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ABSTRACT

Predicting the subcellular localization of a protein is a critical step in
processes ranging from genome annotation to drug and vaccine target discovery.
Previously developed methods for localization prediction in bacteria exhibit poor
predictive performance and are not conducive to the high-throughput analysis
required in this era of genome-scale biological analysis. We therefore developed
PSORTDb, a high-precision, high-throughput tool for the prediction of bacterial
protein localization. PSORTb implements a multi-component approach to
prediction, incorporating the detection of several sequence features known to
influence subcellular localization. With a reported overall precision of 96%, it is
the most precise method available and one of the most comprehensive methods
— capable of assigning a query protein to one or more of four Gram-positive or
five Gram-negative localization sites. The PSORTDb algorithm comprises a series
of analytical steps, each step — or module — being an independent piece of
software which scans the protein for the presence or absence of a particular
sequence feature. Modules include: SCL-BLAST for homology-based detection,
the HMMTOP transmembrane helix prediction tool, a signal peptide prediction
tool, a series of frequent subsequence-based support vector machines, as well
as motif and profile-matching modules. The modules return as output either a
predicted localization site or — if the feature is not detected — a result of

“‘unknown”. The output is then integrated by a Bayesian network into a final



prediction. Development of PSORTDb also required the creation of PSORTdb, a
database storing both known and predicted localization information for bacterial
proteins. This is a valuable resource to both the localization prediction and
microbial research communities, providing a source of training data for new
predictive algorithms and acting as a discovery space. The release of PSORTb
v.2.0 allowed us to carry out a number of analyses related to localization. We
performed the first genome-wide computational and laboratory screen for N-
terminal signal peptides in the opportunistic pathogen Pseudomonas aeruginosa,
used PSORTDb as a complement to laboratory-based high-throughput 2D gel
studies of individual cellular compartments, and examined protein localization in
a global context, revealing trends with implications for adaptive evolution in

microbes.
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1 AN INTRODUCTION TO PROTEIN SUBCELLULAR
LOCALIZATION IN BACTERIA

1.1 Protein localization in the bacterial cell

The Eubacterial domain of life comprises a diverse group of bacteria.
Bacterial cells come in many shapes and sizes; however, regardless of the cell's
gross morphology, the underlying structure of all bacterial cells can be defined
quite simply. Microscopy, staining, and other analytical techniques have revealed
that all bacterial cells consist of a cytoplasm — or cytosol —surrounded by a
phospholipid bilayer— the cytoplasmic membrane. Beyond this innermost part of
the cell, however, bacteria can be divided into two groups, each of which shows
markedly different outer layers (Figure 1.1). These groups both differ from cells in
the Archaebacterial domain, which, though similar in general appearance, do

exhibit some differences at the physiochemical level.



Figure 1.1: The Gram-positive (left) and Gram-negative (right) bacterial cell.
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The Gram-positive bacteria are the simpler of the two groups, surrounded
by a thick layer of peptidoglycan — or murein — known as the cell wall. The Gram-
negative bacteria are surrounded by a structure known as the cell envelope. This
consists of a comparatively thin peptidoglycan layer — the equivalent of the
Gram-positive cell wall, a second membrane called the outer membrane, and the
space between the cytoplasmic — or inner — and cuter membranes, termed the
periplasm. This cuter membrane is notably different from the symmetrical
phosphoalipid bilayer forming the inner membrane — it is asymmetrical, with the

outermost leaflet containing a molecule called lipopolysaccharide, or endotoxin.

All bacterial proteins are synthesized in the cytoplasm and indeed many
remain here, however a number of proteins are targeted to one or more of the

cellular compartments — or localization sites — described above. In both Gram-



negative and Gram-positive bacteria, a protein may also be secreted out of the

cell entirely into the extracellular environment.

Thus, in Gram-positive bacteria, a protein may be generally targeted to
one or more of four localization sites: the cytoplasm, cytoplasmic membrane, cell
wall, or extracellular space, while in Gram-negative bacteria, a protein may be
targeted to one or more of five sites: the cytoplasm, cytoplasmic membrane,

periplasm, outer membrane or extracellular space.

1.2 Signals governing protein targeting in bacteria

1.2.1 Bacterial transport systems

In order to carry out its function within the cell, a bacterial protein must
frequently be targeted to a compartment other than the cytoplasm. This process
necessitates traversing one or more localization sites, and is facilitated by the

cell's complement of transport systems.

Bacterial transport systems are reasonably well-conserved between
Gram-negative and Gram-positive bacteria, despite the difference in morphology
between the two groups. The discussion below focuses on systems present in
the more complex Gram-negative bacteria, with section 1.2.6 describing
differences between the systems described and those present in Gram-positive
organisms. A description of the targeting signals associated with each pathway is

given in sections 1.2.2 - 1.2.5.



1.2.2 Type | transporters — ABC transporters

Type | transport is considered by some to be the simplest of the transport
systems in bacteria — proteins are shuttled from the cytoplasm directly to the
extracellular space in one step, using a multi-protein translocator called an ABC
transporter which spans the entirety of the cell envelope (Holland et al., 2005).
Energy for the process is produced by ATP hydrolysis, and the system is able to
transport substrates ranging in size from 19kDa (Letoffe et al., 1994) to 800kDa
(Hinsa et al., 2003). The canonical Type | transport system is the E. coli
haemolysin system (Hly), consisting of the cytoplasmic membrane protein HlyB,
the periplasm-spanning protein HlyD, and the outer membrane channel TolC

(Koronakis and Hughes, 1993).

Proteins destined for secretion through the type | system are recognized
post-translationally via a C-terminal signal, which is typically located in the vicinity
of a glycine-rich repeat (Mackman et al., 1987; Delepelaire and Wandersman,
1990; Letoffe and Wandersman, 1992). With the exception of certain
metalloproteases which contain a C-terminal DFVV motif (Ghigo and
Wandersman, 1994), type | targeting signals are neither well-conserved nor

defined by characteristic motifs.

1.2.3 Type Il transporters — the general secretory pathway (GSP)

The general secretory pathway, or GSP, is the transport system used by
the majority of exported proteins and is well-conserved between both Gram-
negative and Gram-positive bacteria. In the first step of the GSP, proteins are

targeted to and translocated across the cytoplasmic membrane, typically via the



Sec-dependent pathway. For Gram-positive bacterial proteins, this results in a
membrane, cell wall or extracellular localization, while in Gram-negative
organisms, this results in a cytoplasmic membrane or periplasmic localization. In
the second step of the GSP, required only in Gram-negative bacteria, proteins
are directed to one of multiple terminal branches of the pathway for targeting to
the outer membrane or the extracellular space. Figure 1.2, based on a figure by
Pugsley (1993a), presents a schematic representation of the GSP in Gram-

negative bacteria.

Figure 1.2: The general secretory pathway in Gram-negative bacteria.
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In the first step of the GSP, proteins are directed to and across the

cytoplasmic membrane. For proteins whose final localization is the cytoplasmic



membrane, this is either accomplished via spontaneous insertion of the protein
into the membrane (de Gier et al., 1998), or through SRP (signal recognition
particle)-mediated transiocation. In the latter process, SRP — comprising a 4.5S
RNA and the Ffh protein — recognizes hydrophobic segments of a nascent
polypeptide (Luirink et al., 1992), and directs the protein to the FtsY receptor
(Luirink et al., 1994). The interaction between Ffh and FtsY results in the release

of the nascent protein from the SRP and its transfer to the Sec translocase.

Most proteins destined for other localization sites are post-translationally
shuttled directly to the Sec translocase by the SecB chaperone. The exact region
of protein recognized by SecB remains unknown, however all proteins utilizing
this pathway exhibit N-terminal signal peptides and this leader sequence may
thus represent the SecB substrate (Nakai, 2000). Following binding of SecB to a
protein, SecB binds its receptor, SecA, a membrane-associated protein that
provides the energy for the subsequent translocation step (Fekkes and Driessen,
1999). SecA then interacts with the Sec translocase, comprising SecY, SecE and

SecG (Nishiyama et al., 1994).

A small proportion of Gram-negative bacterial proteins destined for the
terminal branches of the GSP are exported by a Sec-independent pathway, the
TAT - or twin-arginine — transporter. Aithough the chaperone responsible for
recognizing folded proteins and directing them to the TAT transporter has not yet
been elucidated, the structure of the transporter apparatus itself is known. It

comprises three cytoplasmic membrane proteins: TatA, TatB and TatC. TatA



represents the translocation pore, and TatB and TatC are thought to be involved

in substrate recognition (Muller and Kiosgen, 2005).

In the second step of the GSP, Gram-negative bacterial proteins are
directed to the outer membrane or the extracellular space. In the case of outer
membrane proteins, it is thought that the proteins insert into the outer membrane
(de Cock et al., 1990a, 1990b) with the assistance of both a chaperone and
binding to a periplasmic lipopolysaccharide (Kleinschmidt and Tamm, 2002).
Extracellular proteins, however, must be directed to a terminal branch of the GSP
for translocation across the outer membrane. Multiple terminal branches exist
and tend to be specialized with regard to their substrates. The two well-studied
branches are involved in the translocation of pili and of substrates including

enzymes and toxins.

Pili proteins bind the pilin chaperone PapD in the periplasm (Hultgren et
al., 1989) and subsequently bind the outer membrane PapC, through which they
are translocated and assembled into a pilus (Dougan et al., 1983). Extraceliular
enzymes and toxins are translocated via what was initially referred to as the main
terminal branch of the GSP, but which is now known as the secreton-dependent
pathway (SDP). In this system, best represented by translocation of the
Klebsiella oxytoca pullulanase (Pugsley, 1993b), a single substrate is
translocated across the outer membrane by a dedicated secreton — a protein

complex comprising 12-16 subunits (Sandkvist, 2001).

The signals directing a protein to the GSP determine which of the intial

branches of the pathway a protein will take. Transmembrane alpha-helices



appear to be sufficient to direct a protein to the SRP-mediated Sec pathway,
while N-terminal signal peptides are required for Sec and TAT-mediated
translocation. These are typically short sequences with a tripartite positive-
hydrophobic-polar character suitable for partitioning into lipid bilayers. The N
region is positively charged, the hydrophobic H region is a minimum of 8
hydrophobic residues in length and forms a membrane-spanning helix, and the

C-region often contains a signal peptidase recognition site (von Heijne, 1985).

The majority of tripartite signal peptides are cleaved by signal peptidase |
(SPase I), and are known as type | signal peptides. In some cases however,
such signal peptides may remain uncleaved, serving as signal anchors for inner
membrane proteins (von Heijne, 1988). Other types of tripartite signal peptides
exhibit unique characteristics in their structure and are cleaved by different types
of signal peptidases. For example, TAT substrates contain signal peptides similar
to those processed by SPase |, however they also contain the twin arginine motif
RRXFL[KR] upstream of their hydrophobic region (Chaddock et al., 1995). Signal
peptidase li cleaves type Il signal peptides, which are associated with
lipoproteins. Although these are similar to type | signal peptides, cleavage occurs
immediately upstream of a Cys residue, which is part of the N-terminal lipobox
motif that characterizes these signal peptides (von Heijne, 1989). Prepilin
peptidase cleaves type IV signal peptides, which differ from traditional N-terminal
signal peptides in that they are short (~6 residues) with no tripartite structure.
Instead cleavage occurs downstream from a glycine residue that precedes a long

N-terminal stretch of hydrophobic amino acids in the mature protein (LaPointe



and Taylor, 2000). A GFTLIE motif is often found in prepilin peptidase substrate

signal peptides (Lory, 1994).

Signals directing a periplasmic intermediate to the outer membrane or to a
terminal branch of the GSP are not well-understood, however. The proposed
model of insertion for outer membrane proteins implies a structural basis for
targeting, similar to the fashion in which transmembrane alpha helices direct the
insertion of cytoplasmic membrane proteins. Outer membrane proteins adopt a
beta-barrel structure, comprising an even number of beta strands — from eight
(Vogt and Schulz, 1999) to 22 (Locher et al., 1998; Ferguson et al., 1998) —
arranged in an anti-parallel fashion to form a barrel-like pore. Unlike the alpha-
helices found in cytoplasmic membrane proteins, though, these beta-strands
provide little in the way of information content (Schulz, 2002), beyond the fact
that the C-terminal residue is frequently phenylalanine (Pohlner at al., 1987).
Sequences of known strands exhibit little similarity to each other, and they tend
to be about half the length of an alpha helical segment. Thus specific signals
directing a protein to the terminal branches of the GSP have not yet been
determined, although the role of periplasmic chaperones in the process is

becoming increasingly apparent (Schleiff and Soll, 2005).

1.2.4 Type V transporters — autotransporters
Type V transporters are unique to the Gram-negative bacteria (Henderson
et al., 1998). These proteins are autotransporters — or self-transporters —

comprising an N-terminal passenger domain and a C-terminal transporter

domain. The C-terminal domain forms a beta-barrel in the outer membrane



through which the passenger domain is translocated. In most cases, the
passenger domain is then cleaved and released into the extracellular milieu
(Klauser et al., 1990, 1992). The translocation of Neisseria gonorrhoeae I1gA1 is
the canonical example of type V transport (Pohiner et al., 1987). Most
autotransporters possess a type | signal peptide, however, as with the integral
outer membrane proteins in the GSP system, little is known about the targeting

signals contained within the transporter domain.

1.2.5 Type Il and IV transporters — delivery of DNA/protein into host cells
The two remaining transport systems in bacteria are primarily involved in
the direct injection of cytoplasmic DNA or protein substrates into host cells upon
contact. In type lll secretion, an effector protein is translocated from the
cytoplasm into a eukaryotic cell through the needle complex, a multimer
comprising as many as 20 different proteins (Hueck, 1888). Hypotheses
regarding the signal that targets an effector for secretion through the needle
complex include a motif in the 5’ end of the effector mMRNA (Anderson and
Schneewind, 1999) and an N-terminal chaperone binding site located in the first
20 amino acids of the effector (Lloyd et al., 2001). Due to the markedly low
sequence similarity between different effector proteins, and the lack of
understanding regarding signals involved in Type llI transport, identifying proteins

localized by the Type Ill system has been notoriously difficult.

In type IV secretion, which remains poorly understood, DNA,
nucleoproteins and proteins are translocated using machinery related to that

involved in conjugation (Christie, 2001). Substrates are first translocated across
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the inner membrane using both Sec-dependent and Sec-independent pathways,
and are then translocated across the outer membrane by an assembly of pilus-
like proteins (Christie, 2001; Fischer et al., 2002; Burns, 2003). No signal

targeting type 1V effectors for secretion is yet known.

1.2.6 Differences in protein transport in Gram-positive bacteria

Gram-positive bacteria lack the outer membrane and periplasm of Gram-
negative bacteria, and are instead surrounded by a thicker layer of
peptidoglycan, termed the cell wall. With a significantly less complex cell wall,
protein transport in this class of organisms is a simpler affair than in Gram-
negative organisms, and most transport systems are not present. Protein
targeting signals in Gram-positive bacteria, however, are quite similar to those of

the Gram-negatives.

Most Gram-positive bacterial proteins are secreted via the Sec-dependent
pathway, a pathway which is strongly conserved between Gram-negative and
Gram-positive bacteria. Type | and Il signal peptides, found in both classes of
organism, are also remarkably similar in overall composition, however signal
peptides from Gram-positive organisms do tend to be longer (Nielsen et al.,
1997). Gram-positive bacteria also employ type | secretion via ABC transporters,
however in these organisms, the transporter must span only the cytoplasmic
membrane. In B. subtilis, the transporter can consist of one to four proteins. In
the four-protein system, the transporter comprises two independent integral

membrane proteins and two cytoplasmic substrate-binding proteins, while in the
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one-protein system, these components have fused into a single channel (Quentin

et al., 1999).

1.3 Laboratory-based methods for localization determination
A protein’s localization can be determined in the laboratory through any
one of several techniques and their many variations. Only certain techniques are
readily applicable to bacteria, however, and certain methods for localization
determination are more common than others. The following section provides a
brief introduction to some of the most frequently used techniques for determining
protein subcellular localization for bacteria, along with a summary of their

limitations.

1.3.1 Microscopy-based visualization

Microscopy-based methods for localization are employed quite frequently
on account of their high precision and the quality of the information they provide
— visualization of a protein in situ not only allows one to define its localization, but
also permits one to examine its localization over time, as some proteins can be
found in different subcellular compartments at different time points. In these
methods, a protein of interest is tagged using a fluorescent protein or is
incubated with a labelled antibody. Cells are then visualized under a microscope,
with areas of fluorescence indicating the localization of the tagged or antibody-

bound protein.

Green fluorescence protein (GFP), a 238 amino acid fluorophore from the

jellyfish Aequoria victoria, is frequently fused to a protein of interest for such
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studies, as GFP itself is not specifically localized within the cell (Chalfie et al.,
1994). Provided a successful fusion can be generated, the product of any gene
can be visualized. In immunofluoresence microscopy, however, visualization is
only possible if an antibody to the protein of interest is available. The antibody is
coupled to a fluorescent dye, such as rhodamine or fluorescein, which permits
visualization. While both of these methods typically use confocal scanning
microscopy at the visualization stage, localization determination by electron
microscopy is also possible when a protein has been tagged with an electron-

dense particle such as colloidal gold, for example (Strachan and Read, 2004).

1.3.2 PhoA fusion
A second approach for localization determination in Gram-negative
bacteria also relies on gene fusion, but in this case, visualization simply requires

growth of a bacterial culture.

The enzyme alkaline phosphatase is encoded by the gene phoA and
exhibits localization-dependent activity: the protein is active only when localized
to the periplasm. In the alkaline phosphatase fusion technique (Manoil and
Beckwith, 1985), the gene of interest is fused to a copy of phoA which has been
truncated to remove its native type | signal peptide. If the product of the gene of
interest contains an export signal, the phoA:gene fusion product will reach the
periplasm and become enzymatically active. When grown on 5-bromo-4-chloro-
3-indolyl phosphate, colonies containing the fusion product will appear blue. If the

gene of interest’s product does not contain an export signal, the fusion product
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will remain in the cytoplasm and growth on on 5-bromo-4-chloro-3-indolyl

phosphate wiil yield white colonies.

Using the phoA fusion technique, proteins containing an export signal
directing them to the periplasm and beyond can be identified. This includes
proteins with signal peptides, transmembrane alpha-helices, or other sequence-

encoded targeting motifs.

1.3.3 Subcellular fractionation

Perhaps the most classic technique for determining protein localization is
subcellular fractionation followed by protein identification (Albertsson, 19586). In
this approach, the bacterial cell is first separated into its constituent
compartments using a series of detergent extractions and/or centrifugations. The
proteins resident in each compartment are then resolved using one of several
possible methods, including gel electrophoresis, chromatographic separation,
and/or mass spectrometry. This technique not only provides immediate evidence
of a protein’s localization, but it also has the advantage of generating results for a

large number of proteins in a single analysis.

1.3.4 Limitations of laboratory-based methods

The methods described above and other laboratory-based techniques are
capable of experimentally verifying a protein’s localization. This does not mean,
however, that they always produce a correct result. False positives and negatives
are a possibility in any of these analyses, and each exhibits its own specific

limitations.
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In the case of fluorescently tagged proteins, tag insertion has the potential
to disrupt a targeting sequence, resulting in an improperly localized gene
product. This is especially true for proteins utilizing a C-terminal secretion signal.
Tagged proteins also display a tendency to aggregate. Microscopy-based
methods are also difficult to perform in a high-throughput fashion. Production of a
large number of gene fusions does not yield a 100% success rate, and screening
of successful fusions requires automated visualization methods which may not

always be correct in their assessment of localization (Hu and Murphy, 2004).

PhoA fusions are only possible in Gram-negative bacteria, and cannot
provide information beyond whether a protein is exported to — or past — the
periplasm. Like GFP fusions, PhoA fusions can disrupt a native targeting signal,
resulting in a false negative, and any fusion experiment runs the risk of

cytotoxicity.

Fractionation studies, while powerful, are limited to the identification of
those proteins expressed in a cell at a specific time under specific conditions,
thus determining the localization of a protein of interest may not always be
possible. Low-abundance proteins can also be easily missed (Stasyk and Huber,
2004). Furthermore, the identification of the proteins isolated is not always
possible — sometimes a database match to a protein cannot be determined.
Contamination by proteins from neighbouring subcellular fractions may also

occur.

Most importantly, regardless of the method used, there are two basic

limitations which cannot be overcome in the lab. Laboratory-based localization
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determination methods require a notable investment of time and laboratory
resources in comparison to a computational prediction, which can be generated

quickly using a computer alone.

1.4 Computational methods for localization prediction
in bacteria

1.4.1 The importance of computational predictive methods

As described above, laboratory-based methods for protein localization
carry a number of caveats, chief among them the time and resources required. In
order to reduce the investment of effort and money that go into a localization
experiment, it is desirable to narrow the focus of such an experiment using pre-
existing knowledge. By computationally identifying one or more signals known to
influence or correlate with protein localization, a prediction of which cellular
compartment, or compartments, a protein is likely resident at can be generated
using sequence information alone. With the explosion in publicly available
sequence data, such prediction has become a critical component of biological
research. Indeed, without the rapid, high-throughput information provided by
computational analysis of sequences in general, the large amounts of data
generated by sequencing projects cannot be used to their full potential. Predicted
protein localization data, in particular, affords a number of insights that can aid in

the prioritization of proteins for further study.

Predicted localization information can be used in the genome annotation
process. The ultimate goal of many annotation projects is to generate predicted

functions for each gene product in the genome. Annotation transfer by homology
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is typically used to assign function to proteins, however this is only possible for
the portion of an organism’s gene complement that shows similarity to other
annotated genes. For the remaining proteins, other functional clues are required.
Because cellular compartment and function are closely related, a protein’s
predicted localization can provide clues to its function and vice-versa; for
example, integral outer membrane proteins are typically involved in the uptake
and/or efflux of specific substrates, while a protein annotated as DNA-binding is

likely to be found in the cytoplasm.

Knowing the cellular compartment that a protein is likely resident at can
also aid in experimental design and proteomics-based analysis. If an attempt to
isolate a particular protein is being made, predicting the protein’s localization can
narrow down the search space significantly. Rather than inspecting a whole cell
lysate for a protein of interest, for example, the cell can be fractionated into its
constituent compartments and only the compartment of interest analyzed.
Section 7 describes how predicted localization information can also be employed
to screen the results of a subfractionation analysis for potential contaminants or

other errors.

Of all the potential applications of localization prediction, perhaps most
relevant to the medical community is the fact that being able to rapidly identify
the surface-exposed proteins in a bacterial genome can facilitate the discovery of
novel drug targets and potential vaccine components. Traditionally, “subunit”
vaccines against bacterial infection have been formulated by infecting an animal

with a bacterium, using antisera to identify surface-exposed immuno-reactive
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proteins, purifying these proteins and cloning them into an expression system,
and then analyzing individual regions of the cloned protein to identify especially
reactive protein subunits for use as vaccine candidates (Chakravarti et al., 2000).
Localization prediction by computer, however, could potentially identify all of the
potentially surface-exposed proteins encoded in a given genome within minutes,
significantly narrowing the search space for drug and vaccine target discovery
and reducing the time and expense associated with these procedures. There is
therefore a strong interest in improving the computational prediction of protein
subcellular localization for medically-relevant bacteria. In addition, such
subcellular localization prediction can also aid in the identification of cell-surface
proteins that may be suitable targets for a new diagnostic/detection method (Erti
et al., 2003). For non-pathogenic bacteria of environmental importance, there is
also an interest in identifying cell-surface proteins as part of efforts to develop

microbial detection methods to identify such microbes in environmental samples.

1.4.2 Early computational methods for localization prediction in bacteria
The roots of computational prediction of protein localization lie in the
identification of individual sequence features known to influence or correlate with
localization. Many of the first approaches involved the prediction of type | signal

peptides — N-terminal protein sequences directing the export of a protein out of
the bacterial cytoplasm via the Sec machinery. Weight matrix-based analyses or
related approaches were frequently employed to predict these signal sequences.
In this technique, frequency values reflecting each amino acid’s occurrence in

known signal peptides are assigned to each residue in a query sequence. A
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sliding window then moves down the sequence, summing the frequency scores.
In this fashion, the region most likely to represent a signal peptide can easily be
identified (McGeoch, 1985; von Heijne, 1986; Folz and Gordon, 1987; Popowicz
and Dash, 1988). Neural network techniques (Ladunga et al., 1991; Schneider et
al., 1993; Schneider and Wrede, 1993; Nielsen et al., 1997) and Hidden Markov
Models (Nielsen and Krogh, 1998) were later employed, offering an improvement

in predictive power.

Other approaches to localization prediction involved the prediction of
transmembrane alpha helices — secondary structure elements that traverse the
cytoplasmic membrane. The first of these methods implemented sliding windows
and hydrophobicity scales to search for membrane spanning segments (Kyte and
Doolittle, 1982; Eisenberg et al., 1984), while later methods introduced additional
considerations, including the use of the “positive-inside rule”, which states that
positively charged residues occur at a higher frequency on the cytoplasmic face
of the membrane (von Heijne, 1992), and the use of neural networks and Hidden
Markov Models (Nakai and Kanehisa, 1992; Hofman and Stoffel, 1992; Claros
and von Heijne, 1994; Jones et al., 1994; Rost et al., 1996; Cserzo et al., 1997,
Persson and Argos, 1997; Sonnhammer et al., 1998; Tusnady and Simon, 1998;
White and Wimley., 1999; Deber et al., 2001; Krogh et al., 2001; Juretic et al.,

2002).

While signal peptide and transmembrane helix predictions represented a
critical first step on the route to complete localization prediction, their limited

utility is clear. Each method is only capable of providing information regarding a
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single localization site and, in the case of a positively-identified signal peptide,
the extent of this information is only the knowledge that the protein is likely not
cytoplasmic. False positive results were a frequent problem, and false negatives
an even greater problem. Early signal peptide prediction methods in particular

were not capable of recognizing a variety of non-traditional sorting signals.

At the same time as great strides were being made into feature prediction
as described above, early work into computationally sorting a protein to one of
multiple localization sites was beginning. In 1991, Nakai and Kanehisa released
PSORT I, an expert system for localization prediction in Gram-negative bacteria.
Capable of sorting a query protein to the cytoplasm, cytoplasmic membrane,
periplasm or outer membrane (but not the extracellular space), PSORT |
represented the first true protein subcellular localization prediction method. The
program employed a multi-component approach to prediction: features
influencing localization — including amino acid composition, signal peptides,
functional motifs and transmembrane helices — were identified in a query protein,
and the resulting information was integrated to generate a final prediction using
an “if-then” rule system. On a set of 106 bacterial proteins, PSORT | was able to
assign 83% of them to the correct localization site. The method was updated in
1999, replacing the if-then expert system with the k-nearest neighbour algorithm

and improving the algorithm’s reasoning slightly (Nakai and Horton, 1999).

No further localization prediction methods were deveioped until 1997,
when Cedano et al. utilized the differences in amino acid composition between

proteins resident at different cellular compartments as the basis for a sorting
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algorithm. Their method, ProtLock, was designed to sort eukaryotic proteins, and
correctly predicted the localization of 76% of the 200 training proteins. Andrade

et al. continued this work in 1998, again using eukaryotic proteins.

In 1998, Reinhardt and Hubbard exploited the differences in amino acid
composition to create a neural network capable of sorting a bacterial query
protein to one of three sites, the cytoplasm, periplasm, or extracellular space.
This tool, NNPSL, achieved a prediction accuracy of 81%. Chou and
collaborators also developed a series of tools employing the discriminant function
(Chou and Elrod, 1998; Chou and Elrod, 1999; Chou, 2000), neural networks
(Cai et al., 2002), and support vector machine (SVM) (Cai et al., 2000) to analyze
amino acid composition in bacteria, however none of the resulting software was

released publicly.

For over a decade, PSORT | remained the predominant computational
method used by researchers to make subcellular localization predictions for
bacterial proteins. Factors contributing to its widespread use include the fact that
the tool was the first of its kind to be developed, that for over a half a decade
following its release it represented the only available method, and it was freely
accessible over the internet. However, in the years following PSORT I's release
there were considerable improvements in bioinformatics algorithm development
in general, as well as a rapid expansion of knowledge regarding protein sorting
signals. For this reason we undertook the challenge of developing a new,
comprehensive subcellular localization predictor for bacterial proteins, using

these updated computational methods and our expanded biological knowledge.
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1.4.3 Recent computational methods for localization prediction in bacteria

This thesis describes the creation of PSORTDb, a high-precision, high-

throughput open-source tool for the prediction of bacterial protein localization.

Over the course of PSORTDb’s development, a number of other localization

prediction tools were also released. The underlying principle and availability of

each of these methods is summarized in Table 1.1. Section 5 presents a

comparison of the predictive performance of these methods relative to PSORTb.

Table 1.1: A summary of available computational methods for bacterial protein
localization prediction.
Program Reference Analytical Localizations Usage Open Forces
method predicted source output?
PSORT | Nakai and Multi- 4 Gram- Web No No
Kanehisa, = component negative Local specified
1991 3 Gram-positive  (Sun/Solaris  licence
systems)
PSORTb Gardy et Multi- 5 Gram- Web GNU No
al., 2003,  component negative Local (Most General
2005 4 Gram-positive  UNIX/Linux ~ Public
Proteome Luetal, Annotation 5 Gram- Web No No
Analyst 2004 keywords negative
3 Gram-positive
Subloc Hua and SVM 3 (no Gram Web No Yes
Sun, 2001 distinction)
CELLO Yuetal., SVM 5 Gram- Web No Yes
2004 negative
4 Gram-positive
PSLpred Bhasin et SVM 5 Gram- Web No Yes
al., 2005 negative
LOCtree Nair and SVM 3 (no Gram Web No Yes
Rost, 2005 distinction)
P- Wang et SVM 5 Gram- Web No Yes
CLASSIFIER al., 2005 negative
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1.4.3.1 Proteome Analyst — a keyword-based approach

Proteome Analyst’s subcellular localization prediction server (Lu et al.,
2004) employs an annotation keyword-based approach comprising two steps. In
the first, a query protein is compared, using BLAST, against the SwissProt
database, returning a set of homologs with manually curated annotation.
Keywords in the annotation that might be indicative of a particular localization site
are extracted from the SwissProt records and, in the second step, are passed to
a Naive Bayes classifier specific to the class of organism. This classifier then
uses the extracted keywords to assign the query protein to one of three Gram-
positive or five Gram-negative localization sites. Proteome Analyst returns a final
prediction and an associated confidence score on the 100.0% scale. The
program is also capable of generating predictions for animal, plant, and fungal

sequences.

Proteome Analyst can be accessed at

http://www.cs.ualberta.ca/~biocinfo/PA/Sub/, with the server accepting single or

mulitiple sequences as input. A choice of two output formats is provided —
detailed HTML output or a shorter format comma separated value file. BLAST
results for the query protein are also provided. While the tool is not available for
download and thus cannot be used locally, the site does host the PA-GOSUB
database, containing a selection of precomputed predictions for microbial and
other genomes (Lu et al., 2005). The authors also note that they are willing to

run predictions for specific genomes requested by users.
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1.4.3.2 Amino acid composition support vector machine-based methods

SVM is a machine-learning technique frequently employed to solve binary
classification problems (see section 4.3). Composition-based SVMs exploit the
differences in frequency of the 20 amino acids across different cellular
compartments, and are thus capable of making predictions when no prior
information about a protein is available, such as homologs in existing databases

or predicted sequence features.

Subloc (Hua and Sun, 2001) was the first publicly available SVM-based
localization tool to be released. Capable of sorting bacterial proteins to the
cytoplasm, periplasm or extracellular space, it generates predictions using a
single SVM analyzing a protein’s overall amino acid composition. The program
returns a final prediction as well as two measures of predictive confidence — a

reliability index score and an estimate of accuracy.

While the release of SubLoc marked an important milestone in the use of
SVMs for localization prediction, the method itself carries two significant caveats.
Because the program only sorts proteins to three compartments, known and
suspected cytoplasmic membrane and outer membrane proteins must be
removed prior to the analysis. Furthermore, the method does not distinguish
between Gram-positive and Gram-negative queries, thus proteins from a Gram-
positive organism can be mistakenly classified as periplasmic. SublLoc accepts
web-based submissions of one or more sequences at

http://www.bioinfo.tsinghua.edu.cn/SubLoc/ and returns output in the format of an
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HTML table. The program is not available for download and use on a local
computer — it must be accessed over the web.

CELLO (Yu et al., 2004) employs an extended version of SubLoc’s
composition-based SVM in which five SVMs are used — one analyzing overali
amino acid composition, one incorporating sequence order information, and three
utilizing modified composition analysis in which amino acids are grouped
according to their physiochemical properties. The output of each SVM is
integrated to generate a final prediction, which is returned along with a score
distribution on a five-point scale. The program can assign a protein to one of five
Gram-negative or four Gram-positive localization sites. CELLO accepts web-
based submissions of one or more sequences at http://cello life nctu.edu tw/ and

returns output in a text format. The program is not available for local use.

Like CELLO, PSLpred (Bhasin et al., 2005) uses multiple SVMs to assign
a query protein to one of five Gram-negative localization sites. However, in
addition to three SVMs analyzing overall composition, dipeptide composition, and
composition incorporating physiochemical groupings, PSLpred also implements a
PSI-BLAST module for similarity searching. Output is returned in HTML format,
which includes a final prediction, a reliability index on a five-point scale, and an
estimate of accuracy. The tool is available at

hitp://www imtech res.in/raghavalpsipred/, howsyer segistration is fequired to use

the program and proteins must be submitted one at a time. The program is not

available for local use.
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LOCtree (Nair and Rost, 2005) combines SVM-based analysis with a
flowchart-style decision system designed to mimic cellular sorting. In the first
step, an amino acid composition-based SVM determines whether the query
protein is cytoplasmic or non-cytoplasmic. Non-cytoplasmic proteins are then
passed to a second SVM, which determines whether the protein is periplasmic or
extracellular. Like SubLoc, LOCtree only assigns a protein to one of three
localizations, thus membrane proteins must be removed from the dataset prior to
analysis. Output is in the form of an HTML table, including a final prediction as
well as a reliability index on a ten-point scale. The results of other analyses,
including signal peptide prediction, secondary structure prediction, and motif
searching are also provided. Up to 100 sequences at a time can be submitted to

LOCtree at http://cubic.bioc.columbia.edu/cgi-bin/var/nair/loctree/query. The

program is not available for local use.

P-CLASSIFIER imblements 15 SVMs in its analysis, representing a
combinatorial approach in which sequence fragments of length n, where n = 1-4,
are examined and different physiochemical-based groupings of similar amino
acids are employed (Wang et al., 2005). The method is capable of assigning a
Gram-negative protein to one of five localization sites, and returns its output in an
HTML table. Predictions are reported along with a distribution of scores using a
percentage system. P-CLASSIFIER accepts web-based submissions of up to

100 sequences at a time at http://protein.bii.a-star.edu.sg/localization/gram-

negative/introduction.html. The program is not available for local use.
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1.5 Goal of the present research

At the outset of PSORTDb development in 2001, only two tools — PSORT |
and NNPSL — were available for the prediction of protein localization in bacteria.
NNPSL was limited by the fact that it only recognized three localization sites,
ignoring membrane proteins, while PSORT | was hampered by not recognizing
proteins secreted to the extracellular space. Despite these limitations, the
PSORT | program remained in widespread use in the microbiology community —
in particular for early genome-wide analyses in the 1990’s, as a freely available

Sun/Solaris UNIX version for local use was made available.

Recognizing that there was a need for improvement, we set a goal of
developing an improved, high-precision, high-throughput localization prediction
tool for bacteria. Herein, | describe the development of this method — PSORTb —
and the numerous applications we have found for the method, which have
implications for the field of proteomics and for concepts underlying microbial

adaptive evolution.

27



2 ePSORTdb: A DATABASE OF BACTERIAL PROTEINS
OF KNOWN LOCALIZATION

Portions of this chapter have been previously published in the article “PSORTdb: a
protein subcellular localization database for bacteria”, co-authored by S. Rey, M. Acab,
J.L. Gardy, M.R. Laird, K. deFays, C. Lambert and F.S.L. Brinkman in Nucleic Acids
Research, Volume 33, Database Issue. © 2005 Oxford University Press.

21 Summary

ePSORTdb (http://db.psort.orqg) is a web-accessible database of protein

localization data for bacteria that contains information determined through
laboratory experimentation. The database, which contains approximately 2000
proteins, is manually curated and represents the largest dataset of its kind.
ePSORTdb has been used for training localization prediction tools, including
PSORTD, and represents an important resource for the localization prediction
and microbiology communities. ePSORTdb can be accessed through the web
using a very flexible text search engine, a data browser, or using BLAST, and the
entire database or search results may be downloaded in various formats.
Features such as GO ontologies and multiple accession numbers are
incorporated to facilitate integration with other bioinformatics resources.

ePSORTdb is freely available under the GNU General Public License.

2.2 The need for high quality training data
By definition, a machine-learning method requires a set of training data —

known instances of the class of object the method is designed to predict or
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classify. For a bacterial protein subcellular localization predictor, these training
data must thus comprise proteins whose localization within the cell has been
experimentally verified. Because of the fundamental differences in cellular
ultrastructure between bacteria and eukaryotes, the data must be bacterial in
origin.

Prior to the development of our training dataset, most localization
prediction methods — both bacterial and eukaryotic — were trained on data
extracted from the SWISS-PROT database (Bairoch and Boeckmann, 1991,
1992, 1993, 1994; Boeckmann et al., 2003), in particular the data described by
Reinhardt and Hubbard (1998). In a typical extraction procedure, all full-length,
non-ambiguous protein sequences from the taxa of interest are screened to
remove those lacking an annotation in the “subcellular location” field. The
resulting list of proteins is then further filtered to remove sequences whose
localization annotation contained the terms “by similarity” or “probable”, implying

that experimental confirmation of localization has not been performed.

While SWISS-PROT represents an excellent resource, it is not specifically
designed with protein subcellular localization annotation in mind. As a result,
several aspects of SWISS-PROT’s design have potentially serious implications
for training of a machine-learning method. First, heterogeneity among
annotations is quite common, with multiple phrases often used to describe the
same cellular compartment. While some of these distinctions are easily resolved,
for example the use of both “cytosol” and “cytoplasm” to refer to the interior of a

cell, others, such as “membrane-bound” versus “membrane-associated”, can
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easily be misinterpreted. Second, many annotations lack sufficient information to
conclusively assign a localization site. Many Gram-negative bacterial proteins are
annotated simply as “membrane”, with no distinction being made between the
cytoplasmic and outer membranes, while other membrane-associated proteins
are not further annotated to indicate on which side of the membrane the bulk of
the protein resides. Finally, many proteins are known to contain domains residing
in two or more different cellular compartments, information that is rarely captured
in a SWISS-PROT annotation. Because of these limitations, we chose to adopt
an alternative approach to dataset development incorporating literature-derived

evidence and manual review.

2.3 ePSORTdb development

Bacterial proteins with annotated localization information were extracted
out of SWISS-PROT, and any sequence whose annotation was noted as
“potential”, “probable”, or “by similarity” was discarded. The resulting dataset was
then subjected to manual review. PubMed abstracts and full-text articles were
searched using keywords from the SWISS-PROT entry in an attempt to find
experimental verification of the annotated localization site. During this literature
review process, it was observed that some proteins whose localization was
reported in high-throughput proteomics manuscripts — primarily studies involving
fractionation followed by 2D gel electrophoresis — had been erroneously
annotated. Critical review of these studies revealed errors, including
contamination of a particular cellular fraction by proteins known to be resident in

other compartments. For this reason, proteins whose localization had been
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determined by high-throughput proteomics analyses were not included in

ePSORTdb.

This extraction procedure followed by literature review was initially
performed with release 39 of SWISS-PROT, giving rise to ePSORTdb v.1.0 and
v.1.1, and was later updated using release 40.29, yielding the ePSORTdb v.2.0
dataset. To further expand ePSORTdb v.2.0, alternative literature sources were
employed, including microbiology textbooks (Neidhardt et al., 1996; Fischetti et
al., 2000; Sonenshein et al., 2001). Versions 1.0 and 1.1 of the dataset include
Gram-negative data only, while version 2.0 is expanded to include Gram-positive

data.

ePSORTdb recognizes both single and mulitiple bacterial localization sites.
In Gram-negative bacteria, five single sites are included: the cytoplasm (C),
cytoplasmic membrane (CM), periplasm (P), outer membrane (OM) and
extracellular space (EC). Four multiple localization sites are also noted: C/CM,
CM/P, P/OM and OM/EC. In Gram-positive bacteria, four single sites are
included: the cytoplasm (C), cytoplasmic membrane (CM), cell wall (CW) and
extracellular (EC); and two multiple localization sites: C/CM and CM/CW. Each
single localization site term is associated with a unique Gene Ontology (GO)
(Ashburner et al., 2000) identifier, while multiple localization sites are represented

by a combination of their GO identifiers.

Experimentally verified localization sites contained in ePSORTdb are

accessible in three formats: a terse, machine-readable definition (e.g.
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cytoplasmic membrane), the associated GO identifier (e.g. 0005886), and a

verbose definition (e.g. cytoplasmic membrane integral membrane protein).

2.4 ePSORTdb releases

Table 2.1 describes the composition of each of the three releases of
ePSORTdb. Version 1.0 is described in Gardy et al. (2003), version 1.1
represents a small update made between publications, and version 2.0 is

described in Gardy et al. (2005) and Rey et al. (2005a).

Table 2.1: Composition of ePSORTdb releases.

Single Localization Sites

ePSORTdb Release C CM CWwW P OM EC
Gram-negative v.1.0 248 268 - 244 352 190
Gram-negative v.1.1 278 292 - 276 377 191
Gram-negative v.2.0 278 309 - 276 391 190
Gram-positive v.2.0 194 103 61 - - 181
Multiple Localization Sites
ePSORTdb Release CI/CM CM/P P/OM OM/EC CM/ICW
Gram-negative v.1.0 14 49 - 76 -
Gram-negative v.1.1 16 51 2 78 -
Gram-negative v.2.0 16 51 2 78 -
Gram-positive v.2.0 15 - - - 20

2.5 ePSORTdb database and website

As part of our PSORTDb resource development, we decided to create a

publicly accessible, flexible database to house our datasets of proteins of
experimentally determined subcellular localization. Each ePSORTdb record
contains extensive information regarding the sequence. NCBI's Gl number
(Benson et al., 2000) is used as the primary identifier, facilitating linkage to other
databases. When available, additional fields relevant to protein identification are

also included to facilitate searching and linking out to external resources: protein
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name, gene name, alternate protein and gene names, and SWISS-PROT
accession number. Other fields further define the sequence in a broader sense:
source organism name, phylum, class, NCBI taxonomy identifier (Wheeler et al.,
2000), and Gram stain class. Links to the source of the annotation, in the form of
a PubMed ID, book title, ISBN number or URL, are provided for some
sequences. Finally, amino acid sequences and their length are also made

available.

PSORTdb's data are housed in a MySQL database. Using PHP and

JavaScript, the web database application — freely accessible at http://db.psort.org

— was developed to facilitate access to the data without prior knowledge of SQL,
relational databases or specifics of the ePSORTdb database schema. The
browsing and dynamic textbox features of the web interface also make it easier
for a user to search the data, even if one is unfamiliar with how the data are

stored. Three search tools provide an entry point to the dataset.

With the text search tool, one or more keywords or other values suitable
for a given field can be used to query the database against one or more data
fields. Boolean operators are available to enable complex queries. A dynamic
textbox displays a description and/or example of the type of text permitted for a
particular search field. This feature assists users in choosing their queries. For
example, if a user wishes to search the localization field, all possible localizations
are presented in a dynamic textbox from which the user can select his or her

terms of interest. This ensures the correct query is implemented and prevents
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common errors in query-based searching, including spelling mistakes or

improper use of terminology.

The browse tool allows the user to explore the dataset in a hierarchical
fashion similar to browsing the NCBI Taxonomy Database (Wheeler at al., 2000)
or Gene Ontologies (Ashburner et al., 2000). The text used to populate the
browsing function is dynamically generated from the MySQL database, and
permits exploration of the data by localization, phylum, class, Gram stain and

organism in every possible logical combination.

Sequences in FASTA format may be also submitted and searched against
the database using a BLAST search (Altschul et al., 1997), which searches
against a file system rather than the MySQL database. Results are returned in

standard BLAST HTML format.

The text search and browse tools produce an HTML table of results that
can be viewed page by page. Initially, a default set of fields is displayed; however
there are numerous options available that allow a user to customize the display of
results. A user can change the number of records viewed per page,
simultaneously sort the table on up to three fields in ascending or descending
order, select the fields to be displayed, and rearrange the order of the fields. In
addition to viewing the results as an HTML document on a web browser, the user
may also download the data as a tab-delimited file or a FASTA formatted file.
From both the text search/browse result lists and the BLAST output, a user can

click on a protein’s Gl number to obtain detailed annotations as described above.

34



A web form is also available through which researchers can submit
proposed updates or corrections to the database, all of which are subject to
manual review. This is an important component of the database, enabling
researchers' participation and inclusion of their data, and the submission form

has been made as simple as possible to encourage participation.

2.6 Applications of ePSORTdb

By providing a centralized, freely available localization resource which can
be queried to isolate specific subsets of interest, ePSORTdb represents an
important source of training data for researchers wishing to develop novel
classification methods. Beyond its use as a source of training data, however, the
potential applications of ePSORTdb are numerous in both the bioinformatics
arena and in related fields. By implementing data mining or pattern discovery
tools, a bioinformatician can discover features representative of a particular
localization site quite readily. Microbiologists can employ the dataset in the
identification of targets in bacterial genomes for surface proteins for
environmental diagnostics, medical diagnostics, vaccines, antimicrobial
compounds and other uses. Furthermore, the information contained in the
dataset can also assist in the annotation of newly sequenced bacterial genomes.
Proteomics researchers can utilize the data as a check in subfractionation

experiments, and the information can also assist in experimental design.
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3 DEVELOPMENT AND RELEASE OF PSORTb V.1.0

Portions of this chapter have been previously published in the article “PSORT-B:
Improving protein subcellular localization prediction for Gram-negative bacteria”, co-
authored by J.L. Gardy, C. Spencer,K. Wang, M. Ester, G.E. Tusnéady, I. Simon, S. Hua,
K. deFays, C. Lambert, K. Nakai, and F.S.L. Brinkman in Nucleic Acids Research,
Volume 31, Issue 13. © 2003 Oxford University Press.

3.1  Summary

Automated prediction of bacterial protein subcellular localization is an
important tool for genome annotation and drug discovery. PSORT | was one of
the most widely used computational methods for such bacterial protein analysis
from 1991 onwards; however, it had not been significantly updated since it was
introduced in 1991. In addition, neither PSORT I, nor any of the other
computational methods available at the outset of PSORTb development made
predictions for all five of the localization sites characteristic of Gram-negative
bacteria. We therefore developed PSORTDb, an updated version of PSORT for
Gram-negative bacteria, which was made available as a web-based application

at http://www.psort.org. PSORTb examines a given protein sequence for amino

acid composition, similarity to proteins of known localization, presence of a signal
peptide, transmembrane alpha-helices and motifs corresponding to specific
localizations. A probabilistic method integrates these analyses, returning a list of
five possible localization sites with associated probability scores. PSORTD,
designed to favor high precision (specificity) over high recall (sensitivity), attained

an overall precision of 97% and recall of 75% in 5-fold cross-validation tests,
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using a dataset we developed of 1443 proteins of experimentally known

localization. The PSORTb source code is freely available under the GNU

General Public License.

3.2 Predictive modules

The creation of the first version of the ePSORTdb dataset was followed by
the development of the predictive modules that would form the initial release of
PSORTDb, a bacterial protein localization predictive tool designed for Gram-
negative organisms. We hypothesized that the computational identification of
sequence features known to influence or correlate with protein localization could
be used to generate predicted localization site information for a query protein. A
review of the literature identified several candidate features, and short software
programs — termed modules — were developed to identify these features in an
amino acid sequence. Modules include: SCL-BLAST, HMMTOP, motif

searching, SubLocC, and a signal peptide identification tool (Figure 3.1).
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Figure 3.1: Organization of PSORTb v.1.0.
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Subcellular localization tends to be evolutionarily conserved (Nair and

Rost, 2002b), thus homology to a protein of known localization appears to be a

good indicator of a protein's actual localization site. We therefore constructed a

module entitled SCL-BLAST (for SubCellular Localization BLAST), in which a

BLAST search (Altschul et al., 1997) of a submitted protein is carried out against

ePSORTdb v.1.0, using an E-value cutoff of 10 € '°. A length restriction is placed

on resulting high scoring pairs, such that the length of the high scoring pair must

be within 80—120% of the length of the subject. This reduces the potential for

misprediction of localization based on similarity to a single domain of a protein in

the database, a protein whose domains may reside in different localization sites.
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The module returns the localization site and SWISS-PROT accession number of
any hits fulfilling the above criteria and can generate a prediction for any of the

five sites.

3.2.2 HMMTOP

Integral inner membrane proteins are characterized by the presence of
alpha-helical transmembrane regions (von Heijne, 1994) and this feature has
been used as a reliable indicator of localization at the inner membrane in past
predictors, including PSORT | (Nakai and Kanehisa, 1991). PSORTD utilizes the
Hidden Markov Model-based method HMMTOP (Tusnady and Simon, 1998,
2001) to identify potential transmembrane alpha helices, assigning a localization

of inner membrane if three or more helices are found.

3.2.3 Motifs

A protein's functional description is often indicative of its subcellular
localization (Eisenhaber and Bork, 1998). Therefore, certain sequence patterns
corresponding to function may also correlate with a specific subcellular
localization. PROSITE release 17.0 (Hofmann et al., 1999) was searched for
such potential patterns and the resulting list was tested on ePSORTdb. Twenty

six motifs, available at http://www.psort.org/motifs and in Appendix A, capable of

identifying subcellular localization with 100% precision were retained. The
module returns the localization site and PROSITE accession number of any
pattern found within the sequence and can generate a prediction for any of the

five sites.
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3.2.4 Outer membrane protein motifs

The identification of outer membrane proteins is of particular interest, both
due to the difficulty in predicting their characteristic beta-barrel structure and their
high potential for use as drug targets. A data mining approach called association
rule mining was used to identify frequent sequences occurring only in beta-barrel
proteins — both integral outer membrane proteins and autotransporter proteins —
which possess a beta-barrel transport domain (She et al., 2003). In this
technique, “association rules” are computationally identified — these are attributes
that are characteristic of a particular dataset. In our case, each attribute is a short
amino acid subsequence that is characteristic of beta-barrel proteins. By varying
the required support (how many beta-barrel proteins is the subsequence found
in?) and confidence (is the subsequence likely to be found in a non-beta-barrel
protein, giving a false positive?), we can identify the set of association rules, or
subsequences, that provide the best classification of outer membrane vs. non-

outer membrane proteins.

A total of 279 frequent sequences (Appendix B) were generated and used
to build a classifier. A user-submitted sequence is screened for the presence of
three or more of the frequent sequences and is classified as either outer

membrane or non-outer membrane based on the result.

3.2.5 SubLocC
Support Vector Machine, or SVM, has been successfully applied to overall

amino acid composition-based subcellular localization prediction in the SubLoc

program (Hua and Sun, 2001). Using the software LIBSVM (Lin, 2003), a similar
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SVM was trained on 248 cytoplasmic sequences and 1054 non-cytoplasmic
sequences. A query protein's amino acid composition is analyzed and used to

assign the protein to one of the two categories: cytoplasmic or non-cytoplasmic.

3.2.6 Signal peptides

Signal peptides, short sequences present at the amino-terminus of many
proteins, direct a protein for transport across the inner membrane (Bernstein,
1998). Thus the presence of a signal peptide implies that a protein is not resident
in the cytoplasm. The bacterial SignalP training data, available at

http://www.cbs.dtu.dk/ftp/signalp, were used to train a Hidden Markov Model

(HMM) to identify signal peptide cleavage sites within the first 70 residues of a
sequence. A probability value is assigned to the cleavage site and, if it exceeds a
pre-assigned cutoff, a prediction of non-cytoplasmic is returned. If the p-value of
the predicted cleavage site falls within a ‘twilight zone’, the signal peptide is then
passed to an SVM trained on the same data, also capable of identifying signal
peptides. If the SVM returns a result of signal peptide, a non-cytoplasmic
prediction is returned. If no signal peptide is identified, the module returns an
output of ‘unknown’, as the lack of a predicted signal peptide does not

necessarily imply a cytoplasmic localization.

3.3 Evaluation of predictive module performance
All evaluations, with the exception of the Motifs module analysis, were
carried out using 5-fold cross-validation. In k-fold cross-validation, the relevant

dataset is partitioned randomly into k equally sized partitions and module
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development and evaluation is carried out k times, each time using one distinct
partition as the testing set and the remaining k-1 partitions as the training set.
Values of k of five and 10 are frequently employed in the evaluation of prediction
methods, and choosing the smaller of these reduces the necessary computation.
Performance evaluations are computed as the average of the total runs, thus the

procedure prevents artificially inflated performance values.

After determining the numbers of true positive predictions (TP), false
positive predictions (FP), and both true negatives (TN) and false negatives (FN),
performance evaluation metrics can be calculated. Several such metrics exist
(see section 5.2.1), however precision and recall were selected for the evaluation

of PSORTD.

Precision is calculated as TPTf - A precision value of 95% indicates that

for every 100 predicted cytoplasmic proteins, five of these will be false positives,

TP
TP+FN

or non-cytoplasmic proteins. Recall, or sensitivity, is calculated as and

reflects a method’s ability to identify all true positive cases. A recall value of 95%
indicates that for every 100 cytoplasmic proteins in the test set, five of these will
be false negatives — in other words, they will be predicted as non-cytoplasmic

when in fact they are cytoplasmic proteins.

SCL-BLAST was evaluated using the ePSORTdDb v.1.0 dataset of 1443
proteins of known subcellular localization. PROSITE motifs were selected to yield

a 100% precision value over the same dataset. The predictive power of

HMMTOP was evaluated on the 268 integral inner membrane protein and the
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remaining 1175 non-inner membrane proteins in the dataset. Outer membrane
protein motifs were evaluated using the 425 beta-barrel proteins in the dataset
and the remaining 1018 non-outer membrane proteins. SubLocC was evaluated
using the 248 cytoplasmic proteins in the dataset and the remaining 1054 non-
cytoplasmic proteins—cytoplasmic proteins with a second, dual localization were
not included in either class. The signal peptide module was trained using the
SignalP dataset mentioned above and evaluated with the Menne et al. (2000)
dataset of 426 signal peptides and 433 non-signal peptides. The precision and
recall of each module are presented in Table 3.1. For modules capable of
predicting multiple localization sites, the reported precision and recall values are

averaged across the relevant localization sites.

Table 3.1: Predictive performance of PSORTb v.1.0 modules.

Module Precision Recall
SCL-BLAST 96.7 60.4
Motifs 100.0 6.5
HMMTOP 994 65.3
Outer Membrane Protein Motifs 100.0 236
SublocC 78.6 74.2
Signal Peptides 87.0 98.2

Each module is implemented as a Perl script or as a Perl wrapper script
that interfaces with another program. This modular design permits the simple
introduction of additional analyses into the program. The program is developed
under the GNU General Public Licence — an open source license — to encourage

the open development and expansion of the tool.
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3.4 Integration of the module output using a Bayesian network

The performance data for each module was used to construct a naive
Bayesian network capable of generating a final probability value for each
localization site given the output of each of the modules. A Bayesian network
employs Bayes’ theorem of conditional probabilities to calculate the likelihood of
a particular scenario given that certain events have occurred. With respect to the
localization prediction problem and PSORTDb, the network allows us to calculate
the probabilities of a protein being resident at each of the localization sites, given
the output of specific modules. A score out of 10 is produced for each of the five
possible localization sites, representing the calculated probability value multiplied
by a factor of 10, with a high value reflecting high confidence that the given
protein is resident in that subcellular location. The sites are ranked in descending
order of probability. If none of the localization sites has a score >7.5, a prediction
of ‘unknown’ is returned. This cutoff of 7.5 was determined empirically through a
review of PSORTDb’s precision and recall at various cutoffs — 7.5 represented the
point at which high (>95%) precision was obtained, while returning a significant
number of results. Higher cutoffs reduced recall, while lower cutoffs reduced
precision. A distribution of scores heavily favouring one site indicates the protein
is likely to be resident there, while a distribution favouring two sites may indicate
the protein has domains residing in more than one localization site. An even

distribution of low scores is indicative of an unknown localization.
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3.5 Performance of PSORTb v.1.0 vs. PSORT |
The overall performance of PSORTb was assessed using the ePSORTdb

v.1.0 dataset comprising 1443 proteins of known localization. Precision and recall
values were calculated per localization site and the overall precision and recall of
the method was calculated based on the total number of true-positives (TP),
false-positives (FP) and false-negatives (FN) over the five Gram-negative

localization sites.

For the purposes of evaluation, predictions were considered to have been
made if the PSORTDb scoring system gave a score for a particular localization site
of >7.5. Proteins resident at dual localization sites were considered to have been
predicted correctly if one of their localization sites scored >7.5. For all evaluations
precision was calculated as TP/(TP+FP) and recall was calculated as
TP/(TP+FN). Results appear in Table 3.2. As shown in this table, this version of
PSORTb was compared with the performance of PSORT | (Nakai and Kanehisa,

1991), again using the ePSORTdb v.10 dataset.

Table 3.2: Predictive performance of PSORTb v.1.0 compared to PSORT I.

PSORT | PSORTb v.1.0
Localization Precision (%) Recall (%) Precision (%) Recall (%)
C 59.7 75.4 97.6 69.4
CM 554 95.1 96.7 78.7
P 60.9 66.4 919 57.6
OoM 65.3 545 98.8 90.3
EC 0.0 0.0 94.4 70.0
Total 59.6 60.9 96.5 74.8
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PSORTDb was designed to favour precision, with afocus on predicting
results correctly rather than generating a prediction in every case. This is
reflected in the precision and recall of both the modules and the overall program.
With this emphasis on precision and implementation of an updated predictive
strategy, the performance of PSORTb represents a significant improvement over
the PSORT | program. Whereas a large increase in precision can be observed for
each localization site, recall is reduced in certain cases, again reflective of the
focus on returning a correct prediction rather than more predictions with lower
confidence. This is especially evident for inner membrane proteins, for which a

16.4% decrease in recall is compensated for by a 41.3% increase in precision.

3.6 Release of PSORTb v.1.1
The beta version of the PSORTb software — PSORTb v.1.0 — was initially

developed in January, 2003, however the tool was not released online until
shortly before its publication in June, 2003. By this point, the ePSORTdb dataset
had expanded to include an additional 131 Gram-negative bacterial proteins.
This represented a significant update to the SCL-BLAST module; thus a new
version number was assigned to the tool, such that the first publicly available

PSORTD release was numbered 1.1.

PSORTb v.1.1 was made available at http://www.psort.org/psortb, a site

that also contains links to many other tools, resources and articles of interest to
the protein localization community. In this and all subsequent releases of the
program, a user may submit one or more query proteins in FASTA format, either

through a text box or through upload of a local file. A choice of three output
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formats is offered: Normal, consisting of a textual table showing the names of
each module and their output, including details of the prediction, as well as the
score distributions and a final prediction when possible; Tab-delimited (long),
which contains the same information arranged in a spreadsheet-ready format,
one line per query protein; and Tab-delimited (short), containing simply the

protein identifier and the final prediction.
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4 DEVELOPMENT AND RELEASE OF PSORTb V.2.0

Portions of this chapter have been previously published in the article “PSORTb v.2.0:
expanded prediction of bacterial protein subcellular localization and insights gained from
comparative proteome analysis”, co-authored by J.L. Gardy, M.R. Laird, F. Chen, S.
Rey, C.J. Walsh, M. Ester, and F.S.L. Brinkman in Bioinformatics, Volume 21, Issue 5 ©
2005 Oxford University Press.

41 Summary

PSORTb v.1.1's predictive coverage and recall were low and the method
was only applicable to Gram-negative bacteria. We set out to increase PSORTb's
coverage while maintaining the existing precision level, and expand it to include
Gram-positive bacteria. An expanded ePSORTdb database of proteins of known
localization and new modules using frequent subsequence-based SVMs were
introduced into PSORTb v.2.0. This version of the program attained a precision
of 96% for Gram-positive and Gram-negative bacteria and displayed predictive
coverage comparable to other tools for whole proteome analysis, representing a

significant improvement over version 1.1.

4.2 Rationale

By analyzing features including: signal peptides, transmembrane helices,
homology to proteins of known localization, amino acid composition and motifs,
PSORTDb v.1.0 and 1.1 attained a classification precision of 97%. However, the
method did not extend to Gram-positive organisms and its predictive coverage
when applied to whole proteomes — the number of proteins for which a prediction

could be made — was low, with an average coverage of 28%. We therefore set
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out to expand PSORTDb’s predictive scope by introducing additional classification
methods applicable to both Gram-positive and Gram-negative bacteria, and to
increase the program’s coverage while maintaining the existing standard of high

precision.

4.3 Novel support vector machine modules

Support vector machine (Vapnik, 2000), is a kernel learning algorithm in
which all data is mapped as vectors in n-dimensional feature space. Given
training data from two classes (positive and negative), a SVM learns the optimal
separating hyperplane which both separates the two classes and maximizes their
distance from the hyperplane. In previous work on the applicability of SVMs to
the localization classification problem, nucleotide or protein sequences have
been modelled as vectors representing amino acid composition (Hua and Sun,
2001, Yu et al., 2004). We proposed, however, that the precision of an SVM
could be improved by utilizing frequently-occurring subsequences rather than
overall amino acid composition. Such common patterns within a group of proteins

may indicate the site of a common biochemical mechanism or structural motif.

For each of the nine localization sites (five Gram-negative and four Gram-
positive), a training dataset was created consisting of a positive and negative
class. The positive class consisted of those proteins in ePSORTdb annotated as
being resident at the localization site of interest, whereas the negative class

consisted of the remainder of ePSORTdb.
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4.3.1 Extraction of frequently occurring subsequences

Frequent subsequences were extracted from the protein sequences
comprising each positive class. A subsequence, or pattern, is defined as frequent
if it is found in at least a specified fraction — MinSup, or minimum support — of the
proteins in ePSORTdb resident at a specific site. A frequent pattern has the form
*X*X*..., in which each ‘X’ is a frequent subsequence made of consecutive amino
acids, and each ™’ is a VLDC (variable-length-don’t-care) which may substitute
for one or more letters when matching the pattern against a protein sequence.
Subsequences capture the local similarity that may indicate of important
structural or functional residues, while VLDCs compress the remaining irrelevant

portions.

To find frequent subsequences, an efficient implementation of the
generalized suffix tree (GST) (Wang et al., 1994) with some simple modifications
was implemented. Suffix trees have been extensively used in string matching
and are shown to be an effective data structure for finding common
subsequences that run in linear time (Landau and Vishkin, 1989; Hui, 1992).
Since each protein sequence is essentially a string of letters, generalized suffix
trees can be easily applied to mine frequent subsequences among protein

sequences. Each of the nine pattern extractions was performed over a range of

MinSup values.

4.3.2 Development and implementation of SVM-based classifiers

SVMLight (Joachims, 2002) was used to implement nine SVMs whose

feature spaces consisted of the frequent subsequences characteristic of a
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specific localization site. For each localization site, different SVMs were tested
using different combinations of MinSup (range: 0.8%-13%) and kernel (linear,
polynomial with degree = 2, radial basis function with y=0.005). The
MinSupl/kernel combination giving the highest classification precision combined
with a reasonabile level of recall (> 40%) was selected for inclusion in PSORTb
v.2.0. Variations in the margin error penalization parameter C were not
evaluated, as our earlier collaborative work on the subject showed a negligible
effect on precision and recall values (She et al., 2003). The final SVMs
implemented in PSORTb v.2.0 utilize LibSVM (Lin, 2003). The cytoplasmic SVM

replaces the SubLocC module of PSORTb v.1.0.

4.3.3 Evaluation of SVM-based classifiers
Table 4.1 summarizes the SVM classifiers selected for inclusion in

PSORTDb v.2.0.

Table 4.1: Parameters and performance of PSORTD v.2.0’s SVM-based classifiers.

SVM Parameters Performance (%)

Gram Module MinSup (%) Frequent patterns Kernel Precision  Recall
CytoSVM- 0.5 39219 Linear 83.6 68.4
CMSVM- 3 5645 Polynomial 96.9 69.6
Negative PPSVM- 1 27804 Polynomial 96.3 453
OMSVM- 1 46688 Linear 94.6 85.3
ECSVM- 2 35380 Polynomial 94.1 56.4
CytoSVM+ 2 8214 Linear 86.5 79.9
Positive CMSVM+ 2 250163 Linear 100.0 63.1
CWSVM+ 2 11610 Linear 95.7 55.6
ECSVM+ 5 23605 Polynomial 91.7 55.0
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By using a feature space comprising frequent subsequences rather than
amino acid composition, high precision classification across all localization sites
was achieved. Although the precision values for the two cytoplasmic classifiers
are the lowest of the nine values, the 84% precision achieved by the Gram-
negative SVM represents a 5% increase relative to the cytoplasmic composition-
based SVM SublLocC used in PSORTb v.1.1. The reduced precision associated
with cytoplasmic proteins may be due to the extremely diverse nature of proteins
found at this site — proteins found at other sites exhibit more functional and
structural constraints, resulting in more unique and characteristic frequent
subsequences. This is especially evident when classifying cytoplasmic
membrane proteins — the frequent subsequences mined from this structurally and
environmentally constrained group of proteins results in high precision

classification.

We observed that as the MinSup value increased for each classifier, the
number of frequent patterns decreased, as did precision; recall, however,
remained comparatively stable. It was also noted that the best performance is not
achieved at the smallest MinSup value — when the number of frequent

subsequences exceeds a certain level, the performance of the SVM is degraded.

4.4 Further expansion of predictive capability

4.41 SCL-BLAST
PSORTb’s SCL-BLAST module predicts the localization of a query

sequence based on homology to a protein in the PSORTdb database of proteins
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of experimentally verified localization. It is therefore expected that a larger and
more diverse database will lead to an increase in the program’s recall. SCL-
BLAST v.2.0 utilizes an updated version of the original PSORTdb database -
Gram-positive queries are run against the subset of 576 new proteins of Gram-
positive origin. Furthermore, we investigated whether subsets of the Gram-
negative and Gram-positive database could be combined. For example, the
cytoplasmic and cytoplasmic membrane sites were hypothesized to be
functionally equivalent, such that a Gram-negative protein could be searched
against a BLAST database containing both Gram-negative bacterial proteins and
Gram-positive cytoplasmic and cytoplasmic membrane proteins. We examined
whether a larger database with such combinations of proteins would increase

recall even further.

We tested several combined databases using 5-fold cross-validation and
found that higher recall and comparable precision was indeed achieved. For
Gram-positive results, a database including Gram-negative cytoplasmic,
cytoplasmic membrane and extracellular proteins yielded the best predictions.
For Gram-negative queries, optimal results were achieved when the queries
were searched against a database that included Gram-positive cytoplasmic and
cytoplasmic membrane proteins — including extracellular proteins in the database
resulted in several periplasmic proteins being falsely predicted as extracellular.
Results of 5-fold cross-validation testing of SCL-BLAST v.2.0 for each

localization site are shown in Table 4.2.
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Table 4.2: Performance of the expanded SCL-BLAST module in PSORTb v.2.0.

Performance (%)

Gram Localization Precision Recall
C 88.8 39.9
CM 97.4 62.0
Negative P 94 .4 68.8
oM 994 905
EC 97.3 77.4
Total 96.4 68.6
C 96.6 58.8
CM 96.8 59.8
Positive cw 91.9 56.7
EC 95.5 57.7
Total 957 58.4

The Gram-negative version of the module retains the 96% precision
exhibited in PSORTb v.1.1, and improves the recall by 8%. The new Gram-
positive version also displays precision of 96%, and recall of 58%, with the lower
recall likely due to the smaller Gram-positive bacterial protein dataset. It is
important to note, however, that such recall values are not to be expected when
SCL-BLAST is applied to datasets containing a large number of hypothetical

proteins, due to their lack of similarity to proteins in the SCL-BLAST database.

We also introduced an exact match filter to detect if a user’s query protein
is already in the database — if a query protein displays 100% identity to a protein
in PSORTdb with a difference between query and subject length of no more than
one character (to account for some users’ removal of the initial “f-Methionine”
residue), the SCL-BLASTe subroutine returns the localization site associated
with the subject protein. In cases in which an exact match is identified, the query
protein is not analyzed by subsequent modules, enabling a result to be returned

faster.
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4.4.2 Motifs and profiles

In PSORTD v.1.1, the Motif module scanned a query sequence for the
presence of any one of 26 PROSITE motifs indicative of specific Gram-negative
localization sites. In PSORTDb v.2.0, the module was expanded to include 44
Gram-negative motifs derived from PROSITE v.18 (Hulo et al., 2004), covering
all but the cytoplasmic localization site, and 25 Gram-positive motifs covering all
4 |ocalization sites. The complete list of motifs is provided in Appendix A. Each
motif was checked against ePSORTdb to ensure that it produces no false
positive results. Two motifs used in PSORTb v.1.1 were removed from v.2.0 due
to the occurrence of false positives when examined against the expanded

ePSORTdb dataset.

PSORTDb v.2.0 also includes a Profile module, in which localization-
specific profiles derived from PROSITE v.18 were selected to generate 100.0%
precise predictions against ePSORTdb. Each profile is similar to a motif but with
position-specific weighting information included, such that more degenerate
sequences can be retrieved than via the strict pattern-matching of the Motif
module. Six profiles were selected, four of which identify both Gram-negative and
Gram-positive cytoplasmic and cytoplasmic membrane proteins, and two of
which are specific to the Gram-positive cell wall and extracellular sites. Profiles

are provided in Appendix C.
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4.4.3 Signal peptides

A separate signal peptide prediction module was trained using Gram-
positive data derived from the same source as the original Gram-negative

training data, at hitp://www.cbs.dtu.dkfftp/signalp.

4.5 Updates to module output integration

As in version 1.1, the modules’ predictions are weighted and integrated
using a Bayesian network in order to generate the final prediction, which comes
in the form of a score distribution. When a single localization site displays a score
of 7.5 or greater, that site is returned as a final prediction. New to version 2.0 is
multiple localization flagging — if two sites return high scores, a flag of “This
protein may have multiple localization sites” is appended to the final prediction.
This flag is triggered when a site scores between 4.0 and 7.49 for Gram-negative
bacterial proteins, and between 5.0 and 7.49 for Gram-positive bacterial proteins.
If no site scores above 4.0 or 5.0, depending on the class, a localization site of
“Unknown” is returned. Score cutoffs were determined again by evaluating which
cutoff yielded the highest precision classification while returning a reasonable
number of results, although this time the dataset used in evaluation comprised
proteins with multiple localizations. PSORTb’s emphasis is on precision, and
returning a result of “Unknown” when not enough information is available to make
a prediction avoids potential false positive results. Figure 4.1 illustrates the final
architecture of PSORTb v.2.0, and Figure 4.2 provides examples of both normal

and tab-delimited terse format output of the program.
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Figure 4.1: Organization of PSORTb v.2.0.
1+ proteins
FASTA format
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If input exactly matches an entry in ePSORTdb
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Output of predicted
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9 Support vector
machines

Signal peptide

Figure 4.2: Normal (A) and tab-delimited short (B) format PSORTbD v.2.0 output.

SeqlD: SAK_BPP‘}Z A
Analysis Report:
CMSVM+ Unknown [No details]
CWSVM+ Unknown [No details]
CytoSVM+ Unknown [No details]
ECSVM+ Extracellular [No details]
HMMTOP Unknown [1 internal helix found]
Motif+ Unknown [No motifs found]
Profile+ Unknown [No matches to profiles found]
SCL-BLAST+ Extracellular [matched 134189: Extracellular protein]
SCL-BLASTe+ Unknown [No matches against database]

Signal+ Non-cytoplasmic [Signal peptide detected]
Localization Scores:

Cytoplasmic 0.0
CytoplasmicMembrane 0.0
Cellwall 0.2
Extracellular 9.98
Final Prediction:
Extracellular 9.98
SAK BPP42 Extracellular 9.98 B
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4.6 Performance of PSORTb v.2.0

4.6.1 Precision and recall

Five-fold cross-validation was used to evaluate the Gram-negative and
Gram-positive versions of PSORTb v.2.0. Precision and recall values for each
localization site were calculated for both proteins annotated as having a single

localization site (Table 4.3) and dual localization sites (Table 4.4).

Table 4.3: PSORTD v.2.0 performance on singly-localized proteins.

Performance
Gram Localization TP FP FN Precision (%) Recall (%)
c 195 15 83 929 70.1
CM 286 14 23 95.3 926
Negative P 191 9 85 95.5 69.2
OM 371 10 20 97.4 949
EC 150 4 40 97.4 78.9
Total 1193 52 251 95.8 82.6
Cc 168 5 26 971 86.6
CM 94 3 9 96.9 91.3
Positive Ccw 54 3 7 94.7 88.5
EC 124 8 59 93.9 67.8
Total 440 19 101 95.9 81.3

Table 4.4: PSORTbD v.2.0 performance on multiply-localized proteins.

Performance
Gram Localization TP FP FN Precision (%) Recall (%)
C/ICM 11 2 5 84.6 68.8
CM/P 34 1 17 97.1 66.7
Negative P/OM 2 2 0 50.0 100.0
OM/EC 76 1 2 98.7 97.4
Total 123 6 24 95.3 83.7
C/CM 12 6 3 66.7 80.0
Positive CM/CW 6 0 14 100.0 30.0
Total 18 6 17 75.0 ] 51.4

For a protein resident at X and Y localization sites, a true positive (TP) is a prediction of either X,
Y, or X/Y. A false positive (FP) is all multiply-localized proteins not resident at X or Y which are
predicted as X, Y, or X/Y. A false negative (FN) is all X/Y proteins not predicted as neither X, Y,
nor X/Y.
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On single localization proteins, PSORTDb v.2.0 attained precision values of
96% for both classes of organisms, and recall of 83% and 81% for Gram-
negative and Gram-positive bacterial proteins, respectively. It was observed that
precision values remained relatively constant across localization sites, while the
recall was highest for membrane proteins, likely due to their conserved structural
motifs readily identifiable by the frequent subsequence-based SVMs, HMMTOP
and OMPMotif modules. The Gram-negative version of PSORTDb v.2.0 exhibits a
0.7% drop in precision relative to PSORTDb v.1.1, however an 8% increase in

recall is observed.

Performance of the program on proteins annotated as having dual
localization sites is comparable to the performance for singly localized proteins
with respect to Gram-negative organisms, with a precision of 95% and recall of
84%. However, it was noted that the overall precision for Gram-positive multiply
localized proteins was only 75%. Upon inspection, it became apparent that this
was due to six annotated cytoplasmic membrane/cell wall proteins being
predicted as cytoplasmic. Noting that singly-localized cytoplasmic membrane and
cell wall proteins were infrequently mispredicted as cytoplasmic, these six
proteins were investigated. While experimental evidence supporting a possible
additional localization of cytoplasmic was only found for one of the six proteins —
B. subtilis ComGG (Chung et al., 1998) — the other five proteins include enzymes
and heat shock proteins, for which cytoplasmic or peripheral membrane

associated localizations are not uncommon. It may be that rather than making
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mispredictions, PSORTDb is detecting a more complex pattern of localization for

certain proteins.

4.6.2 Predictive coverage and storage of genome-wide predictions

The predictive coverage of a method refers to the number of proteins in a
given proteome for which the method returns a prediction. The measured recall
of a program when evaluated using 5-fold cross validation does not give an
accurate reflection of the predictive coverage because the training and testing
data consists of a number of well-characterized proteins, thus a large number of
predictions are possible. However, proteomes contain a large number of
hypothetical proteins, which often do not contain enough information for a
prediction to be generated. We therefore set out to measure PSORTb v.2.0’s
performance when applied to whole proteomes, with the expectation that an
increase in the 28% average coverage of version 1.1 would be observed. Figure
4.3 summarizes PSORTb v.2.0’s predictive coverage when applied to the
analysis of 162 Gram-negative genomes and 74 Gram-positive genomes. The
average coverage across each class of proteomes is shown, as is the maximum

and minimum coverage values obtained for a single proteome in each class.
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Figure 4.3: Predictive coverage of PSORTb v.2.0 when applied to complete genomes.
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The Gram-positive version of the program displays higher predictive
coverage than the Gram-negative version due to the higher recall associated with
the Gram-positive cytoplasmic SVM. Cytoplasmic proteins represent the largest
class of proteins within the cell, and an improved ability to identify these proteins

results in a higher overall coverage.

PSORTb v.2.0 was released on June 17, 2004 at
http://www.psort.org/psortb. On August 12, a second component of the
PSORTdb database was also released — cPSORTdb. cPSORTdb stores
PSORTD v.2.0 predicted localization sites for all sequence bacterial genomes
available through NCBI. As of January, 2006, cPSORTdb contains 689,275

proteins representing 236 organisms.

Most fields present in an ePSORTdb record are also present in a

cPSORTdb record, however the latter also contains fields for NCBI's genome

61



accession number, strain designation, and cross-linking if the record in question
is also present in ePSORTdb. By definition, cPSORTdb also must contain the
PSORTD predictive output, which is stored in a series of unique fields. Like
ePSORTdb, cPSORTdb can be queried with text, browsed, or searched using

BLAST, and the results are returned in a similar format.

62



5 EVALUATING PSORTb v.2.0’S PRECISION
IN THE CONTEXT OF RECENT COMPUTATIONAL
PREDICTIVE METHODS

Portions of this chapter have been previously published in the article ‘PSORTb v.2.0:
expanded prediction of bacterial protein subcellular localization and insights gained from
comparative proteome analysis”, co-authored by J.L. Gardy, M.R. Laird, F. Chen, S.
Rey, C.J. Walsh, M. Ester, and F.S.L. Brinkman in Bioinformatics, Volume 21, Issue 5 ©
2005 Oxford University Press.

5.1 Summary

Beginning with the release of Subl.oc, a number of research groups
turned their attention to the development of localization prediction tools. An
objective comparison of the performance of these publicly available was carried
out using a set of proteins not included in the training data of any of the methods
under review. It was thus shown that PSORTD represents the highest precision

bacterial localization prediction method released to date.

5.2 Alternative localization prediction tools

The evaluation of PSORT | described in the PSORTb v.1.0 manuscript
(Gardy et al., 2003) dramatically illustrated the need for an improved localization
prediction tool. Consequently, a number of research groups undertook
development of novel predictive algorithms. As of January, 2006 seven bacterial
protein localization prediction tools, including PSORTb v.2.0, have been made

available. While these seven methods vary with respect to the algorithms

employed, the number of localization sites they are able to assign a protein to,
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predictive performance and user interface, they all offer an improvement in

precision over PSORT |.

5.2.1 A note regarding performance metrics

Before examining each of the methods, an explanation of the various
performance metrics used by the methods’ authors is required. The choice of
metrics depends primarily on the background of the authors and the aspect of
their method which they wish to emphasize. All metrics, however, rely on four
basic statistics — true positives (TP), false negatives (FN), false positives (FP)

and true negatives (TN).

Predictive methods developed by biologists tend to emphasize the
importance of “quality”, or correct predictions, over “quantity”, or a high number of

predictions. A barometer of a method’s ability to generate correct predictions is

the precision metric, calculated as TPTfF . Precision values are typically reported
together with a method's recall. Recall, also referred to as sensitivity, is

calculated as

and reflects a method’s ability to identify all true positive

cases.

A small number of papers from the computer science domain report only a
single metric — accuracy. To many, the use of the word accuracy implies a

. TP+TN N
measure of quality, or . However, many computer scientists use a
TP+FP+TN+FN

different definition of accuracy. This version of accuracy is the same as our
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earlier definition of recall, or TP]:?N , and rewards methods that generate a large

quantity of predictions, thus should not be used as an estimate of a method’s

false positive rate.

All of the predictive methods described below also report some sort of
confidence measure along with their final prediction, typically under the name
“confidence”, “quality” or “reliability index”. These measures, which range from
scores on a five- or ten-point scale to percentages, should only be used to
compare the confidence level of multiple predictions from a single server.
Because the calculation of these measures varies widely between servers, it is

important to remember they are relative measures and thus it is not possible to

compare these quality scores between servers.

5.2.2 Proteome Analyst

Proteome Analyst (Lu et al., 2004) was trained and tested using Gram-
negative bacterial sequences extracted from the first release of ePSORTdb as
well as SwissProt entries with annotated localization information. The complete
Gram-negative dataset consists of 3174 sequences, and the Gram-positive
dataset 1541 sequences. The authors report precision of 95.9% and 94.6%, and
recall of 93.4% and 91.4% for the Gram-negative and Gram-positive classifiers,
respectively. Coverage analysis was performed using one genome from each
class of bacteria, with Proteome Analyst achieving 75.6% coverage for the Gram-
negative bacterium Pseudomonas aeruginosa and 67.2% coverage for the

Gram-positive bacterium Bacillus subtilis. When PSORTb v.2.0 was used to
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analyze the same organisms, it attained coverage of 68.1% for P. aeruginosa
and 76.5% for B. subtilis.

An analysis based on these two proteomes suggests that while Proteome
Analyst attains higher coverage on a Gram-negative organism, PSORTb v.2.0
generates more predictions for a Gram-positive proteome. However, because of
the small sample size and the fact that these two organisms are quite well-

annotated, the true coverage of each method cannot accurately be compared.

Proteome Analyst’'s markedly different approach and high recall make it an
excellent complement to PSORTb. Like PSORTb, Proteome Analyst does not
force predictions, resulting in high precision classification. A caveat to the
method, however, is that in order to generate a prediction, a query protein must
have homologs in the SwissProt database — hence not every protein encoded in
a genome will return a result. Furthermore, predictions for proteins that are
similar to known, well-studied proteins will also be of higher confidence than

those for proteins whose homologs are not well-annotated.

5.2.3 Amino acid composition support vector machine-based methods
Composition-based SVMs are capable of making predictions when no
prior information — homology or the presence of a particular sequence feature, for
example — about a protein is available. However, because predictions are
returned for all submitted queries — even if the result is not a highly confident one
— the precision of these methods is significantly lower than that of PSORTb and

Proteome Analyst.
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Subloc (Hua and Sun, 2001) was trained on the Reinhardt and Hubbard
dataset derived from SwissProt, comprising 997 bacterial sequences (Reinhardt
and Hubbard, 1998), and the authors report an accuracy value of 91.4% when

the method was evaluated using this dataset.

CELLO (Yu et al., 2004) was trained and tested using the 1443 Gram-
negative bacterial proteins in the first release of ePSORTdb (Gardy et al., 2003).
The authors report 88.9% accuracy, with predictions generated for all queries.
The method was recently updated to permit the analysis of Gram-positive
sequences, however information on the training data used and the performance

of the method is unavailable.

LOCtree (Nair and Rost, 2005) was trained and tested using a dataset
created by the program’s authors comprising 672 bacterial proteins. The authors
report accuracy of 83% for Gram-negative bacteria and 90% for Gram-positive
bacteria. However, because LOCtree does not discriminate between Gram-
negative and Gram-positive organisms, the potential exists for a Gram-positive

protein to be mistakenly classified as periplasmic.

P-CLASSIFER (Wang et al., 2005) was trained and tested on a dataset
derived from the first release of ePSORTdb comprising 1441 proteins, achieving
a recall of 89.8%, and PSLpred (Bhasin et al., 2005) was trained using 1443

proteins from the first release of ePSORTdb, achieving 91.2% accuracy.
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5.3 Comparison of precision and recall

Because of the disparity in the performance metrics reported by the
authors of each of the above methods, it is difficult to accurately assess the
performance of each program using information provided in the original
manuscripts. Instead, an independent comparison of the tools using a set of

proteins not contained in the training data of any of the methods is required.

We compared the performance of PSORTb, Proteome Analyst, CELLO,
PSLpred and P-CLASSIFIER using 144 novel Gram-negative bacterial proteins
not contained in the training data of any of the methods. SubLoc and LOCtree
were not evaluated, as these methods only predict three localization sites rather
than five and were trained using data which may overlap with the testing data

used herein. Results are summarized in Table 5.1.
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Table 5.1:

An independent comparison of the performance of five bacterial subcellular
localization prediction methods using a test set of 144 novel Gram-negative

bacterial proteins.

Localization Program TP FP FN Precision (%) Recall (%)
PSORTb 22 1 8 95.7 73.3
CELLO 27 9 3 75.0 90.0
Proteome Analyst 22 1 8 95.7 733
P-CLASSIFIER 27 7 3 79.4 90.0
C PSLpred 28 3 2 90.3 93.3
PSORTb 39 1 3 975 92.9
CELLO 35 4 7 89.7 83.3
Proteome Analyst 40 6 2 87.0 852
P-CLASSIFIER 38 6 4 86.4 90.5
CM PSLpred 41 2 1 95.3 976
PSORTb 26 0 6 100.0 81.3
CELLO 16 6 16 727 50.0
Proteome Analyst 29 1 3 96.7 90.6
P-CLASSIFIER 13 3 19 81.3 40.6
P PSLpred 20 4 12 83.3 62.5
PSORTb 34 1 5 97.1 87.2
CELLO 24 3 15 88.9 61.5
Proteome Analyst 34 0 5 100.0 87.2
P-CLASSIFIER 24 3 15 88.9 61.5
OM PSLpred 23 2 16 92.0 59.0
PSORTb 1 0 0 100.0 100.0
CELLO 1 19 0 5.0 100.0
Proteome Analyst 1 6 0 14.3 100.0
P-CLASSIFIER 1 22 0 43 100.0
EC PSLpred 1 20 0 4.8 100.0
PSORTb 122 3 22 97.6 84.7
CELLO 103 41 41 71.5 71.5
Proteome Analyst 126 14 18 80.0 87.5
P-CLASSIFIER 103 41 41 71.5 71.5
Total PSLpred 113 31 31 78.5 78.5

5.4 Conclusions

Our assessment of the available bacterial protein localization prediction

tools reveals that PSORTb v.2.0 achieves the highest precision, while Proteome

Analyst achieves the highest recall, together with excellent precision. Both

programs outperform the tools that force predictions, however of these SVM-

based methods, PSLpred appears to yield the highest precision and recall.
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Our results illustrate that multi-component predictive methods and those
that take into account biological knowledge (in the form of SWISS-PROT
annotations) generate higher quality predictions than do simple SVM-based

methods.
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6 ANALYSIS I: PSEUDOMONAS AERUGINOSA
EXPORTED PROTEINS

Portions of this chapter have been previously published in the article “Genome-wide
identification of Pseudomonas aeruginosa exported proteins using a consensus
computational strategy combined with a laboratory-based PhoA fusion screen”, co-
authored by S. Lewenza, J.L. Gardy, F.S.L. Brinkman, and R.E.W. Hancock in Genome
Research, Volume 15, Issue 2 © 2005 Cold Spring Harbor Laboratory Press.

6.1 Summary

The Gram-negative pathogen Pseudomonas aeruginosa encodes multiple
protein export systems, the substrates of which contain export signals such as N-
terminal signal peptides. Here we describe the first genome-wide computational
and laboratory screen for N-terminal signal peptides in this important
opportunistic pathogen. The computational identification of signal peptides was
based on a consensus between multiple predictive tools and showed that 38% of
the P. aeruginosa PAO1 proteome was predicted to encode exported proteins,
most of which utilize cleavable type | signal peptides or uncleavable
transmembrane helices. In addition, known and novel lipoproteins (type 1), twin
arginine transporter (TAT), and prepilin peptidase substrates (type IV) were also
identified. A laboratory-based screen using the alkaline phosphatase (PhoA)
fusion method was then used to test our predictions. In total, 310 nonredundant
PhoA fusions were successfully identified, 296 of which possess a predicted
export signal. Analysis of the PhoA fusion proteins lacking an export signal
revealed that three proteins have alternate translation start sites that encode

signal peptides, two proteins may use an unknown export signal, and the
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remaining nine proteins are likely cytoplasmic proteins and represent false
positives associated with the PhoA screen. Our approach to identify exported
proteins illustrates how computational and laboratory-based methods are
complementary, where computational analyses provide a large number of
accurate predictions while iaboratory methods both confirm predictions and

reveal unique cases meriting further analysis.

6.2 Rationale

The release of the high-precision, high-coverage PSORTD v.2.0 tool
permitted us to couple a comprehensive computational analysis of localization in
a genome to a similarly large-scale laboratory-based analysis. It was decided to
analyze exported proteins in Pseudomonas aeruginosa using both PSORTb and
other high quality predictive methods and compare our results to laboratory-

derived localization information.

The completion of the Pseudomonas aeruginosa PAO1 genome sequence
has provided many insights into the biology and pathogenesis of this organism
and serves as the starting point for genome-wide studies of this important
opportunistic pathogen (Stover et al., 2000). P. aeruginosa is the primary cause
of chronic lung infections and mortality in patients with cystic fibrosis and is also
the third most frequently isolated nosocomial pathogen, causing approximately
10% of all hospital-acquired infections (Fridkin and Gaynes, 1999; Govan and
Deretic, 1996; Hancock and Speert, 2000). Pseudomonas infections are difficult
to treat due to the high intrinsic antibiotic resistance of this organism, which is

attributed to low outer membrane permeability coupled with additional resistance

72



mechanisms, including active drug efflux and antibiotic modification (Hancock

and Speert, 2000).

A major subset of the P. aeruginosa proteome is dedicated to proteins that
are exported out of the cytoplasm to the cell envelope - the cytoplasmic
membrane, the periplasm and the outer membrane — or that are secreted out of
the cell to the extracellular environment (Guina et al., 2003; Nouwens et al.,
2000). This subset of proteins is involved in essential cellular processes that
include cell wall assembly, nutrient uptake, virulence, antibiotic resistance, pili
and flagella biogenesis, immunogenicity, adherence, energy generation and
environmental sensing. The importance of these proteins is illustrated by the fact
that many cell envelope proteins are the targets of current antimicrobials (Drew
et al., 2003) or vaccines and thus identifying novel envelope proteins may
provide new targets for drug discovery and immunoprophylaxis (Cachia and

Hodges, 2003).

P. aeruginosa proteins destined to non-cytoplasmic subcellular
localizations utilize various protein export systems, as recently reviewed in Ma et
al. (2003). The Sec machinery facilitates the majority of protein transport across
the cytoplasmic membrane (Filloux et al., 1998; Pugsley, 1993a). Proteins may
be recognized by the SecB chaperone after translation, maintaining their
appropriate conformation to permit recognition by the SecYEG translocation
machinery (de Gier and Luirink, 2001; Drew et al., 2003; Pugsley, 1993a), or they
may be recognized by the signal recognition particle (SRP), and directed

ultimately to the SecYEG translocase (Bernstein, 2000; de Gier and Luirink,
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2001; Drew et al., 2003). Export systems that are Sec-independent are also
found in P. aeruginosa, including the twin-arginine translocation (TAT) pathway,
which is responsible for the translocation of certain pre-folded proteins (Ochsner
et al., 2002; Voulhoux et al., 2001), as well as type | and type Ill secretion
systems that translocate proteins across the cytoplasmic and outer membranes

in a single step (Ma et al., 2003).

The availability of the P. aeruginosa PAO1 genome sequence, combined
with knowledge of the defined structures and motifs found in most N-terminal
signal peptides, permitted us to perform a genome-wide computational survey of
proteins that use N-terminal signal peptides for export out of the cytoplasm. Our
definition of “exported protein” includes all proteins exported out of the
cytoplasm, including those incorporated into the cytoplasmic membrane through
the presence of transmembrane helices. Laboratory-based surveys of signal
peptide-encoding genes was also possible through the use of the alkaline
phosphatase (PhoA) fusion technique (Manoil and Beckwith, 1985). In this
approach, signal peptide-containing genes are fused in frame with a truncated
‘phoA gene lacking its native signal peptide. The signal peptide in the fused
genomic fragment targets the PhoA moiety across the inner membrane to the

periplasm, where alkaline phosphatase folds and becomes enzymatically active.

We performed a combined computational and laboratory survey of P.
aeruginosa signal peptide-encoding genes, first screening the P. aeruginosa
PAO1 genome for potential export candidates using computational techniques,

and then implementing a random cloning PhoA fusion screen to test our
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predictions. The analysis represents the most comprehensive analysis of
exported proteins in P. aeruginosa to date, and clearly illustrates the utility of this

combined approach to genome-scale studies.

6.3 Computational prediction of the exported fraction
of the P. aeruginosa proteome

6.3.1 Methods

The version of the Pseudomonas aeruginosa PAO1 genome used in the

present analysis was downloaded from http://www.pseudomonas.com, updated

June 10 2004. This version of the genome annotation contains 5570 predicted

proteins.

Type | signal peptides were predicted by a consensus approach utilizing
four signal peptide prediction methods: SignalP v.3.0’s neural network and
hidden Markov model implementations (Bendtsen et al., 2004), LipoP v.1.0
(Juncker et al., 2003), and Phobius (Kall et al., 2004). A protein was noted as
having a type | signal peptide if three or more methods predicted one, and as not
having a signal peptide if three or more methods did not predict one. Fifty-seven
proteins were noted as having possible type | signal peptides, representing cases
where two methods predicted a signal peptide while two methods did not. Type Il

signal peptides were predicted exclusively by the program LipoP.

Sequences of type IV prepilin precursors and related proteins (Lory, 1994)
were used to construct the motif G[FIMLSY][TS][LT][ILVP]E. The motif was then

used to scan the P. aeruginosa PAO1 genome for possible prepilin peptidase
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substrates. Downstream hydrophobic tracts were identified using the Kyte and

Doolittle hydrophobicity scale (Kyte and Doolittle, 1982).

Possible TAT substrates were identified by searching for occurrences of
the RRXFL[KR] motif (Chaddock et al., 1995), where a protein exhibited the dual
arginines as well as matches to at least two of the FL[KR] residues. This set of
proteins was filtered to remove proteins with little to no hydrophobic character in
the region immediately C-terminal to the TAT motif, again using the Kyte-Doolittle
hydrophobicity index.

Proteins utilizing a transmembrane helix for targeting were identified by
both Phobius and TMHMM (Krogh et al., 2001). In the absence of a strongly
predicted signal peptide (three or more predictions) and given a prediction of two
or more transmembrane helices by either Phobius or TMHMM, a protein was

annotated as using a TMH for export.

Predictions for all classes of export signal are summarized in Table 6.1

(see also Appendix D).

Table 6.1: Occurrence of computationally predicted export signals in P. aeruginosa.

_Type of export signal Number % of genome % of export signals
Type | 801 14.4 377
Possible type | 57 1.0 27
Type |l (lipoprotein) 185 3.3 8.7
Type IV(prepilin) 23 0.4 1.1
TAT 15 03 0.7
Transmembrane helix 1042 18.7 491
Total with export signals 2123 38.1 -

No export signal 3447 61.9 -
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6.3.2 Results: Type | signal peptides

The majority of proteins using an N-terminal signal peptide for export are
substrates of the Sec pathway and are cleaved by signal peptidase I. In the P.
aeruginosa genome, 801 (14.4%) proteins were predicted by at least three of the
four predictive methods to contain a cleavable type | signal peptide. The
programs typically agree in their predictions, with 518 out of 801 signal peptides
having four identically predicted cleavage sites and an additional 56 signal

peptides with three identically predicted cleavage sites.

In addition to the 801 proteins with strongly predicted signal peptides, 57
proteins yielded inconclusive results with only two out of four methods making a
signal peptide prediction. These proteins were therefore classified as possible
type | signal peptides. This list includes the known TAT substrate phospholipase
PicH (PA0844) (Voulhoux et al., 2001), a lectin protein thought to be anchored in
the outer membrane (PA3361) and the probable outer membrane protein OprC
(PA3790). Interestingly, this list also contains three regulatory proteins which are
predicted to be cytoplasmic (PA1949, PA1998, PA2267) by PSORTb v.2.0
(Gardy et al., 2005). These three proteins likely represent the small number of

false positives inherent in any predictive technique.

6.3.3 Results: Type Il signal peptides

We identified 185 proteins, or 3.3% of the genome, as potentially
containing a type |l signal peptide. This number is considerably higher than the
76 PSORT I-predicted lipoproteins (Nakai and Horton, 1999) annotated at

http://www.pseudomonas.com, likely due to the improved identification algorithm
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of LipoP. LipoP also reports the +2 residue of each predicted lipoprotein, as this
residue is thought to act in targeting of the lipoprotein to one or the other

membrane. The majority of P. aeruginosa lipoproteins contain Ser (54), Ala (49),
or Gly (32) residues at this position, indicating that they are likely localized to the

outer membrane (Yamaguchi et al., 1988).

6.3.4 Results: Type IV signal peptides

By scanning for the occurrence of a GFTLIE-like motif preceding a stretch
of hydrophobic residues, 13 candidate type IV signal peptides were initially
identified, all of which were present in proteins annotated as pseudopilins, type |l
secretion proteins, general secretion pathway proteins, pilins, or fimbrial subunits

— classes of proteins known or suspected to be processed by prepilin peptidase.

The 13 predicted prepilin peptidase substrates occurred in clusters along
the genome. Reasoning that neighbouring proteins might exhibit type IV-like
signal sequences missed in the initial scan, the 10 proteins both upstream and
downstream of the clusters were manually inspected. A further 10 sequences
representing possible prepilin peptidase substrates were identified in this fashion.
In total, 23 proteins were predicted to represent prepilin peptidase substrates, six
of which — PA2671, PA2672, PA2673, PA2674, PA2675 and PA4554 — have not

been previously described.

6.3.5 Results: TAT signal peptides
Proteins exported via the TAT machinery display an RRXFL[KR]-like motif

at their N-terminus, which otherwise contains a leader sequence that resembles
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a tripartite signal peptide (Berks, 1996). The P. aeruginosa genome has been
scanned for the presence of TAT substrates in two previous studies. Ochsner et
al. (2002) identified 18 putative substrates through a manual inspection
approach. Their criteria included: the presence of twin arginines, a match to at
least one of the remaining residues in the motif, a hydrophobic tract following the
motif, and an AXA cleavage site. Dilks et al. (2003) implemented their TATFIND
v.1.2 program to identify 57 putative substrates, using the criteria of the presence
of an XRRXXX motif within residues 1-34 as well as an uncharged region of 13

or more residues downstream of the twin arginines.

In the present analysis, proteins with predicted type | or Il signal peptides
were scanned for the presence of the TAT motif RRXFL[KR] immediately N-
terminal to a stretch of hydrophobic residues. This identified 14 proteins with type
| signal peptides that also possess TAT motifs, while one protein with a predicted
type Il signal peptide contains the TAT motif (PA4712). However, several
putative TAT substrates reported in the earlier two studies were not identified in
this analysis. This is attributed to the fact that many of these proteins do not
contain traditional type | or type Il signal peptides. Thus a second analysis was
performed in which we eliminated the requirement for a predicted signal peptide.
When the entire genome was searched without the signal peptide filtering step,

an additional 12 putative TAT substrates were found.

In total, 27 potential TAT substrates were identified, 10 of which were not
described in either of the two previous studies. The 10 novel substrates predicted

include: FepD, HenC, Sss, GICE and 6 hypothetical or conserved hypothetical
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proteins. Sss, however, is annotated as a site-specific recombinase and likely
represents a false positive associated with the scanning procedure. These
proteins may have been missed in the previous two analyses due to the
requirement for an AXA cleavage site in the Ochsner et al. (2002) study, and the
minimum of 13 uncharged residues downstream of the twin arginines required by

TATFIND.

Eight proteins identified by Ochnser et al. (2002) were not found in the
present study. Inspection of these revealed that the proteins either exhibit weakly
hydrophobic regions downstream of their motifs or have less than two residues in
common with the FL[KR] portion of the TAT motif. We also did not identify 41
proteins reported in Dilks et al. (2003), which is attributed to the fact that the
RRXFL[KR] motif requirement employed here is significantly more stringent than

the XRRXXX used in the TATFIND program.

6.3.6 Results: Membrane-targeting transmembrane helices

Many cytoplasmic membrane proteins do not require a cleavable signal
sequence in order to insert into the membrane. Instead, the presence of one or
more transmembrane alpha helices and recognition by the signal recognition
particle is sufficient for membrane-targeting (Bernstein, 2000; de Gier and
Luirink, 2001; de Gier et al., 1998). Of the proteins without a predicted cleavable
N-terminal signal peptide, 1042 (18.7%) were predicted by Phobius and TMHMM
(Krogh et al., 2001) to contain at least one transmembrane helix. Some of these

likely represent N-terminal uncleaved signal anchors, while in most cases it
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appears that internal helices may be sufficient for cytoplasmic membrane

targeting.

6.4 PhoA fusion survey of the P. aeruginosa proteome

6.4.1 Methods

The following steps were carried out by Dr. Shawn Lewenza, a
postdoctoral fellow in the laboratory of Dr. R.E.W. Hancock. Escherichia coli
DH5a was used as the recombinant host for a P. aeruginosa-alkaline
phosphatase (PhoA) fusion library. Genomic DNA from P. aeruginosa H103 was
isolated, partially digested with Sau3Al and size fractionated on 1% agarose-Tris-
acetate-EDTA (TAE) gels. Digested DNA in the size range 1 to 3 kb was excised,
gel-purified and ligated into BamH| digested, phosphatase-treated plasmids
pJDT1, pdDT2, and pJDT3 that contain single base additions to permit the
coding fragment to fuse in the correct reading frame to ‘phoA (Mdluli et al.,

1995).

Ligation products were used to transform electrocompetent E. coli DH5¢.
Transformants were recovered and screened for alkaline phosphatase activity on
alkaline phosphatase indicator LB agar containing 75 mM Na;HPO,to repress
endogenous PhoA activity, 100 ug/ml ampicillin and 90 ug/ml of the chromogenic
alkaline phosphatase substrate BCIP (5-bromo-4-chloro-3-indolyl phosphate) as
previously described (Bina et al., 1997). All blue colonies were picked to 96-well

microtitre plates and sub-cultured in LB broth containing 50 ug/ml ampicillin.
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| then carried out the remaining steps in collaboration with Dr. Lewenza.
Plasmids from PhoA positive clones were purified in 96-well format (Qiagen,
Mississauga, Canada), visualized for yield on 96-lane 1% agarose-TAE gels and
sequenced using Big Dye Terminator chemistry (Applied Biosystems, Foster
City, CA) on a Basestation 51 Fragment Analyzer (MJ Research, Waltham, MA)
and a ‘phoA-specific sequencing primer directed towards the upstream cloned

region as previously described (Bina et al., 1997).

The P. aeruginosa genes upstream of the truncated "phoA gene were
mapped to the P. aeruginosa PAO1 genome sequence by BLASTN and BLASTX

analyses (Altschul et al., 1997).

6.4.2 Results

In total, 1035 PhoA positive colonies were isolated. After growth in liquid
media for plasmid DNA isolation, cultures were re-inoculated onto PhoA indicator
agar to examine the stability of the PhoA phenotype. In contrast to colonies
transferred multiple times on solid media, cultures grown in liquid media had
highly unstable alkaline phosphatase phenotypes. It was reasoned that growth in
liquid media strongly selects for mutations that limit the amount of PhoA fusion
protein expressed, due to the toxicity of membrane-localized PhoA fusion
proteins (Manoil and Traxler, 1995) or due to high expression levels. The plasmid
used has a high copy nhumber and contains the /ac promoter upstream of the
‘phoA gene (Mdluli et al., 1995). Cloned P. aeruginosa fragments that produce

successful PhoA fusions may also contain strong Pseudomonas promoters, thus
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it is possible that the PhoA fusions may be expressed from either the lac

promoter, the Pseudomonas promoter, or off of both.

Plasmids were purified from all PhoA positive colonies regardless of the
stability of the PhoA phenotype. Only plasmids with high and intermediate yields
were used as templates in sequencing reactions. In some cases, extremely low
plasmid yields were observed, suggesting that plasmid loss had occurred. A total
of 646 plasmids were sequenced and mapped to the P. aeruginosa genome to
identify the gene randomly cloned upstream of the "phoA gene. This analysis
yielded a total of 474 proteins cloned in the correct orientation to produce a PhoA
fusion protein while the majority of remaining sequences were of poor quality and
did not produce high scoring BLAST hits to the PAO1 genome. Eliminating the
redundant BLAST hits reduced the list to 310 unique P. aeruginosa-PhoA fusion

proteins.

The ability of these proteins to direct PhoA to the cytoplasmic membrane
is likely due to the presence of an export signal. Of the 310 proteins identified in
the PhoA screen, 296 displayed a predicted cleavable N-terminal signal peptide
or contained one or more predicted transmembrane helices, as summarized in

Table 6.2.
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Table 6.2: Predicted export signals in 310 PhoA fusion proteins.

Type of export signal Number % of export signals
Type | 169 57.1
Possible type | 1 0.3

Type |l (lipoprotein) 31 10.5

Type V(prepilin) 5 1.7

TAT 1 0.3
Transmembrane helix 89 30.1

Total with export signals 296 -

No export signal 14 -

These data indicate that our consensus computational prediction strategy
displayed high recall — in other words, a low number of false negative results was
encountered. However, one cannot comment on the precision, or false positive
rate, of the strategy, as the PhoA fusion simply indicates export and does not

provide information on the nature of the export signal itself.

Export signals were annotated as type |, probable type |, type I, type IV,
TAT, or transmembrane helix based on the predictions generated in the initial
computational screen. Similar proportions of type Il and type 1V signal peptides
were observed in both the whole genome predictions and among the PhoA
fusion proteins, indicating that the prediction of these two types of signals might
be relatively straightforward, particularly when compared to prediction of type |
signal peptides. The proportion of type | signal peptides identified in the PhoA
screen was almost 20% higher than the proportion predicted genome-wide,
indicating that the predictive methods may be missing some non-canonical N-
terminal signal peptides or that the PhoA fusion method preferentially identifies

type | signal peptides.
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There were 14 proteins identified in the PhoA screen which lacked a
predicted export signal. These proteins may possess non-canonical export
signals not identified by the methods used, or else incorrect assignment of start
sites may have caused their true export signals to be missed. Alternatively, they
may represent false positives associated with the PhoA screen. To explore these

possibilities, these proteins were selected for further examination.

The protein sequences and upstream regions were examined for
alternative start sites by manual scanning and GeneMark 2.4 analysis (Lukashin
and Borodovsky, 1998). Ten proteins displayed potential alternative translation
products, which were re-analyzed by the four signal peptide prediction methods.
The alternative translation products associated with three proteins (PA0667,
PA0259, PA3348) were predicted by all four methods to be exported by a

cleavable type | signal peptide.

Next, the remaining proteins were compared to the ePSORTdb database
of proteins of experimentally verified localization (Gardy et al., 2003) using a
BLASTp search and an E-value cutoff of 1e-10. None of the proteins were
homologous to exported proteins but four proteins (PA2451, PA3919, PA4091,
PA2744) showed similarity to cytoplasmic proteins. Lastly, the protein sequences
were similarly compared to the cPSORTdb database of proteins with
computationally predicted subcellular localizations. Five proteins showed
similarity to predicted cytoplasmic proteins (PA1389, PA3357, PA3673, PA4124,
PA4577) and none showed similarity to PSORTdb predicted exported proteins.

Of the two remaining proteins, PA1531 is similar to the periplasmic protein of
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ABC transporters and PA5044 (PilM) is similar to the actin-like protein MreB from
E. coli and Bacillus (Mattick, 2002). PilM is involved in type IV pili biosynthesis
and is necessary for twitching motility (Mattick, 2002). These two proteins have
no predicted export signal but may contain a unique export signal not identified
by our methods. Thus, of the 14 PhoA fusions with no apparent export signal,
only five appear to be candidates for export while the remaining nine proteins are

probable false positives.

Among the proteins that produced active PhoA fusions, 150 are annotated
as hypothetical or conserved hypothetical proteins. This finding suggests that
these proteins are likely localized to the membrane and thus provides some
preliminary information regarding the function of these proteins that have not as

yet been characterized.

6.5 Conclusions

In the first part of our analysis, a genome-wide computational screen for
exported proteins was performed. Multiple predictive methods, including machine
learning methods and manual pattern matching, were used to identify P.
aeruginosa PAO1 proteins containing possible export signals. In large-scale
genome studies, it is critical to employ a consensus approach in order to reduce
the number of false positives and to increase the confidence of the prediction.
Our study reports almost 100% agreement between the genome-wide predictions

and the experimental PhoA fusion data.
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The consensus prediction method used here indicates that 38% of the
genome encodes proteins exported via five types of export signal: type | signal
peptides, type Il (lipoprotein) signal peptides, type IV (prepilin) signal peptides,
TAT (twin arginine transporter) signal peptides, and membrane-targeting
transmembrane helices. Approximately 40% of these predicted exported proteins
appear to utilize cleavable type | signal peptides, according to 3 or more of the
predictive methods. A small number of false positives were observed which
include 4 of the 719 proteins with strongly predicted signal peptides (PA2003,
PA2554, PA3883, PA5389) that show significant similarity to cytoplasmic
proteins and 3 proteins with weakly predicted signal peptides (PA1949, PA1998,
PA2267). Furthermore, predictions may also reflect biases in the programs’
training data, such that certain non-canonical type | signal peptides might be
missed. This is likely the case with many of the 57 proteins with weakly predicted
type | signal peptides since many of them appear to be candidates for export
based on their annotated functions, however at least 2 of the 4 methods failed to

predict a signal peptide.

The methods used to identify the other classes of signal peptide are more
specialized and appear to result in better predictions when compared to type |
signal peptide methods. LipoP v.1.0 predicted 185 potential lipoproteins in the
genome, 109 more than are presently annotated in the pseudomonas.cdm
database. The Pseudomonas Genome Database annotations were calculated
using PSORT 1, and the increase in predicted lipoproteins reported here

illustrates the importance of using up to date computational methods.
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We predicted 23 putative prepilin peptidase substrates in the PAO1
genome, of which six represent novel candidates. These include five proteins
occurring in a cluster, four of which are annotated as probable type |l secretion
system proteins and may represent novel type Il secretion proteins, similar to the
Xcp and Hxc machinery. There are likely more prepilin peptidase substrates
within the P. aeruginosa genome, which could be identified through searching
with a more degenerate motif. For example, the supposedly invariant Gly residue
preceding the cleavage site appears to be replaceable by an Ala residue, as
seen in the previously identified FimT protein, as well as in PA2672 and PA2674

reported here.

Fifteen putative TAT substrates were initially identified in the present
analysis, which utilized stringent criteria including the presence of a predicted N-
terminal signal peptide and a match of at least 5 of the 6 residues in the
RRXFL[KR] motif. An expanded analysis searching for potential TAT substrates
across the whole genome — not just within the subset of proteins with predicted
signal peptides — identified a further 12 possible TAT substrates. This indicates
that it is important not to overlook proteins without a predicted signal peptide, as
they may contain functioning TAT-directing motifs. In fact, of the 18 previously
identified TAT substrates reported by Ochsner et al. (2002), only 11 contain
predicted type | signal peptides. Of the 57 putative substrates reported by Dilks
et al. (2003), just 28 are predicted to contain a type | signal peptide. Overall, 27
potential substrates were identified, 10 of which have not been previously

described. However, there are likely many more TAT substrates within the
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genome with more degenerate motifs, since our prediction strategy was unable
to identify the known TAT substrates phospholipase PlcH and the ferripyoverdine

receptor FpvA (Ochsner et al., 2002).

Our computational analysis showed that the majority of exported proteins
are likely cytoplasmic membrane proteins that lack cleavable signal peptides but
possess one or more transmembrane helices as an export signal. This estimate
of proteins possessing transmembrane helices, 18.7% of the P. aeruginosa
proteome, is similar to the 18.5% of proteins predicted by PSORTDb to be
localized to the cytoplasmic membrane. This may reflect the fact that
computational prediction of transmembrane helices is generally regarded to be
more accurate than the prediction of targeting signals, due to the sequence
constraints associated with crossing a lipid bilayer. As signal peptide prediction
methods improve, an increase in the number of predicted exported proteins is

also expected.

PhoA fusion methods are a versatile genetic tool to identify proteins that
are translocated across the cytoplasmic membrane. Using a plasmid-based
‘phoA screen, 310 unique P. aeruginosa fusion proteins were successfully
identified. This approach to identify membrane-localized proteins is as efficient as
reported in previous P. aeruginosa membrane proteomic studies (Guina et al.,
2003; Nouwens et al., 2000). A significant disadvantage of this approach is the
apparent toxicity of PhoA fusion proteins, which often selects for mutations that
lead to a loss of PhoA activity or even the loss of plasmid. Furthermore, PhoA

fusion analysis is of limited utility in the identification of proteins using certain
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export systems. Proteins secreted to the extracellular space by the type | or type
Il systems typically lack N-terminal signal peptides and, in the case of type |
ABC transporter substrates instead rely on a C-terminal secretion signal
(Mackman et al., 1987; Delepelaire and Wandersman, 1990; Letoffe and
Wandersman, 1992). Such proteins will not be identified through PhoA fusions.
Proteins using the TAT system represent a more complex case. TAT substrates
are folded in the cytoplasm prior to entering the TAT transporter. PhoA, however,
is folded in the periplasm, where the necessary disulfide bonds are formed.
Interestingly, one protein with a predicted TAT motif did produce an active PhoA
fusion. While this could represent a false positive prediction of a TAT export
signal, it may also indicate that the TAT transporter is capable of translocating an
unfolded substrate, or that an active PhoA fusion can be formed in the

cytoplasm.

Although there is a possibility that certain P. aeruginosa-specific export
signals may not be recognized as PhoA fusions expressed in a recombinant E.
coli host, the strong conservation of the inner membrane targeting and
translocation machinery should not affect the export of most PhoA fusion
proteins. In addition, this approach has been used previously to identify secreted

proteins in Helicobacter pylori (Bina et al., 1997).

The 310 proteins identified in this PhoA screen reflect many of the known
functions associated with the cell envelope. The outer membrane proteins
identified includes those that function as porins, iron uptake receptors and efflux

channels, the three largest families of outer membrane proteins, and proteins
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involved in secretion and adhesion. Periplasmic proteins identified included the
binding components of ABC transporters, cell wall biosynthesis enzymes, stress
response proteases and chaperones. Inner membrane proteins included
transport proteins, chemotaxis transducers, two-component sensors, efflux

pumps, cell wall biosynthesis enzymes and proteins involved in secretion.

The PhoA fusion data provided confirmation that 14% of our predicted
exported proteins are indeed exported, although the export signals themselves
cannot be identified. The laboratory analysis also identified 14 proteins with no
predicted export signal. Three of these 14 contained mispredicted start sites and
the new translation products displayed type | signal peptides. Nine of the
remaining proteins showed significant similarity to known and predicted
cytoplasmic proteins and likely represent false positives (3%) associated with the
PhoA fusion technique. A second class of false positives, not counted in the 310
successful fusions, occurred at a similar rate and included fusions to genes in the
opposite orientation of the "phoA gene. The false positives found in the PhoA
screen do not overlap with the false positives found in the computational screen
and, had the computational screen not been performed, would have gone
unnoticed. The remaining proteins without a predicted signal peptide exhibited
significant similarity to an exported protein and a bacterial cytoskeletal protein,

however their export signals remain unclear.

In summary, a combined computational and experimental approachwas
employed to identify exported proteins in P. aeruginosa. The approach illustrates

the effectiveness of using two complementary methods for genome-wide
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analyses. Computational techniques have the advantage of yielding a large
number of predictions — ideal for genome-wide studies — and when a consensus
method is employed the number of false positive results is reduced. Laboratory
methods, though they generally provide fewer results, can both confirm
predictions and reveal interesting cases meriting closer inspection, including
erroneous annotations and potentially unusual sequence features. This
combined analytical approach is readily adaptable to other bacteria — the
increase of the breadth of training data available means that current export signal
predictive methods can be applied to a diverse range of organisms with accurate
results, and the PhoA fusion technique is commonly used to study exported

proteins,

In addition to creating the P. aeruginosa signal peptide dataset described
in this report (Appendix D), this analysis has provided laboratory-based
experimental evidence to confirm the export of 14% of the predicted export
candidates, as well as the existence of 150 proteins annotated as hypothetical or
conserved hypothetical. The genome-wide identification of exported proteins will
help define this important subset of the P. aeruginosé genome, and may assist in

the discovery of novel drug targets.
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7 ANALYSIS Il: COMPARISON OF HIGH-THROUGHPUT
PROTEOMIC AND COMPUTATIONAL METHODS
FOR PROTEIN SUBCELLULAR LOCALIZATION
IDENTIFICATION

Portions of this chapter have been previously published in the article “Assessing the
precision of high-throughput computational and laboratory approaches for the genome-
wide identification of protein subcellular localization in bacteria”, co-authored by J.L.
Gardy, S. Rey, and F.S.L. Brinkman in BMC Genomics, Volume 6 © 2005 Rey et al;
licensed by BioMed Central Ltd.

7.1 Summary

Subcellular fractionation combined with 2D gel-based proteomics permits
the identification of large numbers of proteins from distinct bacterial
compartments. However, the fractionation of a complex structure like the cell into
individual compartments is not a trivial task. It was hypothesized that PSORTb
v.2.0 could be used as a complement to fractionation-based analyses to facilitate
more accurate genome-wide analysis of protein localization. Thus a comparison
of computational localization prediction methods with laboratory proteomics
approaches was undertaken in order to identify the most effective current
approach for genome-wide localization characterization and annotation. PSORTb
version 2.0 was used to computationally predict the localization of proteins
reported in ten subcellular proteome analyses of bacterial compartments, and
these computational predictions were then compared to the localizations
determined by the proteomics study. By using a combined approach, a number

of contaminants and proteins with dual localizations were identified, and we were
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able to more accurately identify membrane subproteomes. Our results allowed us
to estimate the precision level of laboratory subproteome studies and it was
shown that, on average, recent high-precision computational methods such as
PSORTb now have a lower error rate than high-throughput laboratory methods.
We note that analysis of all cellular fractions collectively is required to effectively
provide localization information from laboratory studies, and we propose an
overall approach to genome-wide subcellular localization characterization
capitalizing on the complementary nature of recent laboratory and computational

methods.

7.2 Rationale

Several types of laboratory methods are frequently used in the
experimental determination of a protein’s localization. Techniques such as
immunofluorescence and immunoelectron microscopy (Kumar et al., 2000),
PhoA fusions (Manoil and Beckwith, 1985), fluorescent-protein tagging (Chalfie
et al., 1994), and Western blotting with SDS-PAGE are often applied to the
analysis of either single proteins or a small sets of proteins. While such methods
may provide high-quality localization information, they can be costly and/or time-
consuming as compared to computational methods, and the number of proteins

for which a localization site can be assigned per experiment is relatively low.

Recent developments in proteomics technology now permit experimental
verification of localization in a high-throughput fashion. Techniques such as two-
dimensional gel electrophoresis and mass spectrometry (Dutt and Lee, 2000;

Lay, 2001; Jonsson, 2001; Peng and Gygi, 2001; Govorun and Archakov, 2002)
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have been frequently employed in the study of a variety of bacterial genomes,
including Pseudomonas aeruginosa (Nouwens at al., 2002) and Bacillus sp.
(Antelmann et al., 2001). Many of these studies have focused on distinct cellular
compartments through the analysis of samples obtained by subcellular
fractionation (Molloy et al., 2000; Molloy et al., 2001; Bumann et al., 2002; Huang
et al., 2002; Murakami et al., 2002). A major disadvantage of these subproteome
analyses is that the fractionation of a complex structure like the cell into several
subcellular compartments is not a trivial task. Contamination from other cellular
compartments may occur and some proteins are known to span multiple
localization sites (Chung et al., 1998). Despite these limitations, however,
genome-scale techniques are rapid, cost-effective, and capable of returning

results for hundreds or even thousands of proteins in a single analysis.

After the development of PSORTb v.2.0, we hypothesized that by
combining both high-throughput laboratory methods and computational
prediction, some of the errors — particularly the potential for contamination —
inherent in laboratory subproteome studies could be reduced. The existence of
the high-precision PSORTDb tool also raised the question of how well a
computational method would compare, in terms of precision, to the laboratory
methods presently available. In genome-scale analyses, do laboratory and
computational methods behave equally, or are particular localization sites best
predicted by one or both approaches? We therefore undertook a comparison of
selected bacterial subproteomic studies with PSORTb-derived computationally

predicted localization sites.
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7.3 Methods

7.3.1 Selection of subproteomic studies

Ten studies were selected spanning all five localization sites in the Gram-
negative bacteria Escherichia coli (Dukan et al., 1998; Molloy et al., 2000),
Helicobacter pylori (Bumann et al., 2002), Klebsiella pneumoniae (Molloy et al.,
2001), Porphyromonas gingivalis (Murakami et al., 2002), Pseudomonas
aeruginosa (Nouwens et al., 2002), Salmonella typhimurium (Molloy et al., 2001)
and Synechocystis (Fulda et al., 20000; Huang et al., 2002). In addition, seven
supplementary Gram-positive studies were evaluated to a lesser degree to
ensure that the results were generally applicable to all bacteria: the cytoplasmic
fractions of Corynebacterium glutamicum (Hermann et al., 2001; Schaffer et al.,
2001) and Mycobacterium leprae (Marques et al., 2004), the cytoplasmic
membrane fractions of Bacillus anthracis (Chitlaru et al., 2004), Mycobacterium
leprae (Marques et al., 2004) and Mycobacterium tuberculosis (Sinha et al.,
2002) and the extracellular fractions of Bacillus sp. (Antelmann et al., 2001) and

Staphlycoccus aureus (Ziebandt et al., 2001).

The vast majority of the studies used fractionation followed by two-
dimensional gel electrophoresis in their analysis. Proteins were then subjected to
peptide mass fingerprinting (PMF) identification. One study (Murakami et al.,
2002) used fractionation followed by two successive one-dimensional SDS-
PAGE electrophoresis analyses, with subsequent N-terminal amino acid

sequence analysis.
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7.3.2 Protein selection

For each study, we examined the proteins identified and described by the
authors to ensure they met two criteria. First, the protein must have been
identified through direct comparison of the spot to the sequence of the bacterial
genome under study and not to a related organism. For example, in the S.
typhimurium outer membrane study of Molloy et al. only the proteins identified by
a peptide mass fingerprinting search against the S. typhimurium genome were
selected, while proteins identified by a search against other organisms were not
included. Second, the protein reported in the study had to match a GenBank
record in order to retrieve the correct amino acid sequence. After these two
filtering steps were applied, the final dataset consisted of 405 proteins for the

Gram-negative organisms and 269 Gram-positive bacterial proteins.

7.3.3 Computational analysis

Computational predictions of localization were performed using the
standalone version of PSORTb v.2.0 (Gardy et al., 2005). Proteins predicted to
reside at multiple localization sites were manually identified from the PSORTb
score distribution; a protein was annotated with dual localizations if PSORTb
returned two sites with scores between 4.50 and 7.49 or if the SCL-BLAST
module returned significant similarity to a protein known to have dual
localizations. Additional limited computational analyses were performed with

Proteome Analyst (Lu et al., 2004).
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7.4 Results

7.4.1 Comparison of computational and laboratory-based
predicted localizations

A matrix comparing the PSORTDb predicted localization sites to the
localizations assigned by subproteome analysis is presented in Table 7.1,
together with the estimated % agreement and % coverage for each study. Full

results are available in Appendix E.

Table 7.1: PSORTD v.2.0 predicted localization sites for 405 proteins reported in ten
subproteome studies.

Subproteome Study: Organism Localization (Number of proteins)
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C 19 13 2 2 3 4 33 3
C/ICM 2
cp
CM 5 1 5
PSORTD CM/P 1 1 1
Predicted P 1 6 8 3 33 2
Localization P/OM 1
oM 5 3 3 6 22 2 22 9 4
OMIEC 1 1 1 2 1
EC 1 1 1 6 1
Unknown 3 . 30 43 2 8 3 2 63 9
Comparison Agreement 950 242 643 1000 778 742 667 806 69 182
(%) Coverage 87.0 524 246 1000 818 795 50.0 939 580 550

Agreement is defined by a/b, where a represents the number of proteins from fraction X predicted
to be resident at X or X/Y localization sites and b represents the total number of proteins from

fraction X predicted as not unknown. Coverage is defined is b/c, where ¢ is the total number of
proteins from fraction X.
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Because PSORTD is designed with an emphasis on high precision, the
program returns a prediction of "unknown" if not enough information is available
to make a confident prediction. 163 of the 405 proteins being compared, or
40.2%, returned a result of unknown and were not considered in the downstream
analyses. Of the remaining 242 proteins, the experimentally observed localization
site agreed with the computationally predicted localization site in only 104 cases,
for a total % agreement of 43.0%. This figure dropped to 25.7% if the unknown
proteins were included in the calculation. The figures vary significantly from study
to study, with % agreement ranging from a low of 6.9% (4.0% if including
unknowns) in the largest study, to a high of 100% in the smallest study. However,
it is clear that among the 405 proteins, there are likely a significant number of

false positives and false negatives.

7.4.2 Identification of potential contaminants

Subcellular fractionation is a widely-used method for isolating the proteins
resident at a specific cellular compartment (Pasquali et al., 1999). However, a
significant limitation of the technique is the problem of cross-contamination, in
which small amounts of proteins from neighbouring compartments contaminate
the fraction of interest. This leads to the inclusion of false positives in the

resulting datasets.

With the computational and subproteomic localizations differing for as
many as 93.1% of the proteins for a particular analysis, we suspected that certain
subproteome studies we analyzed were prone to cross-contamination. The two

studies examining the extracellular fraction, in particular, displayed agreement
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with the computational predications of only 6.9% and 18.2%, therefore we
suspected that contamination may have been a particular problem for these
studies. This may be due in part to autolysis, a process common in many
bacterial species known to release cellular proteins into the extracellular milieu
(Morse, 1978). It may also be due to cellular lysis during the centrifugation of the
cells [19]. If we exclude the study with 100% agreement, which involves only a
small (n = 3) number of proteins, we observe that the study with the most
agreement between the two methods involved an analysis of the E. coli
cytoplasm. The single possible contaminant observed in this study suggests that
the cytoplasm is the easiest compartment to isolate in a subfractionation

analysis.

When a number of subproteome studies of Gram-positive bacteria were
analyzed, we observed a similar trend. Of the seven studies we examined, the
Corynebacterium glutamicum and Mycobacterium leprae cytoplasmic
experiments displayed the lowest levels of observed/predicted disagreement, at
0% and 8% respectively. However, when two Gram-positive extracellular
fractions were analyzed (Staphylococcus aureus and Bacillus sp.), the %
disagreement was measured at 53% and 33% ~ figures which are significantly

lower than those observed for Gram-negative bacteria.

We next proceeded to examine the 138 disagreeing cases on an
individual basis to identify the source of potential false positive results. While
many false positive results appeared simply to be the result of "ieaky"

subfractionation, we did observe a number of cases in which a protein resident in
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the fraction of interest was identified along with its interacting partners from
neighbouring cellular compartments. For example, Molloy et al. report the
presence of the acriflavine resistance protein A (AcrA) in the outer membrane
fraction however, AcrA — which is predicted by PSORTDb to be a cytoplasmic
membrane protein — is known to be dually localized in both the cytoplasmic
membrane and the periplasm (Kawabe et al., 2000; Zgurskaya and Nikaido,
2000). AcrA interacts with the outer membrane protein TolC to form an export
system, thus we suspect that AcrA was found in the outer membrane fraction due

to its tight association with TolC.

Another instance of "co-fractionation by association" was observed with
the PilJ protein isolated from the P. aeruginosa outer membrane fraction. This
protein is predicted by PSORTDb to be localized to the cytoplasmic membrane
and displays significant similarity to the known cytoplasmic membrane protein
methyl-accepting chemotaxis protein Il from Salmonella typhimurium (Milburn et
al., 1991). PilJ is part of the chemosensory systems of P. aeruginosa (Darzins,
1994), and it was likely co-fractionated through its association with another

component of the chemosensory system present in the outer membrane.

We also observed several conflicting cases amongst the results when
closely related proteins were examined. 85 of the 405 proteins in the analysis
can be grouped into 36 groups of proteins which appear muitiple times in the
results. These 36 groups consist of: 1) a single protein identified more than once
in the studies (e.g. OprE, identified in both the P. aeruginosa outer membrane

and extracellular fractions); 2) two or more paralogs (e.g. Synechocystis CcmK
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homolog 1 and CcmK homolog 2, both identified in the cytoplasmic membrane

fraction); or 3) two or more orthologs (e.g. Helicobacter pylori carbonic
anhydrase, identified in the extracellular fraction, and Synechocystis carbonic

anhydrase, identified in the periplasmic fraction).

We would expect these groups of closely related proteins to be isolated
from the same subcellular fractions, since subcellular localization is highly
conserved across diverse taxonomic lineages (Nair and Rost, 2002b). However,
this is only the case for 18 of the 36 groups, although 33 of the 36 are predicted
by PSORTD to reside in the same localization. Fifteen groups contain related
proteins isolated from two different fractions. Two groups (the ATP synthase beta
chain proteins and the elongation factor family) contain proteins isolated from
three fractions, and one group (the GroEL, GroEL2 and GroES chaperonin
proteins) was isolated from four different subcellular fractions. These latter three
groups illustrate an important trend with respect to contamination — certain
abundant, predominantly cytoplasmic, proteins are repeatedly found in the list of
potential contaminants, either due to the subfractionation process or their
association (even if temporary) with proteins of another localization (for example,
the protein folding chaperones). In the rhajority of these studies, however, they

are not noted as potential contaminants/co-purifying proteins.

Our analysis of false positives reveals that the potential for contamination
appears to be lowest when the cytoplasm is the subfraction of interest, and
highest when the extracellular fraction is analyzed. The data highlight the fact

that employing a computational contaminant screening procedure is a valuable

102



addition to a subproteome analysis. It is especially critical for extracellular
analyses, as both autolysis and mechanical lysis of cells during subfractionation
can release the contents of other cellular compartments into this fraction of
interest. The ubiquitous cytoplasmic proteins ATP synthase beta, elongation
factors, and the GroEL/ES chaperonins are frequently observed contaminants;
however, many of the studies in which these proteins were identified do not
address this fact. While these proteins might immediately raise a flag to most
proteomics researchers, they are not commonly noted and so may not be
appreciated by genomics researchers using localization data for genome
annotation or cell surface drug target identification. Failure to note these proteins
as potential contaminants/co-purifying proteins may aiso have significant
consequences for bioinformatics software development. For example, inaccurate
subcellular localization assignments could be propagated if the data were used
as training data for a machine learning method by researchers unfamiliar with the

field.

7.4.3 An estimation of the precision of subproteome 2D gel analyses

An interesting figure resuits from the analysis of the 44 proteins that were
both isolated in a subproteome study and are present in the ePSORTdb
database of proteins of known subcellular localization. In 12 of these 44 cases,
the fraction from which these proteins were isolated in the subproteomic studies
did not match the previously reported experimentally verified localization. If we
view these 44 proteins found in ePSORTdb as "100% precise predictions”, we

arrive at a "true" potential contamination rate of 27.3%. Nine of these conflicting
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results were found in the extracellular fraction in the subproteomic experiments
and may represent by-products of cellular lysis. The remaining three proteins
were isolated from the E. coli outer membrane fraction, though they were
previously shown to be periplasmic proteins. The authors of this subproteome
study propose that these proteins were extracted through their association with

outer membrane components, rather than improper fractionation technique.

We then carried out a more liberal analysis by investigating the 138 cases
where the PSORTb and subproteomic localizations differed. For each of the 138
proteins, we attempted to determine the most probable actual localization site.
Localizations for twelve proteins, mentioned above, were found in ePSORTdb.
We next looked for a published report of localization in the literature for the
remaining 126 proteins. If no published information was available, we then

looked for significant (E > 1e-10) similarity to a protein of known localization.

In this fashion, we were able to confirm that the localization predicted by
PSORTDb was correct in 87 of the 138 proteins. For the remaining 51 proteins,
neither published localization information nor similarity to a protein of known
localization was observed, and we were unable to determine whether the
PSORTD or subproteomic localization site was correct. The results of this

analysis are presented in Table 7.2.
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Table 7.2: Estimation of subproteome study error rate.

Subproteome Study: Organism Localization
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uj ) ) X v uj Q Q Q x -
Proteins
identified 23 63 57 3 11 39 6 33 150 20 405
Disagreements 1 25 2 8 6 81 9 138
PSORTb 0 0 0 0 0 0 0 2 1 3
errors
Laboratory o 4 1 0 2 & 1 3 3 5 58
errors
Error % 0.0 6.3 1.8 0.0 182 154 16.7 9.1 240 250 14.3

Disgreement is defined as the number of proteins from fraction X predicted NOT to be resident at
X or X/Y localization sites. PSORTDb errors are defined as the number of disagreeing cases for
which the literature confirmed PSORTb’s prediction was incorrect. . Laboratory errors are defined
as the number of disagreeing cases for which the literature confirmed the subproteome study's

assignment of localization was incorrect. Error % is defined as the number of laboratory errors
divided by the total number of proteins identified.

Using this more liberal analysis, we estimated the average error rate of
laboratory subproteome experiments to be 14.3%. Estimated error rate values
varied considerably between studies, from a low of 0% (in the K. pneumoniae
outer membrane analysis, in which only 3 proteins were investigated) to a high of
25.0% (in the H. pylori study of the extracellular fraction). Again, we observed
that extracellular studies appeared to have the highest error rates due to the
strong potential for contamination discussed earlier. On average, though, the
subproteomic analysis error rate for all localizations was significantly higher than

the error rate of 4% previously reported for PSORTb (Gardy et al., 2005).
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7.4.4 Reducing information loss: proteins with dual localization sites

A second disadvantage of subceliular fractionation is the associated
information loss. Certain proteins have domains in two or more neighbouring
cellular compartments, some may cleave into two products, each residing at a
different site (Henderson et al., 2000), and others may be found at different
localizations over time, or during different environmental conditions (Hefty et al.,
2002). Because subproteome studies typically address a single cellular
compartment, it is quite difficult to identify multiply-localized proteins from the

results.

Computational methods can help to reduce the information loss
associated with subproteome studies. When a disagreement is observed in
cases where the computational and subproteomic localization sites are
neighbours, it may indicate a dually localized protein. An example found in the
present analysis is the ATP synthase AtpG (beta prime subunit). This protein was
extracted from the Synechocystis cytoplasmic membrane fraction but was
predicted as a cytoplasmic protein by PSORTDb. Inspection of the literature
reveais that AtpG contains domains located in both the cytoplasm and
cytoplasmic membrane (Takeyasu et al., 1996; Dunn et al., 2000; Dunn et al.,

2001).

PSORTD also flags proteins predicted to reside in two compartments.
Thirteen of the 405 proteins are predicted to reside at dual localization sites, with
the bulk of these predicted as outer membrane/extracellular. This particular

combination of localization sites suggests an autotransporter — a protein with a
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beta-barrel transporter domain and extracellular globular domain that is cleaved
and released after translocating through the pore formed by the transporter
domain. Indeed, many of the 13 proteins flagged by PSORTDb are known

autotransporters, including esterase and the H. pylori vacuolating cytotoxin.

Although PSORTDb can assist in the identification of dually-localized
proteins, false negatives are still possible. If the observed site and the single
predicted sites are identical, a protein's secondary localization will still go
undetected. Though it may not always be feasible, a potential solution to this
problem would be to perform 2D gel analyses of all five compartments in one
experiment. Not only would this aid in the identification of proteins with multiple
localization sites, a comparison of the amounts of protein present in each fraction

could be of use when screening for potential contamination.

7.45 Comparison of PSORTb with previously reported contaminant
screening procedures

Our results illustrate that it is important to screen the results of a
subproteome study for potential errors. However, many groups do not perform

such a screen, or employ approaches which are limited in their utility.

The authors of two of the subproteomic studies analyzed here performed
basic contaminant screens. In the Synechocystis cytoplasmic membrane study,
the 63 proteins identified were submitted to TMHMM (Krogh et al., 2001).
Seventeen of these proteins were classified as integral membrane proteins
based on the presence of one or more helices. The remaining 46 were annotated

as peripherally-associated membrane proteins and were then analyzed by

107



SignalP (Bendtsen et al., 2004). Proteins with predicted signal peptides were
classified as associated to the periplasmic face of the membrane, while those
without predicted signal peptides were classified as peripherally associated to the

cytoplasmic face.

Using only a single localization predictive method such as TMHMM to
identify a feature often results in false positives, particularly in aipha helix
detection, where signal peptides are often mistaken for helices. Furthermore, by
describing the proteins with no detected helices as peripherally membrane-
associated, there is a failure to recognize the fact that these proteins may
represent potential contaminants from other fractions. Had PSORTb been used
as a screening tool, the authors would have been able to identify 22 potential

errors amongst their results with a relatively high degree of confidence.

The authors of the E. coli outer membrane study compared the SWISS-
PROT localization site for the proteins they identified to the amounts of those
proteins detected on the 2D-gel. They reported that, with the exception of the
flagellin protein, only proteins annotated as integral outer membrane proteins
were detected in significant levels. They posit that the remaining proteins,
detected at lower levels, may exhibit a functional association with proteins in the
outer membrane. However, this explanation does not account for several
potential cytoplasmic or cytoplasmic membrane contaminants, such as the
dihydrolipoamide succinyitransferase SucB (Knapp et al., 1998, 2000), which

were also isolated. A screen such as this also has the potential to produce a high
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number of false negatives — outer membrane proteins present in low quantities

which are mistaken for potential contaminants.

While the authors of the two studies mentioned above do not claim that
their approaches identify all contaminants, we found that a robust and
comprehensive method such as PSORTb outperforms single methods designed
to analyze specific features, such as signal peptides or transmembrane helices.
This is not surprising, as it has long been recognized that multi-component
approaches to prediction achieve the best performance. Though dually localized
proteins likely represent only a small fraction of proteins in the cell, they often
represent interesting biological cases, including proteins that play pivotal roles in
antimicrobial resistance (i.e. efflux proteins (Poole et al., 1993), and virulence

(i.e. BrkA (Fernandez and Weiss, 1994)) and thus should not be overlooked.

7.4.6 Optimal identification of cytoplasmic membrane proteins
requires a combined computational and laboratory approach

Examining the detailed PSORTDb results for the proteins reviewed in the
present analysis, we observed an interesting trend in the output of the HMMTOP
module, which predicts the number of transmembrane alpha-helices in a query
protein. Of the 405 proteins analyzed by HMMTORP, only six proteins contained
three or more predicted helices. Even more surprising was that only three of
these six were identified in the Synechocystis cytoplasmic membrane study.
When three cytoplasmic membrane subproteome studies in Gram-positive
bacteria were analyzed, the same trend was observed, with only six out of 269,

or 2.2%, of proteins predicted to contain three or more transmembrane helices
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(TMHs). We then analyzed the complete Synechocystis proteome with PSORTD,
predicting a total of 540 cytoplasmic membrane proteins, of which 461 contain

three or more transmembrane helices.

Our results indicate that 2D gel electrophoresis of the cytoplasmic
membrane fraction is only capable of identifying a small proportion of the multi-
pass membrane proteins in a given proteome, likely due to the low pl and poor
solubility of these proteins (Santoni et al., 2000). While other techniques can be
used to identify these proteins in the laboratory — for example, liquid
chromatography coupled with tandem mass spectrometry and affinity labelling
(Goshe et al., 2003; Blonder et al., 2004) — PSORTb is a cheaper and faster
solution which is capable of identifying these proteins with a high degree of

precision.

While PSORTDb appears to outperform laboratory subproteomic methods
for the identification of proteins with three or more transmembrane helices, the
opposite is true for membrane-associated proteins with one or two helices. In
their analysis of the Synechocystis cytoplasmic membrane fraction, the authors
of the study report 40 membrane-associated proteins. PSORTb, on the other
hand, oniy confidently identifies three such dually localized proteins — two with
cytoplasmic domains, and one with a periplasmic domain. In order to maintain a
high level of precision, PSORTb requires that one of the following criteria be met
to identify a cytoplasmic membrane protein: three or more predicted TMHs,
similarity to a known membrane protein, or a positive result from the cytoplasmic

membrane SVM module. As a result of these stringent criteria, a large number of
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cytoplasmic membrane-associated proteins with one or two helices are not

identified by PSORTD.

Our observations indicate that the cytoplasmic membrane presents a
special case for both laboratory and computational analysis. If a true picture of
the membrane proteome is desired, it is necessary to use a combined approach,
in which a computational method is used to identify integral cytoplasmic
membrane proteins, while a laboratory method is used to identify cytoplasmic

membrane-associated proteins.

7.5 Conclusions

7.5.1 Comparing the precision of laboratory and computational methods

In the present analysis, we compared the localizations predicted by the
computational method PSORTDb to the localizations of 405 proteins reported in
ten subproteome 2D gel electrophoresis studies. The data generated in our
analysis indicates that subproteome studies vary greatly in terms of their
precision. Certain small studies of particular fractions, such as the analysis of
three K. pneumoniae outer membrane proteins or 23 E. coli cytoplasmic proteins,
display low or non-existent apparent error rates. Larger studies and those
focusing on particular localizations — including the extracellular milieu — can

contain significant levels of false positive, or contaminant proteins.

We attempted to estimate the precision associated with subproteome
studies using two approaches. In the first, more stringent approach, a

comparison of 44 proteins against the ePSORTdb database of proteins of
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experimentally verified localization yielded a rough estimate of false positives of
27.3%. A second approach, in which we attempted to determine the true
localization of 138 proteins using literature and homology-based approaches,

yielded an estimate of 14.3%.

While our approximate error rate is by no means a definitive estimate and
was not calculated using large samples, it does illustrate the importance of
evaluating the results of a subproteome study with a critical eye. While errors
associated with each study do vary, on average as many as 1 out of every 4—7

results could be erroneous.

Even more notable is the observation that while our estimated precision of
subproteome analysis exceeds that of early predictive tools such as PSORT |
(with a reported precision of 59.6%), current high-precision computational
methods such as PSORTD (with 96% precision) appear to outperform laboratory
subproteome studies, generating fewer false positive results. While it is true that
measured precision values calculated from cross-validation studies of test
datasets represent a slight overestimation of precision, even a more conservative
estimate of 90% precision still exceeds the levels attained by most high-
throughput laboratory methods. In other words, PSORTD, first released in 2003,
appears to be the first computational method developed that outperforms high-
throughput laboratory studies for localization prediction. Other computational
methods have since been developed that also have high accuracy and slightly
higher recall, such as Proteome Analyst. However, no method has yet been

developed that is as precise as PSORTDb.
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7.5.2 Limitations of computational methods

While our comparison of the precision achieved by computational and
laboratory subproteome analyses indicates that certain predictive tools have
surpassed wet-bench methods for localization identification, there are a number

of caveats associated with the use of computational tools.

Of the 405 proteins submitted to PSORTD, only 59.8% returned a
predicted localization site and in only 43% of these cases did the predicted site
match the observed site. The 40.2% "unknown" rate we observed is well below
the recall of 82% reported in the paper describing PSORTb. Such a discrepancy
between "practical” values and "theoretical" values is frequently observed with
machine learning methods, due to the fact that the data used to train and test the
method is generally quite well-annotated while "real world" data, on the other

hand, contains large numbers of hypothetical proteins.

Unfortunately, until machine-learning methods — including PSORTDb - are
trained on much larger datasets, the gap between recall values is not likely to
improve significantly. In the interim, we recommend that users employ additional
predictive strategies with higher recall values. Proteome Analyst uses a different
approach to PSORTD in generating its predictions — keywords are extracted from
SWISS-PROT annotations of proteins homologous to a given query; these
keywords are then passed to a machine learning classifier. Proteome Analyst
displays excellent precision — the authors report an overall precision of 95.9% for
Gram-negative bacteria — and although its coverage when applied to whole

genomes is generally comparable to PSORTD, it did provide a much larger
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number of predictions for the dataset analyzed here — of the 405 proteins
submitted, Proteome Analyst returned a predicted localization site or sites for

398.

The performance of a given method can also vary significantly depending
on the organism being analyzed. For example, PSORTb was able to generate
predictions for only 25% of the proteins identified in the Synechocystis
periplasmic fraction. Several factors may explain this low rate of coverage,
including particularities of the morphology of Synechocystis sp., the low number
of Synechocystis proteins included in PSORTDb's training dataset, and the fact
that three-quarters of the proteins found in the periplasmic fraction are annotated
as hypothetical proteins. This is in contrast to the excellent coverage achieved by
PSORTD in the analysis of the E. coli cytoplasmic fraction, which reflects the fact
that as a model organism, E. coli proteins occur frequently in PSORTb's training

data.

A method's performance also varies between localization sites and, in
general, correlates with the amount of training data available for a given
localization. PSORTb performs very well when identifying both cytoplasmic and
outer membrane proteins, but is not able to make as many predictions for
periplasmic and extracellular proteins. Proteins resident at specific localization
sites — for example, the periplasm and the extracellular space — can be similar to

the point that differentiating the two based on sequence alone can be difficult.

It is also important to note that every predictive method will generate a

certain number of false positive results, and that it is critical to keep the
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measured precision of a given method in mind when carrying out a computational
analysis. For example, some computational methods, such as CELLO, have a

measured precision of only 71.5%.

7.5.3 Limitations of laboratory methods

Laboratory analyses also carry with them a number of caveats. We have
already shown that one of the major disadvantages of subproteomic studies is
the potential for contamination via leaky fractionation or lysis. Growth conditions
can also affect the results of a subproteome study. Different growth conditions
can alter the expression of a particular protein, thus while a subproteome study
can provide valuable data about expression under a given condition, they may
not yield a global picture of the proteins expressed by a bacterium. The
parameters of the experiment can also play a key role in determining which

proteins are identified from a gel.

It is critical to choose an appropriate pH gradient for maximum resolution
of total proteins, and even then standard methods may not detect or separate low
abundance or hydrophobic proteins. Protein complexes can aiso be problematic
if their subunits are difficult to disassociate (Santoni et al., 2000; Cordwell et al.,

2001).

7.5.4 Proposed method for the optimal characterization
of cellular compartments

We have shown that computational and laboratory-based analyses of
specific cellular compartments complement each other, with each method

contributing to improve the accuracy of the other. Although both methods do
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display certain limitations, each offers a number of significant advantages, which
we have summarized in Table 7.3. In order to capitalize on these advantages, we
propose that genome-scale studies aimed at cataloguing the proteins of a
particular cellular compartment adopt a complementary approach in which both

methods are used.

Table 7.3: Advantages and disadvantages of computational and subproteomic
approaches to localization analysis.

Computational methods Subproteomics analysis

Advantages

Rapid predictions Provides condition-specific information

Detailed information about sequence features Confirms expression of hypothetical ORFs

for proteins lacking homologs

Can identify hydrophobic integral
membrane proteins

Disadvantages

Lower performance on “non-model” organisms  Time/resource consumption

Lower performance for localizations with Low abundance and hydrophobic
small amount of training data proteins often missed
Not condition-specific Contamination

Difficult to identify multiply localized proteins

With respect to the subproteomic aspect of such a study, we suggest that
rather than analyze a single cellular compartment, a study ought to analyze all
available compartments. By determining the relative abundance of a protein in

each compartment, a researcher will able to quickly flag potential contaminants
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and identify proteins with complex localization profiles — dual localizations or

localization that varies temporally.

After retrieving the set of protein sequences corresponding to the spots on
a 2D gel, the proteins should be submitted to a high-precision localization
prediction method for analysis. PSORTDb is the most precise localization
prediction tool available, and its consensus approach allows the user to acquire
detailed information about protein features, such as homology to a protein of
known localization, or the presence of a signal peptide, transmembrane helices,
or specific sequence motifs and patterns. Proteome Analyst is a second high-
precision method which complements PSORTb well through the use of an

annotation-based approach.

The computationally predicted and experimentally observed localization
sites should then be compared. In cases where the computational and laboratory
methods disagree, detailed analysis of the individual protein should be carried
out. Through examination of the literature and further computational analysis,
very often a confident call regarding the protein's true localization can be made.
An excellent model is provided by Elias et al. (2005), who employ a multi-faceted
approach — including PSORT |, PSORTb, and in-depth examination of individual
proteins — to the analysis of their results from a study of Shewanella oneidensis

hypothetical proteins.

The combination of 2D gel analysis and PSORTDb prediction can provide a
remarkably clear and genome-scale picture of protein localization in a given

bacterium. Of course, these methods are no replacement for the hypothesis-
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driven detailed investigation of individual proteins. Instead, they provide an
accurate jumping-off point for the in-depth analysis of specific proteins using
additional techniques. As both computational and laboratory high-throughput
approaches improve in terms of both precision and recall, however, we see an
increasingly important role for these methods in the fields of molecular biology

and genomics.
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8 ANALYSIS lll: COMPARATIVE GENOMICS ANALYSIS
OF BACTERIAL PROTEIN LOCALIZATION:
IMPLICATIONS FOR NETWORK EVOLUTION

8.1 Summary

The development of the high precision localization prediction method
PSORTD permitted a global analysis of protein localization across multiple
bacterial genomes. We examined the percentage of proteins predicted to be
resident at each localization site for 236 sequenced bacterial genomes and
observed several notable trends. These include: an increase in cytoplasmic
proteins in thermophilic and hyperthermophilic bacteria, an increased proportion
of cell surface proteins in pathogenic bacteria, and a general trend in which the
proportion of a proteome at each localization site is generally well-conserved
across species, regardiess of genome size. This latter observation may reflect a
method of adaptive evolution in which new functions are gained through the
acquisition of “peripheral subnetworks” — small subnetworks of genes whose

products are functionally related and span multiple cellular compartments.

8.2 Rationale
With the development of PSORTb v.2.0 and our study indicating that its
precision has surpassed that of high-throughput laboratory methods, the

comparative analysis of localization suddenly became feasible.
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While researchers have previously examined certain localization sites —
cytoplasmic proteins and exported proteins, for example — across a range of
genomes, no one has yet examined localization in a global context — looking at
all localization sites at one time. With over 200 completely sequenced bacterial

genomes available, this represents a rich source of data yet to be mined.

We set out to examine protein localization in sequenced bacterial
genomes using PSORTD, hypothesizing that such a global analysis would not
only provide information about differences in localization in certain bacteria, but
would also yield answers regarding the evolutionary history of protein

localization.

8.3 Methods

We analyzed the October 3, 2005 release of cPSORTdb, comprising
689,275 proteins from the genomes of 162 Gram-negative and 74 Gram-positive
organisms. For each of the organisms, the percentage of proteins resident at
each cellular compartment was calculated by dividing the number of proteins
predicted at each localization site by the total number of proteins encoded in the

genome. Complete data is provided in Appendix F.

8.4 Results

8.4.1 An estimate of the percentage of proteins at each bacterial
localization site

The arithmetic mean, minimum and maximum percentage of proteins at

each localization site are summarized in Table 8.1.
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Table 8.1: A summary of the percentage of the proteome resident at each cellular
compartment for 162 Gram-negative and 74 Gram-positive bacteria.

Percentage
Gram stain Localization site Arithmetic Mean Minimum Maximum
Cytoplasm 33.2 18.8 56.0
Cytoplasmic membrane 16.9 11.2 242
Periplasm 1.6 0 3.8
Negative Outer membrane 2.5 0.6 11.0
Extracellular 0.4 0.1 1.1
Multiple 20 0.8 6.1
Unknown 434 21.2 58.6
Cytoplasm 50.7 417 59.9
Cytoplasmic membrane 19.9 14.0 245
s Cell wall 0.9 0 22
Positive Extracellular 3.0 1.0 7.3
Multiple 0.8 0.2 27
Unknown 24.8 16.8 33.9

The majority of proteins encoded by a genome are predicted to be
cytoplasmic. In Gram-positive bacteria, we estimate the mean proportion of
cytoplasmic proteins to be 50.7%. Our calculation of the mean for Gram-negative
bacteria, however, is significantly lower, at 33.2%. This reflects the fact that the
Gram-negative version of PSORTb - specifically the SVM-based module for the
identification of cytoplasmic proteins — exhibits comparatively low recall when
applied to this class. We propose that the actual average proportion of
cytoplasmic proteins in Gram-negative bacteria is closer to the 50% observed in
Gram-positive organisms. Our data support the earlier conclusions of Schatz and
Dobberstein (1996), who estimate the cytoplasmic fraction of an average cell to

be approximately 50%.

Although the calculated mean proportions of predicted cytoplasmic

proteins are quite different between Gram-negative and Gram-positive bacteria,
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the maximum observed proportions are similar, at 56% and 59.9%, respectively.
This indicates an approximate upper bound for the proportion of predicted
cytoplasmic proteins at 60%. Recognizing that PSORTb and other predictive
algorithms do not display perfect recall and thus underestimate true biological
proportions, we propose that the upper bound for cytoplasmic proteins in vivo is

likely higher.

Cytoplasmic membrane proteins are the second most prevalent in the
bacterial cell. Because methods for the in silico identification of this class of
protein exhibit both high precision and high recall, we observe much less
discrepancy in the estimated mean proportions between Gram-negative and
Gram-positive organisms; our results indicate a mean proportion of 16.9% in the
former and 19.9% in the latter. Again, a consistent upper bound to proportions is

observed, this time at approximately 24%.

Our data is in agreement with that of Bendtsen et al. (2005), who report
cytoplasmic membrane proportions of 15-20% across 217 bacterial genomes.
Granseth et al. (2005), however, report higher average proportions of 22-26%
across 204 bacterial genomes using an improved method taking into account

laboratory-derived topology information.

Taken together, our results and those of earlier groups indicate that
roughly 50-70% of a bacterial genome is devoted to cytoplasmic and cytoplasmic
membrane proteins, though this proportion may be as high as 80% in certain
organisms, such as Thermoanaerobacter tengcongensis. The remaining

proportion of proteins require some sort of export signal — signal peptide or
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otherwise — to be secreted beyond the cytoplasmic membrane to their final
localization site. Predicted proportions of exported proteins, including cell wall,
periplasmic, outer membrane and extracellular proteins, are highest in the
Mycoplasmae, consistent with the earlier predictions of Saleh et al. (2001) and
Schneider (1999) and reflective of these organisms’ atypical cell envelopes,
which lack a peptidoglycan cell wall and do not contain a periplasm. Certain
Bacilli, including Staphyloccocus sp. and Bacillus cereus, also appear to be
prolific exporters. It is important to note, however, that the reported recall of
PSORTDb and other predictive methods is lower for exported proteins —
particularly periplasmic and extracellular proteins — than for cytoplasmic and
cytoplasmic membrane proteins. Thus the mean proportions for these fractions

as described above is likely an underestimation.

8.4.2 Proportions of proteins at each localization site are consistent
across species regardless of genome size or lifestyle

A scatter plot of the proportions of proteins at each localization site
ilustrates that, with the exception of the Mycoplasmae, values are generally
consistent across organisms (Figure 8.1) and that neither lifestyle nor genome
size has an appreciable impact on the proportions at any one site. Indeed, 71%
of the data points fall within one standard deviation of the mean, while 96% fall
within two standard deviations. While Bendtsen et al. (2005) and Granseth et al.
(2005) have previously described such consistency in the proportions of
cytoplasmic membrane proteins, ours are the first reports illustrating that this

trend extends to all localization sites.
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Figure 8.1: Percentages of proteins at each localization site are generally well-conserved
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across bacterial species.

Top: 162 Gram-negative bacteria. Bottom: 74 Gram-positive bacteria.
Organisms are arranged along the x-axis by proteome size (# of proteins).
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8.4.3 Conservation of proportions reflects peripheral subnetwork-based
adaptive evolution

The consistency inherent in the proportions of proteins at each localization
site has implications for network-based evolution. Our observations suggest that
the number of proteins in each cellular compartment changes in concert rather
than independently — an increase or decrease in the number of proteins at one
site must be accompanied by a similar change in the number of proteins at other
localization sites. This in turn may imply that bacterial evolution is the result of
the simultaneous acquisition or loss of multiple genes rather than singletons
(Lawrence and Roth, 1996, Boucher et al., 2003). Recent observations extend
this hypothesis, noting that groups of genes aquired by a bacterium display
physiologically coupled functions — typically related to the early stages of a
particular metabolic pathway — and are likely acquired as “subnetworks” which
attach to existing networks within a cell (Pal et al., 2005a). We propose,
therefore, that adaptive evolution in bacteria requires the acquisition of a
subnetwork of genes whose products are not only functionally related — but also

span multiple subcellular localization sites.

In an analysis of E. coli metabolic networks, Pal et al. (2005a) also
propose that protein components of subnetworks mediating adaptive evolution
exhibit “peripheral” functions — they are active in the early stages of metabolic
pathways and are engaged in specialized processes including nutrient uptake
and early reaction steps. They then attach to existing cellular networks at a more
“central” point in the pathway — for example, a protein involved in later stages of

the pathway exhibiting a more generalized function. Our data indicates that the
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protein subcellular localizations associated with these subnetworks are also
peripheral. We have also noted that the mean proportions of peripherally
localized proteins differ between pathogenic and non-pathogenic bacteria (Figure
8.2). The increases in peripherally localized proteins in pathogens not only
provides support for the peripheral subnetworks hypothesis but also may reflect
the pathogens’ need for antigenic diversity in their complement of surface-

exposed proteins.

Figure 8.2: Mean proportions of peripherally localized proteins differ between pathogenic
and non-pathogenic bacteria.
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8.4.4 Thermophilic and hyperthermophilic bacteria display elevated
proportions of cytoplasmic proteins

Although proportions are generally well-conserved across species, certain
small variations, such as the increase in cell surface proteins in pathogens, are
present. One of the most interesting variations was observed when bacteria were

grouped according to optimal temperature range. A comparison of the mean
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proportions across groups revealed that thermophilic and hyperthermophilic
bacteria displayed elevated proportions of cytoplasmic proteins relative to

mesophiles and psychrophiles (Figure 8.3).

Figure 8.3: Mean proportions of cytoplasmic proteins are elevated in thermophilic and
hyperthermophilic bacteria.
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Noting that the hyperthermophiles in particular showed an increase in
cytoplasmic proteins and that these organisms tended to occur at the base of the
tree of life, we extended the analysis to include 24 archaeal genomes in order to
examine the trend from an evolutionary perspective. To date, a high-precision
localization prediction method for archaea has yet to be developed, although an
archaeal-specific release of PSORTD is planned. Instead, we analyzed the
archaeal genomes using the Gram-positive version of PSORTDb. In this analysis a

similar, yet phylogenetically restricted, trend was observed (Figure 8.4).
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Figure 8.4: Mean proportions of cytoplasmic proteins are elevated in hyperthermophilic
Euryarchaeaota.
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Hyperthermophilic Euryarchaeota were predicted to contain over 10%
more cytoplasmic proteins than other archaea, including mesophiles,
thermophiles and hyperthermophilic Crenarchaeota. While ours are the first
analyses to illustrate the increase in cytoplasmic proteins in hyperthermophilic
bacteria and archaea, other groups have previously noted low proportions of

exported proteins in archaea (Schneider, 1999; Saleh et al., 2001).

Several explanations for this possibly significant increase in cytoplasmic
proteins in the hyperthermophiles are possible. Hyperthermophilic organisms
may be biased towards low proportions of exported or surface-exposed proteins,
which would be prone to denaturation in the extreme environments they favour.
An increased proportion of cytoplasmic proteins may have been characteristic of
the ancestral state of the first primitive cell since the hyperthermophiles

examined are also disproportionately basal-branching organisms (for example,
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Aquifex aeolicus and Thermotoga maritima; Klenk et al, 2004). Sequencing of
representative genomes of the early-diverging Korarchaeota (Barns et al., 1996)
and subsequent analysis of their cytoplasmic proteins would further our

understanding of the ancestral basis of this trend.

8.5 Conclusions

By applying the high-precision localization method PSORTD to the
genomes of 236 bacteria, we have estimated the proportions of proteins resident
at each cellular compartment in bacteria. The majority of a genome is predicted
to encode cytoplasmic and cytoplasmic membrane proteins. Methods for the
computational identification of these classes of proteins are relatively well-
developed thanks to large amounts of training data in the case of the former and
extensive research into the physiological character of the latter. However, the
remainder of the genome encodes exported proteins, which currently present a
challenge to predictive methods. Recall for these proteins is low, resulting in a
likely underestimation of the exported fraction of a cell. To develop a clearer
picture of the true biological distribution of proteins throughout the cell, both an
increase in the afnount of training data for underrepresented sites such as the
periplasm as well as improvements in the predictive methods themselves will be

required.

When the proportions of proteins in each cellular compartment were
visualized in a graph (Figure 8.1), it became clear that the values are relatively
consistent, regardless of genome size or lifestyle. This suggests to us that in

order to maintain this balance, the acquisition of proteins resident at one
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compartment is coupled to similar changes in the protein complement of
neighbouring compartments. We propose that these changes occur through the
acquisition of “peripheral subnetworks” — groups of proteins spanning multiple

localizations that attach to existing pathways within the recipient cell.

Recent work on adaptive evolution in bacteria has provided insights into
how this process works (Pal et al, 2005a, Pal et al., 2005b, Light et al, 2005). Our
data further extend the hypothesis, and allow us to propose a model for the

subnetwork-driven evolutionary process.

In our model, peripheral subnetworks represent a primary unit of adaptive
evolution. Upon acquisition, either horizontaily or through gene duplication, a
subnetwork will integrate with an existing pathway at a highly connected,
centrally localized point. Acquisition of the subnetwork typically confers a new
function upon the recipient organism, enabling rapid adaptation to a new
environment or stimulus (for example, the ability to uptake and metabolize a
different carbon compound). Pathways whose topology has been preserved
throughout evolution and whose functional and structural interactions are
uniquely co-evolved (Shi et al., 2005) are not disrupted through the assimilation
of peripheral nodes, and the packaging of a novel gene with its functional
partners increases the chances that a newly acquired function will successfully
establish itself and become vertically inherited. Indeed, Pal et al. confirm that
integration of a newly acquired network is six times more likely to be successful if
a physiologically coupled downstream component is already present in the

recipient genome (2005b).
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APPENDICES

Appendix A

PROSITE motifs used in the PSORTb motifs modules:

PS00538 Cytoplasmic Membrane
RTE[EQ]Q.{2}[SA][LIVM].[EQITAASMEQLTATV

PS00755 Cytoplasmic Membrane

[GSTIILIVMF[LIVMFCA][LIVMFI[GSA][LIVM]. PLIVMFY{2}.[ASIGSTQ]ILIVMFATK3)EQ][LIVM
FA2)

PS00756 Cytoplasmic Membrane
[LIVMFYW]{2}.[DE].[LIVM][STDNQ].{2,3}[GK][LIVMF][GST][NST]G.[GST][LIV][LIVFP]

PS00192 Cytoplasmic Membrane
[DENQ)...G[FYWMQ].[LIVMF]R..H

PS00193 Cytoplasmic Membrane
P[DEJWI[FY]LFY]2}

PS01303 Cytoplasmic Membrane
[GSDNJWT[LIVM].[FYIW.WW

PS00449 Cytoplasmic Membrane
[STAGN].[STAG][LIVMF]RL.[SAGV]N[LIVMT]

PS00713 Cytoplasmic Membrane
P {0,1}G[DE].[LIVMF{2}.[LIVMK2}[KREQ][LIVM]{3}.P

PS00714 Cytoplasmic Membrane
P.G.[STAL[NT][LIVMC]DG[STAN].[LIVM][FY].{2}[LIVM]{2}[LIVM][FY][LI][SA]Q

PS00217 Cytoplasmic Membrane
[LIVMF].G[LIVMFA]..G{8}[LIFY]..[EQ]{6}[RK]

PS00218 Cytoplasmic Membrane
[STAGCIG[PAG] {2,3}{LIVMFYWA]{2}.[LIVMFYW].[LIVMFWSTAGCK2}[STAGC]...[LIVMFYWT] [
LIVMST]...[LIVMCTA][GA]E {5}[PSAL]

PS00943 Cytoplasmic Membrane
N...[DEH]..[LIMF]D..[VM].R[ST]..R{4}G

PS00077 Cytoplasmic Membrane
[YWG][LIVFYWTAJ{2}[VGS]H[LNP].V.{44,47}HH

PS00221 Cytoplasmic Membrane
[HNQA].NP[STA][LIVMF][ST][LIVMF][GSTAFY]
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PS00428 Cytoplasmic Membrane
[NV].{5}IGTR][LIVMA].P[PTLIVM].G[LIVM]...[LIWMFW][LIVMFWI]S[YSA]GG[STN][SA]

PS00994 Cytoplasmic Membrane
RILIVM][GSAJEV[GSAJARF[STAIV]LD[GSA][LMIPGKQM[GSA]ID[GSA](DA]

PS0r0896 Cytoplasmic Membrane
G[LIVM}2}.D[RK]LGL[RK]{2}.[LIVMK2}wW

PS00897 Cytoplasmic Membrane
P.[LIVMF{2}NR[LIVM]G.KN[STA][LIVM}{3}

PS00942 Cytoplasmic Membrane
[QEK][RFIG.{3}GSA][LIVF][WL][NS].[SAJ[HMIN[LIV][GA]G

PS01307 Cytoplasmic Membrane
A[LMF][GAT|T[LIVMF].G.[LIVMF].{7}P

PS00594 Cytoplasmic Membrane
IG[GA]GM[LF][SA].P.{3}[SA]G.{2}F

PS01039 Periplasmic
G[FYIL][DE][LIVMT][DE][LIVMF]...[LIVMA][VAGC]..[LIVMAGN]

PS01037 Periplasmic
[GAP][LIVMFA][STAVDN]....[GSAV][LIVMFY]{2}Y[ND]...[LIVMF].[KNDE]

PS01040 Periplasmic
[AG).{6,7}[DNEG]..[STAIVE][LIVMFYWA].[LIVMFY].[LIVM][KR][KRHDE][GDN][LIVMA][KNGSP][F
W]

PS01157 Periplasmic

GSYPSGHT

PS00635 Periplasmic
[LIVMFY][APN].[DNS][KREQ]E[STR][LIVMAR].[FYWT].[NC][LIVM]..[LIVM]P[PAS]

PS00087 Periplasmic
[GA][IMFAT]HILIVFIH.{2}|GP][SDG].ISTAGDE]

PS00123 Periplasmic
[IV].DS[GAS][GASC][GAST][GAIT

PS00332 Periplasmic
G[GN][SGA]G.R.[SGA]C {2}{IV]

PS00401 Periplasmic
K.INQEK][GTIG[DQ].[LIVM].{3}QS

PS00556 Periplasmic
[LIVMA41C[LIVMFA]T[LIVMA){2} {4}[LIVM].[RG].{2}L[CY]

PS00757 Periplasmic
NPK[ST]SG.AR
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PS00968 Periplasmic
[LIVFAG].[GASV]ILIVFA][IVIH {3}[LIVM]IGSTAE][STANH].{1,3}[STNIW[LIVMFYW]

PS00969 Periplasmic
[EQ].{4}H.{5)[GSTAI{3}[FY].{3}[AG]{2}[AVIH.{7}P

PS00576 Outer Membrane
[LIVMFY]..G.Y.F.K.[SN][STAV][LIVMFYW]V

PS00694 Outer Membrane
(G[LIVMFY]N[LIVM]KYRYE)

PS00695 Outer Membrane
([FYW]..G.GY[KR]F)

PS01151 Outer Membrane
[VL][PASQ][PAS]G[PAD]FY].[LIIDNQSTAP][DNH][LIVMFY]

PS00875 Outer Membrane

[GR][DEQKG][STVM][LIVMA}{3}{GAIGILIVMFY].{11}[LIVM]P[LIVMFYWGS][LIVMF][GSAE].[LIVM
JPILIVMFYW]{2}..[LVIF

PS00834, PS00835 Outer Membrane
((WTD.S.HP.T).*(AGYQE[STIR[FYW]S[FYW][TN]A.GGI[ST]Y))|((AGY QE[ST]R[FYWIS[FYW][TN]
A.GGIST]Y).*(WTD.S.HP.T))

PS01068 Outer Membrane
[LIVMA][GT].[TA]IDA]..[DG][GSTP]..[LFYDE]INQS]..[LI][SG]IQE]J[KRQE]RA. [LV]...[LIVMF].{4,5}
LIVM]....[LIVM]...[SG].G

PS00274 Extracellular
[KT]..NW_T[DN]T

PS00330 Extracellular D.[LI].{4}G.D.[LI].GG.{3}D

GGXGXD Extracellular
(GG.G.D.*){4}

PS00369 Cytoplasmic
G[LIVMH[STAV]R[PAS][GSTA][STAMVN]

PS00589 Cytoptasmic
[GSTADE][KREQST!V].{4}[KRDN]S[LIVMF{2}.[LIVM]..[LIVM][GADE]

PS00077 Cytoplasmic Membrane
[YWGILIVFYWTA}{2}VGSIHILNP].V.{44,47}

PS00192 Cytoplasmic Membrane
[DENQ]...G[FYWMQ].[LIVMF]R..

PS00193 Cytoplasmic Membrane
PIDEMWI[FY]ILFY]{2}

PS00216 Cytoplasmic Membrane
[LIVMSTAG][LIVMFSAG]..[LIVMSA]DE].[LIVMFYWA]GR[RK].{4,6}]GSTA]
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PS00217 Cytoplasmic Membrane
[LIVMF].G[LIVMFA]..G {8}[LIFY]..[EQ].{6}[RK]

PS00218 Cytoplasmic Membrane
[STAGC]G[PAG].{2,3}{LIVMFYWA]{2}.[LIVMFYW].[LIVMFWSTAGCK2}[STAGC]...[LIVMFYWT] [
LIVMST]...[LIVMCTA]IGAJE {5}[PSAL]

PS00449 Cytoplasmic Membrane
[STAGN].[STAG][LIVMF]RL.[SAGVIN[LIVMT]

PS00713 Cytoplasmic Membrane
P.{0,1}G[DE].[LIVMF){2}.[LIVM}{2}]KREQ][LIVM]{3}.P

PS00714 Cytoplasmic Membrane
P.G.[STA][NT][LIVMCIDG[STAN].[LIVM][FY]..[LIVM]..[LIVM][FY]ILI][SA]Q

PS00872 Cytoplasmic Membrane
[DG]...G...[DN].{6,8}|GA]IKRHQ][FSA][KR][PT][FYW][LIVMWQ][LIV].IGAFV][GSTA]

PS00943 Cytoplasmic Membrane
N...[DEH]..[LIMF]D..[VM].R[ST]..R.{4}G

PS01022 Cytoplasmic Membrane
[GA][GAS][LIVMFYWA][LIVM][GAS]D.[LIVMFYWTJ[LIVMFYW]G...[TAV][IV]...[GSTAV] [LIVMF].. [
GA]

PS01023 Cytoplasmic Membrane
[FYT].[LMFY]FYV][LIVMFYWA][IVG]N[LIVMAG]G[GSA][LIMF]

PS01219 Cytoplasmic Membrane
D[FYWS]AG[GSC].{2}[IV].{3}{SAG]{2}.{2}[SAG][LIVMF]{3}{LIVMFYWA]{2} [GK].R

PS01303 Cytoplasmic Membrane
[GSDNIWTI[LIVM].[FY]W.WW

PS01327 Cytoplasmic Membrane
[KR]GN[LIVK2}D[LIVM]A[LIVM][GA][LIVM]3}G

PS00755 Cytoplasmic Membrane

[GST][LIVMF](LIVMFCAL[LIVMF][GSA][LIVM]. P[LIVMFY}{2}.[AS][GS TQ][LIVMFAT3}[EQ]ILIVM
FA}{2)

PS00756 Cytoplasmic Membrane
[LIVMFYWI{2}.[DE].[LIVM][STDNQ].{2,3}{GK][LIVMF][GST][NST]G.[GST][LIV][LIVFP]

PS01072 Celiwall
[LVFYT].[DA].{2,5}[DNGSATPHY][FYWPDA].{4}|LIV]..[GTALV]{4,6}[LIVFYC]..G.[PGSTA].{2,3}[M
FYA][PGAV].{3,10}[LIVMA][STKR][RY].[EQ].[STALIVM]

PS00274 Extracellular
[KT]..NW..T[DN]T

PS00277 Extracellular
YGGILIV]T.{4}N
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PS00278 Extracellular
K..[LIVF]{4}[LIVF]D...R..L{B}LIV]Y

PS00429 Extracellular
ARP..K.STNAYNVTT.[DN]G...YG
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Appendix B

Outer membrane motifs:

AAGAAG
AAGKIS
AALAAN
AANANI
AASAVE
AASTTA
AAYRYS
ADAADR
ADLFPR
AEIREK
AELEQQ
AETLAE
AGAGAE
AGARYI
AGGAIF
AGLAAL
AGLGAA
AGQASA
AGSGQV
AGTVTT
AKVTIT
ALAAPL
ALAAVL
ALALLA
ALAQQA
ALASQA
ALAVTT
ALGALG
ALGGGW
ALKVKR
ALLPSA
ALLVAG
ALQEFG
ANAAEI
APAQAE
AQAAVE
AQTLEQ
ARIEVG
ASAREG
ASNGLR.*LGRLGL
ATGAAV
ATLGLV
ATLTLT
AVAVAL
AVDFHG
AVDVAR
AVIAEV
CFCLPL
DGQDGD
DGTLNL

DIQEFI
DIRVDG
DNSKTD
DPRVKG
DRWQST
DSVPLL
DTLWT
DYGSLS
EAYLAL
EELGDL
EFLDRL
EGINKV
ELAQAN
ELDLFG
ELGGKR
ELSLWI
EQGLEN
ESLGLR
ESRRAL
FGDSLS
FGRSKD
FKLNYA
FMGWMW
FRDFAE
FSLKNS
FTGKGY
FVSLNA
GASAGV
GASSGY
GDGGAI
GDSLSD
GELSLS
GFIEDS
GFNLNY
GFSSRD
GGAISS
GGAIYA
GGANAA
GGGAlY
GGKGGA
GGKRGA
GGRLRA
GGVVWNI
GGVWGR
GKGGAI
GLGSAA
GPFVIN
GQTWI
GSFDYG
GSGALG

GSGGSL
GSGAQLS
GTILFS
GTLSGK
GTLSSA
GTLTVS
GTVSGL
GVGINL
GVKTDL
GVLKTD
GYFDFR
HRIATL
IDNTST
IEARIV
IEQGTV
IGAARA
IGRAGL
IGVLTD
ISLTAN
ISSPRL
IYRNSP
KEVLRD
KGGAIY
KINEGP
KITINN
KLSADE
KTLFTK
KVPFLG
LAAAVA
LAEPNL
LAFAGL
LALGGL
LALSIS
LAPAQA
LATASL
LAVAVA
LDKQFF
LDLELS
LDVLDA
LFSLLE
LGAATA
LGALFR
LGDIPV
LGGDGI
LGNLFK
LGRLGL
LGTYLT
LIACLS
LIDGKP
LLAATP
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LLDAQR
LLDVLD
LNLSIP
LPIFTA
LRPGMT
LSAGVS
LSERRA
LSISGN
LSLLPL
LTLDPD
LTQPLF
LTVTDT
LVAKAD
LVDGVR
LVVDLS
MKKLLP
MKKTLL
NAAFSN
NALSKR
NAQLSL
NATLNG
NEVTGL
NGTVNI
NISRNF
NNGAIL
NNGTLI
NNNiINA
NQLSVS
NRSTLS
NSIYID
NTKTSS
NTTINS
NVTLQG
NYAAGG
PGVSVG
PLGLSD
PLLGDI
PTLDLT
PVLAAD
PVQVLA
QANAAT
QASWLA
QFYLGA
QGTVTL
QLGGDI
QPLFDY
QSSSAA
QTDDET
RAALLP
RADLFP

RALALA
RDFAEN
RGPEGR
RLNALE
RLNQLS
RLVSLV
RVEILR
SAGSLA
SALALA
SASRTV
SFLPSV
SGLGRA
SGQTYN
SGSFNF
SGSSSS
SLAGTV
SLIALA
SLLAGS
SLLALS
SLLDVL
SLLIGG
SLQQPL
SLSLPP
SNITGG
SQLDWK
SRFSTS
SRLTLG
SRPVAD
SSSSSSSS
STVVEL
SVNIRG
SVNWG
TADGQL
TAPVFA
TASLLA
TATDLG
TDTPAV
TFYTKL
TGAGTL
TGDIGN
TGTLNI
TITGNK
TLGDGY
TLSGKT
TLSSAG
TMWTA
TTLSAG
TVSLSG
TVVSAP
VAAALV

VAQRTA
VASELA
VATYRN
VDGSLS
VDGVLK
VGDSSK
VGVAFG
VGVTAK
VIQNSG
VLDAQR
VNNLFD
VPAGPF
VPGLTF
VPLLGD
VPPGPF
VPVAQV
VPWDQA
VRLDGG
VRLWVA
VRYDEA
VSGPPR
VSGRFD
VSPSSE
VSSGGT
VSWVTS
YAERGL
YQDGSA
YTVLDQ
YTVRGF



Appendix C
PROSITE profiles used in the PSORTD profile modules:
PS50862 Cytoplasmic
PS50253 Cytoplasmic Membrane
PS50283 Cytoplasmic Membrane
PS50850 Cytoplasmic Membrane
LPXTG Cell Wall

PS50830 Extracellular
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Appendix D

Results of the P. aeruginosa genome-wide exported protein predictions
and subsequent PhoA fusion screen are available online. The following files are
provided:

http://www.genome.org/cgi/data/15/2/321/DC1/1
Signal peptide, cleavage site and transmembrane helix predictions for the
complete P. aeruginosa proteome.

http://www.genome.org/cgi/data/15/2/321/DC1/6
Successful PhoA fusions.
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Appendix E

PSORTD predicted localization sites for the 405 Gram-negative

subproteome studies described in section 7, organized by NCBI Gl number.

Localization
Reference NCBI GI Organism Laboratory PSORTb
Molloy et al., 2000 113930 E. coli oM Unknown
Molloy et al., 2000 114546 E. coli oM o}
Dukan et al., 1998 114580 E. coli o} o}
Huang et al., 2002 114698 Synechocystis sp. CcM C
Molioy et al., 2000 118906 E. coli oM P
Dukan et al., 1998 119191 E. coli o} o}
Dukan et al., 1998 119201 E. coli @ C
Dukan et al., 1998 119391 E. coli @ Unknown
Molioy et al., 2000 120312 E. coli oM EC
Dukan et al., 1998 123441 E. coli @ @
Dukan et al., 1998 125161 E. coli C C
Molloy et al., 2000 125964 E. coli oM oM
Molloy et al., 2000 128373 E. coli oM Unknown
Molloy et al., 2000 129043 E. coli oM @
Molloy et al., 2000 129135 E. coli oM oM
Molloy et al., 2000 129146 E. coli oM oM
Molloy et al., 2000 129151 E. coli oM oM
Molloy et al., 2000 129161 E. coli oM oM
Molloy et al., 2000 129595 E. coli oM oM
Huang et al., 2002 131173 Synechocystis sp. CM Unknown
Huang et al., 2002 131190 Synechocystis sp. CM Unknown
Huang et al., 2002 131387 Synechocystis sp. CM Unknown
Dukan et al., 1998 131650 E. coli @ C
Molioy et al., 2000 132480 E. coli oM Unknown
Dukan et al., 1998 133030 E. coli @ C
Dukan et al., 1998 133976 E. coli C C
Dukan et al., 1998 134659 E. coli c Unknown
Dukan et al., 1998 135173 E. coli @ @
Molloy et al., 2000 135980 E. coli oM oM
Molloy et al., 2000 136459 E. coli oM oM
Bumann et ai., 2002 137076 H. pylori EC Unknown
Molloy et al., 2000 140430 E. coli oM oM
Dukan et al., 1998 140742 E. coli @ C
Molloy et al., 2000 232021 E. coli oM Unknown
Moiloy et al., 2000 399000 E. coli OM CM/IP
Molloy et al., 2001 400158 K. pneumoniae oM oM
Molloy et al., 2000 416728 E. coli oM OM
Huang et al., 2002 417545 Synechocystis sp. CM Unknown
Dukan et al., 1998 543784 E. coli o} o}
Molloy et al., 2000 585619 E. coli oM P
Molloy et al., 2000 585997 E. coli oM Unknown
Dukan et al., 1998 586733 E. coli o} o}
Molloy et al., 2000 730225 E. coli oM oM
Molloy et al., 2000 730963 E. coli OM P
Molloy et al., 2001 731022 S. typhimurium oM oM
Dukan et al., 1998 1169970 E. coli @ @
Motloy et al., 2000 1171903 E. coli oM oM
Nouwens et al., 2002 1172509 P. aeruginosa oM CM
Dukan et al., 1998 1176189 E. coli o} Unknown
Molloy et al., 2001 1279830 K. pneumoniae oM oM
Molioy et al., 2001 1345766 S. typhimurium oM o}
Murakami et al., 2002 1536824 P. gingivalis oM EC
Huang et al., 2002 1705799 Synechocystis sp. CM o]

139



Localization

Reference NCBI Gl Organism Laboratory PSORTb
Dukan et al., 1998 1730032 E. coli Cc C
Nouwens et al., 2002 2276417 P. aeruginosa EC Unknown
Huang et al., 2002 2493271 Synechocystis sp. CM Unknown
Huang et al., 2002 2493297 Synechocystis sp. CM Unknown
Huang et al., 2002 2493552 Synechocystis sp. CM C
Huang et al., 2002 2493553 Synechocystis Sp. CM C
Huang et al., 2002 2494260 Synechocystis sp. CM C
Huang et al., 2002 2494772 Synechocystis Sp. CM Unknown
Molloy et al., 2001 2495350 S. typhimurium OM Unknown
Molloy et al., 2000 2497721 E. coli OoM Unknown
Bumann et al., 2002 2499106 H. pylon EC OM/EC
Huang et al., 2002 2500503 Synechocystis sp. CM C
Huang et al., 2002 2506210 Synechocystis sp. CM C
Bumann et al., 2002 2506418 H. pylori EC OM
Molloy et al., 2000 2506737 E. coli OM OM
Molloy et al., 2000 2506898 E. coli oM OM/EC
Huang et al., 2002 2506910 Synechocystis sp. CM Unknown
Dukan et al., 1998 2506993 E. coli Cc Cc
Dukan et al., 1998 2507064 E. coli Cc Cc
Moiloy et al., 2000 2507089 E. coli OM OM
Molloy et al., 2000 2507166 E. coli OM Unknown
Molloy et al., 2000 2507462 E. coli OM oM
Molloy et al., 2000 2507463 E. coli OM OM
Molloy et al., 2000 2507464 E. coli oM OM
Molloy et al., 2000 2507465 E. coli OM OM
Murakami et ai., 2002 2541865 P. gingivalis OM Unknown
Murakami et al., 2002 2827775 P. gingivalis oM Unknown
Molioy et al., 2000 2851539 E. coli oM OM
Molloy et al., 2001 2896133 S. typhimurium OM OM/EC
Molioy et al., 2000 3025033 E. coli OM Unknown
Fulda et al., 2000 3025122 Synechocystis sp. P Unknown
Fulda et al., 2000 3025123 Synechocystis sp. P Unknown
Fulda et al., 2000 3025125 Synechocystis sp. P Unknown
Fulda et al., 2000 3025187 Synechocystis sp. P Unknown
Huang et al., 2002 3121786 Synechocystis sp. CM Unknown
Huang et al., 2002 3123076 Synechocystis sp. CM C
Dukan et al., 1998 3220012 E. coli C C
Nouwens et al., 2002 3386644 P. aeruginosa EC EC
Molloy et al., 2001 3445382 S. typhimurium OM OM
Murakami et al., 2002 3901098 P. gingivalis OM oM
Huang et al., 2002 3913624 Synechocystis sp. CM CM
Moilloy et al., 2001 3914223 K. pneumoniae OM OM
Huang et al., 2002 3915410 Synechocystis sp. CM OM/EC
Molloy et al., 2000 3915413 E. coli OM OM
Dukan et al., 1998 3916024 E. coli C P
Murakami et al., 2002 5759277 P. gingivalis OoM OM
Murakami et al., 2002 5759279 P. gingivalis OoM Unknown
Bumann et al., 2002 6015162 H. pylorn EC Unknown
Huang et al., 2002 6016607 Synechocystis sp. CM CM
Huang et al., 2002 6225604 Synechocystis sp. CM CM
Molloy et al., 2001 6625701 S. typhimurium OM Unknown
Molloy et al., 2001 6625703 S. typhimurium OM Cc
Fulda et al., 2000 6919991 Synechocystis sp. P Unknown
Nouwens et al., 2002 7081488 P. aeruginosa EC EC
Dukan et al., 1998 9911121 E. coli Cc Cc
Huang et al., 2002 13634042 Synechocystis sp. CM C
Nouwens et al., 2002 15595218 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595224 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595238 P. aeruginosa EC OM
Nouwens et al., 2002 15595243 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595283 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595337 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595360 P. aeruginosa oM OM
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Nouwens et al., 2002 15595480 P. aeruginosa EC P
Nouwens et al., 2002 15595488 P. aeruginosa EC oM
Nouwens et al., 2002 15595488 P. aeruginosa OM OM
Nouwens et al., 2002 15595489 P. aeruginosa OM C
Nouwens et al., 2002 15595497 P. aeruginosa EC P
Nouwens et al., 2002 15595498 P. aeruginosa EC P
Nouwens et al., 2002 15595506 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595511 P. aeruginosa EC P
Nouwens et al., 2002 15595544 P. aeruginosa EC P
Nouwens et al., 2002 15595618 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595620 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595624 P. aeruginosa oM P/OM
Nouwens et al., 2002 15595743 P. aeruginosa EC Cc
Nouwens et al., 2002 156595753 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595769 P. aeruginosa EC OM
Nouwens et al., 2002 15595799 P. aeruginosa EC P
Nouwens et al., 2002 15595806 P. aeruginosa EC C
Nouwens et al., 2002 15595814 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595819 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595820 P. aeruginosa EC Unknown
Nouwens et al., 2002 15595963 P. aeruginosa EC P
Nouwens et al., 2002 15596004 P. aeruginosa EC C
Nouwens et al., 2002 15596009 P. aeruginosa EC Cc
Nouwens et al., 2002 15596049 P. aeruginosa EC Unknown
Nouwens et al., 2002 15596053 P. aeruginosa EC Unknown
Nouwens et al., 2002 15596085 P. aeruginosa EC P
Nouwens et al., 2002 15596092 P. aeruginosa EC C
Nouwens et al., 2002 15596140 P. aeruginosa EC Unknown
Nouwens et al., 2002 15596155 P. aeruginosa EC OM
Nouwens et al., 2002 15596155 P. aeruginosa OM OM
Nouwens et al., 2002 15596159 P. aeruginosa EC C
Nouwens et al., 2002 15596169 P. aeruginosa EC P
Nouwens et al., 2002 15596170 P. aeruginosa OM OM
Nouwens et al., 2002 15596271 P. aeruginosa EC P
Nouwens et al., 2002 15596289 P. aeruginosa EC EC
Nouwens et al., 2002 15596289 P. aeruginosa OM EC
Nouwens et al., 2002 15596347 P. aeruginosa EC P
Nouwens et al., 2002 15596356 P. aeruginosa EC C
Nouwens et al., 2002 15596363 P. aeruginosa EC Unknown
Nouwens et al., 2002 15596368 P. aeruginosa EC CM/P
Nouwens et al., 2002 15596375 P. aeruginosa EC OM
Nouwens et al., 2002 15596384 P. aeruginosa EC C
Nouwens et al., 2002 15596446 P. aeruginosa EC EC
Nouwens et al., 2002 15596468 P. aeruginosa oM OM
Nouwens et al., 2002 15596484 P. aeruginosa EC P
Nouwens et al., 2002 15596485 P. aeruginosa OM oM
Nouwens et al., 2002 15596534 P. aeruginosa EC P
Nouwens et al., 2002 15596539 P. aeruginosa EC P
Nouwens et al., 2002 15596690 P. aeruginosa EC P
Nouwens et al., 2002 15596736 P. aeruginosa OM C
Nouwens et al., 2002 15596776 P. aeruginosa EC Unknown
Nouwens et al., 2002 15596784 P. aeruginosa EC C
Nouwens et al., 2002 15596801 P. aeruginosa EC Cc
Nouwens et al., 2002 15596945 P. aeruginosa EC Unknown
Nouwens et al., 2002 15596965 P. aeruginosa EC Unknown
Nouwens et al., 2002 15596974 P. aeruginosa EC OM
Nouwens et al., 2002 15596974 P. aeruginosa oM oM
Nouwens et al., 2002 15596997 P. aeruginosa EC C
Nouwens et al., 2002 15597001 P. aeruginosa EC Unknown
Nouwens et al., 2002 15597068 P. aeruginosa EC OM
Nouwens et al., 2002 15597142 P. aeruginosa EC P
Nouwens et al., 2002 15597400 P. aeruginosa EC P
Nouwens et al., 2002 15597446 P. aeruginosa EC Cc
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Nouwens et al., 2002 15597487 P. aeruginosa oM OM
Nouwens et al., 2002 15597790 P. aeruginosa EC Unknown
Nouwens et al., 2002 15597829 P. aeruginosa EC Unknown
Nouwens et al., 2002 15597863 P. aeruginosa EC C
Nouwens et al., 2002 15597956 P. aeruginosa EC OM
Nouwens et al., 2002 15597956 P. aeruginosa oM OM
Nouwens et al., 2002 15598135 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598234 P. aeruginosa OM OM
Nouwens et al., 2002 15598277 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598382 P. aeruginosa OM oM
Nouwens et al., 2002 15598386 P. aeruginosa EC P
Nouwens et al., 2002 15598423 P. aeruginosa EC P
Nouwens et al., 2002 15598432 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598434 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598454 P. aeruginosa EC C
Nouwens et al., 2002 15598509 P. aeruginosa EC P
Nouwens et al., 2002 15598641 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598662 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598723 P. aeruginosa EC C
Nouwens et al., 2002 15598725 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598731 P. aeruginosa OM OM/EC
Nouwens et al., 2002 15598807 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598823 P. aeruginosa EC (o}
Nouwens et al., 2002 15598844 P. aeruginosa OM OM
Nouwens et al., 2002 15598851 P. aeruginosa EC C
Nouwens et al., 2002 15598871 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598888 P. aeruginosa £C OM
Nouwens et al., 2002 15598919 P. aeruginosa EC EC
Nouwens et al., 2002 15598929 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598932 P. aeruginosa EC P
Nouwens et al,, 2002 15598965 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598980 P. aeruginosa EC Unknown
Nouwens et al., 2002 16598982 P. aeruginosa EC Unknown
Nouwens et al., 2002 15598985 P. aeruginosa oM oM
Nouwens et al., 2002 15598995 P. aeruginosa OM Unknown
Nouwens et al., 2002 15599002 P. aeruginosa EC (o]
Nouwens et al., 2002 15599008 P. aeruginosa EC Unknown
Nouwens et al., 2002 16599014 P. aeruginasa EC Unknown
Nouwens et al., 2002 15599031 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599053 P. aeruginosa EC P
Nouwens et al., 2002 15599060 P. aeruginosa EC P
Nouwens et al., 2002 15599061 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599117 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599118 P. aeruginosa oM oM
Nouwens et al., 2002 15599126 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599135 P. aeruginosa EC C
Nouwens et al., 2002 15599248 P. aeruginasa £C CM
Nouwens et al., 2002 15599262 P. aeruginosa oM oM
Nouwens et al., 2002 15599305 P. aeruginosa EC P
Nouwens et al., 2002 15599370 P. aeruginosa EC EC
Nouwens et al., 2002 15599399 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599403 P. aeruginosa oM oM
Nouwens et al., 2002 15599429 P. aeruginosa EC CM
Nouwens et al., 2002 15599444 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599445 P. aeruginosa EC C
Nouwens et al., 2002 15599469 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599482 P. aeruginosa oM C
Nouwens et al., 2002 15599521 P. aeruginosa EC o]
Nouwens et al., 2002 15599566 P. aeruginosa OM oM
Nouwens et al., 2002 15599581 P. aeruginosa EC C
Nouwens et al., 2002 16599582 P. aeruginosa EC C
Nouwens et al., 2002 15599613 P. aeruginosa EC C
Nouwens et al., 2002 15599629 P. aeruginosa EC Unknown
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Nouwens et al., 2002 15599656 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599691 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599692 P. aeruginosa EC P
Nouwens et al., 2002 15599697 P. aeruginosa oM oM
Nouwens et al., 2002 15599760 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599809 P. aeruginosa EC P
Nouwens et al., 2002 15599820 P. aeruginosa oM oM
Nouwens et al., 2002 15599856 P. aeruginosa oM Unknown
Nouwens et al., 2002 15599882 P. aeruginosa EC P
Nouwens et al., 2002 15599930 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599937 P. aeruginosa EC C
Nouwens et al., 2002 156599955 P. aeruginosa EC Unknown
Nouwens et al., 2002 15599959 P. aeruginosa oM oM
Nouwens et al., 2002 15599986 P. aeruginosa EC Unknown
Nouwens et al., 2002 15600005 P. aeruginosa EC CM
Nouwens et al., 2002 15600115 P. aeruginosa EC P
Nouwens et al., 2002 15600137 P. aeruginosa EC Unknown
Nouwens et al., 2002 15600167 P. aeruginosa oM oM
Nouwens et al., 2002 15600209 P. aeruginosa EC C
Nouwens et al., 2002 15600229 P. aeruginosa EC CM
Nouwens et al., 2002 15600230 P. aeruginosa EC Unknown
Nouwens et al., 2002 15600239 P. aeruginosa EC CM
Nouwens et al., 2002 15600273 P. aeruginosa EC C
Nouwens et al., 2002 15600275 P. aeruginosa EC P
Nouwens et al., 2002 15600289 P. aeruginosa EC Unknown
Nouwens et al., 2002 15600305 P. aeruginosa oM OM/EC
Nouwens et al., 2002 15600346 P. aeruginosa EC P
Nouwens et al., 2002 15600360 P. aeruginosa EC P
Nouwens et al., 2002 15600377 P. aeruginosa EC Unknown
Nouwens et al., 2002 15600440 P. aeruginosa EC C
Nouwens et al., 2002 15600463 P. aeruginosa EC Unknown
Nouwens et al., 2002 15600510 P. aeruginosa EC P
Nouwens et al., 2002 15600516 P. aeruginosa EC C
Nouwens et al., 2002 15600523 P. aeruginosa EC Unknown
Nouwens et ai., 2002 15600562 P. aeruginosa EC Unknown
Nouwens et al., 2002 15600571 P. aeruginosa EC Unknown
Nouwens et al., 2002 15600608 P. aeruginosa EC C
Nouwens et al., 2002 15600615 P. aeruginosa EC Cc
Nouwens et al., 2002 15600682 P. aeruginosa EC P
Nouwens et al., 2002 15600698 P. aeruginosa EC Unknown
Nouwens et al., 2002 15600707 P. aeruginosa EC Unknown
Nouwens et al., 2002 15600734 P. aeruginosa EC C
Nouwens et al., 2002 15600738 P. aeruginosa EC Unknown
Nouwens et al., 2002 15600747 P. aeruginosa EC C
Bumann et al., 2002 15644804 H. pylon EC oM
Bumann et al., 2002 15644859 H. pylori EC Unknown
Bumann et al., 2002 15644995 H. pylori EC Unknown
Bumann et al., 2002 15645005 H. pylori EC oM
Bumann et al., 2002 15645443 H. pylori EC C
Bumann et al., 2002 15645522 H. pylori EC Unknown
Bumann et al., 2002 15645523 H. pyloni EC Unknown
Bumann et al., 2002 15645633 H. pylori EC P
Bumann et al., 2002 15645712 H. pylori EC EC
Bumann et al., 2002 16645732 H. pylori EC P
Bumann et al., 2002 15645787 H. pylon EC C
Bumann et al., 2002 15645800 H. pylori EC Unknown
Bumann et al., 2002 15645899 H. pylori EC Unknown
Bumann et al., 2002 15646063 H. pylori EC oM
Bumann et al., 2002 15646067 H. pylori EC Cc
Bumann et al.,, 2002 15646164 H. pylori EC Unknown
Molloy et al., 2000 16832424 E. coli oM Cc
Molioy et al., 2000 16129736 E. coli oM oM
Huang et al., 2002 16329185 Synechocystis sp. CM P
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Huang et al., 2002 16329195 Synechocystis sp. CM Unknown
Fulda et al., 2000 16329198 Synechocystis sp. P Unknown
Huang et al., 2002 16329241 Synechocystis sp. CM OM
Fulda et al., 2000 16329323 Synechocystis sp. P OoM
Huang et al., 2002 16329327 Synechocystis sp. CM Unknown
Huang et ai., 2002 16329341 Synechocystis sp. CM C/ICM
Huang et al., 2002 16329361 Synechocystis sp. CM C
Fulda et al., 2000 16329372 Synechocystis sp. P Unknown
Fulda et al., 2000 16329387 Synechocystis Sp. P P
Fulda et al., 2000 16329409 Synechocystis sp. P Unknown
Huang et al., 2002 16329434 Synechocystis sp. cM P
Fuida et al., 2000 16329573 Synechocystis sp. P Unknown
Huang et al., 2002 16329577 Synechocystis sp. CM Unknown
Fulda et al., 2000 16329600 Synechocystis sp. P Unknown
Fulda et al., 2000 16329650 Synechocystis sp. P P
Huang et al., 2002 16329661 Synechocystis Sp. CM Unknown
Huang et al., 2002 16329662 Synechocystis sp. CM CM
Fulda et al., 2000 16329708 Synechocystis sp. P OoM
Huang et al., 2002 16329721 Synechocystis sp. CM OM
Fulda et al., 2000 16329725 Synechocystis sp. P Unknown
Huang et al., 2002 16329729 Synechocystis sp. CM Unknown
Fulda et al., 2000 16329729 Synechocystis sp. P Unknown
Fuida et al., 2000 16329841 Synechocystis sp. P Unknown
Huang et al., 2002 16329947 Synechocystis sp. CM Unknown
Fulda et al., 2000 16329967 Synechocystis sp. P Unknown
Huang et al., 2002 16330041 Synechocystis sp. CM oM
Huang et al., 2002 16330090 Synechocystis sp. CM Unknown
Fulda et al., 2000 16330090 Synechocystis sp. P Unknown
Huang et al., 2002 16330095 Synechocystis sp. CM C
Fulda et al., 2000 16330142 Synechocystis sp. P C
Fulda et al., 2000 16330225 Synechocystis sp. P P
Fulda et al., 2000 16330228 Synechocystis sp. P Unknown
Fulda et al., 2000 16330232 Synechocystis sp. P Unknown
Fulda et al., 2000 16330233 Synechocystis sp. P Unknown
Fulda et al., 2000 16330236 Synechocystis sp. P Unknown
Fulda et al., 2000 16330237 Synechocystis sp. P Unknown
Fuida et al., 2000 16330280 Synechocystis sp. P C/P
Huang et al., 2002 16330287 Synechocystis sp. CM C/ICM
Fulda et al., 2000 16330319 Synechocystis sp. P Unknown
Huang et al., 2002 16330332 Synechocystis sp. CM P
Fuida et al., 2000 16330376 Synechocystis sp. P Unknown
Fulda et al., 2000 16330406 Synechocystis sp. P Unknown
Huang et al., 2002 16330412 Synechocystis sp. CM Unknown
Huang et al., 2002 16330444 Synechocystis sp. CM Unknown
Fulda et al., 2000 16330486 Synechocystis sp. P Unknown
Huang et al., 2002 16330605 Synechocystis sp. CM Unknown
Huang et al., 2002 16330613 Synechocystis sp. CM C
Fulda et al., 2000 16330681 Synechocystis sp. P Unknown
Huang et al., 2002 16330711 Synechocystis sp. CM CM
Fulda et al., 2000 16330843 Synechocystis sp. P Unknown
Fulda et al., 2000 16330845 Synechocystis sp. P Unknown
Huang et al., 2002 16330863 Synechocystis sp. CM oM
Fulda et al., 2000 16330863 Synechocystis sp. P oM
Huang et al., 2002 16330867 Synechocystis sp. CM Unknown
Huang et al., 2002 16330868 Synechocystis sp. CM Unknown
Huang et al., 2002 16330869 Synechocystis sp. CM Unknown
Fulda et al., 2000 16330919 Synechocystis sp. P Unknown
Fulda et al., 2000 16330937 Synechocystis sp. P Unknown
Fulda et al., 2000 16330991 Synechocystis sp. P Unknown
Huang et al., 2002 16331025 Synechocystis sp. CM Unknown
Fulda et al., 2000 16331037 Synechocystis sp. P Unknown
Huang et al., 2002 16331081 Synechocystis sp. CM P
Fulda et al., 2000 16331081 Synechocystis sp. P P
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Huang et al., 2002 16331145 Synechocystis sp. CcM Unknown
Huang et al., 2002 16331157 Synechocystis sp. c™m cMmP
Fuida et al., 2000 16331169 Synechocystis sp. P P
Fulda et al., 2000 16331198 Synechocystis sp. P Unknown
Fulda et al., 2000 16331204 Synechocystis sp. P Unknown
Fulda et al., 2000 16331258 Synechocystis sp. P C
Fulda et al., 2000 16331259 Synechocystis sp. P Unknown
Huang et al., 2002 16331342 Synechocystis sp. cM Unknown
Huang et al., 2002 16331346 Synechocystis sp. CM Unknown
Fulda et al., 2000 16331360 Synechocystis sp. P Unknown
Fulda et al., 2000 16331369 Synechocystis sp. P Unknown
Huang et al., 2002 16331395 Synechocystis sp. CcM Unknown
Huang et al., 2002 16331445 Synechocystis sp. CcM P
Fulda et al., 2000 16331473 Synechocystis sp. P Unknown
Fulda et al., 2000 16331484 Synechocystis sp. P P
Huang et al., 2002 16331566 Synechocystis sp. cM™m Unknown
Fulda et al., 2000 16331612 Synechocystis sp. P Unknown
Huang et al., 2002 16331628 Synechocystis sp. cM oM
Fulda et al., 2000 16331677 Synechocystis sp. P Unknown
Fuida et al., 2000 16331728 Synechocystis sp. P Unknown
Huang et al., 2002 16331793 Synechocystis sp. CcM P
Fulda et al., 2000 16331793 Synechocystis sp. P P
Fulda et al., 2000 16331950 Synechocystis sp. P Unknown
Huang et al., 2002 16331998 Synechocystis sp. CcM C
Huang et al., 2002 16332004 Synechocystis sp. cM Unknown
Fulda et al., 2000 16332232 Synechocystis sp. P Unknown
Fulda et al., 2000 16332251 Synechocystis sp. P Unknown
Huang et al., 2002 16332322 Synechocystis sp. M Unknown
Dukan et al., 1998 17380384 E. coli C C
Nouwens et al., 2002 17865491 P. aeruginosa oM C
Molloy et al., 2001 20141233 S. typhimunum oM oM
Molloy et al., 2001 20141635 S. typhimunum oM oM
Molloy et al., 2001 20141670 S. typhimurium oM oM
Molloy et al., 2001 20141731 S. typhimunum oM oM
Nouwens et al., 2002 25008883 P. aeruginosa oM oM
Fulda et al., 2000 27805660 Synechocystis sp. P P
Molloy et al., 2000 32172423 E. coli oM oM
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Appendix F

followed by Gram-positive organisms. Organisms are arranged alphabetically

Percentage of proteins at each localization site for the 236 bacterial
genomes analyzed using PSORTb v.2.0. Gram-negative organisms appear first,

within their Gram grouping.

LR R R RPN N NN NS

MmMMMODDOO00000000000000000TDLLHI DD

Percentage of Proteome

Organism (Proteome Size) C CM CW P OM EC Unknown Mutiple
. sp. ADP1 (3325) 352 174 NA 12 36 0.2 412 1.2
. tumefaciens str. C58 (Cereon) (4554) 365 204 NA 3.1 09 02 367 22
. tumefaciens str. C58 (U. Washington) (4661) 369 197 NA 3.1 09 02 36.9 22
. variabilis ATCC 29413 (5039) 291 179 NA 10 18 06 48.0 1.7

marginale str. St. Manes (949) 36.9 207 NA 11 20 0.2 37.1 2.1
. aeolicus VF5 (1529) 549 160 NA 14 16 04 239 1.9
sp. EbN1  (4133) 384 149 NA 16 13 03 41.8 1.9
. fragilis NCTC 9434 (4189) 302 156 NA 11 44 03 46.3 2.1
. fragilis YCH46 (4578) 283 144 NA 10 42 03 499 20
thetaiotaomicron VPI-5482 (4778) 284 147 NA 10 52 05 48.2 2.0
henselae str. Houston-1 (1488) 350 159 NA 13 20 01 43.9 1.8
quintana str. Toulouse (1142) 370 181 NA 13 18 0.2 38.8 28
. bacteriovorus HD100 (3587) 240 146 NA 16 28 09 53.2 3.0
bronchiseptica RB50 (4994) 334 183 N/A 35 20 03 39.4 3.0
parapertussis 12822 (4185) 349 189 NA 38 21 03 37.0 3.1
pertussis Tohama | (3436) 31.7 174 NA 32 20 03 42.8 26
burgdorferi B31 (851) 304 201 NA 12 54 05 40.8 1.6
. gannii PBi  (832) 303 197 NA 10 34 05 43.8 1.4
B. japonicum USDA 110 (8317) 320 184 NA 26 13 03 429 2.5
abortus biovar 1 str. 9-941 (3085) 366 172 NA 26 1.0 041 40.2 25
. melitensis 16M (3198) 372 181 NA 27 10 0.1 38.5 25
. suis 1330 (3264) 344 170 NA 25 10 041 426 25
aphidicola str. APS (Acyrthosiphon pisum) (564) 349 149 NA 09 20 0.2 46.1 1.1

. aphidicola str. Bp (Baizongia pistaciae) (504) 300 175 NA 10 16 02 48.2 1.6
. aphidicola str. Sg (Schizaphis graminum) (546) 352 145 NA 15 1.8 02 456 1.3
mallei ATCC 23344 (4764) 367 163 NA 21 21 06 398 25
pseudomallei K96243 (5729) 339 183 NA 23 26 07 39.7 27
jejuni RM1221  (1838) 311 1567 NA 16 30 03 46.7 1.6
jejuni subsp. jejuni NCTC 11168 (1634) 318 176 NA 19 34 04 43.2 1.7
Blochmannia floridanus  (583) 360 184 NA 09 14 02 419 14
Blochmannia pennsylvanicus str. BPEN (610) 385 175 NA 08 15 02 38.5 20
Pelagibacter ubique HTCC1062 (1354) 303 169 NA 13 20 02 47.9 1.6

. crescentus CB15 (3737) 332 156 NA 19 28 04 43.8 23
muridarum Nigg (904) 336 163 NA 07 25 01 438 3.0
. trachomatis D/UW-3/CX (895) 354 160 NA 10 25 02 43.0 1.9
abortus S26/3 (932) 346 180 NA 06 23 02 416 27
. caviae GPIC (998) 319 160 NA 09 25 02 45.2 33
pneumoniae AR39 (1112) 306 153 NA 08 24 0.1 48.3 25
pneumoniae CWL029 (1054) 321 162 NA 09 26 0.1 455 28
pneumoniae J138 (1069) 317 160 N/A 08 26 01 45.2 36
. pneumoniae TW-183 (1113) 306 154 NA 08 24 041 47.8 3.0
. tepidum TLS (2252) 380 143 NA 09 12 02 440 1.3
. violaceum ATCC 12472 (4407) 354 177 NA 21 1.8 0.8 396 25
psychrerythraea 34H (4910) 269 156 NA 16 35 05 50.4 1.5
. burnetii RSA 493 (2009) 330 171 NA 06 09 02 47.5 0.8
. aromatica RCB (4171) 347 194 NA 27 20 02 39.0 2.0
psychrophila LSv54 (3118) 363 189 NA 15 14 03 39.6 2.0
vulgaris subsp. vulgans str. Hildenborough (3379) 414 149 NA 20 07 02 38.8 2.0

. canis str. Jake (925) 291 182 NA 05 31 03 46.9 1.8
. ruminantium str. Gardel (950) 268 165 NA 06 32 03 511 1.5
. ruminantium str. Welgevonden (888) 284 168 NA 07 30 02 491 1.8
. ruminantium str. Welgevonden (958) 271 159 NA 06 28 0.2 517 1.7
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E. carotovora subsp. atroseptica SCRI1043 (4472) 341 190 NA 28 20 06 39.5 21
E. coli CFTO73 (5379) 342 167 NA 27 20 07 4?2.2 1.4
E. coliK12 (4311) 365 197 NA 33 21 05 36.6 1.3
E. coli O157:H7 (5253) 346 166 NA 28 22 06 416 1.5
E. coli O157:H7 EDL933 (5324) 33 168 NA 28 24 06 421 1.5
F. tularensis subsp. tularensis Schu 4 (1603) 299 188 N/A 09 25 03 46.0 1.6
F. nucleatum subsp. nucleatum ATCC 25586 (2067) 393 180 NA 10 38 0.1 34.8 3.0
G. sulfurreducens PCA (3445) 432 186 NA 16 14 0.7 325 2.1
G. violaceus PCC 7421 (4430) 346 146 NA 11 23 03 451 20
G. oxydans 621H (2432) 367 155 NA 14 24 06 41.3 2.1
H. ducreyi 35000HP  (1717) 338 146 NA 19 22 02 46.0 14
H. influenzae 86-028NP  (1791) 385 163 NA 24 18 04 38.8 1.8
H. influenzae Rd KW20 (1657) 406 178 NA 27 19 0.2 35.0 1.6
H. hepaticus ATCC 51449 (1875) 308 150 NA 12 26 06 47.7 1.9
H. pylori 26695 (1576) 336 151 NA 08 44 08 437 1.7
H. pylon J99  (1491) 338 160 NA 09 42 09 42.2 1.9
I. loihiensis L2ZTR  (2628) 357 174 NA 15 31 04 39.5 2.4
L. pneumophila str. Lens (2878) 324 177 NA 11 16 08 44.8 1.8
L. pneumophila str. Paris  (3027) 322 180 NA 1.1 16 07 44.7 1.6
L. pneumophila str. Philadelphia 1 (2942) 311 182 NA 12 18 108 452 1.7
L. interrogans Copenhageni str. Fiocruz (3660) 277 1862 NA 09 28 07 50.3 15
L. interrogans Lai str. 56601 (4727) 238 129 NA 06 24 06 58.6 1.2
M. succiniciproducens MBELS5E  (2384) 331 165 NA 30 18 02 44.0 1.4
M. florum L1  (683) 363 195 NA 02 23 02 40.4 1.2
M. loti MAFF303099 (6746) 344 178 NA 23 08 0.2 42.2 24
M. capsulatus str. Bath  (2959) 412 173 NA 20 14 04 35.0 2.7
M. gallisepticum R (726) 248 168 NA 00 91 1.1 439 43
M. genitalium G-37 (484) : 238 163 NA 00 39 02 53.3 25
M. hyopneumoniae 232 (718) 188 242 NA 07 7.7 01 455 2.9
M. hyopneumoniae 7448 (663) 217 213 NA 06 81 02 456 26
M. hyopneumoniae J  (665) 215 200 NA 08 92 02 45.7 27
M. mobile 163K  (633) 273 160 NA 02 62 02 46.9 3.3
M. mycoides subsp. mycoides SC str. PG1 (1016) 227 152 N/A 0.0 7.0 0.1 52.8 2.3
M. penetrans HF-2  (1037) 238 159 NA 01 101 01 439 6.1
M. pneumoniae M129  (689) 229 141 NA 02 62 02 55.3 1.2
M. pulmonis UAB CTIP (782) 242 171 NA 01 69 04 48.1 3.2
M. synoviae 53 (672) 21.0 137 NA 02 110 0.2 50.9 31
N. gonorrhoeae FA 1090 (2002) 357 131 NA 14 18 0.1 46.2 1.7
N. meningitidis MC58  (2079) 366 132 NA 15 26 02 44.3 1.6
N. meningitidis 22491  (2065) 363 133 NA 16 21 02 45,0 1.6
N. winogradskyi Nb-255 (3122) 361 139 NA 13 18 04 447 1.9
N. europaea ATCC 19718 (2461) 410 162 NA 17 24 05 36.5 1.8
N. sp. PCC 7120 (5366) 287 169 NA 11 19 05 49.0 1.9
O.Y. yellows phytoplasma OY-M (754) 239 158 NA 04 11 01 57.6 1.2
P.sp. UWE25 (2031) 318 136 NA 06 12 06 50.6 15
P. multocida subsp. multocida str. Pm70 (2015) 384 204 NA 3.0 24 02 33.7 1.8
P. profundum SS9 (5413) 333 174 NA 21 22 04 428 1.8
P. luminescens subsp. laumondii TTO1 (4683) 33.7 142 NA 18 25 05 459 14
P. gingivalis W83 (1909) 384 135 NA 06 29 04 429 1.5
P. mannus str. MIT 9313 (2265) 319 154 NA 08 12 0.2 489 1.6
P. mannus str. NATL2A (1890) 314 130 NA 07 16 04 515 1.4
P. mannus subsp. marinus str. CCMP1375 (1882) 314 133 NA 06 14 02 516 1.5
P. marinus subsp. pastoris str. CCMP1986 (1712) 303 139 NA 08 25 02 50.8 15
P. aeruginosa PAO1 (5567) 417 185 N/A 23 30 05 319 2.2
P. fluorescens Pf-5 (6137) 351 193 NA 21 27 04 384 2.2
P. putida KT2440 (5350) 374 178 NA 19 28 03 376 2.2
P. synngae pv. phaseolicola 1448A (4983) 347 183 NA 22 23 04 39.7 2.3
P. syringae pv. syringae B728a (5090) 355 190 NA 22 21 05 38.3 25
P. syringae pv. tomato str. DC3000 (5471) 349 173 NA 20 22 04 408 2.6
P. arcticus 273-4 (2120) 311 162 NA 14 19 02 483 0.9
R. eutropha JMP 134 (5846) 341 178 NA 32 21 03 40.3 2.3
R. solanacearum GMI1000 (3440) 337 151 NA 21 1.7 04 445 24
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R. baltica SH1  (7325) 264 113 NA 06 08 03 57.9 28
R. palustris CGA009 (4814) 326 199 NA 25 16 01 405 29
R. conorii str. Malish7  (1374) 258 146 NA 10 12 0.2 55.3 20
R. felis URRWXCal2 (1400) 301 163 NA 10 19 02 486 1.9
R. prowazekii str. Madrid E  (835) 299 208 NA 11 23 01 43.8 1.9
R. typhi str. Wilmington ~ (838) 304 191 NA 10 18 0.1 458 1.8
S. enterica subsp. enterica Choleraesuis sfr. SC-B67 (4445) 339 182 NA 28 1.7 07 411 1.6
S. enterica subsp. enterica Paratypi A ATC 9150 (4093) 355 191 NA 31 1.7 06 38.2 1.8
S. enterica subsp. enterica Typhi str. CT18 (4395) 350 18.2 N/A 28 16 05 40.2 1.7
S. enterica subsp. enterica Typhi Ty2 (4318) 353 184 NA 238 16 05 39.7 18
S. typhimurium LT2 (4425) 355 193 N/A 31 19 07 37.8 1.8
S. oneidensis MR-1 (4323) 305 161 N/A 24 26 05 458 2.1
S. flexneri 2a str. 2457T (4068) 351 171 NA 29 15 03 41.6 1.5
S. flexneri 2a str. 301 (4180) 345 173 NA 28 17 03 419 1.6
S. sonnei Ss046  (4223) 355 170 NA 30 16 04 40.9 1.6
S. pomeroyi DSS-3  (3810) 391 175 NA 23 08 05 37.2 27
S. meliloti 1021 (3341) 411 172 NA 24 09 04 35.7 2.4
S. elongatus PCC 6301 (2525) 31.2 168 NA 1.1 07 03 48.2 1.7
S. sp. WH 8102 (2517) 346 129 NA 10 06 06 48.6 1.9
S. sp. PCC 6803 (3167) 320 171 NA 14 13 03 46.4 1.7
T. elongatus BP-1  (2475) 335 176 NA 09 07 01 457 1.7
T. maritima MSB8  (1858) 56.0 173 NA 16 08 04 21.2 29
T. thermophilus HB27  (1982) 463 188 N/A 16 08 04 30.4 1.9
T. thermophilus HB8  (1973) 453 163 NA 12 10 04 33.6 2.2
T. denitrificans ATCC 25259 (2827) 379 174 NA 20 20 02 38.5 2.1
T. denticola ATCC 35405 (2767) 286 191 NA 08 21 03 47 1 20
T. pallidum subsp. pallidum str. Nichols (1036) 394 171 NA 15 17 03 38.1 1.9
U. parvum serovar 3 str. ATCC 700970 (614) 280 150 N/A 02 46 02 50.5 1.6
V. cholerae O1 biovar eltor str. N16961 (3835) 340 178 NA 21 1.8 07 422 1.5
V. fischeri ES114  (3747) 357 192 NA 23 29 05 37.7 1.8
V. parahaemolyticus RIMD 2210633 (4832) 352 174 NA 23 27 08 39.7 2.0
V. vulnificus CMCP6  (4514) 360 184 NA 22 25 08 38.2 20
V. vulnificus YJ016  (4955) 333 171 NA 18 24 07 428 20
W. glossinidia endosymbiont of Glossina (611) 255 236 NA 08 31 05 445 20
W. endosymbiont of Drosophila melanogaster (1195) 336 133 NA 03 16 0.1 49.3 1.8
W. endosymbiont strain TRS of Brugia malayi (805) 360 162 NA 05 20 01 432 20
W. succinogenes DSM 1740 (2044) 443 206 NA 20 22 02 28.4 23
X. axonopodis pv. citri str. 306 (4312) 295 164 NA 19 33 09 457 2.3
X. campestris pv. campestris str. 8004 (4273) 292 164 NA 17 32 07 46.3 2.4
X. campestris pv. campestris str. ATCC 33913 (4181) 296 166 NA 18 33 07 455 25
X. oryzae pv. oryzae KACC10331 (4637) 326 129 NA 16 21 06 483 19
X fastidiosa 9a5¢c  (2766) 30,2 112 NA 11 1.6 05 54 1 1.5
X. fastidiosa Temecula1l (2034) 349 141 NA 14 21 06 447 2.2
Y. pestis biovar Medievalis str. 91001 (3895) 316 187 NA 31 25 06 417 1.8
Y. pestis CO92 (3885) 324 184 NA 31 27 06 411 1.7
Y. pestis KIM  (4086) 305 178 NA 30 27 06 43.8 16
Y. pseudotuberculosis IP 32953 (3901) 319 193 NA 33 28 07 40.1 2.0
Z. mobilis subsp. mobilis ZM4 (1998) 296 133 NA 12 28 09 50.3 2.1
B. anthracis str. A2012 (5544) 473 217 1.2 NA NA 30 26.2 07
B. anthracis str. Ames (5311) 466 217 11 NA NA 47 253 0.7
B. anthracis str. 'Ames Ancestor' (5309) 466 217 11 NA NA 47 25.3 0.7
B. anthracis str. Sterne (5287) 486 232 12 NA NA 21 241 0.8
B. cereus ATCC 10987 (5603) 451 213 10 NA NA 65 251 0.9
B. cereus ATCC 14579 (5234) 485 217 09 NA NA 35 24.4 1.0
B. cereus ZK (5134) 490 239 1.2 NA NA 19 231 0.9
B. clausii KSM-K16  (4096) 544 231 03 NA NA 17 18.1 25
B. halodurans C-125 (4066) 557 207 02 NA NA 39 16.8 27
B. licheniformis ATCC 14580 (4196) 51.0 226 05 NA NA 29 221 0.8
B. licheniformis ATCC 14580 (DSM 13) (4161) 508 224 05 NA NA 33 221 0.9
B. subtilis subsp. subtilis str, 168 (4112) 506 222 05 NA NA 26 235 0.7
B. thuringiensis serovar konkukian str. 97-27 (5117) 489 243 12 NA NA 21 226 0.9
B. longum NCC2705 (1727) 547 205 13 NA NA 11 218 06
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C. acetobutylicum ATCC 824 (3672) 469 211 08 NA NA 25 28.3 0.4
C. perfringens str. 13 (2660) 545 221 08 NA NA 21 19.1 1.3
C. tetani E88 (2373) 53.3 238 12 NA NA 10 19.5 1.2
C. diphtheriae NCTC 13129 (2272) 523 190 08 NA NA 22 246 1.2
C. efficiens YS-314 (2950) 549 184 04 NA NA 19 23.0 1.4
C. glutamicum ATCC 13032 (2993) 521 201 05 NA NA 16 244 1.4
C. glutamicum ATCC 13032 (3057) 509 199 05 NA NA 24 249 1.5
C. jeikeium K411 (2137) 544 178 04 NA NA 27 234 13
D. ethenogenes 195 (1580) 529 180 04 NA NA 34 241 1.1
D. sp. CBDB1 (1458) 551 193 03 NA NA 19 224 1.1
D. radiodurans R1 (2997) 493 152 06 NA NA 18 327 0.5
E. faecalis V583 (3113) 487 200 15 NA NA 37 25.8 0.3
G. kaustophilus HTA426 (3498) 570 198 03 NA NA 30 18.8 1.0
L. acidophilus NCFM (1864) 444 210 22 NA NA 32 28.9 0.3
L. johnsonii NCC 533 (1821) 440 245 14 NA NA 10 28.9 0.2
L. plantarum WCFS1 (3008) 417 213 15 NA NA 13 339 04
L. lactis subsp. lactis 111403 (2321) 482 194 1.0 NA NA 19 29.2 0.4
L. xyli subsp. xyli str. CTCBO7 (2030) 486 181 03 NA NA 29 296 0.5
L. innocua Clip11262 (2968) 548 197 16 NA NA 14 219 0.6
L. monocytogenes EGD-e (2846) 551 211 19 NA NA 15 19.7 0.7
L. monocytogenes str. 4b F2365 (2821) 534 212 20 NA NA 27 20.0 0.8
M. avium subsp. paratuberculosis str. k10 (4350) 552 152 03 NA NA 16 274 0.4
M. bovis AF2122/97 (3920) 527 151 02 NA N/A 35 28.0 0.5
M. leprae TN  (1605) 53.2 156 0.0 NA NA 19 287 0.7
M. tuberculosis CDC1551 (4187) 499 140 02 NA NA 50 304 0.5
M. tuberculosis H37Rv  (3927) 531 152 02 NA NA 34 275 0.5
N. farcinica IFM 10152 (5683) 558 147 03 NA NA 21 259 1.2
O. iheyensis HTE831 (3500) 501 232 03 NA NA 23 22.0 22
P. acnes KPA171202 (2297) 540 211 03 NA NA 17 226 0.4
S. aureus subsp. aureus COL (2615) 473 208 12 N/A NA 538 244 0.5
S. aureus subsp. aureus MRSA252 (2656) 484 209 1.0 N/A NA 438 245 0.5
S. aureus subsp. aureus MSSA476 (2579) 476 216 11 NA NA 49 245 0.5
S. aureus subsp. aureus Mu50 (2714) 480 207 1.3 NA NA 46 251 0.4
S. aureus subsp. aureus MW2 (2632) 473 213 12 NA NA 52 245 0.5
S. aureus subsp. aureus N315 (2593) 481 213 12 NA NA 45 245 0.4
S. epidermidis ATCC 12228 (2419) 467 203 1.2 NA NA 73 239 0.5
S. epidermidis RP62A (2494) 48.0 188 12 N/A NA 66 24.9 0.5
S. haemolyticus JCSC1435 (2676) 493 199 09 NA NA 43 25.2 03
S. saprophyticus subsp. saprophyticus ATCC 15305 (2446) 501 224 05 NIA NA 31 232 0.8
S. agalactiae 2603V/R (2124) 489 204 16 NA NA 41 245 0.5
S. agalactiae NEM316  (2094) 498 218 21 NA NA 16 243 0.5
S. mutans UA159 (1960) 482 214 07 NA NA 34 26.2 0.2
S. pneumoniae R6 (2043) 524 205 09 NA NA 26 23.0 0.6
S. pneumoniae TIGR4 (2094) 51.2 196 09 NA NA 60 21.9 0.4
S. pyogenes M1 GAS (1697) 51.0 189 11 NA NA 22 26.3 0.5
S. pyogenes MGAS10394 (1886) 493 174 11 NA NA 30 29.0 0.2
S. pyogenes MGAS315 (1865) 503 17.0 12 NA NA 20 29.2 0.3
S. pyogenes MGAS5005 (1865) 487 175 1.0 NA NA 35 289 0.4
S. pyogenes MGAS6180 (1894) 477 176 14 N/A NA 32 29.8 0.3
S. pyogenes MGAS8232 (1845) 498 172 1.0 NA NA 25 29.2 0.4
S. pyogenes SSI-1 (1861) 498 169 12 NA NA 26 29.2 0.3
S. thermophilus CNRZ1066 (1915) 491 182 05 NA NA 24 29.6 0.2
S. thermophilus LMG 18311 (1889) 493 187 07 NA NA 22 289 0.2
S. avermitilis MA-4680 (7575) 525 167 04 NA NA 29 26.9 0.6
S. coelicolor A3(2) (7769) 512 165 04 NA NA 34 27.2 1.2
S. thermophilum |IAM 14863 (3337) 570 205 04 NA NA 24 18.0 1.7
T. tengcongensis MB4 (2588) 599 201 05 NA NA 14 17.1 1.0
T. fusca YX (3110) 561 177 06 NA NA 20 221 1.6
T. whipplei str. Twist (808) 524 215 06 NA NA 14 234 08
T. whipplei TW08/27 (783) 531 226 08 NA NA 17 20.7 1.1
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