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Abstract

Algebraic hyperbolicity serves as a bridge between differential geometry and algebraic ge-
ometry. Generally, it is difficult to show that a given projective variety is algebraically
hyperbolic. However, it was established recently that a very general surface of degree at
least five in projective space is algebraically hyperbolic. In this thesis, we are interested in
generalizing the study of surfaces in projective space to surfaces in toric threefolds with
Picard rank 2 or 3. Towards this goal, we explored the combinatorial description of toric
threefolds with Picard rank 2 and 3 by following the works of Kleinschmidt and Batyrev.
Then we used the method of finding algebraically hyperbolic surfaces in toric threefolds
by Haase and Ilten. As a result, we were able to determine several algebraically hyperbolic
surfaces in each of these varieties.
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Chapter 1

Introduction

Hyperbolicity has long been a topic of interest in the study of differential geometry. A
smooth complex projective variety X is said to be Brody hyperbolic if there is no nonconstant
holomorphic map f : C→ X [2]. The hyperbolicity of curves can be completely determined
by their geometric genus (Definition 5.1). A curve is hyperbolic if and only if the geometric
genus is at least 2. However, the determination of hyperbolicity becomes complicated as
we go to higher dimensions. Demailly [6] introduced the notion of algebraic hyperbolicity
(Definition 5.4) to improve the study of hyperbolicity. Compared to hyperbolicity, it is easier
to determine algebraic hyperbolicity of varieties. Moreover, in light of Demailly’s conjecture
(Conjecture 5.8), which states the equivalence of hyperbolicity and algebraic hyperbolicity,
we can focus on algebraic hyperbolicity of higher dimensional varieties. In this thesis, we
study the algebraic hyperbolicity of surfaces.

There is good progress in understanding the hyperbolicity of surfaces in P3. It is known
that a surface of degree at most four contains a curve of genus 0 or 1, and hence cannot
be algebraically hyperbolic. Since some surfaces contain lines, we cannot expect all smooth
surfaces of degree at least five to be algebraically hyperbolic. But it is still relevant to check
almost every surface of a given degree in light of the definition of a very general surface
(Definition 3.5).

Theorem 1.1 (Xu [23], Coskun and Riedl [3]). A very general surface of degree at least
five in P3 is algebraically hyperbolic.

Haase and Ilten [13] initiated the study of algebraically hyperbolic surfaces in toric
threefolds. Toric varieties (Definition 2.1) are a rich class of varieties that are easily acces-
sible. In P3, it is natural to study the surfaces of same degree. For a general variety X, we
will study a group Pic(X), called the Picard group (Definition 3.2) of X, and associate to
every surface a class in Pic(X) generalizing the degree of a surface in P3. Additionally, We
require this class to be basepoint free (Definition 3.4). The classes of basepoint free divisors
generate a cone called the nef cone (Definition 3.26). The following theorem ensures the
existence of hyperbolic surfaces of higher degrees.
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Figure 1.1: Algebraic hyperbolicity for a very general surface of the type aH1 + bH2 in
P2 × P1.

Theorem 1.2 (Haase and Ilten [13], Theorem 1.2). Let X be a smooth projective toric
threefold with the nef cone Nef(X). There exists an ample divisor class H0 such that for all
divisors D whose class lies in H0 + Nef(X), a very general surface S ∈ |D| is algebraically
hyperbolic.

Example 1.3. Consider the variety P2 × P1. Let H1 be the pullback of the hyperplane
class from P2 and let H2 be the pullback of the hyperplane class from P1. The nef cone is
generated by H1 and H2. A very general hypersurface in the class aH1 +bH2 is algebraically
hyperbolic if a ≥ 5 and b ≥ 3. See Figure 1.1. We refer the reader to [13, Example 6.1] for
more details.

In this thesis, we will make Theorem 1.2 explicit in the case that X is a smooth toric
threefold of Picard rank 2 or 3. Kleinschmidt [17] classified all smooth complete toric va-
rieties with Picard rank 2. They are produced from the projectivization of decomposable
toric vector bundles over P1 or P2 (Section 4.2). We will see a combinatorial interpretation
of these varieties in Chapter 4.

We will get an explicit bound of algebraic hyperbolicity by imposing an additional
condition on divisors, a configuration of divisors with connected sections (Theorem 5.19).
We will obtain the following results.

Theorem 1.4. Let E = OP2 ⊕ OP2(l) be a locally free sheaf on P2, let π : P(E) → P2 be
a projective toric bundle, F be the pullback of the hyperplane class, and ξ be the class of
OP(E)(1). The nef cone of P(E) is generated by F and ξ. Let S be a very general surface in
the class O(aξ + bF ).

1. Suppose l = 0. Then S is algebraically hyperbolic if a ≥ 3 and b ≥ 5.

2. Suppose l = 1. Then S is algebraically hyperbolic if a ≥ 3 and b ≥ 4 or a = 2 and
b ≥ 7 or b = 0 and a ≥ 6.
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3. Suppose l = 2 or 3. Then S is algebraically hyperbolic if a ≥ 3 and b ≥ 4 or a = 2
and b ≥ 7 or b = 0 and a ≥ 4.

4. Suppose l ≥ 4. Then S is algebraically hyperbolic if a ≥ 3 and b ≥ 4 or a = 2 and
b ≥ 7 or b = 0 and a ≥ 3.

Theorem 1.5. Let E = OP1⊕OP1(l1)⊕OP1(l2) be a locally free sheaf on P1, let π : P(E)→
P1 be a projective toric bundle, F be the pullback of the hyperplane class and ξ be the class
of OP(E)(1). The nef cone of P(E) is generated by F and ξ. Let S be a very general surface
in the class O(aξ + bF ).

1. Suppose l1 = l2 = 0. Then S is algebraically hyperbolic if a ≥ 5 and b ≥ 3.

2. Suppose l1 = 0, l2 ≥ 1. Then S is algebraically hyperbolic if a ≥ 5 and b ≥ 2 or a = 2
and b ≥ 7 or b = 0 and a ≥ 6.

3. Suppose l1 ≥ 1. Then S is algebraically hyperbolic if a ≥ 5 and b ≥ 0.

We will also obtain surfaces which are not hyperbolic. See Theorem 6.3 and Theorem
6.10. The bounds we obtain for algebraic hyperbolicity in these theorems are close to sharp,
leaving only a few cases unresolved. Additionally, we study all smooth complete toric three-
folds with Picard rank 3 classified by Batyrev. See Theorems 7.3, 7.11, 7.18, 7.25, 7.32 and
7.39.

In Chapter 2, we briefly review the basics of toric varieties needed later on. In Chapter
3, we review divisors and intersection theory. In Chapter 4, we recall the classification of
toric varieties by Kleinschmidt and Batyrev. Chapter 5 introduces the notion of algebraic
hyperbolicity and discusses conditions that decide algebraic hyperbolic surfaces. In Chapter
6 and 7, we will focus on finding the algebraically hyperbolic surfaces of those toric varieties
described in Chapter 4.
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Chapter 2

Toric Varieties

In this chapter, we will review the basics of toric varieties. We assume the reader is familiar
with the basics of algebraic geometry. See [15] or Chapter 1 of [14]. Unless otherwise spec-
ified, by the term variety, we mean an irreducible quasi-projective variety. Because of the
availability of textbooks [5] and [9] on toric varieties, we will only discuss the definitions
important for this thesis. For convenience, we always follow the notations of [5].

A variety of the form (C∗)n is known as a torus. It is a group under component-wise
multiplication.

Definition 2.1. A toric variety X is an algebraic variety that contains a torus as an open
dense subset with the action of the torus on itself extending to an action on X.

Example 2.2. The affine and projective spaces are toric varieties.

1. Consider An with the open dense subset {(t1, · · · , tn) : ti 6= 0 for all i} ∼= (C∗)n where
the torus action is given by

(C∗)n × An → An

(t1, · · · , tn).(x1, · · · , xn) 7→ (t1x1, · · · , tnxn).

2. Consider Pn with the open dense subset {[1 : t1 : · · · : tn] : ti 6= 0} ∼= (C∗)n where the
torus action is given by

(C∗)n × Pn → Pn

(t1, · · · , tn).[x0 : x1 : · · · : xn] 7→ [x0 : t1x1 : · · · : tnxn].

Toric varieties are a rich class of varieties that are easily accessible. For the last few
decades, there has been an increasing interest in studying various geometrical aspects of
toric varieties. The geometry of a toric variety can be expressed by combinatorial data,
which is generally easily determined. It is easy to compute the Picard group, nef cone,
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cohomology and many other geometric aspects of toric varieties using the combinatorial
data.

2.1 Affine toric varieties

We begin with a brief review of affine varieties to fix notation and terminology. See [5,
Chapter 1] for more details. Affine varieties are considered to be building blocks of all
varieties. For us, an affine variety is an irreducible algebraic set. Let V be an affine variety
with coordinate ring C[V ]. Hilbert’s Nullstellensatz says that maximal ideals of C[V ] are
in one-to-one correspondence with points in V [14, Corollary 1.4]. Let R be a ring and
Specm(R) be the set of all maximal ideals of R. We can write

V = Specm(C[V ]).

This gives a correspondence between nilpotent-free finitely generated algebra over C and
complex affine varieties [5, Lemma 1.0.1]. In this section, we will see the construction of a
nilpotent-free finitely generated algebra from a combinatorial object called a cone.

Before defining a cone, we need to understand the character lattice of a torus. A character
of a torus T is a morphism χ : T → C∗ that is a group homomorphism. The characters of
(C∗)n form a group M isomorphic to Zn [5, Section 1.1].

LetM ∼= Zn be a lattice of rank n, and N = Hom(M,Z) be the dual lattice. The pairing
between m ∈M and u ∈ N is denoted by 〈m,u〉 ∈ Z.

Definition 2.3. A rational polyhedral cone σ in the vector space NR = N ⊗ZR is a subset
of the form

σ = Cone(u1, . . . , us) = {r1u1 + . . .+ rsus : ri ≥ 0}

where ui ∈ N .

We say σ is strongly convex if σ ∩ (−σ) = {0}. Throughout the thesis, we use the term
cone to denote a strongly convex rational polyhedral cone. The dimension of σ is defined
as the dimension of the subspace spanned by σ in NR. A cone generated by one element is
called a ray and is usually denoted by ρ. The semigroup ρ ∩ N is generated by a unique
element denoted by uρ. We call uρ the ray generator of ρ.

For every cone σ ⊂ NR, we can associate a dual cone in MR = M ⊗Z R. The dual cone
is defined by

σ∨ = {m ∈MR : 〈m,u〉 ≥ 0 for all u ∈ σ}.

A subset τ of σ is called a face if

τ = {u ∈ σ : 〈m,u〉 = 0}

for some m ∈ σ∨.
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Theorem 2.4 (Gordan’s lemma). Let σ be a rational polyhedral cone, then the semigroup
Sσ = σ∨ ∩M is finitely generated.

Proof. This is Proposition 1.2.17 from [5].

Any additive semigroup Sσ determines a commutative C-algebra C[Sσ]. We construct
it as a C-vector space with basis the formal symbols {χm : m ∈ Sσ}, and multiplication
defined by

χm.χm
′ = χm+m′ .

Definition 2.5. We define the affine toric variety associated to σ by Uσ := Specm(C[Sσ]).

(0, 0)

(a) σ

(0, 0)

(b) σ∨

Figure 2.1: An example of a cone and its dual cone

Example 2.6. Here is a simple example when n = 2. Fix a Z-basis {e1, e2} of N and let
{e∗1, e∗2} be the dual basis of M . Set x = χe

∗
1 , y = χe

∗
2 . Let σ =Cone(e1,−e1 + 2e2). Then we

can show that the semigroup σ∨ ∩M is generated by e∗2, e∗1 + e∗2, 2e∗1 + e∗2. See Figure 2.1.
We have

Uσ = Specm(C[y, xy, x2y]) ∼= Specm
(
C[u, v, w]
〈v2 − uw〉

)
∼=
{
(u, v, w) ∈ C3 : v2 = uw

}
.

2.2 General toric varieties

We discussed the building blocks in the previous section. This section will demonstrate how
to glue them together appropriately to form new varieties with specific features. We begin
by considering three important properties of a variety. We refer the reader to [5, Chapter
3].

Definition 2.7. Let X be a variety.
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(a) We say X is normal if the local rings OX,p are normal for all p ∈ X.

(b) We say X is separated if the image of the diagonal map ∆ : X → X × X is Zariski
closed in X ×X.

(c) We say X is complete if for every variety Z, the projection π : X × Z → Z is a closed
mapping in the Zariski topology.

Remark 2.8. Any projective variety is complete, and a variety is complete if and only if
it is compact in the classical topology.

Next, we will define a fan and illustrate how to construct toric variety from this data.

Definition 2.9. A fan Σ in NR is a collection of cones such that

(i) Every face of a cone σ ∈ Σ is in Σ.

(ii) If σ1, σ2 ∈ Σ then σ1 ∩ σ2 is a face of both σ1 and σ2.

Furthermore, if Σ is a fan, then Σ(r) is the set of r-dimensional cones of Σ. If τ is a
face of σ, we have an open embedding Uτ ↪→ Uσ. Since σ1 ∩ σ2 is a face of both σ1 and σ2,
Uσ1∩σ2 can be identified as an open subvariety of Uσ1 and Uσ2 . For a fan Σ in N , we can
glue {Uσ : σ ∈ Σ} together to obtain a normal separated toric variety

XΣ :=
⋃
σ∈Σ

Uσ.

Indeed, any normal separated toric variety X can be realized as a toric variety coming from
a fan Σ. See [5, Section 3.1] for more details.

Remark 2.10. Since the affine toric variety corresponding to the trivial cone {0} is the
torus TN = N ⊗ C∗ = Specm(C[M ]), we see that TN is an affine open subset of XΣ. The
action of the torus on itself extends to an algebraic action of TN on XΣ.

Example 2.11. Let {e1, e2} be a Z-basis of N and let {e∗1, e∗2} be the dual basis of M . Set
x = χe

∗
1 , y = χe

∗
2 .

1. Let Σ be the fan consisting of σ1 = Cone(e1, e2), σ2 = Cone(e2,−e1 − e2), σ3 =
Cone(−e1 − e2, e1) and their faces. The corresponding toric variety is covered by
open affine subsets Uσ1 = Specm(C[x, y]), Uσ2 = Specm(C[x−1, x−1y]) and Uσ3 =
Specm(C[xy−1, y−1]). Let [x0 : x1 : x2] be the homogeneous coordinates on P2 and let
Ui ⊂ P2 be the standard affine open subsets. Then Ui ∼= Uσi under the identification
x = x1/x0 and y = x2/x0. Hence we have XΣ ∼= P2.

7



σ1σ2

σ3

(a) Fan of P2

σ1σ2

σ3 σ4

(b) Fan of P1 × P1

Figure 2.2: Two fans in R2

2. Let Σ be the fan consisting of σ1 = Cone(e1, e2), σ2 = Cone(e2,−e1), σ3 = Cone(−e1,−e2),
σ4 = Cone(−e2, e1) and their faces. The corresponding toric variety is covered by open
affine subsets Uσ1 = Specm(C[x, y]), Uσ2 = Specm(C[x−1, y]), Uσ3 = Specm(C[x−1, y−1])
and Uσ4 = Specm(C[x, y−1]). The gluing of Uσ1 and Uσ4 (respectively Uσ2 and Uσ3)
along second coordinate gives C × P1. These two varieties glue by the map x → x−1

which gives P1 × P1.

See Figure 2.2.

The properties of a fan Σ gives a lot of information about the geometry of the toric
variety XΣ.

Theorem 2.12. Let XΣ be the toric variety associated to a fan Σ in NR. Then:

1. XΣ is complete if and only if ∪
σ∈Σ

σ = NR.

2. XΣ is smooth if and only if the ray generators of every cone σ ∈ Σ are part of a
Z-basis of N .

Proof. This is Theorem 3.1.19 from [5].

Example 2.13. By Theorem 2.12, it follows that the varieties P2 and P1 × P1 in Example
2.11 are smooth and complete.

8



Chapter 3

Divisors and Intersection theory

This chapter is concerned with divisors and intersection theory on toric varieties. First,
we introduce divisors in a general setting and discuss the special case of smooth complete
toric varieties. In Section 3.3, we will see the connection between divisors and polytopes. In
Section 3.4, we show how to compute the intersection products on toric varieties.

3.1 Cartier divisors

Our main interest in this section is to introduce an abelian group Pic(X), called the Picard
group of X, and associate to every hypersurface S ⊂ X, a class in Pic(X) generalizing the
degree of a surface in P3. We refer the reader to [11, Chapter 11] and [5, Chapter 4] for
more details.

Definition 3.1. A Cartier divisor on the normal variety X is an equivalence class D of
collections {(Ui, fi)}ni=0. Here, Ui form an open covering of X, and fi are rational functions
on Ui such that fif−1

j is a unit on Ui ∩ Uj . Two collections {(Ui, fi)}ni=0, {(Vj , gj)}mj=0 are
equivalent if fig−1

j is a unit on Ui ∩ Vj for all i, j.

The set of Cartier divisors is denoted by CDiv(X). We can see that it is an abelian group.
In fact, given divisors D = {(Ui, fi)}, E = {(Vi, gi)} we have D + E = {(Ui ∩ Vj , figj)}. A
Cartier divisor is called principal if it is equal to a divisor given by (X, f). Divisors D and
E are linearly equivalent, written D ∼ E, if their difference is a principal divisor.

Definition 3.2. The group of Cartier divisors modulo principal divisors is called the Picard
group of X and is denoted by Pic(X). If D is a Cartier divisor, we write [D] ∈ Pic(X) for
its equivalence class.

There is a more geometrically intuitive notion of divisors, called Weil divisors. A prime
divisor is a codimension one subvariety and Div(X) is the free abelian group generated by
the prime divisors on X. A Weil divisor is an element of Div(X).

For a normal variety X and a prime divisor V there exists a function called its valuation
vV : C(X)∗ → Z. Then vV (f) gives the order of vanishing of f along V . Moreover, vV (f) is

9



zero for all but a finite number of prime divisors V ⊂ X. One may find more information
on valuations from [5, Chapter 4].

Let us denote by Div0(X) the subgroup of Div(X) consisting of principal divisors on X,
i.e., divisors of the form

div(f) :=
∑
V

vV (f)V

for a nonzero rational function f on X. The group of Weil divisors modulo principal divisors
is called the Class group of X and is denoted by Cl(X).

Remark 3.3. A Cartier divisor D = {(Ui, fi)}ni=0 determines a Weil divisor as follows: If
a prime divisor V has non empty intersection with Ui, set aV = vV (fi). It is possible that
V has non empty intersection with Uj for some i 6= j. Since fif−1

j is a unit on Ui ∩ Uj , we
have that vV (fi) = vV (fj). Since there are finitely many Ui, they globally glue together to
give a Weil divisor

D =
∑

Ui∩V 6=∅
aV V.

We have CDiv(X) ⊂ Div(X), and for a smooth variety, both notions of divisors agree, and
Pic(X)=Cl(X).

We will be dealing with smooth varieties, hence we use the term divisor. A divisor D is
called effective if it is a nonnegative linear combination of prime divisors. We denote this
by D ≥ 0. The support of the divisor D =

∑
aiDi is the union of prime divisors appearing

in D:
Supp(D) =

⋃
ai 6=0

Di.

Definition 3.4. A Cartier divisor D on a variety X is basepoint free if for every p ∈ X,
there is a Cartier divisor D′ in the divisor class of D such that p 6∈ Supp(D′).

The complete linear system of D is defined to be

|D| = {E ∈ CDiv(X)| E ∼ D, E ≥ 0}.

Thus, the complete linear system of D consists of all effective Cartier divisors on X linearly
equivalent to D. Note that the complete linear systems in P3 are exactly surfaces of fixed
degree [14, Proposition 6.4]. To D, we associate a vector space L(D) over C as follows

L(D) = {f ∈ C(X)∗| div(f)+D ≥ 0} ∪ {0}.

It is immediate from the definition that it is a vector space. Further, we associate a projective
variety, denote by P(L(D)), to L(D) via the following definition

P (L(D)) := (L(D)\{0}) / ∼,

10



where ∼ is the equivalence relation defined by f ∼ g if and only if f = λg where λ ∈ C∗.
There is a natural bijection between the elements of |D| and the points in the projective
space P(L(D)). See [5, Exercise 6.0.11]. We will use the following definition for all our main
results [7, p. 10].

Definition 3.5. A very general point of a variety X having a property P means that there
is a countable union V of proper subvarieties of X such that every point p of X\V has the
property P . Any member of |D| corresponding to a very general point of P (L(D)) is said
to be a very general member of |D|.

3.2 Torus-invariant divisors

Let XΣ be the toric variety of a fan Σ in NR with dim(NR) = n. Then XΣ is a normal
variety of dimension n. We will be primarily concerned with subvarieties on a toric variety
XΣ that are mapped to themselves by the torus action. We refer the reader to [5, Chapter
3] for more details.

By [5, Theorem 3.2.6], a k-dimensional cone σ of Σ corresponds to a (n−k)-dimensional
subvariety V (σ) in XΣ. For ρi ∈ Σ(1), we will denote it by Di rather than V (ρi) to point
out that it is a divisor. The complement

XΣ\T =
⋃

ρi∈Σ(1)
Di

is called the toric boundary of XΣ. For m ∈M , the character χm is a rational function on
XΣ, and its divisor is given by [5, Proposition 4.1.2]

div(χm) =
∑

ρ∈Σ(1)
〈m,uρ〉Dρ.

Here is how torus-invariant divisors relate to the Picard group:

Lemma 3.6. Let XΣ be a smooth complete toric variety, then we have the short exact
sequence

0→M → ⊕
ρ∈Σ(1)

ZDρ → Pic(XΣ)→ 0,

where the first map is m 7→ div(χm), and the second map sends a torus invariant divisor to
its divisor class in Pic(XΣ).

Proof. Since XΣ is smooth, Pic(XΣ) =Cl(XΣ). The statement then follows from (5, Theo-
rem 4.2.1).

Example 3.7. Let r ∈ N and consider the fan Σr in R2 consisting of four maximal cones
σi shown in Figure 3.1. We call XΣr the Hirzebruch surface Hr. Let D1, D2, D3, D4 denotes
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(−1, r)
σ1

σ2

σ3

σ4

Figure 3.1: A fan Σr

the divisors corresponding to the ray generators u1 = e1, u2 = e2, u3 = −e1 + re2, u4 = −e2.
By Lemma 3.6, we have the following relations

div(χe1) = D1 −D3 ∼ 0

div(χe2) = D2 + rD3 −D4 ∼ 0.

Thus, Pic(Hr) ∼= Z[D3] + Z[D4].

Definition 3.8. Let XΣ be a toric variety. The rank of Pic(XΣ) is called the Picard rank
of XΣ.

Remark 3.9. For a general variety, the Picard rank is the rank of the Neron-Severi group
[19, Definition 1.1.15]. For a toric variety, the Neron-Severi group coincide with the Picard
group [5, Proposition 6.3.15].

Next, we introduce a tool for explicit computations.

Definition 3.10. Let Σ be a complete fan. A support function is a function ϕ : NR → R
that is linear on each cone of Σ.

Let D =
∑
aρDρ be a divisor on XΣ. We define a function ϕD such that

ϕD(uρ) = −aρ for all ρ ∈ Σ(1). (3.1)

It can be extended uniquely to a support function onNR. We will return to support functions
in Theorem 4.5, where we will use them to give elegant criteria for a divisor to be basepoint
free.

Every normal variety X has a specific Weil divisor called the canonical divisor class, and
KX denotes any representative [5, Definition 8.0.20]. Later on, we will see that the canonical
divisor of a smooth variety plays a particularly important role. For the toric variety XΣ,
there is a natural choice of representative [5, Theorem 8.2.3]. It is provided by

KXΣ =
∑

ρ∈Σ(1)
−Dρ. (3.2)

12



3.3 Polytopes

In this section, we investigate the relation between divisors and polytopes. See [5] or [9,
Chapter 3] for more details. Polytopes play a significant role in studying toric varieties.

Let M and N be dual lattices with associated vector spaces MR and NR.

Definition 3.11. A convex polytope P ⊂MR is the convex hull of a finite set of points in
MR. It is called a lattice polytope if it is the convex hull of a finite set S ⊂M .

Throughout the thesis, we use the term polytope to denote a convex polytope. The
dimension of a polytope P is the dimension of the subspace spanned by the differences
{m1 −m2 : m1,m2 ∈ P}. An affine half-space of MR is a subset of the form

H+
u,b = {m ∈MR : 〈m,u〉 ≥ b} for u ∈ NR\{0} and b ∈ R.

A polytope can be written as a finite intersection of affine half-spaces. A subset Q ⊂ P is
a face of P , written Q < P , if there are u ∈ NR\{0} and b ∈ R with

P ⊂ H+
u,b and Q = {m ∈ P : 〈m,u〉 = b}.

We also consider P as an improper face. The faces of dimensions 0, 1, dim(P )−1 are called
vertices, edges, and facets, respectively. Thus, in particular, the vertices are the minimal
non-empty faces, and the facets are the maximal proper faces.

Polytopes arise naturally when dealing with toric varieties.

Definition 3.12. Let D =
∑
aρDρ be a Cartier divisor on XΣ. We define

P (D) := {v ∈MR : 〈v, uρ〉 ≥ −aρ for all ρ ∈ Σ(1)}.

Remark 3.13. If Σ is a complete fan, then P (D) is a polytope [5, Proposition 4.3.8].

Example 3.14. Consider the variety P2 discussed in Example 2.11. Let D = 3D0 be a
divisor on P2, where D0 is the divisor corresponding to the ray generated by −e1−e2. Then
a point (x, y) ∈ P (D) if and only if

x ≥ 0,

y ≥ 0,

−x− y ≥ −3.

See Figure 3.2.
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Figure 3.2: The polytope of Example 3.14

Remark 3.15. After choosing a basis e∗1, · · · , e∗n for M , we can consider P (D) ⊂ Rn. We
usually present it in the form

P (D) = P (A, t) = {x ∈ Rn : Ax ≥ t} for some A ∈ Rm×n, t ∈ Rm.

The main feature of P (D) is that the lattice points of P (D) determine a basis for the
vector space L(D).

Theorem 3.16. If D is a torus-invariant divisor on XΣ, then

L(D) = ⊕
m∈P (D)∩M

C · χm.

Proof. This is Proposition 4.3 from [5].

Given two polytopes P,Q ∈MR, we define their Minkowski sum

P +Q := {x+ y : x ∈ P, y ∈ Q}.

The following proposition shows how a divisor’s geometric properties reflect the combi-
natorial properties of the polytope P (D).

Proposition 3.17. Let D and E be divisors on a complete toric variety XΣ. Then:

(i) P (kD) = kP (D) for k ≥ 0.

(ii) P (D + div(χm)) = P (D)−m.

(iii) P (D) + P (E) ⊂ P (D + E).

(iv) If D and E are basepoint free, then P (D) + P (E) = P (D + E).

Proof. See [5, Exercise 4.3.2, Theorem 6.1.7].
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3.4 Intersection theory

Counting the number of intersection points with a given curve and surface is vital in our
main tools for finding algebraic hyperbolicity. We restrict our attention to how to compute
the intersection product for a toric threefold. For the general theory, see [10] or [7]. For toric
varieties, see [5, Section 6.3, 12.5] and [9, Chapter 5].

We will start this section by recalling Bezout’s theorem [7, Theorem 1.1]: given two
projective plane curves C and D of degree d and e which intersect transversely (Definition
3.20), then the number of intersection points is de. The beauty of this theorem is not about
the number de, but simply the fact that this cardinality of intersection does not depend on
the particular choices of C and D subject to the hypothesis that they meet transversely.
This theory can be generalized. We begin by the following definition.

Definition 3.18. On a variety X, the Chow group Ak(X) is defined to be the free abelian
group on the k-dimensional subvarieties of X, modulo the subgroup generated by the cycles
of the form div(f), where f is a nonzero rational function on a (k+1)-dimensional subvariety
of X. A k-cycle on X is a finite formal sum

∑
niVi, where Vi are k-dimensional subvarieties

of X, and the ni are integers. If A is a cycle, we write [A] ∈ Ak(X) for its equivalence class.

Remark 3.19. We have An−1(X) = Cl(X).

Definition 3.20. We say that subvarieties A,B of a variety X intersect transversely at a
point p if A,B and X are all smooth at p and the tangent spaces to A and B at p together
span the tangent space to X. We say that subvarieties A,B ⊂ X intersect generically
transversely if there is a dense set of points in the intersection at which they are transverse.
We extend the terminology to cycles by saying that two cycles A =

∑
niAi and B =

∑
mjBj

are generically transverse if each Ai is generically transverse to each Bj .

Theorem 3.21 (Moving Lemma). Given classes α ∈ Ak(X), β ∈ Al(X) in the Chow
group of a smooth projective variety X, we can find representative cycles α′, β′ intersecting
generically transversely. Moreover, the class of the intersection of these cycles is independent
of the choice of α′, β′.

Proof. This is Theorem 1.6 from [7].

Using Theorem 3.21, it is easy to define the intersection product on the Chow groups
of a smooth variety: α · β is defined to be the class α′ ∩ β′.

Theorem 3.22. Let X be a smooth projective variety and set Ak(X) = An−k(X). Then
there exists a unique intersection product on A(X) = ⊕Ak(X) satisfying the following
condition: if two subvarieties A,B of X are generically transverse, then

[A] · [B] = [A ∩B].
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This structure makes A(X) into an associative, commutative ring, graded by codimension,
called the Chow ring of X.

Proof. This is Theorem 1.5 from [7].

The elements of the Chow group A0(X) can be seen as the formal sum of points in X.
If X is complete, then there is a degree map [7, Proposition 1.21]

deg : A0(X)→ Z∑
nPP 7→

∑
nP .

Definition 3.23. Let A ∈ Ak(X), B ∈ An−k(X). Then deg([A] · [B]) is defined as the
intersection number. If C is a curve and D is a divisor, by abuse of notation we will write
C ·D in place of deg([C] · [D]).

Generally, it is not easy to describe Chow groups. But for a toric variety, we have the
following result.

Lemma 3.24. The Chow groups Ak(X) of a toric variety X = XΣ are generated by the
classes of V (σ) corresponding to the cones σ of dimension n− k of Σ.

Proof. See [9, p.96].

Hence, it is enough to find the intersection product of torus invariant subvarieties for a
toric variety.

Theorem 3.25. Let Σ be a smooth complete fan. Let ρ ∈ Σ(1) and σ be a cone of Σ not
containing ρ. Then,

[Dρ] · [V (τ)] =

[V (γ)] if γ = ρ+ τ ∈ Σ,

0 otherwise.

Proof. See [5, Lemma 12.5.2] or [9, p.98].

We are interested in calculating the intersection products in smooth projective toric
threefolds. Using the above theorem, we can find all intersection products in a toric threefold.

3.5 Positivity properties of divisors

In this section, we will discuss several kinds of positivity of a Cartier divisor. Roughly
speaking, the positivity properties of a divisor D relate to the vector space L(D) having a
large dimension. See [19] and [5] for more details.
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Definition 3.26. Let XΣ be a projective toric variety. The nef cone

Nef(XΣ) ⊂ Pic(XΣ)⊗ R,

is the convex cone in Pic(XΣ)⊗R spanned by the classes of all basepoint free divisors. The
effective cone

Eff(XΣ) ⊂ Pic(XΣ)⊗ R,

is the convex cone spanned by the classes of all effective divisors.

By [5, Lemma 15.1.8], we have

Eff(XΣ) = Cone ([Dρ] : ρ ∈ Σ(1)) .

In the next chapter, we will discuss a criterion to determine the basepoint free divisors
(Theorem 4.5). In light of Kleiman’s numerical criterion of ampleness [5, Theorem 6.3.22]
and [19, Theorem 2.2.26], we may consider the following definitions.

Definition 3.27. Let D be a Cartier divisor on a projective toric variety XΣ. Then

1. D is said to be ample if its class is in the interior of the nef cone.

2. D is said to be big if its class is in the interior of the effective cone.

Moreover, a basepoint free divisor D is big if and only if dim(P (D)) = dim(XΣ) [5, Lemma
9.3.9].
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Chapter 4

Classification of toric varieties

Previously, we have seen that a toric variety can be described by a fan. We want to look at
this from a slightly different point of view. In this chapter, we will give an alternate descrip-
tion of toric varieties by primitive collections. Primitive collections were first introduced by
Batyrev[1]. This chapter aims to introduce the classification of smooth complete toric three-
folds with Picard rank 2 and 3 up to primitive collections. We will revisit all these varieties
in Chapters 6 and 7 after discussing enough material to understand algebraic hyperbolicity
in the next chapter.

4.1 Primitive collections

In this section, we will see the definition of primitive collection and a tool that concretely
describes the nef cone. See [5, Chapter 6] or [1] for more details.

Definition 4.1. Let Σ be a fan. A subset {ρ1, ρ2, · · · , ρk} ⊂ Σ(1) is called a primitive
collection if {ρ1, ρ2, · · · , ρk} is not contained in a single cone of Σ, but every proper subset
is.

Example 4.2. Let us describe the fan Σ of P2 × P1. Here, Σ is generated by the ray
generators u1 = e1, u2 = e2, u3 = −e1 − e2, u4 = e3, u5 = −e3. Each ui gives a ray ρi. See
Figure 4.1. The fan Σ contains six maximal cones given by Cone(e1, e2, e3), Cone(e1, e2,−e3),
Cone(e1,−e1−e2, e3), Cone(e1,−e1−e2,−e3), Cone(e2,−e1−e2, e3), Cone(e2,−e1−e2,−e3),
nine two-dimensional cones and five one-dimensional cones given by rays. Hence, all primi-
tive collections of Σ are given by {ρ1, ρ2, ρ3} and {ρ4, ρ5}. In fact, if we know the rays and
all possible primitive collections of a fan, then we can describe the fan completely.

Definition 4.3. A fan is called a splitting fan if there is no intersection between any two
primitive collections.

Remark 4.4. The fan of P2 × P1 is splitting.
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Figure 4.1: Fan of P2 × P1

Recall the definition of basepoint free divisor (Definition 3.4) from Chapter 3. The
knowledge of primitive collections will allow us to compute the nef cone of a given variety.
For this, we use the support function (Definition 3.10) associated with the divisor.

Theorem 4.5. Let XΣ be a smooth projective toric variety. Then

1. A Cartier divisor D is basepoint free if and only if the support function ϕD satisfies

ϕD(uρ1 + · · ·+ uρk
) ≥ ϕD(uρ1) + · · ·+ ϕD(uρk

)

for all primitive collections {ρ1, · · · , ρk}.

2. A Cartier divisor is ample if and only if the support function ϕD satisfies

ϕD(uρ1 + · · ·+ uρk
) > ϕD(uρ1) + · · ·+ ϕD(uρk

)

for all primitive collections {ρ1, · · · , ρk}.

Proof. This is Theorem 6.4.9 from [5].

Example 4.6. Consider the variety Hr constructed from the fan in Example 3.7 again. The
only primitive collections are {ρ1, ρ3} and {ρ2, ρ4}. We can see that any divisor is linearly
equivalent to a divisor D = aD3 + bD4. Applying the previous theorem, we can see that D
is nef if and only if a, b ≥ 0 and ample if and only if a, b > 0.

4.2 Toric projective bundles

In this section, we briefly cover the description of the fan of a projective toric bundle.
Roughly speaking, a projective bundle over a projective variety X can be thought of as
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fibres isomorphic to projective space glued together into another projective variety. For a
discussion of sheaf theory and projective bundles, we refer the reader to [14, Chapter 2.1,
2.5, 2.7]. Details of the fan of a toric projective bundle can be found in [5, Chapter 7]. We
begin this section with the definition of a sheaf.

Definition 4.7. A sheaf F on a topological space X consists of the following data,

1. for every open subset U ⊂ X a set F(U),

2. for each pair of open sets V ⊂ U a map resU,V : F(U)→ F(V ) called the restriction
map,

such that the following conditions hold:

(a) for open subsets W ⊂ V ⊂ U ⊂ X, we have resV,W ◦ resU,V = resU,W and resU,U = Id,

(b) if {Ui} is an open covering of an open subset U and if resU,Ui(s) = resU,Ui(t) for all i
then s = t,

(c) if {Ui} is an open covering of an open subset U and if si ∈ F(Ui) satisfy resUi,Ui∩Uj (si) =
resUj ,Ui∩Uj (sj) for all i, j, then there exists s ∈ F(U) such that resU,Ui(s) = si for all i.

Remark 4.8. We define a sheaf of abelian groups, or a sheaf of rings, by replacing the
word ’set’ in the definition by ’abelian group’, or ’ring’ respectively.

Example 4.9. Let X be a variety. For each open set U ⊂ X, let OX(U) be the ring of
regular functions from U to C, and for each V ⊂ U , let resU,V : OX(U) → OX(V ) be the
restriction map in the usual sense. Then OX is a sheaf of rings on X, called the structure
sheaf [14, Example 1.0.1].

Definition 4.10. A sheaf of OX -modules is a sheaf F on X, such that for each open set
U ⊂ X, the group F(U) is an OX(U) module, and for each inclusion of open sets V ⊂ U ,
the restriction homomorphism F(U)→ F(V ) is compatible with the module structures via
the ring homomorphism OX(U)→ OX(V ).

Example 4.11. Each divisor D on X determines a sheaf of OX -modules OX(D) as follows

OX(D)(U) = {f ∈ C(X)∗|( div(f) +D)|U ≥ 0} ∪ {0}.

A locally free sheaf of rank r on a variety X is a sheaf of OX -modules locally isomorphic
to a direct sum of r-copies of OX . Let E = OXΣ(E0) ⊕ ... ⊕ O(Er) be a locally free sheaf
of rank r + 1 defined by torus invariant divisors Ei =

∑
ρ∈Σ(1) aiρDρ on XΣ. Then we can

construct a projective bundle π : P(E) → XΣ. For the construction, see [5, Chapter 7] or
[14, Chapter 2]. For our purposes, we do not need the construction explicitly. The following
theorem will explain the fan ΣE of this toric variety.
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Theorem 4.12. Let e1, · · · , er be a basis for Rr. Set e0 = −e1 − · · · − er and Fj =
Cone(e0, · · · , e∧j , · · · , er). Given σi ∈ Σ, consider the cones σij ∈ NR × Rr provided by

σij = Cone
(
uρ + (a1ρ − a0ρ)e1 + · · ·+ (arρ − a0ρ)er| ρ ∈ σi(1)

)
+ Fj ,

where the last addition is the Minkowski sum. Then the cones σij and their faces form the
fan ΣE .

Proof. This is Proposition 7.3.3 from [5].

Example 4.13 (Hirzebruch surfaces). Let E = OP1⊕OP1(r). Then the fan ΣE has ray gen-
erators given by u1 = e1, u2 = e2, u3 = −e1 + re2, u4 = −e2. The only primitive collections
are {ρ1, ρ3} and {ρ2, ρ4}.

4.3 Kleinschmidt’s classification

Kleinschmidt [17] classified all smooth complete toric varieties with Picard rank 2. It turns
out that all such varieties are projectivization of decomposable bundles over a projective
space of a smaller dimension. Later, Kleinschmidt and Sturmfels [18] proved that every
smooth complete toric variety of rank at most 3 is necessarily projective. In this section, we
will discuss the case of toric threefolds.

Theorem 4.14. Let XΣ be a smooth complete toric threefold with Picard rank 2. Then
either XΣ ∼= P (OP1 ⊕OP1(l1)⊕OP1(l2)) with l2 ≥ l1 ≥ 0 or XΣ ∼= P (OP2 ⊕OP2(l)) with
l ≥ 0.

Proof. This is Theorem 7.3.7 from [5].

The original statement of Kleinschmidt is applicable to varieties of arbitrary dimension
with Picard rank 2. We will explain the fan description in the next theorem.

Theorem 4.15.

1. The fan of P(OP1 ⊕ OP1(l1) ⊕ OP1(l2)) has ray generators u1 = e1, u2 = e2, u3 =
−e1−e2, u4 = e3 and u5 = l1e1+l2e2−e3. The only primitive collections are {ρ1, ρ2, ρ3}
and {ρ4, ρ5}.

2. The fan of P(OP2 ⊕ OP2(l)) has ray generators u1 = e1, u2 = −e1, u3 = e2, u4 = e3

and u5 = le1 − e2 − e3. The only primitive collections are {ρ1, ρ2} and {ρ3, ρ4, ρ5}.

Proof. This is Example 7.3.5 from [5].

Remark 4.16. We can also conclude from [5, Example 7.3.5] that smooth complete two
dimensional toric varieties with Picard rank 2 are Hirzebruch surfacesHr = P(OP1⊕OP1(r)).
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4.4 Batyrev’s classification

Batyrev completely classified smooth complete toric varieties with Picard rank 3 in terms
of primitive collections. He showed that the number of primitive collections of its generators
is 3 or 5 [1, Theorem 5.7].

Theorem 4.17. Let XΣ be a smooth complete toric threefold of Picard rank 3 with a
splitting fan. Then XΣ ∼= P(OHr ⊕OHr (aD3 + bD4)) with a ≥ 0.

Proof. In this case, the associated toric variety is isomorphic to the projectivization of a
decomposable bundle of rank 2 over a smooth complete toric surface with Picard rank 2
[1]. By Remark 4.16, it is clear that smooth complete surfaces are given by Hirzebruch
surfaces Hr. Hence, we can take E = OHr (a1D3 + b1D4)⊕OHr (a2D3 + b2D4). Without loss
of generality, take a2 ≥ a1 and L = OHr (−a1D3−b1D4)). Then P(E) ∼= P(E ⊗L) by Lemma
7.9 [14] and the result follows.

Theorem 4.18. The fan Σ of P(OHr ⊕OHr (aD3 + bD4)) has ray generators u1 = e1, u2 =
−e1 + re2 + ae3, u3 = e2, u4 = −e2 + be3, u5 = e3, u6 = −e3. The only primitive collections
are {ρ1, ρ2}, {ρ3, ρ4} and {ρ5, ρ6}.

Proof. Maximal cones in Hr are given by σ1 = Cone(e1, e2), σ2 = Cone(e2,−e1 +re2), σ3 =
Cone(−e1 +re2,−e2) and σ4 = Cone(−e2, e1). It is easy to see that D3 and D4 generate the
Picard group. Hence, we can take E0 = 0 and E1 = aD3 + bD4 with a ≥ 0. Take F0 = e3

and F1 = −e3. Then the result follows from Theorem 4.12.

Theorem 4.19. Let XΣ be a smooth projective toric threefold with Picard rank 3 which does
not have a splitting fan. Then its ray generators can be partitioned into 5 non-empty sets
X0, X1, · · · , X4 in such a way that the primitive collections are Xi ∪Xi+1, where i ∈ Z/5Z.

Proof. See [1, Theorem 6.6 ].

Following [1], we can list all the possibilities in Theorem 4.19.

(i) X0 = {e1, e2}, X1 = {−e1− e2 + (b+ 1)e3}, X3 = {−e3}, X4 = {e3}, X5 = {−e1− e2 +
be3} where b ≥ 0.

(ii) X0 = {e1}, X1 = {−e1− e2 + (b+ 1)e3, e2}, X3 = {−e3}, X4 = {e3}, X5 = {−e1 + be3}
where b ≥ 0.

(iii) X0 = {e1}, X1 = {−e1 + ce2 + (b + 1)e3}, X3 = {−e2 − e3, e2}, X4 = {e3}, X5 =
{−e1 + ce2 + (b+ 1)e3} where b, c ≥ 0.

(iv) X0 = {e1}, X1 = {−e1 + (c+ 1)e2 + (b+ 1)e3}, X3 = {−e2 − e3}, X4 = {e2, e3}, X5 =
{−e1 + ce2 + be3} where b, c ≥ 0.
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(v) X0 = {e1}, X1 = {−e1 + (b+ 1)e3}, X3 = {−e3}, X4 = {e3}, X5 = {−e1− e2 + be3, e2}
where b ≥ 0.
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Chapter 5

Algebraic hyperbolicity

In this chapter, we discuss the geometric genus of a curve and how it is related to the degree
of the curve using the notion of algebraic hyperbolicity. In Section 5.2, we define connected
sections, and in Section 5.3, we discuss the main tool of finding algebraically hyperbolic
surfaces in toric threefolds by Haase and Ilten [13]. Finally, in Section 5.4, we see when a
curve is considered to be a complete intersection of hypersurfaces.

5.1 Geometric genus and hyperbolicity

This section aims to define algebraic hyperbolicity and highlight the connection to Brody
hyperbolicity. Any discussion about algebraic hyperbolicity should start by defining the
geometric genus of a curve. By a curve C, we mean an irreducible projective variety of
dimension 1. We denote its canonical divisor by KC . See [14, Section 2.8] for details.

Definition 5.1. Let C be a smooth curve with a canonical divisor KC . Then the geometric
genus of X is defined by

g = dimC (L(KC)) .

Example 5.2. Every elliptic curve has an invariant differential ω with no zeros or poles.
Hence 0 is a canonical divisor and dimC (L(0)) = dimCC = 1.

Remark 5.3. Every irreducible projective curve admits a birational map to a unique non-
singular model [8, Theorem 7.5.3]. Hence, we extend the definition of the geometric genus
to singular curves by defining it as the geometric genus of the nonsingular model.

For a smooth plane curve of degree d we know the geometric genus g is (d− 1)(d− 2)
2 .

If it has singularities, it is modified by an error factor [8, Proposition 8.3.5]. Naturally, the
following question arises:
Question: Given a curve C in a surface S of degree d, how small is the geometric genus of
C?

This motivates the definition of algebraic hyperbolicity.
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Definition 5.4. A smooth complex projective variety X is algebraically hyperbolic if there
exists an ample divisor H on X and some ε > 0 such that any curve C ⊂ X of geometric
genus g(C) satisfies

2g(C)− 2 ≥ ε(C ·H).

Remark 5.5. The intersection number C ·H is known as the degree of the curve C with
respect to the ample divisor H.

Example 5.6. Let X be a curve of genus g ≥ 2. Then it is algebraically hyperbolic.

Definition 5.7. A smooth complex projective variety X is said to be Brody hyperbolic if
there is no nonconstant holomorphic map from C to X.

Demailly [6] proved that Brody hyperbolicity implies algebraic hyperbolicity and con-
jectured the converse:

Conjecture 5.8. A smooth complex projective variety X is Brody hyperbolic if it is alge-
braically hyperbolic.

5.2 Connected sections

This section aims to introduce the definition of connected sections and provide combinatorial
criteria to determine a configuration of divisors with connected sections from the fan’s
description. Later, we will see the main tool Theorem 5.19, which requires a configuration
of divisors with connected sections. We closely follow the notation in [13].

Definition 5.9. Let D,E be effective, non-trivial torus invariant divisors on a toric variety
X with D − E ≥ 0. The section graph for D,E is the graph G whose vertex set is V (G) =
P (E) ∩ M and where a, b ∈ V (G) are connected by an edge if and only if there exists
a′, b′ ∈ P (D − E) ∩M such that a+ a′ = b+ b′ in P (D) ∩M .

Definition 5.10. We say the configuration (D,E) has the integer decomposition property
(IDP) if

(P (E) ∩M) + (P (D − E) ∩M) = P (D) ∩M.

Definition 5.11. A configuration of divisors (D,E) has connected sections if

(i) The section graph G is connected;

(ii) The configuration (D,E) has IDP.

Theorem 5.12. If Σ is a splitting fan and E,E′ are nef divisors on XΣ, then the configu-
ration (E + E′, E) has IDP.
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Proof. This is Corollary 4.2 from [16].

Remark 5.13. If Σ is not a splitting fan, then the above statement is not true in general.
See [20]. Recall from Theorem 4.19 that we have non-splitting fans for all smooth complete
toric threefold of Picard rank 3 with 5 primitive collections. We will treat each of those
cases individually and extend the Theorem 5.12 to all smooth toric threefold of Picard rank
3. See Lemmas 7.12, 7.19, 7.26, 7.33 and 7.40.

Example 5.14. Consider the variety Hr for r = 1 constructed from the fan in Example
3.7. Let D = D3 + 2D4, E = D3 +D4 and E′ = D4. From the Example 4.6, we can see that
E and E′ are nef. Hence, by Theorem 5.12, the configuration (D,E) has IDP. Let

A =


1 0
0 1
−1 1
0 −1

 , t =


0
0
−1
−1

 , s =


0
0
0
−1

 .

Then, P (E) = P (A, t) and P (E′) = P (A, s). From Figure 5.1, we can see that the
section graph is connected. Hence (D,E) has connected sections.

(0, 0) (1, 0)

(0, 1) (1, 1) (2, 1)

Figure 5.1: The section graph for Example 5.14

If we know a configuration of divisors has IDP; it is enough to check that the associated
graph is connected to verify connected sections. We will discuss a combinatorial criterion
that ensures the associated graph is connected.

We will first translate the information of the fan into a toric ideal. Let XΣ be a smooth
complete toric threefold. Recall the short exact sequence (Lemma 3.6)

0−→M i−→ ZΣ[1] π−→ Pic(X)→ 0.

After choosing a basis {e∗1, e∗2, e∗3} for M and a basis for Pic(X), we get the short exact
sequence

0−→Z3 i−→ Zr π−→ Zk → 0.
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Note that k = r − 3. We can represent the map π by a matrix A = (aij). Consider the
C-algebra homomorphism given by

α : C[x1, · · · , xr]→ C[y1, y
−1
1 , · · · , yk, y−1

k ]

xi 7→ ya1i
1 · · · y

aki
k .

We define the toric ideal IA = ker(α).

Lemma 5.15. The toric ideal IA associated with the matrix A is the ideal in C[x1, · · · , xr]
generated by binomials xv+ − xv− for v+, v− ∈ Zr≥0 with Av+ = Av−.

Proof. This is Proposition 1.1.9 from [5].

We identify a vector v ∈ ker(A)∩Zr with the binomial xv+ −xv− where v+
i =max(vi, 0)

and v−i = −min(vi, 0).

Definition 5.16. We say that a subset G ⊂ ker(A) ∩ Zr is a Markov basis if the corre-
sponding binomials generate IA.

Lemma 5.17. The Krull dimension of C[x1, · · · , xr]/IA is equal to rank(A).

Proof. This is Lemma 4.2 from [22].

Proposition 5.18. Let (E + E′, E) be an IDP pair of divisors on X. Set

G :=
(
i
(
P (E′)

)
∩ Zr

)
−
(
i
(
P (E′)

)
∩ Zr

)
.

If G is a Markov basis for IA, then the configuration (E + E′, E) has connected sections.

Proof. This is Proposition 4.5 from [13].

5.3 Main tools

We are in a position to describe the main tools for finding algebraically hyperbolic surfaces.
Let X be the toric variety of a fan Σ. By the toric boundary of X, we mean the complement
in X of the open torus orbit T .

Theorem 5.19. Let (D,E) be non-trivial basepoint free torus invariant divisors on a
smooth complete toric threefold X. Assume that this configuration has connected sections
and that D is big. Let S ∈ |D| be a very general surface and C ⊂ S any curve that is not
contained in the toric boundary of X. Then the geometric genus g of C satisfies

2g − 2 ≥ C · (E +KX).

Proof. This is Theorem 3.6 from [13].
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Even though the above theorem gives a bound for most of the curves, we need to
determine the genus of finitely many curves that lie in the boundary. Polytopes associated
to the divisors again will play a crucial role here.

Lemma 5.20 (Curves in the boundary). Let S ∈ |D| be a general surface, where D is a
big and basepoint free divisor. If C ⊂ S is an curve contained in the toric boundary of X,
then C = S ∩ Dρ for some ρ ∈ Σ(1) corresponding to a face F < P (D) on which the ray
ρ takes its minimum. Then, the geometric genus of C equals the number of interior lattice
points of F viewed in a 2-d ambient space.

Proof. This is Lemma 4.1 from [13].

Remark 5.21. If we do not assume that D is big, then the geometric genus of C is at most
the number of interior lattice points of F . Since D is non-trivial but not big, dim(P (D)) is
either 1 or 2. In this case, there is always a ray ρ such that it takes its minimum on a 1-d
face. Hence, there is always a genus 0 curve in the boundary.

Corollary 5.22. Let X be a smooth projective toric threefold. Then a very general surface
S ∈ |D| is algebraically hyperbolic if it has the following two properties:

1. All curves in the toric boundary have genus at least two.

2. There exists an ample divisor H and an ε0 > 0 such that any curve not in the toric
boundary satisfies

2g(C)− 2 ≥ ε0(C ·H).

Proof. Let S be any very general surface in |D|. Let C1, . . . , Ck be all finitely many curves
in the boundary. Take ε to be minimum among ε0 and 1

Ci ·H
for i = 1, · · · , k. Then, we

have
2g(C)− 2 ≥ ε(C ·H),

for every curve in S.

5.4 Noether-Lefschetz Theorem

If we know a bit more about the curves in a threefold, we get better bounds for algebraic
hyperbolicity. We will discuss a criterion to obtain better lower bounds on the intersection
numbers of our curves C with divisors on X. We say a variety of codimension r is a complete
intersection if it is cut out by the intersection of r hypersurfaces.

Theorem 5.23 (Classical Noether-Lefschetz theorem). If Sd ⊂ P3 is a very general surface
of degree d ≥ 4, then the restriction map Pic(P3) → Pic(Sd) is an isomorphism. Further-
more, every curve C ⊂ Sd is a complete intersection.
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Proof. This is Theorem 1 from [12].

Historically, different approaches were involved in extending the Noether-Lefschetz the-
ory to other varieties. Under favourable conditions, the Noether-Lefschetz theorem can be
extended to hypersurfaces in three-dimensional varieties [21].

Theorem 5.24 (Generalized Noether-Lefschetz theorem). Let X be a smooth threefold,
and D be a divisor such that D + KX is basepoint free. Then for a very general surface
S ∈ |D|, the restriction map Pic(X)→ Pic(S) is an isomorphism.

Proof. This is a particular case of Theorem 1 from [21].
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Chapter 6

Algebraically hyperbolic surfaces
with Picard rank 2

In this chapter, we discuss the algebraic hyperbolicity of a very general surface in smooth
complete toric threefolds with Picard rank 2. Kleinschmidt’s classification of smooth com-
plete toric threefolds with Picard rank 2 was discussed in Section 4.3.

6.1 Case 1: Projective bundles over P2

Consider the variety XΣ ∼= P(OP2⊕OP2(l)). We recall the description of the fan described in
Theorem 4.15 again. Here, Σ is generated by ray generators e1,−e1, e2, e3, le1−e2−e3 with
l ≥ 0 and corresponding rays denoted by ρ1, ρ2, ρ3, ρ4, ρ5 and divisors by D1, D2, D3, D4, D5.
It has two primitive collections {e1,−e1} and {e2, e3, le1 − e2 − e3}.

Lemma 6.1. The Picard group Pic(X) is generated by the classes of D2 and D3.

Proof. By Lemma 3.6, the Picard group is generated by the classes of Di subject to the
following relations:

D1 −D2 + lD3 ∼ 0

D3 −D5 ∼ 0

D4 −D5 ∼ 0.

(6.1)

Thus, Pic(X) = Z[D2]
⊕

Z[D3].

Lemma 6.2. The Nef cone is generated by the classes of D2 and D3, whereas the effective
cone is generated by the classes of D1 and D3.

Proof. Let D = aD2 + bD3. If D is nef then we have (Theorem 4.5),

ϕD(0) ≥ ϕD(e1) + ϕD(−e1)
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and it follows that a ≥ 0. Also,

ϕD(le1) ≥ ϕD(e2) + ϕD(e3) + ϕD(le1 − e2 − e3)

and it follows that b ≥ 0. Thus, the nef cone is generated by the classes of D2 and D3. Using
(6.1), one can easily see that the effective cone is generated by the classes of D1 and D3.
See Figure 6.1.

[D2]

[D3]

(a) Nef cone

[D2]

[D3]

[D1]

(b) Effective cone

Figure 6.1: Nef and effective cone of XΣ ∼= P(OP2 ⊕OP2(l))

Theorem 6.3. (First main result) Let XΣ ∼= P(OP2 ⊕ OP2(l)) and S be a very general
surface in the class aD2 + bD3.

1. Suppose l = 0. Then S is algebraically hyperbolic if a ≥ 3 and b ≥ 5 or a = 2 and
b ≥ 5 or a ≥ 3 and b = 4. Moreover, S is not algebraically hyperbolic if a ≤ 1 or b ≤ 3
or a = 2 and b = 4.

2. Suppose l = 1. Then S is algebraically hyperbolic if a ≥ 3 and b ≥ 4 or a = 2 and
b ≥ 7 or b = 0 and a ≥ 6. Moreover, S is not algebraically hyperbolic if a ≤ 1 or
1 ≤ b ≤ 3 or a = 2, 3 and b = 0.
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3. Suppose l = 2. Then S is algebraically hyperbolic if a ≥ 3 and b ≥ 4 or a = 2 and
b ≥ 7 or b = 0 and a ≥ 4. Moreover, S is not algebraically hyperbolic if a ≤ 1 or
1 ≤ b ≤ 3 or a = 2 and b = 0.

4. Suppose l = 3. Then S is algebraically hyperbolic if a ≥ 3 and b ≥ 4 or a = 2 and
b ≥ 7 or b = 0 and a ≥ 4. Moreover, S is not algebraically hyperbolic if a ≤ 1 or
1 ≤ b ≤ 3.

5. Suppose l ≥ 4, then S is algebraically hyperbolic if a ≥ 3 and b ≥ 4 or a = 2 and b ≥ 7
or b = 0 and a ≥ 3. Moreover, S is not algebraically hyperbolic if a ≤ 1 or 1 ≤ b ≤ 3.

a

b

hyperbolic

not hyperbolic

(a) l = 0

a

b
hyperbolic

not hyperbolic hyperbolic

(b) l = 2

Figure 6.2: Algebraic hyperbolicity for very general surface of the type aD2 + bD3 in XΣ ∼=
P(OP2 ⊕OP2(l)), for l = 0 and 2.

Remark 6.4. Note that [D3] is the same as the pullback of the hyperplane class from P2,
and [D2] is the same as ξ the class of OP(E)(1). See [16].

Before proving the above theorem, we need to find a collection of divisors with connected
sections discussed in Section 5.2. The Canonical divisor of XΣ is given by (3.2)

KX = −D1 −D2 −D3 −D4 −D5

∼ −2D2 + (l − 3)D3.

After choosing a basis {e∗1, e∗2, e∗3} for M and a basis for Pic(X) as in Lemma 6.1, we get
the short exact sequence

0−→Z3 i−→ Z5 π−→ Z2 → 0.
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We can represent the map π by the matrix

A =
(

1 1 0 0 0
−l 0 1 1 1

)
.

Lemma 6.5. A Markov Basis for A is given by the rows of the matrix
0 0 1 −1 0
0 0 1 0 −1
1 −1 0 0 l

 .
Proof. Let I = 〈x3 − x4, x3 − x5, x1x

l
5 − x2〉 and IA be the toric ideal associated with the

matrix A. It is enough to show that I = IA. Clearly, I ⊂ IA. Note that

C[x1, x2, x3, x4, x5]
〈x3 − x4, x3 − x5, x1xl5 − x2〉

∼=
C[x1, x2, x3, x5]

〈x3 − x5, x1xl5 − x2〉

∼=
C[x1, x2, x5]
〈x1xl5 − x2〉

∼= C[x1, x5].

Hence I is a prime ideal. Moreover, dim(C[x1, ..., x5]/I) = 2 =rank(A). Hence, I = IA by
Lemma 5.17.

Lemma 6.6. Let l ≥ 1, D = aD2 + bD3, E′ = D2 and E = (a− 1)D2 + bD3. Then (D,E)
has connected sections.

Proof. Let

A =



1 0 0
−1 0 0
0 1 0
0 0 1
l −1 −1


, t1 =



0
−1
0
0
0


, t2 =



0
−a
−b
0
0


, t3 =



0
−a+ 1
−b
0
0


.

Then P (E′) = P (A, t1), P (D) = P (A, t2) and P (E) = P (A, t3). Clearly the polytope
P (E′) contains the points (0, 0, 0), (1, 0, 0), (1, l − 1, 1), (1, l, 0), (1, l − 1, 0) ∈ Z3. Let G =
i(P (E′)− i(P (E′)). Then G contains the vectors

i(1, 0, 0)− i(0, 0, 0)) = (1,−1, 0, 0, l)− (0, 0, 0, 0, 0) = (1,−1, 0, 0, l)

i(1, l, 0)− i(1, l − 1, 1)) = (1,−1, l, 0, 0)− (1,−1, l − 1, 1, 0) = (0, 0, 1,−1, 0)

i(1, l − 1, 1)− i(1, l − 1, 0) = (1,−1, l − 1, 1, 0)− (1,−1, l − 1, 0, 1) = (0, 0, 0, 1,−1).
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Thus by Lemma 6.5, G is a Markov basis for A. Note that P (D) ∩ Z3 = P (E) ∩ Z3 +
P (E′)∩Z3 by Theorem 5.12. Hence by Proposition 5.18, configuration (D,E) has connected
sections.

Lemma 6.7 (Curves in the boundary). Let XΣ = P(OP2 ⊕OP2(l)) and S be a very general
surface in the class aD2 + bD3 with a ≥ 1.

1. Let l = 1. Then S contains a curve of genus 0 or 1 if a = 1 or 1 ≤ b ≤ 3 or a = 2, 3
and b = 0.

2. Let l = 2. Then S contains a curve of genus 0 or 1 if a = 1 or 1 ≤ b ≤ 3 or a = 2
and b = 0.

3. Let l ≥ 3. Then S contains a curve of genus 0 or 1 if a = 1 or 1 ≤ b ≤ 3.

4. For all other cases, every curve in the toric boundary has the geometric genus at least
2.

Proof. Since a ≥ 1, D is big. We will analyze each of the facets of P (D). See Figure 6.3.

(0,−b, 0) (0, 0, 0)

(0,−b, b)

(a) Facet-1

(a,−b, 0) (a, la, 0)

(a,−b, la+ b)

(b) Facet-2

(0,−b, 0) (a,−b, 0)

(0,−b, b)

(a,−b, la+ b)

(c) Facet-3

(0,−b, 0) (0, 0, 0)

(a,−b, 0)
(a, la, 0)

(d) Facet-4

(0,−b, b)
(a,−b, la+ b)

(0, 0, 0)

(a, la, 0)

(e) Facet-5

Figure 6.3: Facets of Poltope P (aD2 + bD3) when a, b ≥ 1.
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1. Facet 1: Interior is given by the equations x = 0, y > −b, z > 0 and lx−y−z > 0. It
is easy to find the integer values for x, y, z satisfies the above equations. Indeed there
are (b − 1)(b − 2)/2 solutions if b ≥ 1. If b = 0, the restriction is the trivial divisor,
and there is no curve in the intersection.

2. Facet 2: Interior is given by the equations x = a, y > −b, z > 0 and la− y − z > 0.
Thus, we have (la+ b− 2)(la+ b− 1)/2 interior lattice points.

3. Facet 3: Interior is given by the equations y = −b, 0 < x < a, z > 0 and lx+b−z > 0.
Thus, we have (a− 1)(b− 1) + la(a− 1)/2 interior lattice points.

4. Facet 4: Interior is given by the equations z = 0, 0 < x < a, y > −b and lx > y.
Thus, we have (a− 1)(b− 1) + la(a− 1)/2 interior lattice points.

5. Facet 5: Interior is given by the equations lx − y − z = 0, 0 < x < a, y > −b and
z > 0. Thus, we have (a− 1)(b− 1) + la(a− 1)/2 interior lattice points.

Thus by Lemma 5.20, we have the results.

Proof of Theorem 6.3. The case l = 0 is discussed in [13, Example 6.1] and [4, Theorem
1.1]. Hence, we can assume l ≥ 1. Let D = aD2 + bD3 with a ≥ 1 and b ≥ 0 and E =
(a − 1)D2 + bD3. Then D is big, and the configuration (D,E) has connected sections by
Theorem 6.6. Applying Theorem 5.19, for any curve C not contained in the toric boundary
on a very general surface S in |D| we have,

2g − 2 ≥ C · ((a− 3)D2 + (b+ l − 3)D3). (6.2)

By Theorem 5.24, if a ≥ 2 and b ≥ 3−l, then the natural restriction map Pic(XΣ)→ Pic(S)
is an isomorphism. Thus, any curve C is rationally equivalent to the complete intersection
of S with a divisor in the class cD1 + dD3. By Theorem 3.25, and using the notations from
Table 6.1, we can write

C ∼ bcV (τ1) + adV (τ4) + bdV (τ7).

If C is not contained in the boundary, an intersection number calculation yields

2g − 2 ≥ cb(b+ l − 3) + d(la(a− 3) + a(b+ l − 3) + (a− 3)b).

The degree of such a curve C with respect to ample class H = D2 +D3 is given by

deg(C) = cb+ d(a+ b+ al).
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Let ε0 = 1
a+ b+ al

. Then we have

2g − 2 ≥ ε0 · deg(C).

By combining Lemma 6.7 and Corollary 5.22, we have the results.

τ D1.V (τ) D2.V (τ) D3.V (τ) D4.V (τ) D5.V (τ)
τ1 =Cone(ρ1, ρ3) −l 0 1 1 1
τ2 = Cone(ρ1, ρ4) −l 0 1 1 1
τ3 = Cone(ρ1, ρ5) −l 0 1 1 1
τ4 = Cone(ρ2, ρ3) 0 l 1 1 1
τ5 = Cone(ρ2, ρ4) 0 l 1 1 1
τ6 = Cone(ρ2, ρ5) 0 l 1 1 1
τ7 = Cone(ρ3, ρ4) 1 1 0 0 0
τ8 = Cone(ρ3, ρ5) 1 1 0 0 0
τ9 = Cone(ρ4, ρ5) 1 1 0 0 0

Table 6.1: Intersection numbers in XΣ ∼= P(OP2 ⊕OP2(l))

6.2 Case 2: Projective bundles over P1

We proceed in a similar fashion to Section 6.1. Consider the variety XΣ ∼= P(OP1⊕OP1(l1)⊕
OP1(l2)). We recall the description of the fan described in Theorem 4.15 again. Here, Σ
is generated by ray generators e1, e2,−e1 − e2, e3, l1e1 + l2e2 − e3 with 0 ≤ l1 ≤ l2 and
corresponding rays denoted by ρ1, ρ2, ρ3, ρ4, ρ5 and divisors by D1, D2, D3, D4, D5. It has
two primitive collections {e1, e2,−e1 − e2} and {e3, le1 + a2e2 − e3}.

Lemma 6.8. The Picard group Pic(X) is generated by the classes of D3 and D4.

Proof. By Lemma 3.6, the Picard group is generated by the classes of Di subject to the
following relations:

D1 ∼ D3 − l1D5

D2 ∼ D3 − l2D5

D4 ∼ D5.

(6.3)

Thus, Pic(X) = Z[D3]
⊕

Z[D4].

Lemma 6.9. The Nef cone is generated by the classes D3 and D4, whereas the effective
cone is generated by the classes of D2 and D4.
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Proof. Let D = aD3 + bD4. If D is nef, then we have (Theorem 4.5),

ϕD(0) ≥ ϕD(e1) + ϕD(e2) + ϕD(−e1 − e2)

ϕD(l1e1 + l2e2) ≥ ϕD(l1e1 + l2e2 − e3) + ϕD(e3).

Hence, it follows that a, b ≥ 0. Thus, the nef cone is generated by the classes of D3 and D4.
Using (6.3), one can easily see that the effective cone is generated by the classes of D2 and
D4. See Figure 6.4.

[D3]

[D4]

(a) Nef cone

[D3]

[D4]

[D2]

(b) Effective cone

Figure 6.4: Nef and effective cone of XΣ ∼= P(OP1 ⊕OP1(l1)⊕OP1(l2))

Theorem 6.10. (Second main result) Let XΣ ∼= P(OP1 ⊕ OP1(l1) ⊕ OP1(l2)) and S be a
very general surface in the class aD3 + bD4.

1. Suppose l1 = l2 = 0. Then S is algebraically hyperbolic if a ≥ 5 and b ≥ 3 or a = 4
and b ≥ 3 or a ≥ 5 and b = 2. Moreover, S is not algebraically hyperbolic if a ≤ 3 or
b ≤ 1 or a = 4 and b = 2.

2. Suppose l1 = 0, l2 ≥ 1. Then S is algebraically hyperbolic if a ≥ 5 and b ≥ 2. Moreover,
S is not algebraically hyperbolic if a ≤ 3 or b ≤ 1.
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3. Suppose l1 ≥ 1. Then S is algebraically hyperbolic if a ≥ 5. Moreover, S is not
algebraically hyperbolic if a ≤ 3.

Remark 6.11. Note that [D4] is the same as the pullback of the hyperplane class from P1,
and [D3] is the same as ξ the class of OP(E)(1). See [16].

a

b

hyperbolic

(a) l1 = 0, l2 ≥ 1

a

b
hyperbolic

(b) l1 ≥ 1

Figure 6.5: Algebraic hyperbolicity for a very general surface of the type aD3 + bD4 in
XΣ ∼= P(OP1 ⊕OP1(l1)⊕OP1(l2))

The canonical divisor is given by (3.2)

KX = −D1 −D2 −D3 −D4 −D5

∼ −3D3 + (l + a2 − 2)D4.

We have the short exact sequence

0−→M i−→ ZΣ[1] π−→ Pic(X)→ 0.

After choosing a basis {e∗1, e∗2, e∗3} for M and a basis for Pic(X) as in Lemma 1, we get the
short exact sequence

0−→Z3 i−→ Z5 π−→ Z2 → 0.

We can represent the map π by the matrix

A =
(

1 1 1 0 0
−l1 −l2 0 1 1

)
.
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Lemma 6.12. A Markov Basis for A is given by the rows of the matrix
0 0 0 1 −1
1 −1 0 0 l1 − l2
1 0 −1 0 l1

 .

Proof. Let I = 〈x4−x5, x1−x2x
(l2−l1)
5 , x1x

l1
5 −x3〉, and IA is the toric ideal associated with

the matrix A. It is enough to show that I = IA. Clearly, I ⊂ IA. Note that

C[x1, x2, x3, x4, x5]
〈x4 − x5, x1 − x2x

(l2−l1)
5 , x1x

l1
5 − x3〉

∼=
C[x1, x2, x3, x5]

〈x1 − x2x
(l2−l)
5 , x1x

l1
5 − x3〉

∼=
C[x2, x3, x5]
〈x2x

l2
5 − x3〉

∼= C[x2, x5].

Hence I is a prime ideal. Moreover dim(C[x1, ..., x5]/I) = 2 =rank(A). Hence I = IA by
Lemma 5.17.

Theorem 6.13. Let l2 ≥ 1, D = aD3 + bD4, E′ = D3 and E = (a − 1)D3 + bD4. Then
(D,E) has connected sections.

Proof. Let

A =



1 0 0
0 1 0
−1 −1 0
0 0 1
l1 l2 −1


, t1 =



0
0
−1
0
0


, t2 =



0
0
−a
−b
0


, t3 =



0
0

−a+ 1
−b
0


.

Then P (E′) = P (A, t1), P (D) = P (A, t2) and P (E) = P (A, t3). Clearly the polytope P (E′)
contains the points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 1, 1) ∈ Z3. LetG = i(P (E′)−i(P (E′)). Then
G contains the vectors

i((0, 1, 1)− i(0, 1, 0)) = (0, 0, 0, 1,−1)

i((1, 0, 0)− i(0, 1, 0)) = (1,−1, 0, 0, l1 − l2)

i((1, 0, 0)− i(0, 0, 0)) = (1, 0,−1, 0, l1).

Thus by Lemma 6.12, G is a Markov basis for A. Note that P (D) ∩ Z3 = P (E) ∩ Z3 +
P (E′)∩Z3 by Theorem 5.12. Hence by Proposition 5.18, configuration (D,E) has connected
sections.
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Lemma 6.14 (Curves in the boundary). Let XΣ ∼= P(OP1 ⊕OP1(l1)⊕OP1(l2)) with l2 ≥ 1
and S be a very general surface in the class aD3 + bD4 with a ≥ 1.

1. Let l1 = 0. Then S contains a curve of genus 0 or 1 if 1 ≤ a ≤ 3 or b = 1.

2. Let l1 ≥ 1. Then S contains a curve of genus 0 or 1 if 1 ≤ a ≤ 3.

3. For all other cases, every curve in the toric boundary has the geometric genus at least
2.

Proof. Since a ≥ 1, D is big. We will analyze each of the facets of P (D).

1. Facet 1: Interior is given by the equations z = −b, x + y < a, x > 0 and y > 0. If
a ≥ 1, we have (a− 1)(a− 2)/2 interior lattice points. If a = 0, the restriction is the
trivial divisor, and there is no curve in the intersection.

2. Facet 2: Interior is given by the equations l1x + l2y − z = 0, x + y < a, x > 0 and
y > 0. If a ≥ 1, we have (a−1)(a−2)/2 interior lattice points. If a = 0, the restriction
is the trivial divisor, and there is no curve in the intersection.

3. Facet 3: Interior is given by the equations y = 0, z > −b, x + y < a, x > 0 and
l1x+ l2y−z > 0. If b ≥ 1 or b = 0 and l1 ≥ 1, then we have (a−1)(b−1)+ l1a(a−1)/2
interior lattice points. If b = 0 and l1 = 0, there are no interior lattice points.

4. Facet 4: Interior is given by the equations x = 0, z > −b, x + y < a, y > 0 and
l1x+ l2y− z > 0. If a, b ≥ 1 or b = 0 and l2 ≥ 1, we have (a− 1)(b− 1) + l2a(a− 1)/2
interior lattice points. If a = 0 or b = 0 and l2 = 0, then the restriction is the trivial
divisor, and there is no curve in the intersection.

5. Facet 5: Interior is given by the equations x + y = a, z > −b, x > 0, y > 0 and
l1x+ l2y − z > 0. If a, b ≥ 1 or b = 0 and l2 ≥ 1, we have more interior lattice points
than facet 4. If a = 0 or b = 0 and l2 = 0, then the restriction is the trivial divisor,
and there is no curve in the intersection.

Thus by Lemma 5.20, we have the results.

Proof of Theorem 6.10. The case l1 = l2 = 0 is discussed in [13, Example 6.1]. Hence, we
can assume l2 ≥ 1 Let D = aD3 +bD4 with a ≥ 1 and b ≥ 0 and E = (a−1)D3 +bD4. Then
D is big, and the configuration (D,E) has connected sections by Theorem 6.13. Applying
Theorem 5.19, for any curve C not contained in the toric boundary on a very general surface
S in |D| we have,

2g − 2 ≥ C · ((a− 4)D3 + (b+ l1 + l2 − 2)D4. (6.4)
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τ D1.V (τ) D2.V (τ) D3.V (τ) D4.V (τ) D5.V (τ)
τ1 = Cone(ρ1, ρ2) −l1 −l2 0 1 1
τ2 = Cone(ρ1, ρ3) l2 − l1 0 l2 1 1
τ3 = Cone(ρ1, ρ4) 1 1 1 0 0
τ4 = Cone(ρ1, ρ5) 1 1 1 0 0
τ5 = Cone(ρ2, ρ3) 0 l1 − l2 l1 1 1
τ6 = Cone(ρ2, ρ4) 1 1 1 0 0
τ7 = Cone(ρ2, ρ5) 1 1 1 0 0
τ8 = Cone(ρ3, ρ4) 1 1 1 0 0
τ9 = Cone(ρ3, ρ5) 1 1 1 0 0

Table 6.2: Intersection numbers in XΣ ∼= P(OP1 ⊕OP1(l1)⊕OP1(l2)).

By Theorem 5.24 , if a ≥ 3 and b ≥ 2− l1− l2, then the natural restriction map Pic(XΣ)→
Pic(S) is an isomorphism. Thus, any curve C is rationally equivalent to the complete inter-
section of S with a divisor in the class cD2 +dD4. By Theorem 3.25, and using the notations
from Table 6.2, we can write

C ∼ acV (τ5) + bcV (τ6) + adV (τ8).

If C is not contained in the boundary, an intersection number calculation yields

2g − 2 ≥ c(l1a(a− 4) + a(b+ l1 + l2 − 2) + b(a− 4)) + da(a− 4).

The degree of such a curve C with respect to ample class H = D3 +D4 is given by

deg(C) = c(l1a+ b+ a) + da.

Let ε0 = 1
l1a+ b+ a

. Then we have

2g − 2 ≥ ε0 · deg(C).

By combining Lemma 6.14 and Corollary 5.22, we have the results.
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Chapter 7

Algebraically hyperbolic surfaces
with Picard rank 3

In this chapter, we discuss the algebraic hyperbolicity of a very general surface in all smooth
complete toric threefold with Picard rank 3. Batyrev’s classification of smooth complete toric
threefolds with Picard rank 3 was discussed in Section 4.4.

7.1 Fan with three primitive collections

Again, we proceed in a similar fashion to Section 6.1. In this case, the associated smooth
toric variety is isomorphic to projectivization of a decomposable bundle over a smooth toric
variety of smaller dimensions with Picard rank 2. Hence, we consider the projectivization
of vector bundle OHr ⊕ OHr (a, b) with a ≥ 0 over Hirzebruch surface Hr. We recall the
description of the fan described in Theorem 4.18. Here, Σ is generated by ray generators
e1,−e1 +re2 +ae3,e2,-e2 + be3,e3,−e3 and corresponding rays denoted by ρ1, ρ2, ρ3, ρ4, ρ5, ρ6

and divisors by D1, D2, D3, D4, D5, D6. It has three primitive collections {e1,−e1 + re2 +
ae3}, {e2,−e2 + be3} and {e3,−e3}.

Lemma 7.1. The Picard group Pic(X) is generated by the classes of D1, D4 and D6.

Proof. By Lemma 3.6, the Picard group is generated by the classes of Di subject to the
following relations:

D1 −D2 ∼ 0

rD2 +D3 −D4 ∼ 0

aD2 + bD4 +D5 −D6 ∼ 0.

(7.1)

Thus, Pic(X) = Z[D1]
⊕

Z[D4]
⊕

Z[D6].

Lemma 7.2. 1. If b ≥ 0, then the Nef cone is generated by D1, D4 and D6, whereas the
effective cone is generated by D1, D3 and D5.
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2. If b < 0, then the Nef cone is generated by D1, D4 and D6− bD4, whereas the effective
cone is generated by D1, D3, D5 and D6.

Proof. Let D = dD1 + eD4 + fD6. If D is nef then we have (Theorem 4.5),

ϕD(re2 + ae3) ≥ ϕD(e1) + ϕD(−e1 + re2 + ae3)

ϕD(be3) ≥ ϕD(e2) + ϕD(−e2 + be3)

ϕD(0) ≥ ϕD(e3) + ϕD(−e3).

Subcase 1: If b ≥ 0, it follows that d ≥ 0, f ≥ 0 and e ≥ 0. Thus, the nef cone is generated
by the classes of D1, D4 and D6. Using (7.1), it is easy to see that effective cone is
generated by the classes of D1, D3 and D5.

Subcase 2: If b < 0, it follows that d ≥ 0, f ≥ 0 and e ≥ bf . Thus, the nef cone is
generated by the classes of D1, D4 and D6 − bD4. Using (7.1), it is easy to see that
effective cone is generated by the classes of D1, D3, D5 and D6.

Theorem 7.3. Let XΣ be a smooth toric threefold associated with the fan in Theorem 4.18.
Let b ≥ 0 and S be a very general surface in the class dD1 + eD4 + fD6.

1. If d ≥ 4− a− r, e ≥ 4− b and f ≥ 3, then S is algebraically hyperbolic.

2. If d ≥ 4− a− r, e ≥ 3− b and f ≥ 4, then S is algebraically hyperbolic.

3. If d ≥ 3− a− r, e ≥ 4− b and f ≥ 4, then S is algebraically hyperbolic.

4. If e = 1 or f = 1, then S is not algebraically hyperbolic.

Let b < 0, and S be a very general surface S in the class dD1 + eD4 + f(D6 − bD4).

1. If d ≥ 4− a− r, e ≥ 2 and f ≥ 4, then S is algebraically hyperbolic.

2. If e = 1 or f = 1, then S is not algebraically hyperbolic.

Before proving the theorem, we need to find a collection of divisors with connected
sections discussed in chapter 5. The Canonical divisor of XΣ is given by (3.2)

KXΣ = −D1 −D2 −D3 −D4 −D5 −D6

∼ (−2 + a+ r)D1 + (−2 + b)D4 +−2D6.

After choosing a basis {e∗1, e∗2, e∗3} for M and a basis for Pic(X) as in Lemma 6.1, we get
the short exact sequence
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0−→Z3 i−→ Z6 π−→ Z3 → 0.

We can represent the map π by the matrix

A =


1 1 −r 0 −a 0
0 0 1 1 −b 0
0 0 0 0 1 1

 .
Lemma 7.4. A Markov Basis for A is given by the rows of the matrix

1 −1 0 0 0 0
r 0 1 −1 0 0

a+ br 0 b 0 1 −1

 .
Proof. We need to consider three cases. We will show for one case, and other cases can
prove similarly.

Case 1: Let b ≥ 0 and I = 〈x1 − x2, x
r
1x3 − x4, x

a+br
1 xb3x5 − x6〉 and IA be the toric ideal

associated with the matrix A. It is enough to show that I = IA. Clearly, I ⊂ IA. Note
that,

C[x1, x2, x3, x4, x5, x6]
〈x1 − x2, xr1x3 − x4, x

a+br
1 xb3x5 − x6〉

∼=
C[x1, x3, x4, x5, x6]

〈xr1x3 − x4, x
a+br
1 xb3x5 − x6〉

∼=
C[x1, x3, x5, x6]
〈xa+br

1 xb3x5 − x6〉
∼= C[x1, x3, x5].

Hence, I is a prime ideal. Moreover dim(C[x1, ..., x6]/I) = 3 =rank(A). Hence, I = IA

by Lemma 5.17. We can prove similarly in cases 2 and 3 that the same vectors to be
the Markov basis.

Case 2: If b < 0 and a+ br ≥ 0, consider I = 〈x1 − x2, x
r
1x3 − x4, x

a+br
1 x5 − x−b3 x6〉.

Case 3: If b < 0 and a+ br < 0, consider I = 〈x1 − x2, x
r
1x3 − x4, x5 − x−b3 x6x

−a−br
1 〉.

Lemma 7.5. Let b ≥ 0, D = dD1 + eD4 + fD6, E′ = D1 +D4 +D6 and E = (d− 1)D1 +
(e− 1)D4 + (f − 1)D6 with d, e, f ≥ 2. Then (D,E) has connected sections.
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Proof. Let

A =



1 0 0
−1 r a

0 1 0
0 −1 b

0 0 1
0 0 −1


, t1 =



−1
0
0
−1
0
−1


, t2 =



−d
0
0
−e
0
−f


, t3 =



−d+ 1
0
0

−e+ 1
0

−f + 1


.

Then P (E′) = P (A, t1), P (D) = P (A, t2) and P (E) = P (A, t3). Clearly P (E′) contains the
points (0, 0, 0), (−1, 0, 0), (r, 1, 0), (a + br, b, 1) ∈ Z3. Let G = i(P (E′) − i(P (E′)). Then G
contains the vectors

i(0, 0, 0)− i(−1, 0, 0) = (1,−1, 0, 0, 0, 0)

i(r, 1, 0)− i(0, 0, 0) = (r, 0, 1,−1, 0, 0)

i(a+ br, b, 1)− i(0, 0, 0) = (a+ br, 0, b, 0, 1,−1).

Thus, by Lemma 7.4, G is a Markov basis for A. Note that P (D) ∩ Z3 = P (E) ∩ Z3 +
P (E′)∩Z3 by Theorem 5.12. Hence by Proposition 5.18, configuration (D,E) has connected
sections.

Lemma 7.6. Let b < 0, D = dD1 + (e − bf)D4 + fD6, E′ = D1 − bD4 + D6 and E =
(d− 1)D1 + (e− bf + b)D4 + (f − 1)D6. Then (D,E) has connected sections.

Proof. Let

A =



1 0 0
−1 r a

0 1 0
0 −1 b

0 0 1
0 0 −1


, t1 =



−1
0
0
b

0
−1


, t2 =



−d
0
0

−e+ bf

0
−f


, t3 =



−d+ 1
0
0

−e+ fb− b
0

−f + 1


.

Then P (E′) = P (A, t1), P (D) = P (A, t2) and P (E) = P (A, t3). Clearly P (E′) contains
the points (0, 0, 0), (−1, 0, 0), (r, 1, 0), (−br,−b, 1), (a, 0, 1) ∈ Z3. Let G = i(P (E′)−i(P (E′)).
Then G contains the vectors

i(0, 0, 0)− i(−1, 0, 0) = (1,−1, 0, 0, 0, 0)

i(r, 1, 0)− i(0, 0, 0) = (r, 0, 1,−1, 0, 0)

i(−br,−b, 0)− i(a, 0, 1) = (a+ br, 0, b, 0, 1,−1).
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Thus, by Lemma 7.4, G is a Markov basis for A. Note that P (D) ∩ Z3 = P (E) ∩ Z3 +
P (E′)∩Z3 by Theorem 5.12. Hence by Proposition 5.18, configuration (D,E) has connected
sections.

Lemma 7.7 (Curves in the boundary). Let XΣ ∼= P(OHr ⊕OHr (aD3 + bD4)) and S be a
very general surface in the class dD1 + eD4 + fD6 with d, e, f ≥ 1. If f = 1 or e = 1, then
S contains a curve of genus 0 or 1. If d, e, f ≥ 3, then every curve in the toric boundary
has at least genus 2.

Proof. Since d, e, f ≥ 1, D is big. We will analyze each of the facets of P (D).

1. Facet 1: Interior is given by the equations x = −d, 0 < z < f and 0 < y < bz + e.
Thus, we have b(f − 1)f/2 + (e− 1)(f − 1) interior lattice points.

2. Facet 2: Interior is given by the equations x = ry+az, 0 < z < f and 0 < y < bz+e.
Thus, we have (f − 1)(e− 1) + bf(f − 1)/2 interior lattice points.

3. Facet 3: Interior is given by the equations y = 0, 0 < z < f ,and 0 < x < az. Thus,
we have (f − 1)(d− 1) + a(f − 1)f/2 interior lattice points.

4. Facet 4: Interior is given by the equations y = bz + e, 0 < z < f ,and 0 < x <

re+ z(rb+ a). Thus, we have (f − 1)(d− 1 + re) + (rb+ a)(f − 1)f/2 interior lattice
points.

5. Facet 5: Interior is given by the equations z = 0, 0 < y < e and −d < x < ry. Thus,
we have (e− 1)(d− 1) + r(e− 1)e/2 interior lattice points.

6. Facet 6: Interior is given by the equations z = f , 0 < y < bf+e and −d < x < ry+af .
Thus, we have (bf + e− 1)(d+af − 1) + r(bf + e− 1)(bf + e)/2 interior lattice points.

Thus by Lemma 5.20, we have the results.

Lemma 7.8 (Curves in the boundary). Let XΣ ∼= P(OHr ⊕OHr (aD3 + bD4)) and S be a
very general surface in the class dD1 + eD4 + f(D6 − bD4).

Proof. We will analyze each of the facets of P (D).

1. Facet 1: Interior is given by the equations x = −d, 0 < z < f and 0 < y < e−bf+bz.
Thus, we have (e− 1)(f − 1) + (−b)(f − 1)f/2 interior lattice points.

2. Facet 2: Interior is given by the equations x = ry + az, 0 < z < f and 0 < y <

bz + e− bf . Thus, we have (e− 1)(f − 1) + (−b)(f − 1)f/2 interior lattice points.

3. Facet 3: Interior is given by the equations y = 0, 0 < z < f ,and −d < x < az. Thus,
we have (f − 1)(d− 1) + a(f − 1)f/2 interior lattice points.
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4. Facet 4: Interior is given by the equations y = bz + e− bf , 0 < z < f ,and −d < x <

ry+ az. Thus, we have at least(f − 1)(d− 1 + re) + (re+ a)(f − 1)f/2 interior lattice
points.

5. Facet 5: Interior is given by the equations z = 0, 0 < y < e − bf and −d < x < ry.
Thus, we have at least (e − bf − 1)(d − 1) + r(e − bf − 1)(e − bf)/2 interior lattice
points.

6. Facet 6: Interior is given by the equations z = f , 0 < y < e− and −d < x < ry+ af .
Thus, we have at least (e− 1)(d+ af − 1) + r(e− 1)(e)/2 interior lattice points.

Thus, by Lemma 5.20, we have the results.

Proof of Theorem 7.3. We will consider two cases.

Subcase 1: Let b ≥ 0, then choose D = dD1 +eD4 +fD6 and E = (d−1)D1 +(e−1)D3 +
(f −1)D6 with d, e, f ≥ 1. Then D is big, and the configuration (D,E) has connected
sections by Theorem 7.5. Applying Theorem 5.19, for any curve C not contained in
the toric boundary on a very general surface S in |D| we have,

2g − 2 ≥ C · ((d+ a+ r − 3)D1 + (e+ b− 3)D4 + (f − 3)D6). (7.2)

By Theorem 5.24, if d ≥ 2− a− r, e ≥ 2− b and f ≥ 2, then the natural restriction
map Pic(XΣ)→ Pic(S) is an isomorphism. Thus, any curve C is rationally equivalent
to the complete intersection of S with a divisor in the class jD1 + kD3 + lD5. By
Theorem 3.25, and using the notations from Table 7.1, we can write

C ∼ dkV (τ1)+dlV (τ4)+ejV (τ6)+elV (τ12)+jfV (τ8)+kfV (τ10)+fl(aV (τ8)+bV (τ12)).

If C is not contained in the boundary, an intersection number calculation yields

2g − 2 ≥ j(bf(f − 3) + e(f − 3) + f(e+ b− 3))+

k(d(f − 3) + f(d+ a+ r − 3) + +af(f − 3))+

l((d+af)(e+b−3)+(d+af)b(f−3))+(e+bf)(d+a+r−3)+(e+bf)r(e+b−3)+(e+bf)(a+br)(f−3)).

The degree of such a curve C with respect to ample class H = D1 +D4 +D6 is given
by

deg(C) = j(bf + f + e) + k(f + d+ af) + l((d+ af)(1 + b) + (e+ bf)(1 + r+ a+ br)).

If e ≥ 4− b, d ≥ 4− a− r and f ≥ 3 then choose

ε0 = 1
f + (d+ af)(1 + b) + (e+ bf)(1 + r + a+ br) .
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τ D1.V (τ) D2.V (τ) D3.V (τ) D4.V (τ) D5.V (τ) D6.V (τ)
τ1 =Cone(ρ1, ρ3) 0 0 0 0 1 1
τ2 =Cone(ρ1, ρ4) 0 0 0 0 1 1
τ3 =Cone(ρ1, ρ5) 0 0 1 1 −b 0
τ4 =Cone(ρ1, ρ6) 0 0 1 1 0 b

τ5 =Cone(ρ2, ρ3) 0 0 0 0 1 1
τ6 =Cone(ρ2, ρ4) 0 0 0 0 1 1
τ7 =Cone(ρ2, ρ5) 0 0 1 1 −b 0
τ8 =Cone(ρ2, ρ6) 0 0 1 1 0 b

τ9 =Cone(ρ3, ρ5) 1 1 −r 0 −a 0
τ10 =Cone(ρ3, ρ6) 1 1 −r 0 0 a

τ11 =Cone(ρ4, ρ5) 1 1 0 r −a− br 0
τ12 =Cone(ρ4, ρ6) 1 1 0 r 0 a+ br

Table 7.1: Intersection numbers in XΣ associated with the fan in Theorem 4.18

Then we have

2g − 2 ≥ jf + kf + l(d+ af + (e+ bf)(1 + r)) ≥ ε0. deg C.

Similarly, we can take e ≥ 3− b, d ≥ 4− a− r and f ≥ 4 or e ≥ 4− b, d ≥ 3− a− r
and f ≥ 4. By combining Lemma 7.7 and Corollary 5.22, we have the results.

Subcase 2: Let b < 0, then choose D = dD1 + (e− b)D4 + fD6 and E = (d− 1)D1 + (e−
bf + b)D4 + (f − 1)D6 with d, e, f ≥ 1. Then D is big, and the configuration (D,E)
has connected sections by Theorem 7.6. For any curve C that not contained in the
toric boundary on a very general surface S in |D| we have,

2g − 2 ≥ C.((d+ a+ r − 3)D1 + (e+ 2b− fb− 2)D4 + (f − 3)D6).

If d ≥ 4− a− r, e ≥ 2 and f ≥ 4, then choose ε0 = 1.Then we have

2g − 2 ≥ ε0(C ·H).

By combining Lemma 7.8 and Corollary 5.22, we have the results.
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7.2 Fan with five primitive collections: Case 1

Again, we proceed in a similar fashion to Section 6.1. Recall the description of the fan de-
scribed in 4.19. Here, Σ generated by the ray generators e1, e2,−e1−e2+(b+1)e3,−e3, e3,−e1−
e2+be3 with b ≥ 0 and corresponding divisors associated to rays given byD1, D2, D3, D4, D5, D6

respectively. The five primitive collections are given in 4.19.

Lemma 7.9. The Picard group Pic(X) is generated by the classes of D1, D4 and D6.

Proof. By Lemma 3.6, the Picard group is generated by the classes of Di subject to the
following relations:

D1 −D3 −D6 ∼ 0

D2 −D3 −D6 ∼ 0

(b+ 1)D3 −D4 +D5 + bD6 ∼ 0.

(7.3)

Thus, PicXΣ = Z[D1]
⊕

Z[D4]
⊕

Z[D6].

Lemma 7.10. The Nef cone is generated by the classes of D1, D4 and D4 + D6, whereas
the effective cone is generated by the classes of D3, D5 and D6.

Proof. Let D = dD1 + eD4 + fD6. If D is nef, then we have (Theorem 4.5),

ϕD((b+ 1)e3) ≥ ϕD(e1) + ϕD(e2) + ϕD(−e1 − e2 + (b+ 1)e3)

ϕD(−e1 − e2 + be3) ≥ ϕD(−e1 − e2 + (b+ 1)e3) + ϕD(−e3)

ϕD(0) ≥ ϕD(e3) + ϕD(−e3)

ϕD(−e1 − e2 + (b+ 1)e3) ≥ ϕD(−e1 − e2 + be3) + ϕD(e3)

ϕD(be3) ≥ ϕD(−e1 − e2 + be3) + ϕD(e2).

It follows that d ≥ 0, e ≥ f, e ≥ 0, f ≥ 0 and f + d ≥ 0. Thus, the nef cone is generated
by the classes of D1, D4 and D4 + D6. Using (7.3), it is easy to see that effective cone is
generated by the classes of D3, D5 and D6.

Theorem 7.11. Let XΣ be the toric variety described by the fan as in Theorem 4.19, Case
1. Let S be a very general surface in the class dD1 +(e+f)D4 +fD6. Then S is algebraically
hyperbolic if d ≥ 4, e ≥ 2 and f ≥ 3. Moreover, S is not algebraically hyperbolic if 1 ≤ d ≤ 3.

To prove the theorem, we need a collection of divisors with connected sections.

Lemma 7.12. Let D = dD1 + (e + f)D4 + fD6, E = d′D1 + (e′ + f ′)D4 + f ′D6 with
d ≥ d′ ≥ 0, e ≥ e′ ≥ 0 and f ≥ f ′ ≥ 0. Then

P (D) ∩ Z3 = P (E) ∩ Z3 + P (D − E) ∩ Z3.
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Proof. Let

A1 =



1 0 0
0 1 0
−1 −1 b+1
0 0 −1
0 0 1
−1 −1 b


, t1 =



−d
0
0

−e− f
0
−f


, s1 =



−d′

0
0

−e′ − f ′

0
−f ′


.

Then, we have P (D) = P (A1, t1), P (E) = P (A1, s1) and P (D − E) = P (A1, t1 − s1). Let
(x0, y0, z0) ∈ P (D) ∩ Z3. We proceed by two cases.

Case 1: If 0 ≤ z0 ≤ f , then choose 0 ≤ z′ ≤ f ′ and 0 ≤ z′′ ≤ f − f ′ such that z = z′+ z′′.
Let

A2 =


1 0
0 1
−1 −1

 , t2 =


−d
0

−(b+ 1)z0

 , s2 =


−d′

0
−(b+ 1)z′

 .
Then, P1 = P (D) ∩ {z = z0} = P (A2, t2), P2 = P (E) ∩ {z = z′} = P (A2, s2) and
P3 = P (D −E) ∩ {z = z′′} = P (A2, t2 − s2). It can easily check that these polytopes
correspond to nef divisors on P2 and P1 = P2 + P3. Hence, by Theorem 5.12, it
has IDP. Then we can find (x′, y′) ∈ P2 ∩ Z2 and (x′′ + y′′) ∈ P3 ∩ Z2 such that
(x0, y0) = (x′, y′) + (x′′, y′′).

Case 2: If f ≤ z0 ≤ f + e, then choose f ′ ≤ z′ ≤ f ′ + e′ and f − f ′ ≤ z′′ ≤ f − f ′ + e− e′

such that z = z′ + z′′. Let

A3 =


1 0
0 1
−1 −1

 , t3 =


−d
0

−bz0 − f

 , s3 =


−d′

0
−bz′ − f

 .
Then, P1 = P (D) ∩ {z = z0} = P (A3, t3), P2 = P (E′) ∩ {z = z′} = P (A3, s3) and
P3 = P (E) ∩ {z = z′′} = P (A3, t3 − s3). It can easily check that these polytopes
correspond to nef divisors on P2 and P1 = P2 + P3. Hence, by Theorem 5.12, it
has IDP. Then we can find (x′, y′) ∈ P2 ∩ Z2 and (x′′ + y′′) ∈ P3 ∩ Z2 such that
(x0, y0) = (x′, y′) + (x′′, y′′).
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The canonical divisor is given by (Theorem 3.6)

KX = −D1 −D2 −D3 −D4 −D5 −D6

∼ (b− 2)D1 − 2D4 −D6.

After choosing a basis {e∗1, e∗2, e∗3} for M and a basis for Pic(X) as in Lemma 7.9, we get
the short exact sequence

0−→Z3 i−→ Z6 π−→ Z3 → 0.

We can represent the map π by the matrix

A =


1 1 1 0 −b− 1 0
0 0 0 1 1 0
0 0 −1 0 1 1

 .
Theorem 7.13. A Markov Basis for A is given by the rows of the matrix

1 0 −1 0 0 −1
0 1 −1 0 0 −1
0 0 b+ 1 −1 1 b

 .
Proof. Let I = 〈x1 − x3x6, x2 − x3x6, x

b+1
3 x5x

b
6 − x4〉, and IA is the toric ideal associated

with the matrix A. It is enough to show that I = IA. Clearly, I ⊂ IA. Note that

C[x1, x2, x3, x4, x5, x6]
〈x1 − x3x6, x2 − x3x6, x

b+1
3 x5xb6 − x4〉

∼=
C[x2, x3, x4, x5, x6]

〈x2 − x3x6, x
b+1
3 x5xb6 − x4〉

∼=
C[x3, x4, x5, x6]
〈xb+1

3 x5xb6 − x4〉
∼= C[x3, x5, x6].

Hence I is a prime ideal. Moreover, dim(C[x1, ..., x6]/I) = 3 =rank(A). Hence, I = IA

by Lemma 5.17.

Lemma 7.14. Let D = dD1 + (e + f)D3 + fD6, E′ = D3 + D6 and E = dD1 + (e + f −
1)D3 + (f − 1)D6 with f ≥ 1. Then (D,E) has connected sections.
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Proof. Let

A =



1 0 0
0 1 1
−1 −1 b+1
0 0 −1
0 0 1
−1 −1 b


, t1 =



0
0
0
−1
0
−1


, t2 =



−d
0
0

−e− f
0
−f


, t3 =



−d+ 1
0
0

−e− f + 1
0
−f


.

Then P (E′) = P (A, t1), P (D) = P (A, t2) and P (E) = P (A, t3). Clearly the poly-
tope P (E′) contains the points (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1) ∈ Z3. Let G = i(P (E′) −
i(P (E′)). Then G contains the vectors

i((1, 0, 1))− i((0, 0, 1)) = (1,−1, 0, 0, 0,−1)

i((0, 1, 1))− i((0, 0, 1)) = (0, 1,−1, 0, 0,−1)

i((0, 0, 1))− i((0, 0, 0)) = (0, 0, b+ 1,−1, 1, b).

Thus by Lemma 7.13, G is a Markov basis for A. Note that P (D) ∩ Z3 = P (E) ∩ Z3 +
P (E′)∩Z3 by Theorem 7.12. Hence by Proposition 5.18, configuration (D,E) has connected
sections.

Lemma 7.15. If 1 ≤ f ≤ 3, then S contains curves of genus 0 or 1 and hence cannot be
algebraically hyperbolic. If d ≥ 4, e ≥ 2 and f ≥ 2, then every curve in the boundary has the
genus at least two.

Proof. We will analyze the facets.

1. Facet 1: Interior is given by the equations x = −d, y ≥ 0, −x − y + (b + 1)z > 0,
−z > −e − f , z > 0 and −x − y + bz > −f . Thus, we have, at least d(e + f − 1)
solutions if e+ f ≥ 2.

2. Facet 2: Interior is given by the equations y = 0, x > −d, −x − y + (b + 1)z > 0,
−z > −e − f , z ≥ 0 and −x − y + bz > −f . Thus, we have at least d(e + f − 1)
solutions if e+ f ≥ 2.

3. Facet 3: Interior is given by the equations −x − y + (b + 1)z = 0, x > −d, y > 0,
z > 0 and −x− y + bz > −f . Thus, we have at least d(f − 1) solutions if f ≥ 1.

4. Facet 4: Interior is given by the equations z = e+f , x > −d, y > 0 and −x−y+bz >
−f . Thus we have at least (d+ f − 2)(d+ f − 1)

2 solutions if d+ f ≥ 1.

5. Facet 5: Interior is given by the equations z = 0, x > −d, y > 0 and −x−y+(b+1)z >

0. Thus, we have (d− 2)(d− 1)
2 solutions if d ≥ 1.
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6. Facet 6: Interior is given by the equations −x − y + bz = −f , x > −d, y > 0,
−x − y + (b + 1)z > 0 and −z > −e − f . Thus we have at least, (e − 1)(d + f − 1)
solutions if e ≥ 1.

Thus by Lemma 5.20, we have the results.

Proof of Theorem 7.11. Let D = dD1 + (e + f)D4 + fD6 and E = (d − 1)D1 + (e + f −
1)D4 + (f − 1)D6 with f ≥ 1, e ≥ 1 and d ≥ 0. Then D is big, and the configuration
(D,E) has connected sections by Theorem 7.14. Applying Theorem 5.19, for any curve C
not contained in the toric boundary on a very general surface S in |D| we have,

2g − 2 ≥ C · ((d+ b− 2)D1 + (e+ f − 3)D4 + (f − 2)D6). (7.4)

Let H = D1 + 2D3 +D6. If d ≥ 4, e ≥ 2, f ≥ 3, then we have

2g − 2 ≥ C ·H. (7.5)

Applying (7.5) and Lemma 7.15 on Corollary 5.22, we have the results.

7.3 Fan with five primitive collections: Case 2

Again, we proceed in a similar fashion to Section 6.1. Recall the description of the fan de-
scribed in 4.19. Here, Σ generated by the ray generators e1,−e1−e2+(b+1)e3, e2,−e3, e3,−e1+
be3 with b ≥ 0 and corresponding divisors associated to rays given by D1, D2, D3, D4, D5, D6

respectively. The five primitive collections are given in 4.19.

Lemma 7.16. The Picard group Pic(X) is generated by the classes of D1, D4 and D6.

Proof. By Lemma 3.6, the Picard group is generated by the classes of Di subject to the
following relations:

D1 −D2 −D6 ∼ 0

D2 −D3 ∼ 0

(b+ 1)D2 −D4 +D5 + bD6 ∼ 0.

(7.6)

Thus, PicXΣ = Z[D1]
⊕

Z[D4]
⊕

Z[D6].

Lemma 7.17. The Nef cone is generated by the classes of D1, D4 and D4 + D6, whereas
the effective cone is generated by the classes of D2, D5 and D6.
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Proof. Let D = dD1 + eD4 + fD6. If D is nef then it satisfies following relations (Theorem
4.5),

ϕD((b+ 1)e3) ≥ ϕD(e1) + ϕD(e2) + ϕD(−e1 − e2 + (b+ 1)e3)

ϕD(−e1 + be3) ≥ ϕD(−e1 − e2 + (b+ 1)e3) + ϕD(e2) + ϕD(−e3)

ϕD(0) ≥ ϕD(e3) + ϕD(−e3)

ϕD(−e1 + (b+ 1)e3) ≥ ϕD(−e1 + be3) + ϕD(e3)

ϕD(be3) ≥ ϕD(−e1 + be3) + ϕD(e1).

It follows that d ≥ 0, e ≥ f, e ≥ 0, f ≥ 0 and f + d ≥ 0. Thus, the nef cone is generated
by the classes of D1, D4 and D4 + D6. Using (7.6), it is easy to see that effective cone is
generated by the classes of D2, D5 and D6.

Theorem 7.18. Let XΣ be the toric variety described by the fan as in Theorem 4.19, Case
2. Let S be a very general surface in the class dD1 +(e+f)D4 +fD6. Then S is algebraically
hyperbolic if d ≥ 4, e ≥ 4 and f ≥ 1. Moreover, S is not algebraically hyperbolic if 1 ≤ d ≤ 3
or 1 ≤ e ≤ 3.

To prove the theorem, we need a collection of divisors with connected sections.

Lemma 7.19. Let D = dD1 + (e + f)D4 + fD6, E = d′D1 + (e′ + f ′)D4 + f ′D6 with
d ≥ d′ ≥ 0, e ≥ e′ ≥ 0 and f ≥ f ′ ≥ 0. Then

P (D) ∩ Z3 = P (E) ∩ Z3 + P (D − E) ∩ Z3.

Proof. Let

A1 =



1 0 0
−1 −1 b+1
0 1 0
0 0 −1
0 0 1
−1 0 b


, t1 =



−d
0
0

−e− f
0
−f


, s1 =



−d′

0
0

−e′ − f ′

0
−f ′


.

Then, we have P (D) = P (A1, t1), P (E) = P (A1, s1) and P (D − E) = P (A1, t1 − s1). Let
(x0, y0, z0) ∈ P (D) ∩ Z3. We proceed by two cases.

Case 1: If 0 ≤ z0 ≤ f , then choose 0 ≤ z′ ≤ f ′ and 0 ≤ z′′ ≤ f − f ′ such that z = z′+ z′′.
Let

A2 =


1 0
−1 −1
0 1

 , t2 =


−d

−(b+ 1)z0

0

 , s2 =


−d′

−(b+ 1)z′

0

 .
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Then, P1 = P (D) ∩ {z = z0} = P (A2, t2), P2 = P (E) ∩ {z = z′} = P (A2, s2) and
P3 = P (D −E) ∩ {z = z′′} = P (A2, t2 − s2). It can easily check that these polytopes
correspond to nef divisors on P2 and P1 = P2 + P3. Hence, by Theorem 5.12, it
has IDP. Then we can find (x′, y′) ∈ P2 ∩ Z2 and (x′′ + y′′) ∈ P3 ∩ Z2 such that
(x0, y0) = (x′, y′) + (x′′, y′′).

Case 2: If f ≤ z0 ≤ f + e, then choose f ′ ≤ z′ ≤ f ′ + e′ and f − f ′ ≤ z′′ ≤ f − f ′ + e− e′

such that z = z′ + z′′. Let

A3 =


1 0
−1 −1
0 1
−1 0

 , t3 =


−d

−(b+ 1)z0

0
−bz0 − f

 , s3 =


−d′

−(b+ 1)z′

0
−bz′ − f ′

 .

Then, P1 = P (D) ∩ {z = z0} = P (A3, t3), P2 = P (E′) ∩ {z = z′} = P (A3, s3) and
P3 = P (E) ∩ {z = z′′} = P (A3, t3 − s3). It can easily check that these polytopes
correspond to nef divisors on Hirzebruch surface H1 and P1 = P2 + P3. Hence, by
Theorem 5.12, it has IDP. Then we can find (x′, y′) ∈ P2 ∩Z2 and (x′′+ y′′) ∈ P3 ∩Z2

such that (x0, y0) = (x′, y′) + (x′′, y′′).

The canonical divisor is given by (Theorem 3.6)

KX = −D1 −D2 −D3 −D4 −D5 −D6

∼ (b− 2)D1 − 2D4.

After choosing a basis {e∗1, e∗2, e∗3} for M and a basis for Pic(X) as in Lemma 7.16, we get
the short exact sequence

0−→Z3 i−→ Z6 π−→ Z3 → 0.

We can represent the map π by the matrix

A =


1 1 1 0 −b− 1 0
0 0 0 1 1 0
1 −1 −1 0 1 1
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Theorem 7.20. A Markov Basis for A is given by the rows of the matrix
0 1 −1 0 0 0
1 −1 0 0 0 −1
b 1 0 −1 1 0


Proof. Let I = 〈x2 − x3, x1 − x2x6, x

b
1x2x5 − x4〉 and IA is the toric ideal associated with

the matrix A. It is enough to show that I = IA. Clearly, I ⊂ IA. Note that

C[x1, x2, x3, x4, x5, x6]
〈x2 − x3, x1 − x2x6, xb1x2x5 − x4〉

∼=
C[x1, x2, x4, x5, x6]

〈x1 − x2x6, xb1x2x5 − x4〉

∼=
C[x2, x4, x5, x6]
〈xb1x2x5 − x4〉

∼= C[x2, x5, x6].

Hence I is a prime ideal. Moreover, dim(C[x1, ..., x5]/I) = 3 =rank(A). Hence, I = IA

by Lemma 5.17.

Lemma 7.21. Let D = dD1 + (e + f)D3 + fD6, E′ = D3 + D6 and E = dD1 + (e + f −
1)D3 + (f − 1)D6 with f ≥ 1. Then (D,E) has connected sections.

Proof. Let

A =



1 0 0
−1 −1 b+1
0 1 0
0 0 −1
0 0 1
−1 0 b


, t1 =



−1
0
−1
0
0
0


, t2 =



−d
0

−e− f
0
0
−f


, t3 =



−d+ 1
0

−e− f + 1
0
0
−f


.

Then P (E′) = P (A, t1), P (D) = P (A, t2) and P (E) = P (A, t3). Clearly the polytope P (E′)
contains the points (0, 0, 0), (−1, 0, 0), (b, 0, 1), (b, 1, 1) ∈ Z3. Let G = i(P (E′) − i(P (E′)).
Then G contains the vectors

i((0, 0, 0))− i((−1, 0, 0)) = (1,−1, 0, 0, 0,−1)

i((b, 0, 1))− i((0, 0, 0)) = (b, 1, 0,−1, 1, 0)

i((b, 0, 1))− i((b, 1, 1)) = (0, 1,−1, 0, 0, 0).

Thus by Lemma 7.20, G is a Markov basis for A. Note that P (D) ∩ Z3 = P (E) ∩ Z3 +
P (E′)∩Z3 by Theorem 7.19. Hence by Proposition 5.18, configuration (D,E) has connected
sections.
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Lemma 7.22. If 1 ≤ d ≤ 3 or 1 ≤ e3, then S contains curves of genus 0 or 1 and cannot
be algebraically hyperbolic. If e, d ≥ 4, then every curve in the boundary has the genus at
least two.

Proof. We will analyze each of the facets.

1. Facet 1: Interior is given by the equations x = −d, y > 0, z > 0, −x−y+(b+1)z > 0

and z < e + f . Thus, we have (e+ f − 1)((b+ 1)(e+ f)− 2)
2 solutions if e + f ≥ 1.

If e+ f = 0, there is no curve in the intersection between S and D1.

2. Facet 2: Interior is given by the equations −x− y+ (b+ 1)z = 0, x > 0, y > 0, z > 0,

z < e+f and −x+bz > −f . Thus, we have at least e(d+f−1)+(d+ f − 2)(d+ f − 1)
2

solutions if d+ f ≥ 1.

3. Facet 3: Interior is given by the equations y = 0, x > −d, −x − y + (b + 1)z > 0,
z > 0, z < e+ f and −x+ bz > −f . Thus, we have at least (e− 1)(d− 1) solutions if
e ≥ 1 and d ≥ 1.

4. Facet 4: Interior is given by the equations z = e+ f , x > −d, −x− y+ (b+ 1)z > 0,

y > 0 and −x+ bz > −f . Thus we have at least e(d+ f − 1) + (f + d− 2)(f + d− 1)
2

solutions.

5. Facet 5: Interior is given by the equations z = 0, x > −d, −x − y(b + 1)z > 0 and

y > 0. Thus we have, (d− 2)(d− 1)
2 solutions if d ≥ 1. If d = 0, there is no curve in

the intersection between S and D5.

6. Facet 6: Interior is given by the equations −x + bz = −f , −x − y + (b + 1)z > 0,

y > 0 and −z > −e − f . Thus we have, (e− 2)(e− 1)
2 solutions if e ≥ 1. If e = 0,

there is no curve in the intersection between S and D6.

Thus by Lemma 5.20, we have the results.

Proof of Theorem 7.18. Let D = dD1 + (e + f)D4 + fD6 and E = (d − 1)D1 + (e + f −
1)D4 + fD6 with d ≥ 1, e ≥ 1 and f ≥ 0. Then D is big, and the configuration (D,E) has
connected sections by Theorem 7.21. Applying Theorem 5.19, for any curve C not contained
in the toric boundary on a very general surface S in |D| we have,

2g − 2 ≥ C · ((d+ b− 3)D1 + (e+ f − 3)D4 + fD6). (7.7)

Let H = D1 + 2D4 +D6. If d ≥ 4, e ≥ 4, f ≥ 1, then we have

2g − 2 ≥ C ·H. (7.8)

Applying (7.8) and Lemma 7.22 on Corollary 5.22, we have the results.
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7.4 Fan with five primitive collections: Case 3

Again, we proceed in a similar fashion to Section 6.1. Recall the description of the fan
described in 4.19. Here, Σ generated by the ray generators e1,−e1 + ce2 + (b+ 1)e3,−e2 −
e3, e2, e3,−e1 + ce2 + be3 with c, b ≥ 0 and corresponding divisors associated to rays given
by D1, D2, D3, D4, D5, D6 respectively. The five primitive collections are given in 4.19.

Lemma 7.23. The Picard group Pic(X) is generated by the classes of D1, D3 and D6.

Proof. By Lemma 3.6, the Picard group is generated by the classes of Di subject to the
following relations:

D1 −D2 −D6 ∼ 0

cD2 −D3 +D4 + cD6 ∼ 0

(b+ 1)D2 −D3 +D5 + bD6 ∼ 0.

(7.9)

Thus, PicXΣ = Z[D1]
⊕

Z[D3]
⊕

Z[D6].

Lemma 7.24. The Nef cone is generated by the classes of D1, D3 and D3 + D6, whereas
the effective cone is generated by the classes of D2, D4, D5 and D6.

Proof. Let D = dD1 + eD3 + fD6. If D is nef, then we have (Theorem 4.5),

ϕD(ce2 + (b+ 1)e3) ≥ ϕD(e1) + ϕD(−e1 + ce2 + (b+ 1)e3)

ϕD(−e1 + ce2 + be3) ≥ ϕD(−e1 + ce2 + (b+ 1)e3) + ϕD(−e2 − e3) + ϕD(e2)

ϕD(0) ≥ ϕD(−e2 − e3) + ϕD(e2) + ϕD(e3)

ϕD(−e1 + ce2 + (b+ 1)e3) ≥ ϕD(e3) + ϕD(−e1 + ce2 + be3)

ϕD(ce2 + be3) ≥ ϕD(−e1 + ce2 + be3) + ϕD(e1).

It follows that d ≥ 0, f ≥ 0, e ≥ 0 and e ≥ f . Thus, the nef cone is generated by the classes
of D1, D3 and D3 +D6. Using (7.9), one can see that the effective cone is generated by the
classes D2, D4, D5 and D6.

Theorem 7.25. Let XΣ be the toric variety described by the fan as in Theorem 4.19, Case
3. Let S be a very general surface in the class dD1 +(e+f)D3 +fD6. Then S is algebraically
hyperbolic if f ≥ 2, e ≥ 4 and d ≥ 2 − b − c. Moreover, S is not algebraically hyperbolic if
1 ≤ e ≤ 3 or f = 1.

Lemma 7.26. Let D = dD1 + (e + f)D3 + fD6, E = d′D1 + (e′ + f ′)D3 + f ′D6 with
d ≥ d′ ≥ 0, e ≥ e′ ≥ 0 and f ≥ f ′ ≥ 0. Then

P (D) ∩ Z3 = P (E) ∩ Z3 + P (D − E) ∩ Z3.
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Proof. Let

A1 =



1 0 0
−1 c b+1
0 −1 −1
0 1 0
0 0 1
−1 c b


, t1 =



−d
0

−e− f
0
0
−f


, s1 =



−d′

0
−e′ − f ′

0
0
−f ′


.

Then, we have P (D) = P (A1, t1), P (E) = P (A1, s1) and P (D − E) = P (A1, t1 − s1). Let
(x0, y0, z0) ∈ P (D) ∩ Z3. We proceed by two cases.

Case 1: If 0 ≤ z0 ≤ f . Then choose integers 0 ≤ z′ ≤ f ′ and 0 ≤ z′′ ≤ f − f ′ such that
z = z′ + z′′. Pick any integers 0 ≤ y′ ≤ e′ + f ′ − z′ and 0 ≤ y′′ ≤ e− e′ + f − f ′ − z′′

such that y0 = y′ + y′′. Let

A2 =
(

1
−1

)
, t2 =

(
−d

−cy0 − (b+ 1)z0

)
, s2 =

(
−d′

−cy′ − (b+ 1)z′

)
.

Then P1 = P (D) ∩ {z = z0, y = y0} = P (A2, t2), P2 = P (E) ∩ {z = z′, y = y′} =
P (A2, s2) and P3 = P (D−E)∩ {z = z′′, y = y′′} = P (A2, t2− s2). It can easily check
that these polytopes correspond to nef divisors on P1 and P1 = P2 + P3. Hence, by
Theorem 5.12, it has IDP. Then we can find x′ ∈ P2 ∩ Z2 and x′′ ∈ P3 ∩ Z2 such that
x = x′ + x′′.

Case 2: If f ≤ z0 ≤ f+e, then choose f ′ ≤ z′ ≤ f ′+e′ and f−f ′ ≤ z′′ ≤ f−f ′+e−e′ such
that z = z′+z′′. Pick any integers 0 ≤ y′ ≤ e′+f ′−z′ and 0 ≤ y′′ ≤ e−e′+f−f ′−z′′

such that y0 = y′ + y′′. Let

A3 =
(

1
−1

)
, t3 =

(
−d

−cy0 − bz0 − f

)
, s3 =

(
−d′

−cy′ − bz′ − f ′

)
.

Then P1 = P (D) ∩ {z = z0, y = y0} = P (A3, t3), P2 = P (E′) ∩ {z = z′, y = y′} =
P (A3, s3) and P3 = P (E) ∩ {z = z′′, y = y′′} = P (A3, t3 − s3). It can easily check
that these polytopes correspond to nef divisors on P1 and P1 = P2 + P3. Hence, by
Theorem 5.12, it has IDP. Then we can find x′ ∈ P2 ∩ Z and x′′ ∈ P3 ∩ Z such that
x0 = x′ + x′′.
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The canonical divisor is given by (3.6)

KX = −D1 −D2 −D3 −D4 −D5 −D6

∼ (b+ c− 1)D1 − 3D3 −D6.

After choosing a basis {e1, e2, e3} for M and a basis for Pic(X) as in Lemma 7.23, we get
the short exact sequence

0−→Z3 i−→ Z6 π−→ Z3 → 0.

We can represent the map π by the matrix

A =


1 1 0 −c −b− 1 0
0 0 1 1 1 0
0 −1 0 0 1 1

 .
Theorem 7.27. A Markov Basis for A is given by the rows of the matrix

1 −1 0 0 0 −1
0 b+ 1 −1 0 1 b

0 b+ 1− c 0 −1 1 b− c

 .

Proof. Let I1 = 〈x1−x2x6, x
(b+1)
1 x5x

b
6−x3, x5x

(b+1−c)
2 x

(b−c)
6 −x4〉, I2 = 〈x1−x2x6, x

(b+1)
1 x5x

b
6−

x3, x5−x4x
(c−b−1)
2 x

(c−b)
6 〉 and IA is the toric ideal associated with the matrix A. It is enough

to show that I1 = IA if b ≥ c and I2 = IA if b < c. We will show for case b ≥ c, and the
second case can prove similarly. Clearly, I1 ⊂ IA. Note that

C[x1, x2, x3, x4, x5, x6]
〈x1 − x2x6, x

(b+1)
1 x5xb6 − x3, x5x

(b+1−c)
2 x

(b−c)
6 − x4〉

∼=
C[x2, x3, x4, x5, x6]

〈x(b+1)
1 x5xb6 − x3, x5x

(b+1−c)
2 x

(b−c)
6 − x4〉

∼=
C[x2, x4, x5, x6]

〈x5x
(b+1−c)
2 x

(b−c)
6 − x4〉

∼= C[x2, x5, x6].

Hence I1 is a prime ideal. Moreover dim(C[x1, ..., x5, x6]/I1) = 3 =rank(A). Hence, I1 = IA

by Lemma 5.17.

Lemma 7.28. Let D = dD1 + (e+ f)D3 + fD6, E′ = D1 +D3 and E = (d− 1)D1 + (e+
f − 1)D3 with d, e ≥ 1. Then (D,E) has connected sections.
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Proof. Let

A =



1 0 0
−1 c b+1
0 −1 −1
0 1 0
0 0 1
−1 c b


, t1 =



−1
0
−1
0
0
0


, t2 =



−d
0

−e− f
0
0
−f


, t3 =



−d+ 1
0

−e− f + 1
0
0
−f


.

Then P (E′) = P (A, t1), P (D) = P (A, t2) and P (E) = P (A, t3). Clearly the polytope P (E′)
contains the points (0, 0, 0), (0, 0, 1), (0, 1, 0), (−1, 0, 0) ∈ Z3. Let G = i(P (E′) − i(P (E′)).
Then G contains the vectors

i(0, 0, 0)− i(−1, 0, 0)) = (1,−1, 0, 0, 0, 1)

i(0, 0, 0)− i(0, 1, 0)) = (0,−c, 1,−1, 0,−c)

i(0, 0, 1)− i(0, 1, 0) = (0, b+ 1− c, 0,−1, 1, b− c).

Thus by Lemma 6.5, G is a Markov basis for A. Note that P (D) ∩ Z3 = P (E) ∩ Z3 +
P (E′)∩Z3 by Theorem 5.12. Hence by Proposition 5.18, configuration (D,E) has connected
sections.

Lemma 7.29. If 1 ≤ b ≤ 3 or a ≤ 1, then S contains curves of genus 0 or 1 and cannot be
algebraically hyperbolic. If e ≥ 4 and f ≥ 2, then every curve in the boundary has the genus
at least two.

Proof. We will analyze each of the facets of P (D).

1. Facet 1: Interior is given by the equations x = 0, y > 0, z > 0 and y + z < e+ f . It
is easy to find the integer values for x, y, z satisfies the above equations. Indeed there
are (e+ f − 1)(e+ f − 2)

2 solutions if e+ f ≥ 1. If e+ f = 0, there is no curve in the
intersection.

2. Facet 2: Interior is given by the equations −x+ cy+ (b+ 1)z = −d, −y− z > −e−f ,

y > 0, z > 0 and −x + cy + bz > −d − f . Thus, we have e(f − 1) + (f − 1)(f − 2)
2

solutions if f ≥ 1. If f = 0, there is no curve in the intersection.

3. Facet 3: Interior is given by the equations y = 0, x > 0, −x − y + (b + 1)z > −e,
z > 0, z < d+ f and −x+ bz > −e− f . Thus, we have at least (e+ f − 1)(d+ f − 1)
solutions if f ≥ 1.

4. Facet 4: Interior is given by the equations −z = −d− f , x > 0, −x+ (b+ 1)z > −e,
y > 0 and −x + (b + 1)z > −e − f . Thus we have (d + f)(b(d + f) + e − 1) +
b(d+ f) + (e− 2))(b(d+ f) + e− 1)

2 solutions.
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5. Facet 5: Interior is given by the equations z = 0, x > 0, −x − y(b + 1)z > −e and

y > 0. Thus we have, (e− 2)(e− 1)
2 solutions if e ≥ 1.

6. Facet 6: Interior is given by the equations −x+ bz = −e−f , −x−y+ (b+ 1)z > −e,

y > 0 and −z > −d− f . Thus we have, (e− 2)(e− 1)
2 solutions if e ≥ 1.

Thus by Lemma 5.20, we have the results.

Proof of Theorem 7.25. Let D = dD1 + (e + f)D3 + fD6 and E = (d − 1)D1 + (e + f −
1)D3 + fD6 with d ≥ 1, e ≥ 1 and f ≥ 0. Then D is big, and the configuration (D,E) has
connected sections by Theorem 7.28. Applying Theorem 5.19, for any curve C not contained
in the toric boundary on a very general surface S in |D| we have,

2g − 2 ≥ C · ((d+ b+ c− 2)D1 + (e+ f − 4)D3 + (f − 1)D6). (7.10)

Let H = D1 + 2D3 +D6. If d ≥ 4, e ≥ 4, f ≥ 1, then we have

2g − 2 ≥ C ·H. (7.11)

Applying (7.11) and Lemma 7.29 on Corollary 5.22, we have the results.

7.5 Fan with five primitive collections: Case 4

Again, we proceed in a similar fashion to Section 6.1. Recall the description of the fan
described in 4.19. Here, Σ generated by the ray generators e1,−e1+(c+1)e2+(b+1)e3,−e2−
e3, e2, e3,−e1 + ce2 + be3 with c, b ≥ 0 and corresponding divisors associated to rays given
by D1, D2, D3, D4, D5, D6 respectively. The five primitive collections are given in 4.19.

Lemma 7.30. The Picard group Pic(X) is generated by the classes of D1, D3 and D6.

Proof. By Lemma 3.6, the Picard group is generated by the classes of Di subject to the
following relations:

D1 −D2 −D6 ∼ 0

(c+ 1)D2 −D3 +D4 + cD6 ∼ 0

(b+ 1)D2 −D3 +D5 + bD6 ∼ 0.

(7.12)

Thus, PicXΣ = Z[D2]
⊕

Z[D3]
⊕

Z[D6].

Lemma 7.31. The Nef cone is generated by the classes of D1, D3 and D3 + D6, whereas
the effective cone is generated by th classes of D2, D4, D5 and D6.
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Proof. Let D = dD1 + eD3 + fD6. If D is nef, then we have (Theorem 4.5),

ϕD(ce2 + (b+ 1)e3) ≥ ϕD(e1) + ϕD(−e1 + ce2 + (b+ 1)e3)

ϕD(−e1 + ce2 + be3) ≥ ϕD(−e1 + (c+ 1)e2 + (b+ 1)e3) + ϕD(−e2 − e3)

ϕD(0) ≥ ϕD(−e2 − e3) + ϕD(e2) + ϕD(e3)

ϕD(−e1 + (c+ 1)e2 + (b+ 1)e3) ≥ ϕD(e2) + ϕD(e3) + ϕD(−e1 + ce2 + be3)

ϕD(ce2 + be3) ≥ ϕD(−e1 + ce2 + be3) + ϕD(e1).

It follows that d ≥ 0, e ≥ f, e ≥ 0, e+ f ≥ 0 and f + d ≥ 0. Thus, the nef cone is generated
by the classes of D1, D3 and D3 + D6. Using (7.12), one can see that the effective cone is
generated by the classes D2, D4, D5 and D6.

Theorem 7.32. Let XΣ be the toric variety described by the fan as in Theorem 4.19, Case
4. Let S be a very general surface in the class dD1 +(e+f)D3 +fD6. Then S is algebraically
hyperbolic if f ≥ 4, e ≥ 2 and d ≥ 1 − b − c. Moreover, S is not algebraically hyperbolic if
1 ≤ f ≤ 3 or e = 1.

Lemma 7.33. Let D = dD1 + (e + f)D3 + fD6, E = d′D1 + (e′ + f ′)D3 + f ′D6 with
d ≥ d′ ≥ 0, e ≥ e′ ≥ 0 and f ≥ f ′ ≥ 0. Then

P (D) ∩ Z3 = P (E) ∩ Z3 + P (D − E) ∩ Z3.

Proof. Let

A1 =



1 0 0
−1 0 b+1
0 0 −1
0 0 1
−1 −1 b
0 1 0


, t1 =



−d
0

−e− f
0
0
−f


, s1 =



−d′

0
−e′ − f ′

0
0
−f ′


.

Then, we have P (D) = P (A1, t1), P (E) = P (A1, s1) and P (D − E) = P (A1, t1 − s1). Let
(x0, y0, z0) ∈ P (D) ∩ Z3. We proceed by two cases.

Case 1: If 0 ≤ z0 ≤ f , then choose integers 0 ≤ z′ ≤ f ′ and 0 ≤ z′′ ≤ f − f ′ such that
z = z′ + z′′. Pick any integers 0 ≤ y′ ≤ e′ + f ′ − z′ and 0 ≤ y′′ ≤ e− e′ + f − f ′ − z′′

such that y0 = y′ + y′′. Let

A2 =
(

1
−1

)
, t2 =

(
−d

−cy0 − (b+ 1)z0

)
, s2 =

(
−d′

−cy′ − (b+ 1)z′

)
.

63



Then, P1 = P (D) ∩ {z = z0, y = y0} = P (A2, t2), P2 = P (E) ∩ {z = z′, y = y′} =
P (A2, s2) and P3 = P (D−E)∩ {z = z′′, y = y′′} = P (A2, t2− s2). It can easily check
that these polytopes correspond to nef divisors on P1 and P1 = P2 + P3. Hence, by
Theorem 5.12, it has IDP. Then we can find x′ ∈ P2 ∩ Z2 and x′′ ∈ P3 ∩ Z2 such that
x = x′ + x′′.

Case 2: If f ≤ z0 ≤ f+e, then choose f ′ ≤ z′ ≤ f ′+e′ and f−f ′ ≤ z′′ ≤ f−f ′+e−e′ such
that z = z′+z′′. Pick any integers 0 ≤ y′ ≤ e′+f ′−z′ and 0 ≤ y′′ ≤ e−e′+f−f ′−z′′

such that y0 = y′ + y′′. Let

A3 =
(

1
−1

)
, t3 =

(
−d

−cy0 − bz0 − f

)
, s3 =

(
−d′

−cy′ − bz′ − f ′

)
.

Then, P1 = P (D) ∩ {z = z0, y = y0} = P (A3, t3), P2 = P (E′) ∩ {z = z′, y = y′} =
P (A3, s3) and P3 = P (E) ∩ {z = z′′, y = y′′} = P (A3, t3 − s3). It can easily check
that these polytopes correspond to nef divisors on P1 and P1 = P2 + P3. Hence, by
Theorem 5.12, it has IDP. Then we can find x′ ∈ P2 ∩ Z and x′′ ∈ P3 ∩ Z such that
x0 = x′ + x′′.

The canonical divisor is given by (3.6)

KX = −D1 −D2 −D3 −D4 −D5 −D6

∼ (b+ c)D1 − 3D3 − 2D6.

After choosing a basis {e∗1, e∗2, e∗3} for M and a basis for Pic(X) as in Lemma 7.30, we
get the short exact sequence

0−→Z3 i−→ Z6 π−→ Z3 → 0.

We can represent the map π by the matrix

A =


1 1 0 −c− 1 −b− 1 0
0 0 1 1 1 0
0 −1 0 1 1 1

 .
Theorem 7.34. A Markov Basis for A is given by the rows of the matrix

1 −1 0 0 0 −1
0 b+ 1 −1 0 1 b

0 b− c 0 −1 1 b− c

 .
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Proof. Let I1 = 〈x1 − x2x6, x
b+1
2 x5x

b
6 − x3, x4 − x5x

b−c
2 xb−c6 〉, I2 = 〈x1 − x2x6, x

b+1
2 x5x

b
6 −

x3, x5 − x4x
c−b
2 xc−b6 〉 and IA is the toric ideal associated with the matrix A. It is enough to

show that I1 = IA if b ≥ c and I2 = IA if b < c. We will show for case b ≥ c and the second
case can prove similarly. Clearly, I1 ⊂ IA. Note that

C[x1, x2, x3, x4, x5, x6]
〈x1 − x2x6, x

b+1
2 x5xb6 − x3, x4 − x5x

b−c
2 xb−c6 〉

∼=
C[x2, x3, x4, x5, x6]

〈xb+1
2 x5xb6 − x3, x4 − x5x

b−c
2 xb−c6 〉

∼=
C[x2, x4, x5, x6]
〈x4 − x5x

b−c
2 xb−c6 〉

∼= C[x2, x5, x6].

Hence, I1 is a prime ideal. Moreover, dim(C[x1, ..., x5]/I1) = 3 =rank(A). Hence, I1 = IA

by Lemma 5.17.

Lemma 7.35. Let D = dD1 + (e+ f)D3 + fD6, E′ = D1 +D3 and E = (d− 1)D1 + (e+
f − 1)D3 with d, e ≥ 1. Then (D,E) has connected sections.

Proof. Let

A =



1 0 0
−1 c+1 b+1
0 −1 −1
0 1 0
0 0 1
−1 c b


, t1 =



0
0
−1
0
0
−1


, t2 =



−d
0

−e− f
0
0
−f


, t3 =



−d
0

−e− f + 1
0
0

−f + 1


.

Then P (E′) = P (A, t1), P (D) = P (A, t2) and P (E) = P (A, t3). Clearly the polytope P (E′)
contains the points (0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0) ∈ Z3. LetG = i(P (E′)−i(P (E′)). Then
G contains the vectors

i(1, 1, 0)− i(0, 1, 0)) = (1,−1, 0, 0, 0,−1)

i(0, 0, 1)− i(0, 0, 0)) = (0, b+ 1,−1, 0, 1, b)

i(0, 0, 1)− i(0, 1, 0) = (0, b− c, 0,−1, 1, b− c).

Thus by Lemma 7.34, G is a Markov basis for A. Note that P (D) ∩ Z3 = P (E) ∩ Z3 +
P (E′)∩Z3 by Theorem 7.33. Hence by Proposition 5.18, configuration (D,E) has connected
sections.

Lemma 7.36. If 1 ≤ f ≤ 3 or e ≤ 1, then S contains curves of genus 0 or 1 and cannot
be algebraically hyperbolic. If f ≥ 4 and e ≥ 2, then every curve in the boundary has the
genus at least two.
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Proof. We will analyze each of the facets of P (D).

1. Facet 1: Interior is given by the equations x = −d, −y − z > −e − f , y > 0 and
z > 0. Thus, we have (e+ f − 1)(e+ f − 2)

2 solutions if e+ f ≥ 1. If e+ f = 0, there
is no curve in the intersection.

2. Facet 2: Interior is given by the equations −x+ (c+ 1)y + (b+ 1)z = 0,y > 0, z > 0

and −x + cy + bz > −f . Thus, we have (f − 1)(f − 2)
2 solutions if f ≥ 1. If f = 0,

there is no curve in the intersection.

3. Facet 3: Interior is given by the equations y + z = e + f , x > −d, y > 0, z > 0 and
−x+ cy+ bz > −f . Thus, we have at least (e+ f − 2)(d+ f − 1) solutions if e+ f ≥ 2
and d+ f ≥ 1.

4. Facet 4: Interior is given by the equations y = 0, x > −d, −x+(c+1)y+(b+1)z > 0,

−y−z > −e−f , z > 0 and −x+ cy+ bz > −f . Thus, we have at least (f − 1)(f − 2)
2

solutions if f ≥ 1.

5. Facet 5: Interior is given by the equations z = 0, x > −d, −x+(c+1)y+(b+1)z > 0,

−y−z > −e−f , y > 0 and −x+cy+bz > −f . Thus, we have at least (f − 2)(f − 1)
2

solutions if f ≥ 1.

6. Facet 6: Interior is given by the equations −x+cy+bz = −f , −x+(c+1)y+(b+1)z >

0, −y−z > −e−f , y > 0 and z > 0. Thus, we have f(e−1)+ (e− 2)(e− 1)
2 solutions

if e ≥ 1. If e = 0 and f ≥ 1, there are no interior lattice points.

Thus by Lemma 5.20, we have the results.

Proof of Theorem 7.32. Let D = dD1 + (e+ f)D3 + fD6 and E = dD1 + (e+ f − 1)D3 +
(f − 1)D6 with d ≥ 0, e ≥ 1 and f ≥ 1. Then D is big, and the configuration (D,E) has
connected sections by Theorem 7.35. Applying Theorem 5.19, for any curve C not contained
in the toric boundary on a very general surface S in |D| we have,

2g − 2 ≥ C · ((d+ b+ c)D1 + (e+ f − 4)D3 + (f − 3)D6). (7.13)

Let H = D1 + 2D3 +D6. If d ≥ 1− b− c, e ≥ 2, f ≥ 4, then we have

2g − 2 ≥ C ·H. (7.14)

Applying (7.14) and Lemma 7.36 on Corollary 5.22, we have the results.
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7.6 Fan with five primitive collections: Case 5

Again, we proceed in a similar fashion to Section 6.1. Recall the description of the fan de-
scribed in 4.19. Here, Σ generated by the ray generators e1,−e1+(b+1)e3,−e3, e3,−e1−e2+
be3, e2 with b ≥ 0 and corresponding divisors associated to rays given byD1, D2, D3, D4, D5, D6

respectively. The five primitive collections are given in 4.19.

Lemma 7.37. The Picard group Pic(X) is generated by the classes of D1, D3 and D6.

Proof. By Lemma 3.6, the Picard group is generated by the classes of Di subject to the
following relations:

D1 −D2 −D5 ∼ 0

−D5 +D6 ∼ 0

(b+ 1)D2 −D3 +D4 + bD5 ∼ 0.

(7.15)

Thus, PicXΣ = Z[D1]
⊕

Z[D3]
⊕

Z[D6].

Lemma 7.38. The Nef cone is generated by the classes of D1, D3 and D3 + D6, whereas
the effective cone is generated by the classes of D2, D4 and D5.

Proof. Let D = dD1 + eD3 + fD6. If D is nef then it satisfies following relations (Theorem
4.5),

ϕD((b+ 1)e3) ≥ ϕD(e1) + ϕD(−e1 + (b+ 1)e3)

ϕD(−e1 + be3) ≥ ϕD(−e1 + (b+ 1)e3) + ϕD(−e3)

ϕD(0) ≥ ϕD(e3) + ϕD(−e3)

ϕD(−e1 + (b+ 1)e3) ≥ ϕD(−e1 − e2 + be3) + ϕD(e2) + ϕD(e3)

ϕD(be3) ≥ ϕD(−e1 − e2 + be3) + ϕD(e2) + ϕD(e1).

It follows that d ≥ 0, e ≥ 0, f ≥ 0 and e ≥ f . Thus, the nef cone is generated by the classes
of D1, D3 and D3 + D6. Using (7.15), one can see that the effective cone is generated by
the classes D2, D4 and D5.

Theorem 7.39. Let XΣ be the toric variety described by the fan as in Theorem 4.19, Case
5. Let S be a very general surface in the class dD1 +(e+f)D3 +fD6. Then S is algebraically
hyperbolic if d ≥ 2, e ≥ 1 and f ≥ 4. Moreover, S is not algebraically hyperbolic if d = 1 or
1 ≤ f ≤ 3.

Lemma 7.40. Let D = dD1 + (e + f)D3 + fD6, E = d′D1 + (e′ + f ′)D3 + f ′D6 with
d ≥ d′ ≥ 0, e ≥ e′ ≥ 0 and f ≥ f ′ ≥ 0. Then

P (D) ∩ Z3 = P (E) ∩ Z3 + P (D − E) ∩ Z3.
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Proof. Let

A1 =



1 0 0
−1 0 b+1
0 0 −1
0 0 1
−1 −1 b
0 1 0


, t1 =



−d
0

−e− f
0
0
−f


, s1 =



−d′

0
−e′ − f ′

0
0
−f ′


.

Then, we have P (D) = P (A1, t1), P (E) = P (A1, s1) and P (D − E) = P (A1, t1 − s1). Let
(x0, y0, z0) ∈ P (D) ∩ Z3. We proceed by two cases.

Case 1: If 0 ≤ z0 ≤ f , then choose 0 ≤ z′ ≤ f ′ and 0 ≤ z′′ ≤ f − f ′ such that z = z′+ z′′.
Let

A3 =


1 0
−1 0
−1 −1
0 1

 , t3 =


−d

−(b+ 1)z0

−bz0

−f

 , s3 =


−d′

−(b+ 1)z′

−bz′

−f ′

 .

Then, P1 = P (D) ∩ {z = z0} = P (A2, t2), P2 = P (E) ∩ {z = z′} = P (A2, s2) and
P3 = P (D −E) ∩ {z = z′′} = P (A2, t2 − s2). It can easily check that these polytopes
correspond to nef divisors on Hirzebruch surface H1 and P1 = P2 + P3. Hence, by
Theorem 5.12, it has IDP. Then we can find (x′, y′) ∈ P2 ∩Z2 and (x′′+ y′′) ∈ P3 ∩Z2

such that (x0, y0) = (x′, y′) + (x′′, y′′).

Case 2: If f ≤ z0 ≤ f + e, then choose f ′ ≤ z′ ≤ f ′ + e′ and f − f ′ ≤ z′′ ≤ f − f ′ + e− e′

such that z = z′ + z′′. Let

A2 =


1 0
−1 −1
0 1

 , t2 =


−d
−bz0

−f

 , s2 =


−d′

−bz′

−f ′

 .
Then, P1 = P (D) ∩ {z = z0} = P (A3, t3), P2 = P (E′) ∩ {z = z′} = P (A3, s3) and
P3 = P (E) ∩ {z = z′′} = P (A3, t3 − s3). It can easily check that these polytopes
correspond to nef divisors on P2 and P1 = P2 + P3. Hence, by Theorem 5.12, it
has IDP. Then we can find (x′, y′) ∈ P2 ∩ Z2 and (x′′ + y′′) ∈ P3 ∩ Z2 such that
(x0, y0) = (x′, y′) + (x′′, y′′).
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The canonical divisor of XΣ is given by (3.6)

KX = −D1 −D2 −D3 −D4 −D5 −D6

∼ (b− 1)D1 − 2D3 − 2D6.

After choosing the basis {e∗1, e∗2, e∗3} for M and a basis for Pic(X) as in Lemma 7.37, we
get the short exact sequence

0−→Z3 i−→ Z6 π−→ Z3 → 0.

We can represent the map π by the matrix

A =


1 1 0 −b− 1 0 0
0 0 1 1 0 0
0 −1 0 1 1 1

 .
Theorem 7.41. A Markov Basis for A is given by

0 0 0 0 1 −1
1 −1 0 0 −1 0
b 1 −1 1 0 0

 .
Proof. Let I = 〈x5 − x6, x1 − x2x5, x

b
1x2x4 − x3〉 and IA is the toric ideal associated with

matrix A. It is enough to show that I=IA. Clearly, I ⊂ IA. Note that

C[x1, x2, x3, x4, x5, x6]
〈x5 − x6, x1 − x2x5, xb1x2x4 − x3〉

∼=
C[x1, x2, x3, x4, x5]

〈x1 − x2x5, xb1x2x4 − x3〉

∼=
C[x2, x3, x4, x5, x6]
〈xb1x2x4 − x3〉

∼= C[x2, x4, x5].

Hence, I is a prime ideal. Moreover dim(C[x1, ..., x5]/I) = 3 =rank(A). Hence, I = IA

by Lemma 5.17.

Lemma 7.42. Let D = dD1 + (e + f)D3 + fD6, E′ = D3 + D6 and E = dD1 + (e + f −
1)D3 + (f − 1)D6 with f ≥ 1. Then (D,E) has connected sections.

69



Proof. Let

A =



1 0 0
−1 0 b+1
0 0 −1
0 0 1
−1 −1 b
0 1 0


, t1 =



0
0
−1
0
0
−1


, t2 =



−d
0

−e− f
0
0
−f


, t3 =



−d
0

−e− f + 1
0
0

−f + 1


.

Then P (E′) = P (A, t1), P (D) = P (A, t2) and P (E) = P (A, t3). Clearly the polytope
P (E′) contains the points (0, 0, 0), (0,−1, 0), (b, 0, 1), (b+ 1, 0, 1) ∈ Z3 and their images are
(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1,−1), (b, 1,−1, 1, 0, 0), (b+ 1, 0,−1, 1,−1, 0) ∈ Z6 respectively. Let
G = i(P (E′)− i(P (E′)). Then G contains the vectors

(0, 0, 0, 0, 0)− (0, 0, 0, 0, 1,−1) = (0, 0, 0, 0,−1, 1)

(b, 1,−1, 1, 0, 0)− (0, 0, 0, 0, 0) = (b, 1,−1, 1, 0, 0)

(b+ 1, 1,−1, 1, 0, 0)− (b, 1,−1, 1, 0, 0) = (1,−1, 0, 0,−1, 0).

Thus by Lemma 7.41, G is a Markov basis for A. Note that P (D) ∩ Z3 = P (E) ∩ Z3 +
P (E′)∩Z3 by Theorem 7.40. Hence by Proposition 5.18, configuration (D,E) has connected
sections.

Lemma 7.43. If 1 ≤ f ≤ 3 or d = 1, then S contains curves of genus 0 or 1 and hence
cannot be algebraically hyperbolic. If f ≥ 4 and d ≥ 2, then every curve in the boundary has
the genus at least two.

Proof. We will analyze the facets.

1. Facet 1: Interior is given by the equations x = −d, −z > −e−f , z > 0, −x−y+bz > 0
and y > −f . There are (f + e− 1)(f + d− 1) + b(e+ f − 1)(e+ f)

2 solutions if f ≥ 1.

2. Facet 2: Interior is given by the equations −x+ (b+ 1)z = 0, z > 0, −x− y+ bz > 0,

and y > −f . Thus, we have (f − 2)(f − 1)
2 solutions if f ≥ 1. If f = 0, there is no

curve in the intersection.

3. Facet 3: Interior is given by the equations z = e+ f , x > −d, −x− y + bz > 0, and
y > −f . Thus, we have at least (f − 2)(f − 1)

2 solutions if f ≥ 1. If f = 0, there are
(be+ d− 2)(be+ d− 1)

2 solutions.

4. Facet 4: Interior is given by the equations z = 0, x > −d, −x + (b + 1)z > 0,

−x − y + bz > 0 and y > −f . Thus we have (d − 1)f + (d− 2)(d− 1)
2 solutions if
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d ≥ 1. If d = 0, f ≥ 1, there are no interior lattice points. If d, f = 0, e ≥ 1, there is
no curve in the intersection.

5. Facet 5: Interior is given by the equations −x − y + bz = 0, x > −d, −z > −e − f ,
z > 0, −x+ (b+ 1)z > 0 and y > −f . Thus we have at least, (f − 2)(f − 1)

2 solutions
if f ≥ 1.

6. Facet 6: Interior is given by the equations y = −f , x > −d, −x − y + bz > 0,
−x + (b + 1)z > 0, −z > −e − f and z > 0. Thus we have at least, (f − 2)(f − 1)

2
solutions if f ≥ 1.

Thus by Lemma 5.20, we have the results.

Proof of Theorem 7.39. Let D = dD1 + (e + f)D3 + fD6 and E = (d − 1)D1 + (e + f −
1)D3 + fD6 with d ≥ 1, e ≥ 1 and f ≥ 0. Then D is big, and the configuration (D,E) has
connected sections by Theorem 7.42. Applying Theorem 5.19, for any curve C not contained
in the toric boundary on a very general surface S in |D| we have,

2g − 2 ≥ C · ((d+ b− 1)D1 + (e+ f − 3)D3 + (f − 3)D6). (7.16)

Let H = D1 + 2D3 +D6. If d ≥ 2, e ≥ 1, f ≥ 4, then we have

2g − 2 ≥ C ·H. (7.17)

Applying (7.17) and Lemma 7.43 on Corollary 5.22 we have the results.

71



Bibliography

[1] Victor V. Batyrev. On the classification of smooth projective toric varieties. Tohoku
Math. J. (2), 43(4):569–585, 1991.

[2] Damian Brotbek. On the hyperbolicity of general hypersurfaces. Publ. Math. Inst.
Hautes Études Sci., 126:1–34, 2017.

[3] Izzet Coskun and Eric Riedl. Algebraic hyperbolicity of the very general quintic surface
in P3. Adv. Math., 350:1314–1323, 2019.

[4] Izzet Coskun and Eric Riedl. Algebraic hyperbolicity of very general surfaces. arXiv
preprint arXiv:1912.07689, 2019.

[5] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI,
2011.

[6] Jean-Pierre Demailly. Algebraic criteria for Kobayashi hyperbolic projective varieties
and jet differentials. In Algebraic geometry—Santa Cruz 1995, volume 62 of Proc.
Sympos. Pure Math., pages 285–360. Amer. Math. Soc., Providence, RI, 1997.

[7] David Eisenbud and Joe Harris. 3264 and all that—a second course in algebraic geom-
etry. Cambridge University Press, Cambridge, 2016.

[8] William Fulton. Algebraic curves. Advanced Book Classics. Addison-Wesley Publishing
Company, Advanced Book Program, Redwood City, CA, 1989. An introduction to
algebraic geometry, Notes written with the collaboration of Richard Weiss, Reprint of
1969 original.

[9] William Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ, 1993. The William H. Roever
Lectures in Geometry.

[10] William Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Math-
ematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].
Springer-Verlag, Berlin, second edition, 1998.

[11] Ulrich Görtz and Torsten Wedhorn. Algebraic geometry I. Advanced Lectures in Math-
ematics. Vieweg + Teubner, Wiesbaden, 2010. Schemes with examples and exercises.

[12] Phillip Griffiths and Joe Harris. On the noether-lefschetz theorem and some remarks
on codimension-two cycles. Mathematische Annalen, 271(1):31–51, 1985.

72



[13] Christian Haase and Nathan Ilten. Algebraic hyperbolicity for surfaces in toric three-
folds, 2019.

[14] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977.
Graduate Texts in Mathematics, No. 52.

[15] Brendan Hassett. Introduction to algebraic geometry. Cambridge University Press,
Cambridge, 2007.

[16] Atsushi Ikeda. Subvarieties of generic hypersurfaces in a nonsingular projective toric
variety. Math. Z., 263(4):923–937, 2009.

[17] Peter Kleinschmidt. A classification of toric varieties with few generators. Aequationes
mathematicae, 35(2-3):254–266, 1988.

[18] Peter Kleinschmidt and Bernd Sturmfels. Smooth toric varieties with small Picard
number are projective. Topology, 30(2):289–299, 1991.

[19] Robert Lazarsfeld. Positivity in algebraic geometry. I, volume 48 of Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Math-
ematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern
Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting: line bundles
and linear series.

[20] Tadao Oda. Problems on minkowski sums of convex lattice polytopes. arXiv preprint
arXiv:0812.1418, 2008.

[21] G. V. Ravindra and V. Srinivas. The Noether-Lefschetz theorem for the divisor class
group. J. Algebra, 322(9):3373–3391, 2009.

[22] Bernd Sturmfels. Gröbner bases and convex polytopes, volume 8 of University Lecture
Series. American Mathematical Society, Providence, RI, 1996.

[23] Geng Xu. Subvarieties of general hypersurfaces in projective space. J. Differential
Geom., 39(1):139–172, 1994.

73


	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Toric Varieties
	Affine toric varieties
	General toric varieties

	Divisors and Intersection theory
	Cartier divisors
	Torus-invariant divisors
	Polytopes
	Intersection theory
	Positivity properties of divisors

	Classification of toric varieties
	Primitive collections
	Toric projective bundles
	Kleinschmidt's classification
	Batyrev's classification

	Algebraic hyperbolicity
	Geometric genus and hyperbolicity
	Connected sections
	Main tools
	Noether-Lefschetz Theorem

	Algebraically hyperbolic surfaces with Picard rank 2
	Case 1: Projective bundles over Lg
	Case 2: Projective bundles over Lg

	Algebraically hyperbolic surfaces with Picard rank 3
	Fan with three primitive collections
	Fan with five primitive collections: Case 1
	Fan with five primitive collections: Case 2
	Fan with five primitive collections: Case 3
	Fan with five primitive collections: Case 4
	Fan with five primitive collections: Case 5

	Bibliography

