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Abstract

This thesis is composed of three independent essays on customer-supplier networks and
financial markets. The first chapter, entitled “Economic Links and Return Volatility”, is co-
authored with Keyi Zhang and Ramazan Gençay. This study investigates the propagation
of stock return volatility along supply chains. Our results show that the effect of customer
volatility is approximately 10 times as large as trading volume on supplier’s volatility. Our
findings are robust to controlling for variables capturing the time-series properties of volatil-
ity and a set of idiosyncratic, industry and market factors; tested under various assumptions
regarding the activeness of customer-supplier linkages; and to different estimation methods.
Our out-of-sample tests provide consistent evidence that incorporating customer channel
improves volatility forecasting. Furthermore, the transfer of volatility is more pronounced
when investors are more aware of customer-supplier linkages.

The second chapter, entitled “Resilience to the Financial Crisis in Customer-Supplier Net-
works” is also co-authored with Ramazan Gençay and Keyi Zhang. Inspired by the Capital
Asset Pricing Model (CAPM) beta, we construct customer and supplier betas to separately
investigate potentially different properties of downstream and upstream linkages. With the
adjacency matrix acting as a “filter” to extract each company’s return covariances with its
trading partners, the cross-sectional dependence contained in the customer-supplier network
is summarized by our betas. We explore how these two betas are related to a company’s
resilience to the financial crisis of 2008-2009. We observe that a higher customer beta is
generally associated with more resilience during the crisis.

The third chapter, entitled “Economic Links and Credit Spreads”, is co-authored with
Ramazan Gençay, Daniele Signori, Yi Xue and Keyi Zhang. This paper has been published
in the Journal of Banking & Finance. This study describes a model of financial networks
that is suitable for the construction of proxies for counterparty risk. We find that, for each
supplier, counterparties’ leverage and option implied volatilities are significant determinants
of corporate credit spreads in the period after the 2008-2009 U.S. recession. Our findings
are robust after controlling for several idiosyncratic, industry, and market factors.

Keywords: Network analysis; Customer-supplier links; Financial market; Financial risk
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Chapter 1

Economic Links and Return
Volatility

1.1 Introduction

Equity market volatility is broadly understood as the degree of variation in stock prices or
returns. Compared to the fairly large econometric literature focusing on pure time-series
modeling and forecasting of volatility (Andersen, Bollerslev, Christoffersen, and Diebold
(2006) provide a survey on these topics), research on economic channels of volatility is rela-
tively scarce. As a seminal paper on the drivers of equity market volatility, Schwert (1989)
investigates the relationship of stock volatility with macroeconomic volatility, economic ac-
tivity, financial leverage and stock trading activity. More recently, adopting a comprehensive
approach, Paye (2012) and Christiansen, Schmeling, and Schrimpf (2012) model volatility
in a predictive regression setting. Motivated by existing theoretical literature, Paye (2012)
identifies a set of candidate predictors and tests the ability of these variables to improve
volatility forecasts. Christiansen et al. (2012) perform an even more comprehensive exam-
ination of financial volatility in the sense that they investigate a larger set of potential
predictors and study not only equity market but also volatility in other asset classes (i.e.,
bonds, foreign exchange and commodities).

Note that the majority of the existing literature has focused exclusively on aggregate
equity market volatility. In contrast, the present paper investigates stock return volatility
from the perspective of individual firms. More important, we focus on one particular channel
of volatility—the transfer of volatility along supply chains.

Today, no firm is an isolated island—firms are connected to one another through differ-
ent types of linkages. Some of these links are direct and explicit, while others are relatively
obscure. Allen and Babus (2008) provide a survey of possible sources of connections between
financial institutions and how these connections are modeled and explored to answer im-
portant economic questions. In this study, we focus on the customer-supplier links between
firms—these links are clearly defined, contractual, and founded on real trading activities.
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There are interesting studies investigating customer-supplier relationships. For example,
Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) study the systemic risks originat-
ing from intersectoral input-output linkages and argue that sizable aggregate fluctuations
may originate from microeconomic idiosyncratic shocks only if there are significant asym-
metries in the roles that sectors play as suppliers to others. In another examination of the
linkages along the supply chain, Hertzel, Li, Officer, and Rodgers (2008) study the wealth
effects of distress and bankruptcy filing for the suppliers and customers of filing firms and
find that significant contagion effects extend to suppliers of the filing firms but not the
customers. In a recent paper, Gençay, Signori, Xue, Yu, and Zhang (2015) introduce an
econometric network model to appropriately analyze counterparty risks and find that for
each supplier, customers’ leverage and option implied volatilities are significant determi-
nants of corporate credit spreads in the period after the 2008 to 2009 U.S. recession.

Shocks can propagate through supply chains. Customers are crucial to suppliers be-
cause they play an indispensable role in fulfilling most firms’ ultimate goal—selling goods
and/or services for a profit. Cohen and Frazzini (2008b) show that firms’ real operations,
measured by sales and operating income, are significantly more correlated when they are
linked through customer-supplier relationships, which affirms the intuition that there are
significant comovements in the underlying cash flows of the linked firms. Furthermore, as
documented in Hertzel et al. (2008), when a firm experiences financial distress, which largely
reflects a shift in demand away from the firm, this may also reduce the derived demand
for its suppliers’ output—this is a typical example of how shocks propagate through supply
chains. As firms are stakeholders in their customers’ operations—the financial health of their
major customers affects their own profitability, and shocks to the customers have resulting
effects on the supplier firm—it is natural to hypothesize that the customer-supplier link is
an important channel for the propagation of stock return volatility. Specifically, customers’
return volatility predicts that of suppliers.

This paper tests and examines this hypothesis in a predictive regression setting. As a
seminal paper on the drivers of equity market volatility, Schwert (1989) provides evidence
that there is a strong association between stock return volatility and stock trading activity.
Our analysis shows that the effect of customer volatility is approximately 10 times as large
as trading value on supplier’s volatility. Our findings are robust to controlling for variables
capturing the time-series properties of stock return volatility and a set of idiosyncratic,
industry and market factors. Further, they are tested under various assumptions regard-
ing the activeness of customer-supplier linkages and using different estimation methods.
In particular, we explicitly address the potential concern of endogeneity and confirm our
results through estimations with instrumental variables (IVs) using the two-step efficient
Generalized Method of Moments (GMM).

Moreover, using various benchmark models and rolling estimation windows, our out-of-
sample tests show that incorporating the customer channel improves forecasts of a supplier’s
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volatility. In particular, even in the most aggressive case, namely, using a benchmark model
with a large set of forecasting variables that are documented to be important predictors
of volatility, our results still provide evidence of improvements in forecasting when the
customer channel is included.

In addition to demonstrating the predictive power of customer volatility, we test how the
public’s awareness of customer-supplier linkages affects the intensity of volatility transfer.
Specifically, we investigate the interaction between customer volatility and analyst cover-
age. As the research activities and recommendations of financial analysts reveal a firm’s
information to the market, higher analyst coverage implies that the public has better access
to information regarding a firm’s operations and financial conditions and is more likely to
be aware of the identities of its major customers. As expected, our results show that the
transfer of volatility from customers to suppliers is more pronounced for firms with higher
analyst coverage (after controlling for the size of the firm, measured by market capitaliza-
tion and trading value). Our interpretation is that when investors are more aware of a firm’s
principal customers, they anticipate the propagation of shocks through these related firms
and respond more actively to news on firm’s customers; that is, they incorporate such news
into their investment and asset allocation decisions regarding the supplier companies. This
trend contributes to the stronger association between customer and supplier volatility.

We would like to emphasize that our analysis is based on a large sample over a long
period in the equity market. We employ panel data spanning approximately forty years,
from 1977 to 2015. After matching with data on the control variables we consider, our final
sample contains 2,738 unique suppliers with a total of 134,007 monthly observations.

The remainder of the paper is organized as follows. Section 1.2 introduces the construc-
tion of customer-supplier networks and how we model stock return volatility in a predictive
regression setting. Section 1.3 describes the data. Section 1.4 reports the estimation re-
sults. Section 1.5 considers five robustness checks: we control for industry effects; examine
alternative assumptions regarding the activeness of customer-supplier linkages; address the
potential correlation between individual fixed effects and the autoregressive term; address
the potential concern of endogeneity using IV estimation; and for comparison, show that
while customers’ return volatility predicts that of suppliers, return volatilities of randomly
selected firms are not significant determinants of a firms’s volatility. The out-of-sample
analysis is performed in Section 1.6. Section 1.7 examines the interaction between customer
volatility and analyst coverage. Section 1.8 concludes.

1.2 Methodology

1.2.1 Customer-Supplier Networks and Adjacency Matrices

In a survey paper, Allen and Babus (2008) report that networks, which are generally un-
derstood as collections of nodes and links between nodes, can be useful representations of
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economic or financial systems. Nodes represent entities in the system; links describe certain
relationships between the entities.

In this paper, we examine customer-supplier networks, where each firm is a “node”, and
a customer-supplier relationship is a “link” between two firms. The structure of the network
can be characterized by an adjacency matrix, G, which is a square matrix with dimension
of the number of nodes (i.e., firms) in the network. The entry in the ith row and jth column
of G, (G)ij , is one if and only if i (j) is the supplier (customer) of j (i), zero otherwise.

Consider the simple network depicted in Figure 1.1, vi, i = 1, ..., 5, denotes the firm; the
arrow indicates the flow of output. For example, the arrow between v1 and v2 indicates that
firm 1 (2) is the supplier (customer) of firm 2 (1). Matrix G characterizing the structure of
this network is therefore

G =



0 1 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0


.

The second row of G, for example, refers to firm 2, which indicates that firm 2 has only one
customer, which is firm 4, as only the fourth entry is one. More generally, the ith row of G
captures firm i’s first-order (i.e., immediate) customer linkages.

The adjacency matrix G we have referred to thus far is unweighted, in the sense that it
has entries of either one or zero. In some applications, it is useful to introduce the concept
of the strength of a link. In this paper, we use a sales-weighted matrix G to capture the
relative importance of customers.1 First, we construct an unweighted G. Next, for each
supplier (i.e., each row) in G, links (i.e., entries that have a value of one) are weighted by
the amount of sales made to the target customer, normalized by the observed total amount
of sales (i.e., the sum of all sales to customers) of this supplier in this period. The sum of
the entries in each row of the sales-weighted G is equal to one. Using this weighting, from a
supplier’s perspective, greater importance is assigned to customers that account for a larger
shares of trades.2

1.2.2 Stock Return Volatility

Realized stock return volatility is often measured by the realized variance or the square
root of the realized variance of the (excess) stock returns. (For example, see Schwert (1989),
Andersen et al. (2006), Corsi (2009), Paye (2012), Christiansen et al. (2012) and Cao and
Han (2013).) Following the same approach, we focus on modeling and forecasting the sample
standard deviation of daily stock returns over one month. Specifically, the realized stock
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return volatility of firm i in month t, RVi,t, is characterized by

RVi,t =

√√√√ 1
Ti,t − 1

Ti,t∑
τ=1

(DailyReti,t,τ −DailyReti,t)2, (1.1)

where, for firm i, Ti,t is the number of trading days observed in month t; DailyReti,t,τ is
the daily return on the τth trading day of month t (i.e., DailyReti,t,τ = Pi,t,τ−Pi,t,τ−1

Pi,t,τ−1
, where

Pi,t,τ is the closing stock price on the τth trading day of month t); and DailyReti,t is the
sample average of daily returns in month t.

For each firm i, its customers’ stock return volatility in month t is measured and denoted
by (G ·RV )i,t = (Gt ·RVt)i. Suppose that there are n firms in the customer-supplier network
in month t, Gt is the n × n sales-weighted adjacency matrix in month t, RVt is the n × 1
vector containing each firm’s return volatility in month t, and (Gt ·RVt) is therefore a vector
capturing the return volatility of each firm’s customers in month t. Specifically, the ith entry
in (Gt ·RVt) is the sales-weighted average of the return volatilities of firm i’s customers in
month t.

We model volatility in a predictive regression setting—all of the right-hand-side variables
are one month prior to the dependent variable, especially focusing on the channel from
customer volatility to that of the supplier:

RVi,t = β0 + β1 (G ·RV )i,t−1 + ControlV ariablesi,t−1Γ + εi,t (1.2)

where ControlV ariables is a row vector containing a set of time-series, market and id-
iosyncratic factors that are introduced in the next section, and Γ is a column vector of
coefficients.3

As also noted by Cohen and Frazzini (2008b), current U.S. financial accounting regula-
tion requires public firms to report the customers that account for at least 10% of their total
yearly sales (but not their suppliers); thus, our data source provides more information about
firms’ major customers (but not major suppliers).4 Therefore, we focus our investigation on
the effects of customers, that is, the transfer of volatility from customers to suppliers.

1.2.3 Control Variables

Motivated by the existing theoretical and empirical literature, we incorporate a set of con-
trol variables into our analysis. First, to capture the time-series properties of stock return
volatility, we include an autoregressive term, the one-month-lagged return volatility (RV m),
in our model. In addition, we apply the Heterogeneous Autoregressive model of Realized
Volatility (HAR-RV) from Corsi (2009) and Andersen, Bollerslev, and Diebold (2007), in-
cluding return volatilities over different time horizons other than one month: one quarter
(RV q), one-half year (RV hy), and one year (RV y). They are defined and calculated using
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daily stock returns in the same way as RV in Equation 1.1, except that they are over longer
time horizons.

To control for market-level volatility, we include the sample standard deviation of daily
returns on the Standard & Poor’s 500 Composite Index over one month, RVS&P . In addition,
we include yield curve slope and Baa-Aaa spread. The slope of the yield curve is measured
as the difference between the 10-year and 2-year Treasury Constant Maturity rates, r10−r2;
the Baa-Aaa spread is the difference between BAA- and AAA-rated corporate bond yields,
rBAA − rAAA, which is a measure of market credit risk.

A set of firm characteristics that are related to stock return volatility is considered. First,
we account for a firm’s market capitalization, MV , measured as the product of the closing
price on the last trading day of a month and the number of shares outstanding. Moreover,
it has been well-documented that an increase in the proportion of debt to equity leads to an
increase in return volatility (see Merton (1974) and Schwert (1989), for example), and hence,
we include leverage as the ratio of total liabilities to total assets. In addition, the earnings-
price ratio (EPS/P) and dividend-price ratio (D/P) are shown to be closely associated with
return volatility (see Mele (2007) and Christiansen et al. (2012), for example). Furthermore,
Schwert (1989) provides evidence that there is a strong association between stock return
volatility and stock trading activity. To capture this effect, we include monthly trading
value, measured as the product of the closing price on the last trading day of a month and
the total number of shares sold during the month.

1.3 Data

1.3.1 Customer-Supplier Relationships

According to the U.S. Statement of Financial Accounting Standards (SFAS) No.131, public
enterprises are required, once each year, to report the customers that account for at least
10% of their total yearly sales. This information is contained in the Compustat Customer
Segment files. For each supplier, the key items in each entry of the customer segment files
are the customer’s name and the total amount of annual sales from this supplier to this
customer.

As major customers are self-reported and, in particular, names are manually entered, the
matching of a reported customer’s name with a standard identifier is not a straightforward
matter. For example, the same company can be reported with different names (IBM vs.
International Business Machines), acronyms are included in some instances and omitted in
others, or the company’s name can be outright misspelled. We adopt a very conservative
approach—we only consider those customer-supplier relations (i.e., links) for which there
is an exact match (case-insensitive) between the reported name and an entry, which can
be the company name or the company’s legal name, or ticker, in the Compustat datafile of
names.
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Following this procedure, in the period from June 1976 to October 2015, 7,459 unique
firms with a total of 40,279 reported links are identified. That is, during this period, there
are, in total, 7,459 unique firms that have ever appeared in the customer-supplier networks
identified from the customer segment files. Among them, 5,078 firms reported their cus-
tomers, 3,264 firms were reported as customers by other companies, and 883 firms took the
role of both a supplier and a reported customer.

Public companies are required to report their major customers once every fiscal year. As
fiscal years vary across businesses, they report in different months. When a link is reported,
we consider it active for a one-year period.5 Specifically, it is considered active for up to one
year prior to the reporting date.6

1.3.2 Other Data

To calculate realized stock return volatilities, we collect daily closing stock prices from the
Center for Research in Security Prices (CRSP) U.S. Stock database for the period from
January 1977 to December 1982 and from the Compustat-North America database for the
period from January 1983 to December 2015. As our customer-supplier links are identified
from the customer segment files of the Compustat-North America database, it is natural
to collect stock prices from the same source; however, because daily data prior to January
1983 are not available there, we collect daily prices from the CRSP U.S. Stock database
for the earlier period. We focus our analysis on common stocks and American depositary
receipts (ADR) only, which together account for approximately 90% of the daily closing
stock price observations in the sample. For firms that have multiple issues, we use that with
the highest average daily trading volume throughout the sample period as the representative
issue.7 Dividends are reinvested. We exclude the observations with a stock price that is less
than $1 and those for which the number of outstanding shares differs from the previous
trading day. If there is a suspension longer than 7 days, the daily price observation on the
day immediately after the suspension is also excluded.

Monthly interest rates on Treasury constant maturities and corporate bonds are collected
from the Federal Reserve Bank database. Daily returns on the Standard & Poor’s 500
Composite Index and monthly data on closing stock price, number of shares outstanding
and number of shares traded are from the CRSP. Quarterly data on a firm’s total assets,
total liabilities, earnings per share (excluding extraordinary items), and monthly dividends
per share are collected from the Compustat-North America database. Daily value-weighted
returns on industry portfolios are obtained from Kenneth French’s website.8

Table 1.1 contains the summary statistics for our final sample. Our data have a panel
structure covering the period from February 1977 to October 2015. After matching with data
on the entire set of variables listed in Section 1.2 - 1.2.3, there are 2,738 unique suppliers with
a total of 134,007 monthly observations. The panel is unbalanced: the number of monthly
observations for each supplier varies between 1 and 316, with a median of 34.
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1.4 Estimation Results

With various sets of control variables, Equation 1.2 is estimated by pooled ordinary least
squares (OLS) with the Driscoll-Kraay standard error that is robust to heteroskedastic-
ity and cross-sectional and temporal dependence (Driscoll and Kraay (1998)). Except for
four of the variables, which are the yield curve slope, Baa-Aaa spread, earnings-price ratio
(EPS/P) and dividend-price ratio (D/P), all variables in Equation 1.2 are natural-logarithm
transformed prior to estimation.9 The results are presented in Table 1.2. Motivated by the
existing theoretical and empirical literature, after controlling for the variables capturing the
time-series properties of stock return volatility and a set of market and idiosyncratic factors,
customer volatility is a statistically significant determinant of a supplier’s volatility—the es-
timated coefficient is significant at the 0.1% level in all specifications. In addition, according
to Model (4), the estimated effect of customer volatility is approximately 10 times as large
as trading value on supplier’s volatility. Further, the effect of customer volatility is approx-
imately one-third and one-fifth of the effect of RV m in Model (4) and (5), respectively.10

The predictive power of customer volatility is to be further examined in the out-of-sample
analysis in Section 1.6.

1.5 Robustness

1.5.1 Industry Effects

In addition to originating from customer-supplier linkages, an alternative explanation for
the presence of a customer effect in our framework is an industry effect. Averaging over
customers’ stock return volatilities, the argument holds, builds proxies for return volatility
of the industry in which this firm operates. To address this concern, we introduce industry
volatility as an additional control variable.

We obtain daily value-weighted stock returns on industry portfolios from Kenneth
French’s website.11 These returns are constructed by assigning each AMEX, NYSE and
NASDAQ stock to an industry portfolio according to its Standard Industrial Classification
(SIC) code. For robustness, we consider various classifications, resulting in 12, 17, 30, 38 and
48 industry portfolios. For each classification scheme and each industry portfolio, first, we
compute industry volatility as the sample standard deviation of daily returns in a month.
Second, given a classification scheme, each firm in our dataset is matched to its industry
portfolio according to its Compustat SIC code. Let indRVi denote the return volatility of
the industry portfolio to which firm i is matched. Controlling for industry volatility, partial
effects are estimated for the following model:

RVi,t = β0 + β1 (G ·RV )i,t−1 + β2 indRVi,t−1 + ControlV ariablesi,t−1Γ + εi,t, (1.3)
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where ControlVariables includes the entire set of variables listed in Section 1.2 - 1.2.3.
As presented in Table 1.3, the effects of industry volatility are positive and statistically

significant. Compared to the results presented in Table 1.2, the estimated coefficient on
customer volatility decreases very marginally (with respect to Model (5) in Table 1.2 which
contains the entire set of control variables other than industry volatility), and it is statisti-
cally significant at the 0.1% level for all of the industry classification schemes considered.

1.5.2 Activeness of Customer-Supplier Linkages

As required by SFAS no.131, public companies report their major customers once every
fiscal year. As fiscal years vary across businesses, they report in different months during
the year. We consider a customer-supplier linkage active for up to a one-year period once a
supplier company reports the name of and the yearly sales to the customer company. In this
section, we compare three windows for the activeness of customer-supplier linkages and thus
for the construction of sales-weighted G: (1) one year prior to the reporting date; (2) one
year centered on the reporting date; and (3) one year after the reporting date.12 For each
of the three windows, Equation 1.2 is estimated by pooled OLS with the Driscoll-Kraay
standard error. The estimated effects of customer volatility, as reported in Table 1.4, are
quite stable across different choices of windows.

1.5.3 Estimation with the Hausman-Taylor Approach

When including an autoregressive term (RV m), Equation 1.2 is a dynamic panel model,
and a traditional fixed effects (de-meaned) regression would cause endogeneity by design;
correlation between the lagged dependent variable and the unobserved individual fixed effect
is non-zero. In other words, if one believes that an unobserved individual time-invariant
effect (ui) exists, it must be the case that Cov(yt−1, ui) 6= 0, which would certainly cause
inconsistency. Therefore, in this section, we estimate Equation 1.2 by the Hausman-Taylor
approach, which controls for the potential correlation between the individual fixed effect
and the autoregressive term (Hausman and Taylor (1981)).13

As reported in Table 1.5, estimated coefficients on customer volatility under various
specifications are generally larger than those obtained above using pooled OLS and are all
statistically significant at the 0.1% level. In particular, the magnitude of the effect from
customer volatility is still about 10 times as large as that from trading value on supplier’s
volatility in Model (4), (5) and (6).

1.5.4 Estimation with Instrumental Variables

There might be concerns that the variable of interest, customers’ return volatility, is endoge-
nous (i.e, not orthogonal to the error term). For example, one concern is that the regression
equation is simultaneous in the sense that the transfer of volatility also goes from suppliers
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to customers. First, we argue that this simultaneity is unlikely because our investigation is
undertaken in a predictive regression setting—supplier’s volatility, the dependent variable,
is one-period later in time than the customer volatility. However, regardless of the source of
endogeneity, we explicitly address this concern by estimating Equation 1.2 by constructing
and utilizing instrumental variables (IVs) in this section.

First, we construct Gnew,ki,t to capture firm i’s newly established customers in month t.
Specifically, Gnew,ki,t captures those customers of firm i in month t that were not firm i’s
customers k months ago, that is, firms that while they are firm i’s customers in month t are
not customers of firm i in month t−k. Next, RVt−k, the n× 1 vector containing each firm’s
return volatility in month t − k, is multiplied by Gnew,kt , to produce the IV. That is, the
k-month-lagged return volatility of these “newly established customers”, (Gnew,kt ·RVt−k)i,
is utilized as an IV. As these firms are not firm i’s customers k months ago by construction,
their k-month-lagged volatilities are unlikely to be correlated with the current disturbance
term. Hence, we claim this IV to be exogenous. However, as return volatility is in general a
persistent process, k-month-lagged volatilities of these newly established customers should
be correlated with their own more recent volatilities; hence, this IV is correlated with the
variable of interest.

The estimation results are presented in Table 1.6. Specifically, we use different combina-
tions of the following IVs: (Gnew,2t−2 ·RVt−4)i, (Gnew,6t−2 ·RVt−8)i and (Gnew,12

t−2 ·RVt−14)i. They
capture the corresponding lagged return volatilities of firm i’s newly established customers
that are not a customer of firm i, 2 months, 6 months and 12 months ago, respectively.
The coefficients are estimated by the two-step efficient Generalized Method of Moments
(GMM) procedure, with the estimated asymptotic variance of the GMM estimator being
heteroskedasticity and autocorrelation consistent (HAC). The asymptotic variance of the
sample analogue of the orthogonality or moment conditions (specifying that all of the in-
struments in the equation are uncorrelated with the error term) is estimated using a Bartlett
kernel with bandwidth q(n) = 13 (Newey and West (1987)). The inverse of the estimated
asymptotic variance is then used as the weighting matrix in the second stage of the GMM
estimation to obtain the efficient GMM estimator14.

We report the Kleibergen-Paap Wald rk F statistic (Kleibergen and Paap (2006) and
Kleibergen and Schaffer (2015)) as a weak-instruments test. With every combination of IVs,
the F statistic is above 700—it well exceeds the “rule of thumb” requirement of Staiger and
Stock (1997), which states that the F statistic should be greater than 10 for weak identifi-
cation not to be considered a problem. We also report the p-value that is associated with
Hansen’s test of overidentifying restrictions (Hansen (1982)). The large p-values, ranging
from approximately 0.33 to 0.56, indicate in our favor that we fail to reject the null that all
the regularity assumptions of the model (including the assumption that the IVs are orthogo-
nal to the error term) are satisfied. Most important, the estimated coefficients on customer
volatility are comparable to the previous results, in terms of sign, magnitude and level of
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statistical significance. That is, our previous results are further confirmed by the estimation
with IVs.

1.5.5 Stock Return Volatility and Randomized Linkages

To further demonstrate the robustness of our results, in this section, we construct (GR ·RV ),
where GR is the randomized sales-weighted G: columns of sales-weighted G are shuffled
randomly15. That is, rather than capturing firm i’s customers, the ith row of GR contains
randomly selected firms which may or may not be firm i’s customers. So the ith entry in
(GRt · RVt) is the weighted average of the return volatilities of randomly selected firms in
month t.

With various sets of control variables, the following equation is estimated by pooled
OLS with the Driscoll-Kraay standard error that is robust to heteroskedasticity and cross-
sectional and temporal dependence:

RVi,t = β0 + β1
(
GR ·RV

)
i,t−1

+ ControlV ariablesi,t−1Γ + εi,t, (1.4)

Estimation results are reported in columns (2) and (4) of Table 1.7. For comparison, bench-
mark results from Table 1.2 are presented in columns (1) and (3), where customer volatility
(G ·RV ) is constructed using sales-weighted G. Comparing to the estimated coefficients on
the customer volatility, the coefficients on (GR · RV ) are smaller in magnitude, and more
importantly, do not have statistical significance. That is, results in Table 1.7 indicate that,
while customers’ return volatility predicts that of suppliers, return volatilities of randomly
selected firms are not significant determinants of a firms’s volatility.

1.6 Out-of-Sample Analysis

1.6.1 Out-of-Sample Forecasting Tests

In this section, we test whether incorporating customer volatility improves volatility fore-
casts from an out-of-sample perspective. Let model 1 be the benchmark model; model 2,
which nests model 1 and includes customer volatility as an additional forecasting variable,
is the augmented model.

Model 1: RVi,t = β0 +Xi,t−1β1 + εi,t, (1.5)

Model 2: RVi,t = β0 +Xi,t−1β1 + β2 (G ·RV )i,t−1 + εi,t, (1.6)

where Xi,t−1 is a row vector of forecasting variables of firm i in month t − 1, which does
not include customer volatility, (G ·RV )i,t−1; β1 is a column vector of parameters.

Mean squared prediction error (MSPE) has been one of the most commonly used statis-
tics for comparing forecasts of an augmented model to the nested benchmark model (see, for
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example, Lettau and Ludvigson (2001), Stock and Watson (2002), Stock and Watson (2003),
Stock and Watson (2004) and Orphanides and van Norden (2005)). We apply the test for
equal MSPE proposed by Clark and West (2007). Specifically, Clark and West (2007)’s
approach centers on the idea that, under the null that the benchmark model generates
the data, the augmented model introduces noise into the forecasting process by estimating
parameters with population values of zero; hence, the MSPE of the augmented model is
expected to be larger than that of the benchmark model. The MSPE of the augmented
model should therefore be adjusted to account for this noise. In our context, the sample
MSPE for model 1 and model 2 are, respectively,

σ̂2
1 = P−1∑

i

∑
t

(RVi,t+1 − R̂V 1,i,t+1)2, (1.7)

σ̂2
2 = P−1∑

i

∑
t

(RVi,t+1 − R̂V 2,i,t+1)2, (1.8)

where R̂V 1,i,t+1 and R̂V 2,i,t+1 denote one-step-ahead predictions of RVi,t+1 from model 1
and 2, respectively; P denotes the number of out-of-sample predictions used in computing
these averages. The adjustment, which is subtracted from σ̂2

2 to account for the additional
noise associated with the augmented model’s forecasts, is

adj. = P−1∑
i

∑
t

(R̂V 1,i,t+1 − R̂V 2,i,t+1)2. (1.9)

Clark and West (2007) propose testing the null hypothesis of equal MSPE by examining
the “MSPE-adjusted” statistic:

MSPE-adjusted ≡ σ̂2
1 − (σ̂2

2 − adj.). (1.10)

This is a one-sided test with the alternative hypothesis that model 1 has a greater MSPE
than model 2. Clark and West (2007) argue that, although the MSPE-adjusted statistic is
not asymptotically normal, standard normal critical values result in actual sizes close to,
but slightly smaller than, nominal size for sufficiently large samples.

For the out-of-sample analysis, the entire sample is divided into two parts: the obser-
vations in the first T1 time periods are for estimating the parameters in the forecasting
models (estimation sample), and the observations in the final T2 time periods are used to
estimate the MSPE associated with each model (forecasting sample). We use 24-, 36-, 48-
and 60-month rolling estimation windows to estimate the parameters in the forecasting
models.
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We select seven benchmark models (i.e., model 1) for forecast evaluation. First, following
Paye (2012), an AR(6) specification is used:

RVi,t = β0 +
6∑

k=1
βkRVi,t−k + εi,t. (1.11)

The next four benchmark models each contains one set of the following forecasting variables:
heterogeneous autoregressive terms (RV m, RV q, RV hy, and RV y); market factors (RVS&P ,
yield curve slope and Baa-Aaa spread); firm characteristics (MV , leverage, EPS/P, D/P and
trading value); and industry volatility under the 30-industry classification scheme. The sixth
benchmark model contains heterogeneous autoregressive terms, market factors and industry
volatility that are as specified above. The last benchmark model includes the entire set of
variables introduced in Section 1.2 - 1.2.3 and industry volatility as forecasting variables.

In Table 1.8, the Clark and West MSPE-adjusted statistic and corresponding p-value
are reported for each benchmark and estimation scheme combination. For the first six
benchmark models, the null of equal MSPE is rejected for all estimation schemes used,
most of which at the 0.1% significance level. Even with the most aggressive choice, namely,
using a benchmark model containing the entire set of variables introduced in Section 1.2 -
1.2.3 and industry volatility as forecasting variables (All-But-No-CRV ), the null of equal
MSPE is rejected at the 5% level when using the 60-month rolling estimation window. These
results provide consistent evidence that incorporating customer volatility improves forecasts
of supplier volatility.

1.6.2 Application: Density Forecasts

Density forecasting plays an important role in financial risk management, for example,
in measuring and monitoring asset or portfolio Value-at-Risk. Coupled with the assump-
tion that a firm’s daily stock returns are normally distributed, the customer-channel-based
volatility forecast can be used to forecast stock return density. Following Andersen, Boller-
slev, Diebold, and Labys (2003), we assess our density forecasts using the methods of
Diebold, Gunther, and Tay (1998). Suppose that the daily stock returns, rτ , in month
t follows conditional density, f(rτ | Ft−1), where Ft−1 denotes the full information set
available in month t − 1. If the forecasted density, ft|t−1(rτ ), is equal to the true density,
f(rτ | Ft−1), the sequence of probability integral transforms of daily returns with respect to
ft|t−1(·)16 should be uniformly distributed on (0, 1). Thus, the performance of the density
forecasts and, thus, also the customer-channel-based volatility forecasts, can be investigated
by checking whether the distributions of the probability integral transforms are U(0, 1).

In Table 1.9, we report six selected quantiles of the probability integral transforms of
observed daily returns using the sequence of one-month-ahead predicted volatilities. Again,
we use 24-, 36-, 48- and 60-month rolling windows to estimate the parameters in the fore-
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casting models. For all schemes, the first estimation sample starts in December 1984. As
reported, for each estimation scheme, the percentages are approximately consistent with the
corresponding selected quantiles, which indicates that, when coupled with the assumption
that a firm’s daily stock returns are normally distributed, our customer-volatility model
generally performs well at forecasting stock return density.

1.7 Stock Return Volatility and Analyst Coverage

In addition to demonstrating the predictive power of customer return volatility, we find
the following question quite intriguing: when investors are more aware of the identity of a
firm’s principal customers, will we observe more pronounced volatility transferring through
the customer channel? To gain insights into this question, we investigate the interaction
between customer volatility and analyst coverage. Intuitively, the research activities and
recommendations of financial analysts reveal a firm’s information to the market. Ceteris
paribus, a higher number of analysts covering a firm entails a higher level of information
transparency for this firm; that is, the public has better access to information regarding its
operations and financial conditions and is more likely to be aware of its major customer-
supplier relationships.

Specifically, we estimate the following model:

RVi,t = β0 + β1 (G ·RV )i,t−1

+ β2 (G ·RV )i,t−1 ×N
Analysts
i,t−1 + β3N

Analysts
i,t−1

+ ControlV ariablesi,t−1Γ + εi,t,

(1.12)

where NAnalysts
i,t is the number of analysts who issue recommendations (which can be buy,

hold, or sell) for firm i in month t. We also use Ave. NAnalysts as an alternative measure of
analyst coverage, which is the monthly average number of analysts who issue recommenda-
tions for a firm over the sample period. The numbers of recommendations are collected from
the Institutional Brokers’ Estimate System (I/B/E/S) database. Given the availability of
data, our sample covers the period from December 1993 to October 2015.

Equation 1.12 is estimated by pooled OLS with the Driscoll-Kraay standard error. The
results are reported in Tables 1.10 and 1.11. In Table 1.10, MV and trading value are
included to control for the fact that larger companies tend to have higher analyst coverage,
and an industry dummy variable under the 12-industry classification scheme is included to
capture the various industry properties. In Table 1.11, the entire set of variables listed in
Section 1.2 - 1.2.3 and industry volatility under the 30-industry classification scheme are
included as controls. Variables other than the industry dummy, yield curve slope, Baa-Aaa
spread, EPS/P, D/P, NAnalysts and Ave. NAnalysts are log-transformed prior to estimation.
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For robustness, Equation 1.12 is also estimated by the Hausman-Taylor approach—the
results are reported in columns (5) and (6) of Table 1.11.

In most cases, the estimated coefficient on the interaction term is positive and statis-
tically significant at the 0.1% level. These results show that a higher number of analysts
who follow a firm is generally associated with larger customer effect on suppliers, which
indicates that the transfer of volatility from customers to suppliers is more pronounced
when investors are more aware of the linkages. Our interpretation is that for a firm with
higher analyst coverage, investors are likely to be more aware of its principal customers; as
they anticipate the propagation of shocks through customer-supplier linkages, they respond
more actively to news regarding firm’s customers. That is, they incorporate such news into
their investment and asset allocation decisions related to the supplier companies. This trend
contributes to the stronger association between customer and supplier volatility. Our ob-
servation and interpretation shed light on one of the mechanisms of shocks propagation via
customer-supplier linkages; and indicate that customer-supplier relationship is a channel for
news to be incorporated into stock prices.

1.8 Conclusions

The majority of the existing literature has focused exclusively on aggregate equity market
volatility, or pure time-series modeling and forecasting of volatility. In contrast, this paper
investigates stock return volatility from the perspective of individual firms and examines one
particular channel—the transfer of volatility along supply chains, in a predictive regression
setting.

Existing literature documents that there is a strong association between stock return
volatility and trading activity. Our analysis shows that the effect of customer volatility
is approximately 10 times as large as trading value on supplier’s volatility. Our findings
are robust to controlling for variables capturing the time-series properties of stock return
volatility and a set of idiosyncratic, industry, and market factors. Further, they are tested
under various assumptions regarding the activeness of customer-supplier linkages and using
different estimation methods, including estimations with instrumental variables using GMM.
Moreover, using various benchmarks and rolling estimation windows, our out-of-sample tests
produce consistent evidence of improvements in volatility forecasting when the customer
channel is included.

In addition, we demonstrate that the transfer of volatility through the customer channel
is more pronounced for firms with higher financial analyst coverage, after controlling for
the size of firm, measured by market capitalization and trading value. This result is con-
sistent with our expectation that with greater awareness of the identity of a firm’s major
customers, investors tend to respond more actively to news regarding these customers by
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incorporating such news into their investment decisions related to the supplier company.
This trend contributes to the stronger association between customer and supplier volatility.
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1.9 Notes
1Details regarding the data and the matching procedure that we use to identify the customer-supplier

relations and to construct the sales-weighted G are provided in Section 1.3 - 1.3.1.
2The adjacency matrices that characterize customer-supplier networks are constructed as in Gençay et al.

(2015).
3We also construct RVi,t without subtracting the sample average of daily returns—this version of stock

return volatility produces quite similar estimation results to those obtained using the de-meaned version,
for all specifications in this paper.

4Further information about this data source can be found in Section 1.3 - 1.3.1.
5We may have a different sales-weighted G in every month, as there are some firms reporting in different

months, but each row of the sales-weighted G (i.e., each firm’s customer linkages ) is fixed for a 12-month
period.

6In Section 1.5 - 1.5.2, we consider alternative window periods for the activeness of customer-supplier
linkages, that is, for up to one year centered on the reporting date and one year after the reporting date.

7For each issue, average daily trading volume is measured as its total number of shares traded divided by
its total number of trading days in the entire sample. Hence, by construction, each issue has an unchanged
average daily trading volume throughout the entire period.

8Industry variables and data are explained in greater detail in Section 1.5 - 1.5.1.
9To preserve the sample size, the yield curve slope, Baa-Aaa spread, EPS/P and D/P are not log-

transformed, as they have some non-positive observations.
10We also use total assets instead of MV to measure a firm’s size and the total number of shares traded

instead of trading value in a month to measure a stock’s trading activity; the estimation results for customer
volatility are quite similar with these different choices of control variables.

11These data and definitions are available online at Kenneth French’s website: http://mba.tuck.dartmouth.edu
/pages/faculty/ken.french/index.html.

12In the results presented previously, we used the first type of window “one year prior to the reporting
date” for the activeness of customer relations.

13It should be noted that the Hausman-Taylor estimator does not remove the individual fixed effect. For
the estimator to be consistent, we need to assume that there is no correlation between the individual fixed
effect and any variables other than the dependent variable.

14See Hayashi (2000), Sections 3.5 and 6.6, for further details.
15Columns of sales-weighted G are shuffled randomly by the MATLAB fucntion “randperm” with the seed

of randomization set to 100.
16In particular, this is the cumulative density function with respect to ft|t−1(·) evaluated at the observed

daily return, rτ : i.e.,
∫ rτ
−∞ ft|t−1(u)du.
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1.10 Tables and Figures

Table 1.1: Summary Statistics

This table contains summary statistics for the main variables in our final sample (without log-
transformation). The data have a panel structure covering the period from February 1977 to October 2015.
There are 2,738 unique suppliers with a total of 134,007 monthly observations. The panel is unbalanced:
the number of monthly observations for each supplier varies between 1 and 316, with a median of 34. RV ,
realized return volatility, is the sample standard deviation of daily returns over one month; (G · RV ), cus-
tomer volatility, is constructed using sales-weighted G (a customer-supplier linkage is considered active for
up to one year prior to the reporting date). RV q, RV hy, and RV y are realized return volatilities over one
quarter, one-half year and one year, respectively. MV , market capitalization, is the product of the closing
price on the last trading day of a month and the number of shares outstanding. Leverage is the ratio of total
liabilities to total assets. EPS/P and D/P are the earnings-price ratio and dividend-price ratio, respectively.
Trading value is the product of the closing price on the last trading day of a month and the total number
of shares sold during the month. MV and trading value are reported in millions and thousands of dollars,
respectively. For comparison, we also report statistics for the entire sample (the “universe”), spanning the
same period as ours, from which data on each variable are collected. These statistics are presented in square
brackets underneath the corresponding variables.

Mean Std. Dev. Min. Max. N

(G ·RV ) 0.020 0.016 0 1.891 134,007
RV 0.034 0.025 0 2.437 134,007

[0.037] [0.047] [0] [27.997] [2,634,700]
RV q 0.035 0.023 0.003 1.623 134,007

[0.036] [0.035] [0] [16.213] [2,542,397]
RV hy 0.036 0.023 0.005 1.623 134,007

[0.035] [0.031] [0] [11.182] [2,407,074]
RV y 0.035 0.020 0.001 0.773 134,007

[0.034] [ 0.023] [0] [1.829] [2,198,866]
MV ($ million) 2,863 12,837 0.322 501,512 134,007

[2,153] [11,816] [0.005] [750,709] [1,993,997]
Leverage 0.455 0.347 0.010 22 134,007

[1.972] [65.663] [-4,927] [25,968] [3,060,729]
EPS/P -0.030 3.074 -647.498 6.234 134,007

[-7.943] [3,551.363] [-2,762,672.750] [258,979.359] [3,026,240]
D/P 0.001 0.010 0 1.846 134,007

[0.009] [13.230] [0] [27,375] [4,307,487]
Trading Value ($ 1,000 ) 546,592 2,174,322 3.487 113,449,435 134,007

[312,754] [1,945,809] [0.021] [344,843,943] [1,993,838]
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Table 1.2: Stock Return Volatility and Customer-Supplier Linkages

Partial effects are estimated with various sets of control variables for the following model:

RVi,t = β0 + β1 (G ·RV )i,t−1 + ControlV ariablesi,t−1Γ + εi,t,

where realized return volatility (RV ) is the sample standard deviation of daily returns over one month, and
customer volatility (G ·RV ) is constructed using sales-weighted G (a customer-supplier linkage is considered
active for up to one year prior to the reporting date). An autoregressive term (RV m) and the heterogeneous
autoregressive terms—volatilities over different time horizons—quarter (RV q), half year (RV hy) and year
(RV y), are included. Market factors include the market volatility (RVS&P ), yield curve slope (r10 − r2) and
Baa-Aaa spread (rBAA − rAAA). Firm characteristics include market capitalization (MV ), leverage (total
liabilities/total assets), earnings-price ratio (EPS/P), dividend-price ratio (D/P), and trading value. All
variables, except for the yield curve slope, Baa-Aaa spread, EPS/P and D/P, are log-transformed. The data
have a panel structure covering the period from February 1977 to October 2015. There are 2,738 unique
suppliers with a total of 134,007 monthly observations according to model (5). The models are estimated by
pooled OLS with the Driscoll-Kraay standard error that is robust to heteroskedasticity and cross-sectional
and temporal dependence (number in parentheses).

(1) (2) (3) (4) (5)

(G ·RV ) 0.3368∗∗∗ 0.0481∗∗∗ 0.0266∗∗∗ 0.0618∗∗∗ 0.0345∗∗∗
(0.0311) (0.0128) (0.0056) (0.0126) (0.0054)

RVm 0.2119∗∗∗ 0.1985∗∗∗ 0.1922∗∗∗ 0.1726∗∗∗
(0.0168) (0.0144) (0.0170) (0.0137)

RV q 0.2581∗∗∗ 0.2509∗∗∗ 0.2531∗∗∗ 0.2443∗∗∗
(0.0252) (0.0230) (0.0226) (0.0205)

RV hy 0.3026∗∗∗ 0.3098∗∗∗ 0.2610∗∗∗ 0.2688∗∗∗
(0.0372) (0.0331) (0.0346) (0.0303)

RV y 0.0886∗∗∗ 0.0933∗∗∗ 0.0806∗∗∗ 0.0853∗∗∗
(0.0232) (0.0206) (0.0223) (0.0202)

RVS&P 0.0702∗ 0.0875∗∗
(0.0307) (0.0309)

YieldCurve Slope −0.0212∗ −0.0178
(0.0104) (0.0101)

BaaAaa Spread −0.0390 −0.0349
(0.0270) (0.0236)

MV −0.0336∗∗∗ −0.0391∗∗∗
(0.0050) (0.0052)

Leverage −0.0022 −0.0037
(0.0035) (0.0032)

EPS/P −0.0005 −0.0005
(0.0003) (0.0003)

D/P −0.2604 −0.2827
(0.1584) (0.1595)

Trading Value 0.0061 0.0097∗∗
(0.0032) (0.0035)

R̄2 0.10 0.60 0.60 0.58 0.59
N 181,004 160,932 160,932 134,007 134,007

∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 1.3: Controlling for Industry Effects
Controlling for industry stock return volatility, partial effects are estimated for the following
model:

RVi,t = β0 + β1 (G ·RV )i,t−1 + β2 indRVi,t−1 + ControlV ariablesi,t−1Γ + εi,t,

where realized return volatility (RV ) is the sample standard deviation of daily returns
over one month, and customer volatility (G · RV ) is constructed using sales-weighted G
(a customer-supplier linkage is considered active for up to one year prior to the reporting
date). Industry volatility (indRV ) is the return volatility of the industry portfolio that the
firm is matched to, which is based on one of the five classification schemes (12, 17, 30, 38,
and 48 industry portfolios). Heterogeneous autoregressive terms include RV m RV q, RV hy,
and RV y. Market factors include RVS&P , the yield curve slope and the Baa-Aaa spread.
Firm characteristics include MV , leverage, EPS/P, D/P, and trading value. All variables,
except for the yield curve slope, Baa-Aaa spread, EPS/P and D/P, are log-transformed. The
data have a panel structure covering the period from December 1984 to October 2015, given
the availability of SIC codes that are used to match a firm to its industry portfolio. The
models are estimated by pooled OLS with the Driscoll-Kraay standard error that is robust
to heteroskedasticity and cross-sectional and temporal dependence (number in parentheses).

(1) (2) (3) (4) (5)

(G ·RV ) 0.0285∗∗∗ 0.0296∗∗∗ 0.0307∗∗∗ 0.0299∗∗∗ 0.0277∗∗∗
(0.0047) (0.0046) (0.0047) (0.0047) (0.0045)

indRV

12-Industry 0.0740∗∗∗
(0.0123)

17-Industry 0.0555∗∗∗
(0.0123)

30-Industry 0.0454∗∗∗
(0.0120)

38-Industry 0.0508∗∗∗
(0.0120)

48-Industry 0.0636∗∗∗
(0.0110)

Other Control Variables
Hetero. AR Yes Yes Yes Yes Yes
Market Factors Yes Yes Yes Yes Yes
Firm Charact. Yes Yes Yes Yes Yes

Robustness
Heteroskedasticity Yes Yes Yes Yes Yes
Serial Correlation Yes Yes Yes Yes Yes
Cross-Sectional Dep. Yes Yes Yes Yes Yes

R̄2 0.55 0.55 0.55 0.55 0.55
N 102,823 102,823 102,823 102,823 102,823

∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 1.4: Activeness of Customer-Supplier Linkages

Partial effects are estimated for the following model:

RVi,t = β0 + β1 (G ·RV )i,t−1 + ControlV ariablesi,t−1Γ + εi,t,

where realized return volatility (RV ) is the sample standard deviation of daily returns
over one month, and customer volatility (G ·RV ) is constructed using sales-weighted G. A
customer-supplier linkage is considered active for up to (1) one year prior to the reporting
date; (2) one year centered on the reporting date; and (3) one year after the reporting date.

(1) One year before

Reporting date

(3) One year after
(2)

One year with reporting
date in the middle

The entire set of control variables listed in Section 1.2 - 1.2.3 and industry volatility under
the 30-industry classification scheme are included. All variables, except for the yield curve
slope, Baa-Aaa spread, EPS/P and D/P, are log-transformed. The data have a panel
structure covering the period from 1984 to 2015 (given the availability of SIC codes that
are used to match a firm to its industry portfolio). The models are estimated by pooled
OLS with the Driscoll-Kraay standard error that is robust to heteroskedasticity and
cross-sectional and temporal dependence (number in parentheses).

(1) (2) (3)

(G ·RV ) 0.0307∗∗∗ 0.0308∗∗∗ 0.0310∗∗∗
(0.0047) (0.0046) (0.0045)

Control Variables
Hetero. AR Yes Yes Yes
Market Factors Yes Yes Yes
Firm Charact. Yes Yes Yes
Industry Vol. Yes Yes Yes

Robustness
Heteroskedasticity Yes Yes Yes
Serial Correlation Yes Yes Yes
Cross-Sectional Dep. Yes Yes Yes

R̄2 0.55 0.55 0.53
N 102,823 104,548 102,904

∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 1.5: Estimation with the Hausman-Taylor Approach

Partial effects are estimated with various sets of control variables for the following model:

RVi,t = β0 + β1 (G ·RV )i,t−1 + ControlV ariablesi,t−1Γ + εi,t,

where realized return volatility (RV ) is the sample standard deviation of daily returns
over one month, and customer volatility (G ·RV ) is constructed using sales-weighted G (a
customer-supplier linkage is considered active for up to one year prior to the reporting date).
An autoregressive term (RV m) and the heterogeneous autoregressive terms—volatilities over
different time horizons—quarter (RV q), half year (RV hy) and year (RV y), are included.
Market factors include the market volatility (RVS&P ), yield curve slope (r10 − r2) and
Baa-Aaa spread (rBAA − rAAA). Firm characteristics include market capitalization (MV ),
leverage (total liabilities/total assets), earnings-price ratio (EPS/P), dividend-price ratio
(D/P), and trading value. indRV is the return volatility of the industry portfolio that the
firm is matched to, which is based on the 30-industry classification scheme. All variables,
except for the yield curve slope, Baa-Aaa spread, EPS/P and D/P, are log-transformed. The
data have a panel structure covering the period from 1984 to 2015. The models are estimated
by the Hausman-Taylor approach which controls for the potential correlation between the
individual fixed effect and the autoregressive term. The numbers in parentheses are standard
errors.

(1) (2) (3) (4) (5) (6)

(G ·RV ) 0.1519∗∗∗ 0.0978∗∗∗ 0.0512∗∗∗ 0.1041∗∗∗ 0.0557∗∗∗ 0.0458∗∗∗
(0.0025) (0.0025) (0.0028) (0.0027) (0.0030) (0.0030)

RVm 0.1713∗∗∗ 0.1500∗∗∗ 0.1615∗∗∗ 0.1339∗∗∗ 0.1280∗∗∗
(0.0038) (0.0038) (0.0043) (0.0044) (0.0044)

RV q 0.2275∗∗∗ 0.2122∗∗∗ 0.2243∗∗∗ 0.2092∗∗∗ 0.2060∗∗∗
(0.0072) (0.0071) (0.0079) (0.0078) (0.0078)

RV hy 0.2187∗∗∗ 0.2135∗∗∗ 0.1986∗∗∗ 0.1966∗∗∗ 0.1901∗∗∗
(0.0077) (0.0077) (0.0086) (0.0085) (0.0085)

RV y 0.0521∗∗∗ 0.0597∗∗∗ 0.0477∗∗∗ 0.0535∗∗∗ 0.0497∗∗∗
(0.0048) (0.0048) (0.0053) (0.0053) (0.0053)

RVS&P 0.1146∗∗∗ 0.1223∗∗∗ 0.0538∗∗∗
(0.0035) (0.0037) (0.0054)

YieldCurve Slope −0.0197∗∗∗ −0.0214∗∗∗ −0.0211∗∗∗
(0.0015) (0.0016) (0.0016)

BaaAaa Spread 0.0062 −0.0097∗∗ −0.0076∗
(0.0035) (0.0036) (0.0036)

MV −0.0320∗∗∗ −0.0404∗∗∗ −0.0455∗∗∗
(0.0034) (0.0033) (0.0033)

Leverage 0.0019 0.0022 0.0046
(0.0030) (0.0031) (0.0031)

EPS/P −0.0435∗∗∗ −0.0418∗∗∗ −0.0400∗∗∗
(0.0044) (0.0044) (0.0044)

D/P 0.0180 −0.0017 −0.0021
(0.1156) (0.1148) (0.1146)

Trading Value −0.0110∗∗∗ −0.0052∗∗ −0.0042∗
(0.0019) (0.0019) (0.0019)

indRV 0.0972∗∗∗
(0.0056)

N 142,958 127,084 127,084 102,823 102,823 102,823

∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 1.6: Estimation with Instrumental Variables

Partial effects are estimated for the following model:

RVi,t = β0 + β1 (G ·RV )i,t−1 + ControlV ariablesi,t−1Γ + εi,t,

where realized return volatility (RV ) is the sample standard deviation of daily returns
over one month, and customer volatility (G · RV ) is constructed using sales-weighted G
(a customer-supplier linkage is considered active for up to one year prior to the reporting
date). ControlVariables includes the entire set of variables listed in Section 1.2 - 1.2.3. We
use different combinations of the following IVs: (Gnew,2t−2 · RVt−4)i, (Gnew,6t−2 · RVt−8)i and
(Gnew,12

t−2 · RVt−14)i. They capture the corresponding lagged return volatilities of firm i’s
newly established customers that are not a customer of firm i, 2 months, 6 months and 12
months ago, respectively. All variables, except for the yield curve slope, Baa-Aaa spread,
EPS/P and D/P, are log-transformed.
Column (1) is estimated by pooled OLS with the Driscoll-Kraay standard error (in paren-
theses). Columns (2) - (4) are estimated using the two-step efficient GMM procedure, with
HAC estimated asymptotic variance. The asymptotic variance of the sample analogue of
the orthogonality conditions is estimated using a Bartlett kernel with bandwidth q(n) = 13.
The inverse of the estimated asymptotic variance is then used as the weighting matrix in
the second stage of the GMM estimation to obtain an efficient GMM estimator. The num-
bers in parentheses are HAC standard errors. We report the Kleibergen-Paap Wald rk F
statistic as a weak identification test, with the null that the IVs and customer volatility
are weakly correlated. We also report the p-value that is associated with Hansen’s test of
overidentifying restrictions, with the null that all of the regularity assumptions of the model
(including the assumption that the IVs are orthogonal to the error term) are satisfied. The
sample covers the period from 1977 to 2015.

(1) (2) (3) (4)

(G ·RV )i,t−1 0.0345∗∗∗ 0.0534∗∗ 0.0518∗∗ 0.0497∗∗
(0.0054) (0.0171) (0.0176) (0.0171)

Control Variables
Hetero. AR Yes Yes Yes Yes
Market Factors Yes Yes Yes Yes
Firm Charact. Yes Yes Yes Yes

Instrumental Variables
(Gnew,2t−2 ·RVt−4) Yes Yes Yes
(Gnew,6t−2 ·RVt−8) Yes Yes
(Gnew,12

t−2 ·RVt−14) Yes Yes

Weak Identification Test, F statistic 719.714 723.429 733.803
Overidentifying Restrictions Test, p-value 0.3906 0.3266 0.5564

R̄2 0.59 0.61 0.61 0.61
N 134,007 7,238 7,155 7,151

∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 1.7: Stock Return Volatility and Randomized Linkages

Partial effects are estimated with various sets of control variables for the following model:

RVi,t = β0 + β1 (G ·RV )i,t−1 + ControlV ariablesi,t−1Γ + εi,t,

where realized return volatility (RV ) is the sample standard deviation of daily returns
over one month. In columns (1) and (3), customer volatility (G · RV ) is constructed using
sales-weighted G (a customer-supplier linkage is considered active for up to one year prior
to the reporting date). In columns (2) and (4), (G · RV ) is constructed using randomized
sales-weighted G: columns of sales-weighted G are shuffled randomly. An autoregressive
term (RV m) and the heterogeneous autoregressive terms—volatilities over different time
horizons—quarter (RV q), half year (RV hy) and year (RV y), are included. Market factors
include the market volatility (RVS&P ), yield curve slope (r10 − r2) and Baa-Aaa spread
(rBAA − rAAA). Firm characteristics include market capitalization (MV ), leverage (total
liabilities/total assets), earnings-price ratio (EPS/P), dividend-price ratio (D/P), and trad-
ing value. All variables, except for the yield curve slope, Baa-Aaa spread, EPS/P and D/P,
are log-transformed. The data have a panel structure covering the period from February
1977 to October 2015. The models are estimated by pooled OLS with the Driscoll-Kraay
standard error that is robust to heteroskedasticity and cross-sectional and temporal depen-
dence (number in parentheses). Columns (1) and (3) contain the benchmark results as in
Table 1.2.

(1) (2) (3) (4)

(G ·RV ) 0.0266∗∗∗ 0.0062 0.0345∗∗∗ 0.0040
(0.0056) (0.0035) (0.0054) (0.0033)

RVm 0.1985∗∗∗ 0.1942∗∗∗ 0.1726∗∗∗ 0.1747∗∗∗
(0.0144) (0.0152) (0.0137) (0.0149)

RV q 0.2509∗∗∗ 0.2548∗∗∗ 0.2443∗∗∗ 0.2428∗∗∗
(0.0230) (0.0251) (0.0205) (0.0231)

RV hy 0.3098∗∗∗ 0.2990∗∗∗ 0.2688∗∗∗ 0.2636∗∗∗
(0.0331) (0.0358) (0.0303) (0.0324)

RV y 0.0933∗∗∗ 0.1044∗∗∗ 0.0853∗∗∗ 0.1004∗∗∗
(0.0206) (0.0208) (0.0202) (0.0202)

RVS&P 0.0702∗ 0.0926∗∗ 0.0875∗∗ 0.1120∗∗∗
(0.0307) (0.0324) (0.0309) (0.0327)

YieldCurve Slope −0.0212∗ −0.0265∗ −0.0178 −0.0246∗
(0.0104) (0.0109) (0.0101) (0.0108)

BaaAaa Spread −0.0390 −0.0410 −0.0349 −0.0368
(0.0270) (0.0294) (0.0236) (0.0259)

MV −0.0391∗∗∗ 0.0024
(0.0052) (0.0039)

Leverage −0.0037 −0.0351∗∗∗
(0.0032) (0.0054)

EPS/P −0.0005 −0.0003
(0.0003) (0.0002)

D/P −0.2827 −0.1078
(0.1595) (0.2896)

Trading Value 0.0097∗∗ 0.0093∗
(0.0035) (0.0039)

R̄2 0.60 0.60 0.59 0.58
N 160,932 94,291 134,007 77,343

∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 1.8: Out-of-Sample Forecasting Tests

This table reports the Clark and West MSPE-adjusted statistic and corresponding p-value
(in parentheses) for testing the following hypothesis: H0 : MSPE1 −MSPE2 = 0;H1 :
MSPE1 −MSPE2 > 0. MSPE1 and MSPE2 are the MSPE from model 1 (benchmark
model) and 2 (augmented model), respectively:

Model 1: RVi,t = β0 +Xi,t−1β1 + εi,t,

Model 2: RVi,t = β0 +Xi,t−1β1 + β2 (G ·RV )i,t−1 + εi,t,

where realized return volatility (RV ) is the sample standard deviation of daily returns over
one month, customer volatility (G ·RV ) is constructed using sales-weighted G (a customer-
supplier linkage is considered active for up to one year prior to the reporting date), and X
is a row vector of forecasting variables that does not include customer volatility. We select
seven benchmarks: AR(6); heterogeneous autoregressive terms (RV m, RV q, RV hy, and
RV y); market factors (RVS&P , yield curve slope and Baa-Aaa spread); firm characteristics
(MV , leverage, EPS/P, D/P and trading value); industry volatility under the 30-industry
classification scheme; a combination of heterogeneous AR, market factors and industry
volatility; and, finally, a model includes the entire set of variables introduced in Section
1.2 - 1.2.3 and industry volatility as forecasting variables (All-But-No-CRV ). All variables,
except for the yield curve slope, Baa-Aaa spread, EPS/P and D/P, are log-transformed; 24-,
36-, 48- and 60-month rolling windows are used to estimate parameters in the forecasting
models. For the first four benchmarks, the first estimation sample starts in February 1977;
for the last three benchmarks that contain industry volatility, the first estimation sample
starts in December 1984. The whole sample period is from February 1977 to October 2015.

Rolling Estimation Window

Benchmark Model 24-Month 36-Month 48-Month 60-Month

AR(6) 0.0169∗∗∗ 0.0138∗∗∗ 0.0142∗∗∗ 0.0090∗∗∗
(0.0000) (0.0000) (0.0000) (0.0000)

Hetero. AR 0.0161∗∗∗ 0.0136∗∗∗ 0.0137∗∗∗ 0.0136∗∗∗
(0.0000) (0.0000) (0.0000) (0.0000)

Market Factors 0.0023∗∗∗ 0.0022∗∗∗ 0.0038∗∗∗ 0.0060∗∗∗
(0.0000) (0.0000) (0.0000) (0.0000)

Firm Charact. 0.0844∗ 0.0365∗ 0.0582∗∗∗ 0.0560∗∗∗
(0.0428) (0.0450) (0.0000) (0.0001)

Industry Vol. 0.0060∗∗∗ 0.0072∗∗∗ 0.0096∗∗∗ 0.0107∗∗∗
(0.0000) (0.0000) (0.0000) (0.0000)

HAR-Market-Industry 0.0031∗∗∗ 0.0017∗∗ 0.0016∗∗∗ 0.0016∗∗∗
(0.0009) (0.0018) (0.0001) (0.0000)

All-But-No-CRV 0.2184 −0.0278 0.0063 0.0062∗
(0.1286) (0.3787) (0.1828) (0.0114)

One-sided test: ∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 1.9: Distributions of Probability Integral Transforms

This table reports the selected quantiles of the probability integral transform of returns
with respect to the density forecasts from the following customer-volatility model:

RVi,t = β0 + β1 (G ·RV )i,t−1 +Xi,t−1Γ + εi,t,

where realized return volatility (RV ) is the sample standard deviation of daily returns over
one month, customer volatility (G ·RV ) is constructed using sales-weighted G (a customer-
supplier linkage is considered active for up to one year prior to the reporting date), and
X is a row vector containing the entire set of variables listed in Section 1.2 - 1.2.3 and
industry volatility under the 30-industry classification scheme. All variables, except for the
yield curve slope, Baa-Aaa spread, EPS/P and D/P, are log-transformed; 24-, 36-, 48- and
60-month rolling windows are used to estimate parameters in the forecasting models. For
all schemes, the first estimation sample starts in December 1984. The whole sample period
is from December 1984 to October 2015.

Rolling Estimation Window

Quantile 24 Months 36 Months 48 Months 60 Months

5% 0.0256 0.0382 0.0437 0.0465
10% 0.0977 0.1089 0.1136 0.1158
25% 0.2914 0.2887 0.2888 0.2878
75% 0.7149 0.7184 0.7206 0.7226
90% 0.9156 0.9046 0.9008 0.8989
95% 0.9823 0.9717 0.9669 0.9646
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Table 1.10: Stock Return Volatility and Analyst Coverage I

Partial effects are estimated for the following model:

RVi,t = β0 + β1 (G ·RV )i,t−1

+ β2 (G ·RV )i,t−1 ×N
Analysts
i,t−1 + β3N

Analysts
i,t−1

+ ControlV ariablesi,t−1Γ + εi,t,

where realized return volatility (RV ) is the sample standard deviation of daily returns
over one month, and customer volatility (G · RV ) is constructed using sales-weighted G
(a customer-supplier linkage is considered active for up to one year prior to the reporting
date). NAnalysts is the number of analysts who issue recommendations (buy, hold, or sell)
for a firm in a month (from the I/B/E/S database). We also use Ave. NAnalysts as an
alternative measure of analyst coverage, which is the monthly average number of analysts
who issue recommendations for a firm over the sample period. MV and trading value are
included to control for the fact that larger companies tend to have higher analyst cover-
age. An industry dummy variable under the 12-industry classification scheme is included
to capture the various industry properties. All variables, except for the dummy, NAnalysts

and Ave. NAnalysts, are log-transformed. The sample covers the period from December 1993
to October 2015. The models are estimated by pooled OLS with the Driscoll-Kraay stan-
dard error that is robust to heteroskedasticity and cross-sectional and temporal dependence
(number in parentheses).

(1) (2) (3) (4) (5) (6)

(G ·RV ) 0.3043∗∗∗ 0.2401∗∗∗ 0.2432∗∗∗ 0.2948∗∗∗ 0.2292∗∗∗ 0.2353∗∗∗
(0.0325) (0.0291) (0.0296) (0.0325) (0.0295) (0.0294)

(G ·RV )×NAnalysts 0.0044∗∗ 0.0056∗∗∗ 0.0044∗∗
(0.0014) (0.0014) (0.0015)

NAnalysts −0.0005 0.0291∗∗∗ 0.0184∗∗
(0.0060) (0.0056) (0.0061)

(G ·RV )×Ave. NAnalysts 0.0065∗∗∗ 0.0064∗∗∗ 0.0052∗∗∗
(0.0013) (0.0011) (0.0012)

Ave. NAnalysts 0.0068 0.0390∗∗∗ 0.0282∗∗∗
(0.0055) (0.0045) (0.0050)

Control Variables
MV and Trading Value Yes Yes Yes Yes
Industry Dummy Yes Yes

R̄2 0.18 0.33 0.30 0.17 0.34 0.30
N 104,577 94,106 76,564 104,577 94,106 76,564

∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 1.11: Stock Return Volatility and Analyst Coverage II

Partial effects are estimated for the following model:

RVi,t = β0 + β1 (G ·RV )i,t−1

+ β2 (G ·RV )i,t−1 ×N
Analysts
i,t−1 + β3N

Analysts
i,t−1

+ ControlV ariablesi,t−1Γ + εi,t,

where realized return volatility (RV ) is the sample standard deviation of daily returns
over one month, and customer volatility (G ·RV ) is constructed using sales-weighted G (a
customer-supplier linkage is considered active for up to one year prior to the reporting date).
NAnalysts is the number of analysts who issue recommendations (buy, hold, or sell) for a
firm in a month (from the I/B/E/S database). We also use Ave. NAnalysts as an alternative
measure of analyst coverage, which is the monthly average number of analysts who issue
recommendations for a firm over the sample period. Heterogeneous autoregressive terms
include RV m, RV q, RV hy, and RV y. Market factors include RVS&P , yield curve slope and
Baa-Aaa spread. Firm characteristics includeMV , leverage, EPS/P, D/P and trading value.
indRV is the industry volatility under the 30-industry classification scheme. Variables other
than the yield curve slope, Baa-Aaa spread, EPS/P, D/P, NAnalysts and Ave. NAnalysts

are log-transformed. The sample covers the period from December 1993 to October 2015.
Columns (1) to (4) are estimated by pooled OLS with the Driscoll-Kraay standard error
that is robust to heteroskedasticity and cross-sectional and temporal dependence; columns
(5) and (6) are estimated by the Hausman-Taylor approach which controls for the potential
correlation between the individual fixed effect and the autoregressive term. The numbers in
parentheses are standard errors.

(1) (2) (3) (4) (5) (6)

(G ·RV ) 0.1308∗∗∗ 0.0225∗∗∗ 0.1206∗∗∗ 0.0200∗∗ 0.0349∗∗ 0.0299∗∗∗
(0.0164) (0.0063) (0.0165) (0.0063) (0.0049) (0.0052)

(G ·RV )×NAnalysts 0.0040∗∗ 0.0007 0.0011∗
(0.0014) (0.0007) (0.0004)

NAnalysts 0.0221∗∗∗ 0.0044 0.0030
(0.0055) (0.0027) (0.0019)

(G ·RV )×Ave. NAnalysts 0.0050∗∗∗ 0.0010 0.0018∗∗∗
(0.0012) (0.0006) (0.0005)

Ave. NAnalysts 0.0319∗∗∗ 0.0067∗∗ 0.0095∗∗∗
(0.0047) (0.0025) (0.0024)

Control Variables
Hetero. AR Yes Yes Yes Yes
Market Factors Yes Yes Yes Yes Yes Yes
Firm Charact. Yes Yes Yes Yes Yes Yes
Industry Vol. Yes Yes Yes Yes Yes Yes

R̄2 0.37 0.54 0.38 0.54
N 93,058 70,509 93,058 70,509 70,509 70,509

∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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v1

v2 v3

v4 v5

Figure 1.1: A simple example of a customer-supplier network.
In this figure, vi, i = 1, ..., 5, denotes the firm; the arrow indicates the flow of output. For
example, the arrow between v1 and v2 indicates that firm 1 (2) is the supplier (customer)

of firm 2 (1).
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Chapter 2

Resilience to the Financial Crisis
in Customer-Supplier Networks

2.1 Introduction

As summarized by Allen and Babus (2008), networks which are generally understood as
collections of nodes, and links between nodes can be useful representations of economic or
financial systems. The nodes represent the entities in the system; the links describe direct or
indirect relationships between the entities. Allen and Babus (2008) emphasize that network
theories can provide conceptual frameworks within which the various patterns of connections
and interdependencies can be described and analyzed in a meaningful way. In particular, by
modeling the economic interactions, network analysis can better explain certain economic
phenomena.

In a customer-supplier network, each company is represented by a node, and a customer-
supplier relationship between two companies is described by a link connecting them. Ace-
moglu et al. (2012) offer a typical example that utilizes customer-supplier networks to
explain the systemic risk that originate from the intersectoral input-output linkages. Specif-
ically, the authors argue that sizable aggregate fluctuations may originate from microeco-
nomic idiosyncratic shocks only if there are significant asymmetries in the roles that sectors
play as suppliers to others. They also note that first-order interconnections provide only
partial information on customer-supplier relations. A shock in one sector may lead to re-
duced production not only for its immediate downstream sectors but also for a sequence of
sectors interconnected to one another, creating a cascade effect that leads to systemic risk.

In another examination of the linkages along the supply chain, Hertzel et al. (2008)
investigate the wealth effects of distress and bankruptcy filing for the suppliers and cus-
tomers of filing firms. Most interestingly, they find the contagion effects on the suppliers
and customers of the filing firms to be asymmetric. Significant contagion effects extend
beyond industry competitors along the supply chain to suppliers of the filing firms, but
the customers of filing firms generally do not experience contagion effects. One explanation
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for the asymmetry offered by the authors is that financial distress largely reflects a shift
in demand away from the filing firm; hence contagion due to distress spreads upstream,
such that suppliers are harmed by a reduction in the derived demand for their output, but
customers are not affected by the distress to an equal extent because they are the source of
the distress.

Using data on the North American customer-supplier network of public companies, we
explore how the properties of a company’s downstream (i.e., customer) and upstream (i.e.,
supplier) linkages in the pre-crisis period are related to its resilience during the financial
crisis of 2008-2009 in terms of stock returns. Specifically, inspired by the Sharpe (1964) -
Lintner (1965) Capital Asset Pricing Model (CAPM) beta, two measures or “indices” are
being constructed: customer and supplier betas. With the adjacency matrix, which captures
the structure of the network, acting as a “filter” to extract each company’s return covariances
with its trading partners, the cross-sectional dependence contained in the customer-supplier
network is summarized by our betas.

We would like to emphasize the major difference between our betas and the CAPM beta.
The CAPM beta indicates an asset’s return covariance with the entire market, regardless
of whether there are direct connections between this asset and other assets in the market,
whereas our betas are supported by real customer-supplier relations – they summarize each
company’s return covariances with its trading partners only. We show that under certain
assumptions, the CAPM beta can be decomposed into several components, including the
customer and supplier betas, which helps us to identify the different sources of the return
covariance between a company and the market portfolio.

The contribution of our work is threefold. First, customer and supplier relations could
have different characteristics and thus lead to different implications and consequences. For
example, as documented in Hertzel et al. (2008), which we mentioned above, the contagion
effects on the suppliers and customers of the filing firms are asymmetric. Hence, decomposing
them into two different measures helps us to separately analyze their characteristics and
implications. We indeed observe asymmetric effects from the customer and supplier sides,
which suggests that downstream linkages are more influential than upstream ones. One
explanation is that it becomes difficult to retain customers during a financial crisis, hence
having “robust” downstream linkages in the pre-crisis period is crucial for a company to
survive the crisis. However, it is relatively easy to retain or to find new suppliers, because
“willingness to buy” is always welcomed. Hence upstream linkages in the pre-crisis period is
not that crucial. Our results provide firms with useful guidelines for managing relationships
with trading partners. That is, more attention should be devoted to downstream customers.

Second, as the regression results indicate that the customer beta could capture a com-
pany’s resilience during the financial crisis of 2008-2009 measured by stock returns, it is
useful for an investor or portfolio manager to construct it when conducting risk or stress
analysis to gain insights into the relative negative impact of a potential crisis on a stock’s
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performance. This is an innovative approach to conducting stress analysis in the sense that
it utilizes information contained in the customer-supplier network. Moreover, the applica-
tion of the customer beta can be incorporated into existing approaches to portfolio selection
as an additional dimension or perspective.

Third, by using powers of adjacency matrices, effects of higher-order linkages, as em-
phasized in Acemoglu et al. (2012), can be captured and studied. Our results indicate that a
company’s weighted sum of return covariances with its higher-order trading partners is not
important in explaining the company’s resilience during the financial crisis of 2008-2009,
which suggests that greater attention should be devoted to immediate customers than to
other higher-order trading partners.

It should be noted that the applications of the customer and supplier betas are not
limited to studying resilience during a financial crisis. As measures or “indices” summarizing
the cross-sectional dependence contained in customer-supplier network, they can potentially
be explored and applied in other areas, such as portfolio allocation and risk management.

The remainder of the paper is organized as follows. Section 2.2 introduces the method-
ology, that is, how the customer and supplier betas are defined and constructed. Section
2.3 presents the main cross-sectional regression we use to investigate a company’s resilience
during the financial crisis. Section 2.4 describes the data sources and summary statistics.
Section 2.5 reports the regression results. Section 2.6 considers some robustness checks.
Some potential applications of the customer beta are discussed in Section 2.7. Section 2.8
concludes.

2.2 Methodology

The customer and supplier betas we propose are inspired by the CAPM beta. In this section,
we introduce how the betas are defined and their relationship with the CAPM beta. We
begin by recalling the structure of the CAPM beta.

2.2.1 The CAPM Beta

The CAPM beta of an asset (or portfolio) captures the linear association of this asset’s
return with the return of the market portfolio, which is understood as this asset’s sensitivity
to the market portfolio. Specifically, the CAPM beta of an asset i is

βi = cov(ri, rm)
σ2
m

(2.1)

where cov(ri, rm) is the covariance of the return on asset i with the return on the market
portfolio, and σ2

m is the variance of the return on the market portfolio.
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Suppose that there are n assets in the market, an n× 1 vector β, where βi, i = 1, ..., n,
is the ith element of β, can be expressed as

β =


β1

β2
...
βn

 = ΣmXm

σ2
m

(2.2)

where Σm is the n×n return variance-covariance matrix; Xm is the n× 1 vector containing
the market portfolio weights, that is, the relative weight of market capitalization for each
asset, and the sum of the entries in Xm is one.17 The derivation of Equation 2.2 is provided
in Appendix 2.9.1.

2.2.2 Customer-Supplier Networks and Adjacency Matrices

In a survey paper, Allen and Babus (2008) report that networks, which are generally un-
derstood as collections of nodes and links between nodes, can be useful representations of
economic or financial systems. Nodes represent entities in the system; links describe certain
direct or indirect relationships between the entities.18

In the customer-supplier network that we investigate in this paper, each company i is
represented by a node i. A customer-supplier relationship between companies i and j is
described by the link between them, where the supplier is the source and the customer is
the target. The structure of the network can be characterized by an adjacency matrix, G,
which is a square matrix with dimension of the number of nodes (i.e., companies) in the
network. The entry in the ith row and jth column of G, (G)ij , is one if and only if i (j) is
the supplier (customer) of j (i) and zero otherwise. Accordingly, in matrix GT , which is the
transpose of G, (GT )ij is one if and only if i (j) is the customer (supplier) of j (i) and zero
otherwise.

v1

v2 v3

v4 v5

Figure 2.1: A simple example of a customer-supplier network.
In this figure, vi, i = 1, ..., 5 denotes the company; the arrow indicates the flow of output.
For example, the arrow between v1 and v2 indicates that company 1 (2) is the supplier

(customer) of company 2 (1).
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Consider the simple network depicted in Figure 2.1; vi, i = 1, ..., 5 denotes the company;
the arrow indicates the flow of output. For example, the arrow between v1 and v2 indicates
that company 1 (2) is the supplier (customer) of company 2 (1). Matrix G characterizing
the structure of this network is therefore

G =



0 1 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0


.

The second row of G, for example, refers to company 2, which indicates that company 2 has
only one customer, which is company 4, as only the fourth entry is one. More generally, the
ith row of G captures company i’s first-order (i.e., immediate) customer linkages. Similarly,
company i’s first-order supplier linkages are characterized by the ith row of GT .19 20

It is worth noting that there can be two special cases: self-loop and bilateral linkage.

Suppose G =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

 and thus GT =


a11 a21 · · · an1

a12 a22 · · · an2
...

... . . . ...
a1n a2n · · · ann

,

where aij = 1 or 0 for any i and j. The two special cases are, first, aii = 1 for some i if
company i is a customer (or supplier) of itself, that is, node i has a self-loop; and second,
aij = aji = 1 for some i and j, where i 6= j if company i is both a supplier and a customer
of company j, that is, the link between nodes i and j is bilateral.

2.2.3 Customer and Supplier Betas

Suppose that there are n companies in the network. Define the customer and supplier beta,
respectively, as

βc = (G ◦ Σ)X (2.3)

βs =
(
GT ◦ Σ

)
X (2.4)

where

• ◦ denotes the element-wise product of two matrices;

• Σ =



σ11 σ12 . . σ1n

σ21 σ22 . . σ2n

. . . . .

. . . . .

σn1 σn2 . . σnn


is the n× n return variance-covariance matrix,
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where σii is the return variance of company i; σij , i 6= j, is the return covariance
between companies i and j; and,

• X =



x1

x2

.

.

xn


is the n×1 vector, where xi is the relative weight of market capitalization

of company i, and the sum of the entries in X is one.

Hence, βc and βs are n × 1 vectors.21 The ith entry in βc and βs, that is, βci and βsi,
are the weighted sum of company i’s return covariances with its customers and suppliers,
respectively. The weights applied are the relative market capitalizations of its customers and
suppliers, respectively. Return covariance, which represents the linear association between
two companies’ stock returns, can be considered a measure of the cross-sectional dependence
between two companies. For the network in Figure 2.1, the customer and supplier betas are

βc = [G ◦ Σ]X =



σ12x2 + σ13x3

σ24x4

σ34x4 + σ35x5

0
0


=



βc1

βc2

βc3

βc4

βc5



βs =
[
GT ◦ Σ

]
X =



0
σ21x1

σ31x1

σ42x2 + σ43x3

σ53x3


=



βs1

βs2

βs3

βs4

βs5


Other things being equal, company i has higher βci (or βsi) if: (a) it has larger return

covariances with its customers (or suppliers); (b) it has larger number of customers (or sup-
pliers) with which it has positive return covariances; and (c) the customers (or suppliers)
with which it has positive return covariances have larger market capitalizations.22 Hence,
we consider customer and supplier betas the summary of a company’s cross-sectional de-
pendence with its customers and suppliers, respectively. A higher customer (or supplier)
beta represents “stronger” cross-sectional dependence with the downstream (or upstream)
trading partners; which we define specifically as having more customers (or suppliers) which
are larger companies and with which the company has larger positive return covariances.
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2.2.4 Customer and Supplier Betas versus CAPM Beta

We would like to emphasize the major difference between our betas and the CAPM beta:
the CAPM beta indicates an asset’s return covariance with the entire market regardless
of whether there are connections between this asset and other assets or companies in the
market, whereas our betas are supported by real customer-supplier relations which are based
on bilateral contracts and agreements. That is, the customer and supplier betas capture a
company’s return covariances with its trading partners only.

Under two assumptions, the relationship between the CAPM beta and our betas can
be demonstrated by a decomposition. First, let us assume that there are n companies in
the customer-supplier network and that these companies constitute the entire population
of companies. In principle, the return variance-covariance matrix Σm and vector Xm in
the CAPM beta should contain all of the assets in the market; but in practice, when the
customer and supplier betas are constructed, Σ and X contain only the companies in the
customer-supplier network that we identify from the data. Hence, to make the CAPM beta
and our betas comparable and thus to accomplish the decomposition, we need to assume
that the stocks of the n companies in the customer-supplier network are the only assets in
the market. Given this assumption, Σm = Σ and Xm = X. Second, we assume that there is
no self-loop or bilateral linkage in the network. As we illustrate in Section 2.2 - 2.2.2, aii = 1
if company i has a self-loop, and aij = aji = 1 where i 6= j if the link between companies i
and j is bilateral. Hence, if there is either a self-loop or a bilateral linkage, there are entries
in (G + GT ) that are greater than one such that we would not be able to accomplish the
decomposition.23 Under these two assumptions, the CAPM beta can be decomposed into
four components, including the customer and supplier betas:

β =ΣX 1
σ2
m

= (G∗ ◦ Σ)X 1
σ2
m

=
[(
G+GT +Gu + In

)
◦ Σ
]
X

1
σ2
m

=
[
(G ◦ Σ)X +

(
GT ◦ Σ

)
X + (Gu ◦ Σ)X + (In ◦ Σ)X

] 1
σ2
m

=
[
βc + βs + βu +

⇀
V ar

] 1
σ2
m

where

• G∗ =


1 1 · · · 1
1 1 · · · 1
...

... . . . ...
1 1 · · · 1

 is an n× n matrix of 1;
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• In is the identity matrix of size n;

• Gu = G∗−G−GT − In captures the lack of a customer-supplier relationship between
companies, that is, companies that are unconnected;

• βu’s ith entry, βui, is the weighted sum of company i’s return covariances with com-
panies that are neither its customers nor suppliers, and the weights applied are the
relative market capitalizations of these unconnected companies; and,

•
⇀
V ar captures each company’s weighted return variance, and the weight applied to
each company is the relative market capitalization of that company.

It is worth noting that, implicitly, the CAPM beta contains an “adjacency matrix” with
all of the entries being one. In this sense, the CAPM beta does not utilize the specific struc-
ture of the customer-supplier network. By performing this decomposition, we observe that
the return covariance between a company and the market portfolio captured by the CAPM
beta originates from several sources: a company’s return covariances with its customers,
suppliers, and unconnected companies and its own return variance. The decomposition of
the CAPM beta in the network depicted in Figure 2.1 is presented in Appendix 2.9.2.
Moreover, the application of CAPM beta is generally from the perspective of investors to
understand a portfolio’s systematic risk. This is in contrast with a company’s customer and
supplier betas considered here—which summarize a company’s cross-sectional dependence
with its customers and suppliers, respectively—could also be applied by this company’s
management team to understand relationships with their trading partners.

2.3 Resilience to the Financial Crisis in Customer-Supplier
Networks

2.3.1 The Main Cross-Sectional Regression

Given that, as addressed in Section 2.2 - 2.2.3, βci and βsi are respectively considered the
summary of company i’s cross-sectional dependence with its customers and suppliers, we are
interested in how these two betas are related to a company’s resilience during financial crisis
as measured by stock returns. We would like to emphasize that we construct betas using
data from the pre-crisis period (rather than the crisis period). There are two reasons for
this approach. First, one objective of our study is to gain insights into the relative negative
impact of a potential crisis on a stock’s performance; only data from before the crisis are
obtainable and relevant for serving this purpose. Second, the asset that the companies
possess to combat the crisis is their customer-supplier relations as they existed before the
crisis emerged. We study the financial crisis of 2008-2009.
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The main cross-sectional regression is

r̄cri − r̄
pr
i = δ0 + δ1βci + δ2βsi

+ δ3b̂
pr
mi + δ4b̂

pr
SMBi + δ5b̂

pr
HMLi + δ6b̂

cr
mi + δ7b̂

cr
SMBi + δ8b̂

cr
HMLi + εi

(2.5)

where r̄cri and r̄pri are the time-series average of company i’s monthly excess returns24 during
the crisis and pre-crisis period, respectively. They measure stock i’s average performance
during the crisis and pre-crisis period, respectively. And thus r̄cri −r̄

pr
i captures the difference

in performance between these two periods for company i. On average, a company’s stock
return is expected to be negatively affected by the financial crisis, that is, r̄cri tends to be
smaller than r̄pri ; hence a relatively larger (either more positive or less negative) r̄cri − r̄

pr
i

indicates that company i is more resilient to the financial crisis as measured by stock returns.
The variables of interest are βci and βsi. One βc and one βs are constructed using data

from the pre-crisis period;25 βci and βsi are the ith entry from the n× 1 vector βc and βs,
respectively. The control variables are interpreted in the next subsection.

2.3.2 Fama-French Three-Factor Model – Rationale for the Control Vari-
ables

The Fama-French three-factor model (Fama and French, 1992 and Fama and French, 1996)
postulate that the expected return on an asset is explained by the sensitivity of its return to
three factors: (i) the excess return on the market portfolio (m); (ii) the difference between
the returns on a portfolio of small stocks and a portfolio of large stocks (SMB portfolio);
and (iii) the difference between the returns on a portfolio of high book-to-market stocks and
a portfolio of low book-to-market stocks (HML portfolio). Specifically, asset i’s three factor
sensitivities, bmi, bSMBi, and bHMLi, are the slope coefficients in the time-series regression

rit − rft = ai + bmi(rmt − rft) + bSMBirSMBt + bHMLirHMLt + εit (2.6)

where rit is the rate of return on asset i at time t; rft is the risk-free rate of return at
time t; and rmt, rSMBt and rHMLt are the rate of return on the market, SMB and HML
portfolios at time t, respectively. Fama and French demonstrate that the sensitivity of an
asset’s return to the three factors provides a simple but powerful characterization of the
cross-section of average stock returns for the 1963-1990 period.

The rationale for using b̂prm , b̂prSMB, b̂
pr
HML, b̂crm, b̂crSMB, and b̂crHML as control variables

is thus based on the Fama-French three-factor model. Using monthly data from the pre-
crisis period, b̂prmi, b̂

pr
SMBi and b̂

pr
HMLi for each company i are estimated from the time-series

regression specified in Equation 2.6. According to the Fama-French three-factor model, b̂prmi,
b̂prSMBi and b̂

pr
HMLi can explain part of the cross-sectional variation in average stock returns

during the pre-crisis period. b̂crmi, b̂crSMBi and b̂crHMLi for each company i, capturing the cross-
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sectional variation in average stock returns in the crisis period, are obtained similarly using
data from the crisis period.

2.4 Data

We use data on the North American customer-supplier network of public companies; our
full sample is from January 2003 to December 2009. As the U.S. is the major economy in
North America, and according to the U.S. National Bureau of Economic Research (NBER),
the 2008-2009 U.S. recession began in December 2007 and ended in June 2009, we consider
the years 2008 and 2009 as an approximation of the crisis period in our study. The period
2003 to 2007 is the pre-crisis period.26

2.4.1 Sources

According to the U.S. Statement of Financial Accounting Standards (SFAS) No.131, public
enterprises are required, once each year, to report the customers that account for at least
10% of their total yearly sales. This information is contained in the Compustat Customer
Segment files. For each supplier, the key items in each entry of the customer segment files
are the customer’s name and the total amount of annual sales from this supplier to this
customer.27

As major customers are self-reported and, in particular, names are manually entered, the
matching of a reported customer’s name with a standard identifier is not a straightforward
matter. For example, the same company can be reported with different names (IBM vs.
International Business Machines), acronyms are included in some instances and omitted in
others, or the company’s name can be outright misspelled. We adopt a very conservative
approach – we only consider those customer-supplier relations (i.e., links) for which there
is an exact match (case-insensitive) between the reported name and an entry, which can
be the company name or the company’s legal name, or ticker, in the Compustat datafile of
names.

Public companies are required to report their major customers once every fiscal year.28

Whenever a customer-supplier relationship is reported at least once during the period 2003
to 2007 (i.e., the pre-crisis period), we consider the link to exist throughout this period.29

Following the rules described in Section 2.2 - 2.2.2, one adjacency matrix G is then con-
structed for the entire period that captures the identified customer-supplier relationships.
Table 2.1 summarizes the sample of customers and suppliers identified in each period from
2003 to 2007 and aggregated period (2003-2007). The property of the customer and supplier
network is relatively stable across selected periods, in terms of the numbers of customers
and suppliers identified.

Here, we describe the sources from which we obtain the data to construct X and Σ in
Equations 2.3 and 2.4. We use company’s annual total market value, the Compustat item
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mkvalt, to construct X – the vector containing the relative weight of market capitalization
of each company. In particular, for each company i, the sum of its total market value
from each year in the pre-crisis period is used to calculate its relative weight of market
capitalization, xi. Companies’ monthly total returns, the Compustat item TRT1M, are
then used to construct the variance-covariance matrix Σ. Thus, one βc and one βs are
constructed for the pre-crisis period.

Companies’ monthly total returns (the Compustat item TRT1M) are also used to con-
struct the dependent variable, r̄cri − r̄

pr
i , in Equation 2.5. The monthly returns on risk-free

assets and the Fama-French three factors are obtained from Kenneth French’s Data Library.
The returns are all in percentages.

2.4.2 Summary Statistics

After matching with the market value and return data in Compustat, 719 companies exist
throughout the entire sample period of 2003 to 2009.30 Among them, five companies have
either a self-loop or a bilateral linkage, which are reported in Appendix 2.9.3. For a company
that has a self-loop or a bilateral linkage, there is overlap in its customer and supplier, which
is reflected in G and GT – this issue is addressed in detail in Appendix 2.9.4. To avoid
this overlap, in other words, to preserve the distinction between a company’s customer and
supplier betas, we exclude these five companies. Our final sample consists of 714 companies.
For each company, 60 monthly return observations (from 2003 to 2007) are used to calculate
the pre-crisis period average return, r̄pri , and 24 monthly return observations (from 2008 to
2009) are used to calculate the crisis period average return, r̄cri . Then, those monthly return
observations are used to estimate the CAPM beta and Fama-French three-factor betas in
pre-crisis and crisis periods. Because customer beta and supplier beta are constructed based
on the information in pre-crisis period, only the 60 monthly return observations (from 2003
to 2007) for each company are used to calculate the return variance-covariance matrix, Σ,
in deriving βc and βs as in Equations 2.3 and 2.4. Table 2.2 contains the summary statistics
for our sample.

The sample mean of r̄cr − r̄pr is negative (-1.452%), and it can be shown that the
population mean of r̄cr− r̄pr is statistically significantly smaller than zero31, which confirms
our expectation that, on average, a company’s stock return is negatively affected by the
financial crisis. As presented in Figure 2.2, the histogram of r̄cr moves to the left relative
to that of r̄pr, which is also consistent with our expectation. Therefore, a relatively larger
r̄cri − r̄

pr
i (either more positive or less negative) indicates that company i is more resilient

to the crisis as measured by stock returns.
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Figure 2.2: Histogram of average monthly excess returns.
In this figure, r̄pri and r̄cri are the time-series average of monthly excess returns for
company i in the pre-crisis (2003-2007) and crisis period (2008-2009), respectively;

r̄cri − r̄
pr
i is the regressand in the main cross-sectional regression specified in Equation 2.5.

The returns are in percentages. The upper, middle and lower figures depict the histogram
of r̄pri , r̄cri and r̄cri − r̄

pr
i , respectively. The sample size is 714 companies.

2.5 Estimation Results

As described in the introduction, Hertzel et al. (2008) find the contagion effects on suppliers
and customers of filing firms to be asymmetric – significant contagion effects extend along
the supply chain to suppliers of the filing firms but not to the customers. One explanation
offered by the authors is that financial distress largely reflects a shift in demand away from
the filing firm; hence contagion due to distress spreads upstream such that suppliers are
harmed by a reduction in the derived demand for their output. However, customers are
not affected by the distress to an equal extent because they are the source of the distress.
That is, from a company’s perspective, a negative shock affecting its downstream customers
would lead to more adverse consequences for this company than a negative shock affecting
its upstream suppliers.

Estimation results for the model specified in Equation 2.5 are reported in Table 2.3. We
also obtain asymmetric effects between the customer and supplier sides, which is similar to
the asymmetry found in Hertzel et al. (2008) – as presented in Table 2.3, the coefficient on
βc is positive and statistically significant, but the coefficient on βs is not significant.32 33
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This result is generally robust to different choices of pre-crisis period, which are consecutive
subsets of the years 2003 to 2007.

We offer two potential explanations for this asymmetry. One possibility is that, as also
noted by Hertzel et al. (2008), Cohen and Frazzini (2008b) and Gençay et al. (2015), cur-
rent U.S. financial accounting regulation requires public firms to report the customers that
account for at least 10% of their total yearly sales (but not their suppliers); thus, our data
source provides more information about firms’ major customers (but not major suppliers).

Another possibility is that downstream (i.e., customer) linkages are essentially more
important than upstream (i.e., supplier) ones. As addressed in Section 2.2 - 2.2.3, customer
and supplier betas are considered a measure of a company’s cross-sectional dependence with
its customers and suppliers, respectively. “Stronger” cross-sectional dependence, measured
by our betas, is specifically characterized by having more customers (or suppliers) which
are larger companies and with which the company has larger positive return covariances.
During a financial crisis, when most companies tend to perform poorly financially, it becomes
difficult to retain customers established before the crisis. Hence having “robust" downstream
linkages in the pre-crisis period – having more customers which are larger companies as
captured by a higher βc – is important for a company to survive the crisis, which explains
the positive sign and the statistical significance of the coefficient on βc. However, it is
relatively easy to retain one’s suppliers or to find new ones , because “willingness to buy”
is always welcomed, especially when it is difficult to find someone to sell to during a crisis.
Hence supplier linkages in the pre-crisis period are not crucial for a company to survive the
crisis, which explains the statistical insignificance of the coefficient on βs.

2.6 Robustness

2.6.1 Median Returns

To address the concern that extreme cases or events may be washed out in mean-type
analysis, we use also the median rather than average returns to strengthen our results.
Specifically, we estimate the following cross-sectional regression

rcrmedian,i − r
pr
median,i = δ0 + δ1βci + δ2βsi

+ δ3b̂
pr
mi + δ4b̂

pr
SMBi + δ5b̂

pr
HMLi + δ6b̂

cr
mi + δ7b̂

cr
SMBi + δ8b̂

cr
HMLi + εi

(2.7)

where rcrmedian,i and r
pr
median,i are the time-series median of monthly excess returns for com-

pany i in the crisis and pre-crisis period, respectively; and rcrmedian,i − r
pr
median,i is hence the

difference between these two medians for company i. The returns are in percentages. All
other variables are the same as described in Equation 2.5.
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The estimation results are reported in Table 2.4. The estimated coefficients on the
variables of interest are similar to what we obtained in Table 2.3. In particular, the coefficient
on βc is positive and statistically significant but the coefficient on βs is not statistically
significant.

2.6.2 Network Formation Period

To address the concern that the result in the main table may be sensitive to the approach
that customer-supplier network is obtained by aggregating data between 2003 and 2007
(pre-crisis period), we examine the main regression using an alternative customer-supplier
network that is obtained by aggregating data in 2007 only. The estimation results are
reported in Table 2.5. The estimated coefficients on the variables of interest are similar
to the main results as in Table 2.3. In particular, the coefficient on βc is positive and
statistically significant but the coefficient on βs is not statistically significant.

2.6.3 Sales-Weighted Adjacency Matrix

The adjacency matrix G we have referred to thus far is unweighted, in the sense that it has
entries of either one or zero. In some applications, it is useful to introduce the concept of
the strength of a link – such a consideration assigns weights to customers or suppliers to
capture their relative importance in our context. To serve this purpose, we further utilize
the sales-weighted G and GT to construct customer and supplier beta, respectively. First,
we construct an unweighted G. Next, for each supplier (i.e., each row) in G, links (i.e.,
entries that have a value of one) are weighted by the amount of sales made to the target
customer during the pre-crisis period, normalized by the observed total amount of sales
(i.e., the sum of all sales to customers) of this supplier in this period. The sum of the entries
in each row of the sales-weighted G is equal to one. Using this weighting, from a supplier’s
perspective, greater importance is assigned to those customers that account for larger shares
of trades.34 This weighted G is then used to construct customer beta. The sales-weighted
GT is constructed similarly and then used to construct supplier beta.35

Recall the example of the simple network depicted in Figure 2.1; using weighted G and
GT , the customer and supplier betas for this network now become

βc = [G ◦ Σ]X =



σ12( S12
TS1

)x2 + σ13( S13
TS1

)x3

σ24( S24
TS2

)x4

σ34( S34
TS3

)x4 + σ35( S35
TS3

)x5

0
0


=



βc1

βc2

βc3

βc4

βc5
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βs =
[
GT ◦ Σ

]
X =



0
σ21( S12

TS2
)x1

σ31( S13
TS3

)x1

σ42( S24
TS4

)x2 + σ43( S34
TS4

)x3

σ53( S35
TS5

)x3


=



βs1

βs2

βs3

βs4

βs5


where Sij is the total sales that company i made to company j in the pre-crisis period, and
TSi is the observed total amount of sales that is either made by or made to company i in
the same period.36 Under this construction, in addition to relative market capitalization,
in customer (supplier) beta, a company’s return covariances with its customers (suppliers)
are also weighted by the relative importance of the customers (suppliers) in terms of sales.

Using these βc and βs, we estimate Equation 2.5. As reported in Table 2.6, the estima-
tion results are similar to those presented in Table 2.3 in terms of sign, magnitude and level
of statistical significance of the coefficients on the variables of interest.

2.6.4 Size of Customer Market

To address the concern that results may be simply driven by the size or the number of cus-
tomers, we explicitly include the size of customer market for each company, CustomerMktSizei,
into the main regression as one of the control variables. The size of customer market for
company i is calculated as the total market share of company i’s customers relative to the
whole market, based on the observations in pre-cisis period, which is the same period used
in constructing customer and supplier betas. The estimation results are reported in Table
2.7. The estimated coefficients on βc and βs are similar to the main result as in Table 2.3:
the coefficient on βc is positive and statistically significant with a similar level, while the
coefficient on βs is not statistically significant. It is worth mentioning that the coefficient on
the size of customer market is not statistically significant, with a p value equal to 0.8189.
The result suggests that the resilience characteristic is not simply driven by the size or the
number of customers, and the aggregated cross-sectional dependence, measured by customer
beta, has a robust association with the resilience measure.

2.6.5 Effects from Higher-Order Linkages

As described in Section 2.2 - 2.2.2, G (GT ) captures first-order customer (supplier) linkages.
Higher-order linkages are characterized by powers of G (GT ). Consider the network depicted
in Figure 2.1 again; the square of G,

G2 =



0 0 0 2 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,
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indicates that company 1 has two second-order customers, which are companies 4 and 5,
because its first row has two non-zero entries, which are the fourth and the fifth. The fourth
entry contains the value “2" because there are two walks of length 2 from node 1 to 4: from
v1 to v2 to v4 and from v1 to v3 to v4. Similarly, the fifth entry takes the value “1" because
there is only one walk of length 2 from node 1 to 5: from v1 to v3 to v5. More formally, the
entry in the ith row and jth column of Gk, where k is some positive integer, is equal to the
number of walks from node i to node j of length k, where a walk from node i to node j
of length k is a succession of k links beginning at i and ending at j.37 Hence, the ith row
of Gk captures the kth-order customer linkages of company i, and the value of the entry
indicates the number of walks of length k from company i to the corresponding customer. A
similar interpretation applies to the transpose of G, that is, company i’s kth-order supplier
linkages are characterized by the ith row of (GT )k.

To investigate the effects of higher-order linkages, we construct βc and βs that corre-
spond to each order of linkages:

βck =
(
Gk ◦ Σ

)
X (2.8)

βsk =
(
(GT )k ◦ Σ

)
X (2.9)

where k = 1, 2, ...,K. When k = 1, βc1 = (G ◦ Σ)X and βs1 =
(
GT ◦ Σ

)
X are equivalent

to βc and βs that are defined in Equations 2.3 and 2.4. When k = 2, 3, ..., βck, (βsk)
summarizes companies’ weighted sum of the return covariances with their second-order,
third-order, and so fourth, customers (suppliers). The following cross-sectional regression is
conducted:

r̄cri − r̄
pr
i = δ0 + δ1βc1i + δ2βc2i + δ3βc3i + δ4βs1i + δ5βs2i + δ6βs3i

+δ7b̂
pr
mi + δ8b̂

pr
SMBi + δ9b̂

pr
HMLi

+δ10b̂
cr
mi + δ11b̂

cr
SMBi + δ12b̂

cr
HMLi + εi (2.10)

where βcki and βski, k = 1, 2 and 3, are the variables of interest. The largest value of k
taken is 3.38 For the pre-crisis period, βck and βsk are constructed; βcki and βski are the ith
entry from the n×1 vectors βck and βsk, respectively. The dependent and control variables
are as defined in Equation 2.5.

The regression results are presented in Table 2.8. For different choices of a pre-crisis
period that are consecutive subsets of 2003-200739, βc1, which captures the first-order cus-
tomer linkages, is the only one that is consistently positive and statistically significant.
This implies that a company’s weighted average return covariances with its higher-order
or indirect trading partners are not important in explaining this company’s resilience to
the financial crisis of 2008-2009 as measured by stock returns, at least in the network we
identify from the data.
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2.7 Potential Applications

As customer beta can capture a company’s resilience to the 2008-2009 financial crisis, as
measured by stock returns, investors or portfolio managers could construct the customer
beta when conducting risk or stress analysis to gain insights into the relative negative impact
of a potential financial crisis on a stock’s performance. Specifically, the customer betas of
stocks of interest should be constructed and ranked from high to low by magnitude, with
a higher rank indicating more resilience to a crisis as measured by stock returns. This is
an innovative way of conducting stress analysis in the sense that it utilizes information
contained in the customer-supplier network.

The application of customer beta can also be incorporated into existing approaches to
portfolio selection as an additional dimension or perspective. For a specific example, consider
the single-period mean-variance (MV) model of Markowitz (1952) with no risk-free asset;
to find a portfolio on the MV-efficient frontier, solve

min
x1,x2,...,xN

N∑
i=1

N∑
j=1

xixjσij

subject to
N∑
i=1

xiµi = a

N∑
i=1

xi = 1

where xi is the percentage of wealth allocated to security i, σij is the return covariance
between security i and j (σii is the return variance of security i), µi is the expected value
of return on security i. That is, we minimize portfolio variance provided that the expected
value of the return on the portfolio takes some value a. Then, the efficient frontier can be
identified by allowing a to vary. As Markowitz (1952) suggests, we may use the time-series
average of returns and sample covariance (variance) of returns for some period of the past as
proxies for µi and σij (σii). Given the computed set of MV-efficient portfolios, the investor
could select the preferred MV combination. The customer beta, which captures a stock’s
relative resilience to a crisis, can be incorporated into the above problem as an additional
constraint; for instance, after stocks are ranked by the magnitude of customer beta, only
stocks that are above a certain threshold (e.g., the 25-percent quantile) can be included
in the portfolio. By enforcing such a constraint, only securities that are relatively more
resilient to potential crisis are used to construct the MV-efficient frontier, whereas stocks
that would potentially encounter substantial losses are excluded. This approach incorporates
the dynamic feature into the static single-period model of portfolio selection.
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2.8 Conclusions

Inspired by the CAPM beta, we construct two measures or “indices”, customer and supplier
beta, to separately investigate potentially different properties and implications of down-
stream and upstream linkages. With the adjacency matrix acting as a “filter” to extract
each company’s return covariances with its trading partners, the cross-sectional dependence
contained in the customer-supplier network is summarized by our betas. Under certain as-
sumptions, the CAPM beta can be decomposed into four components, including the cus-
tomer and supplier beta, which helps to identify the different sources from which the return
covariance between a company and the market portfolio originates.

Using data on the North American public companies, we find asymmetric effects on the
customer and supplier sides that are similar to the asymmetry found in Hertzel et al. (2008).
Our empirical study indicates that, a higher customer beta is generally associated with more
resilience to the 2008-2009 financial crisis, as measured by stock returns; but the coefficient
on the supplier beta lacks statistical significance. One explanation for the asymmetry is
that customer linkages are essentially more important than supplier ones. During a financial
crisis, it becomes difficult to retain customers as most companies perform poorly financially.
Hence having “robust" downstream linkages in the pre-crisis period – having more customers
which are larger companies as captured by a higher βc – is important for a company to
survive the crisis. However, it is relatively easy to retain or to find new suppliers, because
“willingness to buy” is always welcomed, especially when it is difficult to find someone to
sell to during a crisis. Hence supplier linkages in the pre-crisis period are not crucial for a
company to survive the crisis.

As potential applications, investors or portfolio managers could construct customer beta
when conducting risk or stress analysis to gain insights into the relative negative impact of
a potential financial crisis on a stock’s performance, which can be incorporated into existing
approaches to portfolio selection as an additional dimension or perspective. As measures or
“indices” summarizing the cross-sectional dependence contained in the customer-supplier
network, our betas could potentially be applied in other areas, which should be explored in
future studies.
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2.9 Supplemental Materials

2.9.1 Derivation of Equation 2.2

Suppose that there are n assets in the market,

ΣmXm =


σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

... . . . ...
σn1 σn2 · · · σnn




x1

x2
...
xn



=


σ11x1 + σ12x2 + · · ·+ σ1nxn

σ21x1 + σ22x2 + · · ·+ σ2nxn
...

σn1x1 + σn2x2 + · · ·+ σnnxn

 =


∑
j xjσ1j∑
j xjσ2j
...∑

j xjσnj


For ∀i = 1, . . . , n,

∑
j

xjσij =
∑
j

xjcov(ri, rj)

=
∑
j

xj

[∑
s

ps (ris − E (ri)) (rjs − E (rj))
]

=
∑
s

ps (ris − E (ri))

∑
j

xj (rjs − E (rj))


=
∑
s

ps (ris − E (ri))

∑
j

xjrjs −
∑
j

xjE (rj)


=
∑
s

ps (ris − E (ri))

rms − E
∑

j

xjrj


=
∑
s

ps (ris − E (ri)) (rms − E (rm))

=cov (ri, rm) .

Hence,

ΣmXm
σ2
m

=



cov(r1,rm)
σ2
m

cov(r2,rm)
σ2
m...

cov(rn,rm)
σ2
m

 =


β1

β2
...
βn

 = β.

48



2.9.2 The Decomposition of CAPM Beta in the Network Depicted in
Figure 2.1

Given the simple customer-supplier network presented in Figure 2.1, assuming that there
are only these five companies, such that their stocks are the only assets in the market, and
as this simple network does not have any self-loop or bilateral linkage, the CAPM beta can
be decomposed into four components, including the customer and supplier beta:

β =ΣX 1
σ2
m

=




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 ◦

σ11 σ12 σ13 σ14 σ15

σ21 σ22 σ23 σ24 σ25

σ31 σ32 σ33 σ34 σ35

σ41 σ42 σ43 σ44 σ45

σ51 σ52 σ53 σ54 σ55






x1

x2

x3

x4

x5


1
σ2
m

=






0 1 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

+


0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 1 0 0

+


0 0 0 1 1
0 0 1 0 1
0 1 0 0 0
1 0 0 0 1
1 1 0 1 0

+


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





◦


σ11 σ12 σ13 σ14 σ15

σ21 σ22 σ23 σ24 σ25
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σ41 σ42 σ43 σ44 σ45
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x1

x2

x3

x4

x5


1
σ2
m

=




σ12x2 + σ13x3

σ24x4

σ34x4 + σ35x5

0
0

+


0

σ21x1

σ31x1

σ42x2 + σ43x3

σ53x3

+


σ14x4 + σ15x5

σ23x3 + σ25x5

σ32x2

σ41x1 + σ45x5

σ51x1 + σ52x2 + σ54x4

+


σ11x1

σ22x2

σ33x3

σ44x4

σ55x5




1
σ2
m

=
[
βc + βs + βu +

⇀

V ar
] 1
σ2
m

2.9.3 Self-Loop and Bilateral Linkage

After matching the firms in the customer-supplier network with market value and return
data in Compustat, 719 companies exist throughout the entire sample period of 2003 to
2009. Among them, five companies that have either a self-loop or a bilateral linkage are
excluded from the final sample to preserve the distinction between customer and supplier
beta. Information regarding these five companies is provided in Table 2.9. Zale Corporation
has a self-loop, that is, it is a major customer of itself. There is a bilateral linkage between
Xilinx, Inc. and Avnet, Inc and another bilateral linkage between Pfizer, Inc and Cardinal
Health, Inc.; in other words, Xilinx, Inc. and Avnet, Inc. are major customers of one another,
as are Pfizer, Inc and Cardinal Health, Inc.
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2.9.4 Directed Ring Structure

In a customer-supplier network that contains a directed ring structure, for a company that is
involved in the directed ring, there are overlaps in its (higher-order) customers and (higher-
order) suppliers. Specifically, there are three possible cases for a company in a directed
ring: (1) its first-order customer is equivalent to its first-order supplier; (2) its first-order
customer is equivalent to its higher-order supplier (or its first-order supplier is equivalent
to its higher-order customer); (3) its higher-order customer is equivalent to its higher-order
supplier.

(1) Case 1: first-order customer is equivalent to first-order supplier.
Self-loop and bilateral linkage are the simplest directed ring structure – a directed ring that
only contains one or two nodes. Company i has a self-loop if it is a customer and supplier
of itself. Company j and k have a link that is bilateral if company j is both a supplier and
customer of company k (and thus k is also both a supplier and customer of j). From these
companies’ perspective, there are overlaps in their customers and suppliers.

(2) Case 2: first-order customer is equivalent to higher-order supplier (or first-order
supplier is equivalent to higher-order customer).
For example, as presented in Figure 2.3, consider a simple network with three companies
that is a directed ring.

v1

v2 v3

Figure 2.3: A customer-supplier network with three companies that is a directed
ring.
In this figure, vi, i = 1, ..., 3, denotes the company; the arrow indicates the flow of output,
for example, the arrow between v1 and v2 indicates that company 1 (2) is the supplier

(customer) of company 2 (1).

Matrix G, which captures first-order customer relations, is equal to (GT )2 that captures
second-order supplier relations:

G = (GT )2 =


0 1 0
0 0 1
1 0 0


That is, from any company’s perspective, its first-order customer is equivalent to the second-
order supplier. For instance, company 2 is both a first-order customer and a second-order
supplier of company 1 (and company 3 is both a first-order supplier and a second-order
customer of company 1).
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(3) Case 3: higher-order customer is equivalent to higher-order supplier.
For example, as presented in Figure 2.4, consider a simple network with four companies
that is a directed ring. In this network, G2, which captures second-order customer relations,

v1

v2

v3

v4

Figure 2.4: A customer-supplier network with four companies that is a directed
ring.
In this figure, vi, i = 1, ..., 4, denotes the company; the arrow indicates the flow of output,
for example, the arrow between v1 and v2 indicates that company 1 (2) is the supplier

(customer) of company 2 (1).

is equal to (GT )2, which captures second-order supplier relations:

G2 = (GT )2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


That is, from any company’s perspective, its second-order customer is equivalent to the
second-order supplier. For instance, company 3 is both a second-order customer and a
second-order supplier of company 1.

We wish to emphasize that there would be overlaps between customers and suppliers
only for a company that is in a directed ring structure. In the network we constructed from
the data, there is only one self-loop and two bilateral linkages, which have been reported in
Appendix 2.9.3. We have excluded these five companies to preserve the distinction between
customers and suppliers from every company’s perspective in our final sample.
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2.10 Notes
17In practice, the CAPM beta can also be estimated from the time-series regression rit − rft = αi +

βi(rmt − rft) + εit, where rit is the rate of return on asset i at time t, rft is the risk-free rate of return at
time t, and rmt is the rate of return on the market portfolio at time t.

18The literatures that introduce and review general network theory and its applications include Newman
(2018); Newman, Barabasi, and Watts (2011); Caldarelli (2007). Other literatures on utilizing networks to
represent economic and financial systems include Rossi, Blake, Timmermann, Tonks, and Wermers (2018);
Diebold and Yılmaz (2015); Acemoglu, García-Jimeno, and Robinson (2015). The literatures that focus on
customer-supplier networks include Oberfield Ezra (2018); Gençay et al. (2015); Alldredge and Cicero (2015);
Acemoglu et al. (2012); Cohen and Frazzini (2008b); Banerjee, Dasgupta, and Kim (2008); Hertzel et al.
(2008).

19For instance, the second row of

GT =


0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 1 0 0


indicates that company 2 has only one supplier, which is company 1, as only the first entry is one.

20The terms “customer linkages” and “supplier linkages” are specific in this application. They correspond
to more general terms used in directed graph literatures as “out-degrees” and “in-degrees”: the “out-degree”
of a node (or “vertex”) is the number of links (or “arcs”) leading away from that node, and the “in-degree”
of a node is the number of links leading to that node.

21G = GT if and only if all of the linkages are bilateral. In general, customer-supplier relations are not
bilateral. Thus G is not symmetric although Σ is symmetric – G and GT extract different information from
Σ. Hence βc 6= βs in general.

22In terms of mathematical expression, given that, βci =
∑

j
xjσijCij where Cij = 1 if j is a customer

of i, 0 otherwise, we have: (a) ∂βci
∂σij

= xjCij > 0 for Cij = 1; (b) 4βci4Cij
= xjσij > 0 for σij > 0; and (c)

∂βci
∂xj

= σijCij > 0 for Cij = 1 and σij > 0.
23The key to the decomposition, as presented, is to decompose the n × n matrix of one into G, GT , Gu

and In, all of which have entries of either one or zero. Hence, we would not be able to accomplish the
decomposition if there are entries in (G+GT ) that are greater than one.

24Monthly excess return is the difference between monthly return and the corresponding monthly risk-free
rate of return.

25The construction of βc and βs is explained in greater detail in Section 2.4 after describing the sources
from which we obtain the customer-supplier relations data.

26The results from our main regression analysis are robust to different choices of pre-crisis period that are
consecutive subsets of the years 2003 to 2007.

27The amount of sales is used in the robustness section 2.6 - 2.6.3.
28As fiscal years vary across businesses, they report in different months.
29Results remain similar when a single year, instead of an aggregated period from 2003 to 2007, is used

to identify the links, as illustrated in the robustness section 2.6 - 2.6.2.
30Companies with monthly excess returns that are greater than 50% are considered outliers and excluded

from the final sample.
31Let µcr−pr be the population mean of r̄cr − r̄pr.

H0 : µcr−pr ≥ 0 and H1 : µcr−pr < 0
t = mean(r̄cr−r̄pr)

std(r̄cr−r̄pr)/
√
n

= −1.452
2.054/

√
714 = −18.89; hence we reject the null at the 0.1% significance level.
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32It is worth mentioning that the dependent variable of interest in current analysis is the resilience measure,
i.e., the change in average returns over a specific crisis period. This is different from the equations used
in studying cross-sectional returns in equilibrium. Including all Fama-French factors (in both periods) is
necessary as control variables, while the statistic significance of those factors are not naturally implied.

33In addition to regression results, we calculate the correlation coefficients between resilience measure
(r̄cri − r̄pri ) and βc. The Pearson’s and Kendall’s correlation coefficients are equal to 0.1480 (p = 0.0067) and
0.0704 (p = 0.0551) respectively, suggesting that the two variables are not independent.

34The sales-weighted adjacency matrix is constructed as in Gençay et al. (2015).
35To construct sales-weighted GT , for each customer (i.e., each row), links are weighted by the amount of

sales from the corresponding supplier during the pre-crisis period, normalized by the observed total amount
of sales that are made to this customer in this period. The sum of the entries in each row of the sales-weighted
GT is also equal to one. Using this weighting, from a customer’s perspective, its suppliers that account for
larger shares of trades receive more importance.

36In βc, TSi is the observed total amount of sales that is made by company i; whereas in βs, TSi is the
observed total amount of sales that is made to company i.

37See Van Mieghem (2010) [page 26, Lemma 3].
38The customer-supplier network that we identify from the data has four layers: there are 869 first-order

linkages, 196 second-order linkages, 31 third-order linkages, but only 3 fourth-order linkages. Hence we
investigate effects of higher-order linkages that are up to the third order.

39To save space, only regression results using 2003-2007 as the pre-crisis period are presented in Table 2.8.
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2.11 Tables

Table 2.1: Sample of Customers and Suppliers Identified

This table reports the summary statistics of customers and suppliers identified in the sample.
The results in the table are the numbers of companies having various numbers of customers
and suppliers, average numbers of customers and suppliers per company, and the total
number of companies included in the sample when different choices of pre-crisis period are
used. In the main regression, the period 2003 to 2007 is considered the pre-crisis period.

2003 2004 2005 2006 2007 2003-2007

Having 1 Customer 376 465 486 462 486 310
Having 2 Customers 101 130 130 139 162 112
Having > 2 Customers 45 58 77 79 86 78

Having 1 Supplier 151 183 203 197 210 159
Having 2 Suppliers 43 57 57 59 53 45
Having > 2 Suppliers 66 77 92 90 102 84

Ave. Num. of Customers 1.43 1.43 1.52 1.55 1.57 1.74
Ave. Num. of Suppliers 2.88 2.94 2.98 3.05 3.16 3.02
Num. of Companies 958 1,089 1,159 1,156 1,188 1,059
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Table 2.2: Summary Statistics

This table reports the summary statistics for the regressand and regressors in the main
regression

r̄cri − r̄
pr
i = δ0 + δ1βci + δ2βsi

+ δ3b̂
pr
mi + δ4b̂

pr
SMBi + δ5b̂

pr
HMLi + δ6b̂

cr
mi + δ7b̂

cr
SMBi + δ8b̂

cr
HMLi + εi

r̄cri − r̄
pr
i is the difference between crisis and pre-crisis period time-series average of monthly

excess returns for company i. The returns are in percentages. βci and βsi are the ith entry
in βc and βs that are specified in Equations 2.3 and 2.4, respectively, constructed using
data from the pre-crisis period. b̂prmi, b̂

pr
SMBi, b̂

pr
HMLi, b̂crmi, b̂crSMBi and b̂crHMLi are company i’s

Fama-French three-factor sensitivities estimated from the time-series regression specified in
Equation 2.6, using data from the pre-crisis and crisis period, respectively. We study the
financial crisis of 2008-2009. The period 2003 to 2007 is considered the pre-crisis period.

Mean Std. Dev. Min. Max. N

r̄cr − r̄pr -1.452 2.054 -11.011 3.882 714
βc 0.057 0.156 -0.235 1.351 714
βs 0.005 0.039 -0.013 0.817 714
b̂pr

m 0.965 0.579 -0.830 3.475 714
b̂pr

SMB 0.562 0.789 -1.955 5.138 714
b̂pr

HML 0.122 0.846 -4.72 2.647 714
b̂cr

m 1.022 0.566 -0.656 3.084 714
b̂cr

SMB 0.506 0.98 -2.691 4.755 714
b̂cr

HML -0.104 0.905 -3.264 5.016 714
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Table 2.3: Resilience to the Financial Crisis as Measured by Average Stock Re-
turns

Regression estimates for various restrictions of the model

r̄cri − r̄
pr
i = δ0 + δ1βci + δ2βsi

+ δ3b̂
pr
mi + δ4b̂

pr
SMBi + δ5b̂

pr
HMLi + δ6b̂

cr
mi + δ7b̂

cr
SMBi + δ8b̂

cr
HMLi + εi

r̄cri − r̄
pr
i is the difference between crisis and pre-crisis period time-series average of monthly

excess returns for company i. The returns are in percentages. βci and βsi are the ith entry
in βc and βs that are specified in Equations 2.3 and 2.4, respectively, constructed using
data from the pre-crisis period. b̂prmi, b̂

pr
SMBi, b̂

pr
HMLi, b̂crmi, b̂crSMBi and b̂crHMLi are company i’s

Fama-French three-factor sensitivities estimated from the time-series regression specified in
Equation 2.6, using data from the pre-crisis and crisis period, respectively. We study the
financial crisis of 2008-2009. The period 2003 to 2007 is considered the pre-crisis period.
The numbers in parentheses are p-values calculated using heteroscedasticity-robust standard
errors.

(1) (2) (3)

βc 1.3774∗∗∗ 1.8886∗∗∗
(0.0014) (0.0001)

βs 0.4867 0.4504
(0.3408) (0.4097)

b̂pr
m 0.2378 0.1074

(0.1685) (0.5389)
b̂pr

SMB −0.0055 −0.0838
(0.9597) (0.4474)

b̂pr
HML −0.1789 −0.1730

(0.1016) (0.1084)
b̂cr

m −0.4978∗∗∗ −0.5588∗∗∗
(0.0027) (0.0007)

b̂cr
SMB 0.0659 0.0770

(0.5003) (0.4277)
b̂cr

HML 0.2586∗∗ 0.2664∗∗∗
(0.0103) (0.0089)

Intercept −1.5326∗∗∗ −1.1543∗∗∗ −1.0371∗∗∗
(0.0000) (0.0000) (0.0000)

R̄2 0.01 0.05 0.06
n 714 714 714
∗ p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗ p < 0.01
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Table 2.4: Resilience to the Financial Crisis as Measured by Median Returns

Regression estimates for various restrictions of the model

rcrmedian,i − r
pr
median,i = δ0 + δ1βci + δ2βsi

+ δ3b̂
pr
mi + δ4b̂

pr
SMBi + δ5b̂

pr
HMLi + δ6b̂

cr
mi + δ7b̂

cr
SMBi + δ8b̂

cr
HMLi + εi

rcrmedian,i − r
pr
median,i is the difference between crisis and pre-crisis period time-series median

of monthly excess returns for company i. The returns are in percentages. βci and βsi are the
ith entry in βc and βs that are specified in Equations 2.3 and 2.4, respectively, constructed
using data from the pre-crisis period. b̂prmi, b̂

pr
SMBi, b̂

pr
HMLi, b̂crmi, b̂crSMBi and b̂crHMLi are company

i’s Fama-French three-factor sensitivities estimated from the time-series regression specified
in Equation 2.6, using data from the pre-crisis and crisis period, respectively. We study the
financial crisis of 2008-2009. The period 2003 to 2007 is considered the pre-crisis period.
The numbers in parentheses are p-values calculated using heteroscedasticity-robust standard
errors.

(1) (2) (3)

βc 1.1685∗ 1.6148∗∗
(0.0645) (0.0237)

βs 0.3026 0.0083
(0.8224) (0.9947)

b̂pr
m −0.0335 −0.1451

(0.8837) (0.5401)
b̂pr

SMB −0.0801 −0.1480
(0.5916) (0.3427)

b̂pr
HML −0.1996 −0.1957

(0.1481) (0.1544)
b̂cr

m −0.2887 −0.3406
(0.2048) (0.1324)

b̂cr
SMB −0.0257 −0.0161

(0.8328) (0.8945)
b̂cr

HML −0.0918 −0.0855
(0.4728) (0.5045)

Intercept −0.9073∗∗∗ −0.4394∗ −0.3369
(0.0000) (0.0899) (0.1956)

R̄2 0.00 0.00 0.01
n 714 714 714
∗ p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗ p < 0.01
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Table 2.5: Resilience to the Financial Crisis with the Network Formed in Single
Year - 2007

Regression estimates for various restrictions of the model

r̄cri − r̄
pr
i = δ0 + δ1βci + δ2βsi

+ δ3b̂
pr
mi + δ4b̂

pr
SMBi + δ5b̂

pr
HMLi + δ6b̂

cr
mi + δ7b̂

cr
SMBi + δ8b̂

cr
HMLi + εi

r̄cri − r̄
pr
i is the difference between crisis and pre-crisis period time-series average of monthly

excess returns for company i. The returns are in percentages. βci and βsi are the ith entry
in βc and βs that are specified in Equations 2.3 and 2.4, respectively, constructed using
data from the pre-crisis period. b̂prmi, b̂

pr
SMBi, b̂

pr
HMLi, b̂crmi, b̂crSMBi and b̂crHMLi are company i’s

Fama-French three-factor sensitivities estimated from the time-series regression specified in
Equation 2.6, using data from the pre-crisis and crisis period, respectively. We study the
financial crisis of 2008-2009. The period of 2007 is considered the pre-crisis period, which is
used to form the customer and supplier network. The numbers in parentheses are p-values
calculated using heteroscedasticity-robust standard errors.

(1) (2) (3)

βc 2.1214∗∗∗ 2.1048∗∗∗
(0.0001) (0.0001)

βs 0.4246 1.4849
(0.6551) (0.2686)

b̂pr
m −0.2913 −0.3777∗∗

(0.1209) (0.0473)
b̂pr

SMB 0.2237∗∗ 0.2062∗∗
(0.0153) (0.0261)

b̂pr
HML 0.1133 0.1089

(0.1461) (0.1603)
b̂cr

m −0.2273 −0.2558
(0.4069) (0.3446)

b̂cr
SMB 0.6019∗∗∗ 0.5731∗∗∗

(0.0000) (0.0001)
b̂cr

HML 0.8261∗∗∗ 0.8341∗∗∗
(0.0000) (0.0000)

Intercept −0.2238 0.1378 0.1584
(0.1125) (0.6853) (0.6408)

R̄2 0.01 0.08 0.10
n 698 698 698
∗ p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗ p < 0.01
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Table 2.6: Customer and Supplier Beta with Sales-Weighted Adjacency Matrix

Regression estimates for various restrictions of the model

r̄cri − r̄
pr
i = δ0 + δ1βci + δ2βsi

+ δ3b̂
pr
mi + δ4b̂

pr
SMBi + δ5b̂

pr
HMLi + δ6b̂

cr
mi + δ7b̂

cr
SMBi + δ8b̂

cr
HMLi + εi

r̄cri − r̄
pr
i is the difference between crisis and pre-crisis period time-series average of monthly

excess returns for company i. The returns are in percentages. βci and βsi are respectively
the ith entry in βc and βs constructed using sales-weighted G and GT , using data from the
pre-crisis period. b̂prmi, b̂

pr
SMBi, b̂

pr
HMLi, b̂crmi, b̂crSMBi and b̂crHMLi are company i’s Fama-French

three-factor sensitivities estimated from the time-series regression specified in Equation 2.6,
using data from the pre-crisis and crisis period, respectively. We study the financial crisis
of 2008-2009. The period 2003 to 2007 is considered the pre-crisis period. The numbers in
parentheses are p-values calculated using heteroscedasticity-robust standard errors.

(1) (2) (3)

βc 1.4814∗∗ 1.9525∗∗
(0.0401) (0.0116)

βs 0.5127 0.7625
(0.7886) (0.7054)

b̂pr
m 0.2378 0.1831

(0.1685) (0.2934)
b̂pr

SMB −0.0055 −0.0390
(0.9597) (0.7194)

b̂pr
HML −0.1789 −0.1749

(0.1016) (0.1059)
b̂cr

m −0.4978∗∗∗ −0.5366∗∗∗
(0.0027) (0.0010)

b̂cr
SMB 0.0659 0.0681

(0.5003) (0.4807)
b̂cr

HML 0.2586∗∗ 0.2613∗∗∗
(0.0103) (0.0099)

Intercept −1.5007∗∗∗ −1.1543∗∗∗ −1.1087∗∗∗
(0.0000) (0.0000) (0.0000)

R̄2 0.00 0.05 0.05
n 714 714 714
∗ p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗ p < 0.01
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Table 2.7: Resilience to the Financial Crisis Controlling for the Size of Customer
Market

Regression estimates for various restrictions of the model

r̄cri − r̄
pr
i = δ0 + δ1βci + δ2βsi + δ3CustomerMktSizei

+ δ4b̂
pr
mi + δ5b̂

pr
SMBi + δ6b̂

pr
HMLi + δ7b̂

cr
mi + δ8b̂

cr
SMBi + δ9b̂

cr
HMLi + εi

CustomerMktSizei is the total market share of company i’s customers relative to the whole
market, based on the observations in pre-crisis period. The rest variables are same as in
Table 2.3: r̄cri − r̄

pr
i is the difference between crisis and pre-crisis period time-series average

of monthly excess returns for company i. βci and βsi are customer beta and supplier beta,
respectively. b̂prmi, b̂

pr
SMBi, b̂

pr
HMLi, b̂crmi, b̂crSMBi and b̂crHMLi are Fama-French three-factor sensi-

tivities in pre-crisis and crisis periods. The numbers in parentheses are p-values calculated
using heteroscedasticity-robust standard errors.

(1) (2) (3)

βc 1.3805∗∗ 1.9814∗∗∗
(0.0110) (0.0015)

βs 0.4863 0.4414
(0.3422) (0.4199)

Customer Mkt. Size −0.0942 −2.5748
(0.9929) (0.8189)

b̂pr
m 0.2378 0.1013

(0.1685) (0.5678)
b̂pr

SMB −0.0055 −0.0854
(0.9597) (0.4384)

b̂pr
HML −0.1789 −0.1726

(0.1016) (0.1097)
b̂cr

m −0.4978∗∗∗ −0.5591∗∗∗
(0.0027) (0.0007)

b̂cr
SMB 0.0659 0.0796

(0.5003) (0.4113)
b̂cr

HML 0.2586∗∗ 0.2668∗∗∗
(0.0103) (0.0087)

Intercept −1.5324∗∗∗ −1.1543∗∗∗ −1.0249∗∗∗
(0.0000) (0.0000) (0.0000)

R̄2 0.01 0.05 0.06
n 714 714 714
∗ p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗ p < 0.01
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Table 2.8: Effects from Higher-Order Linkages

Regression estimates for various restrictions of the model

r̄cri − r̄
pr
i = δ0 + δ1βc1i + δ2βc2i + δ3βc3i + δ4βs1i + δ5βs2i + δ6βs3i

+ δ7b̂
pr
mi + δ8b̂

pr
SMBi + δ9b̂

pr
HMLi

+ δ10b̂
cr
mi + δ11b̂

cr
SMBi + δ12b̂

cr
HMLi + εi

r̄cri − r̄
pr
i is the difference between crisis and pre-crisis period time-series average of monthly

excess returns for company i. The returns are in percentages. βcki and βski are the ith entry
in βck and βsk that are specified in Equation 2.8 and 2.9, respectively, constructed using
data from the pre-crisis period. b̂prmi, b̂

pr
SMBi, b̂

pr
HMLi, b̂crmi, b̂crSMBi and b̂crHMLi are company i’s

Fama-French three-factor sensitivities estimated from the time-series regression specified in
Equation 2.6, using data from the pre-crisis and crisis period, respectively. We study the
financial crisis of 2008-2009. The period 2003 to 2007 is considered the pre-crisis period.
The numbers in parentheses are p-values calculated using heteroscedasticity-robust standard
errors.

(1) (2) (3)

βc1 1.4507∗∗∗ 1.9737∗∗∗

(0.0046) (0.0003)

βc2 −1.0802 −1.1748

(0.4588) (0.3810)

βc3 4.2334 4.4210

(0.1832) (0.1428)

βs1 1.2020 1.7329

(0.5828) (0.4542)

βs2 −4.4310 −5.8331

(0.2677) (0.1701)

βs3 9.0509 5.0402

(0.8595) (0.9257)

(continued)

61



Table 2.8: (continued)

(1) (2) (3)

b̂pr
m 0.2378 0.1102

(0.1685) (0.5305)

b̂pr
SMB −0.0055 −0.0751

(0.9597) (0.5009)

b̂pr
HML −0.1789 −0.1778

(0.1016) (0.1020)

b̂cr
m −0.4978∗∗∗ −0.5762∗∗∗

(0.0027) (0.0005)

b̂cr
SMB 0.0659 0.0715

(0.5003) (0.4636)

b̂cr
HML 0.2586∗∗ 0.2597∗∗

(0.0103) (0.0115)

Intercept −1.5276∗∗∗ −1.1543∗∗∗ −1.0191∗∗∗

(0.0000) (0.0000) (0.0000)

R̄2 0.01 0.05 0.06

n 714 714 714

∗ p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗ p < 0.01
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Table 2.9: Companies with Self-Loop or Bilateral-Linkage

This table provides information about the five companies that have either a self-loop or a bilateral linkage, that are excluded from the
final sample. Zale Corporation has a self-loop. There is a bilateral linkage between Xilinx, Inc. and Avnet, Inc, and another bilateral
linkage between Pfizer, Inc, and Cardinal Health, Inc. The market value is the end-of fiscal-year value in 2007.

Company Core Business Headquarter Market Value in 2007 ($ Millions) Loop Type

Zale Corporation jewelry retailer Irving, Texas, USA 1,041.40 self-loop

Xilinx, Inc. technology company San Jose, California, USA 5,938.31 bilateral linkage

Avnet, Inc. technology business-to-business
distributor

Phoenix, Arizona, USA 7,613.56 bilateral linkage

Pfizer, Inc. pharmaceutical company New York City, New York,
USA

26,002.58 bilateral linkage

Cardinal Health, Inc. health care services company Dublin, Ohio, USA 153,677.53 bilateral linkage
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Chapter 3

Economic Links and Credit
Spreads

3.1 Introduction
Is counterparty risk an important determinant of corporate risk? In times of distress, credit contagion
is well documented; bankruptcy announcements are followed by a widening in CDS spreads for
creditors (Jorion and Zhang, 2009). At the same time, little is known about its impact on corporate
risk under general market conditions. We examine whether counterparty risk in supplier-customer
relationships matters in describing the cross-sectional and time-series variation in corporate credit
spreads. Along the supply chain, counterparty risk arises from two primary mechanisms, trade credit
exposure and future cash flow risk. Trade credits are extended whenever payment is not made upon
delivery. When payment is delayed, the supplier acts as a lender, and vice-versa, when payment
is anticipated, it is the buyer that acts as a lender.40 In both circumstances, the lender takes on
a risk exposure, whose magnitude depends on the size of the trade and the credit standing of the
borrower. In turn, such exposure affects the credit standing of the lender. The second propagation
mechanism, cash flow risk, hinges on the strength of the economic link between buyer and seller.
Strong ties along the supply chain arise for several reasons. For example, a customer might share
his technical knowledge for the engineering of custom-built parts, while a supplier might invest in
customer-specific equipment. Such economic links are, indeed, a form of business partnership in
which customers and suppliers are co-invested and therefore exposed to the uncertainties in each
others’ businesses.

What emerges from these mechanisms is that the impact of these economic links rests heavily on
the degree of financial commitment they imply. Normally strong commitment is difficult to observe,
but the dataset we use allows for its identification. Since 1998, Regulation SFAS No. 131 requires
firms to disclose those customers that account for more than 10% of their total yearly sales.41 Clearly,
these relationships point to strong ties and are potential channels for the propagation of counterparty
risk.

Our results establish counterparty risk, as identified by network factors, as an important deter-
minant of credit spreads for corporate bonds. For a given firm, an increase of one standard deviation
in the leverage of its main customers leads to a widening of its credit spread of 9.6 basis points on
average. In comparison, the credit spreads increase by 30.4 basis points when own leverage increases
by one standard deviation. Our result is consistent with the theoretical work of Merton (1974), in
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which leverage plays a key role in the pricing of corporate debt. A customer with higher leverage has
on average wider spreads and, hence, a higher implied probability of default. This, in turn, reflects
negatively on the supplier’s prospects (trade credits are riskier and future demand uncertain), and
it eventually leads to a higher spread.

In this paper, we describe an econometric model of network effects that is appropriate for the
analysis of counterparty risk. In our context, nodes represent firms, while links between them repre-
sent supplier-customer relations. The essence of our approach is best described through an analogy.
Just like in time series models the basic building blocks are constructed with the help of the time lag
operator, we use a network lag operator which plays a similar role, only along a different dimension.
The time lag operator shifts a variable by one period and its powers refer to events more distant
in the time. Instead, a network lag of a variable is the average, possibly weighted, of values from
neighboring nodes. Higher powers of the network lag operator refer, intuitively, to more distant firms
along the supply chain. The network lag operator allows us to define processes that include moving
averages and are autoregressive along the network directions. We refer to these processes as Network
Autoregressive Moving Average (NARMA).

Typically, each node in a financial network is observed through time and the data sample is
structured as a panel. Although this type of data is the natural domain of panel data econometrics,
modeling explicitly the network structure—when available—offers important complementarities, as
well as some distinct advantages, over standard panel data models. First, the standard assumption
of cross-sectional independence for the disturbances for panel models often does not hold in prac-
tice. While several panel techniques are available to tackle this issue,42 they do not exploit the rich
information about the links between the units, when available. In a network model, on the contrary,
cross-sectional dependence is explicitly described in terms of a parsimonious model. Second, network
models provide the ability to estimate the effects that neighboring units have on each other. While
in principle allowing for individual effects can mitigate the bias introduced when ignoring these de-
pendencies, the panel approach provides minimal information about their structural underpinnings.

The paper is organized as follows. Section 3.2 provides some background and reviews the liter-
ature. Section 3.3 is an introduction to the NARMA model. We define several basic notions from
graph theory, describe the workings of the network lag operator and the general specification of
the model. Section 3.4 contains the main empirical result of the paper. We describe application of
our modeling framework to the analysis of counterparty risk in supplier-customer networks. Sec-
tion 3.5 considers five robustness checks: we discuss alternative specifications, consider the issue of
bi-directionality of economic links, explore and reject the hypothesis that network effects proxy for
cross-industry covariates rather than measuring counterparty risk, investigate interactions between
network effects and bond or firm characteristics, and lastly examine the robustness of our principal
result by including other control variables. Section 3.6 concludes.

3.2 Background and Literature Review
Recently, networks have risen to the foreground of empirical finance. Several studies document
the importance of social ties in portfolio choices of retail investors and mutual fund managers, in
contracting decisions and as drivers of return predictability.43 Other works focus on the structural
properties of financial networks and one of the most salient examples is the analysis of interbank
loan markets.44 By examining the dynamic properties of the network structure and through the use
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of simulations, these studies try to assess how the network topology determines market liquidity and
systemic risk.

Our research combines the recent literature on the econometrics of networks and the broad
topic of credit risk. The origin of our modeling framework can be traced back to the field of spa-
tial econometrics and to the literature concerned with the identification of social interactions. The
monographs on spatial econometrics by Anselin (1988), LeSage and Pace (2009) and Lee and Yu
(2011), and the chapter on social interactions by Blume, Brock, Durlauf, and Ioannides (2010) pro-
vide recent overviews of these areas. Despite many formal similarities, there are a few differences
that are worth noting.

An essential ingredient in spatial models is the weight matrix, an analogue of the network lag
operator that encodes information about the relative locations and distances of the spatial units.
Two common critiques directed at spatial models involve the arbitrariness in the determination of
the spatial units and the, sometimes, tenuous economic relevance of the weights. In contrast, nodes
in a network model are identified with specific entities and the normalization of the network lag
operator follows either an equal weighting scheme or is suggested by the economic setting.45

Our work expands on a long series of studies of corporate credit spreads by analyzing their
network determinants. At the firm level, the most important factors are leverage, volatility, and
jump risk (see, among others, Cremers, Driessen, Maenhout, and Weinbaum, 2008b). Campbell and
Taksler (2003) find that equity volatility accounts for as much variation in corporate spreads as
do credit ratings. Cremers, Driessen, and Maenhout (2008a) calibrate a jump-diffusion firm value
process from equity and option data and confirm the importance of including jump risk with an out-
of-sample test. Besides risk determinants, market frictions are priced in the spreads. An example
is the liquidity premium that investors demand for their inability to trade large quantities over a
short horizon without incurring into negative price effects. Chen, Lesmond, and Wei (2007) find
that liquidity is priced in both levels and changes in the yield spread, while Bao, Pan, and Wang
(2011) quantify implicit illiquidity costs as the (negative) autocorrelation of price reversals in high
frequency transaction data and reach similar conclusions.

Another area related to our paper is the literature exploring the nature of default correlations.
Several authors document the clustering of corporate default in time.46 The practical repercussions
are significant from both asset pricing and risk management perspective. For example, Das, Duffie,
Kapadia, and Saita (2007) show that default correlations cannot be explained by the widely used
doubly stochastic model of defaults.47 A possible explanation for default clustering is the dependence
of default intensities on a dynamic common factor. From this viewpoint, default clustering is puzzling
only to the extent that such factor is unobserved. Duffie, Eckner, Horel, and Saita (2009) discuss a
model in which the posterior distribution of the latent factor is updated at the occurrence of defaults
arriving with an anomalous timing (i.e. overly clustered). A second, independent explanation for
default clustering is counterparty risk. A common limitation of many studies is the abstraction
from the economic links that connect the firms under consideration. In the absence of a suitable
empirical framework and readily available data, such a limitation is both technical and practical. As
a by-product, counterparty risk cannot be identified.

One of the few papers that is successful in isolating counterparty risk from generic credit conta-
gion is the work of Jorion and Zhang (2009). In their study, they consider a sample of 250 bankrupt-
cies between 1999 and 2005 and collect information about counterparty exposures as detailed in
bankruptcy filings. Within this sample, equity value decreases and credit default swap spreads widen
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for those firms whose debtors undergo bankruptcy. Our analysis corroborates these findings but dif-
fers in that our approach not only provides evidence of counterparty risk, but it also includes a study
of its determinants and of their impacts on credit spreads. Moreover, we are not restricted to events
of particular gravity, such as bankruptcies, but instead examine interactions under general market
conditions.

3.3 The NARMA Model
3.3.1 Networks and Adjacency Matrices

As summarized by Allen and Babus (2008), networks which are generally understood as collections
of nodes and links between nodes can be useful representations of economic or financial systems.
The nodes represent the entities in the system; the links describe some direct or indirect relations
between the entities.

In the supplier-customer network we investigate in this paper, each company i is represented by
a node i. A supplier-customer relation between companies i and j is described by the link between
them. The structure of the network can be characterized by adjacency matrix, G, which is a square
matrix with dimension of the number of nodes (i.e. companies) in the network. The entry in the ith
row and jth column of G, (G)ij , is one if and only if i (j) is the supplier (customer) of j (i), and
zero otherwise.

v1

v2 v3

v4 v5

Figure 3.1: A simple example of supplier-customer network.
In this figure, vi, i = 1, ..., 5, denotes the company; the arrow indicates the flow of output,
for example, the arrow between v1 and v2 indicates that company 1 (2) is the supplier

(customer) of company 2 (1).

Consider a simple network depicted in Figure 3.1, vi, i = 1, ..., 5, denotes the company; the arrow
indicates the flow of output, for example, the arrow between v1 and v2 indicates that company 1
(2) is the supplier (customer) of company 2 (1). The G matrix characterizing the structure of the
network is therefore

G =



0 1 1 0 0

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0


.
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The second row of G, for example, refers to company 2, which indicates that company 2 has only
one customer that is company 4 since only the fourth entry is one. More generally, the ith row of G
captures company i’s first-order customer linkages.

Higher-order linkages are indicated by powers of G. Consider the network depicted in Figure 3.1
again, the square of G,

G2 =



0 0 0 2 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


indicates that company 1 has two second-order customers that are company 4 and 5 because its
first row has two non-zero entries which are the fourth and the fifth. The fourth entry has value “2"
since there are two walks of length 2 from node 1 to 4: from v1 to v2 to v4 and from v1 to v3 to v4.
Similarly, the fifth entry has value “1" as there is only one walk of length 2 from node 1 to 5: from v1

to v3 to v5. More formally, the entry in the ith row and jth column of Gk, where k is some positive
integer, is equal to the number of walks from node i to node j of length k, where a walk from node
i to node j of length k is a succession of k links starting at i and ending at j.48 Hence, the ith row
of Gk captures the kth-order customer linkages of company i.

The adjacency matrix G we haven been referring to is unweighted, in the sense that it has entries
of either one or zero. In some applications, it is useful to introduce the concept of strength of a link.
A simple way of doing this is to attach a number to every link, its weight.

3.3.2 Basic Properties of NARMA Models

The next step is to recognize that the adjacency matrix is a linear operator on vectors of node
characteristics. We refer to this operator as the Network Lag Operator (NLO). Indeed, let x be an
n-dimensional vector of node characteristics (i.e. xi is some property of node i). Since the matrix G
is an n×n matrix, G can be right multiplied by x. A NARMA process of order (p, q) is a stochastic
process y on a network (i.e. indexed by the nodes of the network) that follows the data generating
process

y =
p∑

i=1
αiG

iy +
q∑

j=0
βjG

jx+ ε , (3.1)

where x is an (n × 1)-dimensional vector, {αi} and {βj} are families of real parameters, G is the
adjacency matrix (weighted or unweighted) of the network, and ε is an (n × 1)-dimensional vector
of disturbances. More generally x can be an n× k matrix of exogenous characteristics and each βj

is a 1× k vector.
To further understand the action of the network lag operator, consider the following three alter-

native uses of the adjacency matrix. First, G can be taken to be the unweighted adjacency matrix of a
given network. Then the entries of Gx are the sums of neighbors’ characteristics. More specifically,49

(Gx)i =
∑
j∈V

Gijxj =
∑

j|i→j

xj ,
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where the notation j|i → j means “(node) j such that i connects to j”. In the context of supplier-
customer network, the ith entry in Gx is the sum of characteristics of customers that belong to
company i.

A second option is for G to be a row normalized adjacency matrix. Specifically,

(Gx)i =
∑
j∈V

Gijxj =
∑

j|i→j

1
ni
xj = 1

ni

∑
j|i→j

xj ,

where ni is the number of neighbors of i, that is the number of nodes j such that i connects to j. In
a supplier-customer network, (Gx)i is then the average of company i’s customers characteristics.

We utilize the third option in this study - G can be a stochastic weighted adjacency matrix, that
is, the sum of the elements of each row is equal to one.50 Then

(Gx)i =
∑
j∈V

Gijxj =
∑

j|i→j

Gijxj

is the weighted average of the neighbors’ (customers’) characteristics of node i.
The arguments can be easily extended to higher-order effects. That is, (Gkx) contains the sums,

or averages, or weighted averages of the kth-order neighbors’ (customers’) characteristics of each
company, depending on which option of G (unweighted, row normalized, or stochastic weighted) is
used.

3.4 The Network Determinants of Credit Spreads
3.4.1 The Model: Network Spillovers

We focus our analysis on a model of network spillovers. Network spillovers occur when the char-
acteristics of a node’s neighbors have a direct impact on its outcomes. The NARMA(0,1) model is
a simple approach that accounts for neighbors’ characteristics by way of the network lags of the
covariates:

CS i,t = α+ β Firmi,t + γ Customersi,t + δ1 S&Pt + δ2 YieldCurvet + εi,t , (3.2)

where,

1. CS i,t is the credit spread of firm i at time t.

2. Firmi,t is a vector of the firm’s characteristics: leverage, volatility, and a measure of jump-to-
default risk.

Firmi,t = { levi,t, ivoli,t, jumpi,t } .

Alongside their theoretical underpinnings (Merton, 1974), leverage (lev), idiosyncratic volatil-
ity (ivol), and jump-to-default risk (jump) have been documented as determinants of credit
spreads in several studies (for example Campbell and Taksler, 2003; Cremers et al., 2008b).

3. Customersi,t is a vector of the characteristics of the firm’s customers constructed using the
supplier-customer network G:

Customersi,t = { (Gt · levt)i, (Gt · ivolt)i, (Gt · jumpt)i } .
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4. S&Pt is a vector of the market’s characteristics:

S&Pt = { retS&P,t, ivolS&P,t, jumpS&P,t } ,

where retS&P,t is S&P index return at time t.

5. YieldCurvet is a vector with two components,

YieldCurvet = {r10
t , slope(2,10)

t } ,

the 10-year Benchmark Treasury rate r10
t and the slope of the yield curve, defined as the

difference between the 10-year and the 2-year Benchmark Treasury rates, slope(2,10)
t = r10

t −r2
t .

6. εi,t is the white noise disturbance.

3.4.2 Sources

The data in this study is combined from several sources. In this section, we describe in detail how
each variable is constructed. The analysis is carried out on weekly data for January 2004 to August
2013 period.

1. Credit Spreads. Corporate bonds transactions come from the Trade Reporting and Compli-
ance Engine (TRACE), a platform operated by the Financial Industry Regulatory Authority
(FINRA) that covers the majority of US corporate bonds. The TRACE facility has been
operating since 2002 and, by February 2005, its coverage reached approximately 99% of all
public transactions. Our sample covers the period from January 2004 to August 2013. For
each Friday in the sample and for each bond issue, we compute the volume weighted average
yield from transaction data.51 We obtain detailed information on corporate bond issues from
Thomson Reuters DataStream and only select issues with fixed rate coupons and no embed-
ded optionality. We obtain benchmark treasury interest rates from the Federal Reserve Board
website and compute maturity matched credit spreads from a linear interpolation of the yield
curve.52 Finally, for each firm in the sample we select the most traded issue as measured by
the number of trades over the number of days the issue was traded.

2. Firm Leverage. Following Collin-Dufresne, Goldstein, and Martin (2001), for each firm i, we
define firm leverage levi,t as

Book Value of Debt
Market Value of Equity + Book Value of Debt .

53

3. Implied Volatility.Weekly implied volatilities are constructed using the OptionMetrics dataset.
OptionMetrics contains quotes and analytics for US equity option markets and, in particular,
it reports the volatility surface constructed via kernel smoothing on a fixed grid of maturities
and deltas.54 We estimate future volatility as the average of the implied volatilities of near-
the-money call and put options:

ivol = 0.5
(
σimp

i,put(−0.5) + σimp
i,call(0.5)

)
, (3.3)
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where σimp
i,call is the implied volatility of the call option with 60 days to expiry on the underlying

stock of firm i as a function of delta, and similar definition applies to σimp
i,put.

4. Jump Measure. To quantify the probability of negative jumps we use a formula developed
by Yan (2011) as a formalization of the intuitive measure defined by Collin-Dufresne et al.
(2001). The basic idea is to exploit the stylized fact, known as the volatility smile, that, as the
strike value of an option varies, implied volatility follows approximately a concave parabola
— volatility smiles. This pattern is attributed to the probability of extreme moves in firm
value, with such probability being higher the more the smile is accentuated. Practically, one
can use near- and out-of-the money puts and near and in-the-money calls to interpolate the
implied volatility σ(K) as a quadratic polynomial in the strike K and quantify jump risk as
σ(0.9 S) − σ(S), where S is the stock closing price. This is the approach of Collin-Dufresne
et al. (2001). Instead, we use the formula by Yan (2011), who provides a formal argument in
support of the following estimate of the slope of the volatility smile:

jump = σimp
i,put(−0.5)− σimp

i,call(0.5) , (3.4)

where σimp
i,call and σ

imp
i,put are defined as above.

5. Market Returns. Weekly S&P index returns, retS&P,t, are obtained by aggregating daily data
from the Center for Research on Security Prices (CRSP).

3.4.3 Supplier-Customer Network

According to Regulation SFAS no.131, suppliers are required to report those customers that account
for at least 10% of their total yearly sales. This information is contained in the Compustat Customer
Segment files. For each supplier, the key items in each entry of the customers segments are the
customer’s name and the customer’s total amount of sales. As major customers are self-reported
and, in particular, names are manually entered, the matching of a reported customer’s name with a
standard identifier is not a straightforward matter. For example, the same company can be reported
with different names (IBM vs. International Business Machines), acronyms are sometimes included
and sometimes omitted (ADR, LLC, INC, etc.), or the company’s name can be outright misspelled.
We take a very conservative approach - we only consider those links for which there is an exact
match between the reported name (or ticker) and an entry in the Compustat datafile of names (or
ticker).

Following this procedure, we identify 4,700 companies and 21,661 links, between the years 2004
and 2014. There are two aspects that dictate the network dynamics. First, when a link is identified,
it is considered active for up to one year prior to the reported date. Second, as fiscal years vary
between businesses, new links are established and existing links are dropped throughout the year.
Overwhelmingly, links are updated in the month of December (15,728 links reported), followed by
end-of-quarter-months (March, June, and September; 3,965 links reported), and the rest (1,968
links). Overall, the supplier-customer network so constructed, although dynamic, is slowly varying.

Of the 4,700 companies in the supplier-customer network, 2,767 are covered in CRSP, 1,949 are
reported in the OptionMetrics dataset, and only 384 firms are active in the credit markets. For each
time unit t, using the supplier-customer relations identified from the Compustat Customer Segment
files, first we construct unweighted adjacency matrix Gt according to the rules described in Section
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3.3. Then for each supplier (i.e. each row) in Gt, links (i.e. entries that have value of one) are weighted
by the amount of sales made to the target customer, normalized by the observed total amount of
sales of this supplier. That is, as described in Section 3.3, the sum of the entries in each row of Gt

is equal to one. With such weighting, more importance is given to those customers that account for
a larger shares of trades. Let levt, ivolt, and jumpt be the vectors of node (firm) characteristics at
time t, then we compute the weighted average of customers’ characteristics as Gt · levt, Gt · ivolt and
Gt · jumpt.

Table 3.1 contains the summary statistics for the final sample. The time period is January 2004
to August 2013 and the sample frequency is weekly. The sample includes bonds that have a spread of
less than 30% and more than 0.1%, maturities that are between 5 and 35 years. After matching the
firms in the supplier-customer network with the corporate bond trades in TRACE, with the bond
characteristics from DataStream, and dropping incomplete observations, our final sample consists of
254 firms, and 19,676 weekly observations. Our panel is unbalanced: the number of observations for
each firm varies between 1 to 486, with a median value of 142. The median maturity of the sample
is February 2022.

3.4.4 Estimation Results

The regression estimates in Table 3.2 indicate that network lags are economically and statistically
significant determinants of corporate credit spreads. Moreover, the signs of the coefficients, when
significant, are consistent with theoretical predictions. Standard errors are estimated following the
procedure of Driscoll and Kraay (1998), which is robust to heteroskedasticity, cross-sectional and
temporal dependence. Our most important findings are reported in Table 3.2 below.55

We find that an increase in the average of the customers’ leverage increases the credit spread. Its
economic impact is sizable: an increase of one standard deviation (0.193) in the average leverage of
the customers leads to a widening of the credit spread of up to 9.611 basis points (∼ 0.193×0.498×100
bp). In comparison, the credit spreads increase by 30.352 basis points (∼ 0.226 × 1.343 × 100 bp)
when own leverage increases by one standard deviation (0.226).

And also, an increase in the average of the customers’ option implied volatilities increases the
credit spread as well: an increase of one standard deviation (0.216) in the average option implied
volatilities of the customers leads to a widening of the credit spread of up to 8.942 basis points
(∼ 0.216× 0.414× 100 bp).

S&P returns, volatility and jump risk are included in the model as control variables for general
economic conditions. Across all models S&P returns have a positive impact on credit spreads and
are statistically significant. Neither S&P implied volatility nor S&P jump risk are significant when
yield curve covariates are included in the regression.

3.4.5 Network Determinants of Credit Spreads in Different Periods

To investigate the effects of network lags on corporate credit spreads over time, we decompose the
full sample into separate periods. Specifically, as our data is on North American supplier-customer
network of public companies and it spins over the 2008-2009 U.S. recession, we divide our sample
into three periods: before recession (January 2004 - November 2007), recession (December 2007 -
June 2009) and after recession (July 2009 - August 2013).56 The main specification (see Equation
3.2) is estimated in each period to contrast the significance of network lags over time.
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The regression results are presented in Table 3.3. Interestingly, we find that customers’ charac-
teristics are not statistically significant determinants of corporate credit spread before and during the
recession; however, customers spillovers emerge afterwards, that is, after the recession, an increase
in the average of the customers’ leverage or option implied volatilities increases the credit spread.
The estimated coefficients are comparable to what we obtained in the full sample period in terms of
sign, size and level of statistical significance.

After undergoing the economic hardship during the recession, corporations that have customers
with higher default risk are now perceived by the public to be more susceptible to default themselves.
Moreover, after times of financial distress, investors who suffered from the economic hardship now
become less tolerant towards the credit risk contained in their corporate bonds investments, and
thus are more alert to the counterparty risk associated with the bond issuers, and require higher
credit spreads accordingly for compensation. This explains why effect of counterparty risk becomes
stronger after the recession.

3.5 Robustness
3.5.1 Higher Network Lags and Model Specification

To investigate spillovers from higher network lags, we perform the regression

CS i,t = α+ β Firmi,t + γ Customersi,t + δ1 S&Pt + δ2 YieldCurvet + εi,t , (3.5)

where

Customersi,t = { (Gt · levt)i, (Gt · ivolt)i, (Gt · jumpt)i, (G2
t · levt)i, (G2

t · ivolt)i, (G2
t · jumpt)i } ,

(G2
t · levt)i, (G2

t · ivolt)i and (G2
t · jumpt)i are weighted average of second-order customers’ charac-

teristics, and thus γ is 6-vector of parameters quantifying first-order and second-order customers
spillovers.

As presented in Table 3.4, coefficients pertaining to the second-order customers’ characteristics
are generally insignificantly different from zero across time (while the main results are practically
unchanged). This is mainly due to the fact that the supplier-customer network resulting from our
final sample does not contain many long walks. Indeed, the non-zero observations for higher lags are
only 316 at degree 2 - as the matrix entry (G2)ij is equal to the number of walks from node i to
node j of length 2, most of the entries in the square of our adjacency matrices are zero.

The sparseness of the higher powers of our network lag operators leads to another consequence: it
is sufficient for us to focus on a model of network spillovers and ignore the autoregressive component.
When the supplier-customer network does not contain many long walks, it is easy to show that a
network autoregressive model is equivalent to a finite network moving average.

Under certain regularity conditions, a NARMA process admits a Wold-type representation as a
network moving average (NMA) of infinite order. For example, consider the following NARMA(1,1)
process

y = αGy + βx+ ε.
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Let In be the identity matrix of dimension given by the number of nodes in the network. Then, when
the matrix (I− αG) is invertible y admits a NMA(∞) representation,57 indeed

y − αGy = βx+ ε

(I− αG)y = βx+ ε

y = (I− αG)−1(βx+ ε) =
∞∑

k=0
αkGk(βx+ ε) . (3.6)

The general NARMA model can be represented as a NMA whenever the matrix (I −
∑
αkG

k) is
invertible.58

For the sake of argument, consider the extreme example of a network in which there are no
walks of length greater than one. As the matrix entry (Gk)ij is equal to the number of walks from
node i to node j of length k, entries in higher powers of adjacency matrix of such network are zero.
Expanding (3.6),

y = (I + αG+ α2G2 + . . . )(βx+ ε)

= βx+ αβGx+ ε̃ ,

for an appropriate error process ε̃.59 As a result there is little difference between local averages and
global effects, making the case for the need of an autoregressive component weak.

3.5.2 Bi-directionality of Supplier-Customer Relationships

The supplier-customer relationship is clearly bi-directional and, potentially, so is the possibility of
risk transfer. Our analysis so far has been concerned solely with the risks flowing from customers to
their suppliers and has disregarded the possibility that distressed suppliers affect their customers’
financial standing. There are several counter-examples that illustrate this possibility. For example,
at the end of 2011, Western Digital had to shut down its Thai factories as a consequence of severe
floods, cutting its hard drive production capacity by 60%. The incident influenced computer makers
world-wide.60 Earlier in the same year, the Japanese Earthquake similarly caused serious disruptions
to the worldwide supply chain.61 In this section, we estimate the influence of suppliers’ characteristics
on the credit worthiness of customers.

In order to account for suppliers’ effects, consider again the simple network depicted in Figure
3.1 and recall that the arrow indicates the flow of output. The transpose of G capturing this network
is

GT =



0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 1 0 0

0 0 1 0 0


.

The second row of GT , for instance, indicates that company 2 has only one supplier which is company
1 since only the first entry is one. That is, company i’s first-order supplier linkages are characterized
by the ith row of GT . The initial specification (see Equation 3.2) is augmented with the introduction
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of a term containing the characteristics of the firm’s suppliers constructed using GT

Suppliersi,t = { (GT
t · levt)i, (GT

t · ivolt)i, (GT
t · jumpt)i } .

Table 3.5 reports estimates under various restrictions of the following model:

CS i,t = α+ β Firmi,t + γc Customersi,t + γs Suppliersi,t + δ1 S&Pt + δ2 YieldCurvet + εi,t . (3.7)

Before the recession, coefficients on suppliers’ leverage and jump risk are significantly different from
zero; during the recession, suppliers’ implied volatilities have significant impact on firm’s credit
spread. It might be counterintuitive that their impacts are negative - this might be due to the
nature of the supplier-customer network constructed from the Compustat Customer Segment files.
As described in Section 3.4–3.4.3, according to Regulation SFAS no.131, supplier-customer relations
are reported and thus identified from the data only when the customer contributes at least 10% to
its supplier’s total yearly sales. That is, in the network we construct, from a supplier’s perspective,
most of its important customers in terms of share of sales are included. However, for small company
that is a customer, although some suppliers are important from the customer’s own perspective,
such supplier-customer relation is not reported if this small company does not contribute at least
10% to its supplier’s total yearly sales. Hence the suppliers’ characteristics summarized from our
network are not as representative as the customers’ ones, which may lead to biasness in estimated
coefficients pertaining to suppliers’ characteristics.

For our purposes, there are two lessons that emerge form Table 3.5. The first one is that the
economic and statistical significance of customer’s effects is robust to the introduction of supplier’s
covariates. The second is that the estimated coefficients on suppliers’ characteristics become less
negative in the after recession period, which is consistent with the argument we made in Section
3.4–3.4.5, that is, investors become more alert to counterparty risk after suffering economic hardship,
and thus require higher credit spreads accordingly for compensation.

3.5.3 Counterparty Risk and Cross-Industry Effects

Beside originating from counterparty risk, an alternative explanation for the presence of network
effects in our model of credit spreads is cross-industry spillover. Averaging over customers’ char-
acteristics, the argument goes, builds proxies for whole industrial sectors that are connected along
the supply-chain. Therefore, according to this hypothesis, network effects should be interpreted as
broad macroeconomic covariates and not as measures of idiosyncratic counterparty shocks. To ad-
dress these concerns, we introduce control variables for both industry and cross-industry economic
conditions.

We obtain value-weighted returns of industry portfolios from French’s website.62 These returns
are constructed by assigning each AMEX, NYSE and NASDAQ stock to a portfolio according to
its Standard Industrial Classification (SIC) code. For robustness, we consider various classifications,
resulting in 12, 17, 30, 38 and 48 portfolios. For example the 12-industry classification consists of the
following 12 categories: 1. consumer non-durables; 2. consumer durables; 3. manufacturing; 4. oil,
gas, and goal extraction and products; 5. chemicals and allied products; 6. business equipment;
7. telephone and television transmission; 8. utilities; 9. shops (wholesale, retail and some services);
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10. healthcare, medical equipment, and drugs; 11. finance; 12. other. Detailed definitions for the
12-industry classification, as well as the others, are available from French’s website.

Industry variables are constructed as follows. First, for each classification scheme and each in-
dustry portfolio we compute weekly realized volatilities. Second, given a classification scheme, each
firm in our dataset is assigned to a portfolio using its Compustat SIC code. Third, each firm’s neigh-
boring industries are identified by the industries of the firm’s customers, and neighboring industries
returns and volatilities are computed as weighted averages of weekly returns and volatilities.63 This
extension fits naturally within the modeling framework described thus far. Let indretk and indvolk

denote the returns and volatility for industry k, and denote with k(i) the industry of firm i. Define
the n× 2 matrix Ind of firm specific industry characteristics as the vector

Indi = (indretk(i), indvolk(i)) ,

where n is the number of firms. With this notation, the model with industry and cross-industry
effects is

y = βFirm + γ(G · Firm)︸ ︷︷ ︸
Firm and
Customers
effects

+ δ(S&P,YieldCurve)︸ ︷︷ ︸
Market
effects

+ ηInd + φ(G · Ind)︸ ︷︷ ︸
Industry and
Cross-industry

effects

+ε ,

where η and φ are 2-vectors of parameters quantifying industry and cross-industry effects, respec-
tively.

Estimation results using 12-industry classification are presented in Table 3.6. Our principal
results remain unchanged when adding the industry and cross-industry conditions: the estimates of
the network effects are the same for all practical purposes. These results are robust when using other
industry classification schemes (17, 30, 38 and 48 industries) as well.64

3.5.4 Interactions between Network Effects and Bond or Firm Charac-
teristics

To investigate the interactions between customers spillovers and key bond features or firm character-
istics, we divide our sample into groups according to bond grade (investment grade and high yield),
bond days to maturity by quartile, and firm size (total asset) by quartile, respectively, and estimate
the main specification (see Equation 3.2) in each group. As presented in Table 3.7, customers’ im-
plied volatility is significantly and positively correlated to firm’s credit spread for investment grade
bonds; whereas, for high yield bonds, network lags do not have significant impact on firm’s credit
spread. This could be due to the fact that high yield bonds are already perceived by the investors to
have much higher default risk than investment grade bonds, which makes the marginal effect from
counterparty risk on credit spread immaterial for them. No clear pattern is observed for interactions
between customers spillovers and bond days to maturity or firm size.

3.5.5 Customers Spillovers with Other Control Variables

In order to further examine the robustness of our principal result, besides the firm-level credit risk
determinants and macroeconomic conditions that we have controlled for, in this section we also
include several important empirically-motivated credit risk determinants into our main specification
(see Equation 3.2): total assets, market to book ratio, return on asset ratio at the firm-level; Baa-Aaa
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spread (as a measure of market credit price) and swap-Treasury spread (as a measure of fixed income
market liquidity) at the macro-level; and the bond feature days to maturity. As reported in Table
3.8, the statistical significance of customer’s effects is robust to the introduction of various controls.

3.6 Conclusions
The main objective of this paper is to evaluate the market assessment of counterparty risk in supplier-
customer relationships. To this end, we study the network determinants of corporate credit spreads
and use network effects as an instrument for counterparty risk. Using an econometric framework
that allows us to estimate network effects, we show that along the supply chain, network effects are
statistically significant determinants of credit spreads.

Besides the empirical analysis of counterparty risk, an important contribution of this paper is
the introduction of a powerful modeling framework for financial networks. Its major strengths are
the ability to model parsimoniously cross-sectional dependence and the possibility to quantify the
impact that neighboring units have on each other. In our application of the NARMA model we
showed the importance of network effects in asset pricing. There are several possible directions for
future research in this area. The interbank loans market and fragmentation that characterizes equity
trading are only two of many interesting topics where we believe that the application of our modeling
framework can lead to new insights.
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3.7 Notes
40For a summary of the theoretical literature and a study of the determinants of credit terms, see Ng,

Smith, and Smith (1999).
41Regulation SFAS 131 is established in FASB Statement No. 131, Disclosures about Segments of an En-

terprise and Related Information (FASB, 1997). SFAS 131 is designed to increase information disaggregation,
providing financial analysts with additional data about diversification strategies and exposures.

42A textbook example is the seemingly unrelated regressions method (SURE) introduced by Zellner (1962)
which can account for cross-sectional correlations in long, narrow panels; asymptotically correct inference
can be achieved using the method of Driscoll and Kraay (1998) to consistently estimate standard errors.
Driscoll-Kraay standard errors are robust to heteroskedasticity, cross-sectional and temporal dependence.

43Hong, Kubik, and Stein (2004) document that socially engaged households are more likely to participate
in the stock market, and Cohen, Frazzini, and Malloy (2008) find that portfolio managers place larger bets
on firms to which they have social ties. Kuhnen (2009) shows that the contracting decisions made by mutual
funds, such as selecting the board of directors and fund advisors, are influenced by past business relationships.
Cohen and Frazzini (2008a) suggest that investors fail to promptly take into account supplier-customer links
and construct a customer momentum strategy that yield abnormal returns.

44Boss, Elsinger, Summer, and Thurner (2004) and Soramaki, Bech, Arnold, Glass, and Beyeler (2007)
analyze the Austrian interbank market and the Fedwire Funds Service, respectively, and they both find these
networks have a low average path length and low connectivity. Applying methods of network theory, Müller
(2006) uses simulations to assess the risk of contagion in the Swiss interbank market.

45For example, in the supplier-customer network that we consider, the sales associated to each edge (each
supplier-customer pair) provide relevant economic weights.

46See Lucas (1995), and more recently Akhavein, Kocagil, and Neugebauer (2005), Das, Freed, Geng, and
Kapadia (2006), and de Servigny and Renault (2002).

47 According to the doubly stochastic model, defaults are independent Poisson arrivals, conditional on
past determinants of default intensities.

48See Van Mieghem (2010, pag. 26, Lemma 3).
49The sums are written as sums over all the nodes in V . This is equivalent to summing over j that ranges

from 1 to n.
50A square matrix of nonnegative real numbers is stochastic if the sum of the elements of each row is equal

to one. This concept of stochasticity is not related to the concept of random networks.
51In our calculations we consider only regular trades (trades executed between 8:00 a.m. to 6:29:59 p.m.,

Eastern Time, and reported within 15 minutes of trade execution) which are not flagged as having a “special
price”. Moreover, we impute large trades to their minimum possible size. Indeed, for investment grade bonds
(junk bonds) when the par value of a transaction is greater than $5 million ($1 million), the quantity field
in the TRACE dataset contains the value “5MM+” (“1MM+”).

52The yield curve is linearly interpolated using maturities of 1, 3, 6 months and of 2, 3, 5, 7, 10, 30 years.
53Book Value of Debt is the the sum of long term debt (Compustat item DLTTQ) and debt in liabilities

(Compustat item DLCQ), while Market Value of Equity is the product of the number of share outstanding
(CRSP item SHROUT) and the price or bid/ask average (CRSP item PRC).

54The OptionMetrics volatility surface contains information on standardized options, both calls and puts,
with expirations of 30, 60, 91, 122, 152, 182, 273, 365, 547, and 730 calendar days, at deltas from 0.20 to 0.80
in steps of 0.05 units for calls and at negative deltas for puts. For European options, the implied volatility
is calculated inverting numerically the Black-Scholes model. For American options, the implied volatility
is estimated by evaluating iteratively a binomial tree model until the model price converges to the market
price.
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55All the numerical examples in this section refer to model 6 in Table 3.2. Since the estimated coefficients
are stable across various models, the differences in the interpretation of the results are immaterial.

56According to the U.S. National Bureau of Economic Research (NBER), the 2008-2009 U.S. recession
began in December 2007 and ended in June 2009.

57The matrix (I − αG) is invertible if (1) G is row normalized and |α| ≤ 1, or more generally (2) α−1 ∈
(minσ(G),max σ(G)), where σ(G) is the spectrum of G, i.e. the set of all eigenvalues of G.

58A condition for the invertibility of the matrix (I−
∑

αkG
k) is that limn→∞(

∑
αkG

k)n exists. A sufficient
condition is that

∑
|αk| · ||Gk|| < 1, where || · || is any matrix norm.

59In this case powers of the adjacency matrix of order two and higher are zero and the vector of disturbances
ε̃ is equal to ε+ αGε.

60Counting the cost of calamities, The Economist, Jan 14th, 2012.
61Broken Links, The Economist, Mar 31st, 2011.
62These data and definitions are available online at Ken French’s website:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
63As before, weights are normalized sales.
64For the sake of space, estimation results using 17-, 30-, 38- and 48-industry classification are omitted

from Table 3.6. These results are available upon request.
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3.8 Tables

Table 3.1: Summary Statistics

This table presents summary statistics for the regressors and regressand in our final sample.
The data covers the time period from January 2004 to August 2013 with weekly frequency.
Credit spreads are computed using transaction data as differences between volume weighted
average yields and a linear interpolation of benchmark treasury bond yields. Leverage is
defined as the ratio between book value of debt and total capital. Volatility is estimated as
the average of the implied volatilities of near-the-money call and put options with 60 days
to expiry. The jump measure quantifies the risk of negative jumps using an estimate of the
slope of the volatility smile (see Equation (3.4)). The slope of the yield curve is defined as the
difference between the 10-year, r10, and the 2-year, r2, Benchmark Treasury rates. Firm,
Customers, Suppliers, and S&P refer to individual, downstream neighbors (customers),
upstream neighbors (suppliers), and market characteristics, respectively. In particular, for
each firm, customers’ characteristics are averages of leverage, volatility and jump measure,
weighted on sales shares, of their customers. Suppliers’ characteristics are defined similarly.
Several firms in our supplier-customer network have no customers. In this case, customers’
characteristics are zero. Summary statistics including these observation are also reported
(under “Customers (all)”). The same considerations apply to the definition of “Suppliers
(all)”.

Mean SD Min Max Obs

All Maturities (254 Firms)

Credit Spread 2.588 2.380 0.109 29.800 21861

Leverage

Firm 0.345 0.226 0.012 0.999 20293
Customers 0.184 0.193 0.000 0.998 3746
Customers (all) 0.031 0.106 0.000 0.998 21861
Suppliers 0.136 0.174 0.000 0.996 16968
Suppliers (all) 0.106 0.163 0.000 0.996 21861

Implied Volatility

Firm 0.309 0.166 0.021 2.489 20386
Customers 0.286 0.216 0.006 1.833 3080
Customers (all) 0.040 0.128 0.000 1.833 21861
Suppliers 0.201 0.204 0.000 2.566 15618
Suppliers (all) 0.143 0.195 0.000 2.566 21861
S&P 0.193 0.084 0.095 0.608 21860

Implied Jump Measure

Firm 0.006 0.039 −0.679 1.446 20386
Customers 0.007 0.047 −1.051 0.700 3080
Customers (all) 0.001 0.018 −1.051 0.700 21861
Suppliers 0.005 0.050 −1.038 1.430 15618
Suppliers (all) 0.004 0.043 −1.038 1.430 21861
S&P 0.001 0.008 −0.039 0.038 21860

Weekly Returns S&P 0.001 0.026 −0.195 0.116 21860

Term Structure r10 3.428 1.015 1.470 5.220 21861
slope 1.546 0.939 −0.170 2.870 21861
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Table 3.2: Network Determinants of Credit Spreads

Regression estimates for various restrictions of the model

CS i,t = α+ β Firmi,t + γ Customersi,t + δ1 S&Pt + δ2 YieldCurvet + εi,t ,

where Firmi,t, Customersi,t and S&Pt are vectors of firm’s, customers’, and market’s charac-
teristics, including leverage lev (for firms and customers) and returns ret (for the S&P), op-
tion implied volatilities ivol and an implied jump risk measure jump. The vector YieldCurvet
has two components, the 10-year Benchmark Treasury rate r10

t and the slope of the yield
curve, defined as the difference between the 10-year and the 2-year Benchmark Treasury
rates, slope(2,10)

t = r10
t − r2

t . The index i refers to the i-th observation at time t. The obser-
vation frequency is weekly. The time period is January 2004 to August 2013. The sample
includes bonds that have a spread of less than 30% and higher than 0.1%, and maturities
between 5 and 35 years. The numbers in parenthesis are Driscoll-Kraay p-values (robust to
heteroskedasticity, cross-sectional and temporal dependence).

Classical Models Customers Spillovers

(1) (2) (3) (4) (5) (6)

Firm

lev, β1 1.386∗∗∗ 1.326∗∗∗ 1.308∗∗∗ 1.416∗∗∗ 1.353∗∗∗ 1.343∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ivol, β2 7.931∗∗∗ 7.835∗∗∗ 7.930∗∗∗ 7.854∗∗∗ 7.771∗∗∗ 7.820∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

jump, β3 4.248∗ 4.141∗ 3.948∗ 4.237∗ 4.131∗ 3.951∗
(0.027) (0.028) (0.035) (0.029) (0.029) (0.035)

Customers

lev, γ1 0.597∗∗∗ 0.513∗∗∗ 0.498∗∗∗
(0.000) (0.000) (0.001)

ivol, γ2 0.467∗∗∗ 0.414∗∗∗ 0.414∗∗∗
(0.000) (0.000) (0.000)

jump, γ3 0.440 0.215 0.250
(0.306) (0.541) (0.469)

S&P

ret, δ1,1 4.153∗∗∗ 4.143∗∗∗
(0.000) (0.000)

ivol, δ1,2 0.072 0.221
(0.876) (0.636)

jump, δ1,3 −1.526 −1.521
(0.501) (0.503)

Yield Curve

r10, δ2,1 −0.301∗∗∗ −0.298∗∗∗ −0.297∗∗∗ −0.294∗∗∗
(0.000) (0.000) (0.000) (0.000)

slope, δ2,2 −0.077∗∗ −0.083∗∗ −0.078∗∗ −0.088∗∗
(0.010) (0.006) (0.008) (0.003)

Constant −0.528∗∗∗ 0.662∗∗∗ 0.622∗∗∗ −0.550∗∗∗ 0.630∗∗∗ 0.577∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 19676 19676 19676 19676 19676 19676
R2 0.56 0.57 0.58 0.56 0.58 0.58
∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 3.3: Network Determinants of Credit Spreads in Different Periods

Regression estimates of the model in different time periods

CS i,t = α+ β Firmi,t + γ Customersi,t + δ1 S&Pt + δ2 YieldCurvet + εi,t

The variables and notation are detailed in the caption of Table 3.2. The observation fre-
quency is weekly. There are four time periods classified according to the 2008-2009 U.S.
recession: before recession (January 2004 - November 2007), recession (December 2007 -
June 2009), after recession (July 2009 - August 2013), and full period (January 2004 - Au-
gust 2013). The sample includes bonds that have a spread of less than 30% and higher than
0.1%, and maturities between 5 and 35 years. The numbers in parenthesis are Driscoll-Kraay
p-values (robust to heteroskedasticity, cross-sectional and temporal dependence).

Before Recession Recession After Recession Full Period

Firm

lev, β1 1.743∗∗∗ 1.424∗∗∗ 1.098∗∗∗ 1.343∗∗∗
(0.000) (0.000) (0.000) (0.000)

ivol, β2 6.500∗∗∗ 8.098∗∗∗ 7.527∗∗∗ 7.820∗∗∗
(0.000) (0.000) (0.000) (0.000)

jump, β3 −1.927∗∗ 5.301 4.163∗∗∗ 3.951∗
(0.004) (0.126) (0.000) (0.035)

Customers

lev, γ1 0.045 1.123 0.494∗∗∗ 0.498∗∗∗
(0.725) (0.164) (0.000) (0.001)

ivol, γ2 0.125 0.419 0.510∗∗∗ 0.414∗∗∗
(0.276) (0.271) (0.000) (0.000)

jump, γ3 0.569 0.703 −0.095 0.250
(0.329) (0.337) (0.831) (0.469)

S&P

ret, δ1,1 2.791∗∗ 3.272∗∗∗ 3.317∗∗∗ 4.143∗∗∗
(0.008) (0.000) (0.000) (0.000)

ivol, δ1,2 0.695 −2.450∗∗ −2.742∗∗∗ 0.221
(0.388) (0.003) (0.000) (0.636)

jump, δ1,3 −2.308 −2.660 −7.056∗∗∗ −1.521
(0.069) (0.335) (0.001) (0.503)

Yield Curve

r10, δ2,1 0.047 −0.732∗∗∗ −0.096 −0.294∗∗∗
(0.421) (0.000) (0.450) (0.000)

slope, δ2,2 −0.226∗∗∗ 0.054 −0.281 −0.088∗∗
(0.000) (0.484) (0.107) (0.003)

Constant −0.802∗∗ 2.683∗∗∗ 1.166∗∗∗ 0.577∗∗∗
(0.003) (0.000) (0.000) (0.000)

N 6039 3425 10212 19676
R2 0.49 0.56 0.46 0.58
∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 3.4: Network Spillovers from Second Lag of Firm Characteristics
Regression estimates of the model in different time periods

CS i,t = α+ β Firmi,t + γ Customersi,t + δ1 S&Pt + δ2 YieldCurvet + εi,t ,

where γ is 6-vectors of parameters quantifying first-order and second-order customers spillovers,
Customersi,t is vector of first-order and second-order customers’ characteristics

Customersi,t = { (Gt · levt)i, (Gt · ivolt)i, (Gt · jumpt)i, (G2
t · levt)i, (G2

t · ivolt)i, (G2
t · jumpt)i } .

Further variables and notation are detailed in the caption of Table 3.2. The time period classification
and sample selection are detailed in the caption of Table 3.3. The observation frequency is weekly.
The numbers in parenthesis are Driscoll-Kraay p-values (robust to heteroskedasticity, cross-sectional
and temporal dependence).

Before Recession Recession After Recession Full Period

Firm

lev, β1 1.743∗∗∗ 1.401∗∗∗ 1.089∗∗∗ 1.334∗∗∗
(0.000) (0.000) (0.000) (0.000)

ivol, β2 6.501∗∗∗ 8.097∗∗∗ 7.530∗∗∗ 7.821∗∗∗
(0.000) (0.000) (0.000) (0.000)

jump, β3 −1.930∗∗ 5.297 4.164∗∗∗ 3.950∗
(0.004) (0.126) (0.000) (0.035)

Customers

lev, γ1 0.043 1.141 0.505∗∗∗ 0.508∗∗∗
(0.738) (0.158) (0.000) (0.001)

ivol, γ2 0.125 0.443 0.514∗∗∗ 0.420∗∗∗
(0.273) (0.248) (0.000) (0.000)

jump, γ3 0.576 0.799 −0.106 0.251
(0.319) (0.298) (0.811) (0.466)

second-lag lev, γ4 0.360 −0.979 −0.646∗ −0.436
(0.391) (0.270) (0.034) (0.105)

second-lag ivol, γ5 −0.350 −0.883 −0.566 −0.767∗∗
(0.094) (0.312) (0.156) (0.003)

second-lag jump, γ6 4.063∗ −14.184 2.288 2.592
(0.042) (0.417) (0.434) (0.278)

S&P

ret, δ1,1 2.797∗∗ 3.268∗∗∗ 3.308∗∗∗ 4.139∗∗∗
(0.008) (0.000) (0.000) (0.000)

ivol, δ1,2 0.702 −2.420∗∗ −2.739∗∗∗ 0.224
(0.381) (0.003) (0.000) (0.630)

jump, δ1,3 −2.296 −2.629 −7.037∗∗∗ −1.488
(0.070) (0.337) (0.001) (0.512)

Yield Curve

r10, δ2,1 0.047 −0.727∗∗∗ −0.095 −0.294∗∗∗
(0.425) (0.000) (0.456) (0.000)

slope, δ2,2 −0.227∗∗∗ 0.054 −0.283 −0.087∗∗
(0.000) (0.480) (0.105) (0.004)

Constant −0.801∗∗ 2.670∗∗∗ 1.170∗∗∗ 0.579∗∗∗
(0.003) (0.000) (0.000) (0.000)

N 6039 3425 10212 19676
R2 0.49 0.56 0.46 0.58
∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 3.5: Customers Spillovers and Suppliers Spillovers
Regression estimates of the model in different time periods

CS i,t = α+ β Firmi,t + γc Customersi,t + γs Suppliersi,t + δ1 S&Pt + δ2 YieldCurvet + εi,t ,

where Suppliersi,t is vector of suppliers’ characteristics, including leverage lev, option implied volatil-
ities ivol and an implied jump risk measure jump. Further variables and notation are detailed in the
caption of Table 3.2. The observation frequency is weekly. There are four time periods classified ac-
cording to the 2008-2009 U.S. recession: before recession (January 2004 - November 2007), recession
(December 2007 - June 2009), after recession (July 2009 - August 2013), and full period (January
2004 - August 2013). The sample includes bonds that have a spread of less than 30% and higher
than 0.1%, and maturities between 5 and 35 years. The numbers in parenthesis are Driscoll-Kraay
p-values (robust to heteroskedasticity, cross-sectional and temporal dependence).

Before Recession Recession After Recession Full Period

Firm

lev, β1 1.753∗∗∗ 1.406∗∗∗ 1.102∗∗∗ 1.348∗∗∗
(0.000) (0.000) (0.000) (0.000)

ivol, β2 6.474∗∗∗ 8.101∗∗∗ 7.526∗∗∗ 7.814∗∗∗
(0.000) (0.000) (0.000) (0.000)

jump, β3 −1.917∗∗ 5.292 4.171∗∗∗ 3.954∗
(0.004) (0.127) (0.000) (0.035)

Customers

lev, γc
1 0.006 1.048 0.484∗∗∗ 0.465∗∗

(0.962) (0.198) (0.000) (0.002)
ivol, γc

2 0.093 0.368 0.502∗∗∗ 0.387∗∗∗
(0.412) (0.322) (0.000) (0.000)

jump, γc
3 0.540 0.649 −0.098 0.230

(0.344) (0.369) (0.827) (0.506)

Suppliers

lev, γs
1 −0.251∗∗∗ 0.209 0.048 −0.015

(0.000) (0.358) (0.524) (0.805)
ivol, γs

2 −0.040 −0.529∗ −0.078 −0.143∗
(0.425) (0.020) (0.158) (0.011)

jump, γs
3 −0.542∗ −0.026 0.031 −0.175

(0.030) (0.967) (0.856) (0.216)

S&P

ret, δ1,1 2.771∗∗ 3.320∗∗∗ 3.316∗∗∗ 4.153∗∗∗
(0.008) (0.000) (0.000) (0.000)

ivol, δ1,2 0.703 −2.463∗∗ −2.740∗∗∗ 0.230
(0.380) (0.003) (0.000) (0.623)

jump, δ1,3 −2.300 −2.521 −7.051∗∗∗ −1.503
(0.070) (0.362) (0.001) (0.508)

Yield Curve

r10, δ2,1 0.053 −0.736∗∗∗ −0.096 −0.294∗∗∗
(0.369) (0.000) (0.450) (0.000)

slope, δ2,2 −0.223∗∗∗ 0.053 −0.281 −0.087∗∗
(0.000) (0.481) (0.108) (0.004)

Constant −0.788∗∗ 2.763∗∗∗ 1.171∗∗∗ 0.599∗∗∗
(0.003) (0.000) (0.000) (0.000)

N 6039 3425 10212 19676
R2 0.49 0.56 0.46 0.58
∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 3.6: Industry Controls for Customers Spillovers

Regression estimates for the model with industry and cross-industry effects

y = βFirm + γ(G · Firm) + δ(S&P,YieldCurve) + ηInd + φ(G · Ind) + ε,

where η and φ are 2-vectors of parameters quantifying industry and cross-industry effects, respectively. Let indretk and indvolk denote
the returns and volatility for industry k, and denote with k(i) the industry of firm i. Then Ind is the matrix of firm specific industry
characteristics

Indi = (indretk(i), indvolk(i)),

and the vector G · Ind involves characteristics of downstream industries (customers’ industries). We use the same variable definitions
as in Table 3.2. The observation frequency is weekly. There are four time periods classified according to the 2008-2009 U.S. recession:
before recession (January 2004 - November 2007), recession (December 2007 - June 2009), after recession (July 2009 - August 2013), and
full period (January 2004 - August 2013). The sample includes bonds that have a spread of less than 30% and higher than 0.1%, and
maturities between 5 and 35 years. 12-industry classification is used. The numbers in parenthesis are Driscoll-Kraay p-values (robust to
heteroskedasticity, cross-sectional and temporal dependence).

Before Recession Recession After Recession Full Period

Firm

lev, β1 1.689∗∗∗ 1.518∗∗∗ 1.096∗∗∗ 1.353∗∗∗
(0.000) (0.000) (0.000) (0.000)

ivol, β2 6.595∗∗∗ 7.903∗∗∗ 7.522∗∗∗ 7.765∗∗∗
(0.000) (0.000) (0.000) (0.000)

jump, β3 −1.943∗∗ 5.212 4.090∗∗∗ 3.855∗
(0.007) (0.132) (0.000) (0.040)

Customers

lev, γ1 0.171 0.439 0.385∗∗ 0.343∗∗∗
(0.176) (0.368) (0.001) (0.001)

ivol, γ2 0.207 0.601 0.411∗∗∗ 0.394∗∗∗
(0.072) (0.083) (0.000) (0.000)

jump, γ3 0.649 0.832 −0.103 0.244
(0.268) (0.231) (0.832) (0.491)
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Table 3.6: (continued)

Before Recession Recession After Recession Full Period

S&P

ret, δ1,1 2.665 −0.818 2.159 0.102
(0.084) (0.710) (0.082) (0.941)

ivol, δ1,2 1.459 −2.421∗∗ −2.407∗∗∗ 0.398
(0.060) (0.008) (0.000) (0.377)

jump, δ1,3 −1.738 −2.047 −6.240∗∗ −1.614
(0.136) (0.453) (0.003) (0.439)

Yield Curve
r10, δ2,1 0.057 −0.664∗∗∗ −0.119 −0.290∗∗∗

(0.352) (0.000) (0.341) (0.000)
slope, δ2,2 −0.233∗∗∗ 0.063 −0.254 −0.087∗∗

(0.000) (0.386) (0.138) (0.002)

Industry
ret, η1 0.008 0.146∗ 0.045 0.155∗∗

(0.875) (0.049) (0.309) (0.007)
vol, η2 −0.108∗ 0.026 −0.051 −0.031

(0.017) (0.522) (0.060) (0.202)

Cross-Industry
ret, φ1 −0.016 0.046 0.031 0.059

(0.795) (0.480) (0.422) (0.127)
vol, φ2 −0.170∗∗∗ 0.061 0.110∗∗∗ 0.064∗

(0.000) (0.122) (0.000) (0.019)
Constant −0.852∗∗ 2.385∗∗∗ 1.152∗∗∗ 0.566∗∗∗

(0.002) (0.000) (0.000) (0.000)
N 6039 3382 10212 19633
R2 0.50 0.56 0.46 0.58
∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 3.7: Interactions between Customers Spillovers and Bond or Firm Charac-
teristics
Regression estimates of the model according to bond or firm characteristics

CS i,t = α+ β Firmi,t + γ Customersi,t + δ1 S&Pt + δ2 YieldCurvet + εi,t .

The variables and notation are detailed in the caption of Table 3.2. The observation frequency
is weekly. The time period is January 2004 to August 2013. The full sample includes bonds that
have a spread of less than 30% and higher than 0.1%, and maturities between 5 and 35 years. The
regressions are performed according to bond or firm characteristics: bond grade (upper panel), bond
days to maturity by quartile (middle panel) and firm size by quartile (lower panel). For the sake of
space, only results for the variables of interest (customers’ leverage lev, option implied volatilities
ivol and jump risk measure jump) are presented. The numbers in parenthesis are Driscoll-Kraay
p-values (robust to heteroskedasticity, cross-sectional and temporal dependence).

Bond Grade

Investment High Yield

Customers

lev, γ1 0.090 −0.283
(0.479) (0.415)

ivol, γ2 0.454∗∗∗ −0.342
(0.000) (0.124)

jump, γ3 0.250 −0.675
(0.537) (0.382)

N 14890 2439
R2 0.62 0.64

Bond Days to Maturity by Quartile

1st 2nd 3rd 4th

Customers

lev, γ1 0.772∗∗∗ 0.863∗∗∗ 0.151 0.035
(0.000) (0.000) (0.790) (0.855)

ivol, γ2 0.852∗∗∗ 0.273 0.317 0.043
(0.000) (0.097) (0.337) (0.769)

jump, γ3 0.695 1.580∗ −1.354 1.811∗∗∗
(0.054) (0.025) (0.155) (0.000)

N 4920 4911 4882 4963
R2 0.61 0.70 0.51 0.59

Firm Size by Quartile

1st 2nd 3rd 4th

Customers

lev, γ1 0.543∗∗ −0.000 −0.680∗∗∗ −0.054
(0.005) (1.000) (0.000) (0.887)

ivol, γ2 0.280∗ −0.095 0.015 −1.240∗∗∗
(0.035) (0.439) (0.939) (0.001)

jump, γ3 −0.041 0.843 −1.677 −5.191
(0.906) (0.130) (0.220) (0.164)

N 4594 5022 4980 5080
R2 0.70 0.74 0.52 0.48
∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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Table 3.8: Customers Spillovers with Other Control Variables

Regression estimates for various restrictions of the model

CS i,t = α+ β Firmi,t + γ Customersi,t + δ1 S&Pt + δ2 YieldCurvet

+ φ1 asseti,t + φ2 M/Bi,t + φ3 ROAi,t

+ φ4 BaaAaaSpreadt + φ5 SwapTreaSpreadt + φ6 daysToMaturityi,t + εi,t ,

where asseti,t is firm’s asset, M/Bi,t is firm’s market to book ratio, ROAi,t is firm’s return on asset ra-
tio, BaaAaaSpreadt is Baa-Aaa spread, SwapTreaSpreadt is swap-Treasury spread, daysToMaturityi,t

is bond’s days to maturity. Other variables and notation are detailed in the caption of Table 3.2.
The observation frequency is weekly. The time period is January 2004 to August 2013. The sample
includes bonds that have a spread of less than 30% and higher than 0.1%, and maturities between 5
and 35 years. The numbers in parenthesis are Driscoll-Kraay p-values (robust to heteroskedasticity,
cross-sectional and temporal dependence).

(1) (2) (3) (4) (5)

Firm

lev, β1 1.343∗∗∗ 2.433∗∗∗ 1.364∗∗∗ 1.330∗∗∗ 2.441∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000)

ivol, β2 7.820∗∗∗ 7.368∗∗∗ 7.605∗∗∗ 7.792∗∗∗ 7.165∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000)

jump, β3 3.951∗ 6.078∗ 3.784∗ 3.957∗ 5.950∗
(0.035) (0.012) (0.043) (0.035) (0.013)

Customers

lev, γ1 0.498∗∗∗ 0.307∗ 0.534∗∗∗ 0.476∗∗ 0.335∗∗
(0.001) (0.019) (0.000) (0.001) (0.009)

ivol, γ2 0.414∗∗∗ 0.252∗∗ 0.406∗∗∗ 0.394∗∗∗ 0.244∗∗
(0.000) (0.002) (0.000) (0.000) (0.003)

jump, γ3 0.250 0.371 0.270 0.242 0.393
(0.469) (0.294) (0.409) (0.488) (0.215)

Controls in Main Specification
S&P δ1 Yes Yes Yes Yes Yes

Yield Curve δ2 Yes Yes Yes Yes Yes

Firm Characteristics
assets φ1 Yes Yes
M/B φ2 Yes Yes
ROA φ3 Yes Yes

Bond Market Characteristics
BaaAaaSpread φ4 Yes Yes

SwapTreaSpread φ5 Yes Yes

daysToMaturity φ6 Yes Yes

N 19676 18465 19676 19676 18465
R2 0.58 0.61 0.59 0.58 0.62
∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001
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