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ABSTRACT 

Predicting the subcellular localization of a protein is a critical step in 

processes ranging from genome annotation to drug and vaccine target discovery. 

Previously developed methods for localization prediction in bacteria exhibit poor 

predictive performance and are not conducive to the high-throughput analysis 

required in this era of genome-scale biological analysis. We therefore developed 

PSORTb, a hig h-precision, hig h-throug hput tool for the prediction of bacterial 

protein localization. PSORTb implements a multi-component approach to 

prediction, incorporating the detection of several sequence features known to 

influence subcellular localization. With a reported overall precision of 96%, it is 

the most precise method available and one of the most comprehensive methods 

- capable of assigning a query protein to one or more of four Gram-positive or 

five Gram-negative localization sites. The PSORTb algorithm comprises a series 

of analytical steps, each step - or module - being an independent piece of 

software which scans the protein for the presence or absence of a particular 

sequence feature. Modules include: SCL-BLAST for homology-based detection, 

the HMMTOP transmembrane helix prediction tool, a signal peptide prediction 

tool, a series of frequent subsequence-based support vector machines, as well 

as motif and profile-matching modules. The modules return as output either a 

predicted localization site or - if the feature is not detected - a result of 

"unknown". The output is then integrated by a Bayesian network into a final 



prediction. Development of PSORTb also required the creation of PSORTdb, a 

database storing both known and predicted localization information for bacterial 

proteins. This is a valuable resource to both the localization prediction and 

microbial research communities, providing a source of training data for new 

predictive algorithms and acting as a discovery space. The release of PSORTb 

v.2.0 allowed us to carry out a number of analyses related to localization. We 

performed the first genome-wide computational and laboratory screen for N- 

terminal signal peptides in the opportunistic pathogen Pseudomonas aeruginosa, 

used PSORTb as a complement to laboratory-based high-throughput 2D gel 

studies of individual cellular compartments, and examined protein localization in 

a global context, revealing trends with implications for adaptive evolution in 

microbes. 
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1 AN INTRODUCTION TO PROTEIN SUBCELLULAR 
LOCALIZATION IN BACTERIA 

1 .I Protein localization in the bacterial cell 

The Eubacterial domain of life comprises a diverse group of bacteria. 

Bacterial cells come in many shapes and sizes; however, regardless of the cell's 

gross morphology, the underlying structure of all bacterial cells can be defined 

quite simply. Microscopy, staining, and other analytical techniques have revealed 

that all bacterial cells consist of a cytoplasm - or cytosol -surrounded by a 

phospholipid bilayer- the cytoplasmic membrane. Beyond this innermost part of 

the cell, however, bacteria can be divided into two groups, each of which shows 

markedly different outer layers (Figure 1 . I ) .  These groups both differ from cells in 

the Archaebacterial domain, which, though similar in general appearance, do 

exhibit some differences at the physiochemical level. 



Figure 1.1 : The Gram-positive (left) and Gram-negative (right) bacterial cell. 
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The Gram-positive bacteria are the simpler of the two groups, surrounded 

by a thick layer of peptidoglycan - or murein - known as the cell wall. The Gram- 

negative bacteria are surrounded by a structure known as the cell envelope. This 

consists of a comparatively thin peptidoglycan layer - the equivalent of the 

Gram-positive cell wall, a second membrane called the outer membrane, and the 

space between the cytoplasmic - or inner - and outer membranes, termed the 

periplasm. This outer membrane is notably different from the symmetrical 

phospholipid bilayer forming the inner membrane - it is asymmetrical, with the 

outermost leaflet containing a molecule called lipopolysaccharide, or endotoxin. 

All bacterial proteins are synthesized in the cytoplasm and indeed many 

remain here, however a number of proteins are targeted to one or more of the 

cellular compartments - or localization sites - described above. In both Gram- 



negative and Gram-positive bacteria, a protein may also be secreted out of the 

cell entirely into the extracellular environment. 

Thus, in Gram-positive bacteria, a protein may be generally targeted to 

one or more of four localization sites: the cytoplasm, cytoplasmic membrane, cell 

wall, or extracellular space, while in Gram-negative bacteria, a protein may be 

targeted to one or more of five sites: the cytoplasm, cytoplasmic membrane, 

periplasm, outer membrane or extracellular space. 

1.2 Signals governing protein targeting in bacteria 

1.2.1 Bacterial transport systems 

In order to carry out its function within the cell, a bacterial protein must 

frequently be targeted to a compartment other than the cytoplasm. This process 

necessitates traversing one or more localization sites, and is facilitated by the 

cell's complement of transport systems. 

Bacterial transport systems are reasonably well-conserved between 

Gram-negative and Gram-positive bacteria, despite the difference in morphology 

between the two groups. The discussion below focuses on systems present in 

the more complex Gram-negative bacteria, with section 1.2.6 describing 

differences between the systems described and those present in Gram-positive 

organisms. A description of the targeting signals associated with each pathway is 

given in sections 1.2.2 - 1.2.5. 



1.2.2 Type I transporters - ABC transporters 

Type I transport is considered by some to be the simplest of the transport 

systems in bacteria - proteins are shuttled from the cytoplasm directly to the 

extracellular space in one step, using a multi-protein translocator called an ABC 

transporter which spans the entirety of the cell envelope (Holland et al., 2005). 

Energy for the process is produced by ATP hydrolysis, and the system is able to 

transport substrates ranging in size from 19kDa (Letoffe et al., 1994) to 800kDa 

(Hinsa et al., 2003). The canonical Type I transport system is the E. coli 

haemolysin system (Hly), consisting of the cytoplasmic membrane protein HlyB, 

the periplasm-spanning protein HlyD, and the outer membrane channel TolC 

(Koronakis and Hughes, 1993). 

Proteins destined for secretion through the type I system are recognized 

post-translationally via a C-terminal signal, which is typically located in the vicinity 

of a glycine-rich repeat (Mackman et al., 1987; Delepelaire and Wandersman, 

1990; Letoffe and Wandersman, 1992). With the exception of certain 

metalloproteases which contain a C-terminal D F W  motif (Ghigo and 

Wandersman, 1994), type I targeting signals are neither well-conserved nor 

defined by characteristic motifs. 

1.2.3 Type II transporters - the general secretory pathway (GSP) 

The general secretory pathway, or GSP, is the transport system used by 

the majority of exported proteins and is well-conserved between both Gram- 

negative and Gram-positive bacteria. In the first step of the GSP, proteins are 

targeted to and translocated across the cytoplasmic membrane, typically via the 



Sec-dependent pathway. For Gram-positive bacterial proteins, this results in a 

membrane, cell wall or extracellular localization, while in Gram-negative 

organisms, this results in a cytoplasmic membrane or periplasmic localization. In 

the second step of the GSP, required only in Gram-negative bacteria, proteins 

are directed to one of multiple terminal branches of the pathway for targeting to 

the outer membrane or the extracellular space. Figure 1.2, based on a figure by 

Pugsley (1 993a), presents a schematic representation of the GSP in Gram- 

negative bacteria. 

Figure 1.2: The general secretory pathway in Gram-negative bacteria. 

In the first step of the GSP, proteins are directed to and across the 

cytoplasmic membrane. For proteins whose final localization is the cytoplasmic 

5 



membrane, this is either accomplished via spontaneous insertion of the protein 

into the membrane (de Gier et al., 1998), or through SRP (signal recognition 

particle)-mediated translocation. In the latter process, SRP - comprising a 4.5s 

RNA and the Ffh protein - recognizes hydrophobic segments of a nascent 

polypeptide (Luirink et al., 1992), and directs the protein to the FtsY receptor 

(Luirink et al., 1994). The interaction between Ffh and FtsY results in the release 

of the nascent protein from the SRP and its transfer to the Sec translocase. 

Most proteins destined for other localization sites are post-translationally 

shuttled directly to the Sec translocase by the SecB chaperone. The exact region 

of protein recognized by SecB remains unknown, however all proteins utilizing 

this pathway exhibit N-terminal signal peptides and this leader sequence may 

thus represent the SecB substrate (Nakai, 2000). Following binding of SecB to a 

protein, SecB binds its receptor, SecA, a membrane-associated protein that 

provides the energy for the subsequent translocation step (Fekkes and Driessen, 

1999). SecA then interacts with the Sec translocase, comprising SecY, SecE and 

SecG (Nishiyama et al., 1994). 

A small proportion of Gram-negative bacterial proteins destined for the 

terminal branches of the GSP are exported by a Sec-independent pathway, the 

TAT - or twin-arginine - transporter. Although the chaperone responsible for 

recognizing folded proteins and directing them to the TAT transporter has not yet 

been elucidated, the structure of the transporter apparatus itself is known. It 

comprises three cytoplasmic membrane proteins: TatA, TatB and TatC. TatA 



represents the translocation pore, and TatB and TatC are thought to be involved 

in substrate recognition (Muller and Klosgen, 2005). 

In the second step of the GSP, Gram-negative bacterial proteins are 

directed to the outer membrane or the extracellular space. In the case of outer 

membrane proteins, it is thought that the proteins insert into the outer membrane 

(de Cock et al., 1990a, 1990b) with the assistance of both a chaperone and 

binding to a periplasmic lipopolysaccharide (Kleinschmidt and Tamm, 2002). 

Extracellular proteins, however, must be directed to a terminal branch of the GSP 

for translocation across the outer membrane. Multiple terminal branches exist 

and tend to be specialized with regard to their substrates. The two well-studied 

branches are involved in the translocation of pili and of substrates including 

enzymes and toxins. 

Pili proteins bind the pilin chaperone PapD in the periplasm (Hultgren et 

al., 1989) and subsequently bind the outer membrane PapC, through which they 

are translocated and assembled into a pilus (Dougan et al., 1983). Extracellular 

enzymes and toxins are translocated via what was initially referred to as the main 

terminal branch of the GSP, but which is now known as the secreton-dependent 

pathway (SDP). In this system, best represented by translocation of the 

Klebsiella oxytoca pullulanase (Pugsley, 1993b), a single substrate is 

translocated across the outer membrane by a dedicated secreton - a protein 

complex comprising 12-1 6 subunits (Sandkvist, 2001). 

The signals directing a protein to the GSP determine which of the intial 

branches of the pathway a protein will take. Transmembrane alpha-helices 



appear to be sufficient to direct a protein to the SRP-mediated Sec pathway, 

while N-terminal signal peptides are required for Sec and TAT-mediated 

translocation. These are typically short sequences with a tripartite positive- 

hydrophobic-polar character suitable for partitioning into lipid bilayers. The N 

region is positively charged, the hydrophobic H region is a minimum of 8 

hydrophobic residues in length and forms a membrane-spanning helix, and the 

C-region often contains a signal peptidase recognition site (von Heijne, 1985). 

The majority of tripartite signal peptides are cleaved by signal peptidase I 

(SPase I), and are known as type I signal peptides. In some cases however, 

such signal peptides may remain uncleaved, serving as signal anchors for inner 

membrane proteins (von Heijne, 1988). Other types of tripartite signal peptides 

exhibit unique characteristics in their structure and are cleaved by different types 

of signal peptidases. For example, TAT substrates contain signal peptides similar 

to those processed by SPase I, however they also contain the twin arginine motif 

RRXFL[KR] upstream of their hydrophobic region (Chaddock et al., 1995). Signal 

peptidase II cleaves type II signal peptides, which are associated with 

lipoproteins. Although these are similar to type I signal peptides, cleavage occurs 

immediately upstream of a Cys residue, which is part of the N-terminal lipobox 

motif that characterizes these signal peptides (von Heijne, 1989). Prepilin 

peptidase cleaves type IV signal peptides, which differ from traditional N-terminal 

signal peptides in that they are short (-6 residues) with no tripartite structure. 

Instead cleavage occurs downstream from a glycine residue that precedes a long 

N-terminal stretch of hydrophobic amino acids in the mature protein (LaPointe 



and Taylor, 2000). A GFTLIE motif is often found in prepilin peptidase substrate 

signal peptides (Lory, 1994). 

Signals directing a periplasmic intermediate to the outer membrane or to a 

terminal branch of the GSP are not well-understood, however. The proposed 

model of insertion for outer membrane proteins implies a structural basis for 

targeting, similar to the fashion in which transmembrane alpha helices direct the 

insertion of cytoplasmic membrane proteins. Outer membrane proteins adopt a 

beta-barrel structure, comprising an even number of beta strands - from eight 

(Vogt and Schulz, 1999) to 22 (Locher et al., 1998; Ferguson et al., 1998) - 

arranged in an anti-parallel fashion to form a barrel-like pore. Unlike the alpha- 

helices found in cytoplasmic membrane proteins, though, these beta-strands 

provide little in the way of information content (Schulz, 2002), beyond the fact 

that the C-terminal residue is frequently phenylalanine (Pohlner at al., 1987). 

Sequences of known strands exhibit little similarity to each other, and they tend 

to be about half the length of an alpha helical segment. Thus specific signals 

directing a protein to the terminal branches of the GSP have not yet been 

determined, although the role of periplasmic chaperones in the process is 

becoming increasingly apparent (Schleiff and SOH, 2005). 

1.2.4 Type V transporters - autotransporters 

Type V transporters are unique to the Gram-negative bacteria (Henderson 

et al., 1998). These proteins are autotransporters - or self-transporters - 

comprising an N-terminal passenger domain and a C-terminal transporter 

domain. The C-terminal domain forms a beta-barrel in the outer membrane 



through which the passenger domain is translocated. In most cases, the 

passenger domain is then cleaved and released into the extracellular milieu 

(Klauser et al., 1990, 1992). The translocation of Neisseria gonorrhoeae lgAl is 

the canonical example of type V transport (Pohlner et al., 1987). Most 

autotransporters possess a type I signal peptide, however, as with the integral 

outer membrane proteins in the GSP system, little is known about the targeting 

signals contained within the transporter domain. 

1.2.5 Type Ill and IV transporters - delivery of DNAIprotein into host cells 

The two remaining transport systems in bacteria are primarily involved in 

the direct injection of cytoplasmic DNA or protein substrates into host cells upon 

contact. In type Ill secretion, an effector protein is translocated from the 

cytoplasm into a eukaryotic cell through the needle complex, a multimer 

comprising as many as 20 different proteins (Hueck, 1998). Hypotheses 

regarding the signal that targets an effector for secretion through the needle 

complex include a motif in the 5' end of the effector mRNA (Anderson and 

Schneewind, 1999) and an N-terminal chaperone binding site located in the first 

20 amino acids of the effector (Lloyd et al., 2001). Due to the markedly low 

sequence similarity between different effector proteins, and the lack of 

understanding regarding signals involved in Type Ill transport, identifying proteins 

localized by the Type Ill system has been notoriously difficult. 

In type IV secretion, which remains poorly understood, DNA, 

nucleoproteins and proteins are translocated using machinery related to that 

involved in conjugation (Christie, 2001). Substrates are first translocated across 



the inner membrane using both Sec-dependent and Sec-independent pathways, 

and are then translocated across the outer membrane by an assembly of pilus- 

like proteins (Christie, 2001; Fischer et al., 2002; Burns, 2003). No signal 

targeting type IV effectors for secretion is yet known. 

1.2.6 Differences in protein transport in Gram-positive bacteria 

Gram-positive bacteria lack the outer membrane and periplasm of Gram- 

negative bacteria, and are instead surrounded by a thicker layer of 

peptidoglycan, termed the cell wall. With a significantly less complex cell wall, 

protein transport in this class of organisms is a simpler affair than in Gram- 

negative organisms, and most transport systems are not present. Protein 

targeting signals in Gram-positive bacteria, however, are quite similar to those of 

the Gram-negatives. 

Most Gram-positive bacterial proteins are secreted via the Sec-dependent 

pathway, a pathway which is strongly conserved between Gram-negative and 

Gram-positive bacteria. Type I and II signal peptides, found in both classes of 

organism, are also remarkably similar in overall composition, however signal 

peptides from Gram-positive organisms do tend to be longer (Nielsen et al., 

1997). Gram-positive bacteria also employ type I secretion via ABC transporters, 

however in these organisms, the transporter must span only the cytoplasmic 

membrane. In B. subtilis, the transporter can consist of one to four proteins. In 

the four-protein system, the transporter comprises two independent integral 

membrane proteins and two cytoplasmic substrate-binding proteins, while in the 



one-protein system, these components have fused into a single channel (Quentin 

et al., 1999). 

1.3 Laboratory-based methods for localization determination 

A protein's localization can be determined in the laboratory through any 

one of several techniques and their many variations. Only certain techniques are 

readily applicable to bacteria, however, and certain methods for localization 

determination are more common than others. The following section provides a 

brief introduction to some of the most frequently used techniques for determining 

protein subcellular localization for bacteria, along with a summary of their 

limitations. 

1 .XI  Microscopy-based visualization 

Microscopy-based methods for localization are employed quite frequently 

on account of their high precision and the quality of the information they provide 

- visualization of a protein in situ not only allows one to define its localization, but 

also permits one to examine its localization over time, as some proteins can be 

found in different subcellular compartments at different time points. In these 

methods, a protein of interest is tagged using a fluorescent protein or is 

incubated with a labelled antibody. Cells are then visualized under a microscope, 

with areas of fluorescence indicating the localization of the tagged or antibody- 

bound protein. 

Green fluorescence protein (GFP), a 238 amino acid fluorophore from the 

jellyfish Aequoria victoria, is frequently fused to a protein of interest for such 



studies, as GFP itself is not specifically localized within the cell (Chalfie et al., 

1994). Provided a successful fusion can be generated, the product of any gene 

can be visualized. In immunofluoresence microscopy, however, visualization is 

only possible if an antibody to the protein of interest is available. The antibody is 

coupled to a fluorescent dye, such as rhodamine or fluorescein, which permits 

visualization. While both of these methods typically use confocal scanning 

microscopy at the visualization stage, localization determination by electron 

microscopy is also possible when a protein has been tagged with an electron- 

dense particle such as colloidal gold, for example (Strachan and Read, 2004). 

I .3.2 PhoA fusion 

A second approach for localization determination in Gram-negative 

bacteria also relies on gene fusion, but in this case, visualization simply requires 

growth of a bacterial culture. 

The enzyme alkaline phosphatase is encoded by the gene phoA and 

exhibits localization-dependent activity: the protein is active only when localized 

to the periplasm. In the alkaline phosphatase fusion technique (Manoil and 

Beckwith, 1985), the gene of interest is fused to a copy of phoA which has been 

truncated to remove its native type I signal peptide. If the product of the gene of 

interest contains an export signal, the phoA:gene fusion product will reach the 

periplasm and become enzymatically active. When grown on 5-bromo-4-chloro- 

3-indolyl phosphate, colonies containing the fusion product will appear blue. If the 

gene of interest's product does not contain an export signal, the fusion product 



will remain in the cytoplasm and growth on on 5-bromo-4-chloro-3-indolyl 

phosphate will yield white colonies. 

Using the phoA fusion technique, proteins containing an export signal 

directing them to the periplasm and beyond can be identified. This includes 

proteins with signal peptides, transmembrane alpha-helices, or other sequence- 

encoded targeting motifs. 

I .3.3 Subcellular fractionation 

Perhaps the most classic technique for determining protein localization is 

subcellular fractionation followed by protein identification (Albertsson, 1956). In 

this approach, the bacterial cell is first separated into its constituent 

compartments using a series of detergent extractions and/or centrifugations. The 

proteins resident in each compartment are then resolved using one of several 

possible methods, including gel electrophoresis, chromatographic separation, 

and/or mass spectrometry. This technique not only provides immediate evidence 

of a protein's localization, but it also has the advantage of generating results for a 

large number of proteins in a single analysis. 

I .3.4 Limitations of laboratory-based methods 

The methods described above and other laboratory-based techniques are 

capable of experimentally verifying a protein's localization. This does not mean, 

however, that they always produce a correct result. False positives and negatives 

are a possibility in any of these analyses, and each exhibits its own specific 

limitations. 



In the case of fluorescently tagged proteins, tag insertion has the potential 

to disrupt a targeting sequence, resulting in an improperly localized gene 

product. This is especially true for proteins utilizing a C-terminal secretion signal. 

Tagged proteins also display a tendency to aggregate. Microscopy-based 

methods are also difficult to perform in a high-throughput fashion. Production of a 

large number of gene fusions does not yield a 100% success rate, and screening 

of successful fusions requires automated visualization methods which may not 

always be correct in their assessment of localization (Hu and Murphy, 2004). 

PhoA fusions are only possible in Gram-negative bacteria, and cannot 

provide information beyond whether a protein is exported to - or past - the 

periplasm. Like GF P fusions, PhoA fusions can disrupt a native targeting signal, 

resulting in a false negative, and any fusion experiment runs the risk of 

cytotoxicity. 

Fractionation studies, while powerful, are limited to the identification of 

those proteins expressed in a cell at a specific time under specific conditions, 

thus determining the localization of a protein of interest may not always be 

possible. Low-a bundance proteins can also be easily missed (Stasyk and Hu ber, 

2004). Furthermore, the identification of the proteins isolated is not always 

possible - sometimes a database match to a protein cannot be determined. 

Contamination by proteins from neighbouring subcellular fractions may also 

occur. 

Most importantly, regardless of the method used, there are two basic 

limitations which cannot be overcome in the lab. Laboratory-based localization 



determination methods require a notable investment of time and laboratory 

resources in comparison to a computational prediction, which can be generated 

quickly using a computer alone. 

1.4 Computational methods for localization prediction 
in bacteria 

1.4.1 The importance of computational predictive methods 

As described above, laboratory-based methods for protein localization 

carry a number of caveats, chief among them the time and resources required. In 

order to reduce the investment of effort and money that go into a localization 

experiment, it is desirable to narrow the focus of such an experiment using pre- 

existing knowledge. By computationally identifying one or more signals known to 

influence or correlate with protein localization, a prediction of which cellular 

compartment, or compartments, a protein is likely resident at can be generated 

using sequence information alone. With the explosion in publicly available 

sequence data, such prediction has become a critical component of biological 

research. Indeed, without the rapid, high-throughput information provided by 

computational analysis of sequences in general, the large amounts of data 

generated by sequencing projects cannot be used to their full potential. Predicted 

protein localization data, in particular, affords a number of insights that can aid in 

the prioritization of proteins for further study. 

Predicted localization information can be used in the genome annotation 

process. The ultimate goal of many annotation projects is to generate predicted 

functions for each gene product in the genome. Annotation transfer by homology 



is typically used to assign function to proteins, however this is only possible for 

the portion of an organism's gene complement that shows similarity to other 

annotated genes. For the remaining proteins, other functional clues are required. 

Because cellular compartment and function are closely related, a protein's 

predicted localization can provide clues to its function and vice-versa; for 

example, integral outer membrane proteins are typically involved in the uptake 

andlor efflux of specific substrates, while a protein annotated as DNA-binding is 

likely to be found in the cytoplasm. 

Knowing the cellular compartment that a protein is likely resident at can 

also aid in experimental design and proteomics-based analysis. If an attempt to 

isolate a particular protein is being made, predicting the protein's localization can 

narrow down the search space significantly. Rather than inspecting a whole cell 

lysate for a protein of interest, for example, the cell can be fractionated into its 

constituent compartments and only the compartment of interest analyzed. 

Section 7 describes how predicted localization information can also be employed 

to screen the results of a subfractionation analysis for potential contaminants or 

other errors. 

Of all the potential applications of localization prediction, perhaps most 

relevant to the medical community is the fact that being able to rapidly identify 

the surface-exposed proteins in a bacterial genome can facilitate the discovery of 

novel drug targets and potential vaccine components. Traditionally, "subunit" 

vaccines against bacterial infection have been formulated by infecting an animal 

with a bacterium, using antisera to identify surface-exposed immuno-reactive 



proteins, purifying these proteins and cloning them into an expression system, 

and then analyzing individual regions of the cloned protein to identify especially 

reactive protein subunits for use as vaccine candidates (Chakravarti et al., 2000). 

Localization prediction by computer, however, could potentially identify all of the 

potentially surface-exposed proteins encoded in a given genome within minutes, 

significantly narrowing the search space for drug and vaccine target discovery 

and reducing the time and expense associated with these procedures. There is 

therefore a strong interest in improving the computational prediction of protein 

subcellular localization for medically-relevant bacteria. In addition, such 

subcellular localization prediction can also aid in the identification of cell-surface 

proteins that may be suitable targets for a new diagnosticldetection method (Ertl 

et al., 2003). For non-pathogenic bacteria of environmental importance, there is 

also an interest in identifying cell-surface proteins as part of efforts to develop 

microbial detection methods to identify such microbes in environmental samples. 

1.4.2 Early computational methods for localization prediction in bacteria 

The roots of computational prediction of protein localization lie in the 

identification of individual sequence features known to influence or correlate with 

localization. Many of the first approaches involved the prediction of type I signal 

peptides - N-terminal protein sequences directing the export of a protein out of 

the bacterial cytoplasm via the Sec machinery. Weight matrix-based analyses or 

related approaches were frequently employed to predict these signal sequences. 

In this technique, frequency values reflecting each amino acid's occurrence in 

known signal peptides are assigned to each residue in a query sequence. A 



sliding window then moves down the sequence, summing the frequency scores. 

In this fashion, the region most likely to represent a signal peptide can easily be 

identified (McGeoch, 1985; von Heijne, 1986; Folz and Gordon, 1987; Popowicz 

and Dash, 1988). Neural network techniques (Ladunga et al., 1991 ; Schneider et 

al., 1993; Schneider and Wrede, 1993; Nielsen et al., 1997) and Hidden Markov 

Models (Nielsen and Krogh, 1998) were later employed, offering an improvement 

in predictive power. 

Other approaches to localization prediction involved the prediction of 

transmembrane alpha helices - secondary structure elements that traverse the 

cytoplasmic membrane. The first of these methods implemented sliding windows 

and hydrophobicity scales to search for membrane spanning segments (Kyte and 

Doolittle, 1982; Eisenberg et al., l984), while later methods introduced additional 

considerations, including the use of the "positive-inside rule", which states that 

positively charged residues occur at a higher frequency on the cytoplasmic face 

of the membrane (von Heijne, 1992), and the use of neural networks and Hidden 

Markov Models (Nakai and Kanehisa, 1992; Hofman and Stoffel, 1992; Claros 

and von Heijne, 1994; Jones et al., 1994; Rost et al., 1996; Cserzo et al., 1997; 

Persson and Argos, 1997; Sonnhammer et al., 1998; Tusnady and Simon, 1998; 

White and Wimley., 1999; Deber et al., 2001 ; Krogh et al., 2001 ; Juretic et al., 

2002). 

While signal peptide and transmembrane helix predictions represented a 

critical first step on the route to complete localization prediction, their limited 

utility is clear. Each method is only capable of providing information regarding a 



single localization site and, in the case of a positively-identified signal peptide, 

the extent of this information is only the knowledge that the protein is likely not 

cytoplasmic. False positive results were a frequent problem, and false negatives 

an even greater problem. Early signal peptide prediction methods in particular 

were not capable of recognizing a variety of non-traditional sorting signals. 

At the same time as great strides were being made into feature prediction 

as described above, early work into computationally sorting a protein to one of 

multiple localization sites was beginning. In 1991, Nakai and Kanehisa released 

PSORT I, an expert system for localization prediction in Gram-negative bacteria. 

Capable of sorting a query protein to the cytoplasm, cytoplasmic membrane, 

periplasm or outer membrane (but not the extracellular space), PSORT I 

represented the first true protein subcellular localization prediction method. The 

program employed a multi-component approach to prediction: features 

influencing localization - including amino acid composition, signal peptides, 

functional motifs and transmembrane helices - were identified in a query protein, 

and the resulting information was integrated to generate a final prediction using 

an iiif-then" rule system. On a set of 106 bacterial proteins, PSORT I was able to 

assign 83% of them to the correct localization site. The method was updated in 

1999, replacing the if-then expert system with the k-nearest neighbour algorithm 

and improving the algorithm's reasoning slightly (Nakai and Horton, 1999). 

No further localization prediction methods were developed until 1997, 

when Cedano et al. utilized the differences in amino acid composition between 

proteins resident at different cellular compartments as the basis for a sorting 



algorithm. Their method, ProtLock, was designed to sort eukaryotic proteins, and 

correctly predicted the localization of 76% of the 200 training proteins. Andrade 

et al. continued this work in 1998, again using eukaryotic proteins. 

In 1998, Reinhardt and Hubbard exploited the differences in amino acid 

composition to create a neural network capable of sorting a bacterial query 

protein to one of three sites, the cytoplasm, periplasm, or extracellular space. 

This tool, NNPSL, achieved a prediction accuracy of 81 %. Chou and 

collaborators also developed a series of tools employing the discriminant function 

(Chou and Elrod, 1998; Chou and Elrod, 1999; Chou, 2000), neural networks 

(Cai et al., 2002), and support vector machine (SVM) (Cai et al., 2000) to analyze 

amino acid composition in bacteria, however none of the resulting software was 

released publicly. 

For over a decade, PSORT I remained the predominant computational 

method used by researchers to make subcellular localization predictions for 

bacterial proteins. Factors contributing to its widespread use include the fact that 

the tool was the first of its kind to be developed, that for over a half a decade 

following its release it represented the only available method, and it was freely 

accessible over the internet. However, in the years following PSORT 1's release 

there were considerable improvements in bioinformatics algorithm development 

in general, as well as a rapid expansion of knowledge regarding protein sorting 

signals. For this reason we undertook the challenge of developing a new, 

comprehensive subcellular localization predictor for bacterial proteins, using 

these updated computational methods and our expanded biological knowledge. 



1.4.3 Recent computational methods for localization prediction in bacteria 

This thesis describes the creation of PSORTb, a high-precision, high- 

throughput open-source tool for the prediction of bacterial protein localization. 

Over the course of PSORTb's development, a number of other localization 

prediction tools were also released. The underlying principle and availability of 

each of these methods is summarized in Table 1 .I. Section 5 presents a 

comparison of the predictive performance of these methods relative to PSORTb. 

Table 1.1: A summary of available computational methods for bacterial protein 
localization prediction. 

Program Reference Analytical Localizations Usage Open Forces 
method predicted source output? 

PSORT l 

PSORTb 

Proteome 
Analyst 

SubLoc 

CELLO 

PSLpred 

LOCtree 

P- 
CLASSIFIER 

Nakai and 
Kanehisa, 
1991 

Gardy et 
al., 2003, 
2005 

Lu et al., 
2004 

Hua and 
Sun, 2001 

Yu et al., 
2004 

Bhasin et 
al., 2005 

Nair and 
Rost, 2005 

Wang et 
al., 2005 

Multi- 4 Gram- 
component negative 

3 Gram-positive 

Multi- 5 Gram- 
component negative 

4 Gram-positive 

Annotation 5 Gram- 
keywords negative 

3 Gram-positive 

SVM 3 (no Gram 
distinction) 

SVM 5 Gram- 
negative 

4 Gram-positive 

SVM 5 Gram- 
negative 

SVM 3 (no Gram 
distinction) 

SVM 5 Gram- 
negative 

Web 
Local 

(SunISolaris 
systems) 

Web 
Local (Most 
UNlXlLinux 
systems) 

Web 

N 0 
specified 
licence 

GNU 
General 
Public 

Licence 

N 0 

Web No 

Web N o 

Web N o 

Web No 

Web N o 

N 0 

N 0 

N 0 

Yes 

Yes 

Yes 

Yes 

Yes 



1.4.3.1 Proteome Analyst - a keyword-based approach 

Proteome Analyst's subcellular localization prediction server (Lu et al., 

2004) employs an annotation keyword-based approach comprising two steps. In 

the first, a query protein is compared, using BLAST, against the SwissProt 

database, returning a set of homologs with manually curated annotation. 

Keywords in the annotation that might be indicative of a particular localization site 

are extracted from the SwissProt records and, in the second step, are passed to 

a Na'ive Bayes classifier specific to the class of organism. This classifier then 

uses the extracted keywords to assign the query protein to one of three Gram- 

positive or five Gram-negative localization sites. Proteome Analyst returns a final 

prediction and an associated confidence score on the 100.0% scale. The 

program is also capable of generating predictions for animal, plant, and fungal 

sequences. 

Proteome Analyst can be accessed at 

htt~:llwww.cs.ualberta.ca/-bioinfolPAISub1 with the server accepting single or 

multiple sequences as input. A choice of two output formats is provided - 

detailed HTML output or a shorter format comma separated value file. BLAST 

results for the query protein are also provided. While the tool is not available for 

download and thus cannot be used locally, the site does host the PA-GOSUB 

database, containing a selection of precomputed predictions for microbial and 

other genomes (Lu et al., 2005). The authors also note that they are willing to 

run predictions for specific genomes requested by users. 



1.4.3.2 Amino acid composition support vector machine-based methods 

SVM is a machine-learning technique frequently employed to solve binary 

classification problems (see section 4.3). Composition-based SVMs exploit the 

differences in frequency of the 20 amino acids across different cellular 

compartments, and are thus capable of making predictions when no prior 

information about a protein is available, such as homologs in existing databases 

or predicted sequence features. 

SubLoc (Hua and Sun, 2001) was the first publicly available SVM-based 

localization tool to be released. Capable of sorting bacterial proteins to the 

cytoplasm, periplasm or extracellular space, it generates predictions using a 

single SVM analyzing a protein's overall amino acid composition. The program 

returns a final prediction as well as two measures of predictive confidence - a 

reliability index score and an estimate of accuracy. 

While the release of SubLoc marked an important milestone in the use of 

SVMs for localization prediction, the method itself carries two significant caveats. 

Because the program only sorts proteins to three compartments, known and 

suspected cytoplasmic membrane and outer membrane proteins must be 

removed prior to the analysis. Furthermore, the method does not distinguish 

between Gram-positive and Gram-negative queries, thus proteins from a Gram- 

positive organism can be mistakenly classified as periplasmic. SubLoc accepts 

web-based submissions of one or more sequences at 

http://www.bioinfo.tsin~hua.edu.cn/SubLoc/ and returns output in the format of an 



HTML table. The program is not available for download and use on a local 

computer - it must be accessed over the web. 

CELLO (Yu et at., 2004) employs an extended version of SubLoc's 

composition-based SVM in which five SVMs are used - one analyzing overall 

amino acid composition, one incorporating sequence order information, and three 

utilizing modified composition analysis in which amino acids are grouped 

according to their physiochemical properties. The output of each SVM is 

integrated to generate a final prediction, which is returned along with a score 

distribution on a five-point scale. The program can assign a protein to one of five 

Gram-negative or four Gram-positive localization sites. CELLO accepts web- 

based submissions of one or more sequences at htt~://do.life.nctu.edu.tw/ and 

returns output in a text format. The program is not available for local use. 

Like CELLO, PSLpred (Bhasin et al., 2005) uses multiple SVMs to assign 

a query protein to one of five Gram-negative localization sites. However, in 

addition to three SVMs analyzing overall composition, dipeptide composition, and 

composition incorporating physiochemical groupings, PSLpred also implements a 

PSI-BLAST module for similarity searching. Output is returned in HTML format, 

which includes a final prediction, a reliability index on a five-point scale, and an 

estimate of accuracy. The tool is available at 

hlt~:llwww.imkch.res.in/raahava/~sl~red/, - - h o w m r  @gistr&im is wquired to use 

the program and proteins must be submitted one at a time. The program is not 

available for local use. 



LOCtree (Nair and Rost, 2005) combines SVM-based analysis with a 

flowchart-style decision system designed to mimic cellular sorting. In the first 

step, an amino acid composition-based SVM determines whether the query 

protein is cytoplasmic or non-cytoplasmic. Non-cytoplasmic proteins are then 

passed to a second SVM, which determines whether the protein is periplasmic or 

extracellular. Like SubLoc, LOCtree only assigns a protein to one of three 

localizations, thus membrane proteins must be removed from the dataset prior to 

analysis. Output is in the form of an HTML table, including a final prediction as 

well as a reliability index on a ten-point scale. The results of other analyses, 

including signal peptide prediction, secondary structure prediction, and motif 

searching are also provided. Up to 100 sequences at a time can be submitted to 

LOCtree at http://cubic.bioc.columbia.edulcni-binlvarlnairlloctree/a~e~. The 

program is not available for local use. 

P-CLASSIFIER implements 15 SVMs in its analysis, representing a 

combinatorial approach in which sequence fragments of length n, where n = 1-4, 

are examined and different physiochemical-based groupings of similar amino 

acids are employed (Wang et al., 2005). The method is capable of assigning a 

Gram-negative protein to one of five localization sites, and returns its output in an 

HTML table. Predictions are reported along with a distribution of scores using a 

percentage system. P-CLASSIFIER accepts web-based submissions of up to 

100 sequences at a time at http://~rotein.bii.a-star.edu.sa/localization/~ram- 

nec~ative/introduction.html. The program is not available for local use. 



1.5 Goal of the present research 

At the outset of PSORTb development in 2001, only two tools - PSORT I 

and NNPSL -were available for the prediction of protein localization in bacteria. 

NNPSL was limited by the fact that it only recognized three localization sites, 

ignoring membrane proteins, while PSORT I was hampered by not recognizing 

proteins secreted to the extracellular space. Despite these limitations, the 

PSORT I program remained in widespread use in the microbiology community - 

in particular for early genome-wide analyses in the 1990's, as a freely available 

SunISolaris UNlX version for local use was made available. 

Recognizing that there was a need for improvement, we set a goal of 

developing an improved, high-precision, high-throughput localization prediction 

tool for bacteria. Herein, I describe the development of this method - PSORTb - 

and the numerous applications we have found for the method, which have 

implications for the field of proteomics and for concepts underlying microbial 

adaptive evolution. 



2 ePSORTdb: A DATABASE OF BACTERIAL PROTEINS 
OF KNOWN LOCALIZATION 

Portions of this chapter have been previously published in the article "PSORTdb: a 
protein subcellular localization database for bacteria", co-authored by S. Rey, M. Acab, 
J. L. Gardy, M. R. Laird, K. deFays, C. Lambert and F. S. L. Brinkman in Nucleic Acids 
Research, Volume 33, Database Issue. O 2005 Oxford University Press. 

2.1 Summary 

ePSORTdb (http://db.psort.orq) is a web-accessible database of protein 

localization data for bacteria that contains information determined through 

laboratory experimentation. The database, which contains approximately 2000 

proteins, is manually curated and represents the largest dataset of its kind. 

ePSORTdb has been used for training localization prediction tools, including 

PSORTb, and represents an important resource for the localization prediction 

and microbiology communities. ePSORTdb can be accessed through the web 

using a very flexible text search engine, a data browser, or using BLAST, and the 

entire database or search results may be downloaded in various formats. 

Features such as GO ontologies and multiple accession numbers are 

incorporated to facilitate integration with other bioinformatics resources. 

ePSORTdb is freely available under the GNU General Public License. 

2.2 The need for high quality training data 

By definition, a machine-learning method requires a set of training data - 

known instances of the class of object the method is designed to predict or 



classify. For a bacterial protein subcellular localization predictor, these training 

data must thus comprise proteins whose localization within the cell has been 

experimentally verified. Because of the fundamental differences in cellular 

ultrastructure between bacteria and eukaryotes, the data must be bacterial in 

origin. 

Prior to the development of our training dataset, most localization 

prediction methods - both bacterial and eukaryotic - were trained on data 

extracted from the SWISS-PROT database (Bairoch and Boeckmann, 1991, 

1992, 1993, 1994; Boeckmann et al., 2003), in particular the data described by 

Reinhardt and Hubbard (1998). In a typical extraction procedure, all full-length, 

non-ambiguous protein sequences from the taxa of interest are screened to 

remove those lacking an annotation in the "subcellular location" field. The 

resulting list of proteins is then further filtered to remove sequences whose 

localization annotation contained the terms "by similarity" or "probable", implying 

that experimental confirmation of localization has not been performed. 

While SWISS-PROT represents an excellent resource, it is not specifically 

designed with protein subcellular localization annotation in mind. As a result, 

several aspects of SWISS-PROT's design have potentially serious implications 

for training of a machine-learning method. First, heterogeneity among 

annotations is quite common, with multiple phrases often used to describe the 

same cellular compartment. While some of these distinctions are easily resolved, 

for example the use of both "cytosol" and "cytoplasm" to refer to the interior of a 

cell, others, such as "membrane-bound" versus "membrane-associated1', can 



easily be misinterpreted. Second, many annotations lack sufficient information to 

conclusively assign a localization site. Many Gram-negative bacterial proteins are 

annotated simply as "membrane", with no distinction being made between the 

cytoplasmic and outer membranes, while other membrane-associated proteins 

are not further annotated to indicate on which side of the membrane the bulk of 

the protein resides. Finally, many proteins are known to contain domains residing 

in two or more different cellular compartments, information that is rarely captured 

in a SWISS-PROT annotation. Because of these limitations, we chose to adopt 

an alternative approach to dataset development incorporating literature-derived 

evidence and manual review. 

2.3 ePSORTdb development 

Bacterial proteins with annotated localization information were extracted 

out of SWISS-PROT, and any sequence whose annotation was noted as 

"potential", "probable", or "by similarity" was discarded. The resulting dataset was 

then subjected to manual review. PubMed abstracts and full-text articles were 

searched using keywords from the SWISS-PROT entry in an attempt to find 

experimental verification of the annotated localization site. During this literature 

review process, it was observed that some proteins whose localization was 

reported in high-throughput proteomics manuscripts - primarily studies involving 

fractionation followed by 2D gel electrophoresis - had been erroneously 

annotated. Critical review of these studies revealed eirors, including 

contamination of a particular cellular fraction by proteins known to be resident in 

other compartments. For this reason, proteins whose localization had been 



determined by high-throughput proteomics analyses were not included in 

ePSORTdb. 

This extraction procedure followed by literature review was initially 

performed with release 39 of SWISS-PROT, giving rise to ePSORTdb v. 1.0 and 

v.1 . I ,  and was later updated using release 40.29, yielding the ePSORTdb v.2.0 

dataset. To further expand ePSORTdb v.2.0, alternative literature sources were 

employed, including microbiology textbooks (Neidhardt et al., 1996; Fischetti et 

al., 2000; Sonenshein et al., 2001). Versions I .0 and I . I  of the dataset include 

Gram-negative data only, while version 2.0 is expanded to include Gram-positive 

data. 

ePSORTdb recognizes both single and multiple bacterial localization sites. 

In Gram-negative bacteria, five single sites are included: the cytoplasm (C), 

cytoplasmic membrane (CM), periplasm (P), outer membrane (OM) and 

extracellular space (EC). Four multiple localization sites are also noted: CICM, 

CMIP, PIOM and OMIEC. In Gram-positive bacteria, four single sites are 

included: the cytoplasm (C), cytoplasmic membrane (CM), cell wall (CW) and 

extracellular (EC); and two multiple localization sites: CICM and CMICW. Each 

single localization site term is associated with a unique Gene Ontology (GO) 

(Ashburner et al., 2000) identifier, while multiple localization sites are represented 

by a combination of their GO identifiers. 

Experimentally verified localization sites contained in ePSORTdb are 

accessible in three formats: a terse, machine-readable definition (e.g. 



cytoplasmic membrane), the associated GO identifier (e.g. 0005886), and a 

verbose definition (e.g. cytoplasmic membrane integral membrane protein). 

2.4 ePSORTd b releases 

Table 2.1 describes the composition of each of the three releases of 

ePSORTdb. Version 1.0 is described in Gardy et al. (2003), version 1 . I  

represents a small update made between publications, and version 2.0 is 

described in Gardy et al. (2005) and Rey et al. (2005a). 

Table 2.1: Composition of ePSORTdb releases. 

Single Localization Sites 
ePSORTdb Release C CM CW P OM EC 
Gram-negative v. 1.0 248 268 244 352 190 
Gram-negative v. 1.1 278 292 2 76 377 191 
Gram-negative v.2.0 278 309 2 76 39 1 1 90 
Gram-positive v.2.0 194 103 6 1 181 

Multiple Localization Sites 
ePSORTdb Release ClCM CMlP PlOM OMlEC CMlCW 
Gram-negative v.1.0 14 49 76 
Gram-negative v. 1 . 1 16 5 1 2 78 
Gram-negative v.2.0 16 51 2 78 
Gram-positive v.2.0 15 20 

2.5 ePSORTdbdatabaseandwebsite 

As part of our PSORTb resource development, we decided to create a 

publicly accessible, flexible database to house our datasets of proteins of 

experimentally determined subcellular localization. Each ePSORTdb record 

contains extensive information regarding the sequence. NCBl's GI number 

(Benson et al., 2000) is used as the primary identifier, facilitating linkage to other 

databases. When available, additional fields relevant to protein identification are 

also included to facilitate searching and linking out to external resources: protein 



name, gene name, alternate protein and gene names, and SWISS-PROT 

accession number. Other fields further define the sequence in a broader sense: 

source organism name, phylum, class, NCBl taxonomy identifier (Wheeler et al., 

2000), and Gram stain class. Links to the source of the annotation, in the form of 

a PubMed ID, book title, ISBN number or URL, are provided for some 

sequences. Finally, amino acid sequences and their length are also made 

available. 

PSORTdb's data are housed in a MySQL database. Using PHP and 

JavaScript, the web database application - freely accessible at http://db.psort.org 

- was developed to facilitate access to the data without prior knowledge of SQL, 

relational databases or specifics of the ePSORTdb database schema. The 

browsing and dynamic textbox features of the web interface also make it easier 

for a user to search the data, even if one is unfamiliar with how the data are 

stored. Three search tools provide an entry point to the dataset. 

With the text search tool, one or more keywords or other values suitable 

for a given field can be used to query the database against one or more data 

fields. Boolean operators are available to enable complex queries. A dynamic 

textbox displays a description and/or example of the type of text permitted for a 

particular search field. This feature assists users in choosing their queries. For 

example, if a user wishes to search the localization field, all possible localizations 

are presented in a dynamic textbox from which the user can select his or her 

terms of interest. This ensures the correct query is implemented and prevents 



common errors in query-based searching, including spelling mistakes or 

improper use of terminology. 

The browse tool allows the user to explore the dataset in a hierarchical 

fashion similar to browsing the NCBI Taxonomy Database (Wheeler at al., 2000) 

or Gene Ontologies (Ashburner et al., 2000). The text used to populate the 

browsing function is dynamically generated from the MySQL database, and 

permits exploration of the data by localization, phylum, class, Gram stain and 

organism in every possible logical combination. 

Sequences in FASTA format may be also submitted and searched against 

the database using a BLAST search (Altschul et al., 1997), which searches 

against a file system rather than the MySQL database. Results are returned in 

standard BLAST HTML format. 

The text search and browse tools produce an HTML table of results that 

can be viewed page by page. Initially, a default set of fields is displayed; however 

there are numerous options available that allow a user to customize the display of 

results. A user can change the number of records viewed per page, 

simultaneously sort the table on up to three fields in ascending or descending 

order, select the fields to be displayed, and rearrange the order of the fields. In 

addition to viewing the results as an HTML document on a web browser, the user 

may also download the data as a tab-delimited file or a FASTA formatted file. 

From both the text searchlbrowse result lists and the BLAST output, a user can 

click on a protein's GI number to obtain detailed annotations as described above. 



A web form is also available through which researchers can submit 

proposed updates or corrections to the database, all of which are subject to 

manual review. This is an important component of the database, enabling 

researchers' participation and inclusion of their data, and the submission form 

has been made as simple as possible to encourage participation. 

2.6 Applications of ePSORTdb 

By providing a centralized, freely available localization resource which can 

be queried to isolate specific subsets of interest, ePSORTdb represents an 

important source of training data for researchers wishing to develop novel 

classification methods. Beyond its use as a source of training data, however, the 

potential applications of ePSORTdb are numerous in both the bioinformatics 

arena and in related fields. By implementing data mining or pattern discovery 

tools, a bioinformatician can discover features representative of a particular 

localization site quite readily. Microbiologists can employ the dataset in the 

identification of targets in bacterial genomes for surface proteins for 

environmental diagnostics, medical diagnostics, vaccines, antimicrobial 

compounds and other uses. Furthermore, the information contained in the 

dataset can also assist in the annotation of newly sequenced bacterial genomes. 

Proteomics researchers can utilize the data as a check in subfractionation 

experiments, and the information can also assist in experimental design. 



3 DEVELOPMENT AND RELEASE OF PSORTb V.1 .O 

Portions of this chapter have been previously published in the article "PSORT-B: 
Improving protein subcellular localization prediction for Gram-negative bacteria ", co- 
authored by J. L. Gardy, C. Spencer,K. Wang, M. Ester, G. E. Tusnady, I. Simon, S. Hua, 
K. deFays, C. Lambert, K. Nakai, and F. S. L. Brinkman in Nucleic Acids Research, 
Volume 31, Issue 13. O 2003 Oxford University Press. 

3.1 Summary 

Automated prediction of bacterial protein subcellular localization is an 

important tool for genome annotation and drug discovery. PSORT I was one of 

the most widely used computational methods for such bacterial protein analysis 

from 1991 onwards; however, it had not been significantly updated since it was 

introduced in 1991. In addition, neither PSORT I, nor any of the other 

computational methods available at the outset of PSORTb development made 

predictions for all five of the localization sites characteristic of Gram-negative 

bacteria. We therefore developed PSORTb, an updated version of PSORT for 

Gram-negative bacteria, which was made available as a web-based application 

at http://www.psort.orq. PSORTb examines a given protein sequence for amino 

acid composition, similarity to proteins of known localization, presence of a signal 

peptide, transmembrane alpha-helices and motifs corresponding to specific 

localizations. A probabilistic method integrates these analyses, returning a list of 

five possible localization sites with associated probability scores. PSORTb, 

designed to favor high precision (specificity) over high recall (sensitivity), attained 

an overall precision of 97% and recall of 75% in 5-fold cross-validation tests, 



using a dataset we developed of 1443 proteins of experimentally known 

localization. The PSORTb source code is freely available under the GNU 

General Public License. 

3.2 Predictive modules 

The creation of the first version of the ePSORTdb dataset was followed by 

the development of the predictive modules that would form the initial release of 

PSORTb, a bacterial protein localization predictive tool designed for Gram- 

negative organisms. We hypothesized that the computational identification of 

sequence features known to influence or correlate with protein localization could 

be used to generate predicted localization site information for a query protein. A 

review of the literature identified several candidate features, and short software 

programs -termed modules -were developed to identify these features in an 

amino acid sequence. Modules include: SCL-BLAST, HMMTOP, motif 

searching, SubLocC, and a signal peptide identification tool (Figure 3.1). 



Figure 3.1 : Organization of PSORTb v.1 .O. 
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3.2.1 SCL-BLAST 

Subcellular localization tends to be evolutionarily conserved (Nair and 

Rost, 2002b), thus homology to a protein of known localization appears to be a 

good indicator of a protein's actual localization site. We therefore constructed a 

module entitled SCL-BLAST (for SubCellular~ocalization BLAST), in which a 

BLAST search (Altschul et al., 1997) of a submitted protein is carried out against 

ePSORTdb v.l .O, using an E-value cutoff of 10 emlo. A length restriction is placed 

on resulting high scoring pairs, such that the length of the high scoring pair must 

be within 80-120% of the length of the subject. This reduces the potential for 

misprediction of localization based on similarity to a single domain of a protein in 

the database, a protein whose domains may reside in different localization sites. 



The module returns the localization site and SWISS-PROT accession number of 

any hits fulfilling the above criteria and can generate a prediction for any of the 

five sites. 

3.2.2 HMMTOP 

Integral inner membrane proteins are characterized by the presence of 

alpha-helical transmembrane regions (von Heijne, 1994) and this feature has 

been used as a reliable indicator of localization at the inner membrane in past 

predictors, including PSORT I (Nakai and Kanehisa, 1991). PSORTb utilizes the 

Hidden Markov Model-based method HMMTOP (Tusnady and Simon, 1998, 

2001) to identify potential transmembrane alpha helices, assigning a localization 

of inner membrane if three or more helices are found. 

3.2.3 Motifs 

A protein's functional description is often indicative of its subcellular 

localization (Eisenhaber and Bork, 1998). Therefore, certain sequence patterns 

corresponding to function may also correlate with a specific subcellular 

localization. PROSITE release 17.0 (Hofmann et al., 1999) was searched for 

such potential patterns and the resulting list was tested on ePSORTdb. Twenty 

six motifs, available at httrx//www.psort.org/motifs and in Appendix A, capable of 

identifying subcellular localization with 100% precision were retained. The 

module returns the localization site and PROSITE accession number of any 

pattern found within the sequence and can generate a prediction for any of the 

five sites. 



3.2.4 Outer membrane protein motifs 

The identification of outer membrane proteins is of particular interest, both 

due to the difficulty in predicting their characteristic beta-barrel structure and their 

high potential for use as drug targets. A data mining approach called association 

rule mining was used to identify frequent sequences occurring only in beta-barrel 

proteins - both integral outer membrane proteins and autotransporter proteins - 

which possess a beta-barrel transport domain (She et al., 2003). In this 

technique, "association rules" are computationally identified - these are attributes 

that are characteristic of a particular dataset. In our case, each attribute is a short 

amino acid subsequence that is characteristic of beta-barrel proteins. By varying 

the required support (how many beta-barrel proteins is the subsequence found 

in?) and confidence (is the subsequence likely to be found in a non-beta-barrel 

protein, giving a false positive?), we can identify the set of association rules, or 

subsequences, that provide the best classification of outer membrane vs. non- 

outer membrane proteins. 

A total of 279 frequent sequences (Appendix B) were generated and used 

to build a classifier. A user-submitted sequence is screened for the presence of 

three or more of the frequent sequences and is classified as either outer 

membrane or non-outer membrane based on the result. 

3.2.5 SubLocC 

Support Vector Machine, or SVM, has been successfully applied to overall 

amino acid composition-based subcellular localization prediction in the SubLoc 

program (Hua and Sun, 2001). Using the software LIBSVM (Lin, 2003), a similar 



SVM was trained on 248 cytoplasmic sequences and 1054 non-cytoplasmic 

sequences. A query protein's amino acid composition is analyzed and used to 

assign the protein to one of the two categories: cytoplasmic or non-cytoplasmic. 

3.2.6 Signal peptides 

Signal peptides, short sequences present at the amino-terminus of many 

proteins, direct a protein for transport across the inner membrane (Bernstein, 

1998). Thus the presence of a signal peptide implies that a protein is not resident 

in the cytoplasm. The bacterial SignalP training data, available at 

http://www.cbs.dtu.dk/ftp/si~nalp, were used to train a Hidden Markov Model 

(HMM) to identify signal peptide cleavage sites within the first 70 residues of a 

sequence. A probability value is assigned to the cleavage site and, if it exceeds a 

pre-assigned cutoff, a prediction of non-cytoplasmic is returned. If the p-value of 

the predicted cleavage site falls within a 'twilight zone', the signal peptide is then 

passed to an SVM trained on the same data, also capable of identifying signal 

peptides. If the SVM returns a result of signal peptide, a non-cytoplasmic 

prediction is returned. If no signal peptide is identified, the module returns an 

output of 'unknown', as the lack of a predicted signal peptide does not 

necessarily imply a cytoplasmic localization. 

3.3 Evaluation of predictive module performance 

All evaluations, with the exception of the Motifs module analysis, were 

carried out using 5-fold cross-validation. In k-fold cross-validation, the relevant 

dataset is partitioned randomly into k equally sized partitions and module 



development and evaluation is carried out k times, each time using one distinct 

partition as the testing set and the remaining k- I  partitions as the training set. 

Values of k of five and 10 are frequently employed in the evaluation of prediction 

methods, and choosing the smaller of these reduces the necessary computation. 

Performance evaluations are computed as the average of the total runs, thus the 

procedure prevents artificially inflated performance values. 

After determining the numbers of true positive predictions (TP), false 

positive predictions (FP), and both true negatives (TN) and false negatives (FN), 

performance evaluation metrics can be calculated. Several such metrics exist 

(see section 5.2.1), however precision and recall were selected for the evaluation 

of PSORTb. 

Precision is calculated as 
TP . A precision value of 95% indicates that 

TP+FP 

for every 100 predicted cytoplasmic proteins, five of these will be false positives, 

or non-cytoplasmic proteins. Recall, or sensitivity, is calculated as 
TP 

and 
TP+FN 

reflects a method's ability to identify all true positive cases. A recall value of 95% 

indicates that for every 100 cytoplasmic proteins in the test set, five of these will 

be false negatives - in other words, they will be predicted as non-cytoplasmic 

when in fact they are cytoplasmic proteins. 

SCL-BLAST was evaluated using the ePSORTdb v.1.0 dataset of 1443 

proteins of known subcellular localization. PROSITE motifs were selected to yield 

a 100% precision value over the same dataset. The predictive power of 

HMMTOP was evaluated on the 268 integral inner membrane protein and the 



remaining 1175 non-inner membrane proteins in the dataset. Outer membrane 

protein motifs were evaluated using the 425 beta-barrel proteins in the dataset 

and the remaining 1018 non-outer membrane proteins. SubLocC was evaluated 

using the 248 cytoplasmic proteins in the dataset and the remaining 1054 non- 

cytoplasmic proteins<ytoplasmic proteins with a second, dual localization were 

not included in either class. The signal peptide module was trained using the 

SignalP dataset mentioned above and evaluated with the Menne et al. (2000) 

dataset of 426 signal peptides and 433 non-signal peptides. The precision and 

recall of each module are presented in Table 3.1. For modules capable of 

predicting multiple localization sites, the reported precision and recall values are 

averaged across the relevant localization sites. 

Table 3.1 : Predictive performance of PSORTb v.1.0 modules. 

Module Precision Recall 
SCL-BLAST 96.7 60.4 
Motifs 100.0 6.5 
HMMTOP 99.4 65.3 
Outer Membrane Protein Motifs 100.0 23.6 
SubLocC 78.6 74.2 
Signal Peptides 87.0 98.2 

Each module is implemented as a Perl script or as a Perl wrapper script 

that interfaces with another program. This modular design permits the simple 

introduction of additional analyses into the program. The program is developed 

under the GNU General Public Licence - an open source license - to encourage 

the open development and expansion of the tool. 



3.4 Integration of the module output using a Bayesian network 

The performance data for each module was used to construct a naive 

Bayesian network capable of generating a final probability value for each 

localization site given the output of each of the modules. A Bayesian network 

employs Bayes' theorem of conditional probabilities to calculate the likelihood of 

a particular scenario given that certain events have occurred. With respect to the 

localization prediction problem and PSORTb, the network allows us to calculate 

the probabilities of a protein being resident at each of the localization sites, given 

the output of specific modules. A score out of 10 is produced for each of the five 

possible localization sites, representing the calculated probability value multiplied 

by a factor of 10, with a high value reflecting high confidence that the given 

protein is resident in that subcellular location. The sites are ranked in descending 

order of probability. If none of the localization sites has a score >7.5, a prediction 

of 'unknown' is returned. This cutoff of 7.5 was determined empirically through a 

review of PSORTbls precision and recall at various cutoffs - 7.5 represented the 

point at which high (>95%) precision was obtained, while returning a significant 

number of results. Higher cutoffs reduced recall, while lower cutoffs reduced 

precision. A distribution of scores heavily favouring one site indicates the protein 

is likely to be resident there, while a distribution favouring two sites may indicate 

the protein has domains residing in more than one localization site. An even 

distribution of low scores is indicative of an unknown localization. 



3.5 Performance of PSORTb v.1.0 vs. PSORT I 

The overall performance of PSORTb was assessed using the ePSORTdb 

v.1.0 dataset comprising 1443 proteins of known localization. Precision and recall 

values were calculated per localization site and the overall precision and recall of 

the method was calculated based on the total number of true-positives (TP), 

false-positives (FP) and false-negatives (FN) over the five Gram-negative 

localization sites. 

For the purposes of evaluation, predictions were considered to have been 

made if the PSORTb scoring system gave a score for a particular localization site 

of >7.5. Proteins resident at dual localization sites were considered to have been 

predicted correctly if one of their localization sites scored >7.5. For all evaluations 

precision was calculated as TP/(TP+FP) and recall was calculated as 

TP/(TP+FN). Results appear in Table 3.2. As shown in this table, this version of 

PSORTb was compared with the performance of PSORT I (Nakai and Kanehisa, 

1991), again using the ePSORTdb v.10 dataset. 

Table 3.2: Predictive performance of PSORTb v.1.0 compared to PSORT I. 

PSORT l PSORTb v. 1.0 
Localization Precision (%) Recall (%) Precision (%) Recall (%) 
C 59.7 75.4 97.6 69.4 
CM 55.4 95.1 96.7 78.7 
P 60.9 66.4 91.9 57.6 
OM 65.3 54.5 98.8 90.3 
EC 0.0 0.0 94.4 70.0 
Total 59.6 60.9 96.5 74.8 



PSORTb was designed to favour precision, with a focus on predicting 

results correctly rather than generating a prediction in every case. This is 

reflected in the precision and recall of both the modules and the overall program. 

With this emphasis on precision and implementation of an updated predictive 

strategy, the performance of PSORTb represents a significant improvement over 

the PSORT I program. Whereas a large increase in precision can be observed for 

each localization site, recall is reduced in certain cases, again reflective of the 

focus on returning a correct prediction rather than more predictions with lower 

confidence. This is especially evident for inner membrane proteins, for which a 

16.4% decrease in recall is compensated for by a 41.3% increase in precision. 

3.6 Release of PSORTb v.1 .I 

The beta version of the PSORTb software - PSORTb v.1.0 - was initially 

developed in January, 2003, however the tool was not released online until 

shortly before its publication in June, 2003. By this point, the ePSORTdb dataset 

had expanded to include an additional 131 Gram-negative bacterial proteins. 

This represented a significant update to the SCL-BLAST module; thus a new 

version number was assigned to the tool, such that the first publicly available 

PSORTb release was numbered 1 . I .  

PSORTb v. 1.1 was made available at http://www.psort.org/psortb, a site 

that also contains links to many other tools, resources and articles of interest to 

the protein localization community. In this and all subsequent releases of the 

program, a user may submit one or more query proteins in FASTA format, either 

through a text box or through upload of a local file. A choice of three output 



formats is offered: Normal, consisting of a textual table showing the names of 

each module and their output, including details of the prediction, as well as the 

score distributions and a final prediction when possible; Tab-delimited (long), 

which contains the same information arranged in a spreadsheet-ready format, 

one line per query protein; and Tab-delimited (short), containing simply the 

protein identifier and the final prediction. 



4 DEVELOPMENT AND RELEASE OF PSORTb V.2.0 

Portions of this chapter have been previously published in the article "PSORTb v. 2.0: 
expanded prediction of bacterial protein subcellular localization and insights gained from 
comparative proteome analysis", co-authored by J. L. Gardy, M. R. Laird, F. Chen, S. 
Rey, C. J. Walsh, M. Ester, and F. S. L. Brinkman in Bioinformatics, Volume 21, Issue 5 O 
2005 Oxford University Press. 

4.1 Summary 

PSORTb v. 1 . I  's predictive coverage and recall were low and the method 

was only applicable to Gram-negative bacteria. We set out to increase PSORTb's 

coverage while maintaining the existing precision level, and expand it to include 

Gram-positive bacteria. An expanded ePSORTdb database of proteins of known 

localization and new modules using frequent subsequence-based SVMs were 

introduced into PSORTb v.2.0. This version of the program attained a precision 

of 96% for Gram-positive and Gram-negative bacteria and displayed predictive 

coverage comparable to other tools for whole proteome analysis, representing a 

significant improvement over version 1 . I .  

4.2 Rationale 

By analyzing features including: signal peptides, transmembrane helices, 

homology to proteins of known localization, amino acid composition and motifs, 

PSORTb v.1.0 and 1 . I  attained a classification precision of 97%. However, the 

method did not extend to Gram-positive organisms and its predictive coverage 

when applied to whole proteomes - the number of proteins for which a prediction 

could be made - was low, with an average coverage of 28%. We therefore set 



out to expand PSORTbls predictive scope by introducing additional classification 

methods applicable to both Gram-positive and Gram-negative bacteria, and to 

increase the program's coverage while maintaining the existing standard of high 

precision. 

4.3 Novel support vector machine modules 

Support vector machine (Vapnik, 2000), is a kernel learning algorithm in 

which all data is mapped as vectors in n-dimensional feature space. Given 

training data from two classes (positive and negative), a SVM learns the optimal 

separating hyperplane which both separates the two classes and maximizes their 

distance from the hyperplane. In previous work on the applicability of SVMs to 

the localization classification problem, nucleotide or protein sequences have 

been modelled as vectors representing amino acid composition (Hua and Sun, 

2001, Yu et al., 2004). We proposed, however, that the precision of an SVM 

could be improved by utilizing frequently-occurring subsequences rather than 

overall amino acid composition. Such common patterns within a group of proteins 

may indicate the site of a common biochemical mechanism or structural motif. 

For each of the nine localization sites (five Gram-negative and four Gram- 

positive), a training dataset was created consisting of a positive and negative 

class. The positive class consisted of those proteins in ePSORTdb annotated as 

being resident at the localization site of interest, whereas the negative class 

consisted of the remainder of ePSORTdb. 



4.3.1 Extraction of frequently occurring subsequences 

Frequent subsequences were extracted from the protein sequences 

comprising each positive class. A subsequence, or pattern, is defined as frequent 

if it is found in at least a specified fraction - MinSup, or minimum support - of the 

proteins in ePSORTdb resident at a specific site. A frequent pattern has the form 

'X'X'. . . , in which each 'X' is a frequent subsequence made of consecutive amino 

acids, and each "' is a VLDC (variable-length-don't-care) which may substitute 

for one or more letters when matching the pattern against a protein sequence. 

Subsequences capture the local similarity that may indicate of important 

structural or functional residues, while VLDCs compress the remaining irrelevant 

portions. 

To find frequent subsequences, an efficient implementation of the 

generalized suffix tree (GST) (Wang et al., 1994) with some simple modifications 

was implemented. Suffix trees have been extensively used in string matching 

and are shown to be an effective data structure for finding common 

subsequences that run in linear time (Landau and Vishkin, 1989; Hui, 1992). 

Since each protein sequence is essentially a string of letters, generalized suffix 

trees can be easily applied to mine frequent subsequences among protein 

sequences. Each of the nine pattern extractions was performed over a range of 

MinSup values. 

4.3.2 Development and implementation of SVM-based classifiers 

SVMLight (Joachims, 2002) was used to implement nine SVMs whose 

feature spaces consisted of the frequent subsequences characteristic of a 



specific localization site. For each localization site, different SVMs were tested 

using different combinations of MinSup (range: 0.8%-13%) and kernel (linear, 

polynomial with degree = 2, radial basis function with y=0.005). The 

MinSuplkernel combination giving the highest classification precision combined 

with a reasonable level of recall (> 40%) was selected for inclusion in PSORTb 

v.2.0. Variations in the margin error penalization parameter C were not 

evaluated, as our earlier collaborative work on the subject showed a negligible 

effect on precision and recall values (She et al., 2003). The final SVMs 

implemented in PSORTb v.2.0 utilize LibSVM (Lin, 2003). The cytoplasmic SVM 

replaces the SubLocC module of PSORTb v. 1 .O. 

4.3.3 Evaluation of SVM-based classifiers 

Table 4.1 summarizes the SVM classifiers selected for inclusion in 

PSORTb v.2.0. 

Table 4.1: Parameters and performance of PSORTb v.2.0'~ SVM-based classifiers. 

SVM Parameters Performance (%) 
Gram Module MinSup (%) Frequent patterns Kernel Precision Recall 

CytoSVM- 0.5 3921 9 Linear 83.6 68.4 
CMSVM- 3 5645 Polynomial 96.9 69.6 

Negative PPSVM- 1 27804 Polynomial 96.3 45.3 
OMSVM- 1 46688 Linear 94.6 85.3 
ECSVM- 2 35380 Polynomial 94.1 56.4 
CytoSVM+ 2 8214 Linear 86.5 79.9 

Positive CMSVM+ 2 2501 63 Linear 100.0 63.1 
CWSVM+ 2 11610 Linear 95.7 55.6 
ECSVM+ 5 23605 Polynomial 91.7 55.0 



By using a feature space comprising frequent subsequences rather than 

amino acid composition, high precision classification across all localization sites 

was achieved. Although the precision values for the two cytoplasmic classifiers 

are the lowest of the nine values, the 84% precision achieved by the Gram- 

negative SVM represents a 5% increase relative to the cytoplasmic composition- 

based SVM SubLocC used in PSORTb v.1 . l .  The reduced precision associated 

with cytoplasmic proteins may be due to the extremely diverse nature of proteins 

found at this site - proteins found at other sites exhibit more functional and 

structural constraints, resulting in more unique and characteristic frequent 

subsequences. This is especially evident when classifying cytoplasmic 

membrane proteins - the frequent subsequences mined from this structurally and 

environmentally constrained group of proteins results in high precision 

classification. 

We observed that as the MinSup value increased for each classifier, the 

number of frequent patterns decreased, as did precision; recall, however, 

remained comparatively stable. It was also noted that the best performance is not 

achieved at the smallest MinSup value - when the number of frequent 

subsequences exceeds a certain level, the performance of the SVM is degraded. 

4.4 Further expansion of predictive capability 

4.4.1 SCL-BLAST 

PSORTb's SCL-BLAST module predicts the localization of a query 

sequence based on homology to a protein in the PSORTdb database of proteins 



of experimentally verified localization. It is therefore expected that a larger and 

more diverse database will lead to an increase in the program's recall. SCL- 

BLAST v.2.0 utilizes an updated version of the original PSORTdb database - 

Gram-positive queries are run against the subset of 576 new proteins of Gram- 

positive origin. Furthermore, we investigated whether subsets of the Gram- 

negative and Gram-positive database could be combined. For example, the 

cytoplasmic and cytoplasmic membrane sites were hypothesized to be 

functionally equivalent, such that a Gram-negative protein could be searched 

against a BLAST database containing both Gram-negative bacterial proteins and 

Gram-positive cytoplasmic and cytoplasmic membrane proteins. We examined 

whether a larger database with such combinations of proteins would increase 

recall even further. 

We tested several combined databases using 5-fold cross-validation and 

found that higher recall and comparable precision was indeed achieved. For 

Gram-positive results, a database including Gram-negative cytoplasmic, 

cytoplasmic membrane and extracellular proteins yielded the best predictions. 

For Gram-negative queries, optimal results were achieved when the queries 

were searched against a database that included Gram-positive cytoplasmic and 

cytoplasmic membrane proteins - including extracellular proteins in the database 

resulted in several periplasmic proteins being falsely predicted as extracellular. 

Results of 5-fold cross-validation testing of SCL-BLAST v.2.0 for each 

localization site are shown in Table 4.2. 



Table 4.2: Performance of the expanded SCL-BLAST module in PSORTb v.2.0. 

Performance (%) 
Gram Localization Precision Recall 

C 88.8 39.9 
CM 97.4 62.0 

Negative 

EC 
Total 
C 96.6 58.8 
CM 96.8 59.8 

Positive CW 91.9 56.7 
EC 95.5 57.7 
Total 95.7 58.4 

The Gram-negative version of the module retains the 96% precision 

exhibited in PSORTb v. 1.1, and improves the recall by 8%. The new Gram- 

positive version also displays precision of 96%, and recall of 58%, with the lower 

recall likely due to the smaller Gram-positive bacterial protein dataset. It is 

important to note, however, that such recall values are not to be expected when 

SCL-BLAST is applied to datasets containing a large number of hypothetical 

proteins, due to their lack of similarity to proteins in the SCL-BLAST database. 

We also introduced an exact match filter to detect if a user's query protein 

is already in the database - if a query protein displays 100% identity to a protein 

in PSORTdb with a difference between query and subject length of no more than 

one character (to account for some users' removal of the initial "f-Methionine" 

residue), the SCL-BLASTe subroutine returns the localization site associated 

with the subject protein. In cases in which an exact match is identified, the query 

protein is not analyzed by subsequent modules, enabling a result to be returned 

faster. 



4.4.2 Motifs and profiles 

In PSORTb v. l  . l ,  the Motif module scanned a query sequence for the 

presence of any one of 26 PROSITE motifs indicative of specific Gram-negative 

localization sites. In PSORTb v.2.0, the module was expanded to include 44 

Gram-negative motifs derived from PROSITE v.18 (Hulo et a/., 2004), covering 

all but the cytoplasmic localization site, and 25 Gram-positive motifs covering all 

4 localization sites. The complete list of motifs is provided in Appendix A. Each 

motif was checked against ePSORTdb to ensure that it produces no false 

positive results. Two motifs used in PSORTb v.1.1 were removed from v.2.0 due 

to the occurrence of false positives when examined against the expanded 

ePSORTdb dataset. 

PSORTb v.2.0 also includes a Profile module, in which localization- 

specific profiles derived from PROSITE v.18 were selected to generate 100.0% 

precise predictions against ePSORTdb. Each profile is similar to a motif but with 

position-specific weighting information included, such that more degenerate 

sequences can be retrieved than via the strict pattern-matching of the Motif 

module. Six profiles were selected, four of which identify both Gram-negative and 

Gram-positive cytoplasmic and cytoplasmic membrane proteins, and two of 

which are specific to the Gram-positive cell wall and extracellular sites. Profiles 

are provided in Appendix C. 



4.4.3 Signal peptides 

A separate signal peptide prediction module was trained using Gram- 

positive data derived from the same source as the original Gram-negative 

training data, at htt~://www.cbs.dtu.dkiftdsi~nal~. 

4.5 Updates to module output integration 

As in version 1 . I ,  the modules' predictions are weighted and integrated 

using a Bayesian network in order to generate the final prediction, which comes 

in the form of a score distribution. When a single localization site displays a score 

of 7.5 or greater, that site is returned as a final prediction. New to version 2.0 is 

multiple localization flagging - if two sites return high scores, a flag of "This 

protein may have multiple localization sites" is appended to the final prediction. 

This flag is triggered when a site scores between 4.0 and 7.49 for Gram-negative 

bacterial proteins, and between 5.0 and 7.49 for Gram-positive bacterial proteins. 

If no site scores above 4.0 or 5.0, depending on the class, a localization site of 

"Unknown" is returned. Score cutoffs were determined again by evaluating which 

cutoff yielded the highest precision classification while returning a reasonable 

number of results, although this time the dataset used in evaluation comprised 

proteins with multiple localizations. PSORTb's emphasis is on precision, and 

returning a result of "Unknown" when not enough information is available to make 

a prediction avoids potential false positive results. Figure 4.1 illustrates the final 

architecture of PSORTb v.2.0, and Figure 4.2 provides examples of both normal 

and tab-delimited terse format output of the program. 



Figure 4.1: Organization of PSORTb v.2.0. 
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Figure 4.2: Normal (A) and tab-delimited short (B) format PSORTb v.2.0 output. 

SeqID: SAK BPP43 
~nalysis Report: 

CMSVM+ Unknown 
CWSVM+ Unknown 
CytoSVM+ Unknown 
ECSVM+ Extracellular 
HMMTOP Unknown 
Motif + Unknown 
Profile+ Unknown 
SCL-BLAST+ Extracellular 
SCL-BLASTe+ Unknown 
Signal+ Non-cytoplasmic 

Localization Scores: 
Cytoplasmic 0.0 
CytoplasmicMernbrane 0.0 
Cellwall 0.2 
Extracellular 9.98 

Final Prediction: 
Extracellular 9.98 

............................... 
SAK - BPP42 Extracellular 9.98 

[No details] 
[No details] 
[No details] 
[No details] 
[l internal helix found] 
[No motifs found] 
[No matches to profiles found] 
[matched 134189: Extracellular protein] 
[No matches against database] 
[Signal peptide detected] 



4.6 Performance of PSORTb v.2.0 

4.6.1 Precision and recall 

Five-fold cross-validation was used to evaluate the Gram-negative and 

Gram-positive versions of PSORTb v.2.0. Precision and recall values for each 

localization site were calculated for both proteins annotated as having a single 

localization site (Table 4.3) and dual localization sites (Table 4.4). 

Table 4.3: PSORTb v.2.0 performance on singly-localized proteins. 

Performance 
Gram Localization TP FP FN Precision (%) Recall (%) 

Negative 
P 
OM 
EC 150 4 40 97.4 78.9 
Total 1193 52 251 95.8 82.6 
C 168 5 26 97.1 86.6 
CM 94 3 9 96.9 91.3 

Positive CW 54 3 7 94.7 88.5 
EC 1 24 8 59 93.9 67.8 
Total 440 19 101 95.9 81.3 

Table 4.4: PSORTb v.2.0 performance on multiply-localized proteins. 

Performance 
Gram Localization TP F P FN Precision (%) Recall (%) 

CICM 11 2 5 84.6 68.8 
CMIP 34 1 17 97.1 66.7 

Negative PIOM 2 2 0 50.0 100.0 
OMIEC 76 1 2 98.7 97.4 
Total 123 6 24 95.3 83.7 
CICM 12 6 3 66.7 80.0 

Positive CMICW 6 0 14 100.0 30.0 
Total 18 6 17 75.0 51.4 

For a protein resident at X and Y localization sites, a true positive (TP) is a prediction of either X, 
Y, or W .  A false positive (FP) is all multiply-localized proteins not resident at X or Y which are 
predicted as X, Y, or W .  A false negative (FN) is all W proteins not predicted as neither X, Y, 
nor WY. 



On single localization proteins, PSORTb v.2.0 attained precision values of 

96% for both classes of organisms, and recall of 83% and 81 % for Gram- 

negative and Gram-positive bacterial proteins, respectively. It was observed that 

precision values remained relatively constant across localization sites, while the 

recall was highest for membrane proteins, likely due to their conserved structural 

motifs readily identifiable by the frequent subsequence-based SVMs, HMMTOP 

and OMPMotif modules. The Gram-negative version of PSORTb v.2.0 exhibits a 

0.7% drop in precision relative to PSORTb v.1 . I ,  however an 8% increase in 

recall is observed. 

Performance of the program on proteins annotated as having dual 

localization sites is comparable to the performance for singly localized proteins 

with respect to Gram-negative organisms, with a precision of 95% and recall of 

84%. However, it was noted that the overall precision for Gram-positive multiply 

localized proteins was only 75%. Upon inspection, it became apparent that this 

was due to six annotated cytoplasmic membranelcell wall proteins being 

predicted as cytoplasmic. Noting that singly-localized cytoplasmic membrane and 

cell wall proteins were infrequently mispredicted as cytoplasmic, these six 

proteins were investigated. While experimental evidence supporting a possible 

additional localization of cytoplasmic was only found for one of the six proteins - 

B. subtilis ComGG (Chung et a/. , 1998) - the other five proteins include enzymes 

and heat shock proteins, for which cytoplasmic or peripheral membrane 

associated localizations are not uncommon. It may be that rather than making 



mispredictions, PSORTb is detecting a more complex pattern of localization for 

certain proteins. 

4.6.2 Predictive coverage and storage of genome-wide predictions 

The predictive coverage of a method refers to the number of proteins in a 

given proteome for which the method returns a prediction. The measured recall 

of a program when evaluated using 5-fold cross validation does not give an 

accurate reflection of the predictive coverage because the training and testing 

data consists of a number of well-characterized proteins, thus a large number of 

predictions are possible. However, proteomes contain a large number of 

hypothetical proteins, which often do not contain enough information for a 

prediction to be generated. We therefore set out to measure PSORTb v.2.01s 

performance when applied to whole proteomes, with the expectation that an 

increase in the 28% average coverage of version 1 .I would be observed. Figure 

4.3 summarizes PSORTb v.2.09s predictive coverage when applied to the 

analysis of 162 Gram-negative genomes and 74 Gram-positive genomes. The 

average coverage across each class of proteomes is shown, as is the maximum 

and minimum coverage values obtained for a single proteome in each class. 



Figure 4.3: 
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Predictive coverage of PSORTb v.2.0 when applied to complete genomes. 
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The Gram-positive version of the program displays higher predictive 

coverage than the Gram-negative version due to the higher recall associated with 

the Gram-positive cytoplasmic SVM. Cytoplasmic proteins represent the largest 

class of proteins within the cell, and an improved ability to identify these proteins 

results in a higher overall coverage. 

PSORTb v.2.0 was released on June 17,2004 at 

http:l~.psort.orCl/psortb. On August 12, a second component of the 

PSORTdb database was also released - cPSORTdb. cPSORTdb stores 

PSORTb v.2.0 predicted localization sites for all sequence bacterial genomes 

available through NCBI. As of January, 2006, cPSORTdb contains 689,275 

proteins representing 236 organisms. 

Most fields present in an ePSORTdb record are also present in a 

cPSORTdb record, however the latter also contains fields for NCBl's genome 
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accession number, strain designation, and cross-linking if the record in question 

is also present in ePSORTdb. By definition, cPSORTdb also must contain the 

PSORTb predictive output, which is stored in a series of unique fields. Like 

ePSORTdb, cPSORTdb can be queried with text, browsed, or searched using 

BLAST, and the results are returned in a similar format. 



5 EVALUATING PSORTb v.2.O'S PRECISION 
IN THE CONTEXT OF RECENT COMPUTATIONAL 
PREDICTIVE METHODS 

Portions of this chapter have been previously published in the article "PSORTb v.2.0: 
expanded prediction of bacterial protein subcellular localization and insights gained from 
comparative proteome analysis", co-authored by J.L. Gardy, M.R. Laird, F. Chen, S. 
Rey, C. J. Walsh, M. Ester, and F. S. L. Brinkrnan in Bioinforrnatics, Volume 2 1, Issue 5 O 
2005 Oxford University Press. 

5.1 Summary 

Beginning with the release of SubLoc, a number of research groups 

turned their attention to the development of localization prediction tools. An 

objective comparison of the performance of these publicly available was carried 

out using a set of proteins not included in the training data of any of the methods 

under review. It was thus shown that PSORTb represents the highest precision 

bacterial localization prediction method released to date. 

5.2 Alternative localization prediction tools 

The evaluation of PSORT I described in the PSORTb v.1.0 manuscript 

(Gardy et al., 2003) dramatically illustrated the need for an improved localization 

prediction tool. Consequently, a number of research groups undertook 

development of novel predictive algorithms. As of January, 2006 seven bacterial 

protein localization prediction tools, including PSORTb v.2.0, have been made 

available. While these seven methods vary with respect to the algorithms 

employed, the number of localization sites they are able to assign a protein to, 



predictive performance and user interface, they all offer an improvement in 

precision over PSORT I. 

5.2.1 A note regarding performance metrics 

Before examining each of the methods, an explanation of the various 

performance metrics used by the methods' authors is required. The choice of 

metrics depends primarily on the background of the authors and the aspect of 

their method which they wish to emphasize. All metrics, however, rely on four 

basic statistics - true positives (TP), false negatives (FN), false positives (FP) 

and true negatives (TN). 

Predictive methods developed by biologists tend to emphasize the 

importance of "quality", or correct predictions, over "quantity", or a high number of 

predictions. A barometer of a method's ability to generate correct predictions is 

TP 
the precision metric, calculated as- . Precision values are typically reported 

TP+FP 

together with a method's recall. Recall, also referred to as sensitivity, is 

calculated as TP and reflects a method's ability to identify all true positive 
TP+FN 

cases. 

A small number of papers from the computer science domain report only a 

single metric - accuracy. To many, the use of the word accuracy implies a 

measure of quality, or TP+TN . However, many computer scientists use a 
TP+FP+TN+FN 

different definition of accuracy. This version of accuracy is the same as our 



earlier definition of recall, or 
TP 

, and rewards methods that generate a large 
TP+FN 

quantity of predictions, thus should not be used as an estimate of a method's 

false positive rate. 

All of the predictive methods described below also report some sort of 

confidence measure along with their final prediction, typically under the name 

"confidence", "quality" or "reliability index". These measures, which range from 

scores on a five- or ten-point scale to percentages, should only be used to 

compare the confidence level of multiple predictions from a single server. 

Because the calculation of these measures varies widely between servers, it is 

important to remember they are relative measures and thus it is not possible to 

compare these quality scores between servers. 

5.2.2 Proteome Analyst 

Proteome Analyst (Lu et al., 2004) was trained and tested using Gram- 

negative bacterial sequences extracted from the first release of ePSORTdb as 

well as SwissProt entries with annotated localization information. The complete 

Gram-negative dataset consists of 3174 sequences, and the Gram-positive 

dataset 1541 sequences. The authors report precision of 95.9% and 94.6%, and 

recall of 93.4% and 91.4% for the Gram-negative and Gram-positive classifiers, 

respectively. Coverage analysis was performed using one genome from each 

class of bacteria, with Proteome Analyst achieving 75.6% coverage for the Gram- 

negative bacterium Pseudomonas aeruginosa and 67.2% coverage for the 

Gram-positive bacterium Bacillus subfilis. When PSORTb v.2.0 was used to 



analyze the same organisms, it attained coverage of 68.1 % for P. aeruginosa 

and 76.5% for B. subtilis. 

An analysis based on these two proteomes suggests that while Proteome 

Analyst attains higher coverage on a Gram-negative organism, PSORTb v.2.0 

generates more predictions for a Gram-positive proteome. However, because of 

the small sample size and the fact that these two organisms are quite well- 

annotated, the true coverage of each method cannot accurately be compared. 

Proteome Analyst's markedly different approach and high recall make it an 

excellent complement to PSORTb. Like PSORTb, Proteome Analyst does not 

force predictions, resulting in high precision classification. A caveat to the 

method, however, is that in order to generate a prediction, a query protein must 

have homologs in the SwissProt database - hence not every protein encoded in 

a genome will return a result. Furthermore, predictions for proteins that are 

similar to known, well-studied proteins will also be of higher confidence than 

those for proteins whose homologs are not well-annotated. 

5.2.3 Amino acid composition support vector machine-based methods 

Composition-based SVMs are capable of making predictions when no 

prior information - homology or the presence of a particular sequence feature, for 

example - about a protein is available. However, because predictions are 

returned for all submitted queries - even if the result is not a highly confident one 

-the precision of these methods is significantly lower than that of PSORTb and 

Proteome Analyst. 



SubLoc (Hua and Sun, 2001) was trained on the Reinhardt and Hubbard 

dataset derived from SwissProt, comprising 997 bacterial sequences (Reinhardt 

and Hubbard, 1998), and the authors report an accuracy value of 91.4% when 

the method was evaluated using this dataset. 

CELLO (Yu et al., 2004) was trained and tested using the 1443 Gram- 

negative bacterial proteins in the first release of ePSORTdb (Gardy et al., 2003). 

The authors report 88.9% accuracy, with predictions generated for all queries. 

The method was recently updated to permit the analysis of Gram-positive 

sequences, however information on the training data used and the performance 

of the method is unavailable. 

LOCtree (Nair and Rost, 2005) was trained and tested using a dataset 

created by the program's authors comprising 672 bacterial proteins. The authors 

report accuracy of 83% for Gram-negative bacteria and 90% for Gram-positive 

bacteria. However, because LOCtree does not discriminate between Gram- 

negative and Gram-positive organisms, the potential exists for a Gram-positive 

protein to be mistakenly classified as periplasmic. 

P-CLASSIFER (Wang et al., 2005) was trained and tested on a dataset 

derived from the first release of ePSORTdb comprising 1441 proteins, achieving 

a recall of 89.8%, and PSLpred (Bhasin et al., 2005) was trained using 1443 

proteins from the first release of ePSORTd b, achieving 91.2% accuracy. 



5.3 Comparison of precision and recall 

Because of the disparity in the performance metrics reported by the 

authors of each of the above methods, it is difficult to accurately assess the 

performance of each program using information provided in the original 

manuscripts. Instead, an independent comparison of the tools using a set of 

proteins not contained in the training data of any of the methods is required. 

We compared the performance of PSORTb, Proteome Analyst, CELLO, 

PSLpred and P-CLASSIFIER using 144 novel Gram-negative bacterial proteins 

not contained in the training data of any of the methods. SubLoc and LOCtree 

were not evaluated, as these methods only predict three localization sites rather 

than five and were trained using data which may overlap with the testing data 

used herein. Results are summarized in Table 5.1. 



Table 5.1: An independent comparison of the performance of five bacterial subcellular 
localization prediction methods using a test set of 144 novel Gram-negative 
bacterial proteins. 

Localization Program TP FP FN Precision (%) Recall (%) 
PSORTb 22 1 8 95.7 73.3 
CELLO 27 9 3 75.0 90.0 
Proteome Analyst 22 1 8 95.7 73.3 
P-CLASSIFIER 27 7 3 79.4 90.0 

C PSLpred 28 3 2 90.3 93.3 
PSORTb 39 1 3 97.5 92.9 
CELLO 35 4 7 89.7 83.3 
Proteome Analyst 40 6 2 87.0 95.2 
P-CLASSIFIER 38 6 4 86.4 90.5 

CM PSLpred 4 1 2 1 95.3 97.6 
PSORTb 26 0 6 100.0 81.3 
CELLO 16 6 16 72.7 50.0 
Proteome Analyst 29 1 3 96.7 90.6 
P-CLASSIFIER 13 3 19 81.3 40.6 

P PSLpred 20 4 12 83.3 62.5 
PSORTb 34 1 5 97.1 87.2 
CELLO 24 3 15 88.9 61.5 
Proteome Analyst 34 0 5 100.0 87.2 
P-CLASSIFIER 24 3 15 88.9 61.5 

OM PSLpred 23 2 16 92.0 59.0 
PSORTb 1 0 0 100.0 100.0 
CELLO 1 19 0 5.0 100.0 
Proteome Analyst 1 6 0 14.3 100.0 
P-CLASSIFIER 1 22 0 4.3 100.0 

EC PSLpred 1 20 0 4.8 100.0 
PSORTb 122 3 22 97.6 84.7 
CELLO 103 4 1 4 1 71.5 71.5 
Proteome Analyst 126 14 18 90.0 87.5 
P-CLASSIFIER 103 41 41 71.5 71.5 

Total PSLpred 113 3 1 3 1 78.5 78.5 

5.4 Conclusions 

Our assessment of the available bacterial protein localization prediction 

tools reveals that PSORTb v.2.0 achieves the highest precision, while Proteome 

Analyst achieves the highest recall, together with excellent precision. Both 

programs outperform the tools that force predictions, however of these SVM- 

based methods, PSLpred appears to yield the highest precision and recall. 
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Our results illustrate that multi-component predictive methods and those 

that take into account biological knowledge (in the form of SWISS-PROT 

annotations) generate higher quality predictions than do simple SVM-based 

methods. 



6 ANALYSIS I: PSEUDOMONAS AERUGINOSA 
EXPORTED PROTEINS 

Portions of this chapter have been previously published in the article "Genome-wide 
identification of Pseudomonas aeruginosa exported proteins using a consensus 
computational strategy combined with a laboratory-based PhoA fusion screen", co- 
authored by S. Lewenza, J. L. Gardy, F. S. L. Brinkman, and R. E. W. Hancock in Genome 
Research, Volume 15, Issue 2 O 2005 Cold Spring Harbor Laboratory Press. 

6.1 Summary 

The Gram-negative pathogen Pseudomonas aeruginosa encodes multiple 

protein export systems, the substrates of which contain export signals such as N- 

terminal signal peptides. Here we describe the first genome-wide computational 

and laboratory screen for N-terminal signal peptides in this important 

opportunistic pathogen. The computational identification of signal peptides was 

based on a consensus between multiple predictive tools and showed that 38% of 

the P. aeruginosa PA01 proteome was predicted to encode exported proteins, 

most of which utilize cleavable type I signal peptides or uncleavable 

transmembrane helices. In addition, known and novel lipoproteins (type II), twin 

arginine transporter (TAT), and prepilin peptidase substrates (type IV) were also 

identified. A laboratory-based screen using the alkaline phosphatase (PhoA) 

fusion method was then used to test our predictions. In total, 310 nonredundant 

PhoA fusions were successfully identified, 296 of which possess a predicted 

export signal. Analysis of the PhoA fusion proteins lacking an export signal 

revealed that three proteins have alternate translation start sites that encode 

signal peptides, two proteins may use an unknown export signal, and the 



remaining nine proteins are likely cytoplasmic proteins and represent false 

positives associated with the PhoA screen. Our approach to identify exported 

proteins illustrates how computational and laboratory-based methods are 

complementary, where computational analyses provide a large number of 

accurate predictions while laboratory methods both confirm predictions and 

reveal unique cases meriting further analysis. 

6.2 Rationale 

The release of the high-precision, high-coverage PSORTb v.2.0 tool 

permitted us to couple a comprehensive computational analysis of localization in 

a genome to a similarly large-scale laboratory-based analysis. It was decided to 

analyze exported proteins in Pseudomonas aeruginosa using both PSORTb and 

other high quality predictive methods and compare our results to laboratory- 

derived localization information. 

The completion of the Pseudomonas aeruginosa PA01 genome sequence 

has provided many insights into the biology and pathogenesis of this organism 

and serves as the starting point for genome-wide studies of this important 

opportunistic pathogen (Stover et al., 2000). P. aeruginosa is the primary cause 

of chronic lung infections and mortality in patients with cystic fibrosis and is also 

the third most frequently isolated nosocomial pathogen, causing approximately 

10% of all hospital-acquired infections (Fridkin and Gaynes, 1999; Govan and 

Deretic, 1996; Hancock and Speert, 2000). Pseudomonas infections are difficult 

to treat due to the high intrinsic antibiotic resistance of this organism, which is 

attributed to low outer membrane permeability coupled with additional resistance 



mechanisms, including active drug efflux and antibiotic modification (Hancock 

and Speert, 2000). 

A major subset of the P. aeruginosa proteome is dedicated to proteins that 

are exported out of the cytoplasm to the cell envelope - the cytoplasmic 

membrane, the periplasm and the outer membrane - or that are secreted out of 

the cell to the extracellular environment (Guina et al., 2003; Nouwens et al., 

2000). This subset of proteins is involved in essential cellular processes that 

include cell wall assembly, nutrient uptake, virulence, antibiotic resistance, pili 

and flagella biogenesis, immunogenicity, adherence, energy generation and 

environmental sensing. The importance of these proteins is illustrated by the fact 

that many cell envelope proteins are the targets of current antimicrobials (Drew 

et al., 2003) or vaccines and thus identifying novel envelope proteins may 

provide new targets for drug discovery and immunoprophylaxis (Cachia and 

Hodges, 2003). 

P, aeruginosa proteins destined to non-cytoplasmic subcellular 

localizations utilize various protein export systems, as recently reviewed in Ma et 

al. (2003). The Sec machinery facilitates the majority of protein transport across 

the cytoplasmic membrane (Filloux et al., 1998; Pugsley, 1993a). Proteins may 

be recognized by the SecB chaperone after translation, maintaining their 

appropriate conformation to permit recognition by the SecYEG translocation 

machinery (de Gier and Luirink, 2001 ; Drew et at., 2003; Pugsley, 1993a), or they 

may be recognized by the signal recognition particle (SRP), and directed 

ultimately to the SecYEG translocase (Bernstein, 2000; de Gier and Luirink, 



2001 ; Drew et al., 2003). Export systems that are Sec-independent are also 

found in P. aeruginosa, including the twin-arginine translocation (TAT) pathway, 

which is responsible for the translocation of certain pre-folded proteins (Ochsner 

et al., 2002; Voulhoux et al., 2001), as well as type I and type Ill secretion 

systems that translocate proteins across the cytoplasmic and outer membranes 

in a single step (Ma et al., 2003). 

The availability of the P. aeruginosa PA01 genome sequence, combined 

with knowledge of the defined structures and motifs found in most N-terminal 

signal peptides, permitted us to perform a genome-wide computational survey of 

proteins that use N-terminal signal peptides for export out of the cytoplasm. Our 

definition of "exported protein" includes all proteins exported out of the 

cytoplasm, including those incorporated into the cytoplasmic membrane through 

the presence of transmembrane helices. Laboratory-based surveys of signal 

peptide-encoding genes was also possible through the use of the alkaline 

phosphatase (PhoA) fusion technique (Manoil and Beckwith, 1985). In this 

approach, signal peptide-containing genes are fused in frame with a truncated 

'phoA gene lacking its native signal peptide. The signal peptide in the fused 

genomic fragment targets the PhoA moiety across the inner membrane to the 

periplasm, where alkaline phosphatase folds and becomes enzymatically active. 

We performed a combined computational and laboratory survey of P. 

aeruginosa signal peptide-encoding genes, first screening the P. aeruginosa 

PA01 genome for potential export candidates using computational techniques, 

and then implementing a random cloning PhoA fusion screen to test our 



predictions. The analysis represents the most comprehensive analysis of 

exported proteins in P. aeruginosa to date, and clearly illustrates the utility of this 

combined approach to genome-scale studies. 

6.3 Computational prediction of the exported fraction 
of the P. aeruginosa proteome 

6.3.1 Methods 

The version of the Pseudomonas aeruginosa PAOl genome used in the 

present analysis was downloaded from http://www.pseudomonas.com, updated 

June 10 2004. This version of the genome annotation contains 5570 predicted 

proteins. 

Type I signal peptides were predicted by a consensus approach utilizing 

four signal peptide prediction methods: SignalP v.3.0'~ neural network and 

hidden Markov model implementations (Bendtsen et al., 2004), LipoP v.1.0 

(Juncker et al., 2003), and Phobius (Kall et al., 2004). A protein was noted as 

having a type I signal peptide if three or more methods predicted one, and as not 

having a signal peptide if three or more methods did not predict one. Fifty-seven 

proteins were noted as having possible type I signal peptides, representing cases 

where two methods predicted a signal peptide while two methods did not. Type II 

signal peptides were predicted exclusively by the program LipoP. 

Sequences of type IV prepilin precursors and related proteins (Lory, 1994) 

were used to construct the motif G[FIMLSY][TS][LT][ILVP]E. The motif was then 

used to scan the P. aeruginosa PAOl genome for possible prepilin peptidase 



substrates. Downstream hydrophobic tracts were identified using the Kyte and 

Doolittle hydrophobicity scale (Kyte and Doolittle, 1982). 

Possible TAT substrates were identified by searching for occurrences of 

the RRXFL[KR] motif (Chaddock et al., 1995), where a protein exhibited the dual 

arginines as well as matches to at least two of the FL[KR] residues. This set of 

proteins was filtered to remove proteins with little to no hydrophobic character in 

the region immediately C-terminal to the TAT motif, again using the Kyte-Doolittle 

hydrophobicity index. 

Proteins utilizing a transmembrane helix for targeting were identified by 

both Phobius and TMHMM (Krogh et al., 2001). In the absence of a strongly 

predicted signal peptide (three or more predictions) and given a prediction of two 

or more transmembrane helices by either Phobius or TMHMM, a protein was 

annotated as using a TMH for export. 

Predictions for all classes of export signal are summarized in Table 6.1 

(see also Appendix D). 

Table 6.1 : Occurrence of computationally predicted export signals in P. aeruginosa. 

Type of export signal 
Type 1 
Possible type I 
Type II (lipoprotein) 
Type IV(prepilin) 
TAT 
Transmembrane helix 
Total with export signals 
No export signal 

Number % of genome 
80 1 14.4 

% of export signals 
37.7 



6.3.2 Results: Type l signal peptides 

The majority of proteins using an N-terminal signal peptide for export are 

substrates of the Sec pathway and are cleaved by signal peptidase I. In the P. 

aeruginosa genome, 801 (14.4%) proteins were predicted by at least three of the 

four predictive methods to contain a cleavable type I signal peptide. The 

programs typically agree in their predictions, with 51 8 out of 801 signal peptides 

having four identically predicted cleavage sites and an additional 56 signal 

peptides with three identically predicted cleavage sites. 

In addition to the 801 proteins with strongly predicted signal peptides, 57 

proteins yielded inconclusive results with only two out of four methods making a 

signal peptide prediction. These proteins were therefore classified as possible 

type I signal peptides. This list includes the known TAT substrate phospholipase 

PlcH (PA0844) (Voulhoux et al., 2001), a lectin protein thought to be anchored in 

the outer membrane (PA3361) and the probable outer membrane protein OprC 

(PA3790). Interestingly, this list also contains three regulatory proteins which are 

predicted to be cytoplasmic (PA1 949, PA1 998, PA2267) by PSORTb v.2.0 

(Gardy et al., 2005). These three proteins likely represent the small number of 

false positives inherent in any predictive technique. 

6.3.3 Results: Type ll signal peptides 

We identified 185 proteins, or 3.3% of the genome, as potentially 

containing a type II signal peptide. This number is considerably higher than the 

76 PSORT I-predicted lipoproteins (Nakai and Horton, 1999) annotated at 

htt~://www.pseudomonas.com, likely due to the improved identification algorithm 



of LipoP. LipoP also reports the +2 residue of each predicted lipoprotein, as this 

residue is thought to act in targeting of the lipoprotein to one or the other 

membrane. The majority of P. aeruginosa lipoproteins contain Ser (54), Ala (49), 

or Gly (32) residues at this position, indicating that they are likely localized to the 

outer membrane (Yamaguchi et al., 1988). 

6.3.4 Results: Type IV signal peptides 

By scanning for the occurrence of a GFTLIE-like motif preceding a stretch 

of hydrophobic residues, 13 candidate type IV signal peptides were initially 

identified, all of which were present in proteins annotated as pseudopilins, type II 

secretion proteins, general secretion pathway proteins, pilins, or fimbrial subunits 

- classes of proteins known or suspected to be processed by prepilin peptidase. 

The 13 predicted prepilin peptidase substrates occurred in clusters along 

the genome. Reasoning that neighbouring proteins might exhibit type IV-like 

signal sequences missed in the initial scan, the 10 proteins both upstream and 

downstream of the clusters were manually inspected. A further 10 sequences 

representing possible prepilin peptidase substrates were identified in this fashion. 

In total, 23 proteins were predicted to represent prepilin peptidase substrates, six 

of which - PA2671, PA2672, PA2673, PA2674, PA2675 and PA4554 - have not 

been previously described. 

6.3.5 Results: TAT signal peptides 

Proteins exported via the TAT machinery display an RRXFL[KR]-like motif 

at their N-terminus, which otherwise contains a leader sequence that resembles 



a tripartite signal peptide (Berks, 1996). The P. aeruginosa genome has been 

scanned for the presence of TAT substrates in two previous studies. Ochsner et 

al. (2002) identified 18 putative substrates through a manual inspection 

approach. Their criteria included: the presence of twin arginines, a match to at 

least one of the remaining residues in the motif, a hydrophobic tract following the 

motif, and an AXA cleavage site. Dilks et al. (2003) implemented their TATFIND 

v.1.2 program to identify 57 putative substrates, using the criteria of the presence 

of an XRRXXX motif within residues 1-34 as well as an uncharged region of 13 

or more residues downstream of the twin arginines. 

In the present analysis, proteins with predicted type I or II signal peptides 

were scanned for the presence of the TAT motif RRXFLIKR] immediately N- 

terminal to a stretch of hydrophobic residues. This identified 14 proteins with type 

I signal peptides that also possess TAT motifs, while one protein with a predicted 

type II signal peptide contains the TAT motif (PA4712). However, several 

putative TAT substrates reported in the earlier two studies were not identified in 

this analysis. This is attributed to the fact that many of these proteins do not 

contain traditional type I or type II signal peptides. Thus a second analysis was 

performed in which we eliminated the requirement for a predicted signal peptide. 

When the entire genome was searched without the signal peptide filtering step, 

an additional 12 putative TAT substrates were found. 

In total, 27 potential TAT substrates were identified, 10 of which were not 

described in either of the two previous studies. The 10 novel substrates predicted 

include: FepD, HcnC, Sss, GlcE and 6 hypothetical or conserved hypothetical 



proteins. Sss, however, is annotated as a site-specific recombinase and likely 

represents a false positive associated with the scanning procedure. These 

proteins may have been missed in the previous two analyses due to the 

requirement for an AXA cleavage site in the Ochsner et al. (2002) study, and the 

minimum of 13 uncharged residues downstream of the twin arginines required by 

TATFIND. 

Eight proteins identified by Ochnser et al. (2002) were not found in the 

present study. Inspection of these revealed that the proteins either exhibit weakly 

hydrophobic regions downstream of their motifs or have less than two residues in 

common with the FL[KR] portion of the TAT motif. We also did not identify 41 

proteins reported in Dilks et al. (2003), which is attributed to the fact that the 

RRXFL[KR] motif requirement employed here is significantly more stringent than 

the XRRXXX used in the TATFIND program. 

6.3.6 Results: Membrane-targeting transmembrane helices 

Many cytoplasmic membrane proteins do not require a cleavable signal 

sequence in order to insert into the membrane. Instead, the presence of one or 

more transmembrane alpha helices and recognition by the signal recognition 

particle is sufficient for membrane-targeting (Bernstein, 2000; de Gier and 

Luirink, 2001; de Gier et al., 1998). Of the proteins without a predicted cleavable 

N-terminal signal peptide, 1042 (1 8.7%) were predicted by Phobius and TMHMM 

(Krogh et al., 2001) to contain at least one transmembrane helix. Some of these 

likely represent N-terminal uncleaved signal anchors, while in most cases it 



appears that internal helices may be sufficient for cytoplasmic membrane 

targeting. 

6.4 PhoA fusion survey of the P. aeruginosa proteome 

6.4.1 Methods 

The following steps were carried out by Dr. Shawn Lewenza, a 

postdoctoral fellow in the laboratory of Dr. R.E.W. Hancock. Escherichia coli 

DH5a was used as the recombinant host for a P. aeruginosa-alkaline 

phosphatase (PhoA) fusion library. Genomic DNA from P. aeruginosa HI03 was 

isolated, partially digested with Sau3Al and size fractionated on 1 % agarose-Tris- 

acetate-EDTA (TAE) gels. Digested DNA in the size range 1 to 3 kb was excised, 

gel-purified and ligated into BamHl digested, phosphatase-treated plasmids 

pJDT1, pJDT2, and pJDT3 that contain single base additions to permit the 

coding fragment to fuse in the correct reading frame to 'phoA (Mdluli et al., 

1995). 

Ligation products were used to transform electrocompetent E. coli DH5a. 

Transformants were recovered and screened for alkaline phosphatase activity on 

alkaline phosphatase indicator LB agar containing 75 mM Na2HP04 to repress 

endogenous PhoA activity, 100 uglml ampicillin and 90 uglml of the chromogenic 

alkaline phosphatase substrate BClP (5-bromo-4-chloro-3-indolyl phosphate) as 

previously described (Bina et al., 1997). All blue colonies were picked to 96-well 

microtitre plates and sub-cultured in LB broth containing 50 uglml ampicillin. 



I then carried out the remaining steps in collaboration with Dr. Lewenza. 

Plasmids from PhoA positive clones were purified in 96-well format (Qiagen, 

Mississauga, Canada), visualized for yield on 96-lane 1 % agarose-TAE gels and 

sequenced using Big Dye Terminator chemistry (Applied Biosystems, Foster 

City, CA) on a Basestation 51 Fragment Analyzer (MJ Research, Waltham, MA) 

and a 'phoA-specific sequencing primer directed towards the upstream cloned 

region as previously described (Bina et al., 1997). 

The P. aeruginosa genes upstream of the truncated 'phoA gene were 

mapped to the P. aeruginosa PA01 genome sequence by BLASTN and BLASTX 

analyses (Altschul et al., 1997). 

6.4.2 Results 

In total, 1035 PhoA positive colonies were isolated. After growth in liquid 

media for plasmid DNA isolation, cultures were re-inoculated onto PhoA indicator 

agar to examine the stability of the PhoA phenotype. In contrast to colonies 

transferred multiple times on solid media, cultures grown in liquid media had 

highly unstable alkaline phosphatase phenotypes. It was reasoned that growth in 

liquid media strongly selects for mutations that limit the amount of PhoA fusion 

protein expressed, due to the toxicity of membrane-localized PhoA fusion 

proteins (Manoil and Traxler, 1995) or due to high expression levels. The plasmid 

used has a high copy number and contains the lac promoter upstream of the 

'phoA gene (Mdluli et al., 1995). Cloned P. aeruginosa fragments that produce 

successful PhoA fusions may also contain strong Pseudomonas promoters, thus 



it is possible that the PhoA fusions may be expressed from either the lac 

promoter, the Pseudomonas promoter, or off of both. 

Plasmids were purified from all PhoA positive colonies regardless of the 

stability of the PhoA phenotype. Only plasmids with high and intermediate yields 

were used as templates in sequencing reactions. In some cases, extremely low 

plasmid yields were observed, suggesting that plasmid loss had occurred. A total 

of 646 plasmids were sequenced and mapped to the P. aeruginosa genome to 

identify the gene randomly cloned upstream of the 'phoA gene. This analysis 

yielded a total of 474 proteins cloned in the correct orientation to produce a PhoA 

fusion protein while the majority of remaining sequences were of poor quality and 

did not produce high scoring BLAST hits to the PA01 genome. Eliminating the 

redundant BLAST hits reduced the list to 31 0 unique P. aeruginosa-PhoA fusion 

proteins. 

The ability of these proteins to direct PhoA to the cytoplasmic membrane 

is likely due to the presence of an export signal. Of the 310 proteins identified in 

the PhoA screen, 296 displayed a predicted cleavable N-terminal signal peptide 

or contained one or more predicted transmembrane helices, as summarized in 

Table 6.2. 



Table 6.2: Predicted export signals in 310 PhoA fusion proteins. 

Type of export signal Number % of export signals 
Type 1 169 57.1 
Possible type I 1 0.3 
Type II (lipoprotein) 3 1 10.5 
Type IV(prepilin) 5 1.7 
TAT 1 0.3 
Transmembrane helix 89 30.1 
Total with export signals 296 
No export signal 14 

These data indicate that our consensus computational prediction strategy 

displayed high recall - in other words, a low number of false negative results was 

encountered. However, one cannot comment on the precision, or false positive 

rate, of the strategy, as the PhoA fusion simply indicates export and does not 

provide information on the nature of the export signal itself. 

Export signals were annotated as type I, probable type I, type II, type IV, 

TAT, or transmembrane helix based on the predictions generated in the initial 

computational screen. Similar proportions of type II and type IV signal peptides 

were observed in both the whole genome predictions and among the PhoA 

fusion proteins, indicating that the prediction of these two types of signals might 

be relatively straightforward, particularly when compared to prediction of type I 

signal peptides. The proportion of type I signal peptides identified in the PhoA 

screen was almost 20% higher than the proportion predicted genome-wide, 

indicating that the predictive methods may be missing some non-canonical N- 

terminal signal peptides or that the PhoA fusion method preferentially identifies 

type I signal peptides. 



There were 14 proteins identified in the PhoA screen which lacked a 

predicted export signal. These proteins may possess non-canonical export 

signals not identified by the methods used, or else incorrect assignment of start 

sites may have caused their true export signals to be missed. Alternatively, they 

may represent false positives associated with the PhoA screen. To explore these 

possibilities, these proteins were selected for further examination. 

The protein sequences and upstream regions were examined for 

alternative start sites by manual scanning and GeneMark 2.4 analysis (Lukashin 

and Borodovsky, 1998). Ten proteins displayed potential alternative translation 

products, which were re-analyzed by the four signal peptide prediction methods. 

The alternative translation products associated with three proteins (PA0667, 

PA0259, PA3348) were predicted by all four methods to be exported by a 

cleavable type I signal peptide. 

Next, the remaining proteins were compared to the ePSORTdb database 

of proteins of experimentally verified localization (Gardy et al., 2003) using a 

BLASTp search and an E-value cutoff of le-10. None of the proteins were 

homologous to exported proteins but four proteins (PA2451, PA391 9, PA4091, 

PA2744) showed similarity to cytoplasmic proteins. Lastly, the protein sequences 

were similarly compared to the cPSORTdb database of proteins with 

computationally predicted subcellular localizations. Five proteins showed 

similarity to predicted cytoplasmic proteins (PA1 389, PA3357, PA3673, PA4124, 

PA4577) and none showed similarity to PSORTdb predicted exported proteins. 

Of the two remaining proteins, PA1531 is similar to the periplasmic protein of 



ABC transporters and PA5044 (PilM) is similar to the actin-like protein MreB from 

E. coli and Bacillus (Mattick, 2002). PilM is involved in type IV pili biosynthesis 

and is necessary for twitching motility (Mattick, 2002). These two proteins have 

no predicted export signal but may contain a unique export signal not identified 

by our methods. Thus, of the 14 PhoA fusions with no apparent export signal, 

only five appear to be candidates for export while the remaining nine proteins are 

probable false positives. 

Among the proteins that produced active PhoA fusions, 150 are annotated 

as hypothetical or conserved hypothetical proteins. This finding suggests that 

these proteins are likely localized to the membrane and thus provides some 

preliminary information regarding the function of these proteins that have not as 

yet been characterized. 

6.5 Conclusions 

In the first part of our analysis, a genome-wide computational screen for 

exported proteins was performed. Multiple predictive methods, including machine 

learning methods and manual pattern matching, were used to identify P. 

aeruginosa PA01 proteins containing possible export signals. In large-scale 

genome studies, it is critical to employ a consensus approach in order to reduce 

the number of false positives and to increase the confidence of the prediction. 

Our study reports almost 100% agreement between the genome-wide predictions 

and the experimental PhoA fusion data. 



The consensus prediction method used here indicates that 38% of the 

genome encodes proteins exported via five types of export signal: type I signal 

peptides, type II (lipoprotein) signal peptides, type IV (prepilin) signal peptides, 

TAT (twin arginine transporter) signal peptides, and membrane-targeting 

transmembrane helices. Approximately 40% of these predicted exported proteins 

appear to utilize cleavable type I signal peptides, according to 3 or more of the 

predictive methods. A small number of false positives were observed which 

include 4 of the 71 9 proteins with strongly predicted signal peptides (PA2003, 

PA2554, PA3883, PA5389) that show significant similarity to cytoplasmic 

proteins and 3 proteins with weakly predicted signal peptides (PA1 949, PA1 998, 

PA2267). Furthermore, predictions may also reflect biases in the programs' 

training data, such that certain non-canonical type I signal peptides might be 

missed. This is likely the case with many of the 57 proteins with weakly predicted 

type I signal peptides since many of them appear to be candidates for export 

based on their annotated functions, however at least 2 of the 4 methods failed to 

predict a signal peptide. 

The methods used to identify the other classes of signal peptide are more 

specialized and appear to result in better predictions when compared to type I 

signal peptide methods. LipoP v.1.0 predicted 185 potential lipoproteins in the 

genome, 109 more than are presently annotated in the pseudomonas.com 

database. The Pseudomonas Genome Database annotations were calculated 

using PSORT I, and the increase in predicted lipoproteins reported here 

illustrates the importance of using up to date computational methods. 



We predicted 23 putative prepilin peptidase substrates in the PA01 

genome, of which six represent novel candidates. These include five proteins 

occurring in a cluster, four of which are annotated as probable type II secretion 

system proteins and may represent novel type II secretion proteins, similar to the 

Xcp and Hxc machinery. There are likely more prepilin peptidase substrates 

within the P. aeruginosa genome, which could be identified through searching 

with a more degenerate motif. For example, the supposedly invariant Gly residue 

preceding the cleavage site appears to be replaceable by an Ala residue, as 

seen in the previously identified FimT protein, as well as in PA2672 and PA2674 

reported here. 

Fifteen putative TAT substrates were initially identified in the present 

analysis, which utilized stringent criteria including the presence of a predicted N- 

terminal signal peptide and a match of at least 5 of the 6 residues in the 

RRXFL[KR] motif. An expanded analysis searching for potential TAT substrates 

across the whole genome - not just within the subset of proteins with predicted 

signal peptides - identified a further 12 possible TAT substrates. This indicates 

that it is important not to overlook proteins without a predicted signal peptide, as 

they may contain functioning TAT-directing motifs. In fact, of the 18 previously 

identified TAT substrates reported by Ochsner et al. (2002), only 11 contain 

predicted type I signal peptides. Of the 57 putative substrates reported by Dilks 

et al. (2003), just 28 are predicted to contain a type I signal peptide. Overall, 27 

potential substrates were identified, 10 of which have not been previously 

described. However, there are likely many more TAT substrates within the 



genome with more degenerate motifs, since our prediction strategy was unable 

to identify the known TAT substrates phospholipase PlcH and the ferripyoverdine 

receptor FpvA (Ochsner et al., 2002). 

Our computational analysis showed that the majority of exported proteins 

are likely cytoplasmic membrane proteins that lack cleavable signal peptides but 

possess one or more transmembrane helices as an export signal. This estimate 

of proteins possessing transmembrane helices, 18.7% of the P. aeruginosa 

proteome, is similar to the 18.5% of proteins predicted by PSORTb to be 

localized to the cytoplasmic membrane. This may reflect the fact that 

computational prediction of transmembrane helices is generally regarded to be 

more accurate than the prediction of targeting signals, due to the sequence 

constraints associated with crossing a lipid bilayer. As signal peptide prediction 

methods improve, an increase in the number of predicted exported proteins is 

also expected. 

PhoA fusion methods are a versatile genetic tool to identify proteins that 

are translocated across the cytoplasmic membrane. Using a plasmid-based 

'phoA screen, 31 0 unique P. aeruginosa fusion proteins were successfully 

identified. This approach to identify membrane-localized proteins is as efficient as 

reported in previous P. aeruginosa membrane proteomic studies (Guina et al., 

2003; Nouwens et al., 2000). A significant disadvantage of this approach is the 

apparent toxicity of PhoA fusion proteins, which often selects for mutations that 

lead to a loss of PhoA activity or even the loss of plasmid. Furthermore, PhoA 

fusion analysis is of limited utility in the identification of proteins using certain 



export systems. Proteins secreted to the extracellular space by the type I or type 

Ill systems typically lack N-terminal signal peptides and, in the case of type I 

ABC transporter substrates instead rely on a C-terminal secretion signal 

(Mackman et al., 1987; Delepelaire and Wandersman, 1990; Letoffe and 

Wandersman, 1992). Such proteins will not be identified through PhoA fusions. 

Proteins using the TAT system represent a more complex case. TAT substrates 

are folded in the cytoplasm prior to entering the TAT transporter. PhoA, however, 

is folded in the periplasm, where the necessary disulfide bonds are formed. 

Interestingly, one protein with a predicted TAT motif did produce an active PhoA 

fusion. While this could represent a false positive prediction of a TAT export 

signal, it may also indicate that the TAT transporter is capable of translocating an 

unfolded substrate, or that an active PhoA fusion can be formed in the 

cytoplasm. 

Although there is a possibility that certain P. aeruginosa-specific export 

signals may not be recognized as PhoA fusions expressed in a recombinant E. 

coli host, the strong conservation of the inner membrane targeting and 

translocation machinery should not affect the export of most PhoA fusion 

proteins. In addition, this approach has been used previously to identify secreted 

proteins in Helicobacterpylori (Bina et al., 1997). 

The 310 proteins identified in this PhoA screen reflect many of the known 

functions associated with the cell envelope. The outer membrane proteins 

identified includes those that function as porins, iron uptake receptors and efflux 

channels, the three largest families of outer membrane proteins, and proteins 



involved in secretion and adhesion. Periplasmic proteins identified included the 

binding components of ABC transporters, cell wall biosynthesis enzymes, stress 

response proteases and chaperones. Inner membrane proteins included 

transport proteins, chemotaxis transducers, two-component sensors, efflux 

pumps, cell wall biosynthesis enzymes and proteins involved in secretion. 

The PhoA fusion data provided confirmation that 14% of our predicted 

exported proteins are indeed exported, although the export signals themselves 

cannot be identified. The laboratory analysis also identified 14 proteins with no 

predicted export signal. Three of these 14 contained mispredicted start sites and 

the new translation products displayed type I signal peptides. Nine of the 

remaining proteins showed significant similarity to known and predicted 

cytoplasmic proteins and likely represent false positives (3%) associated with the 

PhoA fusion technique. A second class of false positives, not counted in the 31 0 

successful fusions, occurred at a similar rate and included fusions to genes in the 

opposite orientation of the 'phoA gene. The false positives found in the PhoA 

screen do not overlap with the false positives found in the computational screen 

and, had the computational screen not been performed, would have gone 

unnoticed. The remaining proteins without a predicted signal peptide exhibited 

significant similarity to an exported protein and a bacterial cytoskeletal protein, 

however their export signals remain unclear. 

In summary, a combined computational and experimental approachwas 

employed to identify exported proteins in P. aeruginosa. The approach illustrates 

the effectiveness of using two complementary methods for genome-wide 



analyses. Computational techniques have the advantage of yielding a large 

number of predictions - ideal for genome-wide studies - and when a consensus 

method is employed the number of false positive results is reduced. Laboratory 

methods, though they generally provide fewer results, can both confirm 

predictions and reveal interesting cases meriting closer inspection, including 

erroneous annotations and potentially unusual sequence features. This 

combined analytical approach is readily adaptable to other bacteria -the 

increase of the breadth of training data available means that current export signal 

predictive methods can be applied to a diverse range of organisms with accurate 

results, and the PhoA fusion technique is commonly used to study exported 

proteins. 

In addition to creating the P. aeruginosa signal peptide dataset described 

in this report (Appendix D), this analysis has provided laboratory-based 

experimental evidence to confirm the export of 14% of the predicted export 

candidates, as well as the existence of 150 proteins annotated as hypothetical or 

conserved hypothetical. The genome-wide identification of exported proteins will 

help define this important subset of the P. aeruginosa genome, and may assist in 

the discovery of novel drug targets. 



7 ANALYSIS II: COMPARISON OF HIGH-THROUGHPUT 
PROTEOMIC AND COMPUTATIONAL METHODS 
FOR PROTEIN SUBCELLULAR LOCALIZATION 
IDENTIFICATION 

Portions of this chapter have been previously published in the article "Assessing the 
precision of high-throughput computational and laboratory approaches for the genome- 
wide identification of protein subcellular localization in bacteriaJ', co-authored by J. L. 
Gardy, S. Rey, and F. S. L. Brinkman in BMC Genomics, Volume 6 O 2005 Rey et al; 
licensed by BioMed Central Ltd. 

7.1 Summary 

Subcellular fractionation combined with 2D gel-based proteomics permits 

the identification of large numbers of proteins from distinct bacterial 

compartments. However, the fractionation of a complex structure like the cell into 

individual compartments is not a trivial task. It was hypothesized that PSORTb 

v.2.0 could be used as a complement to fractionation-based analyses to facilitate 

more accurate genome-wide analysis of protein localization. Thus a comparison 

of computational localization prediction methods with laboratory proteomics 

approaches was undertaken in order to identify the most effective current 

approach for genome-wide localization characterization and annotation. PSORTb 

version 2.0 was used to computationally predict the localization of proteins 

reported in ten subcellular proteome analyses of bacterial compartments, and 

these computational predictions were then compared to the localizations 

determined by the proteomics study. By using a combined approach, a number 

of contaminants and proteins with dual localizations were identified, and we were 



able to more accurately identify membrane subproteomes. Our results allowed us 

to estimate the precision level of laboratory subproteome studies and it was 

shown that, on average, recent high-precision computational methods such as 

PSORTb now have a lower error rate than high-throughput laboratory methods. 

We note that analysis of all cellular fractions collectively is required to effectively 

provide localization information from laboratory studies, and we propose an 

overall approach to genome-wide subcellular localization characterization 

capitalizing on the complementary nature of recent laboratory and computational 

methods. 

7.2 Rationale 

Several types of laboratory methods are frequently used in the 

experimental determination of a protein's localization. Techniques such as 

immunofluorescence and immunoelectron microscopy (Kumar et al., 2000), 

PhoA fusions (Manoil and Beckwith, 1985), fluorescent-protein tagging (Chalfie 

et al., 1994), and Western blotting with SDS-PAGE are often applied to the 

analysis of either single proteins or a small sets of proteins. While such methods 

may provide high-quality localization information, they can be costly and/or time- 

consuming as compared to computational methods, and the number of proteins 

for which a localization site can be assigned per experiment is relatively low. 

Recent developments in proteomics technology now permit experimental 

verification of localization in a high-throughput fashion. Techniques such as two- 

dimensional gel electrophoresis and mass spectrometry (Dutt and Lee, 2000; 

Lay, 2001; Jonsson, 2001; Peng and Gygi, 2001; Govorun and Archakov, 2002) 



have been frequently employed in the study of a variety of bacterial genomes, 

including Pseudomonas aeruginosa (Nouwens at al., 2002) and Bacillus sp. 

(Antelmann et al., 2001). Many of these studies have focused on distinct cellular 

compartments through the analysis of samples obtained by subcellular 

fractionation (Molloy et al., 2000; Molloy et at., 2001; Bumann et al., 2002; Huang 

et al., 2002; Murakami et al., 2002). A major disadvantage of these subproteome 

analyses is that the fractionation of a complex structure like the cell into several 

subcellular compartments is not a trivial task. Contamination from other cellular 

compartments may occur and some proteins are known to span multiple 

localization sites (Chung et al., 1998). Despite these limitations, however, 

genome-scale techniques are rapid, cost-effective, and capable of returning 

results for hundreds or even thousands of proteins in a single analysis. 

After the development of PSORTb v.2.0, we hypothesized that by 

combining both high-throughput laboratory methods and computational 

prediction, some of the errors - particularly the potential for contamination - 

inherent in laboratory subproteome studies could be reduced. The existence of 

the high-precision PSORTb tool also raised the question of how well a 

computational method would compare, in terms of precision, to the laboratory 

methods presently available. In genome-scale analyses, do laboratory and 

computational methods behave equally, or are particular localization sites best 

predicted by one or both approaches? We therefore undertook a comparison of 

selected bacterial subproteomic studies with PSORTb-derived computationally 

predicted localization sites. 



7.3 Methods 

7.3.1 Selection of subproteomic studies 

Ten studies were selected spanning all five localization sites in the Gram- 

negative bacteria Escherichia coli (Dukan et al., 1998; Molloy et al., 2000), 

Helicobacterpylori (Bumann et al., 2002), Klebsiella pneumoniae (Molloy et al., 

2001 ), Porphyromonas gingivalis (Mura kami et al., 2002), Pseudomonas 

aeruginosa (Nouwens et al., 2002), Salmonella typhimurium (Molloy et al., 2001) 

and Synechocystis (Fulda et al., 20000; Huang et al., 2002). In addition, seven 

supplementary Gram-positive studies were evaluated to a lesser degree to 

ensure that the results were generally applicable to all bacteria: the cytoplasmic 

fractions of Corynebacterium glutamicum (Hermann et al., 2001 ; Schaffer et al., 

2001) and Mycobacterium leprae (Marques et al., 2004), the cytoplasmic 

membrane fractions of Bacillus anthracis (Chitlaru et al., 2004), Mycobacterium 

leprae (Marques et al., 2004) and Mycobacterium tuberculosis (Sinha et al., 

2002) and the extracellular fractions of Bacillus sp. (Antelmann et al., 2001) and 

Staphlycoccus aureus (Ziebandt et al., 2001). 

The vast majority of the studies used fractionation followed by two- 

dimensional gel electrophoresis in their analysis. Proteins were then subjected to 

peptide mass fingerprinting (PMF) identification. One study (Murakami et al., 

2002) used fractionation followed by two successive one-dimensional SDS- 

PAGE electrophoresis analyses, with subsequent N-terminal amino acid 

sequence analysis. 



7.3.2 Protein selection 

For each study, we examined the proteins identified and described by the 

authors to ensure they met two criteria. First, the protein must have been 

identified through direct comparison of the spot to the sequence of the bacterial 

genome under study and not to a related organism. For example, in the S. 

typhimurium outer membrane study of Molloy et al. only the proteins identified by 

a peptide mass fingerprinting search against the S. typhimurium genome were 

selected, while proteins identified by a search against other organisms were not 

included. Second, the protein reported in the study had to match a GenBank 

record in order to retrieve the correct amino acid sequence. After these two 

filtering steps were applied, the final dataset consisted of 405 proteins for the 

Gram-negative organisms and 269 Gram-positive bacterial proteins. 

7.3.3 Computational analysis 

Computational predictions of localization were performed using the 

standalone version of PSORTb v.2.0 (Gardy et al., 2005). Proteins predicted to 

reside at multiple localization sites were manually identified from the PSORTb 

score distribution; a protein was annotated with dual localizations if PSORTb 

returned two sites with scores between 4.50 and 7.49 or if the SCL-BLAST 

module returned significant similarity to a protein known to have dual 

localizations. Additional limited computational analyses were performed with 

Proteome Analyst (Lu et al., 2004). 



7.4 Results 

7.4.1 Comparison of computational and laboratory-based 
predicted localizations 

A matrix comparing the PSORTb predicted localization sites to the 

localizations assigned by subproteome analysis is presented in Table 7.1, 

together with the estimated Oh agreement and % coverage for each study. Full 

results are available in Appendix E. 

Table 7.1: PSORTb v.2.0 predicted localization sites for 405 proteins reported in ten 
subproteome studies. 

Subproteome Study: Organism Localization (Number of proteins) 
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CM 5 1 5 

PSORTb CMlP 1 1 1 
Predicted P 1 6 8 3 33 2 

Localization PlOM 1 
OM 5 3 3 6 22 2 22 9 4 
OMIEC 1 1 1 2 1 
EC 1 1 1 6 1 
Unknown 3 30 43 2 8 3 2 63 9 

Comparison Agreement 95.0 24.2 64.3 100.0 77.8 74.2 66.7 80.6 6.9 18.2 
(%) Coverage 52.4 87.0 24.6 100.0 81.8 79.5 50.0 93.9 58.0 55.0 ------ 

Agreement is defined by a/b, where a represents the number of proteins from fraction X predicted 
to be resident at X or XIY localization sites and b represents the total number of proteins from 
fraction X predicted as not unknown. Coverage is defined is b/c, where c is the total number of 
proteins from fraction X. 



Because PSORTb is designed with an emphasis on high precision, the 

program returns a prediction of "unknown" if not enough information is available 

to make a confident prediction. 163 of the 405 proteins being compared, or 

40.2%, returned a result of unknown and were not considered in the downstream 

analyses. Of the remaining 242 proteins, the experimentally observed localization 

site agreed with the computationally predicted localization site in only 104 cases, 

for a total % agreement of 43.0%. This figure dropped to 25.7% if the unknown 

proteins were included in the calculation. The figures vary significantly from study 

to study, with % agreement ranging from a low of 6.9% (4.0% if including 

unknowns) in the largest study, to a high of 100% in the smallest study. However, 

it is clear that among the 405 proteins, there are likely a significant number of 

false positives and false negatives. 

7.4.2 Identification of potential contaminants 

Subcellular fractionation is a widely-used method for isolating the proteins 

resident at a specific cellular compartment (Pasquali et al., 1999). However, a 

significant limitation of the technique is the problem of cross-contamination, in 

which small amounts of proteins from neighbouring compartments contaminate 

the fraction of interest. This leads to the inclusion of false positives in the 

resulting datasets. 

With the computational and subproteomic localizations differing for as 

many as 93.1 % of the proteins for a particular analysis, we suspected that certain 

subproteome studies we analyzed were prone to cross-contamination. The two 

studies examining the extracellular fraction, in particular, displayed agreement 



with the computational predications of only 6.9% and 18.2%, therefore we 

suspected that contamination may have been a particular problem for these 

studies. This may be due in part to autolysis, a process common in many 

bacterial species known to release cellular proteins into the extracellular milieu 

(Morse, 1978). It may also be due to cellular lysis during the centrifugation of the 

cells [19]. If we exclude the study with 100% agreement, which involves only a 

small (n = 3) number of proteins, we observe that the study with the most 

agreement between the two methods involved an analysis of the E. coli 

cytoplasm. The single possible contaminant observed in this study suggests that 

the cytoplasm is the easiest compartment to isolate in a subfractionation 

analysis. 

When a number of subproteome studies of Gram-positive bacteria were 

analyzed, we observed a similar trend. Of the seven studies we examined, the 

Corynebacterium glutamicum and Mycobacterium leprae cytoplasmic 

experiments displayed the lowest levels of observedlpredicted disagreement, at 

0% and 8% respectively. However, when two Gram-positive extracellular 

fractions were analyzed (Staphylococcus aureus and Bacillus sp.), the % 

disagreement was measured at 53% and 33% - figures which are significantly 

lower than those observed for Gram-negative bacteria. 

We next proceeded to examine the 138 disagreeing cases on an 

individual basis to identify the source of potential false positive results. While 

many false positive results appeared simply to be the result of "leaky" 

subfractionation, we did observe a number of cases in which a protein resident in 



the fraction of interest was identified along with its interacting partners from 

neighbouring cellular compartments. For example, Molloy et al. report the 

presence of the acriflavine resistance protein A (AcrA) in the outer membrane 

fraction however, AcrA - which is predicted by PSORTb to be a cytoplasmic 

membrane protein - is known to be dually localized in both the cytoplasmic 

membrane and the periplasm (Kawabe et at., 2000; Zgurskaya and Nikaido, 

2000). AcrA interacts with the outer membrane protein TolC to form an export 

system, thus we suspect that AcrA was found in the outer membrane fraction due 

to its tight association with TolC. 

Another instance of "co-fractionation by association" was observed with 

the PilJ protein isolated from the P. aeruginosa outer membrane fraction. This 

protein is predicted by PSORTb to be localized to the cytoplasmic membrane 

and displays significant similarity to the known cytoplasmic membrane protein 

methyl-accepting chemotaxis protein II from Salmonella typhimurium (Milburn et 

al., 1991). PilJ is part of the chemosensory systems of P. aeruginosa (Darzins, 

1994), and it was likely co-fractionated through its association with another 

component of the chemosensory system present in the outer membrane. 

We also observed several conflicting cases amongst the results when 

closely related proteins were examined. 85 of the 405 proteins in the analysis 

can be grouped into 36 groups of proteins which appear multiple times in the 

results. These 36 groups consist of: 1) a single protein identified more than once 

in the studies (e.g. OprE, identified in both the P. aeruginosa outer membrane 

and extracellular fractions); 2) two or more paralogs (e.g. Synechocystis CcmK 



homolog 1 and CcmK homolog 2, both identified in the cytoplasmic membrane 

fraction); or 3) two or more orthologs (e.g. Helicobacter pylon' carbonic 

anhydrase, identified in the extracellular fraction, and Synechocystis carbonic 

anhydrase, identified in the periplasmic fraction). 

We would expect these groups of closely related proteins to be isolated 

from the same subcellular fractions, since subcellular localization is highly 

conserved across diverse taxonomic lineages (Nair and Rost, 2002b). However, 

this is only the case for 18 of the 36 groups, although 33 of the 36 are predicted 

by PSORTb to reside in the same localization. Fifteen groups contain related 

proteins isolated from two different fractions. Two groups (the ATP synthase beta 

chain proteins and the elongation factor family) contain proteins isolated from 

three fractions, and one group (the GroEL, GroEL2 and GroES chaperonin 

proteins) was isolated from four different subcellular fractions. These latter three 

groups illustrate an important trend with respect to contamination - certain 

abundant, predominantly cytoplasmic, proteins are repeatedly found in the list of 

potential contaminants, either due to the subfractionation process or their 

association (even if temporary) with proteins of another localization (for example, 

the protein folding chaperones). In the majority of these studies, however, they 

are not noted as potential contaminants/co-purifying proteins. 

Our analysis of false positives reveals that the potential for contamination 

appears to be lowest when the cytoplasm is the subfraction of interest, and 

highest when the extracellular fraction is analyzed. The data highlight the fact 

that employing a computational contaminant screening procedure is a valuable 



addition to a subproteome analysis. It is especially critical for extracellular 

analyses, as both autolysis and mechanical lysis of cells during subfractionation 

can release the contents of other cellular compartments into this fraction of 

interest. The ubiquitous cytoplasmic proteins ATP synthase beta, elongation 

factors, and the GroEUES chaperonins are frequently observed contaminants; 

however, many of the studies in which these proteins were identified do not 

address this fact. While these proteins might immediately raise a flag to most 

proteomics researchers, they are not commonly noted and so may not be 

appreciated by genomics researchers using localization data for genome 

annotation or cell surface drug target identification. Failure to note these proteins 

as potential contaminants/co-purifying proteins may also have significant 

consequences for bioinformatics software development. For example, inaccurate 

subcellular localization assignments could be propagated if the data were used 

as training data for a machine learning method by researchers unfamiliar with the 

field. 

7.4.3 An estimation of the precision of subproteome 2D gel analyses 

An interesting figure results from the analysis of the 44 proteins that were 

both isolated in a subproteome study and are present in the ePSORTdb 

database of proteins of known subcellular localization. In 12 of these 44 cases, 

the fraction from which these proteins were isolated in the subproteomic studies 

did not match the previously reported experimentally verified localization. If we 

view these 44 proteins found in ePSORTdb as "100% precise predictions", we 

arrive at a "true" potential contamination rate of 27.3%. Nine of these conflicting 



results were found in the extracellular fraction in the subproteomic experiments 

and may represent by-products of cellular lysis. The remaining three proteins 

were isolated from the E. coli outer membrane fraction, though they were 

previously shown to be periplasmic proteins. The authors of this subproteome 

study propose that these proteins were extracted through their association with 

outer membrane components, rather than improper fractionation technique. 

We then carried out a more liberal analysis by investigating the 138 cases 

where the PSORTb and subproteomic localizations differed. For each of the 138 

proteins, we attempted to determine the most probable actual localization site. 

Localizations for twelve proteins, mentioned above, were found in ePSORTdb. 

We next looked for a published report of localization in the literature for the 

remaining 126 proteins. If no published information was available, we then 

looked for significant (E > I e-10) similarity to a protein of known localization. 

In this fashion, we were able to confirm that the localization predicted by 

PSORTb was correct in 87 of the 138 proteins. For the remaining 51 proteins, 

neither published localization information nor similarity to a protein of known 

localization was observed, and we were unable to determine whether the 

PSORTb or subproteomic localization site was correct. The results of this 

analysis are presented in Table 7.2. 



Table 7.2: Estimation of subproteome study error rate. 

Subproteome Study: Organism Localization 

Proteins 
identified 23 63 57 3 11 39 6 33 150 20 405 

Disagreements 1 25 5 0 2 8 1 6 81 9 138 
PSORT~ 
errors 
Laboratory 
errors 
Error % 0.0 6.3 1.8 0.0 18.2 15.4 16.7 9.1 24.0 25.0 14.3 

Disgreement is defined as the number of proteins from fraction X predicted NOT to be resident at 
X or WY localization sites. PSORTb errors are defined as the number of disagreeing cases for 
which the literature confirmed PSORTb's prediction was incorrect. . Laboratory errors are defined 
as the number of disagreeing cases for which the literature confirmed the subproteome study's 
assignment of localization was incorrect. Error % is defined as the number of laboratory errors 
divided by the total number of proteins identified. 

Using this more liberal analysis, we estimated the average error rate of 

laboratory subproteome experiments to be 14.3%. Estimated error rate values 

varied considerably between studies, from a low of 0% (in the K. pneumoniae 

outer membrane analysis, in which only 3 proteins were investigated) to a high of 

25.0% (in the H. pylori study of the extracellular fraction). Again, we observed 

that extracellular studies appeared to have the highest error rates due to the 

strong potential for contamination discussed earlier. On average, though, the 

subproteomic analysis error rate for all localizations was significantly higher than 

the error rate of 4% previously reported for PSORTb (Gardy et al., 2005). 



7.4.4 Reducing information loss: proteins with dual localization sites 

A second disadvantage of subcellular fractionation is the associated 

information loss. Certain proteins have domains in two or more neighbouring 

cellular compartments, some may cleave into two products, each residing at a 

different site (Henderson et al., 2000), and others may be found at different 

localizations over time, or during different environmental conditions (Hefty et al., 

2002). Because subproteome studies typically address a single cellular 

compartment, it is quite difficult to identify multiply-localized proteins from the 

results. 

Computational methods can help to reduce the information loss 

associated with subproteome studies. When a disagreement is observed in 

cases where the computational and subproteomic localization sites are 

neighbours, it may indicate a dually localized protein. An example found in the 

present analysis is the ATP synthase AtpG (beta prime subunit). This protein was 

extracted from the Synechocystis cytoplasmic membrane fraction but was 

predicted as a cytoplasmic protein by PSORTb. Inspection of the literature 

reveals that AtpG contains domains located in both the cytoplasm and 

cytoplasmic membrane (Takeyasu et al., 1996; Dunn et al., 2000; Dunn et al., 

2001). 

PSORTb also flags proteins predicted to reside in two compartments. 

Thirteen of the 405 proteins are predicted to reside at dual localization sites, with 

the bulk of these predicted as outer membrane/extracellular. This particular 

combination of localization sites suggests an autotransporter - a protein with a 



beta-barrel transporter domain and extracellular globular domain that is cleaved 

and released after translocating through the pore formed by the transporter 

domain. Indeed, many of the 13 proteins flagged by PSORTb are known 

autotransporters, including esterase and the H. pylori vacuolating cytotoxin. 

Although PSORTb can assist in the identification of dually-localized 

proteins, false negatives are still possible. If the observed site and the single 

predicted sites are identical, a protein's secondary localization will still go 

undetected. Though it may not always be feasible, a potential solution to this 

problem would be to perform 2D gel analyses of all five compartments in one 

experiment. Not only would this aid in the identification of proteins with multiple 

localization sites, a comparison of the amounts of protein present in each fraction 

could be of use when screening for potential contamination. 

7.4.5 Comparison of PSORTb with previously reported contaminant 
screening procedures 

Our results illustrate that it is important to screen the results of a 

subproteome study for potential errors. However, many groups do not perform 

such a screen, or employ approaches which are limited in their utility. 

The authors of two of the subproteomic studies analyzed here performed 

basic contaminant screens. In the Synechocystis cytoplasmic membrane study, 

the 63 proteins identified were submitted to TMHMM (Krogh et al., 2001). 

Seventeen of these proteins were classified as integral membrane proteins 

based on the presence of one or more helices. The remaining 46 were annotated 

as peripherally-associated membrane proteins and were then analyzed by 



SignalP (Bendtsen et al., 2004). Proteins with predicted signal peptides were 

classified as associated to the periplasm ic face of the membrane, while those 

without predicted signal peptides were classified as peripherally associated to the 

cytoplasmic face. 

Using only a single localization predictive method such as TMHMM to 

identify a feature often results in false positives, particularly in alpha helix 

detection, where signal peptides are often mistaken for helices. Furthermore, by 

describing the proteins with no detected helices as peripherally membrane- 

associated, there is a failure to recognize the fact that these proteins may 

represent potential contaminants from other fractions. Had PSORTb been used 

as a screening tool, the authors would have been able to identify 22 potential 

errors amongst their results with a relatively high degree of confidence. 

The authors of the E. coli outer membrane study compared the SWISS- 

PROT localization site for the proteins they identified to the amounts of those 

proteins detected on the 2D-gel. They reported that, with the exception of the 

flagellin protein, only proteins annotated as integral outer membrane proteins 

were detected in significant levels. They posit that the remaining proteins, 

detected at lower levels, may exhibit a functional association with proteins in the 

outer membrane. However, this explanation does not account for several 

potential cytoplasmic or cytoplasmic membrane contaminants, such as the 

dihydrolipoamide succinyltransferase SucB (Knapp et al., 1998, 2000), which 

were also isolated. A screen such as this also has the potential to produce a high 



number of false negatives - outer membrane proteins present in low quantities 

which are mistaken for potential contaminants. 

While the authors of the two studies mentioned above do not claim that 

their approaches identify all contaminants, we found that a robust and 

comprehensive method such as PSORTb outperforms single methods designed 

to analyze specific features, such as signal peptides or transmembrane helices. 

This is not surprising, as it has long been recognized that multi-component 

approaches to prediction achieve the best performance. Though dually localized 

proteins likely represent only a small fraction of proteins in the cell, they often 

represent interesting biological cases, including proteins that play pivotal roles in 

antimicrobial resistance (i.e. efflux proteins (Poole et al., 1993), and virulence 

(i.e. BrkA (Fernandez and Weiss, 1994)) and thus should not be overlooked. 

7.4.6 Optimal identification of cytoplasmic membrane proteins 
requires a combined computational and laboratory approach 

Examining the detailed PSORTb results for the proteins reviewed in the 

present analysis, we observed an interesting trend in the output of the HMMTOP 

module, which predicts the number of transmembrane alpha-helices in a query 

protein. Of the 405 proteins analyzed by HMMTOP, only six proteins contained 

three or more predicted helices. Even more surprising was that only three of 

these six were identified in the Synechocystis cytoplasmic membrane study. 

When three cytoplasmic membrane subproteome studies in Gram-positive 

bacteria were analyzed, the same trend was observed, with only six out of 269, 

or 2.2%, of proteins predicted to contain three or more transmembrane helices 



(TMHs). We then analyzed the complete Synechocystis proteome with PSORTb, 

predicting a total of 540 cytoplasmic membrane proteins, of which 461 contain 

three or more transmembrane helices. 

Our results indicate that 2D gel electrophoresis of the cytoplasmic 

membrane fraction is only capable of identifying a small proportion of the multi- 

pass membrane proteins in a given proteome, likely due to the low pl and poor 

solubility of these proteins (Santoni et al., 2000). While other techniques can be 

used to identify these proteins in the laboratory - for example, liquid 

chromatography coupled with tandem mass spectrometry and affinity labelling 

(Goshe et al., 2003; Blonder et al., 2004) - PSORTb is a cheaper and faster 

solution which is capable of identifying these proteins with a high degree of 

precision. 

While PSORTb appears to outperform laboratory subproteomic methods 

for the identification of proteins with three or more transmembrane helices, the 

opposite is true for membrane-associated proteins with one or two helices. In 

their analysis of the Synechocystis cytoplasmic membrane fraction, the authors 

of the study report 40 membrane-associated proteins. PSORTb, on the other 

hand, only confidently identifies three such dually localized proteins -two with 

cytoplasmic domains, and one with a periplasmic domain. In order to maintain a 

high level of precision, PSORTb requires that one of the following criteria be met 

to identify a cytoplasmic membrane protein: three or more predicted TMHs, 

similarity to a known membrane protein, or a positive result from the cytoplasmic 

membrane SVM module. As a result of these stringent criteria, a large number of 



cytoplasmic membrane-associated proteins with one or two helices are not 

identified by PSORTb. 

Our observations indicate that the cytoplasmic membrane presents a 

special case for both laboratory and computational analysis. If a true picture of 

the membrane proteome is desired, it is necessary to use a combined approach, 

in which a computational method is used to identify integral cytoplasmic 

membrane proteins, while a laboratory method is used to identify cytoplasmic 

mem brane-associated proteins. 

7.5 Conclusions 

7.5.1 Comparing the precision of laboratory and computational methods 

In the present analysis, we compared the localizations predicted by the 

computational method PSORTb to the localizations of 405 proteins reported in 

ten subproteome 2D gel electrophoresis studies. The data generated in our 

analysis indicates that subproteome studies vary greatly in terms of their 

precision. Certain small studies of particular fractions, such as the analysis of 

three K. pneumoniae outer membrane proteins or 23 E. coli cytoplasmic proteins, 

display low or non-existent apparent error rates. Larger studies and those 

focusing on particular localizations - including the extracellular milieu - can 

contain significant levels of false positive, or contaminant proteins. 

We attempted to estimate the precision associated with subproteome 

studies using two approaches. In the first, more stringent approach, a 

comparison of 44 proteins against the ePSORTdb database of proteins of 



experimentally verified localization yielded a rough estimate of false positives of 

27.3%. A second approach, in which we attempted to determine the true 

localization of 138 proteins using literature and homology-based approaches, 

yielded an estimate of 14.3%. 

While our approximate error rate is by no means a definitive estimate and 

was not calculated using large samples, it does illustrate the importance of 

evaluating the results of a subproteome study with a critical eye. While errors 

associated with each study do vary, on average as many as 1 out of every 4-7 

results could be erroneous. 

Even more notable is the observation that while our estimated precision of 

subproteome analysis exceeds that of early predictive tools such as PSORT I 

(with a reported precision of 59.6%), current high-precision computational 

methods such as PSORTb (with 96% precision) appear to outperform laboratory 

subproteome studies, generating fewer false positive results. While it is true that 

measured precision values calculated from cross-validation studies of test 

datasets represent a slight overestimation of precision, even a more conservative 

estimate of 90% precision still exceeds the levels attained by most high- 

throughput laboratory methods. In other words, PSORTb, first released in 2003, 

appears to be the first computational method developed that outperforms high- 

throughput laboratory studies for localization prediction. Other computational 

methods have since been developed that also have high accuracy and slightly 

higher recall, such as Proteome Analyst. However, no method has yet been 

developed that is as precise as PSORTb. 



7.5.2 Limitations of computational methods 

While our comparison of the precision achieved by computational and 

laboratory subproteome analyses indicates that certain predictive tools have 

surpassed wet-bench methods for localization identification, there are a number 

of caveats associated with the use of computational tools. 

Of the 405 proteins submitted to PSORTb, only 59.8% returned a 

predicted localization site and in only 43% of these cases did the predicted site 

match the observed site. The 40.2% "unknown" rate we observed is well below 

the recall of 82% reported in the paper describing PSORTb. Such a discrepancy 

between "practical" values and "theoretical" values is frequently observed with 

machine learning methods, due to the fact that the data used to train and test the 

method is generally quite well-annotated while "real world" data, on the other 

hand, contains large numbers of hypothetical proteins. 

Unfortunately, until machine-learning methods - including PSORTb - are 

trained on much larger datasets, the gap between recall values is not likely to 

improve significantly. In the interim, we recommend that users employ additional 

predictive strategies with higher recall values. Proteome Analyst uses a different 

approach to PSORTb in generating its predictions - keywords are extracted from 

SWISS-PROT annotations of proteins homologous to a given query; these 

keywords are then passed to a machine learning classifier. Proteome Analyst 

displays excellent precision - the authors report an overall precision of 95.9% for 

Gram-negative bacteria - and although its coverage when applied to whole 

genomes is generally comparable to PSORTb, it did provide a much larger 



number of predictions for the dataset analyzed here - of the 405 proteins 

submitted, Proteome Analyst returned a predicted localization site or sites for 

398. 

The performance of a given method can also vary significantly depending 

on the organism being analyzed. For example, PSORTb was able to generate 

predictions for only 25% of the proteins identified in the Synechocystis 

periplasmic fraction. Several factors may explain this low rate of coverage, 

including particularities of the morphology of Synechocystis sp., the low number 

of Synechocystis proteins included in PSORTb's training dataset, and the fact 

that three-quarters of the proteins found in the periplasmic fraction are annotated 

as hypothetical proteins. This is in contrast to the excellent coverage achieved by 

PSORTb in the analysis of the E. coli cytoplasmic fraction, which reflects the fact 

that as a model organism, E. coli proteins occur frequently in PSORTb's training 

data. 

A method's performance also varies between localization sites and, in 

general, correlates with the amount of training data available for a given 

localization. PSORTb performs very well when identifying both cytoplasmic and 

outer membrane proteins, but is not able to make as many predictions for 

periplasmic and extracellular proteins. Proteins resident at specific localization 

sites - for example, the periplasm and the extracellular space - can be similar to 

the point that differentiating the two based on sequence alone can be difficult. 

It is also important to note that every predictive method will generate a 

certain number of false positive results, and that it is critical to keep the 



measured precision of a given method in mind when carrying out a computational 

analysis. For example, some computational methods, such as CELLO, have a 

measured precision of only 71.5%. 

7.5.3 Limitations of laboratory methods 

Laboratory analyses also carry with them a number of caveats. We have 

already shown that one of the major disadvantages of subproteomic studies is 

the potential for contamination via leaky fractionation or lysis. Growth conditions 

can also affect the results of a subproteome study. Different growth conditions 

can alter the expression of a particular protein, thus while a subproteome study 

can provide valuable data about expression under a given condition, they may 

not yield a global picture of the proteins expressed by a bacterium. The 

parameters of the experiment can also play a key role in determining which 

proteins are identified from a gel. 

It is critical to choose an appropriate pH gradient for maximum resolution 

of total proteins, and even then standard methods may not detect or separate low 

abundance or hydrophobic proteins. Protein complexes can also be problematic 

if their subunits are difficult to disassociate (Santoni et al., 2000; Cordwell et al., 

7.5.4 Proposed method for the optimal characterization 
of cellular compartments 

We have shown that computational and laboratory-based analyses of 

specific cellular compartments complement each other, with each method 

contributing to improve the accuracy of the other. Although both methods do 



display certain limitations, each offers a number of significant advantages, which 

we have summarized in Table 7.3. In order to capitalize on these advantages, we 

propose that genome-scale studies aimed at cataloguing the proteins of a 

particular cellular compartment adopt a complementary approach in which both 

methods are used. 

Table 7.3: Advantages and disadvantages of computational and subproteomic 
approaches to localization analysis. 

Computational methods Su bproteomics analysis 

Advantages 

Rapid predictions Provides condition-specific information 

Detailed information about sequence features Confirms expression of hypothetical ORFs 

Can identify potential contaminants Large-scale source of localization data 
for proteins lacking homologs 

Can identify hydrophobic integral 
membrane proteins 

Disadvantages 

Lower performance on "non-model" organisms Time/resource consumption 

Lower performance for localizations with Low abundance and hydrophobic 
small amount of training data proteins often missed 

Not condition-specific Contamination 

Difficult to identify multiply localized proteins 

With respect to the subproteomic aspect of such a study, we suggest that 

rather than analyze a single cellular compartment, a study ought to analyze all 

available compartments. By determining the relative abundance of a protein in 

each compartment, a researcher will able to quickly flag potential contaminants 



and identify proteins with complex localization profiles - dual localizations or 

localization that varies temporally. 

After retrieving the set of protein sequences corresponding to the spots on 

a 2D gel, the proteins should be submitted to a high-precision localization 

prediction method for analysis. PSORTb is the most precise localization 

prediction tool available, and its consensus approach allows the user to acquire 

detailed information about protein features, such as homology to a protein of 

known localization, or the presence of a signal peptide, transmembrane helices, 

or specific sequence motifs and patterns. Proteome Analyst is a second high- 

precision method which complements PSORTb well through the use of an 

annotation-based approach. 

The computationally predicted and experimentally observed localization 

sites should then be compared. In cases where the computational and laboratory 

methods disagree, detailed analysis of the individual protein should be carried 

out. Through examination of the literature and further computational analysis, 

very often a confident call regarding the protein's true localization can be made. 

An excellent model is provided by Elias et al. (2005), who employ a multi-faceted 

approach - including PSORT I, PSORTb, and in-depth examination of individual 

proteins - to the analysis of their results from a study of Shewanella oneidensis 

hypothetical proteins. 

The combination of 2D gel analysis and PSORTb prediction can provide a 

remarkably clear and genome-scale picture of protein localization in a given 

bacterium. Of course, these methods are no replacement for the hypothesis- 



driven detailed investigation of individual proteins. Instead, they provide an 

accurate jumping-off point for the in-depth analysis of specific proteins using 

additional techniques. As both computational and laboratory high-throughput 

approaches improve in terms of both precision and recall, however, we see an 

increasingly important role for these methods in the fields of molecular biology 

and genomics. 



8 ANALYSIS Ill: COMPARATIVE GENOMICS ANALYSIS 
OF BACTERIAL PROTEIN LOCALIZATION: 
IMPLICATIONS FOR NETWORK EVOLUTION 

8.1 Summary 

The development of the high precision localization prediction method 

PSORTb permitted a global analysis of protein localization across multiple 

bacterial genomes. We examined the percentage of proteins predicted to be 

resident at each localization site for 236 sequenced bacterial genomes and 

observed several notable trends. These include: an increase in cytoplasmic 

proteins in thermophilic and hyperthermophilic bacteria, an increased proportion 

of cell surface proteins in pathogenic bacteria, and a general trend in which the 

proportion of a proteome at each localization site is generally well-conserved 

across species, regardless of genome size. This latter observation may reflect a 

method of adaptive evolution in which new functions are gained through the 

acquisition of "peripheral subnetworks" - small subnetworks of genes whose 

products are functionally related and span multiple cellular compartments. 

8.2 Rationale 

With the development of PSORTb v.2.0 and our study indicating that its 

precision has surpassed that of high-throughput laboratory methods, the 

comparative analysis of localization suddenly became feasible. 



While researchers have previously examined certain localization sites - 

cytoplasmic proteins and exported proteins, for example - across a range of 

genomes, no one has yet examined localization in a global context - looking at 

all localization sites at one time. With over 200 completely sequenced bacterial 

genomes available, this represents a rich source of data yet to be mined. 

We set out to examine protein localization in sequenced bacterial 

genomes using PSORTb, hypothesizing that such a global analysis would not 

only provide information about differences in localization in certain bacteria, but 

would also yield answers regarding the evolutionary history of protein 

localization. 

8.3 Methods 

We analyzed the October 3, 2005 release of cPSORTdb, comprising 

689,275 proteins from the genomes of 162 Gram-negative and 74 Gram-positive 

organisms. For each of the organisms, the percentage of proteins resident at 

each cellular compartment was calculated by dividing the number of proteins 

predicted at each localization site by the total number of proteins encoded in the 

genome. Complete data is provided in Appendix F. 

8.4 Results 

8.4.1 An estimate of the percentage of proteins at each bacterial 
localization site 

The arithmetic mean, minimum and maximum percentage of proteins at 

each localization site are summarized in Table 8.1. 



Table 8.1: A summary of the percentage of the proteome resident at each cellular 
compartment for 162 Gram-negative and 74 Gram-positive bacteria. 

Percentage 
Gram stain Localization site Arithmetic Mean Minimum Maximum 

Cytoplasm 33.2 18.8 56.0 
Cytoplasmic membrane 16.9 11.2 24.2 
Periplasm 1. 6 0 3.8 

Negative Outer membrane 2.5 0.6 11.0 
Extracellular 0.4 0.1 1.1 
Multiple 2.0 0.8 6.1 
Unknown 43.4 21.2 58.6 
Cytoplasm 50.7 41.7 59.9 
Cytoplasmic membrane 19.9 14.0 24.5 

Positive Cell wall 0.9 0 2.2 
Extracellular 3.0 1 .O 7.3 
Multiple 0.8 0.2 2.7 
Unknown 24.8 16.8 33.9 

The majority of proteins encoded by a genome are predicted to be 

cytoplasmic. In Gram-positive bacteria, we estimate the mean proportion of 

cytoplasmic proteins to be 50.7%. Our calculation of the mean for Gram-negative 

bacteria, however, is significantly lower, at 33.2%. This reflects the fact that the 

Gram-negative version of PSORTb - specifically the SVM-based module for the 

identification of cytoplasmic proteins - exhibits comparatively low recall when 

applied to this class. We propose that the actual average proportion of 

cytoplasmic proteins in Gram-negative bacteria is closer to the 50% observed in 

Gram-positive organisms. Our data support the earlier conclusions of Schatz and 

Dobberstein (1996), who estimate the cytoplasmic fraction of an average cell to 

be approximately 50%. 

Although the calculated mean proportions of predicted cytoplasmic 

proteins are quite different between Gram-negative and Gram-positive bacteria, 



the maximum observed proportions are similar, at 56% and 59.9%, respectively. 

This indicates an approximate upper bound for the proportion of predicted 

cytoplasmic proteins at 60%. Recognizing that PSORTb and other predictive 

algorithms do not display perfect recall and thus underestimate true biological 

proportions, we propose that the upper bound for cytoplasmic proteins in vivo is 

likely higher. 

Cytoplasmic membrane proteins are the second most prevalent in the 

bacterial cell. Because methods for the in silico identification of this class of 

protein exhibit both high precision and high recall, we observe much less 

discrepancy in the estimated mean proportions between Gram-negative and 

Gram-positive organisms; our results indicate a mean proportion of 16.9% in the 

former and 19.9% in the latter. Again, a consistent upper bound to proportions is 

observed, this time at approximately 24%. 

Our data is in agreement with that of Bendtsen et al. (2005), who report 

cytoplasmic membrane proportions of 15-20% across 21 7 bacterial genomes. 

Granseth et al. (2005), however, report higher average proportions of 22-26% 

across 204 bacterial genomes using an improved method taking into account 

laboratory-derived topology information. 

Taken together, our results and those of earlier groups indicate that 

roughly 50-70% of a bacterial genome is devoted to cytoplasmic and cytoplasmic 

membrane proteins, though this proportion may be as high as 80% in certain 

organisms, such as Thermoanaerobacter tengcongensis. The remaining 

proportion of proteins require some sort of export signal - signal peptide or 



otherwise - to be secreted beyond the cytoplasmic membrane to their final 

localization site. Predicted proportions of exported proteins, including cell wall, 

periplasmic, outer membrane and extracellular proteins, are highest in the 

Mycoplasmae, consistent with the earlier predictions of Saleh et al. (2001) and 

Schneider (1 999) and reflective of these organisms' atypical cell envelopes, 

which lack a peptidoglycan cell wall and do not contain a periplasm. Certain 

Bacilli, including Staphyloccocus sp. and Bacillus cereus, also appear to be 

prolific exporters. It is important to note, however, that the reported recall of 

PSORTb and other predictive methods is lower for exported proteins - 

particularly periplasmic and extracellular proteins - than for cytoplasmic and 

cytoplasmic membrane proteins. Thus the mean proportions for these fractions 

as described above is likely an underestimation. 

8.4.2 Proportions of proteins at each localization site are consistent 
across species regardless of genome size or lifestyle 

A scatter plot of the proportions of proteins at each localization site 

illustrates that, with the exception of the Mycoplasmae, values are generally 

consistent across organisms (Figure 8.1) and that neither lifestyle nor genome 

size has an appreciable impact on the proportions at any one site. Indeed, 71% 

of the data points fall within one standard deviation of the mean, while 96% fall 

within two standard deviations. While Bendtsen et al. (2005) and Granseth et al. 

(2005) have previously described such consistency in the proportions of 

cytoplasmic membrane proteins, ours are the first reports illustrating that this 

trend extends to all localization sites. 



Figure 8.1: Percentages of proteins at each localization site are generally well-conserved 
across bacterial species. 

Top: 162 Gram-negative bacteria. Bottom: 74 Gram-positive bacteria. 
Organisms are arranged along the x-axis by proteome size (# of proteins). 
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8.4.3 Conservation of proportions reflects peripheral subnetwork-based 
adaptive evolution 

The consistency inherent in the proportions of proteins at each localization 

site has implications for network-based evolution. Our observations suggest that 

the number of proteins in each cellular compartment changes in concert rather 

than independently - an increase or decrease in the number of proteins at one 

site must be accompanied by a similar change in the number of proteins at other 

localization sites. This in turn may imply that bacterial evolution is the result of 

the simultaneous acquisition or loss of multiple genes rather than singletons 

(Lawrence and Roth, 1996, Boucher et al., 2003). Recent observations extend 

this hypothesis, noting that groups of genes aquired by a bacterium display 

physiologically coupled functions - typically related to the early stages of a 

particular metabolic pathway - and are likely acquired as "subnetworks" which 

attach to existing networks within a cell (Pal et al., 2005a). We propose, 

therefore, that adaptive evolution in bacteria requires the acquisition of a 

subnetwork of genes whose products are not only functionally related - but also 

span multiple subcellular localization sites. 

In an analysis of E. coli metabolic networks, Pal et al. (2005a) also 

propose that protein components of subnetworks mediating adaptive evolution 

exhibit "peripheral1' functions - they are active in the early stages of metabolic 

pathways and are engaged in specialized processes including nutrient uptake 

and early reaction steps. They then attach to existing cellular networks at a more 

"central" point in the pathway - for example, a protein involved in later stages of 

the pathway exhibiting a more generalized function. Our data indicates that the 



protein subcellular localizations associated with these subnetworks are also 

peripheral. We have also noted that the mean proportions of peripherally 

localized proteins differ between pathogenic and non-pathogenic bacteria (Figure 

8.2). The increases in peripherally localized proteins in pathogens not only 

provides support for the peripheral subnetworks hypothesis but also may reflect 

the pathogens' need for antigenic diversity in their complement of surface- 

exposed proteins. 

Figure 8.2: Mean proportions of peripherally localized proteins differ between pathogenic 
and non-pathogenic bacteria. 
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8.4.4 Thermophilic and hyperthermophilic bacteria display elevated 
proportions of cytoplasmic proteins 

Although proportions are generally well-conserved across species, certain 

small variations, such as the increase in cell surface proteins in pathogens, are 

present. One of the most interesting variations was observed when bacteria were 

grouped according to optimal temperature range. A comparison of the mean 



proportions across groups revealed that thermophilic and hyperthermophilic 

bacteria displayed elevated proportions of cytoplasmic proteins relative to 

mesophiles and psychrophiles (Figure 8.3). 

Figure 8.3: Mean proportions of cytoplasmic proteins are elevated in thermophilic and 
hyperthermophilic bacteria. 

Hyperthermophiles Thermophiles blesophiles Psychrophiles 

Noting that the hyperthermophiles in particular showed an increase in 

cytoplasmic proteins and that these organisms tended to occur at the base of the 

tree of life, we extended the analysis to include 24 archaeal genomes in order to 

examine the trend from an evolutionary perspective. To date, a high-precision 

localization prediction method for archaea has yet to be developed, although an 

archaeal-specific release of PSORTb is planned. Instead, we analyzed the 

archaeal genomes using the Gram-positive version of PSORTb. In this analysis a 

similar, yet phylogenetically restricted, trend was observed (Figure 8.4). 



Figure 8.4: Mean proportions of cytoplasmic proteins are elevated in hyperthermophilic 
Euryarchaeaota. 
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Hyperthermophilic Euryarchaeota were predicted to contain over 10% 

more cytoplasmic proteins than other archaea, including mesophiles, 

thermophiles and hyperthermophilic Crenarchaeota. While ours are the first 

analyses to illustrate the increase in cytoplasmic proteins in hyperthermophilic 

bacteria and archaea, other groups have previously noted low proportions of 

exported proteins in archaea (Schneider, 1999; Saleh et al., 2001). 

Several explanations for this possibly significant increase in cytoplasmic 

proteins in the hyperthermophiles are possible. Hyperthermophilic organisms 

may be biased towards low proportions of exported or surface-exposed proteins, 

which would be prone to denaturation in the extreme environments they favour. 

An increased proportion of cytoplasmic proteins may have been characteristic of 

the ancestral state of the first primitive cell since the hyperthermophiles 

examined are also disproportionately basal-branching organisms (for example, 



Aquifex aeolicus and Thermotoga maritima; Klenk et al, 2004). Sequencing of 

representative genomes of the early-diverging Korarchaeota (Barns et al., 1996) 

and subsequent analysis of their cytoplasmic proteins would further our 

understanding of the ancestral basis of this trend. 

8.5 Conclusions 

By applying the high-precision localization method PSORTb to the 

genomes of 236 bacteria, we have estimated the proportions of proteins resident 

at each cellular compartment in bacteria. The majority of a genome is predicted 

to encode cytoplasmic and cytoplasmic membrane proteins. Methods for the 

computational identification of these classes of proteins are relatively well- 

developed thanks to large amounts of training data in the case of the former and 

extensive research into the physiological character of the latter. However, the 

remainder of the genome encodes exported proteins, which currently present a 

challenge to predictive methods. Recall for these proteins is low, resulting in a 

likely underestimation of the exported fraction of a cell. To develop a clearer 

picture of the true biological distribution of proteins throughout the cell, both an 

increase in the amount of training data for underrepresented sites such as the 

periplasm as well as improvements in the predictive methods themselves will be 

required. 

When the proportions of proteins in each cellular compartment were 

visualized in a graph (Figure 8. I ) ,  it became clear that the values are relatively 

consistent, regardless of genome size or lifestyle. This suggests to us that in 

order to maintain this balance, the acquisition of proteins resident at one 



compartment is coupled to similar changes in the protein complement of 

neighbouring compartments. We propose that these changes occur through the 

acquisition of "peripheral subnetworks" - groups of proteins spanning multiple 

localizations that attach to existing pathways within the recipient cell. 

Recent work on adaptive evolution in bacteria has provided insights into 

how this process works (Pal et all 2005a, Pal et al., 2005b, Light et all 2005). Our 

data further extend the hypothesis, and allow us to propose a model for the 

subnetwork-driven evolutionary process. 

In our model, peripheral subnetworks represent a primary unit of adaptive 

evolution. Upon acquisition, either horizontally or through gene duplication, a 

subnetwork will integrate with an existing pathway at a highly connected, 

centrally localized point. Acquisition of the subnetwork typically confers a new 

function upon the recipient organism, enabling rapid adaptation to a new 

environment or stimulus (for example, the ability to uptake and metabolize a 

different carbon compound). Pathways whose topology has been preserved 

throughout evolution and whose functional and structural interactions are 

uniquely co-evolved (Shi et al., 2005) are not disrupted through the assimilation 

of peripheral nodes, and the packaging of a novel gene with its functional 

partners increases the chances that a newly acquired function will successfully 

establish itself and become vertically inherited. Indeed, Pal et al. confirm that 

integration of a newly acquired network is six times more likely to be successful if 

a physiologically coupled downstream component is already present in the 

recipient genome (2005b). 



Appendix A 

PROSITE motifs used in the PSORTb motifs modules: 

PS00538 Cytoplasmic Membrane 
RTE[EQ]Q.{2)[SA][LlVM].[EQ]TAASMEQLTATV 

PS00755 Cytoplasmic Membrane 
[GST][LIVMF][LIVMFCA].[LIVMF][GSA][LIVM]. P[LIVM FY]{2).[AS][GSTQ][LIVMFAT]{3}[EQ][LIVM 
FA1{2) 

PS00756 Cytoplasmic Membrane 
[LIVMF~]{2).[DE].[LIVM][STDNQ].{2,3)[GK][LlVMF][GST][NST]G.[GST][Ll~[LlVFP] 

PS00192 Cytoplasmic Membrane 
[DENQ] ... G[FYWMQ].[LIVMF]R..H 

PS00193 Cytoplasmic Membrane 
P[DE]W[FY][LFY]{2) 

PS01303 Cytoplasmic Membrane 
[GSDN]W[LIVM].[FY]W.WW 

PS00449 Cytoplasmic Membrane 
[STAGN].[STAG][LlVMF]RL. [SAGqN[LIVMT] 

PS00713 Cytoplasmic Membrane 
P.{O, l)G[DE].[LlVMF]{2).[LIVM](2)[KREQ][LIVM]{3).P 

PS00714 Cytoplasmic Membrane 
P.G.[STA].[NT][LIVMC]DG[STAN].[LIVM][FY].{2}[LlVM].{2}[LlVM][FY][Ll][SA]Q 

PS00217 Cytoplasmic Membrane 
[LIVMF].G[LIVMFA]..G.{8)[LIFY]..[EQ].{6)[RK] 

PS00218 Cytoplasmic Membrane 
[STAGC]G[PAG].{2,3)[LIVMFYWA]{2}.[LIVMF~.[LIVMFWSTAGC]{2)[STAGC]. ..[LIVMFYWT].[ 
LIVMST].. .[LIVMCTA][GA]E.{5)[PSAL] 

PS00943 Cytoplasmic Membrane 
N.. .[DEH]. .[LIMF]D. .[VM]. R[ST].. R.{4)G 

PS00077 Cytoplasmic Membrane 
[YWG][LIVFYWTA]{2)[VGS]H[LNP].V.{44,47)HH 

PS00221 Cytoplasmic Membrane 
[HNQA].NP[STA][LlVMF][ST][LIVMF][GSTAFY] 



PS00428 Cytoplasmic Membrane 
[NV].{5}[GTR][LIVMA]. P[PTLIVM].G[LIVM]. ..[LIVMFW][LIVMFW]S[YSA]GG[STN][SA] 

PS00994 Cytoplasmic Membrane 
R[LlVM][GSA]EV[GSA]ARF[STAIV]LD[GSA][LM]PGKQM[GSA]ID[GSA][DA] 

PSOr0896 Cytoplasmic Membrane 
G[LIVM]{2}. D[RK]LGL[RK]{2}. [LIVM]{2}W 

PS00897 Cytoplasmic Membrane 
P.[LIVMF]{2}NR[LIVM]G. KN[STA][LIVM]{3} 

PS00942 Cytoplasmic Membrane 
[QEK][RF]G.{3}[GSA][LIVF]~L][NS].[SA][HM]N[LIV][GA]G 

PS01307 Cytoplasmic Membrane 
A[LMF].[GAT]T[LlVMF].G.[LIVMF].{7}P 

PS00594 Cytoplasmic Membrane 
IG[GA]GM[LF][SA]. P.{3}[SA]G.{2)F 

PSOlO39 Periplasmic 
G[FYIL][DE][LIVMT][DE][LIVMF] ...[ LIVMA][VAGC]..[LIVMAGN] 

PS01 037 Periplasmic 
[GAP][LIVMFA][STAVDN]. . . .[GSAVJ[LIVMFY]{2)Y[ND].. .[LIVMF].[KNDE] 

PS01040 Periplasmic 
[AG].{6,7)[DN EG]..[STAIVE][LIVMFYWA].[LIVMFY].[LIVM][KR][KRHDE][GDN][LIVMA][KNGSP][F 
wl 

PS01157 Periplasmic 
GSYPSGHT 

PS00635 Periplasmic 
[LIVMFY][APN].[DNS][KREQ]E[STR][LIVMAR].[F].[NC][LIVM]..[LIVM]P[PAS] 

PS00087 Periplasmic 
[GA][IMFAT]H[LIVF]H.{2)[GP][SDG].[STAGDE] 

PSOOl23 Periplasmic 
[IV].DS[GAS][GASC][GAST][GA]T 

PS00332 Periplasmic 
G[GN][SGA]G. R.[SGA]C.{2}[1V] 

PS00401 Periplasmic 
K.[NQEK][GT]G[DQ].[LIVM].{3}QS 

PS00556 Periplasmic 
[LIVMA]{4)C[LIVMFA]T[LIVMA]{2).{4)[LIVM].[RG].{2}L[CY] 

PS00757 Periplasmic 
NPK[ST]SG.AR 



PS00968 Periplasmic 
[LIVFAG]. [GASV][LIVFA].[IV]H.{3}[LIVM]~TAE][STANH].{l,3)[STN]W[LIVMFYW] 

PS00969 Periplasmic 
[EQ].{4)H.{5)[GSTA].{3)[FY].{3)[AG].{2)[AV]H .{7)P 

PS00576 Outer Membrane 
[LIVMFY]. .G..Y. F. K. .[SN][STAV][LIVMFYW]V 

PS00694 Outer Membrane 
(G[LIVMFY]N[LIVM]KYRY E) 

PS00695 Outer Membrane 
([FYW]..G.GY[KR]F) 

PSOll5l  Outer Membrane 
[VL][PASQ][PAS]G[PAD][FY].[LI][DNQSTAP][DNH][LlVMFY] 

PS00875 Outer Membrane 
[GR][DEQKG][SnlM][LIVMA]{3}[GA]G[LIVMFY].{l l)[LIVM]P[LIVMFYWGS][LIVMF][GSAE].[LIVM 
]P[LIVMFYW]{2). . [LVIF 

PS00834, PS00835 Outer Membrane 
((WTD.S.HP.T).*(AGYQE\ST]R[FYW]S[FYW~TN]A.GG\ST]Y))l((AGY QE\ST]R[FYwS[FYW][TN] 
A.GG[ST]Y).*(WTD.S.HP.T)) 

PS01068 Outer Membrane 
[LIVMA].[GT].[TA][DA] ..[ DG][GSTP] ..[ LFYDE][NQS] ..[ LI][SG][QE][KRQE]RA ..[ LV] ...[ LIVMF].{4,5)[ 
LIVM]. .. .[ LlVM] ...[ SG1.G 

PS00274 Extracellular 
[KT]..NW..T[DN]T 

PS00330 Extracellular D.[L1].{4)G.D.[LI].GG.{3}D 

GGXGXD Extracellular 
(GG.G.D.*){4) 

PS00369 Cytoplasmic 
G[LlVM]H[STAv]R[PAS][GSTA][STAMVN] 

PS00589 Cytoplasmic 
[GSTADE][KREQSTIV].{4)[KRDN]S[LIVMF]{2).[LIVM].. [LIVM][GADE] 

PS00077 Cytoplasmic Membrane 
[YWG][LIVFYWTA]{2)[VGS]H[LNP].V.{44,47) 

PSOOl92 Cytoplasmic Membrane 
[DENQ] ... G[FYWMQ].[LIVMF]R.. 

PS00193 Cytoplasmic Membrane 
P[DE]W[FY][LFY]{2) 

PS00216 Cytoplasmic Membrane 
[LlVMSTAG][LlVMFSAG]. .[LIVMSA][DE].[LIVMFYWA]GR[RK].{4,6}[GSTA] 



PS00217 Cytoplasmic Membrane 
[LIVMF].G[LIVMFA]..G.{8}[LIFY]..[EQ].{6)[RK] 

PS002 18 Cytoplasmic Membrane 
[STAGC]G[PAG].{2,3)[LIVMFYWA]{2}.[LIVMFYW].[LIVMFWSTAGC]{2)[STAGC]. ..[LIVMFYWT].[ 
LIVMST].. .[LIVMCTA][GA]E.{5)[PSAL] 

PS00449 Cytoplasmic Membrane 
[STAGN]. [STAG][LIVMF]RL. [SAGV]N[LIVMT] 

PSOO7l3 Cytoplasmic Membrane 
P.{O, l)G[DE].[LlVMF](2).[LIVM]{2)[KREQ][LIVM]{3).P 

PS00714 Cytoplasmic Membrane 
P.G.[STA].[NT][LIVMC]DG[STAN]. [LIVM][FY]. .[LIVM]. .[LIVM][FY][LI][SA]Q 

PS00872 Cytoplasmic Membrane 
[DG] ... G...[DN].{6,8)[GA][KRHQ][FSA][KR][PT][F~[LlVMWQ][LlV].[GAFV][GSTA] 

PS00943 Cytoplasmic Membrane 
N. ..[DEH]..[LIMF]D..[VM]. R[ST]. .R.{4)G 

PS01022 Cytoplasmic Membrane 
[GA][GAS][LIVMFYWA][LIVM][GAS]D.[LIVMFYWT][LIVMFW]G.. .[TAV][IV]. ..[GSTAV].[LIVMF]. ..[ 
G A1 

PSO1023 Cytoplasmic Membrane 
[FM]..[LMFY][FW][LIVMFWA].[IVG]N[LIVMAG]G[GSA][LlMF] 

PS01219 Cytoplasmic Membrane 
D[F~S]AG[GSC].{2)[Iv].{3}[SAG]{2}.{2}[SAG][LIVMF].{3}[LIVMFYWA]{2}.[GK].R 

PS01303 Cytoplasmic Membrane 
[GSDN]Wr[LIVM].[FY]W.WW 

PSO1327 Cytoplasmic Membrane 
[KR]GN[LIV]{2)D[LIVM]A[LIVM][GA][LIVM]{3}G 

PS00755 Cytoplasmic Membrane 
[GST][LIVMF][LIVMFCA].[LIVMF][GSA][LIVM]. P[LIVMFY]{2}.[AS][GSTQ][LlVMFAT]{3}[EQ][LIVM 
FA1{2) 

PS00756 Cytoplasmic Membrane 
[LIVMFYW]{2).[DE].[LIVM][STDNQ].{2,3)[GK][LIVMF][GST][NST]G.[GST][LlV][LlVFP] 

PS00274 Extracellular 
[KT]..NW..T[DN]T 

PS00277 Extracellular 
YGG[LIV]T.{4)N 



PS00278 Extracellular 
K..[LIVF].{4}[LIVF]D.. . R.. L.{5}[LIV]Y 

PS00429 Extracellular 
ARP ... K.S.TNAYNmT ..[ DN]G ... YG 



Appendix B 

Outer membrane motifs: 

AAGAAG 
AAGKIS 
AALAAN 
AANANI 
AASAVE 
A A S T A  

AAY RYS 
ADAADR 
ADLFPR 

AEIREK 
AELEQQ 

AETIAE 
AGAGAE 
AGARYI 
AGGAIF 

AGLAAL 
AGLGAA 
AGQASA 

AGSGQV 
A G r n  
AKVTlT 
ALAAPL 
ALAAVL 
AIALIA 

AIAQQA 
ALASQA 
A I A V i T  
ALGALG 
ALGGGW 

ALKVKR 
ALLPSA 
ALLVAG 
ALQEFG 
ANAAEI 

APAQAE 
AQAAVE 
AQTLEQ 

ARIEVG 
ASAREG 
ASNGLR.*LGRLGL 

ATGAAV 
ATLGLV 
ATLTLT 
AVAVAL 
AVDFHG 
AVDVAR 
AVIAEV 

CFCLPL 
DGQDGD 

DGTLNL 

DlQEFl 
DIRVDG 
DNSKTD 
DPRVKG 
DRWQST 
DSVPLL 
DTLWT 
DYGSLS 
EAYLAL 

EELGDL 
EFLDRL 
EGINKV 
EIAQAN 

ELDLFG 
ELGGKR 
ELSLWI 
EQGLEN 
ESLGLR 

ESRRAL 
FGDSLS 
FGRSKD 
FKLNYA 
FMGWMW 
FRDFAE 

FSLKNS 
FTGKGY 
FVSLNA 
GASAGV 
GASSGY 

GDGGAI 
GDSLSD 
GELSLS 
GFIEDS 
GFNLNY 
GFSSRD 

GGAISS 
GGAIYA 

GGANAA 
GGGAIY 
GGKGGA 

GGKRGA 
GGRLRA 
GGWNI 

GGVWGR 
GKGGAI 
GLGSAA 
GPFVIN 

GQTWl  
GSFDYG 

GSGALG 

GSGGSL 
GSGQLS 
GTILFS 

GTLSGK 
GTLSSA 
GTLTVS 
GTVSGL 
GVGINL 
GVKTDL 
GVLKTD 
GYFDFR 
HRIATL 

IDNTST 
IEARlV 
IEQGTV 

IGAARA 
IGRAGL 
IGVLTD 

ISLTAN 
ISSPRL 

IYRNSP 
KEVLRD 
KGGAIY 

KINEGP 
KlTlNN 
KLSADE 

KTLFTK 
KVPFLG 
LAAAVA 

IAEPNL 
IAFAGL 
LALGGL 
LALSlS 
LAPAQA 
IATAS L 
LAVAVA 
LDKQFF 

LDLELS 
LDVLDA 
LFSLLE 

LGAATA 
LGALFR 
LGDIPV 

LGGDGI 
LGNLFK 
LGRLGL 
LGTYLT 

LIACLS 
LIDGKP 

LLAATP 

LLDAQR 
LLDVLD 
LNLSIP 
LPIFTA 
LRPGMT 
LS AGVS 
LSERRA 
LSISGN 
LSLLPL 

LTLDPD 
LTQPLF 
LTWDT 

LVAKAD 
LVDGVR 
LWDLS 

MKKLLP 
MKKTLL 
NAAFSN 

NALSKR 
NAQLSL 

NATLNG 
NEVTGL 
NGTVNI 
NISRNF 

NNGAIL 
NNGTLI 

NNNINA 
NQLSVS 
NRSTLS 

NSlYlD 
NTKTSS 
N T I N S  
NVTLQG 
NYAAGG 
PGVSVG 
PLGLSD 
PLLGDI 

PTLDLT 

PVLAAD 
PVQVIA 

QANAAT 
QASWIA 
QFYLGA 

QGTWL 
QLGGDI 
QPLFDY 
QSSSAA 
QTDDET 

RAALLP 

RADLFP 

136 

RALALA 
RDFAEN 
RGPEGR 
RLNALE 
RLNQLS 
RLVSLV 
RVEILR 

SAGSLA 
SAIAIA 
SASRTV 
SFLPSV 

SGLGRA 
SGQTYN 
SGSFNF 
SGSSSS 

SIAGTV 
SLIAIA 
SLIAGS 
SLIALS 
SLLDVL 

SLLIGG 
SLQQPL 
SLSLPP 
SNITGG 

SQLDWK 
SRFSTS 

SRLTLG 
SRPVAD 
SSSSSSSS 

STWEL 
SVNIRG 
SVNWG 
TADGQL 
TAPVFA 
TASLIA 
TATDLG 
TDTPAV 

TFYTKL 
TGAGTL 
TGDIGN 

TGTLNI 
TITGNK 
TLGDGY 

TLSGKT 
TLSSAG 
TMWTA 
T L S A G  
TVSLSG 
TWSAP 

VAAALV 

VAQRTA 
VASELA 
VATYRN 

VDGSLS 
VDGVLK 

VGDSSK 
VGVAFG 
VGVTAK 
VIQNSG 
VLDAQR 
VNNLFD 
VPAGPF 
VPGLTF 
VPLLGD 
VPPGPF 
VPVAQV 
VPWDQA 
VRLDGG 

VRLWA 
VRYDEA 

VSGPPR 
VSGRFD 
VSPSSE 

VSSGGT 
VSWTS 
YAERGL 
YQDGSA 
YTVLDQ 
YTVRGF 



Appendix C 

PROSITE profiles used in the PSORTb profile modules: 

PS50862 Cytoplasmic 

PS50253 Cytoplasmic Membrane 

PS50283 Cytoplasmic Membrane 

PS50850 Cytoplasmic Membrane 

LPXTG Cell Wall 

PS50830 Extracellular 



Appendix D 

Results of the P. aeruginosa genome-wide exported protein predictions 
and subsequent PhoA fusion screen are available online. The following files are 
provided: 

http:l/www.~enome.orql~~1ildatall5l2l321lDC1l1 
Signal peptide, cleavage site and transmembrane helix predictions for the 
complete P. aeruginosa proteome. 

http://www.qenome.orq/cai/data/1512/321 IDCI 16 
Successful PhoA fusions. 



Appendix E 

PSORTb predicted localization sites for the 405 Gram-negative 
subproteome studies described in section 7, organized by NCBl GI number. 

Localization 
Reference NCBl GI Organism Laboratory PSORTb 
Molloy et al., 2000 1 13930 E. coli OM 
MOIIO~ et al., 2000 
Dukan et al., 1998 
Huang et al., 2002 
Molloy et al., 2000 
Dukan et al., 1998 
Dukan et al., 1998 
Dukan et al., 1998 
Molloy et al., 2000 
Dukan et al., 1998 
Dukan et al., 1998 
Molloy et al., 2000 
Molloy et al., 2000 
Molloy et al., 2000 
Molloy et al., 2000 
Molloy et al., 2000 
Molloy et al., 2000 
Molloy et al., 2000 
Molloy et al., 2000 
Huang et al., 2002 
Huang et al., 2002 
Huang et al., 2002 
Dukan et al., 1998 
Molloy et al., 2000 
Dukan et al., 1998 
Dukan et al., 1998 
Dukan et al., 1998 
Dukan et al., 1998 
Molloy et al., 2000 
Molloy et al., 2000 
Bumann et al.. 2002 
Molloy et al., 2000 
Dukan et al., 1998 
Molloy et al., 2000 
Molloy et al., 2000 
Molloy et al., 2001 
Molloy et al., 2000 
Huang et al., 2002 
Dukan et al., 1998 
Molloy et al., 2000 
Molloy et al., 2000 
Dukan et al., 1998 
Molloy et al., 2000 
Molloy et al., 2000 
Molloy et al., 2001 
Dukan et al., 1998 
Molloy et al., 2000 
Nouwens et al., 2002 
Dukan et al., 1998 
Molloy et al., 2001 
Molloy et al., 2001 
Murakami et al., 2002 
Huang et at., 2002 

E. coli 
E. coli 
Synechocystis sp. 
E. coli 
E. coli 
E. coli 
E. coli 
E. coli 
E. coli 
E. coli 
E. coli 
E. coli 
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E. coli 
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K. pneumoniae 
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Unknown 
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C 
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OM 
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C 
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OM 
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Localization 
Reference NCBl GI Organism Laboratory PSORTb 
Dukan et al., 1998 1730032 E. coli C 
Nouwens et al., 2002 
Huang et al., 2002 
Huang et al., 2002 
Huang et al., 2002 
Huang et al., 2002 
Huang et al., 2002 
Huang et al., 2002 
Molloy et al., 2001 
Molloy et al., 2000 
Burnann et al., 2002 
Huang et al., 2002 
Huang et at.. 2002 
Burnann et al., 2002 
Molloy et al., 2000 
Molloy et at., 2000 
Huang et al., 2002 
Dukan et al., 1998 
Dukan et al., 1998 
Molloy et at., 2000 
Molloy et al., 2000 
Molloy et al., 2000 
Molloy et al., 2000 
Molloy et al., 2000 
Molloy et al., 2000 
Murakarni et al., 2002 
Murakarni et al., 2002 
Molloy et al., 2000 
Molloy et al., 2001 
Molloy et al., 2000 
Fulda et al., 2000 
Fulda et al., 2000 
Fulda et al., 2000 
Fulda et al., 2000 
Huang et al., 2002 
Huang et at., 2002 
Dukan et al., 1998 
Nouwens et al., 2002 
Molloy et at., 2001 
Murakarni et al., 2002 
Huang et al., 2002 
Molloy et al., 2001 
Huang et al., 2002 
Molloy et al., 2000 
Dukan et al., 1998 
Murakarni et al., 2002 
Murakarni et al., 2002 
Burnann et al., 2002 
Huang et al., 2002 
Huang et al., 2002 
Molloy et al., 2001 
Molloy et al., 2001 
Fulda et al., 2000 
Nouwens et al., 2002 
Dukan et al., 1998 
Huang et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al.. 2002 

P. aeruginosa 
Synechocystis sp. 
Synechocystis sp. 
Synechocystis sp. 
Synechocystis sp. 
Synechocystis sp. 
Synechocystis sp. 
S. typhimurium 
E. coli 
H. pylon. 
Synechocystis sp. 
Synechocystis sp. 
H. pylori 
E. coli 
E. coli 
Synechocystis sp. 
E. coli 
E. coli 
E. coli 
E. coli 
E. coli 
E. coli 
E. coli 
E. coli 
P. gingivalis 
P. gingivalis 
E. coli 
S. typhimurium 
E. coli 
Synechocystis sp. 
Synechocystis sp. 
Synechocystis sp. 
Synechocystis sp. 
Synechocystis sp. 
Synechocystis sp. 
E. coli 
P. aeruginosa 
S. typhimurium 
P. gingivalis 
Synechocystis sp. 
K. pneumoniae 
Synechocystis sp. 
E. coli 
E. coli 
P. gingivalis 
P. gingivalis 
H. pylon 
Synechocystis sp. 
Synechocystis sp. 
S. typhimurium 
S. typhimurium 
Synechocystis sp. 
P. aeruginosa 
E. coli 
Synechocystis sp. 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 

Unknown 
Unknown 
Unknown 

C 
C 
C 

Unknown 
Unknown 
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OMIEC 

C 
C 

OM 
OM 
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Unknown 

C 
C 

OM 
Unknown 

OM 
OM 
OM 
OM 
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Unknown 

OM 
OMIEC 

Unknown 
Unknown 
Unknown 
Unknown 
Unknown 
Unknown 
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C 
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OM 
OM 
CM 
OM 
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OM 
P 

OM 
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CM 
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C 
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C 
C 

Unknown 
Unknown 

OM 
Unknown 
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OM 



Localization -. ~~ . 

Reference NCBl GI Organism Laboratory PSORTb 
Nouwens et al., 2002 15595480 P. aeruginosa EC 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et at., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et at., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 

P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
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Localization 
Reference NCBl GI Organism Laboratory PSORTb 
Nouwens et at.. 2002 15597487 P. aeruqinosa OM 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et at., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al.. 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et at., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et at., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 

- 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
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P. aeruginosa 
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P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
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P. aeruginosa 
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P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
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P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
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Localization 
Reference NCBl GI Organism Laboratory PSORTb 
Nouwens et al., 2002 15599656 P. aeruginosa EC 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Nouwens et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Burnann et al., 2002 
Molloy et al., 2000 
Molloy et al., 2000 
Huang et al., 2002 

P. aeruginosa 
P. seruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. seruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
P. aeruginosa 
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H. pylori 
H. pylori 
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H. pylori 
H. pylori 
H. pylori 
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H. pylori 
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H. pylori 
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E. coli 
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Localization 
Reference NCBl GI Organism Laboratory PSORTb 
Huang et al., 2002 163291 95 Synechocystis sp. CM 
Fulda et al., 2000 
Huang et al., 2002 
Fulda et al., 2000 
Huang et al., 2002 
Huang et al., 2002 
Huang et al., 2002 
Fulda et al., 2000 
Fulda et al., 2000 
Fulda et al., 2000 
Huang et al., 2002 
Fulda et al., 2000 
Huang et al., 2002 
Fulda et al., 2000 
Fulda et al., 2000 
Huang et al., 2002 
Huang et al., 2002 
Fulda et al., 2000 
Huang et al., 2002 
Fulda et al., 2000 
Huang et al., 2002 
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Huang et al., 2002 
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Fulda et al., 2000 
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Huang et al., 2002 
Huang et al., 2002 
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Huang et al., 2002 
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Fulda et al., 2000 
Huang et al., 2002 
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Localization 
Reference NCBl GI Organism Laboratory PSORTb 
Huang et al., 2002 16331 145 Synechocystis sp. CM Unknown 
~ u a n g  et al., 2002 
Fulda et al., 2000 
Fulda et al., 2000 
Fulda et al., 2000 
Fulda et al., 2000 
Fulda et al., 2000 
Huang et al., 2002 
Huang et al., 2002 
Fulda et al., 2000 
Fulda et al., 2000 
Huang et al., 2002 
Huang et al., 2002 
Fulda et al., 2000 
Fulda et al., 2000 
Huang et al., 2002 
Fulda et al., 2000 
Huang et al., 2002 
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Huang et al., 2002 
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Appendix F 

Percentage of proteins at each localization site for the 236 bacterial 
genomes analyzed using PSORTb v.2.0. Gram-negative organisms appear first, 
followed by Gram-positive organisms. Organisms are arranged alphabetically 
within their Gram grouping. 

Percentage of Proteome 
Organism (Proteome Size) C CM CW P OM EC Unknown Mutiple 
A. sp. ADPI (3325) 35.2 17.4 N/A 1.2 3.6 0.2 41.2 1.2 
A. tumefaciens str. C58 (Cereon) (4554) 
A. tumefaciens str. C58 (U. Washington) (4661) 
A. variabilis A TCC 294 13 (5039) 
A. marginale str. St. Manes (949) 
A. aeolicus VF5 (1529) 
A. sp. EbN1 (4 133) 
6 .  fragilis NCTC 9434 (4 189) 
6. fragilis YCH46 (4578) 
6 .  thetaiotaomicron VPI-5482 (4778) 
6 .  henselae str. Houston-I (1488) 
B. quintana str. Toulouse (1 142) 
6 .  bacteriovorus HDlOO (3587) 
6 .  bmnchiseptica RB50 (4994) 
6. parapertussis 12822 (4 185) 
6 .  pertussis Tohama 1 (3436) 
6. burgdorferi 631 (851) 
6 .  garinii PBi (832) 
6 .  japonicum USDA 11 0 (831 7) 
B. abortus biovar 1 str. 9-941 (3085) 
6 .  melitensis 16M (31 98) 
B. suis 1330 (3264) 
6 .  aphidicola str. APS (Acyrthosiphon pisum) (564) 
6. aphidicola str. Bp (Baizongia pistaciae) (504) 
6 .  aphidicola str. Sg (Schizaphis graminum) (546) 
B. mallei ATCC 23344 (4764) 
6 .  pseudomallei Kg6243 (5729) 
C. jejuni RM1221 (1838) 
C. jejuni subsp. jejuni NCTC 11 168 (1634) 
C. Blochmannia floridanus (583) 
C. Blochmannia pennsylvanicus str. BPEN (61 0) 
C. Pelagibacter ubique H TCCI 062 (1 354) 
C. crescentus CB15 (3737) 
C. muridarum Nigg (904) 
C. trachomatis D/UW-3/CX (895) 
C. abortus S2W3 (932) 
C. caviae GPlC (998) 
C. pneumoniae AR39 (1 1 12) 
C. pneumoniae CWL029 (1 054) 
C. pneumoniae J l38 (1 069) 
C. pneumoniae TW- 183 (1 1 13) 
C. tepidum TLS (2252) 
C. violaceum ATCC 12472 (4407) 
C. psychreMhraea 34H (49 10) 
C. burnetii RSA 493 (2009) 
D. ammatica RCB (4 171) 
D. psychmphila LSv54 (31 18) 
D. vulgaris subsp. vulgaris str. Hildenborough (3379) 
E. canis str. Jake (925) 
E. ruminantium str. Gardel (950) 
E. ruminantium str. Welgevonden (888) 
E. ruminantium str. Welgevonden (958) 

N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
NIA 
N/A 
N/A 
N/A 
N/A 
NIA 
N/A 
N/A 
NIA 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 



Percentage of Proteome 
Organism (Proteome Size) C CM CW P OM EC Unknown Mutiple 
E camtovora subsg. atrose~tica SCRI 1043 (44 72) 
E. coli CFT073 (5379) 
E. coli K12 (431 1) 
E. coli0157:H7 (5253) 
E. coli 0157:H7 EDL933 (5324) 
F. tularensis subsp. tularensis Schu 4 (1603) 
F. nucleatum subsp. nucleatum ATCC 25586 (2067) 
G. sulfurreducens PCA (3445) 
G. violaceus PCC 7421 (4430) 
G. oxydans 621H (2432) 
H. ducreyi 35000HP (1 71 7) 
H. influenzae 86-028NP (1 79 1) 
H. influenzae Rd KW20 (1 657) 
H. hepaticus ATCC 51449 (1875) 
H. pylori 26695 (1576) 
H. pylon J99 (149 1) 
I. loihiensis L2TR (2628) 
L. pneumophila str. Lens (2878) 
L. pneumophila str. Paris (3027) 
L. pneumophila str. Philadelphia 1 (2942) 
L. interrogans Copenhagen; str. Fiocruz (3660) 
L. interrogans Laistr. 56601 (4727) 
M. succinicipmducens MBEL55E (2384) 
M. florum L1 (683) 
M. loti MAFF303099 (6746) 
M. capsulatus str. Bath (2959) 
M. gallisepticum R (726) 
M. genitalium G-37 (484) 
M. hyopneumoniae 232 (71 8) 
M. hyopneumoniae 7448 (663) 
M. hyopneumoniae J (665) 
M. mobile l63K (633) 
M. mycoides subsp. mycoides SC str. PG1 (1 016) 
M. penetrans HF-2 (1037) 
M. pneumoniae M1 29 (689) 
M. pulmonis UAB CTlP (782) 
M. synoviae 53 (672) 
N. gonorrhoeae FA 1090 (2002) 
N. meningitidis MC58 (2079) 
N. meningitidis 22491 (2065) 
N. winogradskyi Nb-255 (3122) 
N. europaea ATCC 1971 8 (2461) 
N. sp. PCC 7120 (5366) 
0 .  Y. yellows phytoplasma 0 Y-M (754) 
P. sp. UWE25 (2031) 
P. multocida subsp. multocida str. Pm70 (201 5) 
P. profundum SS9 (541 3) 
P. luminescens subsp. laumondii TTOl (4683) 
P. gingivalis W83 (1909) 
P. mannus str. MI T 93 13 (2265) 
P. marinus str. NATL2A (1 890) 
P. mannus subsp. marinus str. CCMP1375 (1882) 
P. marinus subsp. pastoris str. CCMPl986 (1 71 2) 
P. aeruginosa PA01 (5567) 
P. fluorescens Pf-5 (6 13 7) 
P. putida KT2440 (5350) 
P. synngae pv. phaseolicola 1448A (4983) 
P. syringae pv. synngae B728a (5090) 
P. syringae pv. tomato str. DC3000 (5471) 
P. arcticus 273-4 (21 20) 
R. eutropha JMP134 (5846) 
R. solanacearum GMll 000 (3440) 

NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
N/A 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
N/A 
NIA 
NIA 
NIA 
N/A 
NIA 
N/A 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
N/A 
N/A 
N/A 
N/A 
NIA 
NIA 
N/A 
N/A 
N/A 
N/A 



Percentage of Proteome 
Organism (Proteome Size) C CM CW P OM EC Unknown Mutiple 
R. baltica SH 1 (7325) 26.4 11.3 NIA 0.6 0.8 0.3 57.9 . , 

R. palustris CGAOO9 (4814) 
R. conorii str. Malish 7 (1374) 
R. felis URRWXCal2 (1400) 
R. prowazekii str. Madrid E (835) 
R. typhi str. Wilmington (838) 
S. entenca subsp. entenca Choleraesuis str. SC-667 (4445) 
S. enterica subsp. enterica Paratypi A ATC 9 150 (4093) 
S. enterica subsp. enterica Typhi str. CT18 (4395) 
S. enterica subsp. enterica Typhi Ty2 (4318) 
S. typhimun'um LT2 (4425) 
S. oneidensis MR- 1 (4323) 
S. flexneri 2a str. 2457T (4068) 
S. flexneri 2a str. 301 (4 180) 
S. sonnei Ss046 (4223) 
S. pomeroyi DSS-3 (3810) 
S. meliloti 1021 (3341) 
S. elongatus PCC 6301 (2525) 
S. sp. WH 8102 (251 7) 
S. sp. PCC 6803 (3 16 7) 
T elongatus BP-1 (2475) 
T. maritima MSB8 (1858) 
T. thermophilus HE2 7 (1 982) 
T. thermophilus HB8 (1973) 
T. denitn;ficans ATCC 25259 (2827) 
T denticola A TCC 35405 (2767) 
T. pallidum subsp. pallidum str. Nichols (1036) 
U. parvum serovar 3 str. A TCC 7009 70 (6 14) 
V. cholerae 0 1  biovar eltor str. N 16961 (3835) 
V. fischeri ES114 (3747) 
V. parahaemolyticus RIMD 2210633 (4832) 
V. vulnificus CMCP6 (4514) 
V. vulnificus YJ016 (4955) 
W. glossinidia endosymbiont of Glossina (61 1) 
W. endosymbiont of Drosophila melanogaster (1 195) 
W. endosymbiont strain TRS of Brugia malayi (805) 
W. succinogenes DSM 1740 (2044) 
X. axonopodis pv. citri str. 306 (4312) 
X. campestris pv. campestris str. 8004 (4273) 
X. campestris pv. campestris str. A TCC 339 13 (4 18 1) 
X oryzae pv. oryzae KACC10331 (4637) 
X. fastidiosa 9a5c (2766) 
X. fastidiosa Temeculal (2034) 
Y. pestis biovar Medievalis str. 91001 (3895) 
Y. pestis CO92 (3885) 
Y. pestis KIM (4086) 
Y. pseudotuberculosis IP 32953 (3901) 
Z. hobilis subsp. mobilis ZM4 (1998) ' 29.6 13.3 NIA 1.2 2.8 0.9 50.3 2.1 
B. anthracis str. A2012 (5544) 47.3 21.7 1.2 NIA NIA 3.0 26.2 0.7 
B. anthracis str. Ames (531 1) 
B. anthracis str. 'Ames Ancestor' (5309) 
B. anthracis str. Sterne (5287) 
B. cereus A TCC 10987 (5603) 
B. cereus ATCC 14579 (5234) 
B. cereusZK (5134) 
B. clausii KSM-K16 (4096) 
B. halodurans C-125 (4066) 
B. licheniformis ATCC 14580 (4196) 
B. licheniformis ATCC 14580 (DSM 13) (4161) 
B. subtilis subsp. subtilis str. 168 (41 12) 
B. thuringiensis serovar konkukian str. 97-27 (51 1 7) 
B. longum NCC2705 (1 727) 

NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 



Percentage of Proteome 
Organism (Proteome Size) C CM CW P OM EC Unknown Mutiple 
C. acetobutylicum ATCC 824 (3672) 
C. perfringens str. 13 (2660) 
C. tetani E88 (2373) 
C. diphtheriae NCTC 13129 (2272) 
C. efficiens YS-314 (2950) 
C. glutamicum A TCC 13032 (2993) 
C. glutamicum ATCC 13032 (3057) 
C. jeikeium K4 1 1 (2137) 
D. ethenogenes 195 (1580) 
D.sp. CBDB1 (1458) 
D. radiodurans R l  (2997) 
E. faecalis V583 (3 1 13) 
G. kaustophilus HTA426 (3498) 
L. acidophilus NCFM (1864) 
L. johnsonii NCC 533 (1821) 
L. plantarum WCFSl (3009) 
L. lactis subsp. lactis 111403 (2321) 
L. xyli subsp. xyli sir. CTCB07 (2030) 
L. innocua Clip1 1262 (2968) 
L. monocyiogenes EGD-e (2846) 
L. monocyiogenes str. 4b F2365 (2821) 
M. avium subsp. paratuberculosis sir. k10 (4350) 
M. bovis AF2122B7 (3920) 
M. leprae TN (1 605) 
M. tuberculosis CDC1551 (4 187) 
M. tuberculosis H37Rv (3927) 
N. farcinica IFM 10152 (5683) 
0 .  iheyensis HTE831 (3500) 
P. acnes KPA 171 202 (2297) 
S. aureus subsp. aureus COL (2615) 
S. aureus subsp. aureus MRSA252 (2656) 
S. aureus subsp. aureus MSSA476 (2579) 
S. aureus subsp. aureus Mu50 (2714) 
S. aureus subsp. aureus MW2 (2632) 
S. aureus subsp. aureus N315 (2593) 
S. epidermidis ATCC 12228 (2419) 
S. epidemidis RP62A (2494) 
S. haemolyiicus JCSC1435 (2676) 
S. saprophyiicus subsp. saprophyiicus ATCC 15305 (2446) 
S. agalactiae 2603VlR (2124) 
S. agalactiae NEM316 (2094) 
S. mutans UAl59 (1960) 
S. pneumoniae R6 (2043) 
S. pneumoniae TIGR4 (2094) 
S. pyogenes M1 GAS (1 697) 
S. pyogenes MGAS 10394 (1 886) 
S. pyogenes MGAS315 (1 865) 
S. pyogenes MGAS5005 (1865) 
S. pyogenes MGAS6180 (1894) 
S. pyogenes MGAS8232 (1 845) 
S. pyogenes SSI-1 (1861) 
S. themophilus CNRZlO66 (191 5) 
S. themophilus LMG 1831 1 (1889) 
S. avemitilis MA-4680 (7575) 
S. coelicolor A3(2) (7769) 
S. themophilum /AM 14863 (3337) 
T. tengcongensis MB4 (2588) 
T. fusca YX(3110) 
T. whipplei str. Twist (808) 
T. whipplei TWO8/27 (783) 

46.9 21.1 0.8 NIA NIA 2.5 
54.5 22.1 0.8 NIA NIA 2.1 

NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 

NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NI A 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NI A 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
N IA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NIA 
NI A 
NIA 
NIA 
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