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Abstract 

The development of Functional Correlation Tensors (FCT) is driving novel investigations 

into whole-brain functional magnetic resonance (fMRI) signal synchronicity. FCTs are 

mathematically analogous to the established structural diffusion modality. Unlike 

conventional fMRI analysis, FCTs examine functional signal independently of 

hemodynamic response assumptions. In this work participants trained on a motor task 

for two weeks with fMRI and diffusion scans collected at baseline and endpoint. Using 

only baseline data, a significant correlation was detected for the fractional anisotropy of 

the diffusion data with the signal synchronicity anisotropy of the FCT data. Previous work 

on this data detected white matter (WM) neuroplasticity in motor regions between 

baseline and endpoint. As FCT is sensitive to WM function, it was hypothesized that WM 

neuroplasticity could be further detected. Significant increases in signal synchronicity 

were detected in areas of motor task planning and execution. This represents the first 

instance of this novel methodology for identifying neuroplasticity. 

Keywords:  Functional magnetic resonance imaging; Motor learning; Functional 

correlation tensors; White matter, Neuroimaging; Blood oxygen level 

dependent 
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Chapter 1 

 

Introduction 

The development of Functional Correlation Tensors (FCT), a new analysis tool of fMRI 

signals, is enabling novel investigations into whole brain functional neural networks. 

FCTs have the potential to provide a quantitative metric of brain function and have been 

shown to be sensitive to white matter (WM) activity.  

WM injuries and pathologies are a major cause of mortality and disability; despite this, 

WM function has been underrepresented in current research. There is a rapidly growing 

body of literature investigating WM fMRI activation seeking to address this gap; 

however, research regarding WM functional neuroplasticity remained unexplored. To 

investigate this, a novel motor learning paradigm was developed, and a previous work 

successfully detected functional neuroplasticity in WM motor tracts. 

As such, it was postulated that there should be detectable measures of neuroplastic 

change in WM activity using FCT. The main objectives of this work were 2-fold. First, the 

comparison between FCT and brain structure was investigated by comparing the 

measured fractional anisotropy of the fMRI response with the corresponding structural 

fractional anisotropy. Secondly, FCT was used to investigate changes in WM 

neuroplasticity during a motor training task. 

Two main hypotheses were formulated based on the objectives. 

1. Significant correlation would exist between the structural DTI metrics and 

analogous functional FCT maps derived from motor BOLD fMRI activation 

• Specifically, it was expected that white matter would exhibit strong 

fractional anisotropy compared to gray matter as measured by both 

modalities 

2. FCT can be sensitive to WM neuroplasticity and can detect an increase in fMRI 

BOLD signal synchronicity in areas related to motor task execution. 

• Specifically, increases were expected in the non-dominant (left) hand task, 

consistent with the behavioural results and previous work 

FCTs have been mainly applied to resting state fMRI paradigms and their applications 

with respect to task based analyses have been limited. No previous literature was found 
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using FCTs on a motor task. Additionally, FCTs have never been used to detect 

plasticity prior to this investigation. 

By improving the ability to visualize whole brain function, this research will hopefully help 

create a foundation for improving the evaluation of brain dysfunction. A better ability to 

characterize WM activation and plasticity has the potential to improve the understanding 

of dynamic brain connectivity and its role in WM pathologies. WM pathologies are 

related to many types of cognitive and physical pathologies such as stroke, dementia, 

and mobility disorders and WM integrity is an overall brain health metric that cannot be 

neglected [1]. WM injury and pathologies and other types of acquired brain injury are a 

major cause of increased mortality rates and continued dependency in patients [2]. As 

such they are a major health concern for millions of Canadians. This has a significant 

impact on patients and their caregivers and has socioeconomic ramifications on the 

community and healthcare resources. 

1.1. Overview 

In this first chapter the foundational technical concepts needed for this thesis will be 

introduced, including magnetic resonance imaging (MRI) physics, Fourier transforms, 

and other key concepts. Chapter 2 is a modified version of a paper submitted to 

Frontiers in Neuroscience on the significant correspondence between structural diffusion 

metrics and functional correlation tensors (FCT). Chapter 3 is modified version of a 

paper prepared for submission to Nature Communication employing FCT as measure of 

motor learning in white matter (WM) function. The final chapter will be a general 

discussion of the thesis results and will explore future directions and caveats. 

1.2. Technical Background 

1.2.1. Fourier Transform 

The Fourier Transform is a signal processing tool that allows for spatial or time signals to 

be decomposed into their frequency components. These spatial or time based signals 

can be constructed from an infinite sum of sinusoids. In the case of digital images, the 

2D discrete grid of dimensions N by M in the spatial domain can be transformed into a 



3 
 

frequency domain representation with the same dimensions. Equation 1 gives the 2D 

Discrete Fourier Transform used for decomposing digital images. 

𝐹(𝑢, 𝑣) =  
1

𝑁𝑀
∑ ∑ 𝑓(𝑛, 𝑚)𝑒−𝑗2𝜋(𝑢

𝑛

𝑁
+𝑣

𝑚

𝑀
)                           𝑀−1

𝑚=0
𝑁−1
𝑛=0 (1) 

The 2D Inverse Discrete Fourier Transform, shown in equation 2, allows for the spatial 

domain construction of a digital image from the frequency domain representation. 

𝑓(𝑛, 𝑚) =  ∑ ∑ 𝐹(𝑢, 𝑣)𝑒𝑗2𝜋(𝑢
𝑛

𝑁
+𝑣

𝑚

𝑀
)𝑀−1

𝑣=0
𝑁−1
𝑢=0                             (2) 

The Fourier Transform has numerous applications in signal processing for smoothing, 

artefact removal, filtering, etc. In MRI, the 2D Inverse Discrete Fourier Transform is key 

for the construction of MR images from the detected frequency signals. 

1.2.2. Pearson’s Correlation 

Pearson’s Correlation is a commonly used measure of linear correlation between two 

metric variables. Values of the correlation coefficient range from -1 to 1. The closer the 

value of the Pearson’s Correlation Coefficient is to 1, the stronger the correlation, with a 

value 0 meaning no correlation. Negative values indicated an inverse correlation. 

Equation 3 below gives the formula for computing the correlation coefficient for two 

variables, x and y. In this representation x̄ and ȳ are the respective means. 

𝑟𝑥𝑦 =  
∑ (𝑥𝑖− 𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

                                               (3) 

The Pearson’s correlation coefficient has numerous uses in statistical analyses; one 

common application is image comparison where the coefficient is used a metric for 

disparity [3], [4]. 

1.3. MRI 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality with ability to 

create visualizations of the physiology and anatomy of the body. MRI is based on 

magnetic field gradients and the application of radio frequency pulses to acquire the 

signal for imaging. This gives MRI the advantage over other modalities such as CT 



4 
 

and PET that employ ionizing radiation. The applications of MRI are numerous; it 

often used for disease diagnosis and clinical and preclinical research. 

1.3.1. Physical principles 

Nuclear Magnetic Resonance: 

The most important generator of the MRI signal is individual protons, that are also 

hydrogen atoms’ nuclei. Hydrogen atoms are abundant in the human body, primarily in 

water and fat. 

The protons have a charge and property called spin, that creates a magnetic dipole 

moment, making them vital for imaging. When the protons are subjects to a high external 

magnet field, as found in an MRI scanner, the protons will align themselves with this 

external field, either in a parallel (low energy state) or anti parallel direction (higher 

energy state). This generates a net magnetization parallel (or longitudinal) to the 

external magnetic field. 

These protons will precess (or wobble) around the axis defined by the external magnetic 

field. The frequency of this precession is defined by the Larmor equation (equation 4) 

and is dictated by two factors; the strength of the external magnetic field (B0), and the 

gyromagnetic ratio () – an inherent property of the particle. For the hydrogen atoms, the 

gyromagnetic ratio is 42.58 MHz/T. 

                                                           𝐿 =   × 𝐵0                                           (4) 

The application of a radio frequency (RF) pulse at the same frequency of precession, 

also referred to as the resonance frequency, will transfer energy to the protons. This 

causes protons to jump to a higher energy state, increasing the number of high energy 

spin protons and causing phase coherence of the precession of the protons. This results 

in a net magnetization in the transverse plane. This process is visualized in figure 1 and 

2. 

When the RF signal is turned off the protons ‘relax’; they return to their original state. 

This means that the transverse magnetization disappears, and the longitudinal 

magnetization increases back to its original value before the pulse. 
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Figure 1: Precessing protons (red) in external 
magnetic field, with net longitudinal magnetization 

(yellow) 

 

Figure 2: Precessing protons (red) after application 
of RF pulse at resonance frequency, with net 

transverse magnetization (yellow) 

The relaxation is governed by the surrounding tissue structure (i.e. the lattice) and any 

local inhomogeneities in the magnetic field (i.e. susceptibility effects). The time constants 

of relaxation are T1, T2, and T2*. 

T1 is the longitudinal relaxation; the time constant for the protons to return to their 

original alignment in the magnetic field. i.e. equilibrium state. T1 is often referred to as 

Spin-Lattice relaxation. This is caused by the exchange in energy with the surrounding 

tissue. T1 is the decay constant the longitudinal magnetization. This relationship is 

shown in equation 5 where Mz(t) is the longitudinal magnetization at a given time t. 

𝑀𝑧(𝑡) =  𝐵0(1 − 𝑒−
𝑡

𝑇1)                                                (5) 

T2 is the time constant representing the time for the protons to lose their phase 

coherence due to their interactions with one another. T2 can also be referred to as 

transverse relaxation or Spin-Spin Relaxation. 

T2* is the effective time constant for the protons to lose their phase coherence, taking 

into account magnetic field inhomogeneities. This means that T2* is the time constant for 

the signal decay. T2* is the effective transverse relaxation. 
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Spatial Encoding 

Gradient coils in the MRI apply linearly varying magnetic fields in orthogonal directions to 

localize the signal (based on the proton precession frequency). An example of a gradient 

along the main magnetic field is represented in figure 3. Gradients vary the magnetic 

field slightly and therefore the precession frequency. This can be represented through a 

modified Larmor equation 6 presented below. Where r is the location (either in the x, y, 

or z direction) and G is the strength of the magnetic field of the gradient. 

𝐿(𝑟) =   × [𝐵0 + 𝐺(𝑟)]                                                                (6) 

In the z direction, parallel to the main magnetic field, the application of the gradient and 

RF pulse at the resonance frequency selectively excites the desired slice. 

 

Figure 3: Gradient example slice selection 

In the x direction, perpendicular to the main magnetic field, the application of the 

gradient labels the protons by varying their precession frequency. This is referred to as 

frequency encoding. 

In the y direction, perpendicular to the main magnetic field, the application of the 

gradient labels the protons by varying their precession frequency. This is referred to as 

phase encoding. 

The application of the RF pulse and the varying gradient coils allow the MR signal to be 

sampled repeatedly and determine the spatial frequencies that compose the image. The 
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collected spatial frequency information is stored in frequency domain i.e. k-space. The 

inverse Fourier transform of k-space gives the MRI image. 

1.3.2. BOLD fMRI 

Functional magnetic resonance imaging (fMRI) localizes brain activity based on cerebral 

hemodynamic changes [5]. The ability to map and understand brain function is a rapidly 

growing area of neurological research. While there are multiple ways to measure fMRI, 

the most common technique employs blood oxygen level dependent (BOLD) imaging 

which is summarized in figure 4. 

During a task active state, corresponding brain areas increase oxygen consumption. 

This increased oxygen demand leads to a local increase in blood flow, a rise in 

oxyhemoglobin, and a relative decrease in deoxyhemoglobin concentration. 

 

Figure 4: Brain activity effect on BOLD signal 

Oxyhemoglobin is diamagnetic, while deoxyhemoglobin is paramagnetic. This change in 

concentration impacts the local magnetic field, and therefore the MRI signal. This allows 

for a time series acquisition of fluctuations in BOLD signal. BOLD fMRI measures the 

hemodynamic response of the metabolic demand of brain activity and is therefore an 
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indirect measure of neural activity. Figure 5 shows a simplified BOLD response following 

a block design stimulus presentation. 

Figure 5: Block design and expected hemodynamic BOLD response with sequence TR of 2s 

Traditionally, fMRI analysis employs a hemodynamic response function (HRF) that is a 

model of the expected signal fluctuations. The HRF is convolved with BOLD time series 

data to better detect localized brain activity. Given the relative uniformity of GM HRFs, 

they are robust and effective means for detecting activity in the cortical tissue. However, 

in recent years the use of an HRF has been shown to be somewhat limiting [6], [7] as 

optimal HRFs have been shown to vary throughout the brain [7], [8], and across a 

number of other parameters such as scanning time, tasks, and individuals [6]. 

Convolution with a time series signal that does not conform to assumptions of HRF 

onset and shape may limit the effectiveness of HRF driven analysis [6].  

1.3.3. WM fMRI 

The most common fMRI approach, based on BOLD contrast [9], has been widely 

accepted despite only having been optimized to detect the hemodynamic response to 

activity in the gray matter [9]–[11]. The brain is comprised of two approximately equal 

tissues; gray matter (GM) and WM [12]. WM tissue serves as the connecting 

architecture for the functional process of the brain and is a key indicator of brain 

wellness [13]. 

It was conventionally assumed that the 2-6 times lower blood flow and blood volume in 

white matter [14] would result in a lower signal that would preclude detection of a WM 
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BOLD contrast [15]. This has resulted in WM being often excluded from functional MRI 

research. As such, the role of WM in brain network activity and functional connections is 

largely unknown. 

However, technological advances, such as the increasing availability of higher field MRI 

systems and specialized pulse sequences, have enabled the detection and 

characterization of WM fMRI activation for both resting state and task based 

experiments [15]–[17]. The use of high field strength MRI enabled the early WM BOLD 

investigations [16], [18]. Higher field strengths, such as 4T, have been shown to have an 

increased ability to detect WM BOLD and specialized sequences, such as asymmetric 

spin echo (ASE) have shown increased sensitivity to the comparatively small WM signal. 

Once WM BOLD was found to be consistently detectable using specialized sequences 

and higher field MRIs several resting state and task-based studies successfully detected 

WM BOLD using standard sequences and field strengths [19], [20]. Numerous reports of 

activation in the corpus callosum have been published. Interhemispheric transfer tasks 

[8], [16], [21] that drive activation between hemispheres along WM tracts resulting in 

detectable signal. Sensory tasks, including tactile, taste, and visual stimuli have elicited 

activity in the corpus callosum and somatosensory WM bundles [22]–[24]. Activation in 

WM motor tracts, such as the internal capsule, has been detected during motor-based 

tasks, such as finger tapping tasks [25]. Previous work has taken care to rule out partial 

volume effects using conservative WM masks and co-localization with diffusion tensor 

imaging (DTI) tracts [20], [21]. However, WM activation continues to be frequently 

detected and then unreported. Mazerolle et al. 2019 [26] found that many peer reviewed 

fMRI journal papers displayed WM activation that went unmentioned. 

More recently, advanced analyses have investigated the unique hemodynamic 

properties of WM. Sensitivity to WM BOLD signals has been improved by using a WM 

specific hemodynamic response function [8]. Li et al. (2019) [7] further confirmed this 

and found that the HRF may vary considerably throughout different areas of white matter 

tissue. This may be a contributing factor to the lack of detected WM activation in the 

literature, as GM HRFs are less sensitive to WM BOLD signal. 

Given these advances in acquisition and analysis the ability to characterize WM 

activation is now generally accepted to not be artifactual [1], [17]. 
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1.3.4. Diffusion Weighted Imaging 

Diffusion Weighted Imaging (DWI) is an MRI scan type that uses anisotropic water 

diffusion in the brain to estimate the directionality of white matter fiber tracts. 

When unrestricted, fluid particles will move randomly and they are equally likely to move 

in all directions, i.e. isotropically. In contrast, water diffusion is highly restricted in white 

matter, due to the directional nature of the fiber tracts. By measuring the water diffusion 

using an MRI, we can estimate the anisotropy of different areas of the brain and 

therefore estimate WM fiber structure. 

Commonly, DWI is modelled through diffusion tensor imaging. A diffusion tensor is 

defined by 3 orthogonal eigenvectors and their corresponding eigenvalues. The principal 

water diffusion direction is defined by the largest eigenvalue λ1, while λ2 and λ3 are the 

smaller eigenvalues. λ1 corresponds to the most probable direction of the fiber tract 

through that voxel. Based on DTI information probabilistic or deterministic fiber tracking 

can be calculated to get estimates of the major white matter tracts throughout the brain. 

These tensors can be used to determine several measures relating to diffusion. The 

most relevant to this work are mean diffusivity and fractional anisotropy. 

Mean diffusivity (MD) is a measure of the average water diffusion along each of the 

principal eigenvectors.  

                                                                𝑀𝐷 =  
𝜆1+𝜆2+𝜆3

3
                                                      (7) 

Fractional anisotropy (FA) is often the primary DWI measure used in research. DTI FA is 

a measure of the degree of water diffusion anisotropy. Gray matter areas of the brain 

have relatively isotropic water diffusion resulting in low values of DIT FA, while white 

matter has much higher values. In equation 8 λ̂ represents DTI MD. 

                                    𝐹𝐴 = √
3

2
√

(𝜆1−𝜆̂)
2

+(𝜆2−𝜆̂)
2

+(𝜆3−𝜆̂)
2

𝜆1
2+𝜆2

2+𝜆3
2                               (8) 

DTI FA can change over days/weeks of training and has been used in measuring WM 

structural neuroplasticity in a number of studies [10], [27], [28]. 
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1.4. Functional Correlation Tensors 

Recent studies have investigated analysis of fMRI signal using DTI-like tensor 

correlations to characterize the spatio-temporal activation. These functional correlation 

tensors allow a unique approach to analyzing whole brain functional synchronicity. The 

application of this mathematical analysis may allow a deeper understanding of the link 

between learning and the restructuring of the white matter of the brain [19].  

1.4.1. FCT Computation 

Figure 6 below gives a brief overview of the computation of functional correlation 

tensors. The preprocessed fMRI data and a corresponding tissue probability map are 

used to determine local correlation in the BOLD signal with surrounding voxels in order 

to calculate the principal correlation directions. Areas without functionally active tissue, 

such as the cerebral spinal fluid in the ventricle or in the skull, are not included in the 

analysis. The FCT calculation, which is explored in greater detail below, is computed 

voxel-wise throughout the brain based on the strength of local correlation with 

neighbouring voxels. These correlations are reduced to three primary directions and 

represented as a tensor. Visually, the tensor can be represented as an ellipsoid. 

 

Figure 6: FCT computation overview. Inputs to the computation: preprocessed fMRI data and a tissue 
probability map, taken from the MNI152 2mm T1WI standard. Using these inputs FCT is computed voxel-
wise throughout the brain based on correlations with immediately adjacent voxels. A 2D representation of 
the correlation vectors is present here, though the actual computation is done in 3D. The output of the 

computation is a 3D tensor indicating directionality of BOLD correlation. 

Tissue 

probability 

map 



12 
 

For each voxel in 3-dimensional space, a set of unit vectors are defined that characterize 

the direction to each of the surrounding voxels. For a 2D example as seen in figure 7, 

this would be a set of 8 unit vectors, however, in 3D this would be a set of 26 unit 

vectors. The collection of adjacent voxels to the voxel of interest is referred to as a 

neighborhood. 

Let n be the set of 26 x 3 of unit directional vectors and nij be the 1 x 3 unit vector 

between the voxels vi and vj. Where vi is the voxel of interest (the center voxel) and vj is 

the adjacent voxels. 

 

Figure 7: 2D Representation of the voxel of interest (red) and unit direction vectors to adjacent voxels (blue)   

The time series BOLD data for each voxel is used to compute the squared Pearson’s 

correlation coefficient corresponding to each voxel in the neighborhood. This gives a 

vector denoted as C with 26 entries representing each of the correlations. This 

computation is represented in figure 8. 

 

Figure 8: Representation of BOLD time series data for each voxel in 3x3x3 neighborhood and their 
corresponding correlation with the voxel of interest 

 

For a 3D spatio-temporal correlation tensor T3x3 (an upper right matrix of 3x3 shown in 

equation 9, the correlation between two voxels, projected along the corresponding unit 

vector is given in equation 10. 
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                                      𝑇3𝑥3 =  (

𝑇𝑥𝑥      𝑇𝑥𝑦      𝑇𝑥𝑧

𝑇𝑥𝑦       𝑇𝑦𝑦      𝑇𝑦𝑧

𝑇𝑥𝑧       𝑇𝑦𝑧       𝑇𝑧𝑧

)                                   (9) 

                                            𝐶𝑖𝑗 = 𝑛𝑖𝑗  𝑇3𝑥3 𝑛𝑖𝑗
𝑇                                           (10)                                    

So, the tensor T3x3 is the sum over the correlation all the adjacent voxels (j) 

                                             𝑇3𝑥3 = ∑ 𝐶𝑖𝑗𝐷𝑖𝑗
26
𝑗=1             (11)                              

Where Dij is the dyadic tensor (equation 12) of the unit vectors where t denotes the 

transpose. 

                 𝐷𝑖𝑗 =  𝑛𝑖𝑗𝑛𝑖𝑗
𝑡 =  (

𝑛𝑖𝑗𝑥. 𝑛𝑖𝑗𝑥     𝑛 𝑖𝑗𝑥. 𝑛𝑖𝑗𝑦      𝑛𝑖𝑗𝑥 . 𝑛𝑖𝑗𝑧

𝑛𝑖𝑗𝑦 . 𝑛𝑖𝑗𝑥      𝑛𝑖𝑗𝑦. 𝑛𝑖𝑗𝑦       𝑛𝑖𝑗𝑦. 𝑛𝑖𝑗𝑧

𝑛𝑖𝑗𝑧 . 𝑛𝑖𝑗𝑥      𝑛𝑖𝑗𝑧 . 𝑛𝑖𝑗𝑦       𝑛𝑖𝑗𝑧. 𝑛𝑖𝑗𝑧

)                  (12)            

By taking the six free parameters of the tensor T3x3 a 1 by 6 vector Tc can be obtained for 

each voxel in the 3D fMRI scan. The output of the FCT computation gives a 3D image 

with one volume for each entry in the Tc vector (i.e. 6 volumes). 

Figure 9 below gives a 2D representation of correlation between voxels in a 

neighborhood. These correlation vectors are over-defined. 3 orthogonal eigenvectors 

and their corresponding eigenvalues are determined (using least squares) to define an 

ellipsoid of best fit. The largest eigenvalue (λ1) and the corresponding eigenvector 

indicates the primary direction of correlation for the voxel of interest with the adjacent 

voxels. λ2 and λ3 and their corresponding eigenvectors respectively define the secondary 

and tertiary directions of correlation. These orthogonal eigenvectors are defined by Tc, 

the 3D tensor (example shown on right in figure 9). 

 

Figure 9: A 2D representation of scaled correlation vectors to adjacent voxels with ellipse of best fit (left) and 
3D tensor representation with defining orthogonal eigenvectors 
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If we let M be the 26 by 6 design matrix for the six free parameters of the tensor for each 

of the 26 voxels, then we can represent the voxel correlation using equation 13 and the 

expanded matrix version using equation 14. 

                                                 𝐶 = 𝑀. 𝑇𝑐                                                  (13)       

                                             

        (

𝐶1

𝐶2

…
𝐶26

) =  (

𝑥1
2         2𝑥1𝑦1        2𝑥1𝑧1         𝑦1

2         2𝑦1𝑧1         𝑧1
2

𝑥2
2         2𝑥2𝑦2        2𝑥2𝑧2         𝑦2

2         2𝑦2𝑧2         𝑧2
2

…
𝑥26

2       2𝑥26𝑦26     2𝑥26𝑧26      𝑦26
2       2𝑦26𝑧26      𝑧26

2  

) (

𝑇1

𝑇2

…
𝑇6

) (14) 

               

 

By applying the least squares equation, we can determine the best Tc for the voxel using 

equation 15. 

                                           𝑇𝑐 = (𝑀𝑇 . 𝑀)−1𝑀𝑇𝐶                                       (15) 

A 3D tensor is computed for each voxel in the gray and white matter (as defined by the 

tissue mask) giving an array of tensors seen in figure 10. An example of the tensors can 

be seen overlaid on a structural image in figure 11. 

 

Figure 10: 3D spatio-temporal correlation tensor 

 

Figure 11: Resulting Tensor map 

However, due to the sensitivity of fMRI data to noise, and the inability to use spatial 

smoothing to improve SNR, a method called patch based FCT was employed. A patch is 

a 3x3x3 group of neighboring voxels that are used for the FCT computation, rather than 

the immediate single layer of neighboring voxels. The correlation between each voxel in 

the patch of interest and its conjugate on the adjacent patch is computed. The average 

across all correlations is then used to represent the correlation between the center voxel 

C M Tc 
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in the patch of interest and the adjacent voxel in the same unit direction as the computed 

adjacent patch. This has been shown to be more robust to noise than computing FCT for 

individual voxels [29], [30]. An illustration of a patch of interest and a single adjacent 

patch is presented in figure 12. 

 

Figure 12: Representation of a 3x3x3 voxel patch and one of it’s immediate neighbouring patches 

The final outputs of the FCT analysis give maps of Mean Diffusivity, Fractional 

Anisotropy, maps of each of the principal eigenvectors, and a tensor map as seen in 

figure 13. FCT mean diffusivity and fractional anisotropy are computed using the same 

equations as in DTI (equation 7 and equation 8 respectively). The V1 images represent 

the principal eigenvector for direction of correlation, V2 is a map of the secondary 

eigenvector, and V3 is the map of the tertiary eigenvector. 

 

Figure 13: Example Outputs of the FCT process. 
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1.5. Previous Work 

1.5.1. FCT Applications 

Ding et al. (2013) initially develop FCT and applied it to resting state data in order to 

integrate the structural and functional aspects of brain activity in order to gain a better 

understanding of functional neural networks [19]. 

More recent work has investigated improving FCT. Zhang et al. (2017) used machine 

learning techniques to integrate DTI data to reduce sensitivity to noise [31]. The result 

was used to identify patients with Alzheimer’s disease or mild cognitive impairment from 

normal subjects. Byeon et al. (2019) introduced the idea of enhancing FCT SNR using 

T1 image by structurally guiding the tractography [32]. They used these structurally 

guided WM specific FCTs to investigate used to identify biomarkers for obesity. Ding 

(2016) [33] used FCT to visualize more long-range WM tracts, similar to diffusion 

tractography for specific visual tracts. Importantly they raise concerns around computing 

FCTs at tissue boundaries. 

To address this issue Zhou (2018) [29] employed FCTs to improve whole brain 

functional registration. This paper investigated computing WM and GM FCTs separately 

and then used a LDDMM to warp these two tissue-specific FCTs together to give a more 

accurate functional registration. This paper also introduced the idea of doing patch-

based correlation sensors to improve FCT SNR without introducing false correlation. 

1.5.2. Neuroplasticity 

Neuroplasticity is the brain’s ability to restructure itself both physically and functionally in 

response to injury, learning, and rehabilitation [34]. Numerous studies have 

demonstrated a measurable change in fMRI activation as well as in DTI FA and DTI MD 

during longitudinal monitoring of motor and visuomotor learning tasks. One such study 

following six weeks of juggling training found significant changes in structural white 

matter before and after training. Daily training of the complex bimanual visuo-motor task 

showed increased in DTI FA in the WM underlying the intraparietal sulcus [27]. Cross 

sectional investigations corroborate this link between WM structure and function. 

Proficiency in skills such as music, dance, and fine motor tasks have been linked with 

population difference in DTI FA [34]–[36]. Higher DTI FA in the corpus callosum was 

found to be higher in individuals with bimanual motor task performance [37]. A finger 
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tapping task training found significant fMRI activity changes in areas related to 

movement and motor coordination (motor cortex, basal ganglia, and cerebellum) [38].  

Multiple works have investigated differences in neuroplasticity as function of dominant 

vs. non-dominant hand learning capabilities.  A study trained participants on one of two 

finger tapping sequences for five days with left hand only. Differences in performance 

between trained sequence and the untrained sequence were tested for each hand 

during fMRI scans. Significant improvement in trained sequence was found to 

correspond to significant increases in stability of the activation pattern in the primary 

motor cortex for the trained hand only. The untrained (dominant) hand showed no 

significant differences [39].  

Another finger tapping sequence task was trained for 4 weeks with the left hand. The 

results found an increase DTI FA in several white matter tracts associated with motor 

activity [28]. Specifically, an increase in DTI FA within the right CST was found [28]. The 

conjugate study using the same task showed a significantly lateralized difference in 

motor training for fMRI activity, between participants non-dominant and dominant hands 

[40]. 

Neuroplasticity also has essential applications in terms of rehabilitation. In cases of 

acquired brain injury, such as stroke or TBI there has been evidence of structural 

reorganization, but also changes in patterns of functional recruitment [41]. A case study 

of an individual with a severe traumatic brain injury reported significant functional 

changes corresponding to improved lower limb function while undergoing daily 

ambulatory rehabilitation [42]. Understanding neuroplasticity is key to guiding 

rehabilitation; a deeper comprehension of the brain changes occurring during recovery is 

key for developing more efficient treatment plans [41]. 

Other important considerations with measuring neuroplastic brain changes is the plateau 

effect during learning. The plateau effect for acquiring or honing skills means that 

training no longer has a measurable effect on performance. This is dependent on the 

complexity of the motor task being trained, for example a simple finger tapping task may 

be learned quickly, while a more complex task such as a dance may require a longer 

period of time to perfect [43]. There are also trade-off considerations when determining 

performance metrics. There is often a trade-off with motor task performance between 

speed and accuracy. These measurements are often inversely correlated meaning that 
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speed or accuracy as a single measure for performance is insufficient. Assessing a 

function of both metrics may provide a solution [43]. 

 

1.5.3. WM Neuroplasticity Analysis 

Prior analysis of this data is being publish in Frontiers in Human Neuroscience. 

Frizzell, T.O. & Grajauskas, L.A., Liu, C.C., Ghosh Hajra, S., Song, X., D’Arcy, 

R.C.N., (2020). White matter neuroplasticity: Motor learning activates the internal 

capsule and reduces hemodynamic response variability. Frontiers in Human 

Neuroscience. (Accepted pending revisions). 

 

The data used in this thesis have been analyzed previously using a neuroscience 

approach to detect WM activation changes using a WM specific hemodynamic response 

function. Significant WM activation was detected during both baseline and endpoint in 

visual and motor regions of the brain. As expected, the behavioural results showed that 

participants improved significantly in terms of task execution with their non dominant 

hand but exhibited no significant improvement with their dominant hand.  

A significant change in hemodynamic variability between group level baseline and 

endpoint scans for the non dominant (left) hand task only was detected in the internal 

capsule using a WM specific HRF dispersion derivative. The BOLD timeseries response 

in this significant cluster is present below in figure 14. As can be seen in this figure the 

baseline scans have a much greater variability, as visualized by the standard deviation 

in orange as compared to the endpoint signal variability in blue. This work represents the 

first detection of WM activity neuroplasticity in the literature. 

Following these results, it was postulated that there should be detectable measures of 

neuroplastic change in WM activity using FCT. 
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Figure 14: Average across significant internal capsule voxels for mean subtract BOLD signal. Baseline 
group average and standard deviation are plotted in orange and endpoint group average and standard 
deviation are plotted in blue. Stimulus block is from zero to twenty-four seconds. The standard deviation, i.e. 
variance, is much greater at baseline than endpoint. 
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Chapter 2.  
 
Structural and Functional Comparison DTI and FCT 

The contents of this chapter are submitted as an article in Frontiers in Neuroscience.  

Frizzell, T.O., Grajauskas, L.A., Liu, C.C., Ghosh Hajra, S., Song, X., D’Arcy, 

R.C.N., (2020). Functional Correlation Tensors Derived from BOLD fMRI Correspond 

with Structure Measured by DTI. Frontiers in Neuroscience. (Submitted) 

2.1. Abstract 

There is a growing body of work seeking to develop a new fMRI BOLD analysis method 

called Functional Correlation Tensors. Similar to Diffusion Tensor Imaging, FCT 

measures local synchronization in terms of anisotropy. However, FCT specifically 

examines functional BOLD signal using DTI-like tensors independent of prior signal 

assumptions around the hemodynamic response function. FCT analyses include both 

GM and WM. BOLD fMRI activation in WM is being increasingly reported in both task-

driven and resting-state studies. Accordingly, FCT represents a potentially important 

method for expanded characterization of WM activity as a critical aspect related to the 

functional architecture of the brain. 

We investigated the relationship between brain structure and function with respect to the 

relationship between DTI and FCTs contrasted for a novel motor task. Participants 

performed a motor task during a BOLD fMRI, along with DTI data collected in the same 

session. 

The results demonstrated a significant correlation between DTI and FCT results for WM. 

Specifically, DTI WM structural measures (fractional anisotropy and principal 

eigenvectors) were comparable to BOLD signal synchronicity for WM function in a task-

driven experiment. The DTI/FCT correspondence is encouraging, as it opens up new 

avenues of investigation into whole brain functional analyses that includes the 

characterization of WM activation. 
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2.2. Introduction 

Diffusion Tensor Imaging is an established method for examining WM fiber tracts [44]. 

DTI has advanced investigations into WM, but while the technique illuminates 

anatomical connections, it is incapable of investigating questions about functional 

activation. However, there is an inherent relationship between structure and function in 

the brain. Neural activity is intrinsically driven by the anatomical architecture and 

connections present in the brain structure [45]. As such, there should exist a relationship 

between structure measured by DTI and function as measured by fMRI BOLD contrast. 

Recently, the development of a new tool for analyzing fMRI data, called Functional 

Correlation Tensors, is driving investigations into whole-brain functional connectomes 

[9]. FCTs use a mathematically similar approach to DTI to analyze local correlation in 

BOLD signal. Predominantly, FCTs have been applied to resting state data in order to 

gain a better understanding of functional neural networks. To accomplish this, 

hemodynamic fluctuations in each voxel are correlated with that of its adjacent 

neighbours to assess whether they are active in relative synchrony. This creates a 

matrix of 26 inter-voxel correlations for each voxel in 3D space that can be used to 

create a “local spatio-temporal correlation tensor” [9]. FCT analysis does not employ 

hemodynamic response functions or thresholding that may dampen weaker signals, 

such as those produced by WM activity. This makes it an ideal methodology for 

simultaneous analysis of WM and GM activity, as ideal HRFs have been shown to vary 

throughout the brain, particularly across WM structures [7]. In addition, FCTs can 

similarly be decomposed into metrics commonly used in DTI analyses such as fractional 

anisotropy, mean diffusivity, and principal eigenvectors. Owing to the relative ease of 

direct comparison within a common framework, FA and principal eigenvectors are 

particularly well aligned for initial comparisons between DTI and BOLD fMRI.  

FCTs have been used for a variety of fMRI applications such as identifying obesity 

biomarkers in WM regions [32] and classifying Alzheimer’s and mild cognitive 

impairment patients from healthy controls [46]. An improved functional registration 

technique was also developed employing both WM and GM FCTs [47]. Recent work has 

investigated integrating structural information into FCT analyses, such as DTI or T1, to 

improve SNR [31], [32]. Additionally, FCTs have successfully been used to model long 

range WM tracts during resting state fMRI [33].  
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The evidence of BOLD signal in WM is increasingly supported by a growing body of 

work. To date, fMRI is largely dependent on assumptions about the underlying 

hemodynamic response function as a model in order to characterize functional activity. 

The most common fMRI approaches have focused on optimization of BOLD HRF for GM 

activity [7], [9]–[11], [48]. WM activity exhibits a different HRF with a lower peak and 

altered shape and therefore has been underrepresented in most functional neuroimaging 

research [5], [7], [13], [48]. However, advances in acquisition and analysis have 

improved the ability to characterize WM activation and it is now generally accepted to be 

detectable, and not necessarily artifactual [1], [17].  

The advent of the new FCT technique presents a unique and critical opportunity to 

improve the characterization of white matter activation by directly linking structure and 

function, without relying on underlying assumptions about haemodynamic response 

functions. In order to integrate further, a basic comparison of relationship between DTI 

structure and fMRI function is a key first step. This can be readily evaluated within a 

task-driven experimental design, in which functional networks can be targeted a priori. 

For example, motor activation is well established in BOLD fMRI and can be utilized as a 

first step in DTI FCT comparison studies. Given the nature of the similarities in the 

mathematical approach, we hypothesized that the FA and principal eigenvectors will be 

significantly correlated between DTI and FCT maps derived from motor BOLD fMRI 

activation. Employing a targeted DTI-FCT motor activation analysis will enable new 

avenues of future WM activation investigations without requiring assumptions about 

haemodynamic response function characteristics. 

2.3. Methods 

2.3.1. Participants 

Twelve healthy participants (seven female) were enrolled in this study. The mean age of 

the participants was 25.8±3.7 years (range 19 to 32). All participants were right hand 

dominant with normal or corrected to normal vision, and no history of neurological 

illness. The study was approved by the Research ethics boards of Simon Fraser 

University, the Fraser Health Authority, and the University of British Columbia. Written 

informed consent was provided by all participants prior to data collection. 
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Each participant completed the Edinburgh Handedness Questionnaire. This scale is a 

measure of the dominance or laterality of a participants right or left hand. The average 

score of the questionnaire was 11.1±0.8 (score of 12 meaning entirely right hand 

dominant). 

Ethics approval was obtained by from the SFU REB. Participants were pre-screened for 

handedness, claustrophobia, normal vision or corrected to normal vision, pacemakers, 

metal implants, or other MRI incompatible objects, and recent tattoos. Participants who 

were pregnant or had a history of neurological disorders or brain injury were also 

excluded. Participants were screened by an MR technician before scanning for any MRI 

contraindications. 

2.3.2. Experimental design 

The experimental design for this chapter represents a subsection of the larger study. In 

this analysis only the participants’ baseline scans are included. Each participant was 

assessed using a diffusion weighted scan, a high resolution T1 weighted scan, and two 

fMRI task-based scans. The fMRI task was a visuo-motor task completed using an MRI 

compatible mouse. Details of the task can be found in Appendix A. The experiment used 

a block design: seven 24 second stimuli blocks alternating with eight jittered rest blocks. 

Two sets of images were acquired per participant; one with the task performed using 

their dominant (right) hand and one with their non-dominant (left) hand. The 

experimental paradigms have been presented in detail elsewhere in a previous work 

[17]. Briefly; participants were required to trace a path displayed on a screen as rapidly 

and accurately as possible. The paths consisted of sequential boxes on the screen 

controlled to total length and frequency of turns. Participants were able to view their 

progress and were not able to proceed with the task until every box has been passed 

over. Before scanning, each subject performed a brief practice of the task to ensure 

compliance. The task was displayed on a black background and rest blocks displayed a 

plain fixation cross. The stimulus was displayed on a screen outside of the bore and 

participants were able to view the task using a head coil mirror mount. DTI data were 

collected following the completion of the BOLD fMRI scans. 

Participants each were scanned three times across two weeks following the described 

protocol, controlled to consistency factors such as time of day. Between scans 
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participants completed a short five-minute daily motor training regiment. For the 

purposes of this paper only the baseline scan data were used. The endpoint data will be 

included in Chapter 3. 

2.3.3. Scan Procedure 

Upon arrival participants completed demographics and the Edinburgh Handedness 

questionnaires. Written informed consent was given. Scan procedures were outlined, 

and participants were given a short tutorial and practice session to try each task on a 

laptop. After the tutorial participants were instructed to minimize head motion and use 

smooth movements during scans to improve image quality. Participants were screened a 

final time by the MR technician before entering the magnet.  

The MRI compatible mouse and mouse pad were placed on in a comfortable position for 

the participant that allowed for easy movement. The stimulus was presented on a screen 

and a mirrored headset to allow for the participants to view the tasks.  

The scans were allotted one-hour block (including set up). Table 1 below shows the 

individual scan time allotment. T1WI were used for registration of fMRI scans to a 

common template. Additionally, myelin water imaging scans were completed as part of a 

future investigation. 

Table 1: Scan breakdown and timing for all MRI acquisition 

Scan Type # of scans Time 

T1WI – Anatomical Scan 1 5 minutes 

Diffusion Tensor Imaging 1 7.5 minutes 

fMRI Scans 4 6 minutes 

Myelin Water Imaging 1 7 minutes 

Total 7 43.5 minutes 

2.3.4. MRI Acquisition 

All MRI data were acquired with a 3 Tesla Philips INGENIA CX MRI scanner with a 32-

channel dStream head coil. BOLD data were collected using a fast field echo, single 
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shot gradient echo type echo planar sequence. The acquisition parameters were as 

follows: TR = 2000ms, TE = 30 ms, and flip angle = 90o.  

During the same session, DTI data were acquired using a single shot EPI sequence with 

32 diffusion directions and b-value of 800. To provide co-registration of functional 

images, 3D high-resolution T1 weighted images were also acquired. Scan acquisition 

parameter were as follows: TR = 8.2 ms, TE = 3.7 ms, and flip angle = 8o. 

2.3.5. DTI Analysis 

The DTI data were analyzed using FSL v6.0.0 Diffusion Toolkit following standard 

procedures [49]. The data were motion and eddy current corrected [50]. A binary brain 

mask was computed, and tensors were calculated using FSL’s DTIFIT function. Track 

based spatial statistics (tbss) [51] were used to erode the DTI FA maps and zero the end 

slices to remove outliers. Next the DTI FA maps were registered to the FMRIB58_FA 

1mm standard space. An affine registration was then used to warp DTI FA maps to the 

MNI152 1mm standard space. The mean DTI FA and mean DTI FA mask were 

computed. The group mean DTI FA maps were down sampled from voxel size of 1mm3 

to 3mm3 for computing correlation with BOLD FCT data.  

The DTI principal eigenvector maps for each participant were registered to the MNI152 

standard space using the DTI FA warp matrices computed during the previous 

processing step. The DTI principal eigenvector maps voxel size were similarly down 

sampled from 1mm3 to 3mm3. MNI152 standard space WM masks were generated using 

the FAST function and used to mask the resulting principal eigenvector maps to WM for 

better visual analysis. 

2.3.6. BOLD fMRI Preprocessing 

All fMRI data were preprocessed using FSL v.6.0.0 [49] BET and FEAT [52] functions 

following standard procedures. Brain extraction was done using the BET function [53] 

and motion correction was completed using the MCFLIRT function. The fMRI data were 

also slice time corrected and temporally high pass filtered with a cut-off of 100s. No 

spatial smoothing was used in order to avoid introducing false spatial-temporal 

correlation. 
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2.3.7. FCT Analysis 

A GM and WM tissue probability map was computed for each participant using FSL 

FAST function. FCTs were computed using the preprocessed fMRI data and tissue 

probability map. A MATLAB script, adapted from Zhou et al (2018) existing code for 

patch-based FCT (https://github.com/zyjshmily/ts-PFCTs) [47], was used to compute the 

spatio-temporal tensors, principal eigenvectors for λ1, λ2, and λ3, and FCT FA for each 

fMRI scan. This resulted in a set of right-hand task-based maps and left-hand task-

based maps for each participant. 

Left hand task data for all participants were subject to the following processing steps. 

Subsequently, right hand task data for all participants was also processed using the 

same methods. FSL’s tbss [51]  preprocessing and registration functions were used to 

register the resulting FCT FA maps to the FMRIB58_FA 1mm standard space. An affine 

registration was then used to warp FCT FA maps to the MNI152 1mm standard space. 

An average FCT FA map for the task completed with each hand was computed across 

all participants’ registered FCT FA images.  

FCT principal eigenvector maps were registered to MNI152 standard space using FCT 

FA warp matrices computed in previous step. MNI152 standard space WM masks were 

generated using the FAST function and used to mask the principal eigenvector maps to 

WM for better visual analysis. 

2.3.8. Statistics 

Correlation analysis was computed using the group averaged DTI FA maps and FCT FA 

maps. The left-hand task average FCT FA map and right-hand task average FCT FA 

were individually compared against DTI data. The Pearson’s correlation coefficient was 

computed across all nonzero voxels in the maps using MATLAB’s correlation coefficient 

function. The significance threshold of the correlation was set at p < 0.05. 

GM and WM tissue masks were computed for the standard template using FSL FAST 

function to compare FA for DTI and FCT measures. Differences in average intensity 

between tissues were computed using paired t-tests with Bonferroni correction for 

multiple comparisons for the DTI FA mean image, left-hand task FCT FA mean image, 

and right-hand task FCT FA mean image. 
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2.4. Results 

FCTs were constructed for each participant for both their dominant and non-dominant 

hand. From this, the two key metrics used in the evaluation between DTI and FCT were 

the FA and the principal eigenvector direction. A comparison between the group average 

DTI FA and group average FCT FA can be found in figures 15. The mean FCT FA 

computed for all participants, after registration to the FMRIB standard template show 

clear similarities in terms of tissue patterns. The group mean FCT FA for the left-hand 

task only is shown for brevity, as there were no main differences when compared to the 

right-hand task FCT FA. 

 

Figure 15: A – Group Average Structural DTI FA map, B – Group Average functional FCT FA map. Image A 
has been resampled to have the same resolution as image B. The SNR of image A is greatly superior as it is 
constructed from structural DTI whereas image B has is constructed from rapidly acquired functional 
images. 

The correlation between the two modalities was computed to determine overall similarity. 

The correlation coefficient between DTI FA and FCT FA was R = 0.71 (p < 10-16) for the 

right-hand task and R = 0.68 (p < 10-16) for the left-hand task, indicating a medium (per 

Cohen’s criterion) and significant correlation between the structural and fictional 

modalities. In addition, the tissue masked FCT FA maps showed that WM exhibited 

significantly greater fractional anisotropy than GM (p < 0.00001) across both structural 
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and functional scan types. A summary of the tissue differences for FCT FA and DTI FA 

are presented in table 2. 

Table 2: Tissue FA differences for DTI and FCT. Intensity is a metric of average anisotropy 

 Average GM FA Average WM FA GM < WM statistics  
(Paired t-test) 

DTI 0.1885 ± 
0.0000331 

0.3602 ± 
0.000132 

T = 71.80, p < 0.00001 

FCT (LH) 0.1161 ± 0.000349 0.1443 ± 
0.000304 

T = 16.92, p < 0.00001 

FCT (RH) 0.1196 ± 0.000468 0.1470 ± 
0.000433 

T = 16.26, p < 0.00001 

 

Visual examination shows alignment of the WM principal eigenvector directions between 

DTI and FCT for a representative subject in Figure 16. Refer to the Appendix C, figure 

22, for remaining participants. These principal eigenvectors have been masked to WM 

specifically, as GM signals are isotropic and therefore principal eigenvector direction is 

not a pertinent measure. In figure 16 the principal eigenvector direction of water diffusion 

(the DTI structural measure) is found in A, whereas B represents the direction of BOLD 

correlation synchronicity (FCT functional measure) and an overlay of both measures 

demonstrating the high degree of alignment is depicted in C. 

 

Figure 16: Modality Comparison Participant example; A – DTI principal eigenvector (RGB colour coding for 
direction), B – FCT principal eigenvector (Purple-Orange-Magenta colour coding for direction), C – Overlaid 

DTI and FCT principal eigenvector to demonstrate alignment. 

2.5. Discussion 

We hypothesized that the DTI measured WM fiber tracts would be consistent with 

functional structure as characterized by FCT. The results were consistent with this 

hypothesis, showing significant correlations for FA and principal eigenvector measures 

between DTI and FCT for WM (figure 16). Analyses of brain structure has long employed 
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DTI metrics such FA and tractography to investigate a variety of research and clinical 

applications. Likewise, BOLD fMRI represents the most commonly used MR measure of 

GM activity, with increasing applications in WM activity.  

As predicted, the initial agreement results (Table 1) between DTI and FCT are limited in 

terms of visualization for GM isotropic patches because of the similarities between the 

three principal eigenvectors (or directions of correlation). In contrast, WM FCT FA 

intensities were significantly higher. The lower FCT FA in GM is consistent with the fact 

that the BOLD signal in the GM is highly synchronous with all of the immediate 

surrounding tissue. The visual similarities between DTI and FCT were consistent across 

FA and principal eigenvectors, but there were clear expected differences in SNR for FA 

maps. However, the mean DTI FA image is the average across images acquired through 

a relatively long scan (~7 mins) and therefore exhibits much higher SNR. Whereas, the 

FCT FA average image is constructed using conventional BOLD fMRI scans. The rapid, 

and relatively lower resolution, BOLD fMRI images are acquired with a TR of 2 seconds 

and not signal averaged. Therefore, FCT FA have a comparatively poor SNR, that 

further underscores the significance of comparable results observable in principal 

eigenvectors. 

WM has been robustly detected [5], but the signal may frequently be missed or under 

reported due to lack of sensitivity of conventional analyses. Technological advances, 

such as the increasing availability of higher field (3T) MRI systems and parallel imaging, 

have enabled the detection and characterization of WM fMRI activation to be increased 

for both task based and resting state experiments [15]–[17]. DTI has been used to 

localize BOLD signal on key WM tracts connecting areas of GM activation [21]. This 

demonstrated that WM BOLD signal arose in the structural connection between 

functionally active GM regions. 

FCT is relatively new, but it is emerging as potentially important approach to expanding 

WM fMRI studies. The key advantage for WM fMRI activation detection relates to long-

standing questions around the ability to visualize activity along an entire WM tract. WM 

fMRI studies to date have localized activation clusters within a larger distributed 

structural tract. Various factors, related to both the underlying neurophysiology and 

biophysics variables, can be studied experimentally in terms of the relationship between 

conventional BOLD fMRI analyses, FCT, and DTI metrics. Functional changes in 

principal eigenvector maps represent a particularly useful variable of interest.   



30 
 

Current literature focuses on conventional hemodynamic response functions that have 

been optimized for GM BOLD activation, and consequently reduced sensitivity to WM 

BOLD signal [7], [48] . By comparison, the WM HRF appears be more variable, reduced 

and significantly different in shape and temporal peak characteristics [7], [48]. WM 

specific HRFs have been shown to improve sensitivity of BOLD signal [48], [54]. 

Importantly, FCT analysis in the current study was independent of any HRF 

model/assumptions, that may circumnavigate the location specific differences in signal 

convolution. By identifying spatially correlated HRF responses within WM fibre tracts , 

FCT can be used to confirm WM BOLD activation and expand sensitivity through 

optimization studies [5], [7], [48].  

There are several caveats in the current study. One key concern is that WM areas with 

low BOLD activity may be more susceptible to a lack of coherence between DTI and 

FCT principal eigenvectors and FA. Low BOLD activity would result in poor SNR in these 

areas, that may impact the accuracy of FCT FA and principal eigenvector computation. 

Areas of poor coherence may also be a result of the underlying structural architecture. 

For example, sharp turns in WM tracts, crossing fibers, and WM bundle size may impact 

the relationship between DTI voxel principal eigenvector directions and FCT voxel 

principal eigenvector directions. The weak magnetic signal propagation along WM tracts 

[55] may result in some detectable directionality of MR signal introducing a inflated 

positive correlation between the DTI and FCT. These considerations may introduce 

inaccuracies into the data, though they are unlikely to greatly artificially improve the 

significance of correlation detected between structure and function. Further studies are 

thus needed to better elucidate these differences. 

While DTI and fMRI images are often collected together, the technique presented here 

opens a new avenue for the direct integration of functional and structural data. These 

results using fMRI task data confirms the existing literature on FCT tissue differences 

from resting state, demonstrating a brain structure modulated synchronicity in resting-

state BOLD signal [9], [29], [33], [47]. This novel use of a motor task opens up the next 

analysis using FCT to identify evidence of motor learning. These results increase the 

accessibility of analyzing functional change along key WM tracts. To our knowledge no 

previous analysis has been able to do this. 
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2.6. Conclusion 

An intrinsic correspondence relates brain structure and function driving the hypothesis 

that standard DTI FA and principal eigenvector should exhibit a significant correlation 

with BOLD based FCT metrics. The FA and principal eigenvector results of DTI 

structural data were significantly correlated with FCT functional data. This finding 

supports the growing body of literature supporting WM BOLD fMRI activation, while 

removing constraints of HRF model assumptions, enabling the ability to characterize the 

wider scale functional architecture of the brain. 
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Chapter 3.  
 
Functional Correlation Tensors Reveal Motor 
Learning in White matter 

The contents of this chapter are being prepared for submission to Nature 

Communications. 

Frizzell, T.O., Grajauskas, L.A., Liu, C.C., Ghosh Hajra, S., Song, X., D’Arcy, 

R.C.N., (2020). Functional Correlation Tensors Reveal Motor Learning in White Matter. 

Nature Communications. (Submission in prep) 

3.1. Abstract 

The development of new MRI technique sensitive to WM neuroplasticity is a key 

advancement towards obtaining a complete depiction of the complex changes occurring 

in neural networks during learning. Participants trained on a manual motor learning task 

with both their non-dominant (left) and dominant (right) hands for a two week period. 

Functional MRI scans and performance metrics were acquired before and after the 

training period for the motor task completed with each hand. Previous investigations on 

these data detected significant changes in the BOLD response within WM tissue. 

Specifically, the internal capsule was the site of a significant decrease in the WM 

hemodynamic response function dispersion derivative and by extension BOLD signal 

variability. A rapidly growing body of work has shown that Functional Correlation 

Tensors are sensitive to WM activity. As such, we hypothesized that FCT can be 

sensitive to WM neuroplasticity and can detect increase in fMRI BOLD signal 

synchronicity in areas related to motor task execution. The changes were expected to be 

found during the non-dominant (left) hand task, consistent with the behavioural results 

and the previous work on WM HRFs. A novel increase in functional signal synchronicity 

was detected in the corpus callosum genu after training for the left hand task only. At 

lower significance thresholds, increases in signal synchronicity were also detected 

throughout the contralateral corona radiata. 
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3.2. Introduction 

This work represents the development of a new detection method for WM functional 

neuroplasticity. Standard analyses methods do not have the ability to easily measure 

functional brain changes in areas of lower BOLD signal. An analysis technique detecting 

BOLD signal synchronicity rather than peak signal difference has proved effective at 

isolating WM functional adaptations due to motor training. 

There is a rapidly growing body of literature investigating the brain’s capacity for 

neuroplasticity. Neuroplasticity is the brain’s ability to restructure itself both physically 

and functionally in response to injury, learning, and rehabilitation [34]. This research is 

key for exploring new potential avenues for improving recovery after events such as 

traumatic brain injury or stroke. Longitudinal monitoring is essential for detecting brain 

changes when acquiring  a variety of basic or complex motor skills [28], [40]. Repetitive 

training is key for the long-term retention of ability. For this reason, numerous 

investigations into neuroplasticity have focused on repetitive training of motor learning 

tasks [27], [38], [39], [56]. 

Neuroplastic brain changes can be captured using various MRI scans such as DTI, 

fMRI, T1WI, and MWI. Numerous reports using these methods have found 

reorganization of motor areas, language, and somatosensory regions [57]. fMRI and DTI 

are well suited for analyzing motor learning in longitudinal studies [28], [40]. DTI, 

however, is the leading modality for investigating WM structural neuroplasticity. 

Specifically, fractional anisotropy and mean diffusivity (MD) have been used as key 

biomarkers of WM structure. DTI is very sensitive to WM microstructure, making it 

powerful for investigating structural changes during learning or after injury [41].  Wang et 

al. (2014) found increases in FA over a 2-3 week training period on a variety of spatial-

visual motor tasks in the corona radiata, internal capsule, and corpus callosum [58]. 

Functional correlation tensors quantify local functional synchronicity using DTI-like 

tensors [9]. The construction of FCTs have been described in detail elsewhere [9], [29]. 

However, in brief, FCTs assess the correlation of BOLD signal fluctuation in adjacent 

voxels, or groups of voxels. This allows the construction of spatio-temporal correlation 

tensors, much like diffusion tensors, that can be represented with metrics of FCT 

fractional anisotropy, mean diffusivity, and principal eigenvectors. 
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WM tracts are structurally anisotropic and have also been shown to exhibit a 

corresponding anisotropy in the local correlation of hemodynamic signal [9], [29]. This 

has the potential to open a new avenue for investigating functional connections. Due to 

the low signal strength and comparatively lower SNR, approaching the analysis of WM 

function may be best accomplished using non-standard metrics. Whereas DTI has been 

commonly used to investigate structural WM integrity, FCT may be used to measure WM 

functional connections [9], [32], [33]. There have been several advancements for 

improving WM fMRI detection [7], [16], [48] and WM structural neuroplasticity [56], [58], 

[59], however, very little work exists to determine a robust method for analyzing WM 

functional neuroplasticity. 

A visuo-motor training experiment was created, similar in structure to that of Reid et al. 

(2017) [28] and Sale et al. (2017) [40]. Participants trained for two weeks on a motor 

tracing task with both their non dominant and dominant hand. This dataset has been 

analyzed in previous work [54] that found that there was reduced variability in BOLD 

response in the internal capsule after motor learning. A significant difference in the 

dispersion derivative of a WM specific hemodynamic response function revealed group 

level changes in the right internal capsule during the left hand (non dominant) task [54]. 

There was no detected corresponding change for the hemodynamic response in the 

right hand. This followed the behavioural results, where group statistics detect a 

significant improvement in task execution for the left hand task exclusively. Additionally, 

no significant changes in WM BOLD activity levels were detected between baseline and 

endpoint using conventional analyses. 

Based on the aforementioned motor learning effects detected in WM we conducted this 

study to further investigate this effect using FCT. This research will further investigate 

WM neuroplasticity to achieve an understanding of the relationship between motor 

training through significant differences in spatio-temporal correlation in the brain. We 

hypothesized that significant changes in FCT FA would be detected over the training 

period in areas related to motor learning. Specifically, it was expected that WM BOLD 

synchronicity would increase as a result of learning between baseline and endpoint in 

the contralateral motor areas for the left hand task but not the right hand task. 
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3.3. Methods 

3.3.1. Participants 

The same twelve healthy participants (seven female) from Chapter 2 were used in this 

analysis. 

3.3.2. Experimental Design 

Each participant was scanned 3 times one week apart (controlled to consistency factors, 

such as time of day) using a repeat measure cross-over. Each scan comprised of a 

T1WI anatomical scan, diffusion tractography imaging, and two task-based BOLD fMRI 

images. After completing the baseline scan, participants completed two weeks of daily 

at-home training on the task for both the dominant and non-dominant hand. A midpoint 

and endpoint scan were completed after one week of at-home training and after the final 

day of at home training respectively. The midpoint scan will be included in future 

analysis and this paper deals exclusively with the baseline and endpoint data points. 

Figure 17 has the scanning and training schedule for the participants. 

Each participant completed the visuo-motor task using an MRI compatible mouse. This 

task is described in more detail in Appendix A. The task was developed in 

PsychToolBox3 and used a block design; seven 24 second stimuli blocks alternating 

with eight jittered rest blocks. Two sets of images were acquired per participant; one set 

with the task performed using their dominant (right) hand and once with their non-

dominant (left) hand. The task required the participants to trace a path displayed on a 

screen as rapidly and accurately as possible. The paths consisted of sequential boxes 

on the screen controlled to total length and frequency of turns. Participants were able to 

view their progress and were not able to proceed with the task until every box has been 

passed over. Before scanning, each subject performed a brief practice of the task to 

ensure compliance. Performance was based on speed and accuracy to give an overall 

score for each attempt.  
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Figure 17: Experimental design and training order for group 1 and group 2 participants 

3.3.3. MRI Acquisition 

All MRI data were acquired with a 3 T Philips INGENIA CX MRI scanner with a 32-

channel dStream head coil. BOLD data were collected using an FFE single shot GRE-

EPI sequence.  The acquisition parameters were as follows TR = 2000ms, TE = 30 ms, 

and flip angle = 90o. 

During the same session, DTI data were acquired using a single shot EPI sequence with 

32 diffusion directions and b0 of 800. To provide co-registration of functional images, 3D 

high-resolution T1 weighted images were acquired using. Scan acquisition parameter 

were as follows TR = 8.2 ms, TE = 3.7 ms, and flip angle = 8o. 

3.3.4. DTI Analysis 

Following standard preprocessing procedures, the DTI data were analyzed using FSL 

v6.0.0 Diffusion Toolkit [49]. First the data were motion and eddy current corrected using 

FSL’s eddy correction tool [50]. Next, using FSL’s DTIFIT the DTI FA images were 

calculated, and a binary brain mask was computed [53]. Voxel-wise statistical analysis of 

the DTI FA data was carried out using Tract-Based Spatial Statistics (TBSS) [51]. All DTI 

FA data were registered to the standard space.  

The mean DTI FA image was then fed into FSL’s tract based spatial statistics 

skeletonization function to determine the mean DTI FA skeleton. All DTI FA maps are 

projected onto the mean DTI FA skeleton using a standard threshold of 0.2. 

Significant group level changes in DTI FA were compared between baseline and 

endpoint. Group statistics were set up using FSL’s FEAT Glm [52] function and 

computed using the randomise function with threshold free cluster enhancement, family 

wise error correction, and a significance threshold of p < 0.05 (corrected). 
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3.3.5. fMRI preprocessing for FCT 

All fMRI data were preprocessed using FSL v.6.0.0 [49] following standard procedures 

using the FEAT function [52]. Data were brain extracted using FSL’s BET function and 

motion corrected using the MCFLIRT function [53]. The fMRI data were then slice time 

corrected and temporally high pass filtered with a cut-off of 100s. Spatial smoothing was 

not applied to prevent any false spatial-temporal correlation. 

3.3.6. FCT Analysis 

FCTs were computed using an adapted script from Zhou et al (2018) [29] MATLAB 

code. The preprocessed fMRI data for each scan and a tissue probability map were 

used to compute the FCT FA maps. Four sets of FCT FA maps were obtained; baseline 

right hand task maps, baseline left hand task maps, endpoint right hand task maps, and 

endpoint left hand task maps. 

Voxel wise statistical analysis of the FCT FA data was carried out using TBSS [51]. All 

FCT FA data were registered to the standard space.  

ROI analysis was computed on select WM regions as defined Julich Histological Atlas 

(JHA). The Corona Radiata, Internal capsule, and the body of the Corpus Callosum were 

used as ROIs for determining significant group level changes FCT FA between baseline 

and endpoint. Group statistics were set up using FSL’s FEAT Glm [52] function and 

computed using the randomise function with threshold free cluster enhancement, family 

wise error correction, and a significance threshold of p < 0.05 (corrected) for each of the 

ROIs. 

Following positive detection in the Body of the Corpus Callosum, but not the Corona 

Radiata or Internal Capsule, whole brain group level changes were computed between 

baseline and endpoint at a lower threshold. Group statistics were computed using the 

randomise function with threshold free cluster enhancement, and a significance 

threshold of p < 0.001 (uncorrected). Clusters smaller than 50 voxels were discarded. 

Cluster locations were identified using the JHU White Matter Labels. Probability of the 

peaks residing in WM vs. cortical tissue was recorded using the Harvard-Oxford 

Subcortical Structure Atlas.  
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3.4. Results 

The body of the corpus callosum region of interest analysis revealed a significant cluster 

in the genu as seen in Figure 18. This cluster represents a location of increased FCT FA 

(p < 0.05, uncorrected) i.e. increase BOLD signal synchronicity after motor training 

shown in Figure 18. There was no significant changes detected for the right hand motor 

task in any of the region of interests (ROIs) for baseline < endpoint. Nor were there any 

significant DTI FA changes detected over the training period. 

  

 

Figure 18: Left Hand task Endpoint > Baseline FCT FA (p < 0.05, FWE corrected). ROI Callosal Body. 

Details of the significant cluster detected in body of the corpus callosum can be found in 

table 3 below. The location of this cluster was identified specifically as part of the corpus 

callosum genu. 

Table 3: ROI Cluster Information 

# of 

voxels 

1-p max X 

location 

Y 

location 

Z 

location 

ROI 

62 0.96 87 150 70 Corpus Callosum Body 

 

Following the detection of significant group level FCT FA increases between baseline 

and endpoint a whole brain analysis was computed at a lower significance threshold (p < 

0.001, uncorrected). This investigation found evidence of FCT FA increases in 

contralateral WM motor systems for the left-hand task. Similar to the results of the HRF 
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dispersion derivative decrease found in the previous analysis [54], there was no 

detectable change in FCT FA during the right-hand task even at p < 0.001 (uncorrected). 

Table 4 shows the size and location of the main clusters of FCT FA change. 

Table 4: Left Hand FCT FA Baseline < Endpoint Group level difference cluster size and location 

# of 
Voxels 

1-p 
max 

x 
location 

y 
location 

z 
location 

Atlas Region 

70 
0.999 

63 162 71 
Right Anterior Corona Radiata 
(100% WM) 

62 
1.000 

63 89 102 
Right Posterior Corona Radiata 
(100% WM) 

51 
1.000 

58 105 99 
Right Superior Corona Radiata 
(100% WM) 

 

The clusters are located throughout the right corona radiata. These clusters can be seen 

in figure 19. A cluster was also detected in the genu of the corpus callosum, however, 

since this was reported in the ROI analysis, it was excluded from table 4 for simplicity. 

 

Figure 19: Left Hand task Endpoint > Baseline FCT FA (p < 0.001). Image 1: Cluster in the Right Anterior 
Corona Radiata. Image 2: Cluster in the Right Superior Corona Radiata. Image 3: Cluster in the Right 
Posterior Corona Radiata 

3.5. Discussion 

These results confirm several key aspects of our hypothesis with respect to WM 

functional adaptation as a result of training on a fine motor task. We observed significant 

increases in FCT FA in WM ROIs between baseline and endpoint for the left hand task 

only. However, significant clusters of increased WM BOLD synchronicity were only 

detected in the corpus callosum genu and the corona radiata, but not the internal 

capsule. FCT detection of WM functional neuroplasticity represents a measure of 

functional change that standard analyses have not yet been able to detect.  
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The locations of the detected significant clusters in this study were consistent with 

previous works analyzing WM structural neuroplasticity during motor learning [28], [40], 

[58]. An overall increase in local synchronicity was measured in the corpus callosum 

genu and, at a lower significance threshold, throughout the corona radiata. These 

measures suggests that as motor learning occurs it drives an increase in BOLD signal 

synchronicity in corpus callosum genu. The corpus callosum genu is comprised of WM 

tracts connecting to the prefrontal cortex; an area known for synthesizing information 

and solving sensory-motor tasks [60]. The task the participants were training on 

incorporated several motor and sensory activities including visual stimulus, fine motor 

control, and tactile sensation from the fingers. The genu of the corpus callosum also 

represents a relatively common area of detected WM activation. In particular, previous 

studies have found activation in the genu during interhemispheric tasks like the 

Poffenberger task [12], [61]–[63]. 

Additionally, several areas of activation were found throughout areas of the right corona 

radiata. The corona radiata is made up of motor and sensory pathways between the 

brain stem and the cerebral cortex. The architecture and function of the corona radiata 

and the internal capsule are tightly coupled; the axons that form the corona radiata 

continue down through the posterior limb of the internal capsule [64].  

This increased synchronicity in prefrontal cortex WM tracts and the corona radiata, 

coupled with the previous results detecting a reduction in hemodynamic variability in the 

internal capsule [54], suggests that there are several underlying changes resulting in 

motor learning. This result suggests that the changes occurring are highly complex and 

traditional analyses have failed to capture all of the nuances of motor learning driven 

functional brain changes.  

It is unclear if the changes in WM HRF dispersion derivative and FCT FA increases are 

driven by the same underlying structural changes, or different, location specific, 

microstructure alterations. The measured decrease in functional HRF dispersion 

derivative may be related to the increased FCT FA, though given these changes were 

not detected in the same regions at significant thresholds, there may be many different 

responses occurring throughout the brain. If this is the case, the detected increase in 

local synchronicity is a previously uninvestigated facet of the complex changes occurring 

during motor training.  
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The detection of the clusters of significant FCT FA increase complement the existing 

body of literature that has managed to captured WM structural neuroplasticity using 

measures such as DTI FA. Diffusion tractography imaging has been used to localize WM 

BOLD signal on key WM tracts connecting areas of gray matter activation [21]. In 

addition, WM microstructure has shown plastic change with motor learning training [34], 

[40]. However, this work represents one of the first significant functional brain change 

measures for WM activity and, to our knowledge, the first significant measure of WM 

neuroplasticity using FCT. 

There are several caveats to take into consideration when interpreting these results. 

First, the sample size of 12 participants is not large and thus limits statistical power. In 

future investigations a larger sample size may help detect more subtle functional and 

structural changes in the brain. Secondly, the clusters detected in the corona radiata are 

uncorrected for multiple comparisons. However, the conservative p < 0.001 and cluster 

locations in the contralateral hemisphere to the hand completing the task strongly 

supports the validity of these results. 

DTI FA has been shown to exhibit increases in many studies of neuroplasticity, however, 

there are also several works that found decreases in the metrics as a result of motor 

training [40]. These results vary from study to study and have been shown to be 

dependent on the task itself, the location of detected change, and the length of the 

training period [40]. The inconsistencies in reports of DTI FA changes are likely 

considered to be a result of the complexity of the underlying WM microstructure. In 

particular, it has been postulated that the inconsistency in DTI FA changes are a result 

of crossing fibers within a single voxel [59]. This complex relationship and comparatively 

small sample size may provide an explanation for the lack of detected DTI FA brain 

changes over the training period. 

3.6. Conclusion 

Previous work detected changes in internal capsule during non-dominant hand motor 

learning as a reduction of BOLD signal variability. Additionally, FCT has been shown to 

be sensitive to detecting WM BOLD signal synchronicity. Therefore, FCT was expected 

to be able to detect WM functional neuroplasticity as a result of motor learning. The 

results of our investigation determined that FCT FA increased in key areas essential in 
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motor task planning and execution, i.e., the corpus callosum genu and the corona 

radiata. This study detected significant clusters of FCT FA increase, whereas the 

conventional HRF analyses failed to detect any group level differences between baseline 

and endpoint BOLD response. This novel result suggests that a complex network of 

changes, occurring throughout several brain regions, underlies neuroplastic motor 

processes.  
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Chapter 4.  

Conclusions 

This work had several novel features. First, this thesis represents the first use of FCTs 

on a motor task. FCT has primarily been used for resting state analyses, and this is one 

of the first investigations into the task-based applications of this analysis method. These 

results also capture one of the first functional brain change measures for WM activity 

and the first significant measure of neuroplasticity using FCT.  

The intrinsic correspondence between brain structure and function was detectable using 

DTI FA and FCT FA. A significant correlation between BOLD signal synchronicity and 

underlying structure was detected in participants completing a motor task. This 

correspondence was confirmed based on DTI FA and FCT FA as well as with the 

principal eigenvectors. This means that WM exhibits highly anisotropic BOLD signal 

synchronicity and that BOLD signal is directional along white matter fiber tracts. This 

paves the way for a new analysis metric of whole brain task fMRI.  

Additionally, using FCT we were able to detect signal in WM. Current literature purports 

that conventional hemodynamic response functions are optimized for GM BOLD 

response, and may dampen WM signal [7], [8]. The hemodynamic response in WM can 

be highly variable and significantly different than GM [7], [48]. The use of a WM specific 

HRF has been shown to improve sensitivity of BOLD signal generated by WM [48] [54], 

however, the analysis presented in this thesis does not require the use of an HRF at all 

that may circumnavigate the location specific differences in signal convolution. By 

identifying a logical, tissue correlated, BOLD response using FCT these results 

substantiate earlier reports of WM BOLD signal [7], [14], [48].  

FCT was able to detect WM functional neuroplasticity as a result of motor learning. 

Previous work analyzing this data was able to successfully detect a significant group 

level decrease in the WM HRF dispersion derivative in the internal capsule. To further 

investigate the contrast before and after the two week motor training period, FCT FA 

was used to detect changes in BOLD signal synchronicity. Specifically, an increase was 

detected in the corpus callosum genu and the corona radiata. These areas are know to 

be key WM tracts involved in motor task planning and execution. Both the increases in 
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FCT FA and the previously noted decrease in BOLD signal variability were only found 

during the left-hand motor task. This is consistent with the behavioural response data 

where participants showed significant improvement in task execution during the left-hand 

task only, i.e. the non-dominant hand.  

The overall behavioural scores were much higher in the dominant hand, but learning 

was found exclusively in the non dominant hand [65]. Both gross and fine motor training 

tasks had a significant effect on score improvement. It was theorized that this is a result 

of the similarities between the two training types. By practicing manipulating the mouse 

with their left hand during the gross motor training task, the participants gained skills that 

they were able to employ while completing the fine motor task. Given the rarity of using a 

computer mouse with the non dominant hand the gross motor training was sufficient to 

elicit a learning response. There was no effect found for training order so timepoint 2 

was removed from the analysis for future study. 

The detected timeseries BOLD responses for the corpus callosum and corona radiata, 

figures 28 and 29 in appendix C.2, do not closely resemble the canonical GM HRF. This 

atypical BOLD response exhibits a smaller magnitude that may be a result of the BOLD 

signal being spatially distributed along WM tracts. We postulate that a canonical double-

gamma GM HRF is composed of the summation of multiple signal features; only some of 

which are present in WM tracts. Raw BOLD data are rich with information and the priors 

of a canonical HRF may mask key information. 

There are many changes that underlie neuroplasticity for acquiring a new skill 

throughout a distributed neural network. These brain changes cannot all be detected 

using the same metrics and can only be detected by the application of several different 

analyses’ methods.  

FCT FA detected functional synchronicity changes that were distributed throughout the 

corona radiata and corpus callosum genu as presented in this work.  

Increases in the magnitude of the BOLD response were detected in the GM, specifically 

in the inferior parietal lobules (IPL) in a previous analysis [65]. This region is key for 

visuospatial processing and plays a role in hand-eye coordination [66]. Specifically, the 

IPL retain the motor programs learned for hand-object coordination [66]. Bilateral IPL 

have been shown to work together with frontal motor regions to govern hand interactions 
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with objects [66], [67] such as the mouse used in this task. These changes were 

detectable using standard HRF analyses methods. 

Additionally, prior work on this data detected decreases in the BOLD signal variability in 

the internal capsule by applying a WM specific HRF dispersion derivative analysis [54]. 

This WM region is responsible for relaying motor information to the spinal cord.  

Structurally, the corona radiata tracts converge to the internal capsule. We hypothesize 

that these small synchronizations occurring throughout the corona radiata result in a 

confluence of the signals at the internal capsule where the information to coordinate the 

actual motor response is being conveyed. We postulate that the detection of each of 

these responses demonstrates the complex network of changes occurring during 

learning and highlights the necessity of a whole-brain analysis approach to 

neuroplasticity.  

This may have important ramifications for measuring GM and WM connectivity as part of 

distributed neural networks. This novel motor learning paradigm has enabled detection 

of hereto uninvestigated metrics of BOLD signal synchronization as part of functional 

neuroplasticity. This synchronization may reflect a different way to track WM BOLD and 

could represent a fundamentally different but equally important functional measure than 

peak BOLD response. 

As numerous studies have successfully elicited a WM BOLD signal, the next challenge 

is to optimize the ability to measure the response so that it can be reliably used as a 

brain health metric. A better understanding of neuroplasticity in the entire brain will help 

create the vital framework for stimulating learning and rehabilitation in response to brain 

injury. 

4.1. Limitations 

Study specific limitations have been explored in their respective chapters, however, 

general fMRI and FCT considerations and task limitations are outlined below. 

A common concern when detecting WM BOLD fMRI is that the signal is the results of 

partial volume effects. Previous literature has used conservative masking and co-

localization with DTI [68] to ensure signal origin and the accumulating research has 

shown that WM fMRI can be consistently detected. However, by looking at the whole 
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brain in FCT we can see that WM has its own distinct fingerprint of activity. If the signal 

detected along GM tracts were a result of noise or partial volume effect, it would be 

unlikely to correlate so well with the anisotropy of the underlying brain structure.  

Thus, while partial volume effects are unlikely to have artificially accounted for the WM 

signal, tissue boundary voxels are still a concern. The FCT FA measurements for voxels 

containing both tissue types will have limited significance and the use of patch-based 

FCT may exacerbate this issue. 

There is not a measure for quality of MRI image registration, however, a lot of existing 

literature has highlighted the issues with functional registration. In addition, there is no 

FSL registration algorithm optimized for FCT. This may have led to reduced power in 

group level analysis due to poor FCT FA registration to the standard template. It has 

been proposed that a multi-channel large deformation diffeomorphic metric mapping 

(LDDMM) algorithm may provide a solution by treating WM and GM tensor maps as 

separate modalities [31]. In general, the issues with functional registration are more 

typical of resting state fMRI than task-based scans, however, this may provide a solution 

to the particular needs of FCT registration. 

 

Another concern may be that the basis of the FCT correlation actually arises from 

structure rather than function. Traditional task fMRI analysis uses the difference in 

intensity from between task active and rest state. For a block design, this would be the 

difference between the on blocks with the off blocks as a comparison reference. FCT 

does not use this kind of difference analysis and questions may be raised regarding the 

similarities between FCT and DTI as results of the structural component of the fMRI 

data. However, if the resulting FCT correlation was strictly from structural correlation (i.e. 

high intensity WM, lower intensity GM) then we would only see variations in FCT FA at 

tissue boundaries and not the clear tissue differences in figure 15. 

The task choice may have affected level of movement artifact. Though the task was 

piloted for standard head motion, this may be a particularly salient issue for FCT, as it is 

computing local correlation analysis. To date FCT has been primarily applied to resting 

state-fMRI, and while it has good potential applications for task-based fMRI, future 

analyses should consider employing tasks with less eye tracking and motion. While 

providing a sufficiently complex task to elicit lateralized fine motor learning, the 
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coordination of eye and hand movement caused an undesirable degree of head motion. 

Head motion is one of the most common and disruptive artifacts in neurological MRI 

scans [69]. Though there exists correction algorithms for motion artefact, minimizing 

movement during data collection will result in higher quality data. Typically, scans are 

discarded if the motion exceed 2mm of translation or 2o of rotation. While this was not 

found in the baseline and endpoint tracing scans used in the analysis in Chapters 3 and 

4, it was detected in several other scans collected during this study. 

4.2. Future Directions 

There are several avenues of investigation open to further this work. Primarily, a deeper 

investigation of the underlying timeseries hemodynamic response in the significant 

clusters of the corona radiata and corpus callosum should be conducted. Some 

preliminary findings have suggested that a signal frequency analysis of these key WM 

regions may elucidate the underlying signal. As these regions do not show a typical 

BOLD HRF, investigating the signal frequency during activation and rest may provide 

insight into WM activation and its role in neuroplasticity. 

Additionally, future work should investigate the significant BOLD signal increase in the 

bilateral IPL with the DTI tractography between these regions. A better understanding of 

the underlying network responsible for motor neuroplasticity may be interrogated by 

isolating the relevant WM tracts analytically and comparing them to the locations of 

significant FCT FA increases. 

Applying this study to populations with acquired brain injury may help this emerging 

technique become a useful clinical assessment tool. An objective measurement of the 

impacts of learning and rehabilitation on complex neural networks could be key in 

optimizing the recovery process. 

Future development of FCT as an analysis method should investigate registration 

optimization as this is key for group level statistics. As mentioned in the limitations 

section, a major failing of FCT, and other fMRI analyses is functional registration. 

Comparing results between the existing FCT FA method and applying the LDDMM 

algorithm for GM and WM FCT registration or perhaps other machine learning 

techniques to improve comparison between participants. 
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FCT FA maps are insufficient for the FSL to compute tractography, however, there has 

been some work using machine learning to estimate FCT tractography [33]. A 

comparison between FCT tractography, particularly in the corticospinal tract, with DTI 

tractography could provide further evidence of the abilities of FCT to monitor WM activity 

and functional connectivity in motor areas of the brain. In addition, areas of the brain not 

in use for the task or other concurrent functions may not show good correlation in BOLD 

signal. Doing a tractography analysis for the specific visual and motor tracts may lead to 

a deeper understanding on the link between structure and function. 

A longer study period may also open avenues in evaluating structural changes using 

DTI. Additionally, comparing changes in BOLD and FCT with myelin water imaging may 

garner a better understanding of underlying mechanisms behind the functional changes. 

Other structural modalities such as hardi and MIX do not suffer from the same issues 

with crossing fiber determination as DTI. As such, they may be a better option for further 

investigating the structure-function relationship of the brain. 

In future work similarities between the fine motor and gross motor tasks should be 

reduced. Developing a task with a better gross motor condition will enable a deeper 

analysis into the effect of motor training on neuroplasticity. A modified version of the task 

with a larger difference in training effects between the control condition and the task 

condition would allow for a better analysis of training effect and reduce the concern for 

carryover effects across training weeks. A modified task could be strictly motor to help 

isolate changes to more specific WM tracts and regions of interest as well as reduce 

head motion artefact.  

Participant compliance was also an issue with the at home training component of the 

study. Four participants missed at least two training days that may have affected their 

performance. By not adhering to the training schedule these participants may have not 

achieved the same degree of neuroplastic learning and the associated improvements in 

score and FCT FA increase that they would have otherwise. Another limitation of this 

work was the hardware considerations. The MRI compatible mouse had very poor 

motion sensitivity that likely affected the scores of the participants as well as the skill 

transference from training to scan testing. Given significant improvements were still 

detected in task scores between baseline and endpoint, this is likely a minor concern. 

However, addressing these issues will help streamline the task for future analyses. 
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Appendix A.   
 
Functional Task 

A.1 Task Requirements  

While there exists a large variety of fMRI tasks, in order to fulfill the purpose of this 

research there were several limiting specifications. First, the task was required to be 

completed with both the dominant and non dominant hand, however, it needed to 

incorporate skills common to the dominant hand and largely unused in the non dominant 

hand. This was so that there was an intra-participant baseline comparison for training. 

Therefore, it was expected that there would be significant improvement in the 

participants left hand after training and a smaller effect in the right hand. 

The difficulty of the fine motor task had to be such that it was able to elicit a learning 

effect over a short training period. The tasks also had to be adaptable for in-scanner 

completion and at-home training. Finally, the task needed to have a measurable 

quantification of performance. 

A.2 fMRI Task Review 

In order to develop an appropriate task to meet the aforementioned requirements, a 

review of the common existing tasks was completed. Activation elicited from task-based 

fMRI is used to investigate a broad range of topics including language, motor, attention, 

cognition, visuo-spatial orientation, and memory. Many different fMRI tasks have been 

developed to explore brain function across these systems. A few common examples of 

fMRI task paradigms are outlined below, though this is by no means a comprehensive 

list. 

Many cognitive fMRI tasks have been adopted from psychological investigations in 

behavioural performance in order to study brain activity. Two such examples are the n-

back memory task and the Stroop task. 

Working memory is often studied using the N-back paradigm. In this task, participants 

are presented a string of stimuli one at a time (commonly letters or patterns of coloured 
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dots). The participants are expected to identify matching stimuli “n-back” i.e. matching 

stimuli presented to a stimuli n stimuli back in the sequence [70]. 

The Stroop paradigm presents participants with names of colours. The colour that the 

name is printed in can either match the name of the colour or it may not. The participants 

are asked to identify the name of the colour, irrespective of the colour it is printed in [71]. 

The most common paradigm for studying motor systems within an MRI scanner is by 

asking the participants to complete a finger tapping task. These paradigms often have 

the participant complete a specific sequence of finger to thumb tapping [28], [40]. 

Presentation of a flashing checkerboard pattern, often presented to only one side of the 

visual field at a time, is an example of a common visual paradigm. This type of task does 

not require any response from the participant [72]. 

An example of a visual task that does require a response would be the visual search 

paradigm. This task requires the participant to identify a specific target among a number 

of features. Typically, the speed at which the participant identifies the presence of the 

target feature is recorded as the behavioural component [73]. 

The oddball paradigm is a common example of an auditory task that does not require an 

active participant response. The oddball paradigm presents the participants with a series 

of tones, most of which are the same volume and frequency. The “oddball” tones are the 

infrequent tones presented at a different pitch. 

The verb generation task, a type of language paradigm, ask the participant to think of an 

appropriate verb to match given noun (ex. Noun: “Ball”, Verb: “Bounce”). 

Many of these tasks do not completely isolate a single system and make require several 

brain systems working together such as visuo-motor tasks. 

The Trail Making Task, having been adapted for completion in the MRI, has participants 

sequentially connecting numbers (1-2-3 etc.), or a combination of letters and numbers 

(1-A-2-B etc.). This task integrates many systems such as visual and motor systems, 

sequencing, and attention [74]. 
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Tasks that require the coordination of systems across hemispheres are known as 

interhemispheric transfer tasks. These tasks have been shown to drive WM activation, 

primarily across the corpus callosum (typically in the splenium) [26]. 

The Poffenberger paradigm is one such task where lateralized visual stimuli are 

presented ipsi- and contralateral motor reaction responses are recorded. When the 

visual stimulus presentation is contralateral to the motor response, neural 

communication is driven between hemispheres [61]. 

There exists many other tasks used during fMRI scans and these tasks are often 

adapted or modified to suit the needs of each specific study. With a better understanding 

of the existing tasks used in fMRI studies a novel motor training task was developed. 

A.3 Task Development 

A two-week motor training experiment was developed, similar in design as Reid et al. 

(2017) [28] and Sale et al. (2017) [40]. The motor training block task paradigm for the 

fMRI scans were developed in MATLAB 2019 with the Psychtoolbox3 package. The 

purpose was to design a sufficiently complex task that could be completed in the MRI 

scanner and would elicit a significant learning effect. By creating a task that applied 

existing translatable skills from one’s dominant hand, but not the non-dominant hand 

created a valuable reference for longitudinal motor learning monitoring.  

As a result, two visuo-motor tasks were developed using the same visual stimulus for 

training precision and speed of hand movements. The tasks were adapted for use in the 

scanner, as well as for the participants to train at home with every attempt made to be as 

similar as possible across scanning and at-home training. 

One of the tasks was a fine motor task (visual display present in figure 20) requiring the 

participants to trace the presented path on a screen as rapidly and accurately as 

possible. The paths consisted of sequential boxes on the screen controlled to total 

length and frequency of turns. Participants were able to view their progress and were not 

able to proceed with the task until every previous box has been passed over.  
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The second type of task was a gross motor task (visual display present in figure 21) 

requiring participants to fill in as many boxes on the screen as possible without trace or 

order constraints.  

 

Figure 20: Screenshot of participant completing the 
fine motor task 

 

Figure 21: Screenshot of participant completing the 
gross motor task 

Once the tasks were programmed, they were piloted both in and outside of the scanner 

for length, grain, and motion artefact. In order to ensure that the participants were 

completing the task for the entirety of the on blocks, the trails had to be longer than 

anyone could feasibly complete in 24 seconds. Motion artefact was also a concern given 

the coordinated movement of hand and line of sight, however, pilot tests showed that 

head movement was within the acceptable standard (absolute movement of less than 

2mm and less than 2o of rotation).  

Both tasks were completed with the participants non-dominant hand and dominant hand 

as a control. This meant there were four unique conditions: 

1. Left hand fine motor task 

2. Right hand fine motor task 

3. Left hand gross motor task 

4. Right hand gross motor task 

 

The scan order of these four conditions was randomized. During training, hand order 

was also randomized.  

The tasks were presented in a jittered block design with 24 second on blocks and rest 

blocks where a fixation cross was presented. The rest blocks averaged 24 seconds long. 

An example of the stimulus presentation and corresponding response is presented in 

figure 20. Each condition had 15 blocks, meaning scan time for one condition was 6 
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minutes long. For each participant, the trails presented were unique each time to prevent 

any learning effect specific to one trail. The order of presentation of trails was 

randomized. For the fine motor task, at the beginning of each on block the mouse would 

spawn at the beginning of the trail to prevent any initial delay in beginning tracing. 

In the scanner the participants used an MRI compatible mouse to complete the tasks. At 

home training was completed on personal laptops with a standard computer mouse. The 

visual stimulus presented on the screens and the timing were the same across training 

and scanning. 

Participant score metrics for the fine motor task were dependent on 2 factors: 1) The 

distance along the trace reach during each 24 second on block and 2) the number of 

errors (i.e. number of blocks passed over outside of the trace path).  

𝑆𝑐𝑜𝑟𝑒 =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒−𝐸𝑟𝑟𝑜𝑟𝑠

300
∗ 100                                        (1) 

For the fine motor task, score was represented as a percentage of trail completion with 

an error penalty. 
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Appendix B.   
 
Behavioural Analysis 

The details of the behavioural analysis can be found in Grajauskas 2019 [65]. However, 

a summary of analysis is included for completeness. The effect of training type (fine 

motor or gross motor task) on average score was investigated using a two-way repeat 

measure ANOVA. The two factors used in this analysis were hand (dominant and non 

dominant) and training type (fine motor or gross motor training).  

It was found that there was no interaction between hand and training type or significant 

effect of training type. Therefore, the change in score between baseline and endpoint 

was investigated using a two-way repeat measure ANOVA. The two factors used in this 

analysis were hand (dominant and non dominant) and timepoint (baseline and endpoint). 

Training order (i.e. group number) was set as the between subject factor. The ANOVAs 

were corrected for multiple comparisons and used conservative degrees of freedom. 

Post hoc t-tests (pairwise, two-tailed) were run to investigate score differences as a 

result of hand. The difference between each corresponding score was calculated. For 

example: Participant 1 Right Hand Score at Endpoint from Participant 1 Right Hand 

Score at Baseline.  

Detailed results of the behavioural analysis can be found in Grajauskas 2019 [65]. 

Relevant findings have been summarized as follows.  

No interaction was found between training type and hand. No significant main effect was 

found for training type.  

The subsequent analysis found no interactions between hand, timepoint, and training 

order. However, a significant main effect was found for timepoint and hand.  

Difference in scores for the right hand were found not to be significantly greater than 0 (p 

> 0.05) for endpoint > baseline. However, difference in scores for the left hand were 

found to be significantly greater than 0 (t = 3.453, p = 0.005) between endpoint > 

baseline. Therefore, a significant motor learning effect was found for the left hand only. 

Due to the short training period the dominant hand still scored higher on average (Left 

hand endpoint score average 13, Right hand endpoint score average 22). 
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Figure 22: DTI and FCT principal eigenvector masked to WM for all participants at baseline 

Appendix C.   
 
Participant Principal Eigenvector DTI & FCT Overlay 
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Appendix D.   
 
DTI and FCT 3D Spatial Correlation 

In order to investigate if the strength of correlation was localized to certain areas, a map 

of the spatial correlation between each individuals FCT FA and DTI FA was computed. 

This correlation was computed between each participants DTI and fMRI scan for both 

baseline and endpoint (i.e. 24 structural scans and 24 functional scans). For each voxel 

in the 3D brain space, the Pearson’s correlation was computed between a vector of all 

voxel intensities for FCT FA with DTI FA. The resulting 3D map highlighted areas of high 

correlation between functional FA and structural FA. To find the areas of highest 

correlation, the map of Pearson’s correlation coefficients was thresholded at 0.5. The 

resulting 3D spatial correlation map was thresholded at R > 0.5 and cluster size greater 

than 100 voxels. There are no standards for what makes a good Pearson’s correlation 

value, as these thresholds are data dependent. Therefore, a conservative threshold of 

0.5 was used as this is typically regarded as “high correlation” [75]. 

0 indicated no correlation, any negative value indicates inverse correlation, and positive 

values between 0 and 1 indicate strength of correlation with a value of 1 being perfectly 

identical between structure and function. 

The DTI and FCT FA maps were masked to the same size in order to carry out the 

comparison. This masking resulted in the loss of a lot of cortical tissue due to the GM 

erosion preprocessing step for tract based spatial statistics. 

There were no cluster forming statistics computed for this analysis, however, clusters 

were thresholded to be greater than 100 voxels. These clusters indicated larger areas of 

high correlation between FCT FA and DTI FA maps for participants.  

The table below shows the probable atlas regions based on the Juelich Histological 

Atlas and the Harvard-Oxford Cortical Structural Atlas. One cluster was excluded from 

the table for having no atlas region probability greater than 50%.  
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Table 5: Regions of high DTI FA (structural) and FCT FA (functional) correlation 

# of 

Voxels 

R 

max 

x 

location 

y 

location 

z 

location 

Atlas Region 

424 0.754 72 74 110 Right Cerebral White Matter 

255 0.788 88 109 123 GM Primary Motor Cortex  

230 0.752 104 65 89 Precuneus 

124 0.769 132 72 96 Angular Gyrus 

123 0.756 138 73 86 Middle Temporal Gyrus 

115 0.831 101 79 119 Left Cerebral White Matter 

114 0.725 89 135 124 GM Premotor Cortex 

110 0.682 43 96 78 Right Cerebral White Matter 

 

A mix of GM and WM regions were found, showing that strong structural correlation is 

present regardless of tissue type. Figures 23-26 show some examples of the regions of 

highest correlation. 

 

Figure 23: Primary motor cortex (GM) correlation 
cluster. Region for motor control.  

 

Figure 24: Precuneus (GM) Correlation Cluster. 
Region for visuospatial processing and motor 
coordination 
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Figure 25: Primary motor cortex (GM) correlation 
cluster. Region for motor control.  

 

Figure 26: Precuneus (GM) Correlation Cluster. 
Region for visuospatial processing and motor 

coordination 

The 3D correlation analysis detected many larger clusters of correlation in motor areas 

as well as clusters in regions with secondary visual and motor functions. For example, 

the angular gyrus plays a role in visuospatial attention and finger recognition and the 

precuneus is responsible for a number of complex functions such as visuospatial 

processing and motor coordination. In areas without a strong BOLD signal the 

meaningfulness of the resulting FCT FA maps may be diminished while areas of 

expected high BOLD activation it follows that the resulting spatio-temporal correlation of 

the signal is more accurate and therefore better correlated with the underlying brain 

structure. However, due to the variance in location of clusters and the lack of accepted 

thresholds in literature for this type of analysis, it is difficult to draw any conclusive 

interpretation. Additionally, due to the GM erosion in the tract based spatial statistics 

preprocessing steps of the DTI and FCT data there is a great deal of information missing 

from cortical areas.  
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Appendix E.   
 
Additional Figures 

E.1 Individual Pearson’s Correlation  

Pearson’s correlation between DTI FA and FCT FA maps are reported in Chapter 2. In 

figure 27 below the Pearson’s correlation coefficient for each acquired fMRI scan with 

the corresponding DTI scan is reported.  

 

Figure 27: Individual R-values for FCT FA maps compared to participant DTI FA maps for both the right and 
left hand. 
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E.2 Significant Voxel Timeseries Data 

Cluster masks of significant voxels in the corpus callosum and superior corona radiata 

were generated using FSL’s cluster function from the preprocessed fMRI data for the 

left-hand task. The BOLD timeseries data were averages across the masked regions 

and the data were windowed around the stimulus presentation. Signal means were 

subtracted from the data and the group averaged timeseries data were plotted for 

baseline and endpoint scans for each region of interest. Unlike the timeseries data for 

the internal capsule in section 1.7, this data have not been spatially smoothed resulting 

in a lower SNR as the BOLD fMRI data were preprocessed with FCT analysis as the 

primary objective. 

The underlying group timeseries data from the significant cluster in the corpus callosum 

is present in the figure 28 below. Both the baseline and endpoint mean subtracted BOLD 

data are present here.  

 

Figure 28: Average across significant corpus callosum voxels with subtracted mean BOLD signal intensity 
for baseline (orange) and endpoint (blue). Group level standard deviation plotted around timepoint BOLD 
signal intensity means. Time at zero seconds represents the stimulus onset time. 
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The underlying group timeseries data from the significant cluster in the superior corona 

radiata is present in the figure 29 below. Again, both the baseline and endpoint mean 

subtracted BOLD data are present in this figure.  

 

Figure 29: Average across significant superior corona radiata voxels with subtracted mean BOLD signal 
intensity for baseline (orange) and endpoint (blue). Group level standard deviation plotted around timepoint 
BOLD signal intensity means. Time at zero seconds represents the stimulus onset time. 

 


