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Abstract 

The need for processing biological information is rapidly growing, owing to the masses of 

new information in digital form being produced at  this time. Old methodologies for pro- 

cessing it can no longer keep up with this rate of growth. We present a novel methodology 

for solving an important bioinformatics problem, which has been proved to be computa- 

tionally hard: that of finding a RNA sequence which folds into a given structure. Previous 

solutions to this problem divide the whole structure into smaller substructures and apply 

some techniques to resolve it for smaller parts, which causes them to be slow while working 

with longer RNAs. We prove that by using a set of simple CHR rules we are able to solve 

this problem and obtain an approximate but still useful solution more efficiently. We expect 

the results we present to be applicable, among other things, to in vitro genetics and to drug 

design. 

keywords: Constraint Handling Rules, RNA secondary structure, RNA secondary struc- 

ture design. 
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Chapter 1 

Introduction 

What makes artificial intelligence so distinguished is its capacity to perform tasks that are 

normally viewed as requiring intelligence, and also to allow in many cases for declarative 

specification of a problem to become executable, largely invisibly to the user [2]. Semantic 

use of symbols other than numerical and character variables provide the means for coding 

highly structured applications. Examples of programming languages for coding artificial 

language programs are Prolog and Lisp which enable us to implement self-modifying and 

recursive programs [52]. Here our focus is on Prolog and Constraint Handling Rules (CHR) 

where the latter is a bottom-up framework using Prolog engine that gives us even more 

capability and ease in artificial intelligence programming. Using Prolog in particular gives 

us the benefit that the information in qualitative and quantitative statements need not to 

be encoded as simple structures such as strings, arrays, etc, but can be stated in high level 

ways which make sense to humans. 

Searls in [53] has proposed four broad roles for tools and techniques of language theory 

in examining the functional aspects of the language of biological sequences, which are 

Specification: use of formalisms such as grammars to indicate the nature and relative 

locations of features in a sequence mathematically and computationally. 

Recognition: use of grammars as input to parsers which are used for pattern-matching 

search. 

Theory formation: elaboration of domain theories to model biological structures and 

processes. Machine learning techniques could be expected to be the most useful with 
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regards to  this role. 

0 Abstraction: to  present a mathematical view of the language of biological sequences, 

as sets of strings that are meaningful in a biological system. 

1.1 Problem Definition 

RNA (Ribonucleic Acid) is a chemical similar to  DNA (Deoxyribonucleic Acid) with several 

functions. RNA secondary structure is one of the three kinds of structural information of 

RNA that defines which nucleotides (the structural units of RNA and DNA) bind to each 

other. Through this thesis, we have mainly contributed in solving the problem of R N A  sec- 

ondary  structure design which is defined as follows: given an RNA secondary structure, find 

an RNA sequence which folds onto the given structure. This problem is the inverse problem 

of RNA secondary structure prediction where given an RNA sequence, the corresponding 

secondary structure is asked for. 

Complexity-wise this problem is believed to be computationally hard [5] but it has not 

been proven yet. The problem of RNA secondary structure design can be considered as a 

constraint satisfaction problem where constraint variables are the positions in RNA and the 

constraints include the base-pairs inside the RNA. 

In this thesis we present a directly-executable system that is able to  accept a valid 

structure of RNA and design a sequence for the given structure. We argue that within Searl's 

classification our system falls within first and third category: it falls within specification 

because we use grammars for describing the known nature of secondary structure of RNA, 

and also within theory formation, insofar as it induces possible structures for the RNA 

specified. Using constraint handling rules we specify a grammar to  parse the secondary 

structure of RNA and design the RNA sequence accordingly. 

1.2 Motivations 

Before the discovery of catalytic RNA by Cech and Altman, RNA was considered as a 

passive molecule serving as an intermediate between DNA and proteins with some limited 

functions such as carrying information or forming structures. But their discovery opened 

new doors and completely changed scientist's view of RNA and now it is clear that RNA 

can have several functions such as acting as a catalyst in RNA splicing and cleavage, DNA 
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cleavage, and controlling gene expression. According to the above, one can conclude that 

RNA has all the significant properties of proteins [34]. 

As the structure of RNA has significant effects on its functions, designing RNA molecules 

with specific structural properties is promising with many potential applications [5] .  Nowa- 

days, scientists are capable of replicating any RNA in a test tube [16] which would eventually 

help in finding new paths for drug design or have industrial use [5]. 

An RNA molecule that catalyzes a reaction (which mostly pertains to the cleavage of an 

RNA or DNA) is called a ribozyme. The fact that predicting RNA structure is much easier 

than proteins, makes ribozyme (catalytic RNA) engineering i.e., modifying the ribozymes 

in order to alter their activity, more straightforward than protein engineering. There are 

two major motivations for ribozyme engineering. First, ribozyme engineering can be used 

as a tool to understand the mechanisms of catalysis or principles of RNA folding. Second, 

it can facilitate the inhibition of gene expression [57]. 

Some of the other motivations include design of artificial RNA nanostructures, drug 

design [57, 51, and ribozyme therapy [34]. Moreover, finding a solution to the problem 

of RNA secondary structure design might assist in solving the same problem for DNA 

(due to their analogous structures) which consequently can be used in DNA self-assembly 

computation [61]. 

1.3 Our Contribution 

Currently there are two methods for solving the problem of RNA secondary structure design: 

RNA-SSD [5], and RNAinverse [33]. As we will show in detail in Chapter 7, although these 

methods perform very well for shorter sequences (300-base limit for RNA-SSD and about 

500-base limit for RNAinverse), since their complexity mostly depends on the complexity 

of the inverse problem which is RNA secondary structure prediction with the complexity of 

0(n3) ,  they fail to generate results within their time limit. Here in our method which we 

have named chrRNA1, we try to overcome this problem by using a set of CHR rules that are 

easily understandable by biologists, combined with a set of probabilities. We do not employ 

any of the algorithms for RNA secondary structure prediction in our method; instead, we 

use other heuristics by combining our rules with a set of probabilities. 

'Later, we will show that we have actually implemented two systems, namely chr-statRNA and chr- 
loopRNA. To refer to both methods in general, we use the term chrRNA. 
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Our method also has the advantage that unlike RNA-SSD and RNAinverse it does not 

force the following restrictions: 

a RNA-SSD designs the RNA by only using Watson-Crick base pairs. 

a Both methods assume that there is no pseudoknot in the desired structure. 

In chrRNA we assign probabilities to all possible base pairs, moreover by using con- 

straints we allow the formation of simple pseudoknots inside the structure. 

The format of the whole thesis is as follows: In Chapter 2, we briefly present bio- 

logical background needed to understand and visualize this problem in biological context. 

Chapter 3 mainly discusses relatively new methods in logic programming and A1 such as 

Constraint Handling Rules, Constraint Handling Rules Grammar, Assumption Grammars, 

and Concept Formation Rules and their possible application in biology. Here, our main fo- 

cus is Constraint Handling Rules (CHR) and we explain its syntax and semantics in detail. 

In Chapter 4, the RNA secondary structure and its features are looked at  in detail and we 

also discuss some of the state-of-the-art methods for predicting RNA secondary structure 

which is the counterpart of our problem of focus namely RNA secondary structure design. 

Following in Chapter 5 we introduce and compare the two current methods used for design- 

ing the secondary structure of RNA. Through Chapter 6 and Chapter 7, we show our own 

contributions to  solve this problem within two approaches. Both approaches are stochastic 

and use CHR and Prolog rules. However while chr-statRNA utilizes the nucleotide composi- 

tions probabilities within a generic RNA, chr-loopRNA exploits the thermodynamic energies 

assigned to the loops to find the probabilities. Chapter 3 and Chapter 6 are based on the 

papers written by Bavarian and Dahl 111, 101. Finally in Chapter 8, we present the results 

for both approaches and we compare them with the results by RNA-SSD and RNAinverse. 



Chapter 2 

Biological Background 

The strong relationship between biology and medicine is what makes it not only fascinating 

but also extremely significant. Nowadays scientists have reached a point where with regular 

drugs, they are not able to  provide the cure for the newly discovered and identified human 

diseases. I t  is known that the key to all these cures, lies in the science of genetics. Solving 

the current mysteries in biology would progress medicine enormollsly in a way that shall 

benefit all humankind. Some applications of biology are: diagnosis of disease by inspecting 

the DNA sequence and locating specific genes which are related to a certain disease or 

calculation of a disease risk in an individual; pharmacogenomics which is a fast-growing 

field in which different dosage and drugs are prescribed for different people according to  

their genome, i.e. the whole hereditary information of the organism encoded in DNA, which 

makes their responses to  therapy dissimilar; identification of drug targets which are proteins 

whose functions can be modified selectively and help to cure a disease; and last but not least 

identification of missing or defective genes and replacement or supplying of its products [23]. 

Some distinguishing aspects of biology according to Cohen are [23]: 

No rules are without exceptions. A famous example of this, was the false belief that 

every gene is only responsible for one protein. 

Every phenomenon has a nonlocal component. An RNA secondary structure may be 

adopted by multiple RNA sequences. We will elaborate on this problem in the next 

chapters. But basically this implies the similarity in one level can not be generalized 

to  the others. 



CHAPTER 2. BIOLOGICAL BACKGROUND 

0 Every problem is tied to the other problems. An example of this is the fact that a 

simple change in a DNA sequence might lead to a completely distinct protein with 

different functionality. 

Interdisciplinary fields like biochemistry, biophysics, and bioinformatics are the projec- 

tions of biology in other fields of science. The benefit of such collaboration has been proved 

to be bilateral. Not only chemistry has made major strides in biology and physical ex- 

planations for biological phenomena been extremely useful, but a t  the same time it has 

become a source of inspiration in the original sciences involved. Here, computer science has 

been no exception at all. Computer science can provide biologists the tools to gather and 

interpret the enormous amount of data they are producing every day. On the other hand, 

DNA computers and neural networks have been great examples of the effort of computer 

scientists to project what they see in the human body through computers [23]. Specifically, 

computer science can benefit biology by analyzing biological data, modeling, and simula- 

tion to help explain biological behavior, while atomic interactions can be used as a model 

to build a molecular data processor as well as a model for computational algorithms and 

finally, contributions from biology can be used to create computer programs that can be 

used to operate on biological data [52].  

Computational biology is the predecessor of what is called bioinformatics today. The 

work of earlier computational biologists is now widely used in everyday tools for biologists, 

from software for aligning chunks of DNA to that which predicts the secondary structure of 

RNA. Some examples of their works include proofs of algorithmic correctness, complexity 

estimates,etc [23]. 

Although a lot of work has been done by computational biologists and in recent years 

by bioinformaticians, the need of biologists for faster, more optimized and newer algorithms 

requires more computer scientists to dedicate their efforts in this field which would eventually 

be most beneficiary to human beings. 

As indicated above, today's bioinformaticians follow the work of earlier computational 

biologists, but there are major differences between these two sciences and their corresponding 

scientists. One major difference between these two is the widespread use of the World-Wide 

Web in bioinformatics making all the immense databases containing biological data and the 

extremely useful web applications, available to the researchers throughout the world. Some 
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examples of these databases are National Resource for Biotechnology Information (NCBI)' 

providing an integrated approach to the use of gene and protein sequence information, 

Protein Data Bank (PDB)2 that contains information regarding newly discovered proteins. 

As for the available web applications, some of the most widely used ones are mfold RNA 

Folding Server which predicts the seco~idary structure of RNA, BLAST and FASTA 

where both of them are widely used to search sequence similarity against nucleotide and 

protein databases. 

According to one of the most popular taxonomies, living things are divided into three 

domains: Bacteria, Archaea and Eukarya (Eukaryote). Bacteria and archaea are prokaryotes 

(their cells do not have nuclei). There are common characteristics shared by all cells no 

matter their originating organisms or their shape, size, and behavior. In 1865 with the 

discovery of genes by Gregor Mendel the story of genomics began. From a biochemical point 

of view, genes are specific sequences of bases that are subparts of DNAs. These encode the 

recipes for making different proteins and then, the proteins determine our physical traits 

such as hair and eye color. Genes are estimated to  comprise only 2% of the human genome 

and the remaining 98% is basically regions for which the functions are currently unknown. 

Through the next sections, we will present a brief background for the most significant 

constituents of the cells. 

2.1 DNA 

The discovery of DNA happened in 1953 but it was not until 1989 that James Watson 

and Francis Crick produced the first three-dimensional model of DNA which was based on 

the data gathered by Rosalind Franklin. DNA (Deoxyribonucleic Acid) is a nucleic acid 

that contains the genetic instructions specifying the biological development of all cellular 

forms of life (and many viruses) working like an information archive in each organism. 

DNA is often referred to  as the molecule of heredity, as it is responsible for the genetic 

propagation of most inherited traits and it is replicated and transmitted to the offspring 



CHAPTER 2. BIOLOGICAL BACKGR.OUND 8 

during reproduction. DNA can be looked a t  as a template for building other DNAs and 

proteins. DNA is encoded with four building blocks, called nucleotides or bases, which 

are: A (Adenine), C (Cytosine), G (Guanine) and T (Thymine). The DNA molecules are 

usually very long and linear. Even in microorganisms they are typically about lo6 bases 

long. Chromosomes are the separate physical molecules which are arranged to form DNAs 

inside the cells. All the genetic information inside chromosomes is called the genome. When 

a cell is replicated, the entire genome inside the cell is copied into the new cells. 

DNA can be read and replicated and it is believed that much of the role that DNA plays 

in forming proteins depends on this. These characteristics make the linguistics treat a gene 

as a 'word' while a genome, the total genetic material of species as 'text' in DNA code. 

Structurally, DNA is organized as two complementary strands or helices with hydrogen 

bonds between them. Directions along each strand are named 3' end and 5' end and the 

correct direction of translation from DNA to proteins is always from 5' end to 3' end. The 

structure of DNA is uniform. The important features of DNA are its secondary structure 

and interactions with a solvent. 

The stretches of DNA that code for proteins are called exons. But not all the information 

inside the DNA is expressed as proteins or RNA, some regions of the DNA sequence are 

devoted to control the mechanisms. In eukaryotes, exons inside a gene are separated from 

each other by some non-genetic material called introns, the function of which are currently 

unknown to biologists. The boundaries of exons and introns are called splice sites. Reliable 

prediction of splice sites is also an important task since it allows determination of the 

uninterrupted genes and consequently the corresponding amino acid sequence. The exons 

are typically multiples of three nucleotides and the reason is that each triplet of bases called 

a codon is translated into a certain amino acid [39]. In Table 2.1, the 20 known amino acids 

are shown. 

2.2 RNA 

RNA (Ribonucleic Acid) is a chemical found in cells which codes for amino acid sequences, 

serving as intermediate in the synthesis of protein. Each RNA molecule is made up of four 

different compounds called nucleotides or bases, each noted with one of the letters A (Ade- 

nine), C (Cytosine), G (Guanine) and U (Uracil). During the transformation process of 
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Table 2.1: The 20 amino acids inside proteins 

proteins, synthesis of RNA molecules are directed by DNA sequences. Under normal physi- 

ological conditions, this strand or helix of nucleotides is folded onto itself by hydrogen-bond 

pairings of the nucleotide A with U and C with G which are called Watson-Crick or canon- 

ical base pairs. Pairing also might happen between G and U but this is not very frequent 

(except for tRNA) and GU pairs are often referred to as wobble base pairs. The difference 

between Watson-Crick base pairs and wobble base pairs is that the pairing between the first 

category are through two hydrogen bonds while for the latter it is only one hydrogen bond. 

The nucleotides are often referred to as bases and each pairing is called a base pair. Apart 

from canonical base pairs and wobble base pairs, other base pairs such as UC or GA are 

also feasible but are quite rare. 

G(G1y): glycine 
I(I1e): isoleucine 
S (Ser) : Serine 
Q(G1n): glutamine 
D (Asp) : aspartic acid 

Three types of structural information for RNA are: 

0 Primary structure: the sequence of nucleotides inside RNA. These can be used for 

distinguishing RNA sequences from each other. 

A(A1a)A: alanine 
L(Leu): leucine 
C(Cys) : cysteine 
H(His): histidine 
E(G1u) : glut amic acid 

0 Secondary structure: in general secondary structure for a biopolymer shows whether 

or not individual molecules are connected to each other and in case of RNA, secondary 

structure defines which nucleotides are forming complementary base pairs with each 

other and which ones remain unpaired. 

0 Tertiary structure: the actual positions of molecules in three-dimensional space is 

generally called the tertiary structure. 

P(Pro) : proline 
F(Phe) : phenylalanine 
T(Thr) : threonine 
Y (Tyr) : tyrosine 
K (Lys) : lysine 

The secondary and tertiary structure of RNA determine the RNA interaction with other 

cell components. A number of structural motifs are found inside RNA secondary structure 

such as helix, hairpin loop, bulge loop, internal loop, etc (Figure 2.1). 

V (Val) : valin 
M(Met) : methionine 
N (Asn) : asparagine 
W(Trp): trytophan 
R(Arg): arginine 
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Figure 2.1: Common motifs in RNA secondary structure are: hairpin loop, bulge loop, 
internal loop, etc. 

RNA mainly serves two biological purposes. These are information flow from DNA into 

proteins and acting as a structural component of ribosomes, an organelle in the cytoplasm 

of a living cell. 

Important RNA families include: 

Ribosomal RNA (rRNA) combines with protein inside the cytoplasm and form a 

ribosome which serves as the site and carries the enzymes that help in the process of 

protein synthesis. 

Transfer RNA (tRNA) has the responsibility of reading the code and carrying the 

amino acid to the ribosome to be incorporated into the developing protein. 

Messenger RNA (mRNA) is used to carry the genetic code, the information on 

the primary sequence of amino acids, from the nucleus to the ribosomes. 

Small nuclear RNA (snRNA) refers to a number of small RNA molecules found 

in the nucleus and assists in several processes such as RNA splicing. 

2.3 Proteins 

Proteins are the molecules responsible for much of the structure and activities of organisms. 

From a chemical point of view, proteins are long polymers containing thousands of atoms. 

There are three major types of proteins. First, the structural proteins such as the ones 

that build the outer layer of human and animal skin. Second, proteins that function as 

catalyzers in chemical reactions such as enzymes, transport. And finally, proteins such as 

hemaglobin that work as storage. No matter what type of protein we are considering, the 

key to its functions is its three dimensional structure. The proteins are typically 200-400 
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amino acids long which means that they require a t  least 600-1200 letters for the DNA 

message to  specify them (not including the introns). It is believed that the relationship 

between DNA and proteins is many-to-many. 

The diverse structural and functional roles of proteins are due to  the fact that unlike 

DNA and RNA they don't have a uniform structure. Taking a protein out of its norrnal 

condition e.g. by heating, unfolds the protein and makes it inactive. This is why our body 

needs a certain inner temperature to  function properly [39]. 

The protein structure is also analyzed in three levels. Primary structure is the order of 

the protein's constituent amino acids. Secondary structure is the assignment of common 

structures like single spiral chains of amino acids called alpha helices, and beta sheets which 

are structures composed of two or more adjacent or parallel amino acids. Finally the tertiary 

structure is the exact conformation of the whole protein which is derived from the assembly 

and interactions of the helices and sheets. Sorne scientists have also added additional levels 

to this hierarchy such as supersecondary structures and domains. 

I t  is the primary structure of the protein that wholly determines its secondary and 

tertiary structure. The function of proteins is mainly determined by its three-dimensional 

structure rather than the amino acid sequence. Therefore, in order to  fully understand or 

predict the characteristics of any organism, we should first determine the three-dimensional 

structures of its proteins. The problem of protein folding is to  define the relationship between 

primary and tertiary structure by establishing detailed rules. To this point, the process of 

protein formation can be easily described and here is nature's great leap from the linear 

world of genetic and protein sequences to  the world of 3D proteins. This is one of the 

biggest mysteries of biology and solving this mystery would clearly have many rewarding 

implications such as designing exact drugs on a computer or more above transforming the 

practice of medicine to a more effective, personalized knowledge [15]. 

There are three known approaches for solving this problem. The first approach, namely 

the simulation approach, involves simulating the actual folding process with the mean force 

fields on all atoms and calculating the motion vectors for each atom (resulting from different 

forces such as hydrogen bonds, covalent bonds, etc). The problem with this approach is 

that it is highly time-consuming and as the actual folding of the proteins usually happens in 

the order of seconds or milliseconds, this needs a lot of sampling on hundreds of atoms. The 

second approach is protein structure prediction through energy minimization, in which one 

tries to find the fold with the minimum free energy and naturally defining a reliable energy 
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function is a significant issue. According to some strong results, this problem is NP-hard 

[47], so for solving that, some simplified models have been used. Finally the third approach 

is called protein threading which aligns the protein with the ones for which the structure is 

currently known. This approach is a knowledge-based approach and it has been proved to 

be NP-complete [38, 41. 

Although there is much to be done to solve the problem of protein folding and many of 

these efforts have not shown promising results, solving the same problem for the secondary 

structure could still give us some insight regarding the assembly of a whole protein in terms 

of its building blocks (alpha helices, beta sheets, etc). Fortunately the problem of protein 

secondary structure prediction is not as complex as tertiary structure prediction because of 

reductions in the number of potential conformations by several orders of magnitude, and 

the results might eventually lead to a solution for the original problem. 

2.4 The Central Dogma 

The central dogma of molecular biology considers how a sequence of DNA bases turns into 

a sequence of amino acids which in turn, forms proteins. The procedure is as follows: the 

information from a gene recipe is copied from a strand of DNA to a strand of messenger 

RNA (mRNA). The mRNA molecules then travel out of the nucleus and ribosome molecules 

read the genetic information inside mRNA and translate them into amino acids based on 

the genetic coding scheme (Table 2.1). This strand of amino acids is then folded to make 

the three dimensional structure of the protein. 

The process of protein production resembles cascading machineries inside a factory where 

the output of each one is fed into the next as input. Here within the cells, there are three 

machineries for this whole process, RNA polymerase, Splicesome, and Ribosome. These 

machineries themselves are made of proteins and RNA. Inside Prokaryotes (bacterial cells) 

RNA is generated from DNA and proteins are the result of RNA translations. But in the 

more developed cells, Eukaryotes, there are some other additional steps in between [23]. 

There are some important facts regarding these transformations. First of all, in the 

first transformation, genes are the material that would be processed by RNA polymerase 

machinery. The second fact is that splicesome can generate different RNA resulting in 
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different proteins. And finally, some generated proteins of this process might work as a 

barrier in forming other proteins and on the other hand some of them might accelerate the 

production of others 1231. 

The major processes in protein production are 1151: 

0 Replication is the process of passing the information in the DNA molecule in one 

cell to  the new cells, making sure that all the cells inside the body contain the same 

genetic code for making all the necessary proteins. 

0 Transcription happens when DNA sequences are transcribed by a biological machine 

called RNA polymerase into sequences called Pre-mRNA, in which the nucleotide T 

has changed to U (Uracil). 

0 Splicing is the process of transforming Pre-mRNA into mRNA by another biological 

machine called spliceosome. 

0 Translation is the process by which the genetic information of RNA, the codons, are 

read by ribosomes transferred into t,he proteins. 

0 Folding happens when amino acids twist and form the proteins. 

In the next chapter, we will discuss several methods in logic programming we can use 

to analyze biological sequences. 



Chapter 3 

Constraint-Based Met hods 

The application to molecular biology of A1 methods such as logic programming and con- 

straint reasoning constitutes a fascinating interdisciplinary field which, despite being rela- 

tively new, has already proved quite fertile. For instance, the book Logic Grammars [2] was 

widely used to help discover the human genome [49]. The work on plant pathogen identifi- 

cation for Agriculture and Agri-Food Canada [62] yielded spectacular results: whereas with 

previous tools, the processing time increases exponentially with sequence length or number 

of sequences, here a novel algorithm is provided for which processing time increases linearly 

with the amount of data to be analysed. These methods can moreover be viewed as modules 

to be embedded within higher level ones, while still efficiently executable, descriptions of 

other interesting molecular biology problems (LifeIntel ~ x ~ l o r e r ~ ~ ) .  

Over the past decade there has been a dramatic increase of collection rates for bio- 

logical data, making the need for resorting to computational methods even more acute. 

Simultaneously, the intersection between logic programming and constraint reasoning has 

been maturing into extremely interesting methodologies, most notably Constraint Handling 

Rules, or CHR [30]. These methodologies have been applied to human language process- 

ing, through implementing Property Grammars [12, 141 (a linguistic formalism based on 

constraints between sentence constituents rather than on the traditional notion of phrase 

structure) in CHR, and through a parsing system for balanced parenthesis [13] and then 

to cognitive sciences, through generalizing these results into a general cognitive theory of 

concept formation [27] with applications to cancer diagnosis [8, 71, to  medical report inter- 

pretation [58] and to concept extraction [24]. 

Our main contribution throughout this thesis involves applying CHR methodologies to 
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the problem of genetic structure analysis, in particular, reconstructing a nucleotide sequence 

which can fold into a given RNA ~econda~ry structure: whereas previous approaches, while 

working well for short sequences, are computationally hard for longer ones (more than 500 

nucleotides), our methodology by using heuristics obtains approximate but useful results in 

much faster time. 

In this chapter, we share the expertise obtained in the course of this work in a pedagog- 

ical fashion. We first provide a short intuitive introduction to the main concepts involved 

in biological sequence analysis. Next we survey the CHR formalism itself, as well as its 

grammatical counterpart, CHRG [20], and CF formalism, exemplifying each with simplified 

subproblems within those we have addressed in the literature above referenced. We then 

discuss two major sequence processing problems (gene prediction, and protein structure) 

and compare the methods we advocate in this article with previously used methods. 

3.1 Biological Sequence Analysis 

We are interested in the general problem of protein generation from DNA. As discussed 

in previous chapter, DNA consists of a sequence of elements called nucleotides or bases, 

which are usually identified as the letters A (Adenine), C (Cytosine), G (guanine) and T 

(Thymine). In Section 2.1, and Section 2.4, we provided some background regarding DNA, 

its function, and the process, i.e. transcription, by which it is transformed into protein. 

Computational methods have been used in each step of the transformation to simulate 

the work of the machineries (RNA polymerase, splicesome, and ribosome). Here we only 

focus on the language of DNA which consists of four words: A, C ,  T, and G. As mentioned 

before, nucleotide T would be transformed into nucleotide U in transcription step. The 

words of this language group together to code for different amino acids. For instance, 

the sequence UUU corresponds to the amino acid known as phenylalanine. These triplets 

of nucleotides which code for given amino acids are called codons. A first programming 

problem could be to implement the translation of codons into amino acids. This is an easy 

enough task for any computer scientist, and while challenging for biologists, and can be 

considered as a good introduction to interdisciplinary work. In a Prolog implementation, 

the core predicate contains table-like information such as: 

t r a n s l a t e  ( [u ,u ,g l  , t ryptophan)  . 
t r a n s l a t e (  [ u , u , a l  , l e u c i n e > .  
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We can also conceive a logic grammar version as well, containing such grammar rules 

as : 

s ( [u , u ,  gl 1 --> [tryptophan] . 
s ( [u,u,  a] ) --> [leucinel . 
s ( [u , u ,  cl > --> [leucinel . 

As we can observe from this example, we are dealing with an ambiguous language: dif- 

ferent codons can code for a given amino acid. Through the following sections, we present 

an overview of the proposed methodologies and specifically, we focus more on CHR method- 

ology because of its key role in this thesis. 

3.2 Assumption Grammars 

Assumptions [26, 251 are similar to the Prolog primitive "assert" and "retract", the most 

notable exception being that, unlike "assert" and "retract", they are backtrackable. They 

can serve among other things to keep somewhat globally accessible information (an assertion 

can be used, or consumed, at any point during the continuation of the computation). 

Assumption Grammars are basically like definite clause grammars, except that they can 

handle multiple accumulators invisibly, and that they possess linear and intuitionistic im- 

plications. They can also be described as logic grammars augmented with a) linear and 

intuitionistic implications scoped over the current continuation and b) hidden multiple ac- 

cumulators useful in particular to make the input and output strings invisible. Intuitionistic 

assumption */1 temporarily adds a clause usable in later proofs. Such a clause can be used 

an indefinite number of times like asserted clauses except that it vanishes on backtracking. 

Linear assumption +/1 temporarily adds a clause usable at most once in later proofs. A 

built-in predicate -11 was introduced to allow for the removal of either intuitionistic or linear 

assumptions. 

Assumptions can be applicable in finding some patterns in biological sequences such 

as tandem repeats. Tandem repeat is a nucleotide sequence that results from a class of 

mutation event called tandem duplication which converts a stretch of DNA code (called the 

"pattern") into two or more copies, each following the preceding one in a contiguous fashion 

[53]. One of the reasons for identifying tandom repeats is that according to Biology and 
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Genetics sciences, tandem repeat occurs frequently in genomic sequences and it can have 

a potential role in gene regulation, including development of immune system cells. Many 

genetic diseases are also shown to be associated with uncontrolled expansions of tandem 

repeat patterns such as Huntington's disease and Friedreich's ataxia (FRDA). An example 

of a tandem repeat is the sequence AGCAGC. 

Searls in [53] has introduced some grammar rules for finding tandem repeats. Searls' 

grammar rules can be represented in assumption grammar as following: 

tandem-repeat --> [XI , (push(X)I, tandem-repeat . 
tandemrepeat --> r epea t .  

r epea t  --> ( -s tack(  [I 11,  [I . 
repeat  --> (pop(X) I ,  r epea t ,  [XI . 
push(X) : - -stack(Y) , +s tack(  [ X I Y ]  1. 

pop(X) : - - s tack(  [XI  Yl , +stack(Y) . 

Here we make use of a global variable as a stack, add on to  it through assumption 

(noted '+'), and remove elements from it through consumption (noted '-'). Assumptions 

are available in some logic programming environments such as Binprolog and CHRGs. 

Another example which is very similar to tandem repeat is inver ted  repeat. Inverted 

repeats are also common features of nucleic acids, which in the case of DNA result whenever 

a substring on one strand is also found nearby on the opposite strand [53]: 

inver ted-repeat  --> [XI , {push(X) 1 ,  inver ted-repeat  . 
inver ted-repeat  --> r epea t .  

r epea t  --> (pop (XI I , " [XI , r epea t .  

repeat--> (-stack( [I ) I ,  [I . 
push(X1:- -stack(Y),+stack([XjYl). 

pop(X) : - - s tack(  [XI Yl) ,+stack(Y).  

Here, " [XI is defined as follows: 
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3.3 Constraint Handling Rule and Constraint Handling Rules 

Grammar 

Constraint handling rules (CHR) is a concurrent committed-choice constraint logic program- 

ming language which has been proved to be useful for algorithms dealing with constraints 

(301. By presenting a highly executable framework, CHR has tried to form a bridge be- 

tween theory and practice in logic programming. It also provides programmers efficiently 

executable specifications by supporting rapid prototyping. To this day, CHR has been ap- 

plied in several applications including theorem proving with constraints, combining forward 

and backward chaining, combining deduction and abduction, bottom-up evaluation with 

integrity constraint, etc. 

3.3.1 Background 

CHR was created in 1991 by Thom F'riihwirth.The founders of CHR do not necessarily 

consider it as a new programing language but rather as an extension that blends in its 

host language such as the ones implemented in Prolog, Lisp, Haskell, or java [51]. The 

direct ancestors of CHR are Prolog, Constraint Programming, and concurrent committed 

choice logic programming. Term writing systems, Automated Theorem Proving, Chemical 

Abstract Machine, and production rule systems in general have had their influences in 

forming this language. 

The factors that strengthen and to some extent make CHR a unique language are the 

combination of propagation and multi-headlmulti-set transformation of logical formulae in 

a concurrent, guarded rule-based language. 

Applications of CHR vary in a wide range from type systems and time tabling to ray 

tracing and cancer diagnosis [I]. Moreover by use of the logic terms, grammars can be 

described in human-like terms using CHR and are powerfully extended through (hidden) 

logical inference. Finally, CHR has been proved to be Turing-Complete which makes it pos- 

sible to implement every algorithm in CHR with their best known time and space complexity 

[55] . 

CHR Grammars, or CHRG for short, is based on Constraint Handling Rules and was 

introduced in [19, 181 as a bottom-up counterpart to Definite Clause Grammars (DCGs) 

defined on top of CHR in exactly the same ways as DCGs take their semantics from and 

are implemented by a direct translation into Prolog. CHRG is executed as CHR programs 
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that provide robust parsing with an inherent treatment of ambiguity. 

3.3.2 Syntax 

There are two sets of constraints (predicates of first-order logic) in CHR: built-in constraints 

and CHR(user-defined) constraints. The first set of constraints are solved by a given con- 

straint solver while the latter are defined by CHR rules inside the program. The examples 

of the first set include =, true, and false. The general format of CHR rules is as follows: 

Head ==> Guard I Body. 

Head and Body are conjunctions of atoms (separated by commas) and Guard is a test 

constructed from (Prolog) built-in or system-defined predicates. The variables in Guard and 

Body occur also in Head. If the Guard is the constant "true", then it is omitted together 

with the vertical bar. Its logical meaning is the formula (Guard + (Head + Body)) and 

the meaning of a program is given by conjunction. There are three types of CHR rules: 

0 Propagation rules which add new constraints (body) to the constraint set while 

maintaining the constraints inside the constraint store for the reason of further sim- 

plification. 

0 Simplification rules which also add as new constraints those in the body, but remove 

as well the ones in the head of the rule. 

0 Simpagation rules which combine propagation and simplification traits, and allow 

us to  select which of the constraints mentioned in the head of the rule should remain 

and which should be removed from the constraint set. 

The factors strengthening CHR include the combination of propagation and multi-set 

transfornlation of logical formulae in a concurrent, guarded rule-based language. The rewrite 

symbols for the first two rules are respectively: ==>, <=> and for simgation rules, the notation 

is Headl\Head2<=>body. Anything in Head1 remains in the constraint set and anything in 

Head2 is removed from the constraint set and body is added to the constraint store. 

3.3.3 Semantics 

We discuss two types of semantics for CHR programs: 
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0 Operational Semantics: At run time, a CHR program starts execution with an 

initial state until either there are no more applicable rules or a contradiction occurs. 

A rule is considered applicable when all the constraints inside the head are matched 

by the ones inside the current goal and all the built-in predicates inside the guard are 

satisfied as well. 

At any given time during the execution, there might be more than one applicable rule. 

To determine which rule should be executed first, CHR acts in the same way as Prolog 

i.e. top-down in the textual order of the program. Another uncertainty arises while 

considering the order in which constraints of a query are processed. This problem is 

also easily solved by processing the constraints from left to right. When it is matched 

with one of the constraints inside the head of a rule, other constraints are examined 

and if all them are found inside the constraint store and the guard is evaluated true, 

the rule would be applied, adding new constraints to the constraint store. 

0 Declarative Semantics: It is possible to translate any CHR program into a first- 

order logic program formula using the declarative semantics of CHR. The logical read- 

ing (meaning) of the propagation rules was mentioned in Section 3.3.2, but for com- 

plicity it is also brought up here: 

1. Propagation rules: 

2. Simplification rules: 

3.3.4 Sample Applications of CHR and CHRG 

A string to be analyzed such as "leucine tryptophan phenylalanine" is entered as a sequence 

of constraints: 

that comprise an initial constraint store. The integer arguments represent word boundaries, 

and a grammar for this intended language can be expressed in CHR as follows: 
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token(X0 ,XI, tryptophan)==> codon(X0 ,XI, [u, u ,gl  ) . 
token(XO,Xl,leucine)==> codon(X0,X1,[u1u,a]). 

token(XO,Xl,leucine)==> codon(X0,X1,[u1u,c1). 

token(XO,Xl,phenylalanine)==> codon(XO,X1,[u,u,ul) 

We say that ambiguity is inherently treated because all possibilities will be expressed in 

the constraint store resulting from an ambiguous input. In the above example, for instance, 

both a codon [u,u,a] and a codon [u,u,c] will be found between points 0 and 1. The input 

and output arguments of the above translation example can be spread if using CHRG, which 

uses : :> for the rewrite symbol: 

token( t ryptophan): :> codon( [u ,u ,g l ) .  

token(1eucine) : : > codon( [u ,u ,  a] ) . 
token(1eucine) : : >  codon( [u ,u ,c l ) .  

token(phenyla1anine) : : > codon( [u, u ,  u] ) . 

In Section 3.2, we introduced tandem repeats and their importance and showed an im- 

plementation of them using Assumption Grammars. Here using CHRG we present another 

implementation which unlike the other implementation which was only capable of deter- 

mining whether a sequence is a tandem repeat or not, can identify a tandem repeat inside 

another sequence: 

s t r ing(X) , s t r ing(X) : : > tandem-repeat (XI . 

This implementation can also be extended to identify any number of tandem repeats: 

[XI, str ing(Y1 : :>  s t r i n g (  [XIYI 1. 

[XI : : >  s t r i n g ( [ X l ) .  

tandem-repeat (X,C) , s t r ing(X)  < :  > C l  i s  C + l  I tandem-repeat ( x , c I ) .  

s t r ing(X) , s t r ing(X) : : >tandem-repeat (X,2) . 
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3.4 Concept Formation Grammars 

In [27], a cognitive model of Concept Formation is introduced, which has been used for oral 

cancer diagnosis [9] and specialized into grammatical concept formation, with applications 

to property grammar parsing [24]. The grammatical counterpart of Concept Formation is an 

extension of CHRGs which dynamically handles properties between grammar constituents 

and their relaxation, as statically defined by the user. Let's first demonstrate this within 

the traditional framework of rewrite rules which implicitly define a parse tree. Whereas in 

CHRG we would write the following grammar: 

Cal : : > determiner (singular) 

[boy] : : > noun (singular) . 
[boys] : : > noun(plura1) . 
[laughs] : : > verb (singular) . 

determiner (Number) ,noun (Number) , v (Number : : > sentence (Number) . 

To parse correct sentences such as "a  boy laughs", in CFG, we can also allow incorrect 

sentences to be generated, but ask the system to point out to us which properties are violated 

by such incorrect sentences. This requires the following: 

A definition of all properties in terms of a system predicate prop/2. 

A declaration of what properties can be relaxed, done through the system's (Pro- 

log) predicate relax/l, and for properties to be called through the system predicate 

acceptable/l. 

For instance, an agreement property to check that the number of a subject's determiner 

(Ndet) coincides with that of the noun (Nn) and with that of the main verb (Nv), and 

which can be defined in Prolog as: 

The property agreement must be expressed in terms of the system predicate prop/2 as 

follows, with all concerned arguments grouped into a list: 



CHAPTER 3. CONSTRAINT-BASED METHODS 

If we now want to relax this property, so that number mismatches are detected but do not 

block the parse, we can use the system predicate relax/l, as follows: 

A property is then considered "acceptable" if it either succeeds, or if it fails but has been 

relaxed: 

Therefore, properties must be tested through the system predicate acceptable/l. For our 

example, we would write: 

determiner (Ndet) , noun(Nn), v(Nv) : : > 

acceptable (propcagreement , [Ndet ,Nn,NvI 1) 1 sentence (Nv) 

The system will now also accept sentences which do not agree in number, while pointing 

out the error in the list of violated properties, as a side effect of the parse. In the case 

of "a boys laughs", the agreement property will appear in the list of violated properties 

automatically constructed as a result of the parse. 

Degrees of acceptability can also be defined using binary versions of "relax" and "accept- 

able", whose second argument evaluates to either true, false, or a degree of acceptability, 

according to whether (or how much of) the property is satisfied. This allows the user to relax 

specific constraints rather than types of constraints, by specifying right-hand side conditions 

on these binary counterparts. 

Now that we have introduced this methodology, it is time to give some examples of its 

application in biological sequence analysis. According to Searls [54], in biology there are 

no rules without exceptions. For example, it was thought before that a gene can only be 

responsible for one protein, but now the recent work has shown that a gene may generate 

several proteins. According to these, using Concept Formation Rules features to the rules 

written for biological transformations might help in making these rules closer to what hap- 

pens in real life. As an example we show how to use concept formation rules in finding 

hairpin loops, one of the common patterns seen in RNA structure. As shown in Figure 3.1, 

a hairpin loop consists of a stem which leads to a loop at the end. According to the bio- 

chemical laws the loop part should contain at least three nucleotides, but in some rare RNA 
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Figure 3.1: A hairpin loop 

structures, it might happen that a loop contains only two nucleotides. A corresponding rule 

which also considers these rare cases is: 

While forming the secondary structure of a hypothetical RNA, one can easily relax this 

property by using relax(1ength) . In the following sections, you will see some of the large- 

scale applications of the methods proposed above in biology. 

3.5 Gene prediction 

The fundamental physical and functional unit of heredity is called a gene. It is an ordered 

sequence of nucleotides located in a particular position on a particular chromosome that 

encodes a specific functional product (i.e., a protein or RNA molecule). Genes determine 

many aspects of anatomy and physiology by controlling the production of proteins. Each 

individual has a unique sequence of genes, or genetic code. Discovery of genes that influence 

disease risk in human populations is of key importance to the pharmaceutical industry. 

This is because identifying the gene automatically identifies the protein in which alteration 

of function causes disease. For the pharmaceutical industry, this protein, together with 

other proteins that are part of the same physiological pathway, becomes a potential drug 

target. Once a drug target has been identified, modern techniques allow the pharmaceutical 

industry to rapidly screen large numbers of chemical compounds for action on this target. 

It is expected that drugs acting directly on the proteins, in which genetically determined 

alteration of function causes disease, will be highly effective in preventing or treating these 

diseases. This is one of the reasons why researchers in various branches of science are 
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trying to identify genes. The problem of identifying genes responsible for certain diseases 

or characteristics has many difficulties. One of them is the fact that there are often several 

genes that are responsible for certain diseases. By studying the DNA of the individuals and 

their families having rare diseases one may be more successful in pinning down the main 

responsible genes [22]. 

The order in which the bases of DNA are linked in a gene is called the sequence of a 

gene. There exist two types of genes: RNA gene and protein coding gene which is our 

focus here. Recall from previous chapter that stretches of DNA that code for proteins are 

called exons. In eukaryotes, cells with membrane-bound nucleus, exons in a given gene are 

generally separated from each other by stretches of DNA that do not contain instructions 

for constructing proteins, they are called introns. 

There are various approaches for the problem of gene finding but here our focus is on the 

computational methods. Computational gene finding is the process of identifying potential 

coding regions in an uncharacterized region of the genome. This area is still a subject of 

active research. There actually exist many different gene-finding software packages and no 

program is capable of finding everything. Common techniques include homology, combina- 

torial dynamic programming, probabilistic modeling especially Hidden Markov Models and 

neural nets but here another approach in logic programming is used. 

Cohen has proposed a set of grammar rules for finding genes [22] and here we have 

translated the same grammar into CHRG in Program 3.1. 

3.6 Protein structure 

As seen in Section 2.3, protein architecture can be analyzed in three levels. Primary struc- 

ture is the order of the amino acids in the sequence which has been formed by three codons 

translation. Secondary structure however represents how some of the amino acids in the se- 

quence form common structures such as alpha helices, beta sheets, etc. Finally the tertiary 

structure is the exact conformation of a whole protein. Here we only discuss the problem 

of protein secondary structure prediction. What makes this problem rather difficult is that 

identical short sequences of amino acids can adopt different secondary structure in different 

contexts [52]. 
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start-codon,gene-body, stop-codon : :>  gene 
start~codon,stop~codon : :> gene. 
[a,t,gl : :>  start-codon. 
[t , a, a1 : : >stop-codon. 
[t,a,gl ::>stop-codon. 
[t ,g,a] : : >stop-codon. 
exon-body,left : : >  gene-body. 
exon-body : : >  gene-body. 
left : : >  gene-body. 
[a,g],intron-body,right : :>  right. 
[a,gl,exon-body,left : :>  right. 
[a,gl,left : : >  right. 
[a,gl ,right : : > right. 
[a, g] , exon-body : : > right. 
[a,gl : : >  right. 
[g,t] ,intron-body,right : : >  left. 
[g , t] , exon-body , lef t : : > left . 
[g,tl ,exon-body : : >  left. 
[g,t] ,left : : >  left. 
[g,tl ,right : :>  left. 
[g,t] : :>  left. 
base : :>  intron-body. 
base : :>  exon-body. 
base, [a] : : >base. 
base, [cl : :>base. 
base, [gl : :>base. 
base, [tl : :>base 
[a] : : > base. 
[c] : : > base. 
[gl : :> base. 
[t] : : > base. 

Program 3.1: CHRG rules to identify a sample protein coding gene 
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res (Xl) , res (-) , res (X2) , res (X3) ,res (Y) , r e  4 r e  5 )  , - )  , r e  6 )  : :> 
not-aromatic (Xl) ,not-k(X1) , 
hydrophobic (X2) ,not-aromatic (X3) , 
not-p(X3) , 
not-aromatic (Y) ,not-p(Y) , 
not-p(X41, not-k(X4) , 
hydrophobic (X5) , less-hydro (XI, X5) , l e s s - v o l ~ e  (x5 ,x3) , 
not-aromatic (X6) , less-hydro(X6 , ~ 2 )  I alpha(Y) . 

Program 3.2: A sample CHRG rule to form an alpha helix including 6 residues 

Muggleton et al. have tried to solve this problem by using Inductive Logic Program- 

ming(1LP) [44, 461. They have applied an ILP program to learn secondary structure pre- 

diction rules. The output of their program is a small set of rules which can predict which 

of the residues in the sequence are part of the alpha helices. These set of rules can also be 

translated into CHRG and can be used widely to discover the secondary structure of the 

requested protein. A sample rule in CHRG format is brought in Program 3.2. In this exam- 

ple, res/l represents a residue and the predicates in the guard (not-aromatic/l, not-k/l, 

hydrophobic/l, etc) are the chemical characteristics that each residue should have to form 

an alpha helix together. One specific advantage of using CHRG for this example is that here 

we can also make use of Concept Formation Rules to allow the formation of alpha helices 

when not all the conditions are satisfied which is probable in cases of biological data. 

3.7 Discussion 

We have covered several high-level methods for pattern description of biological sequences, 

and exemplified the advantages of these methods for several concrete such problems. We 

have shown how to translate codons to amino acids using DCGs, how Assumption Grammars 

allow us to modularize stack manipulation in global terms, which we used for implement- 

ing tandem and inverted repeats, how constraint handling rules promote direct bottom-up 

execution of the same problem, as well as having a grammatical version which we used for 

more direct amino acid string translations, and how Concept Formation Grammars can in 

particular accomodate rules with exceptions. 
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We consider the main advantage of these methods to be the coupling of direct executabil- 

ity with economy of expression within high level specifications that are meaningful for hu- 

mans and thus can promote quick prototyping of specialized, interdisciplinary knowledge. 

On the other hand, the introduced methodologies has most of the time the disadvantage 

of inefficiency in run-time. For future work, some intermediate systems can be designed to 

automatically translate these high-level languages into low-level ones. This way we would 

have methods that are not only understandable and more user friendly but at  the same time 

efficient and practical. 
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RNA Secondary Structure 

One of the significant benefits of understanding the secondary structure of RNA is to de- 

termine its chemical and biological properties. Although it is not yet possible to reliably 

predict RNA tertiary structure for reasons similar to the difficulties behind proteins tertiary 

structure prediction, there are fairly good RNA secondary structure prediction algorithms 

available. Clearly, the tertiary structure of RNA is much more useful and gives us a better 

insight of RNA functions, but while it is still quite difficult to predict, researchers use the 

secondary structure to explain most of the functionalities of RNA. There are a number of 

applications for RNA secondary structure determination [15] : 

Similarity in the secondary structure usually determines the similarity in functions. 

Therefore, it is reasonable to use RNA secondary structure for classifying their func- 

tion. 

As ribosomal RNA (rRNA) are very ancient molecules and have a highly conserved 

secondary structure, it is possible to align the ribosomal RNA to study evolutionary 

spectrum of species. 

Given a DNA sequence that is highly homologous to some known tRNA gene, such a 

sequence may be a gene or a pseudogene. By predicting its secondary structure and 

examining its similarity to some tRNA secondary structure, one can verify whether or 

not it is a pseudogene. 
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4.1 Definition 

In Section 2.2 we briefly discussed what RNA secondary structure is. Here, we present a 

mathematical definition as follows: The secondary structure of an RNA sequence of length 

n is an undirected graph G = (V, E), where V = (1, ..., n) ,  E C V x V such that [21]: 

2. ('dl < i < n) [(i, i + 1) E El 

3. For 1 < i < n,  there exists at most one j # i * 1 for which (i, j) E E 

4. If 1 < i < k < j < n,  ( i , j )  E E and (k, 1 )  E E, then i 5 1  5 j 

In this definition, it is important to remember that an edge between i and j where 

j # i * 1 corresponds to a Watson-Crick or wobble base pair. The first rule simply states 

that the base pair relationship is symmetric. The second rule connects all the consecutive 

bases together. The bases inside the sequence are linked by covalent energies and they 

should not be confused with the hydrogen bonds between Watson-Crick or wobble base 

pairs. The third rule is the rule that defines the base pairs inside the secondary structure 

and implies that each base can at most be paired with one other base. Finally the last rule 

is used to prevent the occurrence of interleaved base pairs inside the secondary structure. 

There is also a 1-1 correspondence between RNA secondary structure and balanced 

parenthesis expressions, where balancing corresponds to base pairings. For instance the 

parenthesis expression ( (  ...)) can be written for the sequence ACCCCGU in which (1,7) 

and (2,6) are the base pairs. By having the above definition an interesting question arises: 

how many secondary structures are possible for a sequence of n nucleotides? For answering 

this question, first we can assume that each base has the possibility to be paired with any 

other base (rather than restricting ourselves to Watson-Crick and GU pairs). In [21], it is 

proved that for such a hypothetical case, if we define S(n)  to be the number of secondary 

structures on (1, ..., n)  and let S(0) = 1: 

Theorem 4.1.1 S ( l )  = S(2) = 1 and 
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Bulpc loop Stack 

lntmal loop Hanphi loop 

Figure 4.1: Some motifs inside RNA secondary structure 

It  is also proved that S(n)  > 2(n-2), therefore there will be exponentially many possible 

secondary structures on a sequence of length n,  when we ignore the base pair requirement. 

However, the exact asymptotic solution while considering these requirements is: 

4.2 RNA motifs 

Any RNA secondary structure (without pseudoknots) can be decomposed to a set of motifs 

as follows [21]: 

1. The subsequence i, ..., j in which every single base is unpaired is a hairpin loop if i - 1 

and j + 1 are paired together 

2. The subsequence i, .., j in which every single base is unpaired is a bulge loop if i - 1 

and j + 1 are also paired but not together. 

3. If we have two bulge loops: i, ..., j and k, ..., 1 such that i - 1 is paired with 1 + 1 and 

j + 1 is paired with k - 1 and i < j < k < 1 then these two bulge loops form an interior 

loop. 

4. A helix is formed by adjacent base pairs stacking upon one another. 

5. The subsequence i, ..., j in which every single base is unpaired is a single stranded 

region if there is not a base pair enclosing this subsequence. 

6. The subsequence i, ..., j is called a multi-loop if i and j form a base pair enclosing 

other base pairs such as k - 1 and nz - n which do not surround each other. 

Some of these motifs are shown in Figure 4.1 
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4.2.1 Pseudoknots 

Pseudoknots are one of the widely occurring structural motifs in RNA that play an impor- 

tant role regarding the functions of RNA. A simple pseudoknot is formed when unpaired 

bases from a loop form Watson-Crick base pairs with complementary bases outside the loop 

(Figure 4.2). Adding generalized pseudoknots to the problem of RNA secondary structure 

prediction makes it NP-hard. However, by using some heuristics and restricting the for- 

mat of pseudoknots, this problem can be solved in polynomial time (O(n4)) [28]. Most 

methods that predict RNA secondary structure, for simplicity, disregard the possibility of 

having pseudoknots. According to these methods, for every two base pairs: pair(i,  j) and 

pair(i l ,  j l ) ,  if il is greater than i then jl should be less than j .  This assumption prevents 

the formation of pseudoknots in the result structure. 

Figure 4.2: A simple pseudoknot 

4.3 RNA Secondary Structure Prediction 

Currently three major experimental methods are used to determine RNA secondary struc- 

ture [15]: 

0 Physical  me thods ,  in which the structure is inferred base on the distance among 

atoms. These methods include X-Ray crystallography and Nuclear Magnetic Reso- 

nance (NMR). 

0 Chemical  methods ,  where chemical and enzymatic probes are used to analyze the 

structure of RNA. 

M u t a t i o n  analysis,  which consists of initially mutating the RNA sequence and test- 

ing its binding ability with certain proteins. 
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Unfortunately these experimental methods have failed to generate cost and time efficient 

results. Meanwhile many bioinformaticians have constantly tried to solve this interesting 

while challenging problem using computational methods. Two or more limitations are usu- 

ally assumed to simplify the problem of RNA secondary structure predictions. First, the 

most likely secondary structure is the energetically most stable structure. Second, the energy 

associated with any position is only influenced by local sequences and structure 1431. 

The bioinformaticians' contributions can be described within two main approaches. 

First, m i n i m u m  free energy which is based on a single RNA sequence and finds the structure 

with the least free energy and second, sequence comparison, for which the idea is to align 

the sequence with the sequences with known secondary structure and predict the structure 

from the homology. Most work done to this day in both approaches assume that there are 

no pseudoknots in the secondary structure and the reason is, as mentioned earlier, that 

pseudoknots add much to the complexity of this problem. Although ignoring pseudoknots 

will reduce the accuracy of the method, since they are not very frequent, these methods can 

still give us good approximate results 1151. 

There also exist other methods which can not be categorized in these two approaches, 

however they are repeatedly being used to facilitate the primary methods. An example 

of them is dot matr ix  sequence comparison which is often used to find stretches of self- 

complementary regions inside sequences. 

4.3.1 Minimum Free Energy 

Finding the structure with considering only the minimum free energy is a very difficult 

and time consuming task for two reasons: first there might be many possible structures 

with the minimum free energy for a single sequence, and secondly, an accurate measure 

of the free energy is essential for this task. Over the past 30 years, another approach 

has been considered that simulates the thermal motion of RNA but since scientists lack 

complete knowledge regarding chemical and physical properties of the atoms, this results in 

approximate simulation of the energies and forces. Moreover as the approximate simulations 

even for short RNA sequences need faster CPUs to do the computations in a desirable 

amount of time, this approach is still quite inefficient 1151. 

All these efforts seemed hopeless until the nearest neighbor model was proposed by 

Tinoco et al. [15]. This relatively new model approximates the free energy of any RNA 

secondary structure using two prior assumptions: first, the energy of every loop is assumed 
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to be independent of the others and second, the energy of a secondary structure is the sum 

of the energies of all the loops. 

The long chains of stacked base pairs are the most stable secondary structures and they 

are the only possible structures that contribute negative free energy to the structure. Loops 

and bulges however increase the free energy in proportion to their size. As a result, a certain 

minimum number of stacked pairs is required to support a loop or bulge to the stacked pairs. 

The first algorithm on this model using dynamic programming was proposed by Nussinov 

and Jacobson [48]. This algorithm tries to maximize the number of stacking pairs without 

considering the destabilizing energy of the loops. Following in 1981, Zuker and Steigler [66] 

introduced an algorithm which contemplates the destabilizing energies, however initially 

the time complexity was 0 ( n 4 )  but following that, in 1999 Zuker, Lyngoso, and Pedersen 

[41] improved the algorithm time complexity to O(n" which was a major success and it 

is the best known algorithm so far. Zuker has also proposed a method to compute all 

the suboptimal structures in [63]. Eventually in 1991, Eppstein, Galil, and Giancarlo [29] 

proposed a new algorithm with a novel energy functions for loops and have improved the 

run time to 0 ( N 2  log2 N ) .  The algorithm proposed by Zuker, Lyngoso, and Pederson is 

briefly explained below: 

4.3.2 RNA Secondary Structure Algorithm without Pseudoknots 

As mentioned above, loop energies play a very important role in predicting the secondary 

structure of RNA, therefore here we present the 4 energy functions derived by Mathews, 

Sabina, Zuker, and Turner that govern the formation of the loops [15]: 

0 S(i, j) gives the free energy of the helix or stacked pairs consisting of pair (i, j) and 

(i - 1, j + 1). This energy is negative and helps in stabilizing the structure 

0 H(i, j)  gives the free energy of a hairpin loop (pair (i, j) closes the hairpin loop and 

bases i + 1, ..., j - 1 are unpaired inside the loop). This energy reduces the stability 

of the structure and it depends on ) j  - i + 11, i.e. length of the loop. 

L(i, j, i,, jl) in which i < il < jl < j, gives the free energy of an internal or a 

bulge loop. This loop is closed by pair (i, j) and (il, jl) (if il = i + 1 or j = jl + 1 

the loop is considered as a bulge loop). The free energy depends on the loop sizes 

li - il + 11 + Ijl - j + 11 and the asymmetry of the two loops. 
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a M ( i ,  j ,  i l  , jl , . . . , in, j,) gives the free energy of a multi-loop where loops are closed by 

the pairs ( i ,  j ) ,  ( i l l  j l ) ,  ...., (in, jn ) .  

Using dynamic programming and the assumption made in the nearest neighbor model 

which calculates the energy of a secondary structure as the sum of its loop energies, the 

energy of the optimal structure can be calculated as follows: 

1. V ( i ,  j ) :  the energy for the optimal secondary structure for the sequence S[i ,  j ]  if ( i ,  j )  

is a base pair: 

00 

V ( i ,  j )  = 
min 

if i  > j ,  

H(i ,  j )  Hairpin, 

( i ) + V ( i + l , -  1 Stacked pair, 
if i  < j. 

V B I ( i ,  j )  Internal loop, 

V M ( i ,  j )  Multi-loop. 

2. V B I ( i ,  j ) :  the energy for the optimal secondary structure for the sequence S[i ,  j ]  if 

( i ,  j )  and ( i l ,  jl)are the base pairs enclosing a bulge loop or an internal loop. 

3. V M ( i ,  j )  the energy for the optimal secondary structure for the sequence S[i ,  j ]  if ( i ,  j )  

is a base pair that closes a multi-loop. The multi loop itself is formed by the base 

pairs(i, j ) ,  ( 2 1 ,  j l ) ,  ..., (in, j,) in which n > 1 and i < il  < j l  < ... < in < j,. 

n 

V M ( i ,  j )  = mini<il<jl< ... <i,,<& M(i,  j ,  2 1 ,  j ~ ,  ..., in, jn)  + V( ih ,  jh )  
h=l 

4. W ( j ) :  the energy of optimal secondary structure for the sequence S[1, n] is given by 

the following recursive function 

if i  = 0, 
W ( j )  = 

min{W(j - l) ,minll i<j{V(i ,  j )  + W ( i  - 1 ) ) )  when j > 0. 
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4.3.3 Loop Dependent Energy Rules 

In Section 4.2, we discussed different types of loops inside the RNA secondary structure. 

Below, we will show how the energy is calculated and assigned to all kinds of loops [65]. 

a Hairpin loops: according to polymer theory prediction, the free energy increment 

of a hairpin loop is calculated as: 

Here R is the universal gas constant, T is the absolute temperature and 1 is the length 

of the loop. In reality instead of using this formula, some tabulated values for 66G for 

loops consisting of 3 to 30 nucleotides are used. For loops beyond size 30, the above 

equation is changed to: 

Figure 4.3: A hairpin loop 

In addition to 66G another factor is taken into account for hairpin loops of size greater 

than 3, which is the effect of terminal mismatched pairs. These parameters are also 

calculated and stored in several tables. One of the tables is shown and explained in 

Figure 4.4. Inside the right table, we can find the energy of a loop for which the 

closing base pair is CG. As an example, suppose we have a hairpin loop as shown in 

Figure 4.3, using the table in Figure 4.4, here A is assigned to X and C is assigned to 

Y and the corresponding energy for this hairpin loop is -1.5. 

By using these tables, we treat all hairpin loops in the same way, which is proved to 

be not true in general. Some special rules apply to triloops (hairpin loops of size 3) 

and tetraloops (hairpin loops of size 4). 
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Y:A C  G  U  A C G U  
------------------- ...................... 

X: A  I AA AC AG AU -1.5 -1.5 -1.4 -1.8 
C l  C A C C C G C U  - 1 . 0 - 0 . 9 - 2 . 9 - 0 . 8  
GI GA GC GG GU -2.2 -2.0 -1.6 -1.2 
U  I UA UC UG UU -1.7 -1.4 -1.9 -2.0 

Figure 4.4: The left table shows a typical 4x4 table with the pairs WX and YZ covalently 
linked. WZ is the closing base pair of a hairpin loop while XY is a mismatched pair. The 
right table demonstrates the energies for terminal mismatched pairs when W is C and Z is 
G. 

Stacks: stacks refer to the stacking between the two immediately adjacent base pairs 

in a loop. Free energies for stacks are stored in 4x4 tables similar to the ones used for 

terminal mismatched. In Figure 4.5, a sample table is brought and briefly explained. 

Bulge loops: for bulge loops of size 1, the surrounding pairs are still treated as being 

stacked upon each other. For the ones up to size 30, the same tables used for hairpin 

loops are applied and for larger ones Equation 4.2 is used. 

Interior loops: for interior loops of size greater than 4, the free energy of the interior 

loop depends on 4 components: 

In Equation 4.3, 66Gi is the same as 66G in Equation 4.1 or 4.2, depending on the size. 

6 6 ~ :  and 66G: are terminal mismatch free energy for the surrounding base pairs. For 

those interior loops which are asymmetric , a penalty component 66Gf is considered. 

For 1x1, 1x2, and 2x2 interior loops, instead of using Equation 4.3, the free energies 

are calculated and stored in a set of tables. A 4x4 sample table which is used for 1x1 

interior loops is brought in Figure 4.6. 
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Figure 4.5: Sample free energies in Kcal/mole for CG base pairs stacked over all possible 
base pairs indicated by XY, where X refers to the row and Y refers to the column. 

4.3.4 Sequence Comparison 

Sequence comparison or sequence covariation model is the second major method for solving 

the problem of RNA secondary structure. Here, the goal is to find regions inside RNA 

sequences from the same RNA molecule of different species which are different literally but 

in reality they form the same structure. The idea behind this method is that although RNA 

sequences would be affected by evolutionary changes among species, these changes will not 

result in transforming the structure i.e. the changes would be made in such a way that the 

complementary base-pairings would be maintained [43]. For example, suppose we have an 

RNA sequence in which position 20 : C and position 41 : G form a base pair, according to 

this theory if the nucleotide in position 20 is transformed to A, the corresponding nucleotide 

in position 41 would also be changed to lJ ,  accordingly inside the new sequence, these two 

positions would still form the base pair. As we do not use the sequence comparison method 

in our system, we will not get into more details about this method. 

4.4 RNA Secondary Structure Grammar 

Clearly, it is very desirable to have a set of grammar rules for the genes, chromosomes, and 

even genomes. But unfortunately it is not an easy task to accomplish. Some of the grammar 

models written for genes are very complex and they are not guaranteed to recognize every 

possible gene. The grammar model of secondary structure of RNA is to some extent easier 
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Figure 4.6: Free energies of a 1x1 interior loop closed by a CG and AU base pair. 

and significantly smaller. For defining a grammar for RNA secondary structure, we first 

begin with RNA palindromes. As shown in Figure ?? the sequence AGCAUAUGCU is 

an RNA palindrome, i.e., the paired bases has the property of reading the same in either 

direction. RNA palindromes can have arbitrary lengths, therefore they need to be modeled 

by context-free grammars (or more complex ones). A grammar written for RNA palindromes 

is [6]: 

s -+ AsUIUsAICsGIGsCI& 

The above sequence can be generated by: s -+ AsU -+ AGsCU -+ AGCsGCU -+ 

AGCAsUGCU -+ AGCAUAUGCU. The RNA secondary structure palindromes are not 

always as perfect as this example. First of all, other base pairs such as UG or GU might 

occur in between (As mentioned in Section 2.2, base pairs like GA are also possible but quite 

rare). Secondly, regions of unpaired bases are also common. Loops usually should contain 

more than three or four bases because of the fact that RNA is not flexible enough to make a 

180' turn at the tip of the hairpin [6]. And finally, the palindromes inside RNA are usually 

more complex than the above example. One palindrome can be nested inside the other to 

make a recursive palindrome and two or more palindromes can follow each other side by 

side building up a sequential palindrome. Examples of recursive palindromes are cloverleafs 

inside tRNA. and different structures consisting of stems and loops inside rRNA. For adding 

simple recursive palindromes to the above grammar, one can easily employ s -+ ss but un- 

fortunately this simple grammar rule makes the grammar ambiguous with alternative parse 
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trees leading to alternative secondary structures. For example the sequence CAUG-CAUG 

can be derived by the first grammar rule generating a regular palindrome or by using the 

second grammar rule it can be decomposed into two palindromes. This ambiguity in struc- 

ture is not surprising, in fact many examples of ambiguities can be found in DNA linguistics 

such as HIV viruses which benefit from overlapping genes [6]. 

Using the above grammar rules and adding a few more to  include the unpaired bases 

inside palindromes, the final set of grammar rules for generating RNA secondary structure 

is [6]: 

S -+ S S  

The first two rules are used to generate regular RNA palindromes (Watson-Crick and 

G - U base pairs). The third rule, on the other hand, is used to insert the unpaired 

bases inside and outside palindromes forming different kinds of loops and single stranded 

regions. As mentioned above, RNA structure often happens to be more complex than 

simple palindromes surrounding loops. To be able to represent all these nested and recursive 

palindromes, rule number 4 is added to this set. Finally, although this grammar is proved 

ambiguous, we might actually prefer it to the non-ambiguous one for the reason that it is 

capable of modeling an underlying biological ambiguity, like the one shown above. 

I 
C C A A G G U U  

Figure 4.7: A sample pseudoknot 

4.4.1 Pseudoknots Language 

The grammar introduced above is only capable of generating secondary structures without 

pseudoknots. Features such as pseudoknots are referred to as non-orthodox secondary struc- 

ture. Pseudoknots can be viewed as palindromes that are interleaved rather than nested 
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(Figure 4.7) and can be described using context-sensitive grammars. The formula uvu-'v-' 

is usually used to define a simple pseudoknot language. The proposed grammar for this lan- 

guage by Searls [53] is: 

4.5 Summary 

In this chapter we discussed the secondary structure of RNA in detail. We presented one 

of the famous definitions of RNA secondary structure in a graph where bases are shown 

as vertices and edges define the links between bases inside the secondary structure. We 

also introduced two general approaches for solving the problem of RNA secondary structure 

prediction. As an example, Zuker's algorithm for RNA secondary structure prediction was 

presented in detail. In the next chapter, we explain two state-of-the-art methods that are 

used to solve the inverse problem of RNA secondary structure prediction namely, RNA 

secondary structure design. 
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Current Methods 

There are currently two known methods to deal with the RNA secondary structure design 

problem. Both methods' objective is to find a sequence for which the minimum free energy 

(MFE) secondary structure matches the given structure. However, as mentioned in Chap- 

ter 4, the complexity of the best known algorithm for finding the secondary structure of 

RNA is 0(n3)  which would be a major drawback for both methods. Each method has a 

unique approach to overcome this problem. 

RNA-SSD [5] is based on a stochastic local search (SLS) approach that uses a proba- 

bilistic sequence initialization heuristic, hierarchical decomposition of the given structure, 

and a randomized iterative improvement method for finding sequences for the resulting sub- 

structures. RNAinverse [33] also initializes the sequence but for each step it will change a 

base randomly and then compute the free energy for the result. In the following sections, 

we will explain these two existing methods in detail. 

5.1 RNA-SSD: RNA Secondary Structure Designer 

The RNA secondary structure design problem can be defined as follows: given an RNA 

secondary structure S*, find a sequence X *  such that the minimum free energy structure 

for X *  matches S*.  Let denote a function that assigns to each RNA sequence X ,  a 

secondary structure S* that minimizes free energy over all possible secondary structures S 

of X .  Now the problem can be formalized as finding a sequence X *  such that @(Xt )  = S .  

There are two key components to RNA-SSD algorithm: stochastic local search (SLS) 

procedure and initial design. The core of the RNA-SSD algorithm is a stochastic local search 
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(SLS) procedure that iteratively modifies single unpaired bases or base-pairs of a candidate 

strand in order to obtain a sequence that folds into the desired structure. After each modifi- 

cation, the SLS algorithm makes a call to the RNA secondary structure prediction algorithm 

(with ~ ( n "  complexity) to evaluate the new sequence. To reduce the number of calls to this 

algorithm, the input secondary structure and the initial sequence are hierarchically decom- 

posed into substructures and at the lowest level, the SLS algorithm is applied only to those 

substructures. These partial solutions are then combined and form candidate solutions (not 

a final answer) for the larger subproblems. Considering that these partial solutions are not 

independent from each other and may result in totally different structure, some additional 

calls to the folding algorithm are often needed during the combination phase. 

For each candidate solution X ,  S is calculated as S = @(X) and given a distance metric 

d which in this algorithm merely measures the number of incorrectly bonded bases, d(S, S*)  

is minimized. 

5.1.1 Sequence Initialization 

A good initial design is another key component for the RNA-SSD algorithm to support the 

goal of the next phase, i.e. minimizing the number of candidate solution evaluations. During 

the initialization phase, bases are assigned to the sequence by using different probabilistic 

models for paired and unpaired bases. Three insights are used in this phase to initialize the 

sequence in such a way that it is as close as possible to the MFE structure. 

a The paired bases should be assigned in such a way that they form complementary 

base pairs. 

a CG and GC base pairs are assigned with more probability to the base-pairs as they 

are energetically more favorable than other base pairs. 

a To further minimize the potential for undesired interactions between subsequences, 

short sequences of bases (sequence rnotifs) are assigned to contiguous segments of the 

target structure. 

Using these insights, the whole initialization phase can be explained as follows: initially, 

the structure is divided into chunks of successive paired or unpaired bases with the maximum 

size of l,,, somewhat arbitrarily set to 10. Next, each segment is traversed from the 5' to 

the 3' end, and a sequence motif m is assigned. The probabilities for choosing each base for 
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the motifs are PA,  PC, p c ,  pu with p c  = p c ,  PA = pu = 112 - pc .  For chunks of paired bases 

p c  = 0.33 is used while for the unpaired chunks p c  is set to 0.17. 

5.1.2 Sequence Decomposition 

For the phase of sequence decomposition, both RNAinverse and RNA-SSD split the structure 

a t  multiloops. However for RNA-SSD the split continues recursively to obtain a decompo- 

sition tree whose root is formed by the full target structure S and whose leaves correspond 

to small substructures of S .  The whole process of sequence decomposition for the RNA- 

SSD algorithm can be explained as follows: the algorithm begins with the whole structure 

and continues decomposition as long as the structure to be decomposed is not smaller than 

a certain limit MaxSplit and both resulting substructures are not smaller than MinSplit. 

MaxSplit is set to 70, and MinSplit is set to 30. 

5.1.3 Stochastic Local Search Procedure 

The SLS procedure starts from the leaves of the decomposition tree (the smallest substruc- 

tures) and iteratively modifies single bases of the subsequence initially assigned to that 

substructure which are in conflict with the desired structure. The iteration continues until 

either a subsequence is found for which the MFE structure corresponds to the substructure 

or a maximal number of iterations have been performed (5000 iterations). The sequences 

associated to the leaves are merged together to form a candidate sequence for the corre- 

sponding substructure. 

5.2 RNAinverse 

This algorithm works through an adaptive walk search on so-called compatible sequences, i.e. 

the sequences that can form a base pair at the required positions in the desired structure. A 

compatible sequence can but need not have the target structure as its minimum free energy 

structure. 

The RNAinverse algorithm starts by choosing a random sequence lo and in each step, 

modifies it such as to minimize a cost function given by the structure distance: f (I) = 

d(S(I) ,  I) between the structure S(I) of the sequence I and the target structure S*. Similar 

to RNA-SSD, to avoid repeated calls to the cost function which results in many executions 
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Table 5.1: Performance results for RNA-SSD and RNAinverse on sets of artificial RNA 
structures. Each line represents the results of 100 RNA instances. The RNA-SSD and 
RNA-inverse columns show the fraction for which the respective algorithm found solutions. 
The columns, t(RNA-SSD) and t(RNA-SSD)*10 show the fraction of structures which RNA- 
SSD solve faster than RNA-SSD and at least 10 times faster respectively. 

RNA Length RNA-SSD RNAinverse t (RNA-SSD) t (RNASSD)*lO 

178-447 100/100 63/100 100/100 571100 
164-465 85/lOO 5/100 83/86 73/86 
172-409 88/lOO 3/100 90192 81/92 
203-402 88/lOO 21100 81/84 72/84 

of the folding algorithm (with expensive time complexity), the structure is partitioned to 

smaller substructures and they would be the first target for optimization. This method has 

two significant benefits: first the number of calls to  the folding algorithm is substantially 

decreased and second, it reduces the probability of getting stuck in a local minimum. 

As mentioned above, for the actual optimization phase, the adaptive walk is used. The 

adaptive walk will try a random mutation by exchanging one base that is not paired in 

the desired structure, or exchanging two paired bases with regards to  the compatibility. 

The change is accepted if the cost function is reduced and rejected otherwise. The search 

steps continue until either a solution is found or a certain number of changes have been 

induced without any advantageous results. Finally, the algorithm concatenates the resulting 

subsequences to  find the sequence corresponding to  the full structure. 

5.3 Comparison 

As shown above, the major differences between RNA-SSD and RNAinverse are in sequence 

initialization, structure decomposition and sequence assembly as well as substructure search. 

The RNA-SSD algorithm is evaluated in [5] on randomly generated, computationally pre- 

dicted structures of naturally occurring sequences from the Ribosomal Database Project 

(RDP), and on biological structures as well. 

The results of the comparison between RNA-SSD and RNAinverse show that RNA-SSD 

substantially outperforms RNAinverse on a broad range of structures. Some of these results 

are shown in Table 5.1 



Chapter 6 

To solve the problem of RNA secondary structure design, we made use of the set of Context 

Free grammar rules for RNA secondary structure prediction introduced in Section 4.4 : 

This set of relatively simple rules presents a profound insight into the secondary structure of 

RNA and has been used as a basis for some RNA secondary structure prediction algorithms 

[B]. We use CHR to  implement this grammar in order to  exploit the bottom-up characteristic 

of CHR rules, as well as keep track of ambiguous readings with no special overhead. 

At the first step, we translated these rules into the format of CHR rules, adding only 

one extra rule to this set which ascertains that the bases right after a loop would not be 

able to be paired together. In our system, the structure of the RNA (input data) is shown 

in the format of CHR constraints, e.g, for expressing that the base number 1 and the base 

number 43 in the sequence are paired together, we add the constraint pa i r (1 ,43 )  or if base 

number 3 is unpaired, the corresponding constraint would be upa i r (3 ) .  One advantage of 

our input format to  the input format used by RNAinverse and RNA-SSD is its capability 

of representing pseudoknots in the input structure. 

After constructing the CHR rules, the problem becomes that of assigning nucleotides 

to each position given the input constraints. One trivial solution is to  randomly assign 
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one of the Watson-Crick pairs or wobble pairs to each base pair and assign one of the four 

nucleotides (A, C ,  G, and U )  to the unpaired bases. 

The problem with the random solution is that, although we follow the structure to build 

the sequence, there is no preference criteria to select between the existing pairs, so we might 

end up with a sequence that may not actually fold into the input structure. As mentioned 

earlier, the number of GC pairs has an important role in stabilizing a certain structure. For 

instance, if we assign base G to position 10 and base U to position 42 and if we have a base C 

in position 43, in the end, the structure might include p a i r  ( 10,43) instead of p a i r  (10,42) 

because of the fact that GC base pairs are stronger than GU pairs (Figure 6.1). 

Figure 6.1: The left picture shows the original structure while the right picture illustrates 
the structure of the designed sequence. 

Here, we offer two solutions to this problem: use of probabilities and use of energy 

tables. In the first solution which is the statistical version of chrRNA, namely chr-statRNA, 

we find the probabilities that are believed to govern the proportion of base pairs and single 

bases within RNA sequences and combine them with the CHR rules. The second approach 

which is the loop energies version of chrRNA, chr-loopRNA, exploits the energy tables that 

are currently used in several methods of RNA secondary structure prediction such as mfold 

[64, 421. 

6.1 Use of Nucleotide Composition Probabilities 

Algorithms for RNA secondary structure prediction that use a sequence comparison method 

design models of nucleotide frequency for each type of RNA (rRNA, tRNA, etc.) [17]. These 

models generally depict the frequency of each nucleotide at a certain position for unpaired 

bases and the frequency of the possible base pairs for the paired positions. However, our 

problem of interest, RNA secondary structure design, is a more general problem and the 
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position of the nucleotides and the type of RNA may or may not be defined by the user. 

In our system, we are interested in finding the probabilities of having each single base and 

each base pair inside wide-ranging RNA. 

As a result, we were not able to use the already made models. Instead we calculated the 

probabilities by comparing 200 RNA sequences of different kinds together. These sequences 

were selected from several databases of known RNA secondary structures such as Gutell 

lab's comparative RNA website [17], tmRNA website [32] and 5 s  Ribosomal RNA database 

[56]. After comparing 200 test cases with various lengths from 100 to 1500 bases, we found 

the following probabilities for each base pair: 

The other set of probabilities which are of interest are the probabilities for an unpaired 

base to be one of the 4 nucleotides: A, C ,  G, or U .  This set of probabilities includes all 

kinds of loops but it can also easily be divided into separate lists for each type of loop. The 

results are as follows: 

There is a simple explanation for the above probabilities. Base G can be paired with 

both base C and base U and as the number of GC pairs is important for RNA stabilization, 

the probability of an unpaired base to be base G becomes smaller. However, base U is not 

as important as base G for stabilization but still can be paired with both base G and base 

A and that is why it has the second smallest probability to stay unpaired. Both base A and 

base C can only be paired with one nucleotide but as most base C tend to  be paired with 

base G, the probability of an unpaired base to be base C would become less than base A. 

6.1.1 Combining the Probabilities with the Rules 

Mere translation of the RNA grammar into CHR rules is not enough for our purpose which 

is assigning nucleotides and base pairs based on certain probabilities. To achieve our goal, 

the probabilities need to  be merged with the rules. Probabilistic Constraint Handling Rules 

[31] introduced by Friihwirth et. al. seems a reasonable solution to  this problem, but this 

feature has not yet been added to  current Prolog engines such as Sicstus; SWI, etc. 

Fortunately, for our grammar rules we only need to  consider the probabilities for the 

first two sets. The first set includes the rules which assign one of the 6 compatible pairs 
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to a base pair while the second set contains four rules corresponding to the four possible 

nucleotides A, C, G, and U to be assigned to the single bases. 

This enables us to merge each set of rules together to form a single rule where probabil- 

ities are involved by generating a random variable in the guard section of the rules, which is 

the only part that accepts Prolog predicates. Next, this random variable is compared to the 

above calculated probabilities: for instance for the following rule if the random variable I 

is less than 0.53, a GC pair is assigned to pair(X1 ,Yl). The argument L in constraint s/3 

contains the list of bases already added to the sequence and the predicate f ind/3 assigns a 

base pair to arguments M and N based on the random variable I. 

Note that the probabilities are not directly calculated inside the rules. Instead, a random 

variable is generated and then the predicate f ind/3 is called to find a base pair M, N 

according to the probabilities. In our algorithm we do not differentiate between a GC vs. 

CG pair. When we examine the random variable inside the rule, in order to assign the base 

pair, we make use of another predicate choose/4 which chooses between the symmetric base 

pairs: GC or CG, AU or UA and GU or UG with a probability of 0.5 . 

Above, you can see the Prolog rules for predicates f ind/3 and choose/4. The numbers 

inside the rules represent the cumulative probabilities. 

As mentioned before, RNA-SSD and RNAinverse do not accept pseudoknots in the input 

structure. However, our implementation provides the capability of handling structures with 

pseudoknots through the following rule. This rule finds pairs of nucleotides which violate the 

third condition in the mathematical definition of RNA previously presented in Section 4.1 

and separates them into two strings and at  the same time, according to the probabilities, 

assigns them one of the possible base pairs. 
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6.1.2 Rules 

Primarily, the idea behind statistical chrRNA was to  only apply the RNA grammar rules 

(which were adapted to CHR format) along with the probabilities. For improving the 

chrRNA system, we tried going beyond the basic RNA grammar rules by adding new rules 

to the system which were not easy to deduce at the beginning. They were actually found 

by comparing the secondary structure of the predicted sequence with the original structure. 

For adding these rules, new constraints are added to the system to give us the capability 

to  distinguish between different conditions. Here, we go through the new rules as well as 

the old ones which have been changed partly to  include new constraints, but first we shall 

explain the distinction between the two constraints s/3 and loop/3. The constraint loop/3 

is used in this program to join the unpaired bases inside the structure in a loop format while 

the const,raint s/3 refers to  any type of structures such as loops, stacked pairs and their 

combinations. For both constraints, only the first two parameters, i.e. the beginning and 

ending positions of the structure are shown in the corresponding figures. 

Rule 1, simply assigns a nucleotide to  a single base using random variable I and the 

predicate f ind/2 and adds the constraint loop/3 to  the constraint store. Moreover, 

a constraint base/2 is also created which holds the position of the single base as well 

as the assigned nucleotide. 

C! Rule 1: 

upair(X)<=> random(I),find(M,I) I loop(X,X,[X:Ml),base(X,M). 

0 Rule 2 is used to  join two consecutive loops together. 

C! Rule 2: 

loop(X,Yl,Ll), loop(Xl,Y,L2) 

<=> XI is Yl+l,append(Ll,L2,L) I loop(X,Y,L). 

Through rule 3, a complete hairpin loop is formed. As indicated earlier, while designing 

the hairpin loops the two ends should be examined to  ascertain that they won't form a 
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base pair when the secondary structure is formed. The predicate check_pair/3 takes 

two bases and changes one of them in case they can form a complimentary base pair. 

0 Rule 3: 

pair(X,Y),base(Y1,N1)\loop(X1,Y1,[X1:M11L1l),base(X1,M1) 

<=> X1 is X+1 ,Y is Yl+l ,random(I) ,f ind(M,N, I) ,check-pair(N1,Ml ,M2) I 
s(X,Y, [X:M,Y:N,Xl:M2ILll) ,base(Xl,M2). 

a Rule 4 is used to join a base pair to an already formed structure where the ends of 

the structure are paired together. 

@ Rule 4: 

pair(X,Y)\pair(Xl,Yl),s(Xl,Yl,Ll) 

<=> XI is X+1,Y is Y1+1, random(1) ,find(M,N,I) I s(X,Y, [X:M,Y:NlLl]). 

a Rule 5 is a variation of rule 4 where bases in positions XI and Y1 are single. Just like 

rule 3, we must make sure the ends of the structure s are not matching. 

@ Rule 5: 

pair(X,Y) ,base(Yl ,Ni)\s(Xl ,Y1, [XI :M1 IL11) ,base(Xl ,MI) 

<=> XI is X+1, Y is Yl+l,random(I) ,f ind(M,N, I), check_pair(NI,Ml,M2) I 

s(X,Y, [X:M,Y:N,Xl:M2ILll) ,base(Xi,M2). 

a Rule 6 is also similar to rule 4 except that here Xi is paired with another base in 

position Z rather than Y1 where the base in the position right after Z is unpaired 

(position Zi). A base pair is assigned to X,Y in such a way that Zi would not be 

able to form a complementary pair with X (Figure 6.2). This rule is rewritten with 

pair (XI ,Z) replaced with pair (Z ,Y1) and in this case position Yi and position Z1 

are examined. 
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Figure 6.2: Rule 6 

0 Essentially, rule 7 is a variation of rule 6 when the base in position Z1 is paired rather 

than unpaired. As a result, there is no need to check whether bases assigned to position 

X and position Zl are or are not able to form a complementary pair (Figure 6.3) .  Again, 

this rule is rewritten for the case that we have pair (Z , Y 1 ) instead of pair (XI, Z) . 

C! Rule 7: 

 air(^,^) ,pair(Xl ,Z) ,pair(zl ,T)\s(Xl ,Yl ,Ll) 

<=>XI is X+1, Y is Yl+l,Z=\=Yl, Z1 is Z+l,random(I) ,find(M,N,I) I 
s(X,Y, CX:M,Y:NILlI). 

Figure 6.3: Rule 7 

0 Rule 8 corresponds to the rule S +- SS which is used to join any two consecutive 

structures together. There is no probability involved and no special conditions need 

to be examined. 

@ Rule 8: 

s(X,Z,Ll) ,s(Zl,Y,L2)<=>Zl is Z+1, append(Ll,L2,L) I s(X,Y,L). 
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0 Rule 9 deals with bulge loops in general (Figure 6.4). This rule is rewritten for the 

case that the loop is adjacent to position Y. 

Cl Rule 9: 

pair(X,Y) ,pair(Zl,Yl)\loop(Xl,Z,Ll) ,s(Zl,Yl,L2) 

<=>XI is X+1, Z1 is Z+1,Y is Yl+l,random(~),find(M,N,I), 

append([X:M,Y:NlLl] ,L2,L) 1 s(X,Y,L). 

Figure 6.4: Rule 9 

0 Rule 10 addresses internal loops. I\/Iost of the required constraints are similar to the 

previous rule except that here two loops are involved. Using the predicate check_pair/3 

both ends of the two loops must be changed in a way that formation of complementary 

base pairs would be impossible for Z-T1 and XI-Yl (Figure 6.5). 

@ Rule 10: 

Pair(X,Y) ,Pair(Zl,T) ,base(Z,M2) ,base(~l,Nl)\loop(X1,Z, [Xl:Ml ILl] 1, 

loop(~1,~1, [~1:~21L31) ,s(Zl,T,L2) 

<=>Xi is X+l, Z1 is Z+1, T1 is T+l, Y is Yl+l, random(11, find(M,N,I), 

check - pair(N1,M1,M3) ,che~k-~air(~2,~2,~3) , a p p e n d ( [ ~ : ~ , ~ : ~ , ~ 1 : ~ 3 1 ~ 1 1  ,~2,~4), 

append(L4, [Tl:N31L3] ,L) I s(X,Y,L) 

0 To form a bulge loop we make use of rule 9. However if the endings of the structure 

s/3 do not form a base pair together we make use of rule 11 (Figure 6.6). This rule is 

also rewritten for the symmetric condition. 
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Figure 6.5: Rule 10 

Q Rule 11 : 

pair(X,Y) ,pair(Zl ,T)\loop(Xl ,Z,Ll), s(Z1 IYl ,L2) 

<=>xi is x+l, ZI is Z+l ,Y is ~ 1 + 1  ,T=\=YI ,random(I) , f  ind(M,N,I) 

append([X:MIY:NILl] ,L2,L) I ~(X,YIL). 

Figure 6.6: Rule 11 

The above set of rules, almost considers all different substructures that might be found 

inside the secondary structure of RNA. There are some other rules in the final system 

which are not very significant but still are needed for the whole system to function properly. 

In the next chapter, we will discuss our second approach, chr-loopRNA, which solves the 

RNA secondary structure design problem using energies assigned to loops for calculating 

the probabilities. Finally, we will compare the results of both approaches with RNA-SSD 

and RNAinverse. 



Chapter 7 

As previously mentioned, Zuker's method for RNA secondary structure prediction with 

energy minimization is one of the most practical and efficient methods in this field with 

0(n3) complexity. This algorithm was explained in detail in Section 4.3.2. In Section 4.3.3, 

we discussed the loop dependent energy rules and their corresponding energy tables used 

in Zuker's algorithm to calculate the energy for all possible kinds of loops inside the RNA 

secondary structure. 

In our system, we do all the calculations beforehand and use the final results inside the 

rules. The major difference between the two versions of chrRNA is that for chr-statRNA, 

the probabilities were driven from the sequences themselves while in chr-loopRNA, we use 

the loop energy tables used by the mfold algorithm. It might be argued that using these 

energy tables makes chr-loopRNA dependent on the folding algorithm used for evaluation 

and makes the whole algorithm biased. Although we use these energy tables to  find the 

required probabilities, the whole structure of the rules does not change if we change the 

probabilities. In the future, if a more efficient folding algorithm is developed, we can switch 

to  this new algorithm by simply changing the probabilities inside the corresponding Prolog 

rules (see Section 6.1.1). 

7.1 Use of Energy Tables 

For each energy table we calculated a set of probabilities by using the following formula: 
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Table 7.1: The probabilities for stacking base pairs. The entry (i, j )  is the probability of 
the base pair in row i being stacked on top of the base pair in column j .  

Xi corresponds to the entries in the particular energy table whose corresponding prob- 

abilities we are interested in. Note that the energies inside the tables are mostly negative, 

so to  calculate the probabilities we should consider the absolute value for E(X i ) .  Next we 

shall explain the different types of energy tables and the consequent results for each table. 

X\Y 
AU 
CG 
GC 
GU 
UA 
UG 

7.1.1 Stacking Energies 

AU CG GC GU UA UG) 
0.10 0.14 0.16 0.12 0.13 0.15 
0.23 0.22 0.18 0.28 0.25 0.23 
0.27 0.22 0.25 0.30 0.27 0.27 
0.14 0.16 0.16 0.10 0.17 0.14 
0.14 0.16 0.16 0.20 0.11 0.14 
0.12 0.10 0.09 0.00 0.07 0.07 

In Table 7.1, you can see the probabilities for stacking base pairs, calculated using the 

mfold energy tables for stacking energies. One of these tables was shown in Figure 4.5. 

Each probability (i, j) inside the table represents the probability of having the base pair in 

row i on top of the base pair in column j .  As there are so many entries in this table (and the 

following tables), we used a heuristic to reduce the number of probabilities and consequently 

reduce the total number of required Prolog rules. This heuristic is based on the fact that 

the whole structure becomes more stable if we lower the energy of the whole sequence folded 

onto that structure. Here we do not calculate the whole energy to  be able to reduce it, but 

a t  each point by having the base pair in column j ,  we can choose the base pair in row i 

that gives us the lowest energy (higher probability). Some of the values for probabilities 

are quite close to  each other and for this reason we can not exclude all except the highest. 

For this reason, we only excluded the ones lower than a certain threshold a = 0.1. The 

probabilities were then normalized on this new set. 
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Table 7.2: The probabilities for terminal mismatch of hairpin loops. Each entry (i, j) refers 
to  the probability of having the base pair in row i as the closing base pair of a loop which 

7.1.2 Terminal Mismatch Stacking Energies (Hairpin Loops) 

begins with the incompatible pair in column j .  

For hairpin loops, the closing base pairs play an important role in stabilizing the structure. 

As a result for calculating the energy of RNA secondary structures, the mfold algorithm 

makes use of a set of terminal mismatch stacking energy tables which are specifically gen- 

erated for the closing base pairs of hairpin loops. Using these energy tables we calculated 

the probabilities using Equation 7.1. These probabilities are displayed in Table 7.2 with 6 

rows corresponding to the 6 possible base pairs and 10 columns which are the remaining 

permutations of two nucleotides together (not forming base pairs). 

Here, we only calculated the probabilities while there is a legitimate base pair closing 

a hairpin loop. Yet, the mfold algorithm should be able to  calculate the energy for every 

possible structure. As a result there are also energy tables for the case in which a non 

compatible pair is closing a hairpin loop. Such energy tables are filled with 0's and do not 

have any effect in our calculations. For the probabilities of this table, the threshold a has 

been set to  0.1 and the remaining probabilities have been normalized respectively. 

X\Y 
AU 
CG 
GC 
GU 
UA 
UG 

7.1.3 Terminal Mismatch Stacking Energies (Interior loops) 

AA AC AG CA CC CU GA GG UC UU 

0.08 0.11 0.07 0.04 0.09 0.12 0.13 0.04 0.09 0.15 
0.38 0.33 0.31 0.37 0.41 0.47 0.25 0.36 0.44 0.27 
0.28 0.33 0.29 0.41 0.32 0.29 0.27 0.31 0.31 0.21 
0.00 0.11 0.07 0.04 0.09 0.12 0.10 0.07 0.09 0.15 
0.13 0.07 0.13 0.07 0.05 0.00 0.16 0.16 0.03 0.11 
0.13 0.05 0.13 0.07 0.04 0.00 0.09 0.06 0.04 0.11 

The closing base pairs of interior loops play the same role as the closing base pairs of the 

hairpin loops. However, because of the difference between the structure and the fact that 

there are two closing base pairs for every interior loop, these energies are different, therefore 

the resulting probabilities would be different. This set of probabilities is shown in Table 7.3. 

Once again, the threshold a is used to reduce the number of probabilities and the rules. 
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Table 7.3: The probabilities for terminal mismatch of interior loops. (i, j )  represents the 
probability of having the base pair in row i as the closing base pair of an interior loop which 
begins with the incompatible pairs in column j .  

7.1.4 1x1 Interior Loop Energies 

Above, we calculated the probabilities for the closing base pairs of interior loops. However, 

inside the interior loops there are other energy forces involved which influence the structure. 

These energies are calculated based on the size of the loops and the surrounding base pairs. 

For 1x1 interior loops, i.e the symmetric interior loops with only two incompatible bases 

surrounded by two closing base pairs, the resulting probabilities were 1 for almost all pairs 

of base pairs except for the two pairs of CG, CG and GC, GC. In Table 7.4, the probabilities 

are calculated for 1x1 interior loops with those surrounding base pairs. For the remaining 

34 pairs of base pairs, the only pair of incompatible bases which result in negative energy 

is GG which is selected with the probability of 1. 

Table 7.4: The probabilities for single mismatch energies inside 1x1 interior loops with 
CG-CG and GC-GC as the two surrounding base pairs. 
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7.1.5 1x2 Interior Loop Energies 

1x2 interior loops are asymmetric loops with one base on one side of the loop and two bases 

on the other side, surrounded by two closing base pairs. Inside the energy tables used by 

the mfold algorithm, one of the bases inside the loop (from the side with two bases) and the 

surrounding base pairs are assumed constants and the energies are calculated for having a 

pair of incompatible bases in the remaining sites. Unfortunately the energies inside these 

tables are all positive and we can not calculate the probabilities like before, by considering 

the ones with negative energy. Again we decided on another threshold P = 3 to eliminate 

some of the possible pairs and reduce the number of choices. As a result, any entry for which 

the energy is above P was excluded from the set of possible pairs. For most of the tables, 

this threshold restricted our domain to only one possible incompatible pair (Table 7.5). 

Table 7.5: For the entries identified by x, whenever the respective base pairs on the row and 
the column surround a 1x2 interior loop, if one of the bases inside the 2 base loop is chosen 
to be A, we choose the pair GG as the remaining bases for the loop, otherwise if it is either 
U or C ,  we choose the pair UU. 

For the rest of the entries, the probabilities are calculated in Table 7.6-7.10. Once 

again to reduce the number of probabilities to deal with, the threshold a is used and the 

probabilities are normalized once more. 

7.1.6 2x2 Interior Loop Energies 

AU 

2x2 interior loops are symmetric interior loops with two surrounding base pairs and two 

bases in each side of the loop where each base on a side of the loop forms a mismatch pair 

with the opposite base on the other side. Considering that we have 6 base pairs and 10 

mismatch pairs, the number of energy values and the resulting probabilities for 2x2 interior 

CG AU 

x 

GC GU UA 

x x x  

UG 
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Table 7.6: The probabilities for 1x2 interior loops with the following pairs of surrounding 
base pairs: AU-CG, AU-GC, CG-AU,CG-UA, CG-GU, CG-UG, GC-AU, GC-UA, GC-GU, 
GC-UG, UA-CG, UA-GC, GU-CG, GU-GC, UG-CG, and UG-GC. The bases in Y represent 
one of the bases in the 2-base loop and the mismatch pairs in X are the remaining bases 
inside the loop. 

loops are 6 x 6 x 10 x 10 = 3600. But the good news is that many of these values are 

positive and only a few of them are negative which are the ones that we use to calculate the 

probabilities. This on average would shrink the tables to 1/20 of their original size. Once 

again, we use the same threshold a to reduce the number of entries even more. The final 

results for the probabilities are shown in Table 7.11-7.16 . 

7.1.7 Tetra-loops Energies 

To calculate the energy of a hairpin loop (less than 30 nucleotides), Equation 4.1 is used 

but there are some exceptions where a bonus energy is also considered to calculate the 

whole energy. These exceptions include tri-loops and tetra-loops. The bonus energies for 

tetra-loops used by the mfold algorithm are available and we used them to calculate the 

probabilities for such loops (Table 7.17). 
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Table 7.7: The probabilities for 1x2 interior loops while the surrounding pair is CG-CG. 
The bases in Y represent one of the bases in the 2-base loop and the mismatch pairs in X 
are the remaining bases inside the loop 

Table 7.8: The probabilities for 1x2 interior loops where the closing base pairs of the loops 
could be either CG-GC or GC-CG. The bases in Y represent one of the bases in the 2-base 
loop and the mismatch pairs in X are the remaining bases inside the loop 

A C G U  

0.07 0.11 0.20 0.00 
0.09 0.16 0.24 0.00 
0.16 0.17 0.26 0.00 
0.08 0.10 0.00 0.09 
0.09 0.06 0.00 0.20 
0.09 0.10 0.00 0.15 
0.15 0.00 0.22 0.00 
0.27 0.00 0.08 0.00 
0.00 0.10 0.00 0.24 
0.00 0.20 0.00 0.32 
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Table 7.9: The probabilities of 1x2 intereior loops where the surrounding pair is GC-GC. 
The bases in Y represent one of the bases in the 2-base loop and the mismatch pairs in X 
are the remaining bases inside the loop 

Table 7.10: The probabilities for 1x2 interior loops where the closing base pairs are: AU- 
AU,AU-UA, AU-GU, AU-UG, UA-AU, UA-UA, UA-GU, UA-UG, GU-AU, GU-UA, GU-GU 
,GU-UG, UG-AU, UG-UA, UG-GU, and UG-UG. The bases in Y represent one of the bases 
in the 2-base loop and the mismatch pairs in X are the remaining bases inside the loop 

A C G U  
0.00 0.00 0.16 0.00 
0.00 0.00 0.28 0.00 
0.00 0.00 0.34 0.00 
0.00 0.00 0.22 0.00 
1.00 0.00 0.00 0.00 
0.00 1.00 0.00 1.00 



CHAPTER 7. CHR-LOOPRNA 

Table 7.11: The probabilities of having AU as one closing base pair while the other pair 
is determined by the base pairs in the first row (labeled Y).  The two pairs in column one 
(labeled X )  are mismatch pairs inside the 2x2 interior loops. 

x\ y 
AC, GU 
AG,AG 
CA,GU 
GA,AG 
GU,UG 
UG,GU 

Table 7.12: The probabilities of having CG as one closing base pair while the other pair 
is determined by the base pairs in the first row (labeled Y). The two pairs in column one 
(labeled X )  are mismatch pairs inside the 2x2 interior loops. 
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Table 7.13: The probabilities of having GC as one closing base pair while the other pair 
is determined by the base pairs in the first row (labeled Y). The two pairs in column one 
(labeled X )  are mismatch pairs inside the 2x2 interior loops. 

Table 7.14: The probabilities of having UA as one closing base pair while the other pair 
is determined by the base pairs in the first row (labeled Y). The two pairs in column one 
(labeled X) are mismatch pairs inside the 2x2 interior loops. 

Table 7.15: The probabilities of having GU as one closing base pair while the other pair 
is determined by the base pairs in the first row (labeled Y). The two pairs in column one 
(labeled X )  are mismatch pairs inside the 2x2 interior loops. 
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Table 7.16: The probabilities of having UG as one closing base pair while the other pair 
is determined by the base pairs in the first row (labeled Y). The two pairs in column one 
(labeled X) are mismatch pairs inside the 2x2 interior loops. 

Table 7.17: The tetra-loops and their corresponding probabilities. The first and last bases 
represent the closing base pairs of the loops. 

1 CGCGAG I 0.04 ( UGAGAG 1 0.04 

Tetra-Loop 

GGGGAC 
CGAAAG 
CGCAAG 
CGGAAG 
CGUGAG 
CUACGG 

I CGAGAG I 0.03 I AGAAAU 1 0.03 
I CGUAAG I 0.03 I CUAACG I 0.03 

Probability 

0.05 
0.05 
0.05 
0.05 
0.05 
0.04 

Tetra-Loop 

GGUGAC 
GGAGAC 
GGAAAC 
CUUCGG 
CGAAGG 
GGCAAC 

UGAAAG 
GGGAAC 
AGCAAU 

I I I 

GUGAAC I 0.02 I UGGAAA I 0.02 

Probability 

0.05 
0.05 
0.05 
0.05 
0.04 
0.04 

CGGGAG 
GGCGAC 

0.03 
0.02 
0.02 
0.02 
0.02 

GGAAGC 
UGAAAA 
AGUAAU 

0.02 
0.02 
0.02 

AGUGAU 
GGGAGC 

0.02 
0.02 
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7.2 Designing the Loops 

We discussed the energy tables and the probabilities used for assigning single bases as well as 

base pairs inside certain kinds of loops. However, there are still some positions inside most 

of the secondary structures which are not covered. Specifically, except for 1x1, 1x2, and 2x2 

interior loops, there are no energies assigned to loops of different sizes. Zuker's algorithm 

uses the energy rules introduced in Section 4.3.2 for each type of loop which usually only 

consider the length of the loop and does not differentiate between different bases and their 

arrangernents. 

For RNA secondary structure design. we have the freedom to choose every single base, 

but we should be careful with the selections we make. For example, suppose we are designing 

a 15-base hairpin loop. If we assign G to one position and assign C to the position next to it 

and after passing about 4 nucleotides we assign nucleotide G and C adjacent to each other, 

the chances are that when the secondary structure is forming, the hairpin loop will not form 

like the original structure. Instead these four bases will form two adjacent base pairs and 

change the original hairpin loop structure into an internal loop and a smaller hairpin loop 

(Figure 7.1). 

Figure 7.1: In a),  a hairpin loop is shown with CG assigned to two pairs of two adjacent 
bases. In b), the structure of the same sequence in reality is illustrated. 

7.2.1 A Heuristic 

To overcome such problems while designing the loops, we use a heuristic to make sure we do 

not assign to consecutive bases, nucleotides that might form strong base pair combinations. 

To find such combinations, we studied the energy tables for stacking base pairs. These energy 

tables present the energies assigned to all combinations of adjacent base pairs. Using these, 

we came up with the best choices to assign to the adjacent position of every single base. 
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Again, some of the values are quite close for some combinations, therefore we calculated the 

probabilities and eliminated the ones less than a certain threshold a. The results are shown 

in Table 7.18. 

Here, as energies are mostly negative and the ones with the lowest energies are favorable, 

we use the following formula to calculate the probabilities. As the values are all greater than 

-3.00, we choose T = 3.00 to add to the energy values: 

Table 7.18: In this table, any (i, j )  entry represents the probability of having the base in 
column j right after the base in row i inside the RNA sequence when it is read from 3' end 
to 5' end. 

If we change the value of T to 4 in the the above equation, all the resulting probabilities 

would be above zero (although very small in some cases). This refinement would ascertain 

that we do not completely remove the chance of having every two consecutive bases. But 

on the other hand it might increase the chance that the loops in the final structure do not 

exactly match the given structure (Figure 7.1). 

7.3 Adding the Probabilities to the Rules 

The probabilities we obtained above can not be combined with the limited set of RNA 

grammar rules introduced in Section 4.4, therefore we have devised new rules to incorporate 

each set of probabilities such as: stacking loops, terminal mismatch stacking in hairpin loops 

and interior loops, etc. Below, you can see this set of new rules. 

To assign bases to a generic loop, we use rule 1. The predicate f i n d p a t t e r d 3 ,  uses 

the probabilities in Table 7.18 as well as a random variable and the first element of 
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the loop to find a nucleotide for position X which would be attached to the head of 

loop. 

@Rule 1: 

upair (X) , loop (XI, Y, [XI : N I Lll ) 

<=>XI is X+l, random(1) , f indpattern(N,M, I) 1 

loop(X,Y, [X:M,XI:N(L~I) ,base(X,M). 

a In rule 2, the goal is to  add a closing base pair to a hairpin loop and form the structure 

s/3 which contains the two end positions as well as their respective assigned bases. 

Inside the guard, using the random variable I, the terminal mismatch pair closing 

the hairpin loop (M, N) and the probabilities from Table 7.2, the predicate f indhm/4, 

generates the base pair MI-Nl to assign to positions Xl and Yl. In addition, X and Y 

are examined to make sure that the hairpin loop is not a tetra-loop. 

@ Rule 2: 

pair(X1,Yl) ,base(Y,N)\loop(X,Y, [X:MILI ) < =  is Xl+l, Yl is Y+l, 

Y-X=\=3, random(1) ,findhm(M,N,Ml,Nl,I) I s(Xl,Yl, [Xl:Ml,Yl:NllLI) 

a We use rule 2 to design any hairpin loops except tetra-loops for which rule 3 is used. 

Instead of using the predicate findhm/5, here we use the predicate tetloop/4 that 

only takes a random variable I as well as the positions of the base pair and outputs 

the list of all the positions inside the loop and their assigned bases inside a list. 

@ Rule 3: 

pair(Xl,Yl)\loop(X,Y,-)<=>X is X1+1, Y1 is Y+1, 

Y is X+3, random(I),tetloop(X1,Yl,L,I)I s(Xl,Yl,L). 

0 In rule 4 the goal is to place a new base pair on top of a stack of base pairs. To achieve 

this goal, bases are assigned to the new base pair in such a way that they conform to 

the probabilities of stacking base pairs (Table 7.1). Using random variable I and the 
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terminal base pairs of the stack M-N, predicate f i nds t / 5  generates bases MI-N1 to be 

allocated to positions X 1  and Y 1  respectively. 

Rules 5 to 8 examine the required constraints and design different types of interior 

loops (1x1, 1x2 and 2x2). Rule 5, specifically targets 1x1 interior loops. Using random 

variable I, a Watson-Crick base pair MI-N1 is assigned to the closing base pair XI and 

Y l .  Using the closing base pairs assigned to positions X ,Y and XI ,Y1, the predicate 

f indint11/7 assigns a mismatch pair M3 ,N3 to the bases inside the loop (Figure 7.2). 

Figure 7.2: A 1x1 interior loop 

Rule 6, uses the probabilities calculated for 1x2 interior loops. In Figure 7.3, the con- 

ditions needed to form a 1x2 interior loop are illustrated. Here, using the constraints 

and the guard we make sure all the conditions hold. Moreover inside the guard, we 

initially assign a Watson-Crick base pair MI-N1 to position X 1  and position Y 1  which 
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are the closing base pairs of this structure, through the predicate f ind/3. Next, using 

the newly assigned base pair, the base N2, the bases on top of the stack M,N, and the 

random variable J ,  the predicate f i nd in t l 2 /8  finds the corresponding mismatch pair 

for positions Z and 22 inside the loop. 

Figure 7.3: A 1x2 interior loop 

Similar to rule 5 and rule 6, rule 7 is also formulated to design an interior loop w 

in this case is 2x2. Once again, a Watson-Crick base pair is assigned to  the base 

pair in positions X and Y and next the new base pair along with the closing base 

pair of the structure s/3 and a random variable J are given as arguments to the 

predicate f indint22/9 which by using the corresponding probabilities for 2x2 interior 

loops, assigns the bases M2, N2 and M3, N 3  to the positions Zl,Z4,Z2,Z3 respectively 

(Figure 7.4). 
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Figure 7.4: A 2x2 interior loop 

0 For the rest of the interior loops that do not fall into any of the above categories we 

use rule 8 (Figure 7.5). Here, we only make use of Table 7.3 to find a base pair to 

assign to the Xl ,Y1 pair, but first we make sure that the terminal pairs of the interior 

loop are incompatible pairs by using the predicate check_pair/3. Following that, the 

predicate f indmm/5 is called to find the closing base pair of the loop. 

@Rule 8: 

pair (XI ,Yl) ,base (Z4, N2) ,base (Z2 ,M3) \base (Zl ,M2) ,base (Z3, N3) ,pair (X ,Y) , 

loop(Z1,z2, [~l:M21Ll]) ,loop(Z3,Z4, [Z3:N3lL2) ,s(X,Y,L) 

<=>XI is Zl-1, X is Z2+1,Z3 is Y+l,Yl is Z4+1,Z4-23 >1, 

22-ZD1, check-pair(N2, M2 ,M4) , random(1) , f indmm(M4, N2 ,MI, N1, I) , 

check~pair(M3,N3,N4),append([Xl:Ml,Yl:N1,Zl:M4~Ll],L,L3), 

append(L3, [Z3:N41L2] ,L4) 1 s(Xl,Yl,L4),base(Zl,M4),base(Z3,~4). 

0 For bulge loops composed of only one base, the energy is calculated as if the closing 

base pairs were stacked upon each other. As a result we use a separate rule that 

considers 1-base bulge loops and for all the others, we use the same rule as the one 

used for chr-statRNA: 
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Figure 7.5: A generic interior loop 

Above, we introduced a set of rules used in chr-loopRNA. In the next chapter we will 

show the results of both chr-loopRNA and chr-statRNA. 



Chapter 8 

Results and Conclusion 

For the evaluation phase, firstly we transform the secondary structure of each test case to 

constraint format by using a Java based program, namely toCons t ra in t  . j ava and then run 

the chrRNA program for each of those. Using the probabilities turns the result of each run 

on a test case into a completely new sequence. The sequence produced by chrRNA is then 

fed into an RNA folding server and the output is the structure of this new sequence. The 

two structures (the original structure and the output structure of the RNA folding server) 

are then compared with each other and the differences are marked. We have used the mfold 

RNA folding server by Zuker et. al. [64, 421. The accuracy of this algorithm is estimated 

to be about 73% which shall be considered while evaluating the system. A schema of the 

whole evaluation system is shown in Figure 8.1 

8.1 Comparisons 

We have tested chr-statRNA and chr-loopRNA programs with 100 RNA secondary struc- 

tures (without pseudoknots) from Gutell lab's comparative RNA website [17], tmRNA web- 

site 1321 and 5 s  Ribosomal RNA database [56]. The test cases were selected from both 

Prokaryote (Archaea and Bacteria) and Eukaryote. The reason we only included RNA sam- 

ples without pseudoknots in our test domain is that as mentioned before, there is still no 

efficient algorithm capable of predicting the secondary structure of RNA containing pseu- 

doknots and therefore we are not yet able to assess chrRNA for designing sequences with 

pseudoknots. 

For comparison, we have also evaluated RNA-SSD and RNAinverse using the same RNA 
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Figure 8.1: The Evaluation System 

toconstraint 

samples. RNAinverse is one of the programs inside the Vienna RNA package1 [33]. RNAin- 

verse and chrRNA were both executed on a Power Mac G5 with 1.5 GB memory and Dual 

2 GHz PowerPC G5 CPU. RNA-SSD has been implemented [3] and is only available online2 

through a web application. We have divided our test cases into three groups according to 

Secondary Deslgned 
Structure 

--b Foldiqg 
Constralnt 
Format Serveir 

their length. The results of our accuracy comparison between chr-statRNA, chr-loopRNA, 

RNA-SSD and RNAinverse are displayed in Table 8.1. The results of comparison between 

RNAinverse and chr-loopRNA (which is slightly more accurate than chr-statRNA ) run time 

are shown in Figure 8.2. 

The results show that for RNA sequences of less than 300 bases, RNA-SSD is the excel- 

A 

lent choice with 0% error but this method is unable to  find any solution for sequences longer 

than 300 base within their time-limit of 1 hour. For RNA sequences between 300 and 500 

RNA Seconday 
Structure 

bases, the RNAinverse and chr-loopRNA error rates are quite close to  each other, however 

as seen in Figure 8.2, chr-loopRNA is much faster in generating the results. For sequences 

consisting of more than 500 bases, the difference between chr-loopRNA and RNAinverse 

run-time becomes much more significant. While chr-loopRNA is able to design a 510 long 

compare of the Deslgned Sequence 
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Table 8.1: Comparison between chr-statRNA, chr-loopRNA, RNA-SSD, and RNAinverse. 
1 defines the length of the RNA sequence and columns 2-5 show the average error of each 
method for 50 runs according to  the length of the sequences. 

Method 1 <= 300 300 < 1 <= 500 500 < 1 <= 1023 1023 < 1 <= 2000 

chr-statRNA 8% 22% 2 7% 35% 
chr-loopRNA 6% 20% 22% 30% 
RNAinverse 4% 18% 20% - 

RNA-SSD 0% - - - 

sequence in 60 seconds, RNAinverse needs 7200 seconds to  finish the same job. The RNAin- 

verse run-time for a sequence consisting of 700 bases is 4 hours with 22% error where the 

chr-loopRNA designs the same sequence in 13 minutes with 27% error. On the other hand, 

while RNAinverse does not accept sequences longer than 1023 bases, chr-loopRNA and 

chr-statRNA do not have any limitations on the length of the sequence. 

8.2 Discussion 

We implemented two simple while powerful systems based on CHR rules to  design the RNA 

secondary structure: chr-statRNA and chr-loopRNA. Although both methods incorporate 

the same basic RNA grammar rules introduced in Section 4.4, each method extends this 

set of rules and combines them with probabilities differently. While chr-statRNA uses the 

nucleotide composition probabilities of RNA which are derived statistically, chr-loopRNA 

exploits the energy tables used in the mfold algorithm [64, 421 to  calculate the probabilities 

to  build up stacks and loops inside RNA. The results in Table 8.1 show that in general chr- 

loopRNA performs better than chr-statR.NA. One reason that makes chr-loopRNA superior 

is that energies involved with the arrangements of nucleotides inside RNA are the same for 

all RNA types, but for chr-statRNA it might highly depend on which type of RNA we are 

designing. For instance it has been proved that GU pairs are more abundant inside tRNA 

molecules, so although the probability assigned to  GU pairs is generally very low, for tRNA 

molecules this probability is higher. 

Above we also show that although the two existing methods, RNA-SSD and RNAinverse, 

generate more precise results while designing shorter sequences (less than 300) by utilizing 
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Figure 8.2: chr-loopRNA and RNAinverse run time in seconds 

other non trivial rules such as energy rules into their methods which are not very easy to 

implement in our case of CHR rules; considering the execution time and accuracy factors 

together, chr-loopRNA performance is similar to RNAinverse for RNA sequences between 

the range of 300 and 500 bases. Finally, for RNA sequences longer than 500 bases, chr- 

loopRNA outperforms both methods by generating results in a much smaller amount of time. 

The reason for the large difference between chrRNA and RNAinverse response time is that 

the system implementing RNAinverse employs some RNA secondary structure prediction 

algorithms with 0(n3)  time complexity. Although in general using such algorithms to 

examine the designed sequences makes this method more accurate, the trade-off is a major 

increase in run-time for longer sequences. In addition to this, the capability of handling 

pseudoknots, makes our systems more powerful in comparison to the other existing methods. 

Further advantages of our implemented systems are: 

CHR rules are much more understandable by biologists, compared to the other pro- 

gramming languages. 

Using a rule-based system give us the opportunity to easily extend our system just by 

employing new rules. Biologists can even write their own rules and constraints and 

add them to the system. 

0 Our systems do not depend on RNA secondary structure algorithms with the expensive 

time complexity. 

0 The probabilities involved inside the rules can be easily changed according to biologists' 
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needs. For instance they can easily change the ratio of each nucleotide inside the 

designed RNA. 

chrRNA does not force any limitations regarding the length of the input structure. 

8.3 Future Work 

One future extension point for chr-statRNA is to calculate an individual set of probabilities 

and incorporate more samples for each type of RNA such as rRNA, tRNA, and etc. For 

chr-loopRNA we have already made use of all the state-of-the-art energy values for RNA 

secondary structures. In the future, if new energy rules between RNA nucleotides are 

discovered or if these energy tables are updated, the probabilities inside chr-loopRNA can 

be easily recalculated and adjusted as well. 

Another improvement to  our methods would consist in also incorporating more non- 

trivial rules which are not easy to  predict, through some machine learning methods such as 

Inductive Logic Programming (ILP) 1441. ILP is a relatively new methodology of automati- 

cally eliciting hidden knowledge with the help of a computer [45]. ILP has already been used 

in molecular bioinforrnatics [52]. Some examples of this application include gene function 

prediction [36], protein secondary structure prediction 1461 and drug design [35]. By using 

this methodology and adding new rules, this system could probably show better results in 

general. 

Finally, it might be a good idea to  somehow merge our method with RNA-SSD or 

RNAinverse. For instance, in the case of RNA-SSD, chrRNA can be used in the initialization 

phase to  reduce the amount of differences between the predicted structure for the initially 

designed sequence and the original structure. By comparing the secondary structures of 

our designed RNA sequences and the given secondary structures, we have discovered that 

many of the inaccuracies appear while designing internal loops and long hairpin loops when 

adjacent single bases from one side of the loop form base pairs with bases of the other side. 

As seen in Section 7.2.1, we used a heuristic to  reduce the chance of this happening inside 

the loop, but as we are dealing with probabilities here, there is no way to guarantee that 

this won't occur. While examining such conditions is not very efficient inside CHR rules, 

involving another program that employs energy rules and predicts the secondary structure 

for the designed loop, would be effective in generating more accurate results. 
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We expect the results presented here to be invaluable for in vitro genetics, by enabling 

scientists to produce RNA virtually from sequences; and for drug design, which typically 

progresses backwards from proteins to  RNA to DNA. 



Appendix A 

Glossary of Biological Terms 

Amino acid: basic structural building units of proteins. 

Base pair: or complementary base pair refers to two nucleotides on opposite strands of 

DNA or RNA that are connected via hydrogen bonds. 

Chromosomes: the separate physical molecules which are arranged to  form DNA inside 

the cells. 

Codon: each triplet of bases inside RNA. 

Cytoplasm: the contents of a cell without the nucleus. 

DNA (Deoxyribonucleic Acid): a nucleic acid that  contains the genetic instructions 

specifying the biological development of all cellular forms of life. 

Eukaryotes: organisms with complex cells such as animals, plants, and fungi. 

Exon: the stretches of DNA that code for proteins. 

Gene: the units of heredity in living organisms. 

Genetics: the science of heredity in living organisms. 

Genome: all the genetic information inside chromosomes. 

Helix: a screw like structure. 

Intron: the non-genetic stretches of DNA that separate exons in eukaryotes. 

Nucleic acid: a biochemical macromolecule composed of nucleotide chains that convey 

genetic information. The most common nucleic acids DNA and RNA. 

Nucleotide: the structural units of DNA and RNA which are Adenine(A), Cytosine(C), 

Guanine(G), Uracil(U, Thymine(T) . 
Prokaryotes: the organisms without a cell nucleus such as bacteria. 

Proteins: the molecules responsible for much of the structure and activities of organisms 
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that are composed of amino acids. 

Protein folding: finding the tertiary structure of protein from its sequence of amino acids. 

Pseudoknots: widely occurring structural motifs inside RNA that play important roles 

regarding the function of RNA. 

RNA (Ribonucleic Acid): a chemical found in cells that  codes for amino acids. 

RNA folding: finding the structure of RNA from its sequence of nucleotides. 

RNA primary structure: the sequence of nucleotides inside RNA. 

RNA secondary structure: the information regarding the nucleotides inside the RNA 

sequence that  shows which nucleotide bind to  each other and which one remain single. 

RNA secondary structure design: designing an RNA sequence that  folds onto a given 

secondary structure. 

RNA secondary structure prediction: predicting the secondary structure of an RNA 

sequence from its primary structure. 

RNA splicing: the act of removing introns and joining exons. 

RNA tertiary structure: the actual positions of molecules in three-dimensional space. 

Splice sites: the boundaries of exons and introns. 

Watson-Crick base pairs: the base pairs between C-G in DNA and RNA, A-T in DNA, 

and A-U in RNA. 

Wobble base pairs: the base pairs between nucleotide G and U. 
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A Sample Run 

In this appendix, we provide the information regarding the secondary structure of a sample 

RNA and we present a sample run of the program chr-loopRNA for this particular secondary 

structure. The sample secondary structure is: 

................................................................................................................. 
The result of a sample run on the above secondary structure is: 

I ?- test8. 

[1:a,2:~,119:g,3:g,l18:~,4:~,117:g,5:g,l16:~,6:~,115:a,7:~,114:g, 

8:c,113:g,9:g,112:u,10:g,lll:c,11:c,110:g,12:c,13:a,14:c,15:u,16:a, 

70:g,17:g,69:c,18:g,68:c,19:g,66:c,20:a,65:~,21:g,64:~,22:~,63:g, 

23:g,62:~,24:g,61:~,25:~,26:a,27:g,28:a,29:g,57:~,30:~,56:g,31:g, 

55:~,53:a,54:a,32:g,52:~,33:g,51:~,34:~,50:g,35:g,49:~,36:a,37:a, 

38:~,39:~,40:~,41:a,42:g,43:a,44:a,45:~,46:~,47:~,48:a,58:g,59:a, 

60:a,67:g,71:c,106:g,72:g,105:c,73:g,104:~,74:~,103:g,75:~,102:g, 

76:g,101:u,77:c,100:g,78:u,79:g,80:c,97:g,81:c,96:g,82:g,95:c,83:g, 

94:~,84:g,93:~,85:~,92:g,86:g,91:~,87:g,88:~,89:a,90:a,98:~,99:g, 

107:a,108:a,109:c, 12O:cl 

write-list (1,1201, 

pair(121,121), 

pair(2, llg), 

pair(0,0), 

base(1,a) , 



APPENDIX B. A SAMPLE RUN 

pai r (17 ,69) ,  

b a s e ( l 3 , a ) ,  

base (14, c) , 

base ( l5 ,u ) ,  

base (26, a )  , 

base (27, g) , 
base (28, u) , 

base (37, a)  , 
base (38, c) , 

base (39 ,u)  , 

base (40, c )  , 

base (41, a )  , 

base (42, g) , 
base (43, a )  , 
base (44, a) , 
base(45,u) , 
base(46 ,c ) ,  

base (47, u) , 

base (48, a )  , 
base (36, c) , 

bulge (53,54) , 

base (53 ,u) , 
base (54, a) , 

base(59 ,a ) ,  

base (60, a )  , 

base (25, c) , 
base(58,g) ,  

bulge (67,67) , 

base (67, g) , 
pair(71,106) ,  

base (70, g) , 
b a s e ( l 6 , a ) ,  

base(88,g) , 
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base (89, u) , 
base (87, g) , 
base (90, a) , 

base (78, u) , 

base(79,g), 

base(98,u), 

base (99, g) , 

base (107, a) , 
base(l08,a), 

base (log, c) , 
base(l2,c), 

base(l20,c), 

s(1,120,[1:a,2:c,119:g,3:g,118:c,4:c,117:g,5:g,116:cl.. .~~, 

internal (25,28,58,6O) , 
internal (78,79,98,99) ? 
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