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Abstract 

A class C of graphs is said to be bounded by a graph H if each graph in C admits 

a homomorphism to H. Given an integer m and a graph U we say a graph G is 

m-locally U-colourable if each induced subgraph of G with at  most m vertices admits 

a homomorphism to U. We study the following general question: Does a given a class 

C of graphs admit a bound H which is m-locally U-colourable? 

Let H be an m-locally U-colourable bound for a class C of graphs. Then every graph 

G in C admits an H-colouring which satisfies the following property: 

(*) Any subgraph of G induced by the union of a set of m colour classes is 

U-colourable. 

This introduces a necessary condition for C to have an m-locally U-colourable bound. 

We prove that this necessary condition is also sufficient. Then we give several appli- 

cations of this result. 

Exploring the connection between homomorphisms and the four colour theorem we 

prove that the Hadwiger's conjecture is equivalent to the following conjecture, of J. 

NeSetfil and P. 0. De Mendez: Any minor-closed class C of graphs admits a bound 

H E C. 

We conjecture that the class of planar graphs of odd girth 2k + 1 is bounded by the 

Cayley graph c ( z ~ " ~ ,  S) , where 



We prove that this conjecture is equivalent to a certain case of a well known conjec- 

ture of P. D. Seymour. In support of our conjecture we prove that the class of planar 

graphs of odd girth 4k + 1 is bounded by a Cayley graph on Z4 (of odd girth 29 + 1). 

Finally, we study the chromatic covering number of graphs, introduced by A. Amit, 

N. Linial and J. Matousek. The chromatic covering number of a graph G, denoted by 

Fx(G), is the smallest integer k for which there are k induced subgraphs GI, G2, GI, 

of G, such that every vertex x of G satisfies the inequality 

We Drove that 

We also characterize the graphs for which equality holds, and show that in most cases 

the inequality is close to being tight. 
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Chapter 1 

Background and Summary 

1.1 Historical background and the four colour the- 

orem 

The Four Colour Theorem is one of the problems in mathematics which is most easily 

understood by non-mathematicians. It can even be explained to those who do not 

know how to count without using their fingers. However it is arguably one of the most 

difficult theorems in mathematics to prove. Heavy use of computers, together with 

a large number of cases, make both of the published proofs of this theorem almost 

unreadable. 

The origin of the problem goes back to at least 1852. As quoted in [39], Kenneth 0 .  

May in his paper on the origin of the four colour theorem concludes that: "It was 

not the culmination of a series of individual efforts, but flashed across the mind of 

Francis Guthrie while colouring a map of England . . his brother communicated the 

conjecture, but not the attempted proof to DeMorgan in October, 1852". 

The four colour theorem in its original form simply states that: 

The regions of every (simple) map can be properly coloured using at most four 

distinct colours. 
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It requires some work to put everything in exact mathematical form, for example one 

has to define boundaries using Jordan curves. Here we remark that a simple map is 

a map in which every country is in one contiguous piece. A proper colouring is what 

one should normally expect from colouring of a map, i.e., neighbouring countries must 

receive different colours (in order to be distinguishable). Based on the account in [39], 

the history of the four colour theorem continues as follows. 

The first printed reference to the problem is due to Cayley, and was published in the 

Proceedings of London Mathematical Society in 1878, [Ill. Since then the attempts 

to prove the problem have led to many beautiful theories. In 1879 Kempe published 

a paper, [41], in which he claimed to have a proof of the four colour problem. But 

10 years later Heawood discovered a gap in Kempe's argument, [33]. He completed 

Kempe's idea, the Kempe chain method, to a proof of what is known as the Five 

Colour Theorem (every simple map can be coloured properly, using at most five dis- 

tinct colours) . 

Tait was the first person to notice there was much beauty in the structure of the 

four colourings of planar graphs. Even at the time Kempe's argument was accepted 

Tait was trying different approaches to the four colour problem, [73]. His equivalent 

statement of the four colour theorem is the birth place of some important subjects in 

graph theory, such as the theory of edge colouring and the theory of flows in graphs. 

This approach, with some generalizations, will be studied in Chapter 3. 

A direct approach to the four colour theorem led to the theory of graph colouring. This 

theory turned out to be a fruitful branch of mathematics with many applications in 

modern technology such as networking and communication. So it has attracted large 

number of researchers and mathematicians, who have developed numerous results 

and posed numerous open problems, such as Brook's theorem, the four colour theo- 

rem and Hadwiger's conjecture. Each of these examples will be described in details 

in the forthcoming chapter. 
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There also have been many different ways to generalize the theory; fractional colour- 

ing, list colouring, circular colouring, acyclic colouring and the theory of graph ho- 

momorphisms are examples of successful generalizations. Among the generalizations 

with an algebraic flavor, graph homomorphisms seems to be the most general ap- 

proach. 

The four colour theorem was finally proved by W. Haken and K. Appel, 141. Roughly 

speaking, they introduced almost 1500 configurations, called "unavoidable configu- 

rations", and they showed that if a planar graph contains one of these unavoidable 

configurations, then any four-colouring of the subgraph obtained by removing the 

unavoidable configuration will be extendible to a four-colouring of the graph itself. 

They complete the proof by showing that any minimal counter example to the four- 

colour theorem must contain at least one of the unavoidable configurations. They 

use the computer to verify both statements. A similar proof with a smaller number 

of unavoidable configurations (exactly 633 of them) was found by N. Robertson, D. 

Sanders, P. Seymour and R. Thomas ([66]). 

However the four colour theorem has not yet passed into history, and is still one of 

the main topics of research in graph theory. This is because, first of all, its proof is 

not satisfactory, secondly, the theories that are arising from this theorem are not fully 

developed, and also because these theories have been found to be very important for 

applications in modern technology. 

1.2 About this thesis 

Throughout this text a graph is always a simple finite graph (i.e., no loops or multiple 

edges). A finite graph with possible multiple edges but no loops will be called a multi- 

graph. A set of size n will be called n-set. The set {1,2, - . - , k) will be denoted by [k]. 

For the classical and standard definitions and notation of graph theory we refer to 

[15] and [49]. The more advanced or the less standard ones will be given throughout 
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the text. However since colouring and the chromatic number are the main subject of 

this text we should repeat their definition here. 

Definition 1.1 Given a graph G, a proper k-colouring of the vertices of G or simply 

a k-colouring of G is an assignment of the colours 1, 2, . . ., k to the vertices of G in 

such a way that any pair of adjacent vertices receive different colours. The minimum 

number k for which there exists a k-colouring of G is called the chromatic number 

of G and is denoted by x(G). A graph G with chromatic number x(G) = k will be 

called a k-chromatic graph. 0 

We will study certain homomorphism problems, some closely related to the four colour 

theorem. In the next chapter, Chapter 2, we will consider problems of the following 

type: 

Problem 1.2 Given a class C of graphs, does every member  of G admit  a homomor- 

phism t o  a graph F with certain properties? 

Brooks7 theorem and the four colour theorem are examples of this type of the prob- 

lems, (see Chapter 2 and Chapter 3 for more details). For some kind of properties, 

like the property of being Kk-free or the property of having high odd girth, we show 

that one can answer this question by answering a certain ordinary colouring problem. 

As an application we include a new proof of a theorem of R. Haggkvist and P. Hell. 

We also include a new proof (without using the four colour theorem) of the existence 

of a K5-free graph F to which every planar graph admits a homomorphism. This can 

be viewed as an improvement of the five colour theorem and was first proved by J. 

NeSetIil and P. 0. De Mendez in [60]. 

At the end of Chapter 2 we will include a section on Hadwiger7s conjecture. There 

we prove that Hadwiger's conjecture is equivalent to the fact that every minor-closed 

family C of graphs contains a graph H which admits a homomorphism from every 

member of C. 
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Most of the new results of Chapter 2 can be found in [50]. The proof of the existence 

of a K5-free bound for the class of planar graphs is from [51]. The results on the 

reformulation of Hadwiger's conjecture is from [53]. 

In Chapter 3 we will focus more on planar graphs and different approaches to the 

four colour theorem. We will introduce a generalization of the four colour theorem in 

the language of homomorphisms, and we will show equivalence between this general- 

ization and some of the known generalizations. Using this equivalence a triangle-free 

bound on 16 vertices will be found for the class of triangle-free planar graphs. In 

support of our conjecture we will prove that class of planar graphs of odd girth at 

least 49 + 1 is bounded by a graph of odd girth 29 + 1. These results are from [52]. 

It will be shown that if a graph H of odd girth 21% + 1 admits a homomorphism from 

every planar graph of odd girth 21% + 1, then H can not be planar. This result is from 

[50]. We will also include a new proof of the fact that Petersen graph is not 3-edge 

colourable; this proof is from [54]. 

In the last chapter we will study the chromatic covering number of graphs, introduced 

in [3] . The chromatic covering number can be compared to the fractional chromatic 

number, but unlike the fractional chromatic number, the chromatic covering number 

is bounded by functions of the chromatic number from both sides. We will tighten the 

bounds given in [3] and we show that our bounds are the best possible. The results 

of this chapter are from 1551. 



Chapter 2 

Homomorphisms and bounds 

2.1 Introduction 

Given two graphs G and H ,  a homomorphism of G to H is an edge preserving map- 

ping f : V(G) + V(H), that is to  say, for every edge xy of G, f (x) f (y) is an edge of 

H. The existence of a homomorphism of G to H is denoted by G + H .  If G --+ H ,  

then we say G maps to H. If f is a homomorphism of G to H, then the homomorphic 

image of G in H is a subgraph H' of H such that for every vertex x E V(H') there is 

a vertex v of G with f (v) = x, and also for every edge xy E E(Hf) there is an edge 

uv with f (u) = x and f (v) = y. 

Sometimes a homomorphism of G to H is called an H-colouring; in this case vertices 

of H have been regarded as a set of colours and the homomorphism is an assign- 

ment of these colours to the vertices of G. This is a generalization of classical vertex 

colouring problem of graphs, as a graph G is k-colourable if and only if it admits a 

homomorphism to the complete graph Kk. 

The notation G -n H will be used to represent the fact that there is no homomorphism 

of G to H. Normally it is more difficult to show the nonexistence of homomorphisms 

than the existence of a homomorphism. This is analogous to the problem of chro- 

matic number, where the lower bounds are normally harder to prove than the upper 

6 
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bounds. The chromatic number, clique number and the odd girth are some param- 

eters that can help us to prove the nonexistence of homomorphisms. More precisely 

we have the following two well known lemmas, each of which is sometimes called a 

"no-homomorphism lemma". 

Lemma 2.1 [32] Given two graphs G and H ,  if w(G)  > w ( H )  or if  x ( G )  > x ( H )  

then G * H .  

Proof. To see this, first observe that if k < I then there is no homomorphism of 

Kl to Kk. Now let f : V ( G )  + V ( H )  be a homomorphism. Then for a complete 

subgraph W in G ,  the homomorphic image of W, f (W), is a complete graph in H 

which has the same size as W. This proves that if w ( G )  > w ( H )  then G * H .  

To see that G + H implies x(G)  > x ( H ) ,  assume g is a homomorphism of G to H.  

If x ( H )  = k then there is a homomorphism f : H --t Kk. Let g be a homomorphism 

of G to H.  Now the composition f o g is a homomorphism of G to Kk, i.e., G is 

k-colourable and x ( G )  5 k. 

Another folklore no-homomorphism lemma is the following: 

Lemma 2.2 [35] Given two graphs G and H ,  i f  odd-girth(G) < odd-girth(H) then 

G + H .  

Proof. First notice that any homomorphic image of an odd cycle, C2r+l must contain 

an odd cycle of size smaller than or equal to 21- + 1. Otherwise the image which 

has at  most 2r + 1 vertices would be bipartite which contradicts Lemma 2.1. Let 

odd-girt h ( G )  = 29 + 1. If there is a homomorphism of G to H then the homomorphic 

image of the shortest odd cycle of G in H contains an odd cycle of size at most 29 + 1, 

i.e., odd-girth(H) 5 2g + 1. This proves the lemma. 0 

A graph parameter for which a no-homomorphism lemma holds is called a monotone 

graph parameter. So another way of stating Lemma 2.1 and Lemma 2.2 is to say that 

each of the three graph parameters, clique number, chromatic number and odd girth, 
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is a monotone graph parameter. 

Graphs G and H are said to be homomorphically equivalent provided that each of 

them admits a homomorphism to the other one. If G and H are homomorphically 

equivalent then we write G N H.  Any graph with the minimum number of vertices to 

which G is homomorphically equivalent is called a core of G. The following classical 

lemma proves that the core of a graph G is unique and that it is a subgraph of G. 

Lemma 2.3 (351 For any given graph G there is a unique core (up to isomorphisms). 

Moreover the core of G is isomorphic to a subgraph of G. 

Proof. Let HI and Hz be two cores of G. Let f be a homomorphism of HI to G and 

g  be a homomorphism of G to Hz. Then g o  f is a homomorphism of HI to H2. Let H' 

be the homomorphic image of HI in H2. H' maps to G because it is a subgraph of Hz, 

G maps to H' because it maps to HI. So H' is also homomorphically equivalent to G, 

by the minimality of Hz, H' cannot be a proper subgraph of H2, and by minimality of 

HI, the mapping g o  f is one to one and therefore is an isomorphism of HI to  H' = Hz. 

To see that the core c(G) of G is a subgraph of G, consider a mapping of c(G) to G; 

in this mapping the homomorphic image of c(G) is also homomorphically equivalent 

to G and by the minimality of c(G), it must be isomorphic to c(G). 0 

In this proof it was crucial that the graphs are finite; the concept of core for infinite 

graphs have been studied by B. Bauslaugh in [5] .  A core is a graph which is its 

own core. Equivalently, a core is graph which does not admit a homomorphism to 

any proper subgraph of itself. Complete graphs and odd cycles, or in general colour 

critical graphs, are examples of cores. By the definition a k-colour critical graph is 

a graph with chromatic number k such that every proper subgraph has chromatic 

number smaller than k. Now applying Lemma 2.1 it is easy to see that every colour 

critical graph is a core. 

For an example of a core which is not a colour critical graph see the graph of Figure 

2.1. To see that this graph is a core, note that every proper subgraph of it maps to 
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Figure 2.1: A core which is not colour critical 

C5 but the graph itself does not map to C5. This is so because if this graph maps 

to C5 then the subgraph induced by deleting the central vertex x, which is a 9-cycle, 

must map to C5 surjectively. On the other hand, every vertex y in this 9-cycle is 

either adjacent to  the central vertex x or there is a path of length three joining x and 

y. This means that identifying x with any of the vertices of the outer 9-cycle will 

produce a loop or a triangle, so there is no homomorphism of this graph to C5. 

Homomorphisms allow us to treat many colouring problems in a more general setting. 

One way of doing this is the following definition of homomorphism order (5 )  on the 

class of graphs: 

G 5 H if and only if G + H. 

Following this notation we say G is smaller than H if G 5 H . 

The homomorphism order, which sometimes it is also called colouring order (for ex- 

ample see [57]), is a quasi order. Below we give a proof of this folklore lemma. 

Lemma 2.4 The homomorphism order (5) on the class of graphs is a refEexive and 

transitive binary relation. 

Proof. This order is reflexive because the identity is a homomorphism of G to G. 
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To see that homomorphism order is transitive let f be a homomorphism of G to H 
and g be a homomorphism of H to K, then g o f is a homomorphism of G to K .  C] 

The homomorphism order does not have the antisymmetric property and therefore is 

not a partial order on the class of all graphs. As an example consider two bipartite 

graphs G and H, then the inequalities G 5 H and H 5 G both hold but G and H 

are not necessarily isomorphic. However if we identify all homomorphically equivalent 

graphs, the induced order on the new class will be a partial order. 

Lemma 2.5 The homomorphism order induced on the class of cores is a partial order. 

Proof. Obviously this order inherits the properties of being reflexive and transitive. 

To prove that it also antisymmetric let G and H be two cores for which G 5 H 

and H 5 G. This means G and H are homomorphically equivalent and therefore by 

Lemma 2.3 they have isomorphic cores, but each of G and H are isomorphic to their 

own cores, because they are core themselves, so they must be isomorphic. 0 

The concept of a bound for a family of graphs is a natural consequence of having the 

homomorphism order. Given a class C of graphs, we say C is bounded by a graph H 

if and only if every member of C admits a homomorphism to H. In other words H 

is said to be a bound for C if for every G E C we have G 5 H .  If the bound H is 

also in C then we say H is a maximum of C. Moreover if H is a bound for the class C 

of graph such that for any other bound F for C we have H 5 F then we say H is a 

supremum for the class C. 

We would like to  remark that the terminology of bound, maximum and supremum 

and as well as the project of studying graphs in this order-theoretic approach has 

been initiated by J. NeSetfil, see [50, 57, 60, 611. The concept of bound has also been 

introduced in [30] under the name of universal graph. 

This notation allows us to put many important colouring and homomorphism results 

in a form understandable to a broader group of mathematicians. For example if we 
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define Ca to be the class of graphs with maximum degree A, then Brooks' theorem 

can be stated as follows: 

Brooks' theorem [lo] 

1) The class C2\{odd cycles) is bounded by K2, and 

2) The class Ca\{Ka+l) is bounded by Kn, for A 2 3. 

There are different ways of generalizing Brooks' theorem in the literature, one simple 

generalization is done by introducing the concept of k-degenerate graph. A graph G 

is said to  be k-degenerate if every subgraph of G contains a vertex of degree at  most 

k. The smallest integer k for which G is k-degenerate will be called the degeneracy 

number of G and will be denoted by D(G). This concept has been introduced by 

various authors in different equivalent forms, the oldest reference we found is a paper 

of V. G. Vizing, 1801. Degeneracy number sometimes is called Szekeres-Wilf number 

because of the following theorem of G. Szekeres and H. S. Wilf: 

Theorem 2.6 [72] Let Cd be the class of all d-degenerate graphs. T h e n  Cd i s  bounded 

by Kd+l 

A nicer example of a reformulation, using this new terminology, is the reformulation 

of Hadwiger's conjecture which was introduced in [60]. To introduce Hadvigwer's 

conjecture we first define the concept of a minor. 

Given two graphs G and H we say H is a m i n o r  of G if H can be obtained from 

G by a series of operations: contracting edges, deleting vertices and deleting edges. 

Contracting an edge x y  means removing the edge x y  and then identifying x and y. A 

class C of graphs is said to be minor-closed if for every graph G in C and every minor 

H of G, H is also in C. Moreover we say C is a proper minor-closed family of graphs 

if it is not the class of all graphs. Note that a minor-closed family of graphs is proper 

if and only if it does not contain all complete graphs K,. 
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H. Hadwiger in [29] conjectured that every k-chromatic graph contains the complete 

graph Kk as a minor. This is an almost trivial statement for k = 1,2,3.  For k = 4 it 

was proved by G. A. Dirac in [16]. For k = 5 it implies the four colour theorem, and 

was in fact shown by K. Wagner to be equivalent to the four colour theorem in this 

case, [81]. For k = 6 it also has been proved by N. Robertson, P. D. Seymour and R. 

Thomas to be equivalent to the four colour theorem. It remains open for k > 7 and is 

one of the most attractive conjectures in graph theory. One of the remarkable results 

toward Hadwiger's conjecture is due to W. Mader who proved the following fact. 

Lemma 2.7 [47] For eve? positive integer k there exists an integer h(k) such that if 

the minimum degree of a graph G is at least h(k), then G contains Kk as a minor. 

An equivalent way of stating this lemma is to say that for every proper minor-closed 

family C of graphs there is an integer k such that every graph in C is k-degenerate. 

In view of Theorem 2.6 the following is an immediate corollary of Lemma 2.7. This 

result was originally proved by Wagner in [81]. 

Lemma 2.8 [81] For every proper minor-closed family C of graphs, there is an integer 

k, such that each graph in C is k-colourable. 

Using Lemma 2.8 it is now easy to see that the following conjecture introduced in [60] 

is a reformulation of Hadwiger's conjecture. 

Conjecture 2.9 [60] Every proper minor-closed family C of graphs contains a com- 

plete graph as a maximum with respect to colouring order. 

This formulation of the conjecture splits the problem into two different problems, each 

of which has its own interest. 

Conjecture 2.10 [60] Any bounded minor-closed family of graphs has a maximum. 

Conjecture 2.11 The core of the maximum of a minor-closed family of graphs is a 

complete graph. 
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Conjecture 2.10 has been introduced in [60] as a weaker form of Hadwiger's conjec- 

ture. However at  the last section of this chapter we will prove that Conjecture 2.11 is 

implied by Conjecture 2.10, therefore proving that Hadwiger's conjecture is equivalent 

to Conjecture 2.10. We believe Conjecture 2.11 should not be very difficult to prove; 

an evidence for this belief is a theorem of P. Hell which will be introduced in the last 

section. 

In the rest of this chapter and also in the next chapter, we will frequently refer to the 

class of planar graphs with odd girth at least 29 + 1. To simplify our notation we will 

denote this class by P2,+l. Therefore P3 is the class of all planar graphs which we 

will be simply denoted by P. The class P5 is the class of triangle-free planar graphs, 

and so on. 

Aside from the four colour theorem, one of the important results in the theory of 

colouring of planar graphs is Grotzsch's theorem which states that every triangle-free 

planar graph is 3-colourable, [25]. With our terminology this theorem can be restated 

as follows: 

Theorem 2.12 The class /Pg is bounded by K3. 

This statement of Grotzsch theorem has been depicted in Figure 2.2, where it is con- 

trasted to the four colour theorem. The four colour theorem states that the class of 

planar graphs has a maximum, namely Kq. But Grotzsch theorem only provides a 

bound, K3, for the class of triangle-free planar graphs, P5. 

It is an interesting question to ask whether the class P5 has a maximum or a supre- 

mum. In the next chapter we will show that P5 does not have a maximum, but it 

does not seem to be an easy task to decide whether P5 admits a supremum or not. 

Problems of similar type has been studied in [62]. 

The following problem is the first step in the direction of deciding whether P5 admits 

a supremum. 
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Grotzsch's theorem: 
Psis bounded by K 3  

1 

Figure 2.2: Order of graphs 



i 

CHAPTER 2. HOMOMORPHISMS AND BOUNDS 

Problem 2.13 Does 73 admit  a bound smaller than K3? 

This question (in an equivalent form), was asked by J. NeSetfil in [57]. He then raised 

two similar questions, in [17]. To state the Problem 2.13 in the equivalent form we 

should first give a definition of the categorical product of two graphs. Categorical 

products of graphs are discussed, e.g., in [18]. 

Definition 2.14 Given two graphs G and H, the categorical product of G and H ,  

denoted by G x H, is the graph with vertex set V(G) x V(H) where two vertices 

(x, u) and (y, v) are adjacent if and only if x is adjacent to y in G and u is adjacent 

to v in H. 0 

The following two well known propositions are among the first important properties 

of the categorical product of graphs. For more on the lattice theoretic aspects of the 

categorical product we refer to [19] and [57] 

Proposition 2.15 T h e  categorical product of graphs, G x H ,  admits  homomorphisms 

t o  both G and H .  

Proof. It is easy to check that the projection fi defined by fi(x, u) = x is a homo- 

morphism of G x H to G. Similarly the projection fi defined by f2(x, u) = u is a 

homomorphism of G x H to H .  0 

Proposition 2.16 Let F be a graph which admits  homomorphisms to  both G and H 

then  F admits  a homomorphism t o  the categorical product G x H .  

Proof. To see this let fg and fh  be homomorphisms of F to G and H respectively, 

then f : V(F)  -t V(G x H) defined by f (x)  = (fg(x), fh(x)) is easily seen to be a 

homomorphism of F to G x H. 0 

These two propositions together show that G x H has the following two important 

properties: First of all G x H is smaller than G and H both. Secondly if a graph 

F is smaller than G and H both, then F is also smaller than G x H .  Therefore in 

the lattice obtained from homomorphism order on the class of cores, c(G x H) is the 
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meet of G and H in the homomorphism order 

The following proposition, which is a special case of a general phenomenon to be 

detailed below, will help us to reformulate Problem 2.13. 

Proposition 2.17 [59] If P5 admits a triangle-free bound then it admits a bound 

smaller than K3. 

Proof. Let H be a triangle-free bound for P5, we will show that H x K3 is also 

a bound for P5 which is smaller than K3. To see this let G be triangle-free planar 

graph, then G -+ H because P5 is bounded by H. On the other hand because of the 

Grotzsch theorem G + K3. Now by Proposition 2.16 G + H x K3. This shows that 

H x K3 is also a bound for P5. 

To see that H x K3 is smaller than K3, note that by Proposition 2.15 H x K3 + K3, 

but K3 does not admit a homomorphism to H x K3, as if it did then by Proposition 

2.16 we would have K3 + H, which contradicts the fact that H is a triangle-free 

graph. a 

In general, if C is a class of graphs bounded by B then to find a bound for C smaller 

than B, it will be enough to find a bound B' such that B 2 B'. If we find such a 

bound, then B x B' will be a bound for C, which is guaranteed to be smaller than B. 

On the other hand, if there is a bound B for P5 with B -i K3 then B must be a 

triangle-free graph. This observation, together with Proposition 2.17, shows that the 

following problem of [57] is a new formulation of Problem 2.13. 

Problem 2.18 [57] Does there exist a triangle-free bound for the class of all triangle- 

free planar graphs? 

This problem was studied in [17], where the following two similar problems were also 

posed: 
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Problem 2.19 [17] Does there exist a K4 -free bound for the class of all K4- free planar 

graphs ? 

Problem 2.20 [17] Does there exist a K5-free bound for the class of all (K5-free) 

planar graphs? 

The answer to the Problem 2.20 is positive by virtue of the four colour theorem, but 

in view of the difficulty of the four colour theorem it would be interesting to find an 

independent proof. Each of these three problems have been answered positively by P. 

0. De Mendez, and J. NeSetEil, in [60] and [61]. 

Theorem 2.21 [60] The class of all triangle-free planar graphs is bounded b y  a tri- 

angle free graph. 

Theorem 2.22 [61] The class of all K4-free planar graphs is bounded b y  a K4-free 

graph. 

Theorem 2.23 1611 The class of all (K5-free) planar graphs is bounded by  a K5-free 

graph. 

The proof of each of these theorems uses the constructive method of [50]. These con- 

structions are the main subjects of this chapter. So our goal in this chapter is to show 

how one can answer any of the questions mentioned above by answering certain other 

problem on ordinary colouring. This will be a very useful tool as it is normally easier 

to deal with ordinary colouring problems than with general homomorphism problems. 

But before going any further we need to introduce some notation. For further details 

on homomorphism and related topics we refer to [31]. 

We will talk about graph properties. The type of property we will be interested in is 

the property of U-colourability, which we will denote it by P(U).  In other words, G 

has the property P(U) if it admits a homomorphism to U. As has been mentioned 

earlier, when U Kk the property P(U) is the property of being k-colourable. For 

simplicity this property will be denoted by P(k).  The following definition will help 

us to recognize certain kinds of colourings: 
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Definition 2.24 Given a graph property P, we say that a proper colouring of a graph 

G is an (m, P)-colouring, if the subgraph of G induced by the union of any m colour 

classes has property P. 0 

For some properties P, the concept of (m, P)-colouring has been studied in the litera- 

ture. For example, if P is the property of being independent, i.e., the property P(1), 

then a (1, P)-colouring is just a proper colouring of graphs. If P is the property of 

being acyclic then a (2, P)-colouring of a graph is an acyclic colouring. (An acyclic 

colouring of a graph G, introduced by B. Griinbaum in [25] ,  is a proper colouring of 

the vertices of G, in which every pair of colours induces an acyclic graph, i.e., a forest.) 

For certain types of (m, P)-colouring the existence of (m, P)-colouring for G will 

depend on the nonexistence of certain structures in G. The following two propositions 

are examples of this phenomenon: 

Proposition 2.25 A graph G admits a (k, P ( k  - 1))-colouring if and only if it is 

Kk-free. 

Proof. If G admits a (k, P(k  - 1))-colouring then any set of k colour classes induces 

a (k - 1)-colourable graph, in particular G does not contain a Kk as a subgraph. 

Conversely if G does not contain a Kk then one can colour (for example) all the 

vertices with different colours to obtain a (k, P (k  - 1))-colouring. 0 

Proposition 2.26 Given a graph G, it admits a (m, P(2))-colouring if and only if 

odd-girth(G) 2 m + 1. 

Proof. If G admits an (m, P(2))-colouring, then the union of any m colour classes 

(therefore any set of m vertices) induces a bipartite graph, hence oddgirth(G) 2 m+l. 

Conversely if odd-girth(G) 2 m + 1 then it is enough to colour (for example) all the 

vertices with different colours to obtain an (m, P(2))-colouring of G. 0 

We will also use the following notation: 
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For a finite set 3 of graphs we denote by Forbh(3) the class of all graphs G satisfying 

F + G for all F E F. For example, if F consist of only K3, then Forbh(3) is the 

class of all triangle-free graphs. Or if 3 = {C5) then ForbF is set all graphs with odd 

girth at least 7. More generally if 3 consists of all odd cycles, then Forbh(3) is the 

set of bipartite graphs. 

Now the following theorem is a reformulation, in our terminology, of a theorem of R. 
Haggkvist and P. Hell from [30]. 

Theorem 2.27 For a given positive integer d and a finite set of connected graphs 3 ,  

let Cd be the class of all graphs in Forbh(F) with maximum degree at most d. Then 

Cd is bounded by a graph H in Forbh(F). 

A new proof of this theorem will be given in Section 2.3. The next section is devoted 

to constructing a family of graphs with certain properties. We will show that for a 

given class C of graphs these constructions can be used to form a bound with certain 

properties, provided that each graph in C admits a certain type of colouring. In section 

2.3, in addition to a new proof of Theorem 2.27, we also solve Problem 2.20 with a 

method different from the one in [61]. Section 2.3 is devoted to providing a better 

understanding of our constructions. In the last section we will prove that Hadwiger's 

conjecture is equivalent to Conjecture 2.10. 

2.2 Construction of bounds 

For a graph property P, we have introduced the notion of an (m, P)-colouring of a 

graph G (namely, it is a colouring where the subgraph induced by the union of any m 

colour classes has the property P). We now define the (m, P)-chromatic number of a 

graph G, denoted by x,,p (G) , to be the minimum number of colours in an (m, P) -  

colouring of G (provided that one exists). 

Given a set A and an integer m, the notation of (t) is used to denote the set a11 

subsets of A with m elements. Moreover (:)i will denote the set of all subsets of A 
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with m elements containing the particular element i. Recall that the set of integers 

from 1 to n,  i.e., {1,2,. . . n), will be denoted by [n] and that an m-set is a set of 

m elements. Now the following definition introduces a key construction. It can be 

compared to [2, 63, 651 for constructions of similar flavor: 

Definition 2.28 Let m and n be two positive integers and let U be a graph. Then 

the graph IT = n[(n, m, U) is defined as below: 

The vertex set V(n[) of II is the set of all ordered pairs (i, $), where i E [n] and q5 is 

a function from ( F ) i  to V(U). 

The edge set E(II) of II consists of all the unordered pairs {(i, $), ( j ,  $)) for which 

the following two conditions hold: 

2. 4(S) is adjacent to $(S) in U whenever 4(S) and $(S) both are well defined, 

that is for all the m-subsets S of [n] which contain both i and j. 

To have a better understanding of this construction notice that if we colour each 

vertex (i, 4) by the first coordinate, i, we obtain an n colouring of n ( n ,  m, U). The 

graphs obtained from this construction, which we will call n[-graphs, are normally 

very large. In general II (n, m, U) has n x 1 V(U) 1 ("-:) vertices. 

The smallest non-trivial H-graph is the graph II(3,2, K2), which has 12 vertices and 

is depicted in Figure 2.3. In this figure the label ixy represents the vertex (i, 4) with 

q5({i, jl)) = x and $({i, j2)) = y where jl < j2. For example 3ba means the vertex 

(3,4) where d((13)) = b and q5({23)) = a. 

Our interest in these graphs is due to their homomorphism properties. But we may 

restrict a discussion of graphs in the context of homomorphism to graphs which are 
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Figure 2.3: II(3,2, K2) 
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cores, since the core of a graph inherits all the homomorphism properties of the graph. 

In the case of II-graphs this may become very handy as the core of a 11-graph can be 

much smaller than the II-graph itself. As an example, the core of II(3,2, K2) is just 

a K3, because it is 3-colourable and it contains K3 as a subgraph. However we do 

not have an easy method to find the core of a II-graphs in general. We will say more 

about the chromatic number and the fractional chromatic number of II(n, m, U) later 

on in this chapter. 

To give a taste of the importance of 31I-graphs, consider the typical problem of finding 

a Kk-free bound for some given family C of graphs. The point is that if there is such 

a Kk-free bound then n ( n ,  k, Kk-l) is also such a bound, for n large enough. In fact 

it will be sufficient to choose n large enough such that every graph G in C admits a 

( k ,  P(k-1))-colouring using at  most n colours. Each of these statements will be proven 

in detail later on, but here we should remark that what makes it to work nicely, is 

replacing the property of being Kk-free with the equivalent property of (k ,  P(k - 1))- 

colourability (see Proposition 2.25). The following then is a generalization of this 

concept: 

Definition 2.29 Let G and U be graphs and m a positive integer. The graph G 

is said to be m-locally U-colourable if every induced subgraph of G with at  most m 

vertices admits a homomorphism to U. 0 

The following lemma is natural consequence of the definition. 

Lemma 2.30 Let U be a graph and let F be the set of all cores on at most m vertices 

which do not admit a homomorphism to U. Then a graph G is m-locally U-colourable 

if and only if it belongs to Forbh(F). 

Proof. Let G be a graph in Forbh(.F), and let G' be any subgraph of G on at  most 

m vertices. We show that G' maps to U. By contradiction, suppose G' does not admit 

a homomorphism to U. Then the core c(Gr) of G' does not admit a homomorphism 

to U either, so it must be in 3. But c(Gr) -+ G' and therefore c(G') -t G which 
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contradicts the choice of G. 

For the converse, assume G is m-locally U-colourable, and suppose for some F E F 

there exists a homomorphism f of F to G . By the definition of F, F and therefore 

the homomorphic image f (F) of F in G, has at most m vertices. Since G is m-locally 

U-colourable, f (F) maps to U by a homomorphism g. But then g o f maps F to U 

which contradicts the choice of F. 0 

Corollary 2.31 Let U be a graph and let F be the set of all cores on at most m 

vertices which do not admit a homomorphism to U. Then a graph G is m-locally 

U-colourable if and only if it does not contain any member of F as subgraph. 

Proof. Let G be a graph which is not m-locally U-colourable. Then by Lemma 2.30 

there is an F E F which admits a homomorphism f to G. But then the core c(f (F)) 

of the image of F in G, is also a member of F and a subgraph of G. 

Obviously in applying this corollary we only need to consider the minimal elements 

of F with respect to taking subgraphs, in other words we only consider the elements 

of 3 which do not contain any other element as a subgraph. 

Example 2.32 : 

(a) m-locally K2-colourable graphs are precisely the graphs not containing an odd 

cycle of length < m. 

(b) k-locally Kk-l-colourable graphs (equivalently (k + 1)-locally Kk-l-colourable 

graphs) are precisely the graphs not containing Kk. 

(c) 9-locally C5-colourable graphs are precisely graphs which do not contain any of 

the three graphs shown in the Figure 2.4 as a subgraph. 0 

Parts (a) and (b) of the example can be seen easily by Corollary 2.31. For (a), F is 

set to be the set of odd cycles of size at most m, and for (b) F is set to be {Kk). 

For part (c) note that K3 does not admit a homomorphism to C5 and that any 4- 

chromatic graph on at most 9 vertices must contain K3 as a subgraph. So applying 

Corollary 2.31 it will be enough to find the set of 3-colourable cores on at most 9 
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Figure 2.4: Forbidden subgraphs of 9-locally C5-colourable graphs 

vertices which do not admit homomorphism to C5. By an exhaustive search, aside 

from K3 we found four such cores, which have been depicted in Figure 2.4 and Figure 

2.5. The two graphs of Figure 2.5 contain the graph on the right side of the Figure 

2.4. So in order to see if a graph G is 9-locally C5-colourable we only need to check 

if it does not contain any of the three graphs in Figure 2.4. 

We have the following important property of TI-graphs: 

Proposition 2.33 The graph IT(n, m, U) is m-locally U-colourable. 

Proof. Let {(is, qjk)}T==, be any set of m vertices and let be the subgraph of 

n (n ,  m, U) induced by these vertices. If S is any m-set containing {il, 22,  . . im} 

(note that ij's are not necessary distinct and {ill i2, . - . i,) may have fewer than m 

elements), then the mapping ( i k ,  4s) --+ $ k ( S )  is a homomorphism of I l l  to U. To see 

this let (ik, qjk) be a vertex adjacent to (il, then S contains both ik and ill  and by 

definition &(S) must be adjacent to $1 (S). 0 

We are now ready to introduce the conditions under which one can construct an 

m-locally U-colourable bound. The first step is the following proposition. 
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Figure 2.5: More 3-colourable cores 

Proposition 2.34 Let P(U)  be the property of U-colourability. If X ~ , ~ ( ~ ) ( G )  < n 

then there is a homomorphism of G to n(n ,  m, U). 

In other words if G admits an n-colouring in which the union of every m-colour classes 

induces a U-colourable graph, then G admits a homomorphism to Il(n, m, U). 

Proof. Let c : V(G)  -t [n] be an (m, P(U))-colouring of G and let S be any subset 

of [n] of cardinality m. The vertices coloured by colours from S induce a subgraph 

of G which we denote by Gs. By the definition of (m, P(U))-colouring, the subgraph 

Gs must be U-colourable. Let ps be the homomorphism of Gs to U. We now define: 

where 4, : (E)c(v) V ( U )  is defined by g(S) = ps(v). The mapping 4(S) is well 

defined because it is only defined for subsets of size m which contain c(v). 

We now show that f is a homomorphism. Let u and v be two adjacent vertices in 

G and set f (u) = ( ~ ( u ) ,  &) and f (u) = (c(v), 4,). To see that f (u) is adjacent to 

f (v) in n(n ,  m, U) first of all note that c(u) # c(v), because c is a proper colouring. 

Secondly, if S is any set containing both c(u) and c(v) then &(S) = ps(u) is adjacent 

to 4,(S) = ps(v) in U, because ps preserve the adjacency. Therefore f (u) and f (u)  

are adjacent in n ( n ,  m, U) and f is a homomorphism of G to n(n, m, U). 0 
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If we are searching for an m-locally U-colourable bound for a given family of graphs, 

C, then using Proposition 2.33 and Proposition 2.34 it will be enough to bound the 

(m, P(U))-chromatic number of graphs in C. The following theorem shows that this 

sufficient condition is necessary too. 

Theorem 2.35 A class C of graphs is  bounded by a n  m-locally U-colourable graph if 

and only if {(X,,~(~)(G)I G E C) i s  bounded above by a n  integer. 

Proof. Let { x ~ , ~ ( ~ ) ( G ) I  G E C) be bounded by an integer n. Then for every G 

in C, Xm,p(u)(G) 5 n and therefore by Proposition 2.34 G admits a homomorphism 

to II(n, m, U). In other words n ( n ,  m, U) is a bound for C, but by Proposition 2.33 

n(n ,  m, U) is an m-locally U-colourable graph. Therefore n (n ,  m, U) is an m-locally 

U-colourable bound for the class C. 

For the converse, suppose that C is bounded by an m-locally U-colourable graph H. 

We claim that IV(H)I is an upper bound for {(X,,~(~)(G)I G E C). TO prove our 

claim, take a graph G in C, and consider a homomorphism $ : G + H. We show that 

$ is an (m, P(U))-colouring, this will complete the proof. Let GI be a subgraph of 

G which takes a t  most m colours. Then the image $(GI) of G' in H has at most m 

vertices. Since H is an m-locally U-colourable graph, $(GI) maps to U. So $ is an 

(m, P(U))-colouring and we are done. 

We will be mainly concerned with applying following two versions of this theorem 

(Proposition 2.36 and Proposition 2.37). 

Proposition 2.36 Let n be a positive integer and C be a class of graphs. T h e n  the 

following statements are equivalent. 

(a) C i s  bounded by a Kn-free graph. 

(b)  { x ~ , P ( ~ - ~ )  (G) I G E C) i s  bounded above by a n  integer 

( c )  {~n+l,~(n-1)(G)I G E C) i s  bounded above by a n  integer. 
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Proof. By Theorem 2.35 {X,,~(,-~)(G)I G E C )  is bounded above by an integer 

if and only if C  is bound by an n-locally Kn-l-~ol~urable graph. Similarly the set 

{ x ~ + ~ , ~ ( ~ - ~ ) ( G ) I  G E C )  is bounded by an integer if and only if C  is bounded by an 

(n+l)-locally Kn-l-colourable graph. But both the properties of being n-locally Kn-l- 

colourable and being (n + 1)-locally Kn-l-colourable are equivalent to the property 

of being Kn-free (see part (b) of Example 2.32). 

The second application of Theorem 2.35 is to the property of being bipartite. 

Proposition 2.37 Let n be a positive odd integer and C  be a class of graphs. Let B 

be the property of being bipartite. Then the following statements are equivalent. 

(a) C  is bounded by a graph of odd girth n.  

(b) {x~-~,B(G)I  G E C )  is bounded above by an integer 

(c) {xn-l,B(G) I G E C )  is bounded above by an integer 

Proof. The property of having odd girth at least n is equivalent (n - 1)-local K2- 

colourability, and also to (n - 2)-local K2-colourability. Now apply Theorem 2.35. 

0 

2.3 Applications of Theorem 2.35 

In this section, in two typical examples, we will show how one can apply Theorem 

2.35, or Proposition 2.36 in particular, to construct bounds with certain properties. 

The first application is a new proof of Theorem 2.27 given below: 

Theorem [30] For a given positive integer d and a finite set of connected graphs F, 

let Cd be the class of all graphs in Forbh(3) with maximum degree at most d. Then 

Cd is bounded by a graph H in Forbh(F). 

Proof. By replacing every graph in F with its core, we may assume F is a finite set 

of connected cores. Put m = max{lV(F)I ; F E F} and let U be the disjoint union 
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of all (non-isomorphic) graphs in Forbh(3) which have at most m vertices. 

We claim that Forbh(F) is precisely the class of all m-locally U-colourable graphs. 

To see this first consider a graph G which is in Forbh(F). Then any subgraph GI of 

G on at most m vertices is also in Forbh(F), and therefore, by the definition of U, GI 

is a component of U, hence GI + U. For the other direction, let G be an m-locally 

U-colourable graph. We shall prove that G is in Forbh(3). By contradiction, sup- 

pose there is an F € Forbh(F) which maps to G. Since F is connected, the image 

of F in G is a connected subgraph of G on at most m-vertices. This subgraph, and 

therefore F, must map to U. So there is mapping of F to one component of U, but 

this contradicts the definition of U. 

We shall prove that for any G E Cd we have Xm,~(u)(G) < d2m+1. This will com- 

plete the proof as, by Theorem 2.35, the class Cd is then bounded by an m-locally 

U-colourable graph H, but as we have shown above any m-locally U-colourable graph 

is in Forbh(F). 

Given G E Cd we define a new graph G ( ~ )  as follows: G(") has the same set of vertices 

as G, and two distinct vertices are joined by an edge if and only if they are joined in G 

by a path of length at most m. Note that A ( G ( ~ ) )  < dm+' and therefore by Brooks' 

theorem, G(") admits a dm+'-colouring c. The colouring c is also a vertex colouring 

of G with the property that any two distinct vertices of G in distance at most m are 

coloured differently. 

We now prove that c is an (m, P(U))-colouring of G. Let GI be a subgraph of G 

induced by any m colour classes and let G" be one of its components. Every pair of 

vertices in GI1 is joined by a path in GI1. If any of these paths is of length at least m 

then its vertices take at least m+ 1 colours (on the first m+ 1 vertices of the path). By 

the choice of G' this is impossible, so every two distinct vertices in G" are joined by a 

path of length at most m - 1, and so take distinct colours. Therefore G" has at most 

m vertices. But G" is in Forbh(F) because it is a subgraph of G and G E Forbh(F). 
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Hence by the definition of U, G" is U-colourable, and so is G'. 

Given positive integers d and k let C: be the class of all k-colourable graphs with 

maximum degree a t  most d. The next theorem is a generalization of Theorem 2.27 

which was first proved in [17]. 

Theorem 2.38 [17] Let d and k be positive integers and let F be a family of connected 

graphs. The class C = C: n F o r b h ( ~ )  is bounded by a k-colourable graph in Forbh(F). 

Proof. Let H be the bound obtained from Theorem 2.27, then H E Forbh(F). By 

definition C is also bounded by Kk. Now by Proposition 2.15 and Proposition 2.16 

H x Kk is a k-colourable bound for C from Forbh(F). 0 

Remark As shown in [30], the condition of connectedness for the forbidden graphs in 

Theorem 2.27 and Theorem 2.38 is necessary. For example, let F be a graph which is 

disjoint union of two incomparable graphs G and H, i.e., G -t, H and H ++ G. Now 

the subclass Cd of Forbh(F) for d larger than the maximum degrees of both G and 

H, contains both G and H. Thus any bound for Cd admits a homomorphism from F 

and therefore Cd can not be bounded in Forbh(F). 

As a next application we will construct a K5-free bound for the class of planar graphs, 

thereby providing another proof for 2.23 without using the four colour theorem. No- 

tice that in order to find a K5-free bound using Theorem 2.35 we must show that 

~(4,p(5))(G) is bounded for the set of planar graphs. To do this we will define below a 

certain kind of colouring called "diverse colouring". Then we will show, by introduc- 

ing a diverse colouring algorithm, that every planar graph admits a diverse colouring 

using at  most k colours, for some fixed k .  Finally we will show that the colouring 

obtained by the diverse-colouring algorithm is also a (4, P(5))-colouring. 

A theorem of A. Kotzig, which is a consequence of Euler formula for planar graphs, 

will play an important role in our algorithm. Given a graph G and a vertex x of G 

let d(x) denote the degree of x in G. Then Kotzig's theorem sates that: 
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Theorem 2.39 [44] For a given planar graph G, either G contains a vertex of degree 

at most 2, or it contains an edge e = uv with d(u) + d(v) 5 13. 

In order to find a (m, P(k))-colouring of a graph G, we should find a colouring of G 

in which every (k + 1)-chromatic subgraph of G, or equivalently every (k + 1)-critical 

subgraph of G, takes at least m + 1 different colours. In particular to find a K5-free 

bound for the class of planar graphs using Theorem 2.35, we should colour every pla- 

nar graph in such a way that every 5-critical subgraph of it takes at  least 6 different 

colours. This leads us to  a study of 5-critical planar graphs. 

An alternative form of the four colour theorem is to state that "there is no 5-critical 

planar graph". In the absence of the four colour theorem the following lemma will help 

us to achieve our goal of constructing a K5-free bound for the class of planar graphs. 

The proof of this lemma is inherited from the Kempe-chain proof of the five colour 

theorem, but since we have not found this lemma clearly stated in the literature, we 

will include a proof here. 

Lemma 2.40 If G is a 5-critical planar graph then S(G) 3 5. 

Proof. By contradiction, suppose G is a 5-critical planar graph with a vertex x of 

degree 4 or less. If d(x) 5 3 then any 4 colouring of G\x can be extended to a 4 

colouring of G. So we may assume d(x) = 4. Consider a 4 colouring of G\x, since 

this is not extendable to a 4 colouring of G then all the four colours must appear on 

the four neighbours of x. 

Consider a planar drawing of G and let 1, 2, 3, and 4 be the four distinct colours of the 

neighbours of x in a cyclic order. Let xl and x3 be the neighbours of x with colours 

1 and 3 respectively. Also let GI3 be the subgraph of G\x induced by the colours 1 

and 3. Then XI and x3 must be in the same connected component of G13, otherwise 

we will find an extendable 4-colouring of G\x just by exchanging the colours 1 and 3 

only in the component of G13 containing XI. 
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This means that there must be a path connecting XI and x3 which uses only colours 

1 and 3. Similarly there must be a path connecting the other two neighbours of x 

which uses only colours 2 and 4. Obviously these two paths can not intersect in a 

vertex, but they must intersect somewhere. This contradicts the planarity of G. 0 

The next step is to define a diverse colouring: 

Definition 2.41 For given integers k and 1, we say that an 1-colouring c of a given 

graph G is a k-diverse colouring, if, for each vertex x of G, at least min{d(x), k) 

different colours appear on the neighbours of x. A k-diverse colouring which uses at 

most 1 colours will be called a (k, 1)-colouring. 0 

Theorem 2.42 Given an integer k 2 11, every planar graph admits a (k, 5k + 8)- 

colouring. 

Proof. We will prove this by induction on the number of vertices of G. For graphs 

on at most 5k+8 vertices we can colour all the vertices with different colours. Suppose 

we have found a (k,  5k + 8)-colouring for every planar graph on at  most n vertices 

and let G be a planar graph on n + 1 vertices. We may assume G is connected, 

because otherwise (k, 5k + 8)-colourings of the components of G all together will give 

a (k, 5k + 8)-colouring of G. 

If G has a vertex x with d(x) = 1 then any (k, 5k + 8)-colouring of G\x can be ex- 

tended to a (k, 5k + 8)-colouring of G. To see this let y be the only neighbour of x. If 

there are at least k-different colours on the neighbours of y , then any colour different 

from the colour of y will work. Otherwise d(y) 5 k - 1 and we choose a colour which 

has not appeared on y or any of its neighbours, this is indeed possible because there 

are more than k colours available. 

If G does not have a vertex of degree 1 but it has a vertex x of degree 2 then we 

identify x with one of its neighbours, remove the loop and the possible multiple edge. 

We call the new graph Gx. By induction Gx admits a (k, 5k + 8)-colouring c,. Colour 
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all the vertices of G except x with the same colour as in the colouring c,. Notice 

that neighbours of x have taken two different colours, and in order to extend cx to 

a (k, 5k + 8)-colouring of G all we need to do is to choose a colour for x different 

from colours of its neighbours in such a way that the requirement of diversity for the 

neighbours of x still holds. 

For each neighbour y of x, either y already has k different colours on its neighbours or 

d(y) 5 k - 1. In the first case the only restriction for the colour of x ,  coming from y, is 

to have a colour different from the colour of y, (in order to have a proper colouring). 

In the second case, i.e., if d(y) 5 k - 1, the vertex x must take a colour different 

from the colours of y and all of its neighbours. In either of the cases, each neighbour 

of x introduces a t  most k-colours not admissible for x. Since x has two neighbours 

there are maximum of 2k colours not admissible for x, so cx can be extended to a 

(k, 5k + 8)-colouring of G. 

If neither of the previous two cases happens, then 6(G) 2 3 and by Theorem 2.39 

there is an edge e = uv with d(u) + d(v) 5 13. Without loss of generality assume 

d(u) 5 d(v). Therefore d(u) 5 6. Identify u and v, remove loops and possible multiple 

edges and call the new graph G,. Let v' to be the new vertex in G, (obtained from 

identifying u and v) , then d (v') 5 11. By induction G, admits a (k, 5 k + 8)-colouring, 

we denote this colouring by c,. Note that all the neighbours of v' have taken different 

colours (this is because k > 11). 

To find a (k, 5k + 8)-colouring of G, colour every vertex x 41 {u, v) with c,(x) and 

colour v with ce(vr). To complete this colouring all we need is to find an admissi- 

ble colour for u. Notice that all the neighbours of u have already received different 

colours. Let t # v be a neighbour of u, if d(t) > k then t already has k neighbours 

with k distinct colours and the only restriction coming from t is that c(t) be different 

from the colour which we choose for u. 

If d(t) 5 k then the colour we would like to choose for u has to be different from 
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colours o f t  and all of its neighbours. This will remove a t  most k colours from the list 

of available colours for u. Similarly there will be also at most d(v) forbidden colours 

because of the diversity condition for v. In total there will be at most k(d(u) - 1) + 
d(v) = (k - l)d(u) - k + d(u) + d(v) 5 5k + 7 forbidden colours for u. Since there are 

5k + 8 possible colours, we can find an admissible colour for u. 0 

In the proof of the last theorem we introduced an inductive algorithm to find a (k, 5k+ 

8)-colouring of any planar graph. We will call this algorithm k-diverse colouring 

algorithm. In the next theorem we will show that the colouring obtained from the 11- 

diverse colouring algorithm satisfies the condition of the Proposition 2.36 and hence 

provides us with a K5-free bound for the class of planar graphs. 

Theorem 2.43 Let G be a planar graph and c an (11,63)-colouring of G obtained 

from 11-diverse colouring algorithm. Then c has the property that every 5-chromatic 

subgraph of G takes at least 6 diflerent colours. 

Proof. It will be enough to show that every 5-critical subgraph has taken 6 different 

colours. We prove this by contradiction. Suppose this is not true and algorithm fails 

at some point. Let G be the smallest graph for which the 11-diverse algorithm fails, 

i.e., for every graph on at most [V(G)[- 1 vertices the (11,63)-colouring obtained from 

11-diverse colouring algorithm has the required property but the colouring obtained 

for G by this algorithm uses only five colours on some 5-critical subgraph H of G. 

It is easy to see that G does not contain vertices of degree 1 or 2. In fact if b(G) = 1 

or 2 then (11,63)-colouring of G has been obtained from (11,63)-colouring of some 

G, where x is a vertex of degree 1 or 2. But then every 5-critical subgraph of G is 

also a subgraph of G, and therefore takes at least 6 different colours. 

So we may assume b(G) 2 3. Let u and v be the vertices of G as in the algorithm. 

Recall that to obtain the colouring c we basically used an (11,63)-diverse colouring 

of G, and we found an admissible colour for u. By the minimality of G the 11-diverse 

colouring of G, has used at least 6 different colours on any 5-critical subgraph of G,. 
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So H could not be a subgraph of G,, therefore it must contain both u and v. By 

lemma 2.40 degree of u in H must be at least 5. But all the neighbours of u have 

been given different colours. By adding the colour of u itself to this collection we will 

find at least 6 different colours on the vertices of H which is a contradiction. 0 

Notice that this theorem has only been proved for a 11-diverse colouring obtained from 

the 11-diverse colouring algorithm. We do not have a proof for a general 11-diverse 

colouring. 

Theorem 2.44 The class F is bounded by a K5-free graph. 

Proof. Applying Theorem 2.35 and Theorem 2.43 we see that the class F is bounded 

by IT(63,5, K4). Proposition 2.36 shows that this graph is K5-free. 

Some other applications of Theorem 2.35 can be found in the recent papers of P. 0. De 

Mendez and J. NeSetFil, [60] and [61]. In [60] the authors have answered Problem 2.18 

affirmatively, by showing that every triangle-free planar graph admits a k-colouring 

(for some fixed k) in which every odd-cycle takes at least 4 different colours. Also in 

[61] they have generalized their method to prove the following general theorem. 

Theorem 2.45 [61] Let C' be the class of all Kk-free graphs in a minor-closed family 

C of graphs. Then C' is bounded by a Kk-free graph. 

To see the elegance of this theorem compare it with the equivalent form of the Had- 

wiger's conjecture: "Any minor-closed family of Kk-free graphs is bounded by Kk-I". 

2.4 The &graphs 

In this section we further investigate II-graphs in order to have a better understanding 

of them. We find an improved bound for the chromatic number of II-graphs. We also 

introduce bounds on the fractional chromatic number of these graphs. Fractional 

chromatic number has been defined below, but it will be studied in more details in 

Chapter 4. 
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Definition 2.46 An n-set colouring of a graph G is an assignment of n-sets to the 

vertices of G in such a way that any pair of adjacent vertices receive disjoint sets. The 

minimum number of the total colours required in an n-set colouring of G is denoted 

by xn (G). The fractional chromatic number of G, denoted by x (G) , is defined to be 
~n (GI limin f (-1. 0 

Fractional chromatic number is also a monotone graph parameter, a proof of this well 

known fact will be given in Chapter 4. Fractional chromatic number is a difficult 

parameter to calculate, but if G is a vertex transitive graph, then xf(G) is known to 

'v(G)i , where a(G) is the size of maximum independent set, see [23] for a be equal to 

proof of this. 

On the other hand, while the problem of finding core of a graph in general is a difficult 

problem, there are some methods which helps us to find the core of a vertex transitive 

graph. For example, it is a known fact that the number of vertices of the core of a 

vertex transitive graph G, divides the number of vertices of G, see [23]. For these 

reasons our first attempt in this section is to investigate cases when II(n, m, U) is 

vertex transitive. 

Lemma 2.47 Let n and m be any two integers. If U is a vertex transitive graph then 

n(n ,  m, U) is also vertex transitive. 

Proof. Assume U is a vertex transitive graph. We first prove certain pairs of vertices 

of n ( n ,  m, U) can be mapped to each other using an automorphism of II(n, m, U). The 

type of pairs we would like to consider first, are the pairs (A, B) with A = (1, cp) and 

B = ( 1 , ~ ' )  where cp and cp' differ only in one m-subset So of [n]. In other words we 

may assume cp (3) = cpl(S) for every S containing 1, except So = {1,2, . . . m) . Let 

cp(So) = x and cpl(So) = y, where x # y. 

To prove the existence of an automorphism O that maps A to  B, notice that since U 

is a vertex transitive graph there is an automorphism 0 of U which maps x to y (i.e., 

O(x) = y). Now we may define the automorphism O of U(n, rn, U) this way: 
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It is easy to check that O is a one to one and onto homomorphism of IT(n, m, U) to 

II(n, m, U) , therefore it is an automorphism of II(n, m,  U) . Moreover by the choice of 

A and B we find that @(A) = B. 

Now consider a pair {C, D) of the vertices of II(n, m,  U) where C = (1, cp) and 

D = (I,+), with no restriction on cp or +. Note that cp and q5 are defined on the 

same m-subsets of [n]. Assume cp and + differ in k places, then it will be enough to 

repeat the previous argument k times to  find an automorphism of IT(n, m, U) which 

maps C to D. 

To complete our proof it will be enough to show that (1, cp) can be mapped (using an 

automorphism of II(n, m, U)) to a vertex of type (2, +). But this becomes an obvious 

fact by considering the automorphism of II(n, m, U) induced by any permutation of 

{1,2, - - n)  which maps 1 to 2. 

The second lemma concerns the chromatic number of the IT-graphs. The definition of 

IT(n, m, U) implies a natural n-colouring, therefore x(II(n, m, U)) <_ n. The following 

easy lemma improves this bound in some cases. 

Lemma 2.48 For any two positive integers m and n we have x(II(n, m, U)) 5 r$lX(U). 

Proof. Let c be a x(U)-colouring of U using the colours {1,2, - - . x(U)). The fol- 

lowing is then a proper colouring of II(n, m, U) which uses at most ( 1 5 1  + l)x(U) 

colours. 

2-1 2-1 2-1 
C((i, cp)) = 1-Jx(U) + c(cp(S)), where S = { 1-Jm + 1, - - - 1-]m + m). 

m m m 

To see this is a proper colouring let A = (2,  cp) and B = (j, 4) be two adjacent ver- 

tices of II(n, m, U). If i?] # then A and B obviously receive different colours. 
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Otherwise 1% ] = iz] and the m-subset S = { 1% J m + 1, . . . m + m) contains 

both i and j. But then C(A) - C(B) = c(p(S)) - c(4(S)) # 0 because (i, 9 )  - (j, 4)). 

To complete the proof observe that L%] + 1 = [El holds for every pair of positive 

integers, m and n. 0 

Example 2.49 As an example we have x(IT(4n, 272, K,)) 5 2n. This bound improves 

the trivial bound of 4n. 0 

Our last lemma in this section is about the fractional chromatic number of the IT- 

graphs. It can be easily seen from the definition that fractional chromatic number is 

always bounded by the chromatic number, therefore Lemma 2.48 naturally provides 

an upper bound of [El x(U) for the fractional chromatic number xp (II(n, m, U)), but 

since fractional chromatic number admits non integer values we can improve this 

bound to :x(U). This is done in the following lemma. 

Lemma 2.50 The fractional chromatic number of IT(n, m, U) is smaller than or equal 

to Zx(U).  

Proof. Let c be a x(U)-colouring of U. We define an assignment A of (::;)-sets to 

the vertices of IT(n, m, U) as below: 

We first claim that A is an (;:;)-set colouring of n (n ,  m, U). To see this let a = (i, 9) 

and b = (j, 4) be two adjacent vertices in H(n, m, U). Then A(a) r l  A(b) = 0 because 

for any S which contains both i and 3, y(S) and 4(S) are adjacent vertices in U and 

therefore c(cp(S)) # c($(S)). 

To complete the proof we show that A uses at most ( ; )X(~)  colours, but this is clear 

because there are maximum of (;) choices for S and x(U) choices for c((o(S)). 
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The K5-free bound for the class of planar graphs we provided in the last section, has 

a large number of vertices. The following problem, if answered without using the four 

colour theorem, would provide us with a better K5-free bound which by Lemma 2.50 

would have a fractional chromatic number smaller than or equal to y. Notice that 

the best known bound for the fractional chromatic number of planar graphs without 

using the four colour theorem is that it is strictly smaller than 5. 

Problem 2.51 Without using the four colour theorem, show that every planar graph 

can be coloured using 6 colours in such a way that every 5-chromatic subgraph receives 

all 6 diflerent colours. 

2.5 On Hadwiger's Conjecture 

Hadwiger's conjecture was introduced in the introduction of this chapter, where we 

also introduced a reformulation of the conjecture (from [60]), in our terminology. 

This reformulation splits the conjecture into two different conjectures, Conjecture 

2.10 and Conjecture 2.11. Conjecture 2.10 has been introduced in [60] as a weaker 

form of Hadwiger's conjecture. In this section we show that Conjecture 2.11 is implied 

by Conjecture 2.10 and therefore prove that Hadwiger's conjecture is equivalent to 

Conjecture 2.10. 

Theorem 2.52 Suppose every minor-closed family of graphs contains a maximum. 

Let C be any minor-closed family of graphs with a maximum element H .  Then H 

must be homomorphically equivalent to a complete graph. 

Proof. We will prove this by contradiction. Assume this is not true for some minor- 

closed families. Let G/Kk be the class of all graphs which do not contain Kk as a 

minor. By Lemma 2.8 any proper minor-closed family is contained in some G/Kk. 

Let k be the smallest integer such that G/Kk contains a minor-closed subfamily, C, 

for which the statement of the theorem does not hold. Note that k must be greater 

than or equal to  7 (because for the smaller values of k Hadwiger's conjecture has been 
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verified). 

Let H be a maximum of C. Then the class formed by H and all of its minors is a 

finite minor-closed family of graphs for which the statement of the theorem also does 

not hold. Because of this finiteness we may assume C is a minimal subfamily of G/Kk 

with respect to having a maximum, H, which is not homomorphically equivalent to 

a complete graph. By the minimality, C must be formed only by the family of all the 

minors of H. 

By the choice of 5, we know KkP1 must also be in C, otherwise C C G/Kk-l and we are 

done. Since H is a maximum of C, and Kk-1 is an element of C we have Kk-l + H. 

Thus KkW1 must be also a subgraph of H. Let K be the subgraph of H which is 

isomorphic to KkW1. 

We first claim that every vertex of K must be adjacent to a vertex of H which is 

not in K. To see this, suppose there is a vertex x of K which is only adjacent to 

the k - 2 vertices of V(K)\x. By the minimality of C, the graph Hz obtained from 

H by deleting the vertex x must be (k - 1)-colourable. Otherwise H, with all of 

its minors form another minor closed family for which the maximum is not homo- 

morphically equivalent to a complete graph. This family is properly contained in C, 

which contradicts the minimality of C. Since x is adjacent to  k - 2 vertices, any k - 1 

colouring of Hz can be extended to a k - 1 colouring of H. This implies that H must 

be homomorphically equivalent to  Kk-l, which is a contradiction. 

Our next claim is that the induced subgraph H' of H on V(H)\V(K) is connected. 

Again by contradiction assume it has parts Hi and Hi with no edges from Hi to H;. 

Then by a similar argument as before each of the subgraphs induced on V(H:) uV(K) 

and V(Hi) uV(K) must be (k-  1)-colourable. But then just a permutation of colours 

will produce a k - 1 colouring of H. Thus H must be homomorphically equivalent to 

Kk-1. 
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To complete the proof, note that because H' is connected, by contracting all the edges 

in H' we will obtain a single vertex which must be adjacent to all the vertices of K. 

Therefore Kk is a minor of H, but this contradicts the choice of C and H. 0 

This theorem proves that the validity of Hadwiger's conjecture for all graphs is equiv- 

alent to the validity of Conjecture 2.10 for all minor-closed classes. For the sake of 

completeness we give a proof of this equivalence in the following theorem. 

Theorem 2.53 The following two statements are equivalent: 

(a) Every graph G with x(G) = k contains Kk as a minor. 

(b) Every proper minor-closed family of graphs contains a maximum with respect to 

homomorphism order. 

Proof. Suppose (a) is true, and let C be a proper minor-closed family of graphs. 

Then by Lemma 2.8 the chromatic number of the graphs in C is bounded. Let k be 

the maximum chromatic number of the graphs in C and let G be a graph in C with 

the chromatic number equal to k. Then by (a ) ,  G contains Kk as a minor, so Kk is 

in the class, and therefore C contains a maximum. 

For the other side assume (b) is true, and let G be a graph with x(G) = k. Then the 

class CG which is formed from G and all of its minors has a maximum. By Theorem 

2.52 such a maximum can be chosen to be a complete graph KT. But since G -+ KT, 

r > x(G) and therefore G contains Kk as a minor. 0 

Note that the statement (b) of the Theorem 2.53 has been proved for an important 

family of minor closed classes of graphs. Given a surface S, let Cs be the class of 

all graphs embedded on S. Then it is known that for every surface S, the class Cs 

is bounded by the maximal complete graph in Cs. The most difficult case of this 

statement is to prove it for the simplest surface, the sphere. This case is equivalent 

to the four colour theorem. 
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For any other surface, (that is a surface S with Euler characteristic E < 2), it was 

proved by P. J. Heawood that any graph embedded on S has chromatic number at 

7fm~. Then in a series of work from 1891 to 1974 it was proved most H(E) = 

by L. Heffter, H. Tietze, G. Ringel and J. W. T. Youngs that any surface of Euler 

characteristic E, except the Klein bottle, admits an embedding of a complete graph on 

H(E) vertices. For the Klein bottle the problem is settled by P. Franklin who proved 

that any graph embedded on the Klein bottle is 6-colourable, (note that Klein bottle 

has Euler characteristic 0, and H(0)  = 7). We refer to [38] and [49] for further details 

and proofs. 

It will also be of interest to find an independent proof for Conjecture 2.11 for - a  

particular minor closed class of graphs. We believe this should not be very difficult 

to achieve. A simple proof of the following Proposition, due to P. Hell, 1341, is an 

evidence for our claim. 

Proposition 2.54 1341 If the class P of planar graphs i s  bounded by a planar graph 

H,  t h e n  H mus t  be homomorphically equivalent t o  K4. 

A proof of this proposition can be found in the next chapter, (see the second proof of 

Theorem 3.37). 

Note that in the proof of the Theorem 2.52 we only used the weaker assumption 

that every minor closed family consisting of a graph and all of its minors contains a 

maximum. Using this reformulation of the Theorem 2.52 it is easy to see that the 

following is yet another reformulation of Hadwiger7s conjecture. 

Conjecture 2.55 Let G be a graph and let H1 and H2 be two minors  of G, then  

{HI, H2) i s  bounded by a minor  of G. 



Chapter 3 

Homomorphisms and Planarity 

3.1 Introduction 

In this chapter we shall consider some of the old colouring problems for planar graphs 

in the context of graph homomorphisms. Sometimes we will need a specific planar 

drawing of a planar graph (multi-graph); for this purpose a planar graph with an 

specific planar drawing will be called a plane graph (multi-graph). Given a plane 

multi-graph G, the dual of G is defined to be a multi-graph whose vertex set is the 

set of faces of G, and two vertices are joined by an edge if they share an edge in G. 

One classic result on colouring of planar graphs, is the celebrated theorem of Grotzsch. 

In the previous chapter we stated Grotzsch's theorem in two ways, and there are still 

different ways of stating this theorem, each leading to a new subject of study in the 

theory of colouring of planar graphs. One of the ways of stating Grotzsch theorem 

is to say that "every planar graph of girth at least 4 admits a homomorphism to 

C317. The following conjecture is then a generalization of Grotzsch theorem. This 

conjecture which is a nice example of an open problem in the theory of colouring of 

planar graphs, has recently attracted the attention of many graph theorists. 

Conjecture 3.1 Every planar graph of girth at least 4k admits a homomorphism to 

C2k+l. 
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This conjecture is in fact a restricted version of a conjecture of Jaeger [20], which will 

be described (in terms of flows) in Section 3.3. 

In support of Conjecture 3.1, it was proved by A. Galluccio, L. Goddyn and P. Hell 

that every planar graph of girth at  least lok - 4 admits a homomorphism to CfLkfl, 

see [21]. It was also conjectured by P. Hell that the condition of "high girth" in 

their theorem can be replaced by the weaker condition of "high odd grith". Hell's 

conjecture was proved by W. Klostermeyer and C.Q. Zhang in the following form: 

Theorem 3.2 [42] Every planar graph of odd girth at least 10k - 3 admits  a homo- 

morphism t o  C2k+l. 

Their technique in proving this theorem was to show that the crucial cycles in C2k+l- 

colouring of planar graphs with high odd girth are the facial cycles, then they in- 

troduced a lemma so called "Folding lemma". Folding lemma helps to find a ho- 

momorphic image of any given plane graph, without reducing the odd girth, while 

the image is still a plane graph and has the additional important property that ev- 

ery facial cycle is of the length of the odd girth. The following is the full strength 

of the Folding lemma, but we will only use the weaker form stated below as a corollary. 

Folding lemma [42] Let G be a plane graph with odd girth 29 + 1. If C = 

vovl- . . v,-lvo is a facial cycle of G with r # 2g+ 1, then there is an i E { O , l ,  - . r - 1 )  

such that the graph G1 obtained from G by identifying vi-1 and vi+l (indices being 

taken modulo r )  is still of odd girth 29 + 1. 

Corollary 3.3 Let G be a plane graph with odd girth at least 29 + 1. T h e n  there is  

a homomorphic image G' of G, where GI i s  also a plane graph, the  odd girth of GI is  

equal t o  29 + 1, and moreover every facial cycle of G' i s  a (29 + 1)-cycle. 

Proof. If every facial cycle of G is a (29 + 1)-cycle, then there is nothing to prove, 

otherwise choose a facial cycle of length different from 29 + 1 and apply the Folding 

lemma. Repeat this process till there is no facial cycle of length different from g. 
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C. Q. Zhang has also proposed a strengthening of Jeager's conjecture, cf. Section 3.3. 

The following conjecture is Zhang's strengthening of Jaeger's conjecture, restricted to 

the set of planar graphs and stated in the dual form. 

Conjecture 3.4 Every  planar graph G of odd girth a t  least 4k + 1 admits  a homo- 

morphism t o  C2k+1. 

The first case in this conjecture, i.e., the case k = 1, is equivalent to the Grijtzsch 

theorem. For k > 2 the best result in support of this conjecture is due to X. Zhu. 

Using the folding lemma and the so-called discharging method (see e.g. [49]), Zhu im- 

proved the condition of high odd girth in Theorem 3.2 from 10k-3 to 8k-3, (see [83]). 

On the other hand examples provided by M. Albertson and E. Moore in [I] and M. 

DeVos [12] show that the conditions of girth at least 4k in Conjecture 3.1 and odd 

girth at least 4k + 1 in Conjecture 3.4, if true, are the best possible. 

DeVos' example of a planar graph of odd grith 7 which does not map to C5 has been 

depicted in Figure 3.1. For general construction of planar graph of odd girth 4k - 1 

which does not map to C2k+1, one can take a (4k - 1)-cycle with a centeral vertex 

which is joined to every vertex of the (4k-1)-cycle with a disjoint path of length 2k- 1. 

To continue further we would like to restate Conjecture 3.4 in our framework of ho- 

momorphism and bounds. Recall that P2g+l represents the class of planar graphs of 

odd girth at least 29 + 1. 

Conjecture 3.4 The class P 4 k + l  is bounded by C2k+l. 

In view of the difference between the odd girth of the proposed bound (i.e., 2k + 1) 

and the minimum odd girth of the members of Pdk+1 (which is 4k + 1) the following 

conjecture has been posed in [50]. 

Conjecture 3.5 T h e  class P2kS1 i s  bounded by a graph H of odd girth 21c + 1. 
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Figure 3.1: DeVos' Example 

For k = 1, this conjecture claims that the class of planar graphs is bounded. This 

claim is easy to see by Euler's formula. For k = 2, the conjecture is a reformulation 

of Problem 2.18, and has been answered positively in [60]. It remains open for k 2 3. 

Our main propose in this chapter is to study Conjecture 3.5. On the one side, for 

k 2 2, we will show that if F'2k+l admits a bound H2A+1 of odd girth 2k + 1, then 

Hzk+l cannot be planar, concluding that the class F'2k+l does not contain a maximum 

except when k = 1. On the other side we will strengthen this conjecture by proposing 

some Cayley graphs to be the bounds we are looking for. This will turn out to be a 

natural generalization of the four colour theorem. Then we will show that this new 

conjecture is equivalent to  an special case of a well known conjecture of P. Seymour 

in the generalization of an equivalent form of the four colour theorem. 

To reach our goals we need to have some introductory sections on the theories of edge- 

colouring, flows and Cayley graphs. We will also include a section on Tait's original 

work on the four colour problem, as we believe his work on this problem is the origin 

of some of these theories and conjectures. The section on edge colouring will also 
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include a new proof of the fact that the Petersen graph is not three-edge colourable. 

3.2 Edge colouring of graphs 

A proper edge colouring of a graph G, or simply an edge colouring of G, is an as- 

signment of colours to the edges of G in such a way that every pair of edges with 

a common end vertex receive different colours. The minimum number of colours re- 

quired for an edge colouring of G is called the edge chromatic number of G and is 

denoted by xf(G). One of the most important results in the theory of edge colouring 

of graphs is the following theorem of Vizing. 

Theorem 3.6 [79] Given a simple graph G with maximum degree A we have A 5 

xf(G) < A + 1. 

With a strong theorem like this, the only basic problem left in the theory of edge 

colouring of simple graphs is to decide whether a given graph G is of type I (i.e., 

xf(G) = A) or if it is of type 11 (i.e., xf(G) = A + 1). However this question turns 

to be a difficult problem for A > 3, in fact as it has been proved by I. Holyer in [36], 

that even deciding whether a given 3-regular graph is of type I or of type 11 is an 

NP-complete problem. 

Notice that the upper bound of A + 1 in Theorem 3.6 only applies to simple graphs; 

in the case of graphs with multiple edges if p is the maximum multiplicity then the 

correct upper bound is A + p. However the lower bound stays the same for both 

simple graphs and multi-graphs. 

The problem of edge chromatic number is closely related to the theory of matchings 

and to the 1-factorization problem, specially when it is restricted to the family of 

regular graphs. In fact a regular graph is of type I if and only if it admits a 1- 

factorization. One natural obstacle which prevents an r-regular graph G from being 

of type I is a small odd cut. The concepts of "cut" and "odd cut" are defined below. 
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Definition 3.7 An edge cut of a graph, or simply a cut, is a partition of the vertices 

of G into two sets X and Y. Such an edge cut is normally denoted by (X, Y). The 

set of all edges between X and Y will be denoted by [X, Y]. The size of a cut (X, Y) 

is the number of edges in [X, Y] and is denoted by I[X, Y]]. A graph is called k-edge 

connected if it contains no cut of size smaller than k. An odd cut of G is a cut (X, Y) 

where at least one of the parts, X or Y, contains an odd number of vertices. 0 

Notice that an odd cut has been defined in general, and G does not have to be a 

regular graph. This definition can be applied even to the multi-graphs. Also note 

that even though the name "odd cut" suggests that an odd cut should contain an odd 

number of edges, this is not true in general. However sometimes this is the case. The 

following easy lemma establishes one of those cases. This lemma will be useful for us 

later in this chapter. 

Lemma 3.8 1701 Let G be an r-regular multi-graph with r being a positive odd integer 

Then a cut (X,Y) is an odd cut if and only if it is of odd size. 

Proof. Let (X, Y) be a cut with an odd number of edges, then the subgraph Gx 

induced by X has odd number of even degree vertices. But the number of odd degree 

vertices is always even, therefore there is an odd number of vertices in X, i.e., (X, Y) 

is an odd cut. 

Conversely if (X, Y) is an odd cut then by the definition one of the parts X or Y, in 

this case both of them, must have an odd number of vertices. Therefore the subgraph 

Gx of G induced on X, has an odd number of even degree vertices. On the other 

hand the number of even degree vertices in Gx is congruent to I [X, Y]( modulo 2. So 

(X, Y) must be of odd size. 

The following folklore lemma shows the importance of the odd cuts. 

Lemma 3.9 Let G be an r-regular multi-graph. If G contains an odd cut of size 

smaller than r then G is not r-edge colourable. 
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Proof. Let G be an r-regular multi-graph and let (X, Y) be an odd cut of G with 

X having an odd number of vertices. If G is r-edge colourable then every colour class 

(which is a perfect matching) must meet the edge set [X, Y]. Therefore [X, Y] must 

contains at least r edges with different colours. 0 

This lemma solves the problem of edge chromatic number of an r-regular graph with 

an odd cut of size smaller than r .  However the problem remains very difficult on 

the rest of r-regular graphs, so these graphs deserve their own name. Following the 

notation introduced by P. D. Seymour in [70], we will call them r-graphs. 

Definition 3.10 An r-regular graph which does not contain any odd cut of size 

smaller than r is called an r-graph. In a similar vein we define an r-multi-graph to be 

an r-regular multi-graph which does not contain an odd cut of size smaller than r .  0 

Unfortunately small odd cuts are not the only obstacles for a regular graph to be of 

type I, in other words an r-graph can be either of type I or type II. A classical 

example of an r-graph of type 11 is the Petersen graph. This graph which has been 

a counter example to many conjectures was introduced by J. Petersen as an example 

of a 3-regular 3-connected graph which is not 3-edge colourable. 

The Petersen graph and its properties have been studied during more than a century; 

there has been even a book written about it. But most known proofs for the fact that 

it is not 3-edge colourable are based on case studies. The following proof is a simple 

counting argument based on the symmetries of the Petersen graph: 

Proposition 3.11 The Petersen graph is not Pedge-colourable. 

Proof. The Petersen graph is usually drawn as an outer 5-cycle, an inner 5-cycle 

where edges join vertices that are cyclically two apart, and a matching joining cor- 

responding vertices on the two cycles, drawn as depicted in Figure 3.2. Assuming a 

proper 3-edge-colouring, we obtain a contradiction by showing that each of the three 

colours must be used twice on the inner cycle, which has only five edges, a contradic- 

tion. 
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Figure 3.2: The Petersen graph 

Since the outer cycle is of odd length, each of the three colours appears on it. Let 

uv be an edge on the outer cycle with colour a. In a proper 3-edge-colouring of a 

3-regular graph, each colour must appear at each vertex. Since a can not appear on 

ux or vy, where x and y are the neighbours of u and v on the inner cycle, and xy is 

not an edge, colour a appears on distinct edges of the inner cycle at x and y. 0 

Constructing simple r-graphs of type 11 does not seem to be an easy problem for 

general r. To our knowledge the best work in this direction is due to N. Biggs who 

proposed the following generalization of Petersen graph (the odd graphs) to be the 

examples of simple r-graphs. 

Definition 3.12 Let S be any (2k + 1)-set. The odd graph Ok is a graph whose 

vertices are the k-subsets of S, and the edge set of Ok has been formed by exactly 

those pairs of vertices A and B for which A fl B = @. 0 

Notice that O1 is isomorphic to K3 and O2 is isomorphic to the Petersen graph. 

It is easy to check that Ok is a (k + 1)-regular (k + 1)-edge connected graph, and 

therefore it is a (k + 1)-graph. The following conjecture was posed by N. Biggs. 
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Conjecture 3.13 [6] For a given positive integer k, the odd graph Ox is a (k + 1)- 
graph which is not (k + 1)-edge colourable. 

3.3 Flows 

In this section we will do a short review of the concept of "flows" on graphs. To define 

a flow we must consider oriented graphs, but as we will see the existence of a flow 

only depends on the underlying simple graph. In an oriented graph G, an edge which 

is oriented from x to y will be denoted by (x, y). 

Definition 3.14 Let I? be an abelian group and G be a graph whose edges have been 

oriented in an arbitrary way. An assignment f : V(G)2 -, I' is a called a I?-flow if 

f (u, V)  = - f (v, u), and for every vertex v of G we have: 

where N(v) is the set of neighbours of v in the underlying simple graph. Moreover, 

for a subset B of r, we say f is a (r, B)-flow if for every e E E(G), f (e) E B. 0 

Notice that f is a function on V(G)2 rather than just the edge set of G. Therefore if 

f satisfies (@) for one orientation of G, then it satisfies (m) for every orientation of 

G. Thus we may speak of flow on a simple graph. 

This definition can be generalized to a definition of flows of multi-graphs. Let p be the 

maximum multiplicity of a multi-graph G, where every edge is indexed by a number 

i, 1 5 i < p. Then we define f : [p] x V(G)2 -+ I' t o  be a I?-flow if f satisfies (43) and 

if for every oriented edge (x, y) with index i,  we have f (2, x, y) = - f (i, y, x). 

If we let I?* = r\{O), then (r, I?*)-flow is the standard concept of nowhere zero I?-flow. 

A k-flow is a (Z, [k])-flow. If I? = Z and B = {dl d + 1 , .  - , k - d) then (I?, B)-flow is 

known as a ( k ,  d)-flow in some literature. 



CHAPTER 3. HOMOMORPHISMS AND PLANARITY 
I 

Given a graph G, let fl  be a (Ti,  Bl)-flow on G and f2 a (r2, B2)-flow on G. Then f = 

f1 x f2 ,  the product of fi and fil defined by f (e) = (fi(e), f2(e)) is a (I?, x r 2 ,  Bl x B2)- 
flow on G. In particular if fl and f2 are both nowhere zero flows then fl x f 2  is also 

a nowhere zero flow. Products of a set of flows fil 2 E I, are defined analogously. 

Given an orientation D of a simple graph G, and a subset X of V(G), let X+ denotes 

the set of edges (x, y) with x E X and y $Z X.  Similarly we define X-  to be the set of 

edges (y, x) with y $ X and x E X. From (m) it is easy to see that for every subset 

X of V(G) we have: 

This, in particular implies that if there is an edge cut (x, y) of size one with e = xy 

being the only edge in [X, Y], then for any flow f on G, f (x, y) must be zero. In other 

words, a graph which contains a cut of size one does not admit a nowhere zero flow. 

Intuitively speaking, this is dual to the concept of colouring, where a graph with a 

loop does not admit a proper vertex colouring. 

Let G be a plane multi-graph and D be an orientation of G. Let F = {Fl, F2, .  - - Ff) 

be the set of faces of G. Every edge e = xy of G is incident with two faces, say Fi 

and F j ,  of G. We define e* = FiFj to be the dual of el moreover if Fi is on the right 

side of (x, y) then we orient F,Fj from F, to Fj. Then dual of G is now defined to be 

the multi-graph G* = (F, E*), where E* = {e*le E E(G)). The orientation induced 

by D on the dual graph G* will be denoted by D*. 

This concept of dual will allow us to show that in the case of planar graphs, flows are 

the dual concepts of vertex colourings. To see this consider a plane graph G with an 

orientation D,  and let f be a r-flow on G. Then we will define below a Irl-colouring 

of the dual graph G*. This colouring will be called the tension arising from f and 

will be denoted by Tf . 
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To define Tf we first define the assignment g : E(G*) + by g(e*) = f (e), where 
e* is oriented by D*. Then we choose an arbitrary vertex v of G* and let Tf(v) = 0, 

for any other vertex u we pick a path e;5er el* from u to v in the underlying simple 

graph G*, and let Ti(u) = g(ef). It is a well known fact that Tf is well defined, 

an interested reader can find a proof in any text book on graph theory. It is easy 

to see that Tf is a proper vertex colouring of G* if and only if f is a nowhere zero flow. 

In fact W. T. Tutte proved that a plane graph G, admits a k-colouring if and only if 

the dual G* admits a Ic-flow. It was also proved by Tutte that a multi graph admits a 

k-flow if and only if it admits a (Zk, Zi)-flow. These two theorems of Tutte, together 

with the four colour theorem imply the next theorem, but for the sake of completeness 

we will include a proof of this special case. 

Theorem 3.15 [77] Every 2-edge connected planar multi-graph admits a nowhere 

zero Z4-flow. 

Proof. Let G be any 2-edge connected planar multi-graph. Then the dual G* of G 

is a planar multi-graph with no loop, and therefore by the four colour theorem it is 

4-colourable. So we may use the elements of Z4 to colour the vertices of G*. This is 

in fact a four-colouring of the faces of G, using the four elements of Z4. Now choose 

an arbitrary but fixed orientation for all the edges of G. For every edge e define f (e) 

to be the difference between the colour of the left face and the right face of e. This 

is a Z4-flow because in the sum CUE,(,) f (u, a) the colour of every face count twice, 

once with a positive sign, once with a negative sign. And it is a nowhere zero flow 

simply because the colouring was proper. 0 

Unfortunately the duality between vertex colouring and flows does not extend to the 

class of non planar graphs. In fact it was conjectured by Tutte, that every bridgeless 

graph admits a 5-flow, and it was proved by P. D. Seymour that every bridgeless 

graph admits a 6-flow. It seems that a better way of extending the nice properties of 

flows on planar graphs to general graphs, is using the concept of (I', Bj-flow with a 

much more restricted B. The following conjecture of F. Jaeger is a good example of 

this. 
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Conjecture 3.16 [37] Every 4k-connected graph udmits a (2k + 1, k)-BOW. 

Let G be a planar graph and let G* be the dual of G. Then it is easy to check that 

G is 4k-edge connected if any only if G* is of girth at  least 4k. Assume G admits 

a (2k + 1, k)-flow f .  It is not hard to see that the tension Tf is a C2k+l-colouring 

of G*. Conversely, any C2k+1-colouring of G* induces a (2k + 1, k)-flow on G. This 

proves that Conjecture 3.16, restricted to the class of planar graphs, is equivalent to 

Conjecture 3.1. 

Conjecture 3.16 relates the problem of the existence of a (2k + 1, k)-flow to the size of 

smallest cut in G. The following strengthening of the conjecture, introduced by C. Q. 

Zhang, suggests that in this relation between (2k + 1, k)-flows and cuts the important 

cuts are the ones with an odd size. 

Conjecture 3.17 [82] Let G be a graph which does not contain any cut of odd size 

smaller than 4k + 1. Then G admits a (2k + 1, k) -flow. 

It can be seen in a similar vein that this conjecture, restricted to the class of planar 

graphs, is equivalent to Conjecture 3.4. 

3.4 Tait's statement 

While Kempe's chain method was believed to be a correct proof for the four colour 

problem, Tait, another mathematician of the time, was trying to apply different 

methods on the problem. He discovered a certain algebraic structure in the set of 

4colourings of the faces of a planar graph, when the colour set is chosen to be the 

integer group on base 4, Z4. He showed that the four colour theorem can be restated 

as below, however the proof he offered for this statement was not correct. 

Theorem 3.18 [73] The following two statements are equivalent: 

1 Every planar graph is 4-colourable. 
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2 Every planar 3-multi-graph is 3-edge colourable. 

Statement 2 of the Theorem 3.18 is known as Tait's statement. A proof of this the- 

orem, with a generalization, will be given later (see Theorem 3.27). To recognize 

the importance of Tait's statement notice that it is the origin of the theory of edge 

colouring of graphs. Also the ideas of proving the equivalence in Theorem 3.18 were 

the first steps on introducing the theory of flows on graphs. 

Tait's statement has been, in addition to introducing these theories, a reference for 

many generalizations of the four colour problem. Tait himself was the first one to gen- 

eralize his statement. He thought the condition of planarity is not as important as the 

other conditions, and therefore he claimed that "every 3-graph is 3-edge colourable". 

But J. Petersen disproved this generalization by introducing a 3-graph which is not 

3-edge colourable. This counter example has been named after Petersen. In the pre- 

vious section we saw a proof of the fact that Petersen graph is not 3-edge colourable. 

A comprehensive study of Tait's statement was done by W. T. Tutte who developed 

the concept of the flows on graphs to a full theory. He observed that the structure 

of the Petersen's counterexample is essentially needed in any example of a 3-graph 

which is not 3-edge colourable. Therefore he conjectured that: 

Conjecture 3.19 [78] If a 3-graph G does not admit a 3-edge colouring then it must 

contain Petersen graph as a minor. 

This conjecture has been proved by N. Robertson, P. D. Seymour and R. Thomas, 

but only the first step of the proof has so far been published, [67]. 

The next generalization of Tait's statement we would like to talk about is the following 

conjecture, which we believe was introduced by P. D. Seymour. 

Conjecture 3.20 Every planar r-multi-graph is r-edge colourable. 
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This conjecture is not only about simple graphs, here planar graphs are allowed to 

have multiple edges but no loops. In fact due to the Euler formula there are no 

r-regular planar graphs for r 2 6 and therefore the conjecture make sense only for 

graphs with multiple edges. 

This conjecture is a special case of a conjecture of P. Seymour, introduced in [71]. 

There are also various forms of strengthening of the conjecture. To our knowledge, 

the most general form of the conjectures, that imply Conjecture 3.20, is due to L. 

Goddyn, see [22]. 

The latest progress on Conjecture 3.20 is due to B. Guenin who has proved the -fol- 

lowing two cases of the conjecture by the discharging method and applying induction 

on r ,  therefore using the case r = 3 which is equivalent to the four colour theorem. 

Theorem 3.2 1 [28] Every planar 5-multi-graph (4-multi-graph) is 5-edge colourable 

(4-edge colourable, respectively). 

This theorem will be used in Section 3.6. 

A supporting evidence for Conjecture 3.20 can be obtained from a general theorem 

of M. De Vos and P. D. Seymour. To introduce their result we need some more defi- 

nitions and more notation. 

A graft is a multi-graph G, together with a subset of vertices, T, of even cardinality. 

A T-cut of G is an edge cut which separates T into two sets of odd size. The size of 

the smallest T-cut is denoted by r(G).  A T-join of G is a subgraph H of G with the 

property that every vertex of x E V(G) has an odd degree in H if and only if it is in 

T. The maximum number of edge disjoint T-join subgraphs of G is denoted by v(G). 

It is easy to check that r (G) > v(G). It was shown by M. De Vos and P. D. Seymour 

that v(G) 2 ;r(G); they have also shown that in the special case when T is the set 

of all the odd degree vertices of G this inequality can be improved. 
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Theorem 3.22 [14] Let G be a graft with T = {vlv E v ( G ) ,  d(v) is odd). Then 

v(G) 2 7(G). 

Given a multi-graph G we say a subgraph H of G is an odd spanning subgraph if 

every vertex of G has an odd degree in H. Therefore a perfect matching is an odd 

subgraph with the minimum number of edges. 

If every vertex of G is of odd degree then an important property of an odd spanning 

subgraph of G is that it intersect every odd cut of G. In this case an odd spanning 

subgraph is equivalent to a T-join of the graft G with T = V(G). The following then 

is an special case of Theorem 3.22: 

Theorem 3.23 Every (2k+ 1)-multi-graph contains at least k edge disjoint odd span- 

ning subgraphs. 

Conjecture 3.20 claims that every planar (2Ic-t 1)-multi-graph can be decomposed into 

2k + 1 odd spanning subgraphs. Theorem 3.23 guarantees the existence of at  least Ic 

such edge disjoint subgraphs. 

3.5 Cayley graphs 

Let be an additive group and S a subset of I' closed under taking inverses. Then 

the Cayley graph C(r ,  S )  is defined to be a graph whose vertex set is r and whose 

edge set is formed by those pairs of vertices x, y for which x - y E S .  Note that since 

S is closed under taking inverses, C(r, S) is a simple graph. 

Let k 2 1 and I' = Zi be the k-dimensional group over Z2. Let S be the set of vec- 

tors with exactly two circularly consecutive Is, i.e., S = {sl = ( I l l ,  0,0, . . - 0), s2 = 

(0 ,1 ,1 ,0 ,0 , . . -O) , - - . sk  = (1 ,0 ,0 , - . -0 , l ) ) .  This set is closed under taking inverses 

because -si = si. The Cayley graph C(r, S) has two isomorphic connected compo- 

nents. The set of vertices with an even number of 1's induces one component, and the 

set of vertices with an odd number of 1's induces the other component. We use the 
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notation Hk to denote the graph which is isomorphic to either of the two components 

of C(;Z$, S). 

The graphs HI, H2, and H3 are respectively isomorphic to Kl, K2, and K4. In gen- 

eral, Hk is a bipartite graph for all even values of k .  The graph H5 is well known, 

independently in two different areas. In Ramsey theory, it was introduced by R. E. 

Greenwood and A. M. Gleason in [24], where the authors used this graph to partition 

the edge set of K16 to three triangle-free subgraphs. Then in [40] J. G. Kalbfleisch 

and R. G. Stanton proved that the only way to colour the edges of K16 using 3 colours 

without producing a monochromatic triangle is to have each colour class isomorphic 

to H5. Thus the graph is called the Greenwood-Gleason graph in some references 

such as [8]. 

It is also sometimes called the Clebsch graph because it is one of the few known 

triangle-free strongly regular graphs, and was introduced by Clebsch for this purpose 

see 1231 for more details. In the next section we will show that H5 is also a bound for 

P5, and that this statement is a direct generalization of the four colour theorem. But 

we should first introduce some of the properties of these Cayley graphs. 

Lemma 3.24 The graph H2k+1 has the following properties. 

(a) It is 2k + 1 regular. 

(b)  It has edge chromatic number equal to 2k + 1. 

(c) It is of odd girth 2k + 1. 

Proof. The statements (a) and (b) are obvious, since S has 2k + 1 elements, and 

each s E S defines a perfect matching on Hzk+l, where every vertex x is matched to 

s + x. (This is a matching since 2s = 0.) The corresponding edge colouring will be 

called the canonical edge colouring of H2k+l 
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Figure 3.3: Greenwood-Gleason-Clebsch graph 
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For (c), first note that H2k+l is not a bipartite graph (for k > 1). For example 

the set C of vertices defined by C = {vi I vi = s l +  ~2 + . . . si, i = 1, . -2k + 1) induces 

an odd cycle of length 2k + 1. To show that H z k + l  does not contain any smaller odd 

cycle, consider the canonical edge colouring of H2]c+l, and let C be any cycle in the 

graph. Note that the sum of the colours of the edges of C is zero. 

Now if C is an odd cycle then one of the colours, say si, appears an odd number of 

times. In order for si to vanish in the sum, both si+l and si-1 have to appear an 

odd number of times. By repeating this argument we will conclude that all sj's j = 

1,2, - - - 2k + 1 must appear on C an odd number of times. In particular, ICI 2 2k + 1. 

0 

In the proof of the last lemma we also proved the following: 

Corollary 3.25 In the canonical (2kfl)-edge colourzng of HZkS1, every (2k+1)-cycle 

takes 21% + 1 diifSerent colours. 

3.6 A generalization of the four colour conjecture 

The following, which is an strengthening of the Conjecture 3.5, is in fact a direct 

generalization of the four colour theorem. 

Conjecture 3.26 The class Z>2k+l, class of planar graphs with odd girth at least 

2k + 1, is bounded by the Cayley graph H2k+1. 

Note that for k = 1 this statement is exactly the four colour theorem, as H3 is iso- 

morphic to K4. For k = 2 it claims that the class of triangle-free planar graphs is 

bounded by the Greenwood-Gleason-Clebsch graph. This latter case will be proven 

here using the result of Guenin (Theorem 3.21). 

The main result of this section is to prove that Conjecture 3.26 is in fact equivalent 

to the corresponding case of Conjecture 3.20. More precisely we prove the following: 
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Theorem 3.27 For a given positive integer k the following two statements are equiv- 

alent: 

1. The class P 2 k + l  is bounded by H2k+1 

2. Ever planar (2k + 1)-multi-graph is (2k + 1)-edge colourable. 

Proof. First of all observe that to prove that p2k+1 is bounded by H2k+l, it will 

be enough to show that every plane graph with odd girth 2k + 1 in which all facial 

cycles are of length 2k + 1 admits a homomorphism to H2k+l. This is true by the 

Folding lemma. In fact, by Corollary 3.3 every planar graph of odd girth 2k + 1 or 

more admits a homomorphic image which is also planar, has odd girth 2k + 1, and 

moreover all the facial cycles of this image are 2k + 1 cycles. To make the notation 

easier we will denote this subclass by Phk+,, so pik+, consists of planar graphs with 

odd girth exactly 2k+ 1, for which there is at least one planar representation such that 

every facial cycle is a 2k + 1 cycle. When we talk about a member of Phk+l we con- 

sider it together with a plane representation in which every facial cycle is a 2k+ 1 cycle. 

The second observation is that being a member of Phk+, is dual to being a planar 

(2k + 1)-multi-graph. In fact a planar graph G is in Pik+, if and only if G* the dual of 

G is a planar (2k+ 1)-multi-graph. To see this, first note that for a planar graph being 

(2k + 1)-regular is equivalent to have every facial cycle of its dual of length 2k + 1. 

Secondly by Lemma 3.8 every odd cut of a (2k + 1)-regular graph has odd number of 

edges, therefore the condition of no small odd cut is equivalent to the condition of no 

small odd cycle in the dual. 

The third important observation is about the dual of the edge colouring of a planar 

(2k + 1)-multi-graphs. It is not hard to see that a planar (2k + 1)-multi-graph G*, 

admits a proper (2k + 1)-edge colouring if and only if its dual, G, admits an edge 

colouring (possibly an improper one) in which every facial cycle takes all the 2k + 1 

different colours. 
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With these observations one direction of the theorem is easy to prove. Suppose p2k+l 

is bounded by H2k+l, and let G* be a planar (2k + 1)-multi-graph. Then the dual G* 

of G, is in Pik+l and therefore it admits a homomorphism to H2k+1. This homomor- 

phism will induce a (2k + 1)-edge colouring on G using the canonical (2k + 1)-edge 

colouring of H2k+l. This colouring has the property that every facial cycle of G takes 

a11 the different colours by Corollary 3.25, and therefore it induces a proper (2k + 1)- 

edge colouring on G* 

For the other direction suppose every planar (2k + 1)-multi-graph is (2k + 1)-edge 

colourable. By the first observation it will be enough to prove that every member 

of pik+, admits a homomorphism to H2k+l. Let G be a graph in Pik+l. Then the 

dual G* of G is a planar (2k + 1)-multi-graph. Therefore, by assumption, G* admits 
- - - 

a (2k + 1)-edge-colouring. Let El, E2, - . . E21c+l be the colour classes. Then for each i 

the subgraph induced by Ei u E ~ + ~  (indices are being taken modulo 2k + 1) is a union 

of cycles, and therefore admits a (Z2, (1))-flow. The product of all these flows will be a 

(Zik+l) S)-flow on G* where S = {(1,1,0,0, . . - O),  (0,1,1,0,0, - 0  * O), . . - (1,0,0, . .0,1)). 

The tension arising from this flow on the dual G of G* is in fact a homomorphism of 

G to H2k+l- 0 

The following theorem is now a consequence of Theorem 3.27 and Theorem 3.21. 

Theorem 3.28 The class of triangle-free planar graphs, F5, is  bounded by H5. 

The last part of the proof of Theorem 3.27 can be read alternately as a proof of the 

following interesting connection between edge colourings of (2k + 1)-regular graphs, 

and the existence of a special kind of flows. For similar connections between colourings 

and flows we refer to [13]. 

Theorem 3.29 A 2k + 1 regular graph G i s  (2k + 1)-edge colourable if and only i f  
2k+l  it admits a (Z2 ,S)-Bow, where S i s  the set of vectors with exactly two consecutive 

ones. 
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Note that planarity is not required in Theorem 3.29. 

Let F2g+1 be the Cayley graph C(Z?+', S),  where S is the set of vectors with 29 - 1 

circularly consecutive 0's. In other words, S is the set of vectors with exactly two 

(circularly consecutive) non zero coordinates. Applying the methods of the proof of 

Lemma 3.24 we can see that F2g+l is of odd girth 29 + 1: 

Lemma 3.30 Let F2g+1 be the Cayley graph defined above, then o d d - g ~ r t h ( F ~ ~ + ~ )  2 
2g+ 1. 

Proof. Let u be an edge of Fzg+' corresponding to an element of S with the i-th and 

(i+l)-st coordinate (indices are modulo 2g+l) nonzero. Then assign to u the colour ci. 

Now let C be an odd cycle of F2g+l. Then there must be a colour ci which appears on 

an odd number of edges of C. Since the sum of vectors corresponding to the edges of 

C is zero, colours ci+l and ci-1 must also appear an odd number of times. Continuing 

this process we find that every colour must appear an odd number of times, therefore 

there are at least 29 + 1 different colours and C is of size at  least 2g + 1. ~3 

In support of Conjecture 3.26 and Conjecture 3.5 we will prove that P4,+, is bounded 

by F2g+1. 

Proposition 3.31 The class P4g+1 is bounded by F2g+l. 

Proof. The proof of this proposition is similar to that of Theorem 3.27, and we will 

use the same terminology as in the proof of that theorem. So Pig+, denotes the class 

of planar graphs of odd girth 49 + 1, each with a planar representation in which every 

facial cycle is a (49 + 1)-cycle. Again using Folding lemma it can be seen that, it 

suffices to prove that Pig+, is bounded by Fzg+l. 

To prove this we will use Theorem 3.23. Let G be a graph in Pig+, . Then G*, dual 

of G, is a (49 + 1)-graph and therefore by Theorem 3.23 it contains at least 2g edge 

disjoint odd spanning subgraphs, TI, T2, - - . T2,. The subgraph induced on u ~ ' ~ E ( T , )  
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is an eulerian graph, therefore the subgraph induced by E\ u::, E(T,) is also an odd 

spanning subgraph which we denote it by T2g+l. Hence {T,):I?+' is a decomposition 

of G into 29 + 1 odd spanning subgraphs. 

Let Ui be the subgraph induced on E(Ti) U E(Ti+l), indices being taken modulo 

29 + 1. We claim that Ui does not contain an edge cut of size one. By contradic- 

tion, suppose (X, Y) is an edge cut of Ui with I[X, Y] I = 1. But this is impossible 

because otherwise the subgraph of Ui induced on X has only one vertex of odd degree. 

Now applying Theorem 3.15 we find that every Ui admits a (Z4, Z*)-flow, $i. Let 4 
be the product of all the flows $i. This is a (z?', S)-flow. The tension T4 will be a 

homomorphism of G to F2k+1. 0 

3.7 The absence of maximum 

In this section we will study the properties of a possible bound of odd girth 2g + 1 for 

the class Rg+l .  In particular we will prove that such a bound cannot be planar. We 

will need the following classical result on transitive planar graphs. 

Theorem 3.32 [27] Let P be a planar graph with a vertex of degree 3 or more. 

Moreover assume P is vertex transitive, edge transitive and also face transitive. Then 

P must be isomorphic to one of the platonic graphs, i.e., the cube, or the dodecahedron, 

or the icosahedron, or the octahedron, or the tetrahedron. 

Next we will introduce the following interesting family of planar graphs. 

Definition 3.33 Given positive integer k, let C6k-3 be a (6k - 3)-cycle with vertex set 

{vl ,212, . . . , ~ ~ ~ - 3 )  and vi being adjacent to vi-l and vi+l, (indices being taken modulo 

6k - 3). We define D2k+l to be the graph obtained from C6k-3 by adding two new 

vertices a and b, where a is adjacent to three vertices, vl ,  v2,4 and v4k-1 and b is adjacent 

to v2, ~ ~ k + ~  and v4k. In the case of k = 1, since {vl , v2k, u ~ ~ - ~ }  = {v2, V2k+l ,  ~ 4 k } ,  we 

identify a and b to a single vertex. So D3 is isomorphic to K4. The graph Dg has 

been depicted in 3.4. 0 
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Figure 3.4: D 5  

The following lemma, which is easy to see, shows an interesting property of the graph 

D2k+l. 

Lemma 3.34 Given a positive integer k ,  any  two vertices of the  graph D2k+l are 

joined by a path of odd length 5 2k - 1. 

Using this lemma we can prove the following important property of D2k+l. 

Lemma 3.35 Given any  positive integer k and a homomorphic image D of D21c+l, 

if D i s  of odd girth 2k + 1 then  it i s  isomorphic t o  D2k+l. 

Proof. Let D be a homomorphic image of Dzk+l with odd-girth(D) = 2k + 1. Let 

f be a homomorphism of D2k+1 to D, then f is surjective. To complete the proof we 

shall show that it is also injective. But if f is not injective then it has identified at 

least two vertices of D2k+l and thereby f has created an odd cycle of length at most 

2k - 1, which is impossible. So f is indeed an isomorphism between D and Dzk+1. 

The following corollary is now easy to see. 

Corollary 3.36 For any positive integer k ,  the  graph DSkil i s  a core. 
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Lemma 3.35 shows that a bound H for P2k+1, if it is of odd grith 2k + 1, cannot be 

very small. In fact any such bound has to contain the graph Dzk+1 as a subgraph. 

It is also not difficult to prove that any such bound for p 2 k + l ,  if it exists, can not 

be a planar graph. This fact will be proved below by two different methods. The 

first one is an elementary proof based on the Euler formula, the second proof which 

is somewhat more general argument will be based on Theorem 3.32. 

Theorem 3.37 Given an integer k 2 2, assume p2kS1 is bounded by a graph B2k+1 
of odd girth 2k + 1. Then B2k+l cannot be a planar graph. 

Proof. By contradiction, suppose p 2 k + 1  admits a planar bound with odd girth 2k+1 

and assume B2k+l is such a bound. Moreover assume Bakil has the minimum number 

of vertices among all the planar bounds for P2k+l with odd girth 2k + 1. This implies 

that Bzk+l is a core, otherwise the core of B2k+1 is an smaller bound with all the same 

properties. It also follows from the Folding lemma that every facial cycle of B2k+l 
must be a (2k + 1)-cycle. We first consider the case k 2 3. In this case, by the Euler 

formula, BzkS1 must contain a vertex of degree at most 2. 

To get to a contradiction we will show that B2k+l must have minimum degree at 

least 3. Let B be the graph obtained from B2k+1 by the following method: For every 

vertex x add a copy of D2k+l and identify x with the vertex a of D2k+l. The graph 

B obtained this way is obviously planar and has odd girth 21% + 1, therefore B must 

map to BzkS1. In this mapping, by Lemma 3.35 the image of every D2k+1 must be 

isomorphic to itself. This implies that every vertex x of B2k+1 must have at least 3 

neighbours, so B2k+l is of minimum degree at least 3, which is a contradiction. 

For k = 2, the Euler formula only guarantees the existence of vertices of degree 3 

or less. In this case the proof follows the same lines. In fact by replacing D5 with 

a more sophisticated structure, we prove that B5 must have minimum degree at least 4. 

Let D' be the graph obtained by joining two 5-cycles with an edge. This graph con- 

tains a set of four vertices {x, y, z ,  t ) ,  each of which is at distance three from the other 
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three. Let D be a graph obtained from D' by adding a new vertex a which is adjacent 

to four vertices z, y, z and t of D'. In any triangle-free homomorphic image of D, the 

four neighbours of a must be distinct. 

Now for every vertex x of B we add a distinct copy D, of D and identify x with the 

vertex a. The graph B' obtained this way is a triangle-free planar graph, so maps to 

B5 surjectively (because of the minimality of B5). Therefore B5 has minimum degree 

at least 4. This is a contradiction. 0 

The second proof which has an algebraic flavor, is somewhat more general and reveals 

the difference between the nature of the problem for k = 1 and k > 2. This proof has 

been adopted from the proof of P. Hell for Proposition 2.54, see [34]. 

Proof. Again we assume B2k+1 is planar graph of odd girth 2k + 1 which bounds 

p2k+l, moreover we assume Bzk+1 has minimum number of vertices among all these 

bounds. Therefore B2k+1 must be a core, and that every facial cycle of Bzk+l should 

also be a (2k + 1)-cycle, (we are using Folding lemma). 

We claim that B2kS1 must be a vertex transitive graph. To see this let x and y be 

two distinct vertices of B2k+l. Form a new graph B from two copies of B2k+1, where 

the vertex x from one of the copies has been identified with the vertex y from the 

other copy. Because of the minimality of B2k+l, this new graph B is also planar with 

odd girth 2k + 1, so it must admit a homomorphism to B2k+l. This homomorphism 

is an isomorphism when it is restricted on each copy of B2k+l in B. This gives us an 

automorphism which transforms x and y to each other. 

A similar argument on the edge set will prove that B2k+l must be also edge transitive. 

In the same vein it must be face transitive too, therefore by Theorem 3.32, the graph 

B 2 k + l  must be one the five platonic graphs. On the other hand Bak+l must contain 

D2k+1 as a subgraph, and the only possible case is k = 1 and BSkil S K4. 0 

This second proof can also be read independently as a proof for Proposition 2.54, 

which is a special case of Conjecture 2.11. 
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3.8 Remarks and open problems 

3.8.1 On the size of bounds 

By Theorem 3.28 we know that every triangle-free planar graph can be mapped to 

a triangle-free graph on at most 16 vertices. We believe it is not possible to do any 

better than 16. In other words we believe the answer for the following question is 

negative. 

Problem 3.38 Does P5 admit a triangle-free bound on at most 15 vertices? 

Let f (5) be the smallest integer for which there is a triangle-free bound for P5 on 

f (5) vertices. By Theorem 3.28 we know that f (5) 5 16. For the lower bounds, by 

Lemma 3.35, every triangle-free homomorphic image of D5 has 11 vertices, therefore 

f (5) 2 11. Below we will extend D5 to a graph which proves f (5) 2 14. 

Let A' be the graph of Figure 3.5. This graph contains five vertices (named a, b, c, d 

and e in the figure), such that between every two there is a path of length 3. Let A 

be the graph obtained from A', by adding a new vertex v which is joined to all the 

five vertices a, b, c, d ,  and e. This new graph A is also a triangle-free planar graph. 

We now construct a new graph D from D5 as below: 

Example 3.39 For every vertex x of D5, add a distinct copy A, of A and identify 

v with x. Let N, be the five neighbours of x in Ax. Obviously D is a triangle-free 

planar graph. In the following theorem we prove that D can not be mapped to any 

triangle-free graph with less than 14 vertices, therefore proving that f (5) > 14. 0 

Theorem 3.40 Any triangle-free homomorphic image of D consist of at least 14 

vertices. 

Proof. Let B be a triangle-free homomorphic image of D, and let c be a B-colouring 

of D. Since D5 is a subgraph of D, by Lemma 3.35 the graph B also contains D5 8s 
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d 

Figure 3.5: The graph A' 
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a subgraph. To complete the proof we show that B contains three more vertices. 

Let x be a vertex of the subgraph D5 of D. Then c does not map any two distinct 

vertices of Nz to the same vertex of B (otherwise the image will contain a triangle). 

It is also not hard to check that c can map at most four of the five vertices in Nz to 

c(D5). SO for every vertex x in the subgraph D5 of Dl  there is a vertex g(x) of D 

which does not map to c(D5) under c. 

On the other hand if x and y are adjacent in D5, then c(g(x)) must be distinct from 

c(g(y)), otherwise B must contain a triangle. Therefore the assignment x -. c(g(x)) 

is a proper colouring of D5. Since D5 is 3-chromatic, B must contain at least 3 more 

vertices, so B must have at least 14 vertices. 0 

Problem 3.38 can be naturally generalized to all the odd numbers. In the general case, 

we would like to find the smallest integer f (2k + I) ,  for which there is a bound of odd 

girth 2k + 1 with f (2k + 1) vertices for the class p2k+1. Conjecture 3.5 is equivalent 

to say that f (2k + 1) exists, and Conjecture 3.26 implies that f (2k + 1) < 22k. We 

also conjecture that this is the best possible: 

Conjecture 3.41 For every odd integer 2k + 1, we have f (2k + 1) = 22k. 

3.8.2 Powers of planar graphs 

Let G be a graph with the adjacency matrix A(G). We define the k-th power Gk of G, 

to be the graph whose adjacency matrix is the matrix obtained from the k-th power 

of A(G), by replacing every nonzero element with 1. By this definition, for an odd 

integer k, the graph Gk is a graph on the same vertex set as G where two vertices x 

and y are adjacent if there is an odd path of length at most k in G, joining x and y. 

We would like to consider the problem of colouring Gk. But notice that when k is 

an even number then Gk contains a loop unless G does not have any edge. Also for 

an odd k, the graph Gk is a loopless graph only if odd-girth(G) > k. So P2k+l is a 
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natural place to consider the problem of colouring powers of a graph. 

Conjecture 3.26 if true would imply that for every planar graph G of odd girth at 

least 2k + 1 we have x(G2"') < 22k. This observation leads to several interesting 

problems. The first problem is about the existence of a maximum for the set A2k+l = 

{x(G2"')1G E CP2k+1). A positive answer can be viewed as a support for both 

Conjecture 3.5 and Conjecture 3.26. 

Problem 3.42 Does the set = {X(G2k+1)/G E p2k+l) have a maximum? 

The graph D2k+l, introduced in Example 3.33, implies that the maximum of Aak+l, 

if exists, is at least 6k - 1. But we believe the real value of the maximum should be 

closer to 22k. This upper bound is being nominated from Conjecture 3.26. 

For k = 2, the graph D of Example 3.39 provides an example of a graph with 

X(D3) > 14, but we do not know if it is possible to construct a triangle-free pla- 

nar graph G with x(G3) = 15 or 16, however note that in this case by Theorem 3.26 

X(G3) = 16 is the best possible if possible at all. 

Let g(2k + 1) be the maximum of A2k+l, then g(2k + 1) I f (2k + I), in other words 

the existence of f (2k + 1) implies the existence of g(2k + 1). The following problem 

is about the inverse of this observation. 

2k+l  Problem 3.43 Given a positive integer k, assume the set &k+1 = {x(G )) has a 

maximum. Does this imply the existence of a bound of odd grzth 2k + 1 for the class 

?2k+1? 

3.8.3 Edge colouring and odd graphs 

Let H2k+' be a component of C(2Zik+l, S) induced on the set of vectors with even 

number of 1's. Then xo = (0,0, . . 0) is a vertex of H2k+'. Any other vertex can be 

seen as y = xo + Sil + si2 + . - . si, , where sill si,, . sij, are j distinct vectors of S. In 

other words, every vertex of Hzk+l corresponds to an r-subset of S, with r 5 k. Note 
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that since c:::' si = 0, every subset produces the same vertex as its complement. 

Now it is easy to check that in general the diameter of H21c+~ is k. TO see this we take 

any vertex x corresponding to a k-subset S, of S, the distance from x to xo is k. In 

fact, a vertex x is at distance k to xo if and only if it corresponds to a subset of size 

k.  On the other hand, two vertices x and y at  distance k to xo, are adjacent if and 

only if their corresponding k-subsets are disjoint. This proves the following lemma: 

Lemma 3.44 Given the Cayley graph H2k+l, the set of vertices at distance k of xo 

induces a subgraph which is isomorphic to  the odd graph Ok. 

The natural appearance of the odd graph Ok, as an induced subgraph of H2k+l to- 

gether with Theorem 3.29 and Conjecture 3.13 proposes the following generalization 

of Conjecture 3.19. 

Problem 3.45 Let G be a simple (2k + 1)-graph with no  minor of Ozk. Is i t  always 

true that G is (2k + 1)-edge colourable? 

A negative answer to this question perhaps will introduce another obstacle for the 

existence of a 1-factorization for regular graphs (like the obstacle of having small odd 

cut). A positive answer would be surprising but at same time very difficult to prove 

because just for k = 1 this is stronger than the four colour theorem. And for k 2 2 

we do not even know the edge chromatic number of the odd graph 0 2 k  itself. 



Chapter 4 

The chromatic covering number of 

graphs 

4.1 Fractional chromatic number 

We have seen that there is a no-homomorphism lemma for each of the following 

three graph parameters: the chromatic number, the clique number and the odd girth. 

Aside from these three, there are several other graph parameters for which a no- 

homomorphism lemma holds. Fractional chromatic number is one such a parameter. 

There are different ways to define the fractional chromatic number. One basic defi- 

nition is the Definition 2.46 of Chapter 3. According to this definition x (G) is the 
~k (G) lim infk 7 where xk(G) is the minimum number of the colours required for a k-set 

colouring of G. A k-set colouring is an assignment of the k colours to each vertex of 

G in such a way that no two adjacent vertices have a colour in common. 

Let G be a graph and let c be an n-set colouring of G. For any two non adjacent 

vertices x and y of G, with c(x) n c(y) = 0, we add a new edge which connects x to 

y. The graph obtained in this way has the property that every two vertices whose 

corresponding n-sets are disjoint, are adjacent. This leads to  the following definition 

of a well known family of graphs. 
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Definition 4.1 Given two positive integers n and k with n > 2k, we define the 

Kneser graph K (n, k) to be the graph whose vertex set is the set of k-subsets of the 

n-set, [n], and whose edge set consists of all the pairs of disjoint k-subsets. 0 

Notice that the odd graph Ok, defined in Chapter 3, is the Kneser graphs K(2k+1, k). 

In particular the Petersen graph is a Kneser graph, namely K(5,2). 

The following lemma is now easy to see. 

Lemma 4.2 If a graph G admits a homomorphism to the Kneser graph K(n,  k), then 

x f ( q  L ;. 

Proof. Note that a omomorphism of G to K(n,  k) will induce a k-set colouring using 

at most n colours. Therefore xx(G) 5 n and xf(G) = lim infk 9 < 2 .  

Definition 2.46 is not the only standard way of defining the fractional chromatic 

number of graphs. The following equivalent definition helps us to establish some 

basic properties of the fractional chromatic number. 

Definition 4.3 Let G be a graph and Z the set of all the independent subsets of 

V(G). A fractional weight of G is a function f from Z to  IIB' U (0) for which the 

inequality 

holds for every vertex x of G. Here the sum is taken over all the independent subsets 

I which contain x. The fractional chromatic number is then defined to be the infimum 

of f (I), where the infimum is taken over all the fractional weights of G. 0 

It is not hard to see that the infimum of the Definition 4.3 is equal to that of the Defi- 

nition 2.46. We do not give a proof here, instead we refer the interested reader to [68]. 

The inequalities of (4.1) in Definition 4.3 form a feasible linear program with integer 

coefficients. This linear programming is feasible because there is a trivial solution 
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defined by f (I) = 1 for every independent set I E 2. Therefore there exist an optimal 

solution Xf (G). Moreover such an optimal solution must be a rational number. This 

proves the following lemma. 

X k  G Lernrna 4.4 For any given graph G we have xf (G) = mink{+} = minf f (l), 
where the minimum in the sum is being taken over all the fractional weight functions. 

Using this lemma, the Lemma 4.2 can be improved as below: 

Lemma 4.5 For a given graph G the fractional chromatic number of G, xf(G), is 

equal to the smallest ratio for which there exists a homomorphism of G to the Kneser 

graph K(n,  k). 

Proof. By Lemma 4.4 the fractional chromatic number of G is equal to 9 for 

some k. The k-set colouring of G using xk(G) colours provides a homomorphism of 

G to K ( x ~ ( G ) ,  k). 0 

Notice that in the above lemma, n and I% need not be relatively prime. For example 

the Kneser graph K (2n, 2k) has the same fractional chromatic number as the Kneser 

graph K (n ,  k), but if n > 2k then there is no homomorphism of K (2n,2k) to K(n, k). 

This can be seen from their chromatic numbers, see Theorem 4.6. 

By Lemma 4.5, the role Kneser graphs play for the fractional chromatic number is 

similar to the role that the complete graphs play for the ordinary chromatic number. 

For this reason, and because Kneser graphs will be used later in this chapter, we 

would like to say more about them. 

The name Kneser is associated with these graphs because of a conjecture of M. Kneser 

on their chromatic number. In order to colour a Kneser graph, notice that K(n, k) 

has no edge for n < 2k, and therefore is 1-colourable. For n = 2k, K(n,  k) is a perfect 

matching and thus 2-colourable. 



CHAPTER 4. THE CHROMATIC COVERING NUMBER OF GRAPI-IS 75 
I 

For n > 2k a natural colouring can be constructed by induction on n. Let x be an 

element of the n-set used to construct the Kneser graph K(n ,  k). Then the subset Kx 

of all the vertices containing x, forms an independent set. Colour the vertices in Kx 

with the same colour. The remaining vertices (i.e., those which do not contain x), 

form a Kneser graph of K (n - 1, k). Do the same procedure for the new Kneser graph 

(using a new colour), and continue this process of colouring till the remaining graph 

is the Kneser graph K(2k, k). Now, use two new colours to colour this last graph. 

What we obtain, is a (n  - 2k + 2)-colouring of K(n,  k). 

In [43] Kneser conjectured that this is the optimal colouring. This conjecture was 

proved by L. LovAsz in [46]. 

Theorem 4.6 1461 For given positive integers, n and k, with n > 2k we have x(K(n,  k)) = 

n - 21% i- 2. 

Proof of this theorem is one of the deep results in graph theory. Lovhz used al- 

gebraic topology and in particular Borsuk-Ulam theorem in his proof. Since then, 

various authors have tried to improve this result by simplifying the proof, generaliz- 

ing the theorem, and etc. Among all of these works a remarkable one is due to A. 

Schrijver [69]. His nice argument for the theorem also characterizes the set of minimal 

subgraphs of K(n ,  k) which has the chromatic number as the Kneser graphs, i.e., the 

set of (n - 2k + 2)-critical subgraphs of K(n,  k ) .  

These minimal subgraphs which we call them Schrijver graphs are introduced below: 

Definition 4.7 Let a ,  b be two integers such that b 2 2a. We define S(a,  b) to be 

the graph whose vertices are the a-independent sets of a b-cycle, where two of these 

independent sets are joined by an edge if they are disjoint. 0 

Obviously the Schrijver graph S(a,  b) is a subgraph of the Kneser graph K(a,  b). 

Schrijver proved that they are the (n - 2k + 2)-critical subgraphs of K (n, k). We will 

only need to know their chromatic number. This is stated in the next theorem. 
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Theorem 4.8 [69] Let a ,  b be positive integers such that b 2 2a. Then x(S(a, b)) = 

b-2a+2.  

To complete our discussion on the fractional chromatic number, notice that a com- 

plete graph K, is also the Kneser graph K(n, 1). Therefore, by Lemma 4.2, the 

fractional chromatic number is bounded above by the ordinary chromatic number. 

But the chromatic number does not provide any lower bound for the fractional chro- 

matic number. This can be seen by considering the following family of the Kneser 

graphs. Let n > 2k and let K: = {K(an, ak)la E N) be a family of Kneser graphs. 

The fractional chromatic number of the members of K is bounded above by f while 

the chromatic number tends to infinity when a tends to infinity, (by Theorem 4.6). 

Recall that the fractional chromatic number is the minimum of C f (I), where f runs 

over the set of all functions from Z + IW+ U {0), satisfying the inequalities of 4.1. 

The chromatic number can be defined in a similar vein, it is the minimum of C f (I), 
where f runs over the set of all functions from Z -t (0, l), satisfying the same in- 

equalities. Hence there is more freedom for the choice of values of f in the definition 

of the fractional chromatic number than that of the ordinary chromatic number. This 

is responsible for the fact that ordinary chromatic number can be arbitrarily larger 

than the fractional chromatic number. In the next section we will define a function 

with a similar flavour as the fractional chromatic number but more dependent on the 

structure of the graph. 

We finish our discussion of the fractional chromatic number with the following no- 

homomorphism lemma. This lemma can be compared to the other no-homomorphism 

lemmas, Lemma 2.1 and Lemma 2.2. 

Lemma 4.9 Let G and H be two graphs for which there is a homomorphism ofG to 

H. Then we have xf(G) 5 xf(H).  

Proof. Suppose xf(H) = f , then by Lemma 4.5 for some positive integer a there 

exists a homomorphism of H to the Kneser graph K(an, ak). But since G t H, the 
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graph G also admits a homomorphism to K(an, ak). Therefore by Lemma 4.2 we 

have xf(G) < 2 .  CI 

Our aim in this chapter is to study another graph parameter, namely the chromatic 

covering number of graphs, which has a similar flavor as the fractional chromatic 

number. This parameter has arisen naturally in the study of random lifts of graphs, 

see [3]. Here we study this parameter for its own interesting properties, specially for 

its homomorphism properties. 

In the next section we will introduce the chromatic covering number and give lower 

bounds and upper bounds for this parameter in terms of the chromatic number. In 

Section 4.3 we construct a family of Kneser like graphs which play the role of complete 

graphs for the chromatic covering number. Using these constructions we show that 

the upper bounds for the chromatic covering number, obtained from the chromatic 

number, are tight. In the last section we introduce some more properties of the chro- 

matic covering number, together with some related problems. 

4.2 Chromatic covering number 

We start this section by the following definition of chromatic covering and the chro- 

matic covering number. 

Definition 4.10 Let G be a graph and GI , .  . . , GI, induced subgraphs of G. If for 

-L > 1, then {GI, . . . Gk) is called a chromatic every vertex u of G we have xUEV(Gz) X(Q) - 

covering of G. The chromatic covering number Fx(G) of G is the smallest value k 

such that G admits a chromatic covering with at most k induced subgraphs. 0 

For example the chromatic covering number of the complete graph K, is equal to n. 

This can easily be seen from the following two lemmas. 

Lemma 4.11 [3] The chromatic covering number of a graph G is less than or equal 

to the chromatic number of G. 
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Figure 4.1: The Grotzsch graph 

Proof. Let c be a x(G)-colouring of G, and let Gi be the subgraph induced on the 

vertices of colour i ,  (so Gi has no edge and therefor x(Gi) = 1). Then {GI, G2, - - . Gz(q) 

is a chromatic covering of G. 0 

Lemma 4.12 [3] The chromatic covering number of a graph G is bigger than or equal 

to the fractional chromatic number. 

Proof. Let {GI, G2, . . . Gk) be a chromatic covering of G where k = Fx (G). For 

i = 1,2, . . . k, let Ii,l, . . . , Ii,x(~) be the colour classes in a proper x(G)-colouring of 

Gi. Now we define a weight function on the set of the independent subsets of the 

graph G as below: 

The weight function y satisfies the inequalities (4.1) of the Definition 

1 > 1. Therefore p is a fractional weight of G C u c ~ p ( I )  = Curv(G,) ,(Gi) - 
weight of k = F,(G). Hence xf(G) 5 F,(G). 

4.3 because 

with a total 

[I3 

The next example shows how to find the chromatic covering number of the Grotzsch 



CHAPTER 4. THE CHROMATIC COVERING NUMBER OF GRAPHS 79 
I 

Example 4.13 Grotzsch's graph G above provides a good illustration of the dy- 

namics of chromatic coverings. It is well known that this graph is Qchromatic, yet it 

contains relatively large bipartite subgraphs. In particular the graph G1 obtained from 

G by removing the vertices 0, O', u is bipartite, as is the subgraph G2 obtained from G 

by removing 1,2,4. Noting that the subgraph G3 of G induced by (0, O', u, 1,2,4) is 

again bipartite, we conclude that {GI, G2, G3) is a collection of bipartite induced sub- 

graphs of G such that every vertex of G is in two of these subgraphs. Thus Fx(G) < 3. 

On the other hand it is known (see [45]) that the fractional chromatic number of 

Grotzsch's graph is z. Now by Lemma 4.12 we find that F,(G) = 3. 0 

Even though chromatic covering number is similar to the fractional chromatic number, 

they behave differently in some other aspects. As we saw in the previous section, the 

chromatic number is not bounded above by any function of the fractional chromatic 

number. In contrary, it has been proven in [3] that for any graph G we have x(G) < 
2 (F,(G))~. It was asked by J. MatouBek, [48], whether this bound can be improved. 

The next theorem answers this question, then in the next chapter we show that the 

bound of this theorem is the best possible. 

Theorem 4.14 For every graph G, x(G) 5 I(-)'] . 

Proof. Let {GI, . . . Gk) be a chromatic covering of G, where k = Fx(G). More- 

over, by permuting the indices, if required, we may assume that x(G1) < x(G2) < 
k . . . 5 x(Gk). Since Ui=, V(Gi) = V(G), there exists a smallest index C such that 

u 1  V )  = V G .  By the choice of ! there must exist a vertex u E V(Ge) \ 
(V(G1) U . . . U V(Ge-1)). By the covering condition for the vertex u we have 

but since u @ Gi for i < 1 we see that 
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Finally, because x(Ge) < x(Gi) for i 2 l, 

These three inequalities combined together imply that x(Ge) < k - d + 1. On the 

other hand, since V(G) = u:, V(Gi) and that Gi7s are induced we have 

Notice that in order to have x(G) = l(ix(~)i1)2] each of the inequalities in (4.2) . . . 

(4.5) must be an equality. In this case from (4.4) and the second inequality of (4.5) 

we find that all Gi's must have the same chromatic number. Therefore the equality 

in (4.2) implies that every vertex must appear in the same number of Gi's (in x(Gi) 

of them). Finally considering the relation between l and k from the last inequality of 

4.5 we will have two separate cases based on the parity of k. 

For k odd, say k = 2p - 1, we have = p2, and equality holds in the Theorem 

4.14 only if {GI, . . . , G2,-l) are p-chromatic subgraphs such that every vertex u of G 

is in p of these subgraphs. 

For k = 2p we have [(y) 2] = p2 +p, and equality holds in the Theorem 4.14 only if , 
either {GI,. . . , G2,) are pchromatic subgraphs such that every vertex u of G is in p  

of these subgraphs, or {GI,. . . , G2,) are ( p  + 1)-chromatic subgraphs such that every 

vertex u of G is in p + 1 of these subgraphs. , 

These considerations will help us to characterize likely candidates to reach the upper 

bound in the next section. But before closing this section we should prove the fol- 

lowing no-homomorphism lemma which for us is the most interesting property of the 

chromatic covering number. 
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Lemma 4.15 Let G and H be two graphs. If G -+ H then Fx(G) 5 Fx(H). 

Proof. The inequality Fx(G) 5 Fx(H) when G is a subgraph of H is easy to see. 

Now let f be a homomorphism of G to H, and let H' = f (G) be the image of G in H. 

Let {Hi, HL HL) be a chromatic covering of HI. Then { f (Hi), f (Hi) . f (Hk)) 

forms a chromatic covering of G. So the chromatic covering of G is smaller than or 

equal to chromatic covering number of HI, but FX(H1) 5 Fx(H). 0 

4.3 Kneser-like graphs 

The condition under which the upper bound of the Theorem 4.14 is tight leads to the 

following construction which was first introduced by C. Tardif in [74]. 

Definition 4.16 Let n, r and s be positive integers such that r 5 s. We define the 

graph K:S as follows: The vertices of Kzs are the subsets A = {(ill jl), . . . , (i,, j,)) 
of (1,. . . , s) x (1,. . . , n) such that i l l .  . . , i, are all distinct. Two of these subsets are 

joined by an edge in KzS if they are disjoint. 0 

In [76], K:" is called a fractional multiple of the complete graph Kn. It can also be 

represented as follows: The vertices of KZ9epresent independent r-sets in a disjoint 

union of s copies of Kn, and two of these are joined by an edge in K;' if they are 

disjoint. 

The following lemma shows that for certain kind of chromatic covering the fractional 

multiple graphs will play the role of a complete graph, when the chromatic covering 

is compared to the ordinary colouring. 

Lemma 4.17 A graph G admits a homomorphism to K;' if and only if G can be 

covered by s n-colourable subgraphs GI,. . . , Gs such that evemJ vertex of G is in r of 

these subgraphs. 

Proof. Suppose that {GI,. . . , Gs) is such a covering of G. For i = 1, .  . . , n, fix an 

n-colouring fi : Gi I+ (1,. . . , n) of Gi. We first define the mapping 4 : G I+ KZS by 
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Now we will show that 4 is in fact a homomorphism of G to the fractional multi- 

ple K2S. To see this note that for every edge uv of G, if u, v E Gi then we have 

fi(u) # fi(v). Therefore, $(u) is disjoint from (that is, adjacent to) 4(v). So 4 is a 

homomorphism. 

Conversely, if 4 : G H K2' is a homomorphism, then for i = 1, . . . , s,  let Gi to be the 

subgraph of G induced by 

V(Gi) = {u E V(G) : 4(u) n ( (2 ,  I), . . . , (2,  n)) # 8 ) .  

It is obvious that Gi is n-colourable. On the other hand if $(u) = {(il, jl), . . . , (i,, j,)} 

then the vertex u belongs to only Gi, for j = 1,2, . . . r and therefore every vertex u 

of G belongs to r of the induced subgraphs Gis. 0 

In the previous section we showed that if a graph G satisfies F,(G) = 2p - 1 and 

x(G) = p2, then G can be covered by 2p - 1 pchromatic subgraphs such that every 

vertex of G is in p of these subgraphs. By Lemma 4.17, such a graph G would then 

admit a homomorphism to K;i2P-'. Therefore by Lemma 4.15, the upper bound of 

p2 on the chromatic number of the graphs with chromatic covering number at most 

2p - 1 is tight if and only if X(K,P12P-1) = p2. 

A similar argument holds in the case of even chromatic covering numbers, except that 

this time there are two candidates which may satisfy the upper bound: a graph G 

which satisfies Fx(G) = 2p and x(G) = p2 + p may be covered by 2p pchromatic 

subgraphs such that every vertex of G is in p of these subgraphs, or by 2p (p + 1)- 

chromatic subgraphs such that every vertex of G is in p + 1 of these subgraphs. By 

Lemma 4.17, such a graph admits a homomorphism into K,P.2P or ~ i z : ~ ~ ~ .  Therefore 

the upper bound of p2 + p  on the chromatic number of the graphs with chromatic cov- 

ering number at most 2p is tight if and only if x(K,P12P) = p2 +p or X(~iz:92P) = p2 +p. 

So to prove the tightness of the upper bound of the Theorem 4.14 we must find the 

chromatic number of certain type of the fractional multiple graphs. The following 

easy lemma provides an upper bound on the chromatic number of Kzs. 
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Lemma 4.18 Let n,  r and s be positive integers such that r 5 s .  Then KzS is 

(n(s - r + 1))-colourable, i.e., x(KZs) 5 n(s - r + 1). 

Proof. ToprovethiswefirstlabeltheelementsofX={1, ..., s - r+ l )x{ l ,  ..., n) 

with n(s - r + 1) colours. Then for every vertex A of KzS choose a pair XA = 

(i, j) which is both in X and A. Note that this is possible because A intersects 

(1, . . . , s - r + 1) x (1, . . . , n). Now colour every vertex A of KZs with the colour of 

XA in X. In this way, since adjacent vertices have no element in common, they receive 

different colours. Thus, x(K2") 5 n(s - r + 1). 0 

The next step will be to show that the upper bound of the previous lemma is tight, 

i.e., there are no colouring of KZ" using less than n(s - r + 1) colours. This problem 

has the flavor of Kneser's conjecture. The next theorem will answer this problem for 

the even values of n. We will use Schrijver's strengthening on the chromatic number 

of Kneser graphs (Theorem 4.8) in our proof of this theorem. 

Theorem 4.19 Let n, r, s be integers such that n is even and r 5 s .  Then x(K?) = 

n(s - r +  1). 

Proof. By Lemma 4.18 we have x(KY) 5 n(s - r + 1). To show that the bound is 

tight, we first define a homomorphism g5 from Schrijver graph S(a, b) to KzS, where 

a = :(r - 1) + 1 and b = ns. 

Suppose that Cb is a b-cycle where the vertices are labelled consecutively by 

Then for any a-independent set I of the cycle, there exist at least r values il, . . . , i, 
such that I intersects {(in, 1), . . . , (ik, n)) for k = 1 , .  . . , r. We can then select jk such 

that (ik, jk) E I for k = 1,. . . , r, and put 
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By this definition if I and J are two independent a-subsets of Cb then $(I) and $(J) 

are two independent r-subsets of {1,2, . - ) x {1,2, - . . n), therefore 4 is a homomor- 

phism of S(a, b) to K2S. 

Now by Lemma 2.1 x(KZS) 2 x(S(a, b)). But by Schrijver's theorem (Theorem 4.8) 

X(S(a,b) = b -  2 a + 2  = n(s - r  + 1)' therefore x ( K ~ ~ )  = n(r  - s +  1). 0 

Corollary 4.20 Let k be an integer not congruent to 1 modulo 4. Then there exists 

a graph with chromatic covering number k and chromatic number [ ( Y ) ~ ] .  

Proof. If k is even, say k = 29, then one of the two graphs Ki.2q and K $ : ~ ~ ~  is 

guaranteed to fit the bound for chromatics number by Theorem 4.19. For k = 4p - 1, 

the only candidate is and this graph is indeed 4p2-chromatic by Theorem 

4.19. Lemma 4.17 shows that each of these graphs indeed has a chromatic k-covering. 

0 

We will end this chapter by some comments and open problems on the fractional 

chromatic number and the chromatic covering number. 

4.4 Concluding comments 

4.4.1 Odd cases 

We have shown that the bound in Theorem 4.14 is best possible in most cases. We 

do not doubt that the bound should be tight in all cases; this only depends on the 

identity X(~$'1:'4p+') = (2p + being valid for all p > 1. This in turn would be 

implied by the following conjecture in completion of Theorem 4.19. 

Conjecture 4.21 Let n, r, s be integers such that n is odd and r 5 s. Then x(KZs) = 

n(s  - r + 1). 
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4.4.2 Some observations 

We have shown that chromatic covering is also a monotone graph parameter, i.e., 

if G -t H then Fx(G) < Fx(H). The relation between chromatic coverings and 

homomorphisms extends as follows: 

For every sequence (al, a2,. . . , ak), there exists a graph K(a1, a2,. . . , ak) 

with the property that a graph G admits a homomorphism to K(a1, az, . . . , ak) 

if and only if G admits a chromatic covering {GI,. . - , Gk) such that 

x(Gi) 5 ai for i = 1,. . . , k. 

The proof essentially follows the lines of that of Lemma 4.17, given a suitable defi- 

nition of K(al ,  . . . , ak).  Therefore among the graphs K(al,  . . . , ak) with ai 5 k for 

z = 1, .  . . , k, we find a finite family of graphs which are maximal (in the sense of 

homomorphisms) with respect to the property of having a chromatic covering number 

at  most k. 

It can be shown that K;j3 is the only maximal graph with chromatic covering number 

3, but the situation changes in the case of larger chromatic covering numbers. In fact 

it can be shown that neither of the graphs K,2j4 and K : ~  admits a homomorphism 

to the other. Now consider the graph M = ~ , 2 ~ ~  U ~ 3 3 1 ~ .  Then M does not admit a 

homomorphism to KEt4 or to K:j4; however since M is 6-chromatic, this implies that 

Fx(M) > 4. Thus, the identity F,(G U H) = max{Fx(G), F,(H)) does not hold in 

general. 

It seems that the identity Fx(G x H) = min{Fx(G), Fx(H)) (where x is the categor- 

ical product ) should not hold either. Indeed, K?,f0 x K;t5 has a natural chromatic 

covering induced by ten 10-chromatic subgraphs of K;iO and fifteen 15-chromatic 

subgraphs of K;g5. Thus Fx(K;,fO x K:'~) 5 25, but there are no obvious chromatic 

coverings of K;,f0 or K?i5 with 25 subgraphs (though we have no proof that it cannot 

be done). 
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It is interesting to compare these observations with results and problems concerning 

chromatic numbers: The inequalities X(G u H )  2 max{x(G), x(H)) and x(G x H) I 
rnin{x(G), x(H)) both follow from the fact that if there is a homomorphism from 

G to H, then x(G) 5 x(H). It is easy to verify that equality always holds in the 

first case, while the question as to whether equality always holds in the second case 

is a notorious open problem. The situation is a bit more symmetric with chromatic 

covering numbers, in the sense that both inequalities can be strict. 

4.4.3 Degeneracy covering numbers 

The degeneracy covering and degeneracy covering number is defined in a similar way. 

Given a graph G, we say a collection GI, G2, . - - GI, is a k-degeneracy covering of G is 

for every vertex x of G the following holds: 

The degeneracy covering number is the smallest k for which G admits a k-degeneracy 

covering. 

By this definition and by Theorem 2.6, every k-degeneracy covering is also a k- 

chromatic covering, therefore the degeneracy covering number is bounded by the 

chromatic covering number. In fact the chromatic covering number was defined in 

[3] in order to get bounds on the degeneracy covering number. 

On the other hand it is not an easy problem to construct graphs with a difference be- 

tween their chromatic covering number and colouring covering number. The problem 

of finding such a graph in a certain case was posed by C. Tardif and the author in a 

graph homomorphism workshop in Vancouver, 2000, and was answered affirmatively 

by A. V. Pyat kin in [64]. 
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