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Abstract 

In this thesis after providing the necessary background in algebraic geometry and algebraic 

groups we expose the character theory of Deligne and Lusztig for finite groups of Lie type. 

Then we work out the theory in the case of GL(2, IFq), where q is an odd prime power, and 

compare the results with the known character tables. 
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Preface 

This thesis is concerned with the representation theory of a special class of finite groups 

called finite groups of Lie type (Examples include GL(n, IF,) and Sp(2n, IFq)). These groups 

are of theoretical importance since they form the only infinite family of finite simple groups 

whose representation theory is rather nontrivial. The case of PSL(2, IFp) was already done 

by Frobenius himself back in 1896 [8]. The next general result was due to  Green [lo]. Green 

succeeded to  combine several available techniques to  construct the irreducible characters of 

the general linear groups: GL(n, IFq). In 1968 Srinivasan [17] did the same for the group 

Sp(4, IFq). Based on these data MacDonald conjectured that there should be a correspon- 

dence between irreducible representations of a finite group of Lie type and characters of 

maximal tori in general position. Further evidence for this conjecture was provided when 

the character table of Gp(IFq) was computed by Chang and Ree in [5]. Finally the conjecture 

was proven by Deligne and Lusztig in [6]. Their construction relies on deep cohomological 

methods in algebraic geometry. The objective of this thesis is to provide a quick overview 

of the concepts and the construction introduced by Deligne and Lusztig while keeping the 

technicalities a t  a minimum. There are already a number of very good expositions of the 

subject ([4], [7]), and the author of these lines does not think that he can do much better 

in that regard. Therefore I have tried to express the theory as clearly as possible while 

avoiding the technical proofs that might not help the understanding of the subject. 

The representations we consider are always over an algebraically closed field K of char- 

acteristic zero. The usual choice is K = C, however we take K = Qe, this gives the same 

result since Qe is isomorphic to C. 

The reader should be familiar with representation theory of finite groups, (see [15] and 

[9]) and basics concepts of algebraic geometry. 
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Chapter 1 

Algebraic Geometry 

1.1 Affine Varieties over Finite Fields 

Fix a prime p and let q = pm where m 2 1 is an integer. 

Definition 1.1. An affine variety X over Fp is said to have an IFq-structure (or to be 

defined over IFq) if there exist an IFq-subalgebra A. of A = FP[x] of finite type over 

IFq (i.e. it is finitely generated as a IFq-module), such that A E A. @IF, F p .  If X and Y 

are affine varieties defined over IFq by IFq-subalgebras Ao, Bo a morphism q5 : X -+ Y is 

a IFq-morphism if there is a homomorphism of IFq-algebras q5; : Bo + A. such that the 

homomorphism q5* : B + A defining 4 is q5; 8 1. 

Definition 1.2. Suppose X is an affine variety with an IFq-structure. This means that we 

can write Fp[x] = A E A. F p .  The homomorphism a @ X I+ aq @ X of A into A defines 

a IFq-morphism F : X + X .  This is called the Frobenius morphism corresponding to an 

IFq-structure Ao. It is evident that every IFq-structure defines a Frobenius morphism. We 

also define xF to be the set of fixed points of F .  

We list some useful properties of Frobenius morphisms: 

Proposition 1.1 ([7] 3.6). Let X be an afine variety defined over F p  with an IFq-structure 

and the associated l+obenius morphism F .  

(i) Let 4 be an automorphism of X such that (4F)n = Fn for some positive integer n ,  

then 4F is the Frobenius morphism corresponding to some IFq-structure of X .  
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(i i)  If F' i s  another Frobenius morphism corresponding to  a n  IFq-structure over X, there 

exist a positive integer n such that  F n  = F t n .  

(i i i)  F n  is  the Frobenius morphism corresponding t o  some IFqn-structure over X .  

(iv) A n y  closed subvariety of a variety defined over IFq i s  defined over a finite extension 

of I F q .  A n y  morphism from a variety defined over IFq to  another one is  defined over a 

finite extension of I F q .  

( v )  T h e  F-orbits in the set of points of X and the set xF of fixed points of F are finite. 

1.2 t-adic Cohomology 

Let X be an affine algebraic variety over the field Fp and e be a prime number different 

from p. One can associate ([I],  [2], [3]) to X finite dimensional Qe-vector spaces H:(x, Qe). 
They are is called the ith e-adic cohomology group of X with compact support. A 

good introduction to the subject is provided both in [4] and [7]. H:(x, Qe) satisfy several 

properties which are essential for the construction of Deligne-Lusztig: 

Proposition 1.2 ([7] 10.1). H:(x, Qe) = 0 if i $ {O, . . . , 2  dimX). 

Proposition 1.3 ([7] 10.2). A n y  finite morphism f : X + X induces a linear endomor- 

phism of H,!(X,Qe) for any  i ,  and this correspondence i s  functorial; a Frobenius endomor- 

phism induces a n  automorphism of this space. 

In particular we have: ( f  g)* = g* f * for all f ,  g E Aut(X). Thus the map f H (f *)-' is 

a representation of the group Aut(X) in the module H,!(x, Qe). 

Definition 1.3. Define the virtual vector space: H;(X,Qe) = C i ( - l ) i ~ i ( ~ , Q e ) ,  and let 

g E Aut(X) be of finite order. We define the Lefschetz number of g on X as: 

Theorem 1.1 (Grothendieck Trace Formula [2], [7] 10.4). Let F be the Fkobenius morphism 

associated t o  some IFq-structure o n  X.  Then:  

lxFl = trace ( F * ,  H,*(x, Qe)) . 
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Corollary 1.1 ([7] 10.5). Let X be an afine variety with an IF,-structure and associated 

Frobenius morphism F .  Suppose g E A u t ( X )  is an F-stable automorphism of finite order. 

Then we have: C(g,  X )  = f (z),=,, where f ( z )  is the formal series: - C" n= 1 I X ~ " ~ - ' ~ Z ~ .  

Proof. Since g is of finite order by Proposition 1.1 for every n ,  Fng-l is also a Frobenius 

morphism X .  We apply Grothendieck's Trace Formula to  Fng-l:  

1xFng-' 1 = trace ( ( ~ " 9 ~ ' ) '  , H,'(x, 0,)) 
= trace ((9- ' )*(F")*,  H,* (x, 0,)) 
= trace ( ( g * ) - l  ( F * ) ~ ,  H,'(x, 0,)) 

Since g is an F-stable autornorphism, F and g commute as morphism of varieties. Hence 

the maps F* and (9')-' also commute and so there is a basis of @ ~ H ; ( X , % )  in which 

both have triangular form. Let X I ,  . . . , X k  be the eigenvalues of F* and p1, . . . , pr, be those 

of (9')-' and let ~j = &l be the sign of H : ( x , ~ , )  in H,f(X,Q,) in which X j  and pj are 

eigenvalues. Now we have: 

This shows that f (r),=, is equal to c:=~ Ejpj which by definition is C(g,  X ) .  0 

With Corollary 1.1 in hand we can prove many properties of Lefschetz numbers. We 

prove two which we need: 

Corollary 1.2. The Lefschetz number C(g,  X )  is a rational integer independent of e. 

Proof. The independence of e is a clear consequence of Corollary 1.1. Moreover the proof 

shows that f ( z )  E G ( z ) .  But since it is a formal series with integer coefficients, it has to 

be in Q ( z ) .  So we have C(g,  X )  E Q. But a Lefschetz number is an algebraic integer since 

it is the character value of the finite group generated by g. Thus we have C(g, X )  E Z. 0 
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Proposition 1.4. Assume that X is a finite set and g : X -, X is an automorphism. Then 

&I ,  X )  = Ixgl. 

Proof. We can assume t.hat the Frobenius F acts on X as the identity, otherwise we can 

replace it by some power. This implies: 



Chapter 2 

Algebraic Groups 

2.1 Basics 

An algebraic group over an algebraically closed field K is an affine variety G with a group 

structure, such that the maps p : G x G + G and i : G + G given by multiplication and 

inversion are both morphisms of varieties. 

Example 2.1. The affine line A1(K) with addition is an algebraic group. It is usually 

called the additive group and is denoted by G,. The open subset of nonzero points of 

A1(K) is a group with multiplication. We can realize this as an algebraic variety: 

This group is called the multiplicative group and is denoted by G,. 

Example 2.2. We can identify the set M(n,  K )  of all n by n matrices with entries in K with 

hn2(K) .  The general linear group, GL(n, K ) ,  is the open set defined by the equation 

det A f 0, this set is also an algebraic variety: 

(Actually with a similar construction it one can show that the complement of an affine 

hypersurface is an affine variety itself). Matrix nlultiplication and inversion are morphisms 

of varieties. 
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2.1.1 Identity Component 

Being an algebraic group is a strong assumption, it forces the algebraic groups to behave 

nicely as an affine variety: 

Theorem 2.1 ([Il l  $7.3). Let Go be the connected component of the identity i n  the algebraic 

group G. Then: 

( i )  Go is a normal subgroup of finite index i n  G whose cosets are the connected as well as 

the irreducible, components of G. 

(ii)  Every closed subgroup of finite index contains Go. 

2.1.2 Homomorphisms 

A homomorphism of algebraic groups (or homomorphism for short) is a group homo- 

morphism which is also a morphism of varieties. 

Proposition 2.1 ([Il l  $7.4). Let q5 : G -+ G' be a homomorphism of algebraic groups. Then 

( i )  Ker(q5) i s  a closed subgroup of G. 

(ii) Im(q5) is a closed subgroup of GI. 

(iii)  q5(G0) = q5(G)O. 

(iv) dim(G) = dim(Ker(q5)) + dim(lm(q5)). 

2.1.3 Closed Subgroups 

Not every subgroup of an algebraic group is an algebraic group itself. However if a sub- 

group is closed under the Zarisky topology then it has the structure of an algebraic group. 

Therefore it is useful to know which constructions in abstract group theory give us closed 

subgroups. The following is true: 

Theorem 2.2 ([Ill $8.2). CG(H), N G ( H )  are closed subgroups of G zf H is a closed subgroup 

of G. 
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2.1.4 Linearization 

Closed subgroups of GL(n, K )  are called linear algebraic groups. Here is some examples 

of linear algebraic groups: 

The group SL(n ,  K )  consists of matrices with determinant 1 in GL(n, K ) .  

The group D(n ,  K )  of diagonal matrices in GL(n, K ) .  

The group T(n ,  h') of upper triangular matrices in GL(n, K ) .  

The group U(n, K )  of unipotent triangular matrices, the subgroup of T (n ,  K )  whose 

elements have diagonal entries equal to 1. 

Every linear algebraic group is an algebraic group. The converse is also true: 

Theorem 2.3 ([ll] 58.6). Let G be an algebraic group. Then G is isomorphic to a closed 

subgroup of some GL(n, K ) .  

2.1.5 Characters and Representat ions 

Definition 2.1. Let V be a finite dimensional vector space over K .  A rational represen- 

tation of G in V is a homomorphism of algebraic groups r : G --+ GL(V). 

Definition 2.2. A character of an algebraic group is a homomorphism from G to G,. 

One example is: det : GL(n, K )  --+ (6,. The set of characters is denoted by X* (G) and 

it has a natural structure of an abelian group also note that X*(G) can be viewed as a 

subgroup of K[G]. A homomorphism y : G, -+ G is called a cocharacter of G. We denote 

by X,(G) the set of cocharacters, if G is commutative X,(G) also has a structure of an 

abelian group. 

Characters arise in connection with rational representations. If r : G -+ GL(V) a 

rational representation of G then for each x E X*(G),  define: 

obviously this is a G-stable subspace of V (possibly 0). The characters corresponding to 

nonzero subspaces of V are called the weights of G in V; a nonzero vector in Vx is called a 

weight vector. Conversely if v is any nonzero vector in V which spans a G-stable subspace 

of V, then it is clear that g v = x(g)v defines a character of G. 
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Lemma 2.1 ([ll] 511.4). Let r : G -+ GL(V) be a rational representation. T h e n  the 

subspaces Vx, x E X*(G),  are linearly independent; in particular, only finitely m a n y  of t h e m  

are nonzero. 

Proof. Otherwise choose n minimal nonzero vectors vi E Vx, for distinct xi, 1 5 i 5 n such 

that Ci vi = 0. Note that since we assumed that vi are nonzero n 1 2. Since the xi are 

distinct there is some x E G such that xl (x) # x2(x) .  On the other hand we have: 

Therefore we have: 

The coefficient 

original one to 

contradicts the 

of v2 is different from 1 so we can subtract 

obtain a nontrivial dependence involving at 

choice of n. 

the above equation from the 

most n - 1 characters. This 

0 

2.1.6 Jordan Decomposition 

Let V be a finite dimensional vector space over K. An endomorphism E of V is semisimple 

if there is a basis of V consisting of eigenvectors of E. We say E is nilpotent if En = 0 for 

some n and unipotent if E - 1 is nilpotent. Clearly if E is nilpotent, then its minimum 

polynomial divides Tm for some m, and so the eigenvalues are all zero. From linear algebra, 

we know that the converse is also true, and so E is unipotent if and only if its eigenvalues 

in A' all equal 1. 

Theorem 2.4 ([I41 510). Let G be a n  algebraic group over a perfect field k. For any 

g E G(k) there exist unique elements s, u E G(k) such that: 

(22) for all representations 4 : G -+ GL(V), 4(s) i s  semisimple and @(u) is  unipotent. 

s and u are called the semisimple and unipotent parts of g, and g = su is the Jordan 

decomposition of g. Also G, (G,) denotes the set of all unipotent (semisimple) elements 

in G. 
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2.2 Diagonalizable Groups and Tori 

Definition 2.3. An algebraic group isomorphic to some D ( n ,  K )  is called a torus. An 

algebraic group is diagonalizable if it is isomorphic to a closed subgroup of some D ( n ,  K ) .  

2.2.1 Characters of Tori 

We will show that tori have many characters. The coordinate functions: 

are all characters of D ( n ,  K ) .  We want to show that X a ( D ( n ,  K ) )  is a free abelian group 

of rank n.  

Lemma 2.2 ( [ l l ]  516.1). Let G be a group, X the set of all homomorphisms from G to 

K X .  Then X is a linearly independent subset of all K-valued functions on G. 

Proof. Suppose not and let X I ,  . . . , xn E X be linearly dependent with n as small as possible: 

This means that ai are nonzero and n 2 2. Since # xn we can find y E G such that 

X I  ( Y )  # xn(y) .  For arbitrary x E G we have: 

which gives us: 

On the other hand we have: 

which implies: 
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Now if we subtract the equations 2.1 and 2.2 we are left with: 

where not all coefficients are zero. This contradicts the minimality of n.  

D(n ,  K )  can be considered as the open set in An(K) consisting of the points without 

zero in their coordinates. This implies: 

The monomials xY1 . - . x 2  with ai E Z are all characters of D(n,  K )  and they form a K-basis 

of K[D(n,  K)].  Let B be a character of D(n ,  K )  which is not a monomial character. S is a 

regular function therefore it belongs to  K [D(n, K) ]  but the monomials form a K-basis for 

K[D(n,  K)] ,  we have that 2 is a K-linear combination of monomials. However, then the set 

consisting of the monomial characters union {E) is not K-linearly independent, contradicting 

Lemma 2.2. So X*(D(n,  K ) )  is an abelian group generated by xi. This abelian group is in 

fact free to see this suppose there is a character x"; - .  has finite order, i.e. there exist 

an integer M 2 1 such that: 

(x?' . . . Xan")M = 1 

Let diag(1,. . . , 1, A) E D(n,  K ) ,  where X is an arbitrary element in K .  Now we have: 

Since X was arbitrary we conclude that an = 0. Similarly we can show that all ai are zero 

hence X*(D(n,  K ) )  2 Zn. 

2.2.2 Duality of X* and X, 

A cocharacter y : Gm + D(n, K )  composed with a character x : D(n, K )  + G, gives a 

homomorphism of algebraic groups: (X o y) : Gm + G,. This homomorphism is an element 

of X*(Gm) "- Z, so by 2.2.1 there is an integer denoted by (2, y) such that (xoy)(a) = ~ ( ~ 1 7 ) .  

With this pairing we have the following isomorphisms: 
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We will prove the second isomorphism the proof of the first is similar. By the given map 

we have an injection of X,(D(n ,  K ) )  ~f H o m ( X t ( D ( n ,  K ) ,  Z ) .  Now we will prove that is 

surjective. Let f E H o m ( X t ( D ( n ,  K ) , Z )  be an arbitrary element. Set ai := f ( x i ) .  Now 

consider the cocharacter yf which is defined as follows: 

Now we see that: 

So ( x i ,  yf) = ai. Therefore f is represented by (-, yf) . Because of the two isomorphisms we 

say the abelian groups X t ( D ( n ,  K ) )  and X, (D(n ,  K ) )  are dual abelian groups. 

2.2.3 Classification 

Theorem 2.5 ( [ l l ]  fj16.2). Let D be a diagonalizable group. Then D = Do x H ,  where Do 

is a torus and H is a finite group of order prime to p, where p is the characteristic exponent 

of K .  In particular, a connected diagonalizable group is a torus. 

Theorem 2.6 ( [ l l ]  fj16.3). Let D be a diagonalizable subgroup of an algebraic group G. 

Then: N Z ( D )  = C z ( D ) .  

2.3 Solvable Groups 

Suppose A,  B are subgroups of an abstract group G. The subgroup ( A ,  B )  generated by 

all elements of the form aba-'b-' for a E A,  b E B is called the commutator of A and B .  

Generally the commutator subgroup of two closed subgroups of an algebraic group is not 

closed itself. However the following is true: 

Proposition 2.2 ( [ l l ]  517.2). Let A ,  B be closed subgroups of an algebraic group G. 

(i) If A is connected, then ( A ,  B )  is closed and connected. 

(ii) If A ,  B are normal in  G ,  then ( A ,  B )  is closed and normal in G. 

An immediate consequence is that the derived group of a connected algebraic group G is 

closed, normal and connected. We say an algebraic group is solvable if its derived series 

terminates in the trivial group. This series is defined as follows: 

DOG = G, Z Y + I G  = (@G, @G). 
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Lemma 2.3. A n  algebraic group G is solvable if and only if there is a sequence of algebraic 

groups: 

G > GI > . . -  > G, = { e ) ,  

with Gi+1 normal i n  Gi for each i and Gi/Gi+l is commutative. 

Proof. If G is solvable, then the derived series satisfies the above conditions. For the converse 

note that G1 > DG therefore Gp > D 2 ~ ,  .... 0 

Example 2.3. T(n,  K )  is solvable. By the above lemma we have to build a normal series 

with abelian quotients. Set G1 = U(n, K) .  Now let Gr be the subgroup of GI such that 

aij = 0 for 0 < j - i  5 r .  NOW the map: 

from G, to onto Ga x Ga x . . - is a homomorphism with G,+l as kernel. The following 

example is illuminating: 

The following theorem is a kind of converse. Every connected solvable algebraic group 

is a closed subgroup of some T(n, K )  for some n: 

Theorem 2.7 ( [ l l ]  517.6 Lie-Kolchin). Let G be a connected solvable subgroup of GL(V) 

where V is a nonzero finite dimensional vector space over K .  Then G has a common 

eigenvector i n  V. 

In a connected solvable algebraic group we have the following decomposition: 

Theorem 2.8 ( [ l l ]  519.3). Let G be a connected solvable algebraic group. then: 

( i )  G, is a closed connected normal subgroup of G including (G, G), and G, has a chain 

of closed connected subgroups, each normal i n  G and each of codimension one i n  the 

next. 

(ii)  The maximal tori of G are conjugate i n  G, and if T is one of these then we have the 

semidirect product: G = TG,. 
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2.4 Borel Subgroups 

A Borel subgroup of G is a closed connected solvable subgroup of G,  which is maximal 

for these properties. Every algebraic group has a Borel subgroup since the set of closed 

connected solvable subgroups of G has a maximal element. 

Example 2.4. T ( n ,  K )  is a Borel subgroup of GL(n,  K ) .  It is closed and connected and 

we have already shown that it is solvable. Now suppose A is a closed connected solvable 

subgroup of GL(nl K ) ,  we wish to show that it is isomorphic to  some subgroup of T ( n ,  K), 

this would show the maximality of T ( n l  K). First note that GL(n, K )  = GL(Kn) .  Now 

by Theorem 2.7, A has a common eigenvector v in Kn.  Now consider U' = V / ( v ) .  A 

acts on W and dimW = n - 1 by induction we can assume that there is a basis for W in 

which the elements of A become upper triangular. This basis combined with v gives us a 

basis of V with respect to which the elements of A are upper triangular. Since change of a 

basis is conjugation by a fixed element this imples that there exist g E GL(n,  K )  such that 

gA c T ( n ,  K ) .  So A is isomorphic to some subgroup of T ( n ,  K )  this shows that T ( n ,  K )  is 

a Borel subgroup. 

Theorem 2.9 ( [ l l ]  $21.3). Let B be any Borel subgroup of G.  Then G / B  is a projective 

variety, and all other Borel subgroups are conjugate to B .  

A maximal torus of G is a torus of G that is not strictly contained in another torus. 

The rank of a group is the dimension of its maximal torus. By virtue of the following result 

this is well defined: 

Corollary 2.1 ( I l l ]  521.3). The maximal tori of G are those of the Borel ~ubgroup~ of G ,  

and are all conjugate. 

Remark 2.1. Note that Theorem 2.8 gives a semidirect decomposition of Borel subgroups. 

Given a maximal torus T in a Borel subgroup B we can write a semidirect product B = T B ,  

where B, is the unipotent part of B ,  we also denote it by UB or just U .  

Theorem 2.10 ([ I l l  $22.3). Let S be a torus in G then CG(S)  is connected. 

Let S be any torus in G the group W ( G ,  S )  = NG(S) /CG(S)  is called the Weyl group 

of G relative to S.  W ( G ,  S )  is a finite group, to see this note that by Theorem 2.6 we have: 

NG(S) = CE(S)  on the other hand Theorem 2.10 shows that the centralizer of any torus is 
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connected therefore the W(G, S) is the quotient NG(S)/Ng(S) and so it has to be finite by 

Theorem 2.1. Since all maximal tori are conjugate, their Weyl groups are isomorphic, this 

group is simply called the Weyl group of G and is usually denoted by W(G) or W when 

there is no ambiguity about the underlying group. 

Theorem 2.11 ([ll] 523.1). Let B be a Borel ~ubgroup of G. Then Nc(B) = B.  

Let B be the set of all Borel subgroups and fix Bo E B. the map xBo H xBo is bijection 

from G/Bo onto B. Using by Theorem 2.11 we have: 

which shows that the map is both well defined and 1-1. Being surjective is obvious in view 

of Theorem 2.9. Therefore the set of all Borel subgroups has the structure of a projective 

variety. 

Example 2.5. The variety of all Borel subgroups of GL(2, K )  is isomorphic to p l (K) .  To 

see this note that G has a natural transitive action on the set of lines in K ~ .  Bo = T(2, K) 

is the stabilizer of the line [ ( ; I .  Now every other Borel subgroup can be written as xBo 

for some x E GL(2, K )  and it fixes the line x [(;I .  So we can establish a bijection between 

GL(2, K)/T(2, K )  and P'(K). 

2.5 Reductive Groups 

The identity component of the intersection of all Borel subgroups is called the radical of G 

and is denoted by R(G). The unipotent radical of G (R.,(G)) is the unipotent subgroup 

of the radical. We call a non-trivial connected group semisimple if its radical is trivial and 

reductive if its unipotent radical is trivial. 

Being reductive is a strong assumption. We list some of its consequences: 

Theorem 2.12 ([ll] 526.2). Let G be reductive and S any subtorus of G. Then CG(S) is 

reductive. If S Ss maximal then CG(S) = S .  

Theorem 2.13 ([ll] 526.2). Let G be reductive. For any Borel subgroup B containing a 

fixed torus T there exist a Borel subgroup B- such that B n B- = T .  
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Theorem 2.14 (Bruhat Decomposition [ll] 528.3). A reductive group G can be written as 

the disjoint union of double cosets: G = UuELli BwB, where B is a fixed Bore1 subgroup 

and W is the Weyl  group of G. Moreover BwB = BirB if and only if v = w i n  W. 

Moreover we can classify all connected reductive goups over an arbitrary algebraically 

closed field K. To do this we need to define root datum: 

Definition 2.4 (Root Datum). A root datum is a quadruple 9 = (X,  R,  X V ,  RV),  where: 

(a) X and X V  are free abelian groups of finite rank, in duality by a pairing X x X V  -+ Z 

denoted by ( , ). 

(b) R and RV are finite subsets of X and X V ,  and we are given a bijection a H aV of R 

onto RV such that: (a, aV) = 2 for a E R. 

(c) For a E R we define endomorphisms s, and sx of X and X V  by: 

v x  E X : s,(x) = 5 - (2, aV)a 

v y  E xV : sX(y) = y - ( a ,  y )aV 

Now if a E R then s,(R) = R and sx(Rv) = RV. 

From condition (b) we have s i  = 1 and s,(a) = -a .  The Weyl group W = W(@) 

of 9 is the group of automorphisms of X generated by the set {s, : a E R). By the 

symmetry between X and X V  we see that 9' = (XV,  RV,  X,  R) is a root data too. It is 

called the dual root datum. R is the set of roots of @ and RV is the set of coroots of 

9. There is a natural notion of isomorphism of root data, given two isomorphic root data 

(X, R,  X V ,  RV) ,  (XI,  R, Xy,  Ry) means that we have an isomorphism X I  E X that maps 

R1 into R and its dual maps RV onto Ry. 

Example 2.6. Take X = X = Zn with the standard pairing and R = RV = {ei - ej , i # j )  

where ei denotes the usual orthonormal unit vectors. Note that: 
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By sij denote the endomorphism associated to  ei - ej we have: 

We see that S i j  is just the reflection which fixes everything orthogonal to ei - ej. Also 

s i j (R)  = R and sij = sji. The map sij H (i j) gives us an isomorphism from W to 6,. 

Given an arbitrary connected reductive group G and a maximal torus T of G we can 

construct a root datum: ( X * ( T ) ,  a, X, (T) ,  qV) in a way that the Weyl group of the root 

datum and the Weyl group W ( T )  are isomorphic. Since all maximal tori in G are conjugate 

this root datum is independent of T .  In fact the associated root data characterizes G up to 

isomorphism and every possible root datum is the root data of some reductive group (See 

[16] 9.6.2 and 10.1.1). Here we give the example of the case when G = GL(n,  K )  

Example 2.7 (Root Datum of GL(n ,  K ) ) .  Let G = GL(n,  K )  and T = D(n ,  K ) .  By 

our previous discussion we know that Hom(T, G,) and Hom(G,, T )  are dual free abelian 

groups. Now R c Hom(T, G,) is a finite set, they are given by: 

aij : diag(Al, X2,. . . , A,) H &A;' 

The coroots RV c Hom(G,, T )  are given by: 

where X is in the i th column and A-' is in the j th  column. Now we compute: 
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Finally we have to compute the action of saij, s&. We have seen that the coordinate 

characters form a basis for Hom(T, G,). But first we compute the inner products: 

Now we have: 

Therefore we see that that sail ( R )  = R. The proof of s& ( R V )  = RV is similar. The calcu- 

lations for the root datum of GL(n,  K )  were the same as the calculations in Example 2.6. 

In fact the map x,, XY ++ ei is an isomorphism of root data. In particular this shows that 

the Weyl group of GL(n,  K )  is 6,. 

2.6 Finite groups of Lie type 

Definition 2.5. An algebraic group over Fp is said to be defined over IF, if it has an 

IF,-structure such that the associated Frobenius morphism is a group homomorphism. The 

finite groups arising as fixed points of the Frobenius morphism are called finite groups of 

Lie type. 
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Example 2.8. Consider the group GL(,n, K )  with the following IFq-structure 

The corresponding Frobenius morphism is defined by (Xu) ++ (x!~). Its fixed points over IF, 

form the group GL(n, IF,). Any embedding of an algebraic group G into GL(n, K )  as above 

defines a standard Frobenius endomorphism on G by restriction of the endomorphism 

of GL(n, K )  defined by Xij  H A:'. But there are other examples of rational structures on 

algebraic groups, for instance the unitary group is GL(n, K ) ~ '  where F' is the endomorphism 

defined by: 

~ ' ( x )  = ~ ( ( x ~ ) - ' ) ,  

with F being the standard endomorphism on GL(,n, K ) .  

The following theorem is very important in the theory of finite groups of Lie type: 

Theorem 2.15 (Lang-Steinberg; [18] $10). Suppose G is a connected group and F is a 

surjective endomorphism of G with finitely many fixed points. Then the Lung map k : G --, G 

defined by L(g) = g-l F(g) is surjective. 

Example 2.9. Lang-Steinberg Theorem holds for the standard Frobenius and G = T(2, K) .  

For an arbitraryelement: h = [::I E T(2,K)  we have to find g = E T(2,K)  such 

that: 

This means that finding g is equivalent to finding z, y, w such that: 

ax = x4, dw = w4, yq = bx + dy, x, w # 0. 

Pick nonzero solution of T4 - a T  = 0, T4 - dT = 0 for x,  w respectively. Then pick any 

value for y such that it satisfies T4 = bz + dT for the chosen x. It is obvious that these 

three values for x, w, y satisfy all the conditions. 
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Example 2.10. Now we prove the Lang-Steinberg Theorem in the case where F is the 

standard Frobenius z H 2 4  and G = G L ( 2 ,  K ) .  Let h = [: j] E G L ( 2 ,  K )  be arbitrary we 

have to  find g = [ z  g ]  E G L ( 2 ,  K )  such that: g - ' ~ ( g )  = h. We have already proved the 

Lang-Steinberg Theorem for T ( 2 ,  K )  so we can assume that c # 0. Now we have: 

This is equivalent to finding z, y, z ,  w such that: 

Since c # 0 we can write y = c-'(24 - a x ) ,  w = c-'(zQ - a z )  and therefore we have to find 

x ,  z such that: 

xq2 - (a4 + dcq-')xq + (add-' - cqb)x = 0 

zq2 - (a4 + dcq-')zq + (add-' - &b)z = 0 

22(2q-1 - xq-I ) # O  

Now suppose that there is no such x ,  z that satisfy all the above equations. This means that 

for all nonzero solutions X I ,  X 2  of 

satisfy A:-' = A;-'. In other words all nonzero solutions of f ( T )  = 0 satisfy the equation 

Tq-' = p where p is a constant depending only on a,  b, c, d. This means that f (T) = 0 has 

a t  most q - 1 distinct nonzero solutions. However: 
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is nonzero and constant therefore f (T) can not have multiple roots so f (T) has q2 - 1 roots 

but q2 - 1 > q - 1; this contradiction shows that we can find x, z with the desired properties. 

Some consequences of Lang-Steinberg Theorem: 

Corollary 2.2. Let V be an algebraic variety defined over Fq ,  and let G be a connected 

algebraic group defined over Fq acting on V by a morphism which is defined over Fq.  Then 

any F-stable orbit contains an F-stable point. 

Proof. Let v be a point in an F-stable orbit, so we have: F(v) = g v for some element 

g E G. By Lang's theorem the element g-l can be written as h K 1 ~ ( h )  with h E G. So we 

have: 

F(v) = g v = ( h - l ~ ( h ) ) - l  v = ( ~ ( h ) - l h )  v, 

therefore we have: F(h)  F(v) = h v. This implies: F ( h  v) = h v. Hence h v is the 

F-fixed point in the orbit of v. 0 

Corollary 2.3. Suppose H is a closed connected subgroup of the algebraic group G and that 

both are defined over Fq .  Then ( G / H ) ~  GF/HF. 

Proof. By Corollary 2.2 any rational left H coset contains a rational point. So the natural 

map ( G / H ) ~  --+ G ~ / H ~  is surjective. It is injective since if x, y E GF are in the same coset 

then x-ly E HF. 0 

A maximal torus of GF is defined to be a subgroup of the form TF where T is an F-  

stable maximal torus of G. Although every maximal torus of G lies in a Borel subgroup 

of G it need not be true that every F-stable maximal torus of G lies in an F-stable Borel 

subgroup of G. An F-stable maximal torus of G is called maximally split if it lies in an 

F-stable Borel subgroup of G ~ .  

Along the same lines we can prove: 

Corollary 2.4 ([7] 3.15). Let G be a connected algebraic group defined over Fq.  

(i) G has an F-stable Borel subgroup and any two F-stable Borel subgroups are conjugate 

by an element of GF. 

(ii) Any F-stable Borel subgroup contains an F-stable maximal torus. 

(iii) F-stable maximal tori contained in F-stable Borel subgroups are conjugate. 
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(iv) Any F-stable conjugacy class of G contains an F-stable element. 

(v) Any F-stable semisimple element lies in  an F-stable maximal torus. 

De f in i t ion  2.6. Let A be a group on which the Frobenius F acts. F-conjugat ion in A 

is the action of A on itself given by: z a = xaF(x ) - ' .  If F acts trivially, F-conjugacy 

reduces to ordinary conjugacy. Define: 

CF,A(a)  = { x  E A : x - ' a ~ ( x )  = a ) .  

This is a subgroup of A called the F-centralizer o f  a.  

Propos i t ion  2.3 ([7] 3.21). Let V be an algebraic variety defined over IFq, and let G be a 

connected algebraic group defined over IFq acting on V by a morphism which is defined over 

IFq. Let O be an F-stable orbit in  V and let x be an element of O F ,  such a point exist by 

Corollary 2.2. Now we have: 

( i)  Let g E G then gx E O F  if and only if L ( g )  E StabG(x) .  

(ii) There is a well defined map which sends the GF-orbit of gx E O F  to the F-conj*ugacy 

class of the image of L ( g )  in S tabG(x) /S tabG(x)o  and it is a bijection. 

Corol lary  2.5. Let T be a given F-stable maximal torus of a connected reductive group G ,  

defined over IFq. The ~ ~ - c o n j u ~ a c ~  classes of maximal tori of G are parametrized by the 

F-conjugacy classes of N G ( T ) / N G ( T ) "  = W ( T ) .  

T h e o r e m  2.16 ([4] 3.3.6). Let T be an F-stable maximal torus of G obtained from the 

maximally split torus To by twisting with w .  Then N G ( T ) ~ / T ~  CF,W(W) .  

Proof. Let T = T o .  Then we have: 

Thus F acts on T as XI-' o F acts on To. Now since T is connected by Corollary 2.3: 

N ~ ( T ) ~ / T ~  E ( N G ( T ) / T ) ~ .  Conjugation by g transforms T to  To, NG(To) to N G ( T )  and 

N G ( T ) ~ / T ~  to N ~ ( T ~ ) ~ / T : .  It also transforms ( N G ( T ) / T ) ~  to ( N G ( T O ) / T O ) ~ - ~ ~ ~ .  Thus 

( N ~ ( T ) / T ) ~  is isomorphic to subgroup of W fixed by w-'0 F .  Now suppose x E W is fixed 

by UI-' o F .  This means that: 

(w-I o F )  ( x )  = x @ W F ( X ) W - '  = x ej x - ' W F ( X )  = w @ x  E C F , ~ ( w ) .  
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Chapter 3 

Construction 

Let A and B be two finite groups. A bimodule M with a left Qe[~]-action and a right 
- 
Qe[B]-action is called a A-module-B. Such a module gives a functor from the category of 

left Qe[~]-modules to the category of left Qe[~]-modules. For an arbitrary left Qe[~]-module 

E we define: 

R ( M I B ,  A)(E) = @ a e [ ~ ]  E. 

This is a left Qe[~]-module where A acts on iil@8[Bi E through its action on M. R(MIB, A) 

is called generalized induction functor and the following example explains this naming: 

Example 3.1. If B is a subgroup of A and M = a [ A ]  on which A acts by left translation 

and B by right translation then: 

The nlodules we will consider will always be (virtual) vector spaces of finite dimension. 

This hypothesis is necessary in particular for the next proposition which generalizes the 

character formula for induced characters. 

Proposition 3.1 ([7] 4.5). Let M be a A-module-B and E be an B-module then for a E A 

we have: 

1 
trace ( a ,  R(MI B ,  A)(E) ) = - trace ( (a ,  b-I) ,  M )  trace(b, E) .  

l B l  &El 

Proof. 
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is an idempotent of the algebra oe [B x B] E f&, [B] @ [B] . Its image in the representation 

of B x B on the tensor product M @ae E is a projector whose kernel is the subspace N 

generated by the elements of the form mb @ x - m 8 bx. To see this suppose xi mi @ X i  lies 

in the kernel this means xi CbEB mib-' 8 bxi = 0. Now we can write: 

@ae PI  E is the quotient of M @Q E by the subspace N. To see this it is enough to 

recall the construction of the tensor product both these tensor product are constructed as 

the quotients of Z-module of formal linear combinations of M x E with coefficients in Z. 

The kernel of this quotient is the sub-Zmodule generated by elements: 

where rn, mi, m2 E M ,  x, x i ,  x2 E E and X is in the ring we are tensoring over. In this 

setting it is obvious that the kernel is larger in the case M @ae[Bl E and contains the kernel 

in the case of M Bat E .  Now we get: 

trace ( a ,  R(M ( B ,  A) ( E )  ) = trace a @ l .  
@Qe[B] E )  [ 

= trace ( ~ @ ~ , ( M @ ~ ~ E ) / N )  

= trace ( a 8  l , e ( M @ g  E ) )  

= trace ( ( a  8 l ) e ,  M gal E 1 

1 
= - x trace [ ( a ,  bK1), M )  trace(b, E ) .  

I B l  b E B  

Let G be a reductive group defined over Fq with the associated Frobenius map F. Given 

an F-stable maximal torus T in G the construction of Deligne-Lusztig is a generalized 

induction character from T~ to GF. To define a generalized induction functor we need a 
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bimodule, in this case this is provided by t-adic cohomology. Choose a Bore1 subgroup B 

containing T.  We have a semidirect product B = TUB where UB is the unipotent radical 

of B. The affine variety: 

sB = L-'(uB) C G 

is stable under left translation by elements in GF', let g E GF and x E SB: 

It is also stable under right translation by elements of TF: 

Therefore we can define a left action of GF and a right action of TF on SB. By Proposition 

1.3 the vector spaces H: (SB , Qe) become left Qe [GF]-module and right Qe [TF]-module. 

Therefore the virtual vector space H,*(SB, Qe) is a left Qe[GF]-module and a right Qe[TF]- 

module. This is the bimodule we are looking for, denote it by MB. Let 8 E ~ o r n ( T ~ ,  Qe), 

we define: 

R $ ~ ~ ( B ) ~  = R ( M ~ ~ T ~ , G ~ ) ( B )  = MB @atir~I  8. 

By Proposition 3.1 its character at g E GF is given by: 

The characters RFcB(8), where 8 E lrr(TF) are called DL characters 2 ;  they were first 

defined by Deligne and Lusztig in [6]. 

'This notation does not reflect the choice of Frobenius morphism F, however for the sake of simplicity 
we will omit it. 

'DL stands for Deligne-Lusztig. 
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Properties 

In this chapter we will investigate t'he properties of the DL characters R&(B) defined in 

the previous chapter. 

4.1 Inner Products 

Let T ,  S  be F-stable maximal tori in G. Set: 

N ( T , S )  = { g  E G :  T g  = S ) .  

This set is clearly a union of right cosets of T .  We now define: 

W ( T ,  S )  = {Tg : g E N ( T ,  S ) }  

Since T  and S are F-stable N ( T ,  S )  will also be F-stable and so there will be an induced 

action of F  on W ( T ,  S ) .  

Lemma 4.1. There is a bijection between W ( T ,  S ) F  and the set of right cosets of T~ in 

N ( T ,  S)". 

Proof. W  ( T ,  s ) ~  consists of the set of F-stable cosets of T  in N ( T :  S ) .  Now every F-stable 

coset Tg contains an F-stable element. To see this note that F(Tg)  = Tg and so ~ ( 9 ) ~ - '  E 

T .  By Lang's theorem there exist a t  E T such that F ( ~ ) ~ - '  = t - 'F( t )  = ~ ( t ) t - ' .  Thus 

t-lg is an F-stable element in Tg. The set of F-stable elements in Tg is a coset of T F  in 

N ( T ,  S ) F .  Conversely every right coset of T~ in N ( T ,  s ) ~  lies in a unique F-stable right 

coset of T  in N ( T ,  S )  which itself is an element of W ( T ,  S ) .  0 



CHAPTER 4. PROPERTIES 28 

W(T ,  S ) F  is an empty set unless T and S are conjugate by an element in G ~ .  Choose 

representatives 'UI E N (T,  S )  for the elements w E W (T, S )  F .  Given 6 E l r r ( ~ ~ )  we define 

a character of SF  by: 

V ( s )  = e ( ~ s ' U I - ' ) .  

Thanks to the above lemma this definition does not depend on the chosen representatives. 

To see this choose two representatives of w: m = t l g ,  n = tpg we have: 

V ( s )  = %(nsn - ' )  = 6 ( t p g s g - ' t ~ ~ )  

Now by the above lemma s' = gsg-I lies in T F .  And since the group is abelian both are 

equal to 6 ( s t ) .  

Theorem 4.1 (Orthogonality; [4] 7.3.4). Wi th  the above notation we have: 

Corollary 4.1. RFcB(6)  is independent of B. 

Proof. If f ,  f' are two characters of GF then the equalities ( f ,  f )  = ( f ,  f ' )  = ( f ' ,  f ' )  imply 

( f  - f ' ,  f - f ' )  = 0 hence f = f ' .  We apply this to f = R F C B ( 6 ) ,  f' = RFCB,(6)  where 

B and B' are two Bore1 subgroups containing T. The orthogonality theorem shows that: 

( f ,  f )  = ( f ,  f ' )  = ( f ' ,  f ') and the corollary follows. 0 

Remark 4.1. From now on we will use the symbol %(6)  instead of RFCB (6 ) .  

Definition 4.1. Suppose 6 E lrr(TF) is such that = 6 implies w = 1 for w E W ( T ) ~ .  

Then 8 is said to be in general position. 

Corollary 4.2. If 6 i s  i n  general position then f R$(B) is a n  irreducible character of GF. 

Proof. We have: ( ~ $ ( 6 ) ,  R$(o)) = ({w E w ( T ) ~  : W6 = 6 )  1. If 6 is in general position 

this means: ( R $ ( 6 ) ,  R F ( 6 ) )  = 1. Since R g ( 6 )  is a virtual character this means that either 

R$(o) or - ~ $ ( 6 )  is an irreducible character. 0 

Corollary 4.3. If the F-stable maximal tori T ,  S of G are no t   conjugate then: 

( % ( e l 7  R%)) = 0- 

Proof. If the F-stable maximal tori T ,  S of G are not ~ ~ - c o n j u ~ a t e  then W(T ,  S )  is empty 

and the result follows from the Orthogonality Theorem. 0 
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4.2 Computing DL Characters 

4.2.1 Character Formula 

Definition 4.2. Denote RF(1) by QF and call it the Green function attached to T.  

Remark 4.2. In [lo], Green defined these functions for GL(n, IFq) using combinatorial meth- 

ods, hence the naming. His methods led to determination of the character table of GL(n, F,) 

but could not be generalized to  the case of an arbitrary finite group of Lie type. For a given 

n he explicitly defined a set of polynonlials Q:; indexed by two partitions of n: TI ,  ~ 2 .  To see 

how this matches with our Green functions one should note that in GL(n, IFq) the unipotent 

classes as well as the conjugacy classes of F-stable maximal tori can be indexed by parti- 

tions of n, now Qc;(q) gives the value of the Green function attached to  the corresponding 

maximal F-stable torus on the corresponding unipotent class of GL(n, IF,). 

The next theorem expresses the values of all DL characters in terms of Green functions: 

Theorem 4.2 ([4] 7.2.8). Let g = su be the Jordan decomposition of g E G ~ .  Then 

Remark 4.3. First we have to check that the right side expression makes sense. For a fixed 

x E GF let x-'sx = to E T then we have: 

So XTX-' c CG(s). Since it is connected we can conclude that XTX-' c CE(s). Next we 

have to show that XTX-' is an F-stable maximal torus of Cg(s). It is a maximal torus 

in Cg(s) because it is a maxinlal torus in G. To see that it is F-stable we just note that 

both x and T are F-stable. Also each unipotent element of CG(s) lies in CE(s) ([12, 51.121) 

therefore u E Cg(s). Hence the right side is well defined. 

Remark 4.4. Let g E G~ and let g = su  be its Jordan decomposition. If the ~ ~ - c o n j u g a c y  

class of s does not intersect with T~ then R ~ ~ ( ~ )  = 0. 

Remark 4.5. Let g = zu be the Jordan deconlposition of an element in GF such that z lies 

in the center. In this case we have: 
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4.2.2 Computing Green Functions 

The character formula reduces the problem of computing the values of all DL characters to  

that of computing the Green functions. We can try to  compute the Green functions using 

the formula given in the previous chapter however there is an easier interpretation of Green 

functions. To explain this we need some preparation: 

Proposition 4.1 ([4] 7.7.1 ). Let Bo be a fixed Borel subgroup of G. G acts on G/Bo  x G/Bo  

b y  left multiplication. The orbits are in bijective correspondence with elements of W ( T o )  = 

N(To)/Tot  where To is a maximal torus in Bo. 

Proof. Let (xBo,  yBO) E G/Bo  x G/Bo .  This element lies in the same orbit as (Bo,  x- lyBo).  

Now by Bruhat decomposition x-'y E BowBo for a unique w E W ( T o ) .  Let x-lY = bwb' for 

b, b' E Bo Then (Bo ,  x-' yBo) = (Bo ,  bwBo), and this lies in the same orbit as (Bo,  wBo).  

Thus every orbit contains an element of the form (Bo ,  wBo).  Conversely suppose (Bo,  wBo) 

lies in the same orbit as ( B o ,  w1Bo). Then (Bo ,  wBo) = (xBo,  xw1Bo) for some x E G. Thus 

Bo = xBo and w1B0 = xwBO. Hence x E Bo and w' E BowBo. It follows that w = w'. 

Proposition 4.2 ([4] 7.7.2 ). G acts on B x B b y  conjugation, where B is the variety of 

Borel subgroups in G. The orbits are in bijective correspondence with elements of W ( T o )  = 

N(To) /Tot  where To is a maximal torus in Bo.  Each orbit contains a unique element of the 

form (Bo ,  ,Bo), where w is a representative for w E W ( T ) .  

Definition 4.3. By 0,, we denote the G-orbit in B x B corresponding to w E W ( T ) .  It  is 

the set of all pairs ( B 1 ,  B2)  E B x B such that B1, B2 are in the same orbit as (Bo ,  w ~ o ) .  

We say B1, B2 E B are in relative position w if ( B 1 ,  B2)  E 0,. Now X ( w )  is defined to  

be the set of all B E B such that ( B ,  F ( B ) )  E 0,. X ( w )  is a locally closed subset (i.e. it 

is the intersection of an open set with a closed set) of B and so inherits a structure of an 

algebraic variety. It is called the DL variety attached to 20 '. 
G~ acts on DL varieties, to see this let B E X ( w )  and g E G F .  Then ( B ,  F ( B ) )  E 0, and 

(gB, F(gB)) = (gB, gF(B))  lies in the same G-orbit as ( B ,  F ( B ) ) .  Thus (gB, F(gB)) E Ow,  

and so gB E X ( w ) .  With the respect to  this action we have the following: 

Theorem 4.3 ([4] 7.7.11). Let T be an F-stable maximal torus of G obtained from a max- 

imally split torus by twisting by w E W .  Then R ~ ( I ) ( ~ )  = C(g, X ( W ) ) ,  for all g E G ~ .  

'DL stands for Deligne-Lusztig. 
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Example 4.1. X ( e )  is the set of all Borel subgroups B of G, such that ( B ,  F ( B ) )  is in 

the same orbit as ( B ,  B ) .  In other words X ( e )  is the set of F-stable Borel subgroups of G.  

This is the set of fixed points of Frobenius on 23 and so by Proposition 1.1 it is finite. By 

Proposition 1.4 and Corollary 2.3 we have: 

Since g acts by left translation we conclude that: RP(1) = lnd$(l) .  

The next theorem shows that more is true: 

Theorem 4.4 ([4] 7.2.4). Let T be a maximally split F-stable t o m s  and B an  F-stable Borel 

subgroup o f G  containing T .  Let 8 E l r r ( ~ ~ )  and 8 B ~  be the one dimensional representation 

of B~ which extends 0 and has U; in  the kernel. Then  we have: 

Example 4.2 (DL varieties for GL(2)) .  From Example 2.7 we know that the Weyl group 

of GL(2) has two elements: W = {e ,  s ) .  We have already determined X ( e )  in the general 

case, it is the set of fixed points of the Frobenius. In Example 2.5 we have seen that G / B  

is isomorphic to the projective line IP1(Fp) and by definition X ( e )  is the F-stable points of 

IP1(Fp). In other words X ( e )  = IP1(Fq). So it remains to deterrnine the DL variety X ( s )  we 

claim: 

~ ( s )  = IP1(Fp)\~(e) .  

To see this suppose B is not F-stable then ( B ,  F ( B ) )  does not belong to 0,. But by 

Proposition 4.2 there are only two orbits in IP1(Fp) x IP1(Fp) hence ( B ,  F ( B ) )  E 0,. 

4.3 Geometric Conjugacy 

The next natural question is how the reducible DL characters decompose into irreducible 

characters of G F  and to which extent the elements of lrr(GF) are covered by DL characters. 

Here is the answer to the second question: 

Corollary 4.4 ([4] 7.5.8 ). For any irreducible character .ir of G F ,  there exist an F-stable 

maximal torus T c G and a character 8 E l r r ( ~ ~ )  such that (T ,  ~ g ( 8 ) )  # 0. 
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The answer to the first question turns out to be hard. Corollary 4.3 shows Rg(8) and 

~ g ( q )  are orthogonal if T and S are not G~-conjugate, but since they are virtual characters 

this does not imply that they do not have any irreducible components in common. We will 

give a condition for two DL characters to  have a common irreducible component. We define 

an equivalence relation between the pairs (T, 8) where T is an F-stable maximal torus and 

8 E l r r ( ~ ~ ) .  This relation depends not only on the finite group G~ but on the following 

chain of finite subgroups of G: 

Also we define the norm map NpIF as follows: 

Definition 4.4. Let T, S be F-stable maximal tori of G and 8 E l r r ( ~ ~ ) ,  q E lrr(SF). The 

pairs (T, 8) and (S, q) are called geometrically conjugate if for some n > 0 there is an 

element g E G ~ "  which conjugates T to S and 80n/FnlF E l r r ( ~ ~ ~ )  to  qONFn/~  E Irr(SFn). 

With this definition we can state: 

Theorem 4.5 ([4] 7.3.8). Let T,S be F-stable maximal tori of G and 8 E l r r ( ~ ~ ) ,  q E 

lrr(sF). suppose (T, 8) and (S, q) are not  geometrically conjugate. Then  @(8) and RZ(q) 

haue no  irreducible component i n  common. 

Example 4.3 (Unipotent Characters). Any two pairs (T, I ) ,  (S, 1) where T, S are F-stable 

maximal tori are geometrically conjugate. To see this note that all tori are conjugate in G 

so there is g E G such that T = gS. It is obvious that there is an n > 0 such that g E G ~ "  

and g will transform the unit character to unit character. This together with Theorem 4.5 

implies that all Green functions have the same irreducible components. Theses characters 

are called the unipotent characters of G ~ .  
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An Example 
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Computations for GL(2) 

In this chapter: 

q = pm, where p is an odd prime and m > 1 is an integer. 

F the standard Frobenius associated to q. 

G = G L ( ~ ,  F p ) .  

B = T ( ~ , F = ) .  

5.1 F-stable Maximal Tori 

Fix the maximal F-stable torus T.  By Corollary 2.5 F-conjugacy classes in IV = {e, s )  

determine the the GF-conjugacy classes of F-stable maximal tori. Now by definition the 

F-conjugacy class of u: is all elements of the form XWF(X)-l . If w = e then its F-conjugacy 

class consists only of e. Now since F-conjugacy classes are orbits of an action we conclude 

that the { s )  is the other F-conjugacy class. So we get two classes of F-stable maximal tori 

corresponding to elements of the Weyl group. The class corresponding to e (which from 

now we will denote it by T,) is the the maximally split torus. T: is the set of fixed points 
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of F on T .  Pick an arbitrary element in t E T. Now F( t )  = t implies: 

Therefore X = X4, p = pq SO A ,  p E IF:. This implies T: IF; x IF:. By the proof of 

Theorem 2.16 the torus orresponding to s (denoted by Ts) is isomorphic to the group of 

fixed points of s-' o F on T .  For an arbitrary element t E T this means that F( tS)  = t .  In 

other words: 

Therefore X = pq and p = X4. This implies: Aq2 = A. Therefore: 

is isomorphic to IFX via the map: [i $1 rt A. We have to find the F-stable form 
q2 

of this group. To do this we note that: IFq2 = IFq(fi) where T is a generator for the cyclic 

group IF;. Therefore we can write X as a + b f i  where a, b E IFq. Now: 

Now conjugation by fi -fi maps T S - " ~  to the the F-stable form: 
[ 1  1 1  

5.2 Conjugacy Classes 

We wish to  determine all the conjugacy classes in GF. First we determine the semisimple 

classes in GF. Fro~n Corollary 2.4 we know that every semisimple element lies in an F-stable 

maximal torus. 

An element of center is of the form 2, = [ t  :] such that a E IF:. The central elements 

lie in both the split and the nonsplit torus. Each element in the center determines a 

conjugacy class. This way we will get q - 1 conjugacy classes each of size 1. 
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Consider elements of the split torus that  are not central. These elements are of the 

form CA,b = [;1 i ]  where a ,  b t F,X are distinct. C:,b is conjugate to  Cl,, via the 

matrix [ y  jl] which is representative of the nontrivial element of weyl group of T,. 

T h e  number of these classes are i ( q  - l ) (q  - 2 ) .  The centralizer is the torus T: itself. 

So each class is of size q(q  + 1). 

Finally consider the noncentral elements of the nonsplit torus. These elements are of 

form C2 = [ g  7,b] where a E F4 and b E F:. Again Ci  is conjugate to  q,-b via the a,b 

action of the Weyl group. So we get ;q(q + 1) classes. The centralizer is T:. So the 

size of each class is q(q - 1). 

Now we know all the semisimple classes. Consider the element: [A : I .  By multiplying 

the elements of the center by this elerrier~t we obtain q - 1 classes: U, = [ t  i] for a E FgX. 

The centralizer of this elements is the matrices of the form [ $  :] for a E FgX . So the size of 

each class is q2 - 1. Now a simple counting argument shows that  we have exhausted all the 

classes in G ~ .  

5.3 DL Characters from T, 

An element of lrr(T:) is given by  a pair (a ,  P )  of characters of F:: 

We want to see which ones are irreducible, we have to compute the action of the Weyl group. 

Pick representatives for the elements in the Weyl group. 8 = [h  y ]  and d = [ y  1. Since 

the identity element acts trivially we just compute the action of s: 

[:; "I) 

In other words s acts by exchanging a and P. By the Orthogonality Theorem the DL 

characters R?~ ( a ,  jj) are all distinct when { a ,  /3) runs over non-ordered pairs of characters ' I  

of  F,X so we get iq(q - 1 )  characters of the form R$; ( a ,  8).  These virtual characters have 
1 
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norm 1 when a # otherwise they have norm 2. Since T, is contained in the F-stable Borel 

subgroup B we can use Theorem 4.4. This gives us: 

where (a, P ) B ~  is extended to a character of B~ as follows: 

These are exactly the characters in $5.2 [9]. Also this shows that when a # /3 then 

Rge (a ,  P) are actual characters with norm 1, in other words they are irreducible characters 

of G ~ .  

5.4 DL Characters from T, 

Since Ts is not contained in any F-stable Borel subgroup the DL characters constructed 

from T, are not in the form of induction. Therefore we have to rely on the theory we have 

developed for DL characters. An element p t l r r ( ~ y )  is a character of d = [ A  y ] ,  
S = [ 71 are representatives for the Weyl group. We compute the action of s: 

So s acts by sending p to p4. By the Orthogonality Theorem the DL characters RF3(cp) 

are all distinct when p runs over representatives of Irr(lFX,) modulo p = pq (because we 
4 

have: R$~ (p) = - R$~ (pq)). So we get (q2 - 1) characters. These characters are irreducible 

unless cp = pQ and when they are not irreducible they have two irreducible components. 

5.4.1 Computing Qg8 
Now we compute the Green function associated to T, by Theorem 4.3 and Corollary 1.1 we 

have: 
00 

Q ~ ~ ( ~ ) = R ~ ~ ( I ) ( ~ ) = L ( ~ , X ( S ) ) = ( - ~ ~ X ( ~ ) ~ ~ ~ ~ ~ ~ ~ ~ ~ )  n=l z=m . 
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So we have to count the number of fixed points of Fng-l in X(s)  for various g. In Ex- 

ample 4.2 we have seen that X (s) is the coinpliment of X(e) = IP1(JFq) in IP1(Fp) SO this is 

equivalent to counting the fixed points of Fng-l in IP1(Fp) and then deducting the number 

of fixed points which are F-stable. For the projective line we have: 

The points of the form [ y ]  are usually called the affine or the finite part. While the point 

[A] is also called infinity (m). 

0 Let g = [ g  E l .  g fixes [A] so we look at the affine part: 

We have qn+l fixed points however all F-stable points were among thein so: IX ( s ) ~ " s - '  I = 

qn + 1 - q - 1 = qn - q. Therefore: 

Let g = [ t  g ]  
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We should have ba-lpqn = p since a # b the nonzero solutions are not F-stable. We 

have qn + 1 fixed points in lP1(Rp) only two of them ([A] : [!I) are F-stable. Therefore 

J X ( S ) ~ " ~ - ~ (  = qn - 1: 

Let: g =  [ ~ : ~ ] , b # 0  

( u p  - rb)  (-bp + a)-' 

1 1 

We can assume a # bp, otherwise we have m and the point p is not fixed. This gives 

us the following equation: 

which is equivalent to: 
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This has qn + 1 solutions and all solutions lie in X(s) .  To see this suppose po is an 

F-stable solution, this assumption would turn the above equation into: 

Since b # 0 this means p i  = T but this is impossible since T is a generator for Ft. 
This contradiction shows that all solutions lie in X(s) .  Hence IX (s )~"s - '  I = qn + 1. 

This gives us: 

Finally suppose g = [ E  A]: 

Fn [r; ;I-' [A] = Fn [a] = [:,I 
a - lp  - 1 

This gives us the equation: p4n - p-a  = 0 this has qn solutions and all of the solutions 

lie in X(s )  since F ( p )  = p would imply a = 0. In total there are qn + 1 fixed points 

in P' (',) and qn lie in X(s) .  

5.4.2 Values for DL Characters 

We compute t,he values of these DL characters. For the classes of the form 2, we use 
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The virtual characters RgS(p) are all zero on the classes C:,  by Re mark 4.5. For classes 

C:.b we use Theorem 4.2: 

For classes Ua we use Remark 4.4, since their semisimple part in the Jordan decompo- 

sition lies in the center: 

GY(d ( 

Comparing with 55.2 [9] we see that X ,  = -RFY (cp). So all the norm 1 characters coming 

from T '  are opposites of irreducible characters. 
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Table 5.1: DL Characters of G L ( 2 ,  IFq) 

Remark 5.1. Obtaining the irreducible characters arising from the nonsplit torus is one 

of the major advantage of this construction. Previously obtaining these characters were 

much harder as there is no natural counterpart for induction from a Bore1 subgroup. The 

arguments for getting these characters were usually ad hoc and involved guess work as it is 

seen in 55.2 [9]. 

5.5 Geometric Conjugacy and Irreducibles 

We got ; (q  - l ) ( q  - 2 )  irreducible characters from the maximal torus and ;q(q - 1)  

irreducible characters from the maximal torus T:. So in total we have ( q  - 1 ) 2  irreducible 

characters which is comparable to the total number of irreducibles, (q2  - 1). If we look at 

the character table of GF in 55.2 [9] we see that the only characters that we have missed 

are V, , U, which arise as components of W,., which is the same as RFe (a ,  a) .  So V,, U, 

together with the irreducible DL characters are all the irreducible characters of GF. It is 

interesting to see how the set of irreducible characters of GF is partitioned by geometric 

conjugacy classes: 

We already saw in Example 4.3 that (T,, 1 )  and (T,, 1) are geometrically conjugate 

therefore RFe(l) and ~ g ~ ( 1 )  have the same irreducible components. Now it is easy 

to  check that the trivial representation occurs as component of ~ g ~ ( 1 )  = l n d Z : ( l )  

therefore we have: 

RFe(l) = 1 + x, 

where x is the character of an irreducible representation of dimension q. Now RF3 ( 1 )  

is of norm 2 ,  orthogonal to lnd$ ( 1 )  and with the same irreducible components hence 
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we can conclude that RgS(1) = i ( ~  - 1). Checking the values shows that: 

0 By Theorem 4.5 we see that the conjugacy class of (T,, (a, P ) )  and (T,, (w)) consists 

of a single pair when they have norm 1. 

Now consider the representation R$~ (a, a). One notices that: 

R$~ (a, O )  = (a o det) . R$~ (1) 

= ( a  o det) . (1 + X) = (0 o det) + (a o det) . X. 

the only remaining DL characters are (w) where wq = w. If w E Irr(IF;2) is of order 

q - 1, there exist cu E Irr(F;) such that: w = a o ~ ! f p / ~ .  This establishes that the 

remaining pairs ((T,, (a, a ) )  and ('1',, w),  (u = wq)) are geometrically conjugate and so 

they have the same irreducible components as R$~ (cy: a ) .  Similar to the first case we 

have: 

R$~ (a) = (a o det 



Bibliography 

[I] SGA 4: The'orie des topos et cohomologie e'tale des sche'mas. Springer-Verlag, Berlin, 
1972173. S6minaire de Ggom6trie Alggbrique du Bois-Marie 1963-1964 (SGA 4), DirigG 
par M. Artin, A. Grothcndieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, 
P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 269, 270, 305. 

[2] SGA 4; Cohomologie e'tale. Springer-Verlag, Berlin, 1977. S6minaire de Gkornktrie 
Algkbrique du Bois-Marie SGA 4+, Avec la collaboration de J .  F.  Boutot, A. 
Grothendieck, L. lllusie et J .  L. Verdier, Lecture Notes in Mathematics, Vol. 569. 

[3] SGA 5 ,  Cohomologie 1-adique et fonctions L. Springer-Verlag, Berlin, 1977. S6minaire 
de Gdometrie Algebrique du Bois-Marie 1965-1966 (SGA 5 ) ,  Edit6 par Luc Illusie, 
Lecture Notes in Mathematics, Vol. 589. 

[4] Roger W. Carter. Finite groups of Lie type. Wiley Classics Library. John Wiley & Sons 
Ltd., Chichester, 1993. Conjugacy classes and complex characters, Reprint of the 1985 
original, A Wiley-Interscience Publication. 

[5] Bomshik Chang and Rimhak Ree. The characters of G2(q) .  In Symposia Mathernatica, 
Vol. XIII (Conwegno di Gruppi e loro Rapprescntazioni, INDAM, Rome,l972), pages 
395-413. Academic Press, London, 1974. 

161 P. Deligne and G. Lusztig. Representat'ions of reductive groups over finite fields. Ann. 
of Math. (2), 103(1):103-161, 1976. 

[7] Franqois Digne and Jean Michel. Representations of finite groups of Lie type, vol- 
ume 21 of London Mathematical Society Student 'I'exts. Cambridge University Press, 
Cambridge, 1991. 

[8] Ferdinand Georg Frobenius. Gesammelte Abhand1,ungen. Bande I,  11, III. Heraus- 
gegeben von J.-P. Serre. Springer-Verlag, Berlin, 1968. 

[9] William Fulton and Joe Harris. Representation theory, volume 129 of Graduate Texts 
in Muthematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathe- 
matics. 

101 J. A. Green. The characters of the finite general linear groups. Trans. Amer. Math. 
SOC., 8(3:402-447, 1955. 



BIBLIOGRAPHY 45 

[ll] James E. Humphreys. Linear algebraic groups. Springer-Verlag, New York, 1975. 
Graduate Texts in Mathematics, No. 21. 

[12] James E. Humphreys. Conjugacy classes i n  semisimple algebraic groups, volume 43 of 
Mathematical Surveys and Monographs. American Mathematical Society, Providence, 
RI, 1995. 

[13] T. Y. Lam. Representations of finite groups: a hundred years. I. Notices Amer.  Math. 
Soc., 45(3):361-372, 1998. 

[14] James S. Milne. Algebraic Groups and Arithmetic Groups. Online notes at 
http://www.jmilne.org/math/index.html. 

[15] Jean-Pierre Serre. Linear representations of jn i te  groups. Springer-Verlag, New York, 
1977. Translated from the second French edition by Leonard L. Scott, Graduate Texts 
in Mathematics, Vol. 42. 

[I61 T. A. Springer. Linear algebraic groups, volume 9 of Progress i n  Mathematics. 
Birkhauser Boston Inc., Boston, MA, second edition, 1998. 

[17] Bhama Srinivasan. The characters of the finite symplectic group Sp(4, q ) .  Trans. Amer  
Math. Soc., 131:488-525, 1968. 

[18] Robert Steinberg. Endomorphisms of linear algebraic groups. Memoirs of the American 
Mathematical Society, No. 80. American Mathematical Society, Providence, R.I., 1968. 


