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Abstract

The game of Cops and Robbers is a pursuit-evasion game played on graphs with two players,
the cops and the robber, who take turns moving on the graph. In each turn they may move
to a vertex adjacent to their current position or stay where they are. The cops’ objective
is to get to the same position where the robber is, which we refer to as to capture the
robber, and the robber’s goal is to evade capture indefinitely. The basic question is to find
the minimum number of cops that can guarantee capturing the robber in a given graph.
A very fruitful research area has been developed around the idea of modifying the way in
which the cops or the robber move and analyzing how these changes affect the strategies
and outcome of the game. In this thesis we will study the game when we impose additional
speed restrictions on the players, variants of the game popularly known as “lazy-cops and
robbers” and “active cops and robbers”. In order to do so, we introduce the concept of the
wide shadow, aiming to improve known results and obtain new tools and techniques which
may provide further insight into other open problems in the area.

Keywords: wide shadow, cops and robbers, guardable graph, Helly graph, lazy cops and
robbers, active cops and robbers
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Dedication

To see what is in front of one’s nose needs a constant struggle.
George Orwell (not in 1984)

To those who have sat next to the colossus at the edge of the world;
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Chapter 1

Introduction

A pursuit-evasion game is, broadly speaking, a game in which a set of players, the pursuers,
attempt to capture another set of players, called the evaders. Depending on how we define
the way in which the pursuers and the evaders move we will give rise to different pursuit
evasion games, which have been extensively studied from both continuous and discrete
perspectives.

Probably the best known example of a pursuit-evasion game in discrete time is the game
of cops and robbers, a game played on graphs introduced by Nowakowski and Winkler [25],
and independently by Quillot [28]. The game is played on a graph G by two players, the
cop and robber. As it will often be convenient to use pronouns to refer to the players, we
will assume throughout the thesis that the cop is feminine and the robber is masculine.
The game starts with the cop choosing a vertex as her starting position, and after that the
robber chooses his initial position. A round of the game consists in two turns, the first one
for the cop and the second for the robber.

In each turn, a player might stay at their current position or move to a neighbour of
their current position. The cop wins if he eventually occupies the same vertex as the robber,
a situation we will refer to as capturing the robber , while the robber wins if he is able to
indefinitely prevent this from happening.

While we will be using mostly standard Graph Theory definitions and notation, we refer
the reader to [12] as a reference. Unless stated otherwise, we will assume that all graphs in
this thesis are connected.

A graph in which a cop has a winning strategy is called a cop-win graph. The graphs in
which the cop has a winning strategy have a very nice characterization, which is obtained
from the following observation about the robber’s position right before his last move: if the
robber cannot prevent the cop from capturing him regardless of what his move is, that means
that every neighbour of his position is also adjacent to the cop’s position. If x and y are
vertices corresponding to the current positions of the cop and the robber respectively, this
means that N [y] ⊆ N [x]. In this situation, we call y a corner of G. A graph G is dismantlable
if it can be reduced to K1 by successively removing corners. A characterization of cop-win
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graphs was given given in [25], as the authors showed that this is the same class of graphs
as the dismantlable graphs.

The game was generalized by Aigner and Fromme [1] to allow more than a single cop to
play, and they defined the cop-number of a graph G, which we will denote by c(G), to be the
smallest integer k such that k cops can guarantee the robber’s capture on G regardless of
his strategy. Since for any graph G we have c(G) ≤ |V (G)|, the cop-number is well defined
for every finite graph. Moreover, for any graph G we have c(G) ≤ γ(G), where γ(G) denotes
the domination number.

Notice that if we play on a graph G with n vertices, using k cops, we can describe the
position of every player on the graph with a vector of {C,R} × V (G)k+1, where the first
entry corresponds to an indicator of whose turn it is and the next k + 1 entries correspond
to the current position of each cop and the robber on the graph. We will refer to such vector
as a configuration of the game. Notice that if the cops have a winning strategy to capture
the robber, then they may avoid repeating any configuration. Conversely, if the robber is
ever able to force the cops to repeat a previous configuration of the game, then the robber
has a winning strategy. This fact will be useful to simplify the analysis of the game.

Finding bounds for the cop number of a graph (or, more accurately, a class of graphs)
is the fundamental problem in the area. The most well-known question regarding the game
of cops and robbers, which remains wide open, is known as Meyniel’s Conjecture:

Conjecture 1.0.1 (Meyniel’s Conjecture). For any graph G with n vertices, we have that
c(G) = O(

√
n).

A lot of research has also been done studying the connections between a graph’s topo-
logical properties and its cop-number. For a survey on this, see [7]. The classical result in
this direction is due to Aigner and Fromme[1].

Theorem 1.0.1 ([1]). The cop number of every planar graph is at most three.

In order to prove this, Aigner and Fromme introduced one of the most useful results in
the literature on cops and robbers: A theorem on using one cop to guard a path. There has
been interest in generalizing this to graphs other than paths. We will address this problem
in Chapter 2.

1.1 Adding speed restrictions to the game

A very fruitful research area has been developed around the idea of modifying the way in
which the cops or the robber move and analyzing how these changes affect the strategies and
outcome of the game. A well-known example of this was introduced by Seymour and Thomas
in [29], where they define a version of cops and robbers commonly known as “helicopter
cops and robber” characterizing tree-width, an idea that has been used in relation to other
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width parameters (see [30]). However, this approach has also been used trying to get a better
insight into Meyniel’s Conjecture. People have studied the game by adding “restrictions”
either helping or hindering the players, like forcing a player to move randomly in a graph
[21], forcing them to move along geodesic paths [16], allowing the cops to capture the robber
at a distance [6], and many others.

In this thesis we look at the effect of restrictions on the number of agents (cops and
robber) that move in each round. The earliest reference we know of in which this type of
restrictions have been studied is [23], where the authors distinguished between a passive
version of the game (in which all players have the option of passing) and an active one
(where the robber and a non-empty set of cops must move). In [26], Offner and Ojakian
introduced a variation of the game in which it is specified how many cops must move each
turn, how many must remain in the same position, and how many can do either. Of these,
the variant that has received more attention is the one where only one cop is allowed to move
each turn, which they referred to as the “one-active-cop game”. Shortly after, this variation
was introduced with different names, like lazy cops and robbers [2], and the “one-cop-moves”
game [17].

We define the k-cops-move number of a graph, ck(G), as the smallest integer such that
ck(G) cops guarantee the robber’s capture in G with the restriction that at most k cops can
change their position each turn. We will also refer to c1(G) as the lazy-cop number of G.

A different way in which we can impose restrictions on both players is by forcing them
to move every turn. This idea has been introduced (in slightly different ways) several times
throughout the years, as can be seen in [1, 9, 18, 23]. We will refer to the variant in which
all players are required to move every turn as active cops and robbers, and define ca(G) to
be the minimum number of cops required to win in a graph G with this rules.

Probably due to its historical importance, as well as its beauty, it is frequently asked
whether a result analogous to Theorem 1.0.1 holds for other variations of the game. For
example, it was recently shown in [17] that there exist planar graphs with lazy-cop number
more than three, and one of the authors conjectured in [33] a stronger version of Theorem
1.0.1. We provide a proof of this conjecture in Chapter 3. On the other hand, the authors of
[18] provided a bound akin to Theorem 1.0.1 for the active version of the game and asked
if it could be improved, a question we discuss in in Chapter 4.

Finally, in Chapter 5, we study the effect of subdividing all the edges of a graph the
same number of times for both the active and the lazy version of the game.

3



Chapter 2

Guarding graphs

Suppose that we play the classic game of cops and robber using k cops, with k ≥ 2, on
a graph G. Given the nature of the game, we may choose to leave one cop stationary on
some vertex v of the graph G on which we are playing, and then carry on by assuming that
we are playing in G−N [v] with k − 1 cops as the robber cannot enter N [v] without being
captured. This idea can actually be used to protect subgraphs larger that the neighbourhood
of a vertex.

Let G be a graph, H a subgraph of G and k a positive integer. We say that H is k-
guardable in G if, after finitely many moves, k cops can move on vertices of H in such a
way that, if the robber moves to a vertex in H, then he will be captured in the next turn.
The high-level idea is that one can k-guard a subgraph H if there are k cops in vertices of
H and, from their positions, every vertex in H can be reached by a cop “at least as quickly
as the robber”.

For a graph G and two vertices x, y ∈ V (G), we use dG(x, y) to denote the distance
in G between x and y. We say that H is an isometric of G if for every pair of vertices
x, y ∈ V (H), we have that dH(x, y) = dG(x, y). We say that a graph H is k-guardable if H
can be k-guarded in any graph in which it appears as an isometric subgraph. It should be
noted that if a graph H is k-guardable, then c(G) ≤ k: since H is an isometric subgraph of
itself, then after a finite number of moves we can get k cops to a position such that if the
robber moves to a vertex of H, he will be caught and, since the robber cannot move to a
vertex not in H, his capture is guaranteed.

One of the most useful results in the literature on cops and robbers is a theorem on
using a single cop to guard a path, which was a key element in Aigner and Fromme’s proof
of Theorem 1.0.1:

Theorem 2.0.1 ([1]). Any path is 1-guardable.

It is natural to ask whether one can generalize Theorem 2.0.1 to other classes of graphs,
and there has been recent interest in doing so. In [31], the authors showed that the result is
still true if we replace “path” by “tree”, and in [22] this was further extended to a class of
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graphs the authors called “vertebrate graphs” (we will say more about this in Section 2.4).
This chapter is concerned with characterizing the class of graphs which we can guard using
a single cop.

2.1 The Wide Shadow

In this section we will introduce the central concept of the chapter (and probably of the
thesis), which we call the “Wide Shadow”. In order to do this, we need a few definitions
regarding graph homomorphisms. Given two graphs G and H, a function φ : V (G)→ V (H)
is a homomorphism if for every edge xy ∈ E(G), we have that f(x)f(y) ∈ E(H). We
say that H is a retract of G if H is a subgraph of G and there exists a homomorphism
φ : V (G) → V (H) such that φ(x) = x for every x ∈ V (H). If H is a retract of G, we call
the homomorphism φ a retraction of G onto H. Retracts are useful in the study of cops and
robbers for many reasons, but particularly for the following result, which allows us to find
winning strategies for the robber in a graph G by focusing on some subgraph H.

Theorem 2.1.1 ([5]). Suppose that H is a retract of G and k a positive integer. If the
robber has a winning strategy in H against k cops, then he has a winning strategy in G

against k cops.

In the study of cops and robbers, the notion of a “shadow” has been of extreme impor-
tance as it serves, in some way, as a counterpart of Theorem 2.1.1, allowing the cops to play
the game in a subgraph to restrict the robber’s movement in the original graph. Suppose
we are playing on a graph G and φ is a retraction of G onto a subgraph H. If R denotes
the position of the robber, the shadow of the robber on H is the vertex φ(R). Notice that
if a cop can get on φ(R), then the cop can move in such a way that the robber will not be
able to enter H without being captured. This can be achieved if the cop moves in such a
way that, at the end of his turn, he is in φ(R) after the cops turn.

Notice that Theorem 2.0.1 says that if a path P in a graph G is isometric, then we can
use one cop to guard P . We would like to know which graphs, other than paths, have the
same property.

A family of sets S has the Helly property if for every finite T ⊆ S we have the following
property: if X1 ∩X2 6= ∅ for every X1, X2 ∈ T , then

⋂
T 6= ∅.

This notion was introduced by Helly when he proved the following theorem about convex
sets of Rd:

Theorem 2.1.2 ([20]). Let X1, ..., Xn be a finite collection of convex subsets of Rd, with
n > d. If the intersection of every d+ 1 of these sets is nonempty, then the whole collection
has a nonempty intersection.
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This property has been studied in several areas of combinatorics and discrete mathe-
matics, as it can be seen in [32] and [13]. Here, we focus on the classical use of the Helly
property in Graph Theory, which has to to with the ball-hypergraph of a graph.

Let H be a graph, k a natural number and Nk[v] = {x ∈ V (H) : dH(v, x) ≤ k}. The
ball-hypergraph of H is the family of sets H =

{
Nk[v] : v ∈ V (H) and k ∈ N

}
. The graph

H is a Helly graph if its ball-hypergraph has the Helly property. It is important to notice
that different families of sets related to a graph may satisfy the Helly property, giving rise
to different notions that have been studied throughout the years.

In particular, trees are Helly graphs. However, this is usually stated in the following
stronger form:

Theorem 2.1.3. Let T be a tree. If F the family of all subtrees of T , then F has a the
Helly property.

Notice that the ball-hypergraph of a tree T consists of a family of subtrees of a tree
(although not all subtrees of a tree correspond to balls in T ).

Figure 2.1: The graph on the left is a Helly graph, while the graph on the right is not. To
see this, notice that the balls with radius one and centered on the vertices of degree two
have pairwise non-empty intersection, but no vertex is in all three of them.

Due to their nice metric properties, Helly graphs have been studied in a variety of contexts.
The Helly property is important in the study of clique graphs and the clique operator. It
was shown in [4] that dismantlable clique-Helly graphs converge to the one-vertex graph by
iteratively applying the clique-operator to them. They have also been used in the study of
sandwich problems (a generalization of recognition problems) in [14].

There are many different known characterizations of Helly graphs. For a finite graph G,
the following are equivalent:

1. G is a Helly graph.

2. G is a dismantlable clique-Helly graph (see [24]).

3. G is a pseudomodular graph in which the family of unit balls has the Helly property
(see [3]).
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4. For every vertex v in a diametrical pair, there exists a vertex w dominating v and the
vertex-deleted subgraph G− {v} (see [3]).

5. G is a retract of a strong product of reflexive paths. (see [24]).

6. G is an absolute retract (see [19]).

For a survey on algorithmic properties of Helly graphs, we refer the reader to [15].

2.2 Isometric Helly subgraphs

Let G be a graph, and let H be an isometric subgraph of G. For v ∈ V (G) and x ∈ V (H),
let Hv(x) = {y ∈ V (H) : d(x, y) ≤ d(x, v)} be the ball with radius k = d(x, v) around x in
H. We define the wide shadow of v on H to be the set

SH(v) =
⋂

x∈V (H)
Hv(x).

To define the usual shadow on a path, suppose P is an isometric path in G with a vertex x
as one of its endpoints, and let v ∈ V (G). The shadow of v with respect to x is the vertex
y ∈ V (P ) such that d(x, y) = d(x, v) when d(x, v) ≤ |E(P )| and the endpoint of P different
from x otherwise. In general, the wide shadow of a vertex on an isometric subgraph H may
be empty, but this is not the case when H is a Helly graph.

Using the notion of a wide shadow we provide a short self-contained proof of the following
fact, which is of interest in the context of the cops and robber game.

x

Hv(x)

v

y

Hv(y)

v

z

Hv(z)

v

Figure 2.2: The shaded part of the paths represent some of the balls in the ball-hypergraph
(the ones corresponding to the labeled vertices). The black vertices are in SH(v), the wide
shadow of v on the path H.

Lemma 2.2.1. Let G be a graph and H an isometric subgraph of G. If H is a Helly graph,
then:

i) for every v ∈ V (G), SH(v) 6= ∅;
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ii) for every uv ∈ E(G), and every x ∈ SH(u), we have d(x, SH(v)) ≤ 1.

iii) for every v ∈ V (G), SH(v) induces a connected subgraph of H.

Proof. Let x, y ∈ V (H). Since H is isometric, dH(x, y) = dG(x, y), so by the triangle
inequality we have dH(x, y) ≤ dG(x, v) + dG(v, y), which implies Hv(x) ∩Hv(y) 6= ∅. Since
H is a Helly graph, we know that its ball-hypergraph H has the Helly property, then
SH(v) 6= ∅, proving (i).

Now, let uv ∈ E(G). Notice that for every x ∈ V (H), we have d(x, u) − 1 ≤ d(x, v) ≤
d(x, u) + 1. This implies Hv(x) ∩ NH [y] 6= ∅ for every x ∈ V (H) and y ∈ SH(u), so we
have SH(v)∩NH [y] 6= ∅ for every y ∈ SH(u). It follows that every vertex y ∈ SH(u) either
y ∈ SH(v) or there exists x ∈ NH(y) ∩ SH(v), hence d(y, SH(v)) ≤ 1, completing the proof
of (ii).

To show (iii), suppose the graph GS induced by SH(v) is disconnected and let x and y be
vertices in different components ofGS such that d = dH(x, y) is minimum. Notice thatN [x]∩
Nd−1[y] 6= ∅ and, since x, y ∈ SH(v), we have N [x]∩SH(v) 6= ∅ and Nd−1[y]∩SH(v) 6= ∅.
Since H is a Helly graph, we know that there exists z ∈ N [x] ∩ Nd−1[y] ∩ SH(v). Since
d(x, z) = 1, then z is in the same component of GS as x, but d(z, y) < d, a contradiction to
the minimality of d. Hence, GS is connected.

v

u

SH(v)

v

u

SH(u)

Figure 2.3: The black vertex represents the robber’s position, and the shaded part of the
path contains the vertices of his wide shadow.

Given the connection between guarding graphs and homomorphisms, one might ask if
the wide shadow can be understood in terms of homomorphisms. Let G be a graph and
H a subgraph of G. Notice that if G is a graph and H is a retract of G, then H can be
1-guarded in G if the cops can capture the robber in H.

Let FH be the set of all retractions of G onto H. We will call FH the guarding bundle.
Let R ∈ V (G) denote the position of the robber at some point of the game. If FH is not
empty, then each f ∈ FH provides a strategy for a cop to guard H: if there is a cop on f(R),
then it suffices that the cop remains in f(R) to guard H. Notice that a cop on a vertex
x ∈ V (H) has a guarding strategy if there exists f ∈ FH such that f(R) = x.
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The usual shadow of the robber chooses one retraction and then uses the guarding
strategy given by that. The wide shadow considers all retractions at the same time, and
this makes it a more flexible notion.

v

Figure 2.4: H is the subgraph induced by the round vertices. The gray vertices represent
the wide shadow of vertex v on H.

2.3 Characterization of 1-guardable graphs

There has been recent interest in extending Theorem 2.0.1 to classes of graphs larger than
paths. In this section, we will use the wide shadow to characterize the graphs which can be
guarded by a single cop.

It was shown in [4] that Helly graphs are dismantlable. We include this result as Lemma
2.3.1. and provide a simple proof for the sake of completeness:

Lemma 2.3.1 ([4]). If G is a Helly graph, then G is cop-win.

Proof. Notice that if G is a Helly graph and v is a corner of G, then G− x is also a Helly
graph, so to prove the result it suffices to show that every Helly graph has a corner.

Let u and v be vertices of G with d(u, v) = d, where d is the diameter of G. Let Tu =
Nd−1(u), and for x ∈ N [v], let Tx = N [x]. Clearly Tx∩Ty 6= ∅ for all x, y ∈ N [v], and since
d(u, v) = d, we get Tu∩Tx 6= ∅. Since G is a Helly graph, there exists z ∈ Tu∩

(⋂
x∈N [v] Tx

)
.

Since z 6= v and z ∈ Tx for every x ∈ N [v], then N [v] ⊆ N [z], so G has a corner. The result
follows by induction on |V (G)|.

Finally, we can prove the main result of this section.

Theorem 2.3.1. A graph H is 1-guardable if and only if H is a Helly graph.
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Proof. Let G be a graph and H an isometric Helly subgraph of G. It follows from Lemma
2.2.1 that the wide shadow of the robber on H is not empty. Hence, we can choose one
retraction of G ontoH and use a cop to capture the robber’s shadow given by that retraction
on H (this can be done since H is dismantlable by Lemma 2.3.1). Now, since the cop is in
the robber’s wide shadow, by Lemma 2.2.1, she can always move in such a way that, at the
end of her turn, she is in the wide shadow of the robber.

It follows from Lemma 2.3.1 and Lemma 2.2.1 that H is 1-guardable: we can capture
the wide shadow of the robber by Lemma 2.3.1, and stay in it by Lemma 2.2.1. If the robber
enters H, his wide shadow will consist precisely of a single vertex, so the cop in his shadow
will capture him. This proves the “only if” part of the theorem.

For the “if” part, supposeH is 1-guardable but not a Helly graph. That means there exist
vertices v1, v2, . . . , vk and positive integers d1, d2, . . . , dk such that Ndi

H [vi]∩N
dj

H [vj ] 6= ∅ for
1 ≤ i ≤ j ≤ t but

⋂k
i=1N

di
H (vi) = ∅. Notice that we can say positive instead of non-negative

as if one of the di’s were zero, the vertex vi would be in the common intersection. Let G
be the graph obtained from H by adding a vertex x and internally disjoint paths {Pi}ki=1,
with Pi having length di and joining x with vi. Since Ndi

H [vi] ∩N
dj

H [vj ] 6= ∅ for any i, j, it
follows that H is an isometric subgraph of G.

Assume that the robber is in x. Since H is 1-guardable, a cop has a strategy to capture
the robber if he enters H moving only in the vertices of H. Let us now move the robber to
the vertex x and wait until it is the robber’s turn to move. Let us assume that the cop is in
a vertex u of H from which she can follow the guarding strategy. Since

⋂k
i=1N

di(vi) = ∅,
there exists a vertex vj such that dH(u, vj) > dj . Now, if the robber moves along Pj , he will
be able to get to vertex vj in exactly dj steps. However, since dH(u, vj) > dj , the cop will
be at least at distance two from vj when the robber enters vj , so she cannot capture the
robber in the next turn. This is a contradiction, so H must be a Helly graph.

In particular, this implies Theorem 2.0.1 since paths are Helly graphs.
Our result can also be interpreted as a result about absolute retracts via the following

two theorems from [19] and [4]. In order to state them, we need a couple of additional
definitions:

A reflexive graph is a graph that has a loop on every vertex. Notice that if a graph G
has a vertex v with a loop on it, then there is a retraction of G to v. A reflexive graph H is
an absolute retract if it is a retract of any graph G containing H as an isometric subgraph.
As we pointed out, retracts can be used to guard graphs thanks to Theorem 2.1.1. A hole
in a graph H is a set of vertices {ai}ki=1 and positive integers {xi}ki=1 such that

• H has no vertex v such that d(v, ai) ≤ xi for all i ∈ {1, . . . , k} and

• for every i, j ∈ {1, . . . , k} we have d(ai, aj) ≤ xi + xj .

It turns out that holes can be used to characterize absolute retracts.
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Theorem 2.3.2 ([19]). A graph is an absolute retract if and only if it has no holes.

Also, as mentioned before, absolute retracts coincide with Helly graphs.

Theorem 2.3.3 ([4]). A graph is an absolute retract if and only if it is a Helly graph.

However, this fact was never stated in terms of guarding subgraphs of a graph in the
game of cops and robbers. Moreover, the use of the wide shadow allows us to look at the
whole guarding bundle simultaneously instead of a single retraction.

2.4 Lu and Wang’s Vertebrate Graphs

Recently, Lu and Wang extended Theorem 2.0.1 to a class of graphs which they call verte-
brate graphs. They give a metric characterization of vertebrate graphs and then use it to
show that they are 1-guardable (see Theorem 2.4.1). Their method makes use of two cops
to guard the graph, albeit the second cop is only needed for a finite number of turns.

Using Theorem 2.3.1 we can give a shorter proof of Theorem 2.4.1 by showing that
vertebrate graphs are Helly graphs; this also shows that a second cop used in the proof of
Theorem 2.4.1 is not required. We begin by giving the necessary definitions from [22].

Let G be a graph and H a subgraph of G.For x ∈ V (G) and c ∈ V (H), we define
NH(c, x) = {v ∈ NH(c) : d(v, x) = d(c, x)− 1}. A block graph is a connected graph G in
which every block (i.e. maximal 2-connected subgraph) is complete. A connected graph
G is an extended block graph if it can be obtained from a block graph by blowing-up the
cut-vertices, i.e., replacing each cut vertex by a clique and connecting every vertex of the
clique to every neighbor of the cut vertex (see Figure 2.5). Note that, since the only vertices
we blow up to obtain an extended block graph from a block graph are cut vertices, each
extended block graph has a unique block graph associated with it by contracting each joint
block to a single vertex.

A simple connected graph G is a vertebrate graph if there exists B, an induced subgraph
of G, such that:

• B is an extended block graph.

• For all c ∈ V (B), x ∈ V (G) with d(c, x) ≥ 2, there exists c′ ∈ NB(c, x) such that
NG[c′] ⊇ NG[v] for all v ∈ NG(c, x).

We will refer to the subgraph B in the previous definition as a backbone of G.
Notice the following fact about vertebrate graphs, which we state as a lemma:

Lemma 2.4.1. Let G be a vertebrate graph with backbone B. If x ∈ V (G), then there exists
c ∈ V (B) such that c ∈

⋂
v∈NG[x]N [v].

Proof. Let c be a vertex in NB[x]. If there exists y ∈ NG[x] \NG[c], then there exists c′ ∈
NB(c, y) such that NG[c′] ⊇ NG[v] for all v ∈ NG(c, y). In particular, NG[x] ⊆ NG[c′].

11



(a) A block graph. (b) An extended block graph.

Figure 2.5: The black vertices on the block graph (a) were blown-up into cliques to obtain
the extended block graph (b).

Theorem 2.4.1 ([22]). Any vertebrate graph is 1-guardable.

Proof. Suppose that G is a vertebrate graph, with a backbone B, which is not a Helly
graph. Since G is not a Helly graph, there exists an integer k ≥ 3, a set of vertices {vi}ki=1
and a set of positive integers {di}ki=1 such that Ndi [vi] ∩Ndi [vi] 6= ∅ for all 1 ≤ i < j ≤ k

but
⋂k

i=1N
di [vi] = ∅.

Let T be the block-cut tree corresponding to the block graph from which B is obtained.
Let Ti be the minimal subtree of T whose vertices correspond to the blocks and cut vertices
containing vertices of Ndi [vi]. By Claim 2.4.1, we have Ndi [vi] ∩ Ndj [vj ] ∩ V (B) 6= ∅, so
V (Ti)∩V (Tj) 6= ∅. Since a family of subtrees of a tree has the Helly property, then there is
a subtree T ′ such that V (T ′) ⊆ V (Ti) for 1 ≤ i ≤ k. Let A be subset of V (B) corresponding
to a vertex of T ′. Notice that A ⊆ Ndi(vi) if vi ∈ V (B) or, by Lemma 2.4.1, if di = 1.

Let C ⊆ B be the smallest clique such that x ∈ Ndi(vi) if vi ∈ V (B) or di = 1, and such
that N [vi] ∩ C 6= ∅ for 1 ≤ i ≤ k. Notice that the fact that G is not Helly implies |C| > 2.
We say that a vertex u ∈ V (G) \C is a private neighbour in C if |N(u) ∩ (C)| = 1. We may
also assume that C has the minimum possible number of private neighbours.

Since C is of minimum order, we know that for every x ∈ C, there exists i ∈ {1, . . . , k}
such that di = 1 and N [vi]∩C = {x}. Let x and y be vertices in C and assume that v1 and
v2 are private neighbours in C such that v1 ∈ N(x) and v2 ∈ N(y).

If N [x]∩N [v1]∩N [v2] 6= ∅, then exists c ∈ V (B) such that (NG[v1] ∪N [y]) ⊆ NG[c], and
so by taking C ′ = (C \ {y})∪{c} we obtain a clique C ′ of the same order as C but with fewer
private neighbours, a contradiction. Hence, we must have that NG[x]∩NG[v1]∩NG[vk] 6= ∅
and analogously that NG[y]∩NG[v1]∩NG[v2] 6= ∅. In particular, this implies d(v1, v2) = 2
and, by Lemma 2.4.1, there exists z ∈ NB[v1] ∩NB[v2].
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Let u and w be vertices inB obtained by applying Lemma 2.4.1 to v1 and vk, respectively.
Notice that x, y, x, u, w are vertices of B contained in a cycle of length five. Since B is
chordal, this cycle cannot be induced, so without loss of generality we may assume that
{x, u} ⊆ N [w]. Since d(w, v1) = 2, there exists c ∈ V (B) such that (NG[x] ∪N [z]) ⊆ NG[c].
However, by taking C ′ = (C \ {x}) ∪ {c} we obtain a clique C ′ of the same order as C but
with fewer private neighbours.

This implies there exists x ∈ C such that x is adjacent to every private neighbour in C.
Hence, x ∈

⋂k
i=1N

di [vi], contradicting the assumption that G was not Helly.

2.5 Other ways to guard a subgraph

While the problem of 1-guarding an isometric subgraph is relatively well understood thanks
to Theorem 2.3.1, we may want to extend this notion further and guard an isometric sub-
graph H of G using several cops. This poses the problem of finding properties that imply
that H can be k-guarded for some k ≥ 2. The idea of finding a partition of H into subgraphs
that are t-guardable for t < k has been explored by Clarke in [11], where the problem of
partitioning a graph into isometric paths was studied. In light of this, the following questions
seems to be of interest in the area:

Question 2.5.1. What is the minimum number of isometric Helly graphs into which we
can partition a graph G of order n?

In particular, it would be of interest to look at the problem of partitioning a graph into
isometric trees.

On the other hand, the following seems like a natural question

Question 2.5.2. Is there a function f(k) such that, if H is an isometric subgraph of G
(not necessarily a Helly subgraph) and c(H) = k, then H can be f(k)-guarded?

Unfortunately, this fails for k = 1. It is not hard to check that the subgraph H in Figure
2.6 cannot be guarded by a single cop despite being isometric and dismantlable, but two
suffice. In this section we provide a family of graphs, generalizing the one in Figure 2.6
which contains dismantlable isometric subgraphs that require arbitrarily many cops to be
guarded.

Let r ≥ 2 and s ≥ 1 be integers and let t = 2r − 1. Let T be a complete graph with

t vertices and for each X ∈
(
V (T )
r

)
, let KX be a copy of the complete graph on s + r

vertices. We define H(r, s) as the graph obtained by identifying r vertices in KX with the

set X for every X ∈
(
V (T )
r

)
. The complete graph T will be referred to as the base of H.

Let G be a graph and S a subset of the vertices of G. We say that S is a dominating
set in G if for every vertex x ∈ V (G) there exists v ∈ S such that x ∈ N [v].
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x

Figure 2.6: The dismantlable subgraph H induced by the square vertices is isometric in the
whole graph.

Theorem 2.5.1. For every positive integer k ≥ 3 there exist graphs G and H such that

• H is an isometric subgraph of G,

• c(H) = 1, and

• more than k cops are required to guard H in G.

Proof. Let r and s be as above. Suppose that s > k and r > k and t = 2r− 1, and consider
the graph H = H(t, s).

Notice that a dominating set in H must contain at least r vertices since no smaller set
can dominate a vertex in each KX \X, and any subset of V (T ) with r elements dominates
H. Also, a subset A of V (H) is dominating if and only if A ∩ V (KX) 6= ∅ for every X. We
know that c(H) = 1 since H is chordal, and H has diameter two since for every X,Y ∈ T ,

where T =
(
V (T )
r

)
, we have X ∩ Y 6= ∅.

Let A be a family of subsets of V (H) \ V (T ) such that |S ∩KX | = 1 for each X ∈ T
and S1 ∩ S2 = ∅ for distinct S1, S2 ∈ A. Let G be the graph obtained from H by adding a
vertex vS adjacent to every vertex in S, for each S ∈ A . Since H has diameter two, H is
an isometric subgraph of G. If we have k cops in H, since γ(H) > k, there exists X0 ∈ T
such that there is no cop KX0 . Also, since s > k, there exists S ∈ A such that there is no
cop in N [vS ], so we can place the robber in vS . Notice that regardless of the how the cops
choose to move, there exists a vertex in N(vS) that no cop can reach in one move, so the
robber can enter H and no cop can capture him in the following turn.

While Theorem 2.5.1 already shows that the Helly property is necessary to in order to
bound the number of cops required to guard an isometric subgraph H with c(H) = 1, it
might seem like an artificial example as the robber cannot enter H arbitrarily many times
if the cops are smart. However, we may strengthen this result to obtain a graph in which
the robber may evade the cops indefinitely as well as enter H an infinite number of times.
The following theorem shows that even for relatively simple dismantlable graphs, many cops
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might be needed to prevent the robber from entering them an infinite number of times in
the game of cops and robbers.

Theorem 2.5.2. For every positive integer k, there exist graphs G and H such that H is a
chordal graph of diameter 2 and an isometric subgraph of G, and no matter how the k cops
move, the robber can step on a vertex of H arbitrarily many times without being captured.

Proof. Let k be a fixed positive integer and let H = H(m, 1) where m is a large positive
integer (lower bounds for m will be given later in the proof). Notice that given any set C
of vertices in the base of H, with |C| < m, there will be

(2m−1−|C|
m

)
subsets of m vertices of

the base of H containing no vertices of C. Let X be the set of vertices of H that are not in
the base and take a set Y of new vertices, with |Y | = |X|, and add edges between X and
Y so that X ∪ Y induces a bipartite graph with the property that if the robber is in X ∪ Y
and it is his turn to move, there is a vertex in its neighbourhood in X ∪ Y that no cop can
reach in one move, which we will call a safe neighbour.

To show that such a bipartite graph exists, we will use a probabilistic argument. Let
Ax be the event “the vertex x ∈ X has no safe neighbour in Y ” and By the event “the
vertex y ∈ Y has no safe neighbour in X”. We will show that if m is large enough, the
probability that a random bipartite graph satisfies those properties is non-zero, so such a
bipartite graph exists.

Let 0 < 1
4k < p < 1

2k and consider a random bipartite graph on X ∪ Y where the edge
xy for x ∈ X and y ∈ Y is chosen with probability p. We claim that the robber always has
a safe neighbour he can move to, regardless of the cops’ positions. Suppose that the robber
is in X. In this case, since the robber wants to move to Y , any cop in the base of H will not
be able to prevent the robber from moving to Y , so we may assume that all the cops are
in X ∪ Y . Also, notice that a cop in u ∈ Y can only prevent the robber from moving to u,
which she can also achieve by being on a neighbour of u in X. This implies that the worst
situation for the robber is when all cops are in X, so it suffices to show that the robber can
evade the cops in this case.

Suppose that the robber is at x ∈ X. Notice that the robber will be unable to move
from x to y if x and y are not adjacent (which happens with probability (1− p)) or if there
is a cop at a vertex u ∈ X, where both xy and uy are edges of the graph, which happens
with probability p2 for every cop. We may assume that all cops are in X, as a cop in z ∈ Y
would only be able to prevent the robber from stepping on z, which is also achieved by
having a cop on a neighbour of z in X.

Notice P(Ax) =
∏

y∈Y P(y is not a safe neighbour of x) due to independence. As noted
before, P(y is not a safe neighbour of x) ≤ kp2 + (1− p), and we have that

kp2 + (1− p) ≤ 1
4k + 1− p = 1− (p− 1

4k ) < 1.
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By taking ε = p − 1
4k , we get that P(y is not a safe neighbour of x) ≤ 1 − ε, which yields

P(Ax) = (1− ε)|Y |. We now have that

P
( ⋃

x∈X

Ax

)
≤ |X|P(Ax)

≤ |X| (1− ε)|Y |

≤ |X|e−ε|Y |

<
1
2 ,

where the strict inequality holds for large enough m.
Suppose now that the robber is on a vertex y ∈ Y . Just as in the other case, the robber

will not be able to move from x to y if x and y are not adjacent or if a cop at a vertex u ∈ X
is also adjacent to y. However, we must now consider that there might be cops in the base
of H guarding some of the vertices of X. However, regardless of the number of cops in the
base of H or their positions, there are always at least

(2m−1−k
m

)
vertices in X that no cop

in H can see, and so

P

⋃
y∈Y

By

 ≤ (2m− 1
m

)
P(By)

≤
(

2m− 1
m

)
(1− ε)(

2m−1−k
m )

≤
(

2m− 1
m

)
e−ε(2m−1−k

m )

< 22me−ε2m/2

<
1
2 ,

where the strict inequalities hold when m is large enough. Then it follows that

P

 ⋃
x∈X

Ax ∪
⋃

y∈Y

By

 ≤ P
( ⋃

x∈X

Ax

)
+ P

⋃
y∈Y

By

 < 1.

We conclude that there exists m such that in G, the graph obtained from H by adding a
set of vertices Y with |Y | =

(2m−1
m

)
and the corresponding bipartite graph between Y and

the vertices of H, is a graph where H is an isometric subgraph and the robber can enter H
arbitrarily many times without being captured by k cops.
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Chapter 3

Planar graphs and lazy cops

Ever since Aigner and Fromme published their seminal paper about cops and robbers on
planar graphs, there has been considerable interest in the study of the connections between
the topological properties of a graph and the cop number. It is therefore not unexpected
to see that a frequent question that arises whenever a new variation of the cop number is
introduced, is whether that parameter is bounded for the class of planar graphs.

Recently, Gao and Yang [17] studied the game of lazy cops and robbers (which they
refer to as “1-cop moves game”) in planar graphs. They were able to find a planar graph
in which three cops cannot win the game if only one of them can move at a time, a very
surprising result. Aigner and Fromme’s result tells us that if three cops are allowed to move
every turn, they can capture the robber in any planar graph, while Gao and Yang showed
that if only one is allowed to move, then three cops do not suffice. Recall that c`(G) is the
minimum number of cops that can guarantee the robber’s capture in G with the restriction
that at most ` cops can move each turn. Yang conjectured [33] the following for the case
when two cops are allowed to move each turn:

Conjecture 3.0.1 ([33]). For every planar graph G, we have c2(G) ≤ 3.

In this chapter we will provide a proof of that conjecture, as well as some interesting
directions for future research.

3.1 Bypaths and wide shadows

In order to describe when the wide shadow of the robber will be more than a single vertex,
we need to define an additional structure which we call a bypath, and show its connection
with the wide shadow of the robber.

Let G be a graph, H a subgraph of G, and P = v1v2 · · · vk an isometric path in H. A
path B = b1b2 · · · bt (t ≥ 3) contained in H is called a bypath of P in H if B ∩ P = {b1, bt}
and the path P〈B〉 = Pb1BbtP is also an isometric path in H. Note that if b1 = vi and
bt = vj (where i < j), then j − i = t− 1 since P and P〈B〉 are both isometric. The vertices
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b1 and bt are called the branching vertices of B, and the path P〈B〉 is called the bypath B
of P , and we will denote it by P〈B〉. A path P is bypath-free in H if H contains no bypath
of P . Observe that if P is bypath-free in H, then every subpath of P is bypath-free in H.
Notice that, in a simple graph G, all paths of length 1 are trivially bypath-free in G. In the
following, we will refer to paths of length at least 2 as non-trivial.

v1 v2 v3 v4 v5

b2 b3

x y

Figure 3.1: The path B = v2b2b3v5 is a bypath of P = v1v2v3v4v5, while v3xyv5 is not.

Lemma 3.1.1. Let G be a graph and P a non-trivial isometric path of G. If v is a vertex
of G not in P , then |SP (v)| = 1 if and only if there exists a bypath of P in G containing v.

Proof. Notice that if B is a bypath of P with branching vertices u and w, then d(v, u) +
d(v, w) = d(u,w) for every v ∈ V (B), so |Pv(u) ∩ Pv(w)| = 1. By Lemma 2.2.1 we know
that SP (v) 6= ∅, so the fact that SP (v) ⊆ Pv(u) ∩ Pv(w) implies |SP (v)| = 1.

For the other direction, let v ∈ V (G)− V (P ) such that SP (v) = {x}. Since P is a path,
there exist vertices u,w ∈ V (P ) such that Pv(u) ∩ Pv(w) = {x}. Let y, z be the vertices of
P such that d(y, z) is minimum with the property Pv(y) ∩ Pv(z) = {x}.

Let By and Bz be shortest paths from v to y and from v to z, respectively. Notice
that V (By) ∩ V (Bz) = {v} (otherwise, it would contradict the assumption of P being
isometric), so concatenating By and Bz results in a path B, and take P ′ = PyBzP . Since
d(y, v) + d(v, z) = d(y, z), we have dP (y, z) = dP ′(y, z), and so P ′ is also an isometric path.
Hence B is a bypath of P in G.

3.2 The 2-cops-move number of planar graphs

The purpose of this section is to prove that c2(G) ≤ 3 for every connected planar graph G.
We say that an induced subgraph H is k-leisurely-guardable if it is k-guardable, and

there exists a k-guarding strategy of H for a set of cops C = {C1, C2, . . . , Ck} such that,
after a finite number of moves, there is a turn where either the robber enters H or at least
one Ci can stay still and H is still being k-guarded by C.

Lemma 3.2.1. Let G be a planar graph and P an isometric path in G. If P is bypath-free
in G, then P is 1-leisurely-guardable.

Proof. After a finite number of moves, we can get one cop C to move to a vertex in the
wide shadow of the robber on P . Once C is in SP (R), she will stay still if she is in SP (R)
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v

u

x1 x2 x3 xt−2 xt−1 xt· · ·

H

Figure 3.2: The partition induced by vertices u, v and their common neighbours.

after the robber’s turn, and will move when her position after the robber’s turn is not in
the wide shadow of the robber. By Lemma 2.2.1, the cop can always get back in the wide
shadow of R with a single move. By staying in the wide shadow of the robber, the cop can
1-guard P .

If P has length `, with ` ≤ 2, the cop can guard it without moving by simply staying
at some vertex of P , so we may assume ` ≥ 3. Since P is bypath-free in G, we have
|SP (R)| ≥ 2, so the robber can only move at most ` consecutive times in such a way that
the cop will have to move in order to stay in the wide shadow. Hence, after at most `
turns, the robber will either enter P or the cop can stay still and be 1-guarding P , so P is
1-leisurely-guardable.

Observation 3.2.1. If H is a connected graph and v ∈ V (H), then one of the following
holds:

i. N [v] = V (H).

ii. There exists a non-trivial isometric path P in H, starting at v, which is bypath-free
in H.

iii. There exists a vertex u ∈ V (H) \N(v) such that |N(v) ∩N(u)| ≥ 2.

Notice that in case (iii) of Observation 3.2.1, if there is a vertex u at distance two from
v having N(u) ∩ N(v) = {x1, x2, . . . , xt}, then the paths uxiv partition the plane into t
“faces” (see Figure 3.2).

In the sequel, we will play the game on a graph embedded in the plane.
Whenever we restrict the robber to be in a region whose boundary is a closed curve,

we will assume he is in the curve’s interior. By keeping this in mind, given two internally
disjoint paths with the same endpoints in G, say P and Q, we will use R(P,Q) to denote
the set of vertices contained in the interior of the curve defined by P ∪Q.

The following lemma provides us with a way of forcing the robber to be inside a region
whose boundary can be leisurely-guarded.
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Q

P

Figure 3.3: There are several bypaths for the path Q. The shaded area corresponds to the
region of the plane defined by the chosen bypath of Q.

Lemma 3.2.2. Let G be a planar graph, u, v ∈ V (G), P and Q be internally disjoint
uv-paths in G. Suppose that

• P is isometric and bypath-free in G[R(P,Q) ∪ V (P ) ∪ V (Q)] and

• Q is isometric in HQ = G[R(P,Q) ∪ V (Q)].

Then either Q is bypath-free in HQ or there exists a bypath B of Q in HQ such that

i. P is isometric and bypath-free in G
[
R
(
P,Q〈B〉

)
∪ V (P )

]
.

ii. Q is isometric and bypath-free in G
[
R
(
Q,Q〈B〉

)
∪ V (Q)

]
.

iii. Q〈B〉 is isometric in G
[
R
(
P,Q〈B〉

)
∪ V

(
Q〈B〉

)]
as well as isometric and bypath-free

in G
[
R
(
Q,Q〈B〉

)
∪ V

(
Q〈B〉

)]
.

Proof. Suppose that Q is not bypath-free in HQ and let B be a bypath of Q in HQ such
that R(Q〈B′〉, Q) ⊆ R(Q〈B〉, Q) implies B′ = B for every bypath B′ of Q in HQ (see Figure
3.3). Let us check that B satisfies the desired properties.

Clearly, (i) follows from the fact that R(P,Q〈B〉)∪V (P ) ⊆ R(P,Q). Since Q is isometric
inHQ, then Q and Q〈B〉 have the same length, and so are isometric in G[R(Q,Q〈B〉)∪V (Q)∪
B]. If Q has a bypath B′ in G[R(Q,Q〈B〉) ∪ V (Q)], then R(Q,Q〈B〉) ⊆ R

(
Q,Q〈B〉

)
, which

implies B = B′, a contradiction. If Q〈B〉 has a bypath B′ in G[R(Q,Q〈B〉)∪V
(
Q〈B〉

)
], take

Q′ = (Q〈B〉)〈B′〉 so then R(Q,Q′) ( R
(
Q,Q〈B〉

)
. In this case, there exists a bypath B′′ in

HQ such that Q〈B′′〉 = Q, which contradicts the choice of B. This shows (ii) and (iii).
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The proof of Theorem 3.2.1 is similar to the proof of Theorem 2.0.1 provided in [8], but
the cops’ strategy uses our Lemmas 3.2.1 and 3.2.2. At any point of the game, the robber
territory is the set of vertices the robber can enter without being captured by a cop, and the
rest of the vertices form the cop territory. Notice that if the robber territory is empty, that
means the robber has been captured. The idea of the proof is to play the game using three
cops in such way that we reduce the size of the robber territory until it becomes empty.

Theorem 3.2.1. c2(G) ≤ 3 for every planar graph G.

Proof. Let G be a planar graph and fix a drawing of G in the plane. We will distinguish
three different situations the game can be in:

a) A cop is leisurely-guarding a path P of a subgraph H of G, and every path from the
robber to the cop territory includes a vertex of P .

b) Two cops leisurely-guarding P ∪Q, where P and Q are internally disjoint paths joining
the same two vertices, and any path from the robber to the cop territory includes a
vertex of P ∪Q. The subgraph H is either in the internal or external region bounded
by P ∪Q (by possibly performing an inversion, we can always assume it is the internal
region).

c) A cop is on a vertex v of a subgraph H of G, and every path from the robber to the
cop territory goes through v.

When we say that a cop guards a path, we will assume that we are using the wide
shadow strategy given by Lemma 2.3.1.

Let C1, C2 and C3 be the cops and begin the game by placing them on the same vertex
v. Let r be the robber’s position. If v dominates G we are done. Otherwise, Observation
3.2.1 guarantees that, by taking H = G, and moving at most two cops, we are in case (a)
or (b).

• If we get property (ii) in Observation 3.2.1, then by moving one cop to leisurely-guard
P we get to case (a).

• If we get property (iii), then by moving C1 and C2 to v and u, we get guard N(u) ∩
N(v). Notice that the subgraph induced by the edges between {u, v} and N(u)∩N(v)
is isomorphic to K2,n. Since it is drawn in the plane, this induces a quadrangulation
of the plane, and the robber must be contained in the interior of one of this square,
else he would be captured by C1 or C2. Let x, y ∈ N(u) ∩N(v) be the vertices such
that the paths P = uxv and Q = uyv satisfy that the robber is in R(P,Q) but
R(P,Q) ∩N(u) ∩N(v) 6= ∅. If we now move C1 to x and C2 to y, we arrive in case
(b).
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Figure 3.4: Q corresponds to the shortest vivj-path using vertices in Y .

We will show that starting with case (a), (b) or (c), we can move the cops and get again
to one of the three cases, increasing the cop territory, moving at most two cops every turn.
We will use T to denote the set of vertices in the cop territory.

Suppose we start with case (a) and C1 is leisurely-guarding P = v1v2 . . . vk with k ≥ 2
in H. Let Y be the component of H − T containing the robber. If there is a unique vertex
of P with neighbours in Y , say x, then we can move C2 to x, getting to case (c).

If P has more than one vertex with neighbours in Y , let vi and vj , with i < j, be the first
and last vertices of P with neighbours in Y . Let Q be a shortest vivj-path whose internal
vertices are in Y , and move C2 to guard Q (see Figure 3.4). The robber cannot enter the
cop territory unless he enters viPvj , so we may assume that P is a vivj-path since viPvj is
also isometric and bypath free in H, which is guaranteed by our choice of vi and vj . Notice
that the robber is in a component of Y −Q which is either in the bounded or unbounded
face determined by P ∪Q. Without loss of generality, we may assume he is in the bounded
face. If Q is being leisurely-guarded by C2 we get case (b), adding the internal vertices of Q
to the cop territory. Otherwise, P is isometric and bypath-free in G[R(P,Q)∪V (P )∪V (Q)]
and Q is isometric in HQ = G[R(P,Q) ∪ V (Q)], so we can apply Lemma 3.2.2 and obtain
the bypath B of Q in HQ.

Since P is being leisurely-guarded by C1, we can use the turns in which C1 stays still
to move C3 and capture the robber’s wide shadow on Q〈B〉. Once C3 catches the robber’s
wide shadow on Q〈B〉, we have two possible outcomes:

1. If r ∈ G[R(Q,Q〈B〉], then we get to case (b) by possibly taking subpaths of Q and
Q〈B〉, since both paths would be leisurely-guarded, and C1 is free to move.

2. If r ∈ G[R(P,Q〈B〉], cop C2 is free to move. Also, we can apply Lemma 3.2.2 again until
the robber’s territory is empty or he is in a region bounded by two leisurely-guarded
paths, arriving to case (b).

In any case, we have increased the cop territory at least with the bypath B.
Now, suppose we start with case (b), with C1 and C2 leisurely-guarding P and Q,

respectively. Let Y be the component of H − (P ∪Q) containing the robber. Without loss
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Figure 3.5: The case when P ∪Q has exactly two vertices in the robber territory.

of generality, we may assume Y is contained in the interior of P ∪Q. If only one vertex v of
Y has neighbours in P ∪ Q, then we can use the turns when C1 and C2 stay still to place
C3 on v and get to case (c).

If P ∪Q has exactly two neighbours in Y , namely u and v, let S be a shortest uv-path
in Y (see Figure 3.5). We can move C3 to guard S during the turns when C1 or C2 stay
still. Once C3 is guarding S, the robber cannot enter the cop territory since he could only
do it using u or v, which are being covered by C3. This means C1 and C2 are free.

If S has length at most two, we get to case (a) by placing a cop in the middle vertex of
S (or any vertex of P in the case of length one). If S has length more than two, then we
can add two vertices to the graph, x and y, and make them adjacent to both u and v, and
(by possibly applying an inversion) draw them one to the left and one to the right of the
graph induced by V (P )∪ V (Q)∪ Y (these additional vertices are included only in order to
apply Lemma 3.2.2). The paths uxv, S and uyv form a theta-graph, and the robber is in
a component Y of G − S inside the left or the right bounded region defined by the theta
graph. Without loss of generality, we may assume he is the region bounded by P = uxv and
S. The fact that S has length more than two implies P is isometric and bypath-free in the
graph, so by applying Lemma 3.2.2 and moving at most two cops each turn, we can arrive
to one of two situations:

1. The robber is in the interior of the region defined by P and a path Q in Y , which is
isometric and bypath-free path in G[Y ∩R(P,Q) ∪ V (Q)], being leisurely-guarded.

2. There are two paths Q and Q′ in Y , such that the robber is in G[R(Q,Q′) ∪ V (Q) ∪
V (Q′)], Q is isometric and bypath-free in G[Y ∩R(Q,Q′)∪V (Q)], and Q′ is isometric
and bypath-free in G[Y ∩ R(Q,Q′) ∪ V (Q′)], and both Q and Q′ are being leisurely-
guarded.
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Since we get to case (a) in the first situation, and case (b) in the later, and we add the
vertices u and v to the cop territory, we make progress.

We may now assume that at least one of P and Q has at least two neighbours in Y .
Without loss of generality, we may assume P = v1v2 . . . vk, with k ≥ 2, has two distinct
neighbours in Y . Let vi and vj , with i < j, be the first and last vertices of P with neighbours
in Y . Let u1 and u2 be neighbours of vi and vj in Y , respectively, such that dY (u1, u2) is
minimum. Let S be a shortest u1u2-path in Y . In this case, we can move C3 during the
turns when C1 or C2 can stay still and captures the robber’s wide shadow in S′ = uPviSvjv.
At this point, the robber will be in one of the bounded regions in the interior of the theta
graph formed by P,Q and S′.

Without loss of generality, the robber is in R(P, S′). Since we can leisurely-guard P and
we are guarding S, cop C2 is free. By applying Lemma 3.2.2, we can get to a situation where
the robber will be in a region bounded by two paths that are being leisurely-guarded. At
the end of this process, we added vertices u and v to the cop territory, so we have increased
the cop territory and we get to case (b).

Finally, assume we are in case (c). By applying Observation 3.2.1 it is easy to see that
properties (i), (ii), and (iii) get us to cases (a), (b), and (c), respectively, by moving at
most two cops each turn.

3.3 Is there something between c1 and c2?

Recall that we defined ck(G) as the number of cops required to guarantee the robber’s
capture in G with the added restriction that at most k can move every turn. In the case
of the class of planar graphs G, we know that c1(G) ≥ 4 for some G ∈ G but c2(G) ≤ 3
for every G ∈ G. However we might wonder if there is a way to define an “intermediate”
parameter between c1 and c2.

First, we might think of using “fractional cops” to move on the graph and capture the
robber. Formally, we can define this as follows:

Let G be a connected graph. A cop function on G is a function C : V (G)→ R≥0. We say
a cop function C has weight WC if

∑
v∈V (G)C(v) = WC . Let C and C ′ be two cop functions

on G. For a positive real number r, we say that C can r-move to C if the following three
conditions are satisfied:

• WC = WC′ .

• For every v ∈ V (G), C ′(v) ≤
∑

u∈N [v]C(u).

•
∑

v∈V (G) |C(v)− C ′(v)| ≤ 2r.

If the robber is on a vertex u ∈ V (G), we will say that a cop function captured the robber
if C(u) ≥ 1. For a graph G, we say that cr(G) ≤ W if there exists a cop function C such
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that, for every initial position of the robber on G and any strategy for the robber, there
exists a sequence of cop functions {Ci}i∈N with the following properties:

• C0 = C.

• W (C) = W .

• Cj can r-move to Cj+1 for every j ∈ N.

• Cm captured the robber for some m ∈ N.

While we can ask whether any result on cops and robbers extends to this variant, the
following question seems interesting:

Question 3.3.1. What is the smallest positive real number r such that for every connected
planar graph G we have cr(G) ≤ 3?

For the second, we will restrict the number of cops.
This first version keeps the “number of cops” that can move constant every turn and

allows parts of the cops to move. The second will instead change the number of cops that
can move every turn.

Let S = {ni}i∈N be a sequence of positive integers. For a graph G, let cS(G) be the
minimum number of cops that can guarantee the robbers capture in G with the restriction
that at most nj cops can move during round j. If S1 and S2 are the constant sequences 1
and 2, respectively, we would have cS1(G) = c1(G) and cS2(G) = c2(G).

We may define an order on the set of sequences of positive integers as follows: Let
A = {ai}i∈N and B = {bi}i∈N be two sequences of positive integers. We say that A <S B if
ai < bi for every i ∈ N and for every m ∈ N there exists M ≥ m such that aM < bM .

Here, we pose the following question:

Question 3.3.2. Is there a sequence of positive integers A, with A <S S2 such that cA(G) ≤
3 for every planar graph G?
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Chapter 4

Active cops and robbers

We will now focus on a different way of restricting the movement of the players: no player
is allowed to stay put during their turn. In contrast with the case of lazy cops and robbers,
it is less obvious that this restriction actually changes the game in a significant way, so we
will start by showing that, indeed, it does.

4.1 Differences between the classic and the active version

As stated in the introduction, we will use ca(G) to denote the minimum number of cops
required to guarantee the robber’s capture in G for the active version of the game. We will
start by showing upper and lower bounds for the active cop number, a result proved in [18].

Theorem 4.1.1. For every connected graph G, we have c(G)− 1 ≤ ca(G) ≤ 2c(G).

Proof. For the upper bound, suppose that c(G) = k. Let S be a winning strategy por k
cops P1, P2, . . . , Pk. To adapt S to the active version, for each 1 ≤ i ≤ k, place a cop Ci on
the same vertex as Pi in the usual game on G. Now, for 1 ≤ i ≤ k, place a new cop C ′i on a
vertex adjacent to Ci. Suppose the robber chooses his initial position on G. We may adapt
S to obtain a strategy S′ for the active version by doing the following: Every time a cop
has to move in S, the corresponding pair of cops Ci and C ′i will move in such a way that
exactly one of them is on the same vertex as the one indicated for Pi by S, and the other
one is on a vertex adjacent to it. Notice that if Pi is ever required to stay put, then Ci and
C ′i can simply switch positions, and so we can guarantee the robber’s capture.

For the lower bound, notice that if ca(G) ≤ c(G)− 2, then we may capture the robber
in the usual game by using one cop whose only job is to chase the robber and then k− 1 to
follow the active strategy. Since this would give a winning strategy in the usual game using
k cops, we must have that ca(G) ≥ c(G)− 1.

We might now ask if this bounds are best possible.
In [18], a graph Gk such that ca(Gk) = 2c(Gk) = 2k was constructed for every positive

integer k. Additionally, it was shown that there is an infinite family of graphs G such that
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Figure 4.1: The graph H1.

ca(G) = 1 and c(G) = 2 for every G ∈ G. We will now build, for each positive integer k, a
graph Hk such that ca(Hk) = c(Hk)− 1 = k.

The following theorem is concerned with the behaviour of the active cop number with
respect to the Cartesian product.

Theorem 4.1.2 ([18]). For every connected graphs G and H, ca(G�H) ≤ ca(G) + ca(H).

The graph H1, which has c(H1) = 2 and ca(H1) = 1, is depicted in Figure 4.1. Let
Hk = Hk−1�H1 for k ≥ 2.

Theorem 4.1.3. ca(Hk) = c(Hk)− 1 = k.

Proof. Since H1 has C4 as a retract, by Theorem 2.1.1 we have that c(H1) = 2. Notice that
H1 has ca(H1) = 1. It follows by induction on k and Theorem 4.1.2 that ca(Hk) ≤ k.

In order to show that ca(Hk) = k, we will show that c(Hk) ≥ k + 1. Let G1 = C4 and
for every k > 1 let Gk = Gk−1�C4. For every vertex v ∈ V (Hk) and 1 ≤ i ≤ k, let [v]i be
the i − th coordinate of v. Let vx ∈ V (Hk) be the vertex such that [vx]i = [v]i if [v]i 6= x

and [vx]i = x otherwise. Take f : V (Hk)→ V (Hk) such that f(v) = vx.
It is easy to see that the image of f is isomorphic to Gk and that f is a homomorphism.

Hence, in light of Theorem 4.1.1, it suffices to show that c(Gk) > k to prove that c(Hk) =
k+1. Observe that for every pair of distinct vertices x, y ∈ V (Gk), we have |N [x] ∩N [y]| ≤ 2
and d(x) = d(y) = 2k. Since |V (Gk)| = 4k, we have that γ(Gk) > k, so regardless of how
k cops choose their initial position, there exists a vertex which the robber can choose as
his initial position that is not adjacent to any cop. Since no cop can guard more that two
of the robber’s neighbours and, in order to force him to move, one cop must be adjacent
to the robber and as such can only guard one of the robber’s neighbours, we conclude
that the robber has winning strategy against k cops in Gk and, by Theorem 2.1.1, he has
a winning strategy against k cops in Hk. Due to Theorem 4.1.1, we get ca(Hk) = k and
c(Gk) = k + 1.
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Figure 4.2: The shaded area represents the wide shadow of the robber. Cops C1 and C2 are
tandem-guarding the right path, while C3 is actively-guarding the left path.

Recall that Theorem 2.0.1 shows that a single cop can guard an isometric path P . This
may not be possible in general for an active cop as the guarding strategy may require her
to stay still during a turn, but we can use a pair of cops to do it following the strategy
described in the proof of Theorem 4.1.1: we can take two cops in adjacent vertices and
move them together until one of them is on the shadow of the robber on P , and follow the
usual guarding strategy but, whenever the cop would be required to stand still, the two
cops switch positions. We will refer to this strategy as tandem-guarding.

Observation 4.1.1. A k-guardable graph can be tandem-guarded by k pairs of cops. More-
over, any winning strategy for k cops in the usual game can be translated into a winning
strategy for k pairs of cops in the fully active game by moving each pair in tandem.

We say that an induced subgraph H is k-actively-guardable if it is k-guardable with a
strategy in which no cop stays still in any turn. For short, we will omit the integer k when
k = 1 and, for example, say actively-guard instead of 1-actively-guard.

Now, we turn our attention to the game of active cops and robbers on planar graphs. It
follows from Theorem 2.0.1 and 4.1.1 that ca(G) ≤ 6.

The following theorem was proved in [1].

Theorem 4.1.4. If G is a graph with girth at least five , then c(G) ≥ δ(G).

Notice that this result also holds for the game of active cops and robbers:

Lemma 4.1.1. If G is a connected graph with girth at least five, then ca(G) ≥ δ(G).
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Figure 4.3: The unique xy-paths in each component of G′0 are shown in thick lines. Notice
that no such path exists in one component of G′0.

Proof. First, notice that under these hypotheses, we must have γ(G) ≥ δ. Suppose that S
is a dominating set of G such that u ∈ S and v is a neighbour of u not in S. Notice that
no vertex in S can dominate more than one neighbour of v, and so S must have at least
d(v) ≥ δ vertices. This means that, at the beginning of the game in G using δ− 1 cops, the
robber can choose a position such that no cop is at distance less than two from the robber.
After the cops’ move, at least one neighbour of the robber must be at distance at least
two from any cop (this is due to the girth five condition since no cop can be at distance
less than two from two neighbours of v) and the robber can move to that neighbour. Since
this condition is satisfied after every time the cops move, the robber always has at least
one neighbour adjacent to no cop, and he can safely move there during his turn, avoiding
capture indefinitely.

This theorem implies that the active cop number of the dodecahedron is at least three
and, as a consequence of Theorem 4.1.1, we know that ca(G) ≤ 6 for any planar graph G. In
[18], the authors mention that new ideas might be required to improve the upper bound for
planar graphs. We will show that the wide shadow allows us to improve the upper bound
and show that ca(G) ≤ 4 for every planar graph as well as to greatly simplify the proof of
the following result from [18].

Theorem 4.1.5. If G is outerplanar, then ca(G) ≤ 2.

Recall that outerplanar graphs do not contain a subdivision of K4 or K3,3 as shown in
[10]. The following lemma shows a structural property of outerplanar graphs that will be
useful. Figure 4.3 illustrates the property described in the lemma.

Lemma 4.1.2. If e = xy is an edge of an outerplanar graph G and G0 is a connected
component of G − {x, y}, then there is at most one isometric xy-path in G′0 = G[V (G0) ∪
{x, y}]− xy.
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Proof. If no xy-path exists in G′0 we are done, so we may assume there is at least one. Take
an outerplanar embedding of G and suppose that we have two such paths P1 and P2. For
i ∈ {1, 2}, let Ci = Pi ∪ e and notice that the outerplanarity of G implies that P2 cannot
have any vertex in the interior of the region defined by C1. Since C1 must be an induced
cycle, no edge of P2 is a chord of C1, and so P2 must be contained in the exterior of the curve
defined by C1. By symmetry, we get that P1 is in the exterior of the curve defined by C2.
Since G0 is connected, there is a path joining vertices of P1 and P2 that does not include x
or y, but this implies that G contains a subdivision of K4, contradicting the outerplanarity
of G.

We are now in position of giving a simple proof of Theorem 4.1.5.

Proof of Theorem 4.1.5. We will say the game is in a simple state if one cop is actively-
guarding an edge e = xy and we will use H to denote the connected component of G−{x, y}
where the robber can move without being captured. The proof is by induction on |V (H)|.

We begin by placing our two cops, C1 and C2, on the endpoints of an edge e = xy and,
regardless of the robber’s initial position, we can move C1 to actively-guard e = xy and let
H be the connected component of G − {x, y} containing the robber. If only one vertex in
{x, y} has neighbours in H (we may assume it is x), take w ∈ V (H) such that xw ∈ E(G).
By moving C2 to actively-guard xw we restrict the robber to move in a smaller connected
component of G and reach again a simple state, making progress in the game. We now
assume that both x and y have neighbours in H. By Lemma 4.1.2, there is a path P which
is the unique isometric xy-path with all its intermediate vertices in H. The uniqueness of P
implies that it is bypath-free in G[V (H)∪{x, y}]−e, so by Lemma 2.2.1 the wide shadow of
the robber on P is never a single vertex, so we can move C2 to actively-guard P . Now, the
robber is restricted to move in H ′, a connected component of H−V (P ). The outerplanarity
of G implies that H ′ has at most two vertices in common with P and, if it has exactly two,
they must be adjacent. By moving C1 to guard an edge containing the vertices H ′ and P
have in common, we make progress in the game and arrive to a simple state of the game.

It should be noted here that no bipartite graph G such that ca(G) < c(G) is known.
Moreover, no non-bipartite graph H is known such that ca(H) > c(H). This was noted
by the authors in [18]. It seems to be the case that the active game behaves differently in
bipartite and non-bipartite graphs. It was stated in [18] that in a bipartite graph G with
c(G) = k, if after the initial placement by both players, all cops and the robber occupy the
same partite set of G, then the cops can ensure the robber’s capture in the active version
of the game.

However, the statement as it appears in the paper is false (the authors have been in-
formed). To see this, look at the following example:
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Figure 4.4: The cube and the subdivided cube.

Proposition 4.1.1. The graph G obtained from the cube by subdividing each edge once is
bipartite and ca(G) = 2 but two cops cannot guarantee the capture of the robber if all the
players start on the same side of the bipartition.

Proof. Notice that for any pair of edges e1 and e2 in the cube, every vertex x has a neighbour
y which is not an endpoint e1 or e2. Also, there is an edge e1,2 which shares no endpoint
with e1 or e2.

If the cops start on edges e1 and e2, the robber starts at the edge e1,2. If the cops start
at vertices x and y, the robber starts at any vertex distinct from x and y. During the whole
game, all players will be in the same partite set after the robber’s move, which implies that
the game can only end when the robber steps on top of a cop. Due to the choice of e1,2,
regardless of how the cops move, the robber can move to a vertex containing no cop, so it
suffices to check what happens when all the players start at vertices. If the cops are on edges
after they move, then the robber can move in the next two turns to get to a vertex x which is
not an endpoint of e1 or e2. Regardless of how the cops move in the meantime, they cannot
be on x when the robber steps on it, so the robber can evade the cops indefinitely.

We can fix the result mentioned by instead requiring that the cops start the game in
the opposite side of the bipartition as the robber. We will now provide a short proof of the
fixed version, Lemma 4.1.3.

Lemma 4.1.3. Let G be a bipartite graph. Let k = c(G), and consider the active game on
G with k cops. If, after the initial placement by both players, all cops are in the opposite
side of the bipartition as the robber, then the cops can ensure the robbers capture.

Proof. We know that the cops and the robber begin the game in opposite sides of the
bipartition of G. For every cop C, we will imagine a dummy DC to be next to C. The
dummy will behave just like a cop but cannot capture the robber. By Observation 4.1.1, we
can replicate a winning strategy for k cops in G in the usual game with the k cop-dummy
pairs, and we can get a cop or a dummy to be on the same vertex as the robber. If it is a
cop, we win, so we may assume it is a dummy DC . Since dummies and cops are always on
opposite classes of the bipartition, then the robber must be on a different class as the cops
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at this point, which implies the robber was the last player to move and is now at distance
one from C, which means C can capture the robber the following turn.

As we have seen, we can replace each cop in the usual game by a pair of cops to adapt
the strategies for the fully active game. It follows from Theorem 4.1.1 and Theorem 1.0.1
that ca(G) ≤ 6 for any planar graph G. However, the authors in [18] posed the question of
whether that upper bound can be improved. Since three active cops are necessary to catch
the robber on the dodecahedron, the upper bound must be at least three. We will show that
four cops suffice in any planar graph.

In light of Theorem 4.1.3 one might think that the active game behaves differently in
bipartite graphs as it does in non-bipartite graphs. This seems to be the case, as any cop
that starts the game in the same class of the partition as the cop cannot capture the robber
unless he steps on that cop, which seems to make them weaker. Actually, we can show that
capturing the robber on a bipartite graphs is harder if more cops start the game at the
same partition class as the robber. When playing in a bipartite graph, a cop that start the
game in the same partition class as the robber will be called weak, and a cop whose initial
position is in the opposite partition class as the robber will be called strong.

Theorem 4.1.6. Let G be a bipartite graph. If there is a winning strategy for k cops in the
fully active game on G in which t cops are weak, then there is a winning strategy for k cops
in which t′ are weak for 0 ≤ t′ ≤ t.

Proof. Suppose we have a winning strategy S as in the statement of the theorem and let t′

be non-negative integer such that t′ < t. We consider the initial position of the players given
by S and replace t − t′ weak cops with a dummy cop D on the same vertex as the weak
cop and a strong cop CD on a neighbour of their initial position. We can now implement
the strategy S using the dummy cops instead of the replaced weak cops and moving WD

making sure that she is adjacent to D after every turn. By following strategy S we either
capture the robber with a strong or weak cop, or we capture the robber with a dummy D.
However, since the D started in the same side of the bipartition as the robber, this means
the robber moved on top of the D. Hence, the following turn we can move CD and capture
the robber.

Notice that if we play with k cops in a bipartite graph, we can always guarantee that,
regardless of the robbers initial position, at least bk

2c cops are strong by distributing the
cops as evenly as possible in both classes of the partition.

4.2 Active cops on planar graphs

This section will be devoted to the study of Active Cops and Robbers on planar graphs.
Just as in the case of Lazy Cops and Robbers, the guarding strategy of Lemma 2.0.1 does
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not work if we impose speed restrictions on the cops: if the shadow of the robber does not
move (which might happen even if the robber’s position changes), the cop will not be able
to keep guarding the path. We will show that the wide shadow is a notion that is also useful
to study the active game.

The following observation, which is crucial for our proof, is a consequence of Lemma
3.1.1.

Observation 4.2.1. Let P be an isometric path P in a graph G. If P is bypath-free in G,
then P can be 1-actively-guarded.

As mentioned before, the active game seems to behave in slightly different ways for
bipartite and non-bipartite graphs. First, we will prove that two strong cops and one weak
cop suffice to capture the robber in any planar bipartite graph.

Theorem 4.2.1. Let G be a planar bipartite graph. Consider the active game on G with
three cops. If the robber’s initial position in G is in a different partition class as at least two
cops, then three cops can guarantee the robber’s capture in G.

Proof. We will distinguish three different situations in which the game can be:

a) A pair of cops is tandem-guarding a path P of H, and every path from the robber to
the cop territory includes a vertex of P .

b) P is being actively guarded by one cop and any path from the robber to the cop
territory includes a vertex of P .

c) P and Q are internally disjoint paths joining the same two vertices, and any path from
the robber to the cop territory includes a vertex of P ∪ Q. P and Q are bypath-free
in G[R(P,Q)] and are being actively guarded by two cops.

If all cops are strong the result follows directly from Theorem 4.1.3 After the initial
placement of the players on G, we know we have one weak cop and two strong ones. As
before, H will denote the subgraph of G induced by the vertices in the robber’s territory,
C1 and C3 will be the strong cops and C2, the weak one. We begin the game by choosing
an edge vx and moving C1 and C2 to tandem-guard it, getting to case (a). We can now use
Observation 3.2.1: if (i) happens, we can capture the robber using C1 or C2. If (ii) happens,
we can use C3 to actively-guard P , at which point we can release C1 and C3 and get to case
(b). If (iii) happens, we can move C3 to u. Notice that the fact that C1 will be on vertex
v when C3 gets to vertex u. At this point we can identify the vertices x1 and x2 which,
together with u and v, bound the region containing the robber’s territory. We can now move
C1, C2 and C3 to x1, v and x2, respectively. By moving C2 along the edge vx1 and C3 along
ux2 we can make sure the robber stays inside the region bounded by the paths P = ux1v

and Q = ux2v, getting to case (c) and allowing us to release C1. Notice that in any case we
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reduce the robber’s territory after a finite number of moves, so we make progress towards
capturing him.

We now make two observations.

(i) If P is an isometric bypath-free path of G, then it can be actively-guarded by any
cop, regardless of whether she is weak or strong.

(ii) If P is an isometric path of G and SP (x) is a single vertex for some x ∈ V (G), then
x and SP (x) are in the same class of the bipartition of G.

The first observation follows from the fact that the wide shadow always contains vertices
of both chromatic classes. The second one is a consequence of the fact that, if SP (x) contains
a single vertex, then there exists B, a bypath of P , containing x, and this implies the distance
between x and SP (x) is even.

If we start from (b), we may assume that the weak cop is actively-guarding P thanks to
(ii). Also, since having a single vertex in P with neighbours in H would lead us again to case
(a) (by replacing the weak cop guarding P with a strong one and then tandem-guarding
such vertex), we may assume that there are at least two vertices of P with neighbours in
H. If P = v1v2 . . . vn and vi and vj , with 1 ≤ i < j ≤ n, are the first and last vertices
of P with neighbours in H respectively, then let Q to be a shortest vivj-path containing
vertices of H. Notice that (ii) implies that a strong cop can actively guard any isometric
path and not only bypath-free ones. Hence, we can use one strong cop to actively guard Q.
In virtue of Lemma 3.2.2, we may assume that we get to (c) with both P and Q bypath-free
in G[R(P,Q) ∪ V (P ) ∪ V (Q)], where the robber is contained. Again, we always reach one
of the other cases and reduce the size of the robber’s territory in the process.

Suppose now we start from (c). We may assume that P and Q are being guarded by
one weak cop and one strong cop. Having a single vertex of P or Q with neighbours in H
would lead us to (a), so we may assume there are at least two such vertices. Let T be the
shortest uv-path containing vertices of H and such that V (T ) ⊆ V (H)∪ V (P )∪ V (Q) and
T ′ the subpath of T contained in H. Since T ′ is isometric in H, we can move the free strong
cop to actively guard T . The robber will now be restricted to G[R(P, T )] or G[R(Q,T )]. We
may assume that the robber is restricted to G[R(Q,T )], and so we can release the weak cop
guarding P . Since Q is isometric and bypath-free in G[R(Q,T )], we can use the weak cop
to actively guard Q and then release the strong cop. Now, by repeatedly applying Lemma
3.2.2, we can use the pair of strong cops to either capture the robber or restrict him to a
region bounded by two paths satisfying the conditions in case (c). Since in each case we
reduce the robber’s territory and get again to one of the three cases we had.

We are now ready to prove the main result of this section:

Theorem 4.2.2. For any connected planar graph G, ca(G) ≤ 4.
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Proof. Let G be a planar graph and fix a drawing of G in the plane. We will place our four
cops on the endpoints of an edge, two cops on each. This implies that, if G is bipartite,
after the robber’s initial placement on G there will be two strong cops and two weak ones,
so the result follows from Theorem 4.2.1. We will assume now that G is not bipartite.

The proof is similar to that of Theorem 4.2.1, but we should use the extra cop to
compensate for the lack of a notion of strong cops. We will distinguish three different
situations the game can be in:

a) A pair of cops is tandem-guarding a path P of H, and every path from the robber to
the cop territory includes a vertex of P .

b) P being actively guarded by one cop and any path from the robber to the cop territory
includes a vertex of P .

c) P and Q are internally disjoint paths joining the same two vertices, and any path from
the robber to the cop territory includes a vertex of P ∪ Q. P and Q are bypath-free
in G[R(P,Q)] are being actively guarded by two cops.

As before, H will denote the graph induced by the vertices in the robber’s territory.
Let C1, C2, C3 and C4 be our cops. We can choose cops C1 and C2 to tandem-guard v, so
we get to case (a). We can now use Observation 3.2.1: if (i) happens, we can capture the
robber using C1 or C2. If (ii) happens, we can use C3 to actively-guard P , at which point
we can release C1 and C3 and get to case (b). If (iii) happens, we can move C3 and C4 to
tandem-guard u. At this point we can identify the vertices x1 x2 which, together with u

and v, bound the region to which the robber is constrained. Now, we may assume C1 and
C3 are on v and u respectively, so they can now move around the cycle ux1vx2u (following
that order), getting us to case (c). Notice that in any case we reduce the robber’s territory
after a finite number of moves, so we make progress towards capturing him.

If we start with case (b), we may assume that C1 is actively-guarding P = v1v2 . . . vn.
If P has a single vertex vi with neighbours in H, we can move C2 and C3 to tandem-guard
vi and get to case (a). If P has multiple vertices with neighbours in H, let vi and vj , with
1 ≤ i < j ≤ n, be the first and last vertices of P with neighbours in H. Let Q be the
shortest vivj-path containing vertices of H. We can use C2 and C3 to tandem-guard Q. If Q
is bypath-free in G[R(P,Q)∪ V (Q)], we can move C2 and C3 so that, after a finite number
of turns, C2 is actively guarding Q, getting us to case (c).

Otherwise, let B the bypath of Q in G[R(P,Q) ∪ V (Q)] given by Lemma 3.2.2. At this
point, the only free cop is C4, so we can move her until C4 is on the shadow of C3 on Q〈B〉
and, keeping this property and the adjacency of C2 and C3, the cops will move until C3 and
C4 are on the robbers wide shadow. If the robber is in G[R(Q〈B〉, Q) ∪ V (Q) ∪ V (Q〈B〉)]
when we achieve this, then either he was caught or both Q and Q〈B〉 are bypath-free in
G[R(Q〈B〉, Q)]. We will keep moving the cops until C4 and C2 are in the wide shadow of the

35



robber on Q〈B〉, and then we can release C1 and C3, and arrive to case (c). Suppose now
that the robber is in G[R(P,Q〈B〉) ∪ V (P )] instead. In this case, since C4 is on the shadow
of C3, we will release C3 and move C2 and C4 in such a way that after every turn, either C2

is on the shadow of the robber on Q or C4 is on the shadow of the robber on Q〈B〉. This can
be thought of as tandem-guarding the paths Q and Q〈B〉 with C2, C4 and their respective
shadows.

We will now move C3 to the shadow of C2 on Q〈B〉. If the robber enters G[R(Q〈B〉, Q)∪
V (Q)∪V (Q〈B〉)] before C3 gets there, then he will be caught or restricted to G[R(Q〈B〉, Q)].
Otherwise, we will be able to tandem-guard Q〈B〉 using C3 and C4, and so we can release C2

and repeat until we restrict the robber’s movement to the region between two bypath-free
paths, when we will be able to guard each with a single cop and get to case (c).

It remains only to show what happens if we start with (c), the cops can guarantee the
robber’s capture. If only on vertex of P ∪Q has neighbours in H, we can move C2 and C4

to tandem guard it and arrive to case (a). Otherwise, we can find T , the shortest uv-path in
G[V (H)∪ V (P )∪ V (Q)] using at least one vertex of H, and tandem-guard it using C2 and
C4. Now, the robber must be in G[R(P, T )] or G[R(T,Q)] and, without loss of generality
we may assume the robber is in G[R(P, T )]. We can now release C3 (as Q no longer need to
be guarded) and we may use C2, C3 and C4 to proceed like in the last part of the previous
case.

Notice that starting with cases (a) or (b) we either remove at least one vertex of the
robber’s territory or we get to case (a), and from this one we always make progress by
removing at least one vertex from the robber’s territory, finishing the proof.
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Chapter 5

Subdivisions and speed restrictions

A uniform subdivision of a graph G is the graph obtained from G by replacing the edges in
E(G) with paths of the same length. If the paths have length s+1, we denote such graph by
G(s). Notice that G(0) is isomorphic to G. The effect that subdividing edges of a graph has
on the cop number was studied for the first time in [5]. The classical result in this direction
is the following:

Theorem 5.0.1 ([5]). For every graph G and every integer s ≥ 0, we have that c(G) ≤
c
(
G(s)

)
≤ c(G) + 1 for every positive integer s.

Here we present some results analyzing this operation for the variants of active and lazy
cops, which will be particularly surprising in the later case.

We can also ask what happens with c(G(s)) when s tends to infinity. This would give rise
to a game in which the cops and the robber move continuously. Moreover, we can ask what
is the minimum number of cops required to guarantee the robber’s capture in a compact
surface. This type of problem has been studied before (see [27]). However, speed restrictions
do not seem to have been considered in that context. While having a cop to be faster that
the robber would make no sense as the cop would always be able to wind, when speaking
of continuous movement one can consider the restriction where each cop has a maximum
speed and that the total speed of the cops cannot be more than a fixed constant at any
point of the game. It would be of great interest to find connections between the discrete
and the continuous versions of this problem.

5.1 The effect of subdivisions in the active game

Theorem 5.1.1. For any graph G, we have ca

(
G(s)

)
≤ ca(G) + 1.

Proof. For the upper bound, suppose ca(G) = k and take a strategy S for k active cops
to win in G. Place k cops on the corresponding vertices of G(s) and now, if the robber
chooses as his initial position a vertex of G(s) corresponding to a vertex of G, then place the
robber on that vertex in the game in G and place the dummy robber on the same vertex.
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Otherwise, place a dummy robber on a vertex of G corresponding to an endpoint of the
edge whose subdivision in G(s) contains the robber. Place an extra cop on top of any other
cop.

After the robber makes two moves in G(s), the dummy will choose as his new position
a vertex of G which:

• Is adjacent from his previous position in G.

• If the robber begins the game on a vertex of G(s) corresponding to an edge of G, the
dummy will choose a vertex of G corresponding to an endpoint of the edge containing
the robber.

• If the robber begins the game on a vertex of G(s) corresponding to a vertex of G, the
dummy will choose that vertex in G or a neighbour.

Notice that the dummy can always find such a vertex since, if the robber moves s + 1
times in G(s), he cannot step on vertices of G(s) corresponding to non-adjacent vertices of
G, and so by moving like this the dummy will behave like an active robber on G. This
means there is a strategy S for k active cops to capture the dummy on G. We will look at
the cop’s moves in G according to S and move the first k cops in G(s) the next s+ 1 turns
so that they reach the position corresponding to the k cops in G. By doing this, we can get
a cop on top of the dummy in G(s). From now on, that cop will only chase the robber in
G(s). We can use the extra cop and the remaining k− 1 cops and get then to the vertices of
G(s) corresponding to the winning strategy S. Now, we can play on G using S but now with
a new dummy who will be on top of the robber or on the endpoint of the edge where the
robber is that does not contain the chasing cop already. By doing this, we either capture
the robber, get cops on both endpoints of the edge containing the robber (which is a win
for the cops), or we get the chasing robber closer to the robber (notice that every time the
robber moves back to the last vertex he stepped on, the chasing robber gets one step closer
to him). Since the later can only happen a finite number of times, by using this strategy we
can guarantee the robber’s capture, so ca

(
G(s)

)
≤ ca(G) + 1.

As noted before, the active game behaves differently in bipartite and non-bipartite
graphs.

Conjecture 5.1.1. For any graph G, we have ca(G) ≤ ca(G(s)) ≤ ca(G) + 1

5.2 The effect of subdivisions with lazy cops

The effect of subdividing all the edges of a graph the same number of times has a stranger
behaviour for the game of Lazy Cops and Robbers than it does for the classic of the active
version. We will see that for graphs G and G(s), the difference between c1(G) and c1(G(s))

38



can be arbitrarily large. However, there are some families of graphs where this numbers are
not arbitrarily far away from each other, and we will mention a few of those in this section.

However, the most basic question we could ask is the following:

Question 5.2.1. Is there a function f : N→ N such that if G has lazy-cop number c1(G) =
k, then c1(G(s)) ≤ f(k) for every positive integer s?

Surprisingly, and in contrast with the classic and the active version where f(k) = k+ 1,
no such function exists for the lazy variation. To show this, it suffices to prove it for cop-win
graphs, as we may always attach a cop-win graph to any graph without changing its cop
number.

Theorem 5.2.1. For every integer k ≥ 1, there exists a uniformly subdivided cop-win graph
G with c1(G) > k.

Proof. Let r and s be positive integers with s ≤ r, and S be the family of subsets of V (Kr)
of size s. Let H(r, s, t) be the graph obtained from Kr by adding a vertex vA and all the
edges between vA and A for every A ∈ S, and then subdivide every edge t times.

Now, consider the graph Hk = H(4k+ 1, 2k+ 1, k+ 2). We will show that k cops cannot
capture the robber in Hk. We will say that a vertex of degree more than two is a main
vertex Let k cops choose their positions in Hk. A main vertex will be called grey if there is
a cop at distance less than k + 3 from it. We will use d to denote the distance between the
robber and cop closest to him.

Since at any given time there can be at most 2k grey vertices, there exists a set A ∈ S
such that {vA} ∪A has no grey vertices, so the robber will choose vertex vAas his starting
position. At this point, d ≥ 2(k + 3). We distinguish two different states of the game:

a) The robber is at a main vertex vX for some X ∈ S and vX is not grey.

b) The robber is at a main vertex vX for some X ∈ S, and vX is grey and d ≥ 2.

The robber will stay still as long as the game is in state (a). Notice that at most one
non-grey main vertex can become grey after each turn.

Suppose that a cop moves in such a way that vertex vA becomes grey. Since |A| = 2k+1,
there exists a vertex u ∈ A which is not grey, so the robber can move towards it. If after the
cops’ move vertex u is not grey, then in the next k+ 2 rounds the robber will move towards
u and reach it without being captured. Now, there is a set B ∈ S such that u ∈ B and no
vertex of vB ∪B other than possibly u is grey. Since no vertex of vB ∪ (B \ {u} is grey, the
robber can move towards vB the next k + 3 rounds and reach it without being captured.
After performing this moves, no cop can get at distance less than 2 from the robber, so we
get back to case (a) or case (b). Notice that at every point of this process, d ≥ 2.

Suppose now that a main vertex v becomes grey in the turn after the robber moved
towards it from another main vertex v′. In this case, the robber will move back to vertex
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v. Since the cops will avoid repeating a configuration, vertex v will be grey after the cops’
move. This means that, after the cops’ move, d can decrease by at most 1. Also, in order
for a non-grey main vertex to become grey, there must be a cop at distance k + 3 from it
the previous round, so the cop must be on a main vertex. Hence, in order to make sure that
the robber is not able to leave his current position without repeating a configuration, the
number of cops in main vertices must decrease by one each time. Since this can happen at
most k times, we have d ≥ 2. Notice that each cop can turn at most 2 main vertices grey.
Since |A| = 2k+ 1, there will be a vertex u ∈ A which is not grey after all cops have moved.
The robber can now move the next k+3 rounds towards u and reach it keeping d ≥ 2. Once
more, there exists B ∈ S such that u ∈ B, and no vertex of vB ∪ B other than possibly u
is grey. Since no vertex of vB ∪ (B \ {u}) is grey, the robber can move towards vB the next
k + 3 rounds and reach it without being captured. After performing these moves we still
have that d ≥ 2, so we get back to case (a) or case (b).

Notice that the graph H(r, s, 0) for r, s ≥ 1 is a chordal split graph, which means
c(H(r, s, 0)) = 1 and c(H(r, s, t)) ≤ 2 for all t ≥ 1. However, c1(H(4k+1, 2k+1, k+2)) ≥ k,
showing that the gap between (c) and c1 can be arbitrarily large.

Let G be a graph and take list S = {vi}ti=1 such that vi ∈ V (G) for i ∈. We say that
S is a double-dominating multisubset of G if for every x ∈ V (G) there exists 1 ≤ i < j ≤ t

such that x ∈ N [vi] ∩ N [vj ]. We will use dd(G) to denote the minimum cardinality of a
double-dominating multisubset of G.

Theorem 5.2.2. For every graph G and every positive integer s, we have c1(G(s)) ≤
dd(G) + 1.

Let S be a minimum double dominating multiset of G and place a cop on each vertex of
G(s) corresponding to a vertex of S, and choose an arbitrary vertex to place an extra cop.

Algorithm 5.2.1. Input: G(s), a subset T ⊆ V (G) which is a minimum double-dominating
multiset of G, a cop Cv on every vertex v ∈ T , and one extra cop C on an arbitrary vertex
of G(s). Output: Cops’ strategy to capture R.

Initialize λ = C, B = ∅, R−1 = R0 to be the robber’s current position, and i = 1.
Suppose we are at the beginning of round i.

Step 1) If there is a cop adjacent to the robber, the a cop moves to capture the robber and
the algorithm ends; otherwise, go to Step (2).

Step 2) If Ri = Ri−1 or Ri = Ri−2, then move λ so that d(λ,Ri) < d(λ,Ri−1). Wait for the
robber to update his position, set i→ i+ 1 and go to Step (1). Otherwise, go to Step
(3).
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Step 3) If B = ∅ and d(Ri, u) = d(Cv, u) − 2 = s − 1 for some u ∈ V (G) and Cv, set
B = (Cv, u) and move Cv so that d(Cv, u) − 1 = d(Ri, u). Wait for the robber to
update his position, set i→ i+ 1 and go to Step 1; otherwise, go to Step (4).

Step 4) If B = ∅, move λ so that d(λ,Ri) < d(λ,Ri−1). Wait for the robber to update his
position, set i→ i+ 1 and go to Step 1; otherwise, go to Step (5).

Step 5) If B = (Cv, u) and d(Ri, u) = d(Cv, u) − 2, move Cv so that d(Cv, u) − 1 = d(Ri, u).
Wait for the robber to update his position, set i→ i+ 1 and go to Step 1; otherwise,
go to Step (6).

Step 6) If B = (Cv, u) and d(Ri, u) = d(Cv, u)+1 and d(Ri, u) ≤ s, move Cv so that d(Cv, u) =
d(Ri, u) and go to Step (1); otherwise, go to Step (7).

Step 7) If B = (Cv, u) and d(Ri, u) = d(Cv, u) + 1 and d(Ri, u) = s + 1, move Cv so that
d(Cv, u) = d(Ri, u), set B = ∅ and go to Step (1); otherwise, go to Step (8).

Step 8) If B = (Cv, u) and d(Ri, u) = d(Cv, u), take x a vertex of V (G)−u such that d(Ri, x) =
s and d(Cv, x) = s+ 1. Take w ∈ T − u such that d(Cw, x) ≤ s+ 1, move Cw so that
d(Cw, x) = d(Ri, x), set λ = Cu and B = (Cw, x). Wait for the robber to update his
position, set i→ i+ 1 and go to Step 1; otherwise, go to Step (9).

Step 9) If B = (Cv, u) and d(Ri, u) = d(Cv, u)− 1, move Cv so that d(Ri, u) = d(Cv, u). Wait
for the robber to update his position, set i→ i+ 1 and go to Step (1).

Proof of algorithm 5.2.1. Suppose that the robber hasn’t been captured, no cop is adjacent
to him and it is the cops’ turn.We may assume s > 1 since no cop is adjacent to the robber.
Step 2 guarantees that the distance between cop λ decreases if the robber stays still or
takes a step back to its previous position, which means that, after at most a finite number
of turns, the robber will not stay still or move back.

Since T is a double-dominating multiset, Step 2 guarantees that either the robber will
be captures or he will get to be at distance s − 1 from a vertex u which is at distance Cv

at distance s+ 1 of a cop Cv. This also implies that at least one of Step 6, Step 7 and Step
8 will me executed at least once. At this point, we will have B = Cv 6= ∅. Notice that if j
and k, with j < k, are two distinct turns in which B is declared empty, then we have that
d(λ,Rj) < d(λ,Rk), which means Step 3, Step 4 and Step 7 can only be implemented a
finite number of times.

The first time Step 8 is implemented, the robber will be on a vertex of V (G(s)) \ V (G).
In this case, the robber will be unable enter u or x anymore, since Step 9 guarantees that
Cw and λ will be at distance one from x and u, respectively, before the robber can enter
them. Hence, after at most 2s more steps, the robber will be captured.
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This improves on the trivial bound of n, but it is probably far from optimal. However,
it gives an analog of the domination number that works well with subdivisions in the game
with lazy cops.

5.3 Bounding c1 under subdivisions for some classes of graphs

It follows from Theorem 5.2.1 that three cops are sufficient to capture the robber in a
uniform subdivision of any graph with a universal vertex (that is, a vertex adjacent to all
other vertices of the graph). There are cop-win graphs whose uniform subdivisions need
three cops in the lazy variation of the game, as we will show in Theorem 5.3.4. However, it
came as a surprise that the class of graphs obtained from uniform subdivisions of cop-win
graphs is not lazy-cop-bounded.

Lemma 5.3.1. c1
(
K

(1)
n

)
> 2 for n ≥ 5.

Proof. It suffices to show that c1
(
K

(1)
5

)
> 2. We will show that two cops cannot capture the

robber in K(1)
5 . We will distinguish three configurations of the game that can be achieved

after the robber performs his moves:

a) Both cops are in main vertices, the robber is in a middle vertex and no cop is at
distance less than 3 from the robber.

b) Both cops are in middle vertices, the robber is in a main vertex and no cop is at
distance less than 3 from the robber.

c) One cop is in a main vertex and another one is in a middle vertex, the robber is in a
main vertex and no cop is at distance less than 2 from the robber.

Notice that, for any initial position of the cops, there exists a vertex of the graph such
that, if the robber chooses it as his initial position, one of the three configurations described
is achieved. We may assume that one of the cops always moves along an edge at each of the
cops’ turns.

If we start with configuration (a) and a cop moves, since there are five main vertices, at
least one of the main vertices adjacent to the robber’s position is at distance at least two
from every cop. By moving to that vertex, the robber achieves configuration (c).

If we start with configuration (b) and a cop moves, then the cop would get to a main
vertex. Now, of the robbers four neighbours, at least one is at distance three of either cop.
By moving to this vertex, the robber achieves configuration (c).

Finally, suppose that we start with configuration (c) and a cop moves. If after the cop’s
move there are two cops on main vertices, then there are two vertices adjacent to the robber’s
position that are at distance 3 from either cop. By moving to one of them, the robber gets
to configuration (a). On the other hand, if the cops are occupying middle vertices after their
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move, we may assume that one of them is at distance one from the robber, for otherwise
we would be in configuration (b). In this case, there exists at least one main vertex at
distance three of either cop. Regardless of what the cops do, the robber will make the next
two moves to get to this vertex. Regardless of which move the cops perform between the
robber’s moves, there will be one cop on a main vertex and one on a middle vertex, and
none of them will be at distance one from the robber, thus getting configuration (c).

The following simple lemma will be useful when we deal with the Cartesian products of
certain graphs.

Lemma 5.3.2. Let H be a graph, P = uv a path of length two, s a non-negative integer
and G = (H2P )(s). Let Hu be the subgraph of G induced by the vertices of V (H) × {u}.
If x ∈ V (G) \ V (Hu) and SHu(x) is the wide shadow of x on Hu, then |SHu(x)| ≥ d(x).
Moreover, if x ∈ V (Hv), then |SHu(x)| ≥ s(d(x)− 1) + d(x).

Proof. For a vertex x ∈ V (G) \ V (Hu), let z ∈ V (Hu) be:

• The vertex of Hu corresponding to x if x ∈ V (Hv).

• The vertex (y, u) if x is a vertex obtained from the subdivision of an edge of the form
(y, u)(y, v).

Now, let w be a vertex in V (Hu). For a positive integer r, the ball with centre w and
radius r is the set B(w, r) = {y ∈ V (Hu) : d(y, w) < r}. Notice that d(x,wu) ≥ d(z, wu) +
1, which implies that y ∈

⋂
w B(w, d(x,w) if y ∈ V (Hu) and d(z, y) ≤ 1. This shows

NHHu(z) ⊆ SHu(x).

It was shown in [31] that, for any positive integers r and s, with r ≥ 3, we have c1(G) ≤ 2
whenever G = Cr�Ps. We will give a short proof of a slightly stronger statement using
Lemma 5.3.2, as well as study what happens with this class of graphs with subdivision. In
the following, a vertex x in the wide shadow of the robber will be called an inner vertex if,
regardless of what move the robber moves next, x will remain in the wide shadow of the
robber.

Theorem 5.3.1. Let T be a tree and let H be a tree or a cycle Cr. Then c1(H�T ) ≤ 2.

Proof. For every v ∈ V (T ), let Hv be the subgraph induced by V (H) × {v}. We will say
that a vertex v of T has been cleared if the cops can move in such a way that the robber
cannot enter Hv without being captured. We give a strategy for two cops such that, after
a finite number of turns, either the robber is captured or a new vertex has been cleared.
We begin the game by placing both cops on a vertex of Hv, where v is any vertex of T .
Since c1(Hr) ≤ 2, we can capture the robber’s wide shadow on Hv. Let u be the neighbour
of v in T which is in the same component of T − v as the robber. Now, the cops will move
following the next rules:
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1. If a cop can capture the robber, she captures him.

2. After the cops’ turn, there must be a cop in the wide shadow of the robber on Hv.

3. If a cop is in an inner vertex of the wide shadow on Hv and both cops are in Hv, move
the other cop to a vertex in Hu. In the case both cops are in an inner vertex of the
wide shadow, move any one of them to Hu.

4. If a cop is in an inner vertex of the wide shadow on Hv and the cops are in Hv and
Hu move the cop in Hv to Hu.

Once we have a cop in the wide shadow on Hv (which we can achieve since c1(H) ≤ 2),
we know there will always be a move that satisfies (2). Due to Lemma 5.3.2 and the choice
of initial positions of for the cops, after a finite number of turns there will be a cop in an
inner vertex of the wide shadow of the robber. We now apply (3) or (4) depending on the
positions of the cops. Notice that this strategy will always keep the cops in the same Hr or
in two adjacent copies. After a finite number of moves, if the robber has not been captured,
both cops will leave a cycle Hw that both previously visited. Condition (2) guarantees that
Hw has been cleared. Since T is finite, this strategy guarantees the robber’s capture.

Now, let’s analyze this class of graphs when we subdivide the edges.

Theorem 5.3.2. Let T be a tree and H = Cr a cycle with r ≥ 3. If G = H�T , then
c1(G(s)) ≤ 3.

Proof. For every v ∈ V (T ), let Hv be the graph induced by the set of vertices corresponding
to V (H)× {v} and the vertices obtained by subdividing the edges between the vertices of
the form (x, v) with x ∈ V (H). Let C1, C2 and C3 be the cops, which we may assume
start the game some vertex xv of Hv of the form xv = (x, v) with x ∈ V (H). For a vertex
x ∈ V (T ), let Rx be the shadow of the robber on Hx (this is the usual shadow given by
Lemma 2.0.1). By Lemma 5.3.2, we have that the wide shadow of the robber on Hv is a
single vertex only if the robber is on a vertex of Hv. Since c1(Hv) ≤ 2, we may use C1 and
C2 to capture Rv. We may assume C1 is in the same position as Rv.

Let u ∈ NT (v) be a vertex in the same component of T − v as the robber and let xu be
a vertex in V (Hu) that whose distance to C2 is minimum. Since Rv has been captured by
C1, by Lemma 5.3.2 we know that the robber must move at least s + 2 times in order to
force C1 out of his wide shadow. This implies that, regardless of what the robber does in
the next b s

2c turns, we can move C2 to get to a vertex yv of Hv of the form yv = (y, v) with
y ∈ V (H), and have d(C1, Rv) ≤ s+ 1.

Recall that C2 and C3 are in (y, v) and (x, v), respectively. Let SHv (Ci) be the wide
shadow of the cop Ci on Hu for i ∈ {1, 2}. We will give a strategy for the cops to move after
the robber moves. We will begin by assuming that S = |SHv (Ci)|+ |SHv (Ci)| > 0.

44



1. If C1 is in SHv (Ru) and d(C1, Rv) ≤ s+ 1, we will move C2 or C3 in such a way that
S decreases.

2. If d(C1, Rv) ≥ s + 2 and Ru did not enter SHv (Ci) after his last move, we will move
C1 to decrease d(C1, Rv).

3. If d(C1, Rv) ≥ s + 2 and Ru entered SHv (Ci) after his last move, we will move Ci to
decrease S for i ∈ {2, 3}.

Notice that after a finite number of turns following this algorithm, we will either capture
the robber or get S = 0 and C1 will be in SHv (Ru). We will now move C1 keeping her in
SHv (Ru) until C2 or C3 capture Ru. Whenever C1 is in an inner vertex of SHv (Ru), we will
move C2 or C3 until one of them is on Ru. We may assume it is C2. If the robber is now
in a vertex which resulted from the subdivision of an edge of the form (x, v)(x, u) for some
x ∈ H, then we can come C1 and C2 to capture him. Otherwise, we can move C2 keeping
her in the robber’s wide shadow on Hu. By doing so, we may release C1 and, in the turns
when there is a cop in an inner vertex of SHu(R) to move C1 to a vertex of Hu. Once this is
achieved, we may exchange the names of C1 as C3 and apply the previous strategy again.
Since this can be done at most |V (T )− 1| times, it guarantees the robber’s capture.

Theorem 5.3.3. Let T1 and T2 be trees and G = T12T2. For every non-negative integer s,
we have c1

(
G(s)

)
≤ 2.

Proof. The proof is very similar to that of Theorem 5.3.2, but the fact that trees are cop-win
graphs allows us to use only two cops. Using the same notation as in Theorem 5.3.2 with
T = T1 and H = T2, we may assume C1 and C2 begin the game on a vertex of Hv for
v ∈ V (T ). Also, let u be the vertex of T in the same component of T − v as the robber.
After a finite number of turns, we may assume cop C1 is in the wide shadow of the robber
on Hv. After a finite number of turns, either the robber os captured of C1 will be in an inner
vertex of the robber’s wide shadow. We will use these turns to get C2 to Hu and capture
the robbers wide shadow on Hu. If the robber has not been captured,then one of the next
two things will happen:

1. The robber is on a vertex corresponding to an edge joining vertices of Hv and Hu.
In this case, however he decides to move, the cops can move so that every turn the
value of the sum d(C1, R) + d(C2, R), where R denotes the position of the robber on
G, decreases and the robber is not able to enter H(s)

v or H(s)
u without being captured.

2. The robber is on the side of T − u not containing v. In this case, the cop on Hv can
be released, and the strategy can be repeated.

By doing this, two cops can guarantee the robber’s capture.

45



Besides Cartesian products, we have the following results on complete graphs and, more
generally, complete multipartite graphs.

Theorem 5.3.4. If n ≥ 5 and s ≥ 1, then c(K(s)
n ) = 3.

Proof. Let G = K
(s)
n . It follows from Theorem 5.2.1 that three cops can guarantee the

robber’s capture, so it suffices to provide the robber with a winning strategy against two
cops. In contrast with the proof of Theorem 5.3.1, in this case we will always be able to
choose a main vertex as the starting position for the robber. Since n ≥ 5 and each cop
can be at distance less that s + 1 of at most two vertices regardless of what their initial
position is, there exists a main vertex of G which is at distance at least s+ 1 of both cops.
The robber will choose that vertex as his initial position. We will use C1 and C2 to denote
the cops and R for robber. Let d(t) denote the minimum distance from the robber to a cop
before the robber’s turn in round t of the game. Notice that d(1) ≥ s.

For a main vertex y not containing the robber, we will say that the robber is running
towards y if the robber will move in such a way that d(R, y) decreases, regardless of how the
cops move. Recall that if any configuration of the game is repeated, that suffices to show
the robber wins. At round t, the robber will move as follows:

We will give two algorithms, which we will apply depending on whether the robber is
on a main vertex or not. Also, for a vertex y ∈ G, we will say that the robber is running
towards y if the robber will move in such a way that d(R, y) decreases, regardless of how
the cops move. This notion will help us simplify the description of the algorithm.

Algorithm 5.3.1. The robber is on a main vertex x and is not running towards any vertex.

1. If d(t) ≥ 3, the robber stays on his current position x.

2. If d(t) = 2 and there is a main vertex y such that d(C1, y) > s+1 and d(C2, y) > s+1,
then the robber will start running towards y.

3. If d(t) = 2 and d(C1, y) ≤ s+ 1 or d(C2) ≤ s+ 1, then there is a main vertex y such
that d(C1, y) ≥ s+ 1 and d(C2) ≥ s+ 1. The robber will take a step towards y

4. If d(t) = 1, then there is a main vertex y such that d(C1, y) > s+1 and d(C2) > s+1.
The robber will run towards y

Notice that applying Algorithm 5.3.1 will give robber instructions to move until he
reaches a main vertex unless step (4) is executed.

Algorithm 5.3.2. The robber on a vertex which came from the subdivision of the edge
xy ∈ E(Kn) and is not running towards any vertex. Suppose further that d(R, y) = s.

1. If d(C1, y) ≥ s+ 1 and d(C2, y) ≥ s+ 1, then the robber will start running towards y.

2. If d(t) ≥ 3 then the robber will move to x.
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Now, observe that Algorithm 5.3.2 will give robber instructions to move until he reaches
a main vertex.

Since the robber chooses a main vertex x as his initial position, we will start the game
with Algorithm 5.3.1. The robber will stay on x until a cop gets ar distance two from him
due to (1), so we may assume that cop C1 just moved and is at distance two. If C2 is not
on a main vertex, then we will apply (2) as each cop can be at distance less than s+ 1 of at
most two vertices at any point in the game. Regardless of how the cops move, no cop can
be at distance less than three from the robber when he gets to y, so he can get to y safely
without being captured. Moreover, if there is a cop at distance two of y when the robber
steps on y, then the other cop cannot be on a main vertex.

If C2 is on a main vertex, then we will use step (3) of the algorithm and now we will
have to apply Algorithm 5.3.2. Observe that when this step is used, it means no cop is on
a main vertex of G.

Notice that we will not need to use step (4) for the first time the robber changes position,
so we will leave the analysis of that step for the end of the proof.

Suppose that the cops make a move and now we apply Algorithm 5.3.2. If this algorithm
is being applied we know that no cop is at distance less than two from the robber. Also,
at most one cop is on a main vertex of G as mentioned before, and it would be C2. If step
(1) is used, then the robber will get to y and no cop can be at distance less than 2 when
this happens. If step (2) is used, the robber may move to x and he cannot be captured the
following turn. Moreover, after the robber moves, no cop can be on a main vertex.

Finally, notice that if step 4 of Algorithm 5.3.1 is ever executed, then no cop can be on
a main vertex of G. Hence, there will exist y, a main vertex of G, such that d(C1, y) > s+ 1
and d(C2) > s+ 1, so the robber can run towards y and reach it without being captured.

This shows that, regardless of the cop’s moves, if the the robber follows this strategy he
will always have a move available such that no cop can capture him. This shows c

(
K

(s)
n

)
≥ 3,

proving the result.

We know that the 1-cop-moves number of the class of uniform subdivisions of chordal
graphs is not bounded, but we will show that in a subclass, the uniform subdivisions of
extended block graphs (which were defined in Section 2.4), this parameter is bounded.

Lemma 5.3.3. Let H be the graph obtained from a complete graph Kn by adding a vertex
u adjacent to a subset of vertices of Kn. Let H ′ = H(s) and K be the set of main vertices
of H ′ corresponding to V (H)−{u}. If the robber is on u1 and two cops, C1 and C2, are on
vertices of K, then the robber cannot move from one vertex of K to another one without
guaranteeing his capture by the cops.

Proof. Suppose R starts on u1. Once R is at distance exactly s − 1 from a main vertex
x ∈ K on which neither cop is, then C1 will take a step towards x. From now, C1 will move
in order to keep d(R, x) ≥ d(C1, x) ≤ d(R, x) + 1 and move only when that is not satisfied
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(notice the similarity between this and the algorithm in Theorem 5.2.1). The fact that only
the inequality has to be maintained guarantees that if the robber gets to x then C1 will be
at distance one from him and, if the robber does not, we will have at least one free move
for another cop before he gets back to u. If the robber gets to x, then C1 will be able to
move at distance one from him, so he will be forced to move away from C1. However, since
x is in K, if the robber moves towards a main vertex y corresponding to a neighbour of C2

in H, C2 can move towards y from now on, either capturing the robber at y or restricting
the robber to move on vertices corresponding to the subdivided edge xy.

We will use this lemma to prove upper bounds for the lazy-cop number for uniform
subdivisions of two families of graphs: complete multipartite graphs and extended block
graphs.

Theorem 5.3.5. If G is a uniform subdivision of a complete multipartite graph, then
c1(G) ≤ 3.

Proof. Let C1 and C2 choose as their initial positions main vertices of different colour classes
of G. We can use C3 to chase the robber until he gets to a main vertex of G. Notice that
one of the cops on main vertices will be on a different colour class as the robber R. We may
assume that C1 is that cop. We can now chase the robber with C3 to force him to move
and apply Lemma 5.3.3 to a subgraph of G containing a maximal clique of G (plus maybe
an additional vertex and the corresponding edges) including R, C1 and C2 to guarantee the
robber’s capture.

Theorem 5.3.6. Let T be a block graph and G an extended block graph obtained from T .
For every positive integer s, c1

(
G(s)

)
≤ 3.

Proof. The proof is by induction on the number of maximal cliques of T . If T has a single
maximal clique, then the result follows from Theorem 5.2.1. Let K1 be a maximal clique of
G that corresponds cut vertex v1 of T . Let K ′1 be the graph obtained from G by identifying
each component U of G −K1 to a vertex xU adjacent to K1. We can use C3 to chase the
robber to a vertex xU in K ′1.

Now, notice that C1 and C2 are on a doubly dominating set of any maximal clique of
G containing K1 which means that, after a finite number of moves, we can use C3 to force
the robber to move to a main vertex which does not correspond to any such clique. If no
such main vertex exists for the robber o go to, he would be captured.

Now, there is vertex v2 of T corresponding to a cut vertex of T separating the component
where the robber is robber is in T from the one containing v1. We can now get a cop to
a main vertex of K2:We try to move C3 to a main vertex K2 before the robber enters K2

and, if the robber enters K2 before we can achieve this, the strategy that C1 and C2 are
following will guarantee that one of them, say C2, will get at distance one from the robber,
forcing him to move out of K2 towards a vertex outside of KU or be captured.
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At this point, we know that the robber is not in a vertex of KU but we have two cops
in main vertices of KU and, by Lemma 5.3.3, the robber cannot move along an edge joining
main vertices of KU . If necessary, we rename the cop in K2 as C1 and the cop in K1 and
C2, and the remaining cop will be C3. Again, we may use C3 to force the robber to a main
vertex of G not in KU if such vertex exists (otherwise, the cops capture the robber). Now,
notice that the robber is not able to enter K2 without being captured by applying Lemma
5.3.3 with the graph K ′2. This means we can get C3 to a main vertex of K2 without the
robber entering K2 but still using the strategy described in Lemma 5.3.3. Once we achieve
this, we can rename C3 as C2 and continue with the strategy. The new vertex C3 is not free
to move and force the robber to a main vertex not in K2. We may now remove K1 from
the graph, together will all vertices of G that are not in the same component as K2. Since
the extended block graph that we obtained has fewer maximal cliques, we get the result bu
induction.

From Theorem 4.1.4 easy to see that if G is a cop-win graph and c1
(
G(s)

)
= 1 for every

integer s ≥ 0, then G is a tree. However, the following problem might be of interest:

Problem 5.3.1. For every k > 1, can we characterize the graphs such that c1
(
G(s)

)
≤ k

for every positive integer s?
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