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ABSTRACT In single-phase ac/dc applications where reliability and/or power-density are critical, active
power decoupling (APD) circuits can be employed to reduce the required capacitance on the dc-link. Various
APD circuits have been proposed so far, all with their advantages and disadvantages. However, many confu-
sions still exist in the literature on this topic which is mainly attributed to a lack of unified and comprehensive
assessment criteria. In this paper, first the decisive criteria for a modern APD circuit are established, and the
buck APD is identified as the current state-of-the-art, based on them. Then the buck-plus-unfolder topology
with triangular current mode (TCM) modulation is proposed as an improvement, and a simple, yet solid
foundation is introduced to choose the superior decoupling solution at different specifications. The operation
equations for the APD with TCM modulation are derived next, and the operation of the proposed solution is
demonstrated using a hardware prototype.

INDEX TERMS Active power decoupling, double line frequency ripple, power density, single-phase PFC,
single-phase inverter, triangular current mode (TCM).

I. INTRODUCTION

It is well known that in single-phase ac/dc converters that
achieve unity power factor at the ac-side, the power wave-
form contains a large component pulsating at the double-
line-frequency (DLF). This DLF ripple power can have ad-
verse effects on the load in different applications, including
battery chargers, fuel cell systems, PV inverters, and LED
drivers.

In order to prevent it from flowing into the load, the DLF
ripple power can be mitigated by directly connecting bulk
capacitors to the dc-link. However, in this method, called
passive power decoupling (PPD), the voltage across the ca-
pacitor is the same as the dc-link voltage which contains a
large average value with very small variations. Consequently,
there is always a large amount of redundant energy stored in
the capacitor, and only a small portion of its energy storage
capability is utilized to deal with the DLF ripple. As a result,
passive power decoupling requires large values of capacitance
to be used. For 400 Vdc/kW-level applications, it can be only

For instance, a 6.6 kW modern ac/dc converter using PPD
can be found in [1]. Although several efforts have been made
to reduce the volume of the main converter, the large capacitor
bank still occupies around 25% of the whole converter’s vol-
ume, making it worthy of notice as one of the major remaining
bottle-necks for further power-density improvements.

For applications in which power-density and reliability are
more critical and the hold-up time is unnecessary, an alter-
native solution is using active power decoupling (APD) [2].
In APD, as shown in Fig. 1, the capacitor is separated from
the dc-link by means of a power electronic converter. Con-
sequently, the voltage across the capacitor can have large
variations while the dc-link voltage remains constant. Larger
capacitor voltage variations imply that a larger portion of the
capacitor’s storage capability is utilized to deal with the DLF
ripple. As a result, a smaller capacitance value can be used for
the same amount of power being processed.

As explained in [3], the underlying condition to realize
APD is

realized using large values of electrolytic capacitors, resulting
in low power-density and low reliability.

dvcb(l)
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FIGURE 1. Schematic view of active power decoupling.

which equates the power drawn by the buffer capacitor, on
the left-hand side, to the DLF ripple power that needs to be
absorbed, on the right-hand side. In this equation, C; and
vep(t) are the buffer capacitor value and the voltage across
it, and P, and wq are the main converter’s output power and
ac-line angular frequency, respectively.

One set of the answers for (1) can be obtained as

_(K+DP, s K+1

Gy 3 Cpmin), K =1 (2a)
wOVcb(max) 2
V2
Ve () = \/ ﬁm — cos(2wot)) (2b)
P, sin(2wpt
iop(t) = oSin(Zent) , 2¢)

V(%)(max)
KT(K — cos(2wopt))

in which Vipmax) is the determined maximum value of the
voltage across the capacitor. These equations state that in
order to achieve APD, it would be enough to choose the
buffer capacitor as given in (2a), and use the APD converter to
form its voltage according to (2b) (or equally form its current
as (2¢)). Since the capacitor voltage is a dc waveform—hence
the name dc-decoupling—a dc/dc converter can be employed
for this purpose. The synchronous buck topology shown in
Fig. 2(a) is the simplest converter that can be used for dc-
decoupling [3]-[9].

In (2a)-(2c), there is one degree of freedom provided by the
parameter K, which exists in the equations as a result of the
integration constant. As can be seen in Fig. 2(b), when K = 1,
the capacitor’s voltage charges up to its maximum allowable
value and then drops back all the way to zero, implying full
utilization of the capacitor’s energy storage capability to deal
with the DLF ripple. However, as K gets larger, the capacitor’s
voltage only drops back to larger values, implying there is
always some redundant energy remaining in it. Although K
is commonly known as the “energy storage margin,” it is pre-
ferred in this paper to call it “energy redundancy index” to em-
phasize on its negative aspect. As is expected, having a higher
energy redundancy index requires using larger capacitors for
the same amount of power being processed—which is also
evident in (2a). The theoretical minimum possible value of
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FIGURE 2. DC-Decoupling using buck converter: (a) topology and buffer
capacitor (b) voltage and (c) current waveforms.

capacitance, Cp(min), can then be used when K has its smallest
allowable value, K = 1.

However, a major problem with buck APD is that for
the case of full capacitor utilization, K = 1, the capaci-
tor’s current waveform contains sharp edges, as can be ob-
served in Fig. 2(c). These sharp edges contain infinite higher-
order harmonics, introducing challenges from control point-
of-view [10]-[15]. Therefore, to use the simple buck APD,
there is no way but to settle for using larger-than-optimum
capacitor values with K > 1.

In addition to (2), Equation (1) has another unique solution
as

K =1= Cp = Cp(min) (3a)
Ve (1) = Vepmax) sin(wot ) (3b)
. P,
iop(t) = cos(wot). (3c)
cb(max)

This solution is called ac-decoupling because of the ac
capacitor waveform. Since the capacitor’s voltage is bipolar in
this case, it cannot be realized using a dc/dc converter such as
buck, and an inverter is needed to convert the dc-link voltage
to the required ac waveform across the capacitor. A full-bridge
inverter using sinusoidal pulse-width modulation (SPWM),
shown in Fig. 3(a), is the simplest converter that can be used
for this purpose [16].

As can be observed in Fig. 3(b) and (c), in ac-decoupling,
full capacitor utilization can be achieved while having smooth
sinusoidal current waveform, enabling closed-loop implemen-
tation of this solution while maintaining K = 1.

The problem with using the full-bridge topology for ac-
decoupling is that the additionally required switching leg al-
most doubles the losses and increases the overall cost and
volume. Therefore, it does not provide a reasonable alternative
for the buck APD.
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FIGURE 3. AC-Decoupling using full-bridge converter: (a) topology and
buffer capacitor (b) voltage and (c) current waveforms.

As will be discussed in Section II, several other solutions
have been introduced in the literature so far. In spite of hav-
ing a number of review papers in this area [2], [17], [18],
still some contradictory arguments can be found among some
of the different literature. A major intended contribution of
this paper is to establish a simple and solid criteria and use
it to classify the previous literature, in order to reduce the
confusion that could be previously found among them. It
will be argued that despite having all of these solutions, the
buck APD can still be considered as the current state-of-the-
art. Buck-plus-unfolder using triangular current mode (TCM)
modulation will then be proposed as a superior improvement.
In Section III, this proposed solution will be compared to the
buck APD from the efficiency and power density perspec-
tives, and a procedure for choosing the best APD solution
will be introduced. As the TCM modulation has been never
elaborated for APD circuits in any of the previous literature,
Section IV includes some of the important control design
details for the proposed solution, including explanations on
deriving the equations for TCM soft-switching operation. In
Section V, the experimental results used to verify the opera-
tion of a hardware prototype developed based on this solution
are included. Finally, Section VI draws the conclusion by
summarizing the main contributions of this work.

Il. STATE-OF-THE-ART AND THE PROPOSED SOLUTION
A. ESTABLISHING THE DECISIVE CRITERIA
Before reviewing the other APD solutions introduced in the
literature, a criteria is established based on the three require-
ments that are believed to be of critical importance, given the
recent advances in power electronics.

First, the APD is preferred to be controlled independently
from the main converter (PFC or inverter). As will be dis-
cussed in Subsection II-B, there are a group of APD solutions,
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called dependently-controlled topologies, that allow gaining
benefits by sharing switches between the main converter and
the APD. However, their problem is that they apply the restric-
tion of using a certain topology and control strategy for each
combined main converter+APD solution. With the advent of
wide bandgap (WBG) devices, many topologies have gained
more desirability, including the totem-pole rectifier topol-
ogy [19], [20]. Additionally, as switching frequency limits are
getting increased, soft-switching control methods are gaining
more importance. Using dependently-controlled APDs, these
modern topologies and modulation methods cannot be used
in the main converter, and hence they are not preferred for
modern, practical applications.

Second, it is preferred that the maximum allowable voltage
across the buffer capacitor, V jymax), is smaller than the dc-link
voltage, V;.. This requirement is established assuming the
application adopts the commonly used 400 V nominal dc-link
voltage. The commercially available GaN switches are rated at
650 V at maximum, which are designed to ensure enough volt-
age margin for 400 V applications. If the voltage across the
buffer capacitor is expected to regularly exceed V. =400V,
these superior GaN switches [21] cannot be used anymore,
and the choice will be limited to other types of switching
devices such as Si and SiC MOSFETs or IGBTs.

Additionally, among the solutions that satisfy both of the
above-mentioned requirements, it is preferred to use the min-
imum possible value of buffer capacitance, and preferably
achieve the optimum capacitance requirement. This prefer-
ence will obviously result in a higher overall converter power-
density and reliability.

In summary, there are three qualities that are important in
APD converters used in 400 Vdc/kW-level applications:

e Requirement (I): Be controlled independently from the

main converter

® Requirement (II): The maximum voltage in the APD be

less than the dc-link voltage

e Preference (III): Among the solutions that satisfy re-

quirements (I) and (II), it is preferred to achieve the
minimum possible required buffer capacitance.

B. IDENTIFICATION OF THE STATE-OF-THE-ART

Buck topology is not the only converter that can be used for
dc-decoupling. If the buck converter discussed in Section I is
replaced with a boost or buck-boost converter, Equation (2)
still holds. Based on (2a), using boost-based [22]-[25] or
buck-boost-based [26] APD solutions, the capacitance re-
quirement can then be reduced further as the maximum allow-
able voltage across the capacitor, Vepmax), can be increased
beyond the dc-link voltage. This case, however, is not pre-
ferred as it fails to meet requirement (II).

A unique family of solutions found in the literature includes
the split-capacitor solutions [13], [14], [27], [28] which use
a split configuration of two capacitors connected to the dc-
link to absorb both of the high-frequency and low-frequency
ripples. However, as can be found in [13] and [14], the re-
quired capacitance value for each of the two capacitors in
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4}‘;"2 , which is twice the minimum

WoV .

capacitance requirement sltllz)wn in Equation (2a), given that
Vepmax) 18 allowed to get close enough to V.. Therefore, the
total required capacitance in this solution is 4 times larger than
the minimum capacitance requirement in single-capacitor so-
lutions, and hence they fail to satisfy preference (III).

Another group of solutions, as explained previously, try to
offer attractive alternatives by sharing some of the switches
between the main converter and the APD, such as the example
shown in Fig. 4(c). However, these dependently-controlled
solutions [10]-[12], [29]-[33] are also not preferred in here
as they reject requirement (I).

Additionally, besides the solutions that use capacitors to
store the DLF ripple, there is another group of APD solutions
in which an inductor is used for this purpose [15], [29], [34],
[35], as shown in Fig. 4(d). Since inductors have large sizes
and losses when they are used to store low-frequency power,
these solutions can end up being bulkier and heavier than the
capacitor-based counterparts.

By ruling out the other alternatives according to the above-
mentioned arguments, the two remaining solutions are the
basic buck and SPWM full-bridge introduced in Section I. On
one hand, there is the simple dc-decoupled buck APD that
has small losses but cannot achieve the minimum capacitance
requirement; on the other hand, there is the ac-decoupled
full-bridge solution that achieves the optimum capacitance
requirement, but at the expense of much higher losses. Since
the capacitance required by the buck is not significantly larger
than the theoretically minimum value, it can be assumed that
the buck APD also meets all of the three requirements. As
these requirements are met without significant losses—as op-
posed to the SPWM-full-bridge—the buck APD is identified
as the state-of-the-art APD solution, based on the criteria
established in this paper.

These arguments can be attested by the results of the recent
Google’s Little Box Challenge, as a practical application, in
which 4 out of the 7 finalist teams that used APD, including
the contest winner, were using synchronous buck for this
purpose [36].

this topology is Cr =

C. PREVIOUS ATTEMPTS TO IMPROVE THE BUCK APD

It was shown in the previous subsection that buck can be
considered as the current state-of-the-art APD solution. How-
ever, it still has the problem of not being able to meet the
theoretical minimum capacitance requirement; any attempt to
solve this problem may potentially improve its power-density.
In addition to this reduction of component values, reduction of
the components count is another possibility that can be con-
sidered. Besides the generally possible improvements such as
enhanced layout design that can be applied to every converter,
these are the only two (at least readily) imaginable ways to
improve this state-of-the-art, from the circuit topology point
of view.
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FIGURE 4. Examples for the different mentioned APD categories: (a)
boost-based [22], [23], [25], (b) split-capacitor [13], [14], (c)
dependently-controlled [10], [11], and (d) Inductive [29], [34].

In fact, both of these two possibilities have been already
considered in the literature. To investigate how the men-
tioned literature have addressed the buck APD and potential
improvements for it, they are re-organized into the following
four categories.

In the first group, without having the buck being men-
tioned, other solutions are used, including inductive [29], [34],
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dependently-controlled [29], [30], boost-based [22], [23],
split-capacitor-based [27], [28], or full-bridge [16] solutions.
Based on the previous explanations, these solutions are not
preferred according to the proposed evaluation metrics.

In the second group, the buck APD is mentioned and al-
ternatives are proposed by addressing problems other than
its inability to achieve full capacitor utilization. For instance,
in [31]-[33], it is tried to reduce its component count. How-
ever, as expected, the only way to achieve this purpose is to
use dependently-controlled switch-sharing methods, because
of the buck’s simple topology. In a number of other publi-
cations, other problems are cited and either inductive [35] or
boost-based [24], [25] solutions are proposed.

The third group of the literature suggest solutions by ad-
dressing the inability of buck APD to achieve the minimum
capacitance requirement. However, the split-capacitor solu-
tion [13], [14] ends up requiring even larger capacitance
than the buck does, and the other solutions of this group are
dependently-controlled [10]-[12] or inductive [15].

Consequently, in the fourth group of the literature [3]-[9],
it is accepted to settle for the buck APD, in order to avoid the
disadvantages of the other alternatives.

In summary, based on the three criteria suggested by this
paper, buck APD is identified as the current state-of-the-art, in
spite of its inability to use the minimum capacitance require-
ment. Even though many interesting alternatives have been
proposed so far, they are not considered to be preferable in
this paper, as they point back to the same previously-rejected
solutions. These arguments are summarized in Fig. 5.

D. THE PROPOSED SOLUTION

In this paper, the buck-plus-unfolder topology [37] with TCM
modulation [38]-[40] is proposed as a superior alternative to
the buck APD. Although this topology has been known for
many years, it has never been used in APD applications. The
underlying idea is to use a low-frequency (LF) unfolder leg to
extend the operation of the two-quadrant buck APD to four-
quadrant operation.

The two operation modes of this topology can be seen in
Fig. 6. The unfolder leg is switched at the line frequency.
During the positive capacitor voltage half-cycles, the LF bot-
tom switch (LFB) is ON, while negative values of capacitor
voltage are enabled by turning the LF top switch (LFT) ON.

Since the capacitor’s voltage can be bipolar in this case,
unlike the buck APD, ac-decoupling can be achieved, which
allows using the theoretical minimum capacitance require-
ment (preference (I11)). Additionally, both of the requirements
(I) and (II) are satisfied as well.

In contrast to the SPWM full-bridge, these three require-
ments are met with insignificant compromise in efficiency.
Since the high-frequency (HF) leg is switched independently
from the LF-leg, it can still be controlled using the soft-
switched TCM modulation, keeping the HF-leg’s switching
losses low. Also, as the LF-leg is only switched at the line fre-
quency, the added switching losses are negligible. Low-R j(on)
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FIGURE 7. Comparison of the breakdown of the calculated losses between
the buck, the proposed, and the SPWM-full-bridge APD solutions
(capacitor losses are invisibly small).

TABLE 1. Assumed Converter Specifications

Main converter rated power P, 800 W
Amplitude of the ripple power PT(: P,) 800 W
Line frequency fo 60 Hz
DC-link voltage Vie 400 V'
Nominal maximum capacitor voltage | Vip(maz)(nom) 325V
Mean capacitor voltage for buck Veb(mean) 280 V

switches can be used for the LF-leg, additionally, to ensure
that its conduction losses are insignificantly small as well.

I1l. BENEFITS ASSESSMENT
A. EFFICIENCY POINT OF VIEW
To investigate the claims made at the end of the previous
section in a quantitative manner, the efficiencies of the buck,
SPWM full-bridge and the proposed solution are calculated
and compared in Fig. 7. Other solutions have been ruled
out from the comparison as they fail to meet some of the
previously-discussed three requirements (among the com-
pared ones, full-bridge and the proposed solution meet all of
the requirements, and buck nearly satisfies preference (III)).
These calculations are carried out assuming the specifica-
tions shown in Table 1 and using the components listed in Ta-
ble 2, which are currently available high-performance compo-
nents with moderate prices. The custom inductor is designed
using the K, method [41]. Also, the switching frequencies
chosen for the two full-bridge cases are determined optimally
using simulations at different switching frequencies.
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TABLE 2. Components Used in the Converter Designs

HF switching leg | LMG3410-HB-EVM

LF switching leg | STY105NMSON+UCC27712DR+auxiliary
components

Inductor N49, PQ40/40 Core, 58 turns of AWG14
copper wire

Capacitor C5750X6S2W225K250KA  capacitors in
parallel

It is emphasized that these calculations are performed us-
ing some components as benchmark components and their
equivalent models. In practice, values of losses will obviously
vary slightly depending on multiple design factors. However,
these calculations can still provide a good insight on how
the mentioned solutions compare to each other in terms of
efficiency.

It is verified that while the losses in the full-bridge topology
are almost twice that of the buck APD, the added LF-leg in
the proposed solution introduces negligibly small additional
losses.

B. POWER-DENSITY POINT OF VIEW

It was shown that unlike the full-bridge topology, the proposed
solution can be a potential alternative for the buck APD,
as it is almost the same as the buck in terms of efficiency.
However, another major converter-level index of interest is the
power-density. The proposed solution saves up some volume
as aresult of achieving the minimum capacitance requirement.
However, this benefit is gained at the expense of the addition-
ally required volume to accommodate the LF-leg. Therefore,
it becomes necessary to evaluate whether this reduction in
capacitance requirement would translate into a higher power-
density in overall, or not.

For the same specifications, the only two modules that are
different between the buck APD and the proposed solution
are the capacitor-bank and the LF-leg circuitry (including the
switches and their required sensing and driving circuitry).
Consequently, the other parts of the two converters can be
considered as two black-boxes with similar sizes:

(4a)
(4b)

Viuck = Vibox + Ve, buck
Voroposed = Viowox + Ve, proposed + VLF, proposed s
in which Vpp,,, the volume of the common black box, incor-
porates all of the common modules among the two of them:
Vibox = Vir + VL + Veontrot + Vprotection +-++ . (5)

In this case, the power-density comparison will be reduced
to a simple trade-off between the volume saved by the reduced
capacitor requirement and the lost volume as a result of the
LF-leg:

Vouek — Vproposed = (VC,buck - VC, proposed )—ViF , proposed -
(6)
The capacitance requirements for the buck APD and the
proposed solution were shown in (2a) and (3a), respectively.

265



SADRIAN AND WANG: BUCK-PLUS-UNFOLDER AS THE SUPERIOR ACTIVE POWER DECOUPLING SOLUTION

—A— Volume saved by the
reduced capacitance

30 44— Volume lost by the

added LF leg

20

\

Py erit = 1470 (W)

V, (ecm?)

0 05 1 15 2 25 3

FIGURE 8. Identification of the beneficial range of power for the specific
“design” of the proposed solution.

By subtracting these two equations, it can be realized that the
reduction in the capacitance requirement is linearly propor-
tional to the output power:

Chuck — Cpmposed = ab,. (N

Assuming that the capacitor-bank is built up by connecting
capacitors in parallel, its volume would be a staircase function
ascending as each capacitor is added to the capacitor-bank. By
employing small ceramic capacitors to build up the capacitor-
bank, the explained staircase volume function is increased by
tiny increments, which can be approximated as being linearly
proportional to the output power:

Vbuck - Vproposed ~ ,BCbuck - ,Bcpmposed = VP0~ (8)

The circuitry added for the LF-leg, on the other hand, occu-
pies the same volume as long as the output power is smaller
than 17.9 kW, according to Equation (3c), as the employed
STY105NMS50 N switches are rated for 110 A:

VLF,proposed ~ A (9)

The proportionality constants «, B, ¥, and A used in (7)-(9)
vary for every certain converter “design”. For instance, equa-
tions (8) and (9) are plotted in Fig. 8 for the same specifi-
cations and components of Tables 1 and 2, and a moderate
layout design for the capacitor-bank and the LF-leg, as elab-
orated in [42]. In the considered moderate layout design, the
capacitors in the capacitor bank have a clearance of 6 mm
with each other, and the LF leg circuitry has a boxed volume
of 14.22 cm®.

By comparing the saved and lost volume curves, it is real-
ized that for the certain “design” used in this example, the
proposed solution will result in a higher power-density for
rated output powers larger than the critical value of P, iy =
1470 W.
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C. CHOOSING THE SUPERIOR DLF RIPPLE

DECOUPLING SOLUTION

In the previous subsection, the critical output power was ob-
tained based on a certain “design”. Here, the term design is
referring to three elements:

e Converter specifications: Table 1

e Component selection: Table 2

e Layout design: a moderate design (elaborated in [42])

Obviously, changes in any of these three elements would
result in another value of critical output power. For instance,
if the LF-leg is realized using switches with smaller packages,
or a more compact layout design is employed, the proposed
solution would yield into a higher power-density compared to
the buck APD, at a lower output power rating. However, the
general trend will still be valid.

In fact, a similar discussion can be made when comparing
PPD to APD. Regardless of the employed APD method, it
always results in a smaller capacitance requirement compared
to PPD. This reduced capacitance requirement, however, does
not necessarily imply a higher power-density. Based on the
“design” of the two circuits, there would be a certain critical
value of allowable dc-link voltage ripple, AV,,i;, which can
be obtained by comprehensive studies, such as the one carried
out in [4]. APD would result in a higher power density only if
the voltage ripple regulations are stricter than AV, .

Fig. 9 summarizes the arguments of this section. For any
specific “design,” there exists a corresponding critical value of
allowable voltage ripple, AV, and a critical value of output
power, P, .,i;. If the dc-link regulations are more lenient than
AV,,is, PPD would still result in a higher power-density; oth-
erwise, APD methods should be employed. When choosing
the APD method, if the output power is lower than P, cir,
buck APD would be the best choice; for output powers beyond
P, crit» the solution proposed in this paper would be superior.

IV. CONTROL DESIGN DETAILS

A. TCM MODULATION (INNER CONTROL LOOP)

As was previously explained, in order to achieve ac-
decoupling, the inductor’s current is shaped by means of
the HF-leg to have a sinusoidal average, so that the capac-
itor’s voltage becomes sinusoidal, as well. To achieve soft-
switching, TCM modulation is chosen to control the HF-leg.
In TCM, as shown in Fig. 10(a), each switching cycle is
comprised of four distinct intervals: To,, Torf, Tox, and Tye.
By knowing these four durations, it can be identified when and
for how long each of the two switches on the HF-leg needs to
be turned ON.

Although the use of TCM has already been demonstrated
for both PFC and APD circuits, the details of calculations for
these intervals has only been published for PFCs [38]-[40].
In this subsection, the equations for the required durations
of these four intervals are derived for the APD circuit of
Fig. 6(a). These equations are obtained for a typical switching
cycle at which both of the inductor current reference, iy er),
and the capacitor voltage, v.,(f), are positive, so that the
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Is
having
a large dc-link
ripple allowed?

AV > AVerit

Is the
rated power
large enough?

Po > Po,crit

Use passive
power decoupling

Use active
power decoupling
using buck

Use active power
decoupling using the
proposed solution

FIGURE 9. Proposed flowchart for choosing the best power decoupling
solution.

circuit is in the operation mode of Fig. 6(b). The equations
for the other operating regions can be obtained in a similar
manner [42].

1) Ton

In the first interval, (to-f1), HFT and HFB are ON and OFF,
respectively, for the duration of T,,. In this case, the midpoint
of the HF-leg is connected to V. (vyiq(t) = Vy.). As a re-
sult, assuming the capacitor’s voltage to be constant at each
switching cycle, the constant positive voltage of V. — v p[wt]
is applied across the inductor. Consequently, the inductor’s
current increases linearly according to

iL(phylwr]

Ly,
Tonlwt]

= Ve — Vepmax) sinfewt], (10)
which assumes that the capacitor’s voltage is the required
sinusoidal waveform of (3b).

Also, the required average current waveform, which was
previously shown in (3c), can be represented in an alternative
form as

dvep(1)
dt

irep)lowt] = Gy = CpwoVepmax) coslwt].  (11)

Noting that the peak curent is twice its average value in
TCM, the required duration of 7, can then be obtained based
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FIGURE 10. Waveforms during a typical switching cycle at which soft
switching extension is achieved (assuming that vcy s < VLZ‘): (a) time plots
and (b) V/I resonance diagram.

on (10) and (11) as

2LpCpwoVep(max) coswt ]
Vie — ch(max) sin[wt]

Toplowt] = (12)

It can be observed that in contrast to the PFC circuits, the
commonly-used constant-7,, method is not applicable to the
APDs, as Ty, varies throughout the line-cycle.
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2) Tof

At instant t;, HFT is opened and HFB is turned ON instead.
As the constant negative voltage —v.p[wt] is applied to the
inductor, its current decreases linearly. After a duration of
Tz, the inductor’s current drops to zero at instant fp. Ty, rr
can be calculated as

2L,Cpwg cos[wt ]
T, = ——, 13
of ] sin[wt ] (13)
in a similar way as T, was calculated.
3) 7:-:'xl‘
To avoid valley-switching when v.plwt] < %, ZVS-

extension is applied. In this case, HFB is kept ON for an
extended period of Ty, so that the inductor’s current can drop
to the appropriate negative value of I,,,. This negative current
should be large enough to be able to charge and discharge
HFT and HFB’s parasitic capacitances, respectively, during
the upcoming resonance period. If this extended period
is shorter than the appropriate duration, valley-switching
happens which results in switching losses; on the other
hand, if this state takes longer than required, unnecessary
conduction losses will be generated. It is reminded that
the ZVS-extension would not be required (7; = 0) when
Veplwt] > % as soft-switching can be achieved in this
situation by starting the resonance period right after the
inductor’s current drops to zero.

The required negative extension current, /,,;, can be derived
by applying the Pythagorean theorem to the colored triangle
of Fig. 10(b). It should be noted that the vertical axis of this
figure represents Zycir(t), which has a dimension of voltage
(to be consistent with the horizontal axis v,,;4(t)).

Zicllot] = | Vae — valor)? —v3lor]  (14)
= L[] = VVacWVye _Lhzvch[wt]) (15)
2C0.VX

Since the inductor’s current is still decreasing linearly dur-
ing this period with the negative voltage of —v.,[wt],

V. (V. —2 t
Toxilot] = m\/ de(Vac Ueplw ])

veplwt]

(16)

4) 7;'85
At instant 73, the HFB is also turned OFF to start the reso-
nance period, 7. Since both of the switches are open, an LC
resonant circuit forms between the inductor and the parasitic
capacitors of the two HF switches. The inductor’s negative
current charges Cos5(1 1), While discharging Cossyr gy simul-
taneously. As a result, the voltage of the HF-leg’s midpoint,
Umia (1), starts to increase. At f5, when the midpoint voltage
has increased to V. as a result of Cysmrr) being fully dis-
charged, HFT can be turned ON under ZVS condition.
Because of the LC resonance, v,,;s(¢) and iz (¢) change in
a sinusoidal manner, with an angular frequency of wyes =
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1/+/Ly(2C,ss). Also, when v, (t) = veplwt], the voltage
across the inductor becomes zero; consequently, at this point,
the minimum point and inflection point will be observed in
ir(t) and v,;4(t), respectively. According to the two men-
tioned points, the midpoint voltage can be represented as

a7

Umid (1) = —(Vge — vep) €OS

1
—1 ) + v
(V 2Lbcoss ) ‘
Since v,,;4(t3) = 0 and v,,;4(ts) = V., the required reso-
nance period 7.5 = t5 — t3 can then be obtained as

Veplowt ]

_ P
Treslowt] = /2LpClss (n cos <—Vdc — va[wt]>> . (18)

The explained sequence can be implemented using a finite
state machine, as shown in Fig. 11(a), going through the four
intervals one-by-one.

B. OUTER CONTROL LOOP
As the converter’s load increases, the DLF ripple also in-
creases. In this case, a larger power needs to be handled by
the capacitor, requiring Vipmax) to get larger. An outer-loop
controller is used to adjust VC’;(maX)—which is then used by
the inner-loop in (12), (13), (16), and (18). The purpose of
this outer-loop controller is therefore to generate a dc signal,
ch(max)’ changing proportionally to the ripple at twice the line
frequency.

By ignoring the higher-order harmonics, the sensed dc-link
voltage can be approximately represented as

Vac(t) = Vac + Vac,2 sinwot ). 19)

While the dc component of the dc-link voltage is regulated
by the PFC stage, the goal of the APD controller is to regulate
the amplitude of the DLF voltage ripple, V4. 2, to be zero. This
component is extracted using a band-pass filter around 2 fj:

x1(t) = Vg2 sinQaot ). (20)

By multiplying the DLF ripple signal by V. 2sin(2wot), a
dc component proportional to V. 5 is generated, in addition
to a component at 4fy. The reason why x; is multiplied by
Vacasin(2wot ) rather than being squared is to maintain its
phase information.

2 2

1% 1%
x(r) = 22— 492 co5(dant). @1)
2 2
A low-pass filter is then used to extract the dc component:
VZ
dc,2
x3(t) = 2‘ . (22)

A proportional-integral (PI) controller can then be em-
ployed to modify the control signal, V;;(max)’ in a way that
the amplitude of the DLF voltage ripple, V. 2, is regulated to
be zero (which can be equally achieved by regulating x3(¢) =
Vd2c,2 /2 to be zero).

The control-to-voltage-ripple transfer function of the sys-
tem can be obtained using the injected current approach [43]
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FIGURE 11. Block diagram view of the employed control design: (a) inner-loop and (b) outer-loop.

as
Ve Co0VaeVep(m: 1
‘7 de,2 (S) _ b0 d; cb(max) Cd‘vz ’ (23)
cbh(max) 4 P_Odrs +1

which is a single-pole response with a dc-gain of 8.77 dB
and crossover frequency of 21.9 Hz, using the parameters of
Table 1.

It should be noted that since this transfer function has been
obtained through averaging the instantaneous DLF ripple, it
is only accurate at frequencies below 2 f,,. However, since the
chosen control signal, the desired amplitude of the buffer ca-
pacitor, should be constant during each buffer capacitor volt-
age cycle, the compensated transfer function should not have
a high bandwidth, as well. Therefore, the range of frequencies
at which the obtained transfer function, (23), is accurate is
sufficient for our control purpose in here.

The open-loop crossover frequency of 21.9 Hz is appropri-
ately small for this case. The following PI controller can be
used to provide infinite closed-loop dc-gain while maintaining
the same crossover frequency:

31.42

Geepn(5) = 1+ ——. 24)

In addition to the explained feedback loop which mainly
regulates the steady-state performance of the converter, a
feedforward loop is employed to improve its transient re-
sponse [4]. This loop attempts to equate the amplitude of the
power absorbed by the APD with the amplitude of the sensed
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FIGURE 12. Simulation results for the proposed control scheme, under
load step-down and step-up: (top) dc-link voltage and (bottom) load
current.

DLF ripple power, based on (1), (3b), and (3c¢):

2P,

—_— 25
Coon (25)

VL');)(max)F F =

The dynamic operation of the converter using the proposed

control scheme is simulated as illustrated in Fig. 12, in which

the initial start-up of the converter is followed by step-down

and step-up of the output load, from full-load to half-load and
vice versa.

V. EXPERIMENTAL VERIFICATION

The steady-state operation of the proposed solution is demon-
strated using an experimental setup. For this purpose, an APD
circuit based on the proposed solution is developed, mainly
using the same specifications and components of Tables 1 and
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[Input from LV power supply J&

FIGURE 13. Photo of the prepared experimental setup.
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FIGURE 14. Oscilloscope screenshot demonstrating dc-link ripple
reduction as the APD circuit is turned ON.

2. The only differences are related to the inductor and capac-
itor banks, for which 019890300R and B32758G3406K000
have been used, respectively. In choosing these two compo-
nents, the availability and convenience of use are also con-
sidered, rather than mere power-density optimization. The
developed APD circuit is then connected to the output of the
380 V/700 W TMDSILPFCKIT PFC evaluation module from
Texas Instruments, with all of its output electrolytic capacitors
having been removed.

The operation waveforms can be observed in Fig. 14. Ini-
tially, the APD circuit is disabled. As expected, a large DLF
ripple appears on the dc-link voltage. After some time, the
APD circuit is activated. In this situation, the inductor’s cur-
rent is controlled to have a sinusoidal average, which shapes
the capacitor’s voltage to be a sinusoidal waveform as well,
with 90° phase lag. Consequently, the capacitor absorbs the
DLF ripple from the dc-link, leaving a small voltage rip-
ple with a typically-accepted peak-to-peak value of less than
+2.5%.

Ideally, an APD circuit is expected to leave no ripple on the
dc-link voltage by exactly absorbing the DLF ripple power. In
practice, however, there always remains some ripple as a result
of the mismatch between the DLF ripple power that needs to
be absorbed and the (non-perfect) power that the APD actually
absorbs. As can be observed in Fig. 15, at intervals when the
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FIGURE 15. Power mismatch as the reason for the remaining ripple on the
dc-link voltage.
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FIGURE 16. Waveforms of the inductor’s current (green) and voltage of the
HF leg’s midpoint (red): (a) without applying soft-switching and (b) with
applying soft-switching.

power absorbed by the APD is less than the DLF ripple power,
dc-link voltage increases as the PFC is pouring more power
into the dc-link than the APD absorbs. Conversely, when the
APD draws more power than what the PFC injects into the
dc-link, the instantaneous dc-link voltage drops. Therefore,
an HF capacitor would still be needed to be installed on the
dc-link to limit the amplitude of this remaining ripple. By
controlling the APD capacitor’s voltage to have a lower THD,
its absorbed power would have less mismatch with the DLF
power required to be absorbed, resulting in smaller remaining
ripple for the same HF capacitor being used.

Additionally, the effect of soft-switching can be seen in
Fig. 16. In Fig. 16(a), the resonance period required to achieve
ZVS is skipped by turning the investigated switch ON shortly
after the other switch on the leg is turned OFF. In this case,
valley-switching happens as the parasitic capacitance of the
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switch does not have enough time to be fully discharged.
Switching losses and current ringings occur as a result of
the dissipation of this remaining charge in the R (o) of the
switch. These negative effects, in contrast, are not observed
in Fig. 16(b) where the required T,,; and T, intervals are not
skipped, so that ZVS is realized.

VI. CONCLUSION

This paper was focused on improving the current state-of-the-
art for the active power decoupling circuits in 400 Vdc/kW-
level single-phase ac/dc applications. The three main contri-
butions of this paper are summarized as follows:

e Establishing the principal criteria for modern APD cir-
cuits, categorizing the previous literature, and identify-
ing the current state-of-the-art based on these criteria. It
was realized that although many alternatives have been
already introduced in the literature, the simple buck APD
can still be considered as the state-of-the-art. These re-
sults were summarized in Fig. 5.

e Proposing the buck-plus-unfolder topology as an im-
provement for the buck APD, and establishing a simple,
yet solid foundation to choose the superior decoupling
solution for different AV and P, specifications. It was
realized that the proposed solution becomes more at-
tractive as the dc-link voltage regulations become more
stringent and the rated power is increased. These results
were summarized in Fig. 9.

¢ Deriving the TCM operation equations for APD circuits.
It was realized that as opposed to the PFCs, the required
T, duration is not constant for APD circuits.

Finally, the operation of the proposed solution was demon-

strated using the developed hardware prototype.
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