
DESIGN AND ANALYSIS OF BIOLOGICAL SEQUENCES

USING CONSTRAINT HANDLING RULES

Maryam Bavarian

B.Sc., Sharif University of Technology, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

in the School

of

Computing Science

@ Maryam Bavarian 2006

SIMON FRASER UNIVERSITY

Spring 2006

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Maryam Bavarian

Master of Science

Design and analysis of biological sequences using Constraint

Handling Rules

Examining Committee: Dr. Greg Mori

Chair

Date Approved:

Dr. Veronica Dahl, Senior Supervisor

Dr. Fred Popowich, Supervisor

Dr. Diana Cukierman, SFU Examiner

SIMON FRASER
UN~VERSITY~ i bra r~

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible,
to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

The need for processing biological information is rapidly growing, owing to the masses of

new information in digital form being produced at this time. Old methodologies for pro-

cessing it can no longer keep up with this rate of growth. We present a novel methodology

for solving an important bioinformatics problem, which has been proved to be computa-

tionally hard: that of finding a RNA sequence which folds into a given structure. Previous

solutions to this problem divide the whole structure into smaller substructures and apply

some techniques to resolve it for smaller parts, which causes them to be slow while working

with longer RNAs. We prove that by using a set of simple CHR rules we are able to solve

this problem and obtain an approximate but still useful solution more efficiently. We expect

the results we present to be applicable, among other things, to in vitro genetics and to drug

design.

keywords: Constraint Handling Rules, RNA secondary structure, RNA secondary struc-

ture design.

Acknowledgments

I want to express my gratitude to Dr. Veronica Dahl who has been more than a supervisor to

me. She has always supported and encouraged me through my studies. Having the chance

to know her and work with her was one of the best things that has happened to me.

I owe most of my achievements and success to my wonderful parents who have always

been there for me. Their love does not have any borders and I am blessed to have such

great parents.

Last but not least I want to thank my dear sister Sara and my beloved fiance5 Payam

whose love and support enabled me to complete this work.

Contents

. . Approval 11

Abstract iii

Acknowledgments iv

Contents v

List of Tables viii

List of Figures xi

List of Programs xiii

1 Introduction 1

1.1 Problem Definition . 2

1.2 Mot iva t ions . . . 2

1.3 Our Contribution . 3

2 Biological Background 5

2.1 DNA . 7

2.2 RNA . 8

2.3 Proteins . 10

2.4 The Central Dogma . 12

3 Constraint-Based Methods 14

3.1 Biological Sequence Analysis . 15

. 3.2 Assumption Grammars 16

. 3.3 Constraint Handling Rule and Constraint Handling Rules Grammar 18

. 3.3.1 Background 18

. 3.3.2 Syntax 19

. 3.3.3 Semantics 19

. 3.3.4 Sample Applications of CHR and CHRG 20

. 3.4 Concept Formation Grammars 22

. 3.5 Gene prediction 24

. 3.6 Protein structure 25

. 3.7 Discussion 27

4 RNA Secondary Structure 2 9

. 4.1 Definition 30

. 4.2 RNA motifs 31

. 4.2.1 Pseudoknots 32

. 4.3 RNA Secondary Structure Prediction 32

. 4.3.1 Minimum Free Energy 33

. 4.3.2 RNA Secondary Structure Algorithm without Pseudoknots 34

. 4.3.3 Loop Dependent Energy Rules 36

. 4.3.4 Sequence Comparison 38

. 4.4 RNA Secondary Structure Grammar 38

. 4.4.1 Pseudoknots Language 40

. 4.5 Summary 41

5 Current Methods 4 2

. 5.1 RNA-SSD: RNA Secondary Structure Designer 42

. 5.1.1 Sequence Initialization 43

. 5.1.2 Sequence Decomposition 44

. 5.1.3 Stochastic Local Search Procedure 44

. 5.2 RNAinverse 44

. 5.3 Comparison 45

6 chr-statRNA 46

. 6.1 Use of Nucleotide Composition Probabilities 47

. 6.1.1 Combining the Probabilities with the Rules 48

. 6.1.2 Rules 50

7 chr-IoopRNA 5 5

. 7.1 Use of Energy Tables 55

. 7.1.1 Stacking Energies 56

. 7.1.2 Terminal Mismatch Stacking Energies (Hairpin Loops) 57

. 7.1.3 Terminal Mismatch Stacking Energies (Interior loops) 57

. 7.1.4 1x1 Interior Loop Energies 58

. 7.1.5 1x2 Interior Loop Energies 59

. 7.1.6 2x2 Interior Loop Energies 59

. 7.1.7 Tetra-loops Energies 60

. 7.2 Designing the Loops 66

. 7.2.1 A Heuristic 66

. 7.3 Adding the Probabilities to the Rules 67

8 Results and Conclusion 73

. 8.1 Comparisons 73

. 8.2 Discussion 75

. 8.3 Future Work 77

A Glossary of Biological Terms 79

B A Sample Run 8 1

Bibliography 84

vii

List of Tables

The 20 amino acids inside proteins .

Performance results for RNA-SSD and RNAinverse on sets of artificial RNA

structures. Each line represents the results of 100 RNA instances. The RNA-

SSD and RNA-inverse columns show the fraction for which the respective

algorithm found solutions. The columns, t(RNA-SSD) and t (RNA-SSD)*10

show the fraction of structures which RNA-SSD solve faster than RNA-SSD

and at least 10 times faster respectively. 45

The probabilities for stacking base pairs. The entry (i, j) is the probability

of the base pair in row i being stacked on top of the base pair in column j . . 56

The probabilities for terminal mismatch of hairpin loops. Each entry (i, j)

refers to the probability of having the base pair in row i as the closing base

pair of a loop which begins with the incompatible pair in column j. 57

The probabilities for terminal mismatch of interior loops. (2 , j) represents

the probability of having the base pair in row i as the closing base pair of an

interior loop which begins with the incompatible pairs in column j. 58

The probabilities for single mismatch energies inside 1x1 interior loops with

CG-CG and GC-GC as the two surrounding base pairs. 58

For the entries identified by x, whenever the respective base pairs on the row

and the column surround a 1x2 interior loop, if one of the bases inside the 2

base loop is chosen to be A, we choose the pair GG as the remaining bases

for the loop, otherwise if it is either U or C, we choose the pair UU. 59

The probabilities for 1x2 interior loops with the following pairs of surrounding

base pairs: AU-CG, AU-GC, CG-AU,CG-UA, CG-GU, CG-UG, GC-AU, GC-

UA, GC-GU, GC-UG, UA-CG, UA-GC, GU-CG, GU-GC, UG-CG, and UG-

GC. The bases in Y represent one of the bases in the 2-base loop and the

mismatch pairs in X are the remaining bases inside the loop. 60

The probabilities for 1x2 interior loops while the surrounding pair is CG-CG.

The bases in Y represent one of the bases in the 2-base loop and the mismatch

pairs in X are the remaining bases inside the loop 61

The probabilities for 1x2 interior loops where the closing base pairs of the

loops could be either CG-GC or GC-CG. The bases in Y represent one of

the bases in the 2-base loop and the mismatch pairs in X are the remaining

bases inside the loop .
The probabilities of 1x2 intereior loops where the surrounding pair is GC-

GC. The bases in Y represent one of the bases in the 2-base loop and the

mismatch pairs in X are the remaining bases inside the loop
7.10 The probabilities for 1x2 interior loops where the closing base pairs are: AU-

AU,AU-UA, AU-GU, AU-UG, UA-AU, UA-UA, UA-GU, UA-UG, GU-AU,

GU-UA, GU-GU ,GU-UG, UG-AU, UG-UA, UG-GU, and UG-UG. The bases

in Y represent one of the bases in the 2-base loop and the mismatch pairs in

X are the remaining bases inside the loop

7.11 The probabilities of having AU as one closing base pair while the other pair

is determined by the base pairs in the first row (labeled Y). The two pairs in

column one (labeled X) are mismatch pairs inside the 2x2 interior loops. .

7.12 The probabilities of having CG as one closing base pair while the other pair

is determined by the base pairs in the first row (labeled Y). The two pairs in

column one (labeled X) are mismatch pairs inside the 2x2 interior loops. .
7.13 The probabilities of having GC as one closing base pair while the other pair

is determined by the base pairs in the first row (labeled Y). The two pairs in

column one (labeled X) are mismatch pairs inside the 2x2 interior loops. . . 64

7.14 The probabilities of having UA as one closing base pair while the other pair

is determined by the base pairs in the first row (labeled Y). The two pairs in

. . column one (labeled X) are mismatch pairs inside the 2x2 interior loops. 64

7.15 The probabilities of having GU as one closing base pair while the other pair

is determined by the base pairs in the first row (labeled Y) . The two pairs in

column one (labeled X) are mismatch pairs inside the 2x2 interior loops. . . 64

7.16 The probabilities of having UG as one closing base pair while the other pair

is determined by the base pairs in the first row (labeled Y) . The two pairs in

column one (labeled X) are mismatch pairs inside the 2x2 interior loops. . . 65

7.17 The tetra-loops and their corresponding probabilities. The first and last bases

represent the closing base pairs of the loops. 65

7.18 In this table, any (i, j) entry represents the probability of having the base in

column j right after the base in row i inside the RNA sequence when it is

read from 3' end to 5' end. 67

8.1 Comparison between chr-statRNA, chr-loopRNA, RNA-SSD, and RNAin-

verse. 2 defines the length of the RNA sequence and columns 2-5 show the

average error of each method for 50 runs according to the length of the se-

quences. 75

List of Figures

2.1 Common motifs in RNA secondary structure are: hairpin loop. bulge loop.

internal loop. etc . 10

3.1 A hairpin loop . 24

4.1 Some motifs inside RNA secondary structure 31

4.2 A simple pseudoknot . 32

4.3 A hairpin loop . 36

4.4 The left table shows a typical 4x4 table with the pairs WX and YZ covalently

linked . WZ is the closing base pair of a hairpin loop while XY is a mismatched

pair . The right table demonstrates the energies for terminal mismatched pairs

when W is C and Z is G . 37

4.5 Sample free energies in Kcal/mole for CG base pairs stacked over all possible

base pairs indicated by XY, where X refers to the row and Y refers to the

column . 38

4.6 Free energies of a 1x1 interior loop closed by a CG and AU base pair 39

4.7 A sample pseudoknot . 40

6.1 The left picture shows the original structure while the right picture illustrates

the structure of the designed sequence . 47

6.2 Rule 6 . 52

6.3 Rule 7 . 52

6.4 Rule 9 . 53

. 6.5 Rule 10 54

6.6 Rule11 . 54

7.1 In a). a hairpin loop is shown with CG assigned to two pairs of two adjacent

bases . In b). the structure of the same sequence in reality is illustrated 66

. 7.2 A 1x1 interior loop 69

. 7.3 A 1x2 interior loop 70

. 7.4 A 2x2 interior loop 71

. 7.5 A generic interior loop 72

. 8.1 The Evaluation System 74

. 8.2 chr-loopRNA and RNAinverse run time in seconds 76

xii

List of Programs

3.1 CHRG rules to identify a sample protein coding gene 26

3.2 A sample CHRG rule to form an alpha helix including 6 residues 27

...
Xll l

Chapter 1

Introduction

What makes artificial intelligence so distinguished is its capacity to perform tasks that are

normally viewed as requiring intelligence, and also to allow in many cases for declarative

specification of a problem to become executable, largely invisibly to the user [2]. Semantic

use of symbols other than numerical and character variables provide the means for coding

highly structured applications. Examples of programming languages for coding artificial

language programs are Prolog and Lisp which enable us to implement self-modifying and

recursive programs [52]. Here our focus is on Prolog and Constraint Handling Rules (CHR)

where the latter is a bottom-up framework using Prolog engine that gives us even more

capability and ease in artificial intelligence programming. Using Prolog in particular gives

us the benefit that the information in qualitative and quantitative statements need not to

be encoded as simple structures such as strings, arrays, etc, but can be stated in high level

ways which make sense to humans.

Searls in [53] has proposed four broad roles for tools and techniques of language theory

in examining the functional aspects of the language of biological sequences, which are

Specification: use of formalisms such as grammars to indicate the nature and relative

locations of features in a sequence mathematically and computationally.

Recognition: use of grammars as input to parsers which are used for pattern-matching

search.

Theory formation: elaboration of domain theories to model biological structures and

processes. Machine learning techniques could be expected to be the most useful with

CHAPTER 1. INTRODUCTION

regards to this role.

0 Abstraction: to present a mathematical view of the language of biological sequences,

as sets of strings that are meaningful in a biological system.

1.1 Problem Definition

RNA (Ribonucleic Acid) is a chemical similar to DNA (Deoxyribonucleic Acid) with several

functions. RNA secondary structure is one of the three kinds of structural information of

RNA that defines which nucleotides (the structural units of RNA and DNA) bind to each

other. Through this thesis, we have mainly contributed in solving the problem of R N A sec-

ondary structure design which is defined as follows: given an RNA secondary structure, find

an RNA sequence which folds onto the given structure. This problem is the inverse problem

of RNA secondary structure prediction where given an RNA sequence, the corresponding

secondary structure is asked for.

Complexity-wise this problem is believed to be computationally hard [5] but it has not

been proven yet. The problem of RNA secondary structure design can be considered as a

constraint satisfaction problem where constraint variables are the positions in RNA and the

constraints include the base-pairs inside the RNA.

In this thesis we present a directly-executable system that is able to accept a valid

structure of RNA and design a sequence for the given structure. We argue that within Searl's

classification our system falls within first and third category: it falls within specification

because we use grammars for describing the known nature of secondary structure of RNA,

and also within theory formation, insofar as it induces possible structures for the RNA

specified. Using constraint handling rules we specify a grammar to parse the secondary

structure of RNA and design the RNA sequence accordingly.

1.2 Motivations

Before the discovery of catalytic RNA by Cech and Altman, RNA was considered as a

passive molecule serving as an intermediate between DNA and proteins with some limited

functions such as carrying information or forming structures. But their discovery opened

new doors and completely changed scientist's view of RNA and now it is clear that RNA

can have several functions such as acting as a catalyst in RNA splicing and cleavage, DNA

CHAPTER 1. INTRODUCTION

cleavage, and controlling gene expression. According to the above, one can conclude that

RNA has all the significant properties of proteins [34].

As the structure of RNA has significant effects on its functions, designing RNA molecules

with specific structural properties is promising with many potential applications [5] . Nowa-

days, scientists are capable of replicating any RNA in a test tube [16] which would eventually

help in finding new paths for drug design or have industrial use [5].

An RNA molecule that catalyzes a reaction (which mostly pertains to the cleavage of an

RNA or DNA) is called a ribozyme. The fact that predicting RNA structure is much easier

than proteins, makes ribozyme (catalytic RNA) engineering i.e., modifying the ribozymes

in order to alter their activity, more straightforward than protein engineering. There are

two major motivations for ribozyme engineering. First, ribozyme engineering can be used

as a tool to understand the mechanisms of catalysis or principles of RNA folding. Second,

it can facilitate the inhibition of gene expression [57].

Some of the other motivations include design of artificial RNA nanostructures, drug

design [57, 51, and ribozyme therapy [34]. Moreover, finding a solution to the problem

of RNA secondary structure design might assist in solving the same problem for DNA

(due to their analogous structures) which consequently can be used in DNA self-assembly

computation [61].

1.3 Our Contribution

Currently there are two methods for solving the problem of RNA secondary structure design:

RNA-SSD [5], and RNAinverse [33]. As we will show in detail in Chapter 7, although these

methods perform very well for shorter sequences (300-base limit for RNA-SSD and about

500-base limit for RNAinverse), since their complexity mostly depends on the complexity

of the inverse problem which is RNA secondary structure prediction with the complexity of

0(n3) , they fail to generate results within their time limit. Here in our method which we

have named chrRNA1, we try to overcome this problem by using a set of CHR rules that are

easily understandable by biologists, combined with a set of probabilities. We do not employ

any of the algorithms for RNA secondary structure prediction in our method; instead, we

use other heuristics by combining our rules with a set of probabilities.

'Later, we will show that we have actually implemented two systems, namely chr-statRNA and chr-
loopRNA. To refer to both methods in general, we use the term chrRNA.

CHAPTER 1. INTRODUCTION 4

Our method also has the advantage that unlike RNA-SSD and RNAinverse it does not

force the following restrictions:

a RNA-SSD designs the RNA by only using Watson-Crick base pairs.

a Both methods assume that there is no pseudoknot in the desired structure.

In chrRNA we assign probabilities to all possible base pairs, moreover by using con-

straints we allow the formation of simple pseudoknots inside the structure.

The format of the whole thesis is as follows: In Chapter 2, we briefly present bio-

logical background needed to understand and visualize this problem in biological context.

Chapter 3 mainly discusses relatively new methods in logic programming and A1 such as

Constraint Handling Rules, Constraint Handling Rules Grammar, Assumption Grammars,

and Concept Formation Rules and their possible application in biology. Here, our main fo-

cus is Constraint Handling Rules (CHR) and we explain its syntax and semantics in detail.

In Chapter 4, the RNA secondary structure and its features are looked at in detail and we

also discuss some of the state-of-the-art methods for predicting RNA secondary structure

which is the counterpart of our problem of focus namely RNA secondary structure design.

Following in Chapter 5 we introduce and compare the two current methods used for design-

ing the secondary structure of RNA. Through Chapter 6 and Chapter 7, we show our own

contributions to solve this problem within two approaches. Both approaches are stochastic

and use CHR and Prolog rules. However while chr-statRNA utilizes the nucleotide composi-

tions probabilities within a generic RNA, chr-loopRNA exploits the thermodynamic energies

assigned to the loops to find the probabilities. Chapter 3 and Chapter 6 are based on the

papers written by Bavarian and Dahl 111, 101. Finally in Chapter 8, we present the results

for both approaches and we compare them with the results by RNA-SSD and RNAinverse.

Chapter 2

Biological Background

The strong relationship between biology and medicine is what makes it not only fascinating

but also extremely significant. Nowadays scientists have reached a point where with regular

drugs, they are not able to provide the cure for the newly discovered and identified human

diseases. I t is known that the key to all these cures, lies in the science of genetics. Solving

the current mysteries in biology would progress medicine enormollsly in a way that shall

benefit all humankind. Some applications of biology are: diagnosis of disease by inspecting

the DNA sequence and locating specific genes which are related to a certain disease or

calculation of a disease risk in an individual; pharmacogenomics which is a fast-growing

field in which different dosage and drugs are prescribed for different people according to

their genome, i.e. the whole hereditary information of the organism encoded in DNA, which

makes their responses to therapy dissimilar; identification of drug targets which are proteins

whose functions can be modified selectively and help to cure a disease; and last but not least

identification of missing or defective genes and replacement or supplying of its products [23].

Some distinguishing aspects of biology according to Cohen are [23]:

No rules are without exceptions. A famous example of this, was the false belief that

every gene is only responsible for one protein.

Every phenomenon has a nonlocal component. An RNA secondary structure may be

adopted by multiple RNA sequences. We will elaborate on this problem in the next

chapters. But basically this implies the similarity in one level can not be generalized

to the others.

CHAPTER 2. BIOLOGICAL BACKGROUND

0 Every problem is tied to the other problems. An example of this is the fact that a

simple change in a DNA sequence might lead to a completely distinct protein with

different functionality.

Interdisciplinary fields like biochemistry, biophysics, and bioinformatics are the projec-

tions of biology in other fields of science. The benefit of such collaboration has been proved

to be bilateral. Not only chemistry has made major strides in biology and physical ex-

planations for biological phenomena been extremely useful, but a t the same time it has

become a source of inspiration in the original sciences involved. Here, computer science has

been no exception at all. Computer science can provide biologists the tools to gather and

interpret the enormous amount of data they are producing every day. On the other hand,

DNA computers and neural networks have been great examples of the effort of computer

scientists to project what they see in the human body through computers [23]. Specifically,

computer science can benefit biology by analyzing biological data, modeling, and simula-

tion to help explain biological behavior, while atomic interactions can be used as a model

to build a molecular data processor as well as a model for computational algorithms and

finally, contributions from biology can be used to create computer programs that can be

used to operate on biological data [52].

Computational biology is the predecessor of what is called bioinformatics today. The

work of earlier computational biologists is now widely used in everyday tools for biologists,

from software for aligning chunks of DNA to that which predicts the secondary structure of

RNA. Some examples of their works include proofs of algorithmic correctness, complexity

estimates,etc [23].

Although a lot of work has been done by computational biologists and in recent years

by bioinformaticians, the need of biologists for faster, more optimized and newer algorithms

requires more computer scientists to dedicate their efforts in this field which would eventually

be most beneficiary to human beings.

As indicated above, today's bioinformaticians follow the work of earlier computational

biologists, but there are major differences between these two sciences and their corresponding

scientists. One major difference between these two is the widespread use of the World-Wide

Web in bioinformatics making all the immense databases containing biological data and the

extremely useful web applications, available to the researchers throughout the world. Some

CHAPTER 2. BIOLOGICAL BACKGROUND 7

examples of these databases are National Resource for Biotechnology Information (NCBI)'

providing an integrated approach to the use of gene and protein sequence information,

Protein Data Bank (PDB)2 that contains information regarding newly discovered proteins.

As for the available web applications, some of the most widely used ones are mfold RNA

Folding Server which predicts the seco~idary structure of RNA, BLAST and FASTA

where both of them are widely used to search sequence similarity against nucleotide and

protein databases.

According to one of the most popular taxonomies, living things are divided into three

domains: Bacteria, Archaea and Eukarya (Eukaryote). Bacteria and archaea are prokaryotes

(their cells do not have nuclei). There are common characteristics shared by all cells no

matter their originating organisms or their shape, size, and behavior. In 1865 with the

discovery of genes by Gregor Mendel the story of genomics began. From a biochemical point

of view, genes are specific sequences of bases that are subparts of DNAs. These encode the

recipes for making different proteins and then, the proteins determine our physical traits

such as hair and eye color. Genes are estimated to comprise only 2% of the human genome

and the remaining 98% is basically regions for which the functions are currently unknown.

Through the next sections, we will present a brief background for the most significant

constituents of the cells.

2.1 DNA

The discovery of DNA happened in 1953 but it was not until 1989 that James Watson

and Francis Crick produced the first three-dimensional model of DNA which was based on

the data gathered by Rosalind Franklin. DNA (Deoxyribonucleic Acid) is a nucleic acid

that contains the genetic instructions specifying the biological development of all cellular

forms of life (and many viruses) working like an information archive in each organism.

DNA is often referred to as the molecule of heredity, as it is responsible for the genetic

propagation of most inherited traits and it is replicated and transmitted to the offspring

CHAPTER 2. BIOLOGICAL BACKGR.OUND 8

during reproduction. DNA can be looked a t as a template for building other DNAs and

proteins. DNA is encoded with four building blocks, called nucleotides or bases, which

are: A (Adenine), C (Cytosine), G (Guanine) and T (Thymine). The DNA molecules are

usually very long and linear. Even in microorganisms they are typically about lo6 bases

long. Chromosomes are the separate physical molecules which are arranged to form DNAs

inside the cells. All the genetic information inside chromosomes is called the genome. When

a cell is replicated, the entire genome inside the cell is copied into the new cells.

DNA can be read and replicated and it is believed that much of the role that DNA plays

in forming proteins depends on this. These characteristics make the linguistics treat a gene

as a 'word' while a genome, the total genetic material of species as 'text' in DNA code.

Structurally, DNA is organized as two complementary strands or helices with hydrogen

bonds between them. Directions along each strand are named 3' end and 5' end and the

correct direction of translation from DNA to proteins is always from 5' end to 3' end. The

structure of DNA is uniform. The important features of DNA are its secondary structure

and interactions with a solvent.

The stretches of DNA that code for proteins are called exons. But not all the information

inside the DNA is expressed as proteins or RNA, some regions of the DNA sequence are

devoted to control the mechanisms. In eukaryotes, exons inside a gene are separated from

each other by some non-genetic material called introns, the function of which are currently

unknown to biologists. The boundaries of exons and introns are called splice sites. Reliable

prediction of splice sites is also an important task since it allows determination of the

uninterrupted genes and consequently the corresponding amino acid sequence. The exons

are typically multiples of three nucleotides and the reason is that each triplet of bases called

a codon is translated into a certain amino acid [39]. In Table 2.1, the 20 known amino acids

are shown.

2.2 RNA

RNA (Ribonucleic Acid) is a chemical found in cells which codes for amino acid sequences,

serving as intermediate in the synthesis of protein. Each RNA molecule is made up of four

different compounds called nucleotides or bases, each noted with one of the letters A (Ade-

nine), C (Cytosine), G (Guanine) and U (Uracil). During the transformation process of

CHAPTER 2. BIOLOGICAL BACKGR.OUND

Table 2.1: The 20 amino acids inside proteins

proteins, synthesis of RNA molecules are directed by DNA sequences. Under normal physi-

ological conditions, this strand or helix of nucleotides is folded onto itself by hydrogen-bond

pairings of the nucleotide A with U and C with G which are called Watson-Crick or canon-

ical base pairs. Pairing also might happen between G and U but this is not very frequent

(except for tRNA) and GU pairs are often referred to as wobble base pairs. The difference

between Watson-Crick base pairs and wobble base pairs is that the pairing between the first

category are through two hydrogen bonds while for the latter it is only one hydrogen bond.

The nucleotides are often referred to as bases and each pairing is called a base pair. Apart

from canonical base pairs and wobble base pairs, other base pairs such as UC or GA are

also feasible but are quite rare.

G(G1y): glycine
I(I1e): isoleucine
S (Ser) : Serine
Q(G1n): glutamine
D (Asp) : aspartic acid

Three types of structural information for RNA are:

0 Primary structure: the sequence of nucleotides inside RNA. These can be used for

distinguishing RNA sequences from each other.

A(A1a)A: alanine
L(Leu): leucine
C(Cys) : cysteine
H(His): histidine
E(G1u) : glut amic acid

0 Secondary structure: in general secondary structure for a biopolymer shows whether

or not individual molecules are connected to each other and in case of RNA, secondary

structure defines which nucleotides are forming complementary base pairs with each

other and which ones remain unpaired.

0 Tertiary structure: the actual positions of molecules in three-dimensional space is

generally called the tertiary structure.

P(Pro) : proline
F(Phe) : phenylalanine
T(Thr) : threonine
Y (Tyr) : tyrosine
K (Lys) : lysine

The secondary and tertiary structure of RNA determine the RNA interaction with other

cell components. A number of structural motifs are found inside RNA secondary structure

such as helix, hairpin loop, bulge loop, internal loop, etc (Figure 2.1).

V (Val) : valin
M(Met) : methionine
N (Asn) : asparagine
W(Trp): trytophan
R(Arg): arginine

CHAPTER 2. BIOLOGICAL BACKGROUND

Figure 2.1: Common motifs in RNA secondary structure are: hairpin loop, bulge loop,
internal loop, etc.

RNA mainly serves two biological purposes. These are information flow from DNA into

proteins and acting as a structural component of ribosomes, an organelle in the cytoplasm

of a living cell.

Important RNA families include:

Ribosomal RNA (rRNA) combines with protein inside the cytoplasm and form a

ribosome which serves as the site and carries the enzymes that help in the process of

protein synthesis.

Transfer RNA (tRNA) has the responsibility of reading the code and carrying the

amino acid to the ribosome to be incorporated into the developing protein.

Messenger RNA (mRNA) is used to carry the genetic code, the information on

the primary sequence of amino acids, from the nucleus to the ribosomes.

Small nuclear RNA (snRNA) refers to a number of small RNA molecules found

in the nucleus and assists in several processes such as RNA splicing.

2.3 Proteins

Proteins are the molecules responsible for much of the structure and activities of organisms.

From a chemical point of view, proteins are long polymers containing thousands of atoms.

There are three major types of proteins. First, the structural proteins such as the ones

that build the outer layer of human and animal skin. Second, proteins that function as

catalyzers in chemical reactions such as enzymes, transport. And finally, proteins such as

hemaglobin that work as storage. No matter what type of protein we are considering, the

key to its functions is its three dimensional structure. The proteins are typically 200-400

CHAPTER 2. BIOLOGICAL BACKGROUND 11

amino acids long which means that they require a t least 600-1200 letters for the DNA

message to specify them (not including the introns). It is believed that the relationship

between DNA and proteins is many-to-many.

The diverse structural and functional roles of proteins are due to the fact that unlike

DNA and RNA they don't have a uniform structure. Taking a protein out of its norrnal

condition e.g. by heating, unfolds the protein and makes it inactive. This is why our body

needs a certain inner temperature to function properly [39].

The protein structure is also analyzed in three levels. Primary structure is the order of

the protein's constituent amino acids. Secondary structure is the assignment of common

structures like single spiral chains of amino acids called alpha helices, and beta sheets which

are structures composed of two or more adjacent or parallel amino acids. Finally the tertiary

structure is the exact conformation of the whole protein which is derived from the assembly

and interactions of the helices and sheets. Sorne scientists have also added additional levels

to this hierarchy such as supersecondary structures and domains.

I t is the primary structure of the protein that wholly determines its secondary and

tertiary structure. The function of proteins is mainly determined by its three-dimensional

structure rather than the amino acid sequence. Therefore, in order to fully understand or

predict the characteristics of any organism, we should first determine the three-dimensional

structures of its proteins. The problem of protein folding is to define the relationship between

primary and tertiary structure by establishing detailed rules. To this point, the process of

protein formation can be easily described and here is nature's great leap from the linear

world of genetic and protein sequences to the world of 3D proteins. This is one of the

biggest mysteries of biology and solving this mystery would clearly have many rewarding

implications such as designing exact drugs on a computer or more above transforming the

practice of medicine to a more effective, personalized knowledge [15].

There are three known approaches for solving this problem. The first approach, namely

the simulation approach, involves simulating the actual folding process with the mean force

fields on all atoms and calculating the motion vectors for each atom (resulting from different

forces such as hydrogen bonds, covalent bonds, etc). The problem with this approach is

that it is highly time-consuming and as the actual folding of the proteins usually happens in

the order of seconds or milliseconds, this needs a lot of sampling on hundreds of atoms. The

second approach is protein structure prediction through energy minimization, in which one

tries to find the fold with the minimum free energy and naturally defining a reliable energy

CHAPTER 2. BIOLOGICAL BACKGROUND 12

function is a significant issue. According to some strong results, this problem is NP-hard

[47], so for solving that, some simplified models have been used. Finally the third approach

is called protein threading which aligns the protein with the ones for which the structure is

currently known. This approach is a knowledge-based approach and it has been proved to

be NP-complete [38, 41.

Although there is much to be done to solve the problem of protein folding and many of

these efforts have not shown promising results, solving the same problem for the secondary

structure could still give us some insight regarding the assembly of a whole protein in terms

of its building blocks (alpha helices, beta sheets, etc). Fortunately the problem of protein

secondary structure prediction is not as complex as tertiary structure prediction because of

reductions in the number of potential conformations by several orders of magnitude, and

the results might eventually lead to a solution for the original problem.

2.4 The Central Dogma

The central dogma of molecular biology considers how a sequence of DNA bases turns into

a sequence of amino acids which in turn, forms proteins. The procedure is as follows: the

information from a gene recipe is copied from a strand of DNA to a strand of messenger

RNA (mRNA). The mRNA molecules then travel out of the nucleus and ribosome molecules

read the genetic information inside mRNA and translate them into amino acids based on

the genetic coding scheme (Table 2.1). This strand of amino acids is then folded to make

the three dimensional structure of the protein.

The process of protein production resembles cascading machineries inside a factory where

the output of each one is fed into the next as input. Here within the cells, there are three

machineries for this whole process, RNA polymerase, Splicesome, and Ribosome. These

machineries themselves are made of proteins and RNA. Inside Prokaryotes (bacterial cells)

RNA is generated from DNA and proteins are the result of RNA translations. But in the

more developed cells, Eukaryotes, there are some other additional steps in between [23].

There are some important facts regarding these transformations. First of all, in the

first transformation, genes are the material that would be processed by RNA polymerase

machinery. The second fact is that splicesome can generate different RNA resulting in

CHAPTER 2. BIOLOGICAL BACKGROUND 13

different proteins. And finally, some generated proteins of this process might work as a

barrier in forming other proteins and on the other hand some of them might accelerate the

production of others 1231.

The major processes in protein production are 1151:

0 Replication is the process of passing the information in the DNA molecule in one

cell to the new cells, making sure that all the cells inside the body contain the same

genetic code for making all the necessary proteins.

0 Transcription happens when DNA sequences are transcribed by a biological machine

called RNA polymerase into sequences called Pre-mRNA, in which the nucleotide T

has changed to U (Uracil).

0 Splicing is the process of transforming Pre-mRNA into mRNA by another biological

machine called spliceosome.

0 Translation is the process by which the genetic information of RNA, the codons, are

read by ribosomes transferred into t,he proteins.

0 Folding happens when amino acids twist and form the proteins.

In the next chapter, we will discuss several methods in logic programming we can use

to analyze biological sequences.

Chapter 3

Constraint-Based Met hods

The application to molecular biology of A1 methods such as logic programming and con-

straint reasoning constitutes a fascinating interdisciplinary field which, despite being rela-

tively new, has already proved quite fertile. For instance, the book Logic Grammars [2] was

widely used to help discover the human genome [49]. The work on plant pathogen identifi-

cation for Agriculture and Agri-Food Canada [62] yielded spectacular results: whereas with

previous tools, the processing time increases exponentially with sequence length or number

of sequences, here a novel algorithm is provided for which processing time increases linearly

with the amount of data to be analysed. These methods can moreover be viewed as modules

to be embedded within higher level ones, while still efficiently executable, descriptions of

other interesting molecular biology problems (LifeIntel ~ x ~ l o r e r ~ ~) .

Over the past decade there has been a dramatic increase of collection rates for bio-

logical data, making the need for resorting to computational methods even more acute.

Simultaneously, the intersection between logic programming and constraint reasoning has

been maturing into extremely interesting methodologies, most notably Constraint Handling

Rules, or CHR [30]. These methodologies have been applied to human language process-

ing, through implementing Property Grammars [12, 141 (a linguistic formalism based on

constraints between sentence constituents rather than on the traditional notion of phrase

structure) in CHR, and through a parsing system for balanced parenthesis [13] and then

to cognitive sciences, through generalizing these results into a general cognitive theory of

concept formation [27] with applications to cancer diagnosis [8, 71, to medical report inter-

pretation [58] and to concept extraction [24].

Our main contribution throughout this thesis involves applying CHR methodologies to

CHAPTER 3. CONSTRAINT-BASED METHODS 15

the problem of genetic structure analysis, in particular, reconstructing a nucleotide sequence

which can fold into a given RNA ~econda~ry structure: whereas previous approaches, while

working well for short sequences, are computationally hard for longer ones (more than 500

nucleotides), our methodology by using heuristics obtains approximate but useful results in

much faster time.

In this chapter, we share the expertise obtained in the course of this work in a pedagog-

ical fashion. We first provide a short intuitive introduction to the main concepts involved

in biological sequence analysis. Next we survey the CHR formalism itself, as well as its

grammatical counterpart, CHRG [20], and CF formalism, exemplifying each with simplified

subproblems within those we have addressed in the literature above referenced. We then

discuss two major sequence processing problems (gene prediction, and protein structure)

and compare the methods we advocate in this article with previously used methods.

3.1 Biological Sequence Analysis

We are interested in the general problem of protein generation from DNA. As discussed

in previous chapter, DNA consists of a sequence of elements called nucleotides or bases,

which are usually identified as the letters A (Adenine), C (Cytosine), G (guanine) and T

(Thymine). In Section 2.1, and Section 2.4, we provided some background regarding DNA,

its function, and the process, i.e. transcription, by which it is transformed into protein.

Computational methods have been used in each step of the transformation to simulate

the work of the machineries (RNA polymerase, splicesome, and ribosome). Here we only

focus on the language of DNA which consists of four words: A, C , T, and G. As mentioned

before, nucleotide T would be transformed into nucleotide U in transcription step. The

words of this language group together to code for different amino acids. For instance,

the sequence UUU corresponds to the amino acid known as phenylalanine. These triplets

of nucleotides which code for given amino acids are called codons. A first programming

problem could be to implement the translation of codons into amino acids. This is an easy

enough task for any computer scientist, and while challenging for biologists, and can be

considered as a good introduction to interdisciplinary work. In a Prolog implementation,

the core predicate contains table-like information such as:

t r a n s l a t e ([u ,u ,g l , t ryptophan) .
t r a n s l a t e ([u , u , a l , l e u c i n e > .

CHAPTER 3. CONSTRAINT-BASED METHODS

We can also conceive a logic grammar version as well, containing such grammar rules

as :

s ([u , u , gl 1 --> [tryptophan] .
s ([u,u, a]) --> [leucinel .
s ([u , u , cl > --> [leucinel .

As we can observe from this example, we are dealing with an ambiguous language: dif-

ferent codons can code for a given amino acid. Through the following sections, we present

an overview of the proposed methodologies and specifically, we focus more on CHR method-

ology because of its key role in this thesis.

3.2 Assumption Grammars

Assumptions [26, 251 are similar to the Prolog primitive "assert" and "retract", the most

notable exception being that, unlike "assert" and "retract", they are backtrackable. They

can serve among other things to keep somewhat globally accessible information (an assertion

can be used, or consumed, at any point during the continuation of the computation).

Assumption Grammars are basically like definite clause grammars, except that they can

handle multiple accumulators invisibly, and that they possess linear and intuitionistic im-

plications. They can also be described as logic grammars augmented with a) linear and

intuitionistic implications scoped over the current continuation and b) hidden multiple ac-

cumulators useful in particular to make the input and output strings invisible. Intuitionistic

assumption */1 temporarily adds a clause usable in later proofs. Such a clause can be used

an indefinite number of times like asserted clauses except that it vanishes on backtracking.

Linear assumption +/1 temporarily adds a clause usable at most once in later proofs. A

built-in predicate -11 was introduced to allow for the removal of either intuitionistic or linear

assumptions.

Assumptions can be applicable in finding some patterns in biological sequences such

as tandem repeats. Tandem repeat is a nucleotide sequence that results from a class of

mutation event called tandem duplication which converts a stretch of DNA code (called the

"pattern") into two or more copies, each following the preceding one in a contiguous fashion

[53]. One of the reasons for identifying tandom repeats is that according to Biology and

CHAPTER 3. CONSTRAINT-BASED METHODS 17

Genetics sciences, tandem repeat occurs frequently in genomic sequences and it can have

a potential role in gene regulation, including development of immune system cells. Many

genetic diseases are also shown to be associated with uncontrolled expansions of tandem

repeat patterns such as Huntington's disease and Friedreich's ataxia (FRDA). An example

of a tandem repeat is the sequence AGCAGC.

Searls in [53] has introduced some grammar rules for finding tandem repeats. Searls'

grammar rules can be represented in assumption grammar as following:

tandem-repeat --> [XI , (push(X)I, tandem-repeat .
tandemrepeat --> r epea t .

r epea t --> (-s tack([I 11, [I .
repeat --> (pop(X) I , r epea t , [XI .
push(X) : - -stack(Y) , +s tack([X I Y] 1.

pop(X) : - - s tack([XI Yl , +stack(Y) .

Here we make use of a global variable as a stack, add on to it through assumption

(noted '+'), and remove elements from it through consumption (noted '-'). Assumptions

are available in some logic programming environments such as Binprolog and CHRGs.

Another example which is very similar to tandem repeat is inver ted repeat. Inverted

repeats are also common features of nucleic acids, which in the case of DNA result whenever

a substring on one strand is also found nearby on the opposite strand [53]:

inver ted-repeat --> [XI , {push(X) 1 , inver ted-repeat .
inver ted-repeat --> r epea t .

r epea t --> (pop (XI I , " [XI , r epea t .

repeat--> (-stack([I) I , [I .
push(X1:- -stack(Y),+stack([XjYl).

pop(X) : - - s tack([XI Yl) ,+stack(Y).

Here, " [XI is defined as follows:

CHAPTER 3. CONSTRAINT-BASED METHODS 18

3.3 Constraint Handling Rule and Constraint Handling Rules

Grammar

Constraint handling rules (CHR) is a concurrent committed-choice constraint logic program-

ming language which has been proved to be useful for algorithms dealing with constraints

(301. By presenting a highly executable framework, CHR has tried to form a bridge be-

tween theory and practice in logic programming. It also provides programmers efficiently

executable specifications by supporting rapid prototyping. To this day, CHR has been ap-

plied in several applications including theorem proving with constraints, combining forward

and backward chaining, combining deduction and abduction, bottom-up evaluation with

integrity constraint, etc.

3.3.1 Background

CHR was created in 1991 by Thom F'riihwirth.The founders of CHR do not necessarily

consider it as a new programing language but rather as an extension that blends in its

host language such as the ones implemented in Prolog, Lisp, Haskell, or java [51]. The

direct ancestors of CHR are Prolog, Constraint Programming, and concurrent committed

choice logic programming. Term writing systems, Automated Theorem Proving, Chemical

Abstract Machine, and production rule systems in general have had their influences in

forming this language.

The factors that strengthen and to some extent make CHR a unique language are the

combination of propagation and multi-headlmulti-set transformation of logical formulae in

a concurrent, guarded rule-based language.

Applications of CHR vary in a wide range from type systems and time tabling to ray

tracing and cancer diagnosis [I]. Moreover by use of the logic terms, grammars can be

described in human-like terms using CHR and are powerfully extended through (hidden)

logical inference. Finally, CHR has been proved to be Turing-Complete which makes it pos-

sible to implement every algorithm in CHR with their best known time and space complexity

[55] .

CHR Grammars, or CHRG for short, is based on Constraint Handling Rules and was

introduced in [19, 181 as a bottom-up counterpart to Definite Clause Grammars (DCGs)

defined on top of CHR in exactly the same ways as DCGs take their semantics from and

are implemented by a direct translation into Prolog. CHRG is executed as CHR programs

CHAPTER 3. CONSTRAINT-BASED METHODS

that provide robust parsing with an inherent treatment of ambiguity.

3.3.2 Syntax

There are two sets of constraints (predicates of first-order logic) in CHR: built-in constraints

and CHR(user-defined) constraints. The first set of constraints are solved by a given con-

straint solver while the latter are defined by CHR rules inside the program. The examples

of the first set include =, true, and false. The general format of CHR rules is as follows:

Head ==> Guard I Body.

Head and Body are conjunctions of atoms (separated by commas) and Guard is a test

constructed from (Prolog) built-in or system-defined predicates. The variables in Guard and

Body occur also in Head. If the Guard is the constant "true", then it is omitted together

with the vertical bar. Its logical meaning is the formula (Guard + (Head + Body)) and

the meaning of a program is given by conjunction. There are three types of CHR rules:

0 Propagation rules which add new constraints (body) to the constraint set while

maintaining the constraints inside the constraint store for the reason of further sim-

plification.

0 Simplification rules which also add as new constraints those in the body, but remove

as well the ones in the head of the rule.

0 Simpagation rules which combine propagation and simplification traits, and allow

us to select which of the constraints mentioned in the head of the rule should remain

and which should be removed from the constraint set.

The factors strengthening CHR include the combination of propagation and multi-set

transfornlation of logical formulae in a concurrent, guarded rule-based language. The rewrite

symbols for the first two rules are respectively: ==>, <=> and for simgation rules, the notation

is Headl\Head2<=>body. Anything in Head1 remains in the constraint set and anything in

Head2 is removed from the constraint set and body is added to the constraint store.

3.3.3 Semantics

We discuss two types of semantics for CHR programs:

CHAPTER 3. CONSTRAINT-BASED METHODS 20

0 Operational Semantics: At run time, a CHR program starts execution with an

initial state until either there are no more applicable rules or a contradiction occurs.

A rule is considered applicable when all the constraints inside the head are matched

by the ones inside the current goal and all the built-in predicates inside the guard are

satisfied as well.

At any given time during the execution, there might be more than one applicable rule.

To determine which rule should be executed first, CHR acts in the same way as Prolog

i.e. top-down in the textual order of the program. Another uncertainty arises while

considering the order in which constraints of a query are processed. This problem is

also easily solved by processing the constraints from left to right. When it is matched

with one of the constraints inside the head of a rule, other constraints are examined

and if all them are found inside the constraint store and the guard is evaluated true,

the rule would be applied, adding new constraints to the constraint store.

0 Declarative Semantics: It is possible to translate any CHR program into a first-

order logic program formula using the declarative semantics of CHR. The logical read-

ing (meaning) of the propagation rules was mentioned in Section 3.3.2, but for com-

plicity it is also brought up here:

1. Propagation rules:

2. Simplification rules:

3.3.4 Sample Applications of CHR and CHRG

A string to be analyzed such as "leucine tryptophan phenylalanine" is entered as a sequence

of constraints:

that comprise an initial constraint store. The integer arguments represent word boundaries,

and a grammar for this intended language can be expressed in CHR as follows:

CHAPTER 3. CONSTRAINT-BASED METHODS

token(X0 ,XI, tryptophan)==> codon(X0 ,XI, [u, u ,gl) .
token(XO,Xl,leucine)==> codon(X0,X1,[u1u,a]).

token(XO,Xl,leucine)==> codon(X0,X1,[u1u,c1).

token(XO,Xl,phenylalanine)==> codon(XO,X1,[u,u,ul)

We say that ambiguity is inherently treated because all possibilities will be expressed in

the constraint store resulting from an ambiguous input. In the above example, for instance,

both a codon [u,u,a] and a codon [u,u,c] will be found between points 0 and 1. The input

and output arguments of the above translation example can be spread if using CHRG, which

uses : :> for the rewrite symbol:

token(t ryptophan): :> codon([u ,u ,g l) .

token(1eucine) : : > codon([u ,u , a]) .
token(1eucine) : : > codon([u ,u ,c l) .

token(phenyla1anine) : : > codon([u, u , u]) .

In Section 3.2, we introduced tandem repeats and their importance and showed an im-

plementation of them using Assumption Grammars. Here using CHRG we present another

implementation which unlike the other implementation which was only capable of deter-

mining whether a sequence is a tandem repeat or not, can identify a tandem repeat inside

another sequence:

s t r ing(X) , s t r ing(X) : : > tandem-repeat (XI .

This implementation can also be extended to identify any number of tandem repeats:

[XI, str ing(Y1 : :> s t r i n g ([XIYI 1.

[XI : : > s t r i n g ([X l) .

tandem-repeat (X,C) , s t r ing(X) < : > C l i s C + l I tandem-repeat (x , c I) .

s t r ing(X) , s t r ing(X) : : >tandem-repeat (X,2) .

CHAPTER 3. CONSTRAINT-BASED METHODS

3.4 Concept Formation Grammars

In [27], a cognitive model of Concept Formation is introduced, which has been used for oral

cancer diagnosis [9] and specialized into grammatical concept formation, with applications

to property grammar parsing [24]. The grammatical counterpart of Concept Formation is an

extension of CHRGs which dynamically handles properties between grammar constituents

and their relaxation, as statically defined by the user. Let's first demonstrate this within

the traditional framework of rewrite rules which implicitly define a parse tree. Whereas in

CHRG we would write the following grammar:

Cal : : > determiner (singular)

[boy] : : > noun (singular) .
[boys] : : > noun(plura1) .
[laughs] : : > verb (singular) .

determiner (Number) ,noun (Number) , v (Number : : > sentence (Number) .

To parse correct sentences such as "a boy laughs", in CFG, we can also allow incorrect

sentences to be generated, but ask the system to point out to us which properties are violated

by such incorrect sentences. This requires the following:

A definition of all properties in terms of a system predicate prop/2.

A declaration of what properties can be relaxed, done through the system's (Pro-

log) predicate relax/l, and for properties to be called through the system predicate

acceptable/l.

For instance, an agreement property to check that the number of a subject's determiner

(Ndet) coincides with that of the noun (Nn) and with that of the main verb (Nv), and

which can be defined in Prolog as:

The property agreement must be expressed in terms of the system predicate prop/2 as

follows, with all concerned arguments grouped into a list:

CHAPTER 3. CONSTRAINT-BASED METHODS

If we now want to relax this property, so that number mismatches are detected but do not

block the parse, we can use the system predicate relax/l, as follows:

A property is then considered "acceptable" if it either succeeds, or if it fails but has been

relaxed:

Therefore, properties must be tested through the system predicate acceptable/l. For our

example, we would write:

determiner (Ndet) , noun(Nn), v(Nv) : : >

acceptable (propcagreement , [Ndet ,Nn,NvI 1) 1 sentence (Nv)

The system will now also accept sentences which do not agree in number, while pointing

out the error in the list of violated properties, as a side effect of the parse. In the case

of "a boys laughs", the agreement property will appear in the list of violated properties

automatically constructed as a result of the parse.

Degrees of acceptability can also be defined using binary versions of "relax" and "accept-

able", whose second argument evaluates to either true, false, or a degree of acceptability,

according to whether (or how much of) the property is satisfied. This allows the user to relax

specific constraints rather than types of constraints, by specifying right-hand side conditions

on these binary counterparts.

Now that we have introduced this methodology, it is time to give some examples of its

application in biological sequence analysis. According to Searls [54], in biology there are

no rules without exceptions. For example, it was thought before that a gene can only be

responsible for one protein, but now the recent work has shown that a gene may generate

several proteins. According to these, using Concept Formation Rules features to the rules

written for biological transformations might help in making these rules closer to what hap-

pens in real life. As an example we show how to use concept formation rules in finding

hairpin loops, one of the common patterns seen in RNA structure. As shown in Figure 3.1,

a hairpin loop consists of a stem which leads to a loop at the end. According to the bio-

chemical laws the loop part should contain at least three nucleotides, but in some rare RNA

CHAPTER 3. CONSTRAINT-BASED METHODS

Figure 3.1: A hairpin loop

structures, it might happen that a loop contains only two nucleotides. A corresponding rule

which also considers these rare cases is:

While forming the secondary structure of a hypothetical RNA, one can easily relax this

property by using relax(1ength) . In the following sections, you will see some of the large-

scale applications of the methods proposed above in biology.

3.5 Gene prediction

The fundamental physical and functional unit of heredity is called a gene. It is an ordered

sequence of nucleotides located in a particular position on a particular chromosome that

encodes a specific functional product (i.e., a protein or RNA molecule). Genes determine

many aspects of anatomy and physiology by controlling the production of proteins. Each

individual has a unique sequence of genes, or genetic code. Discovery of genes that influence

disease risk in human populations is of key importance to the pharmaceutical industry.

This is because identifying the gene automatically identifies the protein in which alteration

of function causes disease. For the pharmaceutical industry, this protein, together with

other proteins that are part of the same physiological pathway, becomes a potential drug

target. Once a drug target has been identified, modern techniques allow the pharmaceutical

industry to rapidly screen large numbers of chemical compounds for action on this target.

It is expected that drugs acting directly on the proteins, in which genetically determined

alteration of function causes disease, will be highly effective in preventing or treating these

diseases. This is one of the reasons why researchers in various branches of science are

CHAPTER 3. CONSTRAINT-BASED METHODS 2 5

trying to identify genes. The problem of identifying genes responsible for certain diseases

or characteristics has many difficulties. One of them is the fact that there are often several

genes that are responsible for certain diseases. By studying the DNA of the individuals and

their families having rare diseases one may be more successful in pinning down the main

responsible genes [22].

The order in which the bases of DNA are linked in a gene is called the sequence of a

gene. There exist two types of genes: RNA gene and protein coding gene which is our

focus here. Recall from previous chapter that stretches of DNA that code for proteins are

called exons. In eukaryotes, cells with membrane-bound nucleus, exons in a given gene are

generally separated from each other by stretches of DNA that do not contain instructions

for constructing proteins, they are called introns.

There are various approaches for the problem of gene finding but here our focus is on the

computational methods. Computational gene finding is the process of identifying potential

coding regions in an uncharacterized region of the genome. This area is still a subject of

active research. There actually exist many different gene-finding software packages and no

program is capable of finding everything. Common techniques include homology, combina-

torial dynamic programming, probabilistic modeling especially Hidden Markov Models and

neural nets but here another approach in logic programming is used.

Cohen has proposed a set of grammar rules for finding genes [22] and here we have

translated the same grammar into CHRG in Program 3.1.

3.6 Protein structure

As seen in Section 2.3, protein architecture can be analyzed in three levels. Primary struc-

ture is the order of the amino acids in the sequence which has been formed by three codons

translation. Secondary structure however represents how some of the amino acids in the se-

quence form common structures such as alpha helices, beta sheets, etc. Finally the tertiary

structure is the exact conformation of a whole protein. Here we only discuss the problem

of protein secondary structure prediction. What makes this problem rather difficult is that

identical short sequences of amino acids can adopt different secondary structure in different

contexts [52].

CHAPTER 3. CONSTRAINT-BASED METHODS

start-codon,gene-body, stop-codon : :> gene
start~codon,stop~codon : :> gene.
[a,t,gl : :> start-codon.
[t , a, a1 : : >stop-codon.
[t,a,gl ::>stop-codon.
[t ,g,a] : : >stop-codon.
exon-body,left : : > gene-body.
exon-body : : > gene-body.
left : : > gene-body.
[a,g],intron-body,right : :> right.
[a,gl,exon-body,left : :> right.
[a,gl,left : : > right.
[a,gl ,right : : > right.
[a, g] , exon-body : : > right.
[a,gl : : > right.
[g,t] ,intron-body,right : : > left.
[g , t] , exon-body , lef t : : > left .
[g,tl ,exon-body : : > left.
[g,t] ,left : : > left.
[g,tl ,right : :> left.
[g,t] : :> left.
base : :> intron-body.
base : :> exon-body.
base, [a] : : >base.
base, [cl : :>base.
base, [gl : :>base.
base, [tl : :>base
[a] : : > base.
[c] : : > base.
[gl : :> base.
[t] : : > base.

Program 3.1: CHRG rules to identify a sample protein coding gene

CHAPTER 3. CONSTRAINT-BASED METHODS 2 7

res (Xl) , res (-) , res (X2) , res (X3) ,res (Y) , r e 4 r e 5) , -) , r e 6) : :>
not-aromatic (Xl) ,not-k(X1) ,
hydrophobic (X2) ,not-aromatic (X3) ,
not-p(X3) ,
not-aromatic (Y) ,not-p(Y) ,
not-p(X41, not-k(X4) ,
hydrophobic (X5) , less-hydro (XI, X5) , l e s s - v o l ~ e (x5 ,x3) ,
not-aromatic (X6) , less-hydro(X6 , ~ 2) I alpha(Y) .

Program 3.2: A sample CHRG rule to form an alpha helix including 6 residues

Muggleton et al. have tried to solve this problem by using Inductive Logic Program-

ming(1LP) [44, 461. They have applied an ILP program to learn secondary structure pre-

diction rules. The output of their program is a small set of rules which can predict which

of the residues in the sequence are part of the alpha helices. These set of rules can also be

translated into CHRG and can be used widely to discover the secondary structure of the

requested protein. A sample rule in CHRG format is brought in Program 3.2. In this exam-

ple, res/l represents a residue and the predicates in the guard (not-aromatic/l, not-k/l,

hydrophobic/l, etc) are the chemical characteristics that each residue should have to form

an alpha helix together. One specific advantage of using CHRG for this example is that here

we can also make use of Concept Formation Rules to allow the formation of alpha helices

when not all the conditions are satisfied which is probable in cases of biological data.

3.7 Discussion

We have covered several high-level methods for pattern description of biological sequences,

and exemplified the advantages of these methods for several concrete such problems. We

have shown how to translate codons to amino acids using DCGs, how Assumption Grammars

allow us to modularize stack manipulation in global terms, which we used for implement-

ing tandem and inverted repeats, how constraint handling rules promote direct bottom-up

execution of the same problem, as well as having a grammatical version which we used for

more direct amino acid string translations, and how Concept Formation Grammars can in

particular accomodate rules with exceptions.

CHAPTER 3. CONSTRAINT-BASED METHODS 2 8

We consider the main advantage of these methods to be the coupling of direct executabil-

ity with economy of expression within high level specifications that are meaningful for hu-

mans and thus can promote quick prototyping of specialized, interdisciplinary knowledge.

On the other hand, the introduced methodologies has most of the time the disadvantage

of inefficiency in run-time. For future work, some intermediate systems can be designed to

automatically translate these high-level languages into low-level ones. This way we would

have methods that are not only understandable and more user friendly but at the same time

efficient and practical.

Chapter 4

RNA Secondary Structure

One of the significant benefits of understanding the secondary structure of RNA is to de-

termine its chemical and biological properties. Although it is not yet possible to reliably

predict RNA tertiary structure for reasons similar to the difficulties behind proteins tertiary

structure prediction, there are fairly good RNA secondary structure prediction algorithms

available. Clearly, the tertiary structure of RNA is much more useful and gives us a better

insight of RNA functions, but while it is still quite difficult to predict, researchers use the

secondary structure to explain most of the functionalities of RNA. There are a number of

applications for RNA secondary structure determination [15] :

Similarity in the secondary structure usually determines the similarity in functions.

Therefore, it is reasonable to use RNA secondary structure for classifying their func-

tion.

As ribosomal RNA (rRNA) are very ancient molecules and have a highly conserved

secondary structure, it is possible to align the ribosomal RNA to study evolutionary

spectrum of species.

Given a DNA sequence that is highly homologous to some known tRNA gene, such a

sequence may be a gene or a pseudogene. By predicting its secondary structure and

examining its similarity to some tRNA secondary structure, one can verify whether or

not it is a pseudogene.

CHAPTER 4. R N A SECONDARY STRUCTURE

4.1 Definition

In Section 2.2 we briefly discussed what RNA secondary structure is. Here, we present a

mathematical definition as follows: The secondary structure of an RNA sequence of length

n is an undirected graph G = (V, E), where V = (1, ..., n) , E C V x V such that [21]:

2. ('dl < i < n) [(i, i + 1) E El

3. For 1 < i < n, there exists at most one j # i * 1 for which (i, j) E E

4. If 1 < i < k < j < n, (i , j) E E and (k, 1) E E, then i 5 1 5 j

In this definition, it is important to remember that an edge between i and j where

j # i * 1 corresponds to a Watson-Crick or wobble base pair. The first rule simply states

that the base pair relationship is symmetric. The second rule connects all the consecutive

bases together. The bases inside the sequence are linked by covalent energies and they

should not be confused with the hydrogen bonds between Watson-Crick or wobble base

pairs. The third rule is the rule that defines the base pairs inside the secondary structure

and implies that each base can at most be paired with one other base. Finally the last rule

is used to prevent the occurrence of interleaved base pairs inside the secondary structure.

There is also a 1-1 correspondence between RNA secondary structure and balanced

parenthesis expressions, where balancing corresponds to base pairings. For instance the

parenthesis expression ((...)) can be written for the sequence ACCCCGU in which (1,7)

and (2,6) are the base pairs. By having the above definition an interesting question arises:

how many secondary structures are possible for a sequence of n nucleotides? For answering

this question, first we can assume that each base has the possibility to be paired with any

other base (rather than restricting ourselves to Watson-Crick and GU pairs). In [21], it is

proved that for such a hypothetical case, if we define S(n) to be the number of secondary

structures on (1, ..., n) and let S(0) = 1:

Theorem 4.1.1 S (l) = S(2) = 1 and

CHAPTER 4. RNA SECONDARY STRUCTURE

I I I I I I

Bulpc loop Stack

lntmal loop Hanphi loop

Figure 4.1: Some motifs inside RNA secondary structure

It is also proved that S(n) > 2(n-2), therefore there will be exponentially many possible

secondary structures on a sequence of length n, when we ignore the base pair requirement.

However, the exact asymptotic solution while considering these requirements is:

4.2 RNA motifs

Any RNA secondary structure (without pseudoknots) can be decomposed to a set of motifs

as follows [21]:

1. The subsequence i, ..., j in which every single base is unpaired is a hairpin loop if i - 1

and j + 1 are paired together

2. The subsequence i, .., j in which every single base is unpaired is a bulge loop if i - 1

and j + 1 are also paired but not together.

3. If we have two bulge loops: i, ..., j and k, ..., 1 such that i - 1 is paired with 1 + 1 and

j + 1 is paired with k - 1 and i < j < k < 1 then these two bulge loops form an interior

loop.

4. A helix is formed by adjacent base pairs stacking upon one another.

5. The subsequence i, ..., j in which every single base is unpaired is a single stranded

region if there is not a base pair enclosing this subsequence.

6. The subsequence i, ..., j is called a multi-loop if i and j form a base pair enclosing

other base pairs such as k - 1 and nz - n which do not surround each other.

Some of these motifs are shown in Figure 4.1

CHAPTER 4. RNA SECONDARY STRUCTURE

4.2.1 Pseudoknots

Pseudoknots are one of the widely occurring structural motifs in RNA that play an impor-

tant role regarding the functions of RNA. A simple pseudoknot is formed when unpaired

bases from a loop form Watson-Crick base pairs with complementary bases outside the loop

(Figure 4.2). Adding generalized pseudoknots to the problem of RNA secondary structure

prediction makes it NP-hard. However, by using some heuristics and restricting the for-

mat of pseudoknots, this problem can be solved in polynomial time (O(n4)) [28]. Most

methods that predict RNA secondary structure, for simplicity, disregard the possibility of

having pseudoknots. According to these methods, for every two base pairs: pair(i, j) and

pair(i l , j l) , if il is greater than i then jl should be less than j . This assumption prevents

the formation of pseudoknots in the result structure.

Figure 4.2: A simple pseudoknot

4.3 RNA Secondary Structure Prediction

Currently three major experimental methods are used to determine RNA secondary struc-

ture [15]:

0 Physical me thods , in which the structure is inferred base on the distance among

atoms. These methods include X-Ray crystallography and Nuclear Magnetic Reso-

nance (NMR).

0 Chemical methods , where chemical and enzymatic probes are used to analyze the

structure of RNA.

M u t a t i o n analysis, which consists of initially mutating the RNA sequence and test-

ing its binding ability with certain proteins.

CHAPTER 4. R N A SECONDARY STRUCTURE 33

Unfortunately these experimental methods have failed to generate cost and time efficient

results. Meanwhile many bioinformaticians have constantly tried to solve this interesting

while challenging problem using computational methods. Two or more limitations are usu-

ally assumed to simplify the problem of RNA secondary structure predictions. First, the

most likely secondary structure is the energetically most stable structure. Second, the energy

associated with any position is only influenced by local sequences and structure 1431.

The bioinformaticians' contributions can be described within two main approaches.

First, m i n i m u m free energy which is based on a single RNA sequence and finds the structure

with the least free energy and second, sequence comparison, for which the idea is to align

the sequence with the sequences with known secondary structure and predict the structure

from the homology. Most work done to this day in both approaches assume that there are

no pseudoknots in the secondary structure and the reason is, as mentioned earlier, that

pseudoknots add much to the complexity of this problem. Although ignoring pseudoknots

will reduce the accuracy of the method, since they are not very frequent, these methods can

still give us good approximate results 1151.

There also exist other methods which can not be categorized in these two approaches,

however they are repeatedly being used to facilitate the primary methods. An example

of them is dot matr ix sequence comparison which is often used to find stretches of self-

complementary regions inside sequences.

4.3.1 Minimum Free Energy

Finding the structure with considering only the minimum free energy is a very difficult

and time consuming task for two reasons: first there might be many possible structures

with the minimum free energy for a single sequence, and secondly, an accurate measure

of the free energy is essential for this task. Over the past 30 years, another approach

has been considered that simulates the thermal motion of RNA but since scientists lack

complete knowledge regarding chemical and physical properties of the atoms, this results in

approximate simulation of the energies and forces. Moreover as the approximate simulations

even for short RNA sequences need faster CPUs to do the computations in a desirable

amount of time, this approach is still quite inefficient 1151.

All these efforts seemed hopeless until the nearest neighbor model was proposed by

Tinoco et al. [15]. This relatively new model approximates the free energy of any RNA

secondary structure using two prior assumptions: first, the energy of every loop is assumed

CHAPTER 4. RNA SECONDARY STRUCTURE 34

to be independent of the others and second, the energy of a secondary structure is the sum

of the energies of all the loops.

The long chains of stacked base pairs are the most stable secondary structures and they

are the only possible structures that contribute negative free energy to the structure. Loops

and bulges however increase the free energy in proportion to their size. As a result, a certain

minimum number of stacked pairs is required to support a loop or bulge to the stacked pairs.

The first algorithm on this model using dynamic programming was proposed by Nussinov

and Jacobson [48]. This algorithm tries to maximize the number of stacking pairs without

considering the destabilizing energy of the loops. Following in 1981, Zuker and Steigler [66]

introduced an algorithm which contemplates the destabilizing energies, however initially

the time complexity was 0 (n 4) but following that, in 1999 Zuker, Lyngoso, and Pedersen

[41] improved the algorithm time complexity to O(n" which was a major success and it

is the best known algorithm so far. Zuker has also proposed a method to compute all

the suboptimal structures in [63]. Eventually in 1991, Eppstein, Galil, and Giancarlo [29]

proposed a new algorithm with a novel energy functions for loops and have improved the

run time to 0 (N 2 log2 N) . The algorithm proposed by Zuker, Lyngoso, and Pederson is

briefly explained below:

4.3.2 RNA Secondary Structure Algorithm without Pseudoknots

As mentioned above, loop energies play a very important role in predicting the secondary

structure of RNA, therefore here we present the 4 energy functions derived by Mathews,

Sabina, Zuker, and Turner that govern the formation of the loops [15]:

0 S(i, j) gives the free energy of the helix or stacked pairs consisting of pair (i, j) and

(i - 1, j + 1). This energy is negative and helps in stabilizing the structure

0 H(i, j) gives the free energy of a hairpin loop (pair (i, j) closes the hairpin loop and

bases i + 1, ..., j - 1 are unpaired inside the loop). This energy reduces the stability

of the structure and it depends on) j - i + 11, i.e. length of the loop.

L(i, j, i,, jl) in which i < il < jl < j, gives the free energy of an internal or a

bulge loop. This loop is closed by pair (i, j) and (il, jl) (if il = i + 1 or j = jl + 1

the loop is considered as a bulge loop). The free energy depends on the loop sizes

li - il + 11 + Ijl - j + 11 and the asymmetry of the two loops.

CHAPTER 4. RNA SECONDARY STRUCTURE 35

a M (i , j , i l , jl , . . . , in, j,) gives the free energy of a multi-loop where loops are closed by

the pairs (i , j) , (i l l j l) , , (in, jn) .

Using dynamic programming and the assumption made in the nearest neighbor model

which calculates the energy of a secondary structure as the sum of its loop energies, the

energy of the optimal structure can be calculated as follows:

1. V (i , j) : the energy for the optimal secondary structure for the sequence S[i , j] if (i , j)

is a base pair:

00

V (i , j) =
min

if i > j ,

H(i , j) Hairpin,

(i) + V (i + l , - 1 Stacked pair,
if i < j.

V B I (i , j) Internal loop,

V M (i , j) Multi-loop.

2. V B I (i , j) : the energy for the optimal secondary structure for the sequence S[i , j] if

(i , j) and (i l , jl)are the base pairs enclosing a bulge loop or an internal loop.

3. V M (i , j) the energy for the optimal secondary structure for the sequence S[i , j] if (i , j)

is a base pair that closes a multi-loop. The multi loop itself is formed by the base

pairs(i, j) , (2 1 , j l) , ..., (in, j,) in which n > 1 and i < il < j l < ... < in < j,.

n

V M (i , j) = mini<il<jl< ... <i,,<& M(i, j , 2 1 , j ~ , ..., in, jn) + V(ih , jh)
h=l

4. W (j) : the energy of optimal secondary structure for the sequence S[1, n] is given by

the following recursive function

if i = 0,
W (j) =

min{W(j - l) ,minll i<j{V(i , j) + W (i - 1))) when j > 0.

CHAPTER 4. RNA SECONDARY STRUCTURE

4.3.3 Loop Dependent Energy Rules

In Section 4.2, we discussed different types of loops inside the RNA secondary structure.

Below, we will show how the energy is calculated and assigned to all kinds of loops [65].

a Hairpin loops: according to polymer theory prediction, the free energy increment

of a hairpin loop is calculated as:

Here R is the universal gas constant, T is the absolute temperature and 1 is the length

of the loop. In reality instead of using this formula, some tabulated values for 66G for

loops consisting of 3 to 30 nucleotides are used. For loops beyond size 30, the above

equation is changed to:

Figure 4.3: A hairpin loop

In addition to 66G another factor is taken into account for hairpin loops of size greater

than 3, which is the effect of terminal mismatched pairs. These parameters are also

calculated and stored in several tables. One of the tables is shown and explained in

Figure 4.4. Inside the right table, we can find the energy of a loop for which the

closing base pair is CG. As an example, suppose we have a hairpin loop as shown in

Figure 4.3, using the table in Figure 4.4, here A is assigned to X and C is assigned to

Y and the corresponding energy for this hairpin loop is -1.5.

By using these tables, we treat all hairpin loops in the same way, which is proved to

be not true in general. Some special rules apply to triloops (hairpin loops of size 3)

and tetraloops (hairpin loops of size 4).

CHAPTER 4. R N A SECONDARY STRUCTURE

Y:A C G U A C G U
-------------------

X: A I AA AC AG AU -1.5 -1.5 -1.4 -1.8
C l C A C C C G C U - 1 . 0 - 0 . 9 - 2 . 9 - 0 . 8
GI GA GC GG GU -2.2 -2.0 -1.6 -1.2
U I UA UC UG UU -1.7 -1.4 -1.9 -2.0

Figure 4.4: The left table shows a typical 4x4 table with the pairs WX and YZ covalently
linked. WZ is the closing base pair of a hairpin loop while XY is a mismatched pair. The
right table demonstrates the energies for terminal mismatched pairs when W is C and Z is
G.

Stacks: stacks refer to the stacking between the two immediately adjacent base pairs

in a loop. Free energies for stacks are stored in 4x4 tables similar to the ones used for

terminal mismatched. In Figure 4.5, a sample table is brought and briefly explained.

Bulge loops: for bulge loops of size 1, the surrounding pairs are still treated as being

stacked upon each other. For the ones up to size 30, the same tables used for hairpin

loops are applied and for larger ones Equation 4.2 is used.

Interior loops: for interior loops of size greater than 4, the free energy of the interior

loop depends on 4 components:

In Equation 4.3, 66Gi is the same as 66G in Equation 4.1 or 4.2, depending on the size.

6 6 ~ : and 66G: are terminal mismatch free energy for the surrounding base pairs. For

those interior loops which are asymmetric , a penalty component 66Gf is considered.

For 1x1, 1x2, and 2x2 interior loops, instead of using Equation 4.3, the free energies

are calculated and stored in a set of tables. A 4x4 sample table which is used for 1x1

interior loops is brought in Figure 4.6.

CHAPTER 4. RNA SECONDARY STRUCTURE

Figure 4.5: Sample free energies in Kcal/mole for CG base pairs stacked over all possible
base pairs indicated by XY, where X refers to the row and Y refers to the column.

4.3.4 Sequence Comparison

Sequence comparison or sequence covariation model is the second major method for solving

the problem of RNA secondary structure. Here, the goal is to find regions inside RNA

sequences from the same RNA molecule of different species which are different literally but

in reality they form the same structure. The idea behind this method is that although RNA

sequences would be affected by evolutionary changes among species, these changes will not

result in transforming the structure i.e. the changes would be made in such a way that the

complementary base-pairings would be maintained [43]. For example, suppose we have an

RNA sequence in which position 20 : C and position 41 : G form a base pair, according to

this theory if the nucleotide in position 20 is transformed to A, the corresponding nucleotide

in position 41 would also be changed to lJ , accordingly inside the new sequence, these two

positions would still form the base pair. As we do not use the sequence comparison method

in our system, we will not get into more details about this method.

4.4 RNA Secondary Structure Grammar

Clearly, it is very desirable to have a set of grammar rules for the genes, chromosomes, and

even genomes. But unfortunately it is not an easy task to accomplish. Some of the grammar

models written for genes are very complex and they are not guaranteed to recognize every

possible gene. The grammar model of secondary structure of RNA is to some extent easier

CHAPTER 4. R N A SECONDARY STRUCTURE

Figure 4.6: Free energies of a 1x1 interior loop closed by a CG and AU base pair.

and significantly smaller. For defining a grammar for RNA secondary structure, we first

begin with RNA palindromes. As shown in Figure ?? the sequence AGCAUAUGCU is

an RNA palindrome, i.e., the paired bases has the property of reading the same in either

direction. RNA palindromes can have arbitrary lengths, therefore they need to be modeled

by context-free grammars (or more complex ones). A grammar written for RNA palindromes

is [6]:

s -+ AsUIUsAICsGIGsCI&

The above sequence can be generated by: s -+ AsU -+ AGsCU -+ AGCsGCU -+

AGCAsUGCU -+ AGCAUAUGCU. The RNA secondary structure palindromes are not

always as perfect as this example. First of all, other base pairs such as UG or GU might

occur in between (As mentioned in Section 2.2, base pairs like GA are also possible but quite

rare). Secondly, regions of unpaired bases are also common. Loops usually should contain

more than three or four bases because of the fact that RNA is not flexible enough to make a

180' turn at the tip of the hairpin [6]. And finally, the palindromes inside RNA are usually

more complex than the above example. One palindrome can be nested inside the other to

make a recursive palindrome and two or more palindromes can follow each other side by

side building up a sequential palindrome. Examples of recursive palindromes are cloverleafs

inside tRNA. and different structures consisting of stems and loops inside rRNA. For adding

simple recursive palindromes to the above grammar, one can easily employ s -+ ss but un-

fortunately this simple grammar rule makes the grammar ambiguous with alternative parse

CHAPTER 4. RNA SECONDARY STRUCTURE 40

trees leading to alternative secondary structures. For example the sequence CAUG-CAUG

can be derived by the first grammar rule generating a regular palindrome or by using the

second grammar rule it can be decomposed into two palindromes. This ambiguity in struc-

ture is not surprising, in fact many examples of ambiguities can be found in DNA linguistics

such as HIV viruses which benefit from overlapping genes [6].

Using the above grammar rules and adding a few more to include the unpaired bases

inside palindromes, the final set of grammar rules for generating RNA secondary structure

is [6]:

S -+ S S

The first two rules are used to generate regular RNA palindromes (Watson-Crick and

G - U base pairs). The third rule, on the other hand, is used to insert the unpaired

bases inside and outside palindromes forming different kinds of loops and single stranded

regions. As mentioned above, RNA structure often happens to be more complex than

simple palindromes surrounding loops. To be able to represent all these nested and recursive

palindromes, rule number 4 is added to this set. Finally, although this grammar is proved

ambiguous, we might actually prefer it to the non-ambiguous one for the reason that it is

capable of modeling an underlying biological ambiguity, like the one shown above.

I
C C A A G G U U

Figure 4.7: A sample pseudoknot

4.4.1 Pseudoknots Language

The grammar introduced above is only capable of generating secondary structures without

pseudoknots. Features such as pseudoknots are referred to as non-orthodox secondary struc-

ture. Pseudoknots can be viewed as palindromes that are interleaved rather than nested

CHAPTER 4. R N A SECONDARY STRUCTURE 41

(Figure 4.7) and can be described using context-sensitive grammars. The formula uvu-'v-'

is usually used to define a simple pseudoknot language. The proposed grammar for this lan-

guage by Searls [53] is:

4.5 Summary

In this chapter we discussed the secondary structure of RNA in detail. We presented one

of the famous definitions of RNA secondary structure in a graph where bases are shown

as vertices and edges define the links between bases inside the secondary structure. We

also introduced two general approaches for solving the problem of RNA secondary structure

prediction. As an example, Zuker's algorithm for RNA secondary structure prediction was

presented in detail. In the next chapter, we explain two state-of-the-art methods that are

used to solve the inverse problem of RNA secondary structure prediction namely, RNA

secondary structure design.

Chapter 5

Current Methods

There are currently two known methods to deal with the RNA secondary structure design

problem. Both methods' objective is to find a sequence for which the minimum free energy

(MFE) secondary structure matches the given structure. However, as mentioned in Chap-

ter 4, the complexity of the best known algorithm for finding the secondary structure of

RNA is 0(n3) which would be a major drawback for both methods. Each method has a

unique approach to overcome this problem.

RNA-SSD [5] is based on a stochastic local search (SLS) approach that uses a proba-

bilistic sequence initialization heuristic, hierarchical decomposition of the given structure,

and a randomized iterative improvement method for finding sequences for the resulting sub-

structures. RNAinverse [33] also initializes the sequence but for each step it will change a

base randomly and then compute the free energy for the result. In the following sections,

we will explain these two existing methods in detail.

5.1 RNA-SSD: RNA Secondary Structure Designer

The RNA secondary structure design problem can be defined as follows: given an RNA

secondary structure S*, find a sequence X * such that the minimum free energy structure

for X * matches S*. Let denote a function that assigns to each RNA sequence X , a

secondary structure S* that minimizes free energy over all possible secondary structures S

of X . Now the problem can be formalized as finding a sequence X * such that @(Xt) = S .

There are two key components to RNA-SSD algorithm: stochastic local search (SLS)

procedure and initial design. The core of the RNA-SSD algorithm is a stochastic local search

C H A P T E R 5. CURRENT METHODS 43

(SLS) procedure that iteratively modifies single unpaired bases or base-pairs of a candidate

strand in order to obtain a sequence that folds into the desired structure. After each modifi-

cation, the SLS algorithm makes a call to the RNA secondary structure prediction algorithm

(with ~ (n " complexity) to evaluate the new sequence. To reduce the number of calls to this

algorithm, the input secondary structure and the initial sequence are hierarchically decom-

posed into substructures and at the lowest level, the SLS algorithm is applied only to those

substructures. These partial solutions are then combined and form candidate solutions (not

a final answer) for the larger subproblems. Considering that these partial solutions are not

independent from each other and may result in totally different structure, some additional

calls to the folding algorithm are often needed during the combination phase.

For each candidate solution X , S is calculated as S = @(X) and given a distance metric

d which in this algorithm merely measures the number of incorrectly bonded bases, d(S, S*)

is minimized.

5.1.1 Sequence Initialization

A good initial design is another key component for the RNA-SSD algorithm to support the

goal of the next phase, i.e. minimizing the number of candidate solution evaluations. During

the initialization phase, bases are assigned to the sequence by using different probabilistic

models for paired and unpaired bases. Three insights are used in this phase to initialize the

sequence in such a way that it is as close as possible to the MFE structure.

a The paired bases should be assigned in such a way that they form complementary

base pairs.

a CG and GC base pairs are assigned with more probability to the base-pairs as they

are energetically more favorable than other base pairs.

a To further minimize the potential for undesired interactions between subsequences,

short sequences of bases (sequence rnotifs) are assigned to contiguous segments of the

target structure.

Using these insights, the whole initialization phase can be explained as follows: initially,

the structure is divided into chunks of successive paired or unpaired bases with the maximum

size of l,,, somewhat arbitrarily set to 10. Next, each segment is traversed from the 5' to

the 3' end, and a sequence motif m is assigned. The probabilities for choosing each base for

CHAPTER 5. CURRENT METHODS 44

the motifs are PA, PC, p c , pu with p c = p c , PA = pu = 112 - pc . For chunks of paired bases

p c = 0.33 is used while for the unpaired chunks p c is set to 0.17.

5.1.2 Sequence Decomposition

For the phase of sequence decomposition, both RNAinverse and RNA-SSD split the structure

a t multiloops. However for RNA-SSD the split continues recursively to obtain a decompo-

sition tree whose root is formed by the full target structure S and whose leaves correspond

to small substructures of S . The whole process of sequence decomposition for the RNA-

SSD algorithm can be explained as follows: the algorithm begins with the whole structure

and continues decomposition as long as the structure to be decomposed is not smaller than

a certain limit MaxSplit and both resulting substructures are not smaller than MinSplit.

MaxSplit is set to 70, and MinSplit is set to 30.

5.1.3 Stochastic Local Search Procedure

The SLS procedure starts from the leaves of the decomposition tree (the smallest substruc-

tures) and iteratively modifies single bases of the subsequence initially assigned to that

substructure which are in conflict with the desired structure. The iteration continues until

either a subsequence is found for which the MFE structure corresponds to the substructure

or a maximal number of iterations have been performed (5000 iterations). The sequences

associated to the leaves are merged together to form a candidate sequence for the corre-

sponding substructure.

5.2 RNAinverse

This algorithm works through an adaptive walk search on so-called compatible sequences, i.e.

the sequences that can form a base pair at the required positions in the desired structure. A

compatible sequence can but need not have the target structure as its minimum free energy

structure.

The RNAinverse algorithm starts by choosing a random sequence lo and in each step,

modifies it such as to minimize a cost function given by the structure distance: f (I) =

d(S(I) , I) between the structure S(I) of the sequence I and the target structure S*. Similar

to RNA-SSD, to avoid repeated calls to the cost function which results in many executions

CHAPTER 5. CURRENT METHODS

Table 5.1: Performance results for RNA-SSD and RNAinverse on sets of artificial RNA
structures. Each line represents the results of 100 RNA instances. The RNA-SSD and
RNA-inverse columns show the fraction for which the respective algorithm found solutions.
The columns, t(RNA-SSD) and t(RNA-SSD)*10 show the fraction of structures which RNA-
SSD solve faster than RNA-SSD and at least 10 times faster respectively.

RNA Length RNA-SSD RNAinverse t (RNA-SSD) t (RNASSD)*lO

178-447 100/100 63/100 100/100 571100
164-465 85/lOO 5/100 83/86 73/86
172-409 88/lOO 3/100 90192 81/92
203-402 88/lOO 21100 81/84 72/84

of the folding algorithm (with expensive time complexity), the structure is partitioned to

smaller substructures and they would be the first target for optimization. This method has

two significant benefits: first the number of calls to the folding algorithm is substantially

decreased and second, it reduces the probability of getting stuck in a local minimum.

As mentioned above, for the actual optimization phase, the adaptive walk is used. The

adaptive walk will try a random mutation by exchanging one base that is not paired in

the desired structure, or exchanging two paired bases with regards to the compatibility.

The change is accepted if the cost function is reduced and rejected otherwise. The search

steps continue until either a solution is found or a certain number of changes have been

induced without any advantageous results. Finally, the algorithm concatenates the resulting

subsequences to find the sequence corresponding to the full structure.

5.3 Comparison

As shown above, the major differences between RNA-SSD and RNAinverse are in sequence

initialization, structure decomposition and sequence assembly as well as substructure search.

The RNA-SSD algorithm is evaluated in [5] on randomly generated, computationally pre-

dicted structures of naturally occurring sequences from the Ribosomal Database Project

(RDP), and on biological structures as well.

The results of the comparison between RNA-SSD and RNAinverse show that RNA-SSD

substantially outperforms RNAinverse on a broad range of structures. Some of these results

are shown in Table 5.1

Chapter 6

To solve the problem of RNA secondary structure design, we made use of the set of Context

Free grammar rules for RNA secondary structure prediction introduced in Section 4.4 :

This set of relatively simple rules presents a profound insight into the secondary structure of

RNA and has been used as a basis for some RNA secondary structure prediction algorithms

[B]. We use CHR to implement this grammar in order to exploit the bottom-up characteristic

of CHR rules, as well as keep track of ambiguous readings with no special overhead.

At the first step, we translated these rules into the format of CHR rules, adding only

one extra rule to this set which ascertains that the bases right after a loop would not be

able to be paired together. In our system, the structure of the RNA (input data) is shown

in the format of CHR constraints, e.g, for expressing that the base number 1 and the base

number 43 in the sequence are paired together, we add the constraint pa i r (1 ,43) or if base

number 3 is unpaired, the corresponding constraint would be upa i r (3) . One advantage of

our input format to the input format used by RNAinverse and RNA-SSD is its capability

of representing pseudoknots in the input structure.

After constructing the CHR rules, the problem becomes that of assigning nucleotides

to each position given the input constraints. One trivial solution is to randomly assign

CHAPTER 6. CHR-STATRNA 47

one of the Watson-Crick pairs or wobble pairs to each base pair and assign one of the four

nucleotides (A, C , G, and U) to the unpaired bases.

The problem with the random solution is that, although we follow the structure to build

the sequence, there is no preference criteria to select between the existing pairs, so we might

end up with a sequence that may not actually fold into the input structure. As mentioned

earlier, the number of GC pairs has an important role in stabilizing a certain structure. For

instance, if we assign base G to position 10 and base U to position 42 and if we have a base C

in position 43, in the end, the structure might include p a i r (10,43) instead of p a i r (10,42)

because of the fact that GC base pairs are stronger than GU pairs (Figure 6.1).

Figure 6.1: The left picture shows the original structure while the right picture illustrates
the structure of the designed sequence.

Here, we offer two solutions to this problem: use of probabilities and use of energy

tables. In the first solution which is the statistical version of chrRNA, namely chr-statRNA,

we find the probabilities that are believed to govern the proportion of base pairs and single

bases within RNA sequences and combine them with the CHR rules. The second approach

which is the loop energies version of chrRNA, chr-loopRNA, exploits the energy tables that

are currently used in several methods of RNA secondary structure prediction such as mfold

[64, 421.

6.1 Use of Nucleotide Composition Probabilities

Algorithms for RNA secondary structure prediction that use a sequence comparison method

design models of nucleotide frequency for each type of RNA (rRNA, tRNA, etc.) [17]. These

models generally depict the frequency of each nucleotide at a certain position for unpaired

bases and the frequency of the possible base pairs for the paired positions. However, our

problem of interest, RNA secondary structure design, is a more general problem and the

CHAPTER 6. CHR,-STATRNA 48

position of the nucleotides and the type of RNA may or may not be defined by the user.

In our system, we are interested in finding the probabilities of having each single base and

each base pair inside wide-ranging RNA.

As a result, we were not able to use the already made models. Instead we calculated the

probabilities by comparing 200 RNA sequences of different kinds together. These sequences

were selected from several databases of known RNA secondary structures such as Gutell

lab's comparative RNA website [17], tmRNA website [32] and 5 s Ribosomal RNA database

[56]. After comparing 200 test cases with various lengths from 100 to 1500 bases, we found

the following probabilities for each base pair:

The other set of probabilities which are of interest are the probabilities for an unpaired

base to be one of the 4 nucleotides: A, C , G, or U . This set of probabilities includes all

kinds of loops but it can also easily be divided into separate lists for each type of loop. The

results are as follows:

There is a simple explanation for the above probabilities. Base G can be paired with

both base C and base U and as the number of GC pairs is important for RNA stabilization,

the probability of an unpaired base to be base G becomes smaller. However, base U is not

as important as base G for stabilization but still can be paired with both base G and base

A and that is why it has the second smallest probability to stay unpaired. Both base A and

base C can only be paired with one nucleotide but as most base C tend to be paired with

base G, the probability of an unpaired base to be base C would become less than base A.

6.1.1 Combining the Probabilities with the Rules

Mere translation of the RNA grammar into CHR rules is not enough for our purpose which

is assigning nucleotides and base pairs based on certain probabilities. To achieve our goal,

the probabilities need to be merged with the rules. Probabilistic Constraint Handling Rules

[31] introduced by Friihwirth et. al. seems a reasonable solution to this problem, but this

feature has not yet been added to current Prolog engines such as Sicstus; SWI, etc.

Fortunately, for our grammar rules we only need to consider the probabilities for the

first two sets. The first set includes the rules which assign one of the 6 compatible pairs

CHAPTER 6. CHR-STATRNA 49

to a base pair while the second set contains four rules corresponding to the four possible

nucleotides A, C, G, and U to be assigned to the single bases.

This enables us to merge each set of rules together to form a single rule where probabil-

ities are involved by generating a random variable in the guard section of the rules, which is

the only part that accepts Prolog predicates. Next, this random variable is compared to the

above calculated probabilities: for instance for the following rule if the random variable I

is less than 0.53, a GC pair is assigned to pair(X1 ,Yl). The argument L in constraint s/3

contains the list of bases already added to the sequence and the predicate f ind/3 assigns a

base pair to arguments M and N based on the random variable I.

Note that the probabilities are not directly calculated inside the rules. Instead, a random

variable is generated and then the predicate f ind/3 is called to find a base pair M, N

according to the probabilities. In our algorithm we do not differentiate between a GC vs.

CG pair. When we examine the random variable inside the rule, in order to assign the base

pair, we make use of another predicate choose/4 which chooses between the symmetric base

pairs: GC or CG, AU or UA and GU or UG with a probability of 0.5 .

Above, you can see the Prolog rules for predicates f ind/3 and choose/4. The numbers

inside the rules represent the cumulative probabilities.

As mentioned before, RNA-SSD and RNAinverse do not accept pseudoknots in the input

structure. However, our implementation provides the capability of handling structures with

pseudoknots through the following rule. This rule finds pairs of nucleotides which violate the

third condition in the mathematical definition of RNA previously presented in Section 4.1

and separates them into two strings and at the same time, according to the probabilities,

assigns them one of the possible base pairs.

CHAPTER 6. CHR-STATRNA

6.1.2 Rules

Primarily, the idea behind statistical chrRNA was to only apply the RNA grammar rules

(which were adapted to CHR format) along with the probabilities. For improving the

chrRNA system, we tried going beyond the basic RNA grammar rules by adding new rules

to the system which were not easy to deduce at the beginning. They were actually found

by comparing the secondary structure of the predicted sequence with the original structure.

For adding these rules, new constraints are added to the system to give us the capability

to distinguish between different conditions. Here, we go through the new rules as well as

the old ones which have been changed partly to include new constraints, but first we shall

explain the distinction between the two constraints s/3 and loop/3. The constraint loop/3

is used in this program to join the unpaired bases inside the structure in a loop format while

the const,raint s/3 refers to any type of structures such as loops, stacked pairs and their

combinations. For both constraints, only the first two parameters, i.e. the beginning and

ending positions of the structure are shown in the corresponding figures.

Rule 1, simply assigns a nucleotide to a single base using random variable I and the

predicate f ind/2 and adds the constraint loop/3 to the constraint store. Moreover,

a constraint base/2 is also created which holds the position of the single base as well

as the assigned nucleotide.

C! Rule 1:

upair(X)<=> random(I),find(M,I) I loop(X,X,[X:Ml),base(X,M).

0 Rule 2 is used to join two consecutive loops together.

C! Rule 2:

loop(X,Yl,Ll), loop(Xl,Y,L2)

<=> XI is Yl+l,append(Ll,L2,L) I loop(X,Y,L).

Through rule 3, a complete hairpin loop is formed. As indicated earlier, while designing

the hairpin loops the two ends should be examined to ascertain that they won't form a

CHAPTER 6. CHR-STATRNA 51

base pair when the secondary structure is formed. The predicate check_pair/3 takes

two bases and changes one of them in case they can form a complimentary base pair.

0 Rule 3:

pair(X,Y),base(Y1,N1)\loop(X1,Y1,[X1:M11L1l),base(X1,M1)

<=> X1 is X+1 ,Y is Yl+l ,random(I) ,f ind(M,N, I) ,check-pair(N1,Ml ,M2) I
s(X,Y, [X:M,Y:N,Xl:M2ILll) ,base(Xl,M2).

a Rule 4 is used to join a base pair to an already formed structure where the ends of

the structure are paired together.

@ Rule 4:

pair(X,Y)\pair(Xl,Yl),s(Xl,Yl,Ll)

<=> XI is X+1,Y is Y1+1, random(1) ,find(M,N,I) I s(X,Y, [X:M,Y:NlLl]).

a Rule 5 is a variation of rule 4 where bases in positions XI and Y1 are single. Just like

rule 3, we must make sure the ends of the structure s are not matching.

@ Rule 5:

pair(X,Y) ,base(Yl ,Ni)\s(Xl ,Y1, [XI :M1 IL11) ,base(Xl ,MI)

<=> XI is X+1, Y is Yl+l,random(I) ,f ind(M,N, I), check_pair(NI,Ml,M2) I

s(X,Y, [X:M,Y:N,Xl:M2ILll) ,base(Xi,M2).

a Rule 6 is also similar to rule 4 except that here Xi is paired with another base in

position Z rather than Y1 where the base in the position right after Z is unpaired

(position Zi). A base pair is assigned to X,Y in such a way that Zi would not be

able to form a complementary pair with X (Figure 6.2). This rule is rewritten with

pair (XI ,Z) replaced with pair (Z ,Y1) and in this case position Yi and position Z1

are examined.

CHAPTER 6. CHR-STATRNA

Figure 6.2: Rule 6

0 Essentially, rule 7 is a variation of rule 6 when the base in position Z1 is paired rather

than unpaired. As a result, there is no need to check whether bases assigned to position

X and position Zl are or are not able to form a complementary pair (Figure 6.3) . Again,

this rule is rewritten for the case that we have pair (Z , Y 1) instead of pair (XI, Z) .

C! Rule 7:

 air(^,^) ,pair(Xl ,Z) ,pair(zl ,T)\s(Xl ,Yl ,Ll)

<=>XI is X+1, Y is Yl+l,Z=\=Yl, Z1 is Z+l,random(I) ,find(M,N,I) I
s(X,Y, CX:M,Y:NILlI).

Figure 6.3: Rule 7

0 Rule 8 corresponds to the rule S +- SS which is used to join any two consecutive

structures together. There is no probability involved and no special conditions need

to be examined.

@ Rule 8:

s(X,Z,Ll) ,s(Zl,Y,L2)<=>Zl is Z+1, append(Ll,L2,L) I s(X,Y,L).

CHAPTER 6. CHR-STATRNA 53

0 Rule 9 deals with bulge loops in general (Figure 6.4). This rule is rewritten for the

case that the loop is adjacent to position Y.

Cl Rule 9:

pair(X,Y) ,pair(Zl,Yl)\loop(Xl,Z,Ll) ,s(Zl,Yl,L2)

<=>XI is X+1, Z1 is Z+1,Y is Yl+l,random(~),find(M,N,I),

append([X:M,Y:NlLl] ,L2,L) 1 s(X,Y,L).

Figure 6.4: Rule 9

0 Rule 10 addresses internal loops. I\/Iost of the required constraints are similar to the

previous rule except that here two loops are involved. Using the predicate check_pair/3

both ends of the two loops must be changed in a way that formation of complementary

base pairs would be impossible for Z-T1 and XI-Yl (Figure 6.5).

@ Rule 10:

Pair(X,Y) ,Pair(Zl,T) ,base(Z,M2) ,base(~l,Nl)\loop(X1,Z, [Xl:Ml ILl] 1,

loop(~1,~1, [~1:~21L31) ,s(Zl,T,L2)

<=>Xi is X+l, Z1 is Z+1, T1 is T+l, Y is Yl+l, random(11, find(M,N,I),

check - pair(N1,M1,M3) ,che~k-~air(~2,~2,~3) , a p p e n d ([~ : ~ , ~ : ~ , ~ 1 : ~ 3 1 ~ 1 1 ,~2,~4),

append(L4, [Tl:N31L3] ,L) I s(X,Y,L)

0 To form a bulge loop we make use of rule 9. However if the endings of the structure

s/3 do not form a base pair together we make use of rule 11 (Figure 6.6). This rule is

also rewritten for the symmetric condition.

CHAPTER 6. CHR-STATRNA

Figure 6.5: Rule 10

Q Rule 11 :

pair(X,Y) ,pair(Zl ,T)\loop(Xl ,Z,Ll), s(Z1 IYl ,L2)

<=>xi is x+l, ZI is Z+l ,Y is ~ 1 + 1 ,T=\=YI ,random(I) , f ind(M,N,I)

append([X:MIY:NILl] ,L2,L) I ~(X,YIL).

Figure 6.6: Rule 11

The above set of rules, almost considers all different substructures that might be found

inside the secondary structure of RNA. There are some other rules in the final system

which are not very significant but still are needed for the whole system to function properly.

In the next chapter, we will discuss our second approach, chr-loopRNA, which solves the

RNA secondary structure design problem using energies assigned to loops for calculating

the probabilities. Finally, we will compare the results of both approaches with RNA-SSD

and RNAinverse.

Chapter 7

As previously mentioned, Zuker's method for RNA secondary structure prediction with

energy minimization is one of the most practical and efficient methods in this field with

0(n3) complexity. This algorithm was explained in detail in Section 4.3.2. In Section 4.3.3,

we discussed the loop dependent energy rules and their corresponding energy tables used

in Zuker's algorithm to calculate the energy for all possible kinds of loops inside the RNA

secondary structure.

In our system, we do all the calculations beforehand and use the final results inside the

rules. The major difference between the two versions of chrRNA is that for chr-statRNA,

the probabilities were driven from the sequences themselves while in chr-loopRNA, we use

the loop energy tables used by the mfold algorithm. It might be argued that using these

energy tables makes chr-loopRNA dependent on the folding algorithm used for evaluation

and makes the whole algorithm biased. Although we use these energy tables to find the

required probabilities, the whole structure of the rules does not change if we change the

probabilities. In the future, if a more efficient folding algorithm is developed, we can switch

to this new algorithm by simply changing the probabilities inside the corresponding Prolog

rules (see Section 6.1.1).

7.1 Use of Energy Tables

For each energy table we calculated a set of probabilities by using the following formula:

CHAPTER 7. CHR-LOOPRNA

Table 7.1: The probabilities for stacking base pairs. The entry (i, j) is the probability of
the base pair in row i being stacked on top of the base pair in column j .

Xi corresponds to the entries in the particular energy table whose corresponding prob-

abilities we are interested in. Note that the energies inside the tables are mostly negative,

so to calculate the probabilities we should consider the absolute value for E(X i) . Next we

shall explain the different types of energy tables and the consequent results for each table.

X\Y
AU
CG
GC
GU
UA
UG

7.1.1 Stacking Energies

AU CG GC GU UA UG)
0.10 0.14 0.16 0.12 0.13 0.15
0.23 0.22 0.18 0.28 0.25 0.23
0.27 0.22 0.25 0.30 0.27 0.27
0.14 0.16 0.16 0.10 0.17 0.14
0.14 0.16 0.16 0.20 0.11 0.14
0.12 0.10 0.09 0.00 0.07 0.07

In Table 7.1, you can see the probabilities for stacking base pairs, calculated using the

mfold energy tables for stacking energies. One of these tables was shown in Figure 4.5.

Each probability (i, j) inside the table represents the probability of having the base pair in

row i on top of the base pair in column j . As there are so many entries in this table (and the

following tables), we used a heuristic to reduce the number of probabilities and consequently

reduce the total number of required Prolog rules. This heuristic is based on the fact that

the whole structure becomes more stable if we lower the energy of the whole sequence folded

onto that structure. Here we do not calculate the whole energy to be able to reduce it, but

a t each point by having the base pair in column j , we can choose the base pair in row i

that gives us the lowest energy (higher probability). Some of the values for probabilities

are quite close to each other and for this reason we can not exclude all except the highest.

For this reason, we only excluded the ones lower than a certain threshold a = 0.1. The

probabilities were then normalized on this new set.

CHAPTER 7. CHR-LOOPRNA

Table 7.2: The probabilities for terminal mismatch of hairpin loops. Each entry (i, j) refers
to the probability of having the base pair in row i as the closing base pair of a loop which

7.1.2 Terminal Mismatch Stacking Energies (Hairpin Loops)

begins with the incompatible pair in column j .

For hairpin loops, the closing base pairs play an important role in stabilizing the structure.

As a result for calculating the energy of RNA secondary structures, the mfold algorithm

makes use of a set of terminal mismatch stacking energy tables which are specifically gen-

erated for the closing base pairs of hairpin loops. Using these energy tables we calculated

the probabilities using Equation 7.1. These probabilities are displayed in Table 7.2 with 6

rows corresponding to the 6 possible base pairs and 10 columns which are the remaining

permutations of two nucleotides together (not forming base pairs).

Here, we only calculated the probabilities while there is a legitimate base pair closing

a hairpin loop. Yet, the mfold algorithm should be able to calculate the energy for every

possible structure. As a result there are also energy tables for the case in which a non

compatible pair is closing a hairpin loop. Such energy tables are filled with 0's and do not

have any effect in our calculations. For the probabilities of this table, the threshold a has

been set to 0.1 and the remaining probabilities have been normalized respectively.

X\Y
AU
CG
GC
GU
UA
UG

7.1.3 Terminal Mismatch Stacking Energies (Interior loops)

AA AC AG CA CC CU GA GG UC UU

0.08 0.11 0.07 0.04 0.09 0.12 0.13 0.04 0.09 0.15
0.38 0.33 0.31 0.37 0.41 0.47 0.25 0.36 0.44 0.27
0.28 0.33 0.29 0.41 0.32 0.29 0.27 0.31 0.31 0.21
0.00 0.11 0.07 0.04 0.09 0.12 0.10 0.07 0.09 0.15
0.13 0.07 0.13 0.07 0.05 0.00 0.16 0.16 0.03 0.11
0.13 0.05 0.13 0.07 0.04 0.00 0.09 0.06 0.04 0.11

The closing base pairs of interior loops play the same role as the closing base pairs of the

hairpin loops. However, because of the difference between the structure and the fact that

there are two closing base pairs for every interior loop, these energies are different, therefore

the resulting probabilities would be different. This set of probabilities is shown in Table 7.3.

Once again, the threshold a is used to reduce the number of probabilities and the rules.

CHAPTER 7. CHR-LOOPRNA 58

Table 7.3: The probabilities for terminal mismatch of interior loops. (i, j) represents the
probability of having the base pair in row i as the closing base pair of an interior loop which
begins with the incompatible pairs in column j .

7.1.4 1x1 Interior Loop Energies

Above, we calculated the probabilities for the closing base pairs of interior loops. However,

inside the interior loops there are other energy forces involved which influence the structure.

These energies are calculated based on the size of the loops and the surrounding base pairs.

For 1x1 interior loops, i.e the symmetric interior loops with only two incompatible bases

surrounded by two closing base pairs, the resulting probabilities were 1 for almost all pairs

of base pairs except for the two pairs of CG, CG and GC, GC. In Table 7.4, the probabilities

are calculated for 1x1 interior loops with those surrounding base pairs. For the remaining

34 pairs of base pairs, the only pair of incompatible bases which result in negative energy

is GG which is selected with the probability of 1.

Table 7.4: The probabilities for single mismatch energies inside 1x1 interior loops with
CG-CG and GC-GC as the two surrounding base pairs.

CHAPTER 7. CHR-LOOPRNA

7.1.5 1x2 Interior Loop Energies

1x2 interior loops are asymmetric loops with one base on one side of the loop and two bases

on the other side, surrounded by two closing base pairs. Inside the energy tables used by

the mfold algorithm, one of the bases inside the loop (from the side with two bases) and the

surrounding base pairs are assumed constants and the energies are calculated for having a

pair of incompatible bases in the remaining sites. Unfortunately the energies inside these

tables are all positive and we can not calculate the probabilities like before, by considering

the ones with negative energy. Again we decided on another threshold P = 3 to eliminate

some of the possible pairs and reduce the number of choices. As a result, any entry for which

the energy is above P was excluded from the set of possible pairs. For most of the tables,

this threshold restricted our domain to only one possible incompatible pair (Table 7.5).

Table 7.5: For the entries identified by x, whenever the respective base pairs on the row and
the column surround a 1x2 interior loop, if one of the bases inside the 2 base loop is chosen
to be A, we choose the pair GG as the remaining bases for the loop, otherwise if it is either
U or C , we choose the pair UU.

For the rest of the entries, the probabilities are calculated in Table 7.6-7.10. Once

again to reduce the number of probabilities to deal with, the threshold a is used and the

probabilities are normalized once more.

7.1.6 2x2 Interior Loop Energies

AU

2x2 interior loops are symmetric interior loops with two surrounding base pairs and two

bases in each side of the loop where each base on a side of the loop forms a mismatch pair

with the opposite base on the other side. Considering that we have 6 base pairs and 10

mismatch pairs, the number of energy values and the resulting probabilities for 2x2 interior

CG AU

x

GC GU UA

x x x

UG

CHAPTER 7. CHR-LOOPRNA

Table 7.6: The probabilities for 1x2 interior loops with the following pairs of surrounding
base pairs: AU-CG, AU-GC, CG-AU,CG-UA, CG-GU, CG-UG, GC-AU, GC-UA, GC-GU,
GC-UG, UA-CG, UA-GC, GU-CG, GU-GC, UG-CG, and UG-GC. The bases in Y represent
one of the bases in the 2-base loop and the mismatch pairs in X are the remaining bases
inside the loop.

loops are 6 x 6 x 10 x 10 = 3600. But the good news is that many of these values are

positive and only a few of them are negative which are the ones that we use to calculate the

probabilities. This on average would shrink the tables to 1/20 of their original size. Once

again, we use the same threshold a to reduce the number of entries even more. The final

results for the probabilities are shown in Table 7.11-7.16 .

7.1.7 Tetra-loops Energies

To calculate the energy of a hairpin loop (less than 30 nucleotides), Equation 4.1 is used

but there are some exceptions where a bonus energy is also considered to calculate the

whole energy. These exceptions include tri-loops and tetra-loops. The bonus energies for

tetra-loops used by the mfold algorithm are available and we used them to calculate the

probabilities for such loops (Table 7.17).

CHAPTER 7. CHR-LOOPRNA

Table 7.7: The probabilities for 1x2 interior loops while the surrounding pair is CG-CG.
The bases in Y represent one of the bases in the 2-base loop and the mismatch pairs in X
are the remaining bases inside the loop

Table 7.8: The probabilities for 1x2 interior loops where the closing base pairs of the loops
could be either CG-GC or GC-CG. The bases in Y represent one of the bases in the 2-base
loop and the mismatch pairs in X are the remaining bases inside the loop

A C G U

0.07 0.11 0.20 0.00
0.09 0.16 0.24 0.00
0.16 0.17 0.26 0.00
0.08 0.10 0.00 0.09
0.09 0.06 0.00 0.20
0.09 0.10 0.00 0.15
0.15 0.00 0.22 0.00
0.27 0.00 0.08 0.00
0.00 0.10 0.00 0.24
0.00 0.20 0.00 0.32

CHAPTER 7. CHR-LOOPRNA

Table 7.9: The probabilities of 1x2 intereior loops where the surrounding pair is GC-GC.
The bases in Y represent one of the bases in the 2-base loop and the mismatch pairs in X
are the remaining bases inside the loop

Table 7.10: The probabilities for 1x2 interior loops where the closing base pairs are: AU-
AU,AU-UA, AU-GU, AU-UG, UA-AU, UA-UA, UA-GU, UA-UG, GU-AU, GU-UA, GU-GU
,GU-UG, UG-AU, UG-UA, UG-GU, and UG-UG. The bases in Y represent one of the bases
in the 2-base loop and the mismatch pairs in X are the remaining bases inside the loop

A C G U
0.00 0.00 0.16 0.00
0.00 0.00 0.28 0.00
0.00 0.00 0.34 0.00
0.00 0.00 0.22 0.00
1.00 0.00 0.00 0.00
0.00 1.00 0.00 1.00

CHAPTER 7. CHR-LOOPRNA

Table 7.11: The probabilities of having AU as one closing base pair while the other pair
is determined by the base pairs in the first row (labeled Y). The two pairs in column one
(labeled X) are mismatch pairs inside the 2x2 interior loops.

x\ y
AC, GU
AG,AG
CA,GU
GA,AG
GU,UG
UG,GU

Table 7.12: The probabilities of having CG as one closing base pair while the other pair
is determined by the base pairs in the first row (labeled Y). The two pairs in column one
(labeled X) are mismatch pairs inside the 2x2 interior loops.

CHAPTER 7. CHR-LOOPRNA 64

Table 7.13: The probabilities of having GC as one closing base pair while the other pair
is determined by the base pairs in the first row (labeled Y). The two pairs in column one
(labeled X) are mismatch pairs inside the 2x2 interior loops.

Table 7.14: The probabilities of having UA as one closing base pair while the other pair
is determined by the base pairs in the first row (labeled Y). The two pairs in column one
(labeled X) are mismatch pairs inside the 2x2 interior loops.

Table 7.15: The probabilities of having GU as one closing base pair while the other pair
is determined by the base pairs in the first row (labeled Y). The two pairs in column one
(labeled X) are mismatch pairs inside the 2x2 interior loops.

CHAPTER 7. CHR-LOOPRNA

Table 7.16: The probabilities of having UG as one closing base pair while the other pair
is determined by the base pairs in the first row (labeled Y). The two pairs in column one
(labeled X) are mismatch pairs inside the 2x2 interior loops.

Table 7.17: The tetra-loops and their corresponding probabilities. The first and last bases
represent the closing base pairs of the loops.

1 CGCGAG I 0.04 (UGAGAG 1 0.04

Tetra-Loop

GGGGAC
CGAAAG
CGCAAG
CGGAAG
CGUGAG
CUACGG

I CGAGAG I 0.03 I AGAAAU 1 0.03
I CGUAAG I 0.03 I CUAACG I 0.03

Probability

0.05
0.05
0.05
0.05
0.05
0.04

Tetra-Loop

GGUGAC
GGAGAC
GGAAAC
CUUCGG
CGAAGG
GGCAAC

UGAAAG
GGGAAC
AGCAAU

I I I

GUGAAC I 0.02 I UGGAAA I 0.02

Probability

0.05
0.05
0.05
0.05
0.04
0.04

CGGGAG
GGCGAC

0.03
0.02
0.02
0.02
0.02

GGAAGC
UGAAAA
AGUAAU

0.02
0.02
0.02

AGUGAU
GGGAGC

0.02
0.02

CHAPTER 7. CHR-LOOPRNA

7.2 Designing the Loops

We discussed the energy tables and the probabilities used for assigning single bases as well as

base pairs inside certain kinds of loops. However, there are still some positions inside most

of the secondary structures which are not covered. Specifically, except for 1x1, 1x2, and 2x2

interior loops, there are no energies assigned to loops of different sizes. Zuker's algorithm

uses the energy rules introduced in Section 4.3.2 for each type of loop which usually only

consider the length of the loop and does not differentiate between different bases and their

arrangernents.

For RNA secondary structure design. we have the freedom to choose every single base,

but we should be careful with the selections we make. For example, suppose we are designing

a 15-base hairpin loop. If we assign G to one position and assign C to the position next to it

and after passing about 4 nucleotides we assign nucleotide G and C adjacent to each other,

the chances are that when the secondary structure is forming, the hairpin loop will not form

like the original structure. Instead these four bases will form two adjacent base pairs and

change the original hairpin loop structure into an internal loop and a smaller hairpin loop

(Figure 7.1).

Figure 7.1: In a), a hairpin loop is shown with CG assigned to two pairs of two adjacent
bases. In b), the structure of the same sequence in reality is illustrated.

7.2.1 A Heuristic

To overcome such problems while designing the loops, we use a heuristic to make sure we do

not assign to consecutive bases, nucleotides that might form strong base pair combinations.

To find such combinations, we studied the energy tables for stacking base pairs. These energy

tables present the energies assigned to all combinations of adjacent base pairs. Using these,

we came up with the best choices to assign to the adjacent position of every single base.

CHAPTER 7. CHR-LOOPRNA 67

Again, some of the values are quite close for some combinations, therefore we calculated the

probabilities and eliminated the ones less than a certain threshold a. The results are shown

in Table 7.18.

Here, as energies are mostly negative and the ones with the lowest energies are favorable,

we use the following formula to calculate the probabilities. As the values are all greater than

-3.00, we choose T = 3.00 to add to the energy values:

Table 7.18: In this table, any (i, j) entry represents the probability of having the base in
column j right after the base in row i inside the RNA sequence when it is read from 3' end
to 5' end.

If we change the value of T to 4 in the the above equation, all the resulting probabilities

would be above zero (although very small in some cases). This refinement would ascertain

that we do not completely remove the chance of having every two consecutive bases. But

on the other hand it might increase the chance that the loops in the final structure do not

exactly match the given structure (Figure 7.1).

7.3 Adding the Probabilities to the Rules

The probabilities we obtained above can not be combined with the limited set of RNA

grammar rules introduced in Section 4.4, therefore we have devised new rules to incorporate

each set of probabilities such as: stacking loops, terminal mismatch stacking in hairpin loops

and interior loops, etc. Below, you can see this set of new rules.

To assign bases to a generic loop, we use rule 1. The predicate f i n d p a t t e r d 3 , uses

the probabilities in Table 7.18 as well as a random variable and the first element of

CHAPTER 7. CHR-LOOPRNA 68

the loop to find a nucleotide for position X which would be attached to the head of

loop.

@Rule 1:

upair (X) , loop (XI, Y, [XI : N I Lll)

<=>XI is X+l, random(1) , f indpattern(N,M, I) 1

loop(X,Y, [X:M,XI:N(L~I) ,base(X,M).

a In rule 2, the goal is to add a closing base pair to a hairpin loop and form the structure

s/3 which contains the two end positions as well as their respective assigned bases.

Inside the guard, using the random variable I, the terminal mismatch pair closing

the hairpin loop (M, N) and the probabilities from Table 7.2, the predicate f indhm/4,

generates the base pair MI-Nl to assign to positions Xl and Yl. In addition, X and Y

are examined to make sure that the hairpin loop is not a tetra-loop.

@ Rule 2:

pair(X1,Yl) ,base(Y,N)\loop(X,Y, [X:MILI) < = is Xl+l, Yl is Y+l,

Y-X=\=3, random(1) ,findhm(M,N,Ml,Nl,I) I s(Xl,Yl, [Xl:Ml,Yl:NllLI)

a We use rule 2 to design any hairpin loops except tetra-loops for which rule 3 is used.

Instead of using the predicate findhm/5, here we use the predicate tetloop/4 that

only takes a random variable I as well as the positions of the base pair and outputs

the list of all the positions inside the loop and their assigned bases inside a list.

@ Rule 3:

pair(Xl,Yl)\loop(X,Y,-)<=>X is X1+1, Y1 is Y+1,

Y is X+3, random(I),tetloop(X1,Yl,L,I)I s(Xl,Yl,L).

0 In rule 4 the goal is to place a new base pair on top of a stack of base pairs. To achieve

this goal, bases are assigned to the new base pair in such a way that they conform to

the probabilities of stacking base pairs (Table 7.1). Using random variable I and the

CHAPTER 7. CHR-LOOPRNA 69

terminal base pairs of the stack M-N, predicate f i nds t / 5 generates bases MI-N1 to be

allocated to positions X 1 and Y 1 respectively.

Rules 5 to 8 examine the required constraints and design different types of interior

loops (1x1, 1x2 and 2x2). Rule 5, specifically targets 1x1 interior loops. Using random

variable I, a Watson-Crick base pair MI-N1 is assigned to the closing base pair XI and

Y l . Using the closing base pairs assigned to positions X ,Y and XI ,Y1, the predicate

f indint11/7 assigns a mismatch pair M3 ,N3 to the bases inside the loop (Figure 7.2).

Figure 7.2: A 1x1 interior loop

Rule 6, uses the probabilities calculated for 1x2 interior loops. In Figure 7.3, the con-

ditions needed to form a 1x2 interior loop are illustrated. Here, using the constraints

and the guard we make sure all the conditions hold. Moreover inside the guard, we

initially assign a Watson-Crick base pair MI-N1 to position X 1 and position Y 1 which

CHAPTER 7. CHR-LOOPRNA 70

are the closing base pairs of this structure, through the predicate f ind/3. Next, using

the newly assigned base pair, the base N2, the bases on top of the stack M,N, and the

random variable J , the predicate f i nd in t l 2 /8 finds the corresponding mismatch pair

for positions Z and 22 inside the loop.

Figure 7.3: A 1x2 interior loop

Similar to rule 5 and rule 6, rule 7 is also formulated to design an interior loop w

in this case is 2x2. Once again, a Watson-Crick base pair is assigned to the base

pair in positions X and Y and next the new base pair along with the closing base

pair of the structure s/3 and a random variable J are given as arguments to the

predicate f indint22/9 which by using the corresponding probabilities for 2x2 interior

loops, assigns the bases M2, N2 and M3, N 3 to the positions Zl,Z4,Z2,Z3 respectively

(Figure 7.4).

CHAPTER 7. CHR-LOOPRNA

Figure 7.4: A 2x2 interior loop

0 For the rest of the interior loops that do not fall into any of the above categories we

use rule 8 (Figure 7.5). Here, we only make use of Table 7.3 to find a base pair to

assign to the Xl ,Y1 pair, but first we make sure that the terminal pairs of the interior

loop are incompatible pairs by using the predicate check_pair/3. Following that, the

predicate f indmm/5 is called to find the closing base pair of the loop.

@Rule 8:

pair (XI ,Yl) ,base (Z4, N2) ,base (Z2 ,M3) \base (Zl ,M2) ,base (Z3, N3) ,pair (X ,Y) ,

loop(Z1,z2, [~l:M21Ll]) ,loop(Z3,Z4, [Z3:N3lL2) ,s(X,Y,L)

<=>XI is Zl-1, X is Z2+1,Z3 is Y+l,Yl is Z4+1,Z4-23 >1,

22-ZD1, check-pair(N2, M2 ,M4) , random(1) , f indmm(M4, N2 ,MI, N1, I) ,

check~pair(M3,N3,N4),append([Xl:Ml,Yl:N1,Zl:M4~Ll],L,L3),

append(L3, [Z3:N41L2] ,L4) 1 s(Xl,Yl,L4),base(Zl,M4),base(Z3,~4).

0 For bulge loops composed of only one base, the energy is calculated as if the closing

base pairs were stacked upon each other. As a result we use a separate rule that

considers 1-base bulge loops and for all the others, we use the same rule as the one

used for chr-statRNA:

CHAPTER 7. CHR-LOOPRNA

Figure 7.5: A generic interior loop

Above, we introduced a set of rules used in chr-loopRNA. In the next chapter we will

show the results of both chr-loopRNA and chr-statRNA.

Chapter 8

Results and Conclusion

For the evaluation phase, firstly we transform the secondary structure of each test case to

constraint format by using a Java based program, namely toCons t ra in t . j ava and then run

the chrRNA program for each of those. Using the probabilities turns the result of each run

on a test case into a completely new sequence. The sequence produced by chrRNA is then

fed into an RNA folding server and the output is the structure of this new sequence. The

two structures (the original structure and the output structure of the RNA folding server)

are then compared with each other and the differences are marked. We have used the mfold

RNA folding server by Zuker et. al. [64, 421. The accuracy of this algorithm is estimated

to be about 73% which shall be considered while evaluating the system. A schema of the

whole evaluation system is shown in Figure 8.1

8.1 Comparisons

We have tested chr-statRNA and chr-loopRNA programs with 100 RNA secondary struc-

tures (without pseudoknots) from Gutell lab's comparative RNA website [17], tmRNA web-

site 1321 and 5 s Ribosomal RNA database [56]. The test cases were selected from both

Prokaryote (Archaea and Bacteria) and Eukaryote. The reason we only included RNA sam-

ples without pseudoknots in our test domain is that as mentioned before, there is still no

efficient algorithm capable of predicting the secondary structure of RNA containing pseu-

doknots and therefore we are not yet able to assess chrRNA for designing sequences with

pseudoknots.

For comparison, we have also evaluated RNA-SSD and RNAinverse using the same RNA

CHAPTER 8. RESULTS AND CONCLUSION

Figure 8.1: The Evaluation System

toconstraint

samples. RNAinverse is one of the programs inside the Vienna RNA package1 [33]. RNAin-

verse and chrRNA were both executed on a Power Mac G5 with 1.5 GB memory and Dual

2 GHz PowerPC G5 CPU. RNA-SSD has been implemented [3] and is only available online2

through a web application. We have divided our test cases into three groups according to

Secondary Deslgned
Structure

--b Foldiqg
Constralnt
Format Serveir

their length. The results of our accuracy comparison between chr-statRNA, chr-loopRNA,

RNA-SSD and RNAinverse are displayed in Table 8.1. The results of comparison between

RNAinverse and chr-loopRNA (which is slightly more accurate than chr-statRNA) run time

are shown in Figure 8.2.

The results show that for RNA sequences of less than 300 bases, RNA-SSD is the excel-

A

lent choice with 0% error but this method is unable to find any solution for sequences longer

than 300 base within their time-limit of 1 hour. For RNA sequences between 300 and 500

RNA Seconday
Structure

bases, the RNAinverse and chr-loopRNA error rates are quite close to each other, however

as seen in Figure 8.2, chr-loopRNA is much faster in generating the results. For sequences

consisting of more than 500 bases, the difference between chr-loopRNA and RNAinverse

run-time becomes much more significant. While chr-loopRNA is able to design a 510 long

compare of the Deslgned Sequence

CHAPTER 8. RESULTS AND CONCLUSION

Table 8.1: Comparison between chr-statRNA, chr-loopRNA, RNA-SSD, and RNAinverse.
1 defines the length of the RNA sequence and columns 2-5 show the average error of each
method for 50 runs according to the length of the sequences.

Method 1 <= 300 300 < 1 <= 500 500 < 1 <= 1023 1023 < 1 <= 2000

chr-statRNA 8% 22% 2 7% 35%
chr-loopRNA 6% 20% 22% 30%
RNAinverse 4% 18% 20% -

RNA-SSD 0% - - -

sequence in 60 seconds, RNAinverse needs 7200 seconds to finish the same job. The RNAin-

verse run-time for a sequence consisting of 700 bases is 4 hours with 22% error where the

chr-loopRNA designs the same sequence in 13 minutes with 27% error. On the other hand,

while RNAinverse does not accept sequences longer than 1023 bases, chr-loopRNA and

chr-statRNA do not have any limitations on the length of the sequence.

8.2 Discussion

We implemented two simple while powerful systems based on CHR rules to design the RNA

secondary structure: chr-statRNA and chr-loopRNA. Although both methods incorporate

the same basic RNA grammar rules introduced in Section 4.4, each method extends this

set of rules and combines them with probabilities differently. While chr-statRNA uses the

nucleotide composition probabilities of RNA which are derived statistically, chr-loopRNA

exploits the energy tables used in the mfold algorithm [64, 421 to calculate the probabilities

to build up stacks and loops inside RNA. The results in Table 8.1 show that in general chr-

loopRNA performs better than chr-statR.NA. One reason that makes chr-loopRNA superior

is that energies involved with the arrangements of nucleotides inside RNA are the same for

all RNA types, but for chr-statRNA it might highly depend on which type of RNA we are

designing. For instance it has been proved that GU pairs are more abundant inside tRNA

molecules, so although the probability assigned to GU pairs is generally very low, for tRNA

molecules this probability is higher.

Above we also show that although the two existing methods, RNA-SSD and RNAinverse,

generate more precise results while designing shorter sequences (less than 300) by utilizing

CHAPTER 8. RESULTS AND CONCLUSION

0 500 1000 1500 2000

Length

Figure 8.2: chr-loopRNA and RNAinverse run time in seconds

other non trivial rules such as energy rules into their methods which are not very easy to

implement in our case of CHR rules; considering the execution time and accuracy factors

together, chr-loopRNA performance is similar to RNAinverse for RNA sequences between

the range of 300 and 500 bases. Finally, for RNA sequences longer than 500 bases, chr-

loopRNA outperforms both methods by generating results in a much smaller amount of time.

The reason for the large difference between chrRNA and RNAinverse response time is that

the system implementing RNAinverse employs some RNA secondary structure prediction

algorithms with 0(n3) time complexity. Although in general using such algorithms to

examine the designed sequences makes this method more accurate, the trade-off is a major

increase in run-time for longer sequences. In addition to this, the capability of handling

pseudoknots, makes our systems more powerful in comparison to the other existing methods.

Further advantages of our implemented systems are:

CHR rules are much more understandable by biologists, compared to the other pro-

gramming languages.

Using a rule-based system give us the opportunity to easily extend our system just by

employing new rules. Biologists can even write their own rules and constraints and

add them to the system.

0 Our systems do not depend on RNA secondary structure algorithms with the expensive

time complexity.

0 The probabilities involved inside the rules can be easily changed according to biologists'

CHAPTER 8. RESULTS AND CONCLUSION 77

needs. For instance they can easily change the ratio of each nucleotide inside the

designed RNA.

chrRNA does not force any limitations regarding the length of the input structure.

8.3 Future Work

One future extension point for chr-statRNA is to calculate an individual set of probabilities

and incorporate more samples for each type of RNA such as rRNA, tRNA, and etc. For

chr-loopRNA we have already made use of all the state-of-the-art energy values for RNA

secondary structures. In the future, if new energy rules between RNA nucleotides are

discovered or if these energy tables are updated, the probabilities inside chr-loopRNA can

be easily recalculated and adjusted as well.

Another improvement to our methods would consist in also incorporating more non-

trivial rules which are not easy to predict, through some machine learning methods such as

Inductive Logic Programming (ILP) 1441. ILP is a relatively new methodology of automati-

cally eliciting hidden knowledge with the help of a computer [45]. ILP has already been used

in molecular bioinforrnatics [52]. Some examples of this application include gene function

prediction [36], protein secondary structure prediction 1461 and drug design [35]. By using

this methodology and adding new rules, this system could probably show better results in

general.

Finally, it might be a good idea to somehow merge our method with RNA-SSD or

RNAinverse. For instance, in the case of RNA-SSD, chrRNA can be used in the initialization

phase to reduce the amount of differences between the predicted structure for the initially

designed sequence and the original structure. By comparing the secondary structures of

our designed RNA sequences and the given secondary structures, we have discovered that

many of the inaccuracies appear while designing internal loops and long hairpin loops when

adjacent single bases from one side of the loop form base pairs with bases of the other side.

As seen in Section 7.2.1, we used a heuristic to reduce the chance of this happening inside

the loop, but as we are dealing with probabilities here, there is no way to guarantee that

this won't occur. While examining such conditions is not very efficient inside CHR rules,

involving another program that employs energy rules and predicts the secondary structure

for the designed loop, would be effective in generating more accurate results.

CHAPTER 8. RESULTS AND CONCLUSION 78

We expect the results presented here to be invaluable for in vitro genetics, by enabling

scientists to produce RNA virtually from sequences; and for drug design, which typically

progresses backwards from proteins to RNA to DNA.

Appendix A

Glossary of Biological Terms

Amino acid: basic structural building units of proteins.

Base pair: or complementary base pair refers to two nucleotides on opposite strands of

DNA or RNA that are connected via hydrogen bonds.

Chromosomes: the separate physical molecules which are arranged to form DNA inside

the cells.

Codon: each triplet of bases inside RNA.

Cytoplasm: the contents of a cell without the nucleus.

DNA (Deoxyribonucleic Acid): a nucleic acid that contains the genetic instructions

specifying the biological development of all cellular forms of life.

Eukaryotes: organisms with complex cells such as animals, plants, and fungi.

Exon: the stretches of DNA that code for proteins.

Gene: the units of heredity in living organisms.

Genetics: the science of heredity in living organisms.

Genome: all the genetic information inside chromosomes.

Helix: a screw like structure.

Intron: the non-genetic stretches of DNA that separate exons in eukaryotes.

Nucleic acid: a biochemical macromolecule composed of nucleotide chains that convey

genetic information. The most common nucleic acids DNA and RNA.

Nucleotide: the structural units of DNA and RNA which are Adenine(A), Cytosine(C),

Guanine(G), Uracil(U, Thymine(T) .
Prokaryotes: the organisms without a cell nucleus such as bacteria.

Proteins: the molecules responsible for much of the structure and activities of organisms

APPENDIX A. GLOSSARY OF BIOLOGICAL TERMS

that are composed of amino acids.

Protein folding: finding the tertiary structure of protein from its sequence of amino acids.

Pseudoknots: widely occurring structural motifs inside RNA that play important roles

regarding the function of RNA.

RNA (Ribonucleic Acid): a chemical found in cells that codes for amino acids.

RNA folding: finding the structure of RNA from its sequence of nucleotides.

RNA primary structure: the sequence of nucleotides inside RNA.

RNA secondary structure: the information regarding the nucleotides inside the RNA

sequence that shows which nucleotide bind to each other and which one remain single.

RNA secondary structure design: designing an RNA sequence that folds onto a given

secondary structure.

RNA secondary structure prediction: predicting the secondary structure of an RNA

sequence from its primary structure.

RNA splicing: the act of removing introns and joining exons.

RNA tertiary structure: the actual positions of molecules in three-dimensional space.

Splice sites: the boundaries of exons and introns.

Watson-Crick base pairs: the base pairs between C-G in DNA and RNA, A-T in DNA,

and A-U in RNA.

Wobble base pairs: the base pairs between nucleotide G and U.

Appendix B

A Sample Run

In this appendix, we provide the information regarding the secondary structure of a sample

RNA and we present a sample run of the program chr-loopRNA for this particular secondary

structure. The sample secondary structure is:

...
The result of a sample run on the above secondary structure is:

I ?- test8.

[1:a,2:~,119:g,3:g,l18:~,4:~,117:g,5:g,l16:~,6:~,115:a,7:~,114:g,

8:c,113:g,9:g,112:u,10:g,lll:c,11:c,110:g,12:c,13:a,14:c,15:u,16:a,

70:g,17:g,69:c,18:g,68:c,19:g,66:c,20:a,65:~,21:g,64:~,22:~,63:g,

23:g,62:~,24:g,61:~,25:~,26:a,27:g,28:a,29:g,57:~,30:~,56:g,31:g,

55:~,53:a,54:a,32:g,52:~,33:g,51:~,34:~,50:g,35:g,49:~,36:a,37:a,

38:~,39:~,40:~,41:a,42:g,43:a,44:a,45:~,46:~,47:~,48:a,58:g,59:a,

60:a,67:g,71:c,106:g,72:g,105:c,73:g,104:~,74:~,103:g,75:~,102:g,

76:g,101:u,77:c,100:g,78:u,79:g,80:c,97:g,81:c,96:g,82:g,95:c,83:g,

94:~,84:g,93:~,85:~,92:g,86:g,91:~,87:g,88:~,89:a,90:a,98:~,99:g,

107:a,108:a,109:c, 12O:cl

write-list (1,1201,

pair(121,121),

pair(2, llg),

pair(0,0),

base(1,a) ,

APPENDIX B. A SAMPLE RUN

pai r (17 ,69) ,

b a s e (l 3 , a) ,

base (14, c) ,

base (l5 ,u) ,

base (26, a) ,

base (27, g) ,
base (28, u) ,

base (37, a) ,
base (38, c) ,

base (39 ,u) ,

base (40, c) ,

base (41, a) ,

base (42, g) ,
base (43, a) ,
base (44, a) ,
base(45,u) ,
base(46 ,c) ,

base (47, u) ,

base (48, a) ,
base (36, c) ,

bulge (53,54) ,

base (53 ,u) ,
base (54, a) ,

base(59 ,a) ,

base (60, a) ,

base (25, c) ,
base(58,g) ,

bulge (67,67) ,

base (67, g) ,
pair(71,106) ,

base (70, g) ,
b a s e (l 6 , a) ,

base(88,g) ,

APPENDIX B. A SAMPLE RUN

base (89, u) ,
base (87, g) ,
base (90, a) ,

base (78, u) ,

base(79,g),

base(98,u),

base (99, g) ,

base (107, a) ,
base(l08,a),

base (log, c) ,
base(l2,c),

base(l20,c),

s(1,120,[1:a,2:c,119:g,3:g,118:c,4:c,117:g,5:g,116:cl.. .~~,

internal (25,28,58,6O) ,
internal (78,79,98,99) ?

Bibliography

[I] S. Abdennadher, T. Friihwirth, and C. H. (Eds.). Special issue on constraint handling
rules. Journal of Theory and Practice of Logic Programm,ing (TPLP), 2005.

[2] H. Abramson and V. Dahl. Logic Grammars. Springer-Verlag, 1989.

[3] Rosalia Aguirre-Hernandez, Anne Condon, and Holger H. Hoos. Rnasoft: a suite of
rna secondary structure prediction and design software tools. Nucleic Acids Research,
13(31):3416-3422, 2003.

[4] Tatsuya Akutsu and Satoru Miyano. On the approximation of protein threading. In
RECOMB '9'7: Proceedings of the first annual international conference on
Computational molecular bioloyy, volume 1, pages 3-8. ACM Press, 1997.

[5] Mirela Andronescu, Anthony P. Fejes, Frank Hutter, Anne Condon, and Holger H.
Hoos. A new algorithm for RNA secondary structure design. Journal of Molecular
Biology, 336(3) :607-624, 2004.

[6] P. Baldi. Bioinfomnatics: the machine learning approach. Cambridge, Mass. :MIT
Press, 1998.

[7] A. Barranco-Mendoza. Stochastic and heuristic modelling for analysis of the growth
of pre-invasive lesions and for a multidisciplinary approach to early cancer diagnosis.
Ph.D. thesis, 2005.

[8] A. Barranco-Mendoza, D. R. Persaoud, and V. Dahl. A property-based model for
lung cancer diagnosis. In RECOMB '04:8 th Annual Int. Conf. on Computational
Molecula~ Biology. ACM Press, 2004.

[9] A. Barranco-Mendoza, D. R. Persaoud, and V. Dahl. A property-based model for
lung cancer diagnosis. Int. Conf. on Computational Molecular Biology (RECOMB
2OO4), 2004.

[lo] M. Bavarian and V. Dahl. Constraint-based methods for biological sequence analysis.
In PROLE'OS. 2005.

[ll] M. Bavarian and V. Dahl. RNA secondary structure design using constraint handling
rules. In Workshop on Constraint Based Methods for Bioinformatics, 2005.

BIBLIOGRAPHY

[12] G. Bes and P. Blache. Proprieties et analyse d'un langage. TALN99, 1999.

[13] G. Bes, V. Dahl, D. Guillot, L. Lamadon, I. Milutinovici, and J. Paulo. Parsing
system for balanced parenthesis in nl texts. Poster and Demo at the
Lorraine-Saarland Workshop on Prospects and Advances in the Syntax/Semantics
Interface, 2003.

[14] P. Blache and J . M. Balfourier. Property grammars: a flexible constraint-based
approach to parsing. IWPT-2001, 2001.

[15] Janusz M. Bujnicki. Practical Bioinformatics. Springer, 2004.

[16] J. M. Burke and A. Berzal-Herranz. In vitro selection and evolution of RNA:
applications for catalytic RNA, molecular recognition and drug discovery. FASEB J.,
7:106-112, 1993.

[17] J . J . Cannone, S. Subramanian, M. N. Schnare, J . R. Collett, L. M. DISouza, Y. Du,
B. Feng, N. Lin, L. V. Madabusi, K. M. Muller, N. Pande, Z. Shang, N. Yu, and R.R.
Gutell. The comparative RNA web (crw) site: An online database of comparative
sequence and structure information for ribosomal, intron, and other RNAs. BioMed
Central Bioinfo., 3(2), 2002.

[18] H. Christiansen. CHR as grammar formalism, a first report. Sixth Annual Workshop
of the ERCIM Working Group on Constraints, 2001.

[I91 H. Christiansen. Logical grammars based on constraint handling rules. In 18th
International Conference on Logic Programming, volume 18, page 481. Lecture Notes
in Computer Science, 2002.

[20] H. Christiansen. CHR grammars. International Journal in Theory and Practice of
Logic Programming, 2005.

[21] Peter Clote and Rolf Backofen. Computational Molecular Biology: An Introduction.
Mathematical and Computational Biology. John Wiley & Sons LTD, 2000.

[22] J . Cohen. Computational molecular biology: A promising application using logic
programming and constraint logic programming. Lecture Notes in Artificial
Intelligence, 1999.

[23] Jacques Cohen. Bioinformatics: an introduction for computer scientists. ACM
Comput. Surv., 36(2):122-158, 2004.

[24] V. Dahl and P. Blache. Directly executable constraint based grammars. Journees
Francophones de Programmation en Logigue avec Contraintes, pages 149-166, 2004.

[25] V. Dahl and P. Tarau. Assumptive logic programming. In A S A I 2004, 2004.

1 BIBLIOGRAPHY

261 V. Dahl, P. Tarau, and R. Li. Assumption grammars for processing natural language.
Fourteenth International Conference on Logic Programming, pages 256-270, 2004.

271 V. Dahl and K. Voll. Concept forrnation rules: An executable cognitive model of
knowledge construction. In First International Workshop on Natural Language,
Understanding and Cognitive Sciences, volume 1, pages 28-36. INSTICC Press, 2004.

'281 Jitender S. Deogun, Ruben Donis, Olga Komina, and Fangrui Ma. RNA secondary
structure prediction with simple pseudoknots. In Proceedings of the second conference
on asia-pacific bioinfo.r-rnatics, volume 2, pages 239-246, 2004.

'291 David Eppstein, Zvi Galil, and Raffaele Giancarlo. Speeding up dynamic
programming. In Proc. 29th Symp. Foundations of Computer Science, volume 29,
pages 488-496. IEEE, October 1988.

-301 T. Friihwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37:95-138, 1998.

[31] T. Fkiihwirth, A. Di Pierro, and H. Wiklicky. Probabilistic constraint handling rules.
11th International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2002), 76, 2002.

[32] P. Gueneau de Novoa and K. P. Williams. The tmrna website: reductive evolution of
tmrna in plastids and other endosymbionts. Nucleic Acids Research, 32:D:104-108,
2004.

[33] Ivo L. Hofacker, Walter Fontana, Peter F Stadler, L Sebastian Bonhoeffer, Manfred
Tacker, and Peter Schuster. Fast folding and comparison of RNA secondary
structurcs. Monatsh. Chem., 125:167-188, 1994.

[34] Antony M. Jose. Ribozyme therapy: RNA enzymes to the rescue. Yale Journal of
Biology and Medicine, 75:215-219, 2002.

[35] R. D. King, S Muggleton, R. A. Lewis, and M. J . E. Sternberg. Drug Design by
Machine Learning: The Use of Inductive Logic Programming to Model the
Structure-Activity Relationships of Trimethoprim Analogues Binding to
Dihydrofolate Reductase. PNAS, 89(23):11322-11326, 1992.

[36] Ross D. King. Applying inductive logic programming to predict,ing gene function. A I
Mag., 25(1):57-68, 2004.

[37] P. S. Klosterrnan, M. Tamura, S. R. Holbrook, and S. E. Berner. Scor: A structural
classification of RNA database. Nucleic Acids Research, 30(1):392-394, 2002.

[38] R. H. Lathrop and T. F. Smith. Global optimum protein threading with gapped
alignment and empirical pair score functions. Journal of Molecular Biology,

BIBLIOGRAPHY 87

[39] Arthur M. Lesk. Introduction to Bioinformatics. Oxford University Press, 2002.

[40] Rune B. Lyngs~ , Michael Zuker, Christian N., and S. Pedersen. Fast evaluation of
internal loops in RNA secondary structure prediction. Bioinformatics, 15(6):440-445,
1999.

[41] Rune B. Lyngspr, Michael Zuker, and Christian N. S. Pedersen. Internal loops in RNA
secondary structure prediction. In RECOMB '99: Proceedings of the third annual
international conference on Computational molecular biology, volume 3, pages
260-267, 1999.

[42] D.H. Mathews, J . Sabina, M. Zuker, and D.H. Turner. Expanded sequence
dependence of thermodynamic parameters improves prediction of RNA secondary
structure. J. Mol. Bio., 288:911-940, 1999.

[43] David W. Mount. Bioinformatics: sequence and genome analysis. Gold Spring
Harbor Laboratory Press, 2001.

[44] S. Muggleton. Inductive logic programming. In ILP-91, 1991.

[45] S. hluggleton. Inductive Logic Programming. Academic Press, London, 1992.

[46] S, hluggleton, R. D. King, and M. J . E. Sternberg. Protein secondary structure
prediction using logic-based machine learning. Protein Engineering, 5:647-657, 1992.

[47] J. Ngo and J. Marks. Computational complexity of a problem in molecular structure
prediction. Protein Engineering, 5(4):313-321, 1992.

[48] R. Nussinov and A. Jacobson. Fast algorithm for predicting the secondary structure
of single stranded RNA. In Proc. Natl. Acad. Sci. (USA) , volume 77, pages
6309-6313. 1980.

[49] R. A. Overbeek. Invited tutorial: Logic programming and genetic sequence analysis.
JICSLP, 1992.

[50] Y. Sakakibara, M. Brown, R. Hughey, S. Mian, K. Sjolander, R. Underwood, and
D. Haussler. Stochastic context-free grammars for trna modeling. Nucleic Acid
Research, 22:5ll2-5120, 1994.

[51] T. Schrijvers and T. Friihwirth. CHR website.
www.cs.kuleuven.ac. be/ dtai/projects/CHR/, May 2005.

[52] Steffen Schulze-Kremer. Molecular Bioinformatics: Algorithms and Applications.
Walter de Gruyter.Berlin. New York., 1996.

[53] D. B. Searls. The computational linguistics of biological sequences. Lecture Notes in
Computer Science, 1993.

BIBLIOGRAPHY 88

[54] D. B. Searls. Grand challenges in computational biology. in Computational methods
in molecular biology, 1998.

[55] Jon Sneyers, Ton1 Schrijvers, and Bart Demoen. The computational power and
complexity of constraint handling rules. In CHR2005, 2005.

[56] Maciej Szymanski, Mirsolawa Z. Barciszewska, Volker A. Erdmann, and Jan
Barciszewki. 5s ribosomal RNA database. Nucleic Acids Research, 30:176-178, 2002.

1571 N. Usman and J. McSwiggen. Catalytic RNA (ribozymes) as drugs. In Annual
Reports in Medicinal Chemistry, volume 30, pages 285-294. Academic Press Inc.,
1995.

[58] K. Voll. A Methodo10,qy of Error Detection: Improving Speech Recognition in
Radiology. PhD thesis, Simon F'raser University, 2006.

[59] H. Wang and D. A. Hickey. Evidence for strong selective constraint acting on the
nucleotide composition of 16s ribosomal RNA genes. Nucleic Acids Research,
30:2501-2507, 2002.

(601 M. S. Waterman. Introduction to computational molecular biology: Maps , sequences
and genome. Chapman&Hall, 1995.

[61] E. Winfree, F. Liu, L. Wenzler, and N. Seeman. Design and self-assmbly of 2D DNA
crystals. In Nature, volume 394, pages 539-544, 1998.

[62] M. Zahariev, V. Dahl, and A. Levesque. Efficient algorithms for the discovery of
oligonucleotide signatures for dna sequences and groups of sequences. (Technical
Report), 2005.

[63] M. Zuker. On finding all suboptimal foldings of a n RNA molecule. Science,
244:48-52, April 1989.

[64] M. Zuker. mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Res., 31(13):3406-3415, 2003.

[65] M. Zuker. Lectures on RNA secondary structure prediction.
http://www. bioinfo. rpi.edu/ zukerm/lectures/RNA fold-htrr~l/, January 2006.

[66] Michael Zuker and Patrick Stiegler. Optimal computer folding of large RNA
sequences using thermodynamics and auxiliary information. NucLAcids Res.,
9(1):133-148, 1981.

