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Abstract 

A method for a team of mobile robots t o  cooperatively track a n 

described. We address the main limitation of existing approaches N 

cases in which the target is not seen for long periods of time. A 

met hod represents the multi-modal uncertainty in the estimated pc 

a potential field guides the robots t o  visit as many particles as  the: 

certainty in the environment and to prevent the uncertainty area fr 

is shown how this method can be used a.s a coordination strategy wl 

cooperatively minimize the uncertainty in the pose of a tracked t a ~  

show there is a significant difference between coordinated and non-cc 

ing. The method has also been tested on real robots. 
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Chapter 1 

Introduction 

The problem of estimating the positions of moving objects has become an important problem 

in mobile robotics. Using mobile robots as tracking devices has a lot bf advantages. First, a 

mobile robot covers a larger area compared to  stationary sensors so t~he number of required 

sensors will be decreased. Second, since the robot is able to  move, replositioning of the robot 

has a direct impact on the performance and the task of target traclkng can be performed 

more efficiently. In addition, increasing number of robots improves thp performance because 

a larger area will be covered by the robots and information exchange apong the robots would 

help them to  track the object of interest more robustly. Nevertheless, 4 coordination strategy 

is required to prevent interference and perform the task more efficiedtly. 

Tkaditional target tracking approaches suffer from failure in situations in which the 
I 

targets go out of field of view of the sensors for a long periods of timg. Consider the task of 

a mobile robot tracking a person through a building. Figure 1.1 sho*s the situation where 
l 

a robot has followed its target down a corridor to a T-junction, and the target has left the 

robot's sensor field of view. Assume that the robot could not dete4t whether the person 

moved to  the right or the left. So the tracker fails and the uncertainly increases over time. 

The main focus of this thesis is on proposing a coordination met(hod for mobile robots 

to solve this problem of existing trackers that is minimizing uncertdnty of the position of 

the target in case of pervasive occlusion. 



CHAPTER 1. INTRODUCTION 

Figure 1.1: A robot (bottom) tracking a person (stick figure) who h a s  disappeared from 
view. I 

1.1 Background I I 

Probabilistic approaches to  automatic target tracking have recentli become popular due 

to their robustness in tracking in the presence of uncertainty. In pkrticular, multi-modal 

representations have proved successful when targets are partially ok briefly occluded [15] 
I 

In addition t o  extensive work on target tracking in the compuber vision community, 

several authors have described tracking systems using autonomous mobile robots. These 

systems can be divided into four categories: 
I 

Single robot tracking a single target: Most of the early approaches in target tracking 

with robots dealt with tracking a singlt. object. These days, the systems are designed to  

track multiple objects due to  demanding applications which will be discussed later. Pa- 

panikolopoulos et al. presented an early approach for tracking an 4bject by a robot arm 

which is an example of tracking a single object by a single robot 1261. 

Single robot tracking multiple targets: As mentioned before, tracking multiple objects 

has become more popular due to the needs in various applications. 4s an example of recent 

work Schulz et al. [30] have introduced sample-based joint probability data  association fil- 

ters to  track multiple moving objects. To keep track of multiple obj&ts, a joint probability 

distribution should estimate the state of the objects but the size of state space grows ex- 

ponentially when the number of tracked objects increases and makds tracking intractable 

One solution is t o  consider one filter per target but the problem of this approach is that it 

will not be possible t o  determine which measurement is caused by whjch target. They apply 

an almost efficient Joint Probabilistic Data Association Filter (JPDAF) for this purpme. 

Montemerlo et a 1  1221 present a probabilistic algorithm called the conditional particle 
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filter to track a large distribution of people locations conditioned tlpon the robot poses. 

They presented a probabilistic algorithm to simultaneously localize the robots and track the 

nearby people. They implemented a joint particle filter for simultaheous localization and 

tracking where a set of particles represented the people location and they were conditioned 

upon a smaller set of particles representing robot poses. These approaches are based on the 

decisions of a single robot which results in non-robustness against the failure of that robot. 

Multiple robots tracking a single target: Target tracking can be lmproved by deploying 

multiple robots but a strategy is needed for coordination of the robots to improve the 

efficiency of tracking. Mazo et al. propose a method for formation of a team of robots 

equipped with short range sensors to best track a single moving object [21]. Another example 

has been implemented by Matsuoka et al. where multiple cameras are used to track and 

localize a helicopter robot (201. The proposed method in this thesis falls into this category 

while it is extendable to multiple target problem. Our implemented system not only tracks 

the target but also coordinates the robots to find the target more efficiently if it goes out 

of field of view of robots. 

Multiple robots tracking multiple targets: An extended version of the previously 

mentioned methods is to track multiple targets with multiple robots. Jung and Sukhatme 

[13] have proposed an example cooperative system for tracking multiple targets with multiple 

robots. They proposed a region-based approach for multi-target tracking in an indoor 

environment. They track the targets by assigning a region to each robot. After constructing 

a topological map of the environment, each robot is assigned to a region according to target 

density in that region. Their approach, in common with the other approaches mentioned 

above, works well when the target lies in the sensors' field of view or it has a short-term 

occlusion but unlike this thesis, they do not address the long-term occlusions which cause 

large uncertainty for the tracker. 

Pursuit-evasion games also model a searcher chasing an evader. This class of problems 

guarantees that even in the worst cases in which the evaders move arbitrarily fast, any 

evader would be found by a group of pursuers. LaValle et al. (171 proposed a pursuit- 

evasion method for ksearchers where each searcher is equipped with k flashlights by which 

they can see the environment. Gerkey et al. [9] recently showed a generalization of this 

method by introducing a new class of searcher, the &searcher where each pursuer has a 4 
radian field of view. 

A practical deficiency of the known solutions to the pursuit-evader problem is that they 
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are highly computationally intensive and do not scale well in application to  multiple-robot 

systems. For example, in Gerkey's approach, the joint information and action space grows 

exponentially in the number of searchers. A further limitation is that  these methods do  not 

address the continuous tracking of intruders once they are found. 

In this thesis, a new tracking and coordination technique which requires a minimal 

amount of communication among the agents to  coordinate multiple robots is proposed in 

order t o  minimize the uncertainty about the location of a moving intruder. As mentioned 

above, existing tracking methods (excluding the pursuit-evasion methods) focus on com- 

bining sensor measurements t o  track the object of interest. The problem arises when the 

object of interest goes out of the field of view for a long period. Our method simultaneously 

addresses this problem and the problem of coordinating multiple robot trackers. 

Consider the previously mentioned problem of the robot and a parson a t  a T-junction. 

If the robot has a probabilistic model of the target's future movements and we represent the 

location of the target by a probability distribution over the possible locations in the building, 

two modes of the probability distribution over target location can be seen (see Figure 1.2). 

We represent this probability distribution by a set of particles (Particle Filtering method 

[12] [4] [I]). If a particle falls within the sensor's field of view, but no target is detected, 

the particle can be eliminated. Considering this model, we can state a simple rule that  

maximizes the probability of observing the target: the robot must t ry t o  observe as  many 

particles as  possible. 

Figure 1.2: The point-cloud represents a. set of hypotheses about the person's current po- 
sition, generated by a probabilistic model of his movements [25]. Printed by permission of 
IEEE @. 

The task of our robot controller therefore is t o  minimize the uncertainty by maximizing 

the number of visited particles (the particles that  lie in sensors' field of view). This approach 
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was taken by Rosencrantz et al. 1281 to  locate the opponents in a laser tag game in which 

the opponents might be under pervasive occlusions. However, their work mostly addressed 

the improvement of the tracker for multiple opponent tracking, rather than coordination of 

multiple trackers. 

In this thesis, a particle filtering method has been implemented to represent arbitrary 

multi-modal densities for the location of the intruder. Then we apply a potential field 

method on top of the particle filtering for coordinating multiple agents to reduce the uncer- 

tainty in the environment. Each agent decreases the uncertainty in target position estimate 

by sweeping as many particles as it can. Coordination between agents is achieved by each 

robot selecting a subset of the particles to observe. 

As a formal statement of the problem, the task of each robot is to  minimize the entropy 

[32] of the particles that show an estimation for the position of the intruder. A minimum 

entropy is equivalent to having a dense cloud of particles which is a good estimation for 

the location of the intruder. Therefore, the searchers cooperate to  prevent increase of the 

entropy. 

1.2 Thesis Outline 

Chapter two presents an outline of robot localization and mapping the environment, the 

primary prerequisites for a mobile robot working in an indoor environment. A detailed 

and intuitive description of the probabilistic tracking method is presented in Chapter 3. 

Chapter 4 introduces a novel technique where a particle cloud and map are combined to 

create a potential field robot controller for a single robot. In Chapter 5,  cooperative action 

selection and optimization strategies for searching the environment by multiple robots are 

discussed. An experimental section shows the result of the implementation of the proposed 

method on real robots and simulated robots in different environments. Additionally, the 

performance of the system has been studied with respect to different population sizes, with 

and without communication, and also different types of communication between teammate 

robots. Finally, Chapter 7 discusses the advantages and deficiencies of the proposed method 

and some future research directions are described. Figure 1.3 shows a sequence of running 

the robot controller. 



CHAPTER 1. INTRODUCTION 

0. Mapping: An offline procedure for building a map of the environment. The inputs are 
laser scans and odometry and the output is a grid representing the map (Chapter 2 ) .  

Iterate: 

1. Localization: An estimate of the position of the robot will be found. The inputs are 
the map, odometry and laser scan data and the output is the location of the robot 
( Ch.apter 2 ) .  

2. Communication: The robot sends its pose and observation to teammates and r e  
ceives their information. 

3. Particle Filtering: It is used to find an estimation for the location of the object 
of interest. The inputs are robot and teammates locations and observations and the 
output is a set of particles representing an estimation for the position of the target 
(Chapter 3). The procedure is as follows: 

(a) Resampling 

(b) Applying Motion Model 

(c) Reweighting: 

i. Sensor Model Reweighting 
ii. Checking Particle Visibility 

iii. Checking Obstacle Crossings 

4. Finding Map Distances: The inputs are the map and the locations of the rohot 
and teammates. The output is the map distance for each robot (Chapter 4). 

5 .  Force Calculations: The inputs are the map, locations of the robot and teammates, 
the set of particles and the map distances. The output is a force that determines the 
next direction of the movement of the robot (Chapters 4 and 5). 

6. Navigation Target Selection: The next location of the robot will be determined 
The input is the computed force and the output is a cell on the map. 

7. VFH: It chooses a path to the next location and avoids the obstacles. The input is 
a cell on the map and the output is a speed command for the wheels of the robot 
(Appendix One). 

Figure 1.3: A sequence of running the  program. 



Chapter 2 

Robot Localization and Mapping 

Usually, the first prerequisite for a mobile robot working in an indoor environment is to 

have a representation of that environment. There are systems which do not have any global 

representation and decide based on local sensor information but they usually suffer from 

redundancies, for instance performing repeated work because of no global view. After ac- 

quiring sufficient knowledge about the environment, the robot may be able to estimate its 

pose (position and orientation) relative to the environment according to  sensor measure- 

ments. These two steps can be performed together and the whole process is commonly 

referred to  as Simultaneous Localization and Mapping (SLAM) or Concurrent Mapping 

and Localization (CML). Separation of the mapping stage from localization can somewhat 

help us to  reduce the computational burden of the system. So the map will be acquired 

automatically offline, then the robot uses that map to  obtain an estimate of its pose. 

In this chapter, we will review the mapping problem and the current approaches to this 

problem. Also, the offline mapping method is described and some experimental results are 

shown. Then, we will describe Monte Carlo localization, a method which is widely used in 

recent years by roboticists in mobile robot experiments. 

2.1 Mapping 

The problem of robotic mapping is that of acquiring a spatial model of a robot's environ- 

ment through robots' sensors. To build a map, robots must have sensors to  perceive the 

surrounding world. Cameras, range finders such as laser scanners and sonar sensors, infrared 

sensors and GPS are the common sensors used for the task of mapping. For the experiments 
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of this thesis, the robots are equipped with laser scanners to  collect range information of 

the workspace. In addition, the motion commands convey some information about the map, 

since they specify the location of a sensor measurement. But the motion commands are also 

erroneous and will not be sufficient for building an almost accurate map. The key challenges 

in robotic mapping are described in [31]: 

0 A key challenge in robotic mapping is the noise in sensor measurements. The noises 

are not statistically independent and a false measurement in the past will affect a 

future observation. Figure 2.1 shows the almost raw data gathered at SFU TASC 

building. As you see in the picture a small rotational error have resulted in a large 

error in the other corridors (the correct map is shown in Figure 2.2). 

Figure 2.1: A small rotational error has caused the mis-alignments on the map. 

The other problem of robotic mapping is the high dimensionality of data which means 

even for representing a map of a simple environment a large amount of data should be 

stored. Although we represent the map by 2 or 3 dimensions, the dimensionality of 

the underlying estimation device is high. Current approaches try to  represent a map 

by high-level entities instead of a detailed representation [I81 . 

0 A third problem in robotic mapping is the correspondence problem, also known as the 

data association problem. The correspondence problem is the problem of determining 

if sensor measurements taken a t  different points in time correspond to the same phys- 

ical object in the world. For example, when a robot maps a large cyclic environment 

and arrives to the starting point, it should determine if this point has been visited and 

mapped already or it is a new area in front of the robot. 
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0 The fourth problem is that  mapping a dynamic environment would be very challeng- 

ing because the sensor measurements will be inconsistent. For instance, when a robot 

arrives at a closed door which was previously open, it does not know whether it has 

arrived a t  another location or it is the same location with different sensor measure- 

ments. 

0 Finally, the robots need an exploration algorithm to  move in the environment and 

gather the information. Because of some limitations such as risk of falling of the robot 

from stairs or blocking the robot by people, in this thesis, this step of the experiments 

have been performed using a. joystick to  manually drive the robot around the building. 

Most of the state-of-the-art methods in robotic mapping are based on probabilistic in- 

ference. The reason for the popularity of these methods is the uncertainty and sensor noise 

as the key features of this problem. Thrun [31] describes different methods used in mapping 

such as  Kalman Filtering, Expectation Maximization and Hybrid methods (combination of 

Kalman Filers and EM). As a recent method, Limketkai e t  al. introduce relational object 

maps in [18], an approach to  building metric maps that  represent individual objects such 

as doors or walls. Object-based representations have much higher expressive power in that 

they combine a high-level representation with metric accuracy. 

As mentioned before, we used an  offline mapping process for the real robot experiments. 

A brief description of the mapping software is represented in the next section. 

2.1.1 Mapping Software 

For mapping the robots' workspace, a Pioneer 3DX robot which was equipped with laser 

scanner was driven inside the environment and stored odometry and laser data .  The  map 

is built by using Pmap [I l l  which is an  Open Source software and released as part of 

Player/Stage [lo].  Pmap provides a number of libraries and utilities for laser-based mapping 

in 2D environments. The  library maintains a Particle Filter over possible maps which 

means each particle (sample) represents a complete map. The  output maps are topologically 

correct, but a little rough around the edges (some minor scan mis-alignments). According 

to the odometry new samples are generated (it should be noted that  the odometry itself 

has some errors and some pre-processing on the raw odometry da ta  is required). Then 

the algorithm computes the error for each point in the map according t o  the current sensor 

measurements and their correlation with the previous data .  The calculated error determines 
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the weight of each sample. The resampling step will generate a new set of samples and the 

same procedure continues from the beginning. Bayes rules and Particle Filtering method 

will be explained in more detail in the next chapters. 

Figure 2.2: SFU TASC I building map generated by Pmap software. The white region is 
the free space and the grey region is the unexplored area. The  represented map contains 
1500 x 450 cells where each cell is a 9cm x 9cmn square. 

The output of the algorithm is a bitmap image which shows the obstacles, free spaces 

and unexplored areas. The image is tra.nsformed to an  occupancy grid map [23] in which 

each cell stores the vacancy status (occupied, unoccupied or unknown) of the corresponding 

point of the map. From now on, we mean an occupancy grid when we refer to  a map. 

This algorithm has some caveats. First, the space of possible maps is very large and the 

set of selected particles only represents sparse samples of that .  Second, since each particle 

represents a complete map and for obtaining good results, a large number of particles are 

required, the algorithm would be very memory intensive and exceeding the physical memory 

of the host computer will slow down the process. Figure 2.2 shows a map of the 8000 level 

of the TASC I building a t  SFU generated by the pmap software using 600 samples. We used 

part of this area for real robot experiments described in the result section. Some refinement 

is done on the result of particle filter-based mapping using the libraries provided. As glass 

partially transmits the infrared laser beam and partially reflects it and the corridors in that 

level of the building are surrounded by glass, some fluctuations are visible (i.e. corridors a t  

the bottom portion of the map). 



CHAPTER 2. ROBOT LOCALIZATION AND MAPPING 11 

2.2 Localization 

So far a map is generated for the robot by the previously mentioned method. A robot should 

know its pose according t o  the provided map. The  robot does not obey control commands 

exactly as it receives them from the  controller because there are some sources of error like 

skidding or deficiencies in the actuators of the robot. 

Figure 2.3: Uncertainty in position of the robot after executing the control command for 
going a straight line. Darker areas are related to  high probability areas [33]. Printed by 
permission of Sebastian Thrun @. 

As you see in Figure 2.3 the robot may end up  a t  one of the locations in the shaded area 

instead of going on a straight line with more probability on the darker area. So knowing only 

the control commands will not help us determining the position of the robot and the position 

should be revised according to some sensor measurements. But the sensors themselves are 

noisy and unreliable. So a method is required t o  accommodate the noise of sensors and 

actuators t o  have a good approximation of the robot's location. This problem is known as  

robot localization. There is extensive literature on this topic using different methods. In this 

section, Monte Carlo Localization(MCL) [33], a probabilistic method of estimating a robot 

pose is described. MCL solves the global localization and kidnapped robot problem (moving 

the robot from one place to  another manually) in a highly robust and almost efficient way 

where it represents the position of a robot by a set of samples (also called particles). 
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2.2.1 Monte Carlo Localization 

The key idea of Monte Carlo Localization is to estimate a probability density over the state 

space conditioned on the data. The following derivations and the nota.tions are taken from 

[33]. The posterior is typically called the belief and is denoted by: 

xt denotes the state of the robot a.t time t .  The state usually comprised of 2D coordinates 

and the orientation of the robot. Also do..t is the data available to the robot from time 

zero up to  time t .  The data include two types of data: odometry data which is related to 

motion of the robot and perception data which is related to the measurements from a sensor 

like a laser scanner. We can rewrite this equation with o representing observation and a 

representing action: 

Be l ( x t )  = p(xtlot, at-1, ot-1, at-2, ..., 00)  (2.2) 

The above equation can be transformed to the following equation by using Bayes rules: 

Because the denominator is a constant relative to  the variable x t ,  Bayes rule is usually 

written as: 

B e l ( 4  = w(o t I x t , a t - l ,  4 o)p(xtlat-1, ..., 00)  (2.4) 

where qi is the normalization constant and is equal to: 

Bayes filters assume that the environment is Markov which means the past and future 

states are independent given the current state, and the measurements are dependent only 

on the current state. Therefore, the Markov assumption implies: 

and hence the target expression 2.3 can be simplified to: 
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We will now expand the rightmost term by applying the Chapman-Kolmogorov equation1 

and integrating over the state at time t - 1 ( x ~ - ~ ) :  

Again, p(xtlxt-l, at-1, ..., 00) can be simplified by considering Markov assumption: 

which gives us: 

Since p(xtAllat-l, ..., 00) is the belief for time t -  1, Bel(xt), equation 2.10 can be simplified 

again. The resulting equation is the recursive update equation in Bayes filters. 

Figure 2.4: Result of Monte Carlo Localization. Successful global localization finds the 
true position of the robot in the rightmost picture [33]. Printed by permission of Sebastian 
Thrun @. 

For implementation of the above equation, we need two distributionsp(otlxt) and p(xtlxt-1, at-l) 

which are known as the sensor model and motion model respectively. The belief at the 

beginning of the computations can be a uniform distribution over the possible locations. 

Computing the above integral is not trivial for a continuous space like the state of robot 

in a given map. To solve this problem, a sampling-based method (particle filtering) is used 



CHAPTER 2. ROBOT LOCALIZATION AND MAPPING 14 

where each sample shows the location of the robot with a certain probability. The details 

and implementation of this method are described in the next chapter. 

We use Adaptive MCL [7] function of PlayerIStage [lo] to  perform the mobile robot 

localization. Adaptive MCL is referred to one case of MCL in which the number of samples 

changes over time and is dependent on divergence of the samples. For instance, at the 

beginning where the samples are uniformly distributed a large sample set is required but 

after some observations, this number can be reduced for the sake of efficiency. Figure 2.4 

shows a result of this algorithm. 



Chapter 

Particle Filtering for Tracking 

This chapter is devoted t o  describing the probabilistic method implemented t o  estimate and 

predict location of the target a t  any time during tracking. There is an  extensive literature on 

target tracking in the vision community and robotics research. We adopt particle filtering 

(also known as the  Condensation Algorithm in the vision community) as  a method which is 

able t o  keep a probability distribution of the target location during tracking. 

For the purpose of detecting the objects of interest (which can be a human, another 

robot, etc.), we use a Fiducial-finder, modeling a feature detector on a laser scanner e.g. 

finding a laser reflective material or reading a barcode using the laser scans. We can get the 

relative distance and bearing of the target by using this sensor. The  relative da ta  can be 

transformed t o  global map coordinates by simple transformations. We used particle filters 

as the tracker method for the following reasons: 

1. Unlike the other methods like Kalman Filters, Particle Filters can accommodate arbi- 

trary sensor characteristics, motion dynamics and noise distributions. As mentioned 

before we should represent multi-modal distributions in the cases which was shown in 

Figure 1.2. 

2. Particle filters can be adapted t o  available computational resources by changing the 

number of samples. 

Despite the above advantages, Particle Filters have some pitfalls. First, they are not 

computationally efficient compared t o  Kalman Filters and other similar trackers. Second, 

if the number of samples is too small, there is a chance that  the tracker loses track of the 
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object. Third and the most important factor which is the main focus of this thesis is that 

like all of the tracking methods, this method will fail if it does not observe the target for a 

long period of time. As mentioned before, we develop a system to overcome this deficiency 

and minimize the uncertainty caused by this problem using multiple mobile robots. 

The following sections explain an intuitive description, then the formal theory behind 

particle filters and its specific implementation for the defined task. As stated, it is a non- 

trivial task to  compute the integral of equation 2.11. We show how a sample-based method 

will solve that problem. For being consistent with the tracking literature, we denote the 

measurement at time t by zt. Therefore, all of the equations and derivations would be true 

in the localization section if we replace zt by ot. 

3.1 Intuitive Description of Particle Filtering 1241 

The tracking application of the Condensation algorithm or Particle filtering was first intro- 

duced for visual tracking of curved objects in a cluttered environment [12]. In this overview, 

we explain tracking of every kind of object by defining a point representation of the object. 

By using this algorithm we can track position and or velocity or other kinematic parameters 

of an object. The parameter or parameters that we want to  track form the state vector of 

the object. The goal of this algorithm is to estimate the current state vector of the object of 

interest by choosing some random vectors from the domain of the state vectors and assigning 

them a probability. These random vectors are called samples .  For instance if we want to 

track the position of a point which moves on a line that has length of 10 units and is located 

on the interval [0,10] on the x axis of a coordinate frame, the domain of the tracking is 

that interval and the samples ([x]) are selected randomly from that interval. For example, 

the samples can be vectors [I .3], [1.8], [5.0], [6.7], [9.5] which are 5 samples that have been 

chosen randomly. Then we assign a probability to  each sample. These probabilities are the 

probability of actual position of the object to be the same as the randomly selected samples. 

So we assign a scalar probability to each sample and these scalars form a distribution of the 

probabilities over the state space. The details of defining this probability distribution are 

mentioned in the next subsections. 

In Figure 3.1 the estimation of position of an object in the image plane is shown. The 

quadrangle is the object of interest and each cross is a sample and the result of condensation 

tracker is a probability which is assigned to  each sample. This probability is the probability 
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Figure 3.1: The object of interest is the polygonal object and each cross is a sample to which 
a probability is assigned. The thick cross is an arbitrary point of the object (we consider 
the object as a point). The probability that the thick cross is at the position of the dotted 
cross is 0.56 [24]. Printed by permission of IEEE @. 

of the presence of one specific point of the object of interest in the position of the corre- 

sponding sample. For example the probability that the thick cross in Figure 3.1 (consider 

the object as a point) be at the position of the dotted cross is 0.56. It should be noted that 

the value of the components of the samples and the number of samples may change. As 

the environment changes, we choose new samples and assign new probabilities to  them by 

using the dynamic model of movement of the object and an observation made by sensors. 

Usually the dynamic model of the object that we want to track is not known and we guess 

a model for that. It is also possible to  learn the dynamic model from the previously known 

data from the movement of the object. 

In this thesis, the observation is usually the result of processing of the laser scans and 

finding the position of the object on the map. The theory behind the algorithm including 

the details of choosing sa.mples and assigning the probabilities arid finding the probability 

distributions, are described in the next subsection. 
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3.2 Formal Theory 

The general idea of the Condensation algorithm is to find a probability distribution which 

approximates a probability function for each sample of the state vector of the object ac- 

cording to the real measurements (observation) from a sensor. The state vector at time t 

which is denoted by xt is a vector of variables that we want to estimate (depending on the 

application). 

The measurement from the sensor (the fiducial finder in our tracking case) at time t 

is denoted by zt. So far we have three terminologies: state, sample and measurement. 

The state vector consists of the variables that we want to estimate and we refer to state 

space as the space in which those variables (position, velocity, etc.) can change. Sample 

vectors are specific vectors in the state space which have been chosen randomly according 

to a probability distribution. A measurement is a vector of the same form as the state 

vector and the values of its parameters are read from the sensors. Since the sensors are 

noisy or have a limited range we can not absolutely rely on the sensor data (measurement) 

and we find a probability for the similarity of the guessed samples with the real status of 

the object. In our problem, we try to estimate the position and orientation of the target 

on the map. So, we define xt = [x, y,O] where x and y are 2D Cartesian coordinates of 

the object on the map and 8 represents its orientation. We find a probability distribution 

for the state space according to  the measurement, p(xt lzl, 22, ..., zt), that is the probability 

that the state at time t is equal to xt  provided that the measurements from time 1 up to 

time t are equal to z l , z ~ ,  ..., zt respectively. Using Bayes' rule, (p(AIB) = p(BIA)p(A)/p(B), 

p(AI B) = p(A n B)/p(B)), p(xt lzl, 22, .. ., zt) is computed as follows: 

Since the measurement at time t is independent of the previous measurements given xt, ac- 

cording to the above rules p(ztlxt, zl ,  ..., ztPl) = p(ztIxt). Also ~ ( z t l z l ,  ..., z t l )  is a constant. 

Therefore: 

p(xtlz1, ..., zt) = kp(ztIxt)~(xtlzi, ..., zt-1) (3.2) 

We can compute p(xt lzl, ..., zt-1) by applying the dynamic model of the object motion 

to p ( ~ t - ~ l z ~ ,  ..., zt-1) which is known from the previous time step. The dynamic model is 

an a priovi known motion model of the object and it relates the state vector at current time 

step to that of previous time step and it depends on the intrinsic nature of the object and 
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the environment in which the object moves. It can also be computed online according to  

the data from tracker. The dynamic model can be defined as: 

st = f (st-l) + stochastic part  (3.3) 

where the stochastic part can be any function for instance a vector of independent standard 

normal variables which are scaled by a factor that is determined according to the nature of 

the tracked target. 

f can be any function and relates the current state of the samples to  the previous 

state. Because the movement of the object is random (i.e. unpredictable from the point of 

view of the tracker) we add a stochastic part to  the dynamic model to add randomness to  

the deterministic model. For example, the intruder can stop or move backward instead of 

moving forward which is forced by the deterministic model. But we know that motion of 

a human is not totally random. As an example, consider the simple one dimensional case 

of tracking a point on a line where the state and measurement vectors consist of only the 

position of the object. As shown in Figure 3.2(a), we draw N samples randomly according 

to the probability distribution from the previous time step. As you see the samples are 

denser in high probability areas because there is more probability that a sample is chosen 

in that area. 

Assume that the deterministic equation of motion of the object is xt  = s t -1  + a where 

a is a constant. Figure 3.2(6) shows the samples after applying the deterministic part of 

the dynamic model. Figure 3.2(c) shows the result of applying of the whole dynamic model 

(deterministic + stochastic parts) to find p(s t (z l ,  ..., zt-1). 

So far, we have found p(xtlzl, ..., zt-1) which is needed for computing p(xtl t l ,  ..., zt). 

As mentioned before we have a set of samples from the space of the state vectors. These 

samples were primarily drawn randomly according to the previous time step probability 

distribution. Then we applied the dynamic model to that set of samples to get a new set 

of samples. This new set of samples is the original one which has drifted by applying the 

dynamic model. After this step we make an observation by using the sensor and we adjust 

the weight (probability) of each sample according to  this new observation. Three cases have 

been considered for the reweighting step: 

1. We define the area S which is a circular segment as the sensor visibility of the agents. 

This area is centered at the robot position and its central angle, c p ,  is in the range 8- 
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rn t sample # 1 

(a) N samples are chosen randomly according to the proba- 
bility distribution from the previous time step. The samples 
are denser near high probability areas. 

(b) This figure shows the set of samples after applying the 
deterministic part of the dynamic model. Since the equation 
is xt = xt-1 +a, each sample is drifted by the size of a. The 
white dots are the samples which are initially drawn and the 
black dots are those samples after applying the deterministic 
part of the dynamic model. 

(c) The result of applying the stochastic part of the dynamic 
model to the previous set of samples is shown. 

Figure 3.2: Weighing schemes [24]. Printed by permission of IEEE @. 
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to 8 + 5 where 8 is the robot orientation and F is the field-of-view angle subtended 

by the sensor. It  should be noted that not having a perfect localization will not affect 

the method. Finally, the radius of the circular segment shows the sensor range. If the 

ith sample si E S and the line that connects the sample t o  the robot does not intersect 

an obstacle, wi the weight of that sample will be zero. This case is shown in Figure 

3.3. Thus the robot deletes the particles that it now knows do  not correspond to  the 

real position of the target. 

Figure 3.3: The robot assigns low weights t o  the visited particles [25]. Printed by permission 
of IEEE @. 

2. If stsf-' n Cobs # 0 ,  wi the weight of ith sample would be zero. s;s:-l is the line 

segment that connects the position of sample ,i at  the current time step to  its position 

in the previous time step and Cobs is the space of all of the obstacles present in the 

map. Intuitively, it means if the particles go inside an obstacle or through a wall, their 

weight becomes zero. Figure 3.4 shows this case. This models the constraints on the 

target that it can only move through free space. 

3. If have we an observation of the object, the Factored Sampling method [12] is used to  

find the new weight of the samples. If the number of samples goes to  infinity the distri- 

bution of samples from p(ztIxt)p(xtIzl, ..., zt-1) tends to be that of p(xt 121, ..., zt-1, zt). 

A reasonable assumption for accommodating noise in the sensor model is t o  be a 

Gaussian function where the mean of the Gaussian is located on the real measure- 

ment from the sensor and its deviation is determined according to  the sensor and 

the map. Figure 3.5 shows the reweighing of each sample according to the Gaussian 
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particle with the mean or median of the weights is considered to be the true target pose. 

We avoid this clustering step, and thus avoid the artifacts it can introduce. The clustering 

methods can not cope with cases happened a t  T-junctions in the previously mentioned 

examples. As we may not have an observation during the tracking, we try to  maximize 

the number of visible particles (to observe locations of more particles by the sensors) while 

simultaneously optimizing the joint motion of the robots. 

3.2.1 Factored Sampling 

Suppose we have a probability distribution that is the result of multiplication of two other 

distributions. The factored sampling method is used to  find an approximation to  the prob- 

ability density function by using samples from those two distributions. 

Assume f (x) = f2(x) f l (x) ,  where f l (x)  and f2(x) are two probability distributions. A 

set of samples s = {sl ,  s2, ..., s ~ )  is drawn randomly from f l (x )  (Figure 3.6). 

I v - 
samples s, to sJ 

Figure 3.6: Sampling from f l (x) .  A set of N samples are drawn randomly with a probability 
proportional to  f l(x) .  So we see more samples under high probability areas [24]. Printed 
by permission of IEEE @. 

Then we find the probability assigned to each sample in proportion to f2(x).  The 

probability .rrj of the jth sample in proportion to distribution of f2(x) is computed as follows: 

So we have found a new sample set, where the distribution of the probabilities of the 

new samples tends to  that of f  (x), as N -+ m. Therefore, the distribution of the probability 

of these new samples is an approximation to  the distribution f (x) (Figure 3.7). 
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I b 
S 

(a) f ~ ( x )  is shown in this figure. 

(b) Each sample is reweighed according to equation 3.4. .7rjs are 
the new weights. 

Figure 3.7: Weighing schemes [24]. Printed by permission of IEEE @. 
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3.3 Implementation and Simulation Results of Target Track- 

ing 

We implemented the particle filtering algorithm for tracking with the robots and the simula- 

tion results are shown in this section. A robot which is equipped with laser scanner follows 

another robot and the particle filter gives an estimate of the position of the target. Two 

cases have been considered: the target lies in the robot's sensor view and the target goes out 

of field of view. Some assumptions have been made for tracking: the sensor model, p(ztlxt), 

is a Gaussian with a, = 12m and a0 = 10 deg where a, and a0 are deviations for range 

and bearing of the sensor. The other assumption is that the target obeys a first order linear 

motion model augmented by a Gaussian noise. The motion model can be any function but 

in this case a simple model is assumed. 

1. Direct sensing: this case happens when the robot observes the target directly. So it 

updates the particles according to  the sensor measurement by the Factored Sampling 

method. Figure 3.8 shows this case. The particle cloud shows the possible positions 

of the target according to  target motion model. 

2. No observation: in this situation the target goes out field of view of the robot and 

the robot does not have any observation of the target. Again, the particles show 

the estimated pose of the target but a multi-modal distribution might be formed. 

As shown in Figure 3.9, the particles are confined to  the free space of the map and 

the particles which are in the robot's view and can be observed to  not be the true 

position of the target have been assigned a zero weight and removed. It should be 

noted that the particles whose direction is the same as the last visible direction of 

target movement, are assigned a higher weight, so there are larger number of particles 

on the top portion. This models the assumption that the target continues to  move in 

the same direction with high probability. 
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(a) Stage [341 snapshot,. 

(b) Robot's view. The particle cloud shows the possible positions of the target. 

Figure 3.8: Simulation results for direct sensing. 
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(a) Stage [34] snapshot. 

(b) A bi-modal distribution shows the uncertainty in the pose of the target. 

Figure 3.9: Simulation results for a robot without target observation. This is the scenario 
described in Figure 1.1. 



Chapter 4 

Particle Filter and Potential Field 

Integration 

Previous chapters described robot localization and mapping and target tracking as some 

standard tools used by robotics community. The main contribution of this thesis begins 

from this chapter. Our goal is to  minimize the uncertainty in target position by maximizing 

the number of visited particles. Also, the likelihood of finding the target is maximized if all 

the particles are swept off. The problem of most of the existing methods such as POMDPs 

(Partially Observable Markov Decision Processes) which seems well-suited to  solve this kind 

of problem, is that their computational complexity or memory needs grow exponentially with 

the number of robots. POMDP is a method for decision making and optimization where 

the entire world is not available [29], in our case, the target position and the actions of 

teammates are not available t o  the robots. 

We implement a potential field method for doing this task which is O(Npn) in the 

worst case where n is the number of cells if we represent the map by grid cells and Np is 

the number particles used in the tracking algorithm. For speed, the number of particles 

which are used for the calculation of the forces can be decreased by selecting a t  random 

a subset of the particles. Since the particle filtering results in producing more particles 

in the high probability areas, the chance of choosing particles in those areas would be 

higher and the distribution of the particles is approximately the same. So we perform the 

update stage for the whole set of particles but calculate the forces based on the randomly 

chosen particle subset. Potential Field methods were used for motion planning in their early 
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robotics applications, where a robot was considered as a particle which moved in a free space. 

Obstacles exerted repulsive force on the robot while the goal exerted an attractive force on 

it and the resultant force caused the robot t o  move from a source to a goal without colliding 

with obstacles [16]. 

In the following subsections we explain a method for finding the distances on a map 

(instead of Euclidean distance) and after that,  the application of this method for tracking 

is described. 

4.1 Building a Traversible Map 

The algorithm which is presented in this chapter performs as a motion planner and tracker 

simultaneously. Therefore, the result would be the shortest obstacle-free path from the 

robot location to  the specified target. The first requirement of this method is t o  construct 

a traversible map based on the original map. The idea is the same as finding a C-space as 

described in [16]. As one example, Figure 4.1 shows a case where there is a free space but the 

robot can not go through because of its size. So, the calculations for tracking and motion 

Figure 4.1: The robot does not fit into the free space between obstacles on the original map. 

planning should not consider that space as  free. To build a traversible map, the original 

map should be modified to  specify this kind of free space and to prevent the planner and 

the tracker considering a path in this space. 

The procedure for building a traversible map is as follows. We assume a certain radius 

for the robot and increase the size of obstacle cells by the size of the robot which means the 
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Figure 4.2: A circumcircle with radius T will be assumed as the shape of the robot. 

Figure 4.3: Solid gray cells are real obstacle cells. Shaded cells are marked as virtual 
obstacles aft.er increasing the size of obstacles. White cells are traversible space. 
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cells fall into that  radius around an  obstacle cell, are marked as an  obstacle cell. Figure 4.2 

shows an  approximation t o  the radius of that robot and Figure 4.3 shows the traversible map 

built for the example shown in Figure 4.1. As shown, the free space between the obstacles 

are filled with virtual obstacle cells, so no path will be generated through that  free space 

but the robot can see through it. 

4.2 Finding Map Distances 

For maximizing the number of visited particles, the idea is that  each particle exerts a force 

to the robot t o  attract it. So the greater number of particles in an  area, the larger is the 

force which is imposed on the robot. This force is inversely proportional t o  the distance from 

the particle t o  the robot. This means tha t  the robot tends to sweep the nearest particles 

first. But when the robot's mobility is limited by obstacles, as shown in Figure 4.4, the 

Euclidean distance from particle to robot does not indicate how quickly the robot can reach 

the particle. Instead we must calculate the shortest traversible path using the map. 

Figure 4.4: The gray arrow shows the Euclidean distance between two points which is 
not useful for calculating the attraction force because of the presence of the obstacle [25]. 
Printed by permission of IEEE @. 

Shortest-traversible-path calculations are done using a simple occupancy-grid flood fill 

method [16], though any equivalent method could be substituted. The distance algorithm 

outputs a value which is assigned t o  each grid cell and shows the distance of that cell from 
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the cell where the robot is located. The flood-fill works as follows: First, we assign a zero 

value to  the cell in which the robot is located and an  infinite number t o  the obstacles. Then, 

we pick one of the free cells around the robot cell and increment its value by one and put 

that cell in a queue and pick another neighbor cell until there is no cell around the current 

cell without an  assigned value. The  order of picking the neighbors is important and we pick 

only top, bottom, left and right neighbours. After that ,  we pop the first cell in the queue 

and perform the same procedure for its surrounding cells. This algorithm is continued until 

there is no cell in the queue. This method returns the minimum map distance of a point 

to the current position of the robot and its time complexity is O ( n )  if it is implemented 

by a queue where n is the number of cells on the map. Figure 4.5 shows an output of this 

method for measuring the map distance of a cell of the map. 

Figure 4.5: The  map distance of the red cell (marked 7) from the robot cell (marked R) is 
calculated by using the flood fill method. The shaded area is an obstacle on the map. 

Thus we find the distance of each particle from the robot as required for the calculation 

of the forces exerted by the particles. These calculations are explained in detail in the 

next subsection and in the coordination strategy section. For simplicity, from now on we 

represent the map distance of a cell, which is located a t  row i and column j, from the robot 

cell by A(i, j ) .  

4.3 Computation of Potential Forces 

The navigation of our robots is based on the total force which is exerted on the robots by 

randomly selected particles. That  means at each time step, we apply the normalized total 

force t o  the robot t o  find its next target position. An underlying position device based on 
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the extended Vector Field Histogram (VFH) (21 performs the task of avoiding local obstacles 

while moving according t o  the potential field. VFH method has been provided by Player 

[lo] and the detailed description of it can be found in Appendix A. To compute the total 

potential acting on a robot, we find the force vector for each particle. Then, we sum the 

vectors t o  find the magnitude and direction of the resultant total force. 

To find the approximate direction of the resultant of the total particle forces, we start  

from the cell where the particle is located and we check its surrounding cells, the cell with 

the minimum value will be selected. We continue performing the same procedure for the 

minimum-value cell until we reach a. certain distance from the robot cell (this approximate 

distance is indicated by the circle in Figure 4.6). The direction of the force is approximated 

by the direction of the vector from the robot t o  the cell tha t  is reached through the above 

procedure. The reason that  we do  not use directly the vector from the robot t o  the particle, 

is that  the vector may intersect the obstacles that  has blocked the robot way. Figure 4.6 

shows an example of finding the force direction. The dashed line shows one of the paths 

from the red cell (marked 7) t o  the robot cell and the vector from the robot to  the cell with 

value 3 can be considered as the force direction. Choosing this threshold value is empirical 

and it is better t o  be somehow bigger than size of robot. 

Figure 4.6: The vector shows the direction of the force which is exerted from a particle 
located in the red cell (marked 7) [25]. Printed by permission of IEEE @. 

If mi and ni are the row and column index of particle i in the map grid, the magnitude 

of the force exerted by that  particle, Fi, is calculated by the following Gaussian model: 

where the u is assumed to be a constant in the whole process of tracking or it can be 
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determined according to particles data. u is the parameter that determines the priority for 

sweeping the particles close to the robot. The reason for choosing a Gaussian function is to 

assign more priority to  the closest particles while the deviation is controllable by u. This 

equation means that the closer particles exert a larger force and the first priority of the 

robot is t o  sweep the nearest particles. Nevertheless, if the number of particles is large in an 

area the robot will be attracted to that area neglecting the nearest particles. The magnitude 

and direction of the attractive force is determined by the vector summation of the forces 

from all of the particles which were selected randomly from the whole set of particles. The 

robot will be driven around according t o  the direction of the resulting force. 

The main criticism of potential field methods in general is that rapidly changing local 

optima can cause an oscillatory behaviour in the navigation of the robot. However, because 

of the random nature of the particle filtering method and clearing of the particles during 

the navigation, the symmetry breaks and we have not observed adverse oscillations in the 

robot movements. There are a lot of tricks to  get rid of the oscillation caused by potential 

field methods. In the next subsection, a method is proposed for removing the oscillations. 

This rnethod is very easily extended t o  rationally coordinate multiple tracking agents, as 

described in the next chapter. 

4.3.1 Preventing Local Optima 

Figure 4.7: An example figure showing local optimum problem 

Figure 4.7 shows one case where a local optimum can happen. In the left picture, there 

are a larger number of particles in front of the robot, so the robot is attracted toward 
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them. After removing some of the particles which do not belong to the real position of 

the target, if the target is not found, the number of particles will be increased behind the 

robot. Therefore, the robot may leave clearing all of the particles in front and turn back to 

go toward the set of particles at the back. One of the methods that can help significantly 

in this situation is that the robot remembers the magnitude and the direction of the past 

attracting forces and takes them into account in the calculation of the current force. The 

details can be found in the next chapter. Although this method improves the performance, 

it is not a complete solution. 



Chapter 5 

Coordination Strategies 

This chapter describes the advantages and disadvantages of multi-robot systems in general 

and explains why a team of robots is particularly suitable for the defined task. After that, 

the details of the coordination strategy of the robots for target tracking and uncertainty 

minimization are explained. 

5.1 Why Use a Multi-Robot System? 

Although most mobile robotics systems involve only a single robot, often there are advan- 

tages in using a group of robots which cooperate to accomplish a defined task. Better per- 

formance, increased reliability through redundancy and a reasonable cost according to  the 

requirements of an application are the main reasons that attracted researchers toward Multi- 

Agent Systems. Conferences such as Distributed Autonomous Robotic Systems which are 

specialized for multiple robot applica.tions, show the significant community interest. Parker 

[27] mentions primary research topics in this field including biological inspiration, localiza- 

tion, mapping, exploration, object transport and manipulation, motion coordination, and 

so forth. Various examples have been provided for each research topic. 

A team of robots usually consists of robots of different or similar type that should 

communicate with each other to perform a cooperative behavior. The communication can 

take place via a direct channel or it can be via sensing the other robots' changes like the 

method described in [35 ] .  There are some teams of robots that perform a task without any 

communication. Although interesting and more reliable, usually there is a lot of redundancy 

in these systems. Therefore, one factor that should be considered in designing a Multi-Agent 
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System is the inter-agent communication which has direct impact on the performance and 

reliability of the system. Biological and ethological studies have shown these inter-group 

communications among the group members in nature. Communication of the location of a 

goal is an instance of interaction of group members in nature [5]. 

A speedup will be achieved if we can find a method to  break a task into components 

and perform them in parallel. Since each agent in a team is used as a computational 

resource, parallelism and distribution of intelligent components is inherent of Multi-Agent 

Systems which results in better performance. Although increasing the number of agents 

is usually useful to  improve the efficiency of performing a task but the performance might 

be degraded after addition of certain amount of agents because of interferences. It should 

be noted that finding the most suitable number of agents for a specific task even in a pre- 

defined environment is usually a NP-Hard problem. An example case is proved by Gerkey 

et al. in [9] for determining the minimum number of agents for a pursuit-evasion problem 

in a given environment. 

From the reliability perspective, Multi-Agent Systems or Multi-Robot Systems as their 

special case are more robust compared to a single (and often complex) robot since the 

failure of a single agent will not result in overall failure of the system. In addition, some 

tasks are ideally suited to  multiple robot systems. Consider a task which has high potential 

for damage to an individual e.g. mine deployment or bomb disposal. Using multiple robots 

for these tasks obviously provides us with more reliability. 

The nature of the task itself also determines the requirement of using multiple agents. 

For example, if two tasks are supposed to be done at the same time, it would be impossible 

for a single agent to do the task. On the other hand, there exist tasks which do not benefit 

from the use of additional agents in order to solve them. Task and environment can combine 

to remove any benefit of the use of multiple agents. For example, a single task at a single 

location does not benefit from the use of multiple robots, as a single robot is both necessary 

and sufficient [5]. Therefore, despite all of the advantages described above, usage of multiple 

robots will have obvious disadvantages for certain tasks in certain environments. 

The main factors that are considered for categorizing Multi-Robot Systems are listed 

below. The trade offs between performance, reliability, cost, etc. of a system are caused by 

these parameters and a designer must specify them carefully to achieve the desired result. 

Team Size: The number of agents in a team. 
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Communication Range: The maximum distance between two members of a group such 

that communication is still possible. 

Communication Topology: Of the robots within the communication range, those which 

can be communicated with. 

0 Group Composition: Whether the group members are homogeneous (have the same 

capabi1ity)or heterogeneous (have different capabilities) 151. 

5.2 Cooperative Uncertainty Minimization 

The expected uncertainty minimization and tracking performance of the system can be 

improved by simply adding more robots, but t o  maximize performance, the robots' actions 

should be coordinated in some way. In this section we describe how multiple robots can 

cooperate to  perform the assigned task according to the potential fields which have been 

formed by the particles. The assumption for the coordination method is that each robot 

has an estimate of the location of the other robots. Each robot can send its global position 

information to the teammates through communication or it can localize the other robots in 

its coordinate frame. Both of these constraints are feasible using current methods and since 

the exact position of the other team members are not required, any other method can be 

taken. In our simulations, we use communication among the robots. The communication 

can be direct communication between two robots or in the case of limited communication 

range, a robot can get the location information of one robot through communication with 

a third robot. 

As stated before, we want to  minimize the uncertainty by maximizing the number of 

visited particles (observing the locations of more particles). So our goal is to  cover an area 

that is occupied by larger number of particles and t o  prevent the particles from further 

spreading. Two simple cases are shown in Figure 5.1. The first figure shows the case where 

we have two high density regions that means the chance of finding the intruder is high 

in those two regions. The best action to minimize the uncertainty is that one robot goes 

toward one cloud of particles and the other robot goes toward the other cloud. The next 

figure shows the case that there is one high density area. The best action to  shrink the 

particles' area and prevent it from further growing is that the robots approach the covered 

area from different directions. Our coordination method tries to  achieve the above goals 
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while minimizing the path that a robot navigates. 

Figure 5.1: Simple cases of minimizing the uncertainty by 
permission of IEEE @. 

two robots [25]. Printed by 

For the coordination of the motion of the robots, we compute the cooperative forces 

which are exerted by the set of particles on each robot. These forces will determine the 

navigation direction of the robots. First, we assign a value to each particle according to 

density and distance of the robots. The more negative the value, more desirable for the 

agent to go toward that particle. This value which is represented by Vntj for particle n 

relative to agent j is determined by: 

where Fnj and Fni are the forces that particle n imposes on agent j and agent i ,  re- 

spectively and are computed according to Equation 4.1. N is the number of agents used 

for tracking and wi is a priority factor which is used to assign higher priorities to some 

agents. Also, Ai and Aj are the map distance of the nth particle from agent i and agent j .  

Intuitively, this equation means that the parameter V will be more positive for a selected 
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particle and a specific robot if the density of the other robots around the particle is high. 

That means the robots will take care of the particles nearest to them. We normalize these 

values to get positive force magnitudes. The normalization is done by an exponential func- 

tion again. So, the force magnitude that particle n exerts to agent j in presence of the other 

robots, Fnj, is calculated as follows (note that Fnj is different from Fnj since Fnj is that 

force without the presence of the other robots): 

where Vmin is the most negative value. The direction of the force is also found by the 

procedure described in the last 

which are exerted to one robot 

where N ,  is the number of 

section. Now, we should find the vector sum of the forces 

by the set of particles, So: 

randomly selected particles. As mentioned before, for the 

sake of efficiency, we use a small set of particles for force calculations and only the update 

step (in particle filtering) is done for the whole set of particles. The direction of navigation 
* 

of robot j is dependent on FjO' In the next chapter, the simulation results and real robot 

experiments of this coordination method are shown. 

5.3 Force Calculation for Avoiding Local Optima 

As mentioned in the last chapter, one of the caveats of this tracking method is that rapidly 

changing local optima can cause an oscillatory behavior. There are some tricks to overcome 

this problem. One way is that the robot has memory of past forces. In this case, the previous 

forces should be considered in the calculation of the total force. As the figure shows there 

is a large cloud of particles behind the robot so the robot will stop clearing the particles in 

front and leave that area heading toward the larger cloud (because FL > FR).  The memory 

of the past forces (Fold) urges the robot to move toward the smaller cloud which was a large 

cloud once. Although a small cloud of particles means that the chance of finding the target 

at that area is very low but the target may wander at that area. By removing the small 

cloud, the robot becomes certain that the target exists somewhere else. 
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Figure 5.2: One solution to overcome oscillations is to  have memory of past forces (Fold).  

The magnitude and direction of the old forces are incorporated in the force calculations 

according to the following equation: 

+ 

Ftot = a1 Fn;, + C Y 2 ~ l l d  (5.4)  

where a1 and a:! are two constants that are determined according to  the structure of the 

environment before tracking starts and sum to 1. Fn;, is the force which is exerted on the 

robot according to  the current location of the particles and the teammate robots and ~i~ 
is specified by the past force memory of the tracker. 



Chapter 6 

Demonstrat ion and Experimental 

Evaluation 

All of the requirements for the proposed method including localization and mapping, prob- 

abilistic tracking and path planning, have been discussed. This chapter provides: 

1. A simulation demonstration of two robots cooperatively tracking a target in an arti- 

ficial corridor environment. 

2. A simulation demonstration of four robots cooperatively tracking a target in a map 

based on a real office floor plan at SFU. 

3. A simulation experiment to compare the performance of target tracking with and 

without coordination. 

4. A simulation experiment to  compare the performance of target finding with and with- 

out coordination with robot teams of different sizes. 

5. A validation experiment with two robots in the real world. 

Due to limitation of the number of robots and environment maps, most of the experi- 

ments are done in simulation using Stage [34]. 
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As stated before, we use Player/Stage robot server and simulator for our experiments. The 

authors of Player/Stage describe them thus: 

"Player is a device server that provides a powerful, flexible interface to a 

variety of sensors and actuators (e.g., robots). Because Player uses a TCP 

socket-based client/server model, robot control programs can be written in any 

programming language and can execute on any computer with network connec- 

tivity to the robot. Robot controllers are independent client processes commu- 

nicating with Player via a socket. Player sends a message to each connected 

controller at  lOHz indicating the corresponding robot's current speed, turn rate, 

position estimate and sensor readings. Controllers asynchronously send mes- 

sages back to Player indicating the latest speed and turn rate demands for their 

robot. In addition, Player supports multiple concurrent client connections to 

devices, creating new possibilities for distributed and collaborative sensing and 

control" [8]. 

Player provides several drivers for robot controllers. Localization and obstacle avoidance 

are two high level Player drivers that we have used for the experiments of this chapter. 

"Stage is a scalable multiple robot simulator; it simulates a population of 

mobile robots moving in and sensing a tw~dimensional bitmapped environment, 

controlled through Player. Stage provides virtual Player robots which interact 

with simulated rather than physical devices. Various sensor models are provided, 

including sonar, scanning laser range finder, pan-tilt-zoom camera with color 

blob detection and odometry" 181. 

Our Stage models approximate ActivMedia Pioneer-3DX robots with SICK LMS-200 

laser range finders for localization and navigation. These are well-known, commonly-used 

laboratory devices. We also use a Fiducial-finder to detect the objects of interest, modeling 

a feature detector on a camera or other sensor. 
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6.2 Multiple Robot Target Tracking 

In this section, we show simulation examples of target tracking especially the case when 

the object goes out of field of view of robots' sensors for long periods of time. The ro- 

bots communicate through TCP and exchange position and orientation information. This 

information is used for clearing the particles located in other robots' field of view and for 

computation of the described forces. Usually, a single robot fails to locate the target if 

the target disappears suddenly. An example case is shown in Figure 6.1. The person has 

disappeared from the robots view, so the robots don't know the exact position of the target 

to track it. The only information they have according to the particles' positions is that the 

target is either on the right or the left side of the corridor. Therefore, the best cooperative 

action for them is that one robot goes toward a cloud of particles and the other robot goes 

toward another cloud. This case is difficult for a single robot because of the increase in 

uncertainty and sometimes results in the failure of tracking. 

Figure 6.1: Each of the two robots will be attracted to one of the two peaks of the bi-modal 
distribution. 

6.2.1 Demonstration 1: Two Robot Example 

In this example, shown in Figure 6.2 two searcher robots, S1 and S2 (start out at the bottom 

of the world as shown in Figure 6.2(u) left) try to catch an intruder, T (the robot on the 

top of the picture shown by blue in color versions). The map is provided to each robot 

and at  the beginning of the process the particles are spread randomly in the traversible 

free space which means the robots don't have any information about the position of the 

intruder and the target can be anywhere on the map (Figure 6.2(u) right). The intruder 

is controlled manually by the human experimenter who sees the whole world and tries to 

evade the searchers. The left pictures are snapshots from Stage and the right pictures are the 
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views of the map and particle cloud maintained by one of the  robot controllers a t  different 

time steps. The robots start  searching by choosing two different directions. Apparently, the 

chance of finding the intruder would be higher by going from different directions (Figure 

6.2(b)). Then one of the  robots sees the intruder but the intruder suddenly goes out of 

its field of view. Therefore, the particles are gathered in a small region and the searcher 

robot on the left changes its direction toward the particles so that it reaches the target in 

the minimum time (Figure 6.2(c)). The particles start  spreading, so the robot on the left 

changes its direction again t o  catch the target from its front, while the other robot covers 

the area behind the intruder (Figure 6.2(d)). Finally, the searchers catch the intruder and 

the particle cloud shrinks to  a small region which means they have a good estimation of the 

position of the target (Figure 6.2(e)). 

6.2.2 Demonstration 2: Four Robot Example 

In this example, we deploy four robots t o  perform the task of tracking in an  environment 

which is different from the previous map. Instead of narrow corridors, we have several open 

rooms connected by doorways. Otherwise the experiment is the same as that  of previous 

example. All of the robots communicate and exchange their own and target positions. This 

case is more difficult than the previous one since there is a high chance that the particles 

fill in the space which have been visited already and cause the searcher robot to  go back 

and forth between two areas. 

Four searcher robots, S1, S2, S 3  and S4, located on the right side of the first figure, 

Figure 6.3(a) (left), t ry  t o  catch the intruder T, which is located behind a wall. Particles are 

distributed randomly throughout the map except in the regions which are observed by the 

searchers. As Figure 6.3(b) shows, each robot chooses a different area for searching. Also, 

the number of particles behind the wall starts to  increase, which means the probability of 

finding the intruder is now higher in that area. I t  should be noted that  two of the robots, 

S 1  and 5'3, choose two different directions t o  approach the area behind the wall. The robots 

find the intruder behind the wall and send target location information t o  other teammates 

(Figure 6.3(c) (left)). The particle cloud converge t o  a single area of the map (Figure 6.3(c) 

(right)). 



Figure G,2:  Simulatiori results oS two searchers tracking all iritrl~(lcr. S1 and  S2 arc> two 
sc-:archers tha t  t ry  to find and catc:li target 7'. 
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Figure 6.3: Simulation results of four searchers tracking an intruder. S1, S2, S3 and S4 are 
four searchers that t ry to  find and catch the stationary target T. 
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6.3 Experiment 1: Evaluation of Tracking 

In this section, we evaluate the performance of tracking and uncertainty minimization for a 

team of robots. 

Goal: Our goal for performing this experiment is t o  show: 

1. the proposed coordination method will improve the performance of the system which 

means the amount of time spent for finding the intruder would be decreased and, 

2. the time in which the searcher robots have no observation would be less compared to  

the corresponding times in the experiments without coordination. 

Hypothes is :  We examine if there is any significant difference between the distribution of 

the mentioned time for different experiments i.e. we are going to: 

1. test whether the outcomes of repeated trials of the two methods belong to  different 

distributions. 

2. compare the means of the distributions t o  see if  one method is better. 

M e t h o d :  In this section, we perform three experiments: 

1. Searcher robots t ry  to  find the intruder without any coordination strategy. They do 

not have any information about the teammates and act based on their own decision. 

2. The robots communicate but the transfered da ta  is limited to  their poses and target 

observation. 

3. The teammate robots share the set of randomly selected particles used in force calcu- 

lations as well as the pose and observation which means the robots have approximately 

the same view of the environment. This part requires more communication bandwidth 

but more information is provided for coordination of the robots. Because of the ran- 

dom nature of particle filters, in some situations, the number of particles may be small 

in an area from one robot's view while the other robot has large number of particles in 

that area. Sharing the particles will provide more information to  the robots in these 

situations. 

The  experiments were performed in an  indoor office environment whose map is r ep re  

sented in Figure 6.3 t o  show the performance of the coordination methods compared to  the 
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case when the robots do not cooperate. There are two searcher robots in these experiments 

that try to catch the intruder by cooperative uncertainty minimization. The intruder moves 

randomly from a random start position. It chooses a random location on the map as goal 

points and heads toward that location while avoiding obstacles using VFH [2] .  After a fixed 

amount of time t ,  a new goal location is selected. In these experiments, t = 5 sec. 

The start position of the searchers is the same in all of the experiments. For these 

experiments, the range of the robot sensors is set to be 8 meters with an angle of view of 

120 degrees while the environment dimension is 2 4 m  x 20.5m. 

Results: The results shown in Figure 6.4 were gathered from two robots in 10 trials of five 

minutes of tracking (20 samples for each experiment in total). The light gray area shows 

the average percentage of time a searcher spends before first locating the intruder. That 

means, how successful were the teammate robots in decreasing the uncertainty of initially 

uniformly distributed particles. The dark gray area is the average percentage of time that 

the searchers had no observation after they see the intruder for the first time. 

no coordination shared observation and shared particle and 
pose pose 

Figure 6.4: No coordination, Shared observation and pose and Shared particles (from left 
to right) are three cases shown in this diagram. The light gray area shows the average 
percentage of time an agent has spent before visiting the object for the first time. The dark 
gray area is the average percentage of time that the robots had no observation after they 
see the intruder for the first time 1251. Printed by permission of IEEE @. 

Table 6.1 and 6.2 also show the mean and the standard deviation for the time that the 

searchers had no observation before visiting the intruder for the first time and the total 
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time without any observation, respectively. The fourth column also shows the pvalue for 

the T-test for comparing each experiment with the non-coordinated experiment. T-test is a 

statistical test that shows if two normally distributed data sets belong to  distributions with 

equal means. 

Table 6.1: Mean, Standard Deviation and the result of T-test is shown for the time that 
the searchers had no observation before visiting the intruder for the first time. Since the 
pvalues are less than 0.05 we can conclude that the coordinated methods performed better. 

Trial Type I Mean (sec) 1 a I T-test pvalue 
No coordination 1 215.8 1 70.3 1 - 

Trial Type 
No coordination 

Shared Observation 
and Pose 

Shared Observation, 
Pose and Particles 

Mean (sec) 
175.7 
106.5 

85.7 

a 
99.5 
85.3 

54.5 

Table 6.2: Mean, Standard Deviation and the result of T-test is shown for the total time 
that the searchers had no observation. Since the pvalues are less than 0.05 we can conclude 
that the coordinated methods performed better. 

T-test pvalue 
- 

0.0076 

0.0009 

Shared 0 bservation 
and Pose 

Shared Observation, 
Pose and Particles 

Conclusion: The diagram shows the total time that the robots have no observation (sum 

of the values of light and dark gray areas) in the shared-particle and non-shared particle 

case is less than that of no-coordination case, indicating that the performance is improved 

on average by cooperation. In addition, since the pvalues of the T-test is less than 0.05, 

we can conclude that the data do not belong to  distributions with equal means and there is 

164.6 

153.4 

a significant difference between the performance of non-coordinated and coordinated cases 

where coordinated cases have performed better. The large standard deviations are an ex- 

pected issue in this experiment because the starting position of the intruder was different in 

the trials and the amount of time required for finding the target can vary greatly. Therefore, 

63.7 

53.3 

0.0208 

0.0046 
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the average time used as a measure for general comparisons. 

6.4 Experiment 2: Evaluation of Communication Effect 

In this experiment, we evaluate the performance of uncertainty minimization for different 

populations of robots in coordinated and non-coordinated cases. The goal of the robots is 

to minimize entropy of particles and find the intruder. 

Goal: Our goal is to show that communication among the robots will decrease the time for 

finding a target given an initially uniformly distributed set of particles. Also, increasing the 

number of the robots will cause a significant difference between the performance of robot 

teams with different population sizes. 

Hypothesis:  We examine if there is any significant difference between the performance 

of uncertainty minimization in coordinated and non-coordinated cases. By coordinated 

we mean the robots exchange pose information (no particle information) and in the non- 

coordinated case each robot chooses an action independent of the decisions of their team- 

mates. We also check if increasing the number robots has any significant effect on the 

performance. 

Method :  We performed 50 trials of this experiment and tested the effect of communica- 

tion for two, three and four searcher robots. The one-robot case was also performed for 

comparison purposes. Initial positions of searchers and the intruder are random and the 

intruder does not have any intelligence and its movement is completely random as well. 

The intruder selects a cell on the map occupancy grid (occupied or unoccupied) at random, 

then it chooses another cell after a fixed period of time. The obstacle avoidance method 

(VFH) will cause the robot to  move around the obstacle if an occupied cell is chosen. The 

environment which is adopted for this experiment is part of simplified map of SFU TASC 

building which is shown in Figure 6.5. I t  consists of four loops which makes the search more 

difficult. 

Figure 6..5: Simplified map of part of SFU TASC building. The dimension is 70m x 19m. 
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The map dimension is 70m. x 19m and the size of each cell in the occupancy grid is 

15cm x 15cm. Each robot carries a laser range scanner with field of view of up to 8 meters 

at 180 degrees in its front. Fiducial-finders are used to detect the target. The searcher 

robots move at 0.2m)s-I and the intruder moves at  0.3m,sp1 at the normal condition (it 

may stop for a while if it reaches a target location before selecting a new location). The 

pseudo random numbers generator seed is the same for corresponding trials. Therefore, 

for example, initial positions and traversed path of the intruder were the same in the first 

trial of all of the experiments. It should be noted that the intruder client is subject to 

stochasticity in the TCP connection which might cause VFH to choose different paths in 

the corresponding trials. 

The experiments start with randomly distributed particles on the map and the searchers 

continue until the intruder is found or a time limit reached. Four hundred seconds was the 

time limit considered for these experiments. Initially randomly distributed particles is the 

worst case for the tracker which means the searchers initially have no idea where the intruder 

is located. 

Results:  The results show that in the coordinated robots cases, the robots try to keep their 

distances as far as possible from each other considering the distribution of the particles and 

in the non-coordinated robots cases, the searchers go to the middle of the map which is the 

most possible area for capturing the intruder (Figure 6.6). 

The time histograms of the experiments are shown in figures 6.7, 6.8, 6.9 and 6.10. 

Statistical tests were performed to check if there is any significant difference between coor- 

dinated and non-coordinated cases and also to examine if increasing number of robots has 

any effect on the performance. 

We chose Wilcoxon Signed-Rank test to analyze the data. This test is equivalent to 

T-test for non-parametric data. The details of the test are explained in Appendix B. In 

summary, this test ranks the absolute differences between paired data, then it examines if 

the median of the differences is greater or less than zero according to the signed sum of the 

ranks. If the pvalue is less than 0.05, we can conclude that there is a significant difference 

between two distributions. 

Conclusion: As table 6.3 shows, t,here is significant statistical difference between non- 

coordinated and coordinated cases for four and three robots but the coordination strategy 

does not improve the performance of tracking for two robots in that environment. One 

of the reasons for not being significantly different for two robots experiment is that the 
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Target 
I 

(a) t = 0 

Target 

(b) t = 50 sec 

Target 

(c) t = 50 sec 

Figure 6.6: (a) This figure shows a start configuration of robots in the experiment that four 
robots try to locate an intruder. Left pictures are Stage snapshots and right pictures are view 
of one of the robots. (b) Robots configuration after a certain amount of time for coordinated 
robots. (c) Robots configuration after a certain amount of time for non-coordinated robots. 

Table 6.3: Wilcoxon test results to check if  there is any difference between coordinated and 
non-coordinated cases for different population sizes. 

' 
Number of Robots 

Four 
Three 
Two 

z ratio 
-4.518 
-2.540 
-0.942 

p value 
0.000 
0.011 
0.346 

Sum of Neg. Ranks 
59.00 

234.50 
475.00 

Sum of Pos. Ranks 
682.00 
626.50 
653.00 
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4 robots - coordinated 

25 

Time (sec) 

(a) 

4 robots - non-coordinated 

25 1 

_1 

50 100 150 200 250 300 350 400 
Time (sec) 

Figure 6.7: Histograms for four-robot experiments in which the robots were supposed t o  
locate an intruder in SFU TASC map with and without a coordination strategy. 



CHAPTER 6. DEMONSTRATION AND EXPERIMENTAL EVALUATION 

3 robots - coordmated 

TIE (sec) 

3 rotat6 - non-coordinated 

251 ' 

Time (sec) 

Figure 6.8: Histograms for three-robot experiments in which the robots were supposed t o  
locate an intruder in SFU TASC map with and without a coordination strategy. 
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2 r o b t s  - coordinated 
25 

2 robots - non-coordinated 
25 

Figure 6.9: Histograms for two-robot experiments in which the robots were supposed to 
locate an intruder in SFU TASC map with and without a coordination strategy. 
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1 robot 

Time (sec) 

Figure 6.10: Histograms for one-robot experiment in which the robot was supposed to locate 
an intruder in SFU TASC map. 

Table 6.4: Wilcoxon test results to check if there is any advantage to increase the number 
of robots. 

Table 6.5: Comparison of each experiment with its corresponding best case. 

Number of Robots 
Four 

Three 
Two 
0 ne 

z ratio 
-3.750 
-4.905 
-4.493 
-3.142 

p value 
0.000 
0.000 
0.000 
0.002 

Sum of Neg. Ranks 
162.50 
83.50 
110.00 
312.00 

Sum of Pos. Ranks 
783.50 
952.50 
880.00 
963.00 



CHAPTER 6. DEMONSTRATION AND EXPERIMENTAL EVALUATION 58 

environment is too large for two robots t o  effectively clear the particles and the particles fill 

in the previously cleared areas very quickly and a higher level planning is required. 

We compared the results of the experiments for different number of robots for coordina- 

tion case. For each pair of population sizes, we aim to  establish whether the performance 

data  is drawn from distributions with significant difference. Table 6.4 shows there is a 

significant statistical difference among the results of the experiments for different number 

of robots which means increasing the number of robots has improved the performance of 

cooperative uncertainty minimization. 

The results show that in some trials, a lesser number of robots have performed better 

compared to  trials with increased number of robots but these better performances are usually 

due t o  the noise in the robot controllers. The  differences between times of finding the target 

are very small (Wilcoxon test also assigns a low rank to  these small differences) and in 

general having more robots will decrease the time spent on finding the intruder. 

Finally, we compared the result of experiments for different number of robots that  had 

coordination with the corresponding best cases. I3y the best case, we mean each robot 

knows the perfect position of the intruder. The comparison result is shown in Table 6.5. 

Wilcoxon Signed-Rank test shows the performances measured in the best cases are signifi- 

cantly different and better. 

6.5 Experiment 3: Real Robot Experiment 

This section describes implementation of the proposed method on real robots. 

Hypothes is :  We examine if the proposed method will work in practice using real robots. 

The main challenge which differentiates this experiment from the previous ones, is dealing 

with noise in robot sensors and actuators that  is not present in simulation. 

M e t h o d :  After collecting map da ta  for robots, we run experiments just by copying the 

code used for simulated robots t o  the real robots t o  examine the proposed approach works 

well in the real world. We used two Pioneer-3DX robots (shown in Figure 6.11) with the 

following specifications: 

Two-wheel differential drive, 

Equipped with SICK LMS-200 laser scanner that can measure distances up to  8 meters 

very accurately. Range resolution z 2mm and angular resolution z 0.5degrees, 



Maximum speed: 1 .G rns... I .  

Figure 6.11: Pionccr-3L)X robots. I'rintccl by pcrmissior~ of Ilicl~ard Vaugl ia~~.  

Thc  t.asl< wliicl~ is ckfilied for r o h t s  in tliis exper i l~~er~l ,  is I,o moperalively il~iiiiinizo 

i~llc:ert.aint.y t o  capt,ure the in1rr1dc.r in 1 1 ~ :  c:orritlors or to liialte sllrc t,llere is 110 il~trrl(l(:r 011 

t,ha portio~i of 1.lie map proviclcd lo 1 . 1 1 ~  ~.ot)ot. 'I'hc corridor I-nap provi(l(id to tlic rot)~)t,s 

is sliown in Figure 6.12. Tho part,iclcs are distrit)~~t.cd uniformly o n  the e~itirc. iliap at, t . 1 1 ~  

begirming which mtrans t11c i111rudt:r can  bc anymherc. on  the map. If thct robots clear all of 

the pnrticlcs, thajl call be cerl.ain Lhat thcre is no int.rucler insiclc that  part of the buikling 

(for our expcri~iie~il. no intruclcr is prese~il.). 

Result: Tlie snapshols of the real r o t m  experiment are sllo\vn in 12igure 6.15. Tlie s m g  

 shot,^ show one of tllr! robols at five different poi~i ts  on the t,ravcrsccl pat,li. Fig~lre (;,15((~) 

shows the start. of' t,hc experilnent ivilh two robots. The robots exhihit closirahlc hehav io~~r :  

Iho scarcl~er rotjots g o  towarcl Ihc particles from t.wo differc:nt directions to f i r i c l  t . 1 ~  target 

fa.st,er. D ~ I P  to small r~un-~ber of trials a n d  li~iiirccl nr~mher of' robots I I O  histogr;l~iis and 

corn par isoils are given for Ilicsc! twts.  

Discussion: One of the ~ n a j o r  advantages of using PlayerjStage is 1.ha.t. the client c:otfc 

can be t.rarisfered 1.0 a real robot without any challge. 'I'he results shoiv thal Irarisferring a 
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Figure 6.12: The map provided to  the robots for the experiment is shown. The white area 
means that the robots have cleared that part at the start of tracking. 

simulated client code to a real robot worked well and the robots showed the similar behaviour 

in practice. There are some issues about the real robot experiment that should be discussed. 

One of the major problems in real robot experiments is the range of communication. As 

the robots go out of communication range of teammates, they can not cooperate with 

others which really degrades the performance of the system. We measured the wireless 

signal strength on the previously shown map and combined that with the AMCL (Adaptive 

Monte Carlo Localization) data to check the communication range. The strength diagram 

is shown in Figure 6.14, the strength is measured from the starting position of the robots 

in the mentioned experiment. 

As shown in the diagram, the signa.1 is weak in the far distances which might cause 

problems for robots to  communicate with teammate robots. One of the solutions to this 

problem for large buildings is to  use a repeater to boost the signal or to use more powerful 

antennas. 

The other problem is due to the materials that do not reflect laser beams. For in- 

stance, laser beam passed through the glass surrounded SFU TASC corridors and since the 

localization is based on laser scanner data, the error of localization increased at some points. 
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Figure 6.13: Five different points on the traversed path of one of the robots in the real robot 
experiment are marked. Corresponding snapshots are shown in Figure 6.15. 

Figure 6.14: Wireless signal strength diagram obtained in SFU TASC building. X and Y 
are provided in meters. 



(a) Snapshot take11 at  point I (h)  Snapsllot tnkcn a t  point 2 

(c) Srlapsl~ot taken at point 3 (d) Snapshot tnkcri a t  p o i ~ ~ t  d 

( e )  Snapshot. taken at  point 5 

I:ig~~r.ci li 13: Snapsh0t.s of real robot experiment w i t h  two robots in SFIJ 'I'ASC bu~ltlilig 
Tile corresponding points on Lhe map arc  shown in Figure 6.13. 



Chapter 7 

Conclusion and Future Work 

7.1 Summary 

A method for a team of mobile robots t o  cooperatively track a moving target has been 

described in this thesis. The  method and part of experimental results have been published 

as [ 2 5 ] .  My contribution is t o  address the main limitation of previous approaches in that 

it actively minimizes the uncertainty caused when the target is occluded for long periods. 

A particle filtering method represents the multi-modal uncertainty in the estimated pose 

of the target. Then a potential field is generated using the location of particles directly as 

input - no clustering of particles is performed. The potential field guides the robots t o  visit 

as many particles as  they can to reduce the uncertainty in the environment and to  prevent 

the uncertainty area from further growing. The integrated particle filter and potential field 

method performs as  a path planner a t  the same time. 

The algorithm is extended to multiple robots by allocating subsets of particles to each 

robot. A simple nearest-robot filter is used t o  achieve this. Also, probabilistic robot mapping 

and localization as the prerequisites for the proposed method were explained in the first few 

chapters of this thesis. 

An experimental section then showed examples of cooperative tracking using multiple 

robots in different environments and compared the performance of a pair of robots tracking 

a target without coordination, and with two alternative coordination methods. Then com- 

parisons for different population sizes and the effect of communication among robots showed 

that in most of the cases increasing the number of robots and having communication will 

improve performance of tracking. Additionally, the real world results for two robots showed 
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that the new tracking method can be applied t o  real robots as well as simulated robots. 

The  method described tracking of a single target but by using methods from the liter- 

ature cited in the background sect ion, t,he method can be easily extended t o  multi-target 

problems with the caveat of exponential complexity . 
The novel tracking technique has some shortcomings and there are some suggestions for 

future extension of this work that should be discussed. 

7.2 Optimality of the Solution 

The first deficiency of this method is that  it is based on a heuristic search and it is not the 

optimal solution to this problem and certain cases might happen that  the searchers are not 

able to  locate the intruder. However, to  the best of my knowledge this approach is the most 

efficient approach t o  this issue so far. As mentioned throughout the thesis, there are some 

optimization frameworks such as  POMDPs [29] t o  get an  optimal solution for this problem 

but they have not shown any success in solving this problem since they are computationally 

intractable. 

7.3 Local Optima Issues 

The second criticism of this method is that  it is subject t o  rapidly changing local optima. 

An example case was shown in Figure 4.7 where the problem was that the robot was in the 

halfway distance between a large and a small cloud of particles. The robot was attracted 

toward the larger cloud but due to  clearing of the particles, the large cloud became small and 

the small cloud became large and the robot changed its direction t o  the current large cloud. 

This problem can cause an  oscillatory behaviour in the navigation of the robot. A trick 

was proposed for overcoming this problem by remembering the past direction of attracting 

forces. However, that  solution is not a complete solution t o  this problem. 

7.4 Full Communication Problem 

Another drawback of this method is that its performance relies on full communication 

among robots which might be impossible in some situations. One problem was discussed 

in the real robot experirnent section where the wireless signal strength was too weak a t  far 
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distances. Although the robots can decide based on their own information, the performance 

of tracking and uncertainty minimization will degrade. One possible extension t o  this work 

is that  each robot localizes teammate robots in its coordinate frame instead of relying on full 

communication. This extension is possible according t o  the current literature on localization. 

In this case, the performance of the system will not change significantly if one robot looses 

communication with other robots. 

7.5 Efficiency of the Flood-Fill Method 

As described in chapter four, the magnitude and direction of particle forces are computed 

using a flood-fill method. The time complexity of this method for calculation of map dis- 

tances is proportional t o  the size of the map and occupancy grid cells. Therefore, due t o  the 

computational cost of this method, it is not feasible t o  have a measure between two indi- 

viduals or sets of particles which might be helpful to  improve tracking. A good extension is 

to replace this method with a more efficient one. For instance, we can use a pre-computed 

lookup table for every possible position of a robot on a map instead of online calculations. 

7.6 Environment and Initial Positions 

One of the  main factors that  influences most robotic systems is the environment in which 

the robot works. The performance of our system is also subject to  the environmental con- 

straints. As stated, having coordination and increasing the number of robots will improve 

the performance of the system significantly in the mentioned experiments but in some envi- 

ronments the improvement may not be significant. For example, we did not see a 'significant' 

improvement for large populations in experiments performed on the map shown by Figure 

6.3. The reasons are the small size of the environment and its open area structure. Since the 

chance of visiting an intruder in an open area is higher, the searchers may find the intruder 

quickly even without communication. 

Another factor on which our proposed method is dependent is the start  position of 

searchers. In certain start  positions, the performance of the system would be much better. 

For example, Figure 6.6(a)  shows a good start  position in the shown map. 
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7.7 Target Motion Model 

For the experiments of this thesis we used an empirical motion model of the target. Another 

future extension of this work is that the parameters of the motion model are estimated online. 

For instance, vision-based activity recognition methods can be used to  estimate the current 

activity of humans (running, walking, etc.) [GI and the motion model would be adjusted 

according to these data.  

7.8 Simultaneous Localization and Mapping 

We separated mapping and localization steps due to  the available tools and for reducing 

the computational burden of the system. It would be more interesting if  the robots perform 

mapping and localization simultaneously instead of having u pviori map but it should be 

done in an efficient way. Like the method which is mentioned in (221, we can condition the 

target particles upon localization particles and reduce the size of particle sets. 



Appendix A 

Vector Field Histogram 

VFH (Vector Field Histogram) [2] is a method of fast obstacle avoidance for mobile robots 

equipped with range sensors. This section explains this method and its shortcomings very 

briefly. 

In this method, we consider a local square window around the robot where the window 

contains a grid called histogram grid. Each cell in the grid will be assigned a certainty value 

that represents the confidence in existence of an obstacle a t  that location. The reason for 

using confidence level is that,  this method first introduced for ultra-sonic sensors. To account 

for sensors' shortcomings such as inaccuracy and crosstalk, they consider a certainty value. 

So each time the sensor detects an obstacle in a location the value of the corresponding 

cell will be increased. Then, a one dimensional polar histogram is constructed around the 

robot's momentary location. This histogram comprises n angular sectors of width a. The 

contents of each cell in the window is mapped into the corresponding sector of the polar 

histogram. That means a sector that coritains many cells with high certainty value, will be 

assigned a higher value. Figure A.l shows the polar histogram for the robot in Figure A.2. 

A threshold on the polar histogram determines the candidate directions for subsequent 

travel. Candidate directions are shown as dark gray in Figure A.2, while unsafe directions 

(i.e., those with polar obstacle densities above the threshold) are shown in light gray. Usually 

there are several candidate directions and the VFH algorithm selects the one that most 

closely matches the direction to the target. The main deficiency of this method is that it is 

subject to local optima causing oscillatory behavior. In our case, the planner and navigation 

controller on top of VFH have solved the shortcomings of the underlying obstacle avoidance 

device. 
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Appendix B 

The Wilcoxon Signed-Rank Test 

"The Wilcoxon matched-pairs signed ranks test is an equivalent of t-test 

designed for non-parametric data and fulfills the need for the case of two related 

samples when the measurement scale allows us to determine not only whether 

the members of a pair of observations differ, but also the relative magnitude of 

any difference. In other words, the Wilcoxon matched-pairs signed-rank test is 

appropriate when we can determine the amount of any difference between pairs 

of observations Xi and Y, ,  as well as the direction of the difference. When we 

can determine the magnitudes of differences, we can rank them. It is through 

the rankings of the differences that the Wilcoxon test utilizes the additional 

information (compared to regular sign test)" (31. 

An example case is shown by table B.l when the number of pairs are equal to 16. The 

Wilcoxon test begins by transforming each instance of Xi - K into its absolute value, which 

is accomplished simply by removing all the positive and negative signs. Thus the entries 

in column 4 of the table below become those of column 5. Two types of tied observations 

may arise when using the Wilcoxon signed-rank test: 1) Observations in the sample may 

be exactly equal (i.e. 0 in the case of paired differences). Such pairs are eliminated from 

consideration, since they provide no useful information and the number of pairs is adjusted 

accordingly. 2) Two or more differences may be equal. If so, the average of the ranks will 

be replaced. Absolute differences are then ranked from lowest to highest. 

The result of this step is shown in column 6. The entries in column 7 will then give us 

the clue to why the Wilcoxon procedure is known as the signed-rank test. The same entries 
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as in column 6 are seen, except now they have been attached the positive or negative sign 

that was removed from the Xi - Y,  difference in the transition from column 4 to column 5. 

Table B.l: This table shows the ranks for 16 pairs of data. N = 14, W+(sum of positive 
ranks)= 86, W-(sum of negative ranks)= 19 and W = W +  - W- = 67 [19]. Used by 
permission of Richard Lowry @. 

Critical values of the test statistics are available as tables in [3]. The value which is 

usually considered for acceptance or rejection of hypotheses is lzl = 1.96. These tables are 

useful for small number of paired data. When the number of samples is greater than 25, 

test statistics are obtained by: 

2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

where W is either W' or W- (depending on the problem) and n is the number of paired 

samples. The critical values of z-ratio and their corresponding probabilities (p value) can 

be obtained from table B.2. All of the Wilcoxon Signed-rank tests in this thesis have 

been performed by using SPSS software which provides useful tools for various kinds of 
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78 
24 
62 
48 
68 
56 
25 
44 
56 
40 
68 
36 
68 
20 
58 
32 

5 
absolute 
xi-Y, 

0 
0 
2 
3 
4 
4 
5 
6 
8 
10 
10 
14 
16 
20 
32 
4 0 

6 
rank of absolute 

xi - Yi 
- 

- 

1 
2 

3.5 
3.5 
5 
6 
7 

8.5 
8.5 
10 
11 
12 
13 
14 

7 
Signed Rank 

- 

- 

1 
-2 

-3.5 
-3.5 

5 
6 
7 

8.5 
8.5 
-10 
11 
12 
13 
14 



APPENDIX B. THE WILCOXON SIGNED-RANK TEST 

Table B.2: Critical values of f z for one-sided and two-sided tests [19]. Used by permission 
of Richard Lowry @. 

statistical tests. It should be noted that non-coordinated experiment data and the data 

from experiments with less number of robots are assumed to be Xi  in this explanation. 

p (one-tailed) 

p (two-tailed) 

0.05 

- 

0.025 

0.05 

0.01 

0.02 

0.005 

0.01 

0.0005 

0.001 
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