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Abstract 

Polybenzimidazole-based ionenes are being developed for use in both alkaline anion-

exchange membrane fuel cells and alkaline polymer electrolysers. The first part of this 

work explores the impact of the degree of methylation on the conformations and electronic 

structure properties of poly-(hexamethyl-p-terphenylbenzimidazolium) (HMT-PMBI), the 

materials of interest in this thesis. For this purpose, HMT-PMBI oligomers, from monomer 

to pentamer, are studied with density functional theory calculations. Next, molecular 

dynamics simulations are used to calculate the trajectory paths of all atoms of the fully 

methylated HMT-PMBI tetramer. Lastly, recurrent neural networks are explored as a 

means to accelerate the statistical sampling of molecular conformations of polymeric 

systems, thereby providing complementary tools for molecular dynamics simulations. It is 

demonstrated that these types of artificial neural networks can be learned from the 

distribution of the coordinates of atoms over molecular dynamics simulations. As shown, 

the trained multivariate time series model enables forecasting trajectory paths of atoms 

accurately and in much reduced time with over 96% accuracy. 

Keywords:  Anion exchange membrane; density functional theory; recurrent neural 

network; time series forecasting; machine learning 
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Chapter 1.  
 
Introduction 

1.1. Fuel cells 

Fuel cells are electrochemical devices that convert chemical energy directly into 

electrical energy. The typical polymer-based fuel cell is comprised of two electrodes, an 

anode and a cathode, with a membrane sandwiched between them that acts as a medium 

for the transport of ions, viz. protons in proton exchange membranes (PEMs) or hydroxide 

anions in anion exchange membranes (AEMs). In a hydrogen PEM fuel cell (PEMFC), 

electricity is produced in spontaneous redox reactions.10 The cell generates electricity for 

as long as the fuel (hydrogen gas) and the oxidant (oxygen or air) are provided. At the 

anode, hydrogen is oxidized in the hydrogen oxidation reaction (HOR) to produce protons 

and electrons, 

2𝐻$	(&) → 4𝐻( + 4𝑒)																																					𝐸° = 0	𝑉.                1.1 

Here, 𝐸° is the electrode potential of the reaction under standard state, i.e., at 1 atm and 

25℃.11 The electrons are conducted from anode to cathode through an external circuit to 

do electrical work. Protons are conducted through the PEM to the cathode. At the cathode 

side, electrons, protons and oxygen gas react with each other to form water, in a process 

called oxygen reduction reaction (ORR), 

4𝐻( + 4𝑒) + 𝑂$	(&) → 2𝐻$𝑂(+)																			𝐸° = 1.23	𝑉.           1.2 

Hence, the overall reaction for this cell is, 

2𝐻$	(&) + 𝑂$	(&) → 2𝐻$𝑂(+)																											𝐸° = 1.23	𝑉.           1.3 

PEMFCs are fraught with several challenges that impede their path to 

commercialization. A primary challenge is the use of platinum catalysts, as platinum 

exhibits high stability under acidic conditions and provides a high activity for the 

notoriously sluggish ORR.12 To reduce the amount of platinum used in PEM fuel cells and 

the associated costs, numerous researches have been strived to minimize the use of Pt 
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required in catalysts of PEMFCs. The high costs of Pt-based catalysts are still the biggest 

drawback of PEMFCs.13 As another drawback, Nafion that is employed as the membrane 

in PEMFCs has a complicated synthetic route and is costly in comparison to the anion-

exchange membranes.14 AEMs have received notable attention because of the possible 

improvement in the kinetics of the ORR and the higher flexibility in view of finding cathode 

catalysts based on non-precious metals, such as nickel-based catalysts.15 Nickel-based 

catalysts used in AEMFCs are much cheaper than Pt-based catalysts in PEMFCs.16 

As shown in Figure 1.1, at the anode catalyst layer of an AEMFC, hydrogen is 

oxidized as shown in the reaction equation below, releasing electrons and water, 

2𝐻$	 + 4𝑂𝐻) → 4𝐻$𝑂 + 4𝑒)																																					𝐸° = −0.83	𝑉.         1.4 

 

Figure 1.1. Schematic representation of anion-exchange membrane fuel cell 
(reproduced from Ref. [1]).1 

Permission is not required for this photo under the terms of the Creative Commons Attribution-
NonCommercial-No Derivatives License (CC BY NC ND).1*  

At the cathode catalyst layer, oxygen from the air, water, and electrons from the 

external circuit react to form hydroxide ions, 

 
1* https://creativecommons.org/licenses/by-nc-nd/4.0/ 

https://doi.org/10.1016/j.jpowsour.2017.07.117 
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𝑂$ + 2𝐻$𝑂 + 4𝑒) → 4𝑂𝐻)																																								𝐸° = +0.40	𝑉,         1.5 

with the same overall reaction as stated 1.3. In the next part, various AEM materials and 

the anion-exchange membrane of interest in this study will be discussed in detail. 

1.2. AEM materials 

Research on anion-exchange membranes (AEMs) is thriving, propelled by their 

promise for uses in alkaline electrochemical energy technologies such as fuel cells,1,17,18 

water electrolyzers,19 redox flow batteries,20 and waste-water treatment systems.21 

Alkaline conditions offer distinct advantages over acidic conditions. A major driver for the 

development of alkaline technologies is the possible replacement of Pt- by Ni-based 

materials as oxygen reduction catalysts.22 AEMs that are already being tested in fuel cells 

possess relatively simple synthetic routes, which is another advantage over proton-

conducting polymer electrolyte membranes (PEMs).14,23 AEMs also show promise in 

reducing the membrane sensitivity to variations in the hydration level, which could reduce 

humidification requirements and electrode flooding, and thereby diminish system 

costs.22,24 

Electro-osmotic drag is an important factor in fuel cells as it directly affects the 

overall water management and performance of the cell. The larger electro-osmotic drag 

coefficient (the number of water molecules transferred per proton when protons transport 

from the anode electrode to the cathode electrode) would result in higher water content 

within the anode electrode and can accelerate electrode kinetics.25 The electro-osmotic 

drag coefficient of water for AEMs with Tokuyama A201 membrane26 at 30-40°C is about 

2.5-3.5.27 Nevertheless, the electro-osmotic drag coefficient in PEMs with Nafion® 117 is 

ranging from 1.5 to 2.5 in the varying operating conditions, which are lower than the AEMs 

values.28 The larger values of electro-osmotic drag coefficient in AEMs can lead to 

electrode flooding at the anode and dehydration at the cathode side, which lower cell 

performance.25 

On the flip side, a decade ago, the ion conductivity of AEMs trailed that of PEMs 

by a significant factor. Nafion® 117, as the benchmark PEM,29 has a proton conductivity 

of 78 mS.cm-1, whereas anion conductivities of AEMs used to lie in the range of 5 to 20 

mS.cm-1;30,31 however, over the past years, conductivities of AEMs have seen significant 
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improvement, with values reported recently in the range from 50 to 200 mS.cm-1.32–34 As 

a matter of fact, over the last 10 years the number of publications on polyaromatic AEMs 

that partially or fully contain benzene rings, including polybenzimidazoles, has increased 

significantly in comparison to the number of publications on polyolefin and perfluorinated 

PEMs, which had stagnating publication numbers2 (see Figure 1.2). 

 

Figure 1.2. Number of research articles on polymer electrolyte membranes for 
AMFCs over the 10 years (as of May 8, 2018) (reproduced from Ref. 
[2]).2 

Photo is reproduced by permission of The Royal Society of Chemistry.2* 

Over the past two decades, materials chemists have tested strategies in chemical 

design and synthesis to overcome the issue of the poor chemical stability of AEMs.35 The 

most common cationic moieties employed are phosphonium,36 sulfonium,37 pyridinium,38 

ammonium,39 piperidinium40, as well as imidazolium-based cations among which 

benzimidazolium is the most promising in terms of stability and synthetic route.32,41,42 In a 

charged benzimidazole ring, the nitrogen cation stability is provided by steric protection 

via methyl groups.42 

 

 
2* https://doi.org/10.1039/C8TA05428B 
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Figure 1.3. Chemical structure of 50% (one on top), 75%, and 100% dm HMT-
PMBI. Structure by “ChemDraw JS”.3 

This work focuses on a sterically C2-protected poly(benzimidazole) material, 

called poly-(hexamethyl-p-terphenylbenzimidazolium), in short HMT-PMBI, that was 

developed by the Holdcroft Group, Simon Fraser University.3 This compound is hydroxide-

stable, methanol-soluble, and water-insoluble, which renders it highly suitable for uses in 

alkaline fuel cells and electrolyzers.3,23 It exhibits unprecedented hydroxide stability and 

ion conductivity in the temperature range from 25 to 80 °C and for NaOH concentration 

from 1 to 6 M. The material was synthesized with varying degree of methylation (dm), as 

reported in Ref. [3] and shown in Figure 1.3.  

1.3. Machine-learned algorithms: literature review  

Although the primary methods were developed in the 1950s to 80s, breakthroughs 

in machine learning have occurred only recently, with many interesting applications such 

as in computer vision,43 speech and language technology,44 self-driving cars,45 

recommender systems,46 financial predictions,47 and many more.48 This is mainly owed to 

recent advances in neural network architectures and algorithms,49 the escalating growth 

of data for model training,50 powerful parallel computer processing, enhanced frameworks 

for implementation51 and, of course, larger involvement from the scientific community as 

well as industry in the field.   
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Machine learning is well-established in areas like bioinformatics, as a 

computational method to analyze and interpret biological data.52,53 Deep neural network 

architectures, such as multi-layered networks, convolutional neural networks (CNNs), 

recurrent neural networks (RNNs) and memory networks, are the most used architectures 

in this area.54 Machine learning has also shown to be promising in theoretical chemistry55 

mainly to speed up the discovery of novel compounds or materials,56–59 as well in terms of 

predicting the potential energy surface of chemical structures.60,61  

Extensive research has been focusing on developing inter-atomic potentials62 or 

performing AIMD simulations.63,64 Brockherde et al. employed the kernel ridge regression 

training algorithm based on an external Gaussian potential to generate the machine 

learned potential-density map of a given molecule.60 Their proposed approach starts with 

the construction of descriptors that encode the structure of each molecule from a training 

dataset. The kernel matrix is then developed from a kernel function to represent the 

correlation of descriptors to each other.60 The dataset in their work is composed of 2000 

DFT optimized structures.  

Gomez-Bombarelli et al.57 recently used variational autoencoders to transform the 

discrete representation of molecular structures into a continuous latent space, from which 

a decoder neural network converts these continuous representations back into a discrete 

molecular representation. This approach allows designing new molecules and enables 

efficient exploration and optimization of the chemical spaces of compounds.57 Chmiela et 

al. advanced a symmetrized gradient-domain machine learning model, in which one can 

create a molecular force field of intermediate-sized organic compounds with the same 

accuracy as high-level ab initio calculations only using limited samples (of size 1000) of 

AIMD calculated trajectories.65 In another work, Xie and Grossman proposed a crystal 

graph convolutional neural network framework to provide a universal representation of 

crystal materials and an accurate prediction of DFT calculated properties of various crystal 

structures and compositions.66 

Time-series forecasting also has become a thriving research topic over the past 

couple of years; a significant example is the seq2seq model proposed by Google to make 

multi-step sequence predictions in order to solve the machine translation problem.67 An 

important class of RNN architectures designed for sequence-to-sequence problems is 

called the encoder-decoder long short-term memory (LSTM), which comprises an encoder 
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that receives input signals and returns a fixed-length internal representation as a vector, 

and a decoder that interprets this vector and uses it to predict the output signal.68 This 

approach is powerful because we can have an input of univariate time-series data, and 

we can encode the multi-variate features of a time-series dataset. Other types of RNNs 

have been employed for such predictions such as LSTM,69 bidirectional long short-term 

memory (BLSTM) and mixture density network (MDN) approaches,70,71 and gated 

recurrent units (GRU).72  

Zhao et al.71 proposed a BLSTM-MDN approach for three-point shot prediction in 

basketball games. They have utilized a Python library called Hyperopt73 for 

hyperparameter self-tuning during model training. Faster convergence rates and more 

accurate predictions are superior features of their approach in comparison to CNNs and 

MDNs. In terms of predicting the trajectories, their proposed model can produce new 

trajectory samples beyond predicting those stemming from the real data. Another example 

reported is predicting amazon spot price using a three-layer LSTM-based network, 

composed of two LSTM layers and one dense neural network layer, by Baughman and 

his coworkers.74 Their model has revealed a reduction in mean square error (MSE) of 60% 

up to 95% for different training sets relative to the well-known Autoregressive Integrated 

Moving Average (ARIMA) model.75  

Sagheer and Kotb76 employed deep LSTM (DLSTM) recurrent networks for 

univariate time series forecasting of petroleum production. To find the optimum 

architecture of DLSTM and optimal selection of hyperparameters, a genetic algorithm was 

used in their work. For evaluation purposes, the ARIMA model,75 the Vanilla RNN model,77 

the deep GRU model,78 and the Higher-Order Neural Network model79 were employed; 

using root mean square error and root mean square percentage error80 measures, the 

proposed deep LSTM approach outperforms the other standard models. 

1.4. Thesis outline 

Despite the promising attributes of HMT-PMBI, to the best of our knowledge only 

one DFT work has been performed on HMT-PMBI material,23,81 but no comprehensive 

computational exploration of its molecular conformation and electronic structure has been 

reported so far. Since physical properties of HMT-PMBI are strongly affected by the 

degree of methylation, in this study we consider the degree of methylation as the main 
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parameter.23,41 The primary objective of the second chapter of this thesis is to understand 

the effect of the degree of methylation on molecular conformation, electronic structure of 

HMT-PMBI. 

In the third chapter, based on the outputs of molecular dynamics simulations and 

force field parameters provided by Eric Schibli,23,81 PhD student in Physics Department at 

Simon Fraser University, a trajectory history of all atoms of a single HMT-PMBI2+ tetramer 

is created. This trajectory history, i.e., the positions of atoms in 3-dimensional space 

recorded as a function of time, is being used as the input data for the training of the 

proposed neural networks. We employ recurrent neural networks-based models for the 

prediction of trajectory path in polymeric materials over Molecular Dynamics simulations. 

As is known, the main purpose of MD simulation is to generate as many as possible 

statistically independent configurations of the system, which requires expensive 

simulation runs. RNN-based algorithms are shown to accelerate the statistical sampling 

of molecular conformations and generate the trajectory paths as accurate as MD 

simulations, but in much less time. We treat the interactions between atoms as temporary 

correlations, thus, the problem of predicting the trajectory of atoms reduces to a multi-

variate time-series forecasting problem.  

The overview graphic in Figure 1.4 illustrates the contributions provided in the main 

chapters of this thesis. 
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Figure 1.4. An overview graphic which summarizes thesis objectives. Part A 
demonstrates the second chapter and part B gives a precis of the 
third chapter of thesis. 
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Chapter 2.  
 
DFT study of the conformational and electronic 
properties of HMT-PMBI 

As for the very first step of this work, we3,* have performed calculations based on 

quantum mechanical density functional theory to study the influence of the ionic charge 

distribution on the conformation and electronic structure properties of polybenzimidazole-

based ionenes.82 Polybenzimidazole-based ionenes are highly suitable for uses in both 

alkaline anion-exchange membrane fuel cells and alkaline polymer electrolyzers. HMT-

PMBI, the material of interest in this article, is exceptionally hydroxide-stable and water-

insoluble. Optimization studies are presented for both the gas-phase and in the presence 

of implicit water. Results are insightful for experimentalists and theorists investigating the 

impact of synthetic and environmental conditions on the conformation and electronic 

properties of polybenzimidazole-based membranes. 

2.1. Theoretical background 

Quantum mechanics (QM) provides the physical-mathematical basis for studying 

the behavior of electrons, atoms, and molecules in chemistry. Mathematically exact 

solutions of the QM equations can only be obtained for one-electron systems.83 Over the 

past half century, a vast number of methods including density functional theory (DFT) has 

been developed to obtain approximate solutions of the Schrödinger equation for many-

body (multiple electron) systems.84,85 

 

 
3 This chapter reproduces in revised form material from Ref. [82] 
(https://pubs.acs.org/doi/full/10.1021/acsomega.9b03116), with permission from the American 
Chemical Society and any further permissions related to the material excerpted should be 
directed to the ACS. 
* Mohammad J. Eslamibidgoli has also contributed to this chapter. 



11 

 

Figure 2.1. The number of DFT and substance related DFT publications annually 
from 1980-2015 (reproduced from Ref. [4]).4 

Permission is not required for this photo under the terms of the Creative Commons Attribution 4.0 
International License.4* 

As shown in Figure 2.1, DFT is one of the most well-known and flourishing 

quantum mechanical approaches and widely employing method to calculate the electronic 

structure properties of matter.4 From a quantum mechanical point of view, all information 

about a given system is contained in the system’s wave function, 𝛹(𝑟), which is a function 

of the electronic coordinates, 𝑟, as well as the coordinates of the nuclei, 𝑅. The wave 

function is calculated from time independent Schrödinger’s equation, which for a many-

electron system with potential energy of 𝑉(𝑟), is given by86 

𝐻:	𝛹(𝑟, 𝑅) = 𝐸	𝛹(𝑟, 𝑅).                                             (2.1) 

The Hamiltonian operator, 𝐻:, for a system composed of M nuclei and N electrons is 

defined as 

𝐻:	𝛹(𝑟, 𝑅) = ;𝑇=, + 𝑇=- + 𝑉=,, + 𝑉=-- + 𝑉=-./>	𝛹(𝑟, 𝑅).         (2.2) 

In Equation 2.2, 𝑇=,, states nuclear kinetic energy, 

𝑇=, = −∑ ℏ!

$1"
𝛻2$3

45! ,              (2.3) 

 
4* http://creativecommons.org/licenses/by/4.0/ 

https://doi.org/10.1186/s13321-016-0166-y 
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and term 𝑇=-, denotes electronic kinetic energy, 

𝑇=- = −∑ ℏ!

$1#
𝛻4$6

45! ,              (2.4) 

Nucleus-nucleus, electron-electron, and nucleus-electron interaction energies are 

represented by 𝑉=,,, 𝑉=-- and 𝑉=-./,  

𝑉=,, = −∑ ∑ 7"7$-!

89:%|<")<$|
3
=>2

3
25! ,            (2.5) 

𝑉=-- = −∑ ∑ -!

89:%?@&)@'?
6
A>4

6
45! ,               (2.6) 

𝑉=-./ = −∑ ∑ 7"-!

89:%|<")@&|
3
25!

6
45! .              (2.7) 

Here, |𝑅2 − 𝑅=|, |𝑅2 − 𝑟4| and B𝑟4 − 𝑟AB are the relative nuclear distance between the Ath 

and Bth nucleus, the distance between the ith electron and Ath nucleus, and the relative 

distance between the ith and jth electrons, respectively. ZA, mA and me are the charge and 

mass of the Ath nucleus and the latter is the electron mass. Terms	ℏ, 𝜀B and 𝑒 are the 

reduced Planck constant, the permittivity of free space, and the elementary charge 

(charge on the electron), respectively.87 

The Schrödinger equation will become inseparable starting from the two-body 

Coulomb interactions, which makes solving the Schrödinger equation impossible. 

Therefore, to be able to solve this equation, approximations are required. In this study, the 

usual Born-Oppenheimer approximation was invoked.88 The basis for this approximation 

is that the mass of a nucleus is over 1800 times higher than the mass of an electron so 

nuclei can be supposed as immobilized points in space. In the Born-Oppenheimer 

approximation, the many-body electronic wave functions can also be defined as product 

of single-particle wave functions. This fact separates nuclear and electronic degrees of 

freedom and factorizes the wave function 𝛹 into a nuclear wave function 𝛹,CD+-4 and an 

electronic wave function 𝛹-+-D/@E,F, where the total wave function will be shown as 

Ψ = 𝛹,CD+-4 ×𝛹-+-D/@E,F.87      

 The Hamiltonian operator in Equation 2.2 by assuming the Born-Oppenheimer 

approximation will be written as 𝐻: = 𝑇=- + 𝑉=-- + 𝑉=-./, where 𝑇=-, 𝑉=-- and 𝑉=-./ are electronic 
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kinetic energy, electron-electron interaction energy and nucleus-electron interaction 

energy, respectively.  

 Density functional theory is another and perhaps the best approach to solve the 

Schrödinger equation and is widely being used in the theoretical chemistry community.89 

DFT employs the electron density, 𝜌(𝒓), instead of the electronic wave function.90 In 1964, 

Hohenberg and Kohn91 introduced the basis of density functional theory. Assuming the 

ground state of electrons is nondegenerate, the first Hohenberg and Kohn theorem states 

that the ground state electronic density 𝜌B(𝒓) is a unique functional of an external potential 

𝑣(𝒓), i.e., potential energy due to electron-nucleus interactions, 

𝐸B = ∫ 𝜌B(𝑟)𝑣(𝒓)dr	+	< T[𝜌B] > +	< 𝑉--[𝜌B] >,           (2.8) 

where 𝐸 is the electronic energy of the system. The first term on the right hand-side of 

Equation 2.8 represents the potential energy due to electron-nuclei interactions and the 

next two terms are the kinetic and potential energy of electrons, respectively. 

The second Hohenberg-Kohn theorem expresses that any trial electron density 

offers an energy higher than the true ground state energy calculated with 𝐸B, 

𝐸[𝜌/(𝑟)] ≥ 𝐸	[𝜌B(𝒓)].             (2.9) 

Kohn–Sham (KS) equation (Eq. 2.10) is the one-electron Schrödinger equation of 

a fabricated system of non-interacting particles (normally orbitals), which produce the 

same density as any given system of interacting particles. KS equation was first proposed 

by Walter Kohn and Lu Sham92 in 1965, where 𝑣-GG(𝑟) and 𝑣.D(𝑟) in this equation are the 

Kohn–Sham potential and the exchange-correlation potential, respectively, 

S− ℏ!

$1
∇$ + 𝑣-GG(𝑟)U𝛹4(𝑟) = 𝜀4 	𝛹4(𝑟),         (2.10) 

𝑣-GG(𝑟) = 𝑣(𝑟) + ∫ H(@()
|@)@I|

	𝑑𝑟I +	𝑣.D(𝑟),        (2.11) 

where 𝜀4 	is the orbital energy of the corresponding KS orbital, 𝛹4(𝑟). The electron density 

for the many-body system and exchange-correlation potential can be calculated by 

𝜌(𝑟) = ∑ |𝛹4(𝑟)|$6
4 ,           (2.12) 



14 

𝑣.D(𝑟) =
JK)*[H]
JH

.           (2.13) 

In Equation 2.13, exchange-correlation potential is equal to derivative of the 

exchange-correlation energy functional, 𝐸.D, with respect to the electron density, 𝜌. The 

exact form of the exchange-correlation energy functional is not known; however, it is 

universal, which means the functional is not dependant on the substance being 

investigated. The most prominent approximations for 𝐸.D are local density approximation 

(LDA), the generalized gradient approximation (GGA) and hybrid functionals.93 The 

generalized gradient approximation which is used in our study has the general form, 

𝐸.D[𝜌] = ∫𝜌(𝑟)	𝜀.D[𝜌, ∇𝜌]	dr,          (2.14) 

where 𝜀.D is the exchange-correlation energy to consider the non-homogeneity of the 

electron density.94 Using the GGA approximation in DFT calculations, gives accurate 

results for molecular geometries and ground-state energies.83 

In Figure 2.2, a schematic representation of an iterative method for solving Kohn-

Sham equations is shown. First, an initial guess for the electron density, 𝜌(𝑟), is taken. 

Then from the initial guess Kohn–Sham potential, 𝑣-GG(𝑟), is computed. Now, the Kohn–

Sham equation (see Equation 2.10) can be solved and using Equations 2.8 and 2.12 

electron density and electronic energy of the system will be evaluated. If the convergence 

criterion is not satisfied the loop should be iterated with the updated value of electron 

density instead of the initial guess of that. As soon as the criterion is satisfied, various 

outputs such as the ground state electron density, 𝜌B(𝑟), and the total ground state 

electronic energy, 𝐸/E/[𝜌B(𝑟)], can be calculated.6 
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Figure 2.2. Basic schematic of solving the Kohn-Sham equations.5,6 
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2.2. Computational details 

Calculations in this work have been performed with Gaussian 16.95 Gaussian 16 

includes an extensive suite of DFT tools.91,92 In comparison to Gaussian 9, the default 

integration accuracy in Gaussian 16 has been enhanced from 10-10 to 10-12.96 We have 

performed DFT calculations from monomer to pentamer of HMT-PMBI. HMT-PMBI 

repeating unit with 50% degree of methylation is electroneutral, while and 75% and 100% 

degree of methylation correspond to a charge +1 and +2, respectively.3 We calculated the 

electronic band gap, Egap, which is defined as the minimal energy difference between 

HOMO and LUMO levels.  

All structures were fully optimized to find the ground state energy. The condition 

for attaining the ground state is satisfied when the gradient of the total energy with respect 

to the nuclear coordinates is zero. The convergence criterion for the calculation is as 

follows:95 the maximum component of the total force must be below a cut-off value 0.00045 

N; the root-mean-square of the force below 0.0003 N; the calculated displacement for the 

next step below the cut-off value 0.0018 Å; and the root-mean-square of the displacement 

for the next step below 0.0012 Å. We employed the 6-31G(d) basis set to stay consistent 

with the results produced in Ref. [23].  

We tested various functionals for calculating HOMO, LUMO and Egap, including 

B97D, Grimme’s functional with dispersion correction;97 PBE functional, which is at the 

generalized gradient approximation (GGA) level.98 TPSS functional, which is a non-

empirical meta-GGA;99 O3LYP100 and B3LYP101 hybrid functionals, which are very similar 

but have slightly different mixing coefficients; PBE1 which is also a hybrid exchange–

correlation functional based on the GGA PBE;102 wB97XD,103 which is known as a range-

separated functional that includes Grimme's D2 dispersion model97 to capture both short-

range interactions and long-range corrections. Our main motivation for testing these seven 

DFT functionals was to explore how well they can describe the electronic properties of the 

ionene system in comparison to the B3LYP functional, which is the only functional used 

to date for this system.81 Solvent effects were investigated by optimizing the tetramer 

structures in the presence of implicit water using the polarizable continuum model 

(PCM).104,105 The PCM model generates a solute cavity thorough a set of overlapping 
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spheres.106 GaussView 6.0 visualization software was used to generate the input 

structures and display the output geometries and orbitals.107 

2.3. Results and discussion  

Optimized structures of repeating unit of PBI, HMT-PMBI, HMT-PMBI+, HMT-

PMBI2+ obtained using the B3LYP functional under vacuum conditions in gas phase are 

shown in Figure 2.3. For PBI, the phenyl ring and the two adjoining benzimidazole rings 

are in-plane. The torsional angle between two adjoining benzimidazole rings was found to 

be 38.9° and the one between phenyl and benzimidazole groups was 7.6°, as also shown 

in Table 2.1. For the HMT-PMBI repeating unit, however, due to the steric interaction 

between the mesitylene ring and benzimidazole group, a torsional angle of about 104° 

was observed.  

Considering the fully methylated HMT-PMBI repeating unit, the angles between 

the adjacent benzimidazole and mesitylene planes is 81.9°, and 40.4° between two 

consecutive benzimidazole groups. By increasing the degree of methylation, the angle 

between the adjacent mesitylene and benzimidazole planes decreases from 106.6° to 

about 82°, as shown in Table 2.1. The reason of this change is the additional methyl group 

in the benzimidazole unit, which provides steric protection to the cationic imidazole rings.  
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Figure 2.3. Chemical structure of the monomer of PBI, HMT-PMBI, HMT-PMBI+, 

HMT-PMBI2+. Torsional angles 𝝋𝟏	–	𝝋𝟓 shown in orange, yellow, and 
green colors represent angles between phenyl, benzimidazole, and 
mesitylene groups. 

Table 2.1. Comparison of torsional angles between phenyl, benzimidazole, and 
mesitylene groups for various repeating unit studies systems. 
(Torsional angles are shown in Figure 2.3) 

 𝝋𝐩𝐡𝐞𝐧𝐲𝐥_𝐛𝐞𝐧𝐳	(𝝋𝟏) 𝝋𝐛𝐞𝐧𝐳_𝐛𝐞𝐧𝐳	(𝝋𝟐) 𝝋𝐦𝐞𝐬_𝐛𝐞𝐧𝐳	(𝝋𝟑) 𝝋𝐛𝐞𝐧𝐳_𝐦𝐞𝐬(𝝋𝟒) 𝝋𝐦𝐞𝐬_𝐩𝐡𝐞𝐧𝐲𝐥	(𝝋𝟓) 

PBI 7.60 38.9 - - - 

HMT-
PMBI - 37.9 103.7 106.6 83.2 

HMT-
PMBI+ - 35.9 103.3 86.3 89.8 

HMT-
PMBI2+ - 40.4 97.8 81.9 92.3 

 

Figure 2.4 shows the optimized structures from monomer to pentamer of the 

neutral and the charged HMT-PMBI polymers along with their end-to-end distances, which 

are normalized to the number of repeating units. As can be seen, results reveal a trend in 
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the chain conformation of HMT-PMBI as a function of the degree of methylation. As the 

charge increases, the normalized end-to-end distance becomes larger from around 16 Å 

for HMT-PMBI to around 19 Å for HMT-PMBI+, to around 21 Å for HMT-PMBI2+. The 

observed chain stretching is caused by the electrostatic repulsion along the backbone. 

Both gas phase and solvent studies are relevant in real systems as the hydration level is 

not uniform across the membrane. The membrane could exist in fully hydrated condition 

as well as in partially or completely dry conditions. Hence, we investigated the solvent 

effects by optimizing the tetramer structures in the presence of implicit water using the 

PCM as discussed in computational details section.104,105 As expected, the charge 

screening provided by the solvent suppresses the electrostatic repulsion among charged 

backbone units rendering the normalized end-to-end distance almost unchanged from the 

one obtained for the corresponding neutral polymer. The DFT-optimized structure of 100% 

dm HMT-PMBI trimer in gas-phase, as presented in References [23] and [81], reveals the 

angle between the adjacent mesitylene and benzimidazole groups and two adjacent 

benzimidazoles as 77° and 47°, respectively, which is consistent with our findings. 
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Figure 2.4. Effect of charge on the conformations of various studied systems in 

gas-phase. Numbers represent the normalized end-to-end distance 
values. 

Figure 2.5 shows the electrostatic potential energy map. On neutral HMT-PMBI, 

negative charge is accumulated on the nitrogen atoms of the benzimidazole ring, indicated 

in red. As the degree of methylation increases, more positive charge is distributed on 

benzimidazole groups of the backbone, as shown in darker blue for HMT-PMBI+ and HMT-

PMBI2+. This is in agreement with the observation of stretching and the change in the 

persistence length value, caused by electrostatic repulsion.100,108 
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Figure 2.5. Electrostatic potential energy map of the tetramer of HMT-PMBIs. 

In Figure 2.6, HOMO, LUMO and Egap, obtained with the B3LYP functional, are 

plotted as functions of oligomer length for the various degrees of methylation. As the 

length of oligomer increases the structure becomes more stabilized and HOMO, LUMO 

and Egap energy levels converge to specific values corresponding to the infinite (polymer) 

structure. For instance, for HMT-PMBI+, HOMO, LUMO and band gap energy level of 

around -9.0, -6.5, and 2.5 eV, respectively. It should be noted that for charged oligomers 

the drop in the energy levels from monomer to trimer is significantly larger (over 20 times 

larger) than that of the neutral HMT-PMBI and PBI oligomers. Moreover, the increasing 

degree of methylation causes a decrease in HOMO and LUMO energy levels as well as 

in the band gap of HMT-PMBI. The band gap for HMT-PMBI+ and HMT-PMBI2+ is 

decreased by approximately 2.0 eV and 3.0 eV relative to neutral HMT-PMBI, respectively. 
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Figure 2.6. The HOMO, LUMO and band gap of the studied polybenzimidazole-

based ionenes. 

The values of HOMO, LUMO and Egap are shown in Table 2.2. HOMO and LUMO 

levels of neutral HMT-PMBI lie slightly above those of PBI as shown in Figure 2.6, 

consequently the band gap of PBI is lower than that of HMT-PMBI by about 0.5 eV. In 

general, the relatively large range of Egap, varying from 1.4 to 4.5 eV, implies that the 

electronic and optical properties of HMT-PMBI-based polymers depend strongly on the 

degree of methylation and the oligomer length. Depending on these structural properties 

the charged polymers could have either insulating or semiconducting properties. Since the 

results of the band gap energy for neutral HMT-PMBI (blue line in Fig. 2.6) display a 

consistent value of about 4.5 eV for various oligomer lengths, it is expected that neutral 

HMT-PMBI polymers have insulator properties.109 
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Table 2.2. Comparison of HOMO, LUMO and band gap data of different 
oligomers of PBI and HMT-PMBIs using B3LYP functional 

Material 

Functional 

PBI HMT-PMBI 

HOMO LUMO Egap HOMO LUMO Egap 

monomer -5.38 -1.28 4.10 -5.26 -0.72 4.54 

dimer -5.35 -1.52 3.82 -5.26 -0.73 4.53 

trimer -5.36 -1.60 3.75 -5.25 -0.75 4.50 

tetramer -5.36 -1.64 3.72 -5.27 -0.75 4.52 

pentamer -5.36 -1.65 3.71 -5.26 -0.77 4.49 

Material 

Functional 

HMT-PMBI+ HMT-PMBI2+ 

HOMO LUMO Egap HOMO LUMO Egap 

monomer -7.72 -4.33 3.40 -10.05 -6.60 3.45 

dimer -8.21 -5.21 2.99 -11.06 -8.20 2.86 

trimer -8.50 -5.82 2.68 -11.63 -9.54 2.09 

tetramer -8.89 -6.20 2.68 -12.01 -10.22 1.79 

pentamer -9.05 -6.50 2.55 -12.31 -10.89 1.42 

Figure 2.7 shows the molecular orbital densities for the repeating units of the 

studied systems in the gas phase and in the presence of implicit water. Evidently, 

introducing an electron diminishing group onto the polymer backbone, i.e., a methyl group, 

has significant influence on the HOMO and LUMO energy levels. For the PBI repeating 

unit the HOMO level is delocalized along the backbone indicating a strong electronic 

coupling between the subunits. On the neutral HMT-PMBI repeating unit, both in the 

absence and presence of solvent, the HOMO level is predominantly localized on the 

benzimidazole groups and the contributions from phenyl and mesitylene rings are almost 

negligible. Weaker electronic coupling is expected in this case due to the relatively large 

torsional angles between these groups. On 75% dm HMT-PMBI, the HOMO level is further 

localized with negligible contribution from the charged nitrogen of the benzimidazole unit. 

This trend is more significant on fully methylated HMT-PMBI, where the HOMO is strongly 

localized on the phenyl unit. In the presence of implicit water, however, the HOMO is more 

delocalized which is due to the charge screening effect exerted by the solvent. As also 



24 

shown in Figure 2.7, the electron densities of the LUMO of PBI and HMT-PMBI are rather 

delocalized, while those for HMT-PMBI+ and HMT-PMBI2+ are more localized on the 

charged units both in the gas-phase and in the presence of implicit water. In Table 2.3, 

we report the HOMO, LUMO and Egap values for the tetramer of PBI and HMT-PMBIs with 

various degree of methylations obtained with different DFT functionals.  

 
Figure 2.7. The HOMO and LUMO of the studied systems in gas-phase and in the 

presence of water solvent. 
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Table 2.3. Comparison of HOMO, LUMO and band gap data of tetramer of PBI 
and HMT-PMBIs using various functionals 

Material 

Functional 

PBI  HMT-PMBI  

HOMO LUMO Egap HOMO LUMO Egap 

B97D -4.66 -2.21 2.45 -4.50 -1.48 3.02 

PBE -4.77 -2.31 2.45 -4.61 -1.53 3.08 

TPSS -4.75 -2.20 2.55 -4.60 -1.40 3.20 

O3LYP -5.08 -1.81 3.27 -4.96 -0.84 4.11 

B3LYP -5.36 -1.64 3.72 -5.27 -0.75 4.52 

PBE1 -5.62 -1.55 4.07 -5.52 -0.69 4.82 

wB97XD -7.23 -0.12 7.11 -7.17 1.01 8.17 

Material 

Functional 

HMT-PMBI+ HMT-PMBI2+  

HOMO LUMO Egap HOMO LUMO Egap 

B97D -7.95 -6.81 1.14 -11.17 -10.78 0.39 

PBE -8.10 -6.90 1.19 -11.27 -10.89 0.39 

TPSS -8.12 -6.78 1.34 -11.27 -10.76 0.51 

O3LYP -8.58 -6.39 2.19 -11.66 -10.41 1.25 

B3LYP -8.88 -6.20 2.68 -12.01 -10.22 1.79 

PBE1 -9.11 -6.11 3.00 -12.33 -10.12 2.22 

wB97XD -10.81 -4.47 6.34 -14.06 -8.44 5.62 

As shown in Figure 2.8, the choice of the DFT functional results in similar trends 

for all systems; Grimme’s functional including dispersion, B97D, as well as PBE and TPSS 

functionals, which are at GGA and meta-GGA level, respectively, predict higher values for 

HOMO as compared to the hybrid functionals, namely, O3LYP, B3LYP, PBE1 and 

wB97XD. HOMO level predicted by wB97XD is significantly lower than for the other 

functionals. Likewise, the LUMO predicted by B97D, PBE and TPSS is smaller than those 

predicted by hybrid functionals, while the LUMO obtained with the wB97XD functional is 

significantly larger than for other functionals. Therefore, wB97XD gives the largest value 

of Egap for all systems by a difference in the range between 3-5 eV. Egap calculated by 

PBE1 is larger than that found with B3LYP by about 0.3-0.4 eV; that for B3LYP is larger 
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than the value for O3LYP by about 0.4-0.5 eV. In turn, Egap values predicted by PBE and 

TPSS are smaller than that obtained with B3LYP by 1.0-1.5 eV. B97D, on the other hand, 

predicts similar values to PBE functional with a difference smaller than 0.05 eV.  

Similar calculations on organic photovoltaics based on π-conjugated polymers 

reported in Ref. [110] suggests the B3LYP is in better agreement with experimental 

values.110 In another work, McCormick and coworkers used multiple DFT calculations to 

model the orbital energies of conjugated polymers. They have shown that for the B3LYP 

level of DFT, outputs are reasonably well correlated with experimental HOMO energy 

values (cyclic voltammetry results).111 Also, as mentioned in Ref. [3], 89% dm HMT-PMBI 

is a yellow-colored polymer, implying that its HOMO-LUMO gap is expected to lie in the 

range of 1.9 to 2.3 eV.112 This means that the result for the HOMO-LUMO gap of HMT-

PMBI2+ obtained with the B3LYP functional, which is seen to be ~2 eV, as shown in Fig. 

2.8, represents a reasonable range for this compound. Moreover, cyclic voltammetry can 

be used as an experimental approach to determine the HOMO and LUMO energies of the 

various HMT-PMBI ionenes.113 
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Figure 2.8. The effect of different density functionals on the HOMO, LUMO and 

band gap of PBI and HMT-PMBI tetramers. 

In this chapter, we demonstrated that the ionic charge distribution and electronic 

structure properties of single ionene moieties can be calculated well with density functional 

theory. Results indicate an increase of the electrostatic repulsion of ionene moieties in the 

gas phase with increasing degree of methylation, leading to a stretching of the chains. The 

presence of water, however, suppresses the electrostatic repulsion among ionene 

charges. We calculated HOMO, LUMO and electronic band gap of various HMT-PMBIs. 

More positive charge on the backbone leads to a decrease, by about 2.0 and 3.0 eV, of 

the band gaps of HMT-PMBI+ and HMT-PMBI2+ relative to that for the neutral polymer, 

respectively. 
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Chapter 3.  
 
Recurrent neural network-based model for 
accelerated trajectory analysis of MD simulations 

This chapter demonstrates the training of recurrent neural networks (RNNs) from 

distributions of HTM-PMBI atom coordinates in polymer structures that were obtained 

using Molecular Dynamics simulations. Molecular Dynamics trajectory output data, 

obtained from Ref. [23], on the HMT-PMBI2+ tetramer structure was used as a machine 

learning training input data for RNNs. This problem is treated as a multi-variate time-series 

problem. By referring interactions between atoms over the simulation time to temporary 

correlations among them, RNNs find patterns in the multi-variate time-dependent data, 

which enable forecasting trajectory paths. Two types of RNNs, namely gated recurrent 

unit and long short-term memory networks, are considered. The model is described and 

compared against a baseline MD simulation on a single tetramer of fully methylated HMT-

PMBI. Findings demonstrate that both networks can potentially be harnessed for 

accelerated statistical sampling in computational materials research. 

3.1. Theoretical background 

3.1.1. Regression fit 

Curve fitting is the process of stating the model which offers the best fit to the 

curves in described by a given dataset. The dataset is decomposed into two variables, 

first the observed data X and second a target variable Y which is going to be predicted. 

The purpose of regression fit is to find the relationship between these two independent 

variables and thereafter predict the unseen target variable. Linear Regression is 

considered as a machine learning (ML) method based on supervised learning. In 

supervised learning, the mapping function is learned from the input to the output data, 

using a specific algorithm.114,115  

Given the training set {(x1,t1), … ,(xN,tN)}, with 𝑡4 ∈ ℝ	and	𝑥4 ∈ ℝP, the simplest 

linear model for regression can be written as 
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𝑦(𝑥, 𝑤) 	= 	𝑤B	 +	𝑤!	𝑥! +	𝑤$	𝑥$+	. . . 	+	𝑤P	𝑥P,                      3.1 

where xi is input training data and y is the dependent output. Target variable is denoted 

by ti. The goal here is to learn and find the best set of coefficients w so that 𝑦(𝑥, 𝑤) aligns 

with target value in training data.116 

Since having a model that is linear in parameter w is what will be important for 

simple algorithms, Equation 3.1 can be extended to include non-linear functions, 𝜙4(𝑥), of 

data, 

𝑦(𝑥, 𝑤) 	= 	𝑤B	 +	𝑤!	𝜙!(𝑥) +	𝑤$	𝜙$(𝑥)+	. . . 	+	𝑤3)!	𝜙3)!(𝑥).         3.2 

Linear combinations of these basis functions, 𝜙4(𝑥), are also linear in parameters 

wi. Various non-linear basis function such as polynomial, gaussian, sigmoidal, logarithmic, 

and sinusoidal/cosinusoidal could be used. Linear Regression fits a model to the dataset 

by tuning the set of parameters w to minimize the loss function (also called cost function), 

𝐸(𝑤),	which is defined as the sum of the squared residuals or errors (observed minus fitted 

value),116 

𝐸(𝑤) 	= 	 !
$
	a {𝑦(𝑥,, 𝑤) 	− 𝑡,}$,

6
,5!                3.3 

𝛻𝐸(𝑤) 	= 	0.                3.4 

To solve Eq. 3.4, and get the best set of w parameters, the gradient descent (GD) 

method is employed. The following is a simple algorithm of the GD method:117 

1. Initialize the parameters w with guessed values (all zeros or random values)  

2. Update the parameters: 𝑤,-Q	 = 𝑤 − 𝜂	𝛻𝐸(𝑤) 

3. Update the learning rate η (gradually decrease over time)  

4. Repeat steps 2 and 3 until 𝛻𝐸(𝑤) becomes small enough (10-3 – 10-4). 
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3.1.2. Neural networks 

Neural networks (NNs) are a specific set of methods that has dramatically altered 

the machine learning area. The artificial neural networks are inspired by biological neural 

networks. The primary works of Rosenblatt and McCulloch et al. in the mid 20th century 

led to the creation of the perceptron or an artificial neuron.118,119 

 

Figure 3.1. A single neuron. xi, wi, b, h, and f denote the inputs, weights, bias 
term, hidden state (or the output of neuron) and activation function, 
respectively. 

The neurons (Fig. 3.1) are the basic unit of the neural network architectures. The 

neuron is a placeholder for a mathematical function which takes all the inputs (xi), 

multiplies them by the corresponding weights (wi), and adds them up (∑ 𝑥4 ∗ 𝑤4,
45! ); a bias 

term (b) is often added (Equation 3.5). The weight parameters define the strength of the 

connection between neural network nodes (see Figure 3.2). For instance, if w1 has greater 

magnitude than w2, that means the neuron 1 has greater impact over the neuron 2.120 To 

generate the output value of the neuron, also called hidden state (h), a non-linear 

activation function (f) is applied. The equation below represents the process of calculating 

the hidden state, 

ℎ = 𝑓(𝑏 + ∑ 𝑤4𝑥4,
45! ).               3.5 

The set of weights W = {w1, w2, …, wn} is going to be trained to detect and learn a 

pattern among the inputs. The output of one neuron could be the input for another, which 

generates a network of neurons, or a “neural network." 
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Figure 3.2. A fully connected neural network diagram with one hidden layer 
corresponding to Eq. 3.5. The input, hidden and output states are 
represented by nodes, and the weight parameters, wi, are depicted by 
links between the nodes.7 

As it is shown in Figure 3.2, input, hidden and output nodes are organized into 

layers and these layers make up a connected network. The value of the output, y, in this 

figure can be calculated using Equation 3.5: 

𝑦 = 𝑓$(∑ 𝑤4,
45! ℎ4) = 𝑓$i∑ 𝑤4,

45! 𝑓!(∑ 𝑤4A,
A5! 𝑥A)j,            3.6 

where 𝑓! and 𝑓$ are activation functions. The sigmoid function, 𝑓(𝑎) = !
!	(	RST	()U)

, is a 

common example of activation function for binary classification problems. For Recurrent 

Neural Networks (see section 3.1.3), however, the hyperbolic tangent function, 𝑡𝑎𝑛ℎ(𝑎) =
!	)	-.V	()$U)
!	(	-.V	()$U)

, is preferred as a standard activation function.7 Here, parameters {w11, w21, …, 

wnn} represent the connection between input and hidden layer nodes and set of 

parameters {w1, w2, …, wn} define the connection between hidden and output layer nodes. 

To optimize a neural network, the gradient descent algorithm (Equations 3.3 and 

3.4) is usually employed. As discussed in the previous section, a cost function, also called 
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loss function, 𝐸(𝑤), measures how incorrect the output 𝑦(𝑥,, 𝑤) of the network is 

compared to the target output tn. It is defined by 

𝐸(𝑤) 	= 	 !
$
a {𝑦(𝑥,, 𝑤) 	− 𝑡,}$.

6
,5!              3.7 

For every loop on the training data, each weight is updated as 

 𝑤4,-Q = 𝑤4 − 𝜂 ∗ ∇𝑤4,                3.8 

where 𝜂 is a dimensionless factor called learning rate. The partial derivative of the loss 

function with respect to the corresponding weights is shown by 

 ∇𝑤4 =
WK(Q)
WQ&

.                3.9 

To train a machine learning model the aforementioned loss function must be 

minimized to the desired error. The best-known technique to calculate the partial derivative 

of the loss function with respect to the corresponding weights (Equation 3.9) and updating 

weights (Equation 3.8) is the backpropagation method proposed by Rumelhart et al..121 A 

common problem occurring with backpropagation and updating weights is that the 

gradient (∇𝑤4) becomes vanishingly small122, thus, preventing the weight from changing 

its value. To address this problem, which specifically happens in recurrent neural 

networks, the Long Short-Term Memory (LSTM) model123 was proposed which will be 

elaborated in the next section. 

Overfitting refers to an outcome that predicts the training data with high precision, 

however, has a low accuracy on a test dataset. To avoid overfitting, various regularization 

techniques can be used. One of the most common methods which has been employed in 

this study is L2 regularization, 

𝐸m(𝑤) 	= 	 !
$
	n {𝑦(𝑥,, 𝑤) 	− 𝑡,}$ 	+ 	

X
$
∥ 𝑤 ∥$,

6

,5!
           3.10 

where ∥ 𝑤 ∥$	= ∑ 𝑤4$,
45!  and 𝜆 is the regularization parameter. L2 regularization adds a 

penalty term, X
$
∥ 𝑤 ∥$, equal to the square of the magnitude of weights. The 

hyperparameter 𝜆, adjusts the trade-off between obtaining low training loss and obtaining 

less complex model which is often selected by trial and error work. The neural network 
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structure is determined by hyperparameter variables. These variables must be defined 

before training the algorithm and optimizing the weights. Here I have introduced all 

hyperparameters that have been employed in our study: 

The learning rate (Equation 3.8) is the most important hyperparameter, which 

must be set first. The learning rate describes how fast a network updates its parameters. 

Small learning rate would lead to a more reliable training; however, the optimization 

process (satisfying Eq. 3.4) would take longer as the steps towards the minimum of the 

loss function are small (~10-5).  

The number of epochs is the number of times the entire training examples are 

passed through the network. The number of epochs needs be as large as possible, but 

the training accuracy should be inspected to prevent a possible overfitting.7,117 

The batch size is the number of subsamples propagated through the networks 

after which neural network weights get updated. If the size of samples is equal to 2000 

and the batch size is equal to 200, then the model grabs the first 200 samples and trains 

the network with them. Following that, the next 200 samples (from 201st to 400th) will be 

taken and the network gets updated. This process will be continued until all samples in 

the training dataset broadcast to the network.117 

The sequence length is length of the sequence that will be learned by the model 

and is being used for recurrent neural networks (Table 3.1). The default value of the 

sequence length is equal to the total length of the dataset dived by the batch size. A 

change in the sequence length will not affect the trained model considerably.7 

3.1.3. Recurrent neural networks for time series forecasting 

The time series forecasting problem is a salient area in machine learning, which 

attempts to model stochastic processes as well as to forecast the future subsequent 

values of sequences based on the previous records of those sequences. As it is shown in 

Figure 3.3, the time series forecasting/prediction problem is reflected as a supervised 

learning problem (see section 3.1.1).  
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Figure 3.3. A simple schematic of the supervised machine learning categories 
and applications.8 

A robust type of algorithms that can handle the time component complexity are 

Recurrent Neural Networks, which are designed to manage sequence dependency of 

input data.117 RNNs receive as input a sequence of signals with no predetermined size 

limit and utilize their internal states (so-called as memories) for processing the input. In 

other words, RNNs iterate over the timesteps of a sequence, while preserving an internal 

state that keeps information about the timesteps it has already seen. The LSTM model, 

as a special kind of RNN, was proposed by Sepp Hochreiter et al. in 1997,123 to solve the 

vanishing gradient issue associated with RNNs.124,125 The problem is that the gradient or 

partial derivative of the cost function with respect to the layer’s weight, wi, (Equation 3.9) 

becomes vanishingly small, preventing the weights from updating their values.122  

To address this problem, LSTMs employ a gating mechanism, composed of three 

gates, which give the model permission to pass or forget data, as shown in Figure 3.4.123 

The proposed gates establish a new relationship between data and forget previous 

relationships over a particular time span. Thus, the gating mechanism enables the 

previous input signals to affect the current signal at a given time, while remaining 

unaffected by signals that are far apart from the current signal. Gated Recurrent Unit 

(GRU) is a form of LSTMs introduced in 2014.78 In what follows, we only present the 

architecture of a GRU, which is similar to that of a LSTM model. 
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Figure 3.4 represents a unit of a GRU model. In this figure r and u are called reset 

gate and update gate, respectively, which are the main gates in a GRU unit. 

Concatenating the new input with the preceding memory is enabled by the reset gate. The 

update gate, on the other hand, determines the portion of the preceding memory to be 

kept. We denote the hidden state of the GRU at time step i by ℎ4I. In a GRU structure, the 

activation ℎ4I at time i is a linear interpolation between the previous activation ℎ4)!I  and the 

candidate activation ℎYq  (see Equation 3.5). An update gate 𝑢4 governs this linear 

interpolation, and the candidate activation ℎYq  depends on a reset gate ri. The exact 

formulation of this process is 

ℎ4I = (1 − 𝑢4)ℎ4)!I +	𝑢4ℎYq ,                         3.11 

𝑢4 = 	𝜎(𝑊C𝑥4 	+ 	𝑈Cℎ4)!I ),                            3.12 

ℎYq = 	 tanhiW𝑥4 + 𝑈(𝑟4⨀ℎ4)!I )j,                             3.13 

𝑟4 = 	𝜎(𝑊@𝑥4 	+ 	𝑈@ℎ4)!I ).                               3.14 

Here, vector xi represents the input. The update gate ui in Equation 3.12 decides 

how much of each dimension of the hidden state is retained and how much should be 

updated with the transformed input xi from the current time step. 

 

Figure 3.4. The LSTM and GRU units. Yellow and blue circles represent sigmoid 
and tanh functions (see 3.1.2 section), respectively. White circles 
show point-wise operations. 
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3.1.4. Molecular dynamics simulation 

Molecular dynamics (MD) is one of the most powerful tools utilized for the 

simulation of complex molecular systems and nowadays routinely applied to various 

systems such as biomolecules, polymers, and solid-state materials.93 Prediction of the 

trajectory of atoms, finding the structure and dynamics of macromolecules, and calculating 

the thermodynamic properties of novel compounds without the need to conduct 

experiments, can all be done using atomistic molecular dynamics simulations. Figure 3.5 

represents a basic scheme of the all-atom MD algorithm.126 

 

Figure 3.5. Schematic of a standard Molecular Dynamics simulation algorithm. 

The loop in Figure 3.5 above will be continued until equilibrium is reached 

(equilibration time). Thereafter, simulations will be continued in the so-called production 
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run to sample uncorrelated system configurations for the calculation and analyses of 

thermodynamic-statistical properties and generating dynamical trajectories of molecular 

processes in the system. 

Force field parameters used in computing interatomic potential energies (see Fig. 

3.5) are taken either from ab initio or semi-empirical quantum mechanical calculations. 

Parameters could be obtained by fitting against calculations of electronic structure or 

experimental properties gained from elastic constants, lattice parameters and 

spectroscopic assessments.127 

Below are the energy terms for the OPLS-all atom (OPLS-AA) force field,128,129 

𝐸 =	𝐸ZE,[F +	𝐸U,&+-F +	𝐸[4\-[@U+F +	𝐸,E,)ZE,[-[ 3.15  

𝐸ZE,[F =	∑ 𝑘@(𝑟 − 𝑟B)$ZE,[F , 3.16  

𝐸U,&+-F =	∑ 𝑘](𝜃 − 𝜃B)$U,&+-F , 3.17  

𝐸[4\-[@U+F =	 n |
𝐾!
2
	[1	 +	𝑐𝑜𝑠(𝜙)] 	+	

𝐾$
2
	[1	 −	𝑐𝑜𝑠(2𝜙)] 	+	

𝐾^
2
	[1	

[4\-[@U+F

+	𝑐𝑜𝑠(3𝜙)] 	+	
𝐾8
2
	[1	 −	𝑐𝑜𝑠(4𝜙)]�,							 

3.18  

𝐸,E,)ZE,[-[ =	∑ 𝑓4A	4>A |
2&'
@&'
+! 	− 	

_&'
@&'
, 	+ 	

`&`'
89a%@&'

�, 3.19  

where 𝐴4A 	= 	�𝐴44𝐴AA and 𝐶4A 	= 	�𝐶44𝐶AA. 

The OPLS (optimized potentials for liquid simulations) force field128 is a widely 

employed force field (FF) for Molecular Dynamics (MD) simulations of liquids and polymer 

solutions. The energy between two covalently bonded atoms is described by 𝐸ZE,[F. The 

harmonic approximation of 𝐸ZE,[F works well close to the equilibrium bond length. 

However, the error of this expression grows with the separation distance between atoms. 

Changing the geometry of electron orbitals involved in covalent bonding will change the 

𝐸U,&+-F, which describes interactions between 3 bonded atoms. Equation 3.18 shows the 

dihedral angle energy term. A dihedral angle (also called torsion angle) for four bonded 

atoms (A-B-C-D) is the angle between planes through two sets of three bonded atoms 
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(composing of the two sets of atoms A-B-C and B-C-D), having two atoms (atoms B and 

C) shared. 𝐸,E,)ZE,[-[ is the energy term for the non-bonded interactions between atom 

pairs, which consist of two separate terms. The first two terms under the sum on the right-

hand side of Equation 3.19 correspond to the van der Waals (vdW) attraction and a strong 

repulsion at close distance, described with the 12-6 Lennard-Jones potential. The third 

term represents the Coulomb energy due to electrostatic interaction between charged 

atoms.130 As Molecular Dynamics is only used for finite systems, periodic boundary 

conditions (PBCs) are employed to approximate an infinite system that simulates the bulk 

properties. PBCs imply that any atom, which leaves the simulation box by one face, will 

re-enter the simulation box instantaneously by the opposite face.131 

MD results reported in Ref. [23] and [81] were obtained using the OPLS-AA force 

field (Equations 3.15-3.19) and the simulations were conducted for an NVT ensemble,131 

using Nose-Hoover thermostat, where the number of particles (N), the volume of the 

simulation cell (V), and the temperature of the system (T) kept constant. A Nose-Hoover 

thermostat can be represented by modifying equations of motion,132 

𝑚4	
[!@&
[/!

	= 	 𝑓4 −𝑚4	𝛾(𝑡)
[@&
[/

,             3.20 

𝑓4 =	−
W
W@&
𝑈4(𝑟!, 𝑟$, . . . , 𝑟6),            3.21 

where N denotes the number of particles. 𝑚4 	, 𝑟4 	, 𝑈4 and 𝑓4 are the mass, position, total 

potential energy and the total force acting on atom i.  

Term 𝛾(𝑡) on the right hand-side of Equation 3.20 demonstrates the 

thermodynamic friction coefficient and is given by 

[b(/)
[/

= !
c
S∑ 1&	

$
([@&
[/
)$ − (d(!)

$
𝑘=𝑇4 U,           3.22 

where kB and Q constants are the Boltzmann constant and the thermostat mass (the 

artificial mass of the thermostat particle). X represents the number of degree of freedom 

of the system and is equal to 3N, where N is the number of particles in the system.133 
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3.2. Computational details 

As explained in the previous part, all-atom MD simulations in Ref. [23] were carried 

out to study a single tetramer of 100% dm HMT-PMBI, using the LAMMPS (Large-scale 

Atomic/Molecular Massively Parallel Simulator) program. LAMMPS is an open source 

software written in C++ language provided by Sandia National Laboratories.134 Trajectory 

history comprised of 10 ns of X, Y and Z coordinates for all atoms were extracted from the 

LAMMPS trajectory output file to prepare the input file for neural network training. No 

missing data points were present among XYZ coordinates as expected from MD 

simulations.  

We used Python 3.6 programming language as well as Keras-TensorFlow 2.1 

framework135 in Python to implement RNNs. TensorFlow is an open source library to 

support developing and training ML models in Python. TensorFlow was created and 

released by a Google team in 2015. The full Python code was uploaded in my GitHub and 

also attached in the Appendix A (GitHub link: https://github.com/Mehrdad93/Trajectory-

path-prediction/blob/master/gru_trj_path-2.py). All Python codes were run on Google 

Colaboratory. Google Colaboratory, in short Colab,136 is an open source product from 

Google Research, which enables all users to write and execute python scripts using the 

browser. Colab also allows everyone to take advantage of free access to computing 

resources including GPUs. Employing Tesla T4 GPUs on Colab platform takes about 40 

mins of continuous run time to train both GRU and LSTM models, which is much less than 

a typical MD simulation for this system. 

Before training the neural network, hyperparameters must be determined (see 

section 3.1.2 and Table 3.1). Our MD simulation trajectory dataset is split into two parts: 

a train and a test set. 80% of the dataset will be used for the train set. C2-position carbon, 

CM2 atom, also highlighted in Figure 3.6 in HMT-PMBI2+ tetramer, is chosen as target 

atom for prediction purposes. The entire dataset has been normalized using Normalizer 

function to scale individual samples to have unit norm. In this study, L2 normalization (see 

section 3.1.2) was applied to each sample (if each sample squared and summed with 

others, the total would be equal to one). The main purpose of normalizing the data is to 

maximize the performance of the neural network, by smoothing the optimization 

process.137 
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Figure 3.6. Half monomer of HMT-PMBI2+. C2-position, highlighted CM2 atom 
type, is chosen as target atom for prediction. Structure by “molview” 
labeled with the atom types based on OPLS-AA force field.9 

Various batch sizes were tried and 256 is selected as the default value. As 

discussed in 3.1.2 the frequency of updating the neural net weights can be controlled with 

the number of batch sizes. The sequence length of 150 was employed, which means that 

each random sequence of samples is comprised of 150 timesteps of each atom. The 

number of GRU and LSTM units was set to 250, which resulted in 250 output vectors (one 

output vector for each of GRU/LSTM units). Therefore, a fully connected layer, also called 

dense layer, was added to reduce 250 outputs down to 3 output vectors, which are the 

predicted X, Y, and Z coordinates of the target atom (highlighted CM2 atom in Figure 3.6). 

To compile the model and train the network, the learning rate began with 10-3 and 

decreased to 10-4 if needed. The epoch number was fixed at 500, which shows the number 

of complete passes through the training dataset. To avoid overfitting, lowering the training 

error and increasing the test error, L2 regularization (Equation 3.10) with the regularization 

parameter of 10-3 was utilized.  
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Table 3.1. List of hyperparameters 

Hyperparameters Min Max Default Value 

Learning rate 10-4 5 × 10-3 10-3 

Batch size 128 512 256 

# units for GRU and LSTM 200 300 250 

Sequence length 50 200 150 

Number of epochs 500 500 500 

L2 regularization constant 0.0001 0.001 0.001 

Train-test split 80%-20% 90%-10% 80%-20% 

 

3.3. Results and discussion  

Figure 3.7 shows the proposed GRU/LSTM-based model for MD trajectory path 

predictions. RNN-based models are chosen because in general their input can involve 

sequences of arbitrary lengths, which refers in this case to the varying number of atoms. 

The model consists of a GRU or LSTM layer and a subsequent dense layer to combine 

output from the previous layer. As input, the RNN-model receives trajectory data for all 

atoms in the unit-cell. As output, we aim to predict the X, Y, Z coordinates of the 

considered atom i. The predictions are then compared with the MD calculated outputs. 
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Figure 3.7. The proposed GRU/LSTM-based model for MD trajectory prediction. 

We resampled the target data for the highlighted CM2 atom in Figure 3.6 by shifting 

the results of X,Y and Z coordinates of the target atom negatively by 500 ps (around 5% 

of the train set); meaning that we shifted the target data points to a configuration 500 ps 

in the past to let the model predict the future trajectory of the test atom. We used 80% of 

the MD time steps for the training set and the rest for the test set. The range of feature 

values was scaled in the data preprocessing step. To train the RNN, we created batches 

of shorter sequences of input data selected randomly from the train set. RNN was created 

in Keras-TensorFlow library (see section 3.2) and GRU or LSTM were added to the first 

layer. This layer returns a sequence of 250 values as input for the dense layer which in 

turn outputs 3 vectors (see Figure 3.7). The sigmoid activation function was used to output 

the values between 0 and 1 which is justified as we expect the output values to be in the 

same range as the training set. A gradient descent optimizer (Equations 3.3-3.4) was used 

to compile the model. The values for the hyperparameters used are shown in Table 3.1. 

As for the loss function, we used the mean squared error (MSE) that must be 

minimized during the model training, 

𝑀𝑆𝐸 =	
∑ (f&)f&

.)!/
&0+

,
.                        3.23 
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Figure 3.8 depicts the predicted output sequences, namely X, Y, Z coordinates of 

the GRU- and LSTM-based models compared with the ground truth from MD simulation. 

As shown for the train set, both models were able to predict the oscillations of the 

coordinates with reasonable accuracy which was expected as this data was seen by the 

models during the training. However, the prediction is not accurate for the first few time 

steps as the models have not received enough input data to be trained. The overall 

fluctuations were also projected reasonably well, although the peaks were sometimes 

inaccurate, especially for X and Y coordinates of the LSTM model. As for the test set, the 

data were not seen by the models during training process. In this case, the GRU model 

performs reasonably well. However, the LSTM model could not completely capture the 

peaks and the peaks were not matched with the MD data and there seems to be a 

deviation with maximum relative error of about 3-4% (see Figure 3.10). The relative error 

in this study is equal to the absolute error (MD results – ML outputs) divided by the known 

value (MD results). 

 

Figure 3.8. Predictions of the trajectory of CM2 atom, by (a) GRU and (b) LSTM 
compared to MD outputs. 
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Figure 3.9 compares the generated partial autocorrelation function (PACF) of the 

X coordinate of C2-position (target) atom calculated with MD simulations with those 

predicted by GRU and LSTM models. In the time series analysis, the partial 

autocorrelation function indicates the correlation between current and previous series 

values and measures which of the previous series values are most helpful for forecasting 

future behaviours. If a dependent variable Y has 3 independent variables {X1, X2, X3}, 

Equation 3.24, then the partial autocorrelation function between Y and X3 will be calculated 

as follows:138 

1. Perform regression, in which variable Y is predicted from X1, X2 and then 

calculate the residuals of this regression (residual for each sample is the 

difference between the predicted value and the observed value for that 

sample). 

2. Perform regression in which variable X3 is predicted from X1, X2 and then 

calculate the residuals of this regression. 

3. Use Equation 3.25 to determine the value of partial correlation between Y 

and X3. 

𝑌 = 𝑎B + 𝑎!𝑋! + 𝑎$𝑋$ + 𝑎^𝑋^,                       3.24 

𝑃𝐴𝐶𝐹(𝑌, 𝑋^) =
_EgU@4U,D-h𝑌, 𝑋^?𝑋!, 𝑋$i

jkU@4U,D-h𝑌?𝑋!, 𝑋$i	×	kU@4U,D-h𝑋^?𝑋!, 𝑋$i	
,                   3.25 

where Variance is the difference between expectation of a squared variable and the 

expectation of that variable squared, 𝐸(𝑋𝑋) − 𝐸(𝑋)𝐸(𝑋); and Covariance is the same 

concept as Variance but compares two variables, 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌), which implies the 

relationship between two random variables X and Y.139 

As shown in Figure 3.9, the PACF outputs from MD simulation and the proposed 

RNN-based models show that above around 30 ps (0.03 ns) the values become 

uncorrelated since all the correlation values lie in the 95%-confidence interval (blue boxes 

shown in Fig. 3.9). The 95%-confidence interval is equal to !.no
√,

, where n is the number of 

samples. This figure displays the ability of GRU and LSTM models to produce 

uncorrelated configurations which can be used directly for the calculation of 

thermodynamic properties.140 
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Figure 3.9. Partial autocorrelation function for the X coordinate of the target atom 
obtained from (a) MD, (b) GRU and (c) LSTM results with 95%-
confidence interval shown in blue boxes. 

In general, the performance of GRU model seems to be superior to the LSTM 

model. This is shown in Figure 3.10, by calculating the point-by-point relative percent error 

(|f&)f&
.|

f&
× 100) of GRU and LSTM models against the MD simulation. For both the train 

and test sets, the percent error of the GRU model for X, Y, Z coordinates was found to be 

less than 2.5%, with a mean error of around 1.1%. Regarding the LSTM model, the 

maximum percent error for the coordinates was found as around 3.5% with the mean error 

of around 1.6%. Even though the calculated error implies a slightly more accurate 

prediction for the GRU model, LSTM seems to be more robust in terms of dealing with the 

overfitting issue as the error values for both train and test sets lie in a similar range.  
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Figure 3.10. Relative percent error of the two studied models.  

Overall, employing either GRU or LSTM models result in over 96% accuracy. This 

means that RNN-based algorithms including “Long Short-Term Memory” and “Gated 

Recurrent Units” models are able to forecast the trajectory paths of HMT-PMBI tetramer 

with a similar accuracy as molecular dynamics simulations, but in a much shorter time. 

Using Tesla T4 GPUs, it takes about 40 mins of continuous run time to train both GRU 

and LSTM models. Using recurrent neural networks can reduce the time for simulation of 

a molecular trajectory by a factor of 50-100, depending on the model parameters and the 

size of the system. In this study, two important hyperparameters mentioned in Table 3.1, 

the number of units for GRU and LSTM networks and the number of epochs, are playing 

a huge role in determining the overall runtime. Default values for the number of units for 

GRU and LSTM networks and the number of epochs was set to 250 and 500, respectively, 

which took 30-45 mins to train the networks and forecast the trajectory path of atoms. 

However, simulating a single HMT-PMBI tetramer using MD simulation can take up to 2 

days of continuous run, which is significantly higher than machine learning methods such 

as recurrent neural networks. 
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Chapter 4.  
 
Conclusion and future work  

The first part of this work focused on the conformational properties of HMT-PMBI 

oligomers. We demonstrated that the ionic charge distribution and electronic structure 

properties of single ionene moieties can be calculated with density functional theory. 

Results indicate an increase of the electrostatic repulsion of ionene moieties in the gas 

phase with increasing degree of methylation, leading to a stretching of the chains. The 

presence of water, however, suppresses the electrostatic repulsion among ionene 

charges. We calculated HOMO, LUMO and electronic band gap energies of various HMT-

PMBIs. More positive charge on the backbone leads to a decrease, by about 2.0 and 3.0 

eV, of the band gaps of HMT-PMBI+ and HMT-PMBI2+ relative to that for the neutral 

polymer, respectively. In the next part, this study suggests that accelerated statistical 

sampling of a polymeric system can be performed with “Long Short-Term Memory” and 

“Gated Recurrent Units” models. That means the RNN-based models can be employed 

as complementary tools for molecular dynamics simulations in order to markedly reduce 

computational costs.  

Studying the single chain behavior is a prerequisite for studying self-organization 

in highly concentrated solutions of polybenzimidazole ionenes. Studies performed and 

reported here reveal important trends in this regard and they could thus form the basis for 

further modeling and simulation of ionene self-aggregation, network formation, ion and 

solvent transport, and the development of a statistical model of fracture formation in 

ionene-based membranes. Insights on the conformational properties of ionenes with 

varying degree of methylation are important for better understanding the charge transport 

behavior in ionene solutions. We hope this study will prompt further fundamental 

investigations on conformational properties of benzimidazolium compounds.  

Moreover, in future studies the proposed RNN-based models could be tested on 

more complicated systems, e.g., predicting the bundle formation or self-aggregation of 

multiple oligomers. Furthermore, the architecture of the proposed models can be improved 

by employing the attention mechanism in the recurrent neural network models. Attention-

based RNNs emphasize on specific fragments of the input sequence when forecasting the 
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output sequence, facilitating simpler learning and higher performance. Attention will be 

considered as another component of the architecture of the RNN model which maps the 

relevant and important segments of the input data to their output values.141 In our study, 

atoms that are neighbor to the target atom will be the most important and relevant 

segments of the input data. 
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Appendix A.   
 
Python code; Recurrent Neural Network (GRU and 
LSTM) models for multivariant time series forecasting 
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Appendix B.   
 
Effect of charge on the conformations of various HMT-
PMBIs in gas phase (Figure 2.4) 

 
Figure B.1. Effect of charge on the conformations of various studied systems in 

gas-phase. Numbers represent the normalized end-to-end distance 
values. 


