
Abstracting OpenCL for
Multi-Application Workloads on

CPU-FPGA Clusters
by

Graham Mark Holland

B.A.Sc. (Hons.), Simon Fraser University, 2014

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Applied Science

in the
School of Engineering Science
Faculty of Applied Sciences

c© Graham Mark Holland 2019
SIMON FRASER UNIVERSITY

Fall 2019

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Approval

Name: Graham Mark Holland

Degree: Master of Applied Science (Engineering)

Title: Abstracting OpenCL for Multi-Application
Workloads on CPU-FPGA Clusters

Examining Committee: Chair: Anita Tino
Lecturer

Lesley Shannon
Senior Supervisor
Professor

Zhenman Fang
Supervisor
Assistant Professor

Arrvindh Shriraman
Internal Examiner
Associate Professor
School of Computing Science

Date Defended: December 3, 2019

ii



Abstract

Field-programmable gate arrays (FPGAs) continue to see integration in data centres, where
customized hardware accelerators provide improved performance for cloud workloads. How-
ever, existing programming models for such environments typically require a manual as-
signment of application tasks between CPUs and FPGA-based accelerators. Furthermore,
coordinating the execution of tasks from multiple applications necessitates the use of a
higher-level cluster management system. In this thesis, we present an abstraction model
named CFUSE (Cluster Front-end USEr framework), which abstracts the execution target
within a heterogeneous cluster. CFUSE allows tasks from multiple applications from un-
known workloads to be mapped dynamically to the available CPU and FPGA resources and
allows accelerator sharing among applications. We demonstrate CFUSE with an OpenCL-
based prototype implementation for a small cluster of Xilinx FPGA development boards.
Using this cluster, we execute a variety of multi-application workloads to evaluate three
scheduling policies and to determine the relevant scheduling factors for the system.

Keywords: Field-programmable gate arrays; runtime task scheduling; OpenCL; hardware
acceleration; FPGA clusters
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Chapter 1

Introduction

For many years, data centres have consisted of racks of networked server systems featuring
general-purpose processors. However, the end of Dennard scaling in the previous decade
has meant that power consumption is now the limiting factor for single-threaded central
processing unit (CPU) performance improvements. This limitation is particularly problem-
atic for the data centre, where client applications demand continuous, efficient scaling, and
where data centre operators seek to curb growing power costs.

As a result, data centre server systems now feature customized hardware, such as graph-
ics processing units (GPUs) and field-programmable gate arrays (FPGAs), to offload some
computation from the CPU. These devices are capable of achieving improved performance
over CPUs for certain workload types due to their massively parallel architectures. How-
ever, high-end GPUs typically have high power requirements, which can be problematic for
deployment in a power-constrained data centre [1].

To address the power concerns with GPUs, cloud providers have begun to deploy re-
configurable hardware, such as Amazon making FPGAs available on their Amazon Web
Services (AWS) Elastic Compute Cloud (EC2) F1 instances. [2]. These deployments have
been driven by research showing that reconfigurable hardware has the potential to signifi-
cantly improve the throughput of cloud applications [3]. However, the integration of such
reconfigurable hardware into cloud environments brings with it a large and diverse set of
challenges. Among these are issues related to the following topics:

programmability Addressing the lack of portability of FPGA configurations (bitstreams)
between different devices, and between different partial reconfiguration regions within
a device.

synthesis Providing abstractions to allow software-based definitions of hardware accelera-
tors and associated hardware system infrastructure. Addressing the long compile times
for FPGA platforms.

hardware-software integration Managing hardware accelerator use from software ap-
plications.
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resource management Managing the availability of all execution resources (e.g. CPUs,
hardware accelerators) and managing device reconfiguration to enable different sets
of hardware accelerators.

scheduling Enabling efficient use of the compute resources available in the cluster by
choosing a sequence for task execution via the use of specific scheduling algorithms.

security Ensuring that client applications are sufficiently isolated from one another when
they share resources during execution.

reliability Ensuring robustness in the presence of errors, including hardware failures on
compute nodes as well as network errors.

In this thesis, we address a subset of the hardware-software integration, resource man-
agement and scheduling challenges. We develop an abstraction model for execution targets
within a network cluster. Our abstraction allows tasks from multiple applications to be dy-
namically scheduled for execution on either a CPU and FPGA accelerator, without requiring
an explicit mapping from the programmer. We provide a demonstration of our abstraction
by leveraging an existing high-level synthesis (HLS) tool to generate FPGA hardware ac-
celerators from software descriptions. These accelerators are integrated into a cluster with
compute nodes featuring both CPUs and FPGA hardware.

1.1 Motivation

From a programming perspective, FPGAs have historically been utilized by describing com-
putations at the register-transfer level (RTL) with hardware description languages (HDLs).
Subsequently, this has generally limited their use to hardware engineers with a background
in digital systems design. Advances in high-level synthesis (HLS) tools have helped to raise
the level of FPGA design entry toward more traditional software programming languages
including C and C++. Researchers and industry continue to work to close the performance
gap between HLS-generated designs and hand-optimized RTL. As a result, the hardware-
specific knowledge required to create performant systems with reconfigurable hardware is
decreasing, making FPGA-based systems more accessible to non-experts.

At the same time, OpenCL has emerged as a popular and effective framework for uni-
fying the programming of heterogeneous systems, including those featuring FPGAs. Using
the functionality provided by the OpenCL host application programming interface (API),
programmers schedule software-defined kernel functions for accelerated execution onto the
devices available in a given platform. In the case of OpenCL implementations targeting
FPGAs, HLS tools are used to generate custom hardware accelerators from OpenCL kernel
source code.

A large amount of prior research work has sought to overcome the challenge of effectively
using FPGA accelerators from within application programs. Among these is the Front-end
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USEr framework (FUSE) [4]. FUSE presents a Platform as a Service (PaaS) model for
hardware accelerators, by providing a programming interface analogous to software threads.
Using FUSE, a developer models application compute tasks as threads, without specifying
whether these tasks will be executed by a CPU core or an FPGA-based hardware accelerator.
Instead, the tasks are allocated to an appropriate target by the FUSE runtime, which tracks
hardware accelerator availability and uses execution via software as a fallback mechanism.
In our work, we seek to adapt this central concept of FUSE for use within a cluster.

1.2 Objective

The primary objective of this work is to create a framework allowing for the execution
of kernel functions from multiple applications across CPUs and FPGA-based hardware
accelerators within a networked cluster. We wish to provide an abstraction of the available
devices in the cluster, by automating the selection of an appropriate execution target for
each application kernel. To meet this requirement, we will base the work on the underlying
concept of the FUSE project.

Beyond extending the concept of FUSE to a CPU-FPGA cluster, we will also address
some of the limitations of the original FUSE implementation. These include supporting
multi-core processor platforms, adding direct memory access (DMA) capability for acceler-
ators, and automating accelerator generation via HLS tools.

While the original FUSE implementation used Portable Operating System Interface
(POSIX) threads, our framework demonstration will be based on OpenCL in order to lever-
age existing HLS capability. This also allows our framework to maintain a level of compati-
bility with the familiar OpenCL execution model, in which kernels are submitted to device
command queues for execution. Furthermore, this allows existing OpenCL applications to
be modified to use the new framework with less developer effort.

While OpenCL implementations targeting FPGAs, such as Xilinx SDAccel [5] and Intel
FPGA SDK for OpenCL [6], have enabled a more accessible, software-driven approach
for defining hardware accelerators and scheduling accelerator tasks, there are limitations
inherent to the OpenCL models. In the course of implementing our framework, we seek to
address a subset of the following limitations:

• Typical OpenCL implementations for FPGA platforms do not use the system pro-
cessor for executing kernels. Instead, all kernels are executed by FPGA hardware
accelerators, while the system processor executes the OpenCL runtime library.

• While OpenCL defines a portable kernel programming language, kernel performance
between different device targets can vary substantially. To achieve sufficient perfor-
mance, kernel code must often exploit device-specific features.
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• The runtime library implementation of the OpenCL host API limits the view of system
resources, making simultaneous use of devices by multiple applications difficult.

• The OpenCL platform model is restricted to a single network node. There is no method
available to utilize devices on remote nodes.

• OpenCL is a low-level framework. The application programmer is responsible for man-
aging device work queues and moving kernel data between the host processor and
devices.

1.3 Contributions

The contributions of this thesis can be summarized as follows:

• The Cluster Front-end USEr framework (CFUSE): an abstraction model allowing for
the dynamic mapping of tasks from multiple applications to CPU and FPGA hardware
accelerators within a network cluster of heterogeneous nodes.

• A demonstration of CFUSE using an OpenCL-based framework prototype.

• An initial analysis of the scheduling performance within the framework using sets of
benchmark application workloads.

The CFUSE framework presented in this thesis, raises the abstraction level over the
OpenCL execution model by applying the FUSE concept to a cluster of CPU-FPGA nodes.
It leverages the Xilinx Vivado HLS tool [7] to create hardware accelerators from kernel
source code and provides a simplified mechanism for constructing heterogeneous CPU-
FPGA systems with these accelerators. CFUSE utilizes the Portable Computing Language
(POCL) [8] OpenCL implementation to enable application kernels to execute on CPU tar-
gets in addition to FPGA accelerators.

We present a prototype implementation of CFUSE on a small network cluster of Xilinx
Zynq FPGA development boards and perform a series of characterization experiments to
investigate the framework overhead. Finally, we perform an analysis of the scheduling capa-
bility of the framework to uncover the factors relevant to determining an execution schedule
for kernels from a mix of benchmark applications.

1.4 Thesis Organization

This thesis is organized in the following manner. Chapter 2 presents relevant background
information on FPGAs, the OpenCL framework and its models, and presents a summary of
related research including the prior work of FUSE. Chapter 3 provides a high-level overview
of the CFUSE framework, while the implementation details of the prototype are covered
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in Chapter 4. Chapter 5 describes measurement techniques and presents a characterization
of the prototype CFUSE implementation. We present the results of our investigations on
scheduler policies for benchmark application workloads in Chapter 6. Finally, Chapter 7
summarizes the work, outlines areas for future research effort, and lists potential system
improvements to CFUSE.
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Chapter 2

Background

This chapter provides relevant background information about the technologies, hardware
devices, software tools and frameworks used in this thesis. We begin with a discussion of
field-programmable gate array (FPGA) architecture, synthesis and programming and then
move on to discuss the OpenCL framework and OpenCL platforms supporting FPGAs. We
provide an overview of two previous works that we make use of in this thesis: the Portable
Computing Language (POCL) OpenCL implementation and the Front-end USEr framework
(FUSE). Finally, we present an overview of related research.

2.1 Field-Programmable Gate Arrays

FPGAs are hardware reconfigurable integrated circuits, capable of implementing custom
digital logic designs. In the following sections, we discuss their internal architecture and the
computer-aided design (CAD) tool flow used to create a custom configuration from a circuit
design specification. After this, we describe the device configuration process.

2.1.1 Architecture

Figure 2.1 shows a simplified model of a modern FPGA architecture. As shown, FPGAs are
made up of a programmable fabric, consisting of an array of logic blocks that implement
circuit functions, connected by a programmable interconnect. I/O blocks are used to interface
with the physical device pins and are capable of implementing various digital I/O standards
and voltages.

Logic blocks differ between FPGA vendor and device family, but at a minimum contain
a lookup table (LUT), flip-flop (FF) and multiplexer. LUTs may be programmed with arbi-
trary Boolean functions to implement combinational circuits. With the addition of flip-flops
to the logic block, sequential circuits such as registers and distributed memories can also
be implemented. Modern FPGA architectures feature significantly more complicated logic
blocks than what is shown here. They may include structures allowing for the implemen-
tation of shift registers and distributed RAM, as well as a carry chain used to efficiently
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Block
RAM
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Figure 2.1: Simplified FPGA architecture

implement arithmetic functions. Furthermore, modern architectures use fracturable LUTs
that can either implement a single k-input LUT or two (k − 1)-input LUTs with shared
inputs.

The interconnect consists of routing tracks organized into horizontal and vertical chan-
nels, used for routing signals between logic blocks. Logic blocks connect to this interconnect
at a connection block and connections are made between intersecting channels at switch
blocks. Connection and switch blocks contain programmable switches, allowing for arbi-
trary connections to be made by loading an FPGA configuration, known as a bitstream.

In addition to these configurable blocks, the FPGA fabric also includes various fixed logic
blocks, used to implement functionality common to many classes of digital circuits. These
include embedded memories known as block RAMs (BRAMs), digital signal processing
(DSP) blocks for performing multiply-accumulate operations, analog-to-digital converters,
high speed I/O blocks, such as PCI Express (PCIe) and DDR memory interfaces, and ded-
icated clock circuitry. Some FPGAs also contain embedded central processing unit (CPU)
cores with a set of interfaces enabling communication to the remainder of the programmable
fabric.

2.1.2 Synthesis, Programming and Reconfiguration

Due to the size and complexity of the circuits that may be implemented on a modern FPGA,
designers typically use hardware description languages (HDLs), such as VHDL and Ver-
ilog, to specify their designs. These languages describe circuits at the register-transfer level
(RTL). Given a set of HDL design files, a CAD tool is used to synthesize a bitstream. This
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Figure 2.2: FPGA CAD tool flow

process involves the following steps, outlined in Figure 2.2: behavioural synthesis, technol-
ogy mapping, placement and routing. In behavioural synthesis, RTL sources are transformed
into a netlist, a generic circuit representation consisting of logic gates and connections. De-
vice independent circuit optimizations may then be performed using this representation.
These gates are then packed into the primitives (LUTs, flip-flops, BRAMs, DSP blocks etc.)
available on the target FPGA device during technology mapping. During placement, spe-
cific locations are chosen for each element and these elements are wired together during the
routing stage.

High-level synthesis (HLS) is the process of generating RTL code for hardware synthe-
sis from a higher level programming language such as C, C++ or OpenCL C. Increasingly,
FPGA-based design is performed using HLS tools. Such tools are useful to those with-
out extensive knowledge of digital circuit design and RTL-based design entry. Advances in
HLS optimization have brought the resulting circuit performance closer to what would be
generated from hand-optimized RTL.

Once a bitstream is generated using HLS or from RTL sources, it must be programmed
onto the FPGA for the device to implement the circuits in the design. This is typically done
when the device is initially powered on, but may also be performed during runtime. Some
FPGAs support dynamic partial reconfiguration, whereby a subset of the FPGA fabric may
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be reconfigured, while the circuits in the remaining regions of the fabric continue to operate.
To achieve this, the designer must use floorplanning CAD software to divide the device into
partially reconfigurable and static regions. Then, multiple partial bitstreams are generated
for the partially reconfigurable region as well as a bitstream for the static part of the design.
These partial bitstreams are generally not portable between different partial reconfiguration
regions.

2.2 OpenCL

OpenCL (Open Computing Language) [9] has begun to see widespread use for developing
programs targeting heterogeneous systems, including those featuring graphics processing
units (GPUs) and FPGAs. The OpenCL standard defines an application programming in-
terface (API), implemented via a runtime library, and a portable, parallel programming
language called OpenCL C. An OpenCL platform consists of a host processor that executes
the runtime library and application code, and one or more computation devices. Devices
execute specially qualified functions called kernels that are written in the OpenCL C lan-
guage. Examples of such devices include multi-core CPUs, discrete GPUs, FPGAs and DSP
chips.

2.2.1 OpenCL Models

The OpenCL specification divides the OpenCL architecture into a hierarchy of four models:

• Platform model – Divides the system into a host processor and devices.

• Execution model – Defines the use of device command queues to control kernel exe-
cution.

• Memory model – Defines memory regions and memory access rules for host applica-
tions and kernels.

• Programming model – Defines the data-parallel and task-parallel models.

The platform model divides a system into a host processor and one or more compute
devices. Devices are further divided into compute units that are themselves made up of
processing elements. It is important to note that these divisions are logical abstractions
and how a given device is subdivided into these components is defined by the specific
implementation of OpenCL on a system. It is valid for a device to consist of a single
compute unit with a single processing element.

The execution model logically divides application program execution. Kernels execute
on devices, while the OpenCL API implementation and remaining application code execute
on the host processor. All device interactions, including memory transfers between the

9



Host	Processor

CPU

OpenCL
runtime
library

Host	Application

links
with

int	main()
{
...
}

per-device
Command	Queues

Devices

Compute	Unit

Processing
Element

Private
Memory

Local	Memory

...

Processing
Element

Private
Memory

Private
Memory

Processing
Element

...

Private
Memory

Processing
Element

Compute	Unit

Local	Memory

Global	Memory

...

Constant	Memory
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host processor and device as well as kernel executions, occur by submitting commands
to a command queue data structure. A command queue is mapped to a specific device.
Kernel invocations are defined over an index space called an NDRange, with a single kernel
invocation being executed for each point in this index space. These kernel instances are
called work-items, which are organized into work-groups. Each processing element executes
a work-item, while each compute unit executes a work-group.

The memory model divides system memory into regions. Global and constant memories
are accessible to both the host and device, while local and private memories are accessible
only to work-groups and work-items respectively.

Finally, OpenCL distinguishes between two possible programming models: data-parallel
and task-parallel. The data-parallel programming model involves kernel instructions operat-
ing concurrently on the elements of a memory object for points in an index space, with one
point for each work-item. This model represents a single instruction multiple data (SIMD)
approach to parallelism. Alternately, the task-parallel programming model uses single work-
item kernels that execute without the need for an index space. In the task-parallel case,
parallelism can be achieved by using vector data types or by enqueuing multiple kernels
for concurrent execution. If supported by the specific OpenCL implementation, OpenCL
extensions may be used via pragmas in kernel source code for device-specific optimizations
such as loop unrolling and pipelining.

An OpenCL implementation is provided by a vendor and consists of both an OpenCL
runtime library and a kernel compiler. The runtime library is an implementation of each
function from the OpenCL C host API. This is provided as a shared object library. The
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kernel compiler is used to generate device-specific kernel binaries from OpenCL C source
code.

OpenCL
Kernel Compiler 

__kernel
void﴾__global int *a,
     __global int *b﴿
{
...
} 

Kernel Source Code

Kernel
Binary

Figure 2.4: OpenCL kernel compilation. Kernel source code is compiled to a device-specific
binary format either offline or during application runtime via the OpenCL host API.

2.2.2 Typical OpenCL Host Application Flow

A typical OpenCL application will perform a number of steps to define kernel tasks, setup
memory buffers, perform data transfers between the host processor and a device and finally
launch kernels to be executed on a device. Host applications primarily interact with OpenCL
devices via command queue objects. The application submits commands to device-specific
queues to manage data within host and device memory and to launch kernels. The act of
submitting a command generates an event object, which may be used to synchronize subse-
quent commands via an event wait list. Using events in this manner allows the programmer
to specify dependencies between commands. Figure 2.5 outlines the primary actions taken
by an OpenCL host application during its execution. These steps are as follows:

1. Query the system for OpenCL platforms. The OpenCL standard allows multiple plat-
forms (OpenCL vendor implementations) to co-exist on a system. The host API pro-
vides functions to query the system for the available platforms and discover their
capabilities.

2. Query the selected platform for available devices. Once a platform has been selected,
the application will query the platform for a list of available compute devices. The
application may also check device properties.

3. Setup a context for the selected device(s). An OpenCL context includes one or more
devices and encapsulates other OpenCL objects: command queues, memory buffers,
programs and kernels. These objects cannot be shared between contexts.

4. Create a command queue. In order to launch kernels on a device, a command queue
must be created. Command queue objects are specific to a single device and context.

5. Setup memory objects. OpenCL buffers are specified as one-dimensional collections
of elements and are used to specify input and output arguments to kernels. Buffer
objects are specific to a context.
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6. Create and build program objects. An OpenCL program object consists of a set of
kernels, which are functions written in OpenCL C source code and identified with
the __kernel attribute. Program objects may be created from either (a) OpenCL C
source code by using the vendor-supplied kernel compiler at application runtime or
(b) from a prebuilt binary image generated prior to execution.

7. Create kernel objects. A kernel object encapsulates a specific __kernel function that
exists within a program object along with the argument values to be used during
execution.

8. Set kernel arguments. Memory objects and plain data types are passed as arguments
to a kernel function using the clSetKernelArgument function.

9. Perform data movement. Operations on memory buffers to move data between host
and device memory are specified by submitting commands to the command queue.

The OpenCL host API defines a number of command-enqueuing functions for per-
forming different memory operations. As with all command-enqueuing functions, the
application can use event objects to specify dependencies between commands.

10. Execute kernels. Kernels are executed by calling the clEnqueueNDRangeKernel func-
tion and specifying a device command queue and a kernel object. This function also
requires the specification of an N-dimensional index space (NDRange) on which to
operate.

An NDRange is used to divide a kernel invocation into instances called work-items
that are organized into work-groups. The OpenCL execution model views a device as
being made up of one or more compute units, each containing one or more processing
elements. Each compute unit of a device executes a work-group and each processing
element within the compute unit executes a single work-item.

The source code for an example host application and corresponding kernel function is pro-
vided in Appendix A for reference.

2.2.3 OpenCL FPGA Implementations

FPGAs are fundamentally different from the more typical CPU and GPU OpenCL device
types since their underlying architecture allows for the realization of custom hardware to
implement kernel functions. Since kernel compilation for FPGAs involves the synthesis of
kernel cores and bitstream generation, compilation times are orders of magnitude longer
than for a CPU or GPU. Therefore, offline compilation must be used to create kernel binaries
rather than performing compilation during application runtime. Furthermore, the OpenCL
data-parallel programming model, while well suited for massively parallel devices such as
GPUs, does not necessarily map well to FPGA hardware [10]. Instead, performance gains
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on FPGA hardware are typically achieved through HLS-specific optimization techniques
such as array partitioning, loop unrolling and pipelining [11] [12]. For this reason, kernels
are usually written to use only a single work-item, therefore following the task-parallel
programming model [13].

2.3 Amdahl’s Law

Amdahl’s Law [14] is commonly used to estimate the potential speedup for parallel pro-
grams. However, it can also be used to determine the theoretical speedup for serial programs,
where some portion of the program can be optimized or accelerated. With this formulation,
the equation for program speedup is given in Equation 2.1.

Speedup = 1
(1− p) + p

s

(2.1)

The theoretical speedup of the entire program is a function of p, the proportion of the
original execution time that benefits from acceleration and s, the speedup of the accelerated
portion.

2.4 Related Work

In this section, we discuss background and related work from academia, industry and the
open source software community.

2.4.1 POCL

Portable Computing Language (POCL) [8] is an open source implementation of the OpenCL
standard, providing a portable OpenCL runtime library implementation and a kernel com-
piler. The POCL kernel compiler utilizes Clang [15] as a front end for OpenCL C code
and LLVM [16] for optimization and code generation to binary formats for different device
targets. One of the goals of the POCL project is to make it easy to add support for new de-
vices. This is made possible by having their implementation of the OpenCL runtime library
make calls to an intermediary device support API. POCL provides an implementation of
this device API for a generic pthread CPU target that maps kernel work-items to Portable
Operating System Interface (POSIX) threads. Furthermore, the LLVM-based compiler back
end for the pthread device supports both online and offline use, as POCL defines a custom
binary format for CPU kernels containing object code and kernel metadata. This allows
POCL to be used on embedded platforms, which may not be able to host the complete
kernel compiler.
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2.4.2 FUSE

This work is based on the Front-end USEr framework (FUSE) architecture [4]. FUSE is
a framework for abstracting the use of FPGA hardware accelerators. The concept of the
FUSE architecture is to allow computation tasks to be executed either as software on a CPU
or using an FPGA hardware accelerator, without an explicit choice being specified in the
application source code. The decision on where to execute a computation task is made during
application runtime by the FUSE scheduling policy and carried out by the mechanisms of
the FUSE library. This architecture abstracts the use of hardware accelerators from the
application programmer.

The implementation of the FUSE system uses the POSIX thread (pthread) library as the
underlying model for describing computations. The programmer defines pthread functions to
be used for CPU execution. Hardware accelerators providing the same functionality as their
software counterparts are also required, along with a driver implemented as a Linux kernel
module. A kernel table that maps thread functions to equivalent hardware accelerators is
used by the FUSE scheduler when deciding where to execute a computation task.

A task is scheduled for execution by calling the FUSE library thread_create function.
An overview of the implementation of the thread_create function is shown in Figure 2.6.
The implementation is as follows. If a matching hardware accelerator is found and is not
in use, FUSE loads the Linux kernel module driver for that accelerator (if necessary) and
launches the task on the accelerator. Otherwise, the task is scheduled for execution on the
CPU by spawning the matching software thread with a call to pthread_create.

thread_create()

SW/HW Mapping Policy  

create_context()

destroy_context()

init_context()

run_context()

yes

no

HA match?

yes

noHA in use? 

yes

no
LKM

Loaded? 

Load LKM

pthread_create(SW)

pthread_exit()

pthread_create(HW)

HA = Hardware Accelerator
LKM = Linux Kernel Module

 
 

Figure 2.6: FUSE thread creation and scheduling. Adapted from [4].
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Some limitations of the FUSE system implementation include the following:

• The target platform is an FPGA development board with a single-core soft processor
and accelerators implemented in the FPGA fabric.

• There is no integration with HLS tools. Therefore, there is no means to generate
hardware accelerators from software functions.

• Each hardware accelerator requires the development of a custom driver, implemented
as a Linux kernel module.

• There is no support for accelerators to use direct memory access (DMA) operations.
Data is transferred to accelerators using register accesses via the driver ioctl or mmap

functions.

2.4.3 Task Scheduling in Heterogeneous Systems

Scheduling computation tasks onto the resources available within a heterogeneous system
is a widely studied research area. Here we focus our discussion on prior work that utilizes
OpenCL and OpenCL-like models.

Taylor et al. [17] develop a method for mapping kernels onto the ARM big.LITTLE mo-
bile platform, a heterogeneous multicore architecture that combines small power efficient
cores with larger high performance cores. They use an offline model, trained on OpenCL
kernel features, that selects which processor and clock frequency to use for each kernel
invocation. Their model performs a trade-off between kernel runtime and power consump-
tion. The approach relies on a just-in-time (JIT) compilation of unseen kernels as they are
submitted for execution.

Perina and Bonato [18] extract features from OpenCL code and use a machine learning
framework to statically decide between GPU and FPGA accelerators based on estimated
energy consumption. They use generic OpenCL kernel benchmarks without FPGA specific
optimizations.

MultiCL [19] augments the OpenCL context and command queue objects with schedul-
ing properties. These are used as hints to a runtime system that manages a pool of all
device command queues. Their scheduler utilizes device and kernel profiling techniques that
are possible only on devices that support online kernel compilation such as GPUs. Further,
they restrict the scope of scheduling to kernels within a single application.

A number of related works extend the scope of kernel scheduling to multiple OpenCL
applications. Wen et al. [20] use potential speedup as a heuristic for scheduling kernels from
multiple applications onto a CPU or GPU. They use machine learning to train a predictor of
performance speedup using features extracted from a static kernel code analysis. Their goal
is to optimize throughput and application turnaround time. Unlike some other related work,
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they do not split up kernel tasks, which they define as kernel executions plus associated
data transfer.

Conversely, FluidiCL [21] splits kernel executions at the work-group level and enables
cooperative kernel execution by CPU and GPU. It manages the extra data transfers to
devices automatically and merges the partial results computed by each device. Unlike the
work of Wen et al. it does not require an offline training step.

HeteroPDP [22] predicts performance degradation due to memory contention of co-
located OpenCL and system applications. The model is based on regressions of performance
characterization data and is capable of selecting between CPU and GPU execution within
a single platform.

2.4.4 Resource Managers for Clusters and Distributed Systems

A number of previous research projects have looked at enabling OpenCL for use in dis-
tributed systems, but only for clusters featuring GPUs. SnuCL [23] makes OpenCL de-
vices on remote nodes available to the local OpenCL context and automatically manages
data movement between nodes. However, the programmer must still manually determine
the target for each kernel. Similarly, Hybrid OpenCL [24], dOpenCL [25] and Distributed
OpenCL [26] all share in common the need to use separate buffers for each device and
manually map kernels to devices.

Conversely, DistCL [27] abstracts the locality of the remote GPUs as well, treating all
the cluster GPUs as a single device. The DistCL runtime requires that the programmer
write kernel meta-functions that specify the memory access patterns of each kernel. These
meta-functions are used to determine how kernel executions should be split and to assign
work-items to devices while minimizing remote data transfers.

CloudCL [28] utilizes dOpenCL, and therefore also requires manual splitting of kernels,
but adds a two-tier scheduler to maintain fairness among multiple executing kernels. The
first tier schedules kernels without knowledge of the cluster or the kernel splitting and the
second schedules to specific GPU devices using a policy based on recorded kernel perfor-
mance history.

These distributed OpenCL works (SnuCL, Hybrid OpenCL, dOpenCL, Distributed
OpenCL, DistCL and CloudCL) solve a related but distinctly different problem to ours.
All of these works make remote devices available to a single OpenCL host application and
split kernel tasks among the available devices. We do not split kernel tasks among devices,
as we schedule kernels from multiple applications that execute concurrently. Furthermore,
we provide an abstraction of the execution target type, by automatically selecting between
a CPU or FPGA hardware accelerator at runtime.

The libwater [29] project also aims to ease development for heterogeneous clusters fea-
turing GPUs. It provides a simplified library wrapper over the OpenCL host API and
implements a device query language for selecting targets among the many potentially avail-
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able within a cluster. Notably, the libwater runtime builds a directed acyclic graph (DAG)
of commands as they are submitted, based on the dependencies between commands that
are specified using event objects. In their initial work, the DAG is used to recognize indi-
vidual point-to-point communications between nodes, so that they may be replaced with
more efficient collective operations. Similarly to our work, kernels are not split over multi-
ple devices. However, our framework abstracts execution targets for kernels as the runtime
provides automatic device selection. With libwater, selecting an execution target for each
kernel must be performed manually using the provided device query language.

In addition to the distributed OpenCL works, are a variety of commercial and open
source cluster resource managers including TORQUE [30] and SLURM [31]. These resource
managers are designed to enable batch processing of applications on large clusters. SLURM
allocates cluster resources to user applications, provides a means for starting and monitoring
work on these compute resources and also manages contention for shared resources using a
work queue. The fundamental resource that can be allocated by SLURM is a compute node.
Our work takes a more fine-grained approach to application task scheduling. Application
kernels are individually scheduled as they are submitted for execution, instead of allocating
cluster resources to an application for fixed time periods.

2.4.5 FPGAs in the Data Centre

As mentioned in the introduction, the integration of FPGA hardware into data centre
environments is an area of active research by both academia and industry. Here we outline
a subset of previous work addressing the challenges of using FPGAs at data centre scale.

One of the first major deployments of reconfigurable hardware into a data centre was
by Microsoft with the Catapult project [1]. The architecture consists of custom FPGA
daughtercards attached to server systems with PCIe. Notably, these FPGA cards are directly
connected to each other via a secondary 10 Gbit network, configured in a two-dimensional
torus. The authors describe a thread-safe low latency communication interface between the
CPU and local FPGA. Their method avoids system call overhead for data transfers by
mapping user pages and supports concurrent buffer accesses by dividing buffers into slots
and statically assigning slots to threads. We employ a similar memory mapping scheme
in our DMA buffer implementation. Furthermore, we note the use of a Gigabit Ethernet
network in our work is a limitation we seek to improve in future work.

The follow-up work to Catapult, the Configurable Cloud Architecture [3], removes the
need for a secondary network by placing FPGA fabric between network switches and servers.
This tightly couples accelerator hardware to the data centre network allowing for the ac-
celeration of network functions such as encryption. The Configurable Cloud uses a global
resource manager that tracks FPGA resources which is similar to our approach. However,
we also track CPU availability, as our framework schedules kernel tasks to both CPU and
FPGA devices.
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Several academic works have investigated methods for integrating FPGAs with big data
frameworks including Apache Spark. Since Apache Spark is hosted on the Java Virtual
Machine (JVM), access to FPGA accelerators must occur over the Java Native Interface
(JNI), which can involve significant overhead.

Chen et al. [32] explore the use of fine-grained accelerators within Apache Spark. These
are accelerators where the execution time is short, but where the application requires many
iterations. They use a DNA sequencing accelerator that exhibits this fine-grained behaviour
and present a method for batching groups of tasks when offloading to the FPGA to minimize
the JNI-FPGA data transfer overhead.

Ghasemi and Chow [33] also investigate integrating FPGA accelerators with Apache
Spark. Notably, their integration method provides direct access to shared memory to limit
the number of JNI-FPGA transfers. This enables the efficient transfer of large buffers,
therefore limiting data transfer overheads.

Blaze [34] exemplifies a more general approach for integrating with big data frameworks
by exposing FPGA accelerators as a service (FaaS). It provides APIs allowing big data pro-
cessing applications to leverage FPGA accelerators and is demonstrated with Apache Spark.
Blaze also extends the Hadoop YARN job scheduler to use accelerator-centric scheduling,
allowing for multiple applications to share the use of accelerators. In the initial proof of
concept, kernel tasks are only scheduled to FPGA accelerators, though the authors mention
CPU and FPGA co-working as an improvement for future work.

Tarafdar et al. [35] present a cluster provisioning tool that provides client users a simple
means to map streaming kernel functions to hardware accelerators spread across multiple
FPGAs. Users of the framework describe a logical configuration and the communication
between kernels in an application. Using this information, the framework allocates FPGA
resources from within the cluster.

Eskandari et al. [36] introduce Galapagos, a modular hardware deployment stack for
deploying FPGA accelerators in a heterogeneous data centre. This stack consists of com-
munication, network/middleware, hypervisor and physical hardware layers. They provide
a communication layer implementation called HUMboldt that utilizes HLS, allowing for
applications that link against it to be portable between CPUs and FPGAs. We view the
work of HUMboldt as complementary to ours, in that it seeks to provide means for enabling
portability of applications between CPUs and FPGAs.

2.4.6 OpenCL for FPGAs

Both the major FPGA vendors, Xilinx and Intel, provide OpenCL platform support for
their devices via dedicated software tools: Xilinx SDAccel [5] and Intel OpenCL SDK for
FPGAs [6], respectively. SDAccel targets PCIe attached FPGA cards on x86 platforms and
uses an HLS back-end to generate accelerator cores to implement kernel functions using
FPGA resources. A unique feature of SDAccel is that it allows kernel sources to be written
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in C, C++ and OpenCL C or allows accelerators to be described directly in RTL, bypassing
the HLS step [37]. Both FPGA vendor OpenCL implementations add some non-standard
extensions, enabled via source code pragmas and new OpenCL host API functions. These
enable further optimizations for the generated hardware but limit the portability of kernel
sources between vendors.

In addition to the FPGA vendor OpenCL implementations, are several academic works
exploring how best to support OpenCL on FPGAs. Both OpenRCL [38] and the work of
Ma et al. [39] execute OpenCL kernel functions using soft processor cores on FPGAs, rather
than using custom accelerators as in our approach. While the works of both Shagrithaya [40]
and Hosseinabady [41] map kernel functions to accelerators generated by HLS, they require
an initial source-to-source translation on the OpenCL C code. We avoid the need for source-
to-source translations by using a more recent version of Xilinx Vivado HLS that natively
supports OpenCL C as a source language. We use a similar integration of the hardware
accelerators with the host CPU in our prototype platform to that of Hosseinabady, as
they also target a Zynq device. UT-OCL [42] implements OpenCL for an embedded FPGA
platform using a MicroBlaze soft processor as the host CPU with hardware accelerators also
implemented in FPGA fabric. Communication between the host and the device subsystem
is via a streaming interconnect.
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Chapter 3

The CFUSE Framework

The main contribution of this thesis is the introduction of the Cluster Front-end USEr
framework (CFUSE). CFUSE is a framework that allows kernels from multiple applications
to be executed on the hardware resources available within a network cluster. The scheduling
of kernels is handled dynamically as each kernel is submitted for execution by individual
client applications. In this chapter, we provide a high-level design overview of the CFUSE
framework. A more in-depth discussion of the prototype implementation is left for Chapter 4.

3.1 Background

The objective of our work is to develop an abstraction over the possible execution targets
within a network cluster. As multiple applications queue work for execution, our abstraction
must choose an execution target from the set of possible devices within the cluster. For the
purposes of this work, we have chosen to use a cluster with heterogeneous nodes containing
a central processing unit (CPU) and field-programmable gate array (FPGA) fabric, used to
host custom hardware accelerator cores. While we could also investigate the use of graphics
processing units (GPUs) in the cluster, we have restricted our scope to CPU and FPGA
devices only.

To realize our abstraction model, which we name CFUSE, we seek to utilize a lower-level
programming framework with the ability to specify application tasks and submit them for
execution. For this purpose, we have chosen to create CFUSE using the OpenCL frame-
work [9]. OpenCL kernels are application functions that are marked for acceleration and
may be written in OpenCL C, a portable parallel programming language. OpenCL also
defines a runtime application programming interface (API) used to submit kernels for exe-
cution on devices. However, there are several OpenCL limitations that we must overcome
to make it suitable for use with our abstraction.

The OpenCL specification defines a platform model consisting of a host processor at-
tached to one or more devices. The host processor runs the application code and manages
the launching of kernels that are executed exclusively on devices. For a typical FPGA
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OpenCL implementation, the host processor is the system CPU, while a device is a region
of the FPGA fabric. Modern cluster system CPUs are generally multi-core processors, but
since the system processor acts as the OpenCL host, these cores are not available to run
application kernels. Furthermore, OpenCL restricts its platform model to a single network
node and there is no method available for distributing kernel executions onto other nodes
within a cluster. Finally, OpenCL is a low-level framework. The application programmer is
responsible for managing device work queues and moving program data between the host
processor and devices.

3.2 Execution Model
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Figure 3.1: OpenCL and CFUSE execution models. OpenCL requires a command queue per
device. CFUSE abstracts the use of a specific device using a global command queue.

CFUSE is designed to follow the OpenCL execution model, whereby applications specify
kernel functions for accelerated execution on capable hardware devices. As with OpenCL,
in the CFUSE framework, kernel functions are executed by submitting commands to a
command queue. However, instead of selecting the target device explicitly by submitting
to a device-specific queue, the CFUSE model uses a shared queue for all devices. In this
way, CFUSE adapts the OpenCL execution model to the concept of the Front-end USEr
framework (FUSE) [4], where the runtime system is responsible for choosing a suitable
target device. The mapping of kernels onto specific devices is abstracted from the application
developer.

CFUSE can be viewed as an extension of the original FUSE work for cluster systems,
which has re-targeted the underlying execution model from pthreads to OpenCL. While
the initial FUSE implementation managed CPU and FPGA-based hardware accelerators
within a single network host for a single application, CFUSE provides multiple applications
a means to execute kernels on these device types, both on the local host and remote nodes
within a cluster.
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3.3 Overview

The runtime of the CFUSE framework consists of the following components:

• proxy
• kernel scheduler
• resource manager
• request handler
• runtime library
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Figure 3.2: CFUSE runtime system overview

Figure 3.2 shows the interaction between these framework components and the basic
process by which kernels are mapped to the compute resources. To summarize, a runtime
library provides client applications with an interface to the facilities of the CFUSE runtime
by exporting an object-oriented API. The main object provided by this library is a command
queue, which client applications use to submit kernel requests for execution by the runtime.
The proxy collects requests sent to these queues and forwards them to an appropriate worker
node, where they are serviced by a request handler. The kernel scheduler is responsible
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for selecting the most suitable target device for each request. To make this decision, the
scheduler consults the current status of the possible target devices in the cluster. This status
information is maintained by the resource manager.

A request handler running on a worker node is responsible for managing the devices on
that node. The handler executes kernel requests as they are received and sends a response
containing kernel output data back to the proxy. This response may be used to update the
resource manager. Finally, the proxy forwards this response back to the client application
which initiated the request.

3.4 Component Details

In the following subsections, we describe the function of each of the components of the
CFUSE framework runtime in more detail.

3.4.1 Proxy

The primary role of the proxy is to enable communication between client applications and
the request handlers operating on each worker node. At system startup, the proxy establishes
connections to each request handler and creates an endpoint that client applications use
to establish connections to the proxy. Client applications submit kernel requests, which
are sent to the proxy via these connections. The proxy then forwards these requests to
an appropriate worker, as determined by the scheduler. The proxy is also responsible for
forwarding kernel responses, which consist of kernel output argument data, back to the
correct client application.

3.4.2 Resource Manager

The resource manager is responsible for tracking the availability of all the possible execution
devices in the cluster. For each network node, this includes the CPU device and any hardware
accelerators that are currently configured in the FPGA fabric of that node. This device
status information is maintained globally within the resource manager and made available
to the kernel scheduler. Device status is initialized at system startup and then updated both
when a kernel request is scheduled or a response is received.

A primary design choice for the resource manager is between a centralized or distributed
design. For our implementation, we have elected to use a centralized resource manager
hosted on a single network node. Therefore, the resource manager has a global view of the
device status for each node in the cluster. However, maintaining status information with
this approach is more expensive. Status updates take longer to complete since they must
propagate through the network.
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3.4.3 Kernel Scheduler

The role of the kernel scheduler is to select a target device, either CPU or accelerator, for
each kernel request received by the proxy. To do so, the scheduler uses kernel metadata
stored within the request. This includes information such as the kernel function name used
to find matching hardware accelerators, and the size of the kernel argument data that must
be transferred. The scheduler uses this kernel metadata combined with the current device
status information from the resource manager to make a scheduling decision based on a
specific scheduling policy. The scheduler then adds the selected target device to the header
of the request and informs the proxy of which node the request should be forwarded to for
handling.

3.4.4 Request Handler

A request handler running on a worker node manages access to the devices on that node.
The request handler receives requests from the proxy, reads the execution target from the
request header and signals the target device to execute the kernel. Once a kernel request
is completed by the handler, a response is sent back to the proxy to be forwarded to the
user application that originally sent the request. The request handler is also responsible for
managing a database of compiled kernel binaries for the CPU targets, and a database of
FPGA configurations containing accelerators. These databases are specific to each worker
node.

3.4.5 Runtime Library

The runtime library provides an object-oriented interface to the CFUSE framework for
individual client applications. The main purpose of the library is to hide implementation
details related to how the remaining components of the CFUSE framework interact to
execute kernels on behalf of an application.

The API provided is designed as a light abstraction over the OpenCL execution model.
User applications link against the runtime library which provides objects allowing for the
specification of kernels, memory buffers to be passed as kernel arguments, and a command
queue to which kernel requests are submitted for execution. This command queue is not
associated with a specific device, as is the case with the OpenCL host API command queue.
As previously mentioned, this allows the CFUSE runtime to select the most appropriate
target device for kernel requests as they are received.
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Chapter 4

CFUSE Prototype Implementation

This chapter discusses the prototype implementation of the CFUSE framework including the
platform hardware and the software we developed. We present the implementation details
beginning with a discussion of our cluster hardware and the accelerators used to implement
kernel functions. We then describe the design of the various software components that make
up the CFUSE framework, including the device drivers, system daemons and the runtime
library for client applications. Finally, we provide an overview of the automation tool flow
used to both simplify the creation of field-programmable gate array (FPGA) configurations,
and to build the embedded Linux operating system (OS) that runs on each board.

4.1 Cluster Hardware

In order to have full control over the hardware interfaces and software stack used in the
prototype, we opt not to use a public cloud such as a set of Amazon Web Services (AWS)
Elastic Compute Cloud (EC2) F1 instances [2]. Instead, we use a custom-built cluster. Our
target system for the prototype is a cluster consisting of four FPGA development boards
that each contain a multi-core CPU and reconfigurable FPGA fabric. These boards are
connected over a Gigabit Ethernet network formed by directly connecting each board to an
Ethernet switch. Figure 4.1 shows a photograph of the prototype cluster system.

We have selected the Xilinx ZC706 Evaluation Kit [43] for the FPGA development
boards in the cluster. The ZC706 board features a Xilinx Zynq-7000 XC7045 All Pro-
grammable system-on-chip (SoC) [44], which integrates a dual-core ARM processor system
with FPGA fabric. These boards also feature a Gigabit Ethernet network interface, which
is used to connect each board to a 8-port switch, forming the cluster network. We use a
TP-Link TL-SG108 [45] for the network switch, which is an off-the-shelf unmanaged Gi-
gabit switch. This switch offers a switching capacity of 16 Gbps with theoretically equal
throughput for each port.
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Figure 4.1: The target platform cluster for the CFUSE prototype implementation. Four
Xilinx ZC706 FPGA development boards are connected to a TP-Link TL-SG108 8-port
Gigabit Ethernet switch.
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Figure 4.2: Zynq-7000 device block diagram. Adapted from [44].

27



4.1.1 Zynq-7000 System-on-Chip

A simplified block diagram of the Xilinx Zynq-7000 family of devices is shown in Figure 4.2.
The Zynq device is divided into the Processing System (PS) and Programmable Logic (PL)
regions. The Processing System contains the ARM multiprocessor system-on-chip (MP-
SoC), which includes the Application Processor Unit (APU), memory interfaces to off-chip
memory, and I/O peripheral cores. The Programmable Logic contains the FPGA fabric
and reconfiguration hardware. For the prototype, we configure the processors to use a clock
speed of 667 MHz and the logic in the PL uses a common 100 MHz clock. We selected this
fabric clock speed as it is a reasonable frequency target for the accelerator cores of our
benchmark applications.

The Application Processor Unit includes two ARM Cortex-A9 processors which feature
32 KB L1 instruction and data caches, a floating-point unit (FPU) and a NEON single
instruction multiple data (SIMD) media engine. The APU also contains a unified 512 KB
L2 cache and Snoop Control Unit (SCU), which manages processor cache coherency and
enables coherent access to the L2 cache from the PL via the Accelerator Coherency Port
(ACP).

The Zynq device uses hardware interfaces following the Advanced eXtensible Interface
(AXI) protocol throughout. The AXI protocol is a bus architecture that defines three related
interfaces [46]. Memory-mapped AXI is a high performance interface supporting variable
sized burst transfers and interface data widths ranging from 8 to 1024 bits. AXI Lite is a
simplified version of the full AXI protocol without burst transfer support and is intended
for low throughput applications. AXI Stream is a point to point streaming protocol without
address channels.

Three sets of AXI interfaces enable communication across the PS-PL boundary: four
High Performance (HP) ports, four General Purpose (GP) ports and one Accelerator Co-
herency Port (ACP). Each of these interfaces is intended for a particular use case. The
High Performance ports provide high bandwidth access from the Programmable Logic to
external DDR memory. The General Purpose ports are meant for register style accesses be-
tween the Processing System and Programmable Logic. Finally, the Accelerator Coherency
Port provides low latency, coherent access to the APU L2 cache from the Programmable
Logic. A set of PS-PL interrupts are also available, allowing for custom hardware in the
Programmable Logic to use interrupt-driven I/O. In the following section, we describe how
we use these PS-PL interfaces to integrate custom hardware accelerators.

4.2 Hardware Accelerators

In the CFUSE framework, custom hardware accelerators are used to implement kernel
functions in hardware. For the prototype, these are instantiated in the Programmable Logic
of the Zynq device and connected to the Processing System, as shown in Figure 4.3. CFUSE
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utilizes high-level synthesis (HLS) to produce synthesizeable HDL (hardware description
language) code from kernel function source code written in either C++ or OpenCL C. We
use the Xilinx Vivado HLS 2016.4 tool to perform this conversion [7]. Vivado HLS is capable
of generating hardware Intellectual Property (IP) cores with a variety of different hardware
interfaces both for controlling the IP core and transferring data to and from the core. While
the design of each individual interface is fixed and specified by Vivado HLS, the specific
interfaces to use for a given accelerator may be customized.
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Figure 4.3: CFUSE hardware accelerator architecture

We choose to use a common interface for all the hardware accelerators we generate
for the prototype. A common interface allows a single OS device driver to control each
accelerator instance from software. This accelerator interface consists of the following:

• An AXI Lite slave for register based control (s_axi_control) that connects to a
General Purpose port.
• A memory-mapped AXI master interface (m_axi_gmem) that connects to the Acceler-

ator Coherency Port.
• An interrupt request output (IRQ).

The memory-mapped AXI master interface carries kernel argument data for kernel function
parameters that are of pass-by-reference (pointer and array) type. The AXI Lite slave is used
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to access accelerator registers. These registers are used to control the accelerator operation,
to transfer pass-by-value kernel arguments, and to allow software to specify direct memory
access (DMA) buffer addresses for each pass-by-reference kernel argument. The accelerator
control interface contains the following registers:

• Control Register
• Status Register
• Interrupt Enable Register
• Interrupt Status Register
• an Address Register for each pass-by-reference kernel function argument
• a Value Register for each pass-by-value kernel function argument

The primary design choice for integrating our hardware accelerators within the Zynq
device is deciding which PS-PL interface the memory-mapped AXI interface should be
connected to. For the prototype implementation, we chose to use the ACP to provide accel-
erators coherent access to the CPU L2 cache. This choice was motivated by the benchmark
applications we used, which generally utilized smaller data sets. We note that depending on
the memory access patterns of specific kernels, connection to one of the High Performance
ports may offer better performance.

4.2.1 Accelerator Operation

The basic process for using a hardware accelerator to execute a kernel function is as follows:

1. Allocate DMA buffers for pass-by-reference arguments. For input arguments, initialize
the corresponding DMA buffer(s) with argument data.

2. Write kernel arguments.

(a) For pass-by-reference arguments, write the physical address of the DMA buffer
containing argument data to the Address Register for that argument.

(b) For pass-by-value arguments, write the argument value directly to the Value
Register for that argument.

3. Enable interrupts for the accelerator by writing to the Interrupt Enable Register.

4. Start the accelerator by writing to the Control Register. During operation the accel-
erator will perform DMA transfers to and from the buffers specified, interleaved with
computation.

5. Wait for an interrupt from the accelerator. Once the accelerator has completed its
operation, it raises an interrupt.

6. Clear the interrupt by writing to the Interrupt Status Register.

7. Output argument data is now available in the corresponding DMA buffer(s).
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4.3 Software Runtime Components

Figure 4.4 provides a hierarchical view of the software components that make up the CFUSE
runtime prototype implementation. The runtime consists of two Linux loadable kernel mod-
ules (LKMs) that implement the accelerator device driver and DMA support respectively,
as well as two system daemons and a shared object library. In the following subsections, we
describe our design and implementation for each of these software components and their
role within the CFUSE framework.

4.3.1 Hardware Accelerator Device Driver

The Linux device driver for CFUSE hardware accelerators is used to control accelerator
hardware from software and exposes accelerators as Linux character devices. Each accelera-
tor instance has an associated filesystem node, which application software uses as a handle
to the accelerator. The device driver implements two system calls that are exported via
the filesystem node: mmap and a custom ioctl operation. The driver mmap implementation
memory maps the accelerator control register interface. This allows higher-level software
to set accelerator arguments by writing to the accelerator Address Registers and Value
Registers accordingly.

This memory-mapped register interface cannot be used to directly access the accelerator
Control Register and start the accelerator. As mentioned in Section 4.2.1, accelerators use
interrupts to signal that they have completed their operation. However, interrupt handling
from software must occur within OS kernel-space. For this reason, the driver also exports
a blocking ioctl function, which starts the accelerator and blocks the calling thread until
accelerator completion is signalled by an interrupt. An interrupt handler implemented within
the driver, acknowledges the interrupt, clears the interrupt bit and unblocks the calling
thread.

4.3.2 DMA Buffer Module

As mentioned in Section 4.2, the HLS-generated accelerators use DMA buffers to transfer
pass-by-value argument data. The Zynq platform lacks an I/O memory management unit
(IOMMU) for translating user-space virtual addresses into physical bus addresses for use by
accelerator hardware. Therefore, accelerator DMA buffers must be physically contiguous.
On a Linux platform, physically contiguous buffers may only be allocated by the OS. To
provide user-space with a means to allocate physically contiguous DMA buffers via the OS,
we implemented the DMA Buffer Module as an LKM. This module creates a single Linux
character device and implements the mmap system call. The implementation of this mmap

allocates a contiguous buffer of the specified size and memory maps the buffer into the
address space of the calling process.
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We make use of the Linux Contiguous Memory Allocator (CMA) capability to allocate
these buffers. The CMA system works by reserving a fixed-size block of physically contiguous
OS memory during system boot-up. The CMA allocator then uses this memory region at
runtime to satisfy memory allocation requests from other OS components. In the prototype
implementation, we have configured the CMA system to reserve 10 % of the 1 GB system
memory, for a total of 102.4 MB.

4.3.3 CFUSE Daemons

Our prototype implementation contains two system daemons (master and worker) that
implement the primary runtime components introduced in Chapter 3. The master daemon
(cfused-master), runs on a single designated master node within the cluster. A worker
daemon (cfused-worker) is started on each designated worker node. We distinguish between
local and remote workers. The local worker refers to the worker daemon that runs on the
same network node as the master daemon, while remote workers run on remote nodes.

cfused-master

The role of the master daemon is to receive kernel execution requests from user applications,
choose a target device (either CPU or hardware accelerator) on a specific worker node and
forward the request there. Once a kernel request is completed on a worker, the master
forwards the response containing kernel output data, back to the user application that
originated the request.

To manage forwarding between user applications and workers, the master daemon es-
tablishes connections to each worker node when the cluster is brought online. Similarly, to
allow connections from user applications, the master sets up a local communication end-
point during initialization. For the prototype system, user applications are started on the
same node on which the master daemon runs. This allows the master to use a UNIX domain
socket for the communication endpoint to user applications. Kernel requests from multiple
applications are received by the master using this socket in a first-come, first-served fashion.

To select a suitable target for a kernel request, the master contains a scheduler and a
resource manager. The resource manager maintains a global view of the status of the CPU
and accelerator devices within the cluster. This status information is used by a specific
scheduler policy. We have made an effort to make it easy to introduce additional scheduling
policies within the CFUSE framework. The resource manager updates status information
when kernel requests are scheduled and when responses are received.

Different scheduling policies may require access to different types of information from the
resource manager. Therefore, in our prototype the scheduling policy and resource manager
are tightly coupled, allowing each policy to customize the data structures that store resource
status information. This allows for status information to be efficiently retrieved and updated,
given the specific requirements for each policy.
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cfused-worker

As mentioned, a worker daemon runs on each worker node. In our prototype cluster imple-
mentation, we also run an instance of the worker daemon on the same node as the master.
This is known as the local worker. The primary purpose of the worker is to manage the
devices available locally on a node and execute kernels as they are received. On startup, the
worker daemon initializes the local FPGA with a bitstream configuration that is statically
assigned to each worker as part of the cluster configuration. Although we do not have a
scheduler policy that utilizes runtime reconfiguration in the current prototype, we have im-
plemented the required FPGA management infrastructure to support it in the future. The
worker daemon then waits for a connection to be established with the master daemon. As
kernel requests are received by the worker, they are passed on to the appropriate device as
indicated in the header of the request.

Kernel requests bound for the CPU are executed using the Portable Computing Lan-
guage (POCL) OpenCL implementation [8]. As mentioned in Section 2.4.1, POCL provides
a kernel compiler based on Clang and LLVM that produces object code for CPU targets and
maps kernel work-items to threads. As our prototype hardware platform is an embedded
system, we choose to pre-compile sets of kernels offline rather than use the online compila-
tion capability of the OpenCL host application programming interface (API). We store the
sets of kernel program binaries in a database, so that they may be loaded as required. To
reduce the latency of kernel executions on the CPU, we also cache kernel objects as they
are created from these binaries.

Daemon Communication

Communication between master and worker daemons occurs over the Gigabit Ethernet net-
work and involves the use of the TCP/IP stack on the processor via socket connections.
We initially evaluated the use of Message Passing Interface (MPI), (specifically the Open-
MPI implementation), for enabling communication between master and worker daemons.
However, OpenMPI implements the MPI non-blocking operations using busy waiting. We
found that this busy waiting led to high CPU usage within the daemons while they were
idle, causing starvation of other system processes. Therefore, we decided to implement com-
munication using TCP sockets via the Asio library [47].

Asio is a C++ library that provides an asynchronous programming framework and
abstractions of network and other I/O functionality such as sockets. In Asio, asynchronous
operations, such as reads and writes, are started on a socket by specifying a callback function
known as a completion handler. Submitting an asynchronous operation starts a non-blocking
call on the underlying socket descriptor. Once the operation has completed, Asio schedules
and runs the corresponding completion handler function. Completion handlers may in turn

34



start additional asynchronous operations, leading to a chain of asynchronous operations
being executed.

4.3.4 Runtime Library

The CFUSE runtime library is implemented as a shared object library that user applications
link against to access the functionality of the CFUSE runtime. The library provides an
object-oriented C++ API serving as a light abstraction over the objects available in the
OpenCL host API. We can generally divide the classes exported by the runtime library into
the following categories based on their use: kernel specification, kernel execution and DMA.

Of these objects, the CommandQueue provides the primary method with which a client
application will interface to the rest of the CFUSE runtime system. When a command queue
is created by an application, the runtime library establishes a connection to the previously
created endpoint of the master daemon. When kernels are submitted to the command
queue within the application, the library generates a kernel request message. A kernel
request contains a header with fields describing the kernel function, a range specification
and information about each kernel argument. The payload of the kernel request is variable
in size, as it contains the data for kernel function arguments. Once created the request is
sent to the master daemon for scheduling. On the prototype we launch client applications
on the same node as master, allowing us to use a Unix domain socket for the communication
endpoint between the master daemon and user applications.

4.4 Hardware and Software Build Automation

The final component of the CFUSE framework implementation is a series of scripts and
software build infrastructure that helps automate the process of creating FPGA config-
urations, generating an embedded Linux image for the cluster boards, and compiling the
runtime software components. Our prototype implementation utilizes FPGA configurations,
which we define as containing an FPGA bitstream, an overlay for the Linux device tree and
configuration metadata.

The entry point for creating a configuration is a definition of accelerator metadata,
which is a description of the accelerators to be included in the configuration. This metadata
specifies kernels by their function declaration, including the function name, parameter list
(parameter names and types) and the location of the kernel source code files. We provide a
Python script that wraps the use of various computer-aided design (CAD) tools to create
an FPGA configuration. The wrapper script performs the following steps:

1. Create accelerators from kernel source code. This step involves configuring the Vivado
HLS tool for each kernel and then running HLS to generate an accelerator IP core.
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2. Create a Vivado project. This step involves creating a project for the Xilinx FPGA
CAD tool Vivado. A system containing accelerator cores and the required system
infrastructure is created automatically.

3. Generate a bitstream. This step runs the Vivado tool performing behavioural synthesis,
place and route, and bitstream generation.

4. Create a device tree overlay. Using the configuration metadata and the Linux device
tree compiler, the wrapper script creates a device tree overlay file. This overlay is
applied onto the base Linux device tree when an FPGA configuration is loaded. The
device tree contains hardware information about the accelerators in a configuration
and is read by the accelerator device driver.

The embedded Linux image is generated using Buildroot [48]. Buildroot is a tool used to
simplify setting up a cross compilation toolchain, as well as configuring and cross-compiling
the Linux kernel, an embedded bootloader and packaging various system software into a
root filesystem. For this prototype we use a Linux version 4.6 operating system kernel
provided by Xilinx and a cross compiler toolchain from Linaro with hardware floating-point
capability based on the GNU Compiler Collection (GCC) version 5.3.
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Chapter 5

Experimental Framework
Characterization

This chapter outlines the measurement techniques and experiments used to characterize the
CFUSE prototype implementation. First, we discuss the need for a more accurate interval
timing mechanism on the prototype platform and introduce our cycle counter-based solu-
tion. We then outline the instrumentation method used to record execution times of program
events within the CFUSE daemons. Finally, we discuss the benchmarking methodology used
to determine the characteristics of data transfers as well as the overhead introduced by the
physically contiguous direct memory access (DMA) buffers.

5.1 Low Overhead Interval Timer

To compare the runtime performance of benchmark programs, it is important to use a low-
overhead, monotonic timer to record time intervals. On Linux and other Portable Operating
System Interface (POSIX) platforms, the standard approach is to record start and stop
times by reading values from a high-resolution clock source. The POSIX standard specifies
the clock_gettime function for this purpose, which returns a time value to nanosecond
resolution. However, on the ZC706 platform, this function is implemented using a system
call and therefore includes the overhead of a context switch into the operating system (OS)
kernel mode. Using a simple benchmark program, we determined the overhead of the clock_

gettime call to be approximately 1 µs.
To more accurately measure small time intervals of executing code sections, we imple-

mented a method to read the cycle count from the Global Timer, a 64-bit incrementing
counter that is part of the ARM Cortex-A9 system-on-chip (SoC) [49]. The implementation
consists of a Linux kernel module used to map the Global Timer cycle count registers into
user space. This allows for direct access to these registers from user programs, eliminating
the need for a system call and removing the overhead of the associated context switch.
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5.1.1 Timer Read Procedure

While the Global Timer is a 64-bit counter, the ARM architecture is 32-bit. Therefore, the
procedure for reading a single cycle count involves reading two 32-bit register values that
correspond to the upper and lower 32 bits of the counter. Care must be taken to ensure
that the upper 32 bits do not change during the time it takes to read the lower 32-bit value,
which necessitates a minimum of three register read operations. Listing 5.1 shows the source
code for this read procedure, which includes handling for the case where the upper 32 bits
change during the read of the lower 32 bits.

uint64_t read_cycle_count()
{

uint64_t cycle_count;
uint32_t lower;
uint32_t upper, old_upper;

upper = read_register(GT_UPPER);
do {

old_upper = upper;
lower = read_register(GT_LOWER);
upper = read_register(GT_UPPER);

} while (upper != old_upper);

cycle_count = upper;
cycle_count <<= 32;
cycle_count |= lower;
return cycle_count;

}

Listing 5.1: Global Timer read procedure

To convert the cycle count value read from the Global Timer to a time value in seconds,
it is necessary to multiply by the clock period of the Global Timer clock source. On the
prototype platform, the Global Timer is clocked at half the central processing unit (CPU)
core clock frequency of 667 MHz, which corresponds to a clock period of 3 ns.

5.1.2 Timer Accuracy Characterization

To determine the overhead of recording a time interval using the Global Timer, we used
a benchmark of the form shown in Listing 5.2. The benchmark simply records a start and
stop time using consecutive calls to read_cycle_count and records the intervals into an
array of samples. In doing so, the benchmark simulates the procedure that would be used
to measure a time interval in practice. Therefore, because the benchmark records an empty
time interval, the time recorded will approximate the timer overhead.
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uint64_t start, stop;
uint64_t samples[NUM_SAMPLES];
for (i = 0; i < NUM_SAMPLES; i++) {

start = read_cycle_count();
stop = read_cycle_count();
samples[i] = stop - start;

}

Listing 5.2: Interval timer benchmarking procedure
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Figure 5.1: Histogram of interval timer overhead. Data points are shown as ticks on the
x-axis where the histogram bars would not appear due to the plot scale. Values counts are
shown above each histogram bar.

Table 5.1: Interval timer overhead statistics

time unit mean ± σ (min, max)
clock cycles 26.40± 0.84 (25, 40)
nanoseconds 79.20± 2.53 (75, 120)
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Figure 5.1 shows the histogram of the results from the timer overhead benchmark run
with 10 000 samples. Table 5.1 shows the summary statistics from these benchmark runs in
both clock cycles and scaled by the 3 ns clock period to give time in nanoseconds. Due to
the mechanics of the read procedure outlined in Section 5.1.1, the overhead for recording
a time interval is variable. The time required to read the 64-bit clock cycle count varies
depending on whether the upper 32 bits of the cycle count register changed during either
the call to read the start time, the stop time or during both calls. The results in Figure 5.1
show this spread, but with nearly all the samples in the range of 25 to 28 cycles.

With these results, we can determine the minimum time interval that may be measured
to a given accuracy. For a conservative estimate of this minimum time interval, we use the
maximum overhead value seen of 120 ns. For example, the minimum time interval that may
be measured to within 1% accuracy can be calculated as 120 ns× 100 = 12 µs.

5.2 CFUSE Daemon Instrumentation

For recording the runtime of specific code paths within the CFUSE daemons, we imple-
mented an instrumentation method based on the logging of time interval values. These
time intervals are measured by recording start and stop times using the cycle count based
interval timer described in Section 5.1. These intervals are stored in memory during pro-
gram execution and written to a log file periodically. We instrumented the following program
events from the CFUSE daemons:

• master::read_kernel_request_data – Read kernel input argument data sent from
a client application to master.

• master::schedule – Choose an execution target for a given request.

• worker::read_kernel_request_data – Read kernel input argument data sent to the
worker.

• worker::execute_kernel – Execute a kernel on a device.

• master::read_kernel_response_data – Read kernel output argument data returned
by the worker.

• master::update_scheduler – Update any scheduler bookkeeping data upon receiv-
ing a response.

The set of program events that may be instrumented is somewhat limited by the use of
asynchronous operations within the runtime implementation. As mentioned in Section 4.3.3,
we use the Asio library to perform asynchronous socket reads and writes for communication
between client applications and the master daemon, and between the master and worker
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daemons. Due to the use of completion handler callback functions in Asio, it is only possi-
ble to determine when an asynchronous operation has completed and not when it started
executing. Since measuring the runtime of an event involves recording a cycle count at the
start and end of the event, this restricts our instrumentation to events that don’t use asyn-
chronous operations at all and events that use chains of asynchronous operations, such as
the reading of kernel request and response messages.

We are able to record the time required to read kernel request data since a kernel request
message consists of a header and a variable-sized payload representing kernel data. Reading
a single request message therefore requires a chain of two asynchronous read operations: one
to read the header and one for the kernel data. We can record the start time from within the
completion handler for the header read and the stop time during the completion handler for
the kernel data read. The procedure is the same for kernel responses, which have a similar
header and payload format as kernel requests.

5.3 Data Transfer Characterization

To characterize the data transfer between daemons, we implemented a memcpy kernel that
copies a specified number of bytes from a source buffer to a destination buffer. We run this
kernel using the CFUSE framework with workers hosted on both the local node and remote
nodes and vary the data size to determine the latency of both local and remote transfers.
Our objective is to fit a model to this latency data, which would allow scheduler policy
implementations to estimate data transfer overhead when determining a target worker for
a kernel request.

The data transfer time from master to local and remote workers is shown in Figure 5.2
and Figure 5.3. From the linear scale plot of transfer time vs. data size in Figure 5.2a, we
find that transfer times to remote workers are longer than to the local worker as expected.
This is due to the fact that data transfer to the local worker does not require network
communication, using a local TCP socket for inter-process communication. Furthermore,
the relationship between transfer time and data size appears linear. We achieve what appears
to be a well-fitted linear regression line with R2 values of 0.9598 and 0.9581 for local and
remote workers respectively.

Figure 5.2b shows a log10-log2 scale plot, of the same latency data and linear regression.
Using this scale it is easier to see the data points for small data sizes. It is clear at this scale
that the regression line fits poorly for data sizes below approximately 512 KB for the local
worker, and 64 KB for the remote workers.

The transfer time to data size relationship is clearly non-linear for smaller data sizes
and transitions to a linear relationship for data sizes above a certain threshold. Therefore,
using the linear model to estimate transfer times in a scheduling policy, would lead to large
inaccuracies for data sizes within this range. From the log scale plots, these inaccuracies
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Figure 5.2: Kernel data transfer time from master to local and remote workers. Solid line
shows linear regression.
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Figure 5.3: Kernel data transfer time from master to local and remote workers. Solid lines
show segmented regression with cubic and linear components.
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are on the order of 10x. To overcome this problem, we refit the data using a segmented
approach. For data points below the threshold data size, we refit using a polynomial re-
gression. For both the local and remote data a cubic polynomial was found to fit the data
points reasonably well without overfitting. For the data above the threshold in the linear
region, we fit using a linear regression.

Figure 5.3 shows the result of this segmented fitting. As can be seen, the model becomes
much more accurate for small data sizes. The segmented model comes at a cost of greater
complexity and introduces a discontinuity between the two segments.

5.4 DMA Buffer Overhead

As explained in Section 4.2, the accelerators on the prototype platform require argument
data to be located in physically contiguous DMA buffers. To quantify the overhead involved
with the use of these buffers, we developed a set of three microbenchmarks. BM_DmaBuffer_

create performs a single DMA buffer allocation of a specified size followed immediately by
a free. BM_DmaBuffer_write writes a block of memory to the DMA buffer using memcpy,
while BM_DmaBuffer_read uses memcpy to read a block of memory from a DMA buffer. We
executed these benchmarks on the ZC706 board and varied the buffer sizes ranging from
1 KB to 16 MB. This range was chosen to cover the input and output data sizes of each of
the benchmark kernels for the sample data provided.
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Figure 5.4: DMA buffer overheads

Figure 5.4 shows the results from the microbenchmarking of the DMA buffer operations.
From the plot, we see that the time to allocate a DMA buffer is constant for buffer sizes
up to 4 KB. This is a direct result of the implementation of the DMA Buffer Module. As
mentioned in Section 4.3.2, DMA buffers are made accessible to user-space via a mmap call
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that maps entire memory pages. Therefore, the minimum allocation size is a single page,
which is 4 KB on the platform. The plot also shows that the read and write times are
essentially identical. This follows from the fact that both operations are implemented using
the memcpy function.
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Chapter 6

Experimental Results and
Discussion

In this chapter, we introduce the benchmark programs and methodology we used to create
application workloads for evaluating the CFUSE framework prototype. Using single applica-
tion workloads, we determine the baseline performance of each benchmark accelerator. We
then describe the implementation of three scheduling policies with varying capability and
sophistication. Finally, we outline the workload metrics of interest and present an evaluation
of scheduler performance as it relates to total workload runtime.

6.1 Benchmark Applications

We use a selection of benchmark programs taken from the Rosetta benchmark suite [50]
for creating application workloads for our system evaluation. Rosetta is a collection of
image processing and machine learning benchmark applications designed for use on field-
programmable gate array (FPGA) platforms. Each benchmark application features a single
kernel function to be accelerated and the Rosetta suite provides three separate implemen-
tations of each kernel: a baseline software version in C++ targeting the central processing
unit (CPU), and kernel versions in C++ or OpenCL C designed for use with high-level
synthesis (HLS) targeting both the embedded ZC706 board and an Amazon Web Services
(AWS) F1 FPGA instance.

We have chosen a subset of four benchmarks of the possible six available in Rosetta. The
Rosetta authors have indicated that the Binarized Neural Network benchmark requires non-
trivial modifications to run with an OpenCL kernel so we have excluded it. The Optical Flow
benchmark uses a kernel with an associated accelerator that is designed to run only once
before requiring a system reset. Since we use workloads comprised of multiple benchmark
applications, we require that the benchmark accelerators can run multiple times. Therefore
we have also excluded the Optical Flow benchmark from the available set.
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Table 6.1 summarizes the benchmarks chosen from the Rosetta suite. Each benchmark
is classified as either compute-bound or memory-bound. For each benchmark, we also list
the operations that make up the majority of the benchmark kernel functionality. The data
sizes of the input arguments and output arguments are also provided. We note that the
spam-filter benchmark is the only memory-bound benchmark and uses the largest data
set size. Furthermore the image processing benchmarks (3d-rendering and face-detection)
use smaller data sets compared to the machine learning benchmarks (digit-recognition and
spam-filter). In the subsections that follow, we describe each benchmark and its kernel
function in more detail.

Table 6.1: Rosetta benchmark application summary

Benchmark Application
Domain Categorization Primary Operations Sample Data Size

Input Output

3d-rendering Image
processing

Compute-
bound Integer arithmetic 28 KB 64 KB

digit-recognition Machine
learning

Compute-
bound

Bitwise operations
Hamming distance

k-NN voting
625 KB 1.95 KB

face-detection Image
processing

Compute-
bound

Integer arithmetic
Image scaling

Cascaded classifiers
75 KB 1.57 KB

spam-filter Machine
learning

Memory-
bound

Fixed-point arithmetic
Dot product

Scalar multiplication
Vector addition
Sigmoid function

19.54 MB 4 KB

6.1.1 3D Rendering

3D Rendering is an image processing benchmark that renders 2D images given a mesh of 3D
triangles as input. The benchmark kernel function implements a 5-stage image processing
pipeline with the following stages:

1. Projection: Convert a 3D triangle description into 2D

2. Rasterization: Search for pixels in a 2D triangle within the bounding box

3. Z-culling: Hide or display pixels according to their z-value (depth)

4. ColoringFB: Colour the frame buffer according to the z-value buffer

The input data consists of an array of 3D triangle objects represented by 9, 8-bit values
corresponding to the coordinates of the triangle vertices in the x, y and z dimensions. The

46



sample data consists of an array of 3192 3D triangle objects, which is rendered to a 256×256
8-bit per pixel grayscale image. This corresponds to a kernel input argument size of 28 KB
and an output size of 64 KB. The benchmark kernel is classified as compute-bound, with
the main operations consisting of integer arithmetic. The main HLS optimization used in
the implementation is dataflow pipelining.

6.1.2 Digit Recognition

The Digit Recognition benchmark is from the machine learning domain and classifies images
of hand-written digits using the k-nearest neighbours (k-NN) algorithm. The kernel func-
tion consists of two parts: the calculation of Hamming distance and the k-NN calculation,
The benchmark kernel is classified compute-bound and the primary operations are bitwise
operations. The main optimizations in the HLS kernel implementation are loop unrolling
and loop pipelining.

The benchmark sample data consists of images of handwritten digits taken from the
MNIST database and are divided into a training set of 18 000 digits and a test set of 2000
digits. The images have been binarized and downsampled to 14×14 pixels so that they
may be packed into a 196-bit value with each bit being represented by a single pixel. This
allows the sets of images to be efficiently transferred to the accelerator using a customized
data path width. The benchmark outputs a 1-byte label for each image that specifies which
digit the handwritten image was matched to. This sample data corresponds to kernel input
argument data totalling 625 KB and output argument data of 1.95 KB.

6.1.3 Face Detection

The Face Detection application detects human faces from an image using the Viola-Jones
algorithm. The benchmark kernel creates an image pyramid from which an integral image is
generated. A fixed-sized window from the integral image is passed to a set of cascaded Haar
feature classifiers. Integer arithmetic operations make up the majority of the benchmark
kernel which is classified as compute-bound. The main HLS optimizations used are memory
customization and datatype customization. The sample data provided with the benchmark
is a 320×240 8-bit per pixel grayscale image containing a number of human faces. The
output produced is a set of bounding box coordinates which define the locations of the
detected human faces in the input image. This sample data corresponds to 75 KB of kernel
input argument data and 1.57 KB of output data.

6.1.4 Spam Filter

Spam Filter is a machine learning benchmark that uses stochastic gradient descent to train
a logistic regression for classifying emails as spam. The benchmark kernel is memory-bound
as there is insufficient on-chip memory to store the training and test sets so data must
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be streamed to the accelerator. The main kernel operations are dot product, scalar mul-
tiplication, vector addition, and the calculation of the sigmoid function. The main HLS
optimizations used are dataflow pipelining, memory customization and communication cus-
tomization.

The sample benchmark data consists of 5000 emails, each represented as a 1024-element
vector of features. These features are relative word frequencies stored as fixed-point values.
From the sample emails, 4500 are used as a training set and 500 are used for the test set.
The HLS kernel version uses custom bit-width data types to work with the fixed-point
values. This sample data corresponds to 19.54 MB of kernel input argument data and 4 KB
of output data.

6.1.5 CPU Kernel Conversion Process

As previously mentioned, Rosetta provides three implementations of each of the bench-
mark kernel functions, with each version provided for use on a different execution target.
The software versions targeting the CPU are written in C++. However, as we described
in Section 4.3.3, we use the Portable Computing Language (POCL) OpenCL implemen-
tation [8] to execute kernels on CPU devices within the CFUSE framework. The kernel
compiler provided by POCL for the CPU target currently only supports kernels written in
the OpenCL C language. Therefore, we must convert the Rosetta CPU kernels from C++
to OpenCL C.

While mostly compatible with the C programming language, OpenCL C provides some
extensions, including extra built-in functions and vector data types. It also imposes some
restrictions on the use of pointers, requires address space qualifiers and limits the use of the
static storage-class specifier. Table 6.2 summarizes the incompatible language differences
we encountered when converting the C++ kernel code to OpenCL C and the steps taken
to resolve them.

To verify that these modifications did not significantly alter the runtime performance of
the benchmark programs, we ran both the C++ and OpenCL versions of the benchmarks on
the ZC706 platform and recorded the runtime of the kernel functions. For the C++ version,
the kernel runtime is simply the time to call the kernel function. However, the OpenCL
version requires the use of the OpenCL host application programming interface (API) to
execute kernels. For this case, we calculate the kernel runtime as the time to set the work-
item and work-group size, set kernel arguments and enqueue the kernel for execution. The
results of this comparison are shown in Table 6.3.

As shown, there are some significant differences between the kernel runtimes for the
C++ and OpenCL C versions. To determine the cause of these discrepancies, we examined
the static object code generated for each version and noticed significant differences in the
amount of function inlining, the total number of assembly instructions and the number of
vector instructions generated by the compiler. These differences can be attributed to the
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Table 6.2: C++ and OpenCL C language differences and resolutions

Language Difference Resolution
No support for C++ reference types. Replace the use of references with

pointers.

Top-level kernel function parameters that
are pointers must have an address space
qualifier.

By default choose the global address
space. When passing such variables as
arguments to sub-functions, those
functions must include the address space
qualifier in their definition also.

All program scope variables must be
declared in the constant address space.

Disallow the use of non-constant program
scope variables and place constant
program scope variables in the constant
address space. Alternately convert
program scope constants to C
preprocessor object-like macros.

OpenCL C versions 1.2 and prior do not
support static local variables.

Convert static local variables to program
scope variables in the constant address
space where possible. Otherwise add these
as additional kernel function arguments.

OpenCL C provides additional built-in
functions that may conflict with program
identifiers.

Rename any identifiers that conflict with
OpenCL built-in functions.
E.g. popcount, dot

OpenCL C provides additional built-in
math functions.

Prefer the use of OpenCL built-in math
functions over math functions from the
standard C library.
E.g. prefer overloaded exp(x) function to
expf(double x).

Table 6.3: Rosetta benchmark kernel CPU runtimes

Benchmark C++ Kernel
Runtime

OpenCL Kernel
Runtime

Relative
Runtime

3d-rendering 32.136 ms 17.223 ms 0.536
digit-recognition 15.823 s 8.432 s 0.533
face-detection 501.429 ms 401.325 ms 0.800
spam-filter 859.398 ms 954.636 ms 1.111
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fact that different compilers are used depending on the kernel source language. The C++
software kernels are built using the cross compiler for the platform, Linaro GCC, while the
OpenCL kernels are built using the POCL kernel compiler that is based on Clang/LLVM.
Furthermore, POCL uses the SLEEF vectorized math library [51] to implement OpenCL C
built-in functions. These differences in the static object code are summarized in Table 6.4.

Table 6.4: Comparison of object code for Rosetta benchmark CPU target kernels. Object
code statistics are static counts of functions, assembly instructions and vector instructions
for the ARM NEON SIMD engine.

Benchmark Kernel
Language

Kernel
Runtime Functions Total

Instructions
Vector Instructions
Count % of Total

3d-rendering C++ 32.136 ms 6 534 0 0.0
OpenCL 17.223 ms 5 496 6 1.2

digit-recognition C++ 15.823 s 4 1010 0 0.0
OpenCL 8.432 s 3 241 29 12.0

face-detection C++ 501.429 ms 1 1080 65 6.0
OpenCL 401.325 ms 3 708 64 9.0

spam-filter C++ 859.398 ms 5 322 196 60.9
OpenCL 954.636 ms 3 191 73 38.2

The 3d-rendering and digit-recognition benchmarks exhibit the largest relative differ-
ences between the C++ and OpenCL C versions. From the object code comparison, we see
that the C++ kernels for these benchmarks do not utilize any vector instructions. Further-
more, the only benchmark that executes slower with an OpenCL version is spam-filter. For
this benchmark, the OpenCL version has a lower proportion of vector instructions com-
pared to the C++ version. Therefore, we propose that the use of vector instructions largely
determines the relative runtime difference between C++ and OpenCL kernel versions for a
given benchmark.

6.1.6 Benchmark Hardware Accelerators

For each of the Rosetta benchmarks, we created a system containing a single kernel ac-
celerator instance. Table 6.5 shows the total FPGA area usage for each system. The total
resource usage for the systems can be divided into the device area required for the accelera-
tor and the system infrastructure, which includes the interconnect and reset core. Table 6.6
and Table 6.7 list the resource usage of the accelerator and infrastructure components re-
spectively.

As shown, the system infrastructure resource usage is directly related to the data width
of the accelerator memory-mapped AXI interface, which is used to transfer kernel argument
data. A wider interface generally requires a larger interconnect and therefore more area. The
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Accelerator Coherency Port (ACP) is a 64-bit interface. Therefore no data width re-sizing
logic is required if the accelerator AXI interface is also 64-bit. This case results in the lowest
resource usage for the interconnect.

Table 6.5: Total system resource usage

Accelerator LUT (%) FF (%) BRAM (%) DSP (%)
3d-rendering 5 990 (2.7) 6 308 (1.4) 36.5 (6.7) 9 (1.0)
digit-recognition 29 204 (13.4) 13 615 (3.1) 184.5 (33.9) 0 (0.0)
face-detection 47 804 (21.9) 47 616 (10.9) 89.5 (16.4) 79 (8.8)
spam-filter 6 676 (3.1) 9 563 (2.2) 69.0 (12.7) 224 (24.9)

Table 6.6: Accelerator resource usage

Accelerator LUT (%) FF (%) BRAM (%) DSP (%)
3d-rendering 5 051 (2.3) 4 975 (1.1) 36.5 (6.7) 9 (1.0)
digit-recognition 27 878 (12.8) 11 955 (2.7) 184.5 (33.9) 0 (0.0)
face-detection 46 865 (21.4) 46 283 (10.6) 89.5 (16.4) 79 (8.8)
spam-filter 6 124 (2.8) 8 771 (2.0) 69.0 (12.7) 224 (24.9)

Table 6.7: System infrastructure (interconnect and reset) resource usage

Accelerator LUT (%) FF (%) Accelerator
Data Bus Width

3d-rendering 939 (0.4) 1333 (0.3) 32
digit-recognition 1326 (0.6) 1660 (0.4) 256
face-detection 939 (0.4) 1333 (0.3) 32
spam-filter 552 (0.3) 792 (0.2) 64

6.2 Baseline Kernel Performance

The goal of the baseline performance characterization is to establish an initial performance
level for each benchmark and to investigate the overhead of executing kernels via the CFUSE
runtime. Using the daemon instrumentation outlined previously in Section 5.2, we seek to
understand the source of these overheads and how they vary between the different bench-
marks. For this evaluation we execute only a single instance of each benchmark application.
We repeat the benchmark targeting each of the four possible devices types: the CPU on the
local node, an accelerator on the local node, a CPU on a remote node and an accelerator
on a remote node.

Figure 6.1 shows a comparison of the total application runtime on each of the target
types for each benchmark. Runtime is shown relative to the local CPU runtime. From the
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Figure 6.1: Total benchmark application runtime on each target type. Runtime is shown
relative to the local CPU runtime for each benchmark.

plot, we see that digit-recognition exhibits the greatest total application speedup, which we
attribute to the significant speedup of its accelerator.

In contrast, spam-filter achieves the poorest application speedup when its kernel is
executed on a hardware accelerator. This is because spam-filter has a very large input data
set that must be copied to a direct memory access (DMA) buffer before the accelerator
starts. The overhead of this required DMA transfer significantly impacts the accelerator
speedup. Furthermore, we note that the spam-filter benchmark executes faster on the local
CPU than on a remote accelerator. This is again a consequence of the large data set that
must be transferred over the network to the remote node, before execution may begin.

Tables 6.8 through 6.11 summarize the results of the baseline benchmark characteriza-
tion across each of the possible kernel execution devices. Each table shows the total bench-
mark application runtime (client::program_total), the time for the kernel execution as
measured by the client application (client::enqueue_kernel), followed by a breakdown
of the kernel execution into each of the events within the master and worker daemons.

Comparing the results shown in these tables, we find that the time to schedule a kernel
and update the scheduler data structures is independent of the benchmark, as we would
expect. Both the time to schedule and the time to update the scheduler, take on the order
of 10 µs.

Furthermore, we notice that both digit-recognition and face-detection achieve slightly
better runtime on a remote CPU than on the local CPU. This is because the local CPU is
used to run application host code, kernels as well as the master daemon, whereas the remote
nodes are only used to run application kernels. Therefore, there is less contention for the
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Table 6.8: 3d-rendering runtime breakdown on each target device

Local Worker
Runtime (s)

Remote Worker
Runtime (s)

Event CPU HW Accel CPU HW Accel
client::program_total 0.058 538 0.049 216 0.064 222 0.054 823
client::enqueue_kernel 0.018 502 0.008 113 0.024 167 0.013 753
master::read_kernel_request_data 0.000 089 0.000 090 0.000 090 0.000 090
master::schedule 0.000 008 0.000 011 0.000 008 0.000 012
worker::read_kernel_request_data 0.000 070 0.000 069 0.000 138 0.000 251
worker::execute_kernel 0.016 442 0.006 061 0.016 335 0.005 914
master::read_kernel_response_data 0.000 177 0.000 178 0.004 877 0.004 683
master::update_scheduler 0.000 016 0.000 027 0.000 015 0.000 026

Table 6.9: digit-recognition runtime breakdown on each target device.

Local Worker
Runtime (s)

Remote Worker
Runtime (s)

Event CPU HW Accel CPU HW Accel
client::program_total 8.099 577 0.179 292 7.820 986 0.188 164
client::enqueue_kernel 7.948 584 0.028 190 7.669 979 0.037 024
master::read_kernel_request_data 0.002 571 0.002 577 0.002 588 0.002 643
master::schedule 0.000 010 0.000 014 0.000 010 0.000 014
worker::read_kernel_request_data 0.003 318 0.003 480 0.012 235 0.010 911
worker::execute_kernel 7.940 850 0.020 213 7.644 529 0.020 051
master::read_kernel_response_data 0.000 036 0.000 036 0.000 036 0.000 038
master::update_scheduler 0.000 014 0.000 026 0.000 014 0.000 027

Table 6.10: face-detection runtime breakdown on each target device type.

Local Worker
Runtime (s)

Remote Worker
Runtime (s)

Event CPU HW Accel CPU HW Accel
client::program_total 0.430 078 0.076 566 0.429 810 0.077 616
client::enqueue_kernel 0.401 483 0.048 141 0.401 162 0.049 212
master::read_kernel_request_data 0.000 215 0.000 220 0.000 219 0.000 218
master::schedule 0.000 008 0.000 012 0.000 009 0.000 012
worker::read_kernel_request_data 0.000 225 0.000 231 0.000 879 0.000 603
worker::execute_kernel 0.399 521 0.046 155 0.397 704 0.045 914
master::read_kernel_response_data 0.000 042 0.000 039 0.000 040 0.000 039
master::update_scheduler 0.000 014 0.000 025 0.000 014 0.000 024
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Table 6.11: spam-filter runtime breakdown on each target device type.

Local Worker
Runtime (s)

Remote Worker
Runtime (s)

Event CPU HW Accel CPU HW Accel
client::program_total 1.302 164 1.172 340 1.506 367 1.365 376
client::enqueue_kernel 1.160 857 1.030 938 1.364 707 1.223 124
master::read_kernel_request_data 0.086 566 0.087 227 0.087 524 0.087 886
master::schedule 0.000 010 0.000 013 0.000 011 0.000 014
worker::read_kernel_request_data 0.109 411 0.109 445 0.314 278 0.308 722
worker::execute_kernel 0.955 475 0.824 684 0.949 263 0.815 186
master::read_kernel_response_data 0.000 038 0.000 038 0.004 179 0.002 116
master::update_scheduler 0.000 013 0.000 025 0.000 014 0.000 027

CPU and caches on remote nodes leading potentially better runtime for longer running
compute-bound benchmarks.

6.3 Scheduler Policies

For our evaluation, we implemented three different scheduling policies with varying levels of
sophistication and awareness of the cluster system. These policies are: Round-Robin CPU-
only, Prefer Hardware Accelerator and Oracle. In the following subsections, we describe the
implementation and the scheduling objective of each.

6.3.1 Round-Robin CPU-only Policy

The Round-Robin CPU-only (RR-CPU) scheduler always selects CPU targets and uses a
round-robin queue in an attempt to distribute requests among the available nodes. It does
not distinguish between the local CPU from CPUs on other nodes. The design of RR-CPU
is purposefully simplistic to provide a baseline for our later evaluation of more complex
scheduling policies.

6.3.2 Prefer Hardware Accelerator Policy

The goal of the Prefer Hardware Accelerator (Prefer-HA) policy is to prioritize scheduling
kernels onto hardware accelerators over CPUs. The scheduler maintains a separate queue of
idle accelerators for each kernel type and a round-robin queue for all CPUs. Upon receiving
a kernel request, the scheduler inspects the accelerator queue corresponding to the requested
kernel type. The next accelerator in this queue is selected as the target and removed from
the queue. If the accelerator queue is empty, meaning there are matching accelerators that
are idle, then the next CPU from the round-robin CPU queue is used as the target. When
a kernel response is received, the accelerator that executed the request is pushed onto the
appropriate idle queue, as this accelerator is now idle.
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As with the RR-CPU scheduler, Prefer-HA does not differentiate the available devices
by network locality. This scheduler is the most straightforward re-implementation of the
scheduler from the original Front-end USEr framework (FUSE) work for use with a cluster.

6.3.3 Oracle Policy

The Oracle scheduler is designed to balance the following factors when scheduling: net-
work data transfer overhead, hardware accelerator speedup and worker load. To do so, this
scheduler classifies all of the targets in the cluster into one of the following types:

• local CPU
• remote CPU
• local accelerator
• remote accelerator

The primary feature of the Oracle scheduler is the use of estimates of total kernel runtime on
each of these possible target types. For each kernel request, the Oracle scheduler attempts
to determine the target with the lowest estimated runtime. To perform these estimates the
Oracle scheduler uses a formula of the form in Equation 6.1.

Ttotal = Tdata_transfer + load_factor × Truntime (6.1)

We note that the form of this equation stipulates that the data transfer of kernel arguments
is not overlapped with kernel execution. In our prototype implementation, the worker does
not begin executing a kernel until the network transfer of kernel argument data from the
master has completed. However, the hardware accelerators do overlap DMA buffer accesses
with computation during their operation.

As we determined from the characterization in Section 5.3, master to worker data trans-
fer time is variable and largely dependent on the amount of the kernel data to be transferred.
We use the results of the data transfer characterization to provide the Oracle scheduler a
means with which to estimate data transfer times. The scheduler computes an estimate of
transfer time using the segmented regression model we derived.

To estimate Truntime, we performed characterization runs of each benchmark kernel on
both a CPU device and a hardware accelerator. For our initial implementation, this runtime
data was statically added to the Oracle scheduler implementation in the form of a software
look-up table. More sophisticated methods for estimating kernel runtime on different target
devices can be explored in the future.

The purpose of the load_factor is to scale the estimated kernel execution time depend-
ing on the current CPU load on each worker. Intuitively, a worker that is handling many
kernel requests (higher load), will take longer to handle an additional request compared to
an idle worker. This is due to anticipated contention for shared resources including caches,
the network interface and the system CPU.

55



6.4 Workload Experiments

For an evaluation of the CFUSE framework, we build workloads consisting of multiple
application benchmarks and execute these workloads on the prototype cluster. For these
experiments, we set up the prototype cluster with four ZC706 boards. One board is desig-
nated the master and is used to host the CFUSE master daemon and the remaining three
boards are designated as remote workers. We also run an instance of a worker daemon on
the same node as the master, known as the local worker. The workload applications are
launched on the master node.

We use three classes of workloads: compute workloads consisting of compute-bound
benchmarks, memory workloads consisting of only memory-bound benchmarks and mixed
workloads that contain a combination of the two benchmark types. We also vary the num-
ber of applications per workload in multiples of 4, ranging from 4 to 20, while the specific
applications used within each workload are chosen randomly from the appropriate category.
Table 6.12 lists each workload and shows the applications contained in each.

Table 6.12: Summary of benchmark application workloads

Applications in Workload
Number of
Applications

Workload
Category

3d-
rendering

digit-
recognition

face-
detection

spam-
filter

4 compute 2 1 1 -
4 memory - - - 4
4 mixed - - 2 2
8 compute 3 2 3 -
8 memory - - - 8
8 mixed 2 1 2 3
12 compute 3 4 5 -
12 memory - - - 12
12 mixed 4 4 1 3
16 compute 3 5 8 -
16 memory - - - 16
16 mixed 5 4 4 3
20 compute 7 9 4 -
20 mixed 2 4 8 6

We note that there is no memory workload with 20 applications. This is due to the
large data requirements of the spam-filter benchmark. Due to the limited amount of system
memory on the embedded boards, we are unable to run the 20 instances of the spam-filter
benchmark simultaneously without experiencing memory allocation failures.
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For each application, we record the start time (tstart) and stop time (tstop), which can
be used to determine the total runtime of each application. The total workload execution
time (tworkload), can also be computed from these application times using Equation 6.2.

tworkload = max{tstop1, tstop2, . . . } −min{tstart1, tstart2, . . . } (6.2)

6.4.1 FPGA Configurations

Part of the experimental setup for the cluster involves choosing a configuration for each
FPGA in the cluster, which determines the set of available hardware accelerators. Here we
describe our two-step process for selecting these initial configurations for each workload.

To limit the total possible number of configurations, we started with a set of four FPGA
configurations each containing different sets of accelerators, but prioritizing the inclusion of
accelerator instances from a single benchmark. For example, one of the four configurations
was designated to prioritize including 3d-rendering accelerators. We then added accelerators
for the other benchmark kernels to the configuration to fill the remaining FPGA area,
based on the runtime performance impact of an accelerator on its corresponding benchmark
application. The runtime performance impact is estimated using Amdahl’s Law. Table 6.13
lists the four configurations and the number of accelerator instances of each type contained
in each.

Table 6.13: Hardware accelerator instances within each FPGA configuration

Accelerator Instances

Configuration 3d-
rendering

digit-
recognition

face-
detection

spam-
filter

R 3 1 2 -
DR 1 2 1 -
FD 1 1 1 -
SF 1 1 1 3

With these configurations created, the next step is to select the set of configurations to
use on the cluster board for each of the workloads. The process here is similar to the first
step, however, we now factor in the locality of each accelerator.

6.4.2 Workload Results and Discussion

Figure 6.2 shows the total runtime for all workloads using each of the scheduling policies.
Figures 6.3, 6.4 and 6.5 show the same data, but with the workload types split over three
plots. We find that the memory workloads and to a lesser extent the mixed workloads, do not
benefit as much when using a scheduler that utilizes accelerator cores. This is largely due to
the poor speedup of the spam-filter accelerator over the CPU implementation, which in turn
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is a direct result of the large data set size of this benchmark. The spam-filter accelerator
suffers from high overhead from the required use of large DMA buffers, which significantly
affects the overall speedup.
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Figure 6.2: Total execution time per workload

The compute workload time for the RR-CPU scheduler is dominated by the number of
digit-recognition applications in the workload. This benchmark has a significantly longer
running time of approximately 8 seconds on the CPU. There are enough CPU cores on the
platform, with two on each node, to allow for the parallel execution of this benchmark for
all workloads except for workload n20-compute. This is the only workload that includes
more than 8 instances of this benchmark and therefore the only compute workload with
significantly longer runtime with the RR-CPU scheduler.

We also notice that memory and mixed workloads exhibit a larger amount of variability
in total workload runtime, between individual workload runs. This is likely because these
workloads contain the memory-bound spam-filter application. Spam-filter utilizes a large
data set which must be transferred between master and worker and it is likely this variability
in data transfers that increases the overall workload variability for these workload types.

We see from the plot that the Prefer-HA and Oracle schedulers generally perform simi-
larly, with only slight differences in overall workload runtime between the two. For a clearer
comparison, Figure 6.6 shows the same workload runtime data for only the Prefer-HA and
Oracle schedulers.

The Prefer-HA scheduler prioritizes accelerator targets above all else and does not factor
in the network location of a target device. For our experimental setup, this proves to be
largely sufficient for decreasing the total workload execution time. This is a result of the
fact that on the prototype cluster the penalty for remote data transfer is relatively small for
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Figure 6.3: Total execution time of compute workloads
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Figure 6.4: Total execution time of memory workloads
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Figure 6.5: Total execution time of mixed workloads
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Figure 6.6: Total execution time per workload: Prefer-HA and Oracle schedulers only
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smaller data sizes. That is, data transfer time to a remote worker is generally not a significant
portion of the overall kernel runtime particularly for small data sizes. The majority of the
benchmarks use data set sizes within this smaller range. Furthermore, the cluster generally
has enough accelerator resources to run the workload application kernels and so Prefer-HA
and Oracle will therefore usually make the same scheduling decision.

The few workloads where the Oracle scheduler outperforms Prefer-HA, all involve the
spam-filter benchmark. This benchmark is the only one with a kernel that executes faster
on a local CPU than on a remote accelerator, although the difference is small. By using its
estimates of total kernel runtime including data transfer, the Oracle scheduler can detect
this case and schedule appropriately. We presume that given a larger difference between
remote and local transfer time, there would be more benchmarks that also exhibit this
behaviour. The benefit of the Oracle scheduler over Prefer-HA would be more pronounced
in this case.
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Chapter 7

Conclusions and Future Work

OpenCL has helped to raise the level of design entry for field-programmable gate arrays
(FPGAs) above the traditional register-transfer level (RTL) approach, and has made access
to high-level synthesis (HLS) technology accessible to non-experts. However, limitations in
the OpenCL models and the unique reconfigurable architecture of FPGA devices, make
the simultaneous use of FPGA and central processing unit (CPU) resources challenging
using OpenCL. This is particularly true for clusters of systems that feature general-purpose
processors and attached reconfigurable hardware, which are becoming more prevalent in
cloud environments.

7.1 Conclusions

In this thesis, we presented the Cluster Front-end USEr framework (CFUSE) that en-
ables scheduling OpenCL kernels from multiple applications across FPGA and CPU devices
within a networked cluster. Basing our work on the Front-end USEr framework (FUSE) con-
cept, we were able to remove the burden of device selection from the application developer.
We presented a prototype implementation of CFUSE on a cluster of FPGA development
boards, with a runtime library to simplify the simultaneous use of multiple OpenCL devices.

We performed a series of experiments to characterize the prototype system, including
an evaluation of network data transfer and direct memory access (DMA) buffer overhead.
Finally, we presented a comparison of three scheduling policies using workloads comprised
of applications from both the image processing and machine learning domains. Our find-
ings indicate that scheduling on our prototype is sensitive to data transfer overheads and
hardware accelerator speedup.

7.2 Future Work

One of the primary limitations imposed by the prototype platform is the lack of an I/O
memory management unit (IOMMU) that would allow accelerators direct access to user-
space memory pages. As such, we required the use of physically contiguous DMA buffers
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allocated by the operating system. The use of these buffers adds considerable overhead par-
ticularly for memory-bound application kernels executed via CFUSE. Therefore, a logical
improvement to the system would be to investigate IOMMU usage on the prototype. The
simplest design for integrating an IOMMU into the current prototype would likely involve
using a software-managed IOMMU per accelerator core. Such a design would allow accel-
erator cores to directly access user-space virtual memory, avoiding the need for the use of
physically contiguous DMA buffers and associated overhead.

Furthermore, we would like to investigate other techniques for inter-process communica-
tion between the master daemon and client applications, including moving some function-
ality of the master daemon into the operating system (OS) kernel. Also related to the area
of improving communications performance and lowering associated overhead, would be to
employ a dedicated hardware connection between FPGAs on remote hosts.

We would like to continue experimentation with more benchmark applications from a
greater variety of application domains and with larger, more varied sample data sets. Using
more complex benchmarks that contain multiple interdependent kernels would likely provide
useful insight to the scheduling problem and more opportunity for useful optimizations. A
potential difficulty with finding suitable benchmarks is that we require implementations of
kernel functions both for the CPU and that are suitable for use with HLS tools.

Therefore, a tangential research area worth investigating is the use of a single source
code specification for kernel functions. This is particularly important for a framework such
as CFUSE, which must manage execution across multiple types of devices. OpenCL does
provide a portable kernel language for this purpose. However, to ensure reasonable execution
performance, a developer must often customize a kernel to match the features of the specific
target device, which can vary significantly between CPUs, graphics processing units (GPUs)
and FPGAs. This is particularly true for kernels targeting FPGAs, as most FPGA OpenCL
platforms recommend the use of single work-item kernels and platform-specific extensions
to enable HLS optimizations.

Finally, there is also area for further research on additional scheduling policies. Of par-
ticular interest are classes of schedulers utilizing the runtime reconfiguration capability of
the FPGA. This would allow the cluster to adapt the set of available accelerators to specific
workload demands.
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Appendix A

OpenCL Application Example

This appendix contains the source code for an example OpenCL host application that
performs vector addition. The source code consists of two files: opencl_example.c, which
contains the host code and vector_add.cl, which contains the OpenCL C kernel code for
a vector addition kernel.

The host code illustrates the use of the OpenCL application programming interface (API)
for setting up a single device to run the vector addition kernel. This kernel computes the
sum of two integer arrays. Furthermore, the example code shows how program objects can
be created from either a kernel source file or from a pre-compiled binary file. Although not
strictly necessary in this simple example, OpenCL event objects are used to synchronize the
commands submitted to the device queue to illustrate the technique. Note that handling of
potential errors from the OpenCL functions is omitted for brevity.

A.1 opencl_example.c

1 #include <stdlib.h>
2 #include <CL/cl.h>
3 #include "read_file.h" /* defines read_file() helper function */
4

5 int main(void)
6 {
7 /* Initialize host memory buffers: will be used as kernel arguments */
8 const size_t array_size = 8;
9 int A[] = {0, 1, 2, 3, 4, 5, 6, 7};

10 int B[] = {0, 2, 4, 6, 8, 10, 12, 14};
11 int sum[] = {0, 0, 0, 0, 0, 0, 0, 0};
12

13 /* Get number of available OpenCL platforms */
14 cl_uint num_platforms = 0;
15 clGetPlatformIDs(0, NULL, &num_platforms);
16
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17 /* Get list of platform IDs */
18 cl_platform_id *platform_ids;
19 platform_ids = calloc(sizeof(cl_platform_id), num_platforms);
20 clGetPlatformIDs(num_platforms, platform_ids, NULL);
21

22 /* Use first available platform */
23 cl_platform_id platform = platform_ids[0];
24

25 /* Query for number of devices in platform */
26 cl_uint num_devices = 0;
27 clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices);
28

29 /* Get list of device IDs */
30 cl_device_id *device_ids = calloc(sizeof(cl_device_id), num_devices);
31 clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, device_ids, NULL);
32

33 /* Use first available device */
34 cl_device_id device = device_ids[0];
35

36 /* Create context */
37 cl_context_properties properties[] = {CL_CONTEXT_PLATFORM,
38 (cl_context_properties)platform, 0};
39 cl_context context = clCreateContext(properties, num_devices, device_ids,
40 NULL, NULL, NULL);
41

42 /* Create command queue (use default properties) */
43 cl_command_queue queue = clCreateCommandQueueWithProperties(context, device,
44 NULL, NULL);
45

46 /* Setup memory objects */
47 size_t buffer_size = sizeof(int) * array_size;
48 cl_mem A_buffer = clCreateBuffer(context, CL_MEM_READ_ONLY, buffer_size,
49 NULL, NULL);
50 cl_mem B_buffer = clCreateBuffer(context, CL_MEM_READ_ONLY, buffer_size,
51 NULL, NULL);
52 cl_mem sum_buffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY, buffer_size,
53 NULL, NULL);
54

55 /* Create program object ... */
56 char *kernel_file;
57 size_t file_size;
58 cl_program program;
59 #if defined(USE_KERNEL_SOURCE)
60 /* ... using kernel source code */
61 kernel_file = read_file("vector_add.cl" , &file_size);
62 program = clCreateProgramWithSource(context, 1, (const char **)&kernel_file,
63 &file_size, NULL);
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64 #elif defined(USE_KERNEL_BINARY)
65 /* ... using precompiled kernel binary */
66 kernel_file = read_file("vector_add.bin" , &file_size);
67 program = clCreateProgramWithBinary(context, 1, &device, &file_size,
68 (const unsigned char **)&kernel_file,
69 NULL, NULL);
70 #endif
71

72 /* Build program */
73 clBuildProgram(program, 1, &device, NULL, NULL, NULL);
74

75 /* Create kernel object */
76 cl_kernel kernel = clCreateKernel(program, "vector_add" , NULL);
77

78 /* Set kernel arguments by index */
79 clSetKernelArg(kernel, 0, sizeof(cl_mem), &A_buffer);
80 clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_buffer);
81 clSetKernelArg(kernel, 2, sizeof(cl_mem), &sum_buffer);
82

83 /* Write kernel input argments (A and B buffers) to device memory */
84 cl_event A_event, B_event;
85 cl_bool blocking = CL_FALSE; /* use non-blocking commands */
86 clEnqueueWriteBuffer(queue, A_buffer, blocking, 0, buffer_size, A,
87 0, NULL, &A_event);
88 clEnqueueWriteBuffer(queue, B_buffer, blocking, 0, buffer_size, B,
89 0, NULL, &B_event);
90 cl_event write_events[] = {A_event, B_event};
91

92 /* Execute kernel */
93 size_t global_work_size[1] = {array_size};
94 size_t local_work_size[1] = {1};
95 cl_event kernel_event;
96 clEnqueueNDRangeKernel(queue, kernel, 1,
97 NULL, global_work_size, local_work_size,
98 /* wait on input buffers to be written */
99 2, write_events, &kernel_event);

100

101 /* Read kernel output arguments (sum buffer) to host memory */
102 cl_event read_event;
103 clEnqueueReadBuffer(queue, sum_buffer, blocking, 0, buffer_size, sum,
104 1, &kernel_event, /* wait on kernel execution command */
105 &read_event);
106 clWaitForEvents(1, &read_event);
107

108 /* Release OpenCL resources */
109 clReleaseMemObject(A_buffer);
110 clReleaseMemObject(B_buffer);
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111 clReleaseMemObject(sum_buffer);
112 clReleaseKernel(kernel);
113 clReleaseProgram(program);
114 clReleaseCommandQueue(queue);
115 clReleaseContext(context);
116 }

A.2 vector_add.cl

1 __kernel void vector_add(__global int *a, __global int *b, __global int *sum)
2 {
3 size_t i = get_group_id(0);
4 sum[i] = a[i] + b[i];
5 }
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