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Abstract

Psychometric test data are useful for predicting a variety of important life outcomes and
personality characteristics. The Cognitive Reflection Test (CRT) is a short, well-validated
rationality test, designed to assess subjects’ ability to override intuitively appealing but
incorrect responses to a series of math- and logic-based questions. The CRT is predictive
of many other cognitive abilities and tendencies, such as verbal intelligence, numeracy,
and religiosity. Cognitive psychologists and psychometricians are concerned with whether
subjects improve their scores on the test with repeated exposure, as this may threaten the
test’s predictive validity.

This project uses the first publicly available longitudinal dataset derived from subjects who
took the CRT multiple times over a predefined period. The dataset includes a multitude
of predictors, including number of previous exposures to the test (our variable of primary
interest). Also included are two response variables measured with each test exposure: CRT
score and time taken to complete the CRT. These responses serve as a proxy for underlying
latent variables, “rationality” and “reflectiveness”, respectively. We propose methods to
describe the relationship between the responses and selected predictors. Specifically, we
employ a bivariate longitudinal model to account for the presumed dependence between our
two responses. Our model also allows for subpopulations (“clusters”) of individuals whose
responses exhibit similar patterns. We estimate the parameters of our one- and two-cluster
models via adaptive Gaussian quadrature. We also develop an Expectation-Maximization
algorithm for estimating models with greater numbers of clusters.

We use our fitted models to address a range of subject-specific questions in a formal way
(building on earlier work relying on ad hoc methods). In particular, we find that test ex-
posure has a greater estimated effect on test scores than previously reported and we find
evidence of at least two subpopulations. Additionally, our work has generated numerous
avenues for future investigation.

Keywords: Bivariate Longitudinal Model; Cluster Model, EM Algorithm, Gaussian Quadra-
ture, Adaptive Quadrature; Mixed Model; Cognitive Reflection Test
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Chapter 1

Introduction

The Cognitive Reflection Test (CRT) (Frederick, 2005) was developed to assess a subject’s
“reflectiveness”, operationalized in the cognitive psychology literature as the ability to over-
ride an incorrect but intuitively appealing response (a so-called “gut instinct”). The CRT
is a short, three-question test that is predictive of many cognitive abilities and tendencies
(Bialek and Pennycook, 2018). It was a precursor to the Comprehensive Assessment of
Rational Thinking (CART), a more in-depth “rationality” test currently being developed
(Stanovich et al., 2016). “Rationality” subsumes the construct of “reflectiveness” by referring
to the ability to override intuitive responses to obtain a correct answer, as operationalized
on the CART.

Part of this literature is concerned with disentangling the concepts of “intelligence” (as
measured by Intelligence Quotient [IQ] tests) and “rationality” (as measured by the CRT
or CART). Of particular interest to researchers is whether subjects tend to improve their
scores over time (for example, via repeated exposure to the same test questions), in which
case the tests may not retain their predictive validity. With respect to IQ, the literature
provides no convincing evidence that IQ scores improve in the long-term (Haier, 2014). But,
with respect to rationality scores, the literature is so far sparse. The first study to assess
this question was Meyer et al. (2018), who administered the CRT to subjects multiple times
over a predefined time period. We use the data from that longitudinal study in the present
work.

Our project extends the work of Meyer et al. (2018), who used conventional linear regression
modelling in an attempt to answer various questions about changes in subjects’ CRT scores
over time. These models did not sufficiently take into account the longitudinal nature of the
data, the dependence among responses measured on the same individual, or the discreteness
of the test scores. Though Meyer et al. (2018) intimates that the CRT dataset suggests
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the presence of subpopulations, their models do not account for them. To address these
limitations, we develop a bivariate longitudinal model to describe the relationship between
various predictors (including measures of prior exposure to the test) and two dependent
response variables: subjects’ score and time spent completing the test. We conceive of the
random effects in this model as representing reflectiveness and rationality. We also present
an extension of this model that allows a different bivariate longitudinal model for different
subpopulations of individuals via a latent cluster variable.

Our model extends the generalized linear mixed model (Agresti, 2013) to include a second
response variable. Our approach is similar to that of Kondo et al. (2017), who proposed a
multiple longitudinal outcome mixture model that incorporates random effects (REs) and
clusters. We use adaptive Gaussian quadrature (AGQ) to estimate the parameters of our
one- and two-cluster models. We also develop an Expectation-Maximization (EM) algorithm
to estimate the parameters of our multi-cluster models.

The rest of this paper is organized as follows. In Chapter 2, we describe the CRT dataset. In
Chapter 3, we present our models and estimation method. In Chapter 4, we use our models
to address questions concerning the effect of prior exposure and compare our findings with
those provided by Meyer et al. (2018). We conclude with a discussion of the analyses’
limitations and possible future work in Chapter 5.

2



Chapter 2

Cognitive Reflection Test (CRT)
Data

2.1 CRT Dataset Overview

The individuals in this study comprised over 14,000 subjects from Amazon Mechanical
Turk (MTurk)—a crowdsourcing website where volunteers can participate in tasks—and
over 28,000 observations across four separate series of surveys. (See Appendix A for a
discussion of the reliability of MTurk samples.) The data were collected from Novem-
ber 2013 to April 2015. We chose the largest series, Fall 2014 (which included observa-
tions from Sept. 3, 2014 to Jan. 12, 2015), to be the focus of our present work. The raw
dataset is available publicly from the Judgment and Decision Making journal’s website
(http://journal.sjdm.org/vol13.3.html).

After data wrangling (see Sections 2.2–2.4), the Fall 2014 series consisted of 6,228 obser-
vations on 2,920 unique subjects. The number of times that subjects took the test varied,
ranging from 1 to 15 within this series. Figure 2.1 summarizes the distribution of this
variable.

2.2 Responses of Interest

Meyer et al. (2018) treated CRT scores as the sole response variable in their analyses
(using the time that subjects took to complete the test as a predictor in one). In contrast,
we consider time to completion as another response variable, reasoning that it conveys
information about the underlying latent variable (“reflectiveness”) that we’re interested in
capturing.
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Figure 2.1: Distribution of subjects’ exposures, i.e., number of times subjects took the CRT.

2.3 Predictors

Various predictor variables may influence the distribution of our two response variables. In
this section we discuss our selection of these variables and our handling of idiosyncratic and
missing values.

Our primary predictor of interest is the number of times a subject has taken the CRT within
the series, including the current test. This variable is denoted by nPrevS and takes values
from 1 to 15. It is a time-varying, numeric predictor. Subjects may have taken the CRT
prior to these series, but we do not have access to this information.

Unlike nPrevS, the remaining predictors we selected were self-reported, and each presents
challenges to address. First, subjects self-reported the number of questions they had seen
from the CRT previously, denoted by numSeen. This variable is also numeric and time-
varying. It takes values from 0 to 3. In theory, this predictor should be time-invariant after
a subject’s first test exposure, since all returning subjects would have seen all CRT items at
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that time point. However, inconsistencies occur in practice: Subjects don’t always report “3”
after the first test exposure, and some even report decreasing values over time. Therefore, we
had to determine whether to keep the values as reported or to implement a modification. As
Meyer et al. (2018) noted, numSeen could be informative not only for its intended purpose
(measuring CRT items seen), but also as a proxy for a subject’s memory of the CRT and
mathematical ability. That is, a subject’s seeing the items but not remembering them is
arguably equivalent to never having seen the items. Thus, this predictor potentially conveys
useful information about the responses even though it doesn’t accurately represent number
of CRT items seen previously.

An additional concern is that nPrevS and numSeen could be highly correlated since they
both measure familiarity with the CRT—albeit one objectively and the other subjectively.
However, we think this concern is unwarranted for two reasons. First, as discussed, numSeen

likely captures indirect information not reflected in nPrevS. Second, in a preliminary analysis
based on separate models for each response variable, the estimated correlation of these two
predictors was relatively low in absolute magnitude.

The predictor aveSATS refers to a subject’s self-reported SAT score, averaged over the course
of the Fall 2014 series. It is a standardized, continuous predictor.

The binary categorical predictor male denotes a subject’s self-reported sex. However, male

was not always constant throughout the series. In the case of only two observations per sub-
ject with different sex values, we exclude both observations; otherwise, we replace discrepant
values with the most commonly used value reported by the subject.

Lastly, age denotes a subject’s standardized, self-reported age, which we treat as continuous.
Subjects had to be at least 18 years old to participate. Since subjects may have had a
birthday between their first and final exposures to the CRT, their ages could have increased
by a year across test exposures; however, we simply use their self-reported age at first
exposure to avoid time-variance. If subjects had greater than one-year increases in age across
observations, we replace the values with subjects’ starting age values so that it is not time-
varying. For the remaining discrepancies, our correctives involved some subjective judgment.
If the values do not vary too erratically, we either replace the discrepant value(s) with the
modal value or, in the case of no modal value, we use the median value. If the discrepancies
are too great to make an educated modification, we simply exclude the observations.

We initially hoped to include a seven-level ordinal variable denoting subjects’ reported level
of education (the levels are undefined in the dataset, but higher values denote higher levels
of education). However, we encountered issues relating to matrix sparsity when attempting
to fit the models with this variable. Ultimately, we reasoned that much of the information
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contained in this variable is likely contained within aveSATS, and thus decided to exclude
it. Table 2.2 provides further support for this decision.

Table 2.1 summarizes the response and predictor variables.

Variable Variable Type Description

CRT score Response (Discrete) CRT score
CRT time Response (Continuous) Log of time spent on CRT
nPrevS Explanatory (Discrete) Exposure number within series (time-varying)
numSeen Explanatory (Discrete) # of CRT items seen before (time-varying)
aveSATS Explanatory (Continuous) SAT score (standardized)
male Explanatory (Categorical) Sex
age Explanatory (Continuous) Age (standardized)
identifier Random factor Subject ID

Table 2.1: CRT variables selected

2.4 Missing Data

A substantial number of observations had missing values for at least one predictor. The most
common predictor with missing values is aveSATS, with over half of the original 14,500 obser-
vations in the Fall 2014 series missing subjects’ SAT scores (and many of these also missing
other predictor values). These values could represent unreported SAT scores or non-existent
SAT scores. In particular, we expect most American MTurks with post-secondary educa-
tion to have written the SAT (it is a mandatory test for admission into many American
colleges and universities). This expectation is reflected in Table 2.2: Lower education levels
are associated with higher percentages of missing values. Higher education levels are also
associated with higher average SAT scores, adding further justification to our aforemen-
tioned assumption that much of the information in the education variable is contained in
aveSATS. (Note that this table was constructed using only one observation per subject so
as not to overestimate missingness.)

Education
Level # of Observations # of Missing

SAT Responses
Proportion
Missing

Ave SAT
Score

1 87 76 87% 1,124
2 743 599 81% 1,152
3 2,785 1,676 60% 1,208
4 2,463 1,110 45% 1,253
5 504 198 39% 1,286
6 108 42 39% 1,289
7 71 29 41% 1,330

Table 2.2: Percentage of aveSATS values missing by education level
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However, other MTurks (including the roughly one-quarter of MTurks who are not Amer-
ican; see Appendix A) likely do not have SAT scores. In other words, we think that the
missing data mechanism is likely related to other demographic characteristics about which
we may not have information. That is, the missing data mechanism is likely either missing at
random (MAR) or missing not at random (MNAR), but we cannot distinguish which. Since
imputation could introduce unintended bias in the predictor values, we elect to exclude
observations with missing SAT values from our analysis. We discuss possible implications
of this decision in Chapter 5.

Once the observations with missing aveSATS values are removed, variables numSeen, age,
and male each have a relatively small proportion of missing values (8%, 2%, and 3%, respec-
tively). We omit all the observations with missing values of these predictors. Other than
aveSATS, we treat these missing predictor values as MAR, as we can reasonably assume
that a missing value is unrelated to the missing data but related to an observed variable
or parameter of interest (e.g., subjects did not self-report this value due to an inability to
recall, which may be related to aveSATS). The implications are likely minimal due to the
small proportion of missing values.

Finally, about 1.5% of the total observations in the Fall 2014 series contained missing
values for time to completion of the CRT, the second response variable. These missing
values occurred because subjects did not submit their test. The time they spent on the test
was not recorded. If this time had been recorded, we may have been able to include these
(right-censored) responses in our analysis. But the missing values were misleadingly coded
as “1”, giving the illusion that those observations correspond to a very quick completion of
the CRT. The missing values are clearly MNAR, and we have no reasonable way of imputing
them. However, given that they comprise a small proportion of the observations and thus
will have minimal impact, we discard them.

Our final dataset contains 6,228 observations from the Fall 2014 series. The target popula-
tion is relatively well-educated American adults.

2.5 Data Visualization

Here we provide further visualizations of the dataset to explore and motivate our proposed
models in the next chapter. First, we examine visualizations of the CRT score distribution.
Histograms of CRT score for different values of nPrevS are shown in Figure 2.2 (we omit
the cases where nPrevS ≥ 4 due to lack of data) and for different categories of aveSATS at
nPrevS = 1 in Figure 2.3. The former reveals bathtub-shaped distributions for each value of
nPrevS. The latter reveals bathtub-shaped distributions for each of the first two categories
of aveSATS and skewed left distributions with peaks at the maximum CRT score for the final
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two categories. Histograms of the distribution of CRT score conditional on other predictor
variables reveal similar shapes (see Appendix C).

Figure 2.2: Distribution of CRT score by nPrevS

Figure 2.3: Distribution of CRT score by aveSATS (for nPrevS=1)
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Figure 2.4 displays the distribution of the time response (on the logarithmic scale), broken
down by nPrevS (left) and by numSeen at nPrevS = 1 (right). The former graph reveals an
approximately normal distribution for each value of nPrevS. We also observe that additional
test exposures are associated with lower times to completion. The latter graph likewise
reveals an approximately normal distribution for each value of numSeen at subjects’ first
test exposure. The times to completion are markedly different for the lowest and highest
values of numSeen. With values of nPrevS > 1 (see Appendix C), this difference is much
less, implying that the effect of numSeen on CRT time to completion is most pronounced at
the first test exposure. Similar graphs for the other predictors suggest little effect on time
to completion (see Appendix C).

Figure 2.4: Distribution of the logarithm of time to completion for nPrevS≤ 4 (left) and for
numSeen at nPrevS=1 (right)

Next, Figure 2.5 displays the ordinary least squares (OLS) estimates of the effects of nPrevS

when CRT score (left) and CRT log time to completion (right) are regressed on the predic-
tors separately for each subject (for subjects who completed the test more than once). We
do not make formal inference based on these estimates; we use them simply for visualizing
the trends in subjects’ observed test scores and completion times. The plot for CRT score
reveals a peak at 0, describing the vast majority of subjects whose scores remained constant
over time. The majority of the remaining estimates are greater than 0, with a small pro-
portion less than 0. The plot for time to completion reveals a peak at 0, with the majority
of estimates being negative, implying that subjects generally took less time to complete
the test with additional exposures. We also observe a small but non-negligible proportion
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of subjects who spent an increasing amount of time to complete the test with additional
exposures.

Figure 2.5: OLS estimates of the effects of nPrevS when CRT score is regressed on the pre-
dictors separately for each subject (left); and when CRT log time to completion is regressed
on the predictors separately for each subject (right).

Lastly, we use the pair of scatterplots in Figure 2.6 to explore the changes in the two
response variables over time: The left panel shows subjects’ average time to completion vs.
the OLS estimates of the effects of nPrevS when their scores are regressed on the predictors
(separately for each subject); the right panel shows OLS estimates of the effects of nPrevS

when subjects’ log times to completion are regressed on the predictors vs. the OLS estimates
of the effects of nPrevS when the scores are regressed on the predictors (both separately for
each subject). Both sets of points are broken down by initial CRT scores. These plots use
data only from subjects who appeared more than once in the series. The patterns in both
plots are difficult to detect visually, but hint at very slight, positive correlations between the
pairs of variables at each level of first score. The leftmost scatterplot exemplifies how subjects
who improved their CRT scores on subsequent tests generally spent more time on the test
than did subjects with constant scores; the rightmost scatterplot similarly exemplifies how
subjects who improved their scores on subsequent tests generally spent more time on each
subsequent test than did subjects with constant scores.

Moreover, of the 44% of subjects who appeared more than once in the series, 73% had
constant CRT scores and their average decrease in time spent completing the test was 0.33
log seconds per additional test exposure; 18% had increasing scores, an average CRT score
improvement of 0.70 per additional test exposure, and an average decrease in time spent of
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0.27 log seconds; and 9% had decreasing CRT scores, an average CRT score decrease of 0.60,
and an average decrease in time spent of 0.42 log seconds. In other words, the small subset
of subjects who improved their test scores over time reflected longer than did subjects who
exhibited constant scores. These statistics and the scatterplots in Figure 2.6 are consistent
with the observation by Meyer et al. (2018) that a small proportion of subjects “continue
to spend time on the test”.

Figure 2.6: Average time to completion (log scale) vs. OLS estimates of the effects of nPrevS
on CRT score by subjects’ first test score (left); OLS estimates of the effects of nPrevS on
log time to completion vs. OLS estimates of the effects of nPrevS on CRT score by subjects’
first test score (right)
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Chapter 3

Statistical Methods

To model our unbalanced longitudinal data and explore the relationship between our predic-
tors and bivariate response, we consider extensions of traditional generalized linear mixed
models. In the following sections, we describe bivariate longitudinal models that can be
applied to the CRT data and, in particular, the estimation and computational challenges
that can arise in maximizing the likelihoods. Ultimately, we propose three models; the first
serves as our foundational model, and the second and third extend the first to allow for
subpopulations (“clusters”) of individuals with similar levels of rationality and reflective-
ness.

3.1 Models

Let Yij and Tij denote subject i’s CRT score and response time (on the logarithmic scale),
respectively, on the jth attempt of the CRT in the Fall 2014 series, i = 1, . . . , n, j = 1, . . . , ni.
Since a subject is awarded one point for each correct answer on the CRT, Yij ∈ {0, 1, 2, 3}.
In contrast, Tij takes values on the real line.

3.1.1 Bivariate Longitudinal Model

To deal with the repeated measures, we use a random intercept in the model for each of our
bivariate responses. Among other implications, these random effects allow for correlation
among scores or times to completion observed on the same individual.

Let xij denote the vector of predictor variables associated with subject i on the jth attempt
of the CRT. We model the test scores as

Yij | Ui ∼ Bin(3, θij),

where
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logitθij = x′ijβ + Ui

and where the random effects, Ui, are independent and distributed as N(0, σ2
u). We conceive

of Ui as a latent variable representing “rationality”. Likewise, we model the logarithm of the
time to completion as

Tij | Vi ∼ N(µij , σ2
t ),

where

µij = x′ijα+ Vi

and where the random effects, Vi, are independent and distributed as N(0, σ2
v). We conceive

of Vi as a latent variable representing “reflectiveness”.

We assume that Yij | Ui is independent of Yij′ , j′ 6= j, all Tij ’s, and Vi. We also assume that
Tij | Vi is independent of Tij′ , j′ 6= j, all Yij ’s, and Ui. Finally, we assume that the joint
distribution of the random effects is bivariate normal, that is,

(Ui, Vi) ∼ N (0,Σ),

where

Σ =
[
σ2
u ρσuσv

ρσuσv σ2
v

]
.

Figure 2.4 motivates the model for Tij | Vi. Histograms of the logarithm of time to comple-
tion given combinations of predictor variables reveal that the marginal distribution of Tij
is approximately normal. From this perspective, the proposed models for Tij | Vi and Vi

(which imply that Tij is normally distributed) are reasonable.

With these assumptions, we can write the likelihood as a product of the conditional distri-
butions:

L[1](ψ) =
∏
i

∫ ∫ (∏
j

fYij |Ui
(yij |ui)fTij |Vi

(tij |vi)
)
· fUi,Vi(ui, vi)duidvi

=
∏
i

∫ ∫ (∏
j

θ
yij

ij (1− θij)3−yij · 1
σt

exp
(
− (tij − µij)2

2σ2
t

))
·

1
σuσv

√
1− ρ2 exp

[
− 1

2(1− ρ2)

(
u2
i

σ2
u

+ v2
i

σ2
v

− 2ρuivi
σuσv

)]
duidvi, (3.1)

where ψ = (β,α, σt, σu, σv, ρ) is the vector of parameters to be estimated. We omit terms
that are constant with respect to the unknown parameters throughout this report. In ad-

13



dition, we use superscripts with square brackets to denote the number of clusters in the
model.

Based on our chosen model, we can find a closed form for the marginal distribution of the
time to completion. In particular, the vector of times to completion of the ith subject, Ti,
is distributed as multivariate normal with E[Tij ] = µij , Var[Tij ] = σ2

v + σ2
t , and

Cov[Tij , Tik] = σ2
v

for j 6= k. Since times observed on different subjects are assumed independent, Cov[Tij , Thk] =
0 for i 6= h.

The marginal distribution of CRT score is

fYij (yij) =
∫
fYij |Ui

(yij |ui)fUi(ui)dui,

which does not have a closed form. Likewise, the marginal mean, variance, and covariance
of CRT scores do not have a closed form. We can say, however, that they depend on the
predictor variables in a complicated way.

The assumption that test scores are conditionally binomial distributed may, at first, seem
suspect because the outcomes (correct/incorrect) of the three questions posed to each indi-
vidual at each exposure are not necessarily independent with common probability of success.
However, Figures 2.2 and 2.3 help to justify the model for Yij | Ui. In particular, the his-
tograms of the CRT score responses for given combinations of predictor variables reveal
that the marginal distribution of Yij has a “bathtub” shape. This shape can be captured by
a mixture of binomial distributions where the mixture distribution is a normal distribution,
i.e., our specified distribution of Yij | Ui. We thus use this model for the overall test scores
but do not interpret the scores as arising from a series of three independent trials (questions)
with a common probability of success (correctness).

3.1.2 Bivariate Longitudinal Model with Two Clusters

Our second proposed model extends the first model by postulating that test subjects com-
prise distinct clusters. This model is based on an alternative interpretation of the marginal
distribution of the CRT scores depicted in Figures 2.2 and 2.3. In particular, we surmise
that this (bimodal) distribution arises due to two distinct subpopulations or clusters of
individuals. In this new model, we hypothesize that the first cluster corresponds to subjects
whose CRT scores remain relatively stable over time, while the second corresponds to sub-
jects whose CRT scores improve over time. The proportion of subjects whose scores decrease

14



over time is expected to be negligible. Our original model can be considered a special case
of this extended model where the probability associated with one cluster is 0.

Let x̄ij be the vector of all predictor variables except nPrevS observed on subject i at time
j. Let sij be the value of nPrevS observed on subject i at time j. Let Ci ∈ {1,2} be a latent
cluster indicator, where clusters correspond to the two subpopulations described above.
We assume that the Ci’s are independent and distributed as P (Ci = ci) = γci . As per
our original model, we assume that (Ui, Vi) are independent, bivariate normal distributed
random effects. We then assume that Yij | Ui, Ci is distributed as Bin(3, θij), where

logitθij = βci0 + βci1sij + x̄′ijβ + ui.

We further assume that Tij | Vi, Ci is distributed as N(µij , σ2
t ), where

µij = αci0 + αci1sij + x̄′ijα+ vi.

The intercepts and effects of nPrevS are allowed to differ by cluster but, for parsimony, we
assume that the other regression coefficients are common across clusters.

We expect that one cluster will correspond to the subpopulation of individuals whose CRT
scores remained relatively stable over time and that the other cluster will correspond to the
subpopulation of whose scores improved over time.

The likelihood is

L[2](ψ) =
∏
i

∫ ∫ ∑
ci

(∏
j

fYij |Ui,Ci
(yij |ui, ci)fTij |Vi,Ci

(tij |vi, ci)
)
· fCi(ci) · fUi,Vi(ui, vi)duidvi

=
∏
i

∫ ∫ ∑
ci

(∏
j

θ
yij

ij (1− θij)3−yij · 1
σt

exp
(
− (tij − µij)2

2σ2
t

))
· γci · fUi,Vi(ui, vi)duidvi,

(3.2)

where ψ = (β,α, σt, σu, σv, ρ, γ2) is the vector of parameters to be estimated. (We exclude
γ1 from ψ since it can be computed as γ1 = 1−γ2 and hence is not a free parameter.)

3.1.3 Bivariate Longitudinal Model with Four Clusters

Our third proposed model increases the number of latent cluster labels to four. This
four-cluster model uses theoretical understandings derived from the literature, namely the
slightly differing operationalizations of reflectiveness and rationality that we outlined in
Chapter 1. Specifically, we hypothesize “high” and “low” categories for each latent vari-
able, resulting in four combinations of the two categories. We now let Ci ∈ {1,2,3,4}, where
clusters correspond to the four combinations of rational/not rational and reflective/not
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reflective. As in the two-cluster model, we assume that the Ci’s are independent and dis-
tributed as P (Ci = ci) = γci . We define γ = (γ2, γ3, γ4). As in the prior two models, we
assume that the tuples (Ui, Vi) are independent and distributed as bivariate normal. We
further assume that Yij | Ui, Ci is distributed as Bin(3, θij), where

logitθij = βci0 + βci1sij + x̄′ijβ + ui.

We further assume that Tij | Vi, Ci is distributed as N(µij , σ2
t ), where

µij = αci0 + αci1sij + x̄′ijα+ vi.

The purpose of this model is to allow a coarse categorization (via the clusters) of individuals
as rational/not rational and reflective/not reflective. The random effects Ui and Vi account
for the remaining variation in the underlying levels of these characteristics. We envision that
cluster 1 would correspond to the subpopulation of individuals who are neither rational nor
reflective. We would expect β11 = 0, as we expect that subjects who aren’t reflective do not
improve their CRT scores with repeated test exposure. Cluster 2 would correspond to the
subpopulation of individuals who are not rational but are reflective. Like in cluster 1, we
would expect β21 = 0 and β20 to be relatively low, but α20 to be relatively high. Cluster 3
would correspond to the subpopulation of individuals who are rational and reflective. Here
we would expect β30 and α30 to be relatively high, and expect β31 to be positive and α31

to be 0 or negative. Cluster 4 would correspond to the subpopulation of individuals who
are rational but either aren’t reflective or provide no information about their reflectiveness
because they quickly chose the correct answers. We therefore expect β41 = 0. We further
expect β40 to be high and α40 to be low.

The likelihood is

L[4](ψ) =
∏
i

∫ ∫ ∑
ci

(∏
j

fYij |Ui,Ci
(yij |ui, ci)fTij |Vi,Ci

(tij |vi, ci)
)
· fCi(ci) · fUi,Vi(ui, vi)duidvi

=
∏
i

∫ ∫ ∑
ci

(∏
j

θ
yij

ij (1− θij)3−yij · 1
σt

exp
(
− (tij − µij)2

2σ2
t

))
· γci · fUi,Vi(ui, vi)duidvi,

(3.3)

where ψ = (β,α, σt, σu, σv, ρ,γ) is the vector of parameters to be estimated.

3.2 Estimation

Direct maximization of the likelihoods (3.1)–(3.3) requires integrating complex functions
with respect to ui and vi. These integrals do not have closed form solutions. Instead, we
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use adaptive Gaussian quadrature (AGQ) (Pinheiro and Chao, 2006) to find the maximum
likelihood estimates (MLEs) of the one- and two-cluster model parameters. To estimate
the four-cluster model, which contains many more parameters, we develop an Expectation-
Maximization (EM) algorithm (Dempster et al., 1977). We elect to use AGQ rather than
EM for the former models due to improved efficiency.

3.2.1 Adaptive Gaussian Quadrature

Gaussian quadrature is a numerical procedure for approximating integrals that involves a
finite, weighted sum of the output of a function evaluated at particular inputs. A Gaussian
quadrature rule has the form

∫ b

a
w(z)h(z)dz ≈

Q∑
k=1

wkh(zk), z1 < z2 < . . . < zQ,

where wk are weights, zk are quadrature points or abscissae, and Q is the chosen number
of quadrature points. If h(z) is a polynomial of degree 2Q − 1 or less, the approximation
is exact. When the weight function is w(z) = e−z

2 , the Gauss-Hermite quadrature (GHQ)
rule is commonly used to determine the weights and abscissae. However, large numbers of
quadrature points are often needed to obtain accurate approximations of likelihoods, which
can become prohibitively expensive computationally (see Section 4.6).

Adaptive Gaussian Quadrature (AGQ) solves some of the issues of GHQ by adapting the
quadrature points and weights to the function we wish to integrate. With too few quadrature
points used, the peak of the integrand may be located between adjacent quadrature points
so that a substantial portion of the likelihood contribution may be lost. AGQ has been
described as an attempt to shift and rescale the quadrature points to lie under the peak of
the integrand (Rabe-Hesketh and Skrondal, 2002).

The iterative steps for maximum likelihood estimation using AGQ can be summarized, in
the context of our proposed one-cluster model, as

1. Predict (ûi, v̂i) using starting values of our model parameters, ψ.

2. Use (ûi, v̂i) and Gauss-Hermite quadrature to form an approximate log-likelihood.

3. Maximize this approximate log-likelihood to find an updated estimate of ψ.

4. Repeat steps 1–3 until convergence (defined as the event that the difference between
consecutive estimates is less than a chosen value, δ) is achieved.
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The details of this procedure are as follows. We first define the logarithm of the joint density
of our response variables and random effects as

gUi,Vi(ui, vi) = log
(
fYi,Ti|Ui,Vi

(yi, ti | ui, vi)fUi,Vi(ui, vi)
)
.

We then maximize gUi,Vi(ui, vi) by computing (ûi, v̂i) such that g′Ui,Vi
(ûi, v̂i) = 0. Using a

Laplace approximation of gUi,Vi(ui, vi) around (ûi, v̂i), we can show that exp {gUi,Vi(ui, vi)}—
and hence the posterior distribution of (Ui, Vi)—is approximately proportional to a normal
density with mean µA = (ûi, v̂i) and variance ΣA =

[
g′′Ui,Vi

(ûi, v̂i)
]−1

.

Let φ(·;µA,ΣA) be the density of a bivariate normal random variable with mean µA and
variance-covariance matrix ΣA. Defining Bi = (Ui, Vi), we next rewrite the marginal density
of (Yi,Ti) as

fYi,Ti(yi, ti)

=
∫∫

fYi,Ti|Bi
(yi, ti | bi)fBi(bi) dbi

=
∫∫ {

fYi,Ti|Bi
(yi, ti | bi)fBi(bi)

φ(bi;µA,ΣA)

}
φ(bi;µA,ΣA) dbi.

The Laplace approximation result implies that the term {·} is approximately constant
with respect to bi. Consequently, we can use Gauss-Hermite quadrature with relatively few
quadrature points to evaluate this integral with high accuracy. In particular, substituting
zi = bi − µA

ΣA
, we can write

fYi,Ti(yi, ti)

=
∫∫ fYi,Ti|Bi

(
yi, ti | Σ

− 1
2

A zi + µA
)
fBi

(
Σ−

1
2

A zi + µA
)

exp(−||zi||2) Σ−
1
2

A exp(−||zi||2) dzi

≈ (2π)q/2|Ri|−1∑
k
fYi,Ti|Bi

(
yi, ti | Σ

− 1
2

A zk + µA
)
fBi

(
Σ−

1
2

A zk + µA
)
Wk,

where k = (k1, k2), k1, k2 = 1, . . . , Q, indexes theQ×2 grid of abscissae,Wk = exp(||zk||2)wk1wk2 ,
and R = Σ−1

A .

The AGQ approximation to the log-likelihood function is

`[AGQ](ψ) = −n2 log|Σ|+
ni∑
i=1

−log|Ri|+ log


Q∑
j

fYi,Ti|Bi
(yi, ti | bi)fBi(bi)Wk


 .
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When Q = 1, this approximation is the Laplace approximation. Higher values of Q lead to
greater accuracy, however, and are thus preferable. Pinheiro and Chao (2006) argue that
Q ≤ 7 is generally sufficient. In our case, Q = 15 quadrature points seemed sufficient to
evaluate the integrals in our log-likelihood accurately.

The computational efficiency is thus generally much greater for AGQ compared to GHQ.
Figure 3.1, adapted from Rabe-Hesketh and Skrondal (2002), illustrates the difference be-
tween GHQ and AGQ using normal prior and posterior densities. (Note that the prior
refers to the assumed marginal density of the random effect, and the posterior refers to the
conditional density of the random effect given the data.)

Figure 3.1: Prior (dotted curves) and posterior (solid curves) densities and quadrature
points (bars) for standard GHQ (left) and AGQ (right). The heights of the bars represent
the weights assigned to the quadrature points.

3.2.2 EM Algorithm

Direct maximization of the likelihood (after approximating the integrals using AGQ) is
infeasible for models with large numbers of clusters. Thus, for our four-cluster model, we
take a different approach to estimation: the EM algorithm. This algorithm is an iterative
algorithm consisting of an E-step and an M-step at each iteration. At the E-step, an objective
function is defined using the parameter estimates at the current iteration. At the M-step,
this function is then maximized to obtain updated parameter estimates. This procedure is
repeated until convergence, as defined in Section 3.2.1.

The foundation of the EM algorithm is the complete log-likelihood, which is the likelihood
that would arise if all latent variables were, in fact, observed. The complete log-likelihood
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associated with the cluster model with K clusters is

`[K]
c (ψ) = log

∏
i

∏
j

fYij |Ui,Ci
(yij |ui, ci)fTij |Vi,Ci

(tij |vi, ci)

 · fUi,Vi(ui, vi) · fCi(ci)


=

n∑
i=1

ni∑
j=1

(
log

[
fYij |Ui,Ci

(yij |ui, ci)
]

+ log
[
fTij |Vi,Ci

(tij |vi, ci)
])

+
n∑
i=1

log
[
fVi|Ui

(vi|ui)f(ui)
]

+
n∑
i=1

log [fCi(ci)] .

The E-Step

In the E-step, we define the objective function as

Q[K](ψ,ψ(p)) = E(p)[`[K]
c (ψ) | Y,T],

i.e., the expectation of the complete log-likelihood with respect to the current conditional
distribution of the random effects given our observed data and the current estimates of our
parameters, ψ(p). In the M-step we find the maximizer of Q[K](ψ,ψ(p)), namely

ψ(p+1) = arg max
ψ

Q[K](ψ,ψ(p)).

Repeating these steps guarantees that the value of the log-likelihood (3.1) will increase (or
at least not decrease) with increasing p (Wu, 1983).
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To provide more detail, for the multi-cluster model, Q[K](ψ,ψ(p)) takes the form

Q(K)(ψ,ψ(p))

=
n∑
i=1

ni∑
j=1

E(p)
{
log
[
θ
yij

ij (1− θij)3−yij

] ∣∣∣∣Yi,Ti

}

+
n∑
i=1

ni∑
j=1

E(p)
{

log
[

1
σt

exp
(
− (tij − µij)2

2σ2
t

)] ∣∣∣∣Yi,Ti

}

+
n∑
i=1

E(p)
{

log
[
fVi|Ui

(vi|ui)fUi(ui)
] ∣∣∣∣Yi,Ti

}

+
n∑
i=1

E(p)
{

log(γci)
∣∣∣∣Yi,Ti

}

=
n∑
i=1

ni∑
j=1

K∑
ci=1

γ(p)
ci

∫∫ {
log
[
θ
yij

ij (1− θij)3−yij

]}
f

(p)
Ui,Vi|Yi,Ti,Ci

(ui, vi|yi, ti, ci)duidvi

+
n∑
i=1

ni∑
j=1

K∑
ci=1

γ(p)
ci

∫∫ {
log

[
1
σt

exp
(
−(tij − µij)2

2σ2
t

)]}
f

(p)
Ui,Vi|Yi,Ti,Ci

(ui, vi|yi, ti, ci)duidvi

+
n∑
i=1

K∑
ci=1

γ(p)
ci

∫∫ {
log

[
fVi|Ui

(vi|ui)fUi(ui)
]}
f

(p)
Ui,Vi|Yi,Ti,Ci

(ui, vi|yi, ti, ci)duidvi

+
n∑
i=1

K∑
ci=1

γ(p)
ci

∫∫
log (γci) f

(p)
Ui,Vi|Yi,Ti,Ci

(ui, vi|yi, ti, ci)duidvi

≡ Q
[K]
1 (ψ,ψ(p)) +Q

[K]
2 (ψ,ψ(p)) +Q

[K]
3 (ψ,ψ(p)) +Q

[K]
4 (ψ,ψ(p)),

where the functions Q[K]
1 (ψ,ψ(p)), Q[K]

2 (ψ,ψ(p)), Q[K]
3 (ψ,ψ(p)), and Q

[K]
4 (ψ,ψ(p)) corre-

spond to the four sets of summations.

These expressions require evaluating double integrals that do not have a closed form solu-
tion. Therefore, to complete the E-step, we propose evaluating the integrals in the objective
function empirically by sampling methods such as Markov chain Monte Carlo (MCMC)
or importance sampling, in which case the estimation method is called a Monte Carlo
Expectation-Maximization (MCEM) algorithm (Neath, 2013). Indeed, Kondo et al. (2017)
took this approach. However, this approach is much less computationally efficient than
AGQ, hence our decision to use the latter for our one- and two-cluster models (Pinheiro
and Chao, 2006). Given enough computing power, standard Gauss-Hermite quadrature
could be a feasible alternative (see Appendix E for details on this approach).

The M-Step

Now we turn to the M-step, maximization. The four sets of summations in Q[K](ψ,ψ(p))
are functions of disjoint sets of unknown parameters. We thus split it into the sum of four
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different objective functions:

Q[K](ψ,ψ(p)) ≡ Q[K]
1 (β,ψ(p)) +Q

[K]
2 (α, σ2

t ,ψ
(p)) +Q

[K]
3 (σ2

u, σ
2
v , ρ,ψ

(p)) +Q
[K]
4 (γ,ψ(p)).

These functions can be approximated using Monte Carlo sampling or possibly Gauss-
Hermite quadrature (see Appendix E) and then maximized separately.

We maximize these functions for the current estimates of the parameters, ψ(p). We then
iterate the E- and M-steps until the distance between consecutive estimates is less than a
specified (small) value, δ.

3.2.3 Starting Values

To obtain starting values for the parameter estimates in the one-cluster model, we first
fit separate (generalized) linear mixed models to the CRT scores and completion times,
treating these responses as independent. That is, we maximized

L[Y ](ψ) =
∏
i

∫ (∏
j

fYij |Ui
(yij |ui)

)
· fUi(ui)dui

and

L[T ](ψ) =
∏
i

∫ (∏
j

fTij |Vi
(tij |vi)

)
· fVi(vi)dvi.

For our correlation parameter, we used a starting value of 0.

For our two-cluster model, to obtain starting values for the fixed and random effect param-
eters common to each cluster, we first fit the two-cluster model with no random effects. We
used the MLEs of the parameters in this model—along with small values for σu and σv and
0 for ρ—as starting values for estimating the full two-cluster model.

3.3 Predicting Random Effects

Predicting random effects is often not of interest, especially when they may not have any
physical meaning. However, in our case, we construe them as representing subjects’ ratio-
nality and reflectiveness, which are fundamental characteristics of interest.

We are interested in predicting Ui and Vi given Y and T. To this end, after computing
the MLEs of the model parameters, ψ̂, we can return to step 1 in the iterative estimation
procedure discussed in Section 3.2.2. The prediction (ûi, v̂i) is the posterior mode of the
distribution of (Ui, Vi) given the observed data. It can be interpreted as the level of ra-
tionality and reflectiveness of the ith subject. Values of zero correspond to subjects with
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average levels of rationality and reflectiveness, while values less than and greater than zero
indicate below and above average levels, respectively. The magnitude of the values should
be interpreted relative to the estimated standard deviations of Ui and Vi.

3.4 Implementation

We implemented the aforementioned methods (with the exception of Monte Carlo sampling)
in R. We used the function GLMMadaptive::mixed_model to fit the binomial generalized
linear mixed model to the score data and the lme4::lmer function to fit the linear mixed
model to the completion time data (as described in Section 3.2.3). We also used the nlm

function for maximizing objective functions and the package gaussquad to obtain the Gauss-
Hermite quadrature points and weights. Otherwise, we wrote our own code.
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Chapter 4

Results

Having described the statistical methods we used to analyze our data, we now discuss the
fitted models and use them to answer a variety of field-related questions.

4.1 One-Cluster Model: Fit and Interpretation

For our one-cluster model, the parameter estimates and associated standard errors are
displayed in Table 4.1.

Parameter β0 β1 β2 β3 β4 β5

Estimate
SE

−0.688
0.109

0.064
0.016

0.305
0.031

1.105
0.060

0.963
0.119

0.231
0.057

Parameter α0 α1 α2 α3 α4 α5

Estimate
SE

4.324
0.028

−0.115
0.004

−0.275
0.009

−0.052
0.013

−0.044
0.028

0.016
0.013

Parameter log(σt) log(σu) log(σv) log[(1+ρ)/(1-ρ)]

Estimate
SE

−0.549
0.012

0.928
0.027

−0.632
0.025

0.080
0.058

Table 4.1: One-cluster model parameter estimates and standard errors

Our primary question of interest—whether repeat exposures are associated with increases in
CRT scores—can now be addressed. The 95% confidence interval (CI) for β1 (the coefficient
of nPrevS) is [0.033, 0.095], suggesting that the effect of repeat exposures on test scores
is indeed positive. The estimated effect of the subjective metric of CRT item exposure,
numSeen, is also positive, but stronger in magnitude (95% CI [0.245, 0.365]). These estimates
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are difficult to interpret concisely because they have a complicated relationship with the
mean test score. However, we can estimate and compare mean test scores for different
combinations of the predictor variables. Table 4.1 presents estimated mean CRT scores
(Ê[Y ]) for different values of nPrevS and numSeen based on our one-cluster model. The
standardized predictors aveSATS and age are set to 0, and male is set to 1 (i.e., these
estimates are for male subjects with average SAT score and age).

Ê[Y ] Ê[Y ]

nPrevS numSeen ui = 0 Population nPrevS numSeen ui = 0 Population

1 0 1.209 1.356 1 2 1.662 1.595
2 0 1.255 1.381 2 2 1.709 1.620
3 0 1.302 1.406 3 2 1.756 1.645
4 0 1.350 1.431 4 2 1.803 1.669
5 0 1.397 1.456 5 2 1.848 1.694
1 1 1.434 1.475 1 3 1.883 1.713
2 1 1.482 1.501 2 3 1.927 1.737
3 1 1.530 1.526 3 3 1.971 1.761
4 1 1.578 1.551 4 3 2.014 1.786
5 1 1.626 1.576 5 3 2.056 1.810

Table 4.2: Estimated mean CRT scores, Ê[Y ] for the average subject (ui = 0) and the
population of subjects, for different values of nPrevS and numSeen

The first column of estimated mean CRT scores is for an average subject, that is, for
a subjects with ui = 0. The second column is for the population of subjects, which we
obtained by simulating ui from the N(0, σ̂2

u) distribution. For a fixed value of numSeen, the
estimated mean CRT score for an average subject increases by about 0.046 for each unit
increase in nPrevS, and the estimated mean score for all subjects increases by about 0.025
for each unit increase in nPrevS. For a fixed value of nPrevS, the estimated mean CRT
score for an average subject increases by about 0.223 for each unit increase in numSeen, and
the estimated mean score for all subjects increases by about 0.118 for each unit increase in
numSeen. These results call into question the CRT’s predictive validity, i.e., test exposure
has a non-trivial effect on test scores.

The estimated (approximate) per exposure increase in mean CRT score for an average
subject (0.046) contrasts with the estimated 0.024 increase reported by Meyer et al. (2018),
who used OLS to estimate this effect by regressing CRT score on number of test exposures.
However, the 0.024 estimate is based on the entirety of the Fall 2014 dataset; the estimate
would be 0.011 if based on the subset of these data that we use.
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As additional confirmation of the effect of nPrevS on CRT score, we conduct a likelihood
ratio test of β1 = 0. The p-value ≤ 0.001, suggesting very strong evidence that score changes
with increased exposure.

We estimate that time to completion decreases by 0.115 (95% CI [0.106, 0.124]) log seconds
for each additional test exposure. Likewise, we estimate a decrease of 0.275 (95% CI [0.258,
0.292]) log seconds spent on the test with each unit increase in numSeen.

Meyer et al. (2018) reported slightly negative correlations between CRT score and time to
completion within subject (for those who took the test at least twice). We take a different
but related approach by estimating the correlation of our random effects, ρ, which describes
the correlation between subjects’ rationality and reflectiveness after accounting for within
subject variation due to the predictors. The very weak estimated correlation of 0.040 (95%
CI [−0.017, 0.096]) between latent variables is consistent with our descriptive data analysis
in Chapter 2 (see Figure 2.4). This estimate suggests that our two response variables are
nearly uncorrelated.

4.2 Two-Cluster Model: Fit and Interpretation

The estimates of the parameters of our two-cluster model are displayed in Table 4.3.

Parameter β10 β11 β20 β21 β2 β3 β4 β5

Estimate
SE

−0.420
0.221

0.024
0.047

−0.825
0.142

0.070
0.017

0.310
0.031

1.104
0.060

0.962
0.119

0.236
0.057

Parameter α10 α11 α20 α21 α2 α3 α4 α5

Estimate
SE

5.134
0.116

−0.368
0.032

3.958
0.053

−0.081
0.007

−0.246
0.009

−0.058
0.013

−0.043
0.027

0.024
0.013

Parameter log(σt) log
(

γ2
1−γ2

)
log(σu) log(σv) log[(1+ρ)/(1-ρ)]

Estimate
SE

−0.612
0.013

0.630
0.244

0.926
0.027

−0.820
0.040

−0.033
0.086

Table 4.3: Two-cluster model parameter estimates and standard errors

We now have two additional fixed effects (an intercept and coefficient of nPrevS for the
second cluster) for each response variable and a cluster probability parameter. For the
CRT score response, the CIs for the intercepts in each cluster [−0.853, 0.013] and [−1.103,
−0.547], overlap and the CIs for the effects of nPrevS, [−0.068, 0.116] and [−0.037, 0.103],
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also overlap, preventing us from drawing any firm conclusions about the differences between
the clusters.

On the other hand, subjects in cluster 1 appear to spend more time on their first test than
subjects in cluster 2, with estimated intercepts of 5.134 (95% CI [4.907, 5.361]) and 3.958
(95% CI [3.854, 4.062]), respectively. Additionally, subjects in cluster 2 appear to reflect
for longer on subsequent tests compared to subjects in cluster 1; the estimated effects of
nPrevS on time to completion are −0.368 (95% CI [−0.431, −0.305]) and −0.081 (95% CI
[−0.095, −0.067]) for clusters 1 and 2, respectively.

The estimates for the cluster probability parameters are γ̂1 = 0.348 (95% CI [0.248, 0.462])
and γ̂2 = 0.652 (95% CI [0.538, 0.752]).

Though the estimates of the cluster-specific parameters of the model for CRT scores do
not point to distinct subpopulations in terms of rationality, the two-cluster model fits sub-
stantially better than the one-cluster model. In particular, the maximized value of the log-
likelihood is −12,426, whereas the maximized value of the log-likelihood of the one-cluster
model is −12,545.

The estimates of σu based on the one- and two-cluster models are very close: 2.524 (95%
CI [2.394, 2.662]) in the one-cluster model vs. 2.489 (95% CI [2.174, 2.850]) in the two-
cluster model. The estimates of σv are similarly close: 0.440 (95% CI [0.407, 0.476]) in the
one-cluster model vs. 0.480 (95% CI [0.406, 0.569]) in the two-cluster model. Using the
two-cluster model, the estimate of ρ is still indistinguishable from 0: ρ̂ = −0.017 (95% CI
[−0.100, 0.068]). In other words, after adjusting for the predictors and clusters, we have no
evidence of correlation between a subject’s rationality and reflectiveness.

4.3 Additional Results

In both models, the single best predictor of CRT score is aveSATS. This result reaffirms
the commonly reported finding in the literature that CRT and SAT scores are positively
correlated and useful predictors of one another, e.g., Frederick (2005). While this association
exists, Stanovich et al. (2016) has shown that the underlying latent variables (rationality on
the CRT and CART, and intelligence on IQ tests, for which SAT is a significant predictor)
are distinct. That is, they are characterized by different cognitive processes and predict
different outcomes and traits.

Moreover, whether using the one- or two-cluster model, we estimate a large, positive effect
of male on CRT score, a moderate-to-weak effect of age on CRT score, and negligible effects
of male and age on time to completion. These findings confirm the effects of sex and age
on CRT test scores that have been reported in the literature.
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Unfortunately, while we attempted to fit the four-cluster model using both AGQ and the EM
algorithm with GHQ, we were not able to obtain reliable results in time for this report.

4.4 Model Assessment

As an informal check of the fit of our one-cluster model, we compare the distributions of
observed CRT scores and times to completion at nPrevS=1 to the estimated distributions
of the score and time responses using parameter estimates from our fitted model. See Ap-
pendix D for the relevant plots and further details on how the distributions were estimated.
The estimated distribution of CRT scores corresponds reasonably well to the real data. The
estimated distribution of completion times corresponds very closely to the real completion
times.

4.5 Random Effects Predictions

Figure 4.1 depicts histograms of the predicted latent variables, ûi and v̂i, based on the
final parameter estimates of our one-cluster model and step 1 of the iterative estimation
procedure discussed in Section 3.2.1. They represent the deviations in rationality and re-
flectiveness from that of an average subject (i.e., 0), on the scale of each latent variable’s
estimated standard deviation. For example, since σ̂u = 2.530, a value of û = 5.06 corre-
sponds to a subject with rationality lying two standard deviations above the mean. The
apparent bimodal distribution of rationality provides further evidence of two or more clus-
ters.

4.6 Computational Challenges

Fitting our proposed models provided notable computational challenges. Given the two-
dimensional integral, the large sample size, and the large number of parameters to be esti-
mated, especially in the cluster models, estimation was a computationally arduous process.
Using Google Compute (8 vCPUs, 52 GB memory), we initially used GHQ and the EM
algorithm to fit the one-cluster model. Using Q = 5 quadrature points, each iteration of the
EM algorithm took about 1.5 hours; with Q = 15, each iteration took over 8 hours. For the
two-cluster model, the average run times were about 2.5 and 20 hours, respectively. Using
the large number of quadrature points that would have been necessary to find the MLEs
would have been prohibitive. On the other hand, using AGQ, the algorithm for fitting the
one-cluster model converged in roughly 2 hours.
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Figure 4.1: Distributions of predicted latent variables
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Chapter 5

Discussion and Future Work

We expect that our results provide more trustworthy estimates and associated standard er-
rors of the effect of test exposure (and four other self-reported covariates) on CRT score and
time to completion than the original models used by Meyer et al. (2018). In particular, 1)
our models more appropriately account for the repeated measures within individual, using
information from all exposures rather than simply the difference between final and initial
scores; 2) we consider the two response variables jointly, thus using the information in all
the available data to estimate the model parameters; and 3) we make more defensible distri-
butional assumptions—namely, we treat the CRT score response as conditionally binomial
rather than marginally normal. These differences translate into the larger estimated effect
of nPrevS on CRT scores that we found compared to Meyer et al. (2018). Our findings
suggest that, at least in some contexts, the CRT’s predictive validity may not be retained
upon repeat exposure.

Though we expected that our two-cluster model would separate subjects according to their
levels of rationality and reflectiveness, our results lend support only to distinct subpopula-
tions in terms of reflectiveness. The wide, overlapping CIs of the cluster-specific parameters
in the model for CRT scores exemplify the difficulty in estimating this model. The restricted
range of the CRT test responses likely contributes to the difficulty in partitioning the sources
of variance into within-cluster and between-cluster, which makes separating subjects into
distinct clusters a challenge. Moreover, when we fit the two-cluster model to just the CRT
scores, the parameter estimates were consistent with our original predictions, i.e., the ma-
jority of subjects were classified as belonging to a cluster with low, relatively stable scores
and the remainder were classified as belonging to a cluster with higher, increasing scores.
When we fit the two-cluster model to just the CRT completion times, the parameter es-
timates were similar to those based on the joint model, except for that of γ2, whose sign
was reversed. These findings imply that, when fitting the joint model, the completion times
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dominate and the scores are forced into inappropriate clusters. In other words, two clusters
are insufficient.

Our four-cluster model addresses these issues—and has a nice interpretation, as described
in Section 3.1.3. Preliminary results suggest that this model fits substantially better than
our other models; its maximized log-likelihood is greater than −12,317, which is far greater
than that of our one-cluster model (−12,545) and two-cluster model (−12,426). In addition,
preliminary parameter estimates are sensible and consistent with our expectations.

Caution is required in terms of the generalizability of our results. Though MTurk par-
ticipants are generally regarded as reasonably representative of the population (see Ap-
pendix A), our decision to include only observations with self-reported SAT scores pre-
sumably biases our sample towards educated American adults. However, as discussed, the
inclusion of numSeen likely provides important information regarding cognitive proficiency
(like mathematical ability and memory), thereby acting in part as a differentiator in rea-
soning ability.

Though we did not perform a formal simulation study, we fit several versions of our models
to simulated data to ensure accuracy of the parameter estimates. We began with a simple
version where Ui and Vi are independent, which is equivalent to a standard linear mixed
model for the completion time response and a binomial generalized linear mixed model for
the score response. The parameter estimates were very accurate, which was reassuring given
the highly unbalanced nature of the CRT dataset. We proceeded to test our one-cluster
bivariate mixed model, tweaking the sample size, number of repeat measures, included
predictors, and number of quadrature points. Reasonable estimates were obtained in each
scenario, especially with larger sample sizes. These simulations provide assurance that our
proposed methods yield trustworthy results.

Regarding our choice to assume that the random effects are normally distributed, our review
of the relevant literature provides some alleviation of concerns about the ramifications
of misspecifying these distributions. In the linear mixed model setting, both Butler and
Louis (1992) and Verbeke and Lesaffre (1997) demonstrated that incorrectly specifying the
distribution of the random effects has a negligible effect on the fixed-effect estimates, while
Verbeke and Lesaffre (1997) also demonstrated that the variance estimates are consistent,
but that to obtain the correct asymptotic covariance matrix, the Fisher information matrix
requires a “sandwich”-type correction. In the generalized linear mixed model setting, Agresti
et al. (2004) found that misspecification of the distribution of the random effects when the
variance was large could lead to efficiency loss in the prediction of probability outcomes and
parameter estimates, suggesting a nonparametric distribution in these cases. Litière et al.
(2008) corroborated this finding, additionally discovering that the fixed effect estimates can
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become biased as the variance of the random effects becomes high. Given that our starting
values for the variance parameters (see end of Section 3.2.3) are not particularly large, we are
not too concerned about the aforementioned scenario. However, Litière et al. (2008) caution
that, because the estimate of the variance “is the only tool to study the variability of the
true random-effects distribution”, it is also possible that bias in our starting values could
in turn bias the estimates of the fixed effects. We have also made the (perhaps strong)
assumption that the random effects distribution does not depend on the predictors, an
issue for which Heagerty and Zeger (2000) provide an alternative approach. In the end, we
justified our choice of distributions for the random effects by assessing the appropriateness
of the implied marginal distributions of the responses, and by relying on the conclusion of
McCulloch and Neuhaus (2011) that “most aspects of statistical inference are highly robust
to [assuming a normal distribution for the random effects]”.

We have numerous ideas for further work in this area. One involves extending our bivari-
ate longitudinal model by treating CRT score as multinomial rather than binomial. This
approach was used by Campitelli and Gerrans (2013), who expanded the categories of in-
correct CRT responses to distinguish between wrong “intuitive” answers (for example, the
“$0.10” answer on the Bat & Ball problem, or “24 days” on the Lilypads problem) and
wrong “idiosyncratic” answers (wrong answers other than the “intuitive” ones). Adopting
this approach in the bivariate longitudinal model context may prove informative, though
would be even more computationally burdensome.

In each of our proposed models, we elected to treat CRT time to completion as a response
variable in our proposed models, whereas Meyer et al. (2018) treated it as a predictor of
CRT score. We could take a similar approach by expressing the relationship between the two
variables as fYi,Ti(yi, ti) = fYi|Ti

(yi|ti)fTi(ti), which would allow us to create separate
longitudinal models for Ti and Yi|Ti. The latter would treat Ti as a predictor variable.
Exploring (competing) models in this class would be worthwhile.

Future models could also incorporate additional terms, such as the seven-level categorical
education variable that we elected to exclude, or an interaction term for nPrevS and numSeen

to address our observation that the influence of numSeen was more pronounced at subjects’
first test exposures. In addition, we could extend our models to include information that
may be contained in the number of tests taken by each subject (the ni’s).

Lastly, because of the interest of cognitive psychologists and psychometricians in under-
standing the relationship between IQ and metrics of rationality, we could use a nonpara-
metric model (e.g., a random forest) to predict SAT (a strong predictor of IQ) using CRT
scores.
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Overall, our novel approach in modelling the CRT data allows us to rigorously answer key
questions of interest in the cognitive psychology and psychometric literature. We hope that
our methods and analysis have contributed meaningfully to this area of inquiry and will
motivate future research.
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Appendix A

MTurk Reliability

Paolacci et al. (2010) assess the quality of Mechanical Turk (MTurk) participant samples
by comparing MTurk samples to university/college student laboratory samples and Inter-
net samples. They proposed various criteria with which to judge the representativeness of
MTurk samples, as well as the overall quality of the data the samples produce. This work
involved looking at demographic factors (e.g., age, sex, race, and education) and statistical
properties of the samples (e.g., coverage error, non-response error, subject motivation, and
experimenter effects). Past surveys found that 70-80% of MTurks were from the U.S. More
women than men participated (65% vs. 35%). The sample mean and median ages were
36 and 33, respectively, which are slightly lower than those of both the U.S. population
and typical Internet users. All MTurk participants must have a bank account in the U.S.
Paolacci et al. (2010) summarize, “Our demographic data suggests that Mechanical Turk
workers are at least as representative of the U.S. population as traditional subject pools,
with sex, race, age and education of Internet samples all matching the population more
closely than college undergraduate samples and internet samples in general. . . ”.

MTurks are thus thought to be an inexpensive, relatively high quality source of data for
psychological experiments. For this reason, we are comfortable with treating our MTurk
sample as representative of a relatively well-educated American population for the purpose
of our analyses.

36



Appendix B

CRT Original Questions

1. A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much
does the ball cost?

cents

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines
to make 100 widgets?

minutes

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48
days for the patch to cover the entire lake, how long would it take for the patch to cover
half of the lake?

days

Note that modified versions of these questions were given in the other series that we excluded
in our analysis.
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Appendix C

Further Data Visualization

In Section 2.5, we presented graphs of the distributions of each of our response variables for
various values of the predictors. Specifically, in Figures 2.2 and 2.3, we presented histograms
of our CRT score response variable for different levels of nPrevS and for different levels of
aveSATS for nPrevs = 1. Below are histograms of CRT score for different levels of the other
predictors: numSeen (Figure C.1), age (Figure C.2), and male (Figure C.3), each at nPrevs
= 1. While the CRT score histograms for age and male do not reveal any substantial effects
of these variables, the histograms for numSeen reveal a similar pattern to the histograms
for aveSATS, i.e., right-skewed distributions at the lowest level (in this case, numSeen = 0),
and bathtub-shaped distributions for higher levels.

Figure C.1: Distribution of CRT score for numSeen at nPrevS=1
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Figure C.2: Distribution of CRT score for age at nPrevS=1

Figure C.3: Distribution of CRT score for male at nPrevS=1

We also presented histograms of CRT time to completion for different levels of nPrevS and
for different levels of numSeen at nPrevs = 1 (see Figure 2.3). Below are histograms of CRT
time to completion for different levels of aveSATS (Figure C.4), age (Figure C.5), and male
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(Figure C.6) each at nPrevs = 1. None of these figures reveals any obvious distributional
differences across levels.

Figure C.4: Distribution of the logarithm of time to completion for aveSATS at nPrevS=1

Figure C.5: Distribution of the logarithm of time to completion for age at nPrevS=1
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Figure C.6: Distribution of the logarithm of time to completion for male at nPrevS=1

Additionally, Figure C.7 displays histograms of CRT time to completion for different levels
of numSeen for nPrevS = 2 as a contrast to the histogram on the right side of Figure 2.4
(where nPrevS = 1). We can observe that, at subsequent test exposures, the distribution of
numSeen is slightly right-skewed.
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Figure C.7: Distribution of the logarithm of time to completion for numSeen at nPrevS=2
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Appendix D

Further Model Assessment

To provide an informal check of our one-cluster model fit, Figure D.1 displays both the
real CRT score and time to completion responses, along with their respective estimated
marginal distributions.

For the score response, we estimate the probabilities of each CRT score using the estimated
parameters and the observed predictor values, restricted to nPrevS=1. Since the marginal
distribution of Yij does not have a closed form, we use Gauss-Hermite quadrature with
100 quadrature points to approximate the four probabilities. The bars on the leftmost
plot correspond to the empirical probabilities of success for each CRT score, while the red
horizontal lines correspond to the estimated probabilities.

For the time to completion, the marginal distribution has a closed form, namely

Tij ∼ N(µij , σ2
v + σ2

t ),

where

µij = x′ijα.

The histogram on the right reflects the empirical distribution of time to completion, while
the curve reflects the estimated distribution.
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Figure D.1: Observed and estimated distributions of CRT score (left) and time to completion
(right) at nPrevS=1
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Appendix E

Gauss-Hermite Quadrature

As discussed in Section 3.2.3, given sufficient computing resources, standard Gaussian
quadrature could be used to evaluate the integrals in our multi-cluster model’s objective
function, Q[K](ψ,ψ(p)).

Recall that when the weight function is w(z) = e−z
2 , the GHQ rule is commonly used to

determine the weights and abscissae. By performing some variable transformations, we will
show that our objective functions are of this form.

We rewrite the joint density of Ui and Vi as

f
(p)
Ui,Vi

(ui, vi) = f
(p)
Vi|Ui

(vi|ui) · f (p)
Ui

(ui),

where

Vi | Ui ∼ N
{
σ

(p)
v

σ
(p)
u

ρ(p)ui,

[
1−

(
ρ(p)

)2
] (
σ(p)
v

)2
}
,

and

Ui ∼ N
(

0,
(
σ(p)
u

)2
)
.

The densities of Ui and Vi|Ui can now be transformed to be amenable to Gauss-Hermite

quadrature approximation. Specifically, for f (p)
Ui

(ui), let z2
i = u2

i

2
(
σ

(p)
u

)2 . Then, ui =
√

2σ(p)
u zi

and dui =
√

2σ(p)
u dzi. For f (p)

Vi|Ui
(vi|ui), let z∗2i = 1

2
(
s(p))2

(
vi−

σ
(p)
v

σ
(p)
u

ρ(p) ·ui
)2

, where (s(p))2 =

(
1−

(
ρ(p)

)2
)(

σ
(p)
v

)2
. Then, vi =

√
2s(p)z∗i + σ

(p)
v

σ
(p)
u

ρ(p)ui and dvi =
√

2s(p)dz∗i .
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With these transformations, we can rewrite our objective function as

Q[K](ψ,ψ(p))

=
n∑
i=1

[
D

[K](p)
i

]−1 ni∑
j=1

∫∫
h

[K](p)
1 (β, zi, z∗i ) e−z2

i dzi e
−z∗2i dz∗i

+
n∑
i=1

[
D

[K](p)
i

]−1 ni∑
j=1

∫∫
h

[K](p)
2 (α, σ2

t , zi, z
∗
i ) e−z2

i dzi e
−z∗2i dz∗i

+
n∑
i=1

[
D

[K](p)
i
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i dzi e
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where

h
[K](p)
1 (β, zi, z∗i ) = log

[ (ex′ijβ+ui)
1 + ex′ijβ+ui

]yij
[
1− (ex′ijβ+ui)
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h
[K](p)
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(
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σt
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4 (γ, zi, z∗i ) = log (γci) · f
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Evaluating D[K](p)
i requires an additional quadrature step:

D
[K](p)
i ≡

∫∫
f
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Yi,Ti|Ui,Vi,Ci

(yi, ti|ki, li, ci)γ(p)
ci
f
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where
h

[K](p)
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(p)
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(yi, ti|ui, vi, ci).

With these variable transformations and equation manipulations, we can now approximate
the integrals.

However, large numbers of quadrature points are often needed to find the MLEs, which
can become prohibitively expensive computationally, and hence we ultimately recommend
MCEM as the preferred alternative.
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