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Abstract

More often than not, a data source can be modeled as a relational table. Due to various
reasons, the schema information about those data sources may not be accurate, complete,
or even available. As we know, a primary/foreign-key constraint explicitly defines how two
tables should be joined. However, when the constraint is not applicable, it is possible to
have multiple ways to join the data, and different users may expect different join results. In
this thesis, we first tackle this data integration challenge by investigating how to join tables
guided by user preferences.

To further improve the quality of data integration, data value similarity needs to be con-
sidered as well. Threshold-driven similarity join has been extensively studied in the past.
However, the process of tuning similarity threshold is tedious and error-prone. In this thesis,
when performing a similarity join, we further seek to provide a few user preferences instead
of similarity thresholds for a user to select from. Once a particular preference is chosen, we
automatically tune the threshold and return the corresponding similarity join result.

Comparing to state-of-the-art baselines, our work provide significantly better effectiveness
while having comparable efficiency and scalability.

Keywords: Schemaless Join, Similarity Join, User Preference
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Chapter 1

Introduction

In the big data era, data often comes from different sources, and the value of data can
only be fully extracted by integrating various sources together. Thus, the study of how to
integrate data across multiple sources has rapidly grown into one of the most attractive
research hotspots.

In this thesis, we focus on how to conduct fully unsupervised data integration both
effectively and efficiently. In general, our approaches are both driven by the concept of
result set preference, to efficiently/effectively compute and rank the possible data integration
results based user-provided preference at running time. Each preference is modeled based
on user requirement from certain aspect, thus able to drive near-optimal results for many
cases when choosing properly. As data integration is done in unsupervised manner by data-
independent preference at the macro/requirement level instead of data-specific parameters
at the micro/engineering level, the significant burden of parameter tuning by user is mostly
avoided. Overall, we believe our work further extend the boundaries of current research and
push the limits of performance.

1.1 Motivation

We motivate our work by introducing a real-world problem of data integration across mul-
tiple sources as follows.

Example 1 (Data integration for NCAA sports across multiple sources). Let’s consider the
famous National Collegiate Athletic Association (NCAA) sports as an example. It covers
multiple sports, including baseball, basketball, football, hockey, etc. For example, in game
season 2015 for men’s basketball alone, there are around 1, 100 teams and 32, 000 games
across three divisions. Due to its vast popularity, not only professionals but also viewers
closely follow the statistics and analysis of each game.

However, for each game, the data does not come from a single source. In fact, there are
at least three official data sources.
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• Even NCAA itself provides two different versions of standard data on its two websites
www. ncaa. com and stats. ncaa. org . Unless explicitly stated, in this thesis, we refer
NCAA data to its latter version on stats. ncaa. org .

• Each university has its own website featuring game data. For example, Simon Fraser
University (SFU) provides its data on athletics. sfu. ca . Besides the standard data
like NCAA, universities like SFU also cover additional data like player biography and
exhibition games. However, the opponent information is usually not well covered.

• Furthermore, each university usually belongs to at least one sport conference. For
example, SFU belongs to Great Northwest Athletic Conference (GNAC), which con-
tains 11 members. Conferences like GNAC usually provide more detailed data than
NCAA, while more overall data than universities, on their own websites like www.

gnacsports. com , etc.

There are usually multiple data tables for each game, containing statistics covering dif-
ferent aspects of the game, like box score, play-by-play, roster, score information, facility
information, etc. For example, there are usually at least 10 to 15 data tables for each men’s
basketball game on NCAA website. However, as shown in Figure 1.1, even for the most
basic box score table, the three sources provide quite different sets of attributes with different
headers and footers.

Naturally, people hope to gain access to a knowledge-base for all the NCAA games, which
covers all the data across difference sources. While there are attempts in industry, they rely
on manually crafted rules to link and merge the data. Thus, both the flexibility and the
scalability are significantly limited.

When building a knowledge-base across multiple data sources, there are usually multiple
encountered scenarios that require concrete technical solutions. We cover two of the most
important and popular ones in this thesis as follows.

Scenario 1 (Merging multiple relational tables without primary/foreign-key). The first
scenario we encounter is merging multiple relational tables into a larger relational table.
Note that the relational tables can either refer to different types of data, like player data
and team data within NCAA, or refer to different versions of the same type of data, like
player data across different sources as shown in Figure 1.1.

When primary/foreign-keys exist, this scenario can be solved by finding and joining
the primary-keys and their respective foreign-keys. However, for web data or data across
different sources, primary/foreign-keys are usually not explicitly defined thus do not exist.
Therefore, data can only be merged by determining the proper pairs of columns to be joined
across tables according to column names and/or shared data values.

Scenario 2 (Matching similar objects without explicit similarity threshold). Occasionally,
we are able to hold the schema of data, thus knowing the pairs of columns to be joined.
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(a) Box score data from NCAA.

(b) Box score data from SFU.

(c) Box score data from GNAC.

Figure 1.1: Box score data of the same men’s basketball game from various sources.
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However, even with full knowledge of schema, straight-forward equi-join may still fail, due
to the possibility that the data values do not fully match. For example, for the basketball game
in Figure 1.1, player name “Evans-Taylor, Roderick” sometimes appears as “Evans-Taylor,
Rod” or even “Taylor-Evans, R”.

Instead of equi-join, similarity-join can be used to link two sets of similar values, by
finding the pairs of similar values whose similarities are above a specified threshold. However,
selecting an appropriate threshold may be far from easy. It is extremely difficult for humans
to figure out the effect of different thresholds on the quality of joined result, as choosing a
good threshold depends on the domain knowledge of not only the specific task but also the
underlying data.

1.2 Challenges

For each of the two scenarios, there are multiple challenges to be considered and conquered.

Challenge 1 (How to achieve high quality by unsupervised approach). To achieve good
quality of data integration, some supervised methods manually label part of data as the
ground truth of integration. However, human labeling lacks both timeliness and scalability
significantly, due to its nature of time-consuming and expensiveness, respectively. For ex-
ample, for each NCAA game, the post-game analysis and statistics are usually required by
both the team and the viewers right after the finish of game. Given the huge daily amount
of NCAA games (hundreds during game season), this task cannot be easily done by human.

Some other supervised methods utilize external knowledge as ground truth. However,
the coverage of external knowledge is always limited to certain scope. Thus, long-tail or
fresh information may not able to be covered at all. For example, for each NCAA game, a
knowledge-base needs to be consistently synchronized to reflect changes of players and teams
in each season.

The limitations of supervised approach raise the following questions. How to achieve
high quality of data integration by unsupervised approach? In particular, we consider the
following aspects. First, how to measure the quality of data integration for each scenario?
Second, how to design the respective unsupervised mechanism of data integration for each
scenario?

Challenge 2 (How to achieve high efficiency and scalability). Besides the quality of data
integration, the efficiency and scalability are also essential. For the first scenario, there are
exponential number of sets of column pairs to join even two relational tables. Even worse,
for each relational table, there may be millions of records. For the second scenario, there
are at most n2 number of similarity thresholds to perform similarity join between two sets
of n objects, where n could be millions.

The above facts of each scenario raise the following questions. First, how do we speed
up the computation for each candidate integration result w.r.t. each scenario? Second, can
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we reduce the number of candidates without jeopardizing the quality of integration? Third,
is there any shared computation between two candidates to speed up?

Challenge 3 (How to achieve high adaptability and extendability). While we use the
example of NCAA sports in Example 1 to help motivate the scenarios, the methods are
expected to be highly adaptable and extendable, therefore enable the possibilities of applying
to other problem settings.

This requirement raises the following questions. For each scenario, can the same method
be applied to different problem settings? Specifically, for the second scenario, can the same
method be further applied to different types of similarity functions?

1.3 Contributions

In this thesis, we study the above two scenarios in Section 1.1 and address the three chal-
lenges in Section 1.2. We establish the following contributions.

Contribution 1 (Result set preferences for quality). To address the first challenge w.r.t.
the quality of unsupervised approach, we carefully devise several result set preferences for
each scenario.

Our key insight is inspired by the concept of preference in areas like economics, which
is an ordering of different alternatives (results) [3]. Taking Yelp.com as an example, the
restaurants can be ranked in different ways, such as by distance, price, or rating. The dif-
ferent ordering may meet different search intents. A user needs to evaluate her query intent
and choose the most suitable ranking accordingly.

Similarly, under different preferences there are different ways to integrate the data. From
a user’s point of view, she only needs to understand and specify the preference over the
potential integration results at the macro-level, and the best integration result w.r.t. the
preference are computed automatically without user interaction at the micro-level. To the
best of our knowledge, this research direction has not been touched in literature.

Specifically, for each scenario, we devise the respective result set preferences accordingly
as follows. For schemaless join, we propose a series of 5 preferences according to different
user intents, like maximizing the number of joining groups, minimizing the size of outer
join, etc. Similarly, for similarity join, we propose two preferences, including maximizing
the number of joining groups and minimizing the size of outer join.

Contribution 2 (Advanced algorithms for efficiency and scalability). To address the sec-
ond challenge w.r.t. efficiency and scalability, for each scenario, we devise the respective
algorithm accordingly as follows to speed up. For schemaless join, we propose an efficient
enumeration framework for join predicate, and further develop multiple pruning techniques
by investigating the monotonicity of each preference. For similarity join, we propose a novel
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similarity join framework with preference, along with multiple effective optimization tech-
niques by investigating the monotonicity of each preference.

Contribution 3 (Flexible frameworks for adaptability and extendability). To address the
third challenge w.r.t. adaptability and extendability, for each scenario, we devise the respec-
tive algorithm framework accordingly as follows. For schemaless join, we propose a universal
framework which works for any result set preference with monotonicity. For similarity join,
we propose a universal framework for any preference with monotonicity. We further extend
the framework for handling all the common set-based string similarities.

1.4 Organization

We structure the remainder of this thesis as follows.

• We present the related work w.r.t. each scenario in detail in Chapter 2, covering
schemaless join and similarity join.

• Chapter 3 presents our work about schemaless join for result set preference. We in-
troduce a series of result set preferences along with their respective properties of
monotonicity, and propose the respective algorithm framework for the enumeration of
candidate integration results.

• Chapter 4 presents our work about preference-based similarity join. We introduce
two result set preferences along with their respective properties of monotonicity, and
propose the respective algorithm framework for similarity join with preference.

• Finally, in Chapter 5, we summarize the proposed methods and conclude the thesis.
We further discuss some interesting and promising future work.
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Chapter 2

Related Work

By combining heterogeneous data from differences sources, data integration offers users a
result that is not only unified but also meaningful. As a complex data processing concept,
data integration involves different tasks, including data cleaning, ETL (extract, transform,
and load), data modeling, data profiling, data migration, etc. However, at its core are data
mapping tasks that discover the relationships among different data sources. In this chapter,
we first study four different data mapping tasks: schema matching, attribute augmentation,
foreign-key discovery, and attribute clustering, then we further study data mapping over
data value similarity.

2.1 Schemaless Join

In this section we introduce the 4 core tasks of data integration for data mapping between
different sources in detail.

2.1.1 Schema Matching

Given multiple relations where each relation has its own single-relation schema but no
cross-relation schema, schema matching tries to derive mapping rules of attributes among
the relations. For each mapping, an attribute of a relation can be mapped to or from
different numbers of attributes of different relations. Thus, different mappings have different
cardinalities, namely 1 : 1, 1 : n, n : 1, and n : m.

Kang and Naughton [18] computed the entropy of each column and the mutual infor-
mation between columns of the same table, for building a dependency graph of each table.
The best attribute mappings minimize the distance between two dependency graphs ac-
cording to the proposed distance metric. By finding duplicate values in a dataset, Bilke and
Naumann [8] found mapping between attributes in different tables. Warren and Tompa [28]
conducted schema mappings by finding string transformation rules between attributes. Acar
and Motro [1] found the mostly likely join plan by finding a spanning tree among schema-
less tables. Edges denoting candidate attribute pairs are filtered out by Jaccard similarity
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among attributes and weighted by information gain. Because of spanning tree, joining two
tables with more than one attribute pairs are not fully supported. Hassanzadeh et al. [44]
found linkage points on Web data, where each linkage point is a single matching attribute
pair. Different set similarities, such as Jaccard similarity, are used to measure the similarity
between the values in two attributes.

Two famous previous studies [46, 60] summarize most of the schema matching works
before 2001 and 2011, respectively. However, there are several new methods proposed after
2011, such as [44, 34, 35, 61]. Instead of improving the very matured schema-level methods,
most of the new methods either study the instance-level methods or hybrid of schema-level
and instance-level methods, or utilize new kinds of external knowledge like web tables or
human knowledge.

2.1.2 Attribute Augmentation

Assume a query table and a set of reference tables, the attribute augmentation task aug-
ments the missing values of the query table derived from the reference tables, by trying
to establish mappings and joining each reference table with query table. A primary-key of
query table may also be specified in advance to facilitate the process.

Various works have studied this problem since 2009, like [62, 63, 64, 65]. They consider
different forms of the query table. Most of them require the existence of a primary-key in
the query table, while [63] only requires the column name of each column. Given the vast
amount and high availability, web tables are often used as the references tables in different
ways, including real time [62, 64] vs. offline [63, 65] table crawling, with [63] or without
[62, 64, 65] surrounding context, etc.

2.1.3 Foreign-Key Discovery

Given the primary-key of each relation, the foreign-key discovery task tries to find the
unknown foreign-keys among different relations to join with the primary-key. This is not a
trivial problem. As we know, within one relation, there may be many candidate foreign-keys
satisfying the primary/foreign-keys constraint. Even worse, some of the primary/foreign-key
may contain multiple columns. Given the large number of candidate foreign-keys, how to
efficiently enumerate them and how to effectively rank them are both challenging.

Adopting machine learning techniques, Rostin et al. [47] found all foreign-key constraints
in a database, by computing all the inclusive dependencies between columns and classify-
ing the relationship with 10 manually crafted features. Using the earth mover distance,
Zhang et al. [36] put a primary-key column and its corresponding foreign-key columns into
the same cluster, and found all foreign-key columns. [36] is also capable of finding multi-
column foreign-keys. Recently, [43] proposed a fast way for primary/foreign-key discovery.
Unlike other work, this work does not require knowing the primary-key. Instead, all the
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candidate attribute pairs satisfying the primary/foreign-key constraint are scored by a com-
bined scoring function. Then, the method finds the join paths to connect the tables using
the currently highest scoring candidate. [33] also finds the foreign-keys by machine learning,
but in an unsupervised way. It returns the most similar columns to the primary-key as the
foreign-keys, by measuring the distance using in total 6 features.

Various methods [47, 36, 43, 33] have been proposed for this task. Each of them has its
own way of enumerating and ranking candidate foreign-keys. However, they all have different
limitations. [36] is the only one capable of finding multi-column foreign-keys. While most of
the works for foreign-key discovery also assume knowing the primary-key of each relation,
only [43] does not assume any prior knowledge about the primary-key. In practice, the
assumption is sometimes difficult to achieve. Although there are some works like [49], which
finds all the candidate-keys by checking whether the values in the key attributes are unique,
the primary-key is still difficult to identify.

2.1.4 Attribute Clustering

As its name indicates, given a set of relations, the attribute clustering task tries to assign
the columns from different relations into disjoint clusters, where the columns in each cluster
are equivalent semantically. If two attributes have one of the below relationships, they are
considered as semantically equivalent, as defined in [37]:

• Primary/foreign-key;

• Two foreign-keys referring to the same primary-key;

• A column in a view and the corresponding column in the base table;

• Two columns in two views but from the same column in the base table;

• No explicit relationship but share the same semantic meaning (e.g., customer name
columns from different tables).

While the first four relationships are easy to be identified, inferring the last relationship is
very challenging [37].

Ahmadi et al. [2] categorized columns based on their data types. The method builds dif-
ferent signatures for categorizing attributes based on the types of semantics inferred from
the data in attributes, such as phone numbers and email addresses. For each category, the
most frequent q-grams are used to build the signatures. Zhang et al. [37] grouped columns
into clusters according to the relationship either primary/foreign-key columns, columns
from different views of the same base table, or semantically equivalent columns like cus-
tomer name from different tables. Their method used the earth mover distance to correlate
columns [36]. In [37], a database is interpreted as a graph where nodes represent database
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columns and edges represent column relationships. The graph is further decomposed into
connected components and clusters.

[2, 37] are two known methods proposed for this task. The former one treats all the
values as strings, and extracts q-grams as features. The latter one clusters the columns into
distribution clusters and further clustered into attribute clusters, by computing EMD (earth
mover distance) and further intersection EMD between each column pair, respectively.

2.2 Similarity Join

Due to the crucial role of similarity join in data integration and data cleaning, numerous
similarity join algorithms have been proposed [5, 12, 7, 32, 30, 31, 25, 55, 26, 17]. There are
also scalable implementations of the algorithms using the MapReduce framework [24, 56, 13].
Top-k similarity join is also explored [31, 19].

While the majority of the existing work on similarity join needs to specify a similarity
threshold or a limit of the number of results returned, there do exist some studies that seek
to find a suitable threshold for similarity join in a supervised way [27, 11, 6, 10]. Both [6]
and [10] adopted active learning to tweak the threshold. Chaudhuri et al. [11] learned an
operator tree, where each node contains a similarity threshold and a similarity function on
each of the splitting attributes. Wang et al. [27] modeled this problem as an optimization
problem and applied hill climbing to optimize the threshold-selection process. To the best
of our knowledge, [16] is the first work to discuss the one-to-one, one-to-many, and many-
to-many constraints for similarity join.
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Chapter 3

Schemaless Join for Result Set
Preferences

In many applications, one has to integrate data from multiple sources. More often than
not, a data source can be modeled as a relational table. Due to various reasons, the schema
information about those data sources may not be accurate, complete, or even available.
For one example, different sources may have incompatible naming standard for attribute
names. For another example, web tables crawled online often have no schema. Furthermore,
attribute constraints (like primary/foreign-key constraint) often do not exist among different
sources. The needs of integrating multiple data sources with incomplete or even missing meta
data have strongly motivated the fruitful research on schema matching [46, 18, 8, 28, 44]
and attribute clustering [2, 37, 36, 37]. The state of the art focuses on matching attributes
among sources using the information derived from the data in the tables to be joined.
However, a best join result according to a method’s own pre-determined criteria may not fit
a user’s best interest. As we know, a primary/foreign-key constraint explicitly defines how
two tables should be joined. However, when the constraint is not applicable, it is possible
to have multiple ways to join the data, and different users may expect different join results.

In this chapter, we tackle this data integration challenge by including human in the loop
– we investigate how to join tables guided by user preferences. It is well known that user
guidance may help to improve data integration quality [34, 35]. More importantly, allowing
users to specify preferences on join results can substantially improve user experience.

From a user’s point of view, she only needs to understand and specify the preference over
the potential join results at the macro-level, and the best join result w.r.t. the preference is
computed without user interaction at the micro-level.

Consider a toy example of tables R and S in Figure 3.1. Suppose the attribute informa-
tion as well as the primary/foreign-key information is unavailable. Only the data in the two
tables is available. For the ease of discussion, in Figure 3.1 we add some column names so
that our discussion is easy to follow. Such column names are unavailable to our algorithms.
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ID Tel. Name Home Clerk
P1 001 Alice Main St. Steve
P2 002 Alice Royal Rd. Steve
P3 003 Bob Robson St. Ada
P4 004 Lucy Univ Dr. Steve
P5 005 Steve Main St. Steve
P6 006 Tom Beta Ave. Steve

R (People)

ID Client Address Tel. Date Manager
O1 Alice Main St. 001 Apr 1 Steve
O2 Bob Royal Rd. 010 Apr 1 Alice
O3 Bob Robson St. 003 Apr 2 Steve
O4 Alice Main St. 001 Apr 3 Steve
O5 Tom Beta Ave. 006 Apr 4 Steve
O6 Peter Main St. 011 Apr 5 Alice

S (Orders)

Figure 3.1: A toy example of two tables.

One may guess table R may contain information about customers, and S may be about
the orders of a product. In one scenario, the company may want to send out advertisements
to as many customers who purchase the product in the past. Then, the company would
like to join the two tables in the way that the most tuples in S are matched. To meet this
preference, as shown in Figure 3.2, joining column “Home” in R and column “Address” in
S gives the most desirable result. In another situation, the company may want to obtain
purchase information with the least ambiguous customer information. That is, the company
wants to match each order record with fewest customer records. To meet this preference,
as shown in Figure 3.2, joining the “Tel.” column in R with the “Tel.” column in S, the
“Name” column in R with the “Client” column in S, and the “Home” column in R with
the “Address” column in S produces the most preferable answer.

As illustrated, under different preferences there are different ways to join tables. Can
we formulate a set of essential preferences that users can use to specify their preferences
in many application scenarios? Moreover, can we compute the best way to join tables so
that the most desirable results can be produced to echo user preferences? Motivated by the
above questions, in this chapter, we formulate and tackle the problem of schemaless join for
result set preferences. To the best of our knowledge, this problem has not been touched in
literature. We make a few contributions.

First, we formulate result set preferences and the problem of schemaless join for result set
preferences. We investigate the monotonicity of preferences that is very useful in algorithm
development. Second, we devise a general predicate enumeration algorithm framework for
the problem, and develop several critical pruning techniques. Last, we conduct an extensive
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empirical study on 4 large datasets and compare with 4 state of the art baselines from
schema matching and attribute clustering. The results clearly show that our algorithm is
effective and efficient.

The rest of the chapter is organized as follows. We present our problem formulation in
Section 3.1, discuss the preferences in Section 3.2, and develop our algorithm in Section 3.3.
We report an empirical study in Section 3.4.

3.1 Problem Definition

Consider two tables R and S. Denote by CR =
{
cR1 , c

R
2 , . . . , c

R
m

}
and CS =

{
cS1 , c

S
2 , . . . , c

S
n

}
the sets of attributes inR and S, respectively. We assume that the schema about the data
is unavailable. That is, for each table, the relation schema, which defines the attribute
names and domain constraints, is unavailable. Moreover, the schema crossing relations,
which defines the mapping constraints between attributes of different relations, is assumed
unavailable, too. The data in each table is the only information that we use. Our assumption
of no schema information addresses the challenges in many data cleaning and integration
scenarios.

We consider equi-join in this chapter. A join predicate specifies the matching attributes
that are used to join two tables.

Definition 1. A join predicate p is a set of attribute pairs{(
cRi1 , c

S
j1

)
,
(
cRi2 , c

S
j2

)
, . . . ,

(
cRi|p| , c

S
j|p|

)}
, where cRix ∈ C

R (1 ≤ ix ≤ m) and cSjx ∈ C
S (1 ≤ jx ≤ n).

For example, consider the tables in Figure 3.1. Predicate {(Name,Client)} specifies
joining column “Name” in R and column “Client” in S.

The join result has all them+n attributes from R and S. Specially, empty join predicate
∅ leads to a Cartesian product of two tables.

The inner join on predicate p is

R onp S = σcR
i1

=cS
j1
∧ cR

i2
=cS

j2
∧ ...∧ cR

i|p|
=cS

j|p|
(R× S)

Figure 3.2 gives a few examples of inner join using various predicates on the tables in
Figure 3.1.
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ID Tel. Name Home Clerk ID Client Address Tel. Date Manager
P1 001 Alice Main St. Steve O1 Alice Main St. 001 Apr 1 Steve
P1 001 Alice Main St. Steve O4 Alice Main St. 001 Apr 3 Steve
P2 002 Alice Royal Rd. Steve O1 Alice Main St. 001 Apr 1 Steve
P2 002 Alice Royal Rd. Steve O4 Alice Main St. 001 Apr 3 Steve
P3 003 Bob Robson St. Ada O2 Bob Royal Rd. 010 Apr 1 Alice
P3 003 Bob Robson St. Ada O3 Bob Robson St. 003 Apr 2 Alice
P6 006 Tom Beta Ave. Steve O5 Tom Beta St. 006 Apr 4 Steve

p1 = {(Name,Client)}

ID Tel. Name Home Clerk ID Client Address Tel. Date Manager
P1 001 Alice Main St. Steve O1 Alice Main St. 001 Apr 1 Steve
P1 001 Alice Main St. Steve O4 Alice Main St. 001 Apr 3 Steve
P3 003 Bob Robson St. Ada O3 Bob Robson St. 003 Apr 2 Alice
P6 006 Tom Beta Ave. Steve O5 Tom Beta Ave. 006 Apr 4 Steve

p2 = {(Tel.,Tel.) , (Name,Client) , (Home,Address)}

ID Tel. Name Home Clerk ID Client Address Tel. Date Manager
P1 001 Alice Main St. Steve O1 Alice Main St. 001 Apr 1 Steve
P1 001 Alice Main St. Steve O4 Alice Main St. 001 Apr 3 Steve
P1 001 Alice Main St. Steve O6 Peter Main St. 011 Apr 5 Alice
P5 005 Steve Main St. Steve O1 Alice Main St. 001 Apr 1 Steve
P5 005 Steve Main St. Steve O4 Alice Main St. 001 Apr 3 Steve
P5 005 Steve Main St. Steve O6 Peter Main St. 011 Apr 5 Alice
P3 003 Bob Robson St. Ada O3 Bob Robson St. 003 Apr 2 Alice
P2 002 Alice Royal Rd. Steve O2 Bob Royal Rd. 010 Apr 1 Alice
P6 006 Tom Beta Ave. Steve O5 Tom Beta Ave. 006 Apr 4 Steve

p3 = {(Home,Address)}

ID Tel. Name Home Clerk ID Client Address Tel. Date Manager
P1 001 Alice Main St. Steve O2 Bob Royal Rd. 010 Apr 1 Alice
P1 001 Alice Main St. Steve O6 Peter Main St. 011 Apr 5 Alice
P2 002 Alice Royal Rd. Steve O2 Bob Royal Rd. 010 Apr 1 Alice
P2 002 Alice Royal Rd. Steve O6 Peter Main St. 011 Apr 5 Alice
P5 005 Steve Main St. Steve O1 Alice Main St. 001 Apr 1 Steve
P5 005 Steve Main St. Steve O3 Bob Robson St. 003 Apr 2 Steve
P5 005 Steve Main St. Steve O4 Alice Main St. 001 Apr 3 Steve
P5 005 Steve Main St. Steve O5 Tom Beta Ave. 006 Apr 4 Steve

p4 = {(Name,Manager)}

Figure 3.2: Examples of R onpi S using each predicate pi.
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We further define outer join. Denote by (null, . . . )n an n-tuple of null values. Then, the
full outer join is

R on↔p S = (R onp S)

∪
((
R \ πcR

1 ,c
R
2 ,...,c

R
m

(R onp S)
)
× {(null, . . . )n}

)
∪
(
{(null, . . . )m} ×

(
S \ πcS

1 ,c
S
2 ,...,c

S
n
(R onp S)

))
For example, in Figure 3.2, for p2 = {(Tel.,Tel.), (Name,Client), (Home,Address)},

comparing to R onp2 S, R on↔p2 S contains three additional tuples, resulted from joining
three tuples in R of IDs P2, P4, and P5 with (null, . . . )n, and another two additional
tuples, resulted from joining (null, . . . )m with two tuples in S of IDs O2 and O6.

Immediately, we have the following property.

Property 1. For two predicates p and q such that p ⊂ q, R onp S ⊇ R onq S.

In general, we have the following result.

Theorem 1. Let p and q be two predicates. If R onp S = R onq S, then R onp∪q S = R onp

S = R onq S.

Proof. Due to Property 1, R onp S ⊇ R onp∪q S. We only need to show R onp S ⊆ R onp∪q S.
For any tuple t ∈ R onp S and any attribute pair (cRi , cSj ) ∈ p ∪ q, πcR

i
(t) = πcS

j
(t). Thus,

t ∈ R onp∪q S and R onp S ⊆ R onp∪q S.

Definition 2. A predicate p is closed if there does not exist another predicate q ⊃ p where
R onp S = R onq S.

For example, for the two tables in Figure 3.1, predicate p′2 = {(Tel.,Tel.)} is not closed,
since R onp′2

S = R onp2 S, where p2 = {(Tel.,Tel.) , (Name,Client) , (Home,Address)}, as
shown in Figure 3.2. It can be verified that p2 is closed. Apparently, using Theorem 1, we
have the following result.

Corollary 1. Let p be a predicate. There exists one and only one closed predicate q ⊇ p

such that R onp S = R onq S.

We can define a relation ∼ among all possible predicates: for predicates p and q, p ∼ q

if R onp S = R onq S.

Theorem 2. Let P be the set of predicates. Consider the subset partial order ⊂ on P. Then,
∼ is an equivalence relation on P. Moreover, for each equivalence class in the quotient P/ ∼,
there exists a unique upper-bound in the class, which is a closed predicate.

Proof. The reflexivity and symmetry are trivial. The transitivity holds since ∀p, q, r ∈ P, if
p ∼ q and q ∼ r, then R onp S = R onq S and R onq S = R onr S. Thus, R onp S = R onr S,
that is, p ∼ r.
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Let C be an equivalence class in P/ ∼, and p and q be two upper-bounds of C such that
p 6= q. According to Theorem 1, R onp∪q S = R onp S = R onq S. That is, p ∼ (p ∪ q) and
thus p ∪ q ∈ C. As p ⊂ (p ∪ q), it contradicts the assumption that p is an upper-bound.

If the upper-bound p ∈ C is not closed, then there exists a predicate q ⊃ p such that
R onp S = R onq S. Thus, q ∈ C, which contradicts that p is the upper-bound.

Often, predicates producing empty join results are not interesting. Thus, we call a pred-
icate p valid on R and S if R onp S 6= ∅. Without specific mentioning, we are interested in
valid predicates only.

For a predicate p and tables R and S, the set of joining keys of R onp S is the set
of values used by the predicate p in the join, that is, KR,S(p) = πcR

i1
,cR

i2
,...,cR

i|p|
(R onp S),

where p =
{(
cRi1 , c

S
j1

)
,
(
cRi2 , c

S
j2

)
, . . . ,

(
cRi|p| , c

S
j|p|

)}
. When R and S are clear from context,

we just write K(p) instead of KR,S(p). For each joining key k =
(
v1, v2, . . . , v|p|

)
∈ K(p),

we define the corresponding joining group as a pair
(
GRk , G

S
k

)
, where GRk and GSk are

the sets of tuples in R and those in S, respectively, having the same key, that is, we have
GRk = σcR

i1
=v1 ∧ cR

i2
=v2 ∧ ...∧ cR

i|p|
=v|p|(R) and GSk = σcS

j1
=v1 ∧ cS

j2
=v2 ∧ ...∧ cS

j|p|
=v|p|(S). Moreover,

we denote by rk =
∣∣∣GRk ∣∣∣ and sk =

∣∣∣GSk ∣∣∣.
Take p2 = {(Tel.,Tel.), (Name,Client), (Home,Address)} in Figure 3.2 as an example.

R onp2 S has 3 joining keys, where K(p2) = {(001,Alice,Main St.), (003,Bob,Robson St.),
(006,Tom,Beta Ave.)}. The first tuple in R and the first and the fourth tuples in S contains
the first joining key k1 = (001,Alice,Main St.). Thus, its joining group is

(
GRk1

, GSk1

)
, where

GRk1
is a set of tuples of ID P1 and GSk1

is a set of tuples of IDs O1 and O4.
In different application scenarios, users may prefer different join results. We will discuss

a series of preferences on join results in Section 3.2. In general, we define a preference
scoring function h : (R,S,P) → R to model a preference, where P is the set of all valid
predicates on R and S, and R is the set of real numbers. The larger the preference value,
the more preferable the predicate. For simplicity, we write h(p) when R and S are clear
from context.

Definition 3. A preference scoring function h is monotonic, if h(p) ≥ h(p′) for any
predicates p and p′ where p ⊆ p′.

For example, let us consider a simple function h0(p) = |R onp S|. Obviously, for any
predicates p and p′ such that p ⊆ p′, R onp S ⊇ R onp′ S and thus h0(p) ≥ h0(p′). Therefore,
h0 is monotonic.

Now, we are ready to state our problem.

Definition 4. Given two tables R and S and a preference scoring function h, find a valid
and closed predicate p that maximizes h(p).
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3.2 Preferences on Join Results

In this section we formulate a series of preferences on join results that capture different needs
in various applications. Table 3.1 summarizes the preferences. Those preferences cover the
most common scenarios.

3.2.1 Preference for More Tuples Joined

In our example in Figure 3.1, a task may prefer that as many customer records and order
records as possible are matched (i.e., joined). This motivates our first preference that maxi-
mizes the number of tuples joined between R and S. Formally, we define preference scoring
function

h1(p) =
∑

k∈K(p)
(rk + sk)

[44] adopts a threshold on schema matching coverage defined as cov(p) =
∑

k∈K(p)(rk+sk)
|R|+|S| .

Since |R| + |S| is a constant when R and S are given, h1 and coverage capture the same
preference.

3.2.2 Preference for More Joining Groups

In our example in Figure 3.1, when the two tables are joined, each joining group may possibly
be interpreted as a customer (with different profiles) and the corresponding purchasing
records, that is, the items that the same customer purchased. Thus, each joining key
uniquely identifies a customer’s profiles and her purchasing records. A possible preference
may identify as many unique customers as possible. This is equivalent to maximizing the
number of joining keys. As a special case, the joining keys are the values of foreign-key
when primary/foreign-key constraint exists, where a larger cardinality of foreign-key values
is preferred [47]. Formally, we define preference scoring function

h2(p) = |K(p)|

3.2.3 Preference for Less Tuples in Outer Join

In our example in Figure 3.1, the company may want to merge the customer records and the
purchasing records, and the result should include not only the matched records but also the
unmatched records. The merged table is actually the full outer join result. Given different
join predicates, the outer join results have different numbers of tuples. To reflect the need
of the company, the user expects the most compact merged result. Thus, we consider a
preference having the outer join result contain as less tuples as possible. To capture this
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Table 3.1: Summary of the preferences.
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preference, we define preference scoring function

h3(p) =
∑

k∈K(p)
(rk + sk − rk · sk)

As |R|+ |S| is a constant when R and S are given, according to the definitions of inner and
outer joins, we have |R onp S| =

∑
k∈K(p) rk · sk and further arg minp (|R|+ |S| − h3(p)) =

arg minp
∣∣∣R on↔p S

∣∣∣ = arg maxp h3(p).

3.2.4 Preference for More Balanced Distribution of Joining Keys

Consider our example in Figure 3.1, let the customers be Internet service users, and the
orders be their monthly bills in the past year. Although a customer may have multiple
profiles, due to reasons like moving, she would still receive a bill every month by continuing
the service, resulting in a fixed number of bills throughout the year. Thus, we expect most
customers have similar numbers of matched records of customer profiles and orders. Recall
that each joining key uniquely identifies each customer’s profiles and orders. Thus, a more
balanced distribution of the numbers of joined tuples w.r.t. joining keys is preferred. As a
special case, when primary/foreign-key constraint exists, the values of foreign-key are the
joining keys. [36] demonstrates that in most circumstances the values of foreign-key form
(nearly) uniform distribution with high randomness, We propose a preference based on
the entropy of the joining key probability distribution. As we know, the higher the entropy,
the more balanced the number of joined tuples rk · sk for each joining key k. Formally, the
preference scoring function is

h4(p) = −
∑

k∈K(p)
P (k) log2 P (k) where P (k) = rk · sk

|R onp S|

3.2.5 Preference for Greater Mean of Coverage and Strength

Consider a task of the example in Figure 3.1. To reduce the uncertainty of which customer
made each order, we may prefer each order matches with only one customer. In sum, we
may prefer one-to-one / one-to-many matching to many-to-many matching, i.e. rk and /
or sk being 1 for each joining group. Thus, each involved record should appear unique in
the join result, which is measured by strength. It is introduced in [44] for better schema
matching accuracy, and defined as str(p) =

∑
k∈K(p)(rk+sk)

2·|RonpS| . Usually, the more attributes
joined, the higher confidence we have on the matched records in the join result. However,
we do not want to risk preventing joining records with only partially matched information.
Recall that coverage discussed earlier measures the number of involved (matched) records
in the join result. To balance the situation, we use the harmonic mean of coverage and
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Algorithm 1: Algorithm framework.
Function: main(R,S, h)
Input: tables R and S, preference h
Output: valid closed predicate that maximizes h

1 p∗ ← ∅ // the currently best predicate
2 enumerate(∅) // recursively update p∗
3 return p∗

Function: enumerate(p)
Input: current predicate p

1 if ĥ(p) < h(p∗) or ∃p′ <lex p : p′ ⊃ p ∧
∣∣R onp′ S

∣∣ = |R onp S| then
2 return // p can be pruned
3 if h(p) > h(p∗) or h(p) = h(p∗) ∧ p ⊃ p∗ then
4 p∗ ← p // update p∗ with p
5 foreach attribute pair (cRli , c

S
wj

) by multi-way merge join on LRli and LSwj
for all the

joining groups of p do
6 enumerate(p ∪ (cRli , c

S
wj

)) // recursively extend p

strength as a preference scoring function.

h5(p) = 2 · cov(p) · str(p)
cov(p) + str(p) =

2 ·∑k∈K(p) (rk + sk)
2 · |R onp S|+ |R|+ |S|

3.3 Finding Best Predicates

Given a preference on result sets defined in Section 3.2, how can we efficiently find the best
join predicate? We present our algorithm in this section. We start with a top-down predicate
enumeration framework, and then discuss the details of the critical steps. Algorithm 1 is
the pseudo-code of our method. Our algorithm can handle all preferences discussed in
Section 3.2.

3.3.1 A Predicate Enumeration Framework

Our algorithm enumerates all possible valid predicates starting from the empty predicate ∅,
which serves as the root of our search. The enumeration process follows a set enumeration
tree [48]. Iteratively we try to add a new pair of attributes from the two tables to expand
the parent predicate.

To enable the enumeration, we assume a total order on attributes across the tables.
Without loss of generality, we use the order that the attributes are listed in a table (and R
is before S). For two attributes a and b in table CR, we write a < b if a is ordered before
b. For example, in Figure 3.1, we assume ID < Name in R. Based on the total orders on
attributes, we define a total order on attribute pairs. For two attribute pairs (a, b) and
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{(T, T)}

{(T, T),
 (N, C)}

{(T, T), (N, C),
 (H, A)}

{(T, T), (N, C),
 (H, A), (C, M)}

{(T, T),
 (H, A)}

{(N, C)}

{(N, C),
 (H, A)}

{(N, C),
 (C, M)}

{(N, M)}

{(N, M),
 (H, A)}

{(H, A)}

{(H, A),
 (C, M)}

{(C, M)}

{ }

{(N, C), (H, A),
 (C, M)}

{(T, T), (H, A),
 (C, M)}

R: ID -> I, Tel. -> T, Name -> N, Home -> H, Clerk -> C
S: ID -> I, Client -> C, Address -> A, Tel. -> T, Date -> D, Manager -> M

{(T, T),
 (N, M)}

{(T, T),
 (C, M)}

Predicates with the same background are in the same equivalence class over relation ∼.

Predicates in bold are closed, and predicates surrounded by red dashed rectangles are
pruned by the non-closed predicate pruning in Theorem 3.

Figure 3.3: The predicate enumeration tree of valid predicates.

(a′, b′) , (a, b) < (a′, b′) if (1) a < a′; or (2) a = a′ and b < b′. In a predicate, all attribute
pairs are listed in the total order.

Now, we have a lexicographical order <lex on predicates, based on the total order on
attribute pairs. For example, in Figure 3.1 {(Tel.,Tel.)} <lex {(Tel.,Tel.) , (Name,Client)}.
Using the lexicographical order, all predicates can be enumerated in a set enumeration tree.
The root of the tree is the empty set predicate ∅. Each node in the tree is a predicate
{x1, x2, . . . , xi} where all xi’s are in order. The children of the node are all predicates
{x1, x2, . . . , xi, xj} such that {x1, x2, . . . , xi} <lex {x1, x2, . . . , xi, xj}. Figure 3.3 shows the
set enumeration tree in our example in Figure 3.1.

As established by the set enumeration tree construction [48], each predicate appears in
the set enumeration tree once and only once. Our algorithm framework conducts a depth-
first search of the predicate set enumeration tree. For each predicate searched, we calculate
the corresponding preference score. At the end of the search, our algorithm returns the
predicate with the best preference score. The correctness of our algorithm is established
immediately according to the above discussion.
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3.3.2 Different Pruning Strategies

Not every predicate is valid or closed or maximizes the preference scoring function. There-
fore, for the interest of efficiency, we devise the respective pruning techniques.

Invalid Predicate Pruning

Pruning invalid predicates is straightforward. According to Property 1, any superset of an
invalid predicate cannot be valid. Therefore, once the search process encounters an invalid
predicate p in the predicate enumeration tree, the whole subtree rooted at p can be pruned,
as only the supersets of p appear in the subtree.

Non-Closed Predicate Pruning

To explore how to prune non-closed predicates, let us look at an example. Consider the
tables in Figure 3.2 and the predicates in Figure 3.3. We can verify that predicate p =
{(Name,Client) , (Home,Address)} is not closed, as for predicate p2 = {(Tel.,Tel.)} ∪ p,
R onp2 S = R onp S. Therefore, every tuple in R onp S has the same value on the two “Tel.”
columns. For any predicate q that is a superset of p but does not contain attribute pair
(Tel.,Tel.), like q = {(Name,Client) , (Home,Address) , (Clerk,Manager)}, we can always
add (Tel.,Tel.) to obtain another predicate q′ ⊃ q where R onq S = R onq′ S. Thus, q cannot
be closed.

We formulate the above observation as follows.

Theorem 3. If for predicates x and p, |R onp S| = |R onp∪x S|. Then, for any predicate
q ⊇ p but q 6⊃ x, q is not closed.

Proof. Let p and q be two predicates where p ⊆ q. According to Property 1, R onp S ⊇
R onq S. Thus, R onp S = R onq S if and only if |R onp S| = |R onq S|.

Since R onp S = R onp∪x S, every tuple in R onp S has the same values on attribute pairs
x \ p, so does every tuple in R onq S on attribute pairs x \ q. Thus, R onq S = R onq∪x S. As
q 6⊃ x, q ⊂ q ∪ x. That is, q is not closed.

For predicate p, we check if there exists any previous enumerated predicate p′ where
p′ ⊃ p and

∣∣R onp′ S
∣∣ = |R onp S|. This can be done efficiently by memorizing previous

enumerated predicates and sizes of their respective join results in a hash table, where each
key is the size of a join result and its respective value is a list of predicates having the join
results of the same size. We also remove any p′ ⊂ p in the hash table whenever

∣∣R onp′ S
∣∣ =

|R onp S| for more compact storage. The size of the hash table is bounded by the size of the
enumeration tree. Because p′ is enumerated before p, we have p′ <lex p and further q 6⊃ p′\p
for any of p’s descendant q. According to Theorem 3, p can be safely pruned. For example,
in Figure 3.3, the whole subtree rooted at predicate {(Name,Client) , (Home,Address)} can
be pruned.
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Monotonic Score-based Pruning

Since we are only interested in the predicate of the best preference score, we can use the
monotonic preference scoring functions or monotonic upper-bound functions to prune un-
promising predicates. For each node p in the predicate enumeration tree, we calculate the
upper-bound of the preference scoring function at the node p. If the upper-bound is less than
or equal to the best preference score obtained so far, the whole subtree rooted at p can be
pruned due to the monotonicity of the upper-bound. We derive the monotonic upper-bounds
of all our preferences as follows. Table 3.1 summarizes the preference upper-bounds.

Lemma 1. h1 is monotonic.

Proof. Consider two predicates p and q such that p ⊂ q. Clearly, for any tuples a ∈ R

and b ∈ S, we have a × b ∈ R onq S only if a × b ∈ R onp S. Since ∑k∈K(p) rk =
|{a ∈ R | ∃b ∈ S : a× b ∈ R onp S}|,

∑
k∈K(p) rk ≥

∑
k∈K(q) rk. Thus,

∑
k∈K(p) rk is mono-

tonic. Similarly, ∑k∈K(p) sk is monotonic. Together, the lemma follows immediately.

h2 is not monotonic. Consider predicate p4 in Figure 3.2 and a new predicate p5 =
{(Name,Manager) , (Home,Address)}, p4 ⊂ p5, as an example. However, h2(p4) = 2 <

h2(p5) = 3. We have an upper-bound of h2 that is monotonic.

Lemma 2. Let ĥ2(p) = min
{∑

k∈K(p) rk,
∑
k∈K(p) sk

}
. Then, h2(p) ≤ ĥ2(p) and ĥ2(p) is

monotonic.

Proof. For any joining key k, we must have rk ≥ 1 and further |K(p)| ≤ ∑
k∈K(p) rk.

Similarly, |K(p)| ≤∑k∈K(p) sk. Thus, h2(p) ≤ ĥ2(p).
In the proof of Lemma 1, both ∑k∈K(p) rk and ∑k∈K(p) sk are monotonic. Thus, ĥ2 is

monotonic.

h3 is not monotonic, either. For example, in Figure 3.2, p3 ⊂ p2, but h3(p3) = 2 <

h3(p2) = 3. h2 and h3 have the same monotonic upper-bound.

Lemma 3. h3(p) ≤ ĥ3(p) = ĥ2(p).

Proof. As rk ≥ 1 and rk ≥ 1 for any joining key k, it is straightforward to get ∑k∈K(p) rk ·
sk ≥ max

{∑
k∈K(p) rk,

∑
k∈K(p) sk

}
. Thus, h3(p) ≤∑k∈K(p) (rk + sk) −

max
{∑

k∈K(p) rk,
∑
k∈K(p) sk

}
= min

{∑
k∈K(p) rk,

∑
k∈K(p) sk

}
= ĥ3(p).

h4 is not monotonic. In our example in Figure 3.1, p3 ⊂ p2, h4(p3) = 1.447 < h4(p2) =
1.5. As h4(p) is entropy, ∀p : h4(p) ≤ log2 |K(p)| = log2 h2(p). Thus, we have an upper-
bound ĥ4(p) = log2 ĥ2(p) for h4. As ĥ2(p) is monotonic, ĥ4(p) is also monotonic.

h5 is not monotonic. In our example in Figure 3.1, p1 ⊂ p2, h5(p1) = 0.692 < h5(p2) =
0.7.
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Lemma 4. Let ĥ5(p) =
2·
∑

k∈K(p)(rk+sk)∑
k∈K(p)(rk+sk)+|R|+|S| . Then, h5(p) ≤ ĥ5(p) and ĥ5(p) is mono-

tonic.

Proof. As |R onp S| ≥
∑
k∈K(p) rk and |R onp S| ≥

∑
k∈K(p) sk, h5(p) ≤ ĥ5(p). ĥ5(p) is

monotonic, as ∑k∈K(p) (rk + sk) is monotonic in Lemma 1.

3.3.3 Producing Children Nodes using Multi-Way Merge Joins

Let p =
{(
cRi1 , c

S
j1

)
,
(
cRi2 , c

S
j2

)
, . . . ,

(
cRi|p| , c

S
j|p|

)}
be any predicate in the predicate set enumer-

ation tree. A central step in our algorithm is to produce the children nodes of p. A brute-force
method can enumerate every pair of attributes (cRi , cSi ) such that p <lex p∪ {(cRi , cSi )}, and
compute the join result using the new predicate p ∪ {(cRi , cSi )}. This is very costly in time
since the number of possible pairs (cRi , cSi ) and thus the complexity is proportional to m · n
where m and n are the numbers of attributes in R and S, respectively. In this subsection,
we develop a multi-way merge join technique that can reduce this cost substantially.

Using the current predicate p, the join result is a set of joining groups (GRk , GSk ), where
k is a joining key on the attributes in predicate p. When a new pair of attributes (cRi , cSi ) is
added to p, essentially each joining group is split into multiple joining groups for predicate
p ∪ {(cRi , cSi )}. Obviously, due to Property 1, no joining groups are merged.

Based on the above observation, we focus on how to split a single joining group into the
joining groups corresponding to various children predicates of p. According to the lexico-
graphical order, for table R we only need to consider those attributes not before the last
attribute in p in the total order of attributes on R, and, for table S, we need to consider
all those attributes. Let k be the number of attributes in R before the last attribute in p
according to the total order < on R. The number of attributes in R to be considered is
m− k. For the sake of simplicity, let cRl1 , . . . , c

R
lm−k

be the attributes in table R that do not
appear before the largest one in p, and cSw1 , . . . , c

S
wn

be the attributes in table S. For each
cRli (1 ≤ i ≤ m− k), we sort all the tuples R in the joining group according to their values
in attribute cRli , and denote the sorted list by LRli . Similarly we generate the sorted lists LSwi

.
Here we assume there is an order on the possible values on all attributes, for example, the
dictionary order.

Next, we conduct a multi-way merge join on the all the sorted lists. We consider the
first value in each of those sorted lists. If the first values of two lists LRli and LSwj

match,
then the tuples in GRk having this value on attribute cRli and the tuples in GSk having this
value on attribute cSwj

form a new joining group. After the matching is conducted, those
matched values and their corresponding tuples in the sorted lists are removed. If no match
is found in the current round, the smallest value of the top values in those sorted lists and
the corresponding tuples are removed.

For example, consider producing the children nodes of the predicate {(Name,Client)}
in Figure 3.2. The candidate attributes are three attributes “Name”, “Home”, and “Clerk”
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Figure 3.4: Example of multi-way merge join for splitting the second joining group of pred-
icate {(Name,Client)}.

Table 3.2: Dataset characteristics.

Dataset Size #Tables #Col. per Table #Tuples per Table #Truths
Average Maximum Average Maximum

TPC-H 1.0GB 8 7.6 16 1,082,656 6,001,215 8
Employees 140MB 6 4 6 653,169 2,844,047 6
IMDb 4.5GB 18 5.4 12 4,487,832 42,964,606 19
Yelp 1.0GB 5 62.8 170 371,067 1,125,458 5

in R and all the attributes in S. It has three different joining groups, and we conduct three
multi-way merge joins respectively, stacking the new joining groups together according to
the new predicates. Figure 3.4 gives an example of the second joining group, which has the
joining key k = Bob and contains tuples P3 in R and O2 and O3 in S. When splitting
the joining group, we get the sorted list LRHome containing P3 with value “Robson St.”,
w.r.t. attribute “Home” in R. Similarly, we get the sorted list LSAddress containing O3 with
value “Robson St.” and O2 with value “Royal Rd.”, w.r.t. attribute “Address” in S. During
the multi-way merge join, P3 in LRHome is matched with O3 in LSAddress due to the same
value “Robson St.”, and they form a new joining group for the extending attribute pair
(Home,Address) with the new joining key k′ = (Bob,Robson St.).

Using the above method, we can scan each tuple once and produce all children nodes
for the current predicate.
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Table 3.3: Average F1-scores.

Dataset Ours MIMatch AttrCluster SMaSh FastFK
h1 h2 h3 h4 h5 w/o F. w/ F.

TPC-H 0.958 1 1 1 1 0.167 0.696 0.938 0.875 0.875
Employees 0.833 1 1 1 0.833 0.306 0.667 0.667 0.833 0.833
IMDb 0.632 0.158 0.158 0 0.632 0.035 0.135 0.316 0.316 0.474
Yelp 0.8 1 1 1 1 n/a 0.45 0.733 0.8 0.8

3.4 Experiments

In this section, we report an extensive empirical study. The algorithms were implemented
in Python and executed using PyPy 1 on a Mac Pro server with an Intel Xeon 3.70GHz
CPU and 16GB memory, running OS X El Capitan.

We evaluate the methods using 4 datasets with ground-truths. Table 3.2 shows their
statistical information.

• The standard benchmark dataset TPC-H [38], which has about 8 million records in
total in 8 tables.

• A smaller sample dataset Employees [39] from MySQL, containing about 4 million
records in total across 6 tables.

• IMDb [40] 2 is a challenging dataset, where every table contains a primary-key ID
column and several foreign-key ID columns, all in the same domain. This dataset has
about 80 million records in total across 18 tables.

• The real dataset from Yelp [41] is in JSON format with many nested properties. Each
record is flattened by removing the nested levels. There are hundreds of properties,
and the respective converted table contains at most 170 columns. The dataset has
nearly 2 million records in total across 5 tables.

We compare our algorithm with four state of the art baselines. The first baseline “MI-
Match” [18] computes schema mapping between two tables. Each attribute in R is either
unmatched or uniquely matched with an attribute in S. As the algorithm can only do partial
mapping (where not every attribute is matched) when using their normal distance metric,
which does not support pruning, we set a predicate size limit of 4 to help it finish. We
choose a control factor of α = 10 for the normal distance metric, which in most cases gives
the best results in terms of accuracy.

1PyPy (http://pypy.org/) is an advanced just-in-time compiler, having 10 times faster performance for
our algorithm.

2It is converted to tables by using IMDbPy (http://imdbpy.sourceforge.net/).
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The second baseline “AttrCluster” [37] clusters columns from a set of tables into groups
sharing the semantically related meanings. As a cluster may contain more than one column
from R or S, we assume one column of R joins with another column of S in the same
cluster. For example, clusters

{
cR1 , c

R
2 , c

S
1

}
and

{
cR3 , c

S
2

}
are converted to two predicates{(

cR1 , c
S
1

)
,
(
cR2 , c

S
1

)}
and

{(
cR3 , c

S
2

)}
, where each predicate represents joining the columns

in the same cluster sharing the same semantic meaning. We choose a threshold θ = 0.1 for
clustering, which shows the best results. It also requires a linear programming solver 3.

The third baseline “SMaSh” [44] finds a set of matching attribute pairs for schema match-
ing. Each pair is evaluated individually by the algorithm. We choose Jaccard to measure
the similarity between the sets of values from two attributes due to its best performance.
SMaSh also proposes two measures, strength and coverage, for optional post-filtering of the
candidate matching attribute pairs. As with and without filtering can lead to significantly
different results, we use both as two baselines. According to [44], we set the set similarity
threshold to 0.5, the strength threshold to 0.5, and the coverage threshold to 0.001.

The last baseline “FastFK” [43] is about foreign-key discovery. To the best of our knowl-
edge, it is the only work that does not require the knowledge of primary-key. However, it also
has a limitation that only single-column foreign-key can be returned. We set the parameter
for containment constraint pruning ε = 0.1 for the best results.

Both the baselines and our algorithm here work under the assumption that the schema
is unavailable, and do not rely on the existence of external domain knowledge.

3.4.1 Accuracy

We want to evaluate how well each preference captures the nature of how tables are joined.
However, due to the variety of user intent, it is difficult to measure the accuracy. We observe
that the primary/foreign-keys, specified when designing a database’s schema for traditional
schema-based join, explicitly defines how the tables should be joined together. Thus, we use
the known primary keys and their respective foreign keys in those data sets as the ground-
truths, and evaluate how well using the preferences may approach the ground-truths. For
each dataset, among all pairs of tables, those with primary/foreign-key relationship in the
database schema are evaluated. The mapping of attributes between the primary-key in
one table and its foreign-key in another table forms a ground-truth predicate of how the
two tables are joined. Some databases have ground-truth predicates with more than one
attribute pairs, like TPC-H and IMDb.

As both the ground-truth predicate and the output predicate may have more than one at-
tribute pair, we use F1-score, which is the harmonic mean of precision and recall, to measure
the accuracy. When joining table R with S, if the output predicate is p and the ground-

3We use GNU Linear Programming Kit (https://www.gnu.org/software/glpk/) as the solver.
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Table 3.4: Average running times (in sec).

Dataset Ours MIMatch AttrCluster SMaSh FastFK
h1 h2 h3 h4 h5

TPC-H 35.1 62.2 61.8 90.4 134.3 176.7 142.9 19.6 17.1
Employees 3.9 5.2 5.3 5.9 9.6 6.1 8.4 2 2
IMDb 90.2 75.3 75.2 80.8 238.2 344.7 442.1 66.1 57.3
Yelp 15.3 16.4 23 290.8 689 n/a 958.4 21.9 10.6

truth predicate is q, the precision and recall are defined as |p∩q||p| and |p∩q|
|q| , respectively.

For example, given output predicate p =
{(
cR1 , c

S
1

)
,
(
cR2 , c

S
3

)}
and ground-truth predicate

q =
{(
cR2 , c

S
3

)}
, precision(p, q) = 0.5 and recall(p, q) = 1.0. Thus, F1(p, q) = 0.667. For the

AttrCluster baseline which returns multiple predicates, we use the average F1-score of all
its predicates. There are multiple pairs of joining tables in each dataset. Thus, we report
the average F1-score.

Table 3.3 compares the 5 preferences on the 4 datasets. As the ground-truths are
primary/foreign-keys in our experiments, the closer a preference reflects the primary/foreign-
key relationship, the better its accuracy. h1 (maximizing #involved tuples) simply maxi-
mizes the number of involved tuples. h2 (maximizing #joining groups) and h4 (maximizing
distribution entropy) directly capture the characteristics of large cardinality and high ran-
domness of primary/foreign-key [47], respectively. h3 (minimizing #outer join tuples) and
h5 (maximizing harmonic mean of strength and coverage) find trade-offs between more in-
volved tuples and less noise in join result. Thus, on TPC-H, Employees, and Yelp datasets,
all preferences but h1 perform very well with optimal or near-optimal results. h1 does not
perform very well, as there are often multiple candidate predicates where all the tuples in
both tables are involved. However, for IMDb dataset, each table contains both a primary-
key ID column and several other foreign-key ID columns, all in the same domain. Thus,
many primary/foreign-key characteristics are no longer discriminative. This leads to the
bad performances of all preferences, especially h2, h3, and h4. However, h1 and h5 performs
relatively good, as they rely on coverage which is less affected.

Table 3.3 also compares our algorithm and the four baselines (including two versions of
“SMaSh”). Our algorithm and the baselines have a distinct difference. We measure the qual-
ity of join result directly, while the baselines investigates the characteristics of attributes
which affect the join result indirectly. This leads to significant improvement on our accu-
racy. As we can see, h3 in our method outperforms all the baselines substantially on all
datasets except for IMDb, and h5 outperforms all the baselines clearly on IMDb. The clos-
est competitor is FastFK, as it only searches for primary/foreign-keys which coincidently
define the ground-truths in our experiment setting. However, it is still weaker than ours.
The limitation of only returning size-1 predicate also affects FastFK’s performance. The
second closest competitor is the latest SMaSh, thanks to its set similarities among attribute
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Figure 3.5: Average computing times (with and without upper-bound/non-closed predicate
pruning).
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Figure 3.6: Scalability of h1 on TPC-H.
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pairs and post-filtering by strength and coverage. It has the same accuracy of our h5 on
Employees and the same of h3 on IMDb. The next closest competitor is the AttrCluster
algorithm. The algorithm from MIMatch gives the worst results, as it is designed for schema
mapping instead of joining hence always matches too many columns. On the Yelp dataset,
its results are unavailable due to unacceptable running time (more than 12 hours). Again
on the challenging dataset IMDb, all baselines perform poorly.

3.4.2 Efficiency and Scalability

Table 3.4 compares our algorithm with the four baselines. Note that SMaSh has the same
running time with or without post-filtering. Note that the running time also includes the
data loading time. For all algorithms except SMaSh and FastFK, the loading takes signifi-
cantly long time, especially on large datasets, because of a pre-processing step of mapping
each table cell’s string value to a unique integer value for later faster value comparison.
SMaSh and FastFK are very fast on all the datasets, as they only need to measure each
possible attribute pair individually and do not require the mapping step during loading.
MIMatch is very slow due to the lack of pruning strategy, and cannot complete on the Yelp
dataset. AttrCluster takes more time, mainly for its linear programming solver which is
significantly slow.

We evaluate the effectiveness of our pruning techniques. Figure 3.5 reports the results on
using all pruning techniques versus pruning only invalid predicates (discussed at the begin-
ning of Section 3.3.2). Our pruning techniques take clear effect. To remove the disturbance
of data loading time, the results are in computing time only.

We conduct a scalability test using the TPC-H dataset which naturally supports setting
different scale factors. A scale factor of ×n generates a database with size of nGB. Figure 3.6
shows the average runtime and peak memory usage using h1 as the preference, suggesting
that our algorithm is highly scalable.
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Chapter 4

Preference-based Similarity Join

A key characteristic of big data is variety. Data (especially web data) often comes from
different sources and the value of data can only be extracted by integrating various sources
together. Similarity join, which finds similar objects (e.g., products, people, locations) across
different sources, is a powerful tool for tackling the challenge.

For example, suppose a data scientist collects a set of restaurants from Groupon.com
and would like to know which restaurants are highly rated on Yelp.com. Since a restaurant
may have different representations in the two data sources (e.g., “10 East Main Street" vs.
“10 E Main St., #2"), she can use similarity join to find these similar restaurant pairs and
integrate the two data sources together.

Threshold-driven similarity join has been extensively studied in the past [5, 12, 7, 32,
30, 31, 25, 55, 26, 17, 24, 56, 13, 20, 9]. To use it, one has to go through three steps: (a)
selecting a similarity function (e.g., Jaccard), (b) selecting a threshold (e.g., 0.8), and (c)
running a similarity join algorithm to find all object pairs whose similarities are at least 0.8.
The existing studies are mainly focused on Step (c). However, both Steps (a) and (b) deeply
implicate humans in the loop, which can be orders of magnitude slower than conducting
the actual similarity join.

One may argue that, in reality, humans are able to quickly select an appropriate simi-
larity function and a corresponding threshold for a given similarity join task. For choosing
similarity function, this may be true because humans can understand the semantics of each
similarity function and choose the one that meets their needs.

However, selecting an appropriate threshold may be far from easy. It is extremely difficult
for humans to figure out the effect of different thresholds on result quality. Choosing a good
threshold depends on not only the specified similarity function but also the underlying data.
We conduct an empirical analysis on the optimal thresholds for a diverse range of similarity
join tasks, where the optimal thresholds maximize F1-scores [27]. Table 4.1 shows the results
(details of the experiment are in Section 4.4). We find that the optimal thresholds for the
tasks are quite different. Even for the same similarity function, the optimal thresholds may
still vary a lot. For example, the optimal threshold of a record-linkage task on the Restaurants
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Table 4.1: Example of optimal thresholds w.r.t. various tasks.

Dataset Task Optimal Threshold Similarity
Wiki Editors Spell checking 0.625 Jaccard
Restaurants Record linkage 0.6 Jaccard
Scholar-DBLP Record linkage 0.34 Jaccard
Wiki Links Entity matching 0.9574 Tversky

dataset is 0.6, which differs a lot from the optimal threshold of 0.34 on the Scholar-DBLP
dataset using the same similarity function.

To solve this problem, one idea may be to label some data and then use the labeled
data as the ground truth of matching pairs to tune the threshold. However, human labeling
is error-prone and time-consuming, which significantly increases the (end-to-end) time of
data integration or cleaning using similarity join.

In this chapter, we tackle this problem from a different angle – can we achieve high-
quality similarity join results without requiring humans to label any data or specifying a
similarity threshold? Our key insight is inspired by the concept of preference in areas like
economics, which is an ordering of different alternatives (results) [3]. Taking Yelp.com as an
example, the restaurants can be presented in different ways such as by distance, price, or
rating. The different ordering may meet different search intents. A user needs to evaluate her
query intent and choose the most suitable ranking accordingly. Similarly, when performing
a similarity join, we seek to provide a number of result set preferences for a user to select
from. Intuitively, a result set preference can be thought of as an objective function to capture
how much a user likes a similarity join result. Once a particular preference is chosen, we
automatically tune the threshold such that the preference objective function is maximized,
and then we return the corresponding similarity join result. We call this new similarity
join model preference-driven similarity join. Compared to the traditional threshold-driven
similarity join, this new model does not need any labeled data.

As a proof of concept, our paper proposes two preferences from different yet comple-
mentary perspectives. The first preference MaxGroups groups the joined pairs where each
group is considered as an entity across two data sources, and returns the join result having
the largest number of groups. The second preference MinOutJoin balances between match-
ing highly similar pairs and joining many possibly matching pairs, and favors the join
result minimizing the outer-join size. According to our experiments on various datasets
with ground-truth, the preference-driven approach can achieve optimal or nearly optimal
F1-scores on different tasks without knowing anything about the optimal thresholds.

Given a result set preference, a challenge is how to develop an efficient algorithm for
preference-driven similarity join. This problem is more challenging than the traditional
threshold-driven similarity join because it involves one additional step: finding the best
threshold such that a preference is maximized. The brute-force method needs to compute
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Figure 4.1: Example of join(θ), where θ = 0.5.

the similarity values for all the pairs. It is highly inefficient even for datasets of moderate
size. We solve this problem by developing a novel similarity join framework along with effec-
tive optimization techniques. The experimental results show that the proposed framework
achieves several orders of magnitude speedup over the brute-force method.

The rest of the chapter is organized as follows. In Section 4.1, we formally define the
problem of preference-driven similarity join. In Section 4.2, we design two result set prefer-
ences from different perspectives. In Section 4.3, we propose a preference-driven similarity
join framework, and develop efficient algorithm for set-based similarity functions. In Sec-
tion 4.4, we evaluate our approach on four real-world web datasets from a diverse range of
applications. The results suggest that preference-driven similarity join is a promising idea
to tackle the threshold selection problem for similarity join, and verify that our method is
effective and efficient.

4.1 Problem Definition

Let R and S be two sets of objects, C+ denote the ground-truth that is the set of pairs
in R × S that should be joined/matched, and C− denote the remaining pairs, i.e., C− =
(R × S) \ C+. We call the pairs in C+ and C− matching pairs and non-matching pairs,
respectively. In general, C+ and C− are assumed unknown. Figure 4.1 shows a toy running
example of R and S, as well as the ground-truth C+.

Let sim : (r, s) ∈ R× S → [0, 1] denote a similarity function.

33



Definition 5 (Threshold-driven similarity join). Given a similarity function sim and a
threshold θ, return all the object pairs (r, s) whose similarity values are at least θ, that is,

join(R,S, sim, θ) = {(r, s) ∈ R× S | sim(r, s) ≥ θ}

If R, S, and sim are clear from the context, we write join(θ) for the sake of brevity.
We can regard join(θ) as a classifier, where the pairs returned by the function are the

ones classified as positive, and the rest pairs (R× S)\(join(θ)) classified as negative, that is,
not-matching. Figure 4.1 shows an example of join(0.5) using Jaccard similarity. Here, for
simplicity we tokenize a string into a set of characters. For example, jaccard(dblp_, _db) =
|r∩s|
|r∪s| = |{_,d,b}|

|{_,d,b,l,p}| = 3
5 = 0.6.

Similarity join seeks to find a threshold that leads to the best result quality. Theoreti-
cally, there are an infinite number of thresholds to choose from. However, we only need to
consider a finite subset of the possible thresholds, which is the set of the similarity values
of all object pairs in R × S, i.e., {sim(r, s) | r ∈ R, s ∈ S}, because, for any threshold not
in the finite set, there is always a smaller threshold in the finite set having the same join
result. For example, threshold 0.9 is not in the finite set in the example in Figure 4.1 but
join(0.9) = join(0.8).

Threshold tuning is time consuming and labor intensive. Therefore, we develop preference-
driven similarity join to overcome the limitations. Before a formal definition, we first intro-
duce the concept of result set preference, to capture the user preferences on a similarity join
result. Formally, a result set preference is a score function h: (R,S, sim, θ) → R, where R
is the set of real numbers. Obviously, a result set is determined by R, S, sim and θ. The
result set preference gives a score on how well the result set meets a user’s preference. The
higher the score, the better. If R, S, and sim are clear from the context, we write h(θ) for
the sake of brevity.

Definition 6 (Preference-driven Similarity Join). Given a similarity function sim and a
result set preference h, return the most preferred result join(θ∗) where θ∗ is the largest
threshold in the finite set maximizing h.

For the ease of presentation, we introduce some notations. First, we denote by join=(θ) =
{(r, s) ∈ join(θ) | sim(r, s) = θ} the subset of joined pairs w.r.t. similarity θ. For example,
in Figure 4.1, join=(0.75) = {(dbs, dbms)}. Second, we denote by coverR(θ) =
{r | ∃s : (r, s) ∈ join(θ)} the set of objects in R that are joined when the similarity threshold
is θ. Similarly, we have coverS(θ) = {s | ∃r : (r, s) ∈ join(θ)}. For example, in Figure 4.1,
coverR(0.75) = {db_ms, dbs, vldb}. Last, for r ∈ R, we denote by topS(r) the set of most
similar object(s) in S including ties. Similarly, we have topR(s). For example, in Figure 4.1,
topS(vldb) = {pvldb, vl_db}.
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Figure 4.2: Example of hc and ho.

4.2 Two Result Set Preferences

As a proof of concept, we present two result set preferences.

4.2.1 MaxGroups: Maximum Number of Non-Trivial Connected Compo-
nents

Our first preference, MaxGroups, partitions objects into different groups without any prior
knowledge. For a similarity threshold θ, we construct a bipartite graphGθ =

(
UR, V S , join(θ)

)
,

where UR and V S are two disjoint sets of nodes representing the objects in R and S, re-
spectively, and every pair in join(θ) defines an edge. As indicated in [21], each connected
component in the bipartite graph is an entity, where the objects in the same connected
component are the entity’s different representations.

MaxGroups prefers the similarity join result with more non-trivial connected components
(i.e., connected components with at least two nodes, one in R and another in S). The
intuition is that heuristically we want to match as many entities as possible across R and S.
Let J(Gθ) denote the set of non-trivial connected components in a bipartite Gθ, we define
result set preference MaxGroups as

hc(θ) = |J(Gθ)|

Figure 4.2 gives an example of hc on our toy dataset in Figure 4.1.
Given a similarity join result join(θ), the time complexity of computing hc(θ) is O(|R|+

|S|+ |join(θ)|) by simply computing the connected components of the bipartite graph Gθ.
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(db_ms , dbms )
(db_ms , dbms_)
(dbs , dbms )
(vldb , pvldb)
(vldb , vl_db)

∪ (db , NULL)
(dblp_, NULL) ∪ (NULL , _db)

Figure 4.3: Example of outjoin(θ), where θ = 0.75.

Since we need to compute the preference scores for multiple similarity thresholds θ, there are
opportunities to reduce the computational cost. We will discuss the details in Section 4.3.3.

4.2.2 MinOutJoin: Minimum Outer-Join Size

We make the following observation. On the one hand, if we set a too high similarity threshold
and thus be too strict in similarity, many objects may not be matched with their counter-
parts due to noise. The extreme case is that, if we set the similarity threshold to 1, only
those perfectly matching objects are joined. On the other hand, if we set a too low similarity
threshold and thus be too loose in similarity, many not-matching objects may be joined by
mistake. The extreme case is that, by setting the similarity threshold to 0, every pair of
objects in the two sets are joined.

We need to find a good balance between the two and strive to a good tradeoff. Tech-
nically, full outer-join includes both joined entries and those not joined (by matching with
NULL). The size of the full outer-join is jointly determined by the number of objects joined
and the number of objects not joined. The two numbers trade off each other. Therefore, if
we minimize the size of the full outer-join, we reach a tradeoff between the two ends. This
is the intuition behind our second preference, MinOutJoin.

The full outer similarity join result w.r.t. a similarity threshold is

outjoin(θ) = join(θ) ∪
{

(r, NULL)
∣∣∣ r ∈ R \ coverR(θ)

}
∪
{

(NULL , s)
∣∣∣ s ∈ S \ coverS(θ)

}
where

{
(r, NULL)

∣∣∣ r ∈ R \ coverR(θ)
}

is the set of objects in R that are not joined, and{
(NULL , s)

∣∣∣ s ∈ S \ coverS(θ)
}

is the set of objects in S that are not joined. Figure 4.3
illustrates an example of a full outer-join. We define our preference MinOutJoin as

ho(θ) = |R|+ |S| − |outjoin(θ)| =
∣∣∣coverR(θ)

∣∣∣+ ∣∣∣coverS(θ)
∣∣∣− |join(θ)|

where |R|+ |S| is a constant given R and S. Figure 4.2 gives an example of ho on our toy
dataset.

This preference gives a penalty when multiple objects in a set are joined with multiple
objects in the other set. Joining x objects in R and y objects in S results in x · y pairs in
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the full outer-join. Not joining them results in at most x+ y of pairs in the full outer-join.
When x > 1 and y > 1, we have x · y ≥ x+ y.

Given a threshold θ, it is straightforward to compute coverR(θ), coverS(θ) and join(θ)
according to their definitions by scanning the join result join(θ). The time complexity of
computing ho(θ) is O(|join(θ)|) for each θ. Since we need to compute the preference scores
for multiple similarity thresholds θ, there are opportunities to reduce the computational
cost. We will discuss the details in Section 4.3.3.

4.3 Algorithm Framework

In this section, we present an efficient framework for the preference-driven similarity join
problem. A brute-force solution is to compute the similarities for all the object pairs, calcu-
late the preference score w.r.t. each possible threshold, and return the similarity join result
with the highest preference score. This brute-force method may be inefficient. Computing
similarities for all pairs is often prohibitive. The number of possible thresholds can be very
large, |R| × |S| in the worst case. It is crucial to reduce the cost involved in this process.

To tackle the challenges, we propose a preference-driven similarity join framework in
Algorithm 2. Central to the framework are four key functions. Function PivotalThresh-
olds (Section 4.3.1) identifies a small set of thresholds Θ, called the pivotal thresholds,
that are guaranteed to cover the best preference score obtained from all the possible thresh-
olds. Function IncrementalSimJoin (Section 4.3.2) checks the pivotal thresholds in value
descending order and incrementally computes the similarity join result for each threshold.
We propose a new optimization technique, called lazy evaluation, to further improve the
efficiency. Function IncrementalScore (Section 4.3.3) computes the preference score for
each threshold. It is possible to reduce the cost by computing the scores incrementally when
checking the pivotal thresholds in value descending order. Function EarlyTermination
(Section 4.3.4) determines whether we can stop checking the remaining pivotal thresholds
by comparing the upper bound ĥ(θi) with currently best score h(θ∗) once a similarity join
result join(θi) is computed.

4.3.1 Pivotal Thresholds

Not every threshold has a chance to lead to the maximum preference score. In this section,
we study how to identify a small set of thresholds Θ such that the maximum preference
score can be obtained by only evaluating Θ, i.e., maxθ∈[0,1] h(θ) = maxθ∈Θ h(θ).
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Algorithm 2: Preference-driven similarity join framework.
Input: objects R and S, similarity function sim, preference h
Output: the most preferred join result join(θ∗)

1 Θ← PivotalThresholds(R,S, sim)
2 foreach threshold θi ∈ Θ in descending order do
3 join=(θi)← IncrementalSimJoin(θi−1, θi)
4 join(θi)← join(θi−1) ∪ join=(θi)
5 if h(θi) > h(θ∗) then θ∗ ← θi // IncrmentalScore
6 else if ĥ(θi) ≤ h(θ∗) then break // EarlyTermination
7 return join(θ∗)

Consider Θ =
{
sim(r, s)

∣∣∣ r ∈ R, s ∈ S, r ∈ topR(s) ∧ s ∈ topS(r)
}
. Clearly, Θ is often

dramatically smaller than |R| × |S|, as

|Θ| ≤min
{ ∣∣∣{sim(r, s)

∣∣∣ r ∈ R, s ∈ S where s ∈ topS(r)
}∣∣∣ ,∣∣∣{sim(r, s)

∣∣∣ r ∈ R, s ∈ S where r ∈ topR(s)
}∣∣∣ } ≤ min {|R| , |S|}

For example, in Figure 4.1, Θ = {1, 0.8, 0.667}.
We can show that both MaxGroups and MinOutJoin have the same set of pivotal thresh-

olds. The basic idea is that, for any θ /∈ Θ, there exists θ′ > θ such that h(θ′) ≥ h(θ).
Remind that, through the paper, we only need to discuss the thresholds within the finite
set {sim(r, s) | r ∈ R, s ∈ S} as discussed in Section 4.1.

Lemma 5. Given a threshold θ, if r 6∈ topR(s) or s 6∈ topS(r) for any (r, s) ∈ join=(θ),
then ∃θ′ > θ : hc(θ′) ≥ hc(θ).

Proof. Let θ′ be a threshold such that join(θ) \ join(θ′) = join=(θ). Bipartite Gθ can be
derived by adding those new edges in join=(θ) to bipartite Gθ′ . For any (r, s) ∈ join=(θ), if
r 6∈ topR(s), then r must be already in a non-trivial connected component of Gθ′ , and s can
only be added to the non-trivial connected component where r belongs to. Similar situation
happens if s 6∈ topS(r). Since there is not any new non-trivial connected component in Gθ
comparing to Gθ′ , hc(θ′) ≥ hc(θ).

Lemma 6. Given a threshold θ, if r 6∈ topR(s) and s 6∈ topS(r) for any (r, s) ∈ join=(θ),
then ∃θ′ > θ : ho(θ′) ≥ ho(θ).
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Proof. Let θ′ be a threshold such that join(θ)\join(θ′) = join=(θ). When r 6∈ topR(s) ∨ s 6∈
topS(r) for any (r, s) ∈ join=(θ),

|join(θ)| −
∣∣join(θ′)

∣∣ = |join=(θ)|

≥
∣∣∣{(r, s) ∈ join=(θ)

∣∣∣ s ∈ topS(r)
}∣∣∣+ ∣∣∣{(r, s) ∈ join=(θ)

∣∣∣ r ∈ topR(s)
}∣∣∣

≥
∣∣∣{r ∈ coverR(θ)

∣∣∣ s ∈ S where sim(r, s) = θ ∧ s ∈ topS(r)
}∣∣∣

+
∣∣∣{s ∈ coverS(θ)

∣∣∣ r ∈ R where sim(r, s) = θ ∧ r ∈ topS(s)
}∣∣∣

=
∣∣∣coverR(θ)

∣∣∣− ∣∣∣coverR(θ′)
∣∣∣+ ∣∣∣coverS(θ)

∣∣∣− ∣∣∣coverS(θ′)
∣∣∣

Thus, ho(θ′)− ho(θ) ≥ 0.

Thanks to the existing fast top-k similarity search algorithms [31, 29], obtaining the
pivotal thresholds can be efficient by computing the most similar objects of each object in
R and S, respectively. According to the above lemmas, it is guaranteed that the largest
threshold having the maximum score in the finite set of thresholds is always in Θ.

4.3.2 Incremental Similarity Join

In this section, we present an efficient algorithm that incrementally computes the similarity
join result join(θi) w.r.t. threshold θi. We do not need to conduct a similarity join for each
pivotal threshold. Since join(θ) = ∪θ′≥θjoin=(θ′), for each threshold θ, we only need to
compute the respective newly joined pairs join=(θ). Thus, we can enumerate the thresholds
in the value descending order, and compute the respective join results incrementally.

The algorithm consists of two steps. First, the algorithm incrementally computes a set
of candidate pairs cand(θi). Second, the algorithm evaluates the similarity of each candidate
pair and returns the pairs whose similarity values are at least the threshold θi. While this
two-step approach has been used by existing similarity join algorithms [12, 7, 32, 26], our
contribution is a novel optimization technique, called lazy evaluation, which lazily evaluate
the similarity of each candidate pair and reduces the cost.

We focus on set-based similarity functions in this chapter. Similar strategies can be
applied to other kinds of similarity functions, like string-based or vector-based. Note that
multi-set (bag) can also be used here instead of set. Table 4.2 shows the definitions of the
similarity functions. Jaccard, overlap, dice, and cosine similarity are widely adopted in ex-
isting similarity join literature [12, 7, 32, 26]. In addition, we include Tversky similarity [57],
which is a special asymmetric set-based similarity with different weights α and 1− α on r
and s, respectively. This similarity function is very useful in certain scenarios, like matching
a text with an entity contained by the text. Given an object r as a set, we use r[: i] to
denote the first i elements of r assuming a global ordering of elements in the set.
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Table 4.2: Summary of set-based similarity functions.

Here boundmini,j = |r[: i] ∩ s[: j]| ≤ |r ∩ s| and
boundmaxi,j = |r[: i] ∩ s[: j]|+ min {|r| − i, |s| − j} ≥ |r ∩ s|.

Similarity sim simmin
i,j simmax

i,j tθ

Jaccard |r∩s|
|r|+|s|−|r∩s|

boundmin
i,j

|r|+|s|−boundmin
i,j

boundmax
i,j

|r|+|s|−boundmax
i,j

dθ · |r|e

Overlap |r∩s|
max{|r|,|s|}

boundmin
i,j

max{|r|,|s|}
boundmax

i,j

max{|r|,|s|} dθ · |r|e

Dice 2·|r∩s|
|r|+|s|

2·boundmin
i,j

|r|+|s|
2·boundmax

i,j

|r|+|s|

⌈
θ
2 · |r|

⌉
Cosine |r∩s|√

|r|·|s|
boundmin

i,j√
|r|·|s|

boundmax
i,j√

|r|·|s|

⌈
θ2 · |r|

⌉
Tversky |r∩s|

α·|r|+(1−α)·|s|
boundmin

i,j

α·|r|+(1−α)·|s|
boundmax

i,j

α·|r|+(1−α)·|s| dθ · α · |r|e

Candidate Pair Generation

Established by prefix filtering [12], if sim(r, s) ≥ θ, the number of elements in the overlap of
the sets |r ∩ s| is no fewer than an overlap threshold tθ w.r.t. |r|, where the overlap thresh-
olds for set-based similarities are shown in Table 4.2. Thus, the candidate pair generation
problem is converted to how to filter out the pairs with fewer than tθ common elements.

To filter out the pairs with less than tθ common elements, we fix a global ordering
on the elements of all the objects, and sort the elements in each object based on the or-
dering. Like [26], we use the inverse document frequency as the global ordering. Prefix
filtering [12] establishes that if |r ∩ s| ≥ tθ, then r[: #prefixθ(r)] ∩ s[: #prefixθ(r)] 6= ∅,
where #prefixθ(r) = |r| − tθ + 1.

Using an inverted index, we do not need to enumerate each pair (r, s) to verify whether
r[: #prefixθ(r)] ∩ s[: #prefixθ(r)] 6= ∅. An inverted index maps an element to a list of
objects containing the element. After building the inverted index for S, for each r ∈ R, we
only need to merge the inverted lists of the elements in r[: #prefixθ(r)] to retrieve each
s ∈ S such that r[: #prefixθ(r)] ∩ s[: #prefixθ(r)] 6= ∅.

Our goal is to generate the candidate pairs for [θi, θi−1). We use an incremental prefix
filtering approach [31] that memorizes previous results to avoid regenerating the candidate
pairs for [θi−1, 1].

Lazy Evaluation

Suppose we want to check whether the similarity of a candidate pair (r, s) ∈ cand(θi) is
no smaller than a threshold θi or not. The idea of lazy evaluation is to iteratively com-
pute both a maximum and a minimum possible value of sim(r, s), denoted by simmax(r, s)
and simmin(r, s), respectively. Interestingly, both simmax(r, s) and simmin(r, s) get tighter
through the process, and finally converge at sim(r, s). During this process, we use the values
for lazy evaluation in two ways.
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Algorithm 3: Incremental similarity join.
Input: thresholds θi−1 and θi where θi−1 > θi
Output: incremental similarity join result join=(θi)

1 join=(θi)← ∅
2 let cand(θi) be the candidate pairs for [θi, θi−1)
3 foreach pair (r, s) ∈ cand(θi) do
4 while simmin(r, s) < θi ≤ simmax(r, s) do
5 update simmax(r, s) and simmin(r, s)
6 if simmax(r, s) < θi then
7 find θj : θj−1 > simmax(r, s) ≥ θj by binary search
8 add (r, s) into cand(θj)
9 else

10 add (r, s) into join=(θi)
11 return join=(θi)

• If simmax(r, s) < θi, then sim(r, s) < θi. Thus, it is only necessary to resume evalu-
ating (r, s) for a future smaller threshold θj where θj−1 > simmax(r, s) ≥ θj .

• If simmin(r, s) ≥ θi, then θi−1 > sim(r, s) ≥ θi. Thus, (r, s) does not need to be fully
evaluated at all.

We scan r and s iteratively together from left to right, according to the global ordering.
Assuming r[: i] and s[: j] have been scanned, Table 4.2 shows the maximum/minimum
possible values of sim(r, s). Through the scanning, we iteratively update simmax(r, s) and
simmin(r, s) accordingly.

The pseudo-code of the lazy evaluation-powered algorithm is shown in Algorithm 3.
The algorithm first computes cand(θi), by generating a set of candidate pairs for [θi, θi−1)
together with the previously postponed candidate pairs from larger thresholds. Then, the
algorithm examines each candidate pair in cand(θi) and decides whether it should be added
into join=(θi) or postponed and added into cand(θj) for a smaller threshold θj (found by
binary search over the rest of the thresholds). Finally, join=(θi) is returned.

4.3.3 Incremental Score Computation

For both our preferences, computing the preference score for each similarity threshold is
straightforward. However, as we need to compute the preference scores for multiple thresh-
olds, it is necessary to explore how to further reduce the cost.

For preference MaxGroups, when computing the join result incrementally by decreasing
θ, if two objects of each newly joined pair in join=(θ) are in different connected components,
the connected components are merged together to form a larger connected component. We
use a disjoint-set data structure to dynamically track newly joined pairs, and update the
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connected components accordingly. It only takes almost O(1) amortized time [15] for each
newly joined pair in join=(θ).

For preference MinOutJoin, when processing incrementally by the value decreasing order
of θ, we only need to scan each join=(θ) to update join(θ), coverR(θ), coverS(θ), and further
the preference score. It only takes O(1) time for each newly joined pair in join=(θ).

4.3.4 Early Termination

The goal of early termination is to determine if we can return the current most preferred
result without evaluating the remaining thresholds. In our algorithm, the thresholds are
evaluated in the descending order. Suppose threshold θi has just been evaluated. At this
point, we have known the preference score for each threshold that is at least θi. Let h(θ∗)
denote the current best preference score, i.e., h(θ∗) = maxθ≥θi

h(θ). If we can derive an
upper-bound ĥ(θi) of the preference scores for the remaining thresholds and show that the
upper-bound is no larger than h(θ∗), then it is safe to stop at θi and h(θ∗) is the best result
overall.

For MaxGroups, as the threshold decreases, a previously unseen non-trivial connected
component can only be created by merging two trivial connected components. Since a new
non-trivial connected component contains at least one object from R \ coverR(θi) and one
object from S \coverS(θi), the number of non-trivial connected components in any Gθ′ such
that θ′ < θi is at most min

{∣∣∣R \ coverR(θi)
∣∣∣ , ∣∣∣S \ coverS(θi)

∣∣∣}. Thus, an upper-bound is

ĥc(θi) = hc(θi) + min
{∣∣∣R \ coverR(θi)

∣∣∣ , ∣∣∣S \ coverS(θi)
∣∣∣}

For MinOutJoin, as the threshold decreases, the join result join(θi) includes more pairs.
Whenever a new pair (r, s) is joined, |join(θi)| increases by one. The only way to get the pref-
erence score increased by 1 is that

∣∣∣coverR(θi)
∣∣∣ and ∣∣∣coverS(θi)

∣∣∣ both increase by 1. In this
case, r has to be come from R\coverR(θi) and s has to be come from S \coverS(θi). There-
fore, the preference score can at most increase by min

{∣∣∣R \ coverR(θi)
∣∣∣ , ∣∣∣S \ coverS(θi)

∣∣∣}.
Accordingly, we set an upper-bound to

ĥo(θi) = ho(θi) + min
{∣∣∣R \ coverR(θi)

∣∣∣ , ∣∣∣S \ coverS(θi)
∣∣∣}

4.4 Experimental Results

We present a series of experimental results in this section. The programs were implemented
in Python running with PyPy1. The experiments were conducted using a Mac Pro Late
2013 Server with Intel Xeon 3.70GHz CPU, 64GB memory, and 256GB SSD.

1PyPy (http://pypy.org/) is an advanced just-in-time compiler, providing 10 times faster performance
for our algorithm than the standard Python interpreter.
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Table 4.3: Dataset characteristics.

Dataset R S
∣∣C+∣∣

|R| Max. Len.Avg. Len. |S| Max. Len.Avg. Len.
Wiki Editors 2,239 20 9.65 1,922 16 8.66 2,455
Restaurants 533 96 48.38 331 91 43.5 112
Scholar-DBLP 64,259 259 115.9 2,562 326 106.61 5,347
Wiki Links 187,122 1,393 17.08 168,652 209 16.35 202,272

4.4.1 Datasets

We adopt four real-world web datasets with ground-truth for evaluation. Table 4.3 shows
the characteristics of each dataset.

Wiki Editors [50] is about misspellings of English words, made by Wikipedia page editors
where the errors are mostly typos. Each misspelling has at least one correct word. R contains
the misspellings, while S contains the correct words. The ground-truth C+ are pairs of each
misspelling and the corresponding correct word.

Restaurants [51] links the restaurant profiles between two websites. Each profile contains
the name and address of a restaurant. We remove the phone number and cuisine type,
which are available in the original data, to make it more challenging. R and S are profiles
of restaurants, and the ground-truth C+ identifies the pairs of profiles linking the same
restaurants. Every restaurant has at most one match.

Scholar-DBLP [52] finds the same publications in Google Scholar and DBLP, where
each record in DBLP has at least one matching record in Google Scholar. Each record on
both websites contains the title, author names, venue, and year. R and S are publications
identified by Google Scholar and DBLP, respectively, and the ground-truth C+ are pairs of
records linking the same publications.

Wiki Links [53] is a large dataset containing short anchor text on web pages and the
Wikipedia link that each anchor text contains. R contains the anchor text, while S contains
the Wikipedia entities extracted from Wikipedia links. For example, link https://en.

wikipedia.org/wiki/Harry_Potter_(character) is converted to entity “Harry Potter”.
The ground-truth C+ are pairs linking each anchor text and its entity. Each anchor text may
also contain the text of the entity that the Wikipedia link refers to, such as “. . . Harry Potter
is a title character. . . ”. This dataset has multiple files, where each contains roughly 200, 000
mappings (about 200 MB). We used the first file in most of our evaluation except for the
scalability evaluation where the first four files were used.

To adopt set-based similarities, each string needs to be converted to a set. Empirically,
people often convert a long string into a bag of words and convert a short string into a set
of grams. For the first dataset, since a string represents a word, we convert each string into
a bag of 2-grams. For the rest three datasets, since the strings are much longer, we convert
each string into a bag of words. We use Jaccard similarity for the first three datasets. For
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Table 4.4: Sensitivity of thresholds on F1-score.

Thresholds: optimal θ#, higher θ+ = min
{

1, θ# + 0.1
}
, lower θ− = max

{
0, θ# − 0.1

}
.

Dataset using θ+ using θ# using θ− Preference-driven
Wiki Editors 0.599 0.764 0.705 0.764 using hc and ho
Restaurants 0.725 0.816 0.597 0.809 using ho
Scholar-DBLP 0.697 0.759 0.554 0.754 using hc
Wiki Links 0.774 0.780 0.624 0.780 using hc

Numbers in red are when ours achieves optimal F1-scores.

the Wiki Links dataset, since anchor text often contains both the entity text and some other
irrelevant texts, we choose Tversky similarity (α = 0.1).

4.4.2 Threshold-driven vs. Preference-driven

In this section, we empirically investigate the pros and cons of both our preference-driven
approach and other possible solutions for tuning a similarity join threshold.

We demonstrate the sensitivity of thresholds w.r.t. F1-score in Table 4.4. A small devi-
ation from the optimal threshold affects the result quality dramatically. This clearly shows
that threshold tuning is crucial for threshold-driven similarity join. On two datasets, our
preference-driven approach can achieve the optimal F1-score, and on the other two datasets,
they are very close to the optimal.

To compare with human labeling approaches, we adopt two supervised approaches to
tune a similarity threshold. The first one is random sampling, where pairs are randomly
sampled and labeled. We use the same sampling method as [54], where the larger set R is
sampled with a specified sampling rate, and then joined with S to derive all the pairs to
be labeled. Apparently, at least |S| pairs need to be labeled. The second approach [10] uses
active learning to tune a threshold by incrementally labeling the most uncertain pair to the
classifier. When there is a tie, the one with the highest similarity is selected. The threshold
that achieves the best on the labeled data is selected. Figure 4.4 shows the results. For
random sampling, only using a very high sampling rate like 10% can almost catch up with
our method. For active learning, the number of necessary labels is significantly reduced,
however, still hundreds to thousands of pairs need to be labeled on most of the datasets.

The total running time of the two supervised approaches contains two parts: the labeling
part which tunes the threshold, and the joining part using the tuned threshold. In compar-
ison, our approach returns both a threshold and its join results in a unified framework. We
calculate the end-to-end time that the threshold-driven approach needs in order to achieve
the same quality as our preference-driven approach. For simplicity, we assume that each
pair takes 1s to be labeled correctly by a human, which is a very conservative estimation.
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Figure 4.4: Accuracy comparisons of threshold-driven (using random sampling (RS) or active
learning (AL) for threshold tuning) and preference-driven approaches.

Figure 4.5 shows the results. The labeling step is much more costly than the joining step.
The end-to-end time of the preference-driven approach is orders of magnitude faster. The
preference-driven approach uses almost twice of memory, due to caching candidate pairs.

4.4.3 Accuracy of Preference-driven Approach

In this section, we evaluate the accuracy of our preference-driven approach. Table 4.5 com-
pares the results between hc and ho. The precision, recall, and F1-score are presented,
together with the preferred threshold θ∗. For Wiki Editors, due to its nature of high similar-
ity between misspellings and correct words, both preferences return the same optimal result.
For the record-linkage task on Restaurants, ho gives the significantly better result as it favors
one-to-one matching. For Scholar-DBLP, hc gives the better result, because maximizing the
number of non-trivial connected components actually satisfies the nature of many-to-many
matching. For the Wiki Links, hc gives the optimal result, and ho is quite close.

45



��������������������������������
���������������������������

�����������������

��������������������������������
���������������������������

��

���

����

�����

������

�������

������
������

�
���

��������

�
����������

���������
���

�
���

������

�
��
�

�
��
�

�
�
�
�
�

��

���

����

�����

������

�������

������
������

�
���

��������

�
����������

���������
���

�
���

������

�
��
�

�
��
�

�
�
�
�
�

(a) Running time.

���

����

�����

������

�
���

��������

�
����������

���������
���

�
���

������

�
�
�
�
��

�
��
�

�
�
�
�

(b) Peak memory.

For threshold-driven approach, we tune the threshold such that it achieves the closest
(within 0.01) F1-score as preference-driven approach. We assume that each pair needs 1s

to label. The same preference in Table 4.4 is used here for each dataset.

Figure 4.5: Efficiency comparisons of threshold-driven and preference-driven approaches.

Table 4.5: Accuracy for varying datasets and preferences.

Dataset hc (MaxGroups) ho (MinOutJoin)
Wiki Editors 0.625 0.837 0.704 0.764 0.625 0.837 0.704 0.764
Restaurants 0.429 0.291 0.938 0.444 0.556 0.805 0.813 0.809
Scholar-DBLP 0.361 0.841 0.683 0.754 0.419 0.903 0.595 0.717
Wiki Links 0.957 0.959 0.657 0.780 0.972 0.968 0.648 0.776

θ∗ Precision Recall F1 θ∗ Precision Recall F1

4.4.4 Efficiency of Preference-driven Approach

There is no existing work solving the same problem. We choose the brute-force method in
Section 4.3 as a baseline to evaluate the efficiency. This method takes almost the same time
and memory regardless of the preference due to the same amortized time for processing
each newly joined pair incrementally.

Figure 4.6(a) shows the number of thresholds evaluated by the baseline and our algo-
rithm. On most of the datasets, our algorithm evaluates 10 to 100 times less thresholds
than the baseline. Our method achieves a significant speedup due to the combination of
other optimization techniques (i.e., incremental similarity join and early termination). As
Figure 4.6(b) shows, our algorithm is 10 to 100 times faster than the baseline on all the
large datasets. Figure 4.6(c) shows that our method consumes significantly less memory.

For incremental similarity join, we use lazy evaluation for speedup. Instead, a simple
approach computes the exact similarities for all the new candidate pairs produced by each
threshold, and puts them into a max-heap. Those pairs in the heap whose similarities are
no less than the current threshold are popped out for evaluation. On smaller datasets Wiki
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Figure 4.6: Efficiency of preference-driven approach.

Editors and Restaurants, the simple approach works slightly better, as there are not many
pairs that need lazy evaluation. However, on larger datasets Scholar-DBLP and Wiki Links,
our lazy evaluation approach is 2 to 5 times faster.

Scalability

For scalability, we evaluate our algorithm using hc on a larger version of Wiki Links that
contains 4 files. There are overlapping objects between different parts. Figure 4.7 shows
our method’s good scalability results on number of evaluated thresholds, running time, and
peak memory usage.
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Figure 4.7: Scalability on Wiki Links using hc.
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Chapter 5

Conclusions

5.1 Conclusions

In this thesis, we first tackled the problem of joining tables automatically to meet user
preference on results. We proposed a set of preferences that may be used in various scenarios.
We further developed a general algorithm framework for any preference and efficient pruning
and speedup techniques. We used 4 datasets to evaluate our method and compare with 4
state of the art baselines. The experimental results demonstrated both the effectiveness of
the preferences and the efficiency of our algorithm.

Further, we tackled the problem of similarity join based on user preference. Usually ne-
glected in the similarity join literature, threshold selection can actually be a bottleneck in
an end-to-end similarity join process. To mitigate the challenge, we propose and formalize
preference-driven similarity join. We present two specific preferences as proofs of concept
and develop a general framework for efficient computation methods. We evaluate our ap-
proach on four real-world datasets from a diverse range of application scenarios. The results
demonstrate that preference-driven similarity join can achieves high-quality results without
any labeled data, and our proposed framework is efficient and scalable.

5.2 Future Directions

As we studied, past works have extensively explored the data mapping tasks from different
angles. However, we believe there are still many pieces to be filled for the puzzle of data
mapping. In this section, we discuss some future directions which we believe are interesting
and promising.

Traditionally, schema matching is conducted over the relational model and the tree-
based model. In recent years, NoSQL databases have gained quite a popularity among users,
where there is no schema or constraint enforced regarding data. Thus, even data from the
same source may not share the same schema. How to effectively integrate this type of data
remains an open problem, as we may have to transform and unify the schemas within the
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same source first. We have not seen any work regarding this direction yet. However, with
the rapid growth of the NoSQL usage, this problem becomes inevitable.

Another interesting direction to be considered is transfer learning, which solves one
problem and applies the gained knowledge to a related problem. For example, can we apply
a model learned when integrating the student records to integrating the employee records?
Admittedly, this kind of techniques are very tricky to be devised and deployed. However,
we do believe this direction has great potentials, as integrating data within related domains
do share great similarities.

Scalability is always a direction for future improvements. For example, given millions
of web tables, can we still conduct the data integration tasks, which are usually conducted
over only small data like several tables? While there are works like [64] applying schema
matching over millions of web tables right now, they only compute and index pair-wise
schema matching results. Traditional methods are likely not going to work well. How to
scale up is still a challenging problem. Even further, more and more data are generated
and collected every day. How to incrementally incorporate them into existing results is also
tricky to be solved.
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