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Abstract 

In this thesis, we present a pseudo-real-time retinal layer segmentation for high-resolution 

Sensorless Adaptive Optics-Optical Coherence Tomography (SAO-OCT). Our pseudo-

real-time segmentation method is based on Dijkstra’s algorithm that uses the intensity of 

pixels and the vertical gradient of the image to find the minimum cost in a geometric graph 

formulation in a limited search region. It segments six retinal layer boundaries in an 

iterative process according to their order of prominence. The segmentation time is strongly 

related to the number of retinal layers to be segmented. Our program permits en face images 

to be extracted during data acquisition to guide the depth specific focus control and depth 

dependent aberration correction for high-resolution SAO-OCT systems. The average 

processing times for our entire pipeline for segmenting six layers in a retinal B-scan of 

992x400 pixels, 496x400 pixels and 240x400 pixels are around 23 ms, 26 ms and 14 ms, 

respectively. 
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Chapter 1 

Introduction 

 

Our eyesight is one of the most important senses in which about 80 percent of our senses 

come through our sense of sight [1]. Most people have eye problems at one time during 

their lives. Some are minor problems and can be treated easily while some may need special 

care from ophthalmologists. In some serious situations, the surgical procedures may be 

required during the clinical ophthalmic treatments.  As our eye is a small and fragile organ 

and is heavily supplied by nerves and blood vessels, the extreme care during the surgical 

procedures must be taken; otherwise, it could cause negative surgical outcomes. Thus, 

using an imaging and processing modality that capable of yielding rapid high-resolution 

ocular images and evaluating immediately anatomical changes to help assist during surgery 

could potentially increase the rate of success.  

Since 1886, the first living human fundus image is photographed by Jackman and Webster 

[2], there have been critically advances in the knowledge and technique to acquire the 

retinal images. In ophthalmology, there are several imaging methods used in clinics such 

as color fundus photography, scanning laser ophthalmoscopy (SLO) and optical coherence 

tomography (OCT). Color fundus photography uses a fundus camera which is a camera 

with a specialized low power microscope to capture color images of the interior surface of 

the eyes known as fundus. Fundus image includes retina, retinal vasculature, optic dish and 

posterior pole. The advantage of color fundus photography is that it is a quick and simple 

technique providing a large retinal field of view. However, this imaging method gives two-

dimensional image which is difficult to observe abnormalities due to lacking the depth 

information. Also, it is uncomfortable to the patients being imaged due to the exposure of 

bright visible light. SLO is a non-invasive method that uses coherent light source and a 

confocal raster scanning technique to generate the retina and the optic nerve head images. 

It uses horizontal and vertical scanning mirrors to scan a particular region of the retina and 

form reflectance images. Although SLO can generate high lateral resolution, its axial 

resolution is poor. On other hand, OCT is a non-invasive, and painless imaging method 
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that uses light waves to create high resolution cross-sectional retinal images. Since OCT 

has been introduced in early 1990s, the algorithm and modalities of OCT imaging have 

dramatically improved in both resolution and acquisition speed. The evolution from Time-

Domain (TD) OCT to Fourier-Domain (FD) OCT dramatically increased the imaging 

speed, resulting in shorting the time to acquire a scan and reducing the artefacts related to 

the eye movements. The video rate imaging speed of FD-OCT enabled real-time retinal 

tracking and calibration of OCT modality.  

 

 Research Motivations 

OCT is an imaging modality that has been widely used in the field of biomedical imaging 

such as retinal imaging. It provides cross-sectional three-dimensional images of tissues that 

can be analyzed for tissue identification and properties. Ocular imaging with OCT allows 

ophthalmic clinicians to view and measure the distinctive retinal layer structure to diagnose 

retinal diseases such as glaucoma and age-related macular degeneration. OCT technology 

has continuously improved its acquisition speed; however, due to the complexity of OCT 

data processing from interferometric fringe data into images, the signal processing is 

computationally burdensome. Thus, powerful computational resources such as Graphics 

Processing Units (GPUs) were used to perform the parallelizable aspects of processing 

interferometric fringes into A-scans, and rendering the resulting volumes [3]–[10]. Our 

custom GPU pipeline could perform OCT processing at 2.24 MHz axial scan rate [3] and 

was also demonstrated for displaying flow contrast en face images extracted from the 

selected depth region on speckle variance OCT (svOCT) angiography [4] in real-time.  

With the OCT images generated during acquisition, there is an opportunity to process the 

B-scan images to extract additional information. For example, segmentation of the retinal 

layer boundaries provides an opportunity to perform thickness measurements, which are 

an important part of clinical retinal imaging. Alternatively, en face images (taken in the C-

scan directions) can be extracted from the OCT volumes. The en face images can be used 

for adjusting the focus to a particular depth plane, or for the application such as improving 

the lateral resolution using adaptive optics (AO) [11].   
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Optical aberrations caused by imperfections in the cornea and the intraocular lens reduce 

the image resolution. Adaptive optics have been integrated with optical retinal imaging to 

correct aberrations and allow diffraction limited imaging [12]; in a particular, our interest 

is in the combination of AO with OCT [11]–[18]. The conventional approach to AO uses 

a Hartmann-Shack Wavefront Sensor (HS-WFS) to detect wavefont distortions and 

compensate them using a deformable mirror. However, the HS-WFS is sensitive to back-

reflections, causing most of the conventional AO to use curved mirrors instead of lenses. 

We are developing a lens-based sensorless adaptive optics (SAO) approach to correct 

optical aberrations up to 21st order Zernike polynomials, starting from a defocus [19]. The 

SAO methods directly evaluate an image quality metric to drive the AO correction. Hence, 

OCT systems can be used for applications where there are multiple reflecting surfaces from 

the sample (which could confound a wavefront sensor measurement) or requiring depth 

resolved aberration correction.  

To extract the thickness measurements and en face images from OCT volumes, many 

segmentation methods have been introduced. The most reliable way is manual 

segmentation which is not suitable for large data sets because it is very time-consuming. 

Active contours segmentation [20]–[22] uses an energy formulation; however, it requires 

a good initialization, and the constraints on the boundaries can cause errors when the retinal 

layers are in irregular shapes. Besides, the active contours approach also has a high 

computational cost which is not suitable for real-time applications. Machine learning 

approaches [23], have been recently introduced, and they perform retinal segmentation 

based on learning data representations. They give accurate results; however, they require 

substantial amount of labelled learning data sets supplied to the networks and it is 

computationally expensive to train the networks. Automated segmentation methods, based 

on graph theory, use pixel intensity and the gradient of the image to find the minimum cost 

in a geometric graph information for each retinal layer boundary [24]–[27]. The accuracy 

and the speed of segmentation, based on graph theory, depend on the algorithmic 

implementation used.  

To integrate segmentation in real-time OCT imaging applications, a robust segmentation 

algorithm with low computational cost and low complexity is required. Utilizing real-time 
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retinal segmentation has several benefits. It can be used to calculate the thickness of the 

retinal layers, and permit investigation of the major diseases causing blindness. Also, the 

diseases related to retinal vessels, such as diabetic retinopathy, can be diagnosed through 

the retinal vasculature and its hierarchical structure from en face OCT-Angiography (OCT-

A) images. In clinical applications, a system such as computer-assisted surgery [28]–[34] 

that can yield rapid high-resolution ocular images and evaluate anatomical changes 

immediately to help assist during surgery could potentially increase the rate of success. 

Moreover, real-time retinal layer segmentation can provide effective focus control and 

direct feedback of aberration correction performance with image-guide AO techniques 

[35]. This last application is the main focus of this report. 

There are several fast retinal layer segmentation attempts for OCT images. Fabritius et al. 

reduced the processing time of segmenting Inner Limiting Membrane (ILM) and Retinal 

Pigment Epithelium (RPE) by heavily down-sampling each B-scan [36]. The total 

processing time using a computer with 2.4 GHz CPU to segment a healthy macula volume 

(1024x320x140) was 6.7 seconds: the average time needed for the ILM was 4.0 seconds 

and for the RPE was 1.9 seconds. Tian et al. developed a faster (~10x) automatic 

segmentation program called OCTRIMA 3D [27] based on the previous work by Chiu et 

al. [24]. In a follow up paper [37], Tian et al. evaluated different segmentation softwares 

on a computer with an Intel® CoreTM i7-2600 @3.4 GHz CPU. The result showed that 

OCTRIMA 3D could perform the segmentation of an OCT volume (768 x 496 x 610) in 

28 seconds. 

In this thesis, the main goal is to minimize the processing time of the automated retinal 

layer program while maintaining the reliability of the segmentation results. We present a 

pseudo-real-time retinal layer boundaries segmentation program in mice modified from the 

Caserel software [25]. The retinal segmentation was integrated in our custom GPU pipeline 

[3] with SAO algorithm [19] to perform a pseudo-real-time retinal layer segmentation in 

mice for high-resolution real-time visualization of vascular network, which provides focus 

control and aberration correction. The organization of the rest of this thesis is as follows. 

Chapter 2 provides the overview of OCT system and acquisition. The background of 

heterogeneous computing are provided in Chapter 3. Chapter 4 introduces high-speed 
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retinal layer segmentation algorithm. Chapter 5 explains the retinal segmentation pipeline. 

Chapter 6 demonstrates the retinal layer segmentation results and its speed along with the 

analysis and Chapter 7 covers the conclusion and the future work.
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Chapter 2  

Optical Coherence Tomography: Overview of system and 

acquisition 

 

This chapter provides an overview of OCT, our SAO-OCT imaging system for small 

animals (LIVMAOS system) [19], and our processing and display program for the OCT 

retinal images (OCTViewer) [3]. They are integrated to form a complete real-time imaging 

and processing system. The LIVMAOS system is a custom multi-modal imaging system 

that includes OCT, OCT-A, SLO, and fluorescence detection. The OCTViewer, is a 

heterogeneous system that processes interferometric fringe data to OCT cross-sectional (B-

scans) images and the pseudo-real-time retinal layer segmentation program (will be 

discussed in Chapter 5) generates retinal segmentation for investigating and evaluation 

retinal structure.  

 

2.1 Optical Coherence Tomography 

OCT is a non-invasive medical imaging technique based on low coherence interferometry, 

typically using near-infrared light to capture high-resolution cross-sectional views of 

biological tissues. OCT is based on the principle of low coherence interferometry in which 

low coherence light coupled to a fiber-optic splitter travels through a beam splitter, and one 

arm is guided through the ocular media to the retina and the other to a reference mirror. 

The interference pattern is produced by the interaction of reflected light from the sample 

and the reference mirror when the distance between the light source and the retinal tissue 

is equal to the distance between the light source and the reference mirror. Then the 

interference fringes are detected using a photodetector and processed into an axial scan. 

The light is scanned along the retina to create a two-dimensional image.  

There are two general categories of OCT systems, Time Domain (TD-OCT) and Fourier 

Domain (FD-OCT). In TD-OCT systems, the mirror in the reference arm is adjusted to 

match with the delay in the various layers of the sample. The interference signal produced 
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is processed to create the axial scan waveform. Figure 2-1 shows the setup of TD-OCT. 

This TD-OCT method has low speed of image acquisition due to the movement of the 

reference mirror which moves one cycle for each axial scan.  

 

Figure 2-1 Time Domain Optical Coherence Tomography. 

On other hand, in FD-OCT, the reference mirror is at stationary position and the 

interference between the sample and the reference reflection is measured as a function of 

wavelength. The absence of moving the reference mirror and the reflections from all layers 

in the sample are detected simultaneously, resulting in higher speed and higher sensitivity.  

FD-OCT can be implemented in either Spectral Domain OCT (SD-OCT) or Swept-Source 

OCT (SS-OCT). SD-OCT uses a broadband light source, and a high-resolution 

spectrometer is employed in the detector arm of the interferometer to collects the 

interferogram as a function of wavelength. A Fourier Transform (FT) is performed on the 

interferogram which produces a spatial representation of the sample tissue in depth. The 

spectrometer uses a grating (or a prism) to spread the light into a spectrum which is detected 

by a high-speed line camera. On other hand, SS-OCT uses a narrowband light source that 

sweeps through the spectrum while a single-element photodetector collects the signal. The 

wavelength of the narrowband light source is encoded as a function of time. Figure 2-2 

demonstrates the setup of SD-OCT and SS-OCT. 
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Figure 2-2 Spectral Domain and Swept Source Optical Coherence Tomography. 

 

In both TD-OCT and FD-OCT, an A-scan is obtained by measuring the the distance from 

the beam splitter to a reflector in the sample relative to the reference. The “echoes” of the 

deeper surfaces take longer to return to the beam splitter for interference with the reference 

signal, which makes them have a higher interference frequency at the OCT detector, and 

consequently a larger distance on the A-scan display. A B-scan is formed by combining a 

series of laterally adjacent A-scans. This type of scan is useful to generate an image of 

retinal layers, the application area in which this work is interested. The axial resolution of 
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the OCT systems is determined by the central wavelength (λ) and the spectral width of the 

light source (∆λ) whereas the lateral resolution depends on the system numerical aperture 

(NA).  

 
𝐴𝑥𝑖𝑎𝑙 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑙𝑐) =  

2𝑙𝑛2𝜆2

𝑛𝜋Δ𝜆
. 

Eq. 2-1 

 
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (Δ𝑥) =  1.22

𝜆

2𝑁𝐴
. 

Eq. 2-2 

 

 OCT processing and display program (OCTViewer) 

Real-time application of the OCT images requires high throughput and low overhead 

(latency). In this research, we used the parallelization strategies introduced by Jian et al. 

[3] to accelerate OCT processing. To fully utilize the Peripheral Component Interconnect 

express (PCIe) bandwidth, we transferred the interferometric data from the host to the 

device as a batch rather than a single frame. In order to hide memory transfer latency, the 

memory transfer from the host to the device and the data processing on the device was 

implemented using two Compute Unified Device Architecture (CUDA) streams 

concurrently; one to transfer the data processing on the device and another to process the 

interferometric fringe data on the device. While the small batch of the interferometric 

fringe data was being transferred from the host to the device by the transfer stream, the 

previous batch that is already in the device is simultaneously being processed by the kernel 

stream. These two CUDA streams, which are executed simultaneously, are synchronized 

after processing each batch. The original implementation by Jian et al. [3] demonstrated a 

high throughput; however, it suffered from a large latency as its processing pipeline was 

completely asynchronous with the acquisition. In this thesis, we improved the program 

latency by synchronizing the data acquisition and processing at the batch level, achieving 

a minimum latency of one batch which was configured as 20 B-scans. Figure 2-3 shows 

the flowchart of the processing tasks. 
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Figure 2-3 Flowchart of the processing pipeline. 

 

 SAO-OCT imaging system for small animals (LIVMAOS system) 

LIVMAOS System is a multi-modal mouse retina imaging system that includes OCT, 

OCT-A, confocal scanning laser ophthalmoscopy (SLO), and fluorescence detection [19]. 

It is a compact lens-based system incorporating the SAO technique to correct the optical 

aberrations instead of using a Wavefront Sensor to measure the aberrations. For this thesis, 

we only used the modified OCT subsystem for mouse imaging. The OCT subsystem in this 
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thesis used a central wavelength of 810 nm. We also integrated our retinal layer 

segmentation program in our OCT processing and display program along with the SAO–

OCT imaging system. Our segmentation program segments retinal layers on the cross 

sectional images and uses these results to project en face images from the selected retinal 

layers. The SAO uses the en face projection of the OCT volume as the input of the merit 

function; the sum of the intensity squared of each pixel of the en face image, to perform 

the optimization. The OCT acquisition modality provided a 100 kHz line scan rate for 

retina imaging and the OCT volumes are acquired user selected dimensions. Two B-scans 

are acquired at the same lateral location to generate an OCT-A B-scan image [4].  

 

 Summary 

In this chapter, we covered the overview of OCT, OCT processing program and OCT 

acquisition system. Due to the complexity of OCT data processing and high speed of  the 

OCT acquisition system, we implemented the A-scan processing program using CUDA on 

the GPU [3]. We used the parallelization strategies for data transferring from the host to 

the device by using processing kernels in order to hide memory transfer latency and also 

rendering the images using the GPU without the need of transferring data back to the CPU. 

However, the image processing step (i.e., the retinal layer segmentation) is needed to 

determine if it should be done on either GPU or CPU and it will be discussed in Chapter 3 

and 4.   
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Chapter 3  

Background on Heterogeneous Computing 

 

Heterogeneous computing refers to the systems that utilize more than one kind of 

processors or cores in order to gain a better performance. These systems select the type of 

processors or cores corresponds to their task specialization. The Central Processing Units 

(CPUs) are designed to accurately perform sequentially complex tasks at high speed while 

the GPUs are a better option in terms of the speed to handle the operations that can be 

divided to run as the smaller tasks simultaneously. Many applications including medical 

image processing, which involve complex computational tasks and massively 

parallelizable operations, require a heterogeneous computing system that consists of both 

CPUs and GPUs. This chapter will discuss the fundamentals of both CPUs and GPUs, their 

differences and the advantages of employing a heterogeneous computing system in our 

research. 

 

 Central Processing Unit 

A CPU is the primary element or the ‘brain’ of the computer that executes instructions by 

processing the data received from both hardware and software to generate the output for 

the running application. Each CPU has at least one processor or core to process the 

instructions. CPUs with two, four, six and eight processors or cores are called dual-core, 

quad-core, hexa-core and octa-core CPUs, respectively. CPU consists of three primary 

components: the arithmetic logic unit (ALU) is a digital circuit which is responsible for 

integer arithmetic and bitwise logic operations, the control unit (CU) that directs the 

operation of the processor by serving the instruction for the ALU, and processor registers 

which are the temporary storage area for the instructions and the operands to be further 

processed by the ALU.  

There are four basic functions for the CPU to process the data: 
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1) Fetch (IF) – The CPU fetches the instruction stored in the computer memory with 

each instruction has its own address. The program counter (PC) of the CPU is 

responsible for tracking the address of the instructions to be fetched next for the 

running program. 

2) Decode (ID) – Different programs are written in different programming languages 

so there is a need for the complier to translate them into the assembly language in 

which the CPU understands. Then the assembler decodes assembly language into 

binary code that can be executed. 

3) Execute (EX) – Depending on the instructions, the execution can be calculating 

arithmetic operations by ALU, moving the data from one memory location to 

another location or jumping to other instruction addresses in the program. 

4) Store or Write Back (WB) – After executing data, the CPU stores the result or the 

output back to the computer memory. 

 

 Graphic Processing Unit 

A GPU is a programmable electronic circuit chip or a processor that is specialized in 

enhancing the computing speed of rendering images or graphics in the memory and 

displaying them on the display devices. GPUs are commonly used in computers, mobile 

phones and game consoles to handle the graphics and image processing. GPUs are the 

processors which are designed for performing parallel operations on a large set of data. 

They are not used only for the graphics applications but also for the non-graphics 

applications as the vector processor to perform repetitively non-graphic calculations.  

The term ‘GPU’, was popularized by the company named NVIDIA Inc. in 1999, who 

produced the first GPU called GeForce 256. It had 17 million transistors that could perform 

billions of calculations in a second and at least 10 million polygon manipulations per 

second [38], [39]. Later on, there are companies such as Intel, Matrox, S3 Graphics and 

AMD participate in producing the efficient GPUs in the market. 

GPUs must be used with a CPU-base host as an accelerator or a co-processor. GPU is a 

massively parallel architecture which is different from CPU hardware architecture. Each 

GPU contains several Stream Multiprocessors (SMs) where each SM contains several 
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Stream Processors (SPs). The combination of SMs and SPs characterizes for processing 

multiple tasks at the same time or for processing a task with a higher speed. The overall 

throughput of a GPU is determined by the number of SP, the memory bandwidth, and the 

parallel architecture that the programmers implement. Each NVIDIA GPU has different 

identifying numbers that define its features, engines and number of registers it contains. 

Therefore, when designing a program, one needs to consider its support capability for the 

next generations of the GPUs which may have a greater number of SMs and/or SPs to 

increase the performance of the program on the newer GPUs. 

Depending on the generation of the GPU, the number of the SPs that a SM contains can 

grow from eight SPs. Each SM has access to a register file which is a type of memory 

where the speed is same as Special Purpose Units (SPUs). A SPU is responsible for 

performing special hardware instructions. Again, the size of the register file differs among 

the GPU generations. A register file consists of thousands of 32-bit registers that are 

allocated to threads specified during the kernel launch. These registers are the fastest 

memory and they can store both integer and floating-point data. The scope for each register 

is per thread running on an SP. 

Local memory is a part of the main memory of a GPU and it is used when the registers run 

out or they cannot be used. This phenomenon is called register spilling. It happens if there 

are many variables per thread using the registers and the dynamically indexed arrays are 

used in the kernel because the register files are not dynamically addressable. Again, the 

scope of the local memory is per thread. This memory is cached into L1 then L2 cache. 

Another important memory within a SM is a shared memory. Threads use this memory to 

communicate within the thread block. The size of the shared memory depends on the 

compute levels. For example, the compute levels from 2.0 to 3.5 have 48 KB of the shared 

memory per SM whereas the compute 3.7 contains 112 KB of the shared memory per SM 

[40]. 

Texture memory is a memory specialized in indexing and interpolating pixels in two-

dimensional images since it has many extra addressing tricks. It has its own cache that is 

not L1 and L2 cache. This memory is read-only by the GPU but read and write to the CPU. 

Also, there is a constant memory which is a part of the main memory of the GPUs that has 
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its own cache. It permits the GPU to read-only which is same as the texture memory. On 

other hand, the global memory allows both the GPU and the CPU to read or write to it, but 

it has the slowest speed to access. 

Compute Unified Device Architecture (CUDA) is the extension to the C language which 

is used to write the GPU programming in regular C, C++ and Fortran. It is created by 

NVIDIA and its applications can only be used on the CUDA-enabled GPUs. CUDA is an 

application program interface (API) that is ideal for embarrassingly parallel problems such 

as matrix operations and the problems where that is less or no communication required 

between threads or blocks. Communication between blocks happens with invoking 

multiple kernels in series using a global memory. CUDA divides a program into grids 

which each grid contains a set of blocks with X and Y axes. A block can be assigned to 

any SMs whichever have free slot(s) and a set of blocks is run at a time with ordering in 

implementation of the blocks can be in any order. 

Concurrency is a program or an algorithm property that divides a problem into smaller sub-

problems which can be executed independently in any order. The results of each sub-

problem are combined to form a final result that must be the same in any execution order. 

Concurrency property helps to enhance overall execution speed. However, concurrency 

definition differs from the term parallelism even though they are both commonly be used 

in multithreading. Parallelism is the property of the program to require at least two 

processors or cores in order to perform multi-tasks at the same time. Concurrency is the 

algorithm in which two tasks are executed in overlapping time period. This may cause one 

task to pause for a short period of time to execute another task. Concurrency can happen 

when there is only one processor or core.  

An application is concurrent but not parallel when it executes more than one task with no 

two or more tasks being executed at the same time. Whereas, an application is parallel but 

not concurrent is when multiprocessors or cores perform their individual task at a particular 

time. An application can be neither both when a single processor or a core executes the 

tasks sequentially. Finally, an application can also be both concurrent and parallel when it 

executes multiple tasks at a particular time and divides those tasks to execute individually. 
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There are three common parallel patterns which a program can be transformed into a 

parallel program; loop-based pattern, fork/join patterns, and divide and conquer pattern. 

Loop-based pattern is the most basic pattern that occurs in many programs and it is the 

easiest pattern which can be transformed into parallel programming. In order to implement 

loop-based pattern program into parallel program, the dependencies within the loop (for, 

while and do..while) must be removed. The dependencies are when the calculation depends 

on the previous iteration(s). After removing the dependencies of the loop, the program can 

be split into sub-parts and they are calculated by the processors. However, when splitting 

the tasks, one needs to minimize the communication between the processors and 

maximizing the use of on-chip resources. Fork/Join pattern commonly appears on the serial 

programming where at a particular point of time, it needs to fork a number of threads or 

processes to execute each section of the code independently in parallel. After each thread 

or process completely executes its own part through communication among them, they join 

their works together. This approach is the best when all the threads or the processes have 

equal works to performs; otherwise, they would wait for others to complete their tasks 

before they can converge their outputs. Divide and conquer pattern decomposes a problem 

into smaller sub-programs of the same type as the original problem. Then it solves them 

recursively and combines the results to be as the result of the original problem. This type 

of algorithm is used in quick sort that gives out the best performance among other sorting 

algorithms. Quick sort divides the data into two groups by comparing with the pivot; the 

data where the values are larger than the pivot’s value and the data where the values are 

lower than the value of the pivot. It then recursively divides the data till each dataset 

consists of two items where they are compared and swapped their positions. 

 

 Parallel Computing 

Parallel Computing is the method in which the instructions of the program or the processes 

are executed simultaneously. A large problem is divided into smaller independently parts 

that can be executed instantaneously and the results of those broken parts are combined 

after all the parts are executed successfully. Parallelism becomes an important factor to 

determine the computing performance of the computer due to the physical constraints 
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regarding a clock speed and the power consumption of the computer. Fast computers 

require higher clock speed rate hence consume more power to perform the computations 

faster. This makes them generate more heat and it is a must for them to require a special 

and expensive cooling machine to draw out the heat. Power consumption is dissipated in 

form of thermal heat. Rising in temperature leads to power consumption increased and in 

turn lead to rising the temperature. This is an iterative process till the temperature reaches 

a runaway point after which the circuit burns which is called thermal runaway. In order to 

avoid thermal runaway, parallel computing has come into play for the computer 

architecture by having multi-core processors. 

 

3.3.1 Instruction-level Parallelism 

Instruction-level parallelism (ILP) is the simplest method for a computer to increase 

parallelism. ILP method allows the next instruction to be executed before the prior 

instructions completely implemented by breaking down the instruction into five stages: 

instruction fetch (IF), instruction decode (ID), execute (EX), memory access (MEM) and 

register write back (WB). This technique is called instruction pipelining. Pipelining permits 

multiple instructions from the same instruction stream to be executed concurrently by the 

hardware or by the complier. Without pipelining, two instructions are executed completely 

in ten cycles which one instruction starts being executing after the prior instruction is 

completed as shown in Table. 3-1. On other hand, if the pipelining is used, three 

instructions are executed successfully in seven clock cycles shown in Table. 3-2. 

Absolutely, pipelining enhances the speed of execution of instructions. However, the 

pipeline hazard may occur in pipeline architecture when the execution of the instruction 

must be delayed due to unavailable of operands. This is solvable by delaying the execution 

of the instruction by inserting a pipeline stall. 
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Table 3-1 Execution of instructions without pipelining. 

 

Table 3-2 Execution of instructions without pipelining. 

 

3.3.2 Task-level Parallelism 

Task-level parallelism (TLP) allows multiple threads or processes to be manipulated 

instantaneously. It decomposes a problem into sub-problems and assigns each sub-problem 

to a processor or a core to execute. The processors or cores which execute these sub-

problems communicate among themselves in order to update the data in the memory. For 

instance, there are four independent arrays of the same size are needed to be transformed. 

With TLP, each array is assigned to one processor or core to execute it. Nevertheless, the 

limitations of this parallelism are synchronization and communication overheads between 

the processors or the cores. 

 

3.3.3 Data-level Parallelism  

Data-level parallelism (DLP) is the method that focuses on the data to be processed rather 

the tasks. Again, the four independent arrays of the same size are needed to be transformed. 

DLP would instead of assigning an entire array to each core, divides an array into multiple 

sub-arrays and assigns each sub-array to each processor or core. Then after completing 
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transforming the first array, it moves to the second array and so on. One array at a time 

rather four arrays at a time. Yet, this method is limited by bandwidth and unusual data 

manipulation designs. 

 

 Flynn’s Taxonomy 

Flynn’s Taxonomy is the classification of different computer architectures. These are: 

• Single Instruction Single Data (SISD) - the standard uniprocessor in which there 

is only one instruction executes on a single data set at a time. This category behaves 

as multi-tasking by doing a fast switching between tasks called time-slicing. 

• Single Instruction Multiple Data (SIMD) – a method in which there is a single 

instruction to be performed on multiple data set. Different data sets are assigned to 

different processors and are executed with the same instruction. 

• Multiple Instruction Single Data (MISD) - a method which allows different 

instructions to be performed on the same data set. It performs a single instruction 

on the data set at a time. 

• Multiple Instruction Multiple Data (MIMD) - the most common method in today’s 

computer architecture; dual-, quad-, hex- and octa-core devices. Each core has its 

own data and instructions to be executed independently. 

 

 Differences between CPU and GPU 

Both CPUs and GPUs are processor units that are used to process information however 

they are different in term of architecture. A CPU is a general-purpose processor which can 

perform any computations, but a GPU is a special purpose processor specialized in graphics 

processing. Since the CPU contains a small number of more powerful devices or cores with 

high caches which are designed for running a number of complex tasks. While the GPU 

contains a huge number of less powerful devices or cores which are designed for 

performing the tasks that can be broken down into smaller independently parts. Due to 

small number of cores of the CPU, it suffers from dividing the workload between the cores 
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evenly. On the other hand, the GPU splits the workload between the cores better but 

undergoes difficulty in synchronization and coordination among a large number of cores. 

CPUs and GPUs have different ways of handling multi-tasking. When there are large 

number of tasks to perform concurrently, the CPU does scheduling based on time-slicing 

by giving equal time to each task to ensure that every task gets to be processed by the 

processor equally. By switching between tasks to be performed by the core, the data or 

information of the current task is saved to the Random Access Memory (RAM) from the 

registers per core and the data of the next task or information is retrieved from the RAM to 

the registers per core. As the CPU has small number of registers per core that are used to 

execute a task, it is expensive in term of context switching as the number of tasks increases 

and it leads to lower efficiency of the CPU. While, the GPU contains multiple banks of 

registers and when the GPU does context switching, it sets a bank selector to switch in and 

switch out the current set of registers. This makes context switching in the GPU faster than 

that in the CPU because of the cost of transferring data between the registers and the RAM 

is higher. 

The CPU can be dual-, quad-, hex-, or octa-core devices and it often runs a single thread 

program and calculates only single data point per iteration. Unlike the CPU, the GPU, for 

example, Fermi devices have 16 SMs which makes the GPU calculate to 32 data point per 

SM giving 32 times benefits in term of throughput for the GPU. The CPU is designed with 

higher frequency and is good for handling branching programming such as if-statement 

and switch-statement. Conversely, the GPU is bad for executing the branching statements 

because the number of running threads are divided into different branches and a branch is 

executed one after another.  

In conclusion, the CPU is a brain of the computer while the GPU is a co-processor which 

helps performing special functions in parallel. The performance of the computers can be 

efficient by assigning tasks to the CPU and the GPU according to their capabilities. 
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 Needs for Heterogeneous Computing 

The CPUs are proficient in performing complex algorithm operations while the GPUs excel 

in executing larger simple tasks which can be broken down into smaller parts. These 

smaller parts need less or no communication among them and can be executed 

independently. Since the medical imaging applications are dealing with large amount of 

data as well as complex calculations, the heterogeneous computing, which is the 

combination of the CPU and the GPU, is required to optimize the processing time. The 

OCT imaging software, which performs OCT data acquisition, signal and image 

processing, and data interpretation, requires heterogeneous computing. The raw data 

acquisition is a small but complicated algorithm that requires low operation latency, best 

performing by the CPU. On the other hand, image processing that transforms the raw 

interferometric data into the B-scan images dealing with large amount of data and requiring 

high data throughput. Hence, it is better performing on the GPU. The data interpretation, 

which is in this project, is the retina layer segmentation requiring both the CPU and the 

GPU to perform the complex sequential parts and the massively intensive parts. Therefore, 

a heterogeneous computing is essential to gain high performance and optimize the 

processing rate. 

 

 Summary 

In this chapter, we covered the basics of CPUs and GPUs along with their advantages and 

disadvantages. We also covered the parallel computing and the needs for heterogeneous 

computing in order to increase the performance of the system.  Next chapter, we will 

discuss about the high-speed retinal layer segmentation algorithms on both CPU and GPU.
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Chapter 4  

High-speed Retinal Layer Segmentation Algorithm 

 

Segmentation has played an important role in graphics and computer vision problems such 

as object detection, object recognition, image compression and image edition. The main 

idea of segmentation is to partition the elements of the graph into multiple disjoints groups 

by assigning a label to each element such that the elements with the same label share the 

same characteristics such as color, intensity or texture. The goal of segmentation is to 

simplify and/or change the representation of the image into something more meaningful 

and easier to analyze. This chapter also discusses the implementation of pseudo-real-time 

retinal layer segmentation algorithms on CPU versus GPU for OCT. 

 

 Graph Theory 

Graph theory is the study of graphs. A graph is an abstract representation of a set of objects 

connected by links. A graph, G = (V, E), in a mathematical context consists of vertices, 

nodes or points, denoted by V, which are linked by edges, arcs or lines, denoted by E. A 

weighted graph has weight, W, assigned to each edge connecting between two vertices. A 

graph may be undirected or directed graph. An undirected graph has edges that do not have 

direction and its edges indicate two-way relationship or its edges are unordered pairs 

whereas a directed graph has edges with direction and its edges indicate one-way 

relationship or its edges are ordered pairs. A graph normally contains special vertices called 

terminals and these terminals are called the source s and the sink t. An s-t graph is a 

weighted directed graph with two identified vertices, the source s and the sink t. An s-t cut, 

C(s, t) is a set of edges, Ecut, such that there is no path from s to t after Ecut is removed from 

the graph, E. The capacity or the cost of the cut is the total weight of its edges from s to t.   
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 Graph-cut background 

One of the classic problems in graph theory is to find the shortest path between two vertices 

in a graph. A path is a sequence of vertices, <v0, v1, v2, …, vk>, in a graph, G = (V, E), such 

that each vertex is connected to the next vertex in the sequence. The weight of a path, w(p), 

is the sum of all the weight on the edges along the path. The shortest path weight from 

vertex u to v is: 

 𝑑𝑒𝑙𝑡𝑎(𝑢, 𝑣) = min{ 𝑤(𝑝): 𝑢 → 𝑣} 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑢 𝑡𝑜 𝑣, 

 

𝑑𝑒𝑙𝑡𝑎(𝑢, 𝑣) = 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 

Eq. 4-

1 

In computer vision, a graph cut can efficiently perform the image segmentation by solving 

the energy minimization problem. The general energy-based function can be represented 

as: 

 𝐸(𝐿) =  ∑ 𝐷𝑝(𝐿𝑝)

𝑝∈𝑃

+ ∑ 𝑉𝑝,𝑞(𝐿𝑝, 𝐿𝑞).

(𝑝,𝑞)∈𝑁

 Eq. 4-2 

 

where L = {Lp | p ϵ P} is a labeling of image P, Dp(.) is a data penalty function which 

indicates individual label-preferences of pixels based on observed intensities, Vp,q is an 

interaction potential which encourages spatial coherence by  penalizing discontinuities 

between the neighboring pixels and N is a set of all pairs of the neighboring pixels [41].The 

penalty in energy function is the cut cost in which the cost is calculated as the weight of 

the edges along the cut. The main idea of graph-cuts is to partition the elements of the 

graph, which is a series of the nodes separated by the weighted edges, into two disjoint 

groups using different algorithms such as maximum flow/minimum cut [41] and Dijkstra’s 

algorithm [42]. The maximum flow/minimum cut theorem uses the concept of a flow 

network where the maximum amount of flow from the source to the sink is defined as the 

total weight of the edges in the minimum cut. An alternative method of solving the graph 

is using Dijkstra’s algorithm with an adjacency matrix, which is the matrix containing the 

weights of the edges between two nodes, to find the minimum path or the shortest path. 

The functions for determining the weight value are important in terms of the results 
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providing an accurately graph-cut. These can be calculated as the distance and/or the 

intensity value difference between the pixels of the image or nodes of the graph. Graph-

cuts can be differentiated into GPU methods and CPU methods, and both methods will be 

discussed in details in the next section of this report.  

 

 Graph-cut on GPU 

Image segmentation using Graph-cut can be done using the GPU since the parallelization 

decreases the segmentation time. The NVIDIA Performance Primitives (NPP) graph-cut 

APIs provides the graph-cut segmentation function based on the push-relabel algorithm. 

 

4.3.1 Push-Relabel Algorithm 

The push-relabel algorithm is an algorithm for computing maximum flows of a flow 

network or a graph. A network is a directed graph, G, with vertices, V, and edges, E, 

combined with the cost function, c, which assigned on each edge with non-negative values. 

A flow network is a network that flows the source, s, to the sink, t. A flow in a flow network 

is a function f that assigns each edge a non-negative value and follows two conditions: 

• The flow of each edge cannot exceed its capacity. 

 0 ≤ 𝑓(𝑒) ≤ 𝑐(𝑒). Eq. 4-3 

   

• The sum of the incoming flow of vertex u must be at least equal to the sum of outgoing 

flow of u  

 ∑ 𝑓((𝑣, 𝑢)

(𝑣,𝑢)∈𝐸

 ≥  ∑ 𝑓((𝑢, 𝑣))
(𝑢,𝑣)∈𝐸

. 

 

Eq. 4-4 

Therefore, it is possible for some vertex to have an incoming flow more than an outgoing 

flow, and it results in having some excess flow and the excess function is defined as: 



25 

 

 𝑥(𝑢) =  ∑ 𝑓((𝑣, 𝑢)

(𝑣,𝑢)∈𝐸

−  ∑ 𝑓((𝑢, 𝑣)).

(𝑢,𝑣)∈𝐸

 

 

Eq. 4-5 

The residual capacity of an edge cf is defined as:  

 

 𝑐𝑓(𝑣, 𝑢) = 𝑐(𝑣, 𝑢) − 𝑓(𝑣, 𝑢). 

 

Eq. 4-6 

 

And the graph consists of residual edges is called a residual graph, Gf.  

The height function or the labeling function, h, is a function to ensure the regulation of 

push operation and the termination of the algorithm and it is valid if the three following 

conditions are held: 

 ℎ(𝑠) = |𝑉|, 

Eq. 4-7  ℎ(𝑡) = 0, 

 ℎ(𝑢) ≤ ℎ(𝑣) + 1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 (𝑢, 𝑣) 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑔𝑟𝑎𝑝ℎ. 

 

The algorithm will start with initializing each edge outgoing from the source with its 

maximal capacity f(s,u) = c(s,u) while other edges with zero and the height of the source 

is the number of vertices in the graph h(s) = |V| while the height of other vertices are zero.  

During execution, with the push operation, we try to push as much excess flow, min(x(u), 

c(u,v) – f(u,v)), from one vertex u to a neighboring vertex v, where we are allowed to push 

the flow from u to v only if h(u) = h(v)+1. In the case where the vertex u has excess but it 

is not possible to push it to its neighboring vertices, we use the rebel operation to increase 

the height of u by as much as possible if the labeling is still valid. The algorithm will 

continue till all vertices except the source and the sink are free from the excess, and this 

indicates the flow is a maximum flow.  
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4.3.2 The complexity of Push-Relabel Algorithm 

The complexity or the efficiency is the computational complexity that describes the amount 

of the time the algorithm uses to run. Since the running time may differ depending on the 

inputs, the worst-case time complexity should be considered. The time complexity is 

commonly expressed in terms of Big-O notation because it gives the upper bound of the 

running time.  

The relabel operation is performed at most 2|V|2 -1 times which results in a bound of O(V2) 

for the relabel operation. While the push operation is performed at most O(VE) for 

saturating pushes and at most O(V2E) for non-saturating pushes. The total complexity of 

Push-Relabel algorithm is O(V2E) [43]. 

 

4.3.3 Connected Component and Labeling 

Sometimes, the Push-Relabel algorithm segments the unwanted regions along with the 

segmentation results, resulting in a corrupted segmentation result. Connected Component 

and Labeling (CCL) [44] is an algorithm to remove the artifacts from the segmentation 

results produced by the Push-Relabel algorithm. The CCL detects two largest connected 

groups and removes all unwanted artifacts and it is done on the CPU because it is a 

sequential instruction algorithm which is not easy to be implemented in parallel. This 

results in slowing down the segmentation pipeline because of transferring data between the 

CPU and the GPU.   

 

4.3.4 Discontinuity of NPP graph-cut APIs 

Unfortunately, the pre-built NPP graph-cut APIs is removed after CUDA 7.5 version [45]. 

For this reason, other segmenting methods are needed to be investigated to replace the NPP 

graph-cut APIs and they should have better performance than that of NPP graph-cut APIs. 

It should not produce the unwanted artifacts along with the segmentation results, so the 

CCL will not be required to perform after Graph-cut segmentation of the retinal layers. 
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 Graph-cut on CPU 

Since the NPP graph-cut APIs is removed and we do not want to use other algorithms that 

creates artifact results which requires another algorithm such as CCL to remove them, we 

found that Dijkstra’s algorithm is suitable to be used in this project. Dijkstra’s algorithm is 

a segmenting method that performed on the CPU and does not need CCL because it 

segments a retinal layer by finding one shortest path which extends across the entire width 

of the image. 

 

4.4.1 Dijkstra’s Algorithm for Graph-cut 

One algorithm for segmenting a weighted graph from the starting node or the source s, to 

the target node, the sink t, is Dijkstra’s algorithm. Dijkstra’s algorithm is an algorithm for 

finding the single-source shortest path where it computes the length of the shortest path in 

the graph from the source to all other points in the graph. One condition to use Dijkstra’s 

algorithm is that all the edges in the graph need to have non-negative weight ranging from 

0 to 1. If the edges are negative, then the actual path cannot be obtained.  

The graph has: 

• Vertices denoted by v or u 

• Weighted edges connecting two nodes, (u, v), denoted an edge connecting the vertex u 

and the vertex v and w(u, v) denotes its weight 

Before the algorithm starts: 

• dist, a distance array from the source s to each vertex in the graph is initialized as dist(s) 

= 0 and for other vertices v, dist(v) = ∞. As the algorithm proceeds, the dist from the 

source to each vertex in the graph will be recomputed and finalized when the shortest 

path is found 

• Q is a queue of all vertices in the graph. At the end of the algorithm, Q will be empty 

• S, an empty set indicating which vertices has been visited. At the end of the algorithm, 

S will contain all the vertices in the graph 

Procedures of the algorithm: 
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• While Q is not empty, select the vertex v in Q that has minimum distance and is not in 

S. At the beginning, the source vertex s will be selected as dist(s) = 0. Later, the vertex 

with the smallest dist will be selected 

• Add v to S to indicate that v has been visited 

• Update dist values of the adjacent vertices of the current node v as follows: for new 

adjacent vertex u, 

o If dist(v) + w(u, v) < dist(u), update dist(u) to the new minimal distance value as 

the new minimal distance for u is found 

o Otherwise, no updates are made to dist(u) 

After the algorithm has visited all vertices in the graph and the smallest distance of each 

vertex is found, the shortest path from the source s and dist contains the shortest distance 

from the source s are found. 

In summary, the algorithm in pseudo code is as follows: 

Dijkstra (Graph, source) 

{ 

 dist(s) = 0; 

 S = Ø; 

Add s to S; 

 for (each vertex v in Graph): 

  if v is not source 

   dist(v) = infinity 

  add v to Q 

 

 while (Q is not empty): 

  v = vertex in Q not in S with minimum dist(v) 
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  remove v from Q and add v to S 

 

  for (each neighbor u of v): 

   if dist(v) + w(v, u) < dist (u) 

    dist(u) = dist(v) + w(v, u) 

 return dist [] 

} 

Figure 4-1 shows the example of how to find the shortest path using Dijkstra’s algorithm. 

 

 

Figure 4-1 Shortest Path using Dijkstra’s algorithm. 

 

4.4.2 Efficiency of Dijkstra’s algorithm 

The time complexity of Dijkstra’s algorithm depends on the number of the vertices |V| and 

number of the edges |E| in the graph. If the algorithm uses Fibonacci heap which is a min-
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priority queue, its time complexity is O(|E| + |V|log|V|). Whereas, if the algorithm uses a 

standard binary heap then its time complexity is O(|E|log|E|).  

 

 Dijkstra’s Algorithm from Boost Graph Library 

Dijkstra’s algorithm from Boost Graph Library is used in this project because using Boost 

Graph Library is as simple as using other header files that requires no separate compilation. 

In order to use it, we set the location of the additional include directories in the working 

environment of Microsoft Visual Studio.  

Dijkstra’s algorithm from Boost Graph Library differs from the Dijkstra’s algorithm 

mentioned earlier since it finds all the shortest paths from the source s to every other vertex 

by iteratively growing the set of vertices S to which it knows the shortest path. At each 

step, the next vertex is added to S decided by a priority queue, Q. Q prioritizes vertices by 

their distance label or the weight on their edges. The vertex v at the top of the priority queue 

is added to S. The algorithm loops till the priority queue is empty indicating the shortest 

path is found. Moreover, Dijkstra’s algorithm in Boost Graph Library uses color markers 

(white, gray and black) to keep track of each vertex. Vertices are colored as black are in S 

and white or gray in V-S. White vertices are the vertices that have not been visited and gray 

vertices are those vertices in queue Q. Also, there is an option to record the shortest paths 

tree in a predecessor map, for each vertex u in V, p[u] is the processor if u in the shortest 

paths tree. 

The time complexity of Dijkstra’s algorithm from Boost Graph Library is O((|V|+|E|) log 

|V|) or O(|E|log|V|) if all vertices are reachable from the source. 

The pseudo code of Dijkstra’s algorithm from Boost Graph Library is as follows: 

Dijkstra (Graph, source) 

{ 

 dist(s) = 0; color(s) = GRAY; add s to Q; 

 S = Ø; 
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 for (each vertex v in Graph: 

  if v is not source 

   dist(v) = infinity; p(v) = v; color(v) = WHITE; 

 

 while (Q is not empty): 

  v = vertex in Q with minimum dist(v) 

  remove v from Q and add to S 

 

  for (each neighbor u of v): 

   if dist(v) + w(v, u) < dist (u) 

    dist(u) = dist(v) + w(v, u) 

    p(u) = v; 

    if (color(u) = WHITE) 

     color(u) = GRAY; 

     add u to Q 

    else if (color(u) = GRAY) 

     decrease key of u in Q 

  color(v) = BLACK; 

 return dist, p; 

} 
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 Summary 

In this chapter, we discussed the details of graph theory, graph-cut method in the GPU 

which is the push-relabel segmentation provided by NPP graph-cut APIs. Nevertheless, 

sometimes the NPP push-relabel generates artifacts along with the retinal layers which later 

requires CCL to remove those artifacts on the CPU. This results in the overhead of 

transferring data between the device and the host causing the speed performance of the 

algorithm to decrease. Furthermore, graph-cuts in NPP APIs are removed. Consequently, 

we perform Dijkstra’s algorithm from Boost Graph Library in the CPU to segment the 

retinal layers on the retinal OCT cross-sectional images. The complexity of Dijkstra’s 

algorithm from Boost Graph Library is O((|V|+|E|) log |V|) whereas the push-relabel takes 

O(|V|2|E|). In conclusion, due to the complexity of the Graph-cut segmentation, it is more 

suitable to perform using the CPU as a processor. In next chapter, we will describe about 

the retinal segmentation pipeline using Dijkstra’s algorithm to find the retinal layers.  
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Chapter 5  

Retinal Segmentation Pipeline 

 

This chapter describes the implementation of the pseudo-real-time retinal layer 

segmentation in mice in C/C++. The Method description is divided into six subsections: 

image cropping to contain only area of interest, logarithmic scaling and noise reduction, 

layer endpoint initialization, weights calculation, ILM and RPE layers segmentation, and 

limiting the search region for the other layers. 

 

 Retinal Segmentation 

In our previous work where we chose to perform a Graph-cut on the GPU to segment ILM 

and RPE of human retina using Push-Relabel Graph-Cut (PR GC) algorithm [44], we found 

that sometimes the PR GC generates an unwanted region along with the two retinal layers. 

As a result, we performed Connected Component Labeling (CCL), which is a 

computational expensive method, after segmentation to identify the two largest connected 

groups and remove smaller artifacts. According to M. Miao [44], the segmentation pipeline 

with multiple GPU could only segment ILM and RPE layers on a single OCT B-scan 

(1024x300x900 pixels) in 57.26 ms which was largely affected by the CCL (12.45 ms). 

Nevertheless, due to the discontinuity of the pre-built NVIDIA Performance Primitives 

(NPP) graph-cut APIs after Compute Unified Device Architecture (CUDA) 7.5 version 

[45], other segmentation methods are needed to replace NPP graph-cut APIs and they 

should have a better speed performance and do not generate artifacts with retinal layers. 

Although there are several alternatives with both CPU and GPU implementations available 

for the NPP graph-cut APIs [41], [46]–[49], these max-flow/min-cut algorithm requires the 

CCL to remove artifacts which is quite slow. 

Conversely, Dijkstra’s algorithm performs a Graph-cut by finding the shortest path or the 

minimum cost path between two nodes. It produces only a single path without any artifacts. 

Besides, Dijkstra’s algorithm from the Boost Graph Library [50], implemented on the CPU, 
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has a generic interface and can be utilized easily using a header file in C/C++. Therefore, 

we implemented our retinal layer segmentation program using Dijkstra’s algorithm from 

the Boost Graph Library. 

Figure 5-1 shows the flowchart outline of the steps for our retinal layer segmentation which 

was based on the Caserel software that was implemented in MATAB [25]. However, we 

changed the values of some parameters in the Caserel software for better segmentation 

results on our mice retinal images. We perform image cropping on the GPU following the 

generation of the B-scan image, and then the rest of the program is performed on the CPU 

in order to gain performance in heterogeneous computing according to the capability of 

each type of the processor. 
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Figure 5-1: Flowchart of the real-time retinal layer segmentation.  
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5.1.1 Image Cropping for the region of interest 

In OCT images, particularly when imaging the retina, the data in the axial direction (e.g, 

the retina) are contained in only a relatively small number of pixels. The pixels that do not 

contain image information affect the speed performance of the segmentation. In order to 

decrease the computational cost and make the delineation more reliable, cropping the 

image to contain only the region of interest (ROI) is necessary. Image cropping is 

performed on the GPU, immediately after the B-scan image has been generated from the 

interference signal, and is performed as follows: 

Firstly, the average of pixels in each row of the image is computed along the lateral 

direction: 

 𝑎𝑣𝑔(𝑦𝑗) =  
1

𝑁
∑ 𝑓(𝑥𝑖 , 𝑦𝑗

𝑁−1

𝑖=0

). Eq. 5-1 

 

where f(xi,yj) is the grayscale intensity of pixel (xi,yj), i and j are the horizontal index and 

vertical index respectively, and N is the width of the image. 

Secondly, we generate a histogram on the row average where the number of bins is chosen 

to be ten and the size of the bins is calculated as:  

 

 
𝑏𝑖𝑛 𝑠𝑖𝑧𝑒 =

max(𝑟𝑜𝑤 𝑎𝑣𝑔) − min(𝑟𝑜𝑤 𝑎𝑣𝑔) + 1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠
. 

Eq. 5-2 

 

After the histogram is computed, the value of the bin that contains the most common 

elements is selected to be the threshold. Empirically, the first and the last indices of the 

rows for which the average values are greater than the threshold correspond to the position 

where the retinal structure begins (ILM layer) and ends (RPE layer), respectively. In order 

to contain all the retinal characteristics in the ROI, the indices where the ROI begins and 

ends are calculated as: 

 

 𝑅𝑂𝐼𝑏𝑒𝑔𝑖𝑛 𝑖𝑛𝑑𝑒𝑥 = 𝑖 − 𝑜𝑓𝑓𝑠𝑒𝑡 ∗ ℎ𝑒𝑖𝑔ℎ𝑡𝑖𝑚𝑎𝑔𝑒 , 

 Eq. 5-3 

 𝑅𝑂𝐼𝑒𝑛𝑑 𝑖𝑛𝑑𝑒𝑥 = 𝑗 + 𝑜𝑓𝑓𝑠𝑒𝑡 ∗ ℎ𝑒𝑖𝑔ℎ𝑡𝑖𝑚𝑎𝑔𝑒. 
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where i and j are the first and the last indices where the value of the row average are greater 

than the threshold. In this study, we set the offset = 0.1.  

We only applied the cropping step on images with height greater than 200 pixels; 

otherwise, we skip this step because limiting the ROI may lead to cutting out some 

important retinal characteristics for segmentation. Figure 5-2 shows the original B-scan 

and its cropped image. In addition, we implemented this step on the GPU for faster parallel 

operations performance on a large set of data.  

  

 

Figure 5-2 Original B-scan (496 x 400) and its cropped image (220x 400). 

 

5.1.2 Logarithmic Scaling and Noise Reduction 

Before segmenting the OCT retinal images, we employed a logarithm operation on each 

pixel on the image such that the dynamic range of the image is compressed to enhance low 

intensity pixel values. It expands the values of the dark pixels while compressing the 
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higher-level values. Then we down-sampled the cropped image by a factor of two and 

referred to this as a resized image. Removing the noise from the images before further 

processing the images is essential as the noise could affect the quality of the automated 

segmentation. The most common noise in OCT images is the speckle which is produced 

by constructive/destructive interference. Speckle noise appears as white and black intensity 

fluctuations and can be reduced in appearance by applying a Gaussian blur filter. The 

formula of a Gaussian function in one dimension is: 

 

 
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥) =  

1

2𝜋𝜎2
𝑒

−
𝑥2

2𝜎2 . 
Eq. 5-4 

 

The formula of a Gaussian function in two dimensions is: 

 
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥, 𝑦) =  

1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2 . 
Eq. 5-5 

 

where, x is the distance from the origin in the horizontal axis, y is the distance from the 

origin in the vertical axis and σ is the standard deviation of the Gaussian distribution. 

Mathematically, the Gaussian blur effect is generated by convoluting the image with the 

Gaussian function. Figure 5-3 shows the Gaussian blurred image after a down-sampling by 

a factor of two of the cropped image.  

 

 

Figure 5-3 Gaussian blurred image.  
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5.1.3 Layer Endpoint Initialization 

Each image is considered as a graph of nodes, in which a node equates to a pixel on the 

image having edges connecting to other nodes [41]. A graph may consist of multiple 

layered structures, and segmenting a particular layer requires the selection of the start and 

the end nodes. The start and the end nodes are automatically initialized by assuming that 

the retinal layers to be segmented extend across the entire width of the image. One vertical 

column is added to each side of the Gaussian blurred image, and they are assigned with 

zero values. The start node is the left top corner pixel and the end node is the right bottom 

pixel. These additional columns are removed after the segmentation is completed. Figure 

5-4 shows an example of an image with one additional column on each side. 

 

 

Figure 5-4 Example of an image with one additional column on each side. 

 

In the retinal images, the foreground is defined as the retinal layers and the background as 
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the vitreous and posterior chamber. The transition in pixel intensity from the background 

to the foreground is large so a graph can be simply contributed based on calculating the 

vertical gradient of the image. Figure 5-5 shows the two gradient images (the gradient and 

the negative gradient) of size 110x202 pixels. Both of them are generated because some 

retinal layer boundaries, such as the vitreous/ILM appears to have a darker layer above a 

brighter layer, whereas other boundaries, such as the Nerve Fiber Layer/Ganglion Cell 

Layer (NFL/GCL), have a lighter layer above a darker layer. 

The gradient of the image is constructed as follows: 

 

Gradient (image) 

{ 

for (each pixel y along the height of image) 

 for (each pixel x along the width of image) 

  if (y is starting pixel of the height) 

   G(x,y) = image(x,y+1) – image(x,y) 

  else if (y is ending pixel of the width) 

   G(x,y) = image(x,y) – image(x,y-1) 

  else 

   G(x,y) = image(x,y+1) – image(x,y-1) 

} 

Then the gradient is normalized by the following formula: 

 
𝐺(𝑥, 𝑦) = 1 −

−𝐺(𝑥, 𝑦) − min (−𝐺(𝑥, 𝑦))

max(−𝐺(𝑥, 𝑦)) − min (−𝐺(𝑥, 𝑦))
 

 

Eq. 5-6 

The negative gradient image is generated as: 
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 𝑁𝐺(𝑥, 𝑦) = 1 − 𝐺(𝑥, 𝑦) Eq. 5-7 

 

 

Figure 5-5 (a) The gradient and (b) the negative gradient images. 

 

5.1.4 Weight Calculation 

The weight of the edges usually represents the geometric distance and/or the intensity 

difference between the neighboring pixels. However, in SD-OCT retinal images, the 

features of interest have a smooth transition between neighboring pixels and each pixel is 

only connected with its eight nearest neighboring pixels and disconnected with other nodes. 

Hence, the weight of the edges is a function of the intensity difference between the 

neighboring pixels. 

Because the retinal layers in OCT images are horizontal structures distinguishable by a 

vertical change in pixel intensity, the weights are calculated based on the vertical gradient. 

The formula used in this method for calculating the weights is: 

 

 𝑤𝑎𝑏 = 2 − (𝑔𝑎 − 𝑔𝑏) +  𝑤𝑚𝑖𝑛 Eq. 5-8 

 

where wab is the weight assigned to the edge connecting nodes a and b, ga is the vertical 

gradient of the image at node a, gb is the vertical gradient of the image at node b and wmin 

is the minimum weight in the graph (1E-5).  

The weights are also calculated based on the directionality of the gradient. As the result, 

we have two sparse adjacency matrices of intensity difference graph weights of size [MN 

x MN] with MNC filled entries where [M x N] is the image size and C is the number of the 
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nearest neighbors (in this case is eight).  One axis of the sparse adjacency matrices of 

intensity difference graph weights represents the start node and the other axis represents 

the end node. The value of the element indicates the weight of the edge connecting the two 

nodes. For the retinal layer boundaries that exhibit a lighter layer above a darker layer use 

light-to-dark sparse adjacency matrix of graph weight calculated as: 

 𝑤𝑑𝑙 = 2 − (𝐺(𝑥, 𝑦)𝑎 − 𝐺(𝑥, 𝑦)𝑏) +  𝑤𝑚𝑖𝑛 

 

Eq. 5-9 

For the retinal layer boundaries which are dark to light boundaries uses dark-to-light sparse 

adjacency matrix of graph weight calculated as: 

 𝑤𝑙𝑑 = 2 − (𝑁𝐺(𝑥, 𝑦)𝑎 − 𝑁𝐺(𝑥, 𝑦)𝑏) +  𝑤𝑚𝑖𝑛 

 

Eq. 5-

10 

As mentioned above, we added one additional column on each side of the image, we assign 

the weight values in those additional columns to be wmin so the shortest path calculation 

would not be affected by the additional columns. The edge weight of zero indicates that 

the two nodes are unconnected. Figure 5-6 shows the example of graph weight for three 

connected nodes and its table of the weight values called adjacency matrix of graph weight. 

 

Figure 5-6 Example of graph weight for three connected nodes and its adjacency matrix. 
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5.1.5 ILM and RPE Layers Segmentation 

The retinal layers are segmented in an iterative process according to their order of 

prominence. The ILM and RPE layers are segmented first due to their high contrast in pixel 

intensity relative to the background. To begin the retinal segmentation, the Gaussian 

blurred image is again resized by a factor of two to roughly segment the ILM and RPE 

layers. This twice down-sampled image is referred to as the rough image. Then we produce 

the negative gradient image and the dark-to-light sparse adjacency matrix of graph weights 

for the rough image. A ROI matrix of the same size as the rough image with two additional 

columns is generated and each pixel value of the ROI is set to 1 if the corresponding pixel 

on the rough image is greater than the mean value of the rough image, otherwise zero. We 

set the value of dark-to-light sparse adjacency matrix of graph weights to zero where the 

ROI is zero, otherwise the value is not changed.  

The procedure described above helps with indicating the region to find the shortest path 

because zero edge weight means unconnected nodes. Next, we use Dijkstra’s algorithm 

and the dark-to-light sparse adjacency matrix of graph weights to find the shortest paths. 

The start and the end points are automatically initialized to be the upper left pixel and the 

bottom right pixel, respectively. After the first layer is segmented, we set the pixels of the 

first found layer on the ROI matrix to zero in order to segment the second rough layer. We 

iterate the process to find the second rough layer, setting the value of the dark-to-light 

sparse adjacency matrix of graph weights to zero where the ROI is zero; otherwise the same 

value is kept in order.  

After the two rough layers are found, both of the rough layers are interpolated to have the 

same size as the resized image. Next, we set the layer where the mean value of the y-

coordinate is smaller to be the ILM and the other layer to be the RPE. Then we use the ROI 

matrix of the same size as the resized image with the additional columns to find the precise 

ILM and RPE layers. First, we segment the ILM by setting the region of the ROI matrix 

near the rough ILM layer to one where the rest are zero. Also, we change the value of the 

dark-to-light sparse adjacency matrix of graph weights to zero where the ROI matrix is 

zero. Then again, we use Dijkstra’s algorithm and the dark-to-light sparse adjacency matrix 

of graph weights to find the precise ILM layer. The precise RPE is found in the same 

manner as the ILM. Figure 5-7shows the ROI images for finding the rough layers and the 
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precise ILM and RPE layers on the resized image with two additional columns. The ROI 

images are 55x102 pixels whereas the resized image is 110x202 pixels. 

 

 

Figure 5-7 (a) ROI for the first rough layer (b) ROI for the second rough layer and (c) precise ILM and RPE layers on 

the resized image with two additional columns. 

 

5.1.6 Limiting the Search Region for the other layers 

As mentioned earlier, due to the hyper-reflectivity of the ILM and RPE layers, they are 

easily segmented. In contrast, the remaining layers are not as prominent because their 

characteristics (relative intensity) are similar. In order to correctly segment the targeted 

layer, the search region is limited such that the irrelevant features are excluded. This 

exclusion is accomplished by setting the weight of the non-targeted features to zero before 

segmenting the graph using Dijkstra’s algorithm. The search space of each layer is selected 

based on the previously segmented layers. The order of layer boundaries to be segmented 

is Inner Nuclear Layer/Outer Plexiform Layer (INL/OPL), NFL/GCL, Inner Plexiform 

Layer/Inner Nuclear Layer (IPL/INL), and Outer Plexiform Layer/Outer Nuclear Layer 

(OPL/ONL). Table. 5-1 shows the upper and lower boundaries and the sparse adjacency 

matrix of graph weights for segmentation along with the sparse adjacency matrix. Each 

boundary requires two previously segmented boundaries to be the upper and the lower 

bounds to limit the search region as indicate in Table. 5-1: 
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Figure 5-8 shows the ROIs for finding the shortest path for INL/OPL, NFL/GCL, IPL/INL 

and OPL/ONL. 

 

Figure 5-8 (a) ROI for segmenting the INL/OPL (b) ROI for segmenting the NFL/GCL (c) ROI for segmenting the 

IPL/INL and (d) ROI for segmenting the OPL/ONL. 

 

 

Retinal Layer Upper Bound Lower Bound 

Sparse 

Adjacency 

Matrix 

  

INL/OPL ILM RPE Dark-to-light   

NFL/GCL ILM INL/OPL Light-to-dark   

IPL/INL NFL/GCL INL/OPL Light-to-dark   

OPL/ONL INL/OPL RPE Light-to-dark   

 

Table 5-1 Upper and lower bound for each retinal layer along with its sparse adjacency matrix. 
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5.1.7 Final Segmented Image 

Once all of the retinal layer boundaries are segmented, the additional column on each side 

of the image is removed, leaving the accurate six retinal layer boundaries. Nonetheless, 

these retinal layers are not the same size as the original input image, and they need to be 

interpolated, smoothed and offset adjusted based on the cropped background to correctly 

delineate these features on the original uncropped image. Figure 5-9 shows representative 

results of the retinal layer boundaries delineated on mouse cross-sectional retinal images.  

 

Figure 5-9 The original SD-OCT mouse B-scans with retinal layer boundaries segmented by our segmentation. 

 

 Summary 

In this chapter, we described the processing pipeline of the retinal layer segmentation using 

heterogeneous computing (CPU and GPU). We performed image cropping on the GPU 

because of its parallel computing ability in calculating the row average and performing the 

histogram to find the threshold value. However, we performed the rest of the pipeline in 

the CPU due to the complexity of the graph construction and the shortest path search using 

Dijkstra’s algorithm. The results of the retinal layer segmentation and the discussion will 

be covered in the next chapter. 
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Chapter 6  

Retinal Layer Segmentation Results and Discussion 

 

This chapter describes the environmental setup for implementing our real-time retinal layer 

segmentation program, the speed performance for a real-time application and the 

segmentation results. Also, it will compare the Sensorless Adaptive Optics (SAO) 

optimization with and without our segmentation program using image quality or the sum 

of the intensity squared of each pixel of the en face image. 

 

 Environmental Setup 

The mouse retinal image acquisition system called LIVMAOS System at Biomedical 

Optics Research Group (BORG) lab operates with a central wavelength of 810 nm. It 

provides a 100 kHz line rate for imaging vivo mouse retina. This system includes OCT, 

OCT-A, SLO and fluorescence detector but for this research we only use OCT and OCT-

A subsystems. On the other hand, the software that controls the LIVMAOS System is called 

OCTViewer converts raw interferometric fringe into B-scan images and displays on the 

device. Our segmentation program is integrated in the OCTViewer such that the 

OCTViewer takes the segmentation results to generate en face OCT and OCT-A images. 

In order to correct the optics aberrations, the OCTViewer calculates the sum of the intensity 

squared of each pixel of the en face OCT and feeds it as the input for the merit function to 

optimize SAO.  

 

 Data for this project 

The mouse imaging experiments were performed under protocols compliant to the 

Canadian Council on Animal Care, and with the approval of the University Animal Care 

Committee at Simon Fraser University. In this thesis, we used the mouse SD-OCT volume 

datasets of different dimensions (as indicated below), but each dataset contained 800 

frames.  
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 Speed Performance 

This section compares the speed performance of the modified Caserel software using 

MATLAB R2019a with our real-time retinal layer segmentation written in C/C++ using 

Microsoft Visual Studio 2013. Both of the programs run on the CPU of Intel® CoreTM i9-

9900K CPU @ 3.6 GHz (Turbo 5.0 GHz) with a Graphic Processing Unit of NVIDIA 

GeForce RTX 2060.  

We modified the Caserel software as follows: 

• Since our OCTViewer processes the interferometric fringe data into the processed 

floating-point data, we modified the Caserel software to read these types of input.  

• We changed the resize scale for the rough image from 0.5 to be 0.2 according to 

our C++ algorithm because if the image is too small, the rough ROI for searching 

the second rough layer may generate the broken path resulting to the second rough 

layer not found. 

Table. 6-1 shows the accumulated average speed performance of our segmentation up to 

the specified layer from 800 images in the same volume set using our C++ implementation 

and the modified version of Caserel software on SD-OCT data of different sizes. The order 

of retinal layers to be segmented is rough ILM and RPE, precise ILM, precise RPE, 

INL/OPL, NFL/GCL, IPL/INL and OPL/ONL. 
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The main objective of this project is to implement a pseudo-real-time retinal layer 

segmentation program that gives its result within a specific time constraint. We employed 

heterogeneous computing to gain the performance based on the nature of each task. CPUs 

are good at performing complex tasks, and in the context of Graph-cut search, are more 

reliable in terms of global convergence. In contrast, GPUs are optimized for performing 

tasks of lesser complexity that can be broken down into smaller independent parts that need 

less or no communication among tasks. We parallelized the code for cropping the image to 

contain only the retinal structure and to remove the redundant data by implementing it into 

CUDA for NVIDIA GPU. Removing redundant data helps Dijkstra’s algorithm, which is 

performed on the CPU due to its capability to perform complex tasks, and to search for the 

shortest path faster because of the smaller (resized) image size. Moreover, our retinal layer 

segmentation program utilizes arrays and Intel® Math Kernel Library (MKL) rather than 

vectors and their operations. Arrays take less time to access their elements because of their 

contiguous property, and permits access to the elements efficiently with a constant time 

irrespective of the element location. Since the array is a fixed size data structure, and all 

elements must be of the same type, hence, it is type safe and the most efficient in terms of 

speed and performance.  

The specifications of the segmentation time requirements (including the OCT signal 

processing time) were set by the acquisition system parameters. The image acquisition 

 

Retinal 

Layer 

992x400 pixels 496x400 pixels 240x300 pixels 

Caserel 
C++ 

Caserel C++ Caserel C++ 

Rough ILM 

and RPE 

79.07 ± 21.10 ms 10.34 ± 0.82 ms 51.88 ± 8.20 ms 9.17 ± 0.37 ms 21.13 ± 7.50 ms 5.30 ± 0.47 ms 

ILM 106.76 ± 9.80 ms 12.49 ± 0.86 ms 64.99 ± 8.40 ms 11.4 ± 0.50 ms 28.22 ± 7.70 ms 6.81 ± 0.47 ms 

RPE 122.90 ± 9.80 ms 14.56 ± 0.96 ms 77.40 ± 8.70 ms 13.57 ± 0.51 ms 35.26 ± 7.80 ms 8.26 ± 0.47 ms 

INL/OPL 140.45 ± 10.60 ms 17.78 ± 1.02 ms 91.46 ± 10.10 ms 18.88 ± 0.46 ms 43.91 ± 8.20 ms 10.60 ± 0.68 ms 

NFL/GCL 156.08 ± 10.60 ms 19.29 ± 1.04 ms 104.63 ± 11.10 ms 20.9 ± 0.51 ms 51.46 ± 8.70 ms 11.74 ± 0.66 ms 

IPL/INL 172.75 ± 10.70 ms 20.63 ± 1.13 ms 117.46 ± 11.70 ms 22.42 ± 0.57 ms 58.29 ± 8.90 ms 12.30 ± 0.81 ms 

OPL/ONL 190.07 ± 11.30 ms 22.23 ± 1.07 ms 130.53 ± 13.20 ms 25.60 ± 0.61 ms 66.29 ± 9.30 ms 13.76 ± 0.72 ms 

 

Table 6-1 Speed performance of our C++ segmentation and Caserel in milliseconds on different image sizes 
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system used in this report provided a 100 kHz A-line scan rate, and completed a B-scan 

where the width is 400 A-lines in 4 ms and a B-scan where the width is 300 A-lines in 3 

ms, corresponding to B-scan rates of ~250-333Hz. In order to maximize the data transfer 

across the PCIe bus, the B-scans are acquired in batches. Therefore, in order to ensure that 

the combination of our CUDA and segmentation pipelines (the processing pipeline) 

responds within the deadline of the acquisition system, the processing pipeline must 

guarantee the result of the current batch before the next batch is completely acquired. Our 

segmentation using C/C++ showed a significant improvement in the processing time of a 

B-scan by more than 74%, and is able to perform the rough segmentation on each (cropped) 

B-scan at the rate that it is acquired. We found that the lateral movement of the retinal 

layers within the acquisition time of a batch is negligible. Thus, we reduced the number of 

frames to be segmented by applying the full resolution segmentation using Graph-cuts to 

the first frame of each batch and its result can be applied on all frames in that batch. If we 

chose to segment only the ILM and RPE layers and chose a batch to contain 4 frames, the 

deadline is about 16 ms for the image where the width is 400 pixels and 12 ms for the 

image where the width is 300 pixels. As shown in Table 6-1, the execution time to segment 

the rough and the precise ILM and RPE on an image of size 992x400 and 496x400 takes 

about 14.56 ms and 13.57 ms, respectively, and on an image of size 240x300 takes about 

8.26 ms. As a result, our segmentation pipeline can run at least at 62.5 Hz which is faster 

than a video rate of 60 Hz. However, we must consider the OCT acquisition and signal 

processing time along with the image segmentation time to respond within the deadline of 

the acquisition system. Thus, we chose a batch size to contain 6 frames which extends the 

deadline to 24 ms for the image where the width is 400 pixels and 18 ms for the image 

where the width is 300 pixels to include the OCT signal acquisition and processing time. 

This feature would provide axial tracking and extraction of the shape of the retina for 

visualization during acquisition. If we wanted to segment a specific retinal layer, we could 

offset the width between ILM and RPE layers to generate an en face image that is close to 

the anatomical shape of that layer. The segmentation of additional layers would require 

larger batch sizes. For example, we also could segment all six retinal layers and choose the 

batch size to be 10 frames to generate the results before the deadline of 40 ms and 30 ms 

for the images where the width is 400 pixels and 300 pixels, respectively. Indeed, in most 
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cases, we do not need all six retinal layers delineated on the image while performing a real-

time application. What we often need is to segment a particular layer by using two 

segmented retinal layer boundaries. For instance, the boundaries between INL/OPL and 

OPL/ONL are needed for segmenting the OPL layer. We could speed up our segmentation 

pipeline by segmenting only the rough ILM and RPE layers and use these rough layers to 

limit the search region to segment INL/OPL and again use INL/OPL and rough RPE to get 

OPL/ONL. Similarly for the NFL layer, we could segment the rough layers and use the 

rough layers to segment INL/OPL and again use rough ILM and INL/OPL to segment 

NFL/GCL.  

 

 Qualitative results of the Real-Time Retinal Layer Segmentation on 

SAO mouse datasets 

This section shows the real-time retinal layer segmentation results of different retinal layers 

on different SAO mouse datasets. The top row shows the SAO cross-sectional mouse retina 

images with two segmented retinal layer boundaries. The middle and bottom rows on each 

column display the intensity and speckle variance en face images generated from the two 

segmented layer boundaries shown on the corresponding B-scan. Figure 6-1 shows the 

results from segmenting the ILM layer (green line) and the RPE layer (red line) along with 

their OCT and OCT-A en face images from different datasets. Figure 6-2 shows the 

segmentation results of the ILM layer (green line) and the NFL/GCL layer (red line) with 

their OCT and OCT-A en face images. Figure 6-3 displays the segmentation result of the 

NFL/GCL layer (green line) and the IPL/INL layer (red line) along with their OCT and 

OCT-A en face images from different datasets. Figure 6-4 shows the results of the 

INL/OPL layer (green line) and the  OPL/ONL layer (red line) along with their OCT and 

OCT-A en face images from different datasets. Figure 6-5 shows the results from 

segmenting the IPL/INL layer (green line) and the OPL/ONL layer (red line) along with 

their OCT and OCT-A en face images from different datasets.   
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Figure 6-1 SAO-OCT B-scans with ILM (green layer) and RPE (red layer) and their corresponding SAO-OCT and 

SAO-OCTA en face images. 
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Figure 6-2 SAO-OCT B-scans with ILM (green layer) and NFL/GCL (red layer) and their corresponding SAO-OCT 

and SAO-OCTA en face images. 
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Figure 6-3 SAO-OCT B-scans with NFL/GCL (green layer) and IPL/INL (red layer) and their corresponding SAO-

OCT and SAO-OCTA en face images. 

 



55 

 

 

Figure 6-4 SAO-OCT B-scans with INL/OPL (green layer) and OPL/ONL (red layer) and their corresponding SAO-

OCT and SAO-OCTA en face images. 
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Figure 6-5 SAO-OCT B-scans with IPL/INL (green layer) and OPL/ONL (red layer) and their corresponding SAO-

OCT and SAO-OCTA en face images. 

 

 Static (fixed) User-Selected Depth Retinal Layers versus Pseudo-

Real-Time Retinal Layer Segmentation 

This section compares the results of the intensity and speckle variance en face images when 

using static (fixed) depth locations to generate the en face images versus using the pseudo-

real-time retinal layer segmentation. With the static user-selected depth option, the operator 

selects two horizontal lines on the B-scan image. Figure 6-6 (a) shows a representative B-

scan with the static user-selected depth at NFL layer and its corresponding en face images. 
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Figure 6-6 (b) shows a representative B-scan with the pseudo-real-time retinal layer 

segmentation results of ILM and NFL/GCL layers with its OCT and OCT-A en face 

images. Although the image are similar, the top row is missing a vasculature feature near 

the top edge of the OCT-A image. 

 

Figure 6-6 Intensity and Speckle variance NFL en face images using static user-selected depth of retinal layers and 

using the pseudo-real-time retinal layer segmentation.  

 

Mouse retinal axial motion during imaging is typically on the order of 4.34 pixels during 

imaging due to breathing and related motion. Hence, without tracking of the retina position, 

the region of interest may shift in and out of the bounding box. Figure 6-7 shows a 

representative case of when the static user-selected depth option retinal layers option failed 

to detect the retinal layer of interest during data acquisition due to motion in vivo mouse.  
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Figure 6-7 (a) Axial motion of the retina during acquisition leads to failure in detecting NFL layer using two fixed 

horizontal lines and (b) the graph showing the motion of the ILM position (in pixel) during acquisition. 

 

Similarly, Figure 6-8 (a) shows the representative B-scan with the static user-selected depth 

at INL-OPL layer and its corresponding en face images. Figure 6-8 (b) shows the 

representative B-scan with the pseudo-real-time retinal layer segmentation results of 

IPL/INL and OPL/ONL layers with its OCT and OCT-A en face images.  
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Figure 6-8 Intensity and Speckle variance INL-OPL en face images using static user-selected depth of retinal layers 

and using the pseudo-real-time retinal layer segmentation. 

 

The results for NFL imaging SAO-OCT, and SAO-OCT-A visualization with and without 

our pseudo-real-time segmentation are shown in Figure 6-9. Without our segmentation, an 

operator selected two straight lines within the region of interest in order to obtain en face 

images. Figure 6-9 (a) shows en face SAO-OCT and SAO-OCT-A images with static user-

selected depth at NFL layer. Figure 6-9 (b) shows en face SAO-OCT and SAO-OCT-A 

images with pseudo-real-time retinal layer segmentation between the ILM and NFL/GCL 

layers. Figure 6-9 (c) demonstrates the SAO optimization with and without the 

segmentation.  
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Figure 6-9 (a) B-scan with user selected retinal depth on NFL layer and its corresponding OCT and OCT-A en face 

images (b) B-scan with the segmentation of ILM and NFL/GCL layers and its corresponding OCT and OCT-A en face 

images (c) Image quality of each step in the SAO optimization with segmentation (the red plot) and without 

segmentation (the blue plot) 

 

The results for OPL imaging with SAO-OCT, and SAO-OCT-A visualization with and 

without our pseudo-real-time segmentation are shown in Figure 6-10. Figure 6-10 (a) 

shows en face SAO-OCT and SAO-OCT-A images with static user-selected depth at OPL 

layer. Figure 6-10 (b) shows en face SAO-OCT and SAO-OCT-A images with pseudo-
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real-time retinal layer segmentation between the INL/OPL and OPL/ONL layers. Figure 6-

9 (c) demonstrates the SAO optimization with and without the segmentation.  

 

Figure 6-10 (a) B-scan with user selected retinal depth on OPL layer and its corresponding OCT and OCT-A en face 

images (b) B-scan with the segmentation of INL/OPL and OPL/ONLlayers and its corresponding OCT and OCT-A en 

face images (c) Image quality of each step in the SAO optimization with segmentation (the red plot) and without 

segmentation (the blue plot) 
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In this thesis, we implemented a pseudo-real-time 2D Graph-cut for retinal layer 

segmentation which was integrated into a complete OCT acquisition and processing 

software. We demonstrated the system performance for generating layer segmentations to 

guide an image-based SAO optimization. With the ability to segment the retinal layers, our 

processing program [3] created anatomically correct en face images by using a Maximum 

Intensity Projection (MIP) between two selected retinal layers for the input of the merit 

function for SAO optimization on the screen as the data was being acquired. The use of a 

static user-selected depth region of interest is not ideal to detect specific retinal layers 

because, for in vivo mouse imaging, the retinal position moves during the acquisition as 

shown in Figure 6-7. Figure 6-6 shows that the top of the NFL en face images are dark 

because during the acquisition, the retina moved down and out of the bounding region, 

causing the posterior chamber to be detected. In contrast, the pseudo-real-time retinal 

segmentation generated en face images with the correct retinal features because the 

segmented lines followed the motion of the retina in vivo. Similarly, in Figure 6-8, the en 

face images generated from the static user-selected depth retinal layers show fewer retinal 

features compared to the en face images generated from the retinal layer segmentation. The 

pseudo-real-time retinal layer segmentation tracks the layer of interest even though there 

is motion during acquisition which leads to a better en face image as the input for the SAO 

optimization as shown in Figure 6-9 and Figure 6-10. Figure 6-9 (d) and Figure 6-10 (d) 

shows the merit plots with and without our segmentation for SAO optimization of 18 

modes in total. The merit plot with segmentation shows a better improvement in the image 

quality after each mode is optimized than the merit plot without the segmentation.  

 

 Summary 

In this chapter, the speed performance to segment six retinal layers of our retinal layer 

segmentation was at least 74 percent faster than the speed of the modified Caserel software. 

In order to make our retinal layer segmentation a real-time application, we could choose to 

segment only the first two layers (i.e., ILM and RPE layers) and use the results for the 

entire batch where each batch consists of 6 frames. For segmenting the other layers rather 

than ILM and RPE layers, the user could offset the width between ILM and RPE layers to 
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fit the layer of interest to produce the en face image. This option makes the segmentation 

pipeline to run at least at 62.5 Hz for the images of sizes of 992x400, 496 and 240x300 

pixels. On other hand, we could segment only rough layers and layers that the layer of 

interest depends on to speed up the segmentation pipeline.  

Furthermore, our real-time retinal layer segmentation provides the correct retina shape than 

using user-selected two fixed horizontal lines when there is motion during data acquisition 

or when the retina is not flat. As the result, the generated intensity en face images from our 

real-time retinal layer segmentation provide better image quality after the SAO 

optimization.     
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Chapter 7  

Conclusion and Future Work 

 

We have utilized consumer grade computer equipment to control the acquisition of real-

time OCT signals and perform image processing. A General-Purpose Graphics Processing 

Unit (GPGPU) was used for OCT processing and for generating the B-scan images. The 

CPU was used for the processes such as shortest-path graph search to segment the retinal 

layers on the acquisition computer and extract a depth resolved layer from the volumetric 

data as it gets acquired. We employed down-sampling and parallel processing to improve 

the speed of the application and as a result our retinal segmentation program can be used 

as a pseudo-real-time application. However, the segmenting time strongly depends on the 

number of the retinal layers to be segmented. Segmentation of the retinal layers permits 

OCT and OCT-A en face images to be extracted during data acquisition and en face images 

are used to guide the depth specific focus control for high-solution OCT systems.  

 

 Future Work 

In this project, we implemented the pseudo-real-time retinal layer segmentation in C/C++ 

using Visual Studio 2013 running on a CPU of Intel® CoreTM i9-9900K CPU @ 3.6 GHz 

(Turbo 5.0 GHz) with a Graphic Processing Unit of NVIDIA GeForce RTX 2060. In the 

future, we could consider an alternative computational hardware for OCT signal processing 

and retinal layer segmentation. Our current approach focused on the use of GPU and CPU 

because of the ease of implementation, ability for rapid changes to accommodate emerging 

applications, and for integration with relatively complex control of adaptive optics systems. 

Future work may involve the use of Field Programmable Gate Arrays (FPGAs). The OCT 

processing pipeline has been developed on FPGA [51]–[55]. With its advantage of the 

execution time and power consumption, an FPGA platform could also be a suitable option 

for speeding up the retinal layer segmentation. This approach would need to consider 

implementing a Graph-cut or some other efficient methods to segment the retinal layers on 
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a FPGA in real-time. To the best of our knowledge, there is no work of retinal layer 

segmentation that uses FPGA; however, there are some works on image segmentation 

using Graph-cut on FPGA [56], [57]. There are reports on related applications, such as 

retinal vessel segmentation, using a hardware-based approach with high accuracy [58], 

[59]. Koukounis et al. [58] presented a very-large-scale integration (VLSI) retinal vessel 

segmentation system using a matched filter approach, introduced by Hoover et al. [60], on 

a Spartan 6 XC65LX150T FPGA running at 100 MHz. It claimed to segment with the 

overall accuracy of  92.4% and the execution time for image of 768x584 pixels was 48 ms. 

Similarly, Bendaoudi et al. [59] proposed two architectures for retinal blood vessel 

segmentation which one of them was completely hardwared on a Xilinx Kintex-7 

(XC7K48oT-1FFG1156) FPGA. The algorithm was written in hardware description 

language (HDL) using a matched filter [60] and it could segment retinal vessel image of 

size 640 x 480 pixels in 2 ms and image size of 3504 x 2336 pixels in 54 ms. Due to the 

low power consumption, high speed performance and easy architecture integration, the 

FPGA platforms are proposed to be used as portable embedded biomedical systems. 

Nevertheless, the FPGA platforms do not support a floating-point operation which makes 

the systems lose accuracy [61]. 

Recently, deep learning based neutral networks approach have been introduced to 

successfully perform the retinal layer segmentation based on learning representative data 

[62]–[68]. Yufan et al. [64] claimed that their full segmentation operation could segment 

nine retinal layer boundaries in 10 seconds for a 3D volume (496x1024x49). Besides, Ngo 

et al. [67] proposed a deep neural network regression that used the intensity, gradient and 

adaptive normalized intensity score of an image to segment eight retinal boundaries in 

10.596 seconds per image with approximate accuracy of 0.966. In addition, there are 

reports that combines neutral network with graph search methodology to automatically 

segment retinal layers [69], [70] in order to improve both segmentation accuracy and 

stability but with the higher cost of the computational burden. The deep learning based 

neutral network method could be our future alternative retinal layer algorithm that utilizes 

a large learning data produced by our pseudo-real-time retinal layer segmentation.
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