5 LC and for any fixed A > 0, we have 

where the implied constant depends at most on c. 



CHAPTER 2. APPLYING THE CIRCLE METHOD TO OUR PROBLEM 42 

Proof. We use the explicit formula (see pg. 109, $17 and pg. 120, $19 in [9]) 

where ,6 + ir is a non-trivial zero of the function L(s, x), and 2 5 T 5 u is a parameter. 

Taking T = N:" in (2.59) and inserting it into w j ( ~ ,  A), by ~ f ' ~  < u < N:'~, Mj = CNj, 

and (2.20) we have 

Now we need Satz VIII.6.2 in Prachar [26], which states that 11 L(s, X) is zero-free in 
,(mod 4 

the region a > 1-v(T), I t J  5 T except for the possible Siegel zero, where q(T) = c3 log-4/5 T. 

But by Siegel's theorem (see for example [9], $21) the Siegel zero does not exist in the present 

situation, because r i LC. We also need the zeredensity estimate (see e.g. Huxley [18]): 

N* (a, q, T)  << (q~)12(1-ff)/5 logC(qT), 

where N*(a, q, T) denotes the number of zeros of 11 * L(s, X) in the region Re(s) 2 a, 

X (mod q) 

IIm(s)l <_ T. Thus, 
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Consequently, 

1/3 L-A max l ~ ~ ( x , A ) l  << Nl ' * Pl5l/(r4?) 
, 

T N R  x (mod T )  

where R I LC, and A > 0 arbitrary. Lemma 2.2.15 now follows from (2.60) and (2.42). 

2.3 Treatment of the Minor Arcs 

This minor arc can be treated by standard methods such as Hua7s and Weyl's inequality, 

which the detailed treatments can be found in Vaughan [28]. 

We first derive 

We can treat the integral with an eighth-power mean-value estimate for each of the Sj(a), 

where the last bound is from the Prime Number Theorem. 
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In combination with Holder's inequality gives 

For the remaining bound for S9(a), we have from summation by parts, 

By (2.3), we derive 

Combining (2.62) and (2.63), (2.61) becomes 
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2.4 Proofs of Theorems 3 and 4 

In view of (3.2), Lemma 3.2.4 and (3.63), we have 

Comparing (2.64) with the main term in (2.41), if n = N and all the aj's are positive, then 

On the other hand, if not all of the ajls are the same sign, and N 2 Clnl, then 

Therefore, without any loss of generality, for all 1 5 j 5 9, we have 



Chapter 3 

Remarks and Future Directions 

The obvious goal to Waring's problem and Waring-Goldbach's problem is to decrease the 

number of terms s required to represent n. One approach would be to incorporate sieve 

methods with the circle method into the argument. When all the coefficients are all precisely 

one, Briidern in [4] reduced the problem to only four terms but with one of the terms an 

almost prime. The other direction is to change the machinery of the circle method to 

eliminate the need for a minor arc estimate altogether (interested reader see Heath-Brown 

l111). 

The limit of the estimate comes by taking the maximum (trivial bound) of seven of the 

terms and using Cauchy's inequality to bound the remaining two terms. By means of the 

large sieve we can estimate the two terms with an L2 estimate. Heuristically, if we can find 

a way to find a L4 or Ls-type estimate that with the combination of Holder's inequality 

decrease the overall error term, we can increase the size of P and improve the estimate. 
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