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Abstract

This thesis describes the measurement of the local magnetic field of a D-Wave Systems
Washington generation processor using on-chip multiplexed unshunted DC SQUID mag-
netometers. These measurements are used in conjunction with passive and active field
compensation to minimize the magnetic field present during the superconducting transition
of the chip in order to limit the number of magnetic flux lines trapped on chip. This maxi-
mizes the operability of the superconducting quantum processor.

Keywords: Simon Fraser University; DC SQUID magnetometer; Trapped magnetic flux
mitigation; Unshunted Josephson junction; Multiplex; Superconducting electronics
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Chapter 1

Introduction

This thesis will present techniques for making accurate absolute measurements of residual
magnetic fields using a set of unshunted DC Superconducting Quantum Interference De-
vices (SQUIDs) to assist in low field cooling of a superconducting processor for improved
operability. The structure of the thesis is as follows. This chapter will begin by motivating
the use of superconductors in integrated circuits. A description of the deleterious effects
that trapped magnetic flux can have on such circuits and mitigation techniques for reducing
the number of trapped flux lines will follow. Chapter 2 will work through the theoretical
background necessary to understand some basic properties of superconductors, Josephson
junctions and devices comprised from them. This will conclude by explaining how magnetic
fields affect the characteristics of an unshunted DC SQUID. Following this, Chapter 3 will
detail how to use these characteristics of the SQUID to perform a magnetic field measure-
ment. Detail will be given on the procedures necessary to measure the magnetic field when
the SQUIDs are multiplexed and share signal lines. Using these methods, Chapter 4 will
present the experimental results for magnetometery performed on a D-Wave Washington
generation processor. Finally, Chapter 5 will discuss the work and briefly comment on the
applicability of this type of measurement to other systems.

1.1 Superconducting circuits

Superconductors are best known as materials that exhibit zero DC resistance and perfect
diamagnetism. Josephson junctions consist of two closely separated superconductors (see
Fig. 1.1), which permits dissipationless current flow across this classically forbidden region.
These and other properties of superconductors and Josephson junctions can be leveraged
to make novel electronic circuits.

Some of the appealing qualities of circuits constructed out of superconducting compo-
nents include extremely fast switching, with maximum clock speeds nearing the THz range
[1]. The energy consumed in the switching process can be made very small [2, 3], approach-
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Electrode Electrode
Weak Link

 

(a) Josephson junction

(b) Circuit symbol

Figure 1.1: A Josephson junction consists of two electrodes separated by a weak link.
The electrodes consist of superconducting materials (S). The weak link can be made of an
insulator (I), a normal metal (N) or a constriction (C). The devices in this thesis are made
with superconducting-insulator-superconducting (SIS) type junctions.

ing the Landauer limit (kBT ln 2) [4]. Improved sensitivity of sensors is achieved due to
reduced thermal noise [5]. Josephson circuits are also used to define the voltage standard
with quantum accuracy [6]. Additionally, the quantum mechanical nature of superconduc-
tivity can be used to open up new avenues for computing [7, 8].

1.2 Flux trapping

At low fields, superconductors exhibit perfect diamagnetism, having zero field deep in their
interior. As a bulk material is cooled in a weak field, it transitions from a normal metal to
a superconductor at some critical temperature. As this happens, the magnetic field in the
normal region is expelled. This is known as the Meissner effect (see Fig. 1.2).

However, in the case of Type II materials and thin films of Type I superconductors the
magnetic flux can penetrate a superconductor. This occurs when the free energy of the
boundary between the normal and superconducting region is negative [9]. If the decrease
in free energy from increasing the boundary is greater in magnitude than the resulting
increase in free energy from decreasing the volume of the superconductor, the overall free
energy of the system can be reduced by allowing a small normal region to perforate the
superconducting region. Additional normal regions can be added to the bulk until it is no
londer energetically favorable.

When this happens, a vortex of supercurrent will circulate around each of these normal
regions. They are given the name Abrikosov vortices in bulk materials [10] and Pearl
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Normal conductor

Superconductor

Figure 1.2: The Meissner effect. Top figure shows a material at T > Tc in a magnetic field
B. Bottom figure shows the material at T < Tc has expelled the magnetic field from deep
within its interior. This work, is a derivative of original figure by D-Wave Systems used
with permission.

vortices in thin films [11], where the thickness becomes comparable to the penetration
depth. Modern superconducting circuits are manufactured out of alternating thin layers of
superconducting and insulating materials, thus the latter are most relevant. An alternate
name is a fluxon, as the amount of magnetic flux trapped in the normal region is quantized.

Flux trapping is a stochastic process. Cooling a superconductor through its critical
temperature repeatedly in the same field can result in different trapped flux configurations.
However, defects in materials or grain boundaries can create preferred pinning sites.

1.3 Consequences of trapped flux in superconducting pro-
cessors

Trapped flux can be beneficial and improve the critical current density (Jc) in supercon-
ductor wire [12]. In superconducting magnet applications, this results in higher magnetic
fields. For circuits made up of superconducting wires and Josephson junctions, such as
D-Wave processors, this is not the case. In this context, trapped flux usually degrades the
operability of the circuits.

Josephson devices need to have their components manufactured within certain fabri-
cation tolerances to achieve circuit parameters near their designed values. Failure to do

3
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(a) Flux trapped near a qubit (b) Reduced working graph

Figure 1.3: Flux trapped too close to a qubit can render it unusable. (a) A single qubit
(black) and its supporting control structures (colored loops) used to control the qubit’s
parameters. A nearby superconducting region (cyan) contains trapped flux lines (black
arrows). If trapped flux couples too strongly to the qubit and is beyond the tuning range
of the qubit flux DAC (grey), the qubit can not be used for problem solving. This work,
is a derivative of original figure by D-Wave Systems used with permission. (b) A working
graph consisting of qubits (dots) and the couplers (lines) connecting them. The ideal graph
is shown on the left. An exaggerated working graph with qubits disabled due to trapped
flux is shown on the right. This working graph results in a reduced set of problems that
can be solved on the processor.

so will result in circuits that fail to perform as intended. Josephson parameters can be
affected by local magnetic fields. This can be a boon, allowing tunability of individual
circuit elements. But it can also be undesirable, particularly in the case where unwanted
neighboring trapped flux strongly biases circuit elements. Some examples of the undesirable
consequences of trapped flux for a superconducting quantum annealer are given below.

In the case of the D-Wave processors, the properties of the flux qubits [7] and their
associated couplers [13] need to be controlled to both specify the computational problem
and to ensure all qubits are parametrically equivalent. It is expected that different devices
will have variations between their respective parameters. These variations can arise due
to variations in layer thicknesses causing differences in mutual inductances between circuit
elements. Another example would be differences in wire width causing variability in the
inductance of the wires making up the qubits. To homogenize these properties across all
devices, control structures have been used in various parts of the chip that allow tunability
of those parameters. The majority of these control structures can be manipulated with
local static magnetic fields provided by magnetic flux Digital-to-Analog Converters (DACs)
[14, 15].

If, due to local trapped flux, the field at the device or one of its constituent control
structures is larger than can be compensated by the DACs, the qubit’s properties will not
be able to be homogenized with the rest of the qubits on the chip and will be unusable for
computation. As a result, the number of usable devices on the chip will be reduced, limiting
the size and type of problem that can be solved (see Fig. 1.3).
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Figure 1.4: Flux trapped near a QFP shift register stage prevents data transfer. The
shortest path from a qubit (green circle) to a readout readout structure (black arrow) via a
QFP shift-register is indicated in red. Trapped flux lines (black arrows) prevent the nearby
QFP (red x) from correctly passing its flux state to its neighbors. The qubit must be routed
to an alternate readout via a longer path (green). More QFP stages need to be traversed,
resulting in a longer readout time.

The flux states of the qubits at the end of the computation encode the solution of the
problem being solved. These states are routed from the interior to the periphery of the
processor before being transported off the chip to the room temperature electronics. This
is done with the use of a Quantum Flux Parametron (QFP) shift register. The direction of
the circulating current present in a QFP after annealing is determined from the magnetic
field penetrating the main body. If the field is provided by the circulating current of a
neighboring QFP, the opposite sign of the flux state can be copied from one QFP to
another. However, flux trapped near a shift-register stage can cause a given stage to be
biased towards one state regardless of the neighboring flux state. In this case, the QFP
does not faithfully copy the flux state of its neighbor and data can not be passed between
the two devices. To compensate for this a longer path must be taken to route this data
from the source qubit to the readout structure as shown in Fig. 1.4. This leads to longer
calibration times and slower computation due to the inflated readout time.

In order to maximize the number of qubits available for problem solving, and to reduce
the time needed to read out the solution to a problem, the effects of flux trapped on chip
must be minimized.

1.4 Minimizing the effects of trapped flux

One way to minimize the effect trapped flux has on superconducting circuitry is to ensure
that flux is preferentially trapped away from flux-sensitive components. This can be done
by including moating structures — holes within the large superconductor regions [16]. If
these moats are sufficiently far from flux-sensitive elements, the biasing from flux trapped
in them should have minimal influence on the adjacent components.
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Moating structures do take up physical area. This is then area on the chip that cannot be
used for circuitry. In chips using multiple superconducting layers, these moating structures
would need to persist through all layers. The larger the ambient magnetic field, the larger
the fraction of chip area dedicated to moating will need to be. Depending on the necessary
circuit density, this can be problematic.

1.5 Minimizing the trapped flux in wires

To reduce the number of trapped flux lines within a superconducting wire, one can minimize
the width of the superconducting wires. In Ref. [17], Stan et al. found that all perpendicular
flux were expelled from a superconducting strip of widthW below a critical field of B = Φ0

W 2 ,
where Φ0 is the magnetic flux quantum ( h2e = 2.067 833 831(13)× 10−15 Wb) and W is the
width of the wire. This is a much larger critical field than would be expected in the bulk
limit as it scales inversely with the area of the wire perpendicular to the flux. The smaller
width also potentially reduces the number of pinning sites a flux line must traverse between
the center of the superconducting region and the normal boundary [18].

In practice, the minimum width of the wires is set by design constraints, e.g., the
minimum width and spacing the fabrication facility can reliably manufacture, or the desired
inductance of a circuit component.

Though reducing the width will minimize the amount of flux trapped within the su-
perconducting wire, many superconducting circuit components consist of loops. If the flux
instead becomes trapped within or adjacent to a loop, it can still cause problems.

1.6 Minimizing the amount of trapped flux

1.6.1 Low-field cooling

If the magnetic field is low when the superconducting region is cooling through its supercon-
ducting transition, there is less flux available to be trapped. With fewer trapped flux lines,
less of the region needs to be reserved for moating. The circuit density can be increased or
the extra space can be used to accomidate wider wires with reduced inductance.

In the approximation that the processor consists of a contiguous piece of superconductor,
if the magnetic flux over the area of the processor is kept below 1 Φ0, no trapped flux should
be possible. For a Washington processor (size ≈ 7 mm × 7 mm), this sets a reasonable upper
bound for the average magnetic field across the processor area (A):

Bc = Φ
A

= Φ0
4.9× 10−5 m2 ≈ 42 pT . (1.1)

Achieving these low fields is done through a combination of attenuating the ambient
fields and actively compensating the remaining magnetic fields (see Fig. 1.5). To attenuate
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Chip

(a) Cartoon of magnetic shielding (b) Coils supplying compensating fields

Figure 1.5: Magnetic shielding configuration (a). The two outermost open-topped cylinders
(black) represent the first set of high-magnetic-permeability shields. The next cylinder
(black) is the vacuum can. The thermal stages of the dilution refrigerator are shown in
gold. The next two open-topped cylinders (black) represent a pair of high permeability
shields thermally anchored to the mixing chamber plate. Inside those is a superconducting
shield (gray) around which the compensation coils are wound. Once an acceptable flux offset
configuration is achieved the system is cooled to milliKelvin temperatures for operation of
the processor. This is well below the the shield’s Tc, thus any change in external magnetic
fields is attenuated via the Meissner effect. Inside this shield resides the sample holder
(gold) and the chip (cyan). (b) shows the magnetic field (black arrows) applied by the
compensation coils (not shown) in three orthogonal directions.

the fields, the processor is placed inside two concentric, room-temperature, high-magnetic-
permeability shields (e.g., MuMetal). Inside those shields are two more concentric, low-
temperature, high-magnetic-permeability shields.

Magnetic field is measured with DC SQUIDs located at the corners of the processor.
At each location are five magnetometers: one sensitive to field in the x direction (X); one
for the y direction (Y ); and three for the z direction referred to by their relative pickup
areas small (S), medium (M ) and large (L).
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Figure 1.6: A DC SQUID is made of two parallel Josephson junctions.

The system’s temperature is set to below the chip’s superconducting transition tem-
perature (9.2 K for Nb), but above the Tc of the superconducting shield. This temperature
(5.16 K for the results presented in this thesis) is cold enough that the SQUIDs can operate,
but warm enough that the normal superconducting shield is transparent to the compen-
sating fields. Once the field is measured, the field is then compensated using modified
Helmholtz coils for each of the x, y and z directions, which encompass the sample holder.

In this compensated field, the chip is thermally cycled up through its Tc and then
back down to the previous temperature. The on-chip field is remeasured and compensated
if needed. This process is repeated until the field is sufficiently small that subsequent
cycles would offer no improvement. The processor is then brought to the base temperature
of the dilution refrigerator for operation. If it becomes apparent that the trapped flux
configuration is poor, as in the cases shown in figures 1.3 or 1.4, the process may need to
be repeated until an acceptable offset configuration is achieved.

1.7 Magnetic field measurement

DC SQUIDs consist of two Josephson junctions connected in parallel as schematically
shown in Fig. 1.6. The circuit is sensitive to the flux linking the loop made by the wires
connecting the two junctions. This can be leveraged to perform sensitive magnetic field
measurements.

1.7.1 Flux-locked loop DC SQUID

One way to measure magnetic field using a DC SQUID is to bias the SQUID with some
current that exceeds the maximum zero-voltage current it can support. The average voltage
across the SQUID changes as a function of the flux through the body of the SQUID and
is periodic as a function of Φ0. Changes in flux through the body of the SQUID smaller
than a Φ0 can be detected as a change in the average voltage across the SQUID. The body

8



of the SQUID can be used to directly detect flux changes. A separate superconducting
pick-up coil may also be used to couple flux into the body of the SQUID.

SQUIDs operated in this voltage mode are most often used in conjunction with a lock-in
amplifier [9]. The lock-in amplifier provides an oscillating flux to the body of the SQUID.
As a result, the average voltage across the SQUID modulates at this same frequency. The
lock-in amplifier averages the voltage signal at the drive frequency. Any additional external
flux linking the body of the loop, such as from a pick-up coil, shifts this lock-in-amplifier
output signal. This output signal is then used in a negative feedback mode to provide a
compensating flux to the SQUID, to keep the lock-in output signal fixed. The feedback is
proportional to the external flux to be measured. This is referred to as a flux-locked loop
(FLL). With this type of setup, sensitivities of 3.6 fT/

√
Hz have been obtained [19].

1.7.2 Unshunted DC SQUID with Isw modulation

The previous method of SQUID readout is not the only means for measuring magnetic field.
The DC SQUID magnetometers in D-Wave processors are hysteretic and have no resistive
shunt across their junctions. The property that will be modulated by the external magnetic
field is the boundary separating zero-voltage and non-zero-voltage current flow. Though
the achieved field sensitivities are lower in comparison to the FLL case, an unshunted DC
SQUID field measurement can sometimes be preferred.

There are also situations where resistively shunting the junctions of the DC SQUID
is not possible or desirable. In the case of nanoSQUIDs, the devices being manufactured
are too small to include a shunt [20]. When integrated on a processor for the purpose
of measuring the flux state of qubits [14], removing the shunt leaves more room for other
components.

Whereas a shunted DC SQUID is constantly operated in the voltage state, the un-
shunted SQUID only spends a fraction of its measurement time in the voltage state. The
lack of a dissipative shunt and the reduced amount of time spent in the voltage state reduces
the power dissipation at the device. The can be beneficial when performing magnetic field
measurements at sub-Kelvin temperatures.

As will be shown in Chapter 3, unshunted DC SQUIDs are also able to be trivially
multiplexed. On circuits where input lines are at a premium, this allows more devices to
be read out using fewer lines.

In the chapters that follow, I will describe techniques for measuring magnetic field using
a set of integrated multiplexed unshunted DC SQUIDs.
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Chapter 2

Theory

In this chapter, the necessary theoretical groundwork to understand how the magnetic
field may be measured using an unshunted DC SQUID will be explained. Section 2.1 will
begin with an introduction to the superconducting wavefunction and pair-velocity phase
relation. This will be used to derive the Meissner effect in section 2.2, which shows that
magnetic fields decay exponentially with the London penetration depth λL in the bulk of
a superconductor. Using the Meissner effect, Section 2.3 will show that the flux contained
within a ring of a thick (many λL) superconductor must be quantized. Section 2.4 will
establish the DC Josephson effect, that a supercurrent can flow across a narrow insulating
boundary and is a function of the phase drop across the junction. After some necessary
bookkeeping in Section 2.5 to ensure that our phase difference is invariant under gauge
transformations, all the tools are ready to describe the behavior of a DC SQUID, a loop of
superconductor bisected by two Josephson junctions.

The remaining sections will investigate the behavior of the DC SQUID. Section 2.6 will
give an equation for the allowed zero-voltage supercurrents that can flow across the device.
Section 2.7 will show that the magnetic field through the body of the DC SQUID modulates
the allowed maximum and minimum zero-voltage supercurrents. Some symmetries of this
relation will then be examined to motivate a method for measuring the magnetic field that
is insensitive to asymmetries between junctions and inductances of the DC SQUID.

2.1 Superconducting wavefunction

Ginsburg-Landau theory phenomenologically describes the behavior of superconductors us-
ing an order parameter that is a complex-valued wavefunction [21]. This wavefunction is
not the wavefunction of an individual supercurrent carrier, but that of the coherent con-
densate. This macroscopic wavefunction can be derived from the microscopic theory of
Bardeen-Cooper-Schrieffer (BCS) [22] and is given by
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Ψ =
√
ns (~r, t)eiθ(~r,t) (2.1)

where
|Ψ|2 = ns (2.2)

is the Cooper pair number density. For a fixed temperature and a homogeneous supercon-
ductor, ns can be taken to be constant. As such, the dynamics of the system are governed
by the θ(~r, t) term. To see how θ(~r, t) relates to circuit currents and voltages, one can follow
Van Duzer [23] and first look at the expectation value of the quantum mechanical canonical
momentum operator (−i~∇) for this wavefunction.

− i~∇Ψ = ~∇θΨ (2.3)

This describes the total momentum for the multitude of particles making up the wavefunc-
tion Ψ. The Cooper pairs share the same quantum state and thus each pair has the same
momentum pk = ~∇θ.

The canonical momentum operator for a charged particle in a field is given by

p̂k = m~υ + q ~A . (2.4)

Equating this with the momentum expectation value and rearranging terms gives

∇θ = 2me~υ

~
− 2e

~
~A , (2.5)

the pair-velocity phase relation, where 2me and 2e are the mass and charge of a Cooper
pair.

The current density of the superconducting pairs is

~Js = −2ens~υ . (2.6)

Substituting this into 2.5 gives

∇θ = −2e
~

Λ ~Js −
2e
~
~A (2.7)

where

Λ = me

2nse2 . (2.8)

2.2 Meissner effect

Taking the curl of both sides of 2.7 gives
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Figure 2.1: The black curve indicates the relative field strength as a function of distance
from the vacuum (white)/superconductor (blue) interface.

∇×∇θ = −∇× 2eΛ ~Js
~
−∇× 2e

~
~A . (2.9)

As the curl of a gradient is zero, and using ~Js = ∇× ~B
µ0

and ∇ × ~A = B equation 2.9
becomes

∇×∇×B = −µ0
Λ B . (2.10)

From the vector identity ∇×∇× ~B = ∇(∇ · ~B)−∇2 ~B and using ∇ · ~B = 0, we obtain

∇2 ~B = µ0
Λ B = 1

λL2B (2.11)

where

λL =
√

me

µ0nse2 (2.12)

is the London penetration depth.
Solutions to this equation are of the form

~B = ~B0e
−x/λL . (2.13)

This shows that fields decrease exponentially over length scales λL from the edge of the
superconductor (see Fig. 2.1). It also means that many λL from the surface, within the
bulk of a superconductor, there is no magnetic field and thus υ = 0. Or more simply stated,
the majority of the supercurrent flows near the surface of the superconductor.
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2.3 Fluxoid quantization

The integral of the phase gradient may be taken around a closed loop of superconductor
∮
∇θ · ~d` . (2.14)

The superconducting wavefunction is single-valued. As a result, the value of the wave-
function at the start and end of the integral must be the same (as shown in Fig. 2.2).

1

i

-i

-1

11

ii

-i-i

-1-1

-1

i

-i

1

-1

i

-i

1

Figure 2.2: The complex phase of Ψ (blue arrows) is shown at points around a closed line
integral (black circle). The phase must be the same after completing a circuit of the loop.
Therefore, θ can only change by a multiple of 2πnφ, where nφ is the number times the phase
has wound around the origin. For this figure, nφ = 1.

Therefore, the closed line integral must equal an integer multiple of 2π.
∮
∇θ · ~d` = 2πnφ (2.15)

From 2.7,
∮
∇θ · ~d` =

∮ (2me~υ

~
− 2e

~
~A

)
· ~d` . (2.16)

This gives the fluxoid quantization condition
∮ (2me~υ

~
− 2e

~
~A

)
· ~d` = 2πnφ , (2.17)

where the integral is referred to as the fluxoid.
The Meissner effect ensures that if the line integral is taken many λL deep within a

superconductor, ~υ = 0. Combining that with 2.15 gives
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− 2e
~

∮
~A · ~d` = 2πnφ (2.18)

The closed integral of the vector potential is just the magnetic flux linking the path.
Therefore

−2e
~

Φ = 2πnφ

Φ = −πnφ~
e

Φ = nφΦ0 ,

which is the flux quantization condition, where the negative sign has been absorbed into nφ
and

Φ0 = h

2e = 2.067 833 831(13)× 10−15 Wb , (2.19)

the magnetic flux quantum.
The end result is that the amount of magnetic flux inside a closed loop of superconductor

is quantized in integer units of Φ0. This is the magnetic flux quantization condition.

2.4 Josephson relations

Superconductor Superconductor
Insulator

 

Figure 2.3: The Josephson effect. Two superconductors are connected by an insulating
region (grey). The wavefunctions (blue/red) of each superconductor decay exponentially in
the insulating region, but have some non-zero overlap. This allows Cooper-pair tunneling
between the two superconducting regions. This work, is a derivative of original figure by
D-Wave Systems used with permission.

In 1962, Josephson [24] predicted the tunneling of Cooper-pairs between superconductors
separated by an insulating region. In the following section, a derivation of this result
following Feynman [25] will be given. For two superconductors connected by a narrow
non-superconducting region, their wavefunctions can be related as follows
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i~
∂

∂t
Ψ1 = U1Ψ1 +KΨ2 (2.20)

i~
∂

∂t
Ψ2 = U2Ψ2 +KΨ1 (2.21)

K is a constant intrinsic to the junction that describes the coupling between the wave-
functions of each region. This coupling is related to the overlap of the two wavefunctions
in the non-superconducting region. Assume a voltage is applied between the 2 sides

e∗(V2 − V1) = e∗V (2.22)

U2 − U1 = e∗V (2.23)

Take zero of energy to be the midpoint of U1 and U2

U1 = −e
∗V

2 (2.24)

U2 = e∗V

2 (2.25)

(2.26)

Substitute in the wavefunctions

Ψ1(t) =
√
n1(t)eiθ1(t) (2.27)

Ψ2(t) =
√
n2(t)eiθ2(t) . (2.28)

Equation 2.20 gives

i~
∂

∂t

[√
n1(t)eiθ1(t)

]
= U1

√
n1(t)eiθ1(t) +K

√
n2(t)eiθ2(t) (2.29)

i~
2
∂n1(t)
∂t

− ~n1(t)∂θ1(t)
∂t

= U1n1(t) +K
√
n1(t)n2(t)ei[θ2(t)−θ1(t)] . (2.30)

(2.31)

Separating real and imaginary parts and making the substitution

θ(t) = θ2(t)− θ1(t) (2.32)
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−~n1(t)∂θ1(t)
∂t

= U1n1(t) +K
√
n1(t)n2(t) cos θ(t) (Real part)

∂θ1(t)
∂t

= e∗V

2~ +K

√
n2(t)
n1(t) cos θ(t)

~
2
∂n1(t)
∂t

= K
√
n1(t)n2(t) sin θ(t) (Imaginary part)

∂n1(t)
∂t

= 2K
~

√
n1(t)n2(t) sin θ(t) .

Equation 2.21 may be similarly substituted. This gives 4 coupled equations

∂n1(t)
∂t

= 2
~
K
√
n1(t)n2(t) sin θ(t) (2.33)

∂n2(t)
∂t

= −2
~
K
√
n1(t)n2(t) sin θ(t) (2.34)

∂θ1(t)
∂t

= −K
~

√
n2(t)
n1(t) cos θ(t) + e∗V

2~ (2.35)

∂θ2(t)
∂t

= −K
~

√
n1(t)
n2(t) cos θ(t)− e∗V

2~ . (2.36)

(2.37)

From equations 2.34 and 2.35, we see

∂n2(t)
∂t

= −∂n1(t)
∂t

. (2.38)

The rate at which pairs are depleted from the first superconductor is the same as the
rate that pairs are gained in the second superconductor, so the pairs must be tunneling
from one superconductor to the other. The coefficient Ic = 2

~K
√
n1(t)n2(t) is characteristic

of the junction and specifies the maximum zero-voltage current that can be passed through
the junction. This gives us the DC Josephson relation. If the two regions consist of the
same superconducting material and are at the same temperature then it is reasonable to
assume that n1(t) = n2(t). Taking the difference between the last two relations gives us the
AC Josephson relation.

I(t) = Ic sin θ (2.39)
dθ

dt
= 2π

Φ0
V (2.40)
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2.5 Gauge-invariant phase difference across a junction

The magnetic vector potential ( ~A) can have the gradient of an arbitrary scalar function
added to it without changing anything physically. This occurs as part of a gauge transfor-
mation. However, this would seem to imply that the current density in equation 2.7 could
take on any value. This would be unphysical. To ensure that the current density is the
same irrespective of gauge, ∇θ must change too. Define a new gauge A→ A′ , θ → θ′ with
A′ = A+∇χ and substitute these into equation 2.7.

∇θ′ = 2eΛ ~Js
~
− 2π

Φ0

(
~A+∇χ

)
∇θ′ = 2eΛ ~Js

~
− 2π

Φ0
~A− 2π

Φ0
∇χ

∇θ′ = ∇θ − 2π
Φ0
∇χ

θ′ = θ − 2π
Φ0
χ+ C

So for the gauge A→ A+∇χ, θ → θ − 2π
Φ0
χ up to a constant, C.

Let φ1 be the gauge invariant phase at point 1. The gauge-invariant phase difference
follows easily.

φ′1 = θ1 −
2π
Φ0
χ1

φ′2 = θ2 −
2π
Φ0
χ2

φ′2 − φ′1 = θ2 − θ1 −
2π
Φ0
χ2 + 2π

Φ0
χ1

= θ2 − θ1 −
2π
Φ0

∫ 2

1
∇χ · ~d`

As A′ = A+∇χ,

φ′2 − φ′1 = θ2 − θ1 −
2π
Φ0

∫ 2

1

(
A′ −A

)
· ~d`

φ′2 − φ′1 + 2π
Φ0

∫ 2

1
A′ · ~d` = θ2 − θ1 + 2π

Φ0

∫ 2

1
A · ~d` .
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So the gauge-invariant phase difference

φ = θ2 − θ1 + 2π
Φ0

∫ 2

1
A · ~d` , (2.41)

is the same regardless of the chosen gauge function χ.

2.6 DC SQUID equation with Ic and L imbalance

A DC SQUID is a superconducting loop containing two Josephson junctions. If current
is passed through both junctions of the DC SQUID, the sum of the current in the two
branches must equal the total applied current. With the current flowing through each
junction described by 2.39, this gives

Ic1 Ic2

I1 I2

ITotal

Figure 2.4: Direction of current flow in a DC SQUID. Arrows indicate direction of positive
current flow in each of the superconducting regions (cyan). I1 indicates the current through
left inductive branch of the DC SQUID via the Josephson junction with a critical current
Ic1. I2 is the current through the right branch via Josephson junction with critical current
Ic2. The total current is the sum of the currents through each branch ITotal = I1 + I2

I(φ1, φ2) = IC1 sinφ1 + IC2 sinφ2 . (2.42)

As will now be shown, the difference between the gauge-invariant phase difference of
each junction will be constrained as a function external flux (Φext) through the body of the
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Ic1 Ic2

L1 L2

AB CD

B

Figure 2.5: Integration contour taken around the body of a DC SQUID. Integration path
is indicated by the white line and is in direction of the arrows. Integral starts and finishes
at point A. B indicates the direction of the magnetic field through the body of the SQUID.
L1 and L2 represent the geometric inductance of the branch containing the junction with
the same index. The direction of positive magnetic field is taken to be out of the page as
indicated by B.

DC SQUID, nφ and the product of the inductance and Ic of each branch. The body of the
DC SQUID is a loop. Therefore, from the fluxoid quantization condition and Fig. 2.5

∮
∇φ · ~d` =

∫ B

A
∇φ · ~d`+

∫ C

B
∇φ · ~d`+

∫ D

C
∇φ · ~d`+

∫ A

D
∇φ · ~d` = 2nπ . (2.43)

Using equation 2.41 for the gauge invariant phase difference, the first term in our line
integral becomes

∫ B

A
∇φ · ~d` = φB − φA

φ1 = φB − φA + 2π
Φ0

∫ B

A

~A · ~d`

φB − φA = φ1 −
2π
Φ0

∫ B

A

~A · ~d` .

Similarly, The third term of equation 2.43 can be found to be
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φD − φC = −φ2 −
2π
Φ0

∫ D

C

~A · ~d` .

The sign in front of the integral has changed as ~A, which goes in the same direction as the
current, is now in the opposite direction to ~d`.

The two remaining terms, corresponding to the change of gradient in the superconductor,
can be found by taking the integral of equation 2.7.

∫ C

B
∇θ = −

∫ C

B

2π
Φ0

Λ ~Js · ~d`−
∫ C

B

2π
Φ0

~A · ~d` (2.44)∫ D

A
∇θ = −

∫ D

A

2π
Φ0

Λ ~Js · ~d`−
∫ D

A

2π
Φ0

~A · ~d` (2.45)

(2.46)

Substituting these terms back into equation 2.43 gives

φ1 − φ2 −
2π
Φ0

∫ B

A

~A · ~d`− 2π
Φ0

∫ C

B

~A · ~d`− 2π
Φ0

∫ D

C

~A · ~d`− 2π
Φ0

∫ A

D

~A · ~d`

− 2π
Φ0

∫ C

B
Λ ~Js · ~d`−

2π
Φ0

∫ D

A
Λ ~Js · ~d` = 2nπ .

(2.47)

Collecting the integrals of ~A into a single closed integral yields

φ1 − φ2 −
2π
Φ0

∮
~A · ~d`−

∫ C

B

2π
Φ0

Λ ~Js · ~d`−
∫ D

A

2π
Φ0

Λ ~Js · ~d` = 2nπ . (2.48)

∮
~A · ~d` is just the total magnetic flux linked by the loop, ΦTotal. This flux is the external

flux linking the loop (Φext) plus the self-induced flux in the inductors of each branch. The
magnetic flux in an inductor is given by Φ = LI. The current through each inductor must
be the same as the current flowing through their respective junctions and can be determined
by 2.39. This gives

ΦTotal = Φext + L1IC1 sinφ1 − L2IC2 sinφ2 . (2.49)

As stated in section 2.2, when both the thickness (d) and the width (a) of the cross-
section of the wire are much greater than λL there exists a region within the wire where
the current density is zero. In that region, the latter two integrals in Eq. 2.48 go to zero.
In the case where both the thickness and width are less than λL, the current density takes
a constant value Js = I/ (ad) across the wire. If a > d and ad >> λL

2, as is the case for
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Figure 2.6: The curve marks the sheet current density averaged over the thickness of a wire
where ad >> λL

2. J (0) = I
πa at the center of the wire.

our SQUIDs, Brandt and Indenbom [26] give an expression for the sheet current (in units
A/m) as a function of the position (y) across the width of the wire

J (y) = I

π
√
a2 − y2 (2.50)

where |y| < a and the sheet current has been averaged over the thickness (see Fig. 2.6).
This relation will be valid as long as the applied field and current do not bring the wire
close to HC1 at the edges of the wire. In the center of the wire (y = 0)

J0 = I

πa
. (2.51)

Let `BC be the distance between points A and B and let `DA be the distance between D
and A in the center of the wire. Substituting ΦTotal and the expressions for current density
into equation 2.48 gives

φ1 − φ2 −
2π
Φ0

(Φext + L1IC1 sinφ1 − L2IC2 sinφ2) (2.52)

− 2π
Φ0

Λ
πa

(
IC1 sinφ1

`DA
2 − IC2 sinφ2

`DA
2

)
(2.53)

− 2π
Φ0

Λ
πa

(
IC1 sinφ1

`BC
2 − IC2 sinφ2

`BC
2

)
= 2nπ . (2.54)

So after rearranging terms, the difference between the gauge invariant phase difference
across the two junctions is
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φ1 − φ2 = 2nπ + φext + β1 sinφ1 − β2 sinφ2 (2.55)

where

φext = 2π
Φ0

Φext (2.56)

β1 = 2π
Φ0
IC1

(
L1 + Λ

πa

`BC + `DA
2

)
(2.57)

β2 = 2π
Φ0
IC2

(
L2 + Λ

πa

`BC + `DA
2

)
. (2.58)

The term in the parenthesis for each βi is the sum of a geometric and kinetic inductance of
the respective branch.

2.7 Calculating Isw using Lagrange multipliers

The current traversing the DC SQUID can now be described by equation 2.42 with the
phases φ1 and φ2 constrained by the fluxoid quantization requirement of equation 2.55.
Given these 2 equations, one can find the maximum zero-voltage current before the DC
SQUID switches to the voltage state, Isw. The extrema of equation 2.42 can be found by
using Lagrange multipliers. Our constraint function is

g (φ1, φ2) = −φ1 + φ2 + 2nπ + φext + β1 sinφ1 + β2 sinφ2 . (2.59)

Subject to this constraint, the current will have extrema when

∂I (φ1, φ2)
∂φ1

= λ
∂g (φ1, φ2)

∂φ1
,

∂I (φ1, φ2)
∂φ2

= λ
∂g (φ1, φ2)

∂φ2
. (2.60)

Evaluating the derivatives, we obtain

IC1 cosφ1 = λ (−1 + β1 cosφ1) (2.61)

IC2 cosφ2 = λ (1− β2 cosφ2) . (2.62)

Equating the two expressions for λ, we have

IC1 cosφ1
(−1 + β1 cosφ1) = IC2 cosφ2

(1− β2 cosφ2) (2.63)

Solving for cosφ2 gives an expression for the relationship that φ1 and φ2 must satisfy
at Isw. This gives us 3 equations that specify Isw
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Isw(φ1, φ2) = IC1 sinφ1 + IC2 sinφ2 (2.64)

such that φ1 and φ2 satisfy the constraints

cosφ2 = IC1 cosφ1
−IC2 + (IC1β2 + IC2β1) cosφ1

(2.65)

and
φext = φ1 − φ2 − 2nπ − β1 sinφ1 + β2 sinφ2 . (2.66)

Here φ1 and φ2 are restricted to the range −π to π.

2.8 Isw symmetries

Let φ1 and φ2 be a set of phases that satisfies equation 2.65 and 2.66. If φext is changed
by a multiple of 2π, nφ will change by the same multiple and φ1 and φ2 will be unchanged.
Therefore,

Isw (φ1 (φext + 2nπ) , φ2 (φext + 2nπ)) = Isw (φ1 (φext) , φ2 (φext)) (2.67)

so Isw is 2π periodic as a function of φext.
For these same phases φ1 and φ2, it is also clear from the even parity of the cosines in

equation 2.65 that −φ1 and −φ2 will also be solutions. What happens to φext (φ1, φ2) when
the signs of φ1 and φ2 are swapped?

φext (−φ1,−φ2) = −φ1 + φ2 − 2nπ − β1 sin (−φ1) + β2 sin (−φ2)

= −φ1 + φ2 − 2nπ + β1 sinφ1 − β2 sinφ2

= −φext (φ1, φ2) mod (2π)

This means that changing the sign of the field in the loop is the same as changing the
signs of both φ1 and φ2. Seeing the effect this has on the Isw of the SQUID, we find

Isw(−φ1,−φ2) = IC1 sin (−φ1) + IC2 sin (−φ2)

= −IC1 sinφ1 − IC2 sinφ2

Isw(−φ1,−φ2) = −Isw(φ1, φ2) .

Switching the polarity of the field through the body of the SQUID, switches the polarity
of Isw.

Isw(φext) = −Isw(−φext) (2.68)
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Figure 2.7: Rotating the DC SQUID about an axis perpendicular to the current flow and
parallel to the pick-up area does not change any of the switching characteristics of the
device. The rotated device has the opposite polarity of both the flux and and the current
under the original directions of positive current and flux. The magnitudes of both are
unchanged. Thus Isw(Φext) = −Isw(−Φext).

This can also be seen by through a rotation of the circuit as shown in Fig. 2.7.
This symmetry can be leveraged to develop a measurement of the φext of the DC SQUID

that is not affected by asymmetry of the junction Ic’s or inductances. This can be seen in
both Fig. 2.8a and Fig. 2.8b.

2.9 Voltage when I exceeds Isw

If the current is ramped from zero to a value exceeding Isw, the supercurrent will provide
the current up to but not exceeding Isw. The excess current through the device must be
provided by quasiparticle excitations. The quasiparticle current will not start to flow until a
voltage builds up exceeding 2∆/e, where ∆/e is the gap-voltage at zero temperature. This
spike in voltage from zero to twice the gap-voltage can be used to determine Isw.
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(a) Symmetric
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(b) Asymmetric inductance

Figure 2.8: Bias reversal symmetry of Isw. (a) The switching curve for a symmetric DC
SQUID where IC1 = IC2 = 0.5 mA and L1 = L2 = 0.5 pH. (b) The effect of severe
inductance asymmetry for a DC SQUID where IC1 = IC2 = 0.5 mA and L1 = 0.9 pH,
L2 = 0.1 pH. The peak switching current no longer occurs when Φext is an integer multiple
of Φ0. IC = IC1+IC2 for both figures. In both cases, it is clear that Isw(Φext) = −Isw(−Φext)
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Chapter 3

Methods

As outlined in Chapter 1, in order maximize the performance of a superconducting processor
the number of trapped flux lines in the chip must be minimized. This is done by attenuating
the ambient field, measuring the attenuated field, compensating the attenuated field and
finally thermal-cycling the chip through its superconducting critical temperature in this
field. These steps are repeated until a sufficiently low number of offsets are reached.

Using the theory developed in Chapter 2, the methods to measure the magnetic field in
3 orthogonal directions at 4 points adjacent to the processor will be shown. First, it will be
shown how to measure a full switching curve (Isw vs Iflux-bias) for an individual unshunted
DC SQUID. Using the periodicity and phase of the curve, we can obtain a measurement
of the magnetic field perpendicular to the pick-up loop of the magnetometer. It will be
subsequently shown what extra steps must be taken to measure the field of an individual
device multiplexed with other devices. Lastly, leveraging the symmetries of the switching
curve identified in section 2.8, a 4-point field measurement method will be described that
provides a measurement of the field using far fewer points than the full switching curve and
is immune to Ic or inductance asymmetries between the branches of the DC SQUID.

3.1 Magnetic field measurement with an unshunted DC SQUID
magnetometer

As outlined in section 2.7, the externally applied magnetic flux through the body of a DC
SQUID (Φext) modulates the maximum and minimum zero-voltage current (Isw, switching
current) that the DC SQUID can support. The flux through the body of the SQUID is the
sum of the background magnetic flux (Φbackground) and the magnetic flux (Φbias) in the loop
produced by a local current carrying wire (flux-bias line).

Φext = Φbackground + Φbias (3.1)
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Figure 3.1: Φbackground shifts the phase of the switching curve.

Φbias is the magnetic flux produced in the pick-up area of the SQUID through mutual
inductance M with a current carrying wire

Φbias = MIflux-bias . (3.2)

Assuming a uniform field, the background magnetic field that produces Φbackground is given
by

Bbackground = Φbackground
A

(3.3)

where A is the pick-up area of the SQUID and B is the magnetic field component normal
to A.

Φbackground can be determined by measuring Isw at many Iflux-bias to trace out the full
switching curve. Φbackground will correspond to the phase of the switching curve as seen
in Figure. 3.1. In a DC SQUID with very little Ic or inductance asymmetry, such as in
Fig. 2.8a, this would correspond to the peaks of the curves being shifted to some non-zero
value.

3.2 Fluxperiod — periodicity of the switching curve

As the switching curve is measured by varying Iflux-bias, the measured shift is in units of
current, not flux. This shift must be converted into a magnetic flux by determining the
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mutual inductance between the flux-bias line and the SQUID body. The magnetic field can
then be calculated using the dimensions of the magnetometer measured.

Equation 2.67 alternatively stated in flux units shows that Isw has a period of Φ0.
Therefore, this period (∆Iflux-bias) is the amount of bias-line current needed to change the
magnetic flux in the pick-up are of the SQUID by exactly one Φ0. The mutual inductance
(or fluxperiod) is just

M = Φ0
∆Iflux-bias

. (3.4)

Multiplying the phase in current units by the fluxperiod gives the phase in flux units.
Substituting this flux into equation 3.3 gives us the magnitude of the magnetic field per-
pendicular to the pick-up area of the SQUID.

Note that due to the flux periodicity of the magnetometer, there is an ambiguity as to
which lobe corresponds to having zero flux in the body of each SQUID. The phase in flux
units can therefore only be known modulo Φ0. To avoid this ambiguity, three magnetometers
sensitive to magnetic fields in the z direction are used. The magnetometers are referred to
by their relative pickup areas (hereafter small, medium and large), which are specifically
designed to not be multiples of one another. The small, medium and large magnetometers
are all located very close to each other and, as such, should be measuring similar fields.
As the field is already attenuated greatly, large magnetic field gradients are not expected
between nearby magnetometer locations. The pick-up areas of the small, medium and large
magnetometers are 1399 µm2, 4900 µm2 and 22 500 µm2, respectively. This corresponds to
periods of 1478, 422 and 92 nT. The nearest multiple of the periods where the fields would
measure within 1 nT of each other corresponds to 67 988 nT, well above the field expected in
the attenuated environment. DC SQUIDs in the voltage state with different periodicities
have also been used to increase dynamic range [27].

Fields larger than than the sensitivity of any particular magnetometer can be measured
by determining how many flux quanta must be present in each magnetometer for all three
magnetometers to agree on the the field that is present. In the majority of cases, we
are trying to minimize the field, so this is not necessary. In rare cases where magnetic
components have found their way onto the sample holder, this technique has proved useful
for quantifying large fields.

3.3 Measuring Isw

Isw is the current bias at which the DC SQUID switches from the zero voltage state. The
current at which this transition occurs may be measured by monitoring the voltage across
the DC SQUID while the current bias is increased. For these hysteretic DC SQUIDs,
the SQUID will stay in the voltage state until the current is ramped down close to zero.
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Figure 3.2: Isw detection using a voltage comparator. The applied current (top) and voltage
(bottom) across the current-bias line of a SQUID are shown. Clock cycles are counted from
the start of the current ramp. As the current is ramped, a voltage comparator monitors
the voltage across the current-bias line. When the voltage exceeds Vthreshold, the voltage
comparator signals for the counting to stop. Isw is the applied current present when the
counting stopped.

Although Isw could be obtained by measuring the full IV curve and sifting through the data
to find where the transition occurs, a hardware solution can be used to simplify and speed
up this process.

In this method, the current is ramped using a piece-wise linear waveform specified by
(time, current) pairs. The clock-cycle for the electronics is 20 ns. A counter enumerates how
many clock-cycles have passed since the beginning of the waveform. A voltage comparator
monitors the voltage across the DC SQUID and outputs a digital pulse when the voltage
exceeds a threshold set close to 2∆/e ( 2.7 mV for Nb). The counter stops counting when
this pulse is received. The switching current can be determined by interpolating the current
that was present in the waveform after the measured number of cycles as shown in Fig. 3.2.
One measurement gives an estimate of Isw for the given flux bias.

If this measurement is repeated several times at the same flux bias, a Gaussian distri-
bution of switching events is revealed. The broadening is due to the thermal escape of the
DC SQUID into its voltage state [28]. These events are converted into a single uncertain
number described by the mean and standard error of the events.

This process can then be repeated for both polarities of the current ramp and for many
different flux-bias values to determine the full Isw vs flux bias curve. From this switching
curve, the features of interest for magnetometry can be determined such as the flux bias that
maximizes or minimizes Isw, the periodicity of switching curve, or the phase of the curve
from which the magnetic field can be determined. Additional DC SQUID circuit-parameters
may also be characterized (see [29], [30]).
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3.4 Measuring vector components of magnetic field

The D-Wave quantum annealing processor consists of multiple metal layers. Although the
majority of the loops in on-chip devices lie in the chip plane and as such are most sensitive
to fields oriented normal to the chip plane (z direction), the connections between the wiring
layers will form loops sensitive to parallel field. The body of the wires connecting adjacent
layers (vias) can also trap flux. For this reason, it is necessary to measure and compensate
the magnetic field in the 2 directions (x and y directions) orthogonal to the chip normal
direction as well.

To make a pick-up loop sensitive to fields in the x and y directions, a pickup loop can
be wound from the top-most wiring layer to the bottom-most wiring connected by vias
traversing the interstitial layerssectional area for the x and y directions is small compared
to the z direction. A single loop might therefore not provide enough flux sensitivity. The
pickup area can be increased by a multiple of the original loop area by helically winding
additional loops. In practice, this is done until enough sensitivity is achieved.

3.5 Measuring spatial variation of magnetic field

The amount of flux that can be trapped on the chip is related to the total flux through the
processor. It is insufficient to measure the field components at a single point. If the field
were measured at a single point, no gradient information about the field would be obtained.
One could end up in a situation where the field measured at the sensor is low, but the field
present at the chip is substantially larger.

The interior of the chip is reserved for processor circuitry, but magnetometer packages
can be placed around the periphery. At each of the four corners of the processor a magne-
tometer package is placed consisting of the five aforementioned DC SQUIDs types. Three
DC SQUIDs have pickup loops sensitive to fields normal to the chip plane (z direction),
but with different pickup areas (small, medium, large). The other two DC SQUIDs consist
of loops sensitive to fields in the chip plane and are orthogonal to each other (x and y
directions).

From the four magnetometer packages, a rough map of the spatial variation of the field
is obtained. In cases where a gradient is observed, the gradient can be compensated with
gradient coils. On systems without gradient coils, the magnitude of the field at every point
on the chip is minimized. This is done by minimizing the average of the fields measured at
the four corners. This is the equivalent of setting the field at the center of the chip to zero
field assuming only a field offset and linear gradients in the x and y directions.

As the DC SQUIDs are integrated on-chip with the processor, one obtains excellent
spatial resolution of the field present near the processor. Additionally, the orthogonality
of the DC SQUIDs sensitive to different orientations is set by the orthogonality of the
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deposited metal layers. Other methods for measuring orthogonal field components using
DC SQUIDs would consist of using three separate chips oriented (almost) orthogonal to
each other [31]. The wiring of integrated magnetometers is much easier.

3.6 Multiplexing

Each DC SQUID requires a current-bias and flux-bias line to be operated. Individually
addressing the magnetometers would require 4 packages × 5 DC SQUIDs × 2 bias lines per
SQUID = 40 bias lines. Fortunately, the magnetometer signal lines can be multiplexed to
read all 20 SQUIDs using far fewer lines.

I
 b

ia
s

FB1

FB2

FB3

FB4

Figure 3.3: Multiplexing of current-bias and flux-bias lines. A magnetometer package
resides at each of the corners of Washington generation processors. Each package contains
one of each type of magnetometer (S, M, L, X and Y ). Magnetometers of the same type,
but in different packages (blue squares) share a common Ibias. The flux-bias lines (FB1-
FB4) are shared amongst the 5 magnetometer types within each package. This work, is a
derivative of original figure by D-Wave Systems used with permission.

As shown in figure 3.3, devices of the same direction and sensitivity (S, M, L, X or
Y ) share current-bias lines and devices in the same magnetometer package share flux-bias
lines. For a ramp on a given current-bias line, the switching event measured will always be
from the device with the lowest Isw. When modulating the flux bias of a Device Under Test
(DUT), this switching event will be from the DUT as long as the Isw of the DUT is less
than the maximum Isw of all other devices on the current-bias line. If there are significant
flux offsets in the other devices or they have smaller junction Ic’s, the switching curve can
contain switching events from devices other than the DUT. This is undesirable.

In order to avoid erroneous switching events while measuring the fluxperiod for a device,
the data are trimmed in two regions prior to fitting. A percentage of the points taken around
the peak Isw are discarded as the maximum Isw observed will be that of the device with
the lowest Isw. If said device’s Isw is sufficiently lower than the DUT, the peak Isw region
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Figure 3.4: (Top) shows the overlayed switching curves for the SQUIDs. The blue device
has a smaller Ic. (Bottom) shows recorded Isw vs flux bias points for the DUT, where
time is increasing from the left to the right graphs. (Top left) Shows that as the current
is ramped, the low Ic device switches (black dot) first rather than the DUT. (Top center)
Shows that this continues until the DUT (black) is flux biased such that its Isw is smaller.
The DUT’s full switching curve has a plateau near its peak (bottom right). This, however,
does not inhibit the ability to measure the phase or the fluxperiod of the DUT.

of the DUT will have a plateau at the Isw of the smaller Isw device (see Fig. 3.4). These
are not switching events corresponding to the Isw of the DUT and are discarded. If the
comparators are improperly tuned, the initial switch to the voltage state can be missed.
Escape from features in the subgap region can subsequently trigger the comparator. One
such feature is when the Josephson oscillations match the resonant frequency of the DC
SQUID body. This is analogous to Fiske-like resonant modes in long junctions [32, 33]. To
avoid these sub-gap features, points measured around Φ0/2 applied flux bias are removed.
After those points are discarded the fluxperiod is extracted from the fit. This is only done
once per cooldown, as the fluxperiod is the mutual inductance between the flux-bias line
and the body of the DC SQUID and should not change with time.

3.6.1 Quietpoint — flux-bias value maximizing |Isw|

To ensure that the majority of the switching events are from the DUT, the rest of the
devices sharing the same current bias must be flux biased such that they will switch at
their maximum Isw. This bias point corresponds to where the device will be quiet (switch
the fewest number of times) while the DUT is modulated. This "quietpoint" can be found
by measuring the switching curve of the devices without any flux bias applied to other
devices. Even if part of the switching curve obtained contains some switching events from
the neighbors, one should still be able to determine the quietpoint. The quietpoint value
may be refined by iterating through all devices on the current-bias line while updating their
quietpoints. Even in the worst case where all devices are biased exactly at their minimum
respective Isw, the individual quietpoint may still be found by adding a random quietpoint
per device and iterating until the real quietpoints are found. This quietpoint will stay
valid as long as the background magnetic field stays the same. If it is changed due to the
application of the compensating fields it will need to be remeasured.
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(a) Individual switching curves (b) Overlayed switching curves

Figure 3.5: (a) Shows the switching curves (black, red, green and blue lines) for 4 DC
SQUIDs. The red and green curves represent SQUIDs that have a small flux offset. (b)
Shows the overlay of the switching curves for the same 4 devices, when they are connected in
series on a common current-bias line. When the current is increased (black line), a voltage
spike is seen when the current exceeds (black circle) the Isw of any of the 4 devices.

The full switching curve for each device may now be obtained. Variations in Ic between
devices means that the maximum Ic that can be measured is limited by the device with
the smallest Ic on the current-bias line. This means that peak Isw may be unable to be
measured for a device. However, for magnetic field measurement the fluxperiod and the
phase are the most important parameters and those can be determined easily. Using this
XY addressing scheme, all devices can be measured sequentially using only 5 current-bias
lines + 4 flux-bias lines = 9 lines. This is a great improvement.

3.7 4-point field measurement method

The field is determined by measuring the phase of the switching curve and using the flux-
period and pickup area to convert from phase to field. From the symmetries of the DC
SQUID equations, it was shown that when the sign of the phases across both junctions are
reversed (by reversing the sign of the flux through the loop), the sign of the Isw is reversed
as well.

This symmetry can be leveraged to perform a faster measurement of the phase. The
magnetometer is flux biased symmetrically some δΦ about the guess of the phase and
current is ramped in opposite directions to measure each Isw as shown in figure 3.7. For
these magnetometers, this δΦ is chosen to be 1/4 of the fluxperiod. The sum of the Isw
gives a non-zero value when the guess is incorrect. To avoid incorrect measurements due to
voltage offset on the current bias line, current ramps of opposite polarity for the same two
flux biases are performed. The difference of the sums will be zero when the correct phase
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Figure 3.6: (Top) shows the overlayed switching curves for 4 SQUIDs sharing a common
current-bias line at their respective flux biases. (Bottom) shows recorded Isw vs flux bias
points for the DUT, where time is increasing from the left to the right graphs. (Top left)
Shows the overlay of all the switching curves for all devices with no applied flux bias.
Offset curves (red and green) are due to local fields. (Top center) Shows the switching
curves of all but the DUT (black solid curve) flux biased to their respective quietpoints
(red,blue,green dotted curves). The DUT is flux biased away from its quietpoint as the
current is ramped (black line). The Isw at this flux bias is where the current intersects the
DUT’s switching curve (black circle). This Isw point is the left-most point of the bottom
center graph. Measurements are continued until the full switching curve for all flux-bias
settings are obtained (bottom right).

guess is chosen. A zero-finder using Brent’s root-finding method [34] is used to find the
correct phase to the desired precision.

Whereas many flux biases would be needed to obtain the switching curve for the device,
only two flux-bias values with two current ramps are needed here. As a result, with the
same number of measurements, this method can be used to obtain higher precision.

Measuring the full modulation curve also requires sampling points in flux-bias regions
that would be discarded prior to fitting or in regions where the change in Isw vs flux bias is
not steep. With the 4-point method, bias regions can be chosen where the slope is steepest
and avoids problematic switching events from the regions previously mentioned in Sec. 3.6.
Furthermore, this method is immune to both Isw and L asymmetries within the device
under test.
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Figure 3.7: 4-point-field method switching curve for an incorrect (a) and correct (b) guess of
Φext. (Top) Shows switching curves for the DUT in the presence of a non-zero Φbackground.
(Bottom) Shows the flux bias (Φ) and current bias (I) and measured voltage (V) vs time.
In each figure, current is ramped at a fixed rate in the negative and positive directions from
zero while the flux is biased at ±δΦ (solid lines) about some guess of Φext (dotted line).
A voltage spike is produced when the current ramp exceeds Isw (Φ). In the top figures,
this is the intersection (points A-D) of the current-bias sweep (solid lines) with the DUT’s
switching curve (solid curves). For the correct guess (b), these voltage spikes occur the
same amount of time after the beginning of the individual current ramps. For the incorrect
guess (a), these times differ.
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Chapter 4

Results

The methods developed in Chapter 3 have been used to perform a magnetic field mea-
surement using four magnetometer packages on a Washington generation chip, the results
of which are described in this chapter. First a full IV curve for a magnetometer will be
presented. Following that, measurements of multiple IV curves will be shown at various
flux-bias values to demonstrate the modulation of Isw. A similar measurement will then be
presented, but only measuring the Isw value with a voltage comparator. These results will
be fit to obtain the fluxperiod for each magnetometer. Finally, the 4-point field method
was used to obtain a field measurement for each of the magnetometers. This field was
compensated resulting in the final field at which the chip was thermal-cycled.

4.1 Generating a single IV curve at a single flux bias for a
DC SQUID

An IV curve was obtained for the magnetometer (RO 5) by applying a current and mea-
suring the voltage across the two leads as seen in figure 4.1. This was an L magnetometer
with effective pick-up area 22 500 µm2 located in the Northeast corner of the chip. The
temperature of the dilution refrigerator as read by a calibrated Lakeshore Cernox resistance
thermometer was 5.16 K. The current was linearly ramped from zero to 4 µA then down
to −4 µA finally finishing back at zero. At each of the 200 current points the voltage was
sampled with an Analog-to-Digital Converter (ADC) 128 times.

Plotting the current versus voltage, the transition between the zero-voltage and voltage
state is easily distinguishable. As seen in Figure 4.2, the transition from zero-voltage current
to non-zero-voltage current happens at different current values for different flux biases.
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Figure 4.1: Current and Voltage versus measurement number for (RO 5) at zero flux bias.
The top plot shows the 200 current values that were applied as a function of the measurement
index. The bottom plot shows the mean of the 128 voltage measurements performed at each
current setting. Error bars indicate one standard error.
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(b) flux bias = 0.12 mA
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Figure 4.2: IV curve for (RO 5) at flux bias = 0 mA (a) and flux bias = 0.12 mA (b). Points
are colored by their voltage. Circled points indicate the first smallest magnitude current
where a non-zero voltage is seen in the positive and negative current sweep directions.

4.2 Isw modulation curve from many IV curves

By taking an IV curve for many different flux-bias values, the full Isw modulation curve
can be made. Figure 4.3 shows the result of many IV curves taken for (RO 5) at various
flux-bias values.
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Figure 4.3: (a) 3D plot of multiple IV curves with different flux biases for (RO 5). Points
are colored by the measured voltage. The transition from the zero-voltage current plateau
to the voltage region is indicated by the blue circles. (b) Same data is plotted as a surface
plot. The periodic modulation of Isw can be seen clearly.

With this method, more data points are taken than are needed. To obtain the switching
curve, only the points demarcating the boundary between the zero-voltage and voltage
states are needed.

4.3 Isw modulation curve from raw switching events

Following the method described in Section 3.3, a voltage comparator was used to measure
just Isw at each of the flux biases. The current was ramped from zero to 3 µA with a ramp
time of 10 µs.

4.4 Measured fluxperiods

This much faster method for measuring the switching events for each readout was then
employed to measure the switching curve for readout. The measurement was performed
twice. The first measurement obtained a reasonable estimate of the quietpoint for each
device. The second measurement obtained the datapoints necessary to fit to a symmetric DC
SQUID model with self-induced flux. Figure 4.5 shows the data and fit of the measurements
used to obtain the fluxperiod for (RO 5).

The fluxperiod for all of the magnetometers was measured and is shown in Table 4.1.
Now that the fluxperiods have been measured, the phase of each of the devices can be
measured and converted into a magnetic field.
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Figure 4.4: Raw switching events for (RO 5). 128 Switching events (blue dots) were mea-
sured at each of the 200 flux biases. Mean of all the switching events for a given flux bias
are shown in green. Error bars indicate one standard error.
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Figure 4.5: Fluxperiod measurement for RO 5. Points used for the fit are in green. Points
discarded from the fit are in red. Fit is indicated with the solid blue line. Fit parameters
are fluxperiod = 2.4968× 10−1 ± 8× 10−5 mA/Φ0, offset = −8.49× 10−3 ± 9× 10−5 µA,
Isw,max = 2.381 ± 2× 10−3 µA and L = 479 ± 4 pH with a reduced χ2 = 1.71. Data was
taken with a current ramp time of 100 µs.
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Magnetometer Package location
TYPE Northwest Northeast Southwest Southeast
S 3.67e-1 3.66e-1 3.64e-1 3.66e-1
M 2.63e-1 2.63e-1 2.61e-1 2.62e-1
L 2.46e-1 2.50e-1 2.47e-1 2.49e-1
X 3.34e-1 3.33e-1 3.29e-1 3.31e-1
Y 3.35e-1 3.33e-1 3.31e-1 3.31e-1

Table 4.1: All magnetometer fluxperiods. Fluxperiods are given in units of mA/Φ0.

4.5 Measured fields

The magnetic field for each device was measured using the 4-point method. The device was
read 2048 times at each of the four flux-bias current-polarity settings. The phase guess was
updated and more measurements were taken until the phase was known to better than the
desired precision. The precision requested for the S, M and L magnetometers was 100 pT.
The X and Y precision requested was 200 pT.

Magnetometer Package location
TYPE Northwest Northeast Southwest Southeast

S -5.64 ± 6e-2 -3.81 ± 9e-2 -4.55 ± 4e-2 -2.11 ± 6e-2
M -4.62 ± 3e-2 -3.35 ± 3e-2 -3.78 ± 4e-2 -1.55 ± 3e-2
L -4.63 ± 1e-2 -3.18 ± 2e-2 -3.86 ± 1e-2 -1.33 ± 2e-2
X -4.7 ± 2e-1 -6.3 ± 2e-1 -12.0 ± 2e-1 -10.5 ± 1e-1
Y 12.4 ± 2e-1 11.7 ± 1e-1 8.6 ± 2e-1 6.6 ± 2e-1

Table 4.2: Magnetometer fields after initially reaching a temperature of 5.16 K. Fields are
given in nT.

As can be seen from Table 4.2, the initial fields for the L magnetometers were better
than 5 nT in the z direction with an average of −3.249 nT with a standard error of 8 pT.
At this time, magnetic field was minimized by using the compensating coils. The chip was
then thermal-cycled through its superconducting transition temperature. This process was
repeated 3 times for this chip until the final magnetic field values in Table 4.3 were reached.
The average z field was able to be improved to 88 pT with a standard error of 8 pT. This
was deemed low enough and the chip taken to base temperature for calibration.
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Magnetometer Package location
TYPE Northwest Northeast Southwest Southeast

S -1.834 ± 9.8e-2 -0.127 ± 9.2e-2 -1.026 ± 9.4e-2 1.758 ± 6.1e-2
M -1.397 ± 3.3e-2 0.240 ± 2.8e-2 -0.511 ± 4.1e-2 1.843 ± 3.5e-2
L -1.288 ± 1.5e-2 0.221 ± 1.8e-2 -0.602 ± 1.5e-2 2.018 ± 1.7e-2
X 6.09 ± 1.9e-1 3.37 ± 1.9e-1 -4.76 ± 1.8e-1 -3.74 ± 1.9e-1
Y 4.37 ± 1.9e-1 2.46 ± 1.9e-1 -2.01 ± 1.7e-1 -4.71 ± 1.7e-1

Table 4.3: All magnetometer fields after compensation and thermal-cycling. Fields are
given in nT
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Chapter 5

Conclusion

5.1 Summary

Circuits leveraging the unique properties of superconducting materials and Josephson de-
vices continue to improve. Increasing material critical temperatures and advances in cry-
ocooler technologies make it easier to reach superconducting temperatures. As supercon-
ducting circuits grow larger and more complex, limiting the effects of flux trapping will
continue to be a concern.

Low-field cooling is one method for limiting the number of trapped flux lines. Ideally,
the magnetic flux should be kept below a Φ0 across the area of the chip. The flux is reduced
through a combination of passive attenuation and active field compensation. Passive atten-
uation is achieved using high-magnetic-permeability and superconducting shielding. Active
compensation is achieved by measuring the attenuated field with on-chip magnetometers
and compensating with magnetic coils.

In this thesis, the measurement of the magnetic field using sets of on-chip multiplexed
unshunted DC SQUIDs was demonstrated. This was done using a set of magnetometers
able to measure the field at each of the four corners of the processor. The field was measured
by determining the shift in the Isw modulation curve, which marks the boundary of zero-
voltage current flow. This shift was converted into a field given the dimensions of the
magnetometers.

The field from each magnetometer was measured serially as required by the multiplexed
devices. Magnetometers were flux biased at their "quietpoint", the bias at which the mag-
nitude of their respective switching currents were maximized. Thus, these devices would
not switch while measurements of the device under test were being performed.

To measure the switching curve of an individual device, the current across the device was
ramped until the appearance of a voltage spike above some threshold was seen. A 4-point
method for measuring the field using far fewer flux-bias settings was developed and was
shown to be immune to asymmetries in the DC SQUID. This was possible by leveraging the
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symmetries intrinsic to the equations that govern DC SQUID behavior. These symmetries
were shown to be valid even when the dimensions of the wires of the SQUID were on the
order of a few London penetration depths.

The initial average z field across a processor was measured to be −3.249 nT with a
standard error of 8 pT. After repeated thermal cycles and compensation, the average z field
was able to be improved to 88 pT with a standard error of 8 pT.

5.2 Outlook

DC SQUIDs are some of the most sensitive ammeters and flux sensors available. The
measurement methods described in this thesis were specific to the use of unshunted SQUIDs
for the detection of flux. This was preferred for the ease of multiplexing, the use of low-
frequency lines, the simplicity of the electronics used to perform the measurements and
the compatibility of integration on the D-Wave processor. These benefits were deemed to
outweigh the cost of slower operation than FLL methods.

This style of measurement could benefit other areas of research where the use of a shunt-
ing resistors is undesirable. NanoSQUIDs use SQUIDs manufactured with dimensions on
the order of a few hundred nanometers to measure the properties of magnetic nanostruc-
tures deposited directly onto the surface of the SQUID. Reducing the size further could
make it hard to include a shunting resistor. If the measurements are to be performed at
sub-Kelvin temperatures, forgoing a shunt would also reduce the power dissipated at the
device.
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